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Distances in random graphs with finite mean and infinite variance

degrees

Remco van der Hofstad∗

Gerard Hooghiemstra† and Dmitri Znamenski‡

February 25, 2005

Abstract

In this paper we study random graphs with independent and identically distributed degrees
of which the tail of the distribution function is regularly varying with exponent τ ∈ (2, 3).

The number of edges between two arbitrary nodes, also called the graph distance or hopcount,
in a graph with N nodes is investigated when N → ∞. When τ ∈ (2, 3), this graph distance
grows like 2 log log N

| log(τ−2)| . In different papers, the cases τ > 3 and τ ∈ (1, 2) have been studied.
We also study the fluctuations around these asymptotic means, and describe their distributions.
The results presented here improve upon results of Reittu and Norros, who prove an upper
bound only.

AMS 1991 subject classifications. Primary 05C80; secondary 60J80.
Key words and phrases. Configuration model, graph distance.

1 Introduction

The study of complex networks plays an increasingly important role in science. Examples of complex
networks are electrical power grids and telephony networks, social relations, the World-Wide Web
and Internet, co-authorship and citation networks of scientists, etc. The structure of networks
affects their performance and function. For instance, the topology of social networks affects the
spread of information and infections. Measurements on complex networks have shown that many
networks have similar properties. A first key example of such a fundamental network property is the
fact that typical distances between nodes are small, which is called the ‘small world’ phenomenon.
A second key example shared by many networks is that the number of nodes with degree k falls
off as an inverse power of k, which is called a power law degree sequence. See [4, 29, 36] and the
references therein for an introduction to complex networks and many examples where the above
two properties hold.

The current paper presents a rigorous derivation for the random fluctuations of the graph
distance between two arbitrary nodes (also called the geodesic, and in Internet called the hopcount)
in a graph with infinite variance degrees. The model studied here is a variant of the configuration
model. The infinite variance degrees include power laws with exponent τ ∈ (2, 3). In practice,
power exponents are observed ranging between τ = 1.5 and τ = 3.2 (see [29]).

In a previous paper of the first two authors with Van Mieghem [21], we investigated the finite
variance case τ > 3. In [22], we study the case where τ ∈ (1, 2). Apart from the critical cases τ = 2
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and τ = 3, we have thus investigated all possible values of τ . The paper [23] serves as a survey to
the results and, in particular, describes how our results can be applied to Internet data, describes
related work on random graphs that are similar, though not identical to ours, and gives further
open problems. Finally, in [23], we also investigate the structure of the connected components
in the random graphs under consideration. See [5, 6, 25] for an introduction to classical random
graphs.

This section is organised as follows. In Section 1.1 we start by introducing the model, in Section
1.2 we state our main results. Section 1.3 is devoted to related work, and in Section 1.4, we describe
some simulations for a better understanding of the results.

1.1 Model definition

Fix an integer N . Consider an i.i.d. sequence D1, D2, . . . , DN . We will construct an undirected
graph with N nodes where node j has degree Dj . We will assume that LN =

∑N
j=1 Dj is even.

If LN is odd, then we increase DN is by 1. This change will make hardly any difference in what
follows, and we will ignore this effect. We will later specify the distribution of D1.

To construct the graph, we have N separate nodes and incident to node j, we have Dj stubs.
All stubs need to be connected to another stub to build the graph. The stubs are numbered in
an arbitrary order from 1 to LN . We start by connecting at random the first stub with one of the
LN − 1 remaining stubs. Once paired, two stubs form a single edge of the graph. We continue the
procedure of randomly choosing and pairing the stubs until all stubs are connected. Unfortunately,
nodes having self-loops may occur. However, self-loops are scarce when N →∞.

The above model is a variant of the configuration model, which, given a degree sequence, is the
random graph with that given degree sequence. For a graph, the degree sequence of that graph is
the vectors of which the kth coordinate equals the frequency of nodes with degree k. In our model,
the degree sequence is very close to the distribution of the nodal degree D of which D1, . . . , DN are
i.i.d. copies. The probability mass function and the distribution function of the nodal degree law
are denoted by

P(D1 = j) = fj , j = 1, 2, . . . , and F (x) =
bxc∑

j=1

fj , (1.1)

where bxc is the largest integer smaller than or equal to x. Our main assumption is that we take

1− F (x) = x−τ+1L(x), (1.2)

where τ ∈ (2, 3) and L is slowly varying at infinity. This means that the random variables Di obey
a power law, and the factor L is meant to generalize the model. We work under a slightly more
restrictive assumption:

Assumption 1.1 There exists γ ∈ [0, 1) and C > 0 such that

x−τ+1−C(log x)γ−1 ≤ 1− F (x) ≤ x−τ+1+C(log x)γ−1
, for large x. (1.3)

Comparing with (1.2), we see that the slowly varying function L in (1.2) should satisfy

e−C(log x)γ ≤ L(x) ≤ eC(log x)γ
. (1.4)

1.2 Main results

We define the graph distance HN between the nodes 1 and 2 as the minimum number of edges
that form a path from 1 to 2. By convention, the distance equals ∞ if 1 and 2 are not connected.
Observe that the distance between two randomly chosen nodes is equal in distribution to HN ,
because the nodes are exchangeable. We now describe our main result.
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Theorem 1.2 (Fluctuations of the Graph Distance) Assume that Assumption 1.1 holds and
fix τ ∈ (2, 3) in (1.2). Then there exist random variables (Ra)a∈(−1,0] such that, as N →∞,

P
(
HN = 2

⌊ log log N

| log(τ − 2)|
⌋

+ l
∣∣∣HN < ∞

)
= P(RaN = l) + o(1), l ∈ Z, (1.5)

where aN = b log log N
| log(τ−2)|c − log log N

| log(τ−2)| ∈ (−1, 0].

In words, Theorem 1.2 states that for τ ∈ (2, 3), the graph distance HN between two ran-
domly chosen connected nodes grows proportional to log log of the size of the graph, and that the
fluctuations around this mean remain uniformly bounded in N .

We identify the laws of (Ra)a∈(−1,0] below. Before doing so, we state two consequences of the
above theorem:

Corollary 1.3 (Convergence in Distribution along Subsequences) Along the sequence Nk =

bN (τ−2)−(k−1)

1 c, where k = 1, 2, . . . , and conditionally on 1 and 2 being connected, the random vari-
ables

HNk
− 2

⌊ log log Nk

| log(τ − 2)|
⌋
, (1.6)

converge in distribution to RaN1
, as k →∞.

Simulations illustrating the weak convergence in Corollary 1.3 are discussed in Section 1.4. In
the corollary below, we write that an event E occurs whp for the statement that P(E) = 1− o(1).

Corollary 1.4 (Concentration of the Graph Distance)

(i) Conditionally on 1 and 2 being connected, the random variable HN is, whp, in between
2 log log N
| log(τ−2)|(1± ε), for any ε > 0.

(ii) Conditionally on 1 and 2 being connected, the random variables HN − log log N
| log(τ−2)| form a tight

sequence, i.e.,

lim
K→∞

lim sup
N→∞

P
(∣∣HN − 2

log log N

| log(τ − 2)|
∣∣ ≤ K

∣∣∣HN < ∞
)

= 1. (1.7)

We need a limit result from branching processes theory before we can identify the limiting
random variables (Ra)a∈(−1,0]. In Section 2, we introduce a delayed branching process {Zk}k≥1,
where in the first generation the offspring distribution is chosen according to (1.1) and in the second
and further generations the offspring is chosen in accordance to g given by

gj =
(j + 1)fj+1

µ
, j = 0, 1, . . . , (1.8)

where µ =
∑∞

j=1 jfj . The branching process {Zk} has infinite expectation. Branching processes
with infinite expectation have been investigated in [16, 34, 33]. Assumption 1.1, using the results
in [16], implies that

(τ − 2)n · log(Zn ∨ 1) → Y, a.s., (1.9)

where x ∨ y = max{x, y}. See Section 2 and the references there for more details. Then, we can
identify the law of the random variables (Ra)a∈(−1,0] as follows:

Theorem 1.5 (The Limit Laws) For a ∈ (−1, 0],

P(Ra > l) = P
(

min
s∈Z

[
(τ − 2)−sY (1) + (τ − 2)s−clY (2)

] ≤ (τ − 2)dl/2e+a
∣∣Y (1)Y (2) > 0

)
,

where cl = 1 if l is even, and zero otherwise, and Y (1), Y (2) are two independent copies of the limit
random variable in (1.9).
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In Remarks 4.1 and A.1.5 below, we will explain that our results also apply to the usual
configuration model, where the number of nodes with a given degree is fixed, when we study the
graph distance between two uniformly chosen nodes, and the degree distribution satisfied certain
conditions. For the precise conditions, see Remark A.1.5.

1.3 Related work

There is a wealth of related work which we now summarize. The model investigated here was also
studied in [32], with 1−F (x) = x−τ+1L(x), where τ ∈ (2, 3) and L denotes a slowly varying function.
It was shown in [32] that whp the graph distance is bounded from above by 2 log log N

| log(τ−2)|(1 + o(1)).
We improve the results in [32] by deriving the asymptotic distribution of the random fluctuations
of the graph distance around 2b log log N

| log(τ−2)|c. Note that these results are in contrast to [30, Section
II.F, below (56)], where it was suggested that if τ < 3, then an exponential cut-off is necessary
to make the graph distance between an arbitrary pair of nodes well-defined. The problem of the
graph distance between an arbitrary pair of nodes was also studied non-rigorously in [14], where
also the behavior when τ = 3 and x 7→ L(x) is the constant function, is included. In the latter
case, the graph distance scales like log N

log log N . A related model to the one studied here can also be
found in [31], where a graph process is defined by adding and removing edges. In [31], the authors
prove similar results as in [32] for this related model.

The graph distance for τ > 3, τ ∈ (1, 2), respectively was treated in two previous publications
[21] and [22], respectively. We survey these results together with results on the connected compo-
nents in [23]. In [23], we also show that when τ > 2, the diameter is bounded from below by a
constant times log N , which, when τ ∈ (2, 3) should be contrasted with the average graph distance,
which is or order log log N . Finally, in [23] also the connected components are studied under the
condition that µ = E[D1] > 2, and the results in this paper are used to show that whp there
exists a largest connected component of size qN [1+ o(1)], where q is the survival probability of the
delayed branching process, while all other connected components are of order at most log N .

There is substantial work on random graphs that are, although different from ours, still similar
in spirit. In [1], random graphs were considered with a degree sequence that is precisely equal to
a power law, meaning that the number of nodes with degree k is precisely proportional to k−τ .
Aiello et al. [1] show that the largest connected component is of the order of the size of the graph
when τ < τ0 = 3.47875 . . ., where τ0 is the solution of ζ(τ − 2)− 2ζ(τ − 1) = 0, and where ζ is the
Riemann zeta function. When τ > τ0, the largest connected component is of smaller order than the
size of the graph and more precise bounds are given for the largest connected component. When
τ ∈ (1, 2), the graph is whp connected. The proofs of these facts use couplings with branching
processes and strengthen previous results due to Molloy and Reed [27, 28]. For this same model,
Dorogovtsev et al. [17, 18] investigate the leading asymptotics and the fluctuations around the
mean of the graph distance between arbitrary nodes from a theoretical physics point of view, using
mainly generating functions.

A second related model can be found in [12, 13], where edges between nodes i and j are present
with probability equal to wiwj/

∑
l wl for some ‘expected degree vector’ w = (w1, . . . , wN). It is

assumed that maxi w
2
i <

∑
i wi, so that wiwj/

∑
l wl are probabilities. In [12], wi is often taken as

wi = ci−
1

τ−1 , where c is a function of N proportional to N
1

τ−1 . In this case, the degrees obey a power
law with exponent τ . Chung and Lu [12] show that in this case, the graph distance between two
uniformly chosen nodes is whp proportional to log N(1+o(1)) when τ > 3, and 2 log log N

| log(τ−2)|(1+o(1))
when τ ∈ (2, 3). The difference between this model and ours is that the nodes are not exchangeable
in [12], but the observed phenomena are similar. This result can be heuristically understood as
follows. Firstly, the actual degree vector in [12] should be close to the expected degree vector.
Secondly, for the expected degree vector, we can compute that the number of nodes for which the
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Figure 1: Histograms of the AS-count and graph distance in the configuration model with N =
10, 940, where the degrees have generating function fτ (s) in (1.11), for which the power law exponent
τ takes the value τ = 2.25. The AS-data is lightly shaded, the simulation is darkly shaded.

degree is at least k equals

|{i : wi ≥ k}| = |{i : ci−
1

τ−1 ≥ k}| ∝ k−τ+1.

Thus, one expects that the number of nodes with degree at least k decreases as k−τ+1, similarly
as in our model. In [13], Chung and Lu study the sizes of the connected components in the above
model. The advantage of this model is that the edges are independently present, which makes the
resulting graph closer to a traditional random graph.

All the models described above are static, i.e., the size of the graph is fixed, and we have
not modeled the growth of the graph. There is a large body of work investigating dynamical
models for complex networks, often in the context of the World-Wide Web. In various forms,
preferential attachment has been shown to lead to power law degree sequences. Therefore, such
models intend to explain the occurrence of power law degree sequences in random graphs. See
[2, 3, 4, 7, 8, 9, 10, 11, 15, 26] and the references therein. In the preferential attachment model,
nodes with a fixed degree m are added sequentially. Their stubs are attached to a receiving node
with a probability proportional to the degree of the receiving node, thus favoring nodes with large
degrees. For this model, it is shown that the number of nodes with degree k decays proportionally
to k−3 [11], the diameter is of order log N

log log N when m ≥ 2 [8], and couplings to a classical random
graph G(N, p) are given for an appropriately chosen p in [10]. See also [9] for a survey.

Possibly, the configuration model is a snapshot of the above models, i.e., a realization of the
graph growth processes at the time instant that the graph has a certain prescribed size. Thus,
rather than to describe the growth of the model, we investigate the properties of the model at a
given time instant. This is suggested in [4, Section VII.D], and it would be very interesting indeed
to investigate this further mathematically, i.e., to investigate the relation between the configuration
and the preferential attachment models.

We study the above version of the configuration model to describe the topology of the Internet
at a fixed time instant. In a seminal paper [19], Faloutsos et al. have shown that the degree
distribution in Internet follows a power law with exponent τ ≈ 2.16 − 2.25. Thus, the power law
random graph with this value of τ can possibly lead to a good Internet model. In [35], and inspired
by the observed power law degree sequence in [19], the power law random graph is proposed as
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a model for the network of autonomous systems. In this graph, the nodes are the autonomous
systems in the Internet, i.e., the parts of the Internet controlled by a single party (such as a
university, company or provider), and the edges represent the physical connections between the
different autonomous systems. The work of Faloutsos et al. in [19] was among others on this graph
which at that time had size approximately 10,000.

In [35], it is argued on a qualitative basis that the power law random graph serves as a better
model for the Internet topology than the currently used topology generators. Our results can
be seen as a step towards the quantitative understanding of whether the AS-count in Internet is
described well by the average graph distance in the configuration model. The AS-count gives the
number of physical links connecting the various autonomous domains between two randomly chosen
nodes in the graph.

To validate the model, we compare a simulation of the distribution of the distance between pairs
of nodes in the power law random graph with the same value of N and τ to extensive measurements
of the AS-count in Internet. In Figure 1, we see that AS-count in the model with the predicted
value of τ = 2.25 and the value of N from the data set fits the data remarkably well.

In [29, Table II], many other examples are given of real networks that have power law degree
sequences. Interestingly, there are many examples where the power law exponent is in (2, 3), and
it would be of interest to compare the average graph distance between an arbitrary pair of nodes
in such examples.

1.4 Demonstration of Corollary 1.3

By a simulation we explain the relevance of Theorem 1.2 and especially the relevance of Corollary
1.3. We have chosen to simulate the distribution (1.8) from the generating function:

gτ (s) = 1− (1− s)τ−2, for which gj = (−1)j−1

(
τ − 2

j

)
∼ c

jτ−1
, j →∞. (1.10)

Defining

fτ (s) =
τ − 1
τ − 2

s− 1− (1− s)τ−1

τ − 2
, τ ∈ (2, 3), (1.11)

it is immediate that

gτ (s) =
f ′τ (s)
f ′τ (1)

, so that gj =
(j + 1)fj+1

µ
.

For fixed τ , we can pick different values of the size of the simulated graph, so that for each two
simulated values N and M we have aN = aM , i.e., N = M (τ−2)−k

, for some integer k. For τ = 2.8,
we have taken the values

N = 1, 000, N = 5, 623, N = 48, 697, N = 723, 394.

According to Theorem 1.2, the survival functions of the hopcount HN , satisfying N = M (τ−2)−k
,,

run parallel on distance 2 in the limit for N → ∞. In Section 2 below we will show that the
distribution with generating function (1.11) satisfies Assumption 1.1.

1.5 Organization of the paper

The paper is organized as follows. We first review the relevant literature on branching processes in
Section 2. We then describe the growth of shortest path graphs in Section 3, and we state coupling
results needed to prove our main results, Theorems 1.2–1.5 in Section 4. In Section 5, we prove
three technical lemmas used in Section 4. We finally prove the coupling results in the Appendix.
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Figure 2: Empirical survival functions of the graph distance for τ = 2.8 and for the four values of
N .

2 Review of branching process theory with infinite mean

Since we heavily rely on the theory of branching processes (BP’s), we now briefly review this theory
in the case where the expected value (mean) of the offspring distribution is infinite. We follow in
particular [16], and also refer the readers to related work in [33, 34], and the references therein.

For the formal definition of the BP we define a double sequence {Xn,i}n≥0,i≥1 of i.i.d. ran-
dom variables each with distribution equal to the offspring distribution {gj} given in (1.8) with
distribution function G(x) =

∑bxc
j=0 gj . The BP {Zn} is now defined by Z0 = 1 and

Zn+1 =
Zn∑

i=1

Xn,i, n ≥ 0.

In case of a delayed BP, we let X0,1 have probability mass function {fj}, independently of {Xn,i}n≥1,i≥1.
In this section we restrict to the non-delayed case for simplicity.

We follow Davies in [16], who gives the following sufficient conditions for convergence of
(τ − 2)n log(1 + Zn). Davies’ main theorem states that if for some non-negative, non-increasing
function γ(x):

(i) x−α−γ(x) ≤ 1−G(x) ≤ x−α+γ(x), for large x and 0 < α < 1,

(ii) xγ(x) is non-decreasing,

(iii)
∫∞
0 γ(eex

) dx < ∞ or equivalently
∫∞
e

γ(y)
y log y dy < ∞,

then αn log(1 + Zn) converges almost surely to a non-degenerate finite random variable Y with
P(Y = 0) equal to the extinction probability of {Zn}, whereas Y admits a density on (0,∞).
Therefore, also αn log(Zn ∨ 1) converges to Y almost surely.

The conditions of Davies quoted as (i-iii) simplify earlier work by Seneta [34]. For example,
for {g} in (1.10), the above is valid with α = τ − 2 and γ(x) = C(log x)−1, where C is sufficiently
large. We prove in Lemma A.1.1 below that for F as in Assumption 1.1, and G the distribution
function of g in (1.8), the conditions (i-iii) are satisfied with α = τ − 2 and γ(x) = C(log x)γ−1. In
particular, for (iii), we need that γ < 1.
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Let Y (1) and Y (2) be two independent copies of the limit random variable Y . In the course of the
proof, we will encounter the random variable M = mint∈Z(κtY (1) + κc−tY (2)), for some c ∈ {0, 1},
and where κ = (τ − 2)−1. The proof relies on the fact that, conditionally on Y (1)Y (2) > 0, M has
a density. The proof of this fact is as follows. The function (y1, y2) 7→ mint∈Z(κty1 + κc−ty2) is
discontinuous precisely in the points (y1, y2) satisfying

√
y2/y1 = κn+ 1

2
c, n ∈ Z, and, conditionally

on Y (1)Y (2) > 0, the random variables Y (1) and Y (2) are independent continuous random variables.
Therefore, conditionally on Y (1)Y (2) > 0, the random variable M = mint∈Z(κtY (1) + κc−tY (2)) has
a density.

3 The growth of the shortest path graph

In this section, we describe the growth of the shortest path graph (SPG). As a result, we will see
that this growth is closely related to a BP {Ẑ(1,N)

k } with the random offspring distribution {g(N)

j }
given by

g(N)

j =
N∑

i=1

1{Di=j+1}P(a stub from node i is sampled|D1, . . . , DN)

=
N∑

i=1

1{Di=j+1}
Di

LN

=
j + 1
LN

N∑

i=1

1{Di=j+1}, (3.1)

where, for an event A, 1A denotes the indicator function of the event A. By the strong law of large
numbers for N →∞, almost surely,

LN

N
→ E[D], and

1
N

N∑

i=1

1{Di=j+1} → P(D = j + 1),

so that a.s.,
g(N)

j → (j + 1)P(D = j + 1)/E[D] = gj , N →∞. (3.2)

Therefore, the BP {Ẑ(1,N)

k }, with offspring distribution {g(N)

j }, is expected to be close to a BP with
offspring distribution {gj} given in (1.8). Consequently, in Section 3.1, we state bounds on the
coupling of the BP {Ẑ(1,N)

k } to a BP {Z(1)

k } with offspring distribution {gj}. This allows us to prove
Theorems 1.2 and 1.5 in Section 4.

The shortest path graph (SPG) from node 1 is the power law random graph as observed from
node 1, and consists of the shortest paths between node 1 and all other nodes {2, . . . , N}. As will
be shown below, the SPG is not necessarily a tree because cycles may occur. Recall that two stubs
together form an edge. We define Z(1,N)

1 = D1 and, for k ≥ 2, we denote by Z(1,N)

k the number
of stubs attached to nodes at distance k − 1 from node 1, but are not part of an edge connected
to a node at distance k − 2. We refer to such stubs as ‘free stubs’. Thus, Z(1,N)

k is the number of
outgoing stubs from nodes at distance k− 1. By SPGk−1 we denote the SPG up to level k− 1, i.e.,
up to the moment we have Z(1,N)

k free stubs attached to nodes on distance k − 1, and no stubs to
nodes on distance k. Since we compare Z(1,N)

k to the kth generation of the BP Ẑ(1)

k , we call Z(1,N)

k

the stubs of level k.
The first stages of a realization of the generation of the SPG, with N = 9 and LN = 24, are

drawn in Figure 3. The first line shows the N different nodes with their attached stubs. Initially,
all stubs have label 1. The growth process starts by choosing the first stub of node 1 whose stubs
are labeled by 2 as illustrated in the second line, while all the other stubs maintain the label 1.
Next, we uniformly choose a stub with label 1 or 2. In the example in line 3, this is the second
stub from node 3, whose stubs are labeled by 2 and the second stub by label 3. The left hand side
column visualizes the growth of the SPG by the attachment of stub 2 of node 3 to the first stub
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SPG stubs with their labels

2 2 2

3 2 2 2 3 2 2

3 3 2 2 3 2 2 3 2

3 3 3 2 3 2 2 3 2 2 3 2

3 3 3 3 3 2 2 3 2 2 3 3

Figure 3: Schematic drawing of the growth of the SPG from the node 1 with N = 9 and the
updating of the labels.

of node 1. Once an edge is established the pairing stubs are labeled 3. In the next step, again a
stub is chosen uniformly out of those with label 1 or 2. In the example in line 4, it is the first stub
of the last node that will be attached to the second stub of node 1, the next in sequence to be
paired. The last line exhibits the result of creating a cycle when the second stub of the last node
is chosen to be attached to the first stub of node 3, which is the next stub in the sequence to be
paired. This process is continued until there are no more stubs with labels 1 or 2. In this example,
we have Z(1,9)

1 = 3 and Z(1,9)

2 = 6.
We now describe the meaning of the labels. Initially, all stubs are labeled 1. At each stage of

the growth of the SPG, we draw uniformly at random from all stubs with labels 1 and 2. After
each draw we will update the realization of the SPG, and classify the stubs according to three
categories, which will be labeled 1, 2 and 3. These labels will be updated as the growth of the SPG
proceeds. At any stage of the generation of the SPG, the labels have the following meaning:

1. Stubs with label 1 are stubs belonging to a node that is not yet attached to the SPG.

2. Stubs with label 2 are attached to the shortest path graph (because the corresponding node
has been chosen), but not yet paired with another stub. These are called ‘free stubs’.

3. Stubs with label 3 in the SPG are paired with another stub to form an edge in the SPG.

The growth process as depicted in Figure 3 starts by labelling all stubs by 1. Then, because
we construct the SPG starting from node 1 we relabel the D1 stubs of node 1 with the label 2. We
note that Z(1,N)

1 is equal to the number of stubs connected to node 1, and thus Z(1,N)

1 = D1. We
next identify Z(1,N)

j for j > 1. Z(1,N)

j is obtained by sequentially growing the SPG from the free
stubs in generation Z(1,N)

j−1 . When all free stubs in generation j − 1 have chosen their connecting
stub, Z(1,N)

j is equal to the number of stubs labeled 2 (i.e., free stubs) attached to the SPG. Note
that not necessarily each stub of Z(1,N)

j−1 contributes to stubs of Z(1,N)

j , because a cycle may ‘swallow’
two free stubs. This is the case when a stub with label 2 is chosen.

9



When a stub is chosen, we update the labels as follows:

1. If the chosen stub has label 1, in the SPG we connect the present stub to the chosen stub to
form an edge and attach the remaining stubs of the chosen node as children. We update the
labels as follows. The present and chosen stub melt together to form an edge and both are
assigned label 3. All ‘brother’ stubs (except for the chosen stub) belonging to the same node
of the chosen stub receive label 2.

2. In this case we choose a stub with label 2, which is already connected to the SPG. For the
SPG, a self-loop is created if the chosen stub and present stub are ‘brother’ stubs which
belong to the same node. If they are not ‘brother’ stubs, then a cycle is formed. Neither a
self-loop nor a cycle changes the distances to the root in the SPG.

The updating of the labels solely consists of changing the label of the present and the chosen
stub from 2 to 3.

The above process stops in the jth generation when there are no more free stubs in generation
j − 1 for the SPG.

We continue the above process of drawing stubs until there are no more stubs having label 1 or
2, so that all stubs have label 3. Then, the SPG from node 1 is finalized, and we have generated
the shortest path graph as seen from node 1. We have thus obtained the structure of the shortest
path graph, and know how many nodes there are at a given distance from node 1.

The above construction will be performed identically from node 2, and we denote the number
of free stubs in the SPG of node 2 in generation k by Z(2,N)

k . This construction is close to being
independent. In particular, it is possible to couple the two SPG growth processes with two inde-
pendent BP’s. This is described in detail in [21, Section 3]. We make essential use of the coupling
between the SPG’s and the BP’s, in particular, of [21, Proposition A.3.1] in the appendix. This
completes the construction of the SPG’s from both node 1 and 2.

3.1 Bounds on the coupling

We now investigate the growth of the SPG, and its relationship to the BP with law g. In its
statement, we write, for i = 1, 2,

Y (i,N)
n = (τ − 2)n log(Z(i,N)

n ∨ 1) and Y (i)
n = (τ − 2)n log(Z(i)

n ∨ 1), (3.3)

where {Z (1)

j }j≥1 and {Z(2)

j }j≥1 are two independent delayed BP’s with offspring distribution {g}
and where Z(i)

1 has law {f}. Then the following proposition shows that the first levels of the SPG
are close to those of the BP’s:

Proposition 3.1 (Coupling at fixed time) For every m fixed, and for i = 1, 2, there exist in-
dependent delayed BP’s Z(1),Z(2), such that

lim
N→∞

P(Y (i,N)
m = Y (i)

m ) = 1. (3.4)

In words, Proposition 3.1 states that at any fixed time, the SPG’s from 1 and 2 can be coupled
to two independent BP’s with offspring g, in such a way that the probability that the SPG differs
from the BP vanishes when N →∞.

In the statement of the next proposition, we write, for i = 1, 2,

T (i,N)
m = T (i,N)

m (ε) = {k > m :
(
Z(i,N)

m

)κk−m ≤ N
1−ε2

τ−1 }

= {k > m : κkY (i,N)
m ≤ 1− ε2

τ − 1
log N}, (3.5)
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where we recall that κ = (τ − 2)−1.
We will see that Z(i,N)

k grows super-exponentially with k as long as k ∈ T (i,N)
m . More precisely,(

Z(i,N)
m

)κk−m

is close to Z(i,N)

k , and thus, T (i,N)
m can be thought of as the generations for which the

generation size is bounded by N
1−ε2

τ−1 . The second main result of the coupling is the following
proposition:

Proposition 3.2 (Super-exponential growth with base Y (i,N)
m for large times) If F satis-

fies Assumption 1.1, then for i = 1, 2,

(a) P(ε ≤ Y (i,N)
m ≤ ε−1, max

k∈T (i,N)
m (ε)

|Y (i,N)

k − Y (i,N)
m | > ε3) = oN,mε(1), (3.6)

(b) P(ε ≤ Y (i,N)
m ≤ ε−1, ∃k ∈ T (i,N)

m (ε) : Z(i,N)

k−1 > Z(i,N)

k ) = oN,mε(1), (3.7)

P(ε ≤ Y (i,N)
m ≤ ε−1, ∃k ∈ T (i,N)

m (ε) : Z(i,N)

k > N
1−ε4

τ−1 ) = oN,mε(1), (3.8)

where oN,mε(1) denotes a quantity γN,m,ε that converges to zero when first N → ∞, then m → ∞
and finally ε ↓ 0.

Proposition 3.2 (a), i.e., (3.6), is the main coupling result used in this paper, and says that as
long as k ∈ T (i,N)

m (ε), we have that Y (i,N)

k is close to Y (i,N)
m , which, in turn, by Proposition 3.1, is close

to Y (i)
m . This establishes the coupling between the SPG and the BP. Part (b) is a technical result

used in the proof. Equation (3.7) is a convenient result, as it shows that, with high probability,

k 7→ Z(i,N)

k is monotone increasing. Equation (3.8) shows that with high probability Z(i,N)

k ≤ N
1−ε4

τ−1

for all k ∈ T (i,N)
m (ε), which allows us to bound the number of free stubs in generation sizes that are

in T (i,N)
m (ε).
We complete this section with a final coupling result, which shows that for the first k which is

not in T (i,N)
m (ε), the SPG has many free stubs:

Proposition 3.3 (Lower bound on Z(i,N)

k+1 for k + 1 6∈ T (i,N)
m (ε)) Let F satisfy Assumption 1.1.

Then,

P(k ∈ T (i,N)
m (ε), k + 1 6∈ T (i,N)

m (ε), ε ≤ Y (i,N)
m ≤ ε−1, Z(i,N)

k+1 ≤ N
1−ε
τ−1 ) = oN,m,ε(1). (3.9)

Propositions 3.1, 3.2 and 3.3 will be proved in the appendix. We now prove the main results in
Theorems 1.2 and 1.5 subject to Propositions 3.1, 3.2 and 3.3 in Section 4.

4 Proof of Theorems 1.2 and 1.5

In this section we prove Theorem 1.2 and identify the limit in Theorem 1.5, using the coupling
theory of the previous section. For i = 1, 2, we recall that Z(i,N)

j is the number of free stubs
connected to nodes on distance j − 1 from root i. As we show in this section, the hopcount HN is
closely related to the SPG’s {Z(i,N)

j }j≥0, i = 1, 2.

4.1 Outline of the proof

We start by describing the outline of the proof. The proof is divided into several key steps proved
in 5 subsections.

In the first key step of the proof, in Section 4.2, we split the probability P(HN > k) into separate
parts depending on the values of Y (i,N)

m = (τ − 2)m log(Z(i,N)
m ∨ 1). We prove that

P(HN > k, Y (1,N)
m Y (2,N)

m = 0) = 1− q2
m + o(1), N →∞, (4.1)
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where 1− qm is the probability that the delayed BP {Z(1)

j }j≥1 dies at or before the mth generation.
When m becomes large, then qm → q, where q equals the survival probability of the BP {Z(1)

j }j≥1.
This leaves us to determine the contribution to P(HN > k) for the cases where Y (1,N)

m Y (2,N)
m > 0.

We further show that for m large enough, and on the event that Y (i,N)
m > 0, whp, Y (i,N)

m ∈ [ε, ε−1],
for i = 1, 2, where ε > 0 is small. This provides us with a priori bounds on the shortest path graph
exploration processes {Z(i,N)

j }. We denote the event where Y (i,N)
m ∈ [ε, ε−1], for i = 1, 2, by Em,N(ε).

The second key step in the proof, in Section 4.3, is to obtain an asymptotic formula for P({HN >
k} ∩ Em,N(ε)). Indeed, we prove the existence of λ = λN(k) > 0 such that

P({HN > k} ∩ Em,N(ε)) = E
[
1Em,N (ε) exp

{
− λ

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}]
, (4.2)

where the right-hand side is valid for any k1 with 0 ≤ 2k1 ≤ k − 1, and where λ = λN(k) satisfies
1
2 ≤ λN(k) ≤ 4k. It is even allowed that k1 is random, as long as it is measurable w.r.t. {Z(i,N)

j }m
j=1.

Even though the estimate on λN is not sharp, it turns out that it gives us enough information to
complete the proof. The bounds 1

2 ≤ λN(k) ≤ 4k play a crucial role in the remainder of the proof.
In the third key step, in Section 4.4, we show that, for k = kN →∞, the main contribution of

(4.2) stems from the term

E
[
1Em,N (ε) exp

{
− λ min

k1∈BN

Z(1,N)

k1+1Z
(2,N)

kN−k1

LN

}]
, (4.3)

with BN = BN(ε, kN) defined in (4.50) and is such that k1 ∈ BN(ε, kN) precisely when k1 + 1 ∈
T (1,N)

m (ε) and kN − k1 ∈ T (2,N)
m (ε). Thus, by Proposition 3.2, it implies that whp

Z(1,N)

k1+1 ≤ N
1−ε4

τ−1 and Z(2,N)

kN−k1
≤ N

1−ε4

τ−1 .

In turn, these bounds allow us to use Proposition 3.2(a).
In the fourth key step, in Section 4.5, we proceed by choosing

kN = 2
⌊

log log N

| log(τ − 2)|
⌋

+ l, (4.4)

and we show that with probability converging to 1 as ε ↓ 0, the results of the coupling in Proposition
3.2 apply, which implies that Y (1,N)

k1+1 ≈ Y (1,N)
m and Y (2,N)

kN−k1
≈ Y (2,N)

m .
In the final key step, in Section 4.6, the minimum occurring in (4.3), with the approximations

Y (1,N)

k1+1 ≈ Y (1,N)
m and Y (2,N)

kN−k1
≈ Y (2,N)

m , is analyzed. The main idea in this analysis is as follows. With
the above approximations, the expression in (4.3) can be rewritten as

E
[
1Em,N (ε) exp

{
− λ exp

[
min

k1∈BN (ε,kN )
(κk1+1Y (1,N)

m + κkN−k1Y (2,N)
m )− log LN

]}]
+ oN,m,ε(1), (4.5)

where κ = (τ − 2)−1 > 1. The minimum appearing in the exponent of (4.5) is then rewritten (see
(4.72) and (4.74)) as

κdkN/2e{min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m )− κ−dkN/2e log LN

}
.

Since κdkN/2e →∞, the latter expression only contributes to (4.5) when

min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m )− κ−dkN/2e log LN ≤ 0.

Here it will become apparent that the bounds on λN(k) are sufficient. The expectation of the
indicator of this event leads to the peculiar limit

P
(

min
t∈Z

(κtY (1) + κcl−tY (2)) ≤ κaN−dl/2e, Y (1)Y (2) > 0
)

,

with aN and cl as defined in Theorem 1.2. We complete the proof by showing that conditioning on
the event that 1 and 2 are connected is asymptotically equivalent to conditioning on Y (1)Y (2) > 0.
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Remark 4.1 In the course of the proof, we will see that it is not necessary that the degrees of the
nodes are i.i.d. In fact, in the proof below, we need that Propositions 3.1–3.3 are valid, as well as
that LN is concentrated around its mean µN . In Remark A.1.5 in the appendix, we will investigate
what is needed in the proof of Propositions 3.1– 3.3. In particular, the proof applies also to some
instances of the configuration model where the number of nodes with degree k is fixed, when we
investigate the distance between two uniformly chosen nodes.

We now go through the details of the proof.

4.2 A priory bounds on Y (i,N)
m

We wish to compute the probability P(HN > k). To do so, we split P(HN > k) as

P(HN > k) = P(HN > k, Y (1,N)
m Y (2,N)

m = 0) + P(HN > k, Y (1,N)
m Y (2,N)

m > 0), (4.6)

where we take m to be sufficiently large. We will now prove two lemmas, and use these to compute
the first term in the right-hand side of (4.6).

Lemma 4.2
lim

N→∞
P(Y (1,N)

m Y (2,N)
m = 0) = 1− q2

m,

where
qm = P(Y (1)

m > 0).

Proof. By Proposition 3.1, for N →∞, and because Y (1)
m and Y (2)

m are independent,

P(Y (1,N)
m Y (2,N)

m = 0) = P(Y (1)
m Y (2)

m = 0) + o(1) = 1− P(Y (1)
m Y (2)

m > 0) + o(1) (4.7)

= 1− P(Y (1)
m > 0)P(Y (2)

m > 0) + o(1) = 1− q2
m + o(1).

¤
The following lemma shows that the probability that HN ≤ m converges to zero for any fixed

m:

Lemma 4.3 For any m fixed,
lim

N→∞
P(HN ≤ m) = 0.

Proof. As observed above Theorem 1.2, by exchangeability of the nodes {1, 2, . . . , N},

P(HN ≤ m) = P(H̃N ≤ m), (4.8)

where H̃N is the hopcount between node 1 and a uniformly chosen node unequal to 1. We split,
for any 0 < δ < 1,

P(H̃N ≤ m) = P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j ≤ N δ) + P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j > N δ). (4.9)

The number of nodes at distance at most m from node 1 is bounded from above by
∑

j≤m Z(1,N)

j .
The event {H̃N ≤ m} can only occur when the end node, which is uniformly chosen in {2, . . . , N},
is in the SPG of node 1, so that

P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j ≤ N δ) ≤ N δ

N − 1
= o(1), N →∞. (4.10)
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Therefore, the first term in (4.9) is o(1), as required. We will proceed with the second term in
(4.9). By Proposition 3.1, whp, we have that Y (1,N)

j = Y (1)

j for all j ≤ m. Therefore, we obtain,
because Y (1,N)

j = Y (1)

j implies Z(1,N)

j = Z(1)

j ,

P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j > N δ) ≤ P(
∑

j≤m

Z(1,N)

j > N δ) = P(
∑

j≤m

Z(1)

j > N δ) + o(1).

However, when m is fixed, the random variable
∑

j≤mZ(1)

j is finite with probability 1, and therefore,

lim
N→∞

P(H̃N ≤ m,
∑

j≤m

Z(1,N)

j > N δ) = 0. (4.11)

This completes the proof of Lemma 4.3. ¤

We now use Lemmas 4.2 and 4.3 to compute the first term in (4.6). We split

P(HN > k, Y (1,N)
m Y (2,N)

m = 0) = P(Y (1,N)
m Y (2,N)

m = 0)− P(HN ≤ k, Y (1,N)
m Y (2,N)

m = 0). (4.12)

By Lemma 4.2, the first term is equal to 1 − q2
m + o(1). For the second term, we note that when

Y (1,N)
m = 0 and HN < ∞, then HN ≤ m− 1, so that

P(HN ≤ k, Y (1,N)
m Y (2,N)

m = 0) ≤ P(HN ≤ m− 1). (4.13)

Using Lemma 4.3, we conclude that

Corollary 4.4 For every m fixed, and each k ∈ N,

lim
N→∞

P(HN > k, Y (1,N)
m Y (2,N)

m = 0) = 1− q2
m.

By Corollary 4.4 and (4.6), we are left to compute P(HN > k, Y (1,N)
m Y (2,N)

m > 0). We first prove
a lemma that shows that if Y (1,N)

m > 0, then whp Y (1,N)
m ∈ [ε, ε−1]:

Lemma 4.5 For i = 1, 2,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(0 < Y (i,N)
m < ε) = lim sup

ε↓0
lim sup
m→∞

lim sup
N→∞

P(Y (i,N)
m > ε−1) = 0.

Proof. Fix m, when N → ∞ it follows from Proposition 3.1 that Y (i,N)
m = Y (i)

m , whp. Thus, we
obtain that

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(0 < Y (i,N)
m < ε) = lim sup

ε↓0
lim sup
m→∞

P(0 < Y (i)
m < ε),

and similarly for the second probability. The remainder of the proof of the lemma follows because
Y (i)

m
d→ Y (i) as m →∞ and is hence a tight sequence. ¤

Write

Em,N = Em,N(ε) = {Y (i,N)
m ∈ [ε, ε−1], i = 1, 2}, (4.14)

Fm,N = Fm,N(ε) =
{

max
k∈T (N)

m (ε)

|Y (i,N)

k − Y (i,N)
m | ≤ ε3, i = 1, 2

}
. (4.15)

As a consequence of Lemma 4.5, we obtain that

P(Ec
m,N ∩ {Y (1,N)

m Y (2,N)
m > 0}) = oN,m,ε(1). (4.16)

In the sequel, we compute
P({HN > k} ∩ Em,N), (4.17)

and often we make use of the fact that by Proposition 3.2

P(Em,N ∩ F c
m,N) = oN,m,ε(1). (4.18)
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4.3 Asymptotics of P({HN > k} ∩ Em,N)

We next give a representation of P({HN > k} ∩ Em,N). In order to do so, we write Q(i,j)
Z , where

i, j ≥ 0, for the conditional probability given {Z(1,N)
s }i

s=1 and {Z(2,N)
s }j

s=1 (where, for j = 0, we
condition only on {Z(1,N)

s }i
s=1), and E(i,j)

Z for its conditional expectation. Furthermore, we say that
a random variable k1 is Zm-measurable if k1 is measurable with respect to the σ-algebra generated
by {Z(1,N)

s }m
s=1 and {Z(2,N)

s }m
s=1. The main rewrite is now in the following lemma:

Lemma 4.6 For k ≥ 2m− 1,

P({HN > k} ∩ Em,N) = E
[
1Em,N

Q(m,m)
Z (HN > 2m− 1)Pm(k, k1)

]
, (4.19)

where, for any Zm-measurable k1, with m ≤ k1 ≤ (k − 1)/2,

Pm(k, k1) =
2k1∏

i=2m

Q(bi/2c+1,di/2e)
Z (HN > i|HN > i− 1) (4.20)

×
k−2k1∏

i=1

Q(k1+1,k1+i)

Z (HN > 2k1 + i|HN > 2k1 + i− 1).

Proof. We start by conditioning on {Z(1,N)
s }m

s=1 and {Z(2,N)
s }m

s=1, and note that Em,N is measurable
w.r.t. {Z(1,N)

s }m
s=1 and {Z(2,N)

s }m
s=1, so that we obtain, for k ≥ 2m− 1,

P({HN > k} ∩ Em,N) = E
[
1Em,N

Q(m,m)
Z (HN > k)

]
(4.21)

= E
[
1Em,N

Q(m,m)
Z (HN > 2m− 1)Q(m,m)

Z (HN > k|HN > 2m− 1)
]
.

Moreover, for i, j such that i + j ≤ k,

Q(i,j)
Z (HN > k|HN > i + j − 1) (4.22)

= E(i,j)
Z

[
Q(i,j+1)

Z (HN > k|HN > i + j − 1)
]

= E(i,j)
Z

[
Q(i,j+1)

Z (HN > i + j|HN > i + j − 1)Q(i,j+1)
Z (HN > k|HN > i + j)

]
,

and, similarly,

Q(i,j)
Z (HN > k|HN > i + j − 1) (4.23)

= E(i,j)
Z

[
Q(i+1,j)

Z (HN > i + j|HN > i + j − 1)Q(i+1,j)
Z (HN > k|HN > i + j)

]
.

When we apply the above formulas, we can choose to increase i or j by one depending on {Z(1,N)
s }i

s=1

and {Z(2,N)
s }j

s=1. We iterate the above recursions until i + j = k − 1. In particular, we obtain, for
k > 2m− 1,

Q(m,m)
Z (HN > k|HN > 2m− 1) = E(m,m)

Z

[
Q(m+1,m)

Z (HN > 2m|HN > 2m− 1) (4.24)

×Q(m+1,m)
Z (HN > k|HN > 2m)

]
,

so that, using that Em,N is Q(m,m)
Z -measurable and that E[E(m,m)

Z [X]] = E[X] for any random variable
X,

P({HN > k} ∩ Em,N) (4.25)

= E
[
1Em,N

Q(m,m)
Z (HN > 2m− 1)Q(m+1,m)

Z (HN > 2m|HN > 2m− 1)Q(m+1,m)
Z (HN > k|HN > 2m)

]
.
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We now compute the conditional probability by increasing i or j as follows. For i + j ≤ 2k1, we
will increase i and j in turn by 1, and for i + j > 2k1, we will only increase the second component
j. This leads to

Q(m,m)
Z (HN > k|HN > 2m− 1) = E(m,m)

Z

[ 2k1∏

i=2m

Q(bi/2c+1,di/2e)
Z (HN > i|HN > i− 1) (4.26)

×
k−2k1∏

j=1

Q(k1+1,k1+j)

Z (HN > 2k1 + j|HN > 2k1 + j − 1)
]

= E(m,m)
Z [Pm(k, k1)].

Here, we use that we can move the expectations E(i,j)
Z outside, as in (4.25), so that these do not

appear in the final formula. Therefore, from (4.21) and (4.26),

P({HN > k} ∩ Em,N) = E
[
1Em,N

Q(m,m)
Z (HN > 2m− 1)E(m,m)

Z [Pm(k, k1)]
]

= E
[
E(m,m)

Z [1Em,N
Q(m,m)

Z (HN > 2m− 1)Pm(k, k1)]
]

= E
[
1Em,N

Q(m,m)
Z (HN > 2m− 1)Pm(k, k1)

]
. (4.27)

This proves (4.20). ¤
We note that we can omit the term Q(m,m)

Z (HN > 2m− 1) in (4.19) by introducing a small error
term. Indeed, we can write

Q(m,m)
Z (HN > 2m− 1) = 1−Q(m,m)

Z (HN ≤ 2m− 1). (4.28)

For the contribution to (4.19) due to the second term in (4.28), we bound 1Em,N
Pm(k, k1) ≤ 1.

Therefore, the contribution to (4.19) due to the second term in (4.28) is bounded by

E
[
Q(m,m)

Z (HN ≤ 2m− 1)
]

= P(HN ≤ 2m− 1) = oN(1), (4.29)

by Lemma 4.3.
We conclude that by (4.29), (4.18) and (4.19),

P({HN > k} ∩ Em,N) = E
[
1Em,N∩Fm,N

Pm(k, k1)
]

+ oN,m,ε(1), (4.30)

where we recall (4.20) for the conditional probability Pm(k, k1) appearing in (4.30).

We continue with (4.30) by investigating the conditional probabilities in Pm(k, k1) defined in (4.20).
We have the following bounds for Q(i+1,j)

Z (HN > i + j|HN > i + j − 1):

Lemma 4.7 For all integers i, j ≥ 0,

exp

{
−4Z(1,N)

i+1 Z(2,N)

j

LN

}
≤ Q(i+1,j)

Z (HN > i + j|HN > i + j − 1) ≤ exp

{
−Z(1,N)

i+1 Z(2,N)

j

2LN

}
.

The upper bound is always valid, the lower bound is valid whenever

i+1∑

s=1

Z(1,N)
s +

j∑

s=1

Z(2,N)
s ≤ LN

4
. (4.31)
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Proof. We start with the upper bound. We fix two sets of n1 and n2 stubs, and will be interested
in the probability that none of the n1 stubs are connected to the n2 stubs. We order the n1 stubs
in an arbitrary way, and connect the stubs iteratively to other stubs. Note that we must connect at
least dn1/2e stubs, since any stub that is being connected removes at most 2 stubs from the total
of n1 stubs. The number n1/2 is reached for n1 even precisely when all the n1 stubs are connected
with each other. Therefore, we obtain that the probability that the n1 stubs are not connected to
the n2 stubs is bounded from above by

dn1/2e∏

i=1

(
1− n2

LN − 2i + 1

)
. (4.32)

To complete the upper bound, we note that

1− n2

LN − 2i + 1
≤ 1− n2

LN

≤ e
− n2

LN , (4.33)

to obtain that the probability that the n1 stubs are not connected to the n2 stubs is bounded from
above by

e
−dn1/2e n2

LN ≤ e
−n1n2

2LN . (4.34)

Applying the above bound to n1 = Z(1,N)

i+1 and n2 = Z(2,N)

j , and noting that the probability that
HN > i + j given that HN > i + j − 1 is bounded from above by the probability that the stubs in
Z(1,N)

i+1 are not connected to the stubs in Z(2,N)

j leads to

Q(i+1,j)
Z (HN > i + j|HN > i + j − 1) ≤ exp

{
−Z(1,N)

i+1 Z(2,N)

j

2LN

}
, (4.35)

which completes the proof of the upper bound.
We again fix two sets of n1 and n2 stubs, and are again interested in the probability that none

of the n1 stubs are connected to the n2 stubs. However, now we use these bounds repeatedly, and
we assume that in each step there remain to be at least M stubs available. We order the n1 stubs
in an arbitrary way, and connect the stubs iteratively to other stubs. We obtain a lower bound by
further requiring that the n1 stubs do not connect to each other. Therefore, the probability that
the n1 stubs are not connected to the n2 stubs is bounded below by

n1∏

i=1

(
1− n2

M − 2i + 1

)
. (4.36)

When M − 2n1 ≥ LN
2 , we obtain that 1− n2

M−2i+1 ≥ 1− 2n2
LN

. Moreover, when x ≤ 1
2 , we have that

1− x ≥ e−2x. Therefore, we obtain that when M − 2n1 ≥ LN
2 and n2 ≤ LN

4 , then the probability
that the n1 stubs are not connected to the n2 stubs when there are still at least M stubs available
is bounded below by

n1∏

i=1

(
1− n2

M − 2i + 1

)
≥

n1∏

i=1

e
− 4n2

LN = e
− 4n1n2

LN . (4.37)

The event HN > i + j conditionally on HN > i + j − 1 precisely occurs when the stubs
Z(1,N)

i+1 are not connected to the stubs in Z(2,N)

j . We will assume that (4.31) holds. We have that
M = LN − 2

∑i+1
s=1 Z(1,N)

s − 2
∑j

s=1 Z(2,N)
s , and n1 = Z(1,N)

i+1 , n2 = Z(2,N)

j . Thus, M − 2n1 ≥ LN
2

happens precisely when

M − 2n1 ≥ LN − 2
i+1∑

s=1

Z(1,N)
s − 2

j∑

s=1

Z(2,N)
s ≥ LN

2
. (4.38)
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This follows from the assumed bound in (4.31). Also, when n2 = Z(2,N)

j , n2 ≤ LN
4 is implied by

(4.31). Thus, we are allowed to use the bound in (4.37). This leads to

Q(i+1,j)
Z (HN > i + j|HN > i + j − 1) ≥ exp

{
− 4Z(1,N)

i+1 Z(2,N)

j

LN

}
, (4.39)

which completes the proof of Lemma 4.7. ¤

4.4 The main contribution to P({HN > k} ∩ Em,N)

We rewrite the expression in (4.30) in a more convenient form, using Lemma 4.7. We derive an
upper and a lower bound. For the upper bound, we bound all terms appearing on the right hand
side of (4.20) by 1, except for the term Q(k1+1,k−k1)

Z (HN > k|HN > k − 1), which arises when
i = k − 2k1. Using the upper bound in Lemma 4.7, we thus obtain that

Pm(k, k1) ≤ exp
{− Z(1,N)

k1+1Z
(2,N)

k−k1

2LN

}
. (4.40)

The latter inequality is true for any Zm-measurable k1 with m ≤ k1 ≤ (k − 1)/2.
To derive the lower bound, we next assume that

k1+1∑

s=1

Z(1,N)
s +

k−k1∑

s=1

Z(2,N)
s ≤ LN

4
, (4.41)

so that (4.31) is satisfied for all i in (4.20). We write, recalling (3.5),

B(1)
N (ε, k) =

{
m ≤ l ≤ (k − 1)/2 : l + 1 ∈ T (1,N)

m (ε), k − l ∈ T (2,N)
m (ε)

}
. (4.42)

We restrict ourselves to k1 ∈ B(1)
N (ε, k), if B(1)

N (ε, k) 6= ∅. When k1 ∈ B(1)
N (ε, k), we are allowed

to use the bounds in Proposition 3.2. Note that {k1 ∈ B(1)
N (ε, k)} is Zm−measurable. Moreover, it

follows from Proposition 3.2 that if k1 ∈ B(1)
N (ε, k), that then, with probability converging to 1 as

first N →∞ and then m →∞,

Z(1,N)
s ≤ N

1−ε4

τ−1 , ∀m < s ≤ k1 + 1, while Z(2,N)
s ≤ N

1−ε4

τ−1 , ∀m < s ≤ k − k1. (4.43)

Therefore, when k1 ∈ B(1)
N (ε, k), the assumption in (4.41) is satisfied with probability 1− oN,m(1),

as long as k = O(N
τ−2
τ−1 ). The latter restriction is not serious, as we always have k in mind for

which k = O(log log N) (see e.g. Theorem 1.2).
Thus, on the event Em,N ∩{k1 ∈ B(1)

N (ε, k)}, using (3.7) in Proposition 3.2 and the lower bound
in Lemma 4.7, with probability 1− oN,m,ε(1), and for all i ∈ {2m, . . . , 2k − 1},

Q(bi/2c+1,di/2e)
Z (HN > i|HN > i− 1) ≥ exp

{−
4Z(1,N)

bi/2c+1Z
(2,N)

di/2e
LN

} ≥ exp
{− 4Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
, (4.44)

and, for 1 ≤ i ≤ k − 2k1,

Q(k1+1,k1+i)

Z (HN > 2k1 + i|HN > 2k1 + i− 1) ≥ exp
{− 4Z(1,N)

k1+1Z
(2,N)

k1+i

LN

} ≥ exp
{− 4Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
.

(4.45)
Therefore, by Lemma 4.6, and using the above bounds for each of the in total k terms, we

obtain that when k1 ∈ B(1)
N (ε, k) 6= ∅, and with probability 1− oN,m,ε(1),

Pm(k, k1) ≥ exp
{− 4k

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
. (4.46)
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We next use the symmetry for the nodes 1 and 2. Denote

B(2)
N (ε, k) =

{
m ≤ l ≤ (k − 1)/2 : l + 1 ∈ T (2,N)

m (ε), k − l ∈ T (1,N)
m (ε)

}
. (4.47)

Take l̃ = k − l − 1, so that (k − 1)/2 ≤ l̃ ≤ k − 1−m, and thus

B(2)
N (ε, k) =

{
(k − 1)/2 ≤ l̃ ≤ k − 1−m : l̃ + 1 ∈ T (1,N)

m (ε), k − l̃ ∈ T (2,N)
m (ε)

}
. (4.48)

Then, since the nodes 1 and 2 are exchangeable, we obtain from (4.46), when k1 ∈ B(2)
N (ε, k) 6= ∅,

and with probability 1− oN,m,ε(1),

Pm(k, k1) ≥ exp
{− 4k

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
. (4.49)

We define BN(ε, k) = B(1)
N (ε, k) ∪ B(2)

N (ε, k), which is equal to

BN(ε, k) =
{

m ≤ l ≤ k − 1−m : l + 1 ∈ T (1,N)
m (ε), k − l ∈ T (2,N)

m (ε)
}

. (4.50)

We can summarize the obtained results by writing that with probability 1− oN,m,ε(1), and when
BN(ε, k) 6= ∅, we have

Pm(k, k1) = exp
{− λN

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
, (4.51)

for all k1 ∈ BN(ε, k), where λN = λN(k) satisfies

1
2
≤ λN(k) ≤ 4k. (4.52)

Relation (4.51) is true for any k1 ∈ BN(ε, k). However, our coupling fails when Z(1,N)

k1+1 or Z(2,N)

k−k1

grows too large, since we can only couple Z(i,N)

j with Ẑ(i,N)

j up to the point where Z(i,N)

j ≤ N
1−ε2

τ−1 .
Therefore, we next take the maximal value over k1 ∈ BN(ε, k) to arrive at the fact that, with
probability 1− oN,m,ε(1), on the event that BN(ε, k) 6= ∅,

Pm(k, k1) = max
k1∈BN (ε,k)

exp
{− λN

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
= exp

{
− λN min

k1∈BN (ε,k)

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}
. (4.53)

We conclude that

P({HN > k} ∩ Em,N ∩ {BN(ε, k) 6= ∅}) (4.54)

= E
[
1Em,N

exp
{
− λN min

k1∈BN (ε,k)

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}]
+ oN,m,ε(1).

From here on we take k = kN as in (4.4) with l a fixed integer.
In Section 5, we prove the following lemma that shows that, apart from an event of probability

1− oN,m,ε(1), we may assume that BN(ε, kN) 6= ∅:

Lemma 4.8 For all l, with kN as in (4.4),

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P({HN > kN} ∩ Em,N ∩ {BN(ε, kN) = ∅}) = 0.

From now on, we will abbreviate BN = BN(ε, kN). Using (4.54) and Lemma 4.8, we conclude

Corollary 4.9 For all l, with kN as in (4.4),

P
({HN > kN} ∩ Em,N

)
= E

[
1Em,N

exp
{
− λN min

k1∈BN

Z(1,N)

k1+1Z
(2,N)

k−k1

LN

}]
+ oN,m,ε(1).
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4.5 Application of the coupling results

In this section, we use the coupling results in Section 3.1. Before doing so, we investigate the
minimum of the function t 7→ κty1 + κn−ty2, where the minimum is taken over the discrete set
{0, 1, . . . , n}, and we recall that κ = (τ − 2)−1.

Lemma 4.10 Suppose that y1 > y2 > 0, and κ = (τ − 2)−1 > 1. For the integer n > − log(y2/y1)
log κ ,

t∗ = argmint∈{0,1,...,n}
(
κty1 + κn−ty2

)
= round

(
n
2

+
log(y2/y1)

2 log κ

)
,

where round(x) is x rounded off to the nearest integer. In particular,

max
{

κt∗y1

κn−t∗y2
,
κn−t∗y2

κt∗y1

}
≤ κ.

Proof. Consider, for real valued t ∈ [0, n], the function

ψ(t) = κty1 + κn−ty2.

Then,
ψ′(t) = (κty1 − κn−ty2) log κ, ψ′′(t) = (κty1 + κn−ty2) log2 κ.

In particular, ψ′′(t) > 0, so that the function ψ is strictly convex. The unique minimum of ψ is
attained at t̂, satisfying ψ′(t̂) = 0, i.e.,

t̂ =
n

2
+

log(y2/y1)
2 log κ

∈ (0, n),

because n > − log(y2/y1)/ log κ. By convexity t∗ = bt̂c or t∗ = dt̂e. We will show that |t∗ − t̂| ≤ 1
2 .

Put t∗1 = bt̂c and t∗2 = dt̂e. We have

κt̂y1 = κn−t̂y2 = κ
n
2
√

y1y2. (4.55)

Writing t∗i = t̂ + t∗i − t̂, we obtain for i = 1, 2,

ψ(t∗i ) = κ
n
2
√

y1y2{κt∗i−t̂ + κt̂−t∗i }.

For 0 < x < 1, the function x 7→ κx +κ−x is increasing so ψ(t∗1) ≤ ψ(t∗2) if and only if t̂− t∗1 ≤ t∗2− t̂,
or t̂ − t∗1 ≤ 1

2 , i.e., if ψ(t∗1) ≤ ψ(t∗2) and hence the minimum over the discrete set {0, 1, . . . , n} is
attained at t∗1, then t̂− t∗1 ≤ 1

2 . On the other hand, if ψ(t∗2) ≤ ψ(t∗1), then by the ‘only if’ statement
we find t∗2 − t̂ ≤ 1

2 . In both cases we have |t∗ − t̂| ≤ 1
2 . Finally, if t∗ = t∗1, then we obtain, using

(4.55),

1 ≤ κn−t∗y2

κt∗y1
=

κt̂−t∗1

κt∗1−t̂
= κ2(t̂−t∗1) ≤ κ,

while for t∗ = t∗2, we obtain 1 ≤ κt∗y1

κn−t∗y2
≤ κ. ¤

We continue with our investigation of P
({HN > kN} ∩Em,N

)
. We start from Corollary 4.9, substi-

tuting (3.3),

P
({HN > kN} ∩ Em,N

)
(4.56)

= E
[
1Em,N

exp
{
− λN exp

[
min

k1∈BN

(
κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1

)− log LN

]}]
+ oN,m,ε(1),
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where we rewrite, using (4.50) and (3.5),

BN = {m ≤ k1 ≤ kN − 1−m : κk1+1Y (1,N)
m ≤ 1− ε2

τ − 1
log N, κkN−k1Y (2,N)

m ≤ 1− ε2

τ − 1
log N}. (4.57)

Moreover, according to Proposition 3.2, and with probability at least 1− oN,m,ε(1), we have that
mink1∈BN

(κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1
) is between

min
k1∈BN

(
κk1+1(Y (1,N)

m − ε3) + κkN−k1(Y (2,N)
m − ε3)

)

and
min

k1∈BN

(
κk1+1(Y (1,N)

m + ε3) + κkN−k1(Y (2,N)
m + ε3)

)
.

To abbreviate the notation, we will write, for i = 1, 2,

Y (i,N)

m,+ = Y (i,N)
m + ε3, Y (i,N)

m,− = Y (i,N)
m − ε3. (4.58)

Define for ε > 0,

Hm,N = Hm,N(ε) =
{

min
0≤k1≤kN−1

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−
) ≤ (1 + ε2) log N

}
.

On the complement Hc
m,N , the minimum over 0 ≤ k1 ≤ kN−1 of κk1+1Y (1,N)

m,− +κkN−k1Y (2,N)

m,− exceeds
(1 + ε2) log N . Therefore, also the minimum over the set BN of κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,− exceeds
(1 + ε2) log N , so that, using Lemma 4.7, and with error at most oN,m,ε(1),

P
(
{HN > kN} ∩ Em,N ∩Hc

m,N

)

≤ E
[
1Hc

m,N
exp

{
− 1

2
exp

[
min

k1∈BN

(
κk1+1Y (1,N)

k1+1 + κkN−k1Y (2,N)

kN−k1

)− log LN

]}]

≤ E
[
1Hc

m,N
exp

{
− 1

2
exp

[
min

k1∈BN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−
)− log LN

]}]

≤ E
[
exp

{
− 1

2
exp

(
(1 + ε2) log N − log LN

)}]
≤ e−

1
2c

Nε2

, (4.59)

because LN ≤ cN , whp, as N → ∞. Therefore, in the remainder of the proof, we assume that
Hm,N holds.

We next show that whp ,

min
k1∈BN

(
κk1+1Y (1,N)

m,+ + κkN−k1Y (2,N)

m,+

)
= min

0≤k1<kN

(
κk1+1Y (1,N)

m,+ + κkN−k1Y (2,N)

m,+

)
, (4.60)

and
min

k1∈BN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−
)

= min
0≤k1<kN

(
κk1+1Y (1,N)

m,− + κkN−k1Y (2,N)

m,−
)
. (4.61)

We start with (4.60), the proof of (4.61) is similar, and, in fact, slightly simpler, and is therefore
omitted. To prove (4.60), we use Lemma 4.10, with n = kN + 1, t = k1 + 1, y1 = Y (1,N)

m,+ and
y2 = Y (2,N)

m,+ . Let
t∗ = argmint∈{0,1,...,n}

(
κty1 + κn−ty2

)
,

and assume (without restriction) that κt∗y1 ≥ κn−t∗y2. We have to show that t∗ − 1 ∈ BN .
According to Lemma 4.10,

1 ≤ κt∗Y (1,N)

m,+

κn−t∗Y (2,N)

m,+

=
κt∗y1

κn−t∗y2
≤ κ. (4.62)
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We define x = κt∗Y (1,N)

m,+ and y = κn−t∗Y (2,N)

m,+ , so that x ≥ y. By definition, on Hm,N(ε),

κt∗Y (1,N)

m,− + κn−t∗Y (2,N)

m,− ≤ (1 + ε2) log N.

Since, on Em,N , we have that Y (1,N)
m ≥ ε,

Y (1,N)

m,+ ≤ ε + ε3

ε− ε3
Y (1,N)

m,− =
1 + ε2

1− ε2
Y (1,N)

m,− , (4.63)

and likewise for Y (2,N)

m,+ . Therefore, we obtain that on Em,N ∩ Fm,N ∩Hm,N , and with ε sufficiently
small,

x + y ≤ 1 + ε2

1− ε2

[
κt∗Y (1,N)

m,− + κn−t∗Y (2,N)

m,−
] ≤ (1 + ε2)2

1− ε2
log N ≤ (1 + ε) log N. (4.64)

Moreover, by (4.62), we have that
1 ≤ x

y
≤ κ. (4.65)

Hence, on Em,N ∩ Fm,N ∩Hm,N , we have

x =
x + y

1 + y
x

≤ (1 + ε)
1

1 + κ−1
log N =

1 + ε

τ − 1
log N, (4.66)

when ε > 0 is sufficiently small. We claim that if

x = κt∗Y (1,N)

m,+ ≤ 1− ε

τ − 1
log N, (4.67)

then k∗ = t∗ − 1 ∈ BN(ε, kN), so that (4.60) follows. Indeed, we use (4.67) to see that

κk∗+1Y (1,N)
m = κt∗Y (1,N)

m ≤ κt∗Y (1,N)

m,+ ≤ 1− ε

τ − 1
log N, (4.68)

so that the first bound in (4.57) is satisfied. The second bound is satisfied, since

κkN−k∗Y (2,N)
m = κn−t∗Y (2,N)

m ≤ κn−t∗Y (2,N)

m,+ = y ≤ x ≤ 1− ε

τ − 1
log N, (4.69)

where we have used n = kN + 1, and (4.67).
Thus, in order to show that (4.60) holds with probability close to 1, we have to show that the

probability of the intersection of the events {HN > kN} and

Em,N = Em,N(ε) =
{
∃t :

1− ε

τ − 1
log N < κtY (1,N)

m,+ ≤ 1 + ε

τ − 1
log N, (4.70)

κtY (1,N)

m,+ + κn−tY (2,N)

m,+ ≤ (1 + ε) log N
}

,

can be made arbitrarily small by choosing ε close to 0, when first N →∞ and then m →∞. That
is the content of the following lemma, whose proof is deferred to Section 5:

Lemma 4.11 For kN as in (4.4),

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(Em,N(ε) ∩ Em,N(ε) ∩ {HN > kN}) = 0.

Therefore, we finally arrive at

P
({HN > kN} ∩ Em,N

)
(4.71)

≤ E
[
1Em,N

exp
{
− λN exp

[
min

0≤k1<kN

(
κk1+1Y (1,N)

m,+ + κkN−k1Y (2,N)

m,+

)− log LN

]}]
+ oN,m,ε(1),

and at a similar lower bound where Y (i,N)

m,+ is replaced by Y (i,N)

m,− .
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4.6 Evaluating the limit

The final argument consists of letting N →∞ and then m →∞. The argument has to be performed
with Y (i,N)

m,+ and Y (1,N)

m,− separately, after which we let ε ↓ 0. Since the precise value of ε plays no role
in the derivation, we only give the derivation for ε = 0. Observe that

min
0≤k1<kN

(κk1+1Y (1,N)
m + κkN−k1Y (2,N)

m )− log LN

= κdkN/2e min
0≤k1<kN

(
κk1+1−dkN/2eY (1,N)

m + κbkN/2c−k1Y (2,N)
m − κ−dkN/2e log LN

)

= κdkN/2e min
−dkN/2e+1≤t<bkN/2c+1

(κtY (1,N)
m + κcl−tY (2,N)

m − κ−dkN/2e log LN), (4.72)

where t = k1 + 1 − dkN/2e, ckN
= cl = bl/2c − dl/2e+ 1 = 1{l is even}. We further rewrite, using

(4.4) and the definition of aN in Theorem 1.2,

κ−dkN/2e log LN = κ
log log N

log κ
−b log log N

log κ
c−dl/2e log LN

log N
= κ−aN−dl/2e log LN

log N
. (4.73)

From Lemma 4.10, for N →∞ and on the event Em,N ,

min
−dkN/2e+1≤t≤bkN/2c

(κtY (1,N)
m + κcl−tY (2,N)

m ) = min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m ), (4.74)

because Y (i,N)
m ∈ [ε, ε−1] on Em,N . We define

Wm,N(kN) = min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m )− κ−aN−dl/2e log LN

log N
, (4.75)

and, for ε > 0,

F̃N = F̃N(l, ε) =
{
Wm,N(kN) > ε

}
, G̃N = G̃N(l, ε) =

{
Wm,N(kN) < −ε

}
. (4.76)

Observe that

κdkN/2eWm,N(kN) · 1 eFN
≥ κdkN/2eε, κdkN/2eWm,N(kN) · 1 eGN

≤ κdkN/2e(−ε). (4.77)

We split

P
({HN > kN} ∩ Em,N

)
= E

[
1Em,N

exp
[− λNeκdkN /2eWm,N (kN )

]]
+ oN,m,ε(1)

= P(G̃N ∩ Em,N) + IN + JN + KN + oN,m,ε(1), (4.78)

where we define

IN = E
[
exp

[− λNeκdkN /2eWm,N (kN )
]
1 eFN∩Em,N

]
, (4.79)

JN = E
[(

exp
[− λNeκdkN /2eWm,N (kN )

]− 1
)
1 eGN∩Em,N

]
, (4.80)

KN = E
[
exp

[− λNeκdkN /2eWm,N (kN )
]
1 eF c

N∩ eGc
N∩Em,N

]
. (4.81)

We first show that IN , JN and KN are error terms, and then prove convergence of P(G̃N ∩ Em,N).
We start by bounding IN . By the first bound in (4.77), for every ε > 0, and since λN ≥ 1

2 ,

lim sup
N→∞

IN ≤ lim sup
N→∞

exp
{− 1

2
exp{κdkN/2eε}} = 0. (4.82)

Similarly, by the second bound in (4.77), for every ε > 0, and since λN ≤ 4kN , we can bound JN as

lim sup
N→∞

|JN | ≤ lim sup
N→∞

E
[
1− exp

{− 4kN exp{−κdkN/2eε}}
]

= 0. (4.83)
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Finally, we bound KN by
KN ≤ P(F̃ c

N ∩ G̃c
N ∩ Em,N). (4.84)

We will next show that

P(G̃N ∩ Em,N) = P
(
min
t∈Z

(κtY (1) + κcl−tY (2))− κ−aN−dl/2e ≤ 0, Y (1)Y (2) > 0
)

+ oN,m,ε(1), (4.85)

and

P(F̃ c
N ∩ G̃c

N ∩ Em,N) = oN,m,ε(1). (4.86)

Equation (4.86) is the content of the following lemma, whose proof is deferred to Section 5:

Lemma 4.12 For all l,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(F̃N(l, ε)c ∩ G̃N(l, ε)c ∩ Em,N(ε)) = 0.

We now prove (4.85). From the definition of G̃N ,

G̃N ∩ Em,N =
{

min
t∈Z

(κtY (1,N)
m + κcl−tY (2,N)

m )− κ−aN−dl/2e log LN

log N
< −ε, Y (i,N)

m ∈ [ε, ε−1]
}

. (4.87)

By Proposition 3.1 and the fact that LN = µN(1 + o(1)) with probability 1− oN(1),

P(G̃N ∩ Em,N) = P
(

min
t∈Z

(κtY (1)
m + κcl−tY (2)

m )− κ−aN−dl/2e < −ε, Y (i)
m ∈ [ε, ε−1]

)
+ oN(1). (4.88)

Since Y (i)
m converges to Y (i) almost surely, sups≥m |Y (i)

s − Y (i)| converges to 0 a.s. as m → ∞.
Therefore,

P(G̃N ∩ Em,N) = P
(
Ml − κ−aN−dl/2e < −ε, Y (i) ∈ [ε, ε−1]

)
+ oN,m,ε(1), (4.89)

where we define
Ml = min

t∈Z
(κtY (1) + κcl−tY (2)). (4.90)

Moreover, since Y (1) has a density on (0,∞) and an atom at 0 (see [16]),

P(Y (1) 6∈ [ε, ε−1], Y (1) > 0) = oε(1),

so that, in turn,

P(G̃N ∩ Em,N) = P
(
Ml − κ−aN−dl/2e < −ε, Y (1)Y (2) > 0

)
+ oN,m,ε(1)

= q2P
(
Ml − κ−aN−dl/2e < −ε

∣∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1). (4.91)

Recall from Section 2 that for any l fixed, conditionally on Y (1)Y (2) > 0, the random variable Ml

has a density. We denote this density by f2 and the distribution function by F2. Also, κ−aN−dl/2e ∈
Il = [κ−dl/2e, κ−dl/2e+1]. Then,

P
(
− ε ≤ Ml − κ−aN−dl/2e < 0

)
≤ sup

a∈Il

[F2(a)− F2(a− ε)]. (4.92)

The function F2 is continuous on Il, so that in fact F2 is uniformly continuous on Il, and we
conclude that

lim sup
ε↓0

sup
a∈Il

[F2(a)− F2(a− ε)] = 0. (4.93)

We conclude the results of Sections 4.2–4.6 in the following corollary:
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Corollary 4.13 For all l, with kN as in (4.4),

P
({HN > kN} ∩ {Y (1)Y (2) > 0}) = q2P

(
Ml − κ−aN−dl/2e ≤ 0

∣∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1).

We now come to the conclusion of the proofs of Theorems 1.2 and 1.5. We combine the results in
Corollaries 4.4 and 4.13, together with the fact that qm = q + o(1) as m →∞, to obtain that, with
kτ,N = 2

⌊
log log N
| log(τ−2)|

⌋
,

P (HN > kτ,N + l) = 1− q2 + q2P
(
Ml − κ−aN−dl/2e ≤ 0

∣∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1). (4.94)

Therefore,

P (HN ≤ kτ,N + l) = q2P
(

min
t∈Z

(Ml > κ−aN−dl/2e∣∣Y (1)Y (2) > 0
)

+ oN,m,ε(1). (4.95)

When l →∞, we claim that (4.95) implies that, when N →∞,

P (HN < ∞) = q2 + o(1). (4.96)

Indeed, to see (4.96), we prove upper and lower bounds. For the lower bound, we use that for any
l ∈ Z

P (HN < ∞) ≥ P (HN ≤ kτ,N + l) ,

and let l → ∞ in (4.95), together with the fact that κ−aN−dl/2e → 0 as l → ∞. For the upper
bound, we split

P (HN < ∞) = P
({HN < ∞} ∩ {Y (1,N)

m Y (2,N)
m = 0}) + P

({HN < ∞} ∩ {Y (1,N)
m Y (2,N)

m > 0}) .

The first term is bounded by P(HN ≤ m−1) = oN(1), by Lemma 4.3. The second term is bounded
from above by, using Proposition 3.1,

P
({HN < ∞} ∩ {Y (1,N)

m Y (2,N)
m > 0}) ≤ P (

Y (1,N)
m Y (2,N)

m > 0
)

= q2
m + oN(1), (4.97)

which converges to q2 as m →∞. This proves (4.96). We conclude from (4.95) and (4.96) that

P
(
HN ≤ kτ,N + l

∣∣∣HN < ∞
)

= P
(
Ml ≥ (τ − 2)aN+dl/2e

∣∣∣Y (1)Y (2) > 0
)

+ o(1). (4.98)

This completes the proofs of Theorems 1.2 and 1.5. ¤

5 Proofs of Lemmas 4.8, 4.11 and 4.12

In this section, we prove the three lemmas used in Section 4. The proofs are similar in nature.
Denote

{k ∈ ∂T (N)
m } = {k ∈ T (N)

m } ∩ {k + 1 6∈ T (N)
m }. (5.1)

We will make essential use of the following consequence of Propositions 3.1 and 3.2:

Lemma 5.1 Assume that Propositions 3.1 and 3.2 hold. Then, for any u > 0, and i = 1, 2,

P
({k ∈ T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ∈ [Nu(1−ε), Nu(1+ε)]}) = oN,m,ε(1). (5.2)

Consequently,

P
({k ∈ ∂T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ≤ N
1

κ(τ−1)
+ε}) = oN,m,ε(1). (5.3)
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Proof. By Proposition 3.2, whp

Y (i,N)

k ≤ Y (i,N)
m + ε3 ≤ Y (i,N)

m (1 + ε2), (5.4)

where the last inequality follows from Y (i,N)
m ≤ ε−1. Therefore, also

Y (i,N)
m ≥ Y (i,N)

k (1− 2ε2), (5.5)

when ε is so small that (1 + ε2)−1 ≥ 1− 2ε2. In a similar way, we conclude that

Y (i,N)
m ≤ Y (i,N)

k (1 + 2ε2). (5.6)

Furthermore, the event Z(i,N)

k ∈ [Nu(1−ε), Nu(1+ε)] is equivalent to

(1− ε)uκ−k log N ≤ Y (i,N)

k ≤ (1 + ε)uκ−k log N. (5.7)

Therefore, we obtain that, with uk,N = uκ−k log N ,

Y (i,N)
m ≤ (1 + 2ε2)(1 + ε)uκ−k log N ≤ (1 + 2ε)uk,N . (5.8)

Similarly, we obtain

Y (i,N)
m ≥ (1− 2ε2)(1− ε)uκ−k log N ≥ (1− 2ε)uk,N . (5.9)

We conclude that the events k ∈ T (i,N)
m , ε ≤ Y (i,N)

m ≤ ε−1 and Z(i,N)

k ∈ [Nu(1−ε), Nu(1+ε)] imply

Y (i,N)
m ∈ uk,N [1− 2ε, 1 + 2ε] ≡ [uk,N(1− 2ε), uk,N(1 + 2ε)]. (5.10)

Since ε ≤ Y (N)
m ≤ ε−1, we therefore must also have (when ε is so small that 1− 2ε ≥ 1

2),

uk,N ∈ [
ε

2
,
2
ε
]. (5.11)

Therefore,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
({k ∈ T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ∈ [Nu(1−ε), Nu(1+ε)]}) (5.12)

≤ lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

sup
x∈[ ε

2
, 2
ε
]

P
(
Y (i,N)

m ∈ x[1− 2ε, 1 + 2ε]
)
.

Since Y (i,N)
m = Y (i)

m whp by Proposition 3.1, we arrive at

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
({k ∈ T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ∈ [Nu(1−ε), Nu(1+ε)]}) (5.13)

≤ lim sup
ε↓0

lim sup
m→∞

sup
x∈[ ε

2
, 2
ε
]

P
(
Y (i)

m ∈ x[1− 2ε, 1 + 2ε]
)
.

We next use that Y (i)
m converges to Y (i) almost surely as m →∞ to arrive at

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
({k ∈ T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ∈ [Nu(1−ε), Nu(1+ε)]}) (5.14)

≤ lim sup
ε↓0

sup
x∈[ ε

2
, 2
ε
]

P
(
Y (i) ∈ x[1− 2ε, 1 + 2ε]

) ≤ lim sup
ε↓0

sup
x>0

[F1(x(1 + 2ε))− F1(x(1− 2ε))],

where F1 denotes the distribution function of Y (i), which is continuous for x > 0. Moreover,

lim
x→∞ 1− F1(x) = 0. (5.15)
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Therefore, uniformly in ε < 1/4,

sup
x>K

[F1(x(1 + 2ε))− F1(x(1− 2ε))] ≤ 2 sup
x>K

[1− F1(x(1− 2ε))] → 0, (K →∞), (5.16)

so that

sup
x>0

[F1(x(1 + 2ε))− F1(x(1− 2ε))] (5.17)

≤ sup
0<x≤K

[F1(x(1 + 2ε))− F1(x(1− 2ε))] + sup
x>K

[F1(x(1 + 2ε))− F1(x(1− 2ε))]

= sup
0<x≤K

[F1(x(1 + 2ε))− F1(x(1− 2ε))] + o(1).

Therefore,

lim sup
ε↓0

sup
x>0

[F1(x(1+2ε))−F1(x(1−2ε))] = lim sup
K↑∞

lim sup
ε↓0

sup
0<x≤K

[F1(x(1+2ε))−F1(x(1−2ε))] = 0,

(5.18)
since F1 is uniformly continuous on (0,K]. This completes the proof of the first statement in
Lemma 5.1.

We turn to the second statement. The event that k ∈ ∂T (N)
m implies that

Y (i,N)
m ≥ 1− ε2

τ − 1
κ−(k+1) log N. (5.19)

By (5.6), we therefore conclude that when ε is sufficiently small

Y (i,N)

k ≥ 1− ε

τ − 1
κ−(k+1) log N, (5.20)

which is equivalent to
Z(i,N)

k ≥ N
1−ε

κ(τ−1) ≥ N
1

κ(τ−1)
−ε

. (5.21)

Therefore,

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
({k ∈ ∂T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ≤ N
1

κ(τ−1)
+ε}) (5.22)

≤ lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P
({k ∈ T (i,N)

m } ∩ {ε ≤ Y (i,N)
m ≤ ε−1} ∩ {Z(i,N)

k ∈ [N
1

κ(τ−1)
−ε

, N
1

κ(τ−1)
+ε]})

= 0,

which follows from the first statement in Lemma 5.1 with u = 1
κ(τ−1) . ¤

Proof of Lemma 4.8. By (4.18), it suffices to prove that

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P({HN > kN} ∩ Em,N ∩ Fm,N ∩ {BN(ε, kN) = ∅}) = 0, (5.23)

which shows that in considering the event {HN > kN} ∩ Em,N ∩ Fm,N , we may assume that
BN(ε, kN) 6= ∅.

We define the random variable l∗ by

l∗ = sup{k : BN(ε, k) 6= ∅}. (5.24)

Observe that if BN(ε, k) = ∅, then BN(ε, k + 1) = ∅, so that l∗ is well defined. Indeed, if l ∈
BN(ε, k + 1) and l 6= m, then l− 1 ∈ BN(ε, k). If, on the other hand, BN(ε, k + 1) = {m}, then also
m ∈ BN(ε, k). Since {BN(ε, kN) = ∅} = {kN ≥ l∗ + 1}, we therefore have

{BN(ε, kN) = ∅} = {l∗ < kN} = {l∗ ≤ kN − 2} ∪̇{l∗ = kN − 1}. (5.25)
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We deal with each of the two events separately. We start with the first.
Since the sets BN(ε, k) are Zm-measurable, we obtain, as in (4.30),

P({HN > kN} ∩ Em,N ∩ Fm,N ∩ {l∗ ≤ kN − 2}) ≤ P({HN > l∗ + 2} ∩ Em,N ∩ Fm,N) (5.26)

= E
[
1Em,N∩Fm,N

Pm(l∗ + 2, k1)
]

+ oN,m,ε(1).

We then use (4.40) to bound

E
[
1Em,N∩Fm,N

Pm(l∗ + 2, k1)
]
≤ E

[
1Em,N∩Fm,N

min
k1∈BN (ε,l∗)

exp{−Z(1,N)

k1+1Z
(2,N)

l∗+2−k1

2LN

}
]
. (5.27)

Now, since BN(ε, l∗) 6= ∅, we can pick k1 such that k1 − 1 ∈ BN(ε, l∗). Since BN(ε, l∗ + 1) = ∅, we
have k1 − 1 /∈ BN(ε, l∗ + 1), implying l∗ + 1− k1 ∈ T (2,N)

m and l∗ + 2− k1 /∈ T (2,N)
m so that, by (3.9),

Z(2,N)

l∗+2−k1
≥ N

1−ε
τ−1 .

Similarly, since k1 6∈ BN(ε, l∗ + 1) we have that k1 ∈ T (1,N)
m and k1 + 1 /∈ T (1,N)

m , so that, again
by (3.9), Z(1,N)

k1+1 ≥ N
1−ε
τ−1 . Therefore, since LN ≥ N , whp,

Z(1,N)

k1+1Z
(2,N)

l∗+2−k1

LN

≥ N
2(1−ε)

τ−1
−1, (5.28)

and the exponent of N is strictly positive for τ ∈ (2, 3) and ε > 0 small enough. This bounds the
contribution in (5.27) due to {l∗ ≤ kN − 2}.

We proceed with the contribution due to {l∗ = kN − 1}. In this case, there exists a k1 with
k1− 1 ∈ BN(ε, kN − 1) so that k1 ∈ T (1,N)

m and kN − k1 ∈ T (2,N)
m . On the other hand, BN(ε, kN) = ∅,

which together with k1− 1 ∈ BN(ε, kN − 1) implies that kN − k1 ∈ T (2,N)
m , and kN − k1 + 1 /∈ T (2,N)

m .
Similarly, we obtain that k1 ∈ T (1,N)

m and k1 + 1 /∈ T (1,N)
m . Using Proposition 3.3, we conclude that

Z(1,N)

k1+1 ≥ N
1−ε
τ−1 .

There are two possible cases that we will treat separately: (a) Z(2,N)

kN−k1
≤ N

τ−2
τ−1

+ε; and (b)

Z(2,N)

kN−k1
> N

τ−2
τ−1

+ε. By (5.3) and the fact that kN − k1 ∈ ∂T (2,N)
m , case (a) has small probability, so

we need to investigate case (b) only.
In case (b), we can bound

P({HN > kN} ∩ Em,N ∩ Fm,N ∩ {l∗ = kN − 1} ∩ {Z(2,N)

kN−k1
> N

τ−2
τ−1

+ε})
= E

[
1Em,N∩Fm,N∩{l∗=kN−1}1{Z(2,N)

kN−k1
>N

τ−2
τ−1+ε}∩{k1−1∈BN (ε,kN−1)}

Pm(kN , k1)
]

+ oN,m,ε(1),

(5.29)

and again use (4.40) to obtain

P({HN > kN} ∩ Em,N ∩ Fm,N ∩ {l∗ = kN − 1} ∩ {Z(2,N)

kN−k1
> N

τ−2
τ−1

+ε}) (5.30)

≤ E
[
1Em,N∩Fm,N (ε)∩{l∗=kN−1}1{Z(2,N)

kN−k1
>N

τ−2
τ−1+ε}∩{k1−1∈BN (ε,kN−1)}

exp{−Z(1,N)

k1+1Z
(2,N)

kN−k1

2LN

}
]

+ oN,m,ε(1).

We note that by Proposition 3.3 and similarly to (5.28),

Z(1,N)

k1+1Z
(2,N)

kN−k1
≥ N

1−ε
τ−1 N

τ−2
τ−1

+ε = N1+
(
1− 1

τ−1

)
ε, (5.31)

and again the exponent is strictly larger than 1, so that, following the arguments in (5.26–5.30),
we obtain that also the contribution due to case (b) is small. ¤
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Proof of Lemma 4.11. Recall that x = κtY (1,N)

m,+ and y = κn−tY (2,N)

m,+ , and that x ≥ y. The event
Em,N in (4.70) is equal to

1− ε

τ − 1
log N ≤ x ≤ 1 + ε

τ − 1
log N, and x + y ≤ (1 + ε) log N. (5.32)

Therefore, by (4.65),

y ≥ x

κ
≥ (1− ε)

τ − 2
τ − 1

log N. (5.33)

Also, by the bound on x + y in (5.32) and the lower bound on x in (5.32),

y ≤ (1 + ε) log N − x ≤ (1 + ε) log N − 1− ε

τ − 1
log N =

(
1 + ε

τ

τ − 2
)τ − 2
τ − 1

log N. (5.34)

Therefore, by multiplying the bounds on x and y, we obtain

(1− ε)2
τ − 2

(τ − 1)2
log2 N ≤ κkN+1Y (1,N)

m,+ Y (2,N)

m,+ ≤ (
1 + ε

τ

τ − 2
)
(1 + ε)

τ − 2
(τ − 1)2

log2 N, (5.35)

and thus

P(Em,N ∩ Em,N ∩ {HN > kN}) ≤ P
(
(1− ε)2 ≤ κkN+1

c log2 N
Y (1,N)

m,+ Y (2,N)

m,+ ≤ (
1 + ε

τ

τ − 2
)
(1 + ε)

)
,

(5.36)

where we abbreviate c = τ−2
(τ−1)2

. We conclude that

lim sup
ε↓0

lim sup
m→∞

lim sup
N→∞

P(Em,N ∩ Em,N ∩ {HN > kN}) = 0, (5.37)

analogously to the final part of the proof of Lemma 5.1. ¤

Proof of Lemma 4.12. We recall that Ml = mint∈Z(κtY (1) +κcl−tY (2)). We repeat the arguments
leading to (4.88–4.91) to see that, as first N →∞ and then m →∞,

P(F̃ c
N ∩ G̃c

N ∩ Em,N) ≤ P
(
−ε ≤ Ml − κ−aN−dl/2e ≤ ε, Y (1)Y (2) > 0

)
+ oN,m(1) (5.38)

= q2P
(
−ε ≤ Ml − κ−aN−dl/2e ≤ ε

∣∣∣Y (1)Y (2) > 0
)

+ oN,m(1).

Recall from Section 2 that, conditionally on Y (1)Y (2) > 0, the random variable Ml has a density.
Recall that we denoted the distribution function of Ml given Y (1)Y (2) > 0 by F2. Furthermore,
κ−aN−dl/2e ∈ Il = [κ−dl/2e, κ−dl/2e+1], so that, uniformly in N ,

P
(
−ε ≤ Ml − κ−aN−dl/2e ≤ ε

∣∣∣Y (1)Y (2) > 0
)
≤ sup

u∈Il

[F2(u + ε)− F2(u− ε)] = 0,

where the conclusion follows by repeating the argument leading to (5.18). This completes the proof
of Lemma 4.12. ¤

A Appendix: Proof of Propositions 3.1–3.3

The appendix is organised as follows. In Section A.1 we prove three lemmas that are used in
Section A.2 to prove Proposition 3.1. In Section A.3 we continue with preparations for the proofs
of Proposition 3.2 and 3.3. In this section we formulate key Proposition A.3.2, which will be proved
in Section A.4. In Section A.5 we end the appendix with the proofs of Proposition 3.2 and 3.3.
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A.1 Some preparatory lemmas

In order to prove Proposition 3.1, we make essential use of three lemmas, that also play a key role
in Section A.4 below. The first of these three lemmas investigates the tail behaviour of 1− G(x)
under Assumption 1.1. Recall that G is the distribution function of the probability mass function
{gj}, defined in (1.8).

Lemma A.1.1 If F satisfies Assumption 1.1 then there exists Kτ > 0 such that for x large enough

x2−τ−Kτ γ(x) ≤ 1−G(x) ≤ x2−τ+Kτ γ(x), (A.1.1)

where γ(x) = (log x)γ−1, γ ∈ [0, 1).

Proof. Using definition (1.8) we rewrite 1−G(x) as

1−G(x) =
∞∑

j=x+1

(j + 1)fj+1

µ
=

1
µ


(x + 2) [1− F (x + 1)] +

∞∑

j=x+2

[1− F (j)]


 .

Then we use [20, Theorem 1, p. 281], together with the fact that 1−F (x) is regularly varying with
exponent 1− τ 6= 1 to deduce that there exists a constant c = cτ > 0 such that

∞∑

j=x+2

[1− F (j)] ≤ cτ (x + 2) [1− F (x + 2)] .

Hence, if F satisfies Assumption 1.1, then

1−G(x) ≥ 1
µ(x + 2) [1− F (x + 1)] ≥ x2−τ−Kτ γ(x),

1−G(x) ≤ 1
µ(c + 1)(x + 2) [1− F (x + 1)] ≤ x2−τ+Kτ γ(x),

for some Kτ > 0 and large enough x. ¤

Remark A.1.2 It follows from Assumption 1.1 and Lemma A.1.1 that for each ε > 0 and suffi-
ciently large x,

x1−τ−ε ≤ 1− F (x) ≤ x1−τ+ε, (a)

x2−τ−ε ≤ 1−G(x) ≤ x2−τ+ε. (b)
(A.1.2)

We will often use (A.1.2) with ε replaced by ε6. ¤

Let us define for ε > 0,

α =
1− ε5

τ − 1
, h = ε6, (A.1.3)

and the auxiliary event Fε by

Fε = {∀1 ≤ x ≤ Nα : |G(x)−G(N)(x)| ≤ N−h[1−G(x)]}, (A.1.4)

where G(N) is the (random) distribution function of {g(N)

j }, defined in (3.2).

Lemma A.1.3 For ε small enough, and N sufficiently large,

P(F c
ε ) ≤ N−h. (A.1.5)
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Proof. First, we rewrite 1−G(N)(x), for x ∈ N0, in the following way:

1−G(N)(x) =
∞∑

n=x+1

g(N)
n =

1
LN

N∑

j=1

∞∑

n=x+1

Dj1{Dj=n+1} =
1

LN

N∑

j=1

Dj1{Dj≥x+2}

=
1

LN

N∑

j=1

Dj∑

l=1

1{Dj≥x+2} =
1

LN

∞∑

l=1

N∑

j=1

1{Dj≥(x+2)∨l}, (A.1.6)

where x ∨ l is the maximum of x and l. Writing

B(N)
y =

N∑

j=1

1{Dj≥y}, (A.1.7)

we thus end up with

1−G(N)(x) =
1

LN

∞∑

l=1

B(N)

(x+2)∨l. (A.1.8)

We have a similar expression for 1−G(x) that reads

1−G(x) =
1
µ

∞∑

l=1

P(D1 ≥ (x + 2) ∨ l). (A.1.9)

Therefore, with

β =
1− h

τ − 1
, and χ =

1 + 2h

τ − 1
,

we can write

[G(x)−G(N)(x)] =
(

Nµ
LN

− 1
)

[1−G(x)]

+ 1
LN

∑Nβ

l=1

[
B(N)

(x+2)∨l −NP
(
D1 ≥ (x + 2) ∨ l

)]

+ 1
LN

∑Nχ

l=Nβ+1

[
B(N)

(x+2)∨l −NP
(
D1 ≥ (x + 2) ∨ l

)]

+ 1
LN

∑∞
l=Nχ+1

[
B(N)

(x+2)∨l −NP
(
D1 ≥ (x + 2) ∨ l

)]
.

(A.1.10)

Hence, for large enough N and x ≤ Nα < Nβ < Nχ, we can bound

RN(x) ≡
∣∣∣G(x)−G(N)(x)

∣∣∣ ≤
∣∣∣Nµ
LN

− 1
∣∣∣ [1−G(x)] (a)

+ 1
LN

∑Nβ

l=1

∣∣∣B(N)

(x+2)∨l −NP
(
D1 ≥ (x + 2) ∨ l

)∣∣∣ (b)

+ 1
LN

∑Nχ

l=Nβ+1

∣∣B(N)

l −NP
(
D1 ≥ l

)∣∣ (c)

+ 1
LN

∑∞
l=Nχ+1 B(N)

l (d)

+ 1
LN

∑∞
l=Nχ+1 NP

(
D1 ≥ l

)
. (e)

(A.1.11)
We use (A.1.2(b)) to conclude that, in order to prove P(F c

ε ) ≤ N−h, it suffices to show that

P


 ⋃

1≤x≤Nα

{
|RN(x)| > CgN

−hx2−τ−h
}


 ≤ N−h, (A.1.12)

for large enough N , and for some Cg, depending on distribution function G. We will define an
auxiliary event AN,ε, such that |RN(x)| is more easy to bound on AN,ε and such that P(Ac

N,ε) is
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sufficiently small. Indeed, we define, with A = 3(β + 2h),

AN,ε(a) =
{
|Nµ
LN

− 1| ≤ N−3h
}

, (a)

AN,ε(b) = {max1≤j≤N Dj ≤ Nχ} , (b)

AN,ε(c) =
⋂

1≤x≤Nβ

{
|B(N)

x −NP(D1 ≥ x)| ≤
√

A(log N)NP(D1 ≥ x)
}

, (c)

(A.1.13)

and
AN,ε = AN,ε(a) ∩AN,ε(b) ∩AN,ε(c).

By intersecting with AN,ε and its complement, we have

P
( ⋃

1≤x≤Nα

{|RN(x)| > CgN
−hx2−τ−h})

≤ P(AN,ε ∩
{

⋃
1≤x≤Nα

{|RN(x)| > CgN
−hx2−τ−h}

}
)

+ P(Ac
N,ε).

(A.1.14)

We will prove that P(Ac
N,ε) ≤ N−h, and that on the event AN,ε, and for each 1 ≤ x ≤ Nα, the right

hand side of (A.1.11) can be bounded by CgN
−hx2−τ−h. We start with the latter statement.

Consider the right hand side of (A.1.11). Clearly, on AN,ε(a), the first term of |RN(x)| is
bounded by N−3h[1−G(x)] ≤ CgN

−3hx2−τ+h ≤ CgN
−hx2−τ−h, where the one but last inequality

follows from (A.1.2(b)), and the last since x ≤ Nα < N so that x2h < N2h. Since for l > Nχ and
each j, 1 ≤ j ≤ N , we have Dj > l is the empty set on AN,ε(b), the one but last term of |RN(x)|
vanish on AN,ε(b). The last term of |RN(x)| can for N large be bounded, using the inequality
LN ≥ N and (A.1.2(a)),

1
LN

∞∑

l=Nχ+1

NP(D1 ≥ l) ≤
∞∑

l=Nχ+1

l1−τ+h ≤ Nχ(2−τ+h)

τ − 2
< CgN

−h+α(2−τ+h) ≤ CgN
−hx2−τ−h,

for all x ≤ Nα, and where we also used that for ε sufficiently small and τ > 2,

χ(2− τ + h) < −h + α(2− τ + h).

We bound the third term of |RN(x)| as

1
LN

Nχ∑

l=Nβ+1

∣∣B(N)

l −NP(D1 ≥ l)
∣∣ ≤ 1

N

Nχ∑

l=Nβ+1

[B(N)

l + NP(D1 ≥ l)]

≤ Nχ[N−1B(N)

Nβ + P(D1 ≥ Nβ)]. (A.1.15)

We note that due to (A.1.2(a)),

P(D1 ≥ Nβ) ≥ Nβ(1−τ−h), (A.1.16)

for large enough N , so that

aN =
√

A(log N)NP(D1 ≥ Nβ) ≤ NP(D1 ≥ Nβ). (A.1.17)

Therefore, on AN,ε(c), we obtain that

B(N)

Nβ ≤ 2NP(D1 ≥ Nβ), (A.1.18)

for ε small enough and large enough N . Furthermore as ε ↓ 0,

Nχ+β(1−τ+h) < CgN
−h+α(2−τ−h) ≤ CgN

−hx2−τ−h,

32



for x ≤ Nα, 2− τ − h < 0, because (after multiplying by τ − 1 and dividing by ε5)

χ + β(1− τ + h) < −h + α(2− τ − h), or ε(2 + 2τ − h) < τ − 2 + h,

as ε is sufficiently small. Thus, the third term of |RN(x)| satisfies the required bound.
We bound the second term of |RN(x)| on AN,ε(a) ∩AN,ε(c) by

1
N

Nβ∑

l=1

√
A(log N)NP

(
D1 ≥ (x + 2) ∨ l

)
=
√

A log N√
N

Nβ∑

l=1

√
P
(
D1 ≥ (x + 2) ∨ l

)
. (A.1.19)

Let c be a constant such that (P(D1 > x))
1
2 ≤ cx(1−τ+h)/2, then for all 1 ≤ x ≤ Nα,

1
LN

Nβ∑

l=1

∣∣B(N)

(x+2)∨l −NP
(
D1 ≥ (x + 2) ∨ l

)∣∣ ≤ c
√

A log N√
N

Nβ∑

l=1

(
(x + 2) ∨ l

)(1−τ+h)/2

≤ c
√

A log N√
N

[
x(3−τ+h)/2 + Nβ(3−τ+h)/2

] ≤ 2c
√

A log N√
N

Nβ(3−τ+h)/2

≤ Nh−1/2Nβ(3−τ+h)/2 < CgN
−hNα(2−τ−h) ≤ CgN

−hx2−τ−h, (A.1.20)

because

h− 1/2 + β(3− τ + h)/2 < −h + α(2− τ − h), or h(5τ − 4− h) < 2ε5(τ − 2 + h),

for ε small enough and τ ∈ (2, 3). We have shown that for 1 ≤ x ≤ Nα, N sufficiently large, and
on the event AN,ε,

|RN(x)| ≤ CgN
−hx2−τ−h. (A.1.21)

It remains to prove that P(Ac
N,ε) ≤ N−h. We use that

P(Ac
N,ε) ≤ P(AN,ε(a)c) + P(AN,ε(b)c) + P(AN,ε(c)c), (A.1.22)

and we bound each of the three terms separately.
The bound

P(AN,ε(a)c) = P




∣∣∣∣∣∣
1
N

N∑

j=1

(Dj − µ)

∣∣∣∣∣∣
> N−3h · LN/N


 ≤ 1

3
N−h, (A.1.23)

follows, since N− 1
τ−1

∑N
j=1(Dj − µ), converges to a stable law, for 2 < τ < 3.

The bound on P(AN,ε(b)c) is a trivial estimate using (A.1.2(a)). Indeed, for N large,

P(AN,ε(b)c) = P
(

max
1≤j≤N

Dj > Nχ
)
≤ NP(D1 ≥ Nχ) ≤ Nχ(1−τ+h)+1 ≤ 1

3
N−h, (A.1.24)

for small enough ε, because τ > 2 + h. For the third term P(AN,ε(c)c), we will use a bound given
by Janson [24], which states that for a binomial random variable X with parameters N and p, and
all t > 0,

P(|X −Np| ≥ t) ≤ 2 exp
{
− t2

2(Np + t/3)

}
. (A.1.25)

We will apply (A.1.25) with t = aN(x) =
√

A(log N)NP(D1 ≥ x), and obtain that uniformly in
x ≤ Nα,

P
(|B(N)

x −NP(D1 ≥ x)| > aN(x)
) ≤ 2 exp

{
− aN(x)2

2(NP(D1 ≥ x) + aN(x)/3)

}

≤ 2 exp

{
− A log N

2(1 + 1
3

√
A log N/(NP(D1 ≥ Nα)))

}
≤ 2N−A/3, (A.1.26)
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because
log N

NP(D1 ≥ Nα)
≤ log N

N1+α(τ−1−h)
→ 0,

as N →∞. Thus, (A.1.26)gives us, using A = 3(β + 2h),

P(AN,ε(c)c) ≤
Nβ∑

x=1

P
(|B(N)

x −NP(D1 ≥ x)| > aN(x)
) ≤ 2Nβ−A/3 = 2N−2h ≤ 1

3
N−h. (A.1.27)

This completes the proof of the lemma. ¤

For the third lemma we introduce some further notation. For any x ∈ N, define

Ŝ(N)
x =

x∑

i=1

X̂(N)

i , V̂ (N)
x = max

1≤i≤x
X̂(N)

i ,

where {X̂(N)

i }x
i=1 have the same law, say Ĥ (N), but are not necessarily independent.

Lemma A.1.4 (Sums with law Ĥ (N) on the good event)

(i) If Ĥ (N) satisfies

[1− Ĥ (N)(z)] ≤ [1 + 2N−h][1−G(z)], ∀ z ≤ y, (A.1.28)

then for all x ≥ 1, there exists a constant b′, such that:

P
(
Ŝ(N)

x ≥ y
)
≤ b′x[1 + 2N−h]

[
1−G

(
y)

]
; (A.1.29)

(ii) If Ĥ (N) satisfies
[1− Ĥ (N)(y)] ≥ [1− 2N−h][1−G(y)], (A.1.30)

and {X̂(N)

i }x
i=1 are independent, then for all x ≥ 1,

P
(
V̂ (N)

x ≤ y
)
≤

(
1− [1− 2N−h][1−G (y)]

)x
. (A.1.31)

Proof. We first bound P
(
Ŝ(N)

x ≥ y
)
. We write

P
(
Ŝ(N)

x ≥ y
)
≤ P

(
Ŝ(N)

x ≥ y, V̂ (N)
x ≤ y

)
+ P

(
V̂ (N)

x > y
)
. (A.1.32)

The second term is bounded due to (A.1.28) by

xP
(
X̂(N)

1 > y
)

= x
[
1− Ĥ (N)

(
y
)] ≤ x[1 + 2N−h]

[
1−G

(
y
)]

. (A.1.33)

We use the Markov inequality and (A.1.28) to bound the first term on the right-hand side of
(A.1.32) by

P
(
Ŝ(N)

x ≥ y, V̂ (N)
x ≤ y

)
≤ 1

y
E

(
Ŝ(N)

x 1{V̂ (N)
x ≤y}

)
≤ x

y
E

(
X̂(N)

1 1{X̂(N)
1 ≤y}

)

≤ x

y

y∑

i=1

[1− Ĥ (N)(i)] ≤ x

y
[1 + 2N−h]

y∑

i=1

[1−G(i)]. (A.1.34)
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For the latter sum, we use [20, Theorem 1(b), p. 281], together with the fact that 1 − G(y) is
regularly varying with exponent 2− τ 6= 1, to deduce that there exists a constant c1 such that

y∑

i=1

[1−G(i)] ≤ c1y[1−G(y)]. (A.1.35)

Combining (A.1.32), (A.1.33), (A.1.34) and (A.1.35), we conclude that

P
(
Ŝ(N)

x ≥ y
)
≤ b′x[1 + 2N−h]

[
1−G

(
y)

)]
, (A.1.36)

where b′ = c1 + 1. This completes the proof of Lemma A.1.4(i).
For the proof of (ii), we use independence of {X̂(N)

i }x
i=1, and condition (A.1.30), to conclude

that

P
(
V̂ (N)

x ≤ y
)

=
(
Ĥ (N) (y)

)x
=

(
1−

[
1− Ĥ (N)(y)

])x
≤

(
1− [1− 2N−h][1−G (y)]

)x
.

Hence, (A.1.31) holds. ¤

Remark A.1.5 In the proofs in the appendix, we will only use that

(i) the event Fε holds whp;

(ii) that LN is concentrated around its mean;

(iii) that the maximal degree is bounded by Nχ for any χ > 1/(τ − 1), with whp.

Moreover, the proof of Proposition 3.1 relies on [21, Proposition A.3.1], and in its proof it was
further used that

(iv) pN ≤ Nα2, whp, for any α2 > 0, where pN is the total variation distance between g and g(N),
i.e.,

pN =
1
2

∑
n

|gn − g(N)
n |. (A.1.37)

Therefore, if instead of taking the degrees i.i.d. with distribution F , we would take the degrees in
an exchangeable way such that the above restrictions hold, then the proof carries on verbatim. In
particular, this implies that our results also hold for the usual configuration model, where the degrees
are fixed, as long as the above restrictions are satisfied. ¤

A.2 Proof of Proposition 3.1

The proof makes use of [21, Proposition A.3.1], which proves the statement in Proposition 3.1 under
an additional condition.

In order to state this condition, let, for i = 1, 2, {Ẑ(i,N)

j }j≥1 be two independent copies of the
delayed BP, where Ẑ(i,N)

1 has law {fn} given in (1.1), and where the offspring of any individual
in generation j with j > 1 has law {g(N)

n }, where g(N)
n is defined in (3.1). Then, the conclusion

of Proposition 3.1 follows from [21, Proposition A.3.1], for any m such that, for any η > 0, and
i = 1, 2,

P(
m∑

j=1

Ẑ(i,N)

j ≥ Nη) = o(1). (A.2.1)

By exchangeability it suffices to prove (A.2.1) for i = 1 only, we can therefore simplify notation
and write further Ẑ(N)

k instead of Ẑ(i,N)

k . We turn to the proof of (A.2.1).
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By Lemma A.1.3 and (A.1.2(b)), respectively, for every η > 0, there exists a cη > 0, such that
whp for all x ≤ Nα,

1−G(N)(x) ≤ [1 + 2N−h][1−G(x)] ≤ cηx
2−τ+η. (A.2.2)

We call a generation j ≥ 1 good, when

Ẑ(N)

j ≤
(
Ẑ(N)

j−1 log N
) 1

τ−2−η
, (A.2.3)

and bad otherwise, where as always Ẑ(N)

0 = 1. We further write

Hm = {generations 1, . . . , m are good}. (A.2.4)

We will prove that when Hm holds, then
∑m

j=1 Ẑ(N)

j ≤ Nη. Indeed, when generations 1, . . . ,m are
all good, then, for all j ≤ m,

Ẑ(N)

j ≤ (log N)
Pj

i=1(τ−2−η)−i
. (A.2.5)

Therefore,
m∑

j=1

Ẑ(N)

j ≤ m(log N)
Pm

i=1(τ−2−η)−i ≤ m(log N)
(τ−2−η)−m−2

(τ−2−η)−1−1 ≤ Nη, (A.2.6)

for any η > 0, when N is sufficiently large. We conclude that

P(
m∑

j=1

Ẑ(N)

j > Nη) ≤ P(Hc
m), (A.2.7)

and Proposition 3.1 follows if we show that P(Hc
m) = o(1). In order to do so, we write

P(Hc
m) = P(Hc

1) +
m−1∑

j=1

P(Hc
j+1 ∩Hj). (A.2.8)

For the first term, we use (A.1.2(a)) to deduce that

P(Hc
1) = P(D1 > (log N)

1
τ−2−η ) ≤ (log N)−

τ−1−η
τ−2−η ≤ (log N)−1. (A.2.9)

For 1 ≤ j ≤ m, we have Ẑ(N)

j ≤ ∑m
k=1 Ẑ(N)

k , and using (A.2.6),
m∑

j=1

Ẑ(N)

j ≤ m(log N)
(τ−2−η)−m−2

(τ−2−η)−1−1 = KN . (A.2.10)

Using Lemma A.1.4(i) with Ĥ (N) = G(N), x = l and y = vN = (l log N)
1

τ−2−η , where (A.1.28) follows
from (A.2.2), we obtain that

P(Hc
j+1 ∩Hj) ≤

KN∑

l=1

P
(
Ẑ(N)

j+1 ≥ vN

∣∣∣Ẑ(N)

j = l
)
P(Ẑ(N)

j = l) ≤ max
1≤l≤KN

P
(
Ŝ(N)

l ≥ vN

)

≤ max
1≤l≤xo

P
(
Ŝ(N)

l ≥ vN

)
+ b′ max

xo≤l≤KN

l[1 + 2N−h]
[
1−G(vN)

]
. (A.2.11)

The case where l ≤ xo can, by (A.2.2), be bounded as

xoP
( l∑

1

X̂(N)

j ≥ vN) ≤ xoP
( l⋃

j=1

{X̂(N)

j ≥ vN/l}
)
≤ xo

l∑

j=1

P
(
X̂(N)

j ≥ vN/l
)

≤ cηlxo(vN/l)2−τ+η =
cηxo

l2−τ+η
(log N)−1 ≤ C(log N)−1. (A.2.12)

Furthermore by (A.1.2(b)),

max
xo≤l≤KN

l[1−G(vN)] ≤ max
xo≤l≤KN

lv1−τ+η
N < (log N)−1. (A.2.13)

This completes the proof of Proposition 3.1. ¤
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A.3 Some further preparations

Before we can prove Propositions 3.2 and 3.3 , we state a lemma that was proved in [21].
We introduce some notation. Suppose we have L objects divided into N groups of sizes

d1, . . . , dN , so that L =
∑N

i=1 di. Suppose we draw an object at random. This gives a distribution
g(~d), i.e.,

g(~d)
n =

1
L

N∑

i=1

di1{di=n+1}, n = 0, 1, . . . (A.3.1)

Clearly, g(N) = g(~D), where ~D = (D1, . . . , DN). We further write

G(~d)(x) =
x∑

n=0

g(~d)
n . (A.3.2)

We next label M of the L objects, and suppose that the distribution G(~d)
M (x) is obtained in a

similar way from drawing conditionally on drawing an unlabelled object. More precisely, we remove
the labelled objects from all objects thus creating new d′1, . . . , d

′
N , and we let G(~d)

M (x) = G(~d′)(x).
Even though this is not indicated, the law G(~d)

M depends on what objects have been labelled.
Lemma A.3.1 below shows that the law G(~d)

M can be stochastically bounded above and below
by two specific ways of labeling objects. Before we can state the lemma, we need to describe those
specific labellings.

For a vector ~d, we denote by d(1) ≤ d(2) ≤ . . . ≤ d(N) the ordered coordinates. Then the laws
G

(~d)

M and G(~d)
M , respectively, are defined by successively decreasing d(N) and d(1), respectively, by one.

Thus,

G
(~d)

1 (x) =
1

L− 1

N−1∑

i=1

d(i)1{d(i)≤x+1} +
d(N) − 1
L− 1

1{d(N)−1≤x+1}, (A.3.3)

G(~d)
1 (x) =

1
L− 1

N∑

i=2

d(i)1{d(i)≤x+1} +
d(1) − 1
L− 1

1{d(1)−1≤x+1}. (A.3.4)

For G
(~d)

M and G(~d)
M , respectively, we perform the above change M times, and after each repetition

we reorder the groups. Here we note that when d(N) = 1 (in which case di = 1, for all i), and for
G

(~d)

1 we decrease d(N) by one, that we only keep the groups with di = 1. The same rule applies
when d(1) = 1 and for G(~d)

1 we decrease d(1) by one. Thus, in these cases, the number of groups of
objects, indicated by N , is decreased by 1. Applying the above procedure to ~d = (D1, . . . , DN) we
obtain that, for all x ≥ 1,

G
(N)

M (x) ≡ G
(~D)

M (x) ≤ 1
LN −M

N∑

i=1

Di1{Di≤x+1} =
LN

LN −M
G(N)(x), (A.3.5)

G(N)
M (x) ≡ G(~D)

M (x) ≥ 1
LN −M

[ N∑

i=1

Di1{Di≤x+1} −M
]

=
1

LN −M

[
LNG(N)(x)−M

]
, (A.3.6)

where equality is achieved precisely when D(N) ≥ x + M , and #{i : Di = 1} ≥ M , respectively.
Finally, for two distribution functions F, G, we write that F ¹ G when F (x) ≥ G(x) for all x.

Similarly, we write that X ¹ Y when for the distribution functions FX , FY we have that FX ¹ FY .
We next prove stochastic bounds on the distribution G(~d)

M (x) that are uniform in the choice of
the M labelled objects. The proof of Lemma A.3.1 can be found in [21].
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Lemma A.3.1 For all choices of M labelled objects

G(~d)
M ¹ G(~d)

M ¹ G
(~d)

M . (A.3.7)

Moreover, when X1, . . . , Xj are draws from G(~d)
M1

, . . . , G(~d)
Ml

, where the only dependence between
the Xi resides in the labelled objects, then

j∑

i=1

Xi ¹
j∑

i=1

Xi ¹
j∑

i=1

Xi, (A.3.8)

where {Xi}j
i=1 and {Xi}j

i=1, respectively, are i.i.d. copies of X and X with laws G(N)
M and G

(N)

M for
M = max1≤i≤l Mi, respectively.

We will apply Lemma A.3.1 to G(~D) = G(N).

A.3.1 The inductive step

Our key result, which will yield the proofs of Proposition 3.2 and 3.3, is Proposition A.3.2 below.
This proposition will be proved in Section A.4. For its formulation we need some more notation.

As before we simplify notation and write further on Z(N)

k instead of Z(i,N)

k . Similarly, we write
Zk instead of Z(i)

k and T (N)
m (ε) instead of T (i,N)

m (ε). Recall that we have defined previously

κ =
1

τ − 2
> 1 and α =

1− ε5

τ − 1
.

In the sequel we work with Y (N)

k > ε, for k large enough, i.e., we work with Z(N)

k > eεκk
> 1, due

to definition (3.3). Hence, we can treat these definitions as

Y (N)

k = κ−k log(Z(N)

k ) and Yk = κ−k log(Zk). (A.3.9)

With γ defined in the Assumption 1.1, and 0 < ε < 3− τ , we take mε sufficiently large to have

∞∑

k=mε

(τ − 2 + ε)k(1−γ) ≤ ε3 and
∞∑

k=mε

k−2 ≤ ε/2. (A.3.10)

For any mε ≤ m < k, we denote

M (N)

k =
k∑

j=1

Z(N)

j , and Mk =
k∑

j=1

Zj . (A.3.11)

As defined in Section 3 of [21] we speak of free stubs at level l, as the free stubs connected to
nodes at distance l − 1 from the root; the total number of free stubs, obtained immediately after
pairing of all stubs of level l − 1 equals Z(N)

l . For any l ≥ 1 and 1 ≤ x ≤ Z(N)

l−1, let Z(N)

x,l denote
the number of constructed free stubs at level l after pairing of the first x stubs of Z(N)

l−1. Note that
for x = Z(N)

l−1, we obtain Z(N)

x,l = Z(N)

l . For general x, the quantity Z(N)

x,l is loosely speaking the sum
of the number of children of the first x stubs at level l − 1, and according to the coupling at fixed
times (Proposition 3.1) this number is for fixed l, whp equal to the number of children of the first
x individuals in generation l − 1 of the BP {Zk}k≥1.

We introduce the event F̂m,k(ε),

F̂m,k(ε) =

{k ∈ T (N)
m (ε)} (a)

∩{∀m < l ≤ k − 1 : |Y (N)

l − Y (N)
m | ≤ ε3} (b)

∩{ε ≤ Y (N)
m ≤ ε−1} (c)

∩{M (N)
m ≤ 2Z(N)

m }. (d)

(A.3.12)
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In the proof of Proposition A.3.2 we compare the quantity Z(N)

x,l to the sum
∑x

i=1 X(N)

i,l−1 for part

(a) and to max1≤i≤x X(N)

i,l−1 for part (b). We then couple X(N)

i,l−1 to X
(N)

i,l−1 for part (a) and to X(N)

i,l−1

for part (b). Among other things, the event F̂m,k(ε) ensures that these couplings hold.

Proposition A.3.2 (Inductive step) Let F satisfy Assumption 1.1. For ε > 0 sufficiently small

and cγ sufficiently large, there exist a constant b = b(τ, ε) > 0 such that, for x = Z(N)

l−1 ∧N
(1−ε/2)
κ(τ−1) ,

P
(
F̂m,l(ε) ∩

{
Z(N)

x,l ≥ (l3x)κ+cγγ(x)
})

≤ bl−3, (a)

P
(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) })
≤ bl−3. (b)

The proof of Proposition A.3.2 is quite technical and is given in Section A.4. In this section we
give a short overview of the proof. For l ≥ 1, let SPGl denote the shortest path graph containing
all nodes on distance l − 1, and including all stubs at level l, i.e., the moment we have Z(N)

l free
stubs at level l. For i ∈ {1, . . . , x}, let X(N)

i,l−1 denote the number of brother stubs of a stub attached
to ith stub of SPGl−1 (see Figure 4).
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Figure 4: The building of the lth level of SPG. The last paired stubs are marked by thick lines, the brother stubs
by dashed lines. In a) the (l− 1)st level is completed, in b) the pairing with a new node is described, in c) the pairing
within the (l − 1)st level is described, and in d) the pairing with already existing node at lth level is described.
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Because Z(N)

x,l is the number of free stubs at level l after the pairing of the first x stubs, one
would expect that

Z(N)

x,l ∼
x∑

i=1

X(N)

i,l−1, (A.3.13)

where ∼ denotes that we have an uncontrolled error term. Indeed, the intuition behind (A.3.13)
is that loops or cykels should be rare for small l. Furthermore, when M (N)

l−1 is much smaller than
N , then the law of X(N)

i,l−1 should be quite close to the law G(N), which, in turn, by Lemma A.1.3 is
close to G. If X(N)

i,l−1 would have distribution G(x), then we could use the theory of sums of random
variables with infinite expectation, as well as extreme value theory, to obtain the inequalities of
Proposition A.3.2.

In order to make the above estimates rigorous, we use upper and lower bounds. We note that
the right-hand side of (A.3.13) is a valid upper bound for Z(N)

x,l . We show below that X(N)

i,l−1 have
the same law, and we wish to apply Lemma A.1.4(i). For this, we need to control the law X(N)

i,l−1,
for which we use Lemma A.3.1 to bound each X(N)

i,l−1 from above by a random variable with law

G
(N)

M . This coupling makes sense only on the good event where G
(N)

M is sufficiently close to G.
For the lower bound, we have to do more work. The basic idea from the theory of sums of

random variables with infinite mean is that the sum has the same order as the maximal summand.
Therefore, we bound from below

Z(N)

x,l ≥ Z(N)

x,l − x. (A.3.14)

where
Z(N)

x,l = max
1≤i≤x

X(N)

i,l−1. (A.3.15)

However, this lower bound is only valid when the chosen stub is not part of the shortest path
graph up to that point. We show in Lemma A.3.4 below that the chosen stub has label 1 when
Z(N)

x,l > 2M (N)

l−1. In this case, (A.3.14) follows since the x − 1 remaining stubs can ‘eat up’ at most
x − 1 ≤ x stubs. To proceed with the lower bound, we bound (X(N)

1,l−1, . . . , X
(N)

x,l−1) stochastically
from below, using Lemma A.3.1, by an i.i.d. sequence of random variables with laws G(N)

M , where M
is chosen appropriately and serves as an upper bound on the number of stubs with label 3. Again
on the good event, G(N)

M is sufficiently close to G. Therefore, we are now faced with the problem
of studying the maximum of a number of random variables with a law close to G. Here we can
use Lemma A.1.4(ii), and we conclude in the proof of Proposition A.3.2(a) that Z(N)

x,l is to leading

order equal to xκ, when x = Z(N)

l−1 ∧N
1−ε/2
κ(τ−1) . For this choice of x, we also see that Z(N)

x,l is of bigger
order than M (N)

l−2, so that the basic assumption in the above heuristic is satisfied. This completes
the overview of the proof.

We now state and prove the Lemmas A.3.3, A.3.4. The proof of Proposition A.3.2 then follows
in Section A.4. We define the good event mentioned above by

Fε,M =
Nα⋂

x=1

{
[1− 2N−h][1−G(x)] ≤ 1−G

(N)

M (x) ≤ 1−G(N)
M (x) ≤ [1 + 2N−h][1−G(x)]

}
.

(A.3.16)
The following lemma says that for M ≤ Nα the probability of the good event is close to one.

Lemma A.3.3 Let F satisfy Assumption 1.1. Then, for ε > 0 sufficiently small,

P(F c
ε,Nα) ≤ N−h, for large N.

Proof. Due to Lemma A.1.3 it suffices to show that for ε small enough, and N sufficiently we have

F c
ε,Nα ⊂ F c

ε . (A.3.17)
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We will prove the equivalent statement that

Fε ⊂ Fε,Nα . (A.3.18)

It follows from (A.3.5) and (A.3.6) that for every M and x

1−G(N)
M (x) ≤ 1−G(N)(x) ≤ 1−G

(N)

M (x), (A.3.19)

and, in particular, that for M ≤ Nα,

[1−G
(N)

M (x)]− [1−G(N)
M (x)] ≤ M

LN −M
≤ CNα−1. (A.3.20)

Then we use (A.1.2(b)) to obtain that for all x ≤ Nα, ε small enough, and N sufficiently large,

CNα−1 ≤ Nα−1+h = N
1−ε5

τ−1
−1+ε6

< N−2ε6
N

1−ε5

τ−1
(2−τ−ε6)

= N−2hNα(2−τ−h) ≤ N−2hx2−τ−h ≤ N−h[1−G(x)].
(A.3.21)

Therefore, for M ≤ Nα and with the above choices of ε, α and h, we have on Fε,

[1−G(N)
M (x)] ≤ 1−G(N)(x) + [1−G

(N)

M (x)]− [1−G(N)
M (x)] ≤ [1 + 2N−h][1−G(x)],

[1−G(N)
M (x)] ≥ 1−G(N)(x)− [1−G

(N)

M (x)] + [1−G(N)
M (x)] ≥ [1− 2N−h][1−G(x)],

i.e. we have (A.3.16), so that indeed Fε ⊂ Fε,Nα . ¤
For the coupling of X(N)

i,l−1 with the random variables with laws G(N)
M (x) and G

(N)

M (x) we need
the following lemma.

Lemma A.3.4 For any l ≥ 1 there are at most 2M (N)

l stubs with label 3 in SPGl+1, while the
number of stubs with label 2 is equal to Z(N)

l+1.

Proof. The proof is by induction on l. There are Z(N)

1 free stubs in SPG1. Some of these stubs
will be paired with stubs with label 2 or 3, others will be paired to stubs with label 1 (see Figure 4).
This gives us at most 2Z(N)

1 stubs with label 3 in SPG2. This initializes the induction. We next
advance the induction. Suppose that for some l ≥ 1 there are at most 2M (N)

l stubs with label 3 in
SPGl+1. There are Z(N)

l+1 free stubs (with label 2) in SPGl+1. Some of these stubs will be paired
with stubs with label 2 or 3, others will be linked with stubs with label 1 (again see Figure 4). This
gives us at most 2Z(N)

l+1 new stubs with label 3 in SPGl+2. Hence the total number of these stubs
is at most 2M (N)

l + 2Z(N)

l+1 = 2M (N)

l+1. This advances the induction hypothesis, and proves the claim.
¤

A.4 The proof of Proposition A.3.2

We state and prove some consequences of the event F̂m,k(ε), defined in (A.3.12). We refer to the
remark, following definition (A.3.12), to explain where we use these consequences.

Lemma A.4.1 The event F̂m,k(ε) implies, for sufficiently large N , the following bounds:

(a) M (N)

k−1 < N
1−3ε4/4
κ(τ−1) ,

(b) for any δ > 0, N−δ ≤ k−3,

(c) κk−1(ε− ε3) ≤ log
(
Z(N)

k−1

) ≤ κk−1(ε−1 + ε3), for k − 1 ≥ m,

(d) M (N)

k−1 ≤ 2Z(N)

k−1 for k − 1 ≥ m.

(A.4.1)
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Proof. Assume that (A.3.12(a)-(d)) holds. We start by showing (A.4.1(b)), which is evident if
we show the following claim:

k ≤
log

(
1−ε2

ε(τ−1) log N
)

log κ
, (A.4.2)

for N large enough. In order to prove (A.4.2), we note that if k ∈ T (N)
m (ε) then, due to defini-

tion (3.5),

κk−m ≤ 1− ε2

τ − 1
log N

log
(
Z(N)

m

) <
1− ε2

ε(τ − 1)
κ−m log N, (A.4.3)

where the latter inequality follows from Y (N)
m > ε and (A.3.9). Multiplying by κm and taking

logarithms on both sides yields (A.4.2).
We now turn to (A.4.1(a)). Since

M (N)

k−1 =
k−1∑

l=1

Z(N)

l ≤ k max
1≤l≤k−1

Z(N)

l ,

the inequality (A.4.1(a)) follows when we show that for any l ≤ k − 1,

Z(N)

l ≤ N
1−ε4

κ(τ−1) . (A.4.4)

Observe that for l < m we have, due to (A.3.12(c)) and (A.3.12(d)), for any ε > 0 and m fixed and
by taking N sufficiently large,

Z(N)

l ≤ M (N)
m ≤ 2Z(N)

m ≤ 2eκmε−1
< N

1−ε4

κ(τ−1) . (A.4.5)

Consider m ≤ l ≤ k − 1. Due to (A.3.9), inequality (A.4.4) is equivalent to

κl+1Y (N)

l ≤ 1− ε4

τ − 1
log N. (A.4.6)

To obtain (A.4.6) we will need two inequalities. Firstly, (A.3.12(a)) and l + 1 ≤ k imply that

κl+1Y (N)
m ≤ 1− ε2

τ − 1
log N. (A.4.7)

Secondly, (A.4.7) and (A.3.12(c)) imply that

κl+1 ≤ 1− ε2

ε(τ − 1)
log N. (A.4.8)

Given (A.4.7) and (A.3.12(b)), we obtain, when Y (N)
m ≥ ε, and for m ≤ l ≤ k − 1,

κl+1Y (N)

l ≤ κl+1(Y (N)
m + ε3) ≤ κl+1Y (N)

m (1 + ε2)
≤ (1−ε2)(1+ε2)

τ−1 log N = 1−ε4

τ−1 log N.
(A.4.9)

Hence we have (A.4.6) or equivalently (A.4.4) for m ≤ l ≤ k − 1.
The bound in (A.4.1(c)) is an immediate consequence of (A.3.9) and (A.3.12(b,c)) that imply

for k − 1 > m,
ε− ε3 ≤ Y (N)

k−1 ≤ ε−1 + ε3.

We complete the proof by establishing (A.4.1(d)). We use induction to prove that for all l ≥ m,
the bound M (N)

l ≤ 2Z(N)

l holds. The initialization of the induction hypothesis for l = m follows
from (A.3.12(d)). So assume that for some m ≤ l < k− 1 the inequality M (N)

l ≤ 2Z(N)

l holds, then

M (N)

l+1 = Z(N)

l+1 + M (N)

l ≤ Z(N)

l+1 + 2Z(N)

l , (A.4.10)
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so that it suffices to bound 2Z(N)

l by Z(N)

l+1 . We note that F̂m,k(ε) implies that

|Y (N)

l+1 − Y (N)

l | ≤ |Y (N)

l+1 − Y (N)
m |+ |Y (N)

l − Y (N)
m | ≤ 2ε3 ≤ 3ε2Y (N)

l+1 . (A.4.11)

Therefore,

2Z(N)

l = 2eκlY
(N)
l ≤ 2e(1+3ε2)κlY

(N)
l+1 = 2

(
Z(N)

l+1

)(1+3ε2)κ−1 ≤ Z(N)

l+1, (A.4.12)

when ε > 0 is so small that ω = (1 + 3ε2)κ−1 < 1 and where we take m large enough to ensure
that for l ≥ m, the lower bound Z(N)

l+1 = exp{κl+1Y (N)

l+1 } > exp{κl+1ε} > 2
1

1−ω is satified. ¤

Proof of Proposition A.3.2(a). Recall that α = 1−ε5

τ−1 . We write

P
(
F̂m,l(ε) ∩

{
Zx,l ≥

(
l3x

)κ+cγγ(x) })
≤ PNα

(
F̂m,l(ε) ∩

{
Zx,l ≥

(
l3x

)κ+cγγ(x) })
+ P(F c

ε,Nα)

≤ PNα

(
F̂m,l(ε) ∩

{
Zx,l ≥

(
l3x

)κ+cγγ(x) })
+ l−3,

(A.4.13)
where PM is the conditional probability given that Fε,M holds, and where we have used Lemma A.3.3
with N−h < l−3. It remains to bound the first term on the right-hand side of (A.4.13). For this
bound we aim to use Lemma A.1.4. Clearly we have

Z(N)

x,l ≤
x∑

i=1

X(N)

i,l−1, (A.4.14)

because loops and cycles can occur (in Figure 4 only the case b) contributes to Z(N)

x,l , the cases c)
and d) do not contribute). Since the free stubs of SPGl−1 are exchangeable, each free stub will
choose any stub with label unequal to 3 with the same probability. Therefore, all X(N)

i,l−1 have the
same law which we denote by H (N). Then we observe that due to (A.3.8), X(N)

i,l−1 can be coupled

with X
(N)

i,l−1 having law G
(N)

M , where M is equal to the number of stubs with label 3 at the moment
we generate X(N)

i,l−1, which is at most the number of stubs with label 3 in SPGl plus 1. The last
number is due to Lemma A.3.4 at most 2M (N)

l−1 + 1. By Lemma A.4.1(a), we have that

2M (N)

l−1 + 1 ≤ 2N
1−3ε4/4
κ(τ−1) + 1 ≤ N

1−ε5

τ−1 = Nα, (A.4.15)

and hence, due to (A.3.8), we can take as the largest possible number M = Nα. We now verify

whether we can apply Lemma A.1.4(i). Observe that x ≤ N
1−ε/2
κ(τ−1) so that for N large and each cγ ,

we have
y = (l3x)κ+cγγ(x) < Nα, (A.4.16)

since by (A.4.2), we can bound l by a double logarithm. Hence (A.1.28) holds, because we condition
on Fε,Nα . We therefore can apply Lemma A.1.4(i), with Ŝ(N)

x =
∑x

i=1 X
(N)

i,l−1, Ĥ (N) = G
(N)

Nα , and
obtain also using the upper bound in (A.1.1),

PNα

(
F̂m,l(ε) ∩

{
Zx,l ≥

(
l3x

)κ+cγγ(x) })
≤ b′x[1 + 2N−h]

[
1−G

(
y)

]

≤ 2b′xy−κ−1+Kτ γ(y) = 2b′x(l3x)(−κ−1+Kτ γ(y))(κ+cγγ(x)) ≤ bl−3, (A.4.17)

if we show that
cγγ(x)

(−κ−1 + Kτγ(y)
)

+ κKτγ(y) < 0. (A.4.18)

Inequality (A.4.18) holds, because γ(y) = (log y)γ−1, γ ∈ [0, 1), can be made arbitrarily small by
taking y large, which follows from (A.4.1(c)): l3x ≥ l3 exp{κmε/2}, and because m can be taken
large. ¤
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Proof of Proposition A.3.2(b). Similarly to (A.4.13), we have

P
(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) })
≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) })
+ l−3, (A.4.19)

and it remains to bound the first term on the right-hand side of (A.4.19). Recall that

Z(N)

x,l = max
1≤i≤x

X(N)

i,l−1,

where, for 1 ≤ i ≤ x, X(N)

i,l−1 is the number of brother stubs of a stub attached to the ith free stub
of SPGl−1. Suppose we can bound the first term on the right-hand side of (A.4.19) by bl−3, when
Z(N)

x,l is replaced by Z(N)

x,l after adding an extra factor 2, e.g., suppose that

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x) })
≤ bl−3.

Then we bound

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) })
(A.4.20)

≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x) })

+ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) } ∩ {
Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x) })
.

By assumption, the first term is bounded by bl−3, and we must bound the second term. We will
prove that the second term in (A.4.20) is equal to 0.

For x sufficiently large we obtain from l ≤ C log x, κ > 1, and γ(x) → 0,

2
( x

l3

)κ−cγγ(x)
> 6x. (A.4.21)

Hence for x = Z(N)

l−1 > (ε − ε3)κl−1, it follows from Lemma A.4.1(d), that Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x)

induces
Z(N)

x,l > 6Z(N)

l−1 ≥ 2M (N)

l−1 + 2Z(N)

l−1. (A.4.22)

On the other hand, when x = N
(1−ε/2)
κ(τ−1) < Z(N)

l−1, then, by Lemma A.4.1(a), and where we use again
l ≤ C log x, κ > 1, and γ(x) → 0,

Z(N)

x,l ≥ 2
(

x
l3

)κ−cγγ(x) = 2


N

1−ε/2
κ(τ−1)

l3




κ−cγγ(x)

> 2N
1−3ε4/4
κ(τ−1) + 2N

1−ε/2
κ(τ−1) > 2M

(N)
l−1 + 2x. (A.4.23)

We conclude that in both cases we have that Z(N)

x,l ≥ 2M (N)

l−1 + 2x ≥ 2M (N)

l−2 + 2x. We claim that the
event Z(N)

x,l > 2M (N)

l−2 + 2x implies that

Z(N)

x,l ≥ Z(N)

x,l − x. (A.4.24)

Indeed, let i0 ∈ {1, . . . , N} be the node such that

Di0 = Z(N)

x,l + 1,

and suppose that i0 ∈ SPGl−1. Then Di0 is at most the total number of stubs with labels 2
and 3, i.e., at most 2M (N)

l−2 + 2x. Hence Z(N)

x,l < Di0 ≤ 2M (N)

l−2 + 2x, and this is a contradiction
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with the assumption that Z(N)

x,l > 2M (N)

l−2 + 2x. Since by definition i0 ∈ SPGl, we conclude that
i0 ∈ SPGl \ SPGl−1, which is equivalent to saying that the chosen stub with Z(N)

x,l brother stubs
had label 1. Then, on Z(N)

x,l > 2M (N)

l−2 + 2x, we have (A.4.24). Indeed, the one stub from level l − 1
connected to i0 gives us Z(N)

x,l free stubs at level l and the other x− 1 stubs from level l− 1 can ‘eat
up’ at most x stubs.

We conclude from the above that

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) } ∩ {
Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x) })
(A.4.25)

≤ PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤
(

x
l3

)κ−cγγ(x) } ∩ {
Z(N)

x,l > 2
(

x
l3

)κ−cγγ(x) − x
})

= 0,

since (A.4.21) implies that

2
( x

l3

)κ−cγγ(x)
− x ≥

( x

l3

)κ−cγγ(x)
.

Below we prove in two steps that there exists b such that

PNα

(
F̂m,l(ε) ∩ {Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x)}
)
≤ bl−3. (A.4.26)

First we couple {X(N)

i,l−1}x
i=1 with a sequence of i.i.d. random variables {X(N)

i,l−1}x
i=1 with law G(N)

Nα ,
such that

X(N)

i,l−1 ≥ X(N)

i,l−1, i = 1, 2, . . . , x, (A.4.27)

and hence
Z(N)

x,l ≥ V (N)
x

def
= max

1≤i≤x
X(N)

i,l−1. (A.4.28)

Then we apply Lemma A.1.4(ii) with X̂(N)

i = X(N)

i,l−1 and y = 2(x/l3)κ−cγγ(x).
We prove the fact that we can couple {X(N)

i,l−1}x
i=1 with a sequence of i.i.d. random variables

{X(N)

i,l−1}x
i=1 with law G(N)

Nα by induction on x. For x = 1, the claim follows from Lemma A.3.1
with l = 1. Observe that for the xth stub at level l − 1, we sample a uniform stub from the stubs
with labels 1 and 2. Hence, due to (A.3.8), and conditionally on {X(N)

i,l−1}x−1
i=1 , we can bound X(N)

x,l−1

from below by X(N)

x,l−1, which has law G
(N)

M , where M is equal to the number of stubs with label
3 at the moment we generate X(N)

x,l−1. This number is bounded from above by 2M (N)

l−2 + 2x ≤ Nα

by (A.4.1(a)) and the fact that x ≤ N
(1−ε/2)
κ(τ−1) ≤ 1

4Nα. Indeed, the maximal possible value for M
corresponds to the moment we sample X(N)

x,l−1, i.e., M is at most the number of stubs with label 3
in SPGl−1 plus 2x for the pairing at most x free stubs of SPGl−1. Hence, due to Lemma A.3.4, M
is at most 2M (N)

l−2 +2x ≤ Nα, and due to (A.3.8) we can take M = Nα. Therefore, conditionally on
{X(N)

i,l−1}x−1
i=1 , we can bound X(N)

x,l−1 from below by X(N)

x,l−1, which has law G
(N)

M , and this conditional
coupling is equivalent to fact that each component of {X(N)

i,l−1}x
i=1 can be bounded from below by

the components of {X(N)

i,l−1}x
i=1, where {X(N)

i,l−1}x
i=1 are i.i.d. copies with law G

(N)

Nα .

We finally restrict to x = Z(N)

l−1 ∧N
1−ε/2
κ(τ−1) . Note that y = 2(x/l3)κ−cγγ(x) ≤ Nα, so that Fα,Nα

holds, which in turn implies condition (A.1.30). We can therefore apply Lemma A.1.4(ii) with
X̂(N)

i = X(N)

i,l−1, i = 1, 2, . . . , x, Ĥ (N) = G(N)

Nα , and y = 2(x/l3)κ−cγγ(x) to obtain from (A.4.28),

PNα

(
F̂m,l(ε) ∩

{
Z(N)

x,l ≤ 2
(

x
l3

)κ−cγγ(x) })

≤ P
(

max
1≤i≤x

X(N)

i,l−1 ≤ y

)
≤

(
1− [1− 2N−h][1−G (y)]

)x
. (A.4.29)

From the lower bound of (A.1.1),

[1−G(y)] ≥ y−κ−1−Kτ γ(y) = 2κ−cγγ(x)(x/l3)(−κ−1−Kτ γ(y))(κ−cγγ(x)) ≥ l3

x
, (A.4.30)
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because x/l3 > 1 and

κ−1cγγ(x)− κKτγ(y) + cγKτγ(x)γ(y) ≥ cγκ−1γ(x)− κKτγ(y) ≥ 0,

by choosing cγ large and using γ(x) ≥ γ(y). Combining (A.4.29) and (A.4.30) and taking 1 −
2N−h > 1

2 , we conclude that

(
1− [1− 2N−h][1−G (y)]

)x
≤

(
1− l3

2x

)x

≤ e−l3/2 ≤ l−3, (A.4.31)

because l > m and m can be chosen large. This yields (A.4.26) with b = 1. ¤
In the proof of Proposition 3.2, in Section A.5, we often use a corollary of Proposition A.3.2

that we formulate and prove below.

Corollary A.4.2 Let F satisfy Assumption 1.1. For any ε > 0 sufficiently small, there exists an
integer m such that such that for any k > m,

P
(
F̂m,k(ε) ∩ {|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)}
)
≤ k−2, (A.4.32)

for sufficiently large N .

Proof. We use that part (a) and part (b) of Proposition A.3.2 together imply:

P
(
F̂m,k(ε) ∩

{ ∣∣log
(
Z(N)

k

)− κ log
(
Z(N)

k−1

)∣∣ ≥ κ log(k3) + cγγ
(
Z(N)

k−1

)
log

(
k3Z(N)

k−1

) })
≤ 2bk−3.

(A.4.33)
Indeed applying Proposition A.3.2, with l = k and x = Z(N)

k−1, and hence Zx,k = Zk, yields:

P
(
F̂m,k(ε) ∩

{
Z(N)

k ≥ (k3x)κ+cγγ(x)
})

≤ bk−3, (A.4.34)

P
(
F̂m,k(ε) ∩

{
Z(N)

k ≤ (x/k3)κ−cγγ(x)
})

≤ bk−3, (A.4.35)

and from the identities

{Z(N)

k ≥ (k3x)κ+cγγ(x)} = {log(Z(N)

k )− κ log(Z(N)

k−1) ≥ log((k3x)κ+cγγ(x))− κ log x},
{Z(N)

k ≤ (x/k3)κ−cγγ(x)} = {log(Z(N)

k )− κ log(Z(N)

k−1) ≤ log((x/k3)κ+cγγ(x))− κ log x},
we obtain (A.4.33).

Applying (A.4.33) and (A.3.9), we arrive at

P
(
F̂m,k(ε) ∩ {|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)}
)

(A.4.36)

≤ P
(
F̂m,k(ε) ∩

{
κ−k

[
κ log(k3) + cγγ

(
Z(N)

k−1

)
log

(
k3Z(N)

k−1

)]
> (τ − 2 + ε)k(1−γ)

})
+ 2bk−3.

Observe that, due to Lemma A.4.1(c), and since γ(x) = (log x)γ−1, where 0 ≤ γ < 1, we have
on F̂m,k(ε),

κ−k
[
κ log(k3) + cγγ

(
Z(N)

k−1

)
log

(
k3Z(N)

k−1

)]

= κ−k
[
κ log(k3) + cγ

(
log

(
Z(N)

k−1

))γ−1 (
log(k3) + log

(
Z(N)

k−1

))]

≤ κ−k
[
κ log(k3) + cγ log(k3) + cγ

(
log

(
Z(N)

k−1

))γ
]

≤ κ−k
[
(cγ + κ) log(k3) + cγ

(
κk−1(ε−1 + ε3)

)γ]

≤ κ−k(1−γ)
[
κ−kγ(cγ + κ) log(k3) + cγ

(
κ−1(ε−1 + ε3)

)γ] ≤ (τ − 2 + ε)k(1−γ),
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because, for k large, and since κ−1 = τ − 2,

(
τ−2

τ−2+ε

)k(1−γ)
[κ−kγ(cγ + κ) log(k3)] ≤ 1

2 ,
(

τ−2
τ−2+ε

)k(1−γ)
cγ

(
κ−1(ε−1 + ε3)

)γ ≤ 1
2 .

We conclude that the first term on the right-hand side of (A.4.36) is 0, for sufficiently large k, and
the second term is bounded by 2bk−3 ≤ k−2, and hence the statement of the corollary follows. ¤

A.5 Proof of Proposition 3.2 and Proposition 3.3

Proof of Proposition 3.2(a). We have to show that

P(ε ≤ Y (i,N)
m ≤ ε−1, max

k∈T (i,N)
m (ε)

|Y (i,N)

k − Y (i,N)
m | > ε3) = oN,m,ε(1).

Fix ε > 0, such that τ − 2 + ε < 1. Then, take m = mε, such that (A.3.10) holds, and increase m,
if necessary, until (A.4.32) holds.

We use the inclusion that (recall the definition of T (N)
m (ε) given in (3.5)),

{ max
k∈T (N)

m (ε)

|Y (N)

k − Y (N)
m | > ε3} ⊂

{ ∑

k∈T (N)
m (ε)

|Y (N)

k − Y (N)

k−1| >
∑

k≥m

(τ − 2 + ε)k(1−γ)
}

. (A.5.1)

If the event on the right-hand side of (A.5.1) holds, then there must be a k ∈ T (N)
m (ε) such that

|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ), and therefore

{ max
k∈T (N)

m (ε)

|Y (N)

k − Y (N)
m | > ε3} ⊂

⋃

k∈T (N)
m (ε)

Fm,k−1 ∩ F c
m,k, (A.5.2)

where we denote

Fm,k = Fm,k(ε) =
k⋂

j=m+1

{
|Y (N)

j − Y (N)

j−1| ≤ (τ − 2 + ε)j(1−γ)
}

. (A.5.3)

Since (A.3.10) implies that on Fm,k−1 we have |Y (N)

j − Y (N)
m | ≤ ε3, m < j ≤ k − 1, we find,

Fm,k−1 ∩ F c
m,k ⊂ {|Y (N)

l − Y (N)
m | ≤ ε3, ∀l : m < l ≤ k − 1} ∩

{
|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)
}

.

(A.5.4)
Take N sufficiently large such that, by Proposition 3.1,

P
(
M (N)

m > 2Z(N)
m , ε ≤ Y (N)

m ≤ ε−1
) ≤ P (∃l ≤ m : Y (N)

l 6= Yl

)
+ P

(
Mm > 2Zm, ε ≤ Ym ≤ ε−1

)

≤ P (
Mm > 2Zm, ε ≤ Ym ≤ ε−1

)
+ ε/4, (A.5.5)

Next, we use that
lim

m→∞P
(
Mm > 2Zm, ε ≤ Ym ≤ ε−1

)
= 0, (A.5.6)

since Yl = (τ −2)l logZl converges a.s., so that when Ym ≥ ε and m is large, Mm−1 is much smaller
than Zm, so that Mm = Mm−1 + Zm > 2Zm has small probability, as m is large.
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Then we use (A.5.1)–(A.5.6), together with (A.3.12), to derive that

P

(
ε ≤ Y (N)

m ≤ ε−1, max
k∈T (N)

m (ε)

|Y (N)

k − Y (N)
m | > ε3

)
(A.5.7)

≤ P
(

ε ≤ Y (N)
m ≤ ε−1, max

k∈T (N)
m (ε)

|Y (N)

k − Y (N)
m | > ε3, Y (N)

l = Yl, ∀l ≤ m

)
+ P

(∃l ≤ m : Y (N)

l 6= Yl

)

≤
∑

k>m

P
(
Fm,k−1 ∩ F c

m,k ∩ {k ∈ T (N)
m (ε)} ∩ {ε ≤ Y (N)

m ≤ ε−1} ∩ {Y (N)

l = Yl, ∀l ≤ m}) +
ε

2

≤
∑

k>m

P
(
F̂m,k(ε) ∩

{
|Y (N)

k − Y (N)

k−1| > (τ − 2 + ε)k(1−γ)
})

+ ε < 3ε/2,

by Corollary A.4.2. ¤

Proof of Proposition 3.2(b). We first show (3.8), then (3.7). Due to Proposition 3.2(a), and
using that {Y (N)

m ≤ ε−1}, we find

Y (N)

k ≤ Y (N)
m + ε3 ≤ Y (N)

m (1 + ε2),

apart from an event with probability oN,m,ε(1), for all k ∈ T (N)
m . By (A.3.9) and because k ∈ T (N)

m ,
this is equivalent to

Z(N)

k ≤ (
Z(N)

m

)κk−m(1+ε2) ≤ N
1−ε2

τ−1
(1+ε2) = N

1−ε4

τ−1 .

We next show (3.7). Observe that k ∈ T (N)
m implies that either k − 1 ∈ T (N)

m , or k − 1 = m.
Hence, from k ∈ T (N)

m and Proposition 3.2(a), we obtain, apart from an event with probability
oN,m,ε(1),

Y (N)

k−1 ≥ Y (N)
m − ε3 ≥ ε− ε3 ≥ ε

2
, (A.5.8)

for ε > 0 sufficiently small, and

Y (N)

k = Y (N)

k − Y (N)
m + Y (N)

m − Y (N)

k−1 + Y (N)

k−1 ≥ Y (N)

k−1 − 2ε3 ≥ Y (N)

k−1(1− 4ε2), (A.5.9)

By (A.3.9) this is equivalent to

Z(N)

k ≥ (
Z(N)

k−1

)κ(1−4ε2) ≥ Z(N)

k−1,

when ε > 0 is so small that κ(1− 4ε2) ≥ 1, since τ ∈ (2, 3), and κ = (τ − 2)−1. ¤

Proof of Proposition 3.3. We must show that

P(k ∈ ∂T (N)
m (ε), ε ≤ Y (N)

m ≤ ε−1, Z(N)

k+1 ≤ N
1−ε
τ−1 ) = oN,m,ε(1), (A.5.10)

where
{k ∈ ∂T (N)

m } = {k ∈ T (N)
m } ∩ {k + 1 6∈ T (N)

m }.
In the proof, we will make repeated use of Propositions 3.2 and 3.1, whose proofs are now complete.

According to the definition of F̂m,k(ε) in (A.3.12),

P
({k ∈ ∂T (N)

m (ε)} ∩ {ε ≤ Y (N)
m ≤ ε−1} ∩ F̂m,k(ε)c

)
(A.5.11)

≤ P(ε ≤ Y (N)
m ≤ ε−1, max

l∈T (N)
m (ε)

|Y (N)

l − Y (N)
m | > ε3) + P

(
ε ≤ Y (N)

m ≤ ε−1,M (N)
m > 2Z(N)

m

)
.
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In turn Propositions 3.2(a) and 3.1, as well as (A.5.5–A.5.6) imply that both probabilities on the
right-hand side of (A.5.12) are oε(1), as first N → ∞, and then m → ∞. Therefore, it suffices to
show

P
({k ∈ ∂T (N)

m (ε), ε ≤ Y (N)
m ≤ ε−1, Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε)

)

= P
({k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε)

)
= oN,m,ε(1). (A.5.12)

Let x = N
1−ε/2
κ(τ−1) , and define the event IN,k = IN,k(a) ∩ IN,k(b) ∩ IN,k(c) ∩ IN,k(d), where

IN,k(a) = {M (N)

k−1 < N
1−3ε4/4
κ(τ−1) }, (A.5.13)

IN,k(b) = {x ≤ Z(N)

k }, (A.5.14)

IN,k(c) = {Z(N)

k ≤ N
1−ε4

τ−1 }, (A.5.15)
IN,k(d) = {Z(N)

k+1 ≥ Z(N)

x,k+1 − Z(N)

k }. (A.5.16)

We split

P
({k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε)

)
(A.5.17)

= P
({k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε) ∩ IN,k

)

+ P
({k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε) ∩ Ic

N,k

)
.

We claim that both probabilities are small, which would complete the proof. We start to show that

P
({k + 1 6∈ T (N)

m (ε), Z(N)

k+1 ≤ N
1−ε
τ−1 } ∩ F̂m,k(ε) ∩ IN,k

)
= oN,m,ε(1). (A.5.18)

Indeed, by Lemma 5.1 and (3.8),

P
({k + 1 /∈ T (N)

m (ε)} ∩ Z(N)

k ≥ N
1−ε
τ−1 } ∩ F̂m,k(ε) ∩ IN,k

)
(A.5.19)

≤ P({k ∈ T (N)
m (ε)} ∩ {ε ≤ Y (N)

m ≤ ε−1} ∩ {Z(N)

k ∈ [N
1−ε
τ−1 , N

1−ε4

τ−1 ]}) + oN,m,ε(1) = oN,m,ε(1),

where u = (τ −1)−1. Therefore, we are left to deal with the case where Z(N)

k ≤ N
1−ε
τ−1 . For this, and

assuming IN,k, we can use Proposition A.3.2(b) with x = N
1−ε/2
κ(τ−1) ≤ Z(N)

k by IN,k(b), and l = k + 1
to obtain that, whp,

Z(N)

k+1 ≥ Z(N)

x,k+1 − Z(N)

k ≥ xκ(1−ε/2) −N
1−ε
τ−1 = N

(1−ε/2)2

τ−1 −N
1−ε
τ−1 > N

1−ε
τ−1 , (A.5.20)

where we have used that when k ∈ T (N)
m (ε) and Y (N)

m > ε, then we have k ≤ c log log N , for some
c = c(τ, ε), and hence, for N large enough,

(k + 1)3(κ−cγγ(x))xcγγ(x) ≤ (k + 1)3κxcγγ(x) ≤ xεκ/2.

This proves (A.5.18).
For the second probability on the right-hand side of (A.5.17) it suffices to prove that

P
({k + 1 6∈ T (N)

m (ε)} ∩ F̂m,k(ε) ∩ Ic
N,k

)
= oN,m,ε(1). (A.5.21)

In order to prove (A.5.21), we prove that (A.5.21) holds with Ic
N,k replaced by each one of the four

events Ic
N,k(a), . . . , Ic

N,k(d). For the intersection with the event Ic
N,k(a), we apply Lemma A.4.1(a),

which states that F̂m,k(ε) ∩ Ic
N,k(a) is an empty set.
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It follows from (3.5) that if k + 1 6∈ T (N)
m (ε), then

κk+1Y (N)
m >

1− ε2

τ − 1
log N. (A.5.22)

If F̂m,k(ε) holds then by definition (A.3.12), and Corollary A.4.2, whp,

Y (N)

k ≥ Y (N)

k−1 ≥ Y (N)
m − ε3 ≥ Y (N)

m (1− ε2). (A.5.23)

Hence, if F̂m,k(ε) holds and k + 1 6∈ T (N)
m (ε), then, by (A.5.22)–(A.5.23), whp,

κ log(Z(N)

k ) = κk+1Y (N)

k ≥ (1− ε2)κk+1Y (N)
m ≥ (1−ε2)2

τ−1 log N, (A.5.24)

so that, whp,

Z(N)

k ≥ x = N
1−ε/2
κ(τ−1) , (A.5.25)

for small enough ε > 0 and sufficiently large N , i.e., we have

P({k + 1 6∈ T (N)
m (ε)} ∩ F̂m,k(ε) ∩ Ic

N,k(b)) = oN,m,ε(1).

From Proposition 3.2(b) it is immediate that

P({k + 1 6∈ T (N)
m (ε)} ∩ F̂m,k(ε) ∩ Ic

N,k(c)) = oN,m,ε(1).

Finally, recall that Z(N)

x,k+1 is the number of constructed free stubs at level k + 1 after pairing of the
first x stubs at level k. After the pairing of the remaining Z(N)

k − x stubs at level k they can ‘eat
up’ at most Z(N)

k − x ≤ Z(N)

k stubs, so that IN,k(d) holds with probability 1, and hence the event
in (A.5.21) intersected with Ic

N,k(d) has probability equal to 0.
This completes the proof of (A.5.21) and hence the Proposition. ¤
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