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Kl,3-free and W 4-free graphs 

T. lOoks * 
Department of Mathematics and Computing Science 

Eindhoven University of Technology 

P.D.Box 513, 5600 MB Eindhoven, The Netherlands 

Abstract 

"Ve show that in any cIaw- and 4-whecl-free graph the number of 
maxima.l cliques is polYllomia.l bounded. vVe show there exists an effi­

cient algorithm t.o solve the MAXIMUM CLIQUE problem for this class of 
graphs. \Vc also give all O(ne) recognition algorithm. 

1 Introduction 

A claw and a 4-wheel are depicted in Figure 1. 

Figure 1: The 'claw' K1.3 (left) and the '4-wheel' W 4 (right) 

We consider graphs without claw K1 .3 or 4-wheel W4 as an induced 
subgraph. This research was motivated by recent results on a graph class 
which we called dominoes ([12]). A domino is a graph in which every vertex 
is contained in at most two maximal cliques. Dominoes can be characterized 
as those graphs without induced claw, gem or 4-wheel. They are exactly the 
line graphs of multigraphs without triangles (see also [2, 1 J). 

Clearly, a domino can have at most n maximal cliques, where n is the 
number of vertices in the graph. One possible generalization of the dominoes 
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Figure 2: 'Bull', 'pa.w', 'diamond' a.nd 'gem' 

is the following. Consider the class of graphs without claw or gem (Figure 2). 
Hence the neighborhood of each vertex is P" -free (P 4 is the path with four 
vertices), i.e., each neighborhood induces a co graph (see [5]). In fact, since 
the graph is also claw-free, each neighborhood must have independence num­
ber Q( :s 2. An example of a cograph with 2t vertices and with Q( :s 2 is a 
cocktail party graph, i.e., the complement of tK2. It is easily seen that this 
graph has 2' different maximal cliques. Hence this generalization of domi­
noes does not preserve the polynomial bound on the number of maximal 
cliques. In the next section we give a complete characterization of claw-free 
and gem-free graphs. 

In this paper we look at another generalization of the dominoes, i.e., the 
class of graphs without induced claw or 4-wheel. We show that a graph in 
this class can have only a polynomial number of maximal cliques. We show 
that the MAXIMUM CLIQUE problem can be solved efficiently and we give an 
efficient recognition algorithm. 

2 Related results 

In this section we discuss some related results. We give characterizations of 
graphs without claws or triangles, without claws or paws, without claws or 
diamonds and without claws or gems. For the different forbidden induced 
subgraphs mentioned in this paper we refer to Figure 2. 

Definition 1 A graph H is obtained from a graph G by duplication if it 
can be obtained by SUbstituting cliques for some of the vertices of G. 

We mention here a related result of Shepherd's [19) of claw-free and bull-free 
graphs. 

Lemma 1 A connected graph G is claw-free and bull-free if and only if 
either Q((G) = 2 or G is obtained from a path or cycle by duplication. 
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2.1 Claw-free and triangle-free 

We start with graphs without claws or triangles. Clearly, in such a graph 
every vertex can have degree at most two. Hence we obtain the following 
result. 

lemma 2 A graph G is claw-free and triangle-free if and only if every 
connected component of G is a path or a cycle of length at least four. 

2.2 Claw-free and paw-free 

We can use the following characterization of Olariu's ((14]). 

lemma 3 A graph G is paw-free if and only if each connected component 
of G is either triangle-free or complete mUltipartite. 

If a connected complete multipartite graph has a color class with more than 
two vertices, it contains a claw. Hence every color class in the complete 
multipartite graph can have at most two vertices. Using Lemma 2 we obtain 
the following characterization. 

lemma 4 A graph G is claw-free and paw-free if and only if every com­
ponent is either a path, a cycle, or a complete multipartite graph in 
which every color class has at most two vertices. 

It follows that recognizing this class of graphs can be done in linear time (i.e., 
in O(n + e)). Notice that a graph is complete multipartite with ex s: 2 if 
and only if every vertex is non adjacent to at most one other vertex, i.e., the 
graph is a cocktail party graph with some additional vertices made adjacent 
to all other vertices. 

2.3 Claw-free and diamond-free 

The reverse operation of duplication is taking the representative. For a vertex 
x let N(x) be the set of neighbors, and let N[x] be the closed neighborhood 
of x, i.e., N[xJ = {x} U N(x). 

Definition 2 The representative of a graph G is the graph H obtained 
by identifying vertices with the same closed neighborhood. Vertices with 
the same closed neighborhood are called equivalent. 

As mentioned earlier, a domino is the line graph of a multigraph without 
triangles. In [12J the following result was obtained. 

lemma 5 A graph H is a representative of a domino if and only if H 
is claw-free and diamond-free and no two vertices of H have the same 
closed neighborhood. 
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Hence, the representative of a claw-free and diamond-free graph is the line 
graph of triangle-free graph. 

A vertex is simplicial if its neighborhood is a clique. Notice, that du­
plication of a vertex that is not simplicial results in a diamond. Hence we 
obtain the following result. 

Lemma 6 A graph G is claw-free and diamond-free if and only if G tS 

obtained from the line graph of a triangle-free graph by duplication of 
simplicial vertices. 

Computing the representative H of a graph G can be performed in linear 
time [12J. Next checking whether H is the line graph of a triangle-free graph 
also can be done in linear time [12J. Finally, checking whether or not only 
simplicial vertices of H are duplicated can be done in linear time using the 
fact that one can compute for each vertex of H the maximal cliques it is 
contained in in linear time [12J. Hence, recognizing claw-free and diamond­
free graphs can be done in linear time. 

2.4 Claw-free and gem-free 

A cograph is a P4-free graph, i.e., a graph without an induced path with 
four vertices. A characterization of cographs found by Seinsche [18J is the 
following. 

Lemma 7 A graph is a cograph if and only if every nontrivial induced 
subgraph or its complement is disconnected. 

Lemma 8 A graph G is claw-free and gem-free if and only if for ev­
ery vertex the neighborhood is the complement of a disjoint union of 
complete bipartite graphs and isolated vertices. 

Proof. Clearly, if each neighborhood is the complement of a disjoint union 
of complete bipartite graphs and isolated vertices, the graph is claw-free and 
gem-free. 

Now assume the graph is claw-free and gem-free and consider a neighbor­
hood N(x). Then this neighborhood is a cograph with independence number 
ex ':0 2. If the neighborhood is disconnected, it must be the disjoint union of 
two cliques, i.e., the complement of a complete bipartite graph. Henceforth, 
assume the neighborhood is connected. Then by Lemma 7, the complement 
is disconnected. Each component C of the complement must be triangle-free. 
Now either C consists of one vertex, or the complement is disconnected. But 
the complement of C must satisfy ex ':0 2, and hence if C is not one vertex, 
the complement of C must be must be the disjoint union of two cliques, i.e., 
C is a complete bipartite graph. This proves the lemma. 0 

Using the characterization of Lemma 8 the class of claw-free and gem-free 
graphs can easily be recognized in O( ne) time. 
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3 A characterization of 
graphs 

In this section we characterize claw-free and 4-wheel-free graphs by their 
neighborhoods. 

Definition 3 A bipartite graph G(A U B, E) is a chain graph if for every 
pair of vertices X,Y E A either N(x) <;; N(y) or N(y) <;; N(x). 

Notice that the choice of the color class A in this definition is not essential. 
Chain graphs were introduced by Yannakakis [21]. For a bipartite graph 

G(AUB, E) let C(G) be the graph obtained by adding edges to make cliques 
of the two color classes. A graph is called chordal if it has no induced 
chordless cycle of length larger than three. The following result was obtained 
in [21]. 

Lemma 9 A bipartite graph G is a chain graph if and only if C(G) is 
chordal. 

Notice that this is equivalent with: A bipartite graph is a chain graph if and 
only if its complement is chordal. 

Theorem 1 A graph is claw-free and 4 -wheel-free if and only if each 
neighborhood is either obtained from (5 or from Ws by duplication, or 
it is the complement of a chain graph. 

Proof. Notice that if each neighborhood is either obtained from (5 by 
duplication or it is the complement of a chain graph, then the graph is claw­
free and 4-wheel-free. 

Assume G is claw-free and 4-wheel-free and consider a vertex x. 
First assume N(x) has a chordless cycle ( with at least four vertices. 

Since the graph is claw-free, c«N(x» :0:; 2 and hence this cycle can have 
length at most five, Since the graph is 4-wheel-free, N(x) cannot have a 
4-cycle. Hence C is a 5-cyde. Let Q 1, ... ,Qs be the vertices of C, with Qi 

and Qi+1 adjacent for i = 1, ... ,5 taken modulo 5. 
Let y E N(x) \ (. Since c«N(x» :0:; 2 y is adjacent to at least one vertex 

of every non adjacent pair of vertices of (. Notice that y cannot be adjacent 
to four vertices of (, since otherwise N(x) has a 4-cycle. It follows that y 
is either adjacent to all vertices of ( or to Qi-1, Ui and Ui+ 1 for some i. Let 
Ai be the set of vertices of N(x) \ ( which are adjacent exactly to Ui-1, Ui 

and Ui+1 and let A be the set of vertices of N(x) \ ( which are adjacent to 
all vertices of (. 

Claim The sets A and Ai (i = 1, ... ,5) are cliques. 
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Proof of claim. Every pair of vertices of Ai is adjacent to non adjacent 
vertices Oi_1 and 0\+1. Hence every pair of vertices of Ai is adjacent, since 
otherwise there would be a 4-cycle. The same holds for the set A. 0 

Claim Every vertex of Ai is adjacent to every vertex of A\+I. 

Proof of claim. Consider a vertex p E Ai and a vertex q E A\+I. Then p 
and q must be adjacent since otherwise Oi-2 p and q are an independent 
set of size three. 0 

Claim Every vertex of Ai- 1 is non adjacent to every vertex of Ai+ 1 . 

Proof of claim. Let p E A\-l and q E A\+ 1. Then p and q cannot be adja­
cent, since otherwise we would obtain a chordless 4-cycle {p, q, 0\+2, 0\+3}. 

o 

Claim Every vertex of A is adjacent to every vertex of Ai. 

Proof of claim. Consider pEA and q E Ai. Then p and q must be 
adjacent, otherwise {p, Oi_l, q, O\+I} would be a chordless 4-cycle. 0 

These observations show that in case N(x) contains a cycle it is obtained 
from Co (if A = @) or from Wo (if A of. (i\) by duplication. 

Now assume that N(x) does not have a chordless cycle of length at least 
four, i.e., N(x) is chordal. Consider the complement of N(x). The comple­
ment can not contain a chordless cycle of length at least six, since otherwise, 
N(x) has a chordless 4-cycle. Clearly, the complement of N(x) cannot con­
tain a Co otherwise N(x) also contains this. Since o:(N(x)) S 2, the com­
plement of N(x) does not contain a triangle. It follows that the complement 
of N(x) is bipartite. By Lemma 9 this proves the theorem. 0 

Remark 1 Another way to prove Theorem 1 is to use a result of Fou­
quet ('l). If G is a claw-free graph with o:(G) ::0: 3 then every neighborhood 
either contains an induced Co or is covered by two complete graphs. 

An alternative way to characterize claw-free and 4-wheel-free graphs is 
the following. 

Lemma 10 A graph G is claw-free and 4 -wheel-free if and only if in the 
representative H of G every neighborhood is either C5 or the comple­
ment of a chain graph. 
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Proof. It is easy to see that G is claw-free and 4-wheel-free if and only if 
this holds for its representative H. 

Assume some vertex x of G has a 5-wheel in its neighborhood, and 
let lJ E N(x) be such that N[x] <;;; N[lJ]. We claim that x and lJ are 
equivalent. This follows immediately from Theorem 1 since the neighborhood 
of lJ contains a Ws with x as a central vertex. Hence N[lJ] <;;; N[x]. This 
shows that in the representative each neighborhood is either obtained from 
C5 by duplication or is the complement of a chain graph. 

Assume x has a C5 in its neighborhood in G and let A 1, ... ,As be the 
equivalence classes of this Cs (with Ai adjacent to AH1 ). Assume Al has at 
least two vertices p and q and assume p has some neighbor zEN (p) \ N( q). 
Then z must be adjacent to all vertices of A2 or to all vertices of As otherwise 
we have a claw. Assume z is adjacent to all vertices of A2. Now any vertex 
of A2 together q, z and a vertex of A.l induces a claw (z cannot be adjacent 
to a vertex of A, otherwise x and z have nonadjacent common neighbors). 
Hence all vertices of Al are equivalent. This proves the theorem. 0 

4 Recognition of K1,3-free and W 4-free graphs 

We can use Theorem 1 to obtain an O(ne) recognition algorithm. For each 
vertex x compute the representative of the graph induced by the neigh­
borhood and check if it is C5 , Ws or the complement of a chain graph. 
Computing for each vertex x the subgraph of G induced by N(x), can easily 
be done in O(nd(x)) time (construct new adjacency lists for each vertex of 
N(x)). For each neighborhood N(x) we can compute the representative in 
linear time [12], i.e., in O(nd(x)). Checking if this graph is Ws or Cs clearly 
takes constant time. 

Finally, there are several ways to recognize complements of chain graphs. 
One way of doing this is to check if the graph is chordal (which takes linear 
time [17, 20]) and then check if the complement is bipartite. Hence this can 
be done in O( nd( x)) time. Alternatively, instead of testing chordality we 
could check whether the graph is an interval graph, which also takes linear 
time [4J. 

In total, summing over all vertices of the graph, we get an O( ne) recog­
nition algorithm for Ku-free and W,,-free graphs. 

lemma 11 There exists an O( ne) recognition algorithm for K 1.rfree and 
W,,-free graphs with n vertices and e edges. 

At the moment we do not know whether this result is best possible. We 
mention that, to our knowledge, the best time bound to test if a graph is claw­
free is O(en~-l) (using O(n2) space). (Here O(n~) is the time needed to do 
a matrix multiplication). This is done by doing a fast matrix multiplication 
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for the complement of each neighborhood to test whether this contains a 
triangle. 

5 maximum clique for claw-free and 4-wheel-free 
graphs 

A chordal graph with n vertices can have at most n maximal cliques (with 
equality only if the graph has no edges). This was first pointed out in [8]. 
Hence, by Theorem 1 we obtain the following result. 

Corollary 1 If G is claw-free and 4 -wheel-free then every vertex x is 
contained in at most d(x) maximal cliques with equality only if N(x) is 
C5 , Ws or two isolated vertices. (Here d(x) is the degree of x.) Hence, 
if G is non trivial and connected it has at most 2e maximal cliques. 

Now it is easy to compute the maximum clique in a claw-free and 4-
wheel-free graph. This is of interest since the MAXIMUM CLIQUE problem 
is NP-complete for claw-free graphs in general. This follows from the fact 
that MAXIMUM INDEPENDENT SET problem is NP-complete for triangle-free 
graphs [16]. 

We compute for each vertex x the maximum clique size contained in the 
neighborhood N(x) of x, as follows. First we can determine the represen­
tative of the subgraph induced by N(x) in linear time. Each vertex in the 
representative has a weight attached to it, which is equal to the number 
of vertices in its equivalence class [12]. We solve the WEIGHTED MAXIMUM 

CLIQUE problem for the representative. If the representative is Cs or Ws 
this obviously takes constant time. 

If the representative is the complement of a chain graph, we can solve the 
MAXIMUM WEIGHTED CLIQUE problem by using the algorithm for chordal 
graphs of [9] (listing all maximal cliques), which takes linear time. This 
shows the following. 

Lemma 12 There exists an O(ne) algorithm which computes a maxi­
mum clique m a K1.3 -free and W 4 -free graph with n vertices and e 
edges. 

6 Conclusions 

In this paper we considered the class of graphs which are both claw-free 
and 4-wheel-free. Our main result is a characterization of this class by 
the neighborhoods of the vertices. This characterization allows an efficient 
recognition algorithm. The characterization also shows that the MAXIMUM 
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CLIQUE problem can be solved efficiently for this class of graphs. In fact, it 
follows that the number of maximal cliques is linear for this class of graphs. 
This is of interest since the problem is NP-complete when restricted to the 
class of claw-free graphs. 

We do not know whether similar results can be obtained for other classes 
of claw-free graphs. Exceptions are of course the claw-free graphs without 
odd hole or antihole for which, for example the MAXIMUM CLIQUE problem, 
can be solved in polynomial time, since claw-free graphs satisfy the strong 
perfect graph conjecture [15, 3]. In [7] Fouquet shows that claw-free and 
Ws-free graphs with independence number at least three can be recognized 
in O( n" + ne) time. To us, it is not clear whether the MAXIMUM CLIQUE 

problem can be solved in polynomial time for this class of graphs. 
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