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K1 3-free and Wy-free graphs

T. Kloks *

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.C.Boz 513, 5600 MB Eindhoven, The Netherlands

Abstract

We show that in any claw- and 4-wheel-free graph the number of
maximal cliques is polynomial bounded. We show there exists an effi-
cient algorithm to solve the MAXIMUM CLIQUE problem for this class of
graphs. We also give an O(ne) recognition algorithm.

1 Introduction

A claw and a 4-wheel are depicted in Figure 1.

Figure 1: The ‘claw’ Ky 3 (left) and the *4-wheel” W, (right)

We consider graphs without claw K;3 or 4-wheel W, as an induced
subgraph. This research was motivated by recent results on a graph class
which we called dominoes ([12]). A dominoe is a graph in which every vertex
1s contained in at most two maximal cliques. Dominoces can be characterized
as those graphs without induced claw, gem or 4-wheel. They are exactly the
line graphs of multigraphs without triangles (see also [2, 1]).

Clearly, a domino can have at most n maximal cliques, where n is the
number of vertices in the graph. One possible generalization of the dominoes

*Email: ton@win.tue.nl
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Figure 2: ‘Bull’, ‘paw’, ‘diamond’ and ‘gem’

is the following. Consider the class of graphs without claw or gem (Figure 2).
Hence the neighborhood of each vertex is P4-free { Py is the path with four
vertices), l.e., each neighborhood induces a cograph (see (5]). In fact, since
the graph is also claw-free, each neighborhood must have independence num-
ber o < 2. An example of a cograph with 2t vertices and with o <2 1s a
cocktail party graph, 1.e., the complement of tK;. It is easily seen that this
graph has 2' different maximal cliques. Hence this generalization of domi-
noes does not preserve the polynomial bound on the number of maximal
cliques. In the next section we give a complete characterization of claw-free
and gem-free graphs.

In this paper we look at another generalization of the dominoes, i.e., the
class of graphs without induced claw or 4-wheel. We show that a graph in
this class can have only a polynomial number of maximal cliques. We show
that the MAXIMUM CLIQUE problem can be solved efficiently and we give an
efficient recogmition algorithm.

2 Related results

In this section we discuss some related results. We give characterizations of
graphs without claws or triangles, without claws or paws, without claws or
diamonds and without claws or gems. For the different forbidden induced
subgraphs mentioned in this paper we refer to Figure 2.

Definition 1 A graph H 1s obtained from a graph G by duplication of it
can be obtained by substituting cliques for some of the vertices of G.

We mention here a related result of Shepherd’s [19] of claw-free and bull-free
graphs.

Lemma 1 A connected graph G s claw-free and bull-free if and only if
either «(G) = 2 or G is obtained from a path or cycle by duplication.



2.1 Claw-free and triangle-free

We start with graphs without claws or triangles. Clearly, in such a graph
every vertex can have degree at most two. Hence we obtain the following
result.

Lemma 2 A graph G is claw-free and triangle-free if and only if every
connected component of G 1s a path or a cycle of length at least four.

2.2 Claw-free and paw-free
We can use the following characterization of Olariu’s ({14]).

Lemma 3 A graph G s paw-free if and only if each connected component
of G is either triangle-free or complete multipartite.

If a2 connected complete multipartite graph has a color ¢lass with more than
two vertices, it contains a claw. Hence every color class in the complete
multipartite graph can have at most two vertices. Using Lemnma 2 we obtain
the following characterization.

Lemma 4 A graph G s claw-free and paw-free if and only if every com-
ponent 15 either a path, a cycle, or a complete mullipartite graph in
which every color class has at most two vertices.

It follows that recognizing this class of graphs can be done in linear time (i.e.,
in O{n + e)). Notice that a graph is complete multipartite with o < 2 if
and only if every vertex is non adjacent to at most one other vertex, ie., the
graph 1s a cocktail party graph with some additional vertices made adjacent
to all other vertices.

2.3 Claw-free and diamond-free

The reverse operation of duplication is taking the representative. For a vertex
x let N(x) be the set of neighbors, and let N[x] be the ¢losed neighborhood
of x, i.e.,, Nlx|] = {x} U N(x).

Definition 2 The representative of a graph G s the graph W obtained
by 1dentifying vertices with the same closed newghborhood. Vertices with
the same closed neighborhood are called equivalent.

As mentioned earlier, a domino is the line graph of a multigraph without
triangles. In [12] the following result was obtained.

Lemma 5 A graph H is a representative of a domino if and only if H
18 claw-free and diamond-free and no two vertices of H have the same
closed neighborhood.



Hence, the representative of a claw-free and diamond-free graph is the line
graph of triangle-free graph.

A vertex 1s simplicial if its neighborhood is a clique. Notice, that du-
plication of a vertex that is not simplicial results in a diamond. Hence we
obtain the following result.

Lemma 6 A graph G is claw-free and diamond-free 1f and only 1f G 1s
obtained from the line graph of a triangle-free graph by duplication of
symplicial vertices.

Computing the representative H of a graph G can be performed in linear
time [12]. Next checking whether H is the line graph of a triangle-free graph
also can be done in linear time [12). Finally, checking whether or not only
simplicial vertices of H are duplicated can be done in linear time using the
fact that one can compute for each vertex of H the maximal cliques it 1s
contained in in linear time [12]. Hence, recognizing claw-free and diamond-
free graphs can be done in linear time.

2.4 Claw-free and gem-free

A cograph is a P4-free graph, i.e., a graph without an induced path with
four vertices. A characterization of cographs found by Seinsche [18] is the
following.

Lemma 7 A graph 1s a cograph if and only if every nontrivial induced
subgraph or its complement 1s disconnected.

Lemma 8 A graph G 1s claw-free and gem-free if and only if for ev-
ery verter the neighborhood 1s the complement of a disjoint union of
complete bipartite graphs and isolated vertices.

Proof. Clearly, if each neighborhood 1s the complement of a disjoint union
of complete bipartite graphs and isolated vertices, the graph 1s claw-free and
gem-free,

Now assume the graph is claw-free and gem-free and consider a neighbor-
hood N(x). Then this neighborhood 1s a cograph with independence number
« < 2. If the neighborhood is disconnected, it must be the disjoint union of
two cliques, i.e., the complement of a complete bipartite graph. Henceforth,
assume the neighborhood 1s connected. Then by Lemma 7, the complement
is disconnected. Each component C of the complement must be triangle-free.
Now either C consists of one vertex, or the complement 1s disconnected. But
the complement of C must satisfy o < 2, and hence if C is not one vertex,
the complement of C must be must be the disjoint union of two cliques, i.e.,
C 1s a complete bipartite graph. This proves the lemma. O

Using the characterization of Lemma 8 the class of claw-free and gem-free
graphs can easily be recognized in O(ne) time.
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3 A characterization of K;;-free and Wjy-free
graphs

In this section we characterize claw-free and 4-wheel-free graphs by their
neighborhoods.

Definition 3 A bipartite graph G(A UB,E) s a chain graph if for every
paiwr of vertices x,y € A either N(x) € N(y) or N(y) € N(x).

Notice that the choice of the color class A in this definition is not essential.

Chain graphs were introduced by Yannakakis [21]. For a bipartite graph
G(AUB,E) let C(G) be the graph obtained by adding edges to make cliques
of the two color classes. A graph is called chordal if it has no induced
chordless cycle of length larger than three. The following result was obtained
in [21].

Lemma 9 A bepartite graph G 15 a chain graph if and only if C(G) is
chordal.

Notice that this is equivalent with: A bipartite graph is a chain graph if and
only if 1ts complement is chordal.

Theorem 1 A graph is claw-free and 4-wheel-free if and only if each
neighborhood 15 etther obtained from Cs or from W5 by duplication, or
it 15 the complement of a chain graph.

Proof. Notice that if each neighborhood 1s either obtained from Cs by
duplication or it is the complement of a chain graph, then the graph is claw-
free and 4-wheel-free.

Assume G 18 claw-free and 4-wheel-free and consider a vertex x.

First assume N(x) has a chordless cycle C with at least four vertices.
Since the graph is claw-free, a(N(x)) < 2 and hence this cycle can have
length at most five, Since the graph is 4-wheel-free;, N(x) cannot have a
4-cycle. Hence C 1s a 5-cycle. Let a;,..., a5 be the vertices of C, with q;
and aiy; adjacent for i = 1,...,5 taken modulo 3.

Let y € N(x)\ C. Since x(N(x)) < 2 y is adjacent to at least one vertex
of every non adjacent pair of vertices of C. Notice that y cannot be adjacent
to four vertices of C, since otherwise N(x) has a 4-cycle. It follows that y
1s elther adjacent to all vertices of C or to ai_, a; and ai;; for some i. Let
A; be the set of vertices of N(x)\ C which are adjacent exactly to ai_i, a
and ai., and let A be the set of vertices of N(x)\ C which are adjacent to
all vertices of C.

Claim The sets A and A; (1=1,...,5) are cliques.



Proof of clatm. Every pair of vertices of A, is adjacent to non adjacent
vertices ai_1 and a;;. Hence every pair of vertices of A; is adjacent, since
otherwise there would be a 4-cycle. The same holds for the set A. a

Claim Every vertez of A; 15 adjacent to every verter of Aiyr.

Proof of clavm. Consider a vertex p € A; and a vertex q € Ai4y. Then p
and ¢ must be adjacent since otherwise a;_; p and ¢ are an independent
set of size three. O

Claim Every vertez of Ai_y 1s non adjacent to every vertez of Aiyr.

Proof of clavm. Let p € A;_; and g € Aiy. Then p and g cannot be adja-
cent, since otherwise we would obtain a chordless 4-cycle {p,q, ai+2, Qiy3}.
O

Claim Buvery vertez of A 1s adjacent to every vertex of A;.

Proof of clavm. Consider p € A and g € A;. Then p and g must be
adjacent, otherwise {p,ai-1,d, ai;1} would be a chordless 4-cycle. O

These observations show that in case N(x) contains a cycle it 1s obtained
from C5; (if A =0) or from W5 (if A # @) by duplication.

Now assume that N(x) does not have a chordless cycle of length at least
four, 1.e., N(x) 1s chordal. Consider the complement of N(x). The comple-
ment can not contain a chordless cycle of length at least six, since otherwise,
N(x) has a chordless 4-cycle. Clearly, the complement of N(x) cannot con-
tain a Cs otherwise N(x) also contains this. Since a(N(x)) < 2, the com-
plement of N(x) does not contain a triangle, It follows that the complement
of N(x) is bipartite. By Lemma 9 this proves the theorem. O

Remark 1 Another way to prove Theorem 1 is to use a result of Fou-
quet [7]. If G s a claw-free graph with «{G) > 3 then every neighborhood
etther contains an induced Cs or 1s covered by two complete graphs.

An alternative way to characterize claw-free and 4-wheel-free graphs is
the following.

Lemma 10 A graph G is claw-free and 4 -wheel-free 1f and only if in the
representative H of G every neighborhood 1s either Cs or the comple-
ment of a chain graph.



Proof. It 1s easy to see that G 1s claw-free and 4-wheel-free if and only if
this holds for its representative H.

Assume some vertex x of G has a 5-wheel in its neighborhood, and
let y € N(x) be such that N[x] € N[y]. We claim that x and y are
equivalent. This follows immediately from Theorem 1 since the neighborhood
of y contains a W3 with x as a central vertex. Hence N[y] C Nlx]. This
shows that in the representative each neighborhood 1s either obtained from
Cs by duplication or 1s the complement of a chain graph.

Assume x has a Cs in 1ts neighborhood 1n G and let A,,... A5 be the
equivalence classes of this Cs (with A; adjacent to Ayy;). Assume A, has at
least two vertices p and g and assume p has some neighbor z € N(p)\N(q).
Then z must be adjacent to all vertices of A; or to all vertices of A5 otherwise
we have a claw. Assume z is adjacent to all vertices of A;. Now any vertex
of A; together g, z and a vertex of A; induces a claw (z cannot be adjacent
to a vertex of Aj otherwise x and z have nonadjacent common neighbors).
Hence all vertices of A, are equivalent. This proves the theorem. 0

4 Recognition of Kj;-free and Wy-free graphs

We can use Theorem 1 to obtain an O(ne) recognition algerithm. For each
vertex x compute the representative of the graph induced by the neigh-
borhood and check if it is Cs, W3 or the complement of a chain graph.
Computing for each vertex x the subgraph of G induced by N(x), can easily
be done in O(nd(x)) time (construct new adjacency lists for each vertex of
N(x)). For each neighborhood N(x) we can compute the representative in
linear time [12], 1.e., in O(nd(x)). Checking if this graph is W5 or Cs clearly
takes constant time.

Finally, there are several ways to recognize complements of chain graphs.
One way of doing this 1s to check if the graph is chordal (which takes linear
time [17, 20]) and then check if the complement is bipartite. Hence this can
be done in O(nd(x)) time. Alternatively, instead of testing chordality we
could check whether the graph 1s an interval graph, which also takes linear
time [4].

In total, summing over all vertices of the graph, we get an O(ne) recog-
nition algorithm for K ;-free and Wj-free graphs.

Lemma 11 There exists an O(ne) recognition algorithm for K, 3-free and
W -free graphs with n vertices and e edges.

At the moment we do not know whether this result 1s best possible. We
mention that, to our knowledge, the best time bound to test if a graph is claw-
free is O(en*~") (using O(n?) space). (Here O(n®) is the time needed to do
a matrix multiplication). This is done by doing a fast matrix multiplication
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for the complement of each neighborhood to test whether this contains a
triangle.

5 maximum clique for claw-free and 4-wheel-free
graphs

A chordal graph with n vertices can have at most n maximal cliques (with
equality only if the graph has no edges). This was first pointed out in [8].
Hence, by Theorem 1 we obtain the following result.

Corollary 1 If G 1is claw-free and 4-wheel-free then every verter x 1s
contained in at most d(x) mazimal cligues with equality only if N(x) s
Cs, W5 or two tsolated vertices. (Here d(x) is the degree of x.) Hence,
if G 1s non trivial and connected it has at most 2e mazimal cligues.

Now 1t 1s easy to compute the maximum clique in a claw-free and 4-
wheel-free graph. This is of interest since the MAXIMUM CLIQUE problem
is NP-complete for claw-free graphs in general. This follows from the fact
that MAXIMUM INDEPENDENT SET problem i1s NP-complete for triangle-free
graphs [16].

We compute for each vertex x the maximum clique size contained In the
neighborhood N(x) of x, as follows. First we can determine the represen-
tative of the subgraph induced by N(x) in linear time. Each vertex in the
representative has a weight attached to it, which is equal to the number
of vertices in its equivalence class [12]. We solve the WEIGHTED MAXIMUM
CLIQUE problem for the representative. If the representative is Cs or W5
this obviously takes constant time.

If the representative is the complement of a chain graph, we can solve the
MAXIMUM WEIGHTED CLIQUE problem by using the algorithm for chordal
graphs of (9] (listing all maximal cliques), which takes linear time. This
shows the following.

Lemma 12 There ezists an O(ne) algorithm which computes a mazi-
mum cligue . a Kyz-free and Wy-free graph with n verfices and e
edges.

6 Conclusions

In this paper we considered the class of graphs which are both claw-free
and 4-wheel-free. Our main result s a characterization of this class by
the neighborhoods of the vertices. This characterization allows an efficient
recognition algorithm. The characterization also shows that the MAXIMUM



CLIQUE problem can be solved efficiently for this class of graphs. In fact, it
follows that the number of maximal cliques is linear for this class of graphs.
This is of interest since the problem is NP-complete when restricted to the
class of claw-free graphs.

We do not know whether similar results can be obtained for other classes
of claw-free graphs. Exceptions are of course the claw-free graphs without
odd hole or antihole for which, for example the MAXIMUM CLIQUE problem,
can be solved in polynomial time, since claw-free graphs satisfy the strong
perfect graph conjecture {15, 3]. In (7] Fouquet shows that claw-free and
Ws-free graphs with independence number at least three can be recognized
in O(n* + ne) time. To us, it is not clear whether the MAXIMUM CLIQUE
problem can be solved in polynomial time for this class of graphs.
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