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Abstract

The industrial manufacturing of glass containers consifteveral phases, one of which is the blowing
phase. This paper describes the development of a numarinalkgion tool for this phase. The hot liquid
glass is modelled as a viscous fluid and its flow is governedhéystokes equations. We use the boundary
element method to solve the Stokes equations and obtainetlbeity profile at the glass surface. The
movement of the surface obeys an ordinary differential Eqna We describe three methods to perform
a time integration step and update the shape of the glasscsurfll calculations are performed in three
dimensions. This allows us to simulate the blowing of glasgainers that are not rotationally symmetric.
The contact between glass and mould is modelled using apalip condition. A number of simulations
on model glass containers illustrates the results.

Keywords. Boundary element method, blowing phase, glass, Stokestiegs

1 Introduction

The industrial production of glass products like bottles gars consists of several phases. First glass is
melted in a furnace where the glass reaches temperaturegsdret200 and1600 °C. The molten glass is
then cut intogobs which are transported to a forming machine.

The gob is positioned into a mould that is open from below. éngler is pushed into the mould, shaping
the glass to an intermediate form called frerison This phase of the production process is called the
pressing phasg@-igure 1(a)). The parison is put into a second mould in whtichallowed to sag vertically
due to gravity for a short period. When the glass almost tea¢he bottom of the mould, pressurized air
flows into the mould from above, blowing the glass to its fifege. This phase of the production process
is called theblowing phasé€Figure 1(b)). After the blowing phase the glass is removethfthe mould.

For the glass industry it is important to optimize each phafs¢he production process. One can think
of optimizing the shape of the parison, the speed of the @yribe sagging time, the pressure of the air
during the blowing phase, etc [12]. Experiments to tunedimgameters are cumbersome, costly and time
consuming. Therefore computer simulation of the variouslpction phases can offer useful information
to optimize the production.

The goal of this paper is to develop such a simulation tootlierblowing phase using the Boundary
Element Method (BEM) [1, 2, 3]. As we are interested in thepghavolution of the surface of the glass
we do not need to know what is happening internally. The BENy @omputes the velocity profile at
the surface of the glass, whereas many other numerical migttleo need to compute the glass velocity at
internal points. Hence the BEM seems to be a very appropnaterical method for this blowing problem.

We assume that the initial shape of the parison, the shageahould, the pressure of the pressurized
air and material parameters are given. The hot liquid gsghigly viscous fluid, and its flow is described



(a) Pressing phase (b) Blowing phase

Figure 1:The production of glass containers consists of a pressimg@land a blowing phase.

by the Stokes equations. The BEM computes the flow at the gudathe glass solving these Stokes
equations. Then we perform a time integration step to olitershape of the glass at the next time level.
For this new shape we again compute the flow at the surface enfiorm another time integration step.
This iterative procedure enables us to study the shape temolaf the glass during the blowing phase.
The computations are performed in three dimensions. Thigvalus to study bottles and jars that are not
rotationally symmetric, for instance due to small impeti@gs in the initial parison.

Numerical modelling of the production process of glasslestand jars has been the topic of several
papers. Mostly finite elements are used to solve the Stokeatieqs [5, 6], sometimes using a level set
method to track the position of the glass surface [8]. In meawses rotationally symmetric parisons are
modelled and computations are thus limited to two dimerssidio the authors knowledge our work is the
first to address the blowing problem in three dimensionsgigie BEM.

During the blowing phase the temperature of the glass clsadge to heat exchange with the mould.
The viscosity of the glass depends on the temperature in sengally non-linear way. Hence the heat
problem and the flow problem are coupled. In the papers meadi@bove this phenomenon is studied
intensively. In this paper we assume a uniform temperatalé fhat may vary in time.

Special attention has to be given to the contact problemeofithss and the mould. Most papers assume
a no-slip condition at the mould. In practice this is not theee Sometimes the mould is even covered with
a lubricating substance to improve the slip of the glass.réfoee we choose to work with a partial-slip
boundary condition instead of a no-slip boundary condition

The procedure described above results in a simulation écgilidy the blowing phase for glass products.
We have tested the simulation tool on several bottles arsd jEne results of the tests are promising and
may contribute to a better understanding of the productfdyottles and jars.

This paper is set up as follows. Section 2 introduces the emagttical model of the glass flow during
the blowing phase. The boundary value problem that we deritlds section is solved with the boundary
element method in Section 3. In Section 5 we present a nunfliesis to show the performance of the
simulation tool. We conclude with a short discussion in Bect

2 Mathematical model

In this section we derive the mathematical model that dieesrihe flow of a three-dimensional volume of
Newtonian fluid with high viscosity.

We consider a volume of fluid in three dimensions denoted2byThe fluid is bounded by a closed
surfaceS. The velocity and pressure of the fluid are denotea laydp respectively. Furthermore the fluid



is characterized by the dynamic viscositythe surface tensiof and a typical length scale.
The motion of the fluid is governed by two equations. The ety equation expresses conservation
of mass, and reads

V. =0, 1)

where we assumed that the density of the fluid is constant aifiokm, i.e. the fluid is incompressible. As
the fluid is highly viscous, the conservation of momentumasatibed by the Stokes equations,

V.o +pg =0, 2)

whereg is a body force (here we consider only gravitational fogce- —ge.) ando is the stress tensor.
For the Newtonian fluid the following constitutive equation the stress tensor holds,

dv;  Ov;
ij = —pdi; : -, 3
JJ p J+n(8xj+8$1> ()
with ¢;; the Kronecker delta. Substitution of the constitutive gmuefor o into the Stokes equations yields
nV?v — Vp + pg = 0. (4)

Figure 2:The surface of the glass is divided into four parts (crosgiseal view).

We distinguish four types of boundary conditions, see Fgair At the surfaces, andS; the normal
stress is related to the prescribed presspgeandp; onto the surface and the surface tensjon

on = —pon —ykn, atSy,
on = —pin—ykn, ats;. (5)

The vectorn is the outward unit normal at the surface ands the mean curvature at a certain point of
the surface. The first term in the boundary condition accefmt the external pressure acting onto the
surface. The second term accounts for the surface tensietodiie curvature of the surface. In the fluid
all molecules attract one another. A molecule that is in therior of the fluid domain is attracted by all
its neighbours, so the average force it experiences is équaro. A molecule at the surface of the fluid
experiences a force inwards the fluid. For highly curvedaes$ this force will be larger than for flat
surfaces. The curvature of the surface is measured bygan curvature: with dimensionZ—!. For more
details about the incorporation of curvature in the boupdanditions we refer to [16].

At the surfaceS; the glass is not allowed to move and hence we set the velaypitgl¢o zero,

v =0, atS,. (6)



At the surfaceSs the fluid is in contact with a solid wall, but is allowed to shfpng the wall. This means
that the velocity component in the normal direction is edaaero, i.e. the fluid cannot penetrate through
the wall,

v.n =0, atSs. (7

The velocity component in the tangential directions dogswed to be zero. The most common condition
is that the tangential component of the velocity is relatethe normal stress by [9],

(on + Bmv).t = 0, atSs. (8)

Heret is a vector in the tangential direction at the wall a#yg is a friction parameter. I15,, — 0 there is
no friction between fluid and wall. I8, — oo the friction between fluid and wall is too large to allow slip
along the wall. It can be seen that in that case (7) togethér(8) yield the no-slip condition (6).

Let v. be a characteristic velocity for the flow of the fluid. We defaeharacteristic pressuge by
p. = nue/ L. Using these characteristic parameters and ufimg a characteristic length, we rewrite the
Navier-Stokes equations in dimensionless form,

V20 —V'p' +ag =0. (9)

Herev’, p’ andg’ are the dimensionless velocity, pressure and body forckttendifferential operatov’
denotes differentiation with respect to the dimensionsgegtial coordinates. The dimensionless parameter
« is the ratio of the Reynolds number and the Froude numbenetfis

Lv, 2

Re:= &, Fr.= v—c, (10)

n gL
whereg is the acceleration of gravity. The dimensionless form efrilomentum balance (9) together with
the dimensionless form of the mass balance (1),

V' =0, (11)
give a system of four equations that describe the flow of thd.flu
It can be verified that the dimensionless stress tensisrdefined as
1
o = 20 I+ o. (12)
P1—Po P1—Po

We also introduce a dimensionless curvatkrdy ' = Lk. Substitution ofe’ andx’ into the boundary
conditions atSy andS; yields

o'n = —Bx'n, atSy,
odn = —(1+pk)n, ats, (13)
where the dimensionless parametds defined as
Y
= 14
s (p1 —po)L (1)
The boundary condition &, becomes
v =0, atS,. (15)
It can be verified that substitution ef andv’ into the second part of the boundary conditiorbatyields
LB,
—pon.t + (p1 — po)(oc'n + %v’).t =0. (16)

The first term cancels out sineet = 0. We divide byp; — py and and get the following boundary
conditions atSs,
(c'n+pL0)t = 0,
v'.n = 0, atSs, a7



where the dimensionless friction parametér is defined as

B, = % (18)
n

In the sequel we drop theo simplify the notation.
We introduce a modified pressysdy [13, p. 164]

p:=p+az, (19)

wherez is the vertical coordinate. Sinéép = Vp + ae, = Vp + ag, the momentum balance simplifies
to

Vv —Vp=0, inQ. (20)
We may define a modified stress tenédry

:=d(p,v) = —azZ + o(p,v). (21)
Substitution of this new stress tensor into the boundarygitmms atS, and.S; yields

on = —(az+ fr)n, atSy,
on = —(l+az+ Bk)n, ats;. (22)

It can be verified that substitution éfinto the second part of the boundary conditiorbatyields
aznt+ (6n + fpv).t =0. (23)
The first term cancels out sineet = 0 and we obtain the following conditions &t,

(6n + Bpv)t = 0,
v.n = 0, atSs, (24)

To summarize, the equations and boundary conditions inmiimaless form are given by

Vv—-Vp = 0,inQ,
Vw = 0,inQ,

on = —(az+ fr)n, atSy,
on = —(1+az+ Bk)n, atsy,
v = 0, atSs,,
(6n+ Bnpv).t = 0, atSs,
v.n = 0, atSs. (25)

In the sequel we will omit thego simplify the notation.

3 Boundary element method

We use the boundary element method to solve the Stokes praildined in the previous section. First
we show how the boundary value problem transforms into a sbbandary integral equations. After
discretisation of the surface we obtain a linear system gélataic equations. Solving this system yields
the velocity of the glass surface.

The key ingredient to transform the mathematical model fhenprevious section into a set of boundary
integral equations is Green’s identity for the Stokes peobl For an extensive derivation we refer the
reader to [11].

We introduce a new variablg

b:=o(p,v)n, (26)



which represents the normal stress at the boundary. Undexgsumption that the surfaceeis smooth,
it can be deduced that

1 .
551'1‘%'(58) +/ qij(x, y)vj(y)dS, = /Suij(way)bj(y)dsya i=1,23 x€s. (27)
S

Here the functiong;; andu;; are defined as

3 (@i —wi)(@; —y;) @k — yr)

qij(z,y) = p -
1 1 (i —yi)(zj — ;)
i (. y) SW{ Nz -yl " e —yl3 @9

We introduce the integral operat@ysand?,

Go): = /Uij(way)¢j(y)d5yv

S

/ 4s3 (. y); (4)dS,. (29)

S

(Hep)i

These operators are the single and double layer operatdhéo6tokes flow respectively. With these
operators the boundary integral equation (27) is simply as,

(%I + H)v = Gb. (30)

This boundary integral equation expresses the relatiowdsi the flowv of the surface of the fluid and
the normal stressdsat the surface.

The surfaces' is approximated by linear triangular elements. Each element typically caesi§three
nodesx!, 2, x3 that are located at the corners of the triangle. The totalbremof nodes is denoted by
N. We introduce three linear shape functions,

(bl(flag?) = 1_51 _527
$2(81,62) = &,
$3(&1,82) = & (31)

where0 < &1,& < 1andé; + & < 1. Consider thek-th elementS;, with nodesz!, 2 andx3. The
elementS;, is parameterized by

y=y(&, &) = prx' + dox® + 3’ (32)

The vectora andb are linearly approximated with the same shape functions,

v(y) P1v' + dav® + G307,
bly) = ¢1b' + gob” + ¢3b°. (33)
Herev® = v(x®) is the velocity at the node® andb® = b(x*) is the normal stress at the nogté. We

approximate the surface integral ovein (27) by a sum of integrals over the elemefifs and substitute
the approximations foo andb,

K

1

51}7(%) + Z/ qij (;1;7 y) ((;5111]1 + ¢2U32' + ¢3’UJ3)dSy
k=1 Sk

K
- Z/S wis (@, y) (616} + 02b? + 91} ) dS,, @ € 5, i =1,2,3. (34)
k=1"5k



We substitutec = P, p = 1,..., N, in (34), obtainingd N equations. Next we construct two coefficient
vectors,

_ 1,1 .1 N N  N1T
v = [vl,vz,vg,...,vl,vg,vg] ,
171 41 N ;N N1T
b = [b17b2’b3" . ’bl ,b2 ,bg] . (35)

This allows us to write (34) in a matrix-vector form,
Hv = Gb. (36)

To compute the matricdd andG, we have to evaluate integrals of the form

/ ¢ (", y)brdSy, / uii(”, y)PrdSy. (37)
Sk Sk

The integrals can be evaluated by using a Gauss quadrahems¢ but special care has to be taken when
the nodex? is in the surface elemers;. In that case one need to use a slightly more elaborate méthod
evaluate the integrals, e.g. a logarithmic Gauss quadrattireme.

In the case wherés = () we either know the velocity coefficients at a node or the ndstrass co-
efficients. Hence in (36) some of the unknowns are in the vdstat the right-hand side and some of
the knowns are in the vecter at the left-hand side. By interchanging columns properlyarrése at the
standard form linear system with unknown

Ax =Tf. (38)

When S3 # 0 there are nodes at which both the velocity and normal stresfficients are unknown,
though related via the slip conditions (24). tétr = 1, 2, be the two tangential vectors at the wall at such
a noder € Ss. Sincev.n = 0 atx, we may write

v(x) = ait' (x) + ast’(x), a1,a2 € R. (39)

Substitution intdb+ G,,v).t" = 0yieldsa, = —(b.t")/3,,. In the boundary integral equation we replace
v(x) by the above expression. Thus we have eliminatéd) and the only uknown at is b(x). The
solution of the BEM yields the normal streb&e) and as a post-processing step we compute the velocity
v(x) from (39). In this way we arrive at the same standard formdirsystemAx = f.

The matrix A is a dense matrix and the linear system can be solved by usindgJadecomposition
technigue. Due to the dense nature of the matrix, this magrheaostly, especially when the size of the
matrix is large.

4 Algorithm

In this section we describe an algorithm to simulate the bigyphase. Several steps can be distinguished
in this algorithm.

Initial surfacesS

for step=1,2,...
Use BEMto obtainw
Perform vel ocity snpot hi ng
Performtinme integration to update S
Per f or m Lapl aci an snoot hi ng
Regri ddi ng

end



Timeintegration

The movement of the surface of the fluid domain is describedhkyvelocity fieldv(x,t) that is the
outcome of the Stokes problem. In fact we calculate the Wglat a set of N nodes at the surface. To
study the evolution of the surface we need to solve an ordidiffierential equation,

88—: =v(xz,t), x € S. (40)
Assume that at timeé = ¢ we know the locations of the nodas® and the velocity at these nodes
v(x",t") =: v". We do not have any information of the nodes or velocity in fieire. Therefore
we cannot make use of implicite time integration schemeslieq40).

An option is to use aiuler forwardscheme, in which we approximate the locations of the nodéeeat
next time levek™*! by

"t =" 4+ Ato(x", 7). (41)

However this scheme is only first order accurate. Anotheioogs to use a modified version éfeun’s
methodwhich is also called thimproved Euler methadrhis method is known to be second order accurate
[4]. However for this method we need the velocityat the next time level”t! in the new locatione™*!

of the node. As we remarked before we do not have informatidatare time levels. To get around this
problem we first predict the location of the node at the nemetlevel using a Euler forward step (41). For
this predicted node™+! we again solve the Stokes problem and we obtain the velotityis node at time
t"*+1. Then we update our prediction of:+! with Heun’s method. In this way we corrected the prediction
of z"*! as performed with the Euler forward step. The disadvantagfsecHeun’s method is that we have
to solve two Stokes problems at each time step.

A third option to perform time integration is the so callédw methoddeveloped in [14]. Time in-
tegration is explicit in this method and only one Stokes pobneeds to be solved at each time step,
while accuracy is second order. To reach this quadraticracgwan inverse interpolation problem is solved
at each time step. The method exploits the fact that the dependence of the velocity is very small,
Ov/dt =~ 0, and hence we have to solve an ODE of the fétayot = v(x). Another advantage of the
flow method is its volume-conserving nature. Also on the Itergh this method performs better than other
second order methods. However, the time interval that iss@a in our simulations is very restricted, so
we cannot exploit the long term performance of the flow method

Note that the BEM with linear elements as described in theipus section is second order accurate.
This means that we cannot improve the overall accuracy bgsihg an accurate time integration method
only. We also need to use higher order elements in the BEMh@ae high accuracy. To illustrate this,
we may monitor the total volume of the fluid domain. As we aralithg with an incompressible fluid, the
volume should remain constant during the blowing phase.celeomputation of the fluid volume at each
time step provides us insight in the accuracy of the simattetibol.

At each node at the surface the BEM computes the velocity aitterror of ordeh?, whereh is a
typical size of the boundary elements. Summation over athelnts yields an error of ordérin the total
volume. From that point of view it does not make any differetifcwe use a first or second order ac-
curate time integration scheme. The error in the fluid volusn@ways dominated by the error made by
the BEM. Hence in our simulation we always choose the Eulevdod method to perform time integration.

L aplacian smoothing

A well-known technique to smooth a triangulated surfackdplacian smoothing7, 10, 17]. For each
nodex at the surfac& we compute the geometric averagg, of the neighbouring nodes. A neighbouring
node is a node that shares an edge of a triangleaiththe noder is too far away frome,,,, it is relocated
at the geometric average. Or more general, the nodereplaced by a weighted averagewéndx,,,

xz — (1 —w)x + weq, (42)

wherew is a suitably chosen weight. We can do this for every node, liickv case we applglobal
smoothing Or we may replace: only if the distance tac,, exceeds a certain tolerance. In that case we



applylocal smoothingIn other words, we smooth the surface only at nodes whesenitdst needed. The
process can be repeated several times. In each iteratiGutfaEe gets smoother.

A side-effect of the smoothing is that the volume that thdasgr encloses decreases. This is a typical
disadvantage of standard Laplacian smoothing. There aeeadenodifications to the standard technique to
avoid volume loss. The simplest one is to restrict the movemkthe noder to a direction perpendicular
to the normal at the surface at Unfortunately this reduces the performance of the smagthAnother
possibility is to take pairs of nodes that are connected bgdge. The two nodes are relocated to new
positions simultaneously. In this way we have more freedomove the nodes to the desired locations,
while conserving the volume. In our simulation tool we useltitter modification to Laplacian smoothing.
For more details we refer to [10].

Regridding

As the deformation of the glass is large the triangular elemmef the discretised surfacémay become
very large. Therefore it is necessary to remesh the suregearly. At every time step of the simulation
we monitor the length of the egdes of the boundary elemehtuch an edge has a length larger than a
certain tolerance level, this edge is subdivided. As a oqunaiece the two elements that share this edge are
subdivided into four new elements.

5 Results

In this section we perform several simulations with modakglparisons that are blown to bottles or jars.
In all simulations we assume that the top of the parison isifike. the velocity of the glass is equal to
zero. This part of the glass corresponds to the surfaceSpaeee Figure 2).

The material properties of glass can be found in [15]. Witrsthproperties the dimensionless parameters
that appear in the model get the following values,

o =0.0082, £ =0.001. (43)

Ideally, the value of the dimensionless friction coeffitigp, has to be determined experimentally. How-
ever, to the authors’ knowledge no such experiments have teg®rted in literature. For our simulations
we takes,, = 1, i.e. a partial-slip condition for the glass when it comds icontact with the wall.
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Figure 3: 3D Snapshots of the glass as it deforms due to the pressurertgawirom above. The mould
has a cylindrical shape with rouned corners. The glass isvadld to slip along the wall.

The first simulation shown in Figures 3 and 4 concerns a glassqgn that is put into a cylindrical mould.
The pressure that is blowing in from above causes the glasete in vertical and radial directions. After
some time the whole mould is filled with glass, that is the svafi the mould are covered with a layer of
glass, see Figure 4. The glass is allowed to slip along thewten it comes into contact with the mould.
It turns out that it is very hard to make the glass fill the cosraf the mould. In Figure 3 one can see that
near the corners we perform local mesh refinement. This ingsthe filling of the corners.

The cross-sectional view in Figure 4 shows that we get shampees at the top of the parison where the
surface partss; and.S; touch. This is a direct consequence of the choice to keepltss fixed atSs,
while it is allowed to move af;. In reality these sharp corners do not appear.

One can also see that, although we perform local mesh refimestd#l some small gaps appear between
the glass and the mould. Such gaps will always be presentrisiowlations as we try to fill a smoothly
curved mould by a set of straight linear elements.
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Figure 4:Cross-sectional view of Figure 3 at= 0.
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Figure 5: During the first three snapshots the glass is sagging to thtboof the mould. During the last
three snapshots air is blowing into the parison from above glass is allowed to slip along the
wall of the moud.

Figure 5 and 6 show a simulation with a mould that has a monéectzang shape, though still rotationally
symmetric. The lower part of the mould has a smaller widthnttiee upper part of the mould. Again the
corners are rounded. The glass is allowed to slip along tHeofithe mould. In the previous simulation
the only driving force was the pressure of the air that is lomto the parison from above. In reality the
parison is first subjected to gravity only. The glass will saghe bottom of the mould and when it almost
touches the bottom, air starts to blow into the mould. Theutation in Figure 5 and 6 consists of these two
stages. The first three snapshots correspond to the sagg@ewhile the last three snapshots correspond
to the blowing stage. It is observed that during the sagdiegglass mainly moves in vertical direction.
During the blowing the glass both moves in vertical and radii@ction. It turns out that gravity has little
effect during the blowing stage. Therefore the gravity fioEint o can be set equal to zero as soon as the
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blowing stage starts.

Figure 6:Cross-sectional view of Figure 5 gt= 0.
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Figure 7: A square parison with rounded corners and a square mould witinded corners. During
the first three snapshots the glass is sagging to the bottaimeafould. During the last three

snapshots air is blowing into the parison from above. Thegla not allowed to slip along the

wall.

The simulation that is presented in Figure 7 and 8 deals wiplarsson and a mould that are not ro-
tationally symmetric. The initial parison has the shape bba with rounded corners. Also the mould
has the shape of a box, but the upper part has a smaller widthtkie lower part. Again all corners are
rounded. Although the parison and mould are symmetric irpthresr = 0 andy = 0, these symmetries
are not exploited in the computations. Again we considemtlestages that occur in the production pro-
cess: sagging and blowing. The first three snapshots camesp the sagging stage while the last three
shapshots correspond to the blowing phase. In this caseldasly visible that the glass moves in vertical
direction only during the sagging stage. It is only in theviilg stage that the glass also moves in the

radial direction.



Figure 8:Cross-sectional view of Figure 7 at= 0.

6 Discussion

We have developed a simulation tool to analyse the blowirgsehin the production process of glass
containers. All calculations are performed in three diniems, which allows to study parisons that are
not rotationally symmetric. For instance, one can see howrtain imperfection in the initial parison
develops through time. In principle our simulation tool dzandle complex shapes of the parison and
mould. However, the shape of the mould has to be describelgemmattically, and such a description might
be very difficult to realize for complex shapes.

The boundary element method requires the existence of afoadtal solution for the boundary value



problem. For the Stokes equations such a fundamentalsolcgin be found, provided that the coefficients
in the Stokes equations are constant. However, for hotdigléss the material parameters are known to be
t emperature-dependent, in particular the viscosity. Astémperature is time and space dependent, so is
the viscosity. Hence in reality the coefficients in the Stokquations are not constant and a fundamental
solution is not known. In order to be able to use the boundarpent method, we assume that the viscosity
is uniform. We realize that this is a restriction that makedifficult to compare our results to experimental
data. Note that our simulation tool can incorporate malterigperties that change in time.

Little is known about the friction parametgr,,. To the authors’ knowledge there are no experiments
mentioned in literature in which the friction parameter fipass is determined. For the application studied
in this paper it is known that there is little friction betweglass and mould. Therefore, a small value of
Om Seems to be an appropriate choice.

Even though we have to restrict our computations to gladsavitniform viscosity, the boundary element
method is an appropriate humerical method for the appticasit hand. As we are only interested in
the shape evolution, i.e. the flow of the glass surface, iteiy efficient to use the boundary element
method, since it only discretises the surface of the glasanyWther numerical method also require the
computation of the flow in the interior of the glass. As a direensequence the matrices that appear in
the boundary element method are much smaller than the reathiat appear in the finite element method,
for instance. To compute the flow of the glass during the bigwphase, the boundary element method
requires a computation time ranging from half an hour to amrh®his is reasonably fast keeping in mind
the complex nature of the equations at hand.

Another advantage of the boundary element method is thewekase with which surface tension can
be added to the model and incorporated in the computatiomin@®the blowing phase this surface tension
does not have much influence, but during the sagging of ttes gl@annot be neglected.
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