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Small-angle approximation in the description of radiative collective effects
within an ultrarelativistic electron bunch

Gianluca Gelonf, Vladimir Goloviznin, Jan Botman, and Marnix van der Wiel
Department of Applied Physics, Technische Universiteit Eindhoven, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
(Received 11 April 2001; published 25 September 2001

The problem of the evaluation of radiative collective effects accompanying accelerated motion of a short
ultrarelativistic electron bunch in vacuum is considered within the framework of the small-angle approxima-
tion; second order expansion in the transverse velocity of electrons is performed in order to obtain an analytical
expression for energy spread within the bunch. Comparison with earlier results by other authors shows good

agreement.
DOI: 10.1103/PhysReVE.64.046504 PACS nuni®er29.27.Bd, 41.60-m, 41.75.Ht
I. INTRODUCTION radiative collective self-interactions in the bunch. Extensive

numerical simulations were performed [iB—7]; a compari-

Very short, high-charge bunches of electrons will be pro-son with experimental results can be found&h. Measure-
duced by particle accelerators of the next generation. Buncients and computations are in reasonable agreement.
compression chicanes are expected to be often used in order In the present article we consider the problem of radiative
to provide very high-peak-current beams for X-ray 5e|f-collective interactions within a short electron bunch follow-
amplified spontaneous emissi@BASE)-free-electron lasers. iNg its trajectory in vacuum without shielding. The unusual
Electron bunches of this kind could also be interesting forfeature of our consideration is that we consistently apply the
the development of high-brightness cherenkov and transitiofmall-angle approximation, a natural technique for ultrarela-
radiation sources. However, their production and utilizationfivistic particles. This approach considerably reduces the ef-
may prove difficult due to radiative collective effects. fort necessary for the treatment of an arbitrary trajectory; on

A well-known example of such a collective effect is the the other hand, it somewhat restricts the class of allowed
enhancement of low-frequency photon emission from a shoiifajectories. From a conceptual point of view, it can account
relativistic electron bunch moving along a circular trajectorymore easily for the effects of finite transverse extent of the
[in the rest of the paper, we will refer to it as the steady-staté®unch, because it does not make use of polar coordinates as
coherent synchrotron radiatidiCSR]: the number of pho- other techniques dfB,9], thus getting rid of any extra term
tons per unit frequency interval increases dramatically in thérising from the Jacobian of the transformation. Eventually,
part of the spectrum where the photon wavelength becomé§is route is expected to lead to an efficient computational
comparable with the size of the bunch. In this frequencytool for the design of magnetic systems for high-peak-current
range, electromagnetic waves emitted by individual particleglectron bunches.
have small phase differences. As a result, they add up coher- The paper is organized as follows. In Sec. Il the geometry
ently, thus leading to a quadratic dependence of the intensit§f the problem is described and the small-angle approxima-
of radiation on the number of electrons in the bufith This  tion is introduced. Section Il is devoted to the case of re-
number is typically 18-10'°, which explains the high mag- tarded interaction between two individual electrons. In Sec.
nitude of the effect. IV our consideration is extended to the case of a test particle

Similar effects are observed when an electron buncﬁnteracting with the whole bUnCh, and the results are com-
passes bending magnets, magnetic chicanes, and other bedtared with those by other authors. Finally, Sec. V contains
optic elements. In all such cases, signal retardation is theonclusions and speculations.
crucial feature. In contrast to the above case of steady-state
CSR, in any beam-optic system transient collective phenom-

ena also take place. Their study has been a matter of active Il. THE SMALL-ANGLE APPROXIMATION
theoretical, numerical, and experimental research in the past . . .
few years P P Following other author$2,4,10,11, we will consider the

bunch as a “rigid,” 1D, charged object with a given linear
harge density distribution. We define a Cartesian reference
rame (x,y,z) as shown in Fig. 1, where theaxis coincides

The problem of a one-dimensionélD) electron bunch
entering a circular path from a straight path in vacuum ha
been carefully studied ifi2]. The total energy loss due to = ° e . .
collective effects as well as the final energy spread have bee"ﬁ'tgthe dlre_gtlont_of the |£|t|al velo;:l;?]/. I | .
examined in several limiting cases that are of relevance for t_ur C'(F?]SIt eration makes utsr,]e toth ebsmah -angie apprr?_mr-]
practical applications. The influence of shielding in a similarmation. thatis, we assume tnat the bunch energy 1S hig

situation has been addressed &) and[4]. The presence of enoggh _that thg posgible deflection of electrons fr_om a
conducting walls has been shown to reduce the strength raight line during their passage through the magnetic sys-
em is relatively small. To be specific, we will assume that,

before and after the magnetg<(0 or z>?), the bunch
*Email address: g.a.geloni@tue.nl moves along a rectilinear path with constant velocity, while
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FIG. 1. Schematic of a particle trajectory in the small-angle >

approximation. Space

FIG. 2. Different particle world lines intersect the light cone of

inside the magnetic system €@<2z) it follows a path sub-
g y {=2) b the observation event at different points in space-time.

ject to the only constraint that the angteformed by the

velocity vector with thez axis is always small, i.ef<1. . . . .
Note thaté can still be small or large as compared to the!n3|de the bunch. Its present velocity and its present position

other small parameter of the problem;, &, where y>1 is in the laboratory frame of reference will be denotedg&)

the Lorentz factory=(&/mc2+1), & being the kinetic en- ar_ld ro(t), respectively. We_are interested in its_interaction
ergy of the particles ' with some other bunch particle—the source particle—whose

A natural assumption i,(dv, . /dz)<v wherel, is present position Will'be deno;ed Bd). Causality defines ?he
the longitudinal extent of the buxhych ang (’% ’are the com- well-known retardation condition between the two particles,
Y

ponents of the transverse velocity of bunch electrons; in , ,

other words, we will consider a situation in which differ- [ro(t) = r(t")]=c(t-t), (3)
ences in transverse velocities of electrons are negligible. We , .

will also assume zero initial energy spread in the bunch, anf1€r€1(t") denotes the retarded position of the source par-
neglect any change of particle energy during the passage df'€ (t" being the so called retarded timend ¢—t’) is the

the bunch through the magnetic system. This means that tHfin€e delay associated with signal propagation. Obviously,

trajectory of the bunch is predetermined by its initial energy"."orld lines of diﬁergnt source p_articles are intgrsecti_ng the
ight cone of a certain event at different space-time points, as

and by the known configuration of external fields. The baCIJII o e
influence of radiative effects on the motion of particles is'llustrated in Fig. 2. L _ .

therefore assumed to be negligible; of course, this assump- | "€ small-angle aproximation considerably simplifies the
tion has to be verified posteriori in some cases of practical treatment of the above retardation condition. First, note that

interest the energy change appears to be rather significantknowledge of the transverse velocity as a function of time
The two main objects we are going to deal with in the fully determines the position of a particle. Indeed, using Eq.

following calculations are the local particle velocityand a  (2) one gets, for the transversp+ xx-+yy) and longitudinal

unit vectorn connecting two points lying on the same trajec- ¢00rdinates of a particle

tory. In the spirit of the small-angle approximation, one has .

to distinguish explicitly between their longitudinal and trans- pl(t) = f v, (7)dr, (4)
verse components, assuming the latter to be small. Keeping

first and second order terms and omitting all higher orders,

one gets the following well-known expressions for the t
components of the above vectors: z(t)=2z(0)+ va( m)d7
! t 1) vi(7)
n~=1-3n’, (1) - f S DA
z 2L z(0)+ o cl1 ZZ 2c dr. (5)
2
el 1 1) v (2  The transverse velocity, in its turn, is easily found once the
z 2y?] 2c¢’ configuration of external fields is defined, which makes this

approach rather convenient.
Once the bunch trajectory is fixed, the problem of radia- Secondly, the positions of the test and of the source par-
tive collective effects within the bunch reduces to properlyticle are related through
accounting for signal retardation in pairwise interactions be-
tween individual electrons. Let us consider a test particle ro(t)=r(t+6), (6)
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because all particles in the bunch are assumed to follow the e 1 ﬁ—B 1 ﬁx[(ﬁ—ﬁ)xﬂ]
same trajectory. In the small-angle approximation the timeE(rg,t)= 7 = —— = —
differenced is easily translated into the difference between meo |y R(1-n-p)° € R(1-n-p)
coordinates of the two particles: (12)
Az=2z9—27=cC5. (7) and
It is worth mentioning that for6>0 the position of the B(royt)zl nxE, (13)
c

source particle is alwaylsehindthat of the test particle. This

is, in fact, the only case we are interested in. As has been )

argued in 2], interactions with particles that asteadof the ~ where B8 and B are, respectively, the dimensionless velocity

test particle do not contain a radiative part. Their contribu-and its time derivative at the retarded tirtie R is the dis-

tion consists in trivial Coulomb repulsion, which has to betance between the retarded position of the source particle and

subtracted from the final expressions in order to get a nonghe observation point, and is a unit vector along the line

ingular result(see the discussion of the Coulomb singularity connecting those two points.

in Sec. ll)). For this reason, in the following we will always Multiplying eE by the velocity of the test particle,, one

assumeAz>0. gets the change of the energy of the test particle due to its
Thirdly, it is convenient to switch from time retardation to interacton with the source particle:

a retardation condition expressed m which is possible

since, in the small-angle approximatidrandz are uniquely £
mapped onto each other. The corresponding relation is easily (a) =eE(ro,t)-vo(), (14)
found; namely, up to second order terms in the transverse
velocity one gets and hence
z—7 1 [z 2 n- Bo— B-
o= : )(1 — +%J/d§ﬂf(§), ®) (d_g): & |C B Bh
2y z dt] 4meg| 4?2 R’(1—n-p)°
where B, is the usual notation for dimensionless velocity, (ﬁﬂ)(ﬁ-ﬁo—ﬂ Bo)—(ﬂoﬂ)(l—ﬁ-ﬂ)
B, =v, /c. Using this, the retardation condition can be re- + R(1-n-B)3 '
written as
(15)
(ZO—Z')2+(po—p’)22{(Z—Z’)( 1+ i) As one can see, the above expression contains terms propor-
22 tional toR™* as well as those proportional B 2. TheR™?
2 dependence resembles electrostatic interaction of two
n lfzdé’ﬂz(é’) ) charges, which is why these are called the Coulomb terms. In
2), L ' contrast, theR™ ! terms are called radiative ones.

As has been argued |2], the Coulomb part is singular in
Rearranging terms, neglecting those of orderthe limit Rﬁol(that iS,AZH-O). On thg other_ h_and, this
AzI(z—2')<1, and taking into account E¢4), we find large congnbuuon has nothlng to do with ra@atlve effects,
because it represents just trivial electrostatic repulsion of
, bunch electrons. Its singular behavior is connected with the
(z—7') Azt Efzdgﬂz(g) infinitely small transverse size of the bunch that we use in
22 2)y 7t our model problem. Followin{2], we will cure the situation
(100 by subtracting from Eq(15) its purely Coulomb counterpart
corresponding to rectilinear motion of the same two particles
Finally, we represent the retardation condition in the smallwith constant velocity:
(z0—2")

angle approximation as
( dé) ( d 5) e?Bc 16
Z9 Zy 2 —_— = -
] ko ;( J déﬁmz)) 2z dt) 1 dt amegy’(a2?
7 ' (ZO_Z,) z/

(1))  The resulting expression appears to be regular in the limit
Az—0. This regularized formula will be used in all follow-
lll. LIENARD-WIECHERT FIELDS AND COULOMB ing calculations. o
In the small-angle approximation, one has to expand the
SINGULARITY . .
above expressions up to second order terms in the trans-
The fields generated by a source particle at an observatiorerse velocity. The following relations are quite helpful at
point ro(t) are given by the following expressions: this stage:

2
=2(z—2')

{ [Fazs. (o

046504-3



GELONI, GOLOVIZNIN, BOTMAN, AND van der WIEL PHYSICAL REVIEW E64 046504

3 1
(1-h-B)= %ﬂﬁi—m)zl, (17) 1+ 72?7 1+ 5727
[C]: 2 2
72(14—%726(272) 21+ %2720[272)
“ 11 1
(n'ﬂo—ﬁ'ﬁo):i _2+(BLO_BL)2_(BLO_nL)2ly 1
’ a9 Yol |1 577
= 6 1 2 2 (24)
. . (l+—72a272 1+_,y2a2T2)
(Bo-B)=(BLo—B1) B, (19 4 12

which clearly has no pole as—0. Similarly, one can check

wheren, is given by the absence of singularity in the radiative part.

20 IV. ENERGY LOSS FOR A TEST PARTICLE IN A ONE-
(ZO—Z')JZ’ dZB.(0). (20 DIMENSIONAL BUNCH

nL:

The next step is to evaluate the energy change for a test
Using the above formulas and putting, with the same accuparticle interacting with the whole bunch characterized by a
racy, R=(zo—z'), one gets given electron density distribution. This latter is, in accor-
dance with our assumptions, stationary in a comoving frame
. of reference. It is also worth mentioning that, in terms of the
déy e 2y? Cl4[R (27 LD model used here, it is essentially the same to a nu-
dt)  4meq 1+ Yz[nl—[ﬁ(z')]z{[ IFIRE, @D merical factoy as the longitudinal profile of the total current
carried by the bunch.

o As has already been said, we are interested only in the
where[C] and[R] stand for the Coulomb and the radiative contripution coming from particles that are behind the test
part, respectively, one; it is logical then to express the bunch density, which we

will call N, in terms of the longitudinal distance from the test
2¢c particle. The corresponding variablez has already been
[C]l= (z—z’)2 introduced in Eq(7). Then the energy change can be written
0~ as

1_72[ﬁl(zo)_nl]z+Yz[ﬁi(zo)_ﬁﬂz’)]z de = &
{1++°[n, - B.(z)]3? (a) (Zo):J (a)(zo,AZ)MAZ)d(AZ), (25
B 0

1+[n, —B.(2)]? whereB stands for ‘bunch and \ is supposed to vanish as
- % 70, (22 Az—+, so that the integral converges at the upper limit.
1—y°n?+ yz(zo—z’)*lf ﬁf(g)dg} Note that the lower limit of integration is zero.
z Clearly, it is more convenient to perform integration over
the retarded position’ rather than over the distance between
particlesAz, since this eliminates the necessity of solving

B. ; -
—=2.2 Eqg. (11) for z’. Upon this, Eq.(25) becomes
RI=2Y G2 v, B P2 ! P !
_ ’ 2 _ \12 —o0 <
X([n, = BL(@)HL+ ¥ B (20)~ Bi(2)] (%f) - (%f 2030222 4 (2
— ¥, =B (20) 12}~ [ B.(20) — B.(Z')] B
X{1+y7[n, = B.(2)]?}). (23 where the limits of integration correspond to the retarded

position of the source particle fakz=0 or, respectively,

A rather straightforward calculation shows that the ex-* . Note that\(A2) is to be considered as a shorthand for
pression obtained is, indeed, regular in the likit—0 or, A(Az(z,z')). The expression ford&/dt)(zy,z') was ob-
equivalently, ¢,—z')—0. That is, it is sufficient to consider tained in the previous section. As fdi(Az)/dz’, one can
the case of constant transverse accelergion const. With- ~ €asily check that
out loss of generality, let us pui,=a, B,=0. By shifting
the origin and settingzo—z'=7, one has B,(z)=0, d(Az)
Bx(zp) = ar. Upon this, the Coulomb part becomes dz'

=—[1-n-B(z)]. (27)
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TABLE I. Energy change in J for an electron located at the head of a bunch with rectangular density distribution. A comparison is made
between evaluation with completely analytical formulas found by other authors and our simBatiothe magnetic field in Tl is the
bunch length in myy is the Lorentz factorz is the length of the interaction zone in m, aNds the number of particles considered in the
bunch.

Case B (T) I, (M) v 7 (m) N (units of 10) Analytical results(J) Simulation resultgJ)
1 0.043 1.x10°6 25 1.2x1072 6.0 8.7 107 % 8.3x10°15
2 0.085 1.x10°7 50 8.0<10°3 10.0 1.54<10° 13 1.50x 10" %2
3 0.17 0.45 50 9.910°2 10.0 3.%x10°Y 3.4x10°17
4 0.85 0.2 500 0.02 10.0 810’ 9.3x10° 17

Finally, if we want to obtain the energy loss during the In one of those limiting cases, the comparison is particu-
entire trajectory we have to integrate oveor, equivalently, larly simple: if the bunch is short and the bending magnet is,

over zy), which gives in the normalized sense, much longer than the bunch, then,
as has been argued[iB], the transient effects at the interface
_[*=(dE) dt between the straight path and the magnet can be neglected.
AE= —| ——dz,. (28 . 2 .
— | dt) g dz This means that, in this particular case, we can assume all the

retarded positions of the sources to lie within the bending
Equation(28) is a closed expression for the energy loss, inmagnet, and the situation becomes stationary.
the sense that all we need to know is just the transverse For a rectangular bunch containiigparticles, one finds
velocity of the bunch as a function of the propagation dis-upon a calculation similar to that in E(R4) that
tance. This latter is fully defined by th@redesignedcon-

figuration of external magnetic fields. As a result, we get for (d_“:) _ 1 4N€yc  yuy(8+ yous
the total energy change dt/,  4meg Aly  (4+uiy?)(12+y%ul)’
02 [ % (31
AE= 47760ch dzofiwdz’{[C]Jr[R]})\(Az), 29 where
where[C] and[R] are defined by Eq$22) and(23), andAz ~ 27%(Ih—S0) _ (32)

by Eq.(11). ® A
A useful particular case of the above equation is that of g . o .
rectangular current profilex(Az) is assumed to be constant, Ohne c?n eg§|ly20heck that E¢&1) and(32) coincide with
N(AZz) =\, over the whole length of the buntj. If the test t olse oun IITh]. _ th licated. and th
particle is situated at a distanasg from the head of the N general, In€ expressions are rather complicated, and the

bunch, then the expression for the energy loss becomes corresponding comparison can only be done numerically. A
' computer code has been developed and benchmarked against

e\, [+= 20 several limiting cases given if2]. The results are presented
A5(50)=4 cf zof, dzZ' {[C]+[R]}, in Table I. Cases 1 and 2 deal with a short bunch and a
Tk~ 2 (Ip=S0) magnet longer than the bunch: here the crucial factor is the

(30 energy of the beam. The difference by a factor of 2 in the
Lorentz factor is responsible for the increase by a factor of

; R ) . 16 in the energy change. In cases 3 and 4 the magnet is long
sponding toAz=1,— Sy, ands, is understood to be positive and the bunch is much longégain in the normalized sernse

for particles that lie behind the he_ad of the bunch. than the magnet; these two cases have been computed, re-
We have performed a comparison of the above expres:

sions with some earlier results obtained without the use o?p?r?tg/ﬁl}c/;igégh J\(/);N ;)gggr\%gZ'Zr;iréjyagﬁen;;z; between our
the small-angle approximation. Followin2], a general

) X .. _numerical computations and the corresponding analytical es-
analysis of the problem of a bunch with rectangular densit P p 9 y

distributi ing th h a bendi h b %imates(a relatively large discrepancy of the order of 10% in
istribution passing through a bending magnet can beé Cong,qoq 3 9ng 4 js presumably a result of the logarithmic accu-
siderably simplified in several limiting cases. That is, theracy of the analytical expressions f@]). It is also worth

authors of 2] call the magneshort (long) if it deflects elec- mentioning that in all four cases the total energy change is

trons at an angle much smalldargey than 1. On the small as compared to the initial particle energy; specifically,

other hanq, an ellectron bqnch IS cor_13|desedrt or long, the largest relative energy change of about 4% is found in
when its linear dimension is, respectively, much shorter or

. : case 2. This confirms consistency of the computational
much longer tham\/ y3, whereA is the radius of curvature of y P

th ticle traiect i th L F thi i dscheme, as was discussed in Sec. |.
€ particie trajectory in the magnet. From this, normalized  Aq gne more test, we have calculated the instantaneous

expressions for the bunch |engtfb(:|b73/A) and for the  power radiated by a particle located at the head of a bunch
angular dimension of the magnep (= y¢,,) are obtained. that enters into a bending magnet. This case demonstrates

wherez, (I,—sg) stands for the solution of Eq11) corre-
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V. CONCLUSIONS AND SPECULATIONS

PP, ¢ %*,%
1.0/ ot An analytical approach to the problem of radiative collec-
tive effects within an ultrarelativistic electron bunch has
0.31 been developed. The systematical use of the small-angle ap-
proximation results in a different expression for the energy
exchange between a test particle and the bunch. This expres-
0.67 sion is closed, in the sense that we need to know only the
transverse velocity of the bunch as a function of the propa-
0.4] N gation distance, which is directly determined by the external
; field configuration.
0.2 & Analytical and numerical comparison of the formulas ob-
i tained with earlier results by other authors has been per-
s formed and good agreement has been demonstrated. The
0 ! 2 g 15 4 30 technique is applicable to an arbitrary bunch trajectory sub-

ject to only one restriction: a small deviation from the initial

direction. A conceptual advantage of this route is that, due to
the choice of geometry, we do not switch to a polar frame of
reference, thus getting rid of any extra terms arising from the

pronounced transient collective effects. To be specific, wé] acobian of the transformation. We expect that, in future

considerd a 1 mmlong, 40 MeV bunch with rectangular s_tqdles, this wil ".""OW us to account more easily for the
. S X . ] finite transverse size of the bunch.
electron density distribution entering a circular trajectory

: A . Note added in proofRecently, discussions took place
with a racyusA—l m from a straight path. T_hg dependg NC€\vith Yaroslav Derbenev and Rui I(both at Jefferson Lab
of the radiated power on the angle of deflecttis shown in

. : .about the physical interpretation of noninertial space charge
:(Ia%nsiop}fr::(e:;éggebttijl??three:(t:ﬁ:asstg_e gzlrécia:tt;lgoragla;ﬁcithﬁgvi\t/er '3nd centrifugal forces. Although these forces arise from the
P - —P Jacobian transformation between Cartesian and cylindrical

ggcgﬁaj\?jr;ﬁ girigzﬁgg;is;ﬁtfea\ég??ﬁvl\é?lcg has been used frames, they interpret them as existing independently of the
9. o choice of coordinate system.

The observed dependence is in agreement with well-
known resultg3,4]. Basically, the transient in the figure con-
nects two steady-state situations. The first one corresponds to
the bunch before the bend: clearly, no power is radiated in
this case. The second stationary regime is the steady-state The authors would like to thank Bruce Carlstgos Ala-
CSR—that is, when the retarded positions of source particlesios National Laboratojy Rui Li (Jefferson Lajy and Ev-
interacting with the test particle are all in the bend. Thegeni Saldin(DESY) for useful discussions. One of (¢.G.)
transient describes a “mixed” situation when the retardedgreatly appreciates financial support from CA®e Dutch
positions of source particles are partially in the bend andResearch School on Plasma and Radiation Studiasng
partially in the straight line preceding the bend. his work on this article.

FIG. 3. Normalized transient power loss for a bunch with rect-
angular density distribution going into a bend.

ACKNOWLEDGMENTS

[1] J.S. Nodvick and D.S. Saxon, Phys. R, 180(1954.

[2] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. In-
strum. Methods Phys. Res. 208 373(1997.

[3] R. Li, in Proceedings of the Particle Accelerator Conference,
New York, 1999edited by A. Luccio and W. MacKa¢lEEE,
Piscataway, NJ, 1999p. 118.

[4] R. Li, C.L. Bohn, and J.J. Bisognano, Proc. SRIE54 223 [9] B.E. Carlsten, Phys. Rev. &, 838 (1996.

(199_7)_- _ [10] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. In-
[5] R. Li, in Proceedings of the Second ICFA Advanced Accelera- ¢\ Methods Phys. Res. 417, 158 (1998.
tor Workshop, Los Angeles, 199dlited by J. Rosenzweig and 1111 y4 5. perbenev, J. Rossbach, E. L. Saldin, and V. D. Shiltsev,

L. Serafini(World Scientific, Singapore, 2000
TESLA-FEL Report No. 95-05, DESY, Hamburg, 1995.
[6] R. Li, Nucl. Instrum. Methods Phys. Res. 429 310(1998. P 9

[7] K. Rothemund, M. Dohlus, and U. van RienenFroceedings
of the 21st International Free Electron Laser Conference and
6th FEL Applications Workshop, Hamburg, 19%@lited by J.
Feldhaus and H. Weisglsevier Science, Amsterdam, 2000
[8] H.H. Braunet al, Phys. Rev. ST Accel. Bean®¥ 124402
(2000.

046504-6



