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Small-angle approximation in the description of radiative collective effects
within an ultrarelativistic electron bunch
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~Received 11 April 2001; published 25 September 2001!

The problem of the evaluation of radiative collective effects accompanying accelerated motion of a short
ultrarelativistic electron bunch in vacuum is considered within the framework of the small-angle approxima-
tion; second order expansion in the transverse velocity of electrons is performed in order to obtain an analytical
expression for energy spread within the bunch. Comparison with earlier results by other authors shows good
agreement.

DOI: 10.1103/PhysRevE.64.046504 PACS number~s!: 29.27.Bd, 41.60.2m, 41.75.Ht
ro
n
r
lf
.
fo
tio
io

e
ho
ry
a

th
m
c
le
h
s

-

nc
e
th
ta

om
ct
pa

ha
o
e
fo

la
f
h

ive

ive
-

al
the
la-
ef-
on
ed

unt
the
s as

lly,
nal
ent

try
a-

re-
ec.
icle
m-
ins

r
nce

oxi-
igh

a
ys-

at,

ile
I. INTRODUCTION

Very short, high-charge bunches of electrons will be p
duced by particle accelerators of the next generation. Bu
compression chicanes are expected to be often used in o
to provide very high-peak-current beams for x-ray se
amplified spontaneous emission~SASE!-free-electron lasers
Electron bunches of this kind could also be interesting
the development of high-brightness cherenkov and transi
radiation sources. However, their production and utilizat
may prove difficult due to radiative collective effects.

A well-known example of such a collective effect is th
enhancement of low-frequency photon emission from a s
relativistic electron bunch moving along a circular trajecto
@in the rest of the paper, we will refer to it as the steady-st
coherent synchrotron radiation~CSR!#: the number of pho-
tons per unit frequency interval increases dramatically in
part of the spectrum where the photon wavelength beco
comparable with the size of the bunch. In this frequen
range, electromagnetic waves emitted by individual partic
have small phase differences. As a result, they add up co
ently, thus leading to a quadratic dependence of the inten
of radiation on the number of electrons in the bunch@1#. This
number is typically 108–1010, which explains the high mag
nitude of the effect.

Similar effects are observed when an electron bu
passes bending magnets, magnetic chicanes, and other b
optic elements. In all such cases, signal retardation is
crucial feature. In contrast to the above case of steady-s
CSR, in any beam-optic system transient collective phen
ena also take place. Their study has been a matter of a
theoretical, numerical, and experimental research in the
few years.

The problem of a one-dimensional~1D! electron bunch
entering a circular path from a straight path in vacuum
been carefully studied in@2#. The total energy loss due t
collective effects as well as the final energy spread have b
examined in several limiting cases that are of relevance
practical applications. The influence of shielding in a simi
situation has been addressed in@3# and @4#. The presence o
conducting walls has been shown to reduce the strengt
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radiative collective self-interactions in the bunch. Extens
numerical simulations were performed in@5–7#; a compari-
son with experimental results can be found in@8#. Measure-
ments and computations are in reasonable agreement.

In the present article we consider the problem of radiat
collective interactions within a short electron bunch follow
ing its trajectory in vacuum without shielding. The unusu
feature of our consideration is that we consistently apply
small-angle approximation, a natural technique for ultrare
tivistic particles. This approach considerably reduces the
fort necessary for the treatment of an arbitrary trajectory;
the other hand, it somewhat restricts the class of allow
trajectories. From a conceptual point of view, it can acco
more easily for the effects of finite transverse extent of
bunch, because it does not make use of polar coordinate
other techniques do@3,9#, thus getting rid of any extra term
arising from the Jacobian of the transformation. Eventua
this route is expected to lead to an efficient computatio
tool for the design of magnetic systems for high-peak-curr
electron bunches.

The paper is organized as follows. In Sec. II the geome
of the problem is described and the small-angle approxim
tion is introduced. Section III is devoted to the case of
tarded interaction between two individual electrons. In S
IV our consideration is extended to the case of a test part
interacting with the whole bunch, and the results are co
pared with those by other authors. Finally, Sec. V conta
conclusions and speculations.

II. THE SMALL-ANGLE APPROXIMATION

Following other authors@2,4,10,11#, we will consider the
bunch as a ‘‘rigid,’’ 1D, charged object with a given linea
charge density distribution. We define a Cartesian refere
frame (x,y,z) as shown in Fig. 1, where thez axis coincides
with the direction of the initial velocity.

Our consideration makes use of the small-angle appr
mation. That is, we assume that the bunch energy is h
enough that the possible deflection of electrons from
straight line during their passage through the magnetic s
tem is relatively small. To be specific, we will assume th
before and after the magnets (z,0 or z. z̄), the bunch
moves along a rectilinear path with constant velocity, wh
©2001 The American Physical Society04-1
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GELONI, GOLOVIZNIN, BOTMAN, AND van der WIEL PHYSICAL REVIEW E64 046504
inside the magnetic system (0,z, z̄) it follows a path sub-
ject to the only constraint that the angleu formed by the
velocity vector with thez axis is always small, i.e.,u!1.
Note thatu can still be small or large as compared to t
other small parameter of the problem,g21, whereg@1 is
the Lorentz factorg5(E/mc211), E being the kinetic en-
ergy of the particles.

A natural assumption isl b(dvx,y /dz)!vx,y , wherel b is
the longitudinal extent of the bunch andvx,y(z) are the com-
ponents of the transverse velocity of bunch electrons;
other words, we will consider a situation in which diffe
ences in transverse velocities of electrons are negligible.
will also assume zero initial energy spread in the bunch,
neglect any change of particle energy during the passag
the bunch through the magnetic system. This means tha
trajectory of the bunch is predetermined by its initial ener
and by the known configuration of external fields. The ba
influence of radiative effects on the motion of particles
therefore assumed to be negligible; of course, this assu
tion has to be verifieda posteriori: in some cases of practica
interest the energy change appears to be rather significa

The two main objects we are going to deal with in t
following calculations are the local particle velocityv and a
unit vectorn̂ connecting two points lying on the same traje
tory. In the spirit of the small-angle approximation, one h
to distinguish explicitly between their longitudinal and tran
verse components, assuming the latter to be small. Kee
first and second order terms and omitting all higher orde
one gets the following well-known expressions for thez
components of the above vectors:

nz.12
1

2
n'

2 , ~1!

vz.cS 12
1

2g2D2
v'

2

2c
. ~2!

Once the bunch trajectory is fixed, the problem of rad
tive collective effects within the bunch reduces to prope
accounting for signal retardation in pairwise interactions
tween individual electrons. Let us consider a test part

FIG. 1. Schematic of a particle trajectory in the small-an
approximation.
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inside the bunch. Its present velocity and its present posi
in the laboratory frame of reference will be denoted asv0(t)
and r0(t), respectively. We are interested in its interacti
with some other bunch particle—the source particle—wh
present position will be denoted asr(t). Causality defines the
well-known retardation condition between the two particle

ur0~ t !2r~ t8!u5c~ t2t8!, ~3!

wherer(t8) denotes the retarded position of the source p
ticle (t8 being the so called retarded time!, and (t2t8) is the
time delay associated with signal propagation. Obvious
world lines of different source particles are intersecting
light cone of a certain event at different space-time points
illustrated in Fig. 2.

The small-angle aproximation considerably simplifies t
treatment of the above retardation condition. First, note t
knowledge of the transverse velocityv' as a function of time
fully determines the position of a particle. Indeed, using E
~2! one gets, for the transverse (r5xx̂1yŷ) and longitudinal
coordinates of a particle

r~ t !5E
0

t

v'~t!dt, ~4!

z~ t !5z~0!1E
0

t

vz~t!dt

.z~0!1E
0

tFcS 12
1

2g2D2
v'

2 ~t!

2c Gdt. ~5!

The transverse velocity, in its turn, is easily found once
configuration of external fields is defined, which makes t
approach rather convenient.

Secondly, the positions of the test and of the source p
ticle are related through

r0~ t !5r~ t1d!, ~6!

FIG. 2. Different particle world lines intersect the light cone
the observation event at different points in space-time.
4-2
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SMALL-ANGLE APPROXIMATION IN THE . . . PHYSICAL REVIEW E 64 046504
because all particles in the bunch are assumed to follow
same trajectory. In the small-angle approximation the ti
differenced is easily translated into the difference betweez
coordinates of the two particles:

Dz5z02z.cd. ~7!

It is worth mentioning that ford.0 the position of the
source particle is alwaysbehindthat of the test particle. This
is, in fact, the only case we are interested in. As has b
argued in@2#, interactions with particles that areaheadof the
test particle do not contain a radiative part. Their contrib
tion consists in trivial Coulomb repulsion, which has to
subtracted from the final expressions in order to get a no
ingular result~see the discussion of the Coulomb singular
in Sec. III!. For this reason, in the following we will alway
assumeDz.0.

Thirdly, it is convenient to switch from time retardation
a retardation condition expressed inz, which is possible
since, in the small-angle approximation,t andz are uniquely
mapped onto each other. The corresponding relation is ea
found; namely, up to second order terms in the transve
velocity one gets

t2t8.
~z2z8!

c S 11
1

2g2D 1
1

2cEz8

z

dzb'
2 ~z!, ~8!

where b' is the usual notation for dimensionless veloci
b'[v' /c. Using this, the retardation condition can be r
written as

~z02z8!21~r02r8!2.F ~z2z8!S 11
1

2g2D
1

1

2Ez8

z

dzb'
2 ~z!G 2

. ~9!

Rearranging terms, neglecting those of ord
Dz/(z2z8)!1, and taking into account Eq.~4!, we find

F E
z8

z0
dzb'~z!G2

.2~z2z8!F ~z2z8!

2g2
2Dz1

1

2Ez8

z

dzb'
2 ~z!G .

~10!

Finally, we represent the retardation condition in the sm
angle approximation as

~z02z8!

g2
1E

z8

z0
dzb'

2 ~z!2
1

~z02z8!
S E

z8

z0
dzb'~z! D 2

.2Dz.

~11!

III. LIENARD-WIECHERT FIELDS AND COULOMB
SINGULARITY

The fields generated by a source particle at an observa
point r0(t) are given by the following expressions:
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E~r0 ,t !5
e

4p«0
H 1

g2

n̂2b

R2~12n̂•b!3
1

1

c

n̂3@~ n̂2b!3ḃ#

R~12n̂•b!3 J
~12!

and

B~r0 ,t !5
1

c
n̂3E, ~13!

whereb and ḃ are, respectively, the dimensionless veloc
and its time derivative at the retarded timet8, R is the dis-
tance between the retarded position of the source particle
the observation point, andn̂ is a unit vector along the line
connecting those two points.

Multiplying eE by the velocity of the test particlev0, one
gets the change of the energy of the test particle due to
interacton with the source particle:

S dE
dt D5eE~r0 ,t !•v0~ t !, ~14!

and hence

S dE
dt D5

e2

4p«0
F c

g2

n̂•b02b•b0

R2~12n̂•b!3

1
~ n̂•ḃ!~ n̂•b02b•b0!2~b0•ḃ!~12n̂•b!

R~12n̂•b!3 G .

~15!

As one can see, the above expression contains terms pro
tional toR21 as well as those proportional toR22. TheR22

dependence resembles electrostatic interaction of
charges, which is why these are called the Coulomb terms
contrast, theR21 terms are called radiative ones.

As has been argued in@2#, the Coulomb part is singular in
the limit R→0 ~that is, Dz→0). On the other hand, this
large contribution has nothing to do with radiative effec
because it represents just trivial electrostatic repulsion
bunch electrons. Its singular behavior is connected with
infinitely small transverse size of the bunch that we use
our model problem. Following@2#, we will cure the situation
by subtracting from Eq.~15! its purely Coulomb counterpar
corresponding to rectilinear motion of the same two partic
with constant velocity:

S dÊ
dt

D 5S d E
dt D2

e2bc

4p«0g2~Dz!2
. ~16!

The resulting expression appears to be regular in the l
Dz→0. This regularized formula will be used in all follow
ing calculations.

In the small-angle approximation, one has to expand
above expressions up to second order terms in the tr
verse velocity. The following relations are quite helpful
this stage:
4-3
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~12n̂•b!.
1

2 F 1

g2
1~b'2n'!2G , ~17!

~ n̂•b02b•b0!.
1

2 F 1

g2
1~b'02b'!22~b'02n'!2G ,

~18!

~b0•ḃ!.~b'02b'!•ḃ', ~19!

wheren' is given by

n'5
1

~z02z8!
E

z8

z0
dzb'~z!. ~20!

Using the above formulas and putting, with the same ac
racy,R.(z02z8), one gets

S dÊ
dt

D .
e2

4p«0

2g2

11g2@n'2b'~z8!#2
$@C#1@R#%, ~21!

where@C# and @R# stand for the Coulomb and the radiativ
part, respectively,

@C#[
2c

~z02z8!2

3H 12g2@b'~z0!2n'#21g2@b'~z0!2b'~z8!#2

$11g2@n'2b'~z8!#2%2

2
11g2@n'2b'~z8!#2

F12g2n'
2 1g2~z02z8!21E

z8

z0
b'

2 ~z!dzG2J , ~22!

@R#[2g2
ḃ'

~z02z8!$11g2@n'2b'~z8!#2%2

3~@n'2b'~z8!#$11g2@b'~z0!2b'~z8!#2

2g2@n'2b'~z0!#2%2@b'~z0!2b'~z8!#

3$11g2@n'2b'~z8!#2%!. ~23!

A rather straightforward calculation shows that the e
pression obtained is, indeed, regular in the limitDz→0 or,
equivalently, (z02z8)→0. That is, it is sufficient to conside
the case of constant transverse accelerationḃ'5const. With-
out loss of generality, let us putḃx5a, ḃy50. By shifting
the origin and settingz02z8[t, one has by(z0)50,
bx(z0)5at. Upon this, the Coulomb part becomes
04650
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@C#5

11
3

4
g2a2t2

t2S 11
1

4
g2a2t2D 2 2

11
1

4
g2a2t2

t2S 11
1

12
g2a2t2D 2

.
g2a2

6

S 12
1

3
g2a2t2D

S 11
1

4
g2a2t2D 2S 11

1

12
g2a2t2D 2 , ~24!

which clearly has no pole ast→0. Similarly, one can check
the absence of singularity in the radiative part.

IV. ENERGY LOSS FOR A TEST PARTICLE IN A ONE-
DIMENSIONAL BUNCH

The next step is to evaluate the energy change for a
particle interacting with the whole bunch characterized b
given electron density distribution. This latter is, in acco
dance with our assumptions, stationary in a comoving fra
of reference. It is also worth mentioning that, in terms of t
1D model used here, it is essentially the same~up to a nu-
merical factor! as the longitudinal profile of the total curren
carried by the bunch.

As has already been said, we are interested only in
contribution coming from particles that are behind the t
one; it is logical then to express the bunch density, which
will call l, in terms of the longitudinal distance from the te
particle. The corresponding variableDz has already been
introduced in Eq.~7!. Then the energy change can be writt
as

S dE
dt D

B

~z0!5E
0

`S dÊ
dt

D ~z0 ,Dz!l~Dz!d~Dz!, ~25!

whereB stands for ‘‘bunch’’ and l is supposed to vanish a
Dz→1`, so that the integral converges at the upper lim
Note that the lower limit of integration is zero.

Clearly, it is more convenient to perform integration ov
the retarded positionz8 rather than over the distance betwe
particlesDz, since this eliminates the necessity of solvin
Eq. ~11! for z8. Upon this, Eq.~25! becomes

S dE
dt D

B

~z0!5E
z0

2`S dÊ
dt

D ~z0 ,z8!l~Dz!
d~Dz!

dz8
dz8, ~26!

where the limits of integration correspond to the retard
position of the source particle forDz50 or, respectively,
1`. Note thatl(Dz) is to be considered as a shorthand f
l„Dz(z,z8)…. The expression for (dÊ/dt)(z0 ,z8) was ob-
tained in the previous section. As ford(Dz)/dz8, one can
easily check that

d~Dz!

dz8
52@12n̂•b~z8!#. ~27!
4-4
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TABLE I. Energy change in J for an electron located at the head of a bunch with rectangular density distribution. A comparison
between evaluation with completely analytical formulas found by other authors and our simuation.B is the magnetic field in T,l b is the

bunch length in m,g is the Lorentz factor,z̄ is the length of the interaction zone in m, andN is the number of particles considered in th
bunch.

Case B ~T! l b (m) g z̄ (m) N ~units of 109) Analytical results~J! Simulation results~J!

1 0.043 1.031026 25 1.231022 6.0 8.7310215 8.3310215

2 0.085 1.031027 50 8.031023 10.0 1.54310213 1.50310213

3 0.17 0.45 50 9.931022 10.0 3.7310217 3.4310217

4 0.85 0.2 500 0.02 10.0 8.4310217 9.3310217
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Finally, if we want to obtain the energy loss during th
entire trajectory we have to integrate overt ~or, equivalently,
over z0), which gives

DE5E
2`

1`S dE
dt D

B

dt

dz0
dz0 . ~28!

Equation~28! is a closed expression for the energy loss,
the sense that all we need to know is just the transve
velocity of the bunch as a function of the propagation d
tance. This latter is fully defined by the~predesigned! con-
figuration of external magnetic fields. As a result, we get
the total energy change

DE.
e2

4pe0cE2`

1`

dz0E
2`

z0
dz8$@C#1@R#%l~Dz!, ~29!

where@C# and@R# are defined by Eqs.~22! and~23!, andDz
by Eq. ~11!.

A useful particular case of the above equation is that o
rectangular current profile:l(Dz) is assumed to be constan
l(Dz)5l0, over the whole length of the bunchl b . If the test
particle is situated at a distances0 from the head of the
bunch, then the expression for the energy loss becomes

DE~s0!.
e2l0

4pe0cE2`

1`

dz0E
z
*
8 ( l b2s0)

z0
dz8$@C#1@R#%,

~30!

wherez
*
8 ( l b2s0) stands for the solution of Eq.~11! corre-

sponding toDz5 l b2s0, ands0 is understood to be positiv
for particles that lie behind the head of the bunch.

We have performed a comparison of the above exp
sions with some earlier results obtained without the use
the small-angle approximation. Following@2#, a general
analysis of the problem of a bunch with rectangular den
distribution passing through a bending magnet can be c
siderably simplified in several limiting cases. That is, t
authors of@2# call the magnetshort ~long! if it deflects elec-
trons at an angle much smaller~larger! than 1/g. On the
other hand, an electron bunch is consideredshort or long,
when its linear dimension is, respectively, much shorter
much longer thanA/g3, whereA is the radius of curvature o
the particle trajectory in the magnet. From this, normaliz
expressions for the bunch length (l̂ b5 l bg3/A) and for the
angular dimension of the magnet (f̂m5gfm) are obtained.
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In one of those limiting cases, the comparison is parti
larly simple: if the bunch is short and the bending magnet
in the normalized sense, much longer than the bunch, th
as has been argued in@2#, the transient effects at the interfac
between the straight path and the magnet can be negle
This means that, in this particular case, we can assume al
retarded positions of the sources to lie within the bend
magnet, and the situation becomes stationary.

For a rectangular bunch containingN particles, one finds
upon a calculation similar to that in Eq.~24! that

S dE
dt D

B

52
1

4p«0

4Ne2gc

Alb

gus~81g2us
2!

~41us
2g2!~121g2us

2!
,

~31!

where

us.
2g2~ l b2s0!

A
. ~32!

One can easily check that Eqs.~31! and ~32! coincide with
those found in@2#.

In general, the expressions are rather complicated, and
corresponding comparison can only be done numerically
computer code has been developed and benchmarked ag
several limiting cases given in@2#. The results are presente
in Table I. Cases 1 and 2 deal with a short bunch an
magnet longer than the bunch: here the crucial factor is
energy of the beam. The difference by a factor of 2 in t
Lorentz factor is responsible for the increase by a factor
16 in the energy change. In cases 3 and 4 the magnet is
and the bunch is much longer~again in the normalized sense!
than the magnet; these two cases have been computed
spectively, with low- and high-energy bunches.

In all cases we observe a good agreement between
numerical computations and the corresponding analytical
timates~a relatively large discrepancy of the order of 10%
cases 3 and 4 is presumably a result of the logarithmic ac
racy of the analytical expressions in@2#!. It is also worth
mentioning that in all four cases the total energy change
small as compared to the initial particle energy; specifica
the largest relative energy change of about 4% is found
case 2. This confirms consistency of the computatio
scheme, as was discussed in Sec. I.

As one more test, we have calculated the instantane
power radiated by a particle located at the head of a bu
that enters into a bending magnet. This case demonstr
4-5
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GELONI, GOLOVIZNIN, BOTMAN, AND van der WIEL PHYSICAL REVIEW E64 046504
pronounced transient collective effects. To be specific,
considered a 1 mmlong, 40 MeV bunch with rectangula
electron density distribution entering a circular trajecto
with a radiusA51 m from a straight path. The dependen
of the radiated power on the angle of deflectionu is shown in
Fig. 3. After the bunch enters the bend the radiated powe
seen to increase till it reaches a peak atu.12°. Upon this it
decreases to its steady-state value,P0, which has been use
as an overall normalization factor in Fig. 3.

The observed dependence is in agreement with w
known results@3,4#. Basically, the transient in the figure con
nects two steady-state situations. The first one correspon
the bunch before the bend: clearly, no power is radiated
this case. The second stationary regime is the steady-
CSR—that is, when the retarded positions of source parti
interacting with the test particle are all in the bend. T
transient describes a ‘‘mixed’’ situation when the retard
positions of source particles are partially in the bend a
partially in the straight line preceding the bend.

FIG. 3. Normalized transient power loss for a bunch with re
angular density distribution going into a bend.
-
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V. CONCLUSIONS AND SPECULATIONS

An analytical approach to the problem of radiative colle
tive effects within an ultrarelativistic electron bunch h
been developed. The systematical use of the small-angle
proximation results in a different expression for the ene
exchange between a test particle and the bunch. This exp
sion is closed, in the sense that we need to know only
transverse velocity of the bunch as a function of the pro
gation distance, which is directly determined by the exter
field configuration.

Analytical and numerical comparison of the formulas o
tained with earlier results by other authors has been p
formed and good agreement has been demonstrated.
technique is applicable to an arbitrary bunch trajectory s
ject to only one restriction: a small deviation from the initi
direction. A conceptual advantage of this route is that, due
the choice of geometry, we do not switch to a polar frame
reference, thus getting rid of any extra terms arising from
Jacobian of the transformation. We expect that, in fut
studies, this will allow us to account more easily for th
finite transverse size of the bunch.

Note added in proof. Recently, discussions took plac
with Yaroslav Derbenev and Rui Li~both at Jefferson Lab!
about the physical interpretation of noninertial space cha
and centrifugal forces. Although these forces arise from
Jacobian transformation between Cartesian and cylindr
frames, they interpret them as existing independently of
choice of coordinate system.
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