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Abstract

The industrial manufacturing of glass containers consistsof several phases, one of which is the blowing
phase. This paper describes the development of a numerical simulation tool for this phase. The hot liquid
glass is modelled as a viscous fluid and its flow is governed by the Stokes equations. We use the boundary
element method to solve the Stokes equations and obtain the velocity profile at the glass surface. The
movement of the surface obeys an ordinary differential equation. We describe three methods to perform
a time integration step and update the shape of the glass surface. All calculations are performed in three
dimensions. This allows us to simulate the blowing of glass containers that are not rotationally symmetric.
The contact between glass and mould is modelled using a partial-slip condition. A number of simulations
on model glass containers illustrates the results.
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1 Introduction

The industrial production of glass products like bottles and jars consists of several phases. First glass is
melted in a furnace where the glass reaches temperatures between1200 and1600 oC. The molten glass is
then cut intogobs, which are transported to a forming machine.

The gob is positioned into a mould that is open from below. A plunger is pushed into the mould, shaping
the glass to an intermediate form called theparison. This phase of the production process is called the
pressing phase(Figure 1(a)). The parison is put into a second mould in whichit is allowed to sag vertically
due to gravity for a short period. When the glass almost touches the bottom of the mould, pressurized air
flows into the mould from above, blowing the glass to its final shape. This phase of the production process
is called theblowing phase(Figure 1(b)). After the blowing phase the glass is removed from the mould.

For the glass industry it is important to optimize each phaseof the production process. One can think
of optimizing the shape of the parison, the speed of the plunger, the sagging time, the pressure of the air
during the blowing phase, etc [12]. Experiments to tune these parameters are cumbersome, costly and time
consuming. Therefore computer simulation of the various production phases can offer useful information
to optimize the production.

The goal of this paper is to develop such a simulation tool forthe blowing phase using the Boundary
Element Method (BEM) [1, 2, 3]. As we are interested in the shape evolution of the surface of the glass
we do not need to know what is happening internally. The BEM only computes the velocity profile at
the surface of the glass, whereas many other numerical methods also need to compute the glass velocity at
internal points. Hence the BEM seems to be a very appropriatenumerical method for this blowing problem.

We assume that the initial shape of the parison, the shape of the mould, the pressure of the pressurized
air and material parameters are given. The hot liquid glass is a higly viscous fluid, and its flow is described



(a) Pressing phase (b) Blowing phase

Figure 1:The production of glass containers consists of a pressing phase and a blowing phase.

by the Stokes equations. The BEM computes the flow at the surface of the glass solving these Stokes
equations. Then we perform a time integration step to obtainthe shape of the glass at the next time level.
For this new shape we again compute the flow at the surface and perform another time integration step.
This iterative procedure enables us to study the shape evolution of the glass during the blowing phase.
The computations are performed in three dimensions. This allows us to study bottles and jars that are not
rotationally symmetric, for instance due to small imperfections in the initial parison.

Numerical modelling of the production process of glass bottles and jars has been the topic of several
papers. Mostly finite elements are used to solve the Stokes equations [5, 6], sometimes using a level set
method to track the position of the glass surface [8]. In manycases rotationally symmetric parisons are
modelled and computations are thus limited to two dimensions. To the authors knowledge our work is the
first to address the blowing problem in three dimensions using the BEM.

During the blowing phase the temperature of the glass changes due to heat exchange with the mould.
The viscosity of the glass depends on the temperature in an essentially non-linear way. Hence the heat
problem and the flow problem are coupled. In the papers mentioned above this phenomenon is studied
intensively. In this paper we assume a uniform temperature field that may vary in time.

Special attention has to be given to the contact problem of the glass and the mould. Most papers assume
a no-slip condition at the mould. In practice this is not the case. Sometimes the mould is even covered with
a lubricating substance to improve the slip of the glass. Therefore we choose to work with a partial-slip
boundary condition instead of a no-slip boundary condition.

The procedure described above results in a simulation tool to study the blowing phase for glass products.
We have tested the simulation tool on several bottles and jars. The results of the tests are promising and
may contribute to a better understanding of the production of bottles and jars.

This paper is set up as follows. Section 2 introduces the mathematical model of the glass flow during
the blowing phase. The boundary value problem that we derivein this section is solved with the boundary
element method in Section 3. In Section 5 we present a number of tests to show the performance of the
simulation tool. We conclude with a short discussion in Section 6

2 Mathematical model

In this section we derive the mathematical model that describes the flow of a three-dimensional volume of
Newtonian fluid with high viscosity.

We consider a volume of fluid in three dimensions denoted byΩ. The fluid is bounded by a closed
surfaceS. The velocity and pressure of the fluid are denoted byv andp respectively. Furthermore the fluid



is characterized by the dynamic viscosityη, the surface tensionγ and a typical length scaleL.
The motion of the fluid is governed by two equations. The continuity equation expresses conservation

of mass, and reads

∇.v = 0, (1)

where we assumed that the density of the fluid is constant and uniform, i.e. the fluid is incompressible. As
the fluid is highly viscous, the conservation of momentum is described by the Stokes equations,

∇.σ + ρg = 0, (2)

whereg is a body force (here we consider only gravitational forceg = −gez) andσ is the stress tensor.
For the Newtonian fluid the following constitutive equationfor the stress tensor holds,

σij := −pδij + η

(

∂vi

∂xj

+
∂vj

∂xi

)

, (3)

with δij the Kronecker delta. Substitution of the constitutive equation forσ into the Stokes equations yields

η∇2v −∇p+ ρg = 0. (4)
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Figure 2:The surface of the glass is divided into four parts (cross-sectional view).

We distinguish four types of boundary conditions, see Figure 2. At the surfacesS0 andS1 the normal
stress is related to the prescribed pressuresp0 andp1 onto the surface and the surface tensionγ,

σn = −p0n− γκn, atS0,

σn = −p1n− γκn, atS1. (5)

The vectorn is the outward unit normal at the surface andκ is the mean curvature at a certain point of
the surface. The first term in the boundary condition accounts for the external pressure acting onto the
surface. The second term accounts for the surface tension due to the curvature of the surface. In the fluid
all molecules attract one another. A molecule that is in the interior of the fluid domain is attracted by all
its neighbours, so the average force it experiences is equalto zero. A molecule at the surface of the fluid
experiences a force inwards the fluid. For highly curved surfaces this force will be larger than for flat
surfaces. The curvature of the surface is measured by themean curvatureκ with dimensionL−1. For more
details about the incorporation of curvature in the boundary conditions we refer to [16].

At the surfaceS2 the glass is not allowed to move and hence we set the velocity equal to zero,

v = 0, atS2. (6)



At the surfaceS3 the fluid is in contact with a solid wall, but is allowed to slipalong the wall. This means
that the velocity component in the normal direction is equalto zero, i.e. the fluid cannot penetrate through
the wall,

v.n = 0, atS3. (7)

The velocity component in the tangential directions does not need to be zero. The most common condition
is that the tangential component of the velocity is related to the normal stress by [9],

(σn+ βmv).t = 0, atS3. (8)

Heret is a vector in the tangential direction at the wall andβm is a friction parameter. Ifβm → 0 there is
no friction between fluid and wall. Ifβm → ∞ the friction between fluid and wall is too large to allow slip
along the wall. It can be seen that in that case (7) together with (8) yield the no-slip condition (6).

Let vc be a characteristic velocity for the flow of the fluid. We definea characteristic pressurepc by
pc = ηvc/L. Using these characteristic parameters and usingL as a characteristic length, we rewrite the
Navier-Stokes equations in dimensionless form,

∇′2v′ −∇′p′ + αg′ = 0. (9)

Herev′, p′ andg′ are the dimensionless velocity, pressure and body force, and the differential operator∇′

denotes differentiation with respect to the dimensionlessspatial coordinates. The dimensionless parameter
α is the ratio of the Reynolds number and the Froude number, defined as

Re :=
ρLvc

η
, Fr :=

v2
c

gL
, (10)

whereg is the acceleration of gravity. The dimensionless form of the momentum balance (9) together with
the dimensionless form of the mass balance (1),

∇′.v′ = 0, (11)

give a system of four equations that describe the flow of the fluid.
It can be verified that the dimensionless stress tensorσ′ is defined as

σ′ := −
p0

p1 − p0

I +
1

p1 − p0

σ. (12)

We also introduce a dimensionless curvatureκ′ by κ′ = Lκ. Substitution ofσ′ andκ′ into the boundary
conditions atS0 andS1 yields

σ′n = −βκ′n, atS0,

σ′n = −(1 + βκ′)n, atS1, (13)

where the dimensionless parameterβ is defined as

β :=
γ

(p1 − p0)L
. (14)

The boundary condition atS2 becomes

v′ = 0, atS2. (15)

It can be verified that substitution ofσ′ andv′ into the second part of the boundary condition atS3 yields

−p0n.t+ (p1 − p0)(σ
′n+

Lβm

η
v′).t = 0. (16)

The first term cancels out sincen.t = 0. We divide byp1 − p0 and and get the following boundary
conditions atS3,

(σ′n+ β′

mv
′).t = 0,

v′.n = 0, atS3, (17)



where the dimensionless friction parameterβ′

m is defined as

β′

m :=
Lβm

η
. (18)

In the sequel we drop the′ to simplify the notation.
We introduce a modified pressurep̃ by [13, p. 164]

p̃ := p+ αz, (19)

wherez is the vertical coordinate. Since∇p̃ = ∇p+ αez = ∇p+ αg, the momentum balance simplifies
to

∇2v −∇p̃ = 0, in Ω. (20)

We may define a modified stress tensorσ̃ by

σ̃ := σ̃(p̃,v) = −αzI + σ(p,v). (21)

Substitution of this new stress tensor into the boundary conditions atS0 andS1 yields

σ̃n = −(αz + βκ)n, atS0,

σ̃n = −(1 + αz + βκ)n, atS1. (22)

It can be verified that substitution ofσ̃ into the second part of the boundary condition atS3 yields

αzn.t+ (σ̃n+ βmv).t = 0. (23)

The first term cancels out sincen.t = 0 and we obtain the following conditions atS3,

(σ̃n+ βmv).t = 0,

v.n = 0, atS3, (24)

To summarize, the equations and boundary conditions in dimensionless form are given by

∇2v −∇p = 0, in Ω,

∇.v = 0, in Ω,

σ̃n = −(αz + βκ)n, atS0,

σ̃n = −(1 + αz + βκ)n, atS1,

v = 0, atS2,

(σ̃n+ βmv).t = 0, atS3,

v.n = 0, atS3. (25)

In the sequel we will omit thẽto simplify the notation.

3 Boundary element method

We use the boundary element method to solve the Stokes problem outlined in the previous section. First
we show how the boundary value problem transforms into a set of boundary integral equations. After
discretisation of the surface we obtain a linear system of algebraic equations. Solving this system yields
the velocity of the glass surface.

The key ingredient to transform the mathematical model fromhe previous section into a set of boundary
integral equations is Green’s identity for the Stokes problem. For an extensive derivation we refer the
reader to [11].

We introduce a new variableb,

b := σ(p,v)n, (26)



which represents the normal stress at the boundary. Under the assumption that the surface ofΩ is smooth,
it can be deduced that

1

2
δijvj(x) +

∫

S

qij(x,y)vj(y)dSy =

∫

S

uij(x,y)bj(y)dSy, i = 1, 2, 3, x ∈ S. (27)

Here the functionsqij anduij are defined as

qij(x,y) :=
3

4π

(xi − yi)(xj − yj)(xk − yk)nk

‖x− y‖5

uij(x,y) :=
1

8π

[

δij
1

‖x− y‖
+

(xi − yi)(xj − yj)

‖x− y‖3

]

. (28)

We introduce the integral operatorsG andH,

(Gφ)i :=

∫

S

uij(x,y)φj(y)dSy ,

(Hψ)i :=

∫

S

qij(x,y)ψj(y)dSy . (29)

These operators are the single and double layer operator forthe Stokes flow respectively. With these
operators the boundary integral equation (27) is simply as,

(1

2
I + H

)

v = Gb. (30)

This boundary integral equation expresses the relation between the flowv of the surface of the fluid and
the normal stressesb at the surface.

The surfaceS is approximated byK linear triangular elements. Each element typically consists of three
nodesx1, x2, x3 that are located at the corners of the triangle. The total number of nodes is denoted by
N . We introduce three linear shape functions,

φ1(ξ1, ξ2) = 1 − ξ1 − ξ2,

φ2(ξ1, ξ2) = ξ1,

φ3(ξ1, ξ2) = ξ2, (31)

where0 ≤ ξ1, ξ2 ≤ 1 andξ1 + ξ2 ≤ 1. Consider thek-th elementSk with nodesx1, x2 andx3. The
elementSk is parameterized by

y = y(ξ1, ξ2) = φ1x
1 + φ2x

2 + φ3x
3. (32)

The vectorsv andb are linearly approximated with the same shape functions,

v(y) = φ1v
1 + φ2v

2 + φ3v
3,

b(y) = φ1b
1 + φ2b

2 + φ3b
3. (33)

Herevs = v(xs) is the velocity at the nodexs andbs = b(xs) is the normal stress at the nodexs. We
approximate the surface integral overS in (27) by a sum of integrals over the elementsSk, and substitute
the approximations forv andb,

1

2
vi(x) +

K
∑

k=1

∫

Sk

qij(x,y)
(

φ1v
1
j + φ2v

2
j + φ3v

3
j

)

dSy

=

K
∑

k=1

∫

Sk

uij(x,y)
(

φ1b
1
j + φ2b

2
j + φ3b

3
j

)

dSy, x ∈ S, i = 1, 2, 3. (34)



We substitutex = xp, p = 1, . . . , N , in (34), obtaining3N equations. Next we construct two coefficient
vectors,

v =
[

v1
1 , v

1
2 , v

1
3 , . . . , v

N
1 , v

N
2 , v

N
3

]T
,

b =
[

b11, b
1
2, b

1
3, . . . , b

N
1 , b

N
2 , b

N
3

]T
. (35)

This allows us to write (34) in a matrix-vector form,

Hv = Gb. (36)

To compute the matricesH andG, we have to evaluate integrals of the form
∫

Sk

qij(x
p,y)φrdSy,

∫

Sk

uij(x
p,y)φrdSy. (37)

The integrals can be evaluated by using a Gauss quadrature scheme, but special care has to be taken when
the nodexp is in the surface elementSk. In that case one need to use a slightly more elaborate methodto
evaluate the integrals, e.g. a logarithmic Gauss quadrature scheme.

In the case whereS3 = ∅ we either know the velocity coefficients at a node or the normal stress co-
efficients. Hence in (36) some of the unknowns are in the vector b at the right-hand side and some of
the knowns are in the vectorv at the left-hand side. By interchanging columns properly wearrive at the
standard form linear system with unknownx,

Ax = f . (38)

WhenS3 6= ∅ there are nodes at which both the velocity and normal stress coefficients are unknown,
though related via the slip conditions (24). Lettr, r = 1, 2, be the two tangential vectors at the wall at such
a nodex ∈ S3. Sincev.n = 0 atx, we may write

v(x) = a1t
1(x) + a2t

2(x), a1, a2 ∈ R. (39)

Substitution into(b+βmv).t
r = 0 yieldsar = −(b.tr)/βm. In the boundary integral equation we replace

v(x) by the above expression. Thus we have eliminatedv(x) and the only uknown atx is b(x). The
solution of the BEM yields the normal stressb(x) and as a post-processing step we compute the velocity
v(x) from (39). In this way we arrive at the same standard form linear systemAx = f .

The matrixA is a dense matrix and the linear system can be solved by using an LU-decomposition
technique. Due to the dense nature of the matrix, this may become costly, especially when the size of the
matrix is large.

4 Algorithm

In this section we describe an algorithm to simulate the blowing phase. Several steps can be distinguished
in this algorithm.

Initial surface S
for step = 1, 2, ...

Use BEM to obtain v
Perform velocity smoothing
Perform time integration to update S
Perform Laplacian smoothing
Regridding

end



Time integration

The movement of the surface of the fluid domain is described bythe velocity fieldv(x, t) that is the
outcome of the Stokes problem. In fact we calculate the velocity at a set ofN nodes at the surface. To
study the evolution of the surface we need to solve an ordinary differential equation,

∂x

∂t
= v(x, t), x ∈ S. (40)

Assume that at timet = tn we know the locations of the nodesxn and the velocity at these nodes
v(xn, tn) =: vn. We do not have any information of the nodes or velocity in thefuture. Therefore
we cannot make use of implicite time integration schemes to solve (40).

An option is to use anEuler forwardscheme, in which we approximate the locations of the nodes atthe
next time leveltn+1 by

xn+1 = xn + ∆tv(xn, tn). (41)

However this scheme is only first order accurate. Another option is to use a modified version ofHeun’s
method, which is also called theimproved Euler method. This method is known to be second order accurate
[4]. However for this method we need the velocityv at the next time leveltn+1 in the new locationxn+1

of the node. As we remarked before we do not have information of future time levels. To get around this
problem we first predict the location of the node at the next time level using a Euler forward step (41). For
this predicted nodexn+1 we again solve the Stokes problem and we obtain the velocity in this node at time
tn+1. Then we update our prediction ofxn+1 with Heun’s method. In this way we corrected the prediction
of xn+1 as performed with the Euler forward step. The disadvantage of the Heun’s method is that we have
to solve two Stokes problems at each time step.

A third option to perform time integration is the so calledflow methoddeveloped in [14]. Time in-
tegration is explicit in this method and only one Stokes problem needs to be solved at each time step,
while accuracy is second order. To reach this quadratic accuracy an inverse interpolation problem is solved
at each time step. The method exploits the fact that the time-dependence of the velocity is very small,
∂v/∂t ≈ 0, and hence we have to solve an ODE of the form∂x/∂t = v(x). Another advantage of the
flow method is its volume-conserving nature. Also on the longterm this method performs better than other
second order methods. However, the time interval that is spanned in our simulations is very restricted, so
we cannot exploit the long term performance of the flow method.

Note that the BEM with linear elements as described in the previous section is second order accurate.
This means that we cannot improve the overall accuracy by choosing an accurate time integration method
only. We also need to use higher order elements in the BEM to achieve high accuracy. To illustrate this,
we may monitor the total volume of the fluid domain. As we are dealing with an incompressible fluid, the
volume should remain constant during the blowing phase. Hence computation of the fluid volume at each
time step provides us insight in the accuracy of the simulation tool.

At each node at the surface the BEM computes the velocity withan error of orderh2, whereh is a
typical size of the boundary elements. Summation over all elements yields an error of orderh in the total
volume. From that point of view it does not make any difference if we use a first or second order ac-
curate time integration scheme. The error in the fluid volumeis always dominated by the error made by
the BEM. Hence in our simulation we always choose the Euler forward method to perform time integration.

Laplacian smoothing

A well-known technique to smooth a triangulated surface isLaplacian smoothing[7, 10, 17]. For each
nodex at the surfaceS we compute the geometric averagexav of the neighbouring nodes. A neighbouring
node is a node that shares an edge of a triangle withx. If the nodex is too far away fromxav, it is relocated
at the geometric average. Or more general, the nodex is replaced by a weighted average ofx andxav,

x→ (1 − w)x+ wxav, (42)

wherew is a suitably chosen weight. We can do this for every node, in which case we applyglobal
smoothing. Or we may replacex only if the distance toxav exceeds a certain tolerance. In that case we



apply local smoothing. In other words, we smooth the surface only at nodes where it is most needed. The
process can be repeated several times. In each iteration thesurface gets smoother.

A side-effect of the smoothing is that the volume that the surface encloses decreases. This is a typical
disadvantage of standard Laplacian smoothing. There are several modifications to the standard technique to
avoid volume loss. The simplest one is to restrict the movement of the nodex to a direction perpendicular
to the normal at the surface atx. Unfortunately this reduces the performance of the smoothing. Another
possibility is to take pairs of nodes that are connected by anedge. The two nodes are relocated to new
positions simultaneously. In this way we have more freedom to move the nodes to the desired locations,
while conserving the volume. In our simulation tool we use the latter modification to Laplacian smoothing.
For more details we refer to [10].

Regridding

As the deformation of the glass is large the triangular elements of the discretised surfaceS may become
very large. Therefore it is necessary to remesh the surface regularly. At every time step of the simulation
we monitor the length of the egdes of the boundary elements. If such an edge has a length larger than a
certain tolerance level, this edge is subdivided. As a consequence the two elements that share this edge are
subdivided into four new elements.

5 Results

In this section we perform several simulations with model glass parisons that are blown to bottles or jars.
In all simulations we assume that the top of the parison is fixed, i.e. the velocity of the glass is equal to
zero. This part of the glass corresponds to the surface partS2 (see Figure 2).

The material properties of glass can be found in [15]. With these properties the dimensionless parameters
that appear in the model get the following values,

α = 0.0082, β = 0.001. (43)

Ideally, the value of the dimensionless friction coefficient βm has to be determined experimentally. How-
ever, to the authors’ knowledge no such experiments have been reported in literature. For our simulations
we takeβm = 1, i.e. a partial-slip condition for the glass when it comes into contact with the wall.



Figure 3: 3D Snapshots of the glass as it deforms due to the pressure blowing in from above. The mould
has a cylindrical shape with rouned corners. The glass is allowed to slip along the wall.

The first simulation shown in Figures 3 and 4 concerns a glass parison that is put into a cylindrical mould.
The pressure that is blowing in from above causes the glass tomove in vertical and radial directions. After
some time the whole mould is filled with glass, that is the walls of the mould are covered with a layer of
glass, see Figure 4. The glass is allowed to slip along the wall when it comes into contact with the mould.
It turns out that it is very hard to make the glass fill the corners of the mould. In Figure 3 one can see that
near the corners we perform local mesh refinement. This improves the filling of the corners.

The cross-sectional view in Figure 4 shows that we get sharp corners at the top of the parison where the
surface partsS1 andS2 touch. This is a direct consequence of the choice to keep the glass fixed atS2,
while it is allowed to move atS1. In reality these sharp corners do not appear.

One can also see that, although we perform local mesh refinement, still some small gaps appear between
the glass and the mould. Such gaps will always be present in our simulations as we try to fill a smoothly
curved mould by a set of straight linear elements.
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Figure 4:Cross-sectional view of Figure 3 aty = 0.



Figure 5: During the first three snapshots the glass is sagging to the bottom of the mould. During the last
three snapshots air is blowing into the parison from above. The glass is allowed to slip along the
wall of the moud.

Figure 5 and 6 show a simulation with a mould that has a more challenging shape, though still rotationally
symmetric. The lower part of the mould has a smaller width than the upper part of the mould. Again the
corners are rounded. The glass is allowed to slip along the wall of the mould. In the previous simulation
the only driving force was the pressure of the air that is blown into the parison from above. In reality the
parison is first subjected to gravity only. The glass will sagto the bottom of the mould and when it almost
touches the bottom, air starts to blow into the mould. The simulation in Figure 5 and 6 consists of these two
stages. The first three snapshots correspond to the sagging stage while the last three snapshots correspond
to the blowing stage. It is observed that during the sagging the glass mainly moves in vertical direction.
During the blowing the glass both moves in vertical and radial direction. It turns out that gravity has little
effect during the blowing stage. Therefore the gravity coefficientα can be set equal to zero as soon as the



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

Figure 6:Cross-sectional view of Figure 5 aty = 0.

blowing stage starts.



Figure 7: A square parison with rounded corners and a square mould withrounded corners. During
the first three snapshots the glass is sagging to the bottom ofthe mould. During the last three
snapshots air is blowing into the parison from above. The glass is not allowed to slip along the
wall.

The simulation that is presented in Figure 7 and 8 deals with aparison and a mould that are not ro-
tationally symmetric. The initial parison has the shape of abox with rounded corners. Also the mould
has the shape of a box, but the upper part has a smaller width than the lower part. Again all corners are
rounded. Although the parison and mould are symmetric in theplanesx = 0 andy = 0, these symmetries
are not exploited in the computations. Again we consider thetwo stages that occur in the production pro-
cess: sagging and blowing. The first three snapshots correspond to the sagging stage while the last three
snapshots correspond to the blowing phase. In this case it isclearly visible that the glass moves in vertical
direction only during the sagging stage. It is only in the blowing stage that the glass also moves in the
radial direction.
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Figure 8:Cross-sectional view of Figure 7 aty = 0.

6 Discussion

We have developed a simulation tool to analyse the blowing phase in the production process of glass
containers. All calculations are performed in three dimensions, which allows to study parisons that are
not rotationally symmetric. For instance, one can see how a certain imperfection in the initial parison
develops through time. In principle our simulation tool canhandle complex shapes of the parison and
mould. However, the shape of the mould has to be described mathematically, and such a description might
be very difficult to realize for complex shapes.

The boundary element method requires the existence of a fundamental solution for the boundary value



problem. For the Stokes equations such a fundamental solution can be found, provided that the coefficients
in the Stokes equations are constant. However, for hot liquid glass the material parameters are known to be
t emperature-dependent, in particular the viscosity. As the temperature is time and space dependent, so is
the viscosity. Hence in reality the coefficients in the Stokes equations are not constant and a fundamental
solution is not known. In order to be able to use the boundary element method, we assume that the viscosity
is uniform. We realize that this is a restriction that makes it difficult to compare our results to experimental
data. Note that our simulation tool can incorporate material properties that change in time.

Little is known about the friction parameterβm. To the authors’ knowledge there are no experiments
mentioned in literature in which the friction parameter forglass is determined. For the application studied
in this paper it is known that there is little friction between glass and mould. Therefore, a small value of
βm seems to be an appropriate choice.

Even though we have to restrict our computations to glass with a uniform viscosity, the boundary element
method is an appropriate numerical method for the application at hand. As we are only interested in
the shape evolution, i.e. the flow of the glass surface, it is very efficient to use the boundary element
method, since it only discretises the surface of the glass. Many other numerical method also require the
computation of the flow in the interior of the glass. As a direct consequence the matrices that appear in
the boundary element method are much smaller than the matrices that appear in the finite element method,
for instance. To compute the flow of the glass during the blowing phase, the boundary element method
requires a computation time ranging from half an hour to an hour. This is reasonably fast keeping in mind
the complex nature of the equations at hand.

Another advantage of the boundary element method is the relative ease with which surface tension can
be added to the model and incorporated in the computations. During the blowing phase this surface tension
does not have much influence, but during the sagging of the glass it cannot be neglected.
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