

Random redundant storage for video on demand

Citation for published version (APA):
Aerts, J. J. D. (2003). Random redundant storage for video on demand. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR560086

DOI:
10.6100/IR560086

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR560086
https://doi.org/10.6100/IR560086
https://research.tue.nl/en/publications/fdd9e81c-6097-48b0-8b77-e22e63678fdf

Random Redundant Storage
for Video on Demand

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Aerts, Joep J.D.

Random redundant storage for video on demand / by Joep J.D. Aerts. -
Eindhoven: Technische Universiteit Eindhoven, 2003
Proefschrift
90-386-0602-8
NUR 919
Subject headings: combinatorial optimization / data storage / information retrieval
/ multimedia / integer programming
CR Subject Classification (1998) : H.2.4, H.3.2, H.3.3, G.1.6

Random Redundant Storage
for Video on Demand

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

donderdag 16 januari 2003 om 16.00 uur

door

Joep Jozef David Aerts

geboren te Riel

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. E.H.L. Aarts
en
prof.dr. G.J. Woeginger

Copromotor: dr.ir. J.H.M. Korst

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).
IPA Dissertation Series 2003-01

Preface

During the last four years, my PhD project and my cycling ambitions continuously
struggled for the highest priority in my life and even though some people might
suspect differently, the main goal has always been to finish this thesis in time.
Many people have helped me to realize this goal. Here, I would like to thank them.

First, I would like to thank my supervising team for their contributions to my re-
search and their confidence in me reaching the final goal. I will never forget how
much fun we had during our meetings. I thank Jan Korst for his invaluable support
during the four years of research. His ideas, comments, and opinions have had a
large influence on the results described in this thesis. I thank Wim Verhaegh for the
daily support in the role of supervisor and cluster leader, and especially for his help
in setting up the simulation experiments and reading every single letter I wrote. I
thank Emile Aarts for convincing me to pursue a PhD, for providing me this great
working environment with flexible working hours, and for his contribution to the
final form of the thesis.

Then, I would like to thank Sebastian Egner, Michiel de Jong, Wil Michiels, Han
La Poutré, Frits Spieksma, and Gerhard Woeginger for having had the opportunity
to collaborate with them. I really enjoyed the discussions I had with each of them
and it is really nice to realize that some of the results of these discussions ended up
in joint papers or as contributions to this thesis. I thank Ramon Clout for his great
help in preparing the thesis.

The research has been carried out at Philips Research in Eindhoven. I thank my
colleagues of the Media Interaction Group for my pleasant stay. I owe special
thanks to the roommates I had over the years in the students rooms: Anko, Antoine,
Bob, Guido, Hettie, Johan, Nicolas, Paul, Peter, Ramon, and all the others. But
above all, I would like to thank Wil and Marcelle for being my nearest colleagues
for four years.

Finally, I would like to thank all persons who made my life outside work very
enjoyable. First, I thank my team-mates and the team staff of cycling team “De
Dommelstreek” and my skating friends of “E.s.s.v. Isis” and “IJsclub Tilburg”.

v

vi Preface

Working behind my desk was a lot easier if I could look forward to a good training
in the evening or a race in the weekend. I owe many thanks to my parents, to
Marjon, Ruud, and Nieke, and especially to Femke for the support and distraction
they gave me. At last, I would like to thank Arjan (I really liked my holidays in
Portugal) and Ruud (racing with my brother was even better than with my dearest
team-mate) for supporting me during the defense of my thesis.

Contents

1 Introduction 1
1.1 Video on demand . 1
1.2 Informal problem statement . 3
1.3 Related work . 5
1.4 Thesis contribution. 9
1.5 Thesis outline .. 10

2 Storage and Retrieval in a Video Server 13
2.1 A disk model . 14
2.2 Video servers . 16
2.3 Storage strategies . 17

2.3.1 Striping . 18
2.3.2 Random striping .. 19
2.3.3 Random multiplicated storage. 20

2.4 Retrieval problems. 21
2.4.1 Problem formulation . 21
2.4.2 Relation to multiprocessor scheduling 23

2.5 Discussion . 24

3 Block-Based Load Balancing 27
3.1 BRP modeling . 28

3.1.1 ILP formulation . 28
3.1.2 Maximum flow formulation 31

3.2 Maximum flow algorithms for BRP. 32
3.2.1 Dinic-Karzanov maximum flow algorithm. 33
3.2.2 Preflow-push maximum flow algorithm. 36
3.2.3 Parametric maximum flow algorithm 40

3.3 A special case: Random chained declustering 41
3.4 Discussion . 44

4 Time-Based Load Balancing 45
4.1 TRP modeling: An MILP formulation 46
4.2 Complexity of TRP . 46

vii

viii Contents

4.3 Algorithms for TRP. 55
4.3.1 LP rounding 56
4.3.2 LP matching . 57
4.3.3 List scheduling heuristic 58
4.3.4 Postprocessing . .. 58

4.4 Random multiplication and random striping 58
4.5 Discussion . 60

5 Performance Analysis 63
5.1 Probabilistic analysis of block-based retrieval 63

5.1.1 Duplicate storage . 64
5.1.2 Partial duplication . 68
5.1.3 Random striping .. 71

5.2 Simulation experiments for time-based retrieval. 73
5.2.1 Duplicate storage . 75
5.2.2 Partial duplication . 80
5.2.3 Random striping .. 83

5.3 Discussion . 84

6 Server Design 87
6.1 Case study introduction . .. 88
6.2 Video on demand . 90

6.2.1 Fixed number of disks 90
6.2.2 Fixed number of clients 92
6.2.3 Conclusion . 93

6.3 Professional applications .. 94
6.3.1 Increasing bit-rates. 94
6.3.2 Reading versus writing 96
6.3.3 Conclusion . 97

6.4 Discussion . 98

7 Conclusion 101

Bibliography 105

Author Index 110

Samenvatting 112

Curriculum Vitae 114

1
Introduction

1.1 Video on demand

Video on demand is an interesting alternative to video rental shops. Customers who
have access to a video-on-demand system can order the movie they want to see
without the need of leaving their homes. The customer can do this at any moment
in time and he can watch the desired movie at full television quality and, preferably,
with VCR-functionality, such as pause, resume, fast-forward, and rewind. Consid-
ering the decrease in cost of communication capacity, it is expected that video on
demand will be implemented at a large scale in the very near future. Simpler ser-
vices, such as pay-per-view, have already been implemented at a large scale, and
video-on-demand systems can already be found in hotels and airplanes, where they
make use of dedicated networks.

In video-on-demand systems video files are digitally stored in a so-called video
server. Since videos are stored in a digital form, the playout of a video can be
seen as a stream of bits to be transmitted from the video server to the customer
who requested the video. When a customer requests a certain video, an admission
control algorithm decides whether this request can be granted, and if so, the server
sends the video over a communication network to the customer. As a video server

1

2 Introduction

communication

storage

network

device

video server

control
device

PHILIPS

PHILIPS

terminals

Figure 1.1. Model of a video-on-demand system.

is expected to serve a large number of customers we can see a video-on-demand
chain as a client-server system. In the remainder of this thesis we use the following
terminology. Clients request streams that have to be served by the video server.
Within this client-server system we distinguish three parts as shown in Figure 1.1:
the video server, in which the video data is stored and from which the system is
controlled, a communication network, which connects the clients to the server, and
the clients’ terminals or set-top boxes.

In general, video data within a video server is stored on an array of hard disks.
The transfer rate of a single hard disk is typically much larger than the bandwidth
requirement for the playout of a single video, i.e. the maximum bit-rate of a video.
This means that it would be very inefficient to reserve a single hard disk for each
stream, apart from the fact that the data on that disk would not be available for
other requests. Consequently, to use the full transfer capacity of the disk array,
each disk should serve multiple streams, which means that the data of each stream
becomes available in chunks. Accordingly, we store the video files on the hard
disks in blocks, such that a video stream is formed by a sequence of data blocks
and repeatedly a new block is retrieved for each client. A video is typically split up
into thousands of data blocks.

A video-on-demand system offers continuous video streams to clients, ideally at
the playout rate of the video, as in that case minimal buffer requirements are needed
at the client’s side. To enable a continuous stream from the server into the com-
munication network, a buffer is implemented within the server for each stream. To
deal with variable delays in the communication network, a second buffer may be
implemented at the client’s side. When a client is admitted service, he is assigned a
part of the buffer space within the server. From this buffer the data can be sent into
the communication network continuously at a variable bit-rate, which we assume
to be equal to the playout rate of the video. The buffer is repeatedly refilled with
data blocks from the disks. An internal network interconnects the disks and the

1.2 Informal problem statement 3

buffers. A buffer requests the next data block of the video file as soon as its filling
is below a certain threshold.

The block requests have to be served by the disks of the disk array. These requests
arrive at the disks over time. The disks have to retrieve the blocks in such a way
that none of the blocks arrives too late at the buffers. This is what we call the disk
scheduling problem. Due to unpredictable requests, as well as pause and resume
actions of clients, this disk scheduling problem is on-line by nature. However, we
translate it into a sequence of off-line problems by synchronizing the disks in the
following way. We split up the time-axis into variable-length periods and in each
period each disk retrieves a batch of blocks. While the disks are busy retrieving
their batches of blocks, the new incoming requests are gathered. After all disks
have finished, the next period can start. The new requests are distributed over the
disks and each disk starts with its newly assigned batch.

In this thesis we focus on the server of a video-on-demand system. We do not
discuss any further the communication network and the set-top boxes at the client’s
side. Within the server we focus on the storage and retrieval of video data. A
storage strategy describes how the data blocks are distributed over the disks. Our
main interest is in random redundant data storage strategies. In these strategies
the data blocks are stored on randomly chosen disks and (some of) the data blocks
are stored more than once. The randomness and redundancy are used to balance
the load over the disks in order to fully exploit the transfer capacity of the disks. A
retrieval algorithm describes how, in each period, the data blocks that are requested
by the buffers are retrieved from the disks. For data redundant storage the main
decision of such an algorithm is which disk to use for reading each block.

1.2 Informal problem statement

In this thesis we analyze the problem of designing storage and retrieval algorithms
for the server of a video-on-demand system. In the design of storage and retrieval
algorithms for a video server, a decision has to be made on the block size and
the buffer strategy. An important requirement is that the buffers within the server
never underflow or overflow. Besides satisfying this requirement, we want to find
a storage and retrieval strategy that optimizes a certain criterion, such as minimum
total cost or maximum number of streams that can be offered simultaneously for a
given system configuration.

The input of the problem that we consider consists of some specifications of the
system, such as the number of streams, the maximum bit-rate of a stream, the num-

4 Introduction

ber of videos, or the number of disks in the disk array. The question is to design
storage and retrieval algorithms for the video server that optimize certain criteria.
Depending on the application the input parameters, specifications, and optimiza-
tion criteria are different. For the choice which storage and retrieval strategy is
most appropriate for a given setting, the disk efficiency of a storage strategy is im-
portant, which is defined as the fraction of the time that the disks spend on reading.

Two factors are of influence on the disk efficiency of a disk array. On the one hand
there is the ability to distribute the workload over the disks, such that all disks
work equally hard. This is what we call load balancing. On the other hand there
is the efficiency of each single disk. Given that a disk has to retrieve a number of
blocks, the question is how fast that can be done. We note that the size of the blocks
influences the single disk efficiency. We readdress this issue in the next chapter.
The disk efficiency of a storage strategy can be represented by the total time that
it takes to retrieve a set of blocks. During the running of the system, we have
to retrieve a set of blocks in each period, and the storage strategy that minimizes
the period length performs best, regarding the disk efficiency. This means that
the performance of a storage strategy can be measured by the ability to solve the
following retrieval problem.

Retrieval problem. Given are a storage strategy, a set of block requests,
and for each block request the set of disks on which the block is stored.
The question is to distribute the block requests over the disks such that
the period length is minimized, which is defined as the time at which all
disks have finished retrieving their blocks

The server should guarantee with high probability that the buffers do not underflow
or overflow, even if in each period the number of blocks that have to be retrieved
is as large as the maximum number of admissible streams. The latter is the case
if the maximum number of clients is watching video and all clients consume at
maximum bit-rate. This means that we take a worst-case point of view, in the
sense that the system is fully loaded. In the next chapter we explain how we can
realize the guarantee on the filling of the buffer, by linking the block size to the
worst-case period length.

In conclusion, we analyze in this thesis the problem of designing an efficient video
server, where we focus on the storage and retrieval strategies. Our main interest is
the disk efficiency of random redundant data storage strategies. In the next chapter
we give a formal description of the retrieval problems resulting from these strate-
gies.

We analyze the storage and retrieval problems in a video server from a combinato-

1.3 Related work 5

rial optimization point of view. This means that we model the retrieval problems
as combinatorial optimization problems and relate them to problems known in that
domain. Our main goal is to design efficient algorithms for the retrieval problems
of random redundant storage strategies. We use combinatorial optimization tech-
niques to design these algorithms and to analyze the complexity of the problems
and the performance of the algorithms.

1.3 Related work

In this section we describe relevant literature in the area of video-on-demand
servers. These servers are also referred to as multimedia servers. We focus on
literature that discusses storage and retrieval in these servers. We split this up into
two parts: the first part discusses work on striping and the second part work on
random redundant storage. Before that, we start with providing some pointers to
papers that discuss specific parts within the design of a server that fall outside the
scope of this thesis, such as the internal network and the buffer strategy.

In the design of a multimedia server a large number of choices have to be made.
Gemmell, Vin, Kandlur, Rangan & Rowe [1995] and Shenoy, Goyal & Vin [1995]
give a nice view of the issues that are involved in such a design. As stated, we dis-
tinguish within the server three parts. A disk array that stores the data, buffers
or fast memory from which the data is sent out to the clients, and an internal
network that interconnects the disks and the buffers. In the next chapter we dis-
cuss in detail the disk model, the internal network, and the buffer strategy that
we use in the remainder of the thesis. Here, we give some references to prior
work that discusses these issues in detail. For disk modeling we refer to Ruemm-
ler & Wilkes [1994] and Oyang [1995]. Research on implementations of internal
networks can be found in the work of Rehrmann, Monien, L¨uling & Diekmann
[1996] and Lüling & Cortés Goméz [1998] and in the references therein. Chang &
Garcia-Molina [1997] analyze buffer requirements in a multimedia server for dif-
ferent disk scheduling policies. Dan, Dias, Mukherjee, Sitaram & Tewari [1995]
investigate the trade-off between disk efficiency and buffer sizes and Korst, Pronk,
Coumans, Van Doren & Aarts [1998] compare the performance of six buffering
algorithms for multimedia servers.

An important choice in the design of the server is the block size. Two approaches
to split up the video files or multimedia files can be found in the literature, being
constant data length (CDL) blocks, where each block contains a constant number
of bits, and constant time length (CTL) blocks, where the playout time of a block
is constant. Vin, Rao & Goyal [1995] and Chang & Zakhor [1996] describe a

6 Introduction

comparison between the two. Both papers conclude that CTL results in lower
buffer requirements but increases the complexity of storage space management.
Nerjes, Muth & Weikum [1997] give stochastic guarantees on period lengths when
CTL blocks are used. However, most papers that discuss the implementation of a
multimedia server use constant data length blocks, mainly because storing the data
is easier. In this thesis we also assume CDL blocks.

A large number of papers have been published that discuss storage (or data place-
ment) in multimedia servers. The remainder of this section deals with these papers
and is split up into two parts. In the first part we discuss papers on striping strate-
gies and in the second part papers on random redundant storage.

Striping . In the literature, most papers use disk striping strategies to distribute the
video data over the disks. Several classes of striping strategies can be distinguished.
In round-robin striping the consecutive blocks of a video file are stored in a round-
robin fashion over the disks of the disk array. The result of this storage strategy is
that a group of clients that is served by one disk in this period, is served by the next
disk of the array in the next period. In full (or wide) striping each block is split up
into as many subblocks as there are disks, and each subblock is stored on a different
disk. This means that a request for a block results in a request for a subblock
on each disk. A variant of full striping is narrow striping, where each block is
striped over a subset of the disks. Several other implementations of striping have
been proposed. We describe the main ideas of several papers that discuss striping
techniques.

One of the first publications on disk striping is the work of Salem & Garcia-Molina
[1986]. They refer to some earlier striping applications in Unix and Cray operating
systems, but it seems that theirs is the first paper dedicated to disk striping. The
main idea of the introduction of striping was increasing I/O bandwidth, to speed
up processing. Also for that reason, Patterson, Gibson & Katz [1988] introduced
the RAID (Redundant Arrays of Inexpensive Disks) technology, where increasing
reliability was a second main objective. Later, the idea of striping was implemented
in video servers to improve the load balance and thereby the efficiency of a disk
array.

Chervanak, Patterson & Katz [1995] compare round-robin striping with the strat-
egy of storing each video contiguously on disk. Round-Robin striping is a very
popular strategy for multimedia servers, but it is less suited for variable bit-rate
streams. Furthermore, this strategy results in large response times when the system
is highly loaded. Chua, Li, Ooi & Tan [1996] propose a multi-disk implementa-
tion of the striping approach of̈Ozden, Biliris, Rastogi & Silberschatz [1995] to

1.3 Related work 7

overcome the latter drawback. Berenbrink, L¨uling & Rottmann [1996] use hashing
functions and random placement to overcome the high response times at the cost
of larger memory and processing requirements. To apply round-robin striping to
variable bit-rate streams, Nerjes, Muth & Weikum [1997] use constant time length
blocks. Berson, Ghandeharizadeh, Muntz & Ju [1994] discuss two striping strate-
gies for streams with a higher bandwidth than the bandwidth of a single disk. In
their simple striping approach each block is striped over a subset of the disks in a
round-robin fashion, where the number of disks in a subset is determined by the
ratio between the disk bandwidth and the required bandwidth. Staggered striping
improves on this by being able to deal with heterogeneous streams.

Shenoy & Vin [1999] analyze two parameters of disk striping, being the choice of
the size of the subblocks and the size of the subset of disks across which a stream
is striped. They demonstrate in the paper that wide striping causes the number
of admissible clients to increase sublinearly in the number of disks, and propose
a narrow striping strategy where they partition the set of disks into subsets and
stripe each stream over the disks within one subset. Korst [1997] states that narrow
striping results in a load imbalance in case of variable bit rates. He shows that full
striping does not scale well, in the sense that increasing the number of admissible
clients results in a quadratic increase in the total buffer requirements. Other papers
mention the same effect. Furthermore, full striping for large systems leads to very
inefficient use of the disks, due to the high number of subblocks that have to be
retrieved in each period.

Random redundant storage. Data redundant storage was first introduced to make
systems less sensitive to disk failures; examples are the use of parity encoding in
the work of Patterson, Gibson & Katz [1988] and chained declustering [Hsiao &
DeWitt, 1990]. Parity encoding works as follows. For a set of blocks or subblocks
a parity block is computed by taking the bitwise summation of the blocks. This
parity block is stored on a disk that does not contain any of the blocks from which
the parity block was constructed. In case of a disk failure the disk with the parity
block can be used instead of the failing disk. In chained declustering each video is
striped twice in a round-robin fashion over the disks of the disk array in such a way
that two copies of the same block are stored on two subsequent disks. Papadopouli
& Golubchik [1998] use the redundant data of the chained declustering storage
strategy to improve disk efficiency. They describe a max-flow algorithm for load
balancing. Merchant & Yu [1995] use more general duplicated striping techniques
for multimedia servers. In their approach each data object is striped over the disks
twice, where the striping strategy for each of the copies can differ. The redundant
data is not only used for disk failures but also for performance improvements. Their

8 Introduction

retrieval algorithm is based on shortest queue scheduling and the assigned requests
are handled in FIFO (first in first out) order.

Berson, Muntz & Wong [1996] introduce random striping, where they split up each
block intor subblocks and add an extra parity encoded subblock. Theser+1 sub-
blocks are randomly distributed over the disks and for the retrieval of a block any
r of ther+1 subblocks are sufficient, such that the available parity blocks can be
used for load balancing; they solve the resulting retrieval problem with a simple
heuristic. Muntz, Santos & Berson [1998] and Tetzlaff & Flynn [1996] describe a
system in which randomness as well as data redundancy is used for load balancing.
Both use very simple on-line retrieval algorithms where requests are assigned to
the disk with smallest queue. Tetzlaff and Flynn compare their results with coarse-
grained striping and random single storage. Korst [1997] introduces a replication
scheme in which each data block is stored on two randomly chosen disks, called
random duplicated assignment (RDA). Korst analyzes the load balancing results
of a number of retrieval algorithms, including heuristic algorithms as well as a
max-flow based optimization algorithm, and compares their performance with full
striping. Aerts, Korst & Egner [2000] extend on that paper. They proof a theorem
that describes the maximum load, formulate an alternative max-flow graph, and
discuss some special cases. Alemany & Thathachar [1997] independently intro-
duce the same idea as Korst. They solve the retrieval problem with a matching
approach. Sanders [2001] extends the RDA model to be able to take disk failures,
splittable requests, variable size requests, and communication delays into account.
Aerts, Korst & Verhaegh [2001] introduce a model in which a more accurate disk
model is embedded, such that the multi-zone property of disks can be exploited to
improve disk efficiency. Korst [1997] and Santos, Muntz & Ribeiro-Neto [2000]
show that in case of variable bit-rates and less predictable streams, e.g. due to
MPEG encoded video or VCR-functionality, random replicated storage strategies
outperform the striping strategies. In case the bandwidth requirements of the server
are the bottleneck instead of the storage requirements, this effect is even stronger.

In our analysis we assume that the data blocks are fetched periodically in batches.
This means that all disks start with a new batch at the same time. Muntz, Santos
& Berson [1998], Santos, Muntz & Ribeiro-Neto [2000] and Sanders [2000] an-
alyze asynchronous retrieval strategies, where a disk can start with a new request
as soon as it is idle. The first two papers use shortest queue scheduling in their
real-time multimedia server. Sanders considers alternative asynchronous retrieval
algorithms that outperform shortest queue scheduling. However, his analysis fo-
cuses on retrieving one request at a time, which means that seek optimization is
not considered. The main reason to prefer asynchronous over synchronous re-

1.4 Thesis contribution 9

trieval is that by synchronizing the disks, a large fraction of the disks are idle at
the end of each period. However, Aerts, Korst & Verhaegh [2002] show that the
loss due to synchronization can be reduced to a very small fraction of the period
length. Furthermore, when using synchronous retrieval it is easier to exploit seek
optimization.

For periodic retrieval, probabilistic bounds can be derived on the load balancing
performance. Several papers describe relevant probabilistic results in different set-
tings such as Azar, Broder, Karlin & Upfal [1999] and Berenbrink, Czumaj, Steger
& V öcking [2000]. Azar et al. show that ifn balls are placed one by one inm
bins and for each ball two bins are available of which the least filled one is chosen,
then the fullest bin containsO(log logn= log2) balls with high probability. Beren-
brink et al. give theoretical load balancing results for two on-line load balancing
algorithms for throwingm balls inton bins, wherem � n. For multimedia sys-
tems, Aerts, Korst & Egner [2000] and Sanders, Egner & Korst [2000] prove that
random duplicated storage results in a good load balance with high probability.

1.4 Thesis contribution

The main interest of this thesis is the performance of random redundant data stor-
age strategies. We describe two load balancing approaches, being block-based load
balancing and time-based load balancing, each resulting in a different formulation
of the retrieval problem. We link these retrieval problems to problems known in
combinatorial optimization and in particular we show that they can be viewed as a
special case of the multiprocessor scheduling problem [Pinedo, 1995].

In the block-based approach we model the period length by the maximum number
of blocks that has to be retrieved from any of the disks. We relate the problem to
the maximum density subgraph problem [Goldberg, 1984], where the objective is
to find a subset of nodes that maximizes the ratio of the number of internal arcs to
the number of nodes. Based on this relation we prove a theorem for the minimum
load. Furthermore, we show that the problem can be modeled as a maximum flow
graph [Ahuja, Magnanti & Orlin, 1989]. We develop a very fast parametric maxi-
mum flow algorithm [Gallo, Grigoriadis & Tarjan, 1989] for this retrieval problem.

In the time-based approach we model the period length more accurately. We take
actual transfer times and switch times into account and we minimize in each period
the maximum time that any of the disks is busy with retrieving its assigned block
requests. This approach has several advantages over the block-based approach.
First and most importantly, the disk efficiency improves, as we find a better load

10 Introduction

balance and the approach enables the exploitation of the multi-zone character of
disks [Aerts, Korst & Verhaegh, 2002]. The latter is quantified by a substantial
increase in the fraction of blocks that is read from the fast outer zones. Further-
more, in contrast to the block-based approach the time-based approach can deal
with heterogeneous streams or heterogeneous disks. With heterogeneous streams
we mean that the data streams can have different maximum bit rates, e.g. due to
different quality levels. A disk array with heterogeneous disks contains different
disks, which means that the performance parameters of the disks, such as transfer
rate and storage capacity, are not the same for each disk of the disk array.

We model the time-based retrieval problem as a mixed integer linear programming
(MILP) problem [Nemhauser & Wolsey, 1989]. We prove that it is NP-complete
in the strong sense [Garey & Johnson, 1979], but that it can be solved in pseudo-
polynomial time if the number of machines is fixed. Based on the MILP model,
we derive two approximation algorithms that start with the solution of the LP-
relaxation and, to construct a feasible solution, perform a rounding and a matching
procedure, respectively. Furthermore, we describe a new, very fast heuristic algo-
rithm, based on list scheduling.

We analyze and compare the performance of the storage and retrieval strategies.
We show with a probabilistic analysis [Rinnooy Kan, 1987] that the random redun-
dant data storage strategies give good load balancing results with high probability.
In addition, the simulation results show that the time-based approach doubles the
number of requests in the fast outer zones compared to conventional strategies
where zone location is not taken into account. To illustrate how to use the algo-
rithms that are presented in this thesis in the design of efficient video-on-demand
systems, we describe and analyze several applications of a server.

1.5 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2 we focus on the
design of a video server. We explain how a disk and a server are modeled, we
introduce several storage strategies, we formally define the retrieval problems, and
show that the retrieval problems form a special class of multiprocessor scheduling
problems. In Chapter 3 we dive into the block-based retrieval problem. We de-
scribe and analyze algorithms for the general problem as well as for some special
cases. In Chapter 4 we discuss the time-based retrieval problem. We formulate
the problem as an MILP problem and show that the problem is NP-complete in
the strong sense. Furthermore, we analyze the complexity of some special cases,
and describe and analyze algorithms. In Chapter 5 we analyze the performance

1.5 Thesis outline 11

of random redundant data storage strategies and the corresponding retrieval algo-
rithms with a probabilistic analysis as well as with simulations. In Chapter 6 we
illustrate the effects of using random redundant storage strategies and the retrieval
algorithms in the design of a video server. We describe several cases and analyze
which storage and retrieval strategy fits best in a certain system setting according
to a given optimization criterion. Finally, we summarize the results of this thesis
and give some concluding remarks in Chapter 7.

2
Storage and Retrieval in a Video Server

A video server offers continuous streams of video data to multiple clients. In such a
server we generally distinguish three parts, as shown in Figure 2.1: an array of hard
disks to store the data, an internal network, and fast memory used for buffering.

As stated in the introduction, the video data is stored on the hard disks in blocks,
which means that a requested video file is retrieved by repeatedly reading blocks
from the disks. The blocks are then stored in the stream’s buffer, from which the
client can consume in a continuous way. The server should be able to serve a large
number of clients simultaneously, thereby obeying some constraints, such as an
upper bound on the response time, and optimizing some criteria, such as the cost
per client.

In this chapter we describe in the first section the disk model that is used. In
Section 2.2 we focus on the details of the complete video server and in Section 2.3
we introduce storage strategies. We formally define the block-based and time-
based retrieval problems for redundant data storage strategies in Section 2.4. There,
we also explain the relation between the retrieval problems and a special case of
multiprocessor scheduling. We end this chapter with a discussion section.

13

14 Storage and Retrieval in a Video Server

buffersdisk array internal network

Figure 2.1. Model of a video server.

2.1 A disk model

The data that is provided by a video server is stored in blocks on the hard disks of
the disk array. Unless stated otherwise, we assume that the disk array consists of
a homogeneous set of hard disks and offers a homogeneous set of videos, where
the latter means that the maximum bit-rate of each video is the same. In Chapter 4
we discuss the applicability of the time-based load balancing approach to hetero-
geneous settings.

We assume that the data blocks within the system are equally large, i.e. we use
constant data length blocks. At the end of this section we discuss how this block
size is determined. For now, we assume that we have blocks of a given size. The
time a disk needs for the retrieval of a block is called the transfer time. The transfer
time of a block depends on the location of the block on the disk. As a hard disk
rotates at a constant angular velocity, and the outer tracks of a disk have a larger
capacity than the inner tracks, a disk can read at a higher rate from the outer tracks
than from the inner tracks. To exploit this, disks are split up in zones [Ruemmler &
Wilkes, 1994]. Within a zone each track contains the same amount of data, which
means that the transfer time is constant within a zone, but the transfer times for the
subsequent zones decrease from inside to outside.

Between the retrieval of two successive blocks, a disk needs a certain amount of
time, the so-called switch time, to move its read head from the end of the first block
to the beginning of the next one. The efficiency of a disk largely depends on the
switch overhead, i.e. the fraction of the time that is spent on switching. This means
that retrieving the requests of a disk in an arbitrary order can result in inefficient
disk usage. To decrease the switch overhead we retrieve the blocks from the disks
in batches, such that the requests within one batch can be handled according to

2.1 A disk model 15

their position on the disk. We assume that the disks use a SCAN-based sweep-
strategy as presented by Coffman, Klimko & Ryan [1972], which means that a
disk retrieves all blocks of a batch within one single sweep of the disk head. This
sweep is either from the inside to the outside, or vice versa.

The total switch time of a batch equals the sum of the individual switch times
between the retrievals of the blocks of the batch. Each individual switch time
consists of a seek time, i.e. the time to move the disk head to the right track, and a
rotational delay, i.e. the time that passes until the starting point of the block is under
the disk head. In this thesis we use a simple worst-case estimation for rotational
delay and seek time. We use the time of one full rotationr as an upper bound
on the rotational delay. For the seek time we use a function that is linear in the
number of tracks that have to be passed. In most disks this linear estimation is very
accurate, as long as the number of tracks that have to be passed is not too small. For
the seek time, the worst-case situation occurs when the requests are equidistantly
distributed over the disk, and the disk head has to move from the innermost to the
outermost track, or vice versa [Oyang, 1995]. We compute the distance between
each two requests in this worst-case situation as the total number of trackst divided
by the number of requestsi. Then, we can compute an upper bound on the total
switch time with a function linear in the number of blocks of the sweep. This can
be seen in the following way. A switch consists of a rotational delayr and a seek
a � t=i+b. Summing over the number of requests this gives the total switch time of
a batch ofi requests equal to

i � (r+a � t=i)+b) = i(r+b)+at = is+ c (2.1)

which is linear in the number of requests, with slopes and offsetc. In Chapter 5
we define values fors andc that we use in the disk model for the simulation ex-
periments. For an improved worst-case analysis of the performance of a hard disk
we refer to Michiels, Korst & Aerts [2002]. However, for our analysis the simpler
model is sufficient.

An important choice in the design of a video server is the size of the data blocks. To
guarantee that the buffers within the server do not underflow, it is important that the
blocks are large enough to offer video for the length of a worst-case period, which
occurs if the maximum number of admissible clients is logged on to the system
and the server has to retrieve exactly one block for each client. The buffers do not
underflow if the playout time of a block is at least as large as the worst-case period
length, either deterministically or statistically. Furthermore, in choosing the block
size, a trade-off exists between disk efficiency and buffer size. If the data blocks
are chosen larger, the disks can work more efficiently, as the switch overhead will
be lower. On the other hand, the larger the blocks are, the larger the buffers need

16 Storage and Retrieval in a Video Server

to be. We discuss some of the trade-offs regarding the choice of the block size in
Chapter 6. Before, we assume that the block size is fixed and that the system is
configured in such a way that a block is large enough to offer video for the length
of a worst-case period.

2.2 Video servers

Having explained the disk model, we continue in this section with the explanation
of the working of the server. A client sends a request for a certain video to the
server. An admission control algorithm within the server determines whether or
not service is offered to this client. This admission control can be very easy, e.g.
checking whether or not the number of running streams is less than the maximum
number of streams that can be offered simultaneously. In case the server offers
homogeneous streams, this admission control algorithm is sufficient, but in case
of heterogeneous streams, due to, e.g. different quality levels, more sophisticated
admission control is needed. We use in this thesis a straightforward admission
control algorithm, unless stated otherwise.

When a client is admitted, he gets assigned a part of the buffer space within
the server. This buffer space is usually implemented in fast solid-state memory.
The client can consume data at a variable bit-rate from this buffer, but the rate is
bounded by a maximum consumption rate, e.g. the maximum bit-rate of the video.
The server has to guarantee that the buffer of the client never underflows or over-
flows, in order to guarantee continuous playout at the client’s side. When the filling
of a buffer is below a certain threshold, the buffer sends a request to the disk array
for the next data block. The block is retrieved from the disks of the disk array and
sent over the internal network to the buffer. We assume that the internal network
is not a bottleneck, in the sense that there is always enough bandwidth available to
transport the data from the disks to the buffers. The disks of the video server are
synchronized, i.e. each disk gets a new batch of requests after all disks have fin-
ished their previous batch. This means that the period length equals the finishing
time of the last disk.

Korst, Pronk & Coumans [1997] and Korst, Pronk, Coumans, Van Doren & Aarts
[1998] discuss several buffer strategies for video servers. Throughout this thesis
we use triple buffering. In this strategy each buffer can contain exactly three data
blocks and it generates a request for the next data block in the upcoming period if
the filling of the buffer is at most two complete blocks. Korst, Pronk & Coumans
[1997] prove that this strategy guarantees that the buffers do not underflow or over-
flow, if the playout time of a block is at least as large as the worst case period

2.3 Storage strategies 17

length. The proof is based on the fact that once a request for a new block is gen-
erated, this block always arrives within at most two worst-case period lengths, and
the filling of the buffer is exactly enough to survive this amount of time.

As stated in the introduction the goal is to design a video server that guarantees
that the buffers do not underflow or overflow, and next to that optimizes a certain
criterion. Several criteria are possible such as the cost per client, the cost per video
request, the response times, and the failure rate. Regarding the two cost criteria,
we assume that the variable cost of the system consists of the cost of disks and
buffers. All other costs are more or less independent of the storage and retrieval
strategy. The response time is the time that passes between the request for a video
and the start of the video at the client’s side. When using triple buffering the client
can start consuming from his buffer when the first block has arrived and the second
block is requested. We do not consider the delay in the external network, hence
the worst-case response time equals two times the worst case period length. The
failure rate is the chance that a client does not get his data in time. As we do
not consider the external network, we define the failure rate as the probability that
a buffer underflow occurs. This is related to the probability that a period length
exceeds the period length that is used to determine the block size in the design of
the system.

2.3 Storage strategies

A storage strategy describes how the blocks of video data are stored on the disks.
The choice of which storage strategy to use is an important choice in the design of
the server, as it influences the optimization criteria introduced in the previous sec-
tion. To optimize these criteria it is important that the available hardware within
the server is used efficiently. Consider, for example, the naive storage strategy that
stores each video contiguously on the disks. If a large fraction of the incoming
requests requires the same video, in such a way that it is not possible to serve the
streams in parallel, then this leads to an overload on one disk, whereas at the same
time other disks are idle. For an efficient use of the disk array we must make sure
that the work load is equally divided over the disks. This is what we call load
balancing. The load balancing ability of a storage strategy is an important perfor-
mance measure. Besides load balancing, it is also important that the individual
disks are used efficiently. This means that switch overhead should be small and a
large fraction of the blocks should be read from the outer zones.

In this section we introduce several storage strategies. As stated in Section 1.3 most
papers propose disk striping strategies for distributing the data over the disks. We

18 Storage and Retrieval in a Video Server

start this section with discussing full striping. However, in this thesis we mainly
focus on random redundant data storage strategies and use full striping for com-
parison. The first strategy of this kind that we introduce is a randomized version
of coarse-grained striping and therefore we call it random striping. Afterwards we
explain random multiplicated storage.

2.3.1 Striping

In full striping, also called wide striping, each block is split up into a number of
subblocks, as many as the number of disks in the disk array. Each subblock is
stored on its own disk such that a request for a block results in a request for a
subblock on all disks. Figure 2.2 illustrates the storage strategy.

data block

subblock

disk array

Figure 2.2. Full striping.

The retrieval strategy for full striping is straightforward, as each block request
results in a subblock request on all disks, such that in each period each disk has to
retrieve the same number of subblocks, i.e. the workload is equally spread over the
disks. However, a drawback of full striping is that the number of disk accesses is
as large as the number of requested blocks multiplied by the number of disks. This
results in a large number of switches and consequently in a less efficient usage of
the disks. Furthermore, this inefficiency also grows with the size of the system.

Full striping can deal with disk failures by introducing a parity disk. On this disk
we store a parity subblock for each block [Shenoy & Vin, 2000], which is defined
as the bitwise sum of the bits of the subblocks. In case of a disk failure the parity
disk is used instead of the broken disk and the system performs in the same way
as before. The server only has to do some basic computation to construct the
requested blocks. The cost is one extra disk.

2.3 Storage strategies 19

2.3.2 Random striping

In random striping we split up each request intor subblocks, wherer is a param-
eter of this strategy. We compute for each block the parity subblock, again as a
bitwise summation of the bits of ther subblocks. Now we haver+1 equal-sized
subblocks and we store these blocks onr + 1 different, randomly chosen disks.
Figure 2.3 depicts this storage strategy forr = 3. A request for a block can be

r

disk array
data block

parity subblock

100...

110...

001...

011...

 = 3

Figure 2.3. Random striping forr = 3.

served by retrieving ther original subblocks, or by retrievingr�1 of the original
subblocks and the parity subblock. In the latter case the original block can easily
be reconstructed. So, to serve a block request, we have to retrieve anyr out of the
r +1 subblocks. Compared to full striping we loose the guarantee that we get a
perfect load balance. However, we have some freedom for each block, in choosing
r out of ther +1 subblocks, and we can exploit this freedom to get a good load
balance. This results in a retrieval problem, in which we have to decide for each
block which disks to use for its retrieval such that the load is balanced. In the next
section we introduce the retrieval problem in more detail.

If we assume constant a block size, the size of a subblock is determined by the
value of the parameterr, and consequently the switch overhead depends onr as
well; the smallerr is, the larger the subblocks are, the lower the switch overhead
is. This means that for small values ofr the disks can be used much more efficiently
than in case of full striping. On the other hand, the smaller the value ofr is, the
larger the storage overhead is, e.g. forr = 3, we need 33% more storage space than
strictly necessary. So, a trade-off between switch overhead and storage overhead
has to be made. Depending on the ratio between the storage requirements and the
transfer rate requirements of a system a suitable value forr can be determined.
With respect to disk failures, no extra precautions are necessary, as the load of the
failing disk can be equally spread over the remaining disks, due to the randomness.

20 Storage and Retrieval in a Video Server

However, the probability of a buffer underflow increases, as the expected period
length increases.

2.3.3 Random multiplicated storage

In random multiplicated storage (RMS) strategies each data block is stored en-
tirely on a number of randomly chosen disks. The multiplication factor can differ
between various videos or even between the blocks of one video. An example of a
random multiplication strategy is random duplicated storage (RDS) [Korst, 1997],
where each data block is stored on two different, randomly chosen disks. Figure 2.4
illustrates RDS.

data block disk array

two copies

Figure 2.4. Random duplicate storage, a special case of random multiplicated
storage.

As well as in the case of random striping, this storage strategy results in a storage
overhead and a retrieval problem, so most observations made for random striping
still hold. We can use the redundant data for load balancing and for surviving disk
failures. However, this strategy results in a large storage overhead, but this is not a
problem if the transfer capacity of the disks is the bottleneck instead of the storage
capacity of the disks. As the storage capacity of disks grows considerably faster
than the disk transfer capacity, this assumption becomes more and more realistic.
In random multiplicated storage we do not split up the blocks into subblocks so we
can use the transfer capacity of the disks very efficiently, as we can read full-size
data blocks.

To decrease the storage overhead of random multiplicated storage and meanwhile
keep the advantage of reading full-size blocks, it is possible to store only a fraction
of the blocks twice. In partial duplication we store a fraction of the blocks twice
and the remainder of the blocks once. The fraction is a parameter of the storage
strategy and can be used for the trade-off between storage requirements and load

2.4 Retrieval problems 21

balancing performance. In case there are large popularity differences between the
videos, it pays off to store the popular movies twice and the less popular movies
once. The result is that in each period with a large probability the fraction of the
requested blocks that is stored twice is larger than the fraction of total number of
blocks that is stored twice. It is also possible to use an admission control algorithm
that guarantees this, e.g. in the following way. In case a large number of clients is
watching single stored videos, the server offers newly incoming clients only movies
that are stored twice to choose from, in order to guarantee that in each period the
number of requested blocks that are stored twice is large enough to enable good
load balancing performance.

In the remainder of this thesis we explain the models and algorithms first for ran-
dom multiplicated storage strategies. However, most models and algorithms work
as well for the other redundant data storage strategies, random striping and partial
duplication, and we point out how to extend the models and algorithms.

2.4 Retrieval problems

In the introduction we explained that the disks of the video server are synchronized
and that the server works periodically. This means that for redundant data storage
strategies in each period the following retrieval problem has to be solved. Given a
setJ = f1; : : : ;ng of blocks that is stored on a setM = f1; : : : ;mg of hard disks,
select for each block the disk(s) from which it has to be retrieved such that the load
of the disks is balanced.

2.4.1 Problem formulation

In the block-based retrieval approach we discard the differences in retrieval times,
by assuming that the retrieval of a block takes a constant time for all blocks. The
result of this constant time assumption is that the number of block requests assigned
to each disk should be balanced. Minimizing the period length corresponds then
to minimizing the maximum number of block requests assigned to one disk. This
results in the following block-based retrieval problem.

Problem 1 [Block-based retrieval problem (BRP)]. Given are a setJ of n blocks
that have to be retrieved from a setM of m disks, and for each blockj 2 J the
setM j of disks on which blockj is stored. Select for each blockj a disk from
M j, in such a way that the maximum number of blocks to be read from any disk is
minimized.

22 Storage and Retrieval in a Video Server

The decision variant of BRP is defined as the question whether or not an assignment
exists with a maximum load of at mostK blocks per disk. The decision problem is
only relevant forK �

�
n
m

�
, as otherwise no solution exists. 2

In time-based load balancing we minimize the time on which the last disk finishes
the retrieval of its assigned block requests. The completion time of a disk equals
the sum of the retrieval times of the blocks plus the total switch time. As discussed
before, we approximate the total switch time per disk by a function that is linear
in the numberi of block requests assigned to the disk, i.e. the switch time is set to
s � i+ c, with the switch slopes and the switch offsetc both at least zero.

The transfer time of a block depends on the zone of the disk where the block
is stored [Ruemmler & Wilkes, 1994], where outer zones have a higher transfer
rate than inner zones. The information of the zone location of blocks on disks
is assumed to be available, so the retrieval times of each block on each disk are
known beforehand. The decision of how to distribute the blocks over the zones is
defined in the used storage strategy. We come back to this issue in Chapter 5 when
we discuss implementation issues of a simulation.

Contrary to the block-based retrieval problem we allow in the time-based retrieval
problem that blocks are partially retrieved from different disks, as long as each
block is fetched completely. In this way there is more freedom for load balancing.
The drawback of splitting up a block access is that the total number of accesses
increases, which results in more switching. We formulate the time-based retrieval
problem as follows.

Problem 2 [Time-based retrieval problem (TRP)]. Given are a setJ of n blocks
that have to be retrieved from a setM of m disks, and for each blockj the setM j

of disks on which blockj is stored. Furthermore, the retrieval times of the blocks
and the parameters of the linear switch time function are given. The problem is to
assign (fractions of) each blockj to the disks ofM j, such that

� each block is fetched entirely, and

� the maximum completion time of the disks is minimized, where the comple-
tion time of a disk equals the sum of the total switch time and total transfer
time.

The decision variant is defined as the question whether or not an assignment exists
that is finished before or at timeT . 2

2.4 Retrieval problems 23

2.4.2 Relation to multiprocessor scheduling

The discussed retrieval problems are related to scheduling [Pinedo, 1995] as de-
fined within the field of combinatorial optimization. We can model the retrieval
problems as scheduling problems by viewing the disks as machines and the re-
quested blocks as jobs. The transfer time of blockj then corresponds to the pro-
cessing timepj in the scheduling problem and the switch times of the retrieval
problems correspond to set-up times. Using this correspondence we can call an
assignment of the block requests to the disks a schedule.

As we consider an array of hard disks, the retrieval problems specifically relate
to multiprocessor scheduling problems. Scheduling problems are often denoted in
a three-field notation. We give a short introduction into this notation of schedul-
ing problems and afterwards model BRP and TRP as such. For a more elaborate
discussion of the three-field notation we refer to Pinedo [1995].

In the three-field notation the first field gives the machine environment, the second
one describes the job characteristics, and the third one the optimization criterion.
In the machine field a ‘1’ indicates that we have a single machine environment. In
the retrieval problems we have parallel machine environments, indicated byP or
R, corresponding to identical machines and unrelated machines, respectively. The
difference betweenP and R is that in case ofP the processing timep j of a job
j is equal on all machines, whereas in case ofR the processing timepi j of job
j also depends on the machinei. To indicate that we have a fixed numberm of
parallel identical machines we usePm. For the second field we introduce four job
characteristics that are necessary for the retrieval problems.

� Unit processing times are denoted bypj = 1.

� Machine eligibility is denoted byM j and means that only machines of subset
M j are available for jobj.

� Set-up time, denoted by ‘set-up’, indicates that we need a certain amount of
time to set up the machine before starting a new job. In the retrieval problems
this corresponds to the switch slope.

� Preemption, denoted by ‘pmtn’, indicates that we allow job splitting. In the
retrieval problem this means that we allow that a block is partially retrieved
from different disks. Preemption in the retrieval problem is not exactly the
same as preemption in the general scheduling literature. In scheduling it is
not allowed to work with multiple machines on one job at the same time,
whereas in the retrieval problems we allow that multiple disks retrieve parts
of one block at the same time. We use ‘pmtn�’ to denote this variant of
preemption.

24 Storage and Retrieval in a Video Server

Note that for problems with set-up times and without preemption, the set-up times
can be added to the transfer times and do not change the nature of the problem.

As optimization criterion we only useCmax, i.e. the completion time of the machine
that finishes last. It equals the completion time of the last job and is referred to as
the makespan.

Now we can formulate BRP and TRP for RMS as multiprocessor scheduling prob-
lems. In BRP we want to minimize the maximum number of block requests as-
signed to one disk. We model this by taking jobs with unit processing times in
a parallel identical machine environment. Then, the number of jobs assigned to
a machine becomes equivalent to the makespan. Furthermore, RMS makes that
we have machine eligibility constraints, as for each job only a subset of the ma-
chines can be used. Concluding, in the three-field notation BRP can be denoted by
P M j, pj = 1 Cmax.

For TRP the machine environment is given by unrelated parallel machines, because
the transfer time of a block depends on the zone in which it is stored. Again we
have machine eligibility as a job characteristic. Furthermore, we have a set-up
time for each job. This set-up time is constant, as we approximate the total switch
time with a linear function. To enable partial retrieval we allow preemption. The
optimization criterion is again the makespan, which is in this case the sum of the
processing times and set-up times. Hence, in the three-field notation, TRP can be
denoted byR M j, pmtn�, set-upCmax.

2.5 Discussion

In this section we revisit some of the model choices. Hereby, we give more insight
in the choices and trade-offs that arise in designing a video server. The choices and
effects that are really important for the remainder of the thesis are discussed in the
previous sections. The effects that we mention in this section are considered worth
mentioning, but beyond the scope of the thesis to be discussed in detail.

Stream bandwidth. In the description of the video-on-demand system we dis-
tinguished three parts, being the server, the external network, and the clients. As
we focus on the server we did not discuss the external network and the client side
any further. However, as we describe system settings in Chapter 6 we want to give
some extra comments. A client might need a second buffer, next to its buffer within
the server, to deal with delay in the external network. This delay can be very unpre-
dictable, e.g. when video on demand is implemented using the internet as external
network, or very small and predictabel in case of a dedicated network, which might

2.5 Discussion 25

be the case in a hotel. Furthermore, the read bandwidth out of the client’s buffer
within the server is bounded by a maximum rate. If we use MPEG encoded video,
the peak rate of a video is much higher than the average rate, so using this peak rate
as maximum bit-rate of a video would result in overdimensioning of the system.
However, as we use blocks of data, bandwidth smoothing algorithms can be used
to give a better estimation of the maximum bit-rate. For an overview of bandwidth
smoothing algorithms we refer to Feng & Rexford [1999].

Internal network . We assume in this thesis that the internal network in the server
is not a bottleneck. This means that the bandwidth of this network should be larger
than the total bandwidth of the disk array, but next to this bandwidth requirement
there is also a reachability requirement. The data that comes from the disks should
be transported to the right buffer. For small servers this problem can be solved by
using a large bus that interconnects each disk with each buffer. For larger systems
the bandwidth and connectivity requirements ask for a more intelligent solution as
described by L¨uling & Cortés Goméz [1998] and their references. We do not con-
sider this problem any further and assume that a sufficiently fast internal network
can be constructed.

Prefetching. When introducing the storage strategies we presented partial dupli-
cation as a way to decrease the storage overhead at the cost of losing scheduling
freedom. This loss can be compensated by using a different retrieval approach,
which we call prefetching. In this approach each requested block needs to be re-
trieved in one of thet upcoming periods, wheret is a parameter of this approach.
The result is that we have scheduling freedom in two dimensions: in space (disks)
and time. The cost of this approach is extra buffer space and a larger response
time. The models and algorithms that are described in this thesis can be used to
solve this alternative retrieval problem, but we do not discuss this approach any
further. A somewhat similar strategy is discussed by Berenbrink, Riedel & Schei-
deler [1999] where they maximize the number of scheduled requests in case each
incoming request has a deadline and a defined set of possible processors.

3
Block-Based Load Balancing

The first load balancing approach that we describe is block-based load balancing.
In the block-based retrieval problem (BRP) we are given a number of blocks that
has to be retrieved from a set of disks and for each block the set of disks is given on
which the block is stored. The goal is to assign the blocks to the disks in such a way
that the maximum number of blocks to be retrieved from any disk is minimized.
We show in this chapter that BRP is solvable in polynomial time, by presenting
several polynomial time algorithms.

This chapter is organized as follows. We discuss the modeling of BRP in Sec-
tion 3.1, and thereby we relate BRP to problems known in the combinatorial op-
timization literature. In Section 3.2 we apply known maximum flow algorithms
to BRP, being the Dinic-Karzanov algorithm, the preflow-push algorithm, and the
parametric maximum flow algorithm. We show that the general time complexity
results for these algorithms can be improved by exploiting the specific character-
istics of the max-flow graph of BRP. In Section 3.3 we introduce a special case
of BRP and describe a linear time algorithm for this case. We note that we first
describe most models and strategies for random duplicate storage and explain af-
terwards how to extend them to other storage strategies.

27

28 Block-Based Load Balancing

3.1 BRP modeling

The block-based retrieval problem is related to a number of known combinato-
rial optimization problems. In this section we give a graph representation of BRP
for duplicate storage and extract an integer linear programming (ILP) formulation
from this graph. We describe how the formulation can be extended such that it is
valid for other storage strategies. At the end of this section we relate BRP to the
maximum density subgraph problem and explain how a maximum flow graph can
be constructed.

3.1.1 ILP formulation

When each block is stored on exactly two disks, as is the case for RDS, we can
model BRP with a so-called instance graphG = (V;E), in which the setV of
vertices represents the set of disks. An edgefi; jg 2 E between verticesi and j
indicates that there are blocks for which the two copies are stored on diski and
disk j. For RDS the instance graph is the complete graph. In this graph we can
represent an instance of BRP by putting on each edgefi; jg a weightwi j, that gives
the number of blocks that has to be retrieved from either diski or disk j. For ease
of use we definewi j = 0, if an edgefi; jg 62E. Note that∑e2E we = n. In Figure 3.1
we give an example of two nodes of an instance graph, representing two disks of
BRP.

ji

������

a ij

diskdisk wi jij

a

Figure 3.1. Example of two nodes of an instance graph of BRP for duplicate
storage.

In this graph an assignment of block requests to disks corresponds to a division of
the weight of each edge over its endpoints. We defineai j 2 IN as the number of
blocks of edgefi; jg assigned to diskj andaji as the number of blocks assigned
to disk i. Note thatwi j = w ji = ai j + aji. The loadl(i) of a diski is given by the
sum of the assigned weights of all incident edges, i.e.l(i) = ∑fi; jg2E a ji. The load
of the disk with maximum load is denoted bylmax, i.e. lmax= maxj2V l(j).

With the above notation we can formulate the block-based retrieval problem for
duplicate storage as an ILP. We call this special variant of BRP for RDS the edge
weight partition problem.

3.1 BRP modeling 29

Problem 3 [Edge weight partition problem]. Given is a graphG = (V;E) with a
nonnegative integer weightwi j on each edgefi; jg 2 E. Using the decision vari-
ablesai j andaji for eachfi; jg 2 E the problem is defined by the following ILP.

min lmax

s.t. ∑
fi; jg2E

a ji � lmax 8i 2V

ai j +aji = wi j 8fi; jg 2 E

ai j 2 IN 8fi; jg 2 E

2

A solution of the edge weight partition problem can be transformed into a solution
for BRP by specifying for each edge which blocks to retrieve from the two adjacent
nodes.

The idea of load balancing is that we want to divide the load equally over the
vertices of the instance graph, which means that we want to shift the load away
from the parts of the graph where the edges have large weights. Given a subgraph
G0

= (V 0;E 0
), with V 0 �V andE 0

= ffi; jg 2 Eji; j 2V 0g, we define the unavoid-
able load ofG0 as the sum of the weights of the edges ofE 0 divided by the number
of vertices ofV 0, i.e.∑fi; jg2E 0 wi j=jV 0j. This value is a lower bound on the value of
an optimal load balance inG. The following theorem states that the optimal value
is actually determined by the subgraph with maximum unavoidable load. We note
that independently a similar theorem has been proven in another setting [Schoen-
makers, 1995].

Theorem 3.1. In case of duplicate storage we have

l�max= max
V 0�V

&
1
jV 0j ∑

fi; jg�V 0

wi j

'
: (3.1)

Proof. It is easy to see that the right-hand side of (3.1) gives a lower bound on
l�max, since the total weight within a setV 0 has to be distributed over the vertices in
V 0. So we can prove equality by showing that we can construct a setV � �V such
that

l�max�

&
1
jV �j ∑

fi; jg�V�

wi j

'
: (3.2)

Assume that we have an assignment for which the maximum load equalsl�max.
Furthermore, without loss of generality, assume that the number of nodes with
maximum load is minimal. We determine a nodev� with loadl�max. Initially, we set

30 Block-Based Load Balancing

V �
= fv�g and for this nodev� we determine neighborsj 2V for which a jv� > 0.

For such a neighborj we know thatl(j)� l�max�1, otherwise the load ofv� could
have been decreased, without introducing another node with maximum load. This
would contradict the assumption that the number of nodes with maximum load is
minimal. We add these neighbors toV � and continue recursively by adding for
eachv 2V � the neighborsj with ajv > 0 toV �. Also for these neighboring nodes
j, it holds thatl(j)� l�max�1, as otherwise we could find a path that could be used
to decrease the load of a node with maximum load.

So, all nodes inV � have a load of at leastl�max�1 and nodev� has a load ofl�max.
Following from the construction ofV �, no part of the loads of the elements ofV �

can be assigned to elements outside ofV �. So the total weight on the edges
within V � is at least

∑
fi; jg�V�

wi j � (jV �j�1)(l�max�1)+ l�max= jV �j(l�max�1)+1;

hence&
1
jV �j ∑

fi; jg�V �

wi j

'
> l�max�1:

2

So the minimum maximum load is determined by the subsetV 0 that maximizesl
1
jV 0j ∑fi; jg�V 0 wi j

m
. By transforming the graph of the edge weight partition prob-

lem into a multigraph by drawingwi j edges between each pairi; j of vertices,
the edge weight partition problem relates to the maximum density subgraph prob-
lem [Goldberg, 1984], which is the problem of finding a subgraph with maximum
density in a multigraph.

Problem 4 [Maximum density subgraph problem]. Given is a multi-graphG =

(V;E). Find a subgraphG0
= (V 0;E 0

) of G that maximizesjE
0j

jV 0j . 2

Note that an optimal solution to the maximum density subgraph problem only gives
a subset that gives a lower bound on the load. An extra step is needed to find a

solution for BRP by distributing the blocks over the disks such that a load of
l
jE 0j
jV 0j

m
is realized.

The graph representation and the integer linear programming formulation are sim-
ple formulations in case of duplicate storage. To illustrate that the ILP model can
be extended to hold for other redundant storage strategies, we next give the ILP
formulation for random striping withr = 2 and explain how Theorem 3.1 can be

3.1 BRP modeling 31

adapted to hold for this case. For multiplicated storage and partial duplication the
modifications are straightforward and therefore left out.

Recall that random striping withr = 2 means that each block is split up into two
subblocks to which one parity subblock is added, and two out of these three sub-
blocks have to be retrieved to reconstruct the original block. Given is a set of
blocks that have to be retrieved from a setM of disks. Furthermore, for each com-
bination of three disksi; j;k 2 M, wi jk gives the number of blocks for which the
three subblocks are stored on these disks. We define for each such combination
three decision variablesajki, aki j, andai jk that give the number of blocks ofwi jk

assigned to diski, disk j, and diskk, respectively. Then we can formulate an ILP
as follows.

min lmax

s.t. ∑
j;k2M

ajki � lmax 8i 2M

ajki +aki j +ai jk = 2wi jk 8fi; j;kg �M

ajki � wi jk;aki j � wi jk;ai jk � wi jk 8fi; j;kg �M

ai jk 2 IN 8fi; j;kg �M

By using this extended ILP formulation a theorem similar to Theorem 3.1 can be
proven for random striping. The idea of unavoidable load within subsets of disks
remains valid, if we redefine the unavoidable load of a subsetV 0. For the caser = 2
this gives

2 ∑
fi; j;kg�V 0

wi jk + ∑
fi; jg�V 0;k2VnV 0

wi jk: (3.3)

3.1.2 Maximum flow formulation

Now we show that the decision variant of BRP can be formulated as a maximum
flow problem. As the maximum flow problem is known to be solvable in polyno-
mial time, this correspondence implies that BRP is solvable in polynomial time.
We define a directed max-flow graph for random multiplicated storage as follows.
The set of nodes consists of a sources, a sinkt, a node for each disk, and a node
for each requested block. The set of arcs consists of

� arcs with unit capacity from the source to each block node,

� arcs with unit capacity from each block nodej to the disk nodes correspond-
ing to the disks inM j, and

� arcs with capacityK from each disk node to the sink, whereK is the maxi-
mum allowed load.

32 Block-Based Load Balancing

disk nodesblock nodes

sinksource
1

1

1

K

K

K

1

1 1

Figure 3.2. Example of a max-flow graph for the decision variant of BRP.

Figure 3.2 gives an example of such a max-flow graph.

We can solve the decision variant of BRP by finding a maximum flow in this graph.
Recall that a network with integral capacities admits a maximum flow for which
the flow over each edge is integral [Ahuja, Magnanti & Orlin, 1989]. If an integral
maximum flow from source to sink saturates all the edges leaving the source, then
this flow corresponds to a feasible assignment. This solution approach does not
only solve the decision problem, but also gives an assignment in case of a positive
answer, which can be derived from the flow over the arcs between the block nodes
and the disk nodes.

An algorithm that performs a bisection search over the maximum allowed loadK
solves the optimization problem and shows that BRP can be solved in polynomial
time. This proofs the following theorem.

Theorem 3.2. BRP is solvable in polynomial time. 2

We can easily change the graph such that it holds for random striping. We increase
the weights on the edges leaving the source tor, the number of subblocks in the
random striping strategy. Furthermore, the number of edges leaving each block
node equalsr+1. One unit flow in this graph corresponds to a subblock.

3.2 Maximum flow algorithms for BRP

In this section we explain three maximum flow algorithms from literature, the
Dinic-Karzanov algorithm [Dinic, 1970; Karzanov, 1974], the preflow-push al-
gorithm [Goldberg & Tarjan, 1988], and the parametric maximum flow algo-
rithm [Gallo, Grigoriadis & Tarjan, 1989]. We describe how the general time com-
plexity results of these algorithms can be improved using the graph characteristics

3.2 Maximum flow algorithms for BRP 33

of the max-flow graph of BRP. We start with the Dinic-Karzanov algorithm.

3.2.1 Dinic-Karzanov maximum flow algorithm

Consider the max-flow graphG = (V;E) with capacityc(e) on each arce 2 E
as defined in the previous section. The algorithm starts with an empty flow, and
increases the flow step by step by sending additional flow over augmenting paths.
In each stage the current flowf is increased by a flowg which is constructed in the
following way. We follow the formulation of Papadimitriou & Steiglitz [1982].

(i) Compute augmenting capacities. We start with constructing an augmenting
networkG(f) for the current flowf . The capacities inG(f) are the aug-
menting capacities of the original networkG = (V;E) in which a flow f
already exists. An arc(u;v) of the original graphG occurs inG(f), if the arc
is not saturated byf , i.e. f (u;v) < c(u;v); the capacity inG(f) then equals
c(u;v)� f (u;v). Furthermore, an arc(u;v) 2 E with f (u;v) > 0 results in
the reverse arc(v;u) in G(f); the capacity of(v;u) in G(f) equalsf (u;v).

(ii) Construct the auxiliary networkA(f). Label the nodes inN(f) such that
the label of a node gives the shortest distance (in number of edges) from the
source to that node. As we are looking for shortest augmenting paths we
omit all nodes with a distance larger than or equal to thes-t distance, i.e. the
distance label of the sink. Furthermore, for the same reason we omit arcs
that are not directed from a node with labelj to a node with labelj+1. That
leads to the auxiliary networkA(f).

(iii) Find a blocking flowg in the auxiliary network. First we note that we do
not aim at finding a maximum flow in this step, but that we want to find a
blocking flow, i.e. a flow that cannot be increased by a forward augmenting
path. To find a blocking flow, we start with defining the throughput of each
node as either the sum of the incoming arcs or the sum of the outgoing arcs,
depending on which of the two is smaller. Then, we take the node with
minimum throughput and push from this node an amount of flow, equal to the
throughput, to the sink. This is done in a breadth-first manner, such that each
node needs to be considered only once during a push procedure. As we take
the minimal throughput in each step, it is guaranteed that each node can push
out its incoming amount of flow. In a similar way the same amount of flow
is pulled from the source. After the push and pull we remove the saturated
arcs, update the throughput values, remove the nodes with throughput zero,
and take again the node with minimum throughput for the next push and pull
step. We continue until no path from source to sink exists, which means that
we have constructed a blocking flow.

34 Block-Based Load Balancing

After each iteration of the above three steps, we addg to f and continue with the
next iteration. The algorithm terminates when source and sink are disconnected in
the auxiliary network.

For general graphs the Dinic-Karzanov algorithm finds a maximum flow inO(jV j3)
time. We next show that for BRP this algorithm has a time complexity ofO(mn)
for fixedK and leads toO(minfn2;m2n;mn logng) for finding the optimalK. These
statements hold in case the size of the setsM j is bounded by a constant. We first
state Dinic’s lemma that states that the shortest augmenting path increases every
iteration. For the proof we refer to Papadimitriou & Steiglitz [1982]. We need this
result to prove the time complexity results for BRP.

Lemma 3.1. In each stage the s-t distance in A(f + g) is strictly greater than the
s-t distance in A(f). 2

Theorem 3.3. The Dinic-Karzanov max-flow algorithm for the decision variant of
BRP has a time complexity of O(mn), in case jMjj= O(1) for all j.
Proof. For the complexity of the algorithm we bound the number of stages of the
algorithm and the time complexity of each stage. With respect to the number of
stages, Lemma 3.1 states that in each stage the length of the shortest augmenting
path increases. This means that the number of stages is bounded by the length of
the longest path in the original max-flow graph, allowing reverse arcs in the path.
The longest path alternates between disk nodes and block nodes and, as each disk
node can be visited at most once, the length of the longest path isO(m).

In each stage of the algorithm we find a blocking flow in the auxiliary network with
respect to the current flow. We start with computing the augmenting capacities;
this takesO(jEj) = O(n) time, as the size of each setM j is bounded by a constant.
Constructing the auxiliary networkA(f) from N(f) can also be done inO(n) time,
by doing the labeling in a breadth-first manner. When finding the blocking flow we
know that the arcs with unit capacity are visited at most once, as they are saturated
immediately. AsjM jj= O(1), there areO(n) of these arcs, and consequentlyO(n)
augmentations. Also the number of augmentations on the other arcs, i.e. the arcs
from the disk nodes to the sink, can be bounded byn, as the maximum flow is at
mostn and these arcs never occur backwards in an augmenting path. This gives
that the time complexity in each stage isO(n).

Combined with the time bound on the number of stages, the overall time complex-
ity of the max-flow algorithm for the decision variant of BRP isO(mn). 2

Theorem 3.4. The Dinic-Karzanov algorithm solves the optimization variant of
BRP in O(minfmn logn;m2n;n2g) time, in case jMjj= O(1) for all j.
Proof. We show that each of the three components gives a bound on the complexity

3.2 Maximum flow algorithms for BRP 35

of solving BRP.

1. A trivial lower and upper bound on the value ofK is dn=me and n, re-
spectively, such that a bisection search on the value ofK solves BRP in
O(mn logn) time.

2. For the second bound we show that for at mostm different values ofK a
max-flow has to be solved. This can be seen in the following way. After
solving the max-flow first forK = dn=me, either we have a feasible solution,
or at least one of the edges from the disk nodes to the sink is not saturated.
Increasing the value ofK on one of these edges does not improve the solu-
tion, such that we can continue with a new max-flow graph containing only
a subset of the block and disk nodes. We construct the new value ofK as fol-
lows. We add to the old value the number of blocks that are not yet assigned
divided by the number of disks that had a load ofK in the previous step and
round this value up to the next integer. For thisK, again we can conclude
that either a solution is found or the number of saturated arcs from the disk
nodes to the sink decreases. The number of saturated arcs from disk nodes
to the sink decreases in each step such that we have at mostm steps. This
gives a total complexity ofO(m2n).

3. A third way to derive a complexity bound is by bounding the total number
of times an auxiliary network is constructed and a blocking flow has to be
found, without distinguishing between different values ofK. The maximum
flow at the end of the algorithm equalsn and each blocking flow increases the
total flow with at least 1, such that the total number of times a blocking flow
is constructed is bounded byn. By starting withK = dn=me and updating
K in the same way as above, the number of times an auxiliary network is
constructed isO(n), such that BRP can be solved inO(n2

).

2

For practical situations the assumption thatjM jj= O(1) is not a restriction, as the
maximum multiplication factor in any relevant storage strategy is always bounded
by a constant. Note that ifjM jj would not be bounded by a constant,jM jj is at
mostm, such that the time complexity bounds in Theorems 3.3 and 3.4 grow at
most with a factorm.

In case of duplicate storage, i.e.jM jj = 2 for all blocks, an alternative graph for-
mulation gives another time complexity bound. Korst [1997] describes a max-flow
graph withm disk nodes and no block nodes, in which the maximum load of a
given assignment can be decreased by finding a flow from disks with a high load
to disks with a low load. Korst describes an algorithm that is linear inn for find-

36 Block-Based Load Balancing

ing a feasible starting assignment and solves the retrieval problem optimally with
O(logn) max-flow computations, each of which can be done inO(m3

) time. This
gives a time complexity bound ofO(n+m3 logn). Based on the work of Korst,
Low [2002] describes a tree-based algorithm that runs inO(n2

+mn) time. His
algorithm can also be applied to random multiplicated storage.

3.2.2 Preflow-push maximum flow algorithm

In this section we explain the preflow-push algorithm [Goldberg & Tarjan, 1988]
and analyze its time complexity for the BRP graph. The preflow-push algorithm
solves the max-flow problem inO(jV jjEj log(jV j2=jEj) for general graphs, which
equalsO(jV j3) in case of dense graphs. We show that the algorithm solves the
retrieval problem for a fixedK in O(mn) time. In the next section we show that this
complexity bound remains valid for the optimization variant by modeling BRP as
a parametric max-flow problem.

The idea of the preflow push algorithm is to push the maximum amount of flow
into the network, try to push as much flow as possible to the sink, and push the
remaining flow back to the source. In contrast to the Dinic-Karzanov algorithm
we do not require a feasible flow in each step of the algorithm. Instead, we relax
the flow conservation constraint as follows. A flow is defined to be a preflow if
the flow into each vertex is at least as large as the flow out of that vertex, except
for the source. A preflow is a feasible flow if the inflow equals the outflow in all
nodes, except for the source and sink. To control the pushing of flow, each node
gets a height label and flow can only be pushed downhill. The algorithm has two
basic operations, (i) push, to push flow from an overflowing vertex to a connected
‘lower’ vertex, and (ii) lift, to increase the height of an overflowing node to be able
to push flow downhill in a next step.

Again we consider a directed graphG = (V;E) with a sources, a sinkt and ca-
pacitiesc on the edges. Letf be a preflow inG and c f be the residual capaci-
ties according tof , i.e. for each(u;v) 2 E we getc f (u;v) = c(u;v)� f (u;v) and
c f (v;u) = f (u;v). Furthermore, leth : V ! IN be a height function, which is called
feasible ifh(s) = jV j, h(t) = 0, andh(u) � h(v)+1 for every residual edge(u;v).
We define the net flow into a nodeu as the excess ofu, e(u). Note thate(u) � 0
and that if preflowf is a feasible flow, thene(u) = 0 for all u. Now we can specify
the two basic operations.

� Push. The procedure push can be applied to a directed edge(u;v), if (i)
vertexu is overflowing, i.e.e(u) > 0, and (ii) h(u) = h(v)+1. We push the
maximum amount of flow, i.e. minfe(u);c f (u;v)g, over(u;v), and decrease

3.2 Maximum flow algorithms for BRP 37

e(u) and increasee(v) with this amount. If the edge(u;v) is saturated after
the push, it was a saturating push and the residual capacityc f (u;v) becomes
zero.

� Lift . The procedure lift can be applied to a vertexu, if (i) u is overflowing
and (ii) for all residual edges(u;v) we haveh(u) � h(v). We increase the
height ofu such that at least one of the residual edges can be used to push
flow, i.e.h(u) =1+minfh(v)jcf (u;v)>0g. Note that lift gives the vertex the
maximum height that is allowed by the constraints on the height functions.

We initialize the max-flow graph in the preflow-push algorithm as follows. We set
h(s) = jV j andh(u) = 0 for all u 2 V n fsg. Furthermore, we push the maximum
amount of flow into all edges connected tos, i.e. f (s;u) = c(s;u) for all nodesu2V
that are adjacent tos. All other edges become residual edges with residual capacity
equal to the original capacity. Then we start executing push and lift operations
until we can no longer apply a lift or push on any of the nodes. In the resulting
graph the conservation of flow constraint holds in all nodes, except for source and
sink. For the correctness proof of the algorithm we refer to Goldberg & Tarjan
[1988]. For BRP we slightly change the algorithm by initializing the height of the
source to 2m+1 instead ofjV j, to improve on time complexity. The algorithm still
works, as this height equals the length of the longest path betweens andt in the
BRP max-flow graph.

To use the parametric max-flow algorithm for BRP the graph should be of a certain
form. We discuss the details of the form in the next section when explaining the
parametric algorithm. There we show that we should reverse the max-flow graph
of BRP to make it obey the constraints needed to use the parametric algorithm. As
the complexity results of this section are going to be used in the next, we reverse
the graph here. This means that the source and the sink are reversed and the arcs
run from source to the disks, to the blocks, and then to the sink.

We continue with the time complexity analysis of the preflow-push algorithm for
the reversed graph of BRP for a fixed value ofK, following the proof of Goldberg
& Tarjan [1988]. Again, we assume that we have a constant number of copies of
each block. The initialization can be done inO(m+ n) = O(n) time. To bound
the complexity of the body of the algorithm we first give a bound on the number
of times that the procedures push and lift are called. As the height of the vertices
only increases during the algorithm we can bound the number of lift operations by
giving an upper bound on the height of a vertex. We first state a lemma that we
need in the complexity proof. For the proof of the lemma we refer to Goldberg &
Tarjan [1988].

38 Block-Based Load Balancing

Lemma 3.2. If f is a preflow and u is a vertex that is overflowing, a path exists
from u to s in the residual graph Gf . 2

For the BRP max-flow graph, the maximum length of a shortest path back to the
sink is two, due to the bipartite structure of the graph.

Theorem 3.5. At any time during the execution of the algorithm and for any vertex
u 2V, h(u)� 2m+3.
Proof. First we note that the height of source and sink is constant. For the other
vertices the heights are only increased if the vertices are overflowing. So we take
any vertexu 2 V n fs; tg that is overflowing. According to the previous lemma a
path of length at most 2 exists fromu to s in the residual graph. By the definition
of the height labels we know that if(u;v) is a residual arc, thenh(u) � h(v)+1.
This givesh(u)� h(s)+2= 2m+3. 2

Now we can bound the number of times that the procedure lift is called.

Corollary 3.1. In case jMjj = O(1), procedure lift is called at most 2m+3 times
per vertex and (2m+3)(m+n) = O(mn) times in total. 2

To bound the number of pushes we split up the total number of pushes in non-
saturating and saturating pushes and we give a bound on both.

Theorem 3.6. The number of non-saturating pushes is O(m).
Proof. All edges with capacity one are always saturated when used in a push. This
means that only on the edges leaving the source non-saturating pushes occur. As
these edges are saturated in the initialization we only have to consider pushes back
to the source. We adapt the algorithm, such that we do not push flow back to the
source before all nodes, except for the nodes connected to the source, havee(u) =
0. As the excess of these nodes will not exceed the capacity of the corresponding
edge, we do at most one non-saturating push per arc to the source, which gives
O(m) non-saturating pushes. 2

Theorem 3.7. The number of saturating pushes is O(mn), in case jMjj= O(1).
Proof. The edges leaving the source are used at most twice, once in the initializa-
tion, and possibly once to push flow back. This gives at most 2m saturating pushes.
The edges entering the sink are all used at most once, as they are immediately sat-
urated which gives at mostn saturating pushes. Regarding the edges between the
disk nodes and the block nodes, they all have capacity one, which means that they
are always saturated when used. If flow is pushed over an edge(u;v), it holds that
h(u) = h(v)+1. Before we can use the edge in opposite direction, i.e. push flow
over (v;u), the height ofv has to be increased with at least two. By theorem 3.5

3.2 Maximum flow algorithms for BRP 39

we know that the height of a vertex is at most 2m+3, such that each edge between
disk nodes and block nodes is used at mostO(m) times. As we haveO(n) edges
between disk nodes and block nodes, we haveO(mn) saturating pushes. 2

Concluding from these theorems we can give a bound on the number of calls of the
procedures push and lift, the so-called basic operations.

Corollary 3.2. The preflow-push algorithm solves the decision problem of BRP
with O(mn) basic operations, in case jMjj= O(1). 2

Goldberg & Tarjan [1988] give a sequential implementation of the preflow-push
algorithm for which they show that the time complexity equals the number of calls
of basic operations, which means that the complexity of the procedures does not
increase the complexity of the algorithm. For a complete description of the imple-
mentation and the corresponding proofs we refer to their article. Here we sketch
the main ideas. They introduce a listQ of overflowing vertices and an fixed or-
dered edge list for each vertex, that contains undirected edges corresponding to
the arcs entering or leaving the vertex. In each list an indicator holds track of the
current edge. In each iteration of the algorithm we check for an overflowing ver-
tex v if its current edge can be used for a push. If not, the next edge becomes
the current edge and if the end of the list is reached the height ofv is increased
and the current edge is set to the first edge of the list. In this way a push can be
applied in constant time. For the procedure lift we have to run through the edge
list once, but lift is only called when the last edge of the edge list is reached. So
we can bound the complexity of the algorithm byO(1) per push plus the num-
ber of times we run through the edge lists. From Theorem 3.7 we getO(mn)
pushes. Running through the edge list of nodev takesδv time, whereδv is the
degree ofv. We know by Theorem 3.5 that the height of each vertex is bounded
by 2m+ 3. This givesδv(2m +3) per vertex. Summing over the vertices gives
∑v2V δv(2m+3) = (2m+3)∑v2V δv = (2m+3)2n = O(mn). This gives the fol-
lowing theorem.

Theorem 3.8. The preflow-push algorithm solves the decision variant of the block-
based retrieval problem in O(mn) time, in case jMjj= O(1). 2

For solving the optimization variant, we can do a binary search and add a logn
to the time complexity. However, we show in the next section that it is possi-
ble to solve a sequence of max-flow problems with the preflow-push algorithm in
the same time complexity as a single problem, if the max-flow graph meets some
constraints on the arc capacities. The max-flow graph of BRP satisfies these con-
straints.

40 Block-Based Load Balancing

3.2.3 Parametric maximum flow algorithm

In this section we use the work of Gallo, Grigoriadis & Tarjan [1989] on parametric
maximum flows to show that the optimization variant of BRP can be solved in
O(mn) time. We call a problem a parametric maximum flow problem, if some arc
capacities in the max-flow graph depend on a parameterλ. The question is to find
a maximum flow that satisfies a second criterion, which is expressed by theλ in
the max-flow graph. Solving such a parametric max-flow problem often requires
solving a max-flow problem for a sequence of values ofλ. Gallo, Grigoriadis &
Tarjan [1989] show that this sequence of max-flow problems is solvable in the
same time complexity as the max-flow problem for one value ofλ if the following
constraints hold. The sequence of values ofλ is increasing, the capacities of the
arcs leaving the source are non-decreasing inλ, those of arcs entering the sink are
non-increasing inλ, and all other capacities are constant. The algorithm works as
follows.

For the first value of the parameter,λ1, we compute the maximum flowf1 with
the preflow-push algorithm. Then, we compute the arc capacities forλ2, where
λ2 > λ1. The value ofλ2 can be given beforehand or be computed usingf1.
We construct a new initial preflow forλ2 out of f1 as follows. We setf2(u; t)
to minfcλ2

(s;u); f1(u; t)g for all (u; t) 2 E and f2(s;u) to maxfcλ2
(s;u); f1(s;u)g

for each arc(s;u) 2 E for which h(u) < h(s). The heights of the vertices at the
end of the first max-flow computation result in a valid height function for this new
preflow, so we leave the heights unchanged and again apply the procedures push
and lift until no nodes overflow. This process is repeated until a maximum flow is
found for the right value ofλ.

In the max-flow graph for BRP, as shown in Figure 3.2, we have the parameterK on
the edges towards the sink, so we have a parametric graph. We can easily transform
the graph such that it meets the constraints of Gallo et al. We just switch the source
and sink and reverse all arcs as done in the previous section. Doing so, we have
parametric capacities on the arcs leaving the source and these are non-decreasing
in the parameterK. All other arcs have constant capacity. So, the parametric max-
flow algorithm can be applied to the max-flow graph of BRP. Now, we show that the
parametric algorithm solves BRP in the same time complexity as the preflow-push
algorithm for a fixedK.

For BRP, going to the next max-flow problem means that the capacity and the
flow of the arcs leaving the source are altered, as these are the only arcs with
a parametric capacity, i.e.K. Note that only the arcs that were saturated in the
previous step satisfy the constrainth(u) < h(s). We determine the next value of

3.3 A special case: Random chained declustering 41

K in the same way as in the proof of Theorem 3.4. We add toK the number of
not-assigned blocks divided by the number of saturated disks. This gives at mostm
different values ofK and the sequence is indeed increasing. The height labels are
not influenced and are only increased during the algorithm, such that Theorem 3.5,
which gives an upper bound on the height of the vertices, remains valid for the
complete parametric algorithm.

We can bound the number of basic operations in the following way. Because The-
orem 3.5 is still valid, the number of lift operations remainsO(mn). The total
number of pushes on arcs leaving the source is bounded bym2. This can be seen
as follows. For each new value ofK, a push can occur on these arcs. This is at
mostm times. The arcs are used backwards at most once. In total this givesO(m2

)

pushes. The total number of pushes on arcs to the sink isn, as each arc is used
exactly once. For the arcs between the disk nodes and the block nodes we can use
Theorem 3.5 in the same way as in the proof of Theorem 3.7. This givesO(mn)
pushes. Concluding, the total number of basic operations in the parametric case is
still O(mn).

In the same way as before, we can use the sequential implementation with a list
Q of overflowing vertices to show that we can actually solve the algorithm in the
same time complexity as the number of basic operations. We conclude with the
resulting theorem.

Theorem 3.9. The parametric preflow-push algorithm solves BRP in O(mn) time,
in case jMjj= O(1). 2

3.3 A special case: Random chained declustering

In this last section we consider a special case of duplicate storage, called random
chained declustering. It is based on chained declustering as proposed by Hsiao &
DeWitt [1990]. They store the successive data blocks in a round-robin fashion,
and store for each block that is stored on diski a copy on disk(i + 1)mod m.
Compared to this strategy, we drop the round-robin assignment. We still store two
copies of each data block on a pair of disksi and(i+1)modm, but choose disk
i randomly. For this specific duplicate storage strategy the edge weight partition
graph, as introduced in Section 3.1 becomes a cycle, as all edges between non-
neighboring disks get a weight zero.

Due to the simple structure of this graph we can design the following linear algo-
rithm to solve the decision variant of BRP. Note that in case of random chained
declustering the optimal value oflmax is bounded from below by

�
n
m

�
and from

42 Block-Based Load Balancing

above by maxwi j, where the latter results from a clockwise assignment. We use a
clockwise point of view and define for each diski disk (i+1)modm as its succes-
sor. For ease of notation we assume in the rest of this section that the operations
on the disk numbers are modulom.

Again we first explain the algorithm that solves the decision variant of BRP for
random chained declustering. Theorem 3.10 proves that this algorithm actually
solves this problem. Then, we analyze the complexity of the algorithm and the
complexity of finding the minimum value ofK with a bisection search.

The algorithm starts with an edge with highest weight. Without loss of generality
we assume that this edge connects disk 0 and disk 1. We assignK blocks to disk 0
andw0;1�K � 0 blocks to disk 1. We continue in clockwise direction by defining
the following relation forj = 1; : : : ;m�1:

aj+1; j = minfw j; j+1;K�a j�1; jg; (3.4)

aj; j+1 = w j; j+1�aj+1; j: (3.5)

If aj; j+1 > K for any disk j, the proof of Theorem 3.10 shows that no feasible
solution for this value ofK exists. Otherwise, the algorithm finishes the first loop
with the computation ofam�1;0. At that point there are two possibilities: (i) a
feasible assignment is constructed, i.e.aj�1; j + aj+1; j � K for all j 2 V , or (ii) an
overload occurs on disk 0, i.e.am�1;0 > 0. In case (ii) the algorithm starts a second
loop with a new assignment on the first edge. Instead of assigningK blocks to
disk 0, we assignK� am�1;0 blocks to disk 0. We recompute the values for each
edge with (3.4) and (3.5). Again we conclude infeasibility ifaj; j+1>K for any disk
j. If the second loop has been completed, we have found a feasible assignment,
which is also shown in the proof of Theorem 3.10.

Theorem 3.10. The double loop algorithm solves the decision variant of BRP for
random chained declustering.
Proof. If the algorithm returns a ‘yes’ answer, an assignment is given as well,
which is correct by construction. In case the algorithm aborts with a ‘no’ answer,
we show that no assignment can be constructed withlmax�K. We do this by show-
ing that, in that case, a setV ��V can be constructed for which1jV �j ∑i; j2V � wi j >K,
which is sufficient according to Theorem 3.1.

The algorithm stops if anaj; j+1-value is computed that is larger thanK. To con-
struct the setV � we initializeV �

= f j+1g, move backwards, and add each previous
disk to the setV � if its assigned load equalsK, until we reach the first disk with
load less thanK, say diski. Note thati 6= j. From the construction we know that
ai;i+1 = 0 and that no load can be transferred outside ofV �. For the load withinV �

3.3 A special case: Random chained declustering 43

it holds that

∑
i1;i22V �

wi1i2 = aj; j+1+ ∑
i2V�nf j+1g

l(i) = aj; j+1+(jV �j�1)K > jV �j �K:

(3.6)

This implies, according to Theorem 3.1, that no feasible solution exists with
lmax� K.

To complete the proof we show that in case of completion of the second loop
always a feasible assignment is found. If the second loop is started, we know that
the first loop ended with an overloadq on disk 0. For the second loop we start with
a1;0 = K�q and, consequently,a0;1 is increased byq blocks. AsK �

�
n
m

�
and disk

0 had a load larger thanK after the first loop, there is at least one disk with a load
less thanK. We define the setVmin as the set of disks with load less thanK and we
want to shift the overload on disk 0 to the disks ofVmin. As K �

�
n
m

�
, we know that

∑i2Vmin
(K� l(i))� q. During the second loop there are two possible outcomes: (i)

anaj; j+1-value becomes larger thanK which means infeasibility or (ii) all disks are
filled up toK until all q blocks are shifted away to the disks ofVmin. In the second
situation the increase ofa0;1 does not influence the value ofam�1;0, so the latter is
still equal toq. The new assignment is feasible asa1;0 = K�q. 2

Theorem 3.11. The time complexity of the double loop algorithm is O(m).
Proof. The graph is a cycle ofm disks. The algorithm stops after at most 2 loops of
m steps each and in each step a constant number of operations has to be executed,
which gives the stated result. 2

The algorithm for the decision variant can be used to construct a fast algorithm for
the optimization variant, by doing a bisection search on the value ofK. We know
that a feasibleK exists in the setf

�
n
m

�
; : : : ;maxwi jg. As the cardinality of this set

can be bounded byn, the overall time complexity of the optimization algorithm is
O(m logn).

We saw in the proof of Theorem 3.10 that in case of a ‘no’ answer a setV � �V can
be constructed for which1

jV �j ∑i; j2I wi j > K. This means that the bisection proce-

dure can be improved by using1jV �j ∑i; j2I wi j as a new lower bound in case of a ‘no’
answer. This new lower bound makes sure that each time the decision algorithm
is run, the algorithm stops at least one node further than in the previous run. This
means that we can also bound the number of decision problems to be solved bym,
such that the complexity of the optimization algorithm isO(minfm2;m logng).

The simplicity of the instance graph in case of random chained declustering enables
a very fast algorithm but the freedom for load balancing turns out to be somewhat

44 Block-Based Load Balancing

smaller, as shown by the simulation results that can be found in [Aerts, Korst &
Egner, 2000].

3.4 Discussion

In this section we discuss the difference in input size between BRP and the edge
weight partition problem and the consequences on the complexity of the algo-
rithms. Furthermore, we show the correspondence between the proofs of some
of the complexity results and the unavoidable load theorem.

Size of the input. The input of BRP is given by a set of blocks and for each block
the disks on which it is stored. This means that the size of the input is at leastO(n),
which is obtained if the size of the setsM j is bounded by a constant. Given that
m < n all presented time bounds are polynomial in the size of the input. For the
edge weight partition problem we are given a graph withm nodes and weights on
the edges. This means that the size of the input isO(m2 logn) for random duplicate
storage andO(m logn) for random chained declustering. Consequently, the com-
plexity bounds of the algorithms that all contain a factorn are not polynomial for
the edge weight partition problem. This is a note of mainly theoretical importance,
as from the application a linear correspondence betweenn andm can be derived.

Unavoidable load. The instance graph and the corresponding unavoidable load
theorem are strong instruments for the analysis of BRP. In several proofs in this
chapter we used the unavoidable load argument. In the proof of theorem 3.4, which
gives the complexity of the Dinic-Karzanov algorithm, we describe in the second
part a way of updatingK such that at mostm updates are necessary. The nodes
corresponding to the edges towards the sink that are not saturated do not belong to
the subset that determines the optimum value ofK. The saturated edges in the last
step correspond to the subset that determines the value of the optimal load. In the
proof of Theorem 3.10, which proves the correctness of the double loop algorithm,
we explicitly used the unavoidable load of a subset.

4
Time-Based Load Balancing

In the time-based retrieval problem we take the actual transfer times and the switch
times into account when minimizing the period length, which is defined as the
completion time of the last disk. Again a number of blocks has to be retrieved
from a number of disks. For each block the subset of disks is given on which the
block is stored. Furthermore, for each block the transfer time is given for each disk
on which the block is stored. The problem is to assign (parts of) blocks to the disks
such that the period length is minimized. Compared to BRP, where we minimize
the number of blocks assigned to one disk, the advantage of the time-based ap-
proach is that we can exploit the multi-zone character of disks and the possibility
to read a block in parts from several disks. This gives better load balancing results
and more efficient usage of the disks. Furthermore, in this model heterogeneous
streams and heterogeneous disks can be embedded, which makes time-based load
balancing applicable to a broader range of system settings than block-based load
balancing.

This chapter is organized as follows. In Section 4.1 we introduce a mixed integer
linear programming formulation for TRP. We analyze the computational complex-
ity of TRP in Section 4.2. We prove that TRP is NP-complete in the strong sense
and analyze the complexity of some special cases. In Section 4.3 we introduce

45

46 Time-Based Load Balancing

several algorithms for TRP. We also give performance bounds for these algorithms.
The first three sections deal with RMS for homogeneous streams as well as disks.
In Section 4.4 we discuss the application to other storage strategies. The chapter
ends with a discussion section where we discuss the applicability to heterogeneous
settings.

4.1 TRP modeling: An MILP formulation

To minimize the completion times of the disks, we take the actual transfer times of
the blocks into account and embed the switch time into the model. Furthermore,
we introduce the possibility of partial retrieval. First, we restate the problem for-
mulation that was given in Section 2.4, and afterwards we model TRP as an MILP
problem.

We are given a setJ of n data blocks to be retrieved from a setM of m disks and
for each blockj a setM j of disks on which blockj is stored. For each diski and
block j, we introduce a parameterui j which is one ifi 2 M j and zero otherwise.
The transfer time to retrieve blockj from disk i is given bypi j. Furthermore, the
total switch time of diski is approximated bynis+ c, whereni is the number of
blocks assigned to diski. The switch slopes and the switch offsetc are given.

We introduce for allj 2 J andi 2M a decision variablexi j, indicating the fraction
of block j to be retrieved from diski. Associated with eachxi j is a binary variable
yi j =

�
xi j
�
, indicating whether or not blockj is (partially) retrieved from diski. We

denote the period length byTmax. Then, we can formulate the time-based retrieval
problem as the following MILP problem.

min Tmax (4.1)

s.t. ∑
j2J

xi j pi j + s ∑
j2J

yi j + c� Tmax 8i 2M (4.2)

∑
i2M

xi j = 1 8 j 2 J (4.3)

0� xi j � ui j 8 j 2 J; i 2M (4.4)

yi j � xi j ^ yi j 2 f0;1g 8 j 2 J; i 2M (4.5)

4.2 Complexity of TRP

In this section we analyze the computational complexity of the time-based retrieval
problem. The results in this section are based on the work done by Aerts, Korst,
Spieksma, Verhaegh & Woeginger [2002]. We start with proving that the decision

4.2 Complexity of TRP 47

variant of TRP is NP-complete in the strong sense by a reduction from 3-partition,
which is known to be NP-complete in the strong sense [Garey & Johnson, 1979].
To represent the retrieval problems we use the multiprocessor scheduling notation
as introduced in Section 2.4.

Problem 5 [3-Partition]. Given are a set of itemsA = f1; : : : ;3kg with sizes
a1; : : : ;a3k and a boundB, for which B

4 < ai <
B
2 for all i and ∑i ai = kB. The

question is whether or notA can be partitioned intok subsets, such that the sum of
the item sizes of each subset equalsB. 2

Theorem 4.1. The decision variant of TRP, i.e. R Mj, pmtn�, set-up Cmax� T , is
NP-complete in the strong sense.
Proof. It is obvious that we can check in polynomial time for a given assignment
whether or not all disks are finished at timeT , so the problem is an element of the
class NP. To show that the problem is NP-complete in the strong sense we show
that a polynomial time reduction exists from 3-partition to TRP. We note that in
this reduction the largest number of the TRP instance is polynomially bounded by
the largest number of the 3-partition instance.

Considering an instance of 3-partition, we construct an instance of TRP in the
following way. We takek disks and define for each numberaj of the 3-partition
instance a blockj, which is stored on all disks, i.e.ui j = 1 for all i 2M, and has a
transfer timepi j = pj = aj on each diski. Furthermore, we define the time bound
of TRP asT = 4B, and the valuess andc of the switch time function asB and 0,
respectively. Now we show that a positive answer for 3-partition is equivalent to a
positive answer for TRP.

) Given a solution to the 3-partition instance, we assign each subset to a different
disk. For each disk the sum of the transfer times equalsB and threey-values equal
one, so the completion time for each disk equalsB+3s = 4B.

(Assume we have an assignment for TRP with value 4B. As the transfer times are
strictly larger than zero ands = B, no disk retrieves more than three blocks, which
means that no blocks are preempted. Consequently each disk retrieves exactly three
blocks. Combining this with the facts that∑ pi = kB and no disk exceeds 4B we
conclude that the blocks assigned to each disk form a feasible subset in 3-partition.

2

Note that the above construction also proves thatP M j Cmax� T is NP-complete
in the strong sense. In the theorem we did not put any restriction on the setsM j

and we usedM j = M for all j 2 J. Concluding from that we can also state the
following corollary for a special case of TRP.

48 Time-Based Load Balancing

Corollary 4.1. The decision variant of TRP is NP-complete in the strong sense,
even if all blocks are stored on all disks and each block has the same transfer time
on all disks, i.e. pi j = pj for all i. 2

From the above results we cannot conclude that TRP for RDS is NP-complete in
the strong sense, as it might be the case that this restriction on the setsM j makes the
problem easier. However, the next theorem proves with a reduction from a specific
variant of the satisfiability problem that this is not the case. We first introduce
this variant of satisfiability, which is NP-complete in the strong sense as proved by
Tovey [1984].

Problem 6 [Tovey-SAT]. Given a collection of clauses on a finite set of boolean
variables, where each clause consists of two or three variables and each variable
occurs at most three times, can we find a truth assignment to the variables that
satisfies all the clauses? 2

We note that in an instance of Tovey-SAT each variable occurs at most twice in
the positive form and at most twice in the negative form without loss of generality.
This can be seen as follows. In case a variable occurs only in one form, positive or
negative, the corresponding literals and clauses can be omitted from the instance
by choosing a trivial truth assignment for the variable, that makes the literals and
the clauses true.

Theorem 4.2. The decision variant of TRP for RDS, or equivalently R jMjj =

2, pmtn�, set-up Cmax� T , is NP-complete in the strong sense.
Proof. We prove thatR jM jj = 2, pmtn�, set-upCmax� 2 is NP-complete in the
strong sense, which implies the theorem.

We first prove that a polynomial time reduction from Tovey-SAT toP jM jj =

2 Cmax� 2 exists. Next, we show that the problem with preemption and set-up
times is at least as difficult, which implies that the decision variant of TRP for
RDS is NP-complete in the strong sense.

We translate an instance of Tovey-SAT into an instance ofP jM jj= 2 Cmax� 2 in
the following way. An instance of Tovey-SAT consists of variablesx1; : : : ;xn and
clausesc1; : : : ;cm. We define the TRP instance as follows.

� For each variablexi we define two disks,m(xi) andm(x̄i), and a blockj(xi)

with transfer time two which is stored onm(xi) andm(x̄i).

� For each clausec j with three elements we define a diskm(c j).

� For each clausec j with two elements we define three disks,m(c j), m1(c j),
andm2(c j), and three blocks. The first two blocks,j1(c j) and j2(c j), have

4.2 Complexity of TRP 49

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

�
�
�
�
�

�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���

���
���
���

����
����
����

����
����
����

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

j1(c4)

m2(c4)

m(x1)

m1(c4)

j2(c4)

m(c3)

m(x̄4)m(x4)m(x̄3)m(x3)m(x2)m(x̄1) m(x̄2)

j(x̄i;c j)

m(c4)m(c2)m(c1)

j(x1) j(x2) j(x3) j(x4)

j(c4)

j(xi;c j)

Figure 4.1. Instance of TRP for RDS corresponding to Tovey-SAT instance given
by (x1_ x2_ x̄3)^ (x̄1_ x2_ x4)^ (x̄2_ x3_ x4)^ (x3_ x̄4).

transfer time two and are stored on disksm1(c j) andm2(c j). The third block
j(c j) has transfer time one and is stored onm(c j) andm1(c j).

� For each positive occurrence of variablexi in clausec j we define a block
j(xi;c j) that has transfer time one and is stored on disksm(c j) andm(xi).
For each negative occurrence ofxi, i.e. x̄i a block j(x̄i;c j) is constructed with
transfer time one that is stored on disksm(c j) andm(x̄i).

Figure 4.1 shows an example of the translation. Note that due to the construction
the disksm1(c j) and m2(c j) are completely filled byj1(c j) and j2(c j). Conse-
quently, a diskm(c j) corresponding to a clause with two elements, likec4 in the
figure, has only space for one block with transfer time one. In the figure we already
assigned these jobs to the machines.

Now we show that a feasible truth assignment for Tovey-SAT is equivalent to a
feasible solution forP jM jj= 2 Cmax� 2.

) Assume that we have a feasible truth assignment. Considering a variablexi with
the value ‘true’, we (i) retrieve blockj(xi) from diskm(x̄i), (ii) retrieve the blocks
j(xi;c j) corresponding to positive occurrences ofxi from disk m(xi) (note that at
most two of these exist), and (iii) retrieve the blocksj(x̄i;c j) from disk m(c j).
For a variable with value ‘false’ the assignments are the other way around, which
means that blockj(xi) is retrieved from diskm(xi), blocks j(xi;c j) corresponding

50 Time-Based Load Balancing

to positive occurrences ofxi from diskm(c j), and blocksj(x̄i;c j) from diskm(x̄i).

In short, it means that the assignment of the blocksj(xi) is opposite to the thruth
assignment and that the blocksj(xi;c j) and j(x̄i;c j) that are retrieved from disks
m(xi) or m(x̄i) make the corresponding clauses true. The disksm(xi) and m(x̄i)

get assigned at most two units of transfer time as can be seen from (i) and (ii),
and, as each clausec j is satisfied, this also holds for the disksm(c j). So the above
assignment gives a feasible schedule forP jM jj= 2 Cmax� 2.

(Assume that we have a feasible schedule for TRP. We assign a variablexi the
value ‘true’ in case blockj(xi) is retrieved from diskm(x̄i), and ‘false’ otherwise.
This means that the variables corresponding to the blocksj(xi;c j) and j(x̄i;c j) that
are scheduled on the disksm(xi) and m(x̄i), make their clauses true. As in the
schedule no overload occurs on the clause disksm(c j), for each clause at least one
of the blocksj(xi;c j) or j(x̄i;c j) is scheduled onm(xi) or m(x̄i), such that we have
constructed a feasible truth assignment for Tovey-SAT.

From the above we conclude that the non-preemptive case is NP-complete in the
strong sense. It is now sufficient to show that the problem with preemption and
set-up times is at least as difficult. We do this by showing that the correspondence
explained above still holds in case of preemption and a set-up time of3

4. Further-
more, we change the transfer times of blocksj(xi) with transfer time two into a
new transfer time of54 and of the other blocks into a transfer time of1

4.

Due to the set-up times, the only way to retrieve the blocksj1(c j) and j2(c j) before
time two is as depicted in Figure 4.1, which means that these blocks cannot be
preempted in a feasible schedule.

We now show that without loss of generality we may assume that the blocksj(xi)

are not preempted. Assume that one of the large blocksj(xi) is preempted. This
means that it takes a set-up time of3

4 on bothm(xi) andm(x̄i). The transfer time
of the block is5

4 and has to be divided over both disks. At least on one of the disks
the remaining idle time is less than34, such that no second block can be retrieved
from that disk, again due to the set-up time. Consequently, it is better to retrieve
block j(xi) entirely from that disk and leave the other disk empty.

As the larger blocksj(xi) are not preempted, all blocks with transfer time1
4 are

retrieved from disks from which only similar small blocks are retrieved. It is always
possible to retrieve two of these small blocks from one disk, but it is impossible
to retrieve (parts of) three blocks from one disk, as three times the set-up time is
larger than 2. This means that these small blocks are neither preempted.

We conclude that preemption with set-up times does not change the complexity of

4.2 Complexity of TRP 51

the problem, such thatP jM jj = 2, pmtn�, set-upCmax� 2 is NP-complete in the
strong sense. The case of independent disks, i.e.R jM jj= 2, pmtn�, set-upCmax�

2 is a generalization. 2

It is a well-known result that multiprocessor scheduling problems with preemption
but without set-up times can be modeled as a linear programming problem and
consequently are solvable in polynomial time. Machine eligibility constraints fit in
such an LP model as can be seen from the MILP formulation of TRP. For the sake
of completeness we hence add the following corollary.

Corollary 4.2. R M j, pmtn� Cmax is solvable in polynomial time. 2

In general, complexity results for multiprocessor scheduling problems change if
the number of processors is considered to be a part of the problem definition in-
stead of part of the input. In the remainder of this section we focus on retrieval
problems with a fixed number of disks. These problems are of practical inter-
est, as they describe the retrieval problems for a given disk array. We start with
a complexity analysis of the problems without preemption. We first prove that
P jM jj= 2, set-upCmax� T is NP-complete by a reduction from partition, which
is NP-complete in the ordinary sense [Garey & Johnson, 1979].

Problem 7 [Partition]. Given are a set of itemsA = f1; : : : ;kg with sizesa1; : : : ;ak

and a boundB =
1
2 ∑i ai. The question is whether or notA can be partitioned into

two subsets such that the sum of the elements of each subset equalsB. 2

Theorem 4.3. P2 jM jj= 2, set-up Cmax� T is NP-complete.
Proof. We define the correspondence between partition and the scheduling prob-
lem as follows. For each numberaj of the partition problem we define a blockj
with pj = aj, which can be retrieved from both disks. The time boundT of the
scheduling problem equalsB. It is straightforward to see that both problems are
equivalent. 2

Note that in this case neither the set-up times nor the eligibility constraintsjM jj= 2
add anything to the problem, which makes the above proof also applicable for
P2 Cmax� T .

The proof of Theorem 4.3 applies to a number of retrieval problems. To prove
thatPm jM jj= 2, set-upCmax� T is NP-complete, we can use the samek blocks
as in the proof of Theorem 4.3. The otherm�2 machines are left idle. Further
generalization gives thatPm M j, set-upCmax� T andRm M j, set-upCmax� T
are NP-complete as well.

52 Time-Based Load Balancing

The same proof holds for the above problems with preemption by taking a posi-
tive set-up times < minaj and transforming the transfer times intopj = aj � s.
Observe that the sum of the transfer times equals 2B, such that the first two ma-
chines are completely filled without preemptions, and consequently no blocks can
be preempted, due to the positive set-up time.

So far, all problems with a fixed number of disks are shown to be NP-complete in
the ordinary sense. This means that the best we can get regarding an optimization
algorithm is an algorithm that runs in pseudo-polynomial time, which means that
the runtime can be bounded by a polynomial in the size of the input and the largest
number in the input. We describe such a pseudo-polynomial time algorithm for this
set of retrieval problems. We start with the assumption that all transfer times and
the parameterss andc of the switch time function are integer. Then, the following
theorem holds.

Theorem 4.4. Rm M j, set-up Cmax� T is solvable in pseudo-polynomial time.
Proof. We prove this theorem by giving an algorithm with a time complexity that
is bounded by a polynomial in the size of the input and the largest number in the
input. The algorithm is a generalization of a dynamic programming algorithm for
the knapsack problem [Martello & Toth, 1990]. We assign the blocks one by one
according to a given block list.

We try to solve the question whether or not we can find a schedule that is finished
at timeT . We represent the state of the algorithm by a vector(x1; : : : ;xm), where
xi 2 IN denotes the amount of transfer time plus switch time assigned to diski. We
can restrict ourselves to states for which 0� xi � T for all i, such that the number
of possible states equals(T +1)m.

Next, we defineFk as the set of states that can be reached after assigning the firstk
blocks of the block list and start withF0 = f(0;0; : : : ;0)g. We consider in iteration
k block k of the block list and we can determineFk with the recurrence relation

Fk =
�

x+ pikei x 2 Fk�1^ i 2Mk
	
; (4.6)

whereei is theith unit vector. We omit the states in which any of the valuesxi is
larger thanT , as these states never lead to a feasible assignment.

Now the decision problem can be reformulated as follows. A feasible assign-
ment exists if and only ifFn 6= /0. The complexity of this algorithm is bounded
by O(T m �n �m), with m being a constant, so it is polynomial in the size of the
input andT . 2

4.2 Complexity of TRP 53

A similar dynamic programming algorithm can be constructed for the following
problems, because these are all special cases ofRm M j, set-upCmax� T .

� P2 jM jj= 2, set-upCmax� T ,

� Pm jM jj= 2, set-upCmax� T , and

� Pm M j, set-upCmax� T .

Even in case all transfer times and the parameterss andc of the switch time func-
tion are rational numbers this result holds. However, the complexity of the dynamic
programming algorithm grows considerably, as the number of states depends on the
least common multiple of the denominators. As the number of different denomi-
nators is of the same order of magnitude as the number of zones on a disk and as
this number is a constant, the number of states remains polynomially bounded by
the largest number of the instance.

We end this section by proving thatRm M j, pmtn�, set-up Cmax is solvable in
pseudo-polynomial time as well. Recall from the MILP formulation that a schedule
is fully specified by non-negative valuesxi j for all i2M, j 2 J, for which∑m

i=1xi j =

1. A set-up times is added to diski if and only if xi j > 0, i.e.yi j = 1. A block j is
preempted if the value of some of its variablesxi j lie strictly between 0 and 1. We
first prove a lemma that bounds the number of preemptions in an optimal schedule
in which the number of preemptions is minimized.

Lemma 4.1. For any instance of Rm Mj, pmtn�, set-up Cmax, an optimal schedule
exists with at most 1

2m(m�1) preempted blocks.
Proof. Among all optimal schedules, select an optimal scheduleσ with the small-
est number of preempted parts, i.e. variablesxi j with a positive value. Each pre-
empted block inσ occupies at least two disks. If more than1

2m(m�1) blocks are
preempted, at least two of them occupies at least two common disks, as at most�m

2

�
=

1
2m(m�1) different pairs of disks exist. We show that this contradicts the

assumption thatσ has the smallest number of preempted parts, which proves the
lemma.

Consider inσ the blocks j and j0 and the disksi and i0 for which the valuesxi j,
xi0 j, xi j0 , xi0 j0 are all non-zero. Without loss of generality we assume thatpi j=pi j0 �

pi0 j=pi0 j0 . We next show that we can reduce at least one of thex-values to zero,
without losing optimality of the schedule. We do this by shifting an amountε =

minfxi j;xi0 j0 pi j0=pi jg of block j from disk i to i0 and an amountδ = εpi j=pi j0 of
block j0 back from diski0 to i. More formally, we construct a scheduleσ0 that
results fromσ by setting

x0i j = xi j� ε; x0i j0 = xi j0 +δ;
x0i0 j = xi0 j + ε; x0i0 j0 = xi0 j0�δ:

54 Time-Based Load Balancing

Note thatσ0 is still feasible as all values are nonnegative. The total load on diski
changes by

�εpi j +δpi j0 = � εpi j + εpi j = 0:

The total load on diski0 increases by

εpi0 j�δpi0 j0 = εpi0 j� εpi0 j0 pi j=pi j0 � εpi0 j� εpi0 j0 pi0 j=pi0 j0 = 0:

Hence, the makespan of scheduleσ0 is at most the makespan of scheduleσ, and as
σ is an optimal schedule,σ0 is optimal as well. By the definition ofε andδ, at least
one of the valuesx0i j andx0i0 j0 equals zero. Thus,σ0 is an optimal schedule with a
smaller number of preempted parts, which contradicts the definition ofσ. 2

Theorem 4.5. Rm M j, pmtn�, set-up Cmax can be solved in pseudo-polynomial
time.
Proof. By Lemma 4.1 it is sufficient to search within the setS of schedules
with at most1

2m(m�1) preempted blocks. We partitionS into classes of similar
schedules; two schedules belong to the same class if and only if they preempt
exactly the same blocks and assign the parts to exactly the same disks. There are
only O(nm(m�1)=2

) possibilities for selecting the preempted blocks from a total ofn
blocks. For each preempted block, there are at most 2m possibilities for assigning it
to a subset of the disks. Hence, the overall number of such classes is bounded from
above byO(nm(m�1)=22m2

(m�1)=2
), which is a polynomial inn, asm is constant.

We now show how to compute an optimal schedule from a fixed class. We start
with generating all possible load vectors for the non-preempted blocks in this class,
where a load vector specifies for each disk the total amount of assigned transfer
time including set-up time. This can be done in pseudo-polynomial time by stan-
dard dynamic programming, in a similar way as in the proof of Theorem 4.4. It
remains to add the load of the preempted blocks to the load vectors. For each pre-
empted blockj, let M�

j be the set of disks to which it is assigned, according to the
class under consideration. Now, blockj adds a set-up time to each of the disks
i 2 M�

j . Furthermore, it adds a transfer timexi j pi j to each diski 2M�
j . Obviously,

we must have∑i2M�
j
xi j = 1, andxi j = 0 for all i =2 M�

j . So, the problem to deter-
mine thexi j values of the preempted blocks can be formulated as a linear program,
which can be solved in polynomial time.

The final output is the best solution that we find over all classes. This can be done
in pseudo-polynomial time, which proves the theorem. 2

In Figure 4.2 we give an overview of the complexity results that are derived in
this section. For completeness sake we also include the block-based problems

4.3 Algorithms for TRP 55

discussed in Chapter 3.

Polynomially
solvable

NP-hard,
pseudo-polynomially solvable

Strongly NP-hard

P M j, p j = 1 Cmax

R M j,pmtn� Cmax

P2 jM jj= 2, set-upCmax

Pm jM jj= 2, set-upCmax

Rm M j, pmtn�, set-upCmax

Rm M j, set-upCmax

P jM jj= 2, set-upCmax

P M j, set-upCmax

P M j, pmtn�, set-upCmax

R jM jj= 2, pmtn�, set-upCmax

-

Z

Z

Z

Z

Z
Z~

�
�
�
��1

-

-

�
�
�*

-

�
�
�
��:

Figure 4.2. Complexity diagram of retrieval problems. The arrows indicate re-
lationships between the problems, in the sense that adding or generalizing a job
or machine characteristic transforms the first one into the other one. Arrows that
cross a vertical line correspond to a generalization or specification that makes the
problem harder.

From the figure, we can conclude that the retrieval problems with unit-processing
times or with preemption without set-up times are solvable in polynomial time.
The problems with a fixed number of disks are all pseudo-polynomially solvable.
Dropping these three assumptions makes the problems NP-hard in the strong sense.
This is indicated in the figure with the arrows, which are all directed from one re-
trieval problem to a more generalized one. Furthermore, we see that the eligibility
constraints do not influence the complexity of the problems. The complexity results
are in line with results for multiprocessor scheduling problems without eligibility
constraints.

4.3 Algorithms for TRP

In this section we present algorithms for TRP. As TRP is proven to be NP-complete
we cannot expect to find a polynomial time optimization algorithm. We first present
two approximation algorithms that use the solution of an LP-relaxation. Then, we
introduce a list scheduling heuristic and a postprocessing procedure, that can be
used to improve non-preempted solutions.

56 Time-Based Load Balancing

4.3.1 LP rounding

A straightforward way to derive an algorithm for TRP is by solving its LP-
relaxation and rounding up they-variables. Without loss of generality we can
restrict ourselves to solutions of the LP-relaxation where eachy-variable has the
same value as the correspondingx-variable, as we want to minimize the period
length ands � 0. This means that we can omit they-variables from the formula-
tion. We use an LP-solver to solve the resulting LP-problem, which is formulated
as follows.

min Tmax (4.7)

s.t. ∑
j2J

xi j(pi j + s)+ c� Tmax 8i 2M (4.8)

∑
i2M

xi j = 1 8 j 2 J (4.9)

0� xi j � ui j 8 j 2 J; i 2M (4.10)

The so-called LP rounding algorithm for TRP works as follows. It solves the LP-
relaxation, rounds up they-variables, and computes the actual cost with

Tmax= max
i2M

∑
j2J

xi j pi j + s ∑
j2J

yi j + c: (4.11)

We denote for an instanceI the cost of a solution of LP rounding bySround(I),
the cost of an optimal solution bySopt(I), and the cost of the outcome of the LP-
relaxation bySLP(I). The following theorem gives a performance bound for LP
rounding.

Theorem 4.6. For each instance I of TRP we have

Sround(I)
Sopt(I)

� 1+
m � s

n
m � (pmin+ s)+ c

; (4.12)

where pmin equals the transfer time of a block in the innermost zone.
Proof. First we give an upper bound on the number of preemptions, as non-
integraly-variables cause the increase in the actual cost, compared to the cost of
a solution of the LP-relaxation. The number of non-zero variables in a solution
of a linear programming problem, when using the simplex method, is at most the
number of constraints. In the LP-relaxation of the retrieval problem we have the
constraints (4.8) and (4.9) which arem+ n constraints. As for eachj 2 J at least
onex jm should be larger than 0, this implies that the number of preemptions is at
mostm. So,SLP(I)+m � s is an upper bound for the solution value of LP rounding.

4.3 Algorithms for TRP 57

Furthermore, note thatSLP(I) is a lower bound on the optimal cost of instanceI
and

SLP(I)�
n
m
(pmin+ s)+ c: (4.13)

With these bounds we get

Sround(I)
Sopt(I)

�
SLP(I)+m � s

SLP(I)
= 1+

m � s
SLP(I)

� 1+
m � s

n
m(pmin+ s)+ c

:

2

In practice, the ratio betweenn andm depends on the ratio between disk transfer
rate and consumption rate, which gives an indication for the number of clients that
can be served by one disk. For a given set of system parameters this ratio is more
or less constant, and consequently, them factor in the numerator of (4.12) makes
that the performance bound grows in the size of the system. In the next section we
describe an algorithm that does not have this disadvantage.

4.3.2 LP matching

In this section we derive a second approximation algorithm based on LP-relaxation.
We follow the work of Lenstra, Shmoys & Tardos [1990] who use an LP-relaxation
to solve the non-preemptive scheduling problemR Cmax. With a matching descrip-
tion of the preempted jobs of the LP-solution, they prove that a non-preemptive
solution can be constructed out of the LP-solution in which each machine gets as-
signed at most one of the blocks that was preempted in the LP-solution. For TRP
this means that the increase in cost on top of the cost of the LP solution is at most
pmax+ s, wherepmax denotes the maximum transfer time. This algorithm is called
LP matching. We denote a solution of the LP matching algorithm bySmatch and
derive a performance bound as follows.

Theorem 4.7. For each instance I of TRP we have

Smatch(I)
Sopt(I)

� 1+
pmax+ s

n
m(pmin+ s)+ c

: (4.14)

Proof. From the proof of Theorem 4.6 and the fact that the matching adds at most
pmax+ s to the LP-solution the stated result follows immediately. 2

58 Time-Based Load Balancing

4.3.3 List scheduling heuristic

Next to the two above approximation algorithms we introduce a list scheduling
heuristic for TRP. This is a time-based version of the linear reselection heuristic
as introduced by Korst [1997]. The algorithm is comparable to shortest queue
scheduling. It assigns the blocks one by one to the disks according to a given block
list. Each block j is assigned to a diskm 2 M j for which the resulting load is
minimal, where the resulting load is defined as the currently assigned load plus the
load that would result from the assignment ofj. In a second round we reconsider
all blocks and check for each blockj if reassigning it results in a lower value of
maxi2Mj l(i). If so, we reassign the block.

4.3.4 Postprocessing

The LP matching algorithm as well as the list scheduling heuristic result in a so-
lution without preempted blocks. To improve the solution we can perform a post-
processing step where we allow preemption again. We do this by trying to preempt
each blockj = 1; : : : ;n in such a way that the workload of its disks is more bal-
anced. For duplicate storage we do the following. Consider a blockj for which
a request is assigned to diski1 and which is also stored on diski2. We reassign a
fraction x = minf1; l(i1)�l(i2)�s

pi1 j+pi2 j
g from disk i1 to disk i2 if this fraction x > 0. The

solution after the postprocessing step is at least as good as the outcome without
postprocessing, so for LP matching with postprocessing the performance bound of
Theorem 4.7 remains valid.

4.4 Random multiplication and random striping

The load balancing approach that we presented in this chapter is applicable to a
broad range of storage strategies and system settings. In this last section of the
chapter we show how the models and algorithms for TRP work for other storage
strategies.

First of all, we note that the MILP formulation as stated in Section 4.1 is valid for
partial duplication and other multiplication strategies, such as triple storage. All
these strategies can be modeled by choosing an appropriate value for eachui j and
the LP-based approximation algorithms can be used for solving the problem. The
postprocessing procedure can be redefined such that it holds for other multiplica-
tion storage strategies than duplicate storage.

In case of random striping we have to adapt the MILP formulation to subblocks.

4.4 Random multiplication and random striping 59

last bit

parity subblock

subblock 2

subblock 1

2/3

2/3

1/31/3

first bit

Figure 4.3. Example shows that for random striping with preemption it can be
impossible to retrieve the three parts with one disk access per part.

One way to do this is by redefining (4.3) as∑i xi j = r for each blockj, wherer is
the parameter of random striping. Then, the other constraints and the optimization
criterion remain unchanged if we considerpi j to be the transfer time of a subblock.
However, if we still allow fractional values forxi j, it might be impossible to retrieve
each fraction with only one access, as can be seen from Figure 4.3.

The figure shows forr = 2 a block for which each correspondingx-variable gets
assigned a value 2=3. The values sum up to two, but it is impossible to retrieve
each subblock with only one access, in such a way that the original block can be
reconstructed out of the parts, as two of the subblocks need the first bit and two of
the subblocks need the last. This means that the linear estimation of the switch time
is no longer an upper bound, as the number of accesses per disk can no longer be
computed with they-variables. One way to get a feasible ILP model is by omitting
preemption, i.e. by adding the integrality constraintxi j 2 f0;1g for all i and j. This
results in the following ILP model.

min Tmax (4.15)

s.t. ∑
j2J

xi j(pi j + s)+ c� Tmax 8i 2M (4.16)

∑
i2M

xi j = r 8 j 2 J (4.17)

0� xi j � ui j 8 j 2 J; i 2M (4.18)

xi j 2 f0;1g 8 j 2 J; i 2M (4.19)

In a solution to this ILP model no jobs are preempted. To improve a non-preempted
solution we could use the observation that we can reconstruct the original block
if at most two of thex-values are fractional. The algorithm that we propose for

60 Time-Based Load Balancing

random striping works then as follows. We drop constraint (4.19) to get an LP
problem and perform a rounding procedure on the fractional LP solution. During
rounding we make sure that for eachj at most twoxi j-values are fractional. In
the simulation experiments that are described in the next chapter, we implemented
random striping forr = 2. The rounding procedure that we implemented works as
follows. For each preempted job we check if the number of fractional values is two.
If so, we leave thex-values unchanged and add the remaining part ofs to the load of
the corresponding disk. This is equivalent to rounding they-values in case of RDS.
If all three values are fractional, we take the largest and round the corresponding
x-value up to one and subtract this part from one of the other fractions. If one of
the others is smaller than this fraction we take that one, otherwise we subtract it
from the slowest subblock. Note that rounding a variablexi j increases the load of
disk i with at most13(pi j + s).

Next to this LP rounding algorithm we implemented a list scheduling heuristic.
In this heuristic we initially assign the two fastest subblocks to the corresponding
disks. Then, we check if reassigning a subblock results in an improvement. For
possible reassignment, we consider the blocks in the following order. We start
with the blocks for which the largest transfer time is smallest. For these blocks
the difference between this slowest subblock and the other two blocks is smallest.
We first check if dropping the second slowest subblock and using the slowest one
results in an improvement. Otherwise we check if reassigning the fastest subblock
results in an improvement. In this way we check for all blocks if reassigning one
of the subblocks results in an improvement. The algorithm performs even better if
we do a second run of reassignments.

4.5 Discussion

So far we discussed in this thesis homogeneous settings, where the disks of the
disk array are all identical and the streams requested by the clients have the same
maximum bit-rate. For the application of BRP, which uses unit transfer times,
this homogeneous setting is essential. However, for TRP, where we can take the
actual transfer time of each block-disk combination into account, we can drop these
assumptions and apply models and algorithms similar to the ones described in this
chapter. In this discussion section we give an idea of how the models should be
adapted.

Heterogeneous disks. In case of heterogeneous disks the MILP model remains
valid and the introduced algorithms can thus be used. We still use constant data
length blocks, so a fast disk can retrieve in each period more blocks than a slower

4.5 Discussion 61

one. The storage strategy becomes a bit more complicated as we should take the
disk speed into account. The retrieval algorithms automatically assign the work-
load according to disk speed, as they try to minimize the period length. Note that
in this case the parameters of the switch time function become disk dependent pa-
rameters.

Heterogeneous streams. A second generalization is a video-on-demand system
that offers streams at different bit-rates, e.g. due to different quality levels. Recall
that in the design of a homogeneous system the block size was related to the period
length. In case of heterogeneous streams we have to configure the system according
to a certain period length and determine a block size for each stream individually.
Again, the block size of each stream is large enough to provide video in a worst-
case period. The number of streams that can be admitted depends on the bit-rates
required for the streams. In a highly loaded system it is possible that a newly
requested stream is only admitted if it is a low bit-rate stream. The models and
algorithms discussed in this chapter can be used to configure the system, to do
the admission control, and to distribute the load in each cycle when the system is
running, in the same way as for homogeneous streams.

5
Performance Analysis

In this chapter we analyze the performance of the storage and retrieval algorithms.
We investigate their load balancing performance as well as the resulting disk effi-
ciency. We start with a probabilistic analysis of random redundant storage. With
this analysis for the block-based approach we derive upper bounds on the proba-
bility that the maximum load is at least a certain value. In Section 5.2 we analyze
with simulations the performance of the retrieval algorithms for RDS, partial du-
plication, and random striping with parameterr = 2. We compare the block-based
and time-based retrieval algorithms regarding period length. We use the average
period length, a 99% value of the observed values, and the worst-observed value in
our comparison. In Section 5.3 we give additional comments on the performance
of storage strategies.

5.1 Probabilistic analysis of block-based retrieval

In this section we give a probabilistic analysis of random redundant storage. With
this analysis we show that random redundant storage in general, and random du-
plicate storage in particular, performs well, in the sense that the load is well dis-
tributed over the disks with high probability, where the load of a disk is defined as

63

64 Performance Analysis

the number of blocks assigned to it. We consider the following problem. Given
aren requests that have to be retrieved fromm disks, determine a bound on the
probability that for an optimal load balance the maximum load is at leastα for
an integer value ofα >

�
n
m

�
. For a more elaborate probabilistic analysis of ran-

dom redundant storage strategies we refer to Sanders, Egner & Korst [2000]. They
show that random duplicate storage yields in each period a load of at most

�
n
m

�
+1

with high probability forn ! ∞ andn=m fixed. Here, we are mainly interested in
probabilistic bounds for practical values ofn andm. We start this section with an
analysis of random duplicate storage.

5.1.1 Duplicate storage

An instance of the retrieval problem for duplicate storage can be represented by an
instance graphG = (V;E) that was introduced in Chapter 3. The graph consists
of a node for each disk, an edge between each pair of nodes, and a weight on
each edge giving the number of blocks that has to be retrieved from one of the
disks corresponding to the endpoints. Theorem 3.1 gives the relation between the
optimal load distribution and the unavoidable load of a subset of the disks. We
restate the result here. For duplicate storage an optimal distribution leads to a load
of

lmax= max
V 0�V

&
1
jV 0j ∑

fi; jg�V 0

wi j

'
: (5.1)

This means that the probability of a certain load is related to the probability of
the occurrence of a subset with a certain total weight. For completeness we state
the following two propositions from probability theory that we use in our analy-
sis [Motwani & Raghavan, 1995].

Proposition 1 [Principle of inclusion-exclusion]. LetE1; : : : ;EN be arbitrary
events. Then

Pr

"
n[

i=1

Ei

#
= ∑

i
Pr[Ei]�∑

i< j
Pr[Ei\E j]+ ∑

i< j<k

Pr[Ei\E j\Ek]� : : :

(5.2)

2

This proposition describes the probability of a union of events and holds for inde-
pendent as well as dependent events. The next proposition states that a more simple
form can be used to derive bounds. If we cut off the sum after an even number of

5.1 Probabilistic analysis of block-based retrieval 65

summands we get an upper bound and if we cut off the sum after an odd number
of summands we get a lower bound.

Proposition 2 [Boole-Bonferonni inequalities]. LetE1; : : : ;EN be arbitrary events.
Then, for evenk

Pr

"
n[

i=1

Ei

#
�

k

∑
j=1

(�1) j+1 ∑
i1<i2<:::<i j

Pr
�

Ei1\ : : :\Eij

�
(5.3)

and for oddk

Pr

"
n[

i=1

Ei

#
�

k

∑
j=1

(�1) j+1 ∑
i1<i2<:::<i j

Pr
�

Ei1\ : : :\Eij

�
: (5.4)

2

The goal is to find an upper bound on the probability that, for a given instance of
the retrieval problem, an optimal assignment results in a maximum load of at least
α. This means that we want to boundP[lmax� α] from above. According to (5.1)
we get

Pr[lmax� α] = Pr

"
max
V 0�V

&
1
jV 0j ∑

fi; jg�V 0

wi j

'
� α

#

= Pr

"
9V 0 �V : ∑

fi; jg�V 0

wi j � (α�1)jV 0j+1

#
: (5.5)

For a given a subsetV 0�V , we can determine the probability that it has an unavoid-
able load of at leastα. We see this as an event, such that (5.5) is a union of events
and we can apply the principle of inclusion-exclusion. As the exact computation
of (5.2) is too complicated, we use a Boole-Bonferonni inequality withk = 1 to
get an upper bound. We take only the first summand, as adding the next two sum-
mands makes the computation much more complex, whereas the accuracy will not
be influenced that much. Later in this section we compare the upper bounds with
simulation results and thereby show that the bound fork = 1 is sufficiently good for
the values ofα that we are interested in. The Boole-Bonferonni inequality gives

66 Performance Analysis

Pr

"
9V 0 �V : ∑

fi; jg�V 0

wi j � α(jV 0j�1)+1

#
�

∑
V 0�V

Pr

"
∑

fi; jg�V 0

wi j � α(jV 0j�1)+1

#
: (5.6)

Each block is stored on a randomly chosen pair of disks. To generate a problem
instance, we randomly choose an edge from the instance graph for each block.
Whether a block contributes to the load of a subsetV 0 can then be seen as a trial
with success probabilityp, where

p =
edges inV 0

jEj
=

1
2jV

0j(jV 0j�1)
1
2m(m�1)

: (5.7)

For a given subsetV 0 the total load is the result ofn independent trials with success
probability p, such that the load of a subsetV 0 is binomiallyB(n; p) distributed.
This means that

Pr

"
∑

fi; jg�V 0

wi j = k

#
=

�
n
k

�
pk
(1� p)n�k: (5.8)

For convenience, we define the probability that aB(n; p) distributed random vari-
able is at leastβ asF(n; p;β), i.e.

F(n; p;β) =
n

∑
i=β

�
n
i

�
pi
(1� p)n�i: (5.9)

Using this definition we get∑V 0�V F(n; p;(α�1)jV 0j+1) as an upper bound for
Pr[lmax� α].

To compute the upper bound we still have to consider a large number of terms, as
we sum over all subsets. However, for duplicate storage, subsets result in the same
probability if they have the same number of nodes. We can use this symmetry to
decrease the number of terms considerably. We determine for each subset-sizei,
1� i � m, the success probabilitypi and the number of times that such a subset
occurs. The success probabilitypi depends on the ratio between the number of
edges in the subset and the number of edges in the complete graph, sopi =

i(i�1)
m(m�1) ,

5.1 Probabilistic analysis of block-based retrieval 67

and the number of times a subset occurs equals
�m

i

�
. Then, we get

Pr[lmax� α] �
m

∑
i=1

�
m
i

�
F(n; pi;(α�1)i+1)

=

m

∑
i=1

�
m
i

� n

∑
j=(α�1)i+1

�
n
j

�
(pi)

j
(1� pi)

n� j: (5.10)

With this equation we can compute the upper bounds on the probabilities. Table 5.1
gives the results for duplicate storage for a disk array of 10 disks.

n α= n=m+1 α= n=m+2 α= n=m+3

50 3:17�10�1 (1:88�10�1) 2:66�10�6 (0) 9:12�10�11 (0)
100 2:52�10�2 (2:31�10�2) 1:02�10�7 (0) 3:67�10�13 (0)
150 3:22�10�3 (3:16�10�3) 2:42�10�8 (0) 2:46�10�14 (0)
200 4:51�10�4 (3:6�10�4) 1:33�10�8 (0) 3:24�10�15 (0)
250 6:53�10�5 (8�10�5) 3:41�10�9 (0) 7:32�10�16 (0)

Table 5.1. Upper bounds on the probability for three values ofα and five values of
n for a disk array of 10 disks. Within brackets BRP simulation results are included
for comparison, based on experiments with 100,000 instances.

Table 5.1 shows that solving the block-based retrieval problem to optimality results
in a perfect load balance with a probability over 97% in case of 100 block requests
per period. For a smaller number of blocks this probability decreases, whereas
for a larger number of blocks this probability becomes nearly 100%. Furthermore,
we notice that the probabilities of a load of at leastn=m+2 are negligibly small,
even for 50 block requests. The values in this table are upper bounds on the actual
probabilities. To validate the bounds we added simulation results for BRP. The
values between brackets in Table 5.1 give the fraction of randomly generated in-
stances that result in a maximum load that is at leastα. Comparing the simulation
results with the upper bounds on the probabilities we can conclude that the upper
bounds are quite close to the actual probabilities, in particular for a larger number
of requests per period.

It is worth mentioning that a major share of the upper bounds is generated by the
large subsets. This is illustrated by Table 5.2, where the value of each of the terms
of (5.10) is reported separately for different values of the subset-sizei for 100 block
requests and 10 disks, andα = 11. Over 90% of the value of the upper bound is
generated by subsets with 9 disks, and over 99% by subsets of 8 and 9 disks.

68 Performance Analysis

i= 2 i= 4 i= 6 i= 8 i= 9

α= 11 3:25�10�13 1:53�10�9 2:92�10�6 1:78�10�3 2:33�10�2

Table 5.2. Upper bounds on the probability for a fixed subset size forα = 11 and
100 requests on 10 disks.

Table 5.1 shows the probabilities for settings wherem dividesn. In casedn=me >
n=m the probabilities that the maximum load is at leastdn=me+1 are smaller. To
illustrate this we give in Table 5.3 the upper bounds on the probability that the load
is at least 11 in case of a disk array of 10 disks and 92 up to 101 requests per period.

n= 92 n= 94 n= 96 n= 98 n= 100 n= 101

α= 11 1:98�10�6 3:19�10�5 4:58�10�4 4:20�10�3 2:52�10�2 1

Table 5.3. Upper bounds on the probability forα = 11 for different numbers of
requests on a disk array of 10 disks.

Figure 5.1 extends these results. It depicts the upper bounds on the probabilities
that the optimal load for a disk array of 10 disks and 40 up to 100 requests is
at leastdn=me+1 . We see that the probability increases repeatedly towards the
point thatm dividesn and than drops to values close to zero. In fact, they are less
than 10�5. This means that having some load balancing freedom, coming from the
mdn=me�n ‘empty’ places in a schedule, decreases the probability of an overload
considerably.

5.1.2 Partial duplication

We show in this section how the above analysis for duplicate storage can be adapted
to partial duplication. We defineq to be the fraction of the requested blocks that
are stored twice. Consequently 1� q is the fraction of blocks stored only once,
the so-called singly stored blocks. We redefine the unavoidable load as follows. In
the instance graph we define the weight of a node as the number of singly stored
blocks to be retrieved from the corresponding disk. Then, as the load is no longer
only in the edges but also in the nodes, the total weight of a subsetV 0 becomes the
sum of the weights of the nodes inV 0 plus the weights of the edges with both nodes
in V 0. The unavoidable load is this total weight divided by the number of nodes
in V 0. With this definition we can prove an unavoidable load theorem for partial
duplication following the proof of Theorem 3.1 and we can adapt the analysis of the
previous section. Again the unavoidable load of a subsetV 0 is a random variable

5.1 Probabilistic analysis of block-based retrieval 69

number of requests

pr
ob

ab
ili

ty

0.15

0.2

0.25

0.3

0.35

40

0.1

50
0

60 70 80 90 100

0.05

Figure 5.1. Upper bound on probability forα = dn=me+ 1 for 40 up to 100
requests on 10 disks.

that is binomiallyB(n; p) distributed, where the probabilityp equals

p = q
jV 0j(jV 0j�1)

m(m�1)
+(1�q)

jV 0j

m
: (5.11)

Then, we use the same evaluation as described in the previous section to derive
the results that are given in Table 5.3. We give in the table simulation results for
100;000 instances for comparison.

Table 5.4 shows that the bound gives a good estimate for the tail of each distri-
bution, if we compare the probabilistic results with the simulation results. If the
fraction of duplicated blocks is small, the upper bound on the probability is larger
than 1. This means that for these cases the estimation is too rough, which is a result
of using the Boole-Bonferonni inequality withk = 1. However, we are mainly in-
terested in the tails of the distributions and for these values the upper bounds give
a good estimation of the actual probabilities.

Table 5.4 gives a good indication of the overall performance of fractional dupli-
cation, and it shows that the influence of duplication is really large. The values
in the top row show the results for random single storage, where we see that ap-
proximately 10% of the instances results in a load of at least 18. The tail of the
estimated distribution of random single storage is large and a maximum load of 25

70 Performance Analysis

q α = 11 α = 12 α = 13 α = 14 α = 15 α = 16 α = 17 α = 18

1 1 1 1 1 7:39�10�1 2:82�10�1 1:15�10�1
0

1 9:99�10�1 9:68�10�1 8:28�10�1 5:95�10�1 3:63�10�1 1:99�10�1 9:99�10�2

1 1 1 1 6:92�10�1 2:39�10�1 9:18�10�2 3:64�10�2
0.1

1 9:77�10�1 8:20�10�1 5:56�10�1 3:17�10�1 1:61�10�1 7:50�10�2 3:28�10�2

1 1 1 6:53�10�1 1:98�10�1 6:96�10�2 2:58�10�2 9:54�10�3
0.2

9:98�10�1 8:40�10�1 5:24�10�1 2:72�10�1 1:26�10�1 5:34�10�2 2:15�10�2 8:11�10�3

1 1 6:48�10�1 1:59�10�1 4:97�10�2 1:69�10�2 5:79�10�3 1:91�10�3
0.3

9:68�10�1 5:20�10�1 2:26�10�1 9:31�10�2 3:63�10�2 1:31�10�2 4:52�10�3 1:47�10�3

1 8:15�10�1 1:25�10�1 3:27�10�2 1:00�10�2 3:11�10�3 9:36�10�4 2:67�10�4
0.4

8:22�10�1 2:01�10�1 6:51�10�2 2:17�10�2 6:59�10�3 1:78�10�3 5:10�10�4 1:30�10�4

1 1:16�10�1 1:95�10�2 5:08�10�3 1:39�10�3 3:73�10�4 9:03�10�5 2:24�10�5
0.5

5:58�10�1 4:27�10�2 1:02�10�2 2:89�10�3 7:60�10�4 2:10�10�4 2:00�10�5 0

9:92�10�1 1:20�10�2 2:05�10�3 4:77�10�4 1:09�10�4 2:35�10�5 4:76�10�6 9:01�10�7
0.6

3:18�10�1 5:02�10�3 8:70�10�4 2:20�10�4 5:00�10�5 0 0 0

3:20�10�1 7:27�10�4 1:03�10�4 1:88�10�5 3:26�10�6 5:28�10�7 7:98�10�8 1:12�10�8
0.7

1:73�10�1 2:90�10�4 4:00�10�5 0 0 0 0 0

1:26�10�1 2:03�10�5 1:17�10�6 1:44�10�7 1:67�10�8 1:79�10�9 1:79�10�10 1:68�10�11
0.8

8:85�10�2 1:00�10�5 0 0 0 0 0 0

5:53�10�2 9:87�10�7 3:55�10�10 1:98�10�11 1:14�10�12 6:08�10�14 3:02�10�15 1:40�10�16
0.9

4:59�10�2 0 0 0 0 0 0 0

2:52�10�2 1:02�10�7 3:67�10�13 5:96�10�18 7:59�10�22 5:92�10�25 9:47�10�28 1:66�10�33
1

2:31�10�2 0 0 0 0 0 0 0

Table 5.4. Probabilistic results for partial duplication for 100 requests on 10 disks,
where we depict vertically the fraction of blocks that is stored twice and horizon-
tally several values ofα. The upper value in each entry gives the upper bound
on the probability and the lower value gives the result obtained by a simulation
experiment.

blocks is still likely to occur. Increasing the fraction of duplicated blocks shows
a large improvement in performance. The results for 0:8 and 0:9 are sufficiently
good to be used in practice.

In Table 5.5 we show the trade-off between storage requirements and error prob-
ability. The table gives the number of requests that can be served per period by a
disk array of 10 disks for a given fraction of duplicationq and error probability.

The results show that for an error probability of 10�9 the fractional duplication
strategies perform poorly compared to full duplication. For the smaller error prob-
abilities the differences are smaller. Another trade-off that can be read from this
table is storage requirements versus error probability. For example, we can retrieve
101 blocks with an error probability of 10�6 and full duplication, but also with an

5.1 Probabilistic analysis of block-based retrieval 71

q
error prob. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10�3 35 38 43 48 55 66 81 101 104 106 106

10�6 20 22 24 27 30 36 43 56 90 100 101

10�9 14 15 16 17 19 22 26 32 46 87 96

Table 5.5. Number of requests that can be served per period by an array of 10
disks for a given fraction of duplication and error probability.

error probability of 10�3 and 70% of the blocks duplicated.

5.1.3 Random striping

In Section 3.1 we stated that the unavoidable load theorem also holds for BRP in
case of random striping. We gave in that section the ILP formulation for random
striping with parameterr =2 and we defined the unavoidable load for that situation.
Here we derive probabilistic results for random striping withr = 2.

If we consider a fixed subsetI, with jIj = i, we can distinguish three possible sit-
uations for each block: (i) the block has all three disks inI, (ii) the block has two
disks inI, and (iii) the block has no disks or one disk inI. The contribution to the
total unavoidable load ofI, measured in subblocks, is two, one, and zero, respec-
tively. The total load within a subset of the disks is then multinomially distributed
with the probability that a block has all three disks inI being

p3 =

� i
3

��m
3

� ; (5.12)

the probability that it has two disks inI being

p2 =
(m� i)

� i
2

��m
3

� ; (5.13)

and the probability that it has one or zero disks inI given by

p01 = 1� p2� p3 (5.14)

With these probabilities we can bound the probability that the minimum maximum
load is at leastα as follows.

Pr[lmax� α]�
m�1

∑
i=2

�
m
i

�
f (m;n;α; i); (5.15)

72 Performance Analysis

where f (m;n;α; i) is the probability that an overload occurs in a given setI of size
i. Using the definition of the multinomial distribution we get fori = 3; : : : ;m

f (m;n;α; i) =
n

∑
j=0

n� j

∑
k=maxf0;

(α�1)i+1�2 jg

n!
j!k!(n� j� k)!

(p3)
j
(p2)

k
(p01)

n� j�k; (5.16)

where j gives the number of blocks that contribute two to the unavoidable load and
k the number of blocks that contribute one. To get the summation bounds in (5.16)
we used that a subset of sizei implies a load of at leastα, if 2 j+ k � (α�1)i+1.

For i = 2, there are no blocks that contribute two to the total load such that

f (m;n;α;2) =
n

∑
k=(α�1)2+1

�
n
k

�
(p2)

k
(1� p2)

n�k:

Table 5.6 gives upper bounds on the probability that the minimum maximum load
is at leastα, for α = 2n=m+1, 2n=m+2, and 2n=m+3 and forn = 50; : : : ;250.
The load of a disk is expressed as the number of subblocks assigned to that disk.
In each entry we also give the value that resulted from simulation.

n α= 2n=m+1 α= 2n=m+2 α= 2n=m+3

50 7:78�10�1 (3:60�10�1) 2:65�10�4 (4�10�5) 4:46�10�8 (0)
100 1:01�10�1 (8:64�10�2) 3:85�10�5 (4�10�5) 5:07�10�9 (0)
150 2:17�10�2 (2:12�10�2) 1:58�10�3 (3�10�5) 1:17�10�9 (0)
200 5:22�10�3 (5:14�10�3) 6:63�10�6 (0) 5:05�10�10 (0)
250 1:31�10�3 (1:23�10�3) 2:38�10�6 (0) 4:24�10�10 (0)

Table 5.6. Upper bounds for BRP for random striping withr = 2 for three values
of α and 50 up to 250 requests on 10 disks. Within brackets BRP simulation results
are included for comparison, based on an experiment with 100,000 instances.

The results show that random striping with parameterr = 2 results in good load
balancing, in the sense that the subblocks can be distributed over the disks in a
balanced way. We see that the probability of a perfectly balanced load decreases
compared to full duplication. However, we note that the load for random striping
is measured in subblocks, such that an imbalance of one block is not the same as
for full duplication.

5.2 Simulation experiments for time-based retrieval 73

5.2 Simulation experiments for time-based retrieval

In the previous section we showed that redundant storage performs well, in the
sense that a good load balance of the number of blocks can be obtained with high
probability. In this section we are going to evaluate the retrieval algorithms. In
our simulation experiments we use a set of disk parameters that represents current
hard disk technology. For this example disk we run simulations for a number of
settings and analyze the results. We are interested in the worst-case performance
of the retrieval algorithms. For that reason we analyze the period of a fully loaded
system, i.e. we have to retrieve a block for the maximum number of streams in each
period.

In the simulation experiments we take a fixed block size and use the period length
as a measure for the performance of an algorithm. However, in the design of a
system the block size and the period length are chosen in such a way that one block
is large enough to offer video for the length of a worst-case period. This means
that if the simulations show that a resulting period length for a fixed block size is
smaller than the block size divided by the maximum consumption rate, the block
size can be decreased, such that it corresponds to this resulting period length. A
new simulation experiment with this new block size might result in an even smaller
period length and so on, till the block size and the period length converge. We do
not discuss this snowball effect in this chapter, but in the next chapter we discuss
the design of a video server and we show the actual impact of this snowball effect
on performance measures as the number of admitted clients.

We start with a description of the setting of our simulation experiments. We discuss
the general setting and indicate in the subsequent sections if we deviate from this
setting. First of all we define the block size to be 1MB. We assume that the blocks
of video data are stored on an array ofm identical disks. The parameters of the
switch time function arec = 9:3ms ands = 14:3ms. Each disk contains 15 zones.
Table 5.7 gives the disk parameters for each zone: (i) zone number, (ii) size of the
zone, expressed as a fraction the total capacity of a disk, and (iii) the transfer time
for a block of 1MB.

For duplicate storage the data blocks are distributed over the disks in the following
way. If one of the two copies is in the slowest zone, i.e. the innermost zone, of one
disk, the other one is in the fastest, i.e. the outermost zone of the other disk. As the
outermost zone is much larger than the innermost one, the copies of the blocks of
zone 14 are also in zone 1. Continuing this we get a list of possible combinations
of zones for the two copies. Using the sizes of the zones, we can compute for each

74 Performance Analysis

zone number size of zone transfer time
(fraction of disk size) (in ms for 1MB)

1 (outermost) 0.141141 22
2 0.141141 23.3
3 0.063063 24.9
4 0.075075 25.8
5 0.090090 27
6 0.078078 28.4
7 0.036036 29.6
8 0.072072 31.6
9 0.048048 32.8
10 0.045045 34.6
11 0.045045 35.5
12 0.045045 38.7
13 0.033033 40.6
14 0.048048 42.6

15 (innermost) 0.039039 45.7

Table 5.7. Disk parameters.

entry in this list the probability that a requested block is stored on this combination
of disks.

The set-up of each simulation is then as follows. We randomly generate 100,000
problem instances wheren blocks have to be retrieved fromm disks and run the
load balancing algorithms on each instance. The measure that we use to compare
the algorithms is period length, i.e. the time at which all disks have finished the re-
trieval of the assigned blocks. We compare the maximum observed period length,
the 99% percentile on the observed period lengths, and the average period length.
Furthermore, we can derive for a setting and an algorithm an estimation of the dis-
tribution of the period length, by splitting up the time axis in intervals and counting
for each interval the number of instances that results in a period length that falls in
that interval.

The load balancing algorithms that we compare are the maximum flow algorithm
for BRP and the LP rounding, LP matching, and the list scheduling heuristic for
TRP, as introduced in Chapters 3 and 4. For convenience we shortly restate the
algorithms before discussing the simulation results.

Maximum flow algorithm (MF). The maximum flow algorithm solves BRP to
optimality. It minimizes the maximum number of blocks assigned to one of the
disks, without taking the transfer times into account. The implemented algorithm
starts with a list scheduling solution to obtain an initial assignment. Each block is
assigned to the disk with smallest current load. In case of equal load one of the
disks is chosen randomly. The initial solution is used as an input to the maximum

5.2 Simulation experiments for time-based retrieval 75

n
50 100 150 200 250

LPR 1.73 1.38 1.25 1.19 1.151MB
LPM 1.31 1.16 1.11 1.08 1.07

LPR 1.22 1.11 1.07 1.06 1.045MB
LPM 1.38 1.19 1.13 1.10 1.08

Table 5.8. Performance bounds for LP rounding and LP matching for 10 disks,
blocks of 1MB and 5MB, and an increasing number of requests.

flow algorithm. The maximum flow algorithm improves this initial solution and
finds an optimal solution regarding the number of blocks. Then, the algorithm
computes the period length resulting from the assignment.

LP rounding (LPR). The LP rounding algorithm solves the LP relaxation in which
the switch time is added to the processing time. To compute the actual cost, the
algorithm rounds up they-variables, which corresponds to adding the remaining
part of the switch time for each preempted part. Table 5.8 gives, for two block
sizes and an increasing number of clients, the values of the performance bound of
LP rounding, which was derived in Theorem 4.6.

LP matching (LPM). The LP matching algorithm also starts with the solution of
the LP relaxation and uses a matching approach to assign each preempted job to
one disk. To improve this non-preempted solution we perform the postprocessing
step where we allow preemption again. Table 5.8 gives values for the performance
bound of LP rounding, which was derived in Theorem 4.7.

List scheduling heuristic (LS). The list scheduling heuristic starts with an empty
assignment and assigns in each step a new block from the list of blocks to the
disk with the smallest resulting load. In a second round we reconsider all jobs and
check if a reassignment results in an improvement. Also in this algorithm we use
the postprocessing step to improve this non-preempted solution.

For comparison we use the solution of the LP relaxation as a lower bound on the
period length. Now we have set the general setting of the simulation experiment we
continue with discussing the results. We start with an analysis of duplicate storage.

5.2.1 Duplicate storage

In this section we present the results for duplicate storage on an array of 10 disks.
We compare the retrieval algorithms and quantify the performance improvement

76 Performance Analysis

due to the time-based approach. Figure 5.2 gives the maximum observed value, a
99% value and the average value for each of the algorithms for 100 requests.

0.440
LP LB

0.407

LPMLPRLSMF

T

LPR LPM

(b) 99% of the period length

LSMF

T

LPR LPMLSMF

T

0.5
88

0.4
97

0.4
86

0.4
63

0.5
32

0.4
74

0.4
56

0.4
44

0.4
91

0.4
56

0.4
35

0.4
28

(c) average period length(a) worst case period length

0.416

Figure 5.2. Simulation results for 100 requests on 10 disks. The horizontal line
gives the value of the lower bound.

Comparing the time-based retrieval algorithms we see that LPM outperforms the
other two on all three measures. Comparing its average value with the average

LPM

nu
m

be
r

of
 o

bs
er

va
tio

ns

period length

MF

LPR
LS

14000

16000

18000

0.38 0.4 0.42 0.44 0.46 0.48 0.5

12000

0.52
0

0.54 0.56 0.58 0.6

10000

8000

6000

4000

2000

Figure 5.3. Estimated distribution of the period length for 100 requests on 10
disks.

5.2 Simulation experiments for time-based retrieval 77

nu
m

be
r

of
 o

bs
er

va
tio

ns

LPM
LPR

period length

LS
MF

1.2 1.25 1.3 1.31.11.051 1.150.95
0

14000

12000

10000

8000

6000

4000

2000

Figure 5.4. Estimated distribution of the period length for 250 requests on 10
disks.

period length of MF gives an improvement of 12:8%. The 99% value and the
maximum observed value decrease with 16:5% and 21:3%, respectively. We even
see that the worst-observed value for LPM is 5:7% smaller than the average value of
MF. We can conclude that not only the average period length decreases by using the
time-based approach instead of the block-based approach, but that also the variance
is considerably lower. To illustrate this effect we show in Figure 5.3 the estimated
distribution for each of the algorithms. As stated we derive this estimation by
counting for each time interval the number of observations that fall in that interval.

We see in the figure that the graphs of both LP-based algorithms are much narrower
than the MF graph. Furthermore we see that the very small tail of LPM just touches
the beginning of the graph of MF. The graph of LS lies between the two. If we
increase the number of blocks per period the observed effects are even stronger,
as can be seen in Figure 5.4, where the graphs are depicted for 250 requests. For
250 blocks per period, the relative improvements of LPM compared to MF are
19:5%, 16:9%, and 14:2% for worst observed value, 99% value, and average value,
respectively.

In Table 5.9 we give the results for duplicate storage for 50 up to 250 requests
served by 10 disks. We present for each case the average value and the maximum
observed value for each of the algorithms and the lower bound (LPLB).

78 Performance Analysis

50 clients 100 clients 150 clients 200 clients 250 clients
avg. max. avg. max. avg. max. avg. max. avg. max.

LPLB 0.212 0.252 0.407 0.440 0.602 0.631 0.797 0.821 0.992 1.021
MF 0.262 0.347 0.491 0.588 0.721 0.820 0.9511.059 1.180 1.302
LS 0.244 0.286 0.456 0.497 0.670 0.710 0.885 0.926 1.100 1.146

LPR 0.240 0.286 0.435 0.486 0.630 0.675 0.826 0.869 1.021 1.070
LPM 0.235 0.275 0.429 0.463 0.623 0.655 0.818 0.851 1.0141.048

Table 5.9. Average and maximum period lengths for different numbers of requests
per period on 10 disks.

From the table we conclude that for this set of disk parameters LPM outperforms
the other time-based algorithms. We also see that the difference between LPM and
the lower bound decreases from 10% for 50 clients to less than 3% for 250 clients,
on average as well as maximum observed. Another observation can be made by
comparing the two entries printed in bold. It shows that the maximum observed
value for LPM for 250 clients is smaller than the maximum observed value for MF
for 200 clients. This means that a system that is configured on such a period length
can serve approximately 25% more clients when using LPM rather than MF.

A disadvantage of synchronizing the disks in each period is that the disks that finish
sooner have to wait till all disks are finished, before starting with the next batch.
This is what we call idle time due to synchronization. We quantified this idle time
for the LP matching algorithm and it turns out to be on average over all disks and
all instances 0:78% of the period length. In case of the block-based approach it
is 5:3%. This means that by using a time-based approach this disadvantage of
synchronization becomes negligibly small.

Another way of evaluating the improvement of the time-based approach compared
to the block-based approach is by looking at the fraction of blocks that was read
from each zone during an entire simulation run. As the block-based max-flow
algorithm does not take the transfer times into account we expect that for that case
the fraction of each zone equals the percentage of the total disk capacity of that
zone. Table 5.10 confirms this and shows the improvements of the time-based LP
matching algorithm for 100;000 iterations for 100 requests on 10 disks. Over 50%
of the blocks is read from the fastest two zones, while they account for only 28%
of the disk capacity. We also observe that the slower zones are almost never used.
The average throughput of each disk while reading (excluding switch overhead)
increases by exploiting the multi-zone property from 35:4MB/s to 40:6MB/s. This
higher throughput can be used to increase the number of clients that can be served
per disk. We quantify this effect on the number of admitted clients in Chapter 6.

5.2 Simulation experiments for time-based retrieval 79

zone fraction of disk cap.(i) max-flow LP matching(ii) improvement(ii)(i)

1 0.141141 0.141273 0.278348 1.9721
2 0.141141 0.141264 0.260429 1.8451
3 0.063063 0.062953 0.101366 1.6074
4 0.075075 0.074947 0.104767 1.3955
5 0.090090 0.090202 0.099780 1.1076
6 0.078078 0.078042 0.066265 0.8487
7 0.036036 0.035999 0.023451 0.6508
8 0.072072 0.072076 0.032378 0.4492
9 0.048048 0.048062 0.013705 0.2852
10 0.045045 0.045054 0.007947 0.1764
11 0.045045 0.045080 0.005765 0.1268
12 0.045045 0.044921 0.002981 0.0662
13 0.033033 0.032966 0.001183 0.0358
14 0.048048 0.048033 0.001130 0.0235
15 0.039039 0.039123 0.000500 0.0128

Table 5.10. Fraction of blocks read from each zone for the block-based max-flow
and the time-based LP matching algorithm for 100 requests on 10 disks. The last
column shows the improvement of the time-based approach.

Table 5.11 gives similar results for 250 requests. The table shows that the improve-
ments are even better. This can be explained by observing that each disk has to read
25 blocks on average, so more freedom is available for throughput optimization.
The average throughput per disk while reading is in this case for the LP matching
approach 41:2MB/s, whereas we recall that the average throughput of a disk equals
35:4MB/s.

We end this section with some further observations, regarding the performance of
the algorithms in case the value of the slope of the switch time function is changed.
If this slope, i.e. disk parameters, is very small compared to the transfer times,
the difference between LP rounding and the lower bound disappears, which means
that LPR outperforms LPM in that case, as rounding is cheaper in that case than
matching. This can also be seen in the performance bounds of Chapter 4, asms be-
comes smaller thanpmax+ s for small values ofs. If the switch slope is really large
compared to the transfer times, LPR performs poorly, as rounding becomes very
expensive. Also, the difference between the block-based and time-based approach
becomes smaller in that case, as the number of blocks, and consequently the num-
ber of switches, forms the major part of the objective function. The improvement
of the time-based approach compared to the block-based approach highly depends
on the difference between the transfer times of the zones, and on the ratio between
the slope of the switch time function and the transfer times.

80 Performance Analysis

zone fraction of disk cap.(i) max-flow LP matching(ii) improvement(ii)(i)

1 0.141141 0.141116 0.282132 1.9989
2 0.141141 0.141236 0.279803 1.9824
3 0.063063 0.063099 0.117708 1.8665
4 0.075075 0.075098 0.123454 1.6444
5 0.090090 0.090110 0.107147 1.1893
6 0.078078 0.078059 0.057080 0.7311
7 0.036036 0.036076 0.014903 0.4136
8 0.072072 0.072027 0.013124 0.1821
9 0.048048 0.047977 0.003147 0.0655
10 0.045045 0.045084 0.000918 0.0204
11 0.045045 0.044979 0.000462 0.0103
12 0.045045 0.045074 0.000093 0.0021
13 0.033033 0.033008 0.000016 0.0005
14 0.048048 0.048004 0.000010 0.0002
15 0.039039 0.039052 0.000003 0.0001

Table 5.11. Fraction of blocks read from each zone for the block-based max-flow
and the time-based LP matching algorithm for 250 requests on 10 disks. The last
column shows the improvement of the time-based approach.

5.2.2 Partial duplication

We continue this chapter by analyzing the performance of the retrieval algorithms
for partial duplication. In partial duplication a subset of the blocks is duplicated.
The remaining blocks are stored once. We useq as the fraction of blocks that is
duplicated. We start with evaluating this storage strategy as follows. We generate
instances in which the number of duplicated blocks exactly equalsqn. This means
that we assume that we can control in each period the number of requested blocks
that is stored twice. This can be done, e.g. by admission control in the following
way. In case the number of running movies that is stored only once reaches(1�
q)n, new clients are only offered duplicated movies. We compare these simulation
results with a second experiment where each block of a generated instance is a
duplicated block with probabilityq. In the latter experiment the total variation is
larger.

The setting of the first simulation experiment is as follows. We use the general
setting, but(1�q)n of the requested blocks are stored only once. For these blocks
we randomly select a zone, from which the transfer time can be determined. The
probability that a block is stored in a certain zone equals the fraction of the disk
capacity of that zone. In Figure 5.5 we compare LPM with MF for an increasing
fraction of duplication.

5.2 Simulation experiments for time-based retrieval 81

MF
LPM

0.6

0.4

0.8

1.0

1.2

0.6

0.4

q

0.8

1.0

0.8

0.6 10.40.2

1.2

010 0.2 0.4 0.6 0.8

q

10 0.2 0.4 0.6 0.8

q

(c) worst observed

pe
ri

od
 le

ng
th

(b) 99% value(a) average

Figure 5.5. Average period length, 99% value of period lenght, and worst ob-
served period length for MF and LPM for partial duplication withq= 0;0:1; : : : ;1
for 100 requests on 10 disks.

The simulations show that also for partial duplication LPM outperforms the other
two time-based algorithms. We note that for the caseq = 0 no scheduling decisions
have to be made, such that there is no difference between the algorithms. The figure
shows that if the fraction of duplicated blocks is small, almost no difference can be
observed between the two algorithms. This can be explained as follows. If the disk
that has the largest load has to retrieve only singly stored blocks, no scheduling
algorithm can change this. We observe that all algorithms give the same worst-
observed result, such that in these instances that is most likely to be the case. By
increasing the fraction of duplication we see that the difference between the block-
based and the time-based approach increases. To show the effect of increasing the
fraction of duplication in a more detailed way we give in Figure 5.6 the estimated
distribution of LPM for increasing values ofq.

For the above results we assumed that the singly stored blocks were randomly
stored over the zones. We can improve on this by storing the singly stored blocks in
the middle zones. For the duplicated blocks we still assume that we have a fast and
a slow copy. This means that if, for example, 60% of the requested blocks is stored
twice, for each duplicated block one copy is stored on the outer 30% of one disk
and one copy on the inner 30% of another, again in such a way that the blocks in the
slowest zone have a copy in the fastest zone. The singly stored blocks are stored
on the remaining 40% of the disks. Table 5.12 compares the simulation results for
this centered partial duplicated storage strategy with the original strategy.

We see that the results of the MF as well as the LPM algorithm improve by us-

82 Performance Analysis

nu
m

be
r

of
 o

bs
er

va
tio

ns

period length

10000

20000

30000

40000

50000

0.3 0.4 0.5 0.6
0

0.7

q

0.8 0.9 1

1
0.8
0.6
0.4
0.2
= 0

Figure 5.6. Estimated distribution for LPM for partial duplication for increasing
values ofq for 100 requests on 10 disks

MF LPM
original centered original centered

q avg. max. avg. max. avg. max. avg. max.
0.8 0.492 0.595 0.491 0.591 0.443 0.505 0.438 0.498
0.6 0.498 0.744 0.498 0.699 0.461 0.744 0.454 0.699
0.4 0.526 0.913 0.524 0.850 0.504 0.913 0.496 0.850
0.2 0.591 1.022 0.590 1.019 0.584 1.022 0.581 1.019

Table 5.12. Maximum observed and average value for the period length for the
original and the centered partial duplication storage strategies for 100 requests on
10 disks.

ing the centered partial duplication, especially in the maximum observed value.
However, the centered strategy is less flexible in the sense that if this strategy is
implemented in a server a change in the fraction of duplication means that a large
fraction of the data needs to be reordered.

All above results hold under the assumption that we can control the number of
duplicated blocks per period. If we drop this assumption, we only know the fraction
q of blocks that is stored twice. This gives an extra source of variation. To test the
influence of this variation we change the simulation as follows. For each generated
block request, there is a probabilityq that the block is stored twice. The variation

5.2 Simulation experiments for time-based retrieval 83

in the generated instances becomes larger, but Table 5.13 show that the average
results are fairly close, and that the maximum observed value becomes only slightly
larger. We note that forq = 0:8 the maximum observed value for the MF algorithm
is coincidently better for non-fixedq. The 99% values happen to be the same for
both strategies. We conclude that due to the large number of requests per disk the
retrieval algorithms can deal well with the extra variation.

MF LPM
original non-fixedq original non-fixedq

q avg. max. avg. max. avg. max. avg. max.
0.8 0.492 0.595 0.492 0.583 0.443 0.505 0.442 0.520
0.6 0.498 0.744 0.498 0.754 0.461 0.744 0.461 0.754
0.4 0.526 0.913 0.525 0.961 0.504 0.913 0.502 0.961
0.2 0.591 1.022 0.593 1.072 0.584 1.022 0.584 1.072

Table 5.13. Maximum observed and average value for the period length if the
fraction of duplicated blocks is not fixed, compared to the original results for 100
requests on 10 disks.

5.2.3 Random striping

Random striping can be used to decrease the storage requirements compared to
duplicate storage. In that sense it is an alternative for partial duplication. In this
section we discuss the performance of random striping with parameterr = 2. This
means that each block is split up into two subblocks, that a parity block is com-
puted, that the three subblocks are stored on three different randomly chosen disks,
and that each combination of two of the subblocks is sufficient to reconstruct the
original block.

In the simulation experiment we used the following storage strategy. We split up
each disk in three equal-sized parts, the slowest, the middle, and the fastest part.
Then, we use the following rule. We consider the slowest one-third of the disks
from inside to outside and the other two parts from outside to inside. Then, we
combine in the same way as we did for duplicate storage. We couple the slowest
block positions in the slowest one-third to the fastest block position in the other
two parts. Consequently, a block that is stored in the innermost zone has a copy in
the outermost zone and in the fastest part of the middle one-third of the disk. For
our example disk this means that we have the following combinations of zone num-
bers (1-3-15, 1-4-15, 1-4-14,: : : ,3-8-8). For each generated request one of these
combinations is drawn randomly according to the probabilities following from the
capacities of the zones.

84 Performance Analysis

We compare the LP rounding and the list scheduling algorithm as described in
Section 4.4, with the block-based maximum flow algorithm. Table 5.14 gives the
average, worst observed and 99% value for 100 and 200 requests per period.

100 requests 200 requests
MF LS LPR MF LS LPR

max. 0.682 0.639 0.626 1.269 1.176 1.171
99% 0.657 0.612 0.612 1.255 1.157 1.157
avg. 0.624 0.588 0.589 1.222 1.136 1.137

Table 5.14. Simulation results for random striping for 100 and 200 requests on
10 disks.

The results show that the improvement of the time-based approach is approxi-
mately 6% for the average value and 7% for the 99% value for LS as well as
LPR. This means that the improvement is smaller than in case of duplicated stor-
age, which can be expected as the load balancing freedom is smaller, such that
there is less room to increase the disk efficiency. However, the storage overhead
is now only 50%. We see that the LP rounding algorithm performs approximately
the same as the list scheduling heuristic, except for the maximum observed value.
If we use a second reassignment run in the list scheduling algorithm, it even out-
performs the LP rounding algorithm. In case of 200 blocks the average observed
period length is then 1.134 and the maximum observed 1.165. The main reason
for the poor performance of the LP rounding algorithm is that if three fractional
values are found in the LP solution, onex-value has to be rounded up, as described
in Section 4.4. The result is that the difference between LP rounding and the LP
lower bound is larger than in case of RDS.

In the next chapter we further compare the results of random striping with param-
eterr = 2 and the list scheduling algorithm, with the duplicated storage strategies,
and in particular with partial duplication.

5.3 Discussion

In this section we give additional comments on the performance issues that we
discussed in this chapter. Furthermore, we discuss some performance issues of
storage strategies that we did not discuss in detail in this thesis.

Computation times. For systems with a large number of clients and disks the LP
algorithms demand large processing power, as in each period a large LP problem

5.3 Discussion 85

has to be solved. If the computation times for the LP algorithms become too large,
list scheduling becomes a good alternative. We saw that the performance of the
list scheduling algorithms is good and these algorithms are always fast. Therefore
list scheduling can be preferred in applications. This remark especially holds for
random striping as the LP tableau is very large and the list scheduling heuristic
performs almost as well as the LP rounding algorithm.

Randomization and redundancy. The results in this chapter show that combining
randomization and redundancy results in good load balancing performance and
efficient disk usage. Figure 5.5 shows that randomization alone is not sufficient.
By increasing the fraction of duplicated blocks, we see that the period length almost
halves at full duplication compared to random single storage in case of 100 blocks
and 10 disks. For the worst-observed value of the period length we see that the
improvement is almost 70%. For larger instances the ratios become even worse. On
the other hand we can also evaluate the influence of randomness. in Section 3.3 we
discussed random chained declustering, where the copy of each block is stored on
its subsequent disk. The instance graph of this storage strategy is a cycle of disks.
Aerts, Korst & Egner [2000] analyze the performance of block-based algorithms
for random chained declustering and for other regular instance graphs, in which
the number of edges increases. Recall that the instance graph of full duplication
is a complete graph. The results in that paper show that a significant improvement
can be reached by increasing the degree of randomness.

Round-robin striping . We did not discuss the performance of round-robin striping
in this chapter. It is known that for highly predictable streams, round-robin striping
outperforms full striping in disk efficiency as larger blocks can be read. However,
even for these highly predictable streams Muntz, Santos & Berson [1998] show
that random redundant storage outperforms round-robin striping. That result and
the fact that we are mainly interested in strategies that are able to deal with variable
bit-rates and unpredictable interactions are the reasons that we omitted round-robin
striping in the evaluation.

Disk failures. When using a large number of disks, the probability of a failing
disk is no longer negligible. This means that in the design of a server, disk failures
should be taken into account. In Chapter 2 we introduced three storage strategies
and explained how each strategy can deal with a failing disk. In the random redun-
dant storage strategies the load of the failing disk is distributed over the others. In
this thesis we did not take disk failures into account, but here we sketch how the
probabilistic results of this chapter can be adapted to find upper bounds in case of
disk failures for duplicate storage. If a disk fails, the weights of the edges adja-
cent to that disk shift towards the alternative disks. The result is that the number

86 Performance Analysis

of edges that generate load in a subsetI that does not contain the failing disk, in-
creases byjIj. This means that we get in case of duplicate storage and a disk failure
the following definition for p instead of equation (5.7),

pfail =
1
2jIj(jIj�1)+ jIj

1
2m(m�1)

=

1
2jIj(jIj+1)
1
2m(m�1)

; (5.17)

with 1� jIj � m�1. With this alternative definition ofp we can follow the com-
putation as explained in Section 5.1 to derive upper bounds on the probability of a
certain load.

6
Server Design

In this chapter we evaluate the strategies and algorithms of the previous chapters in
different system settings. The goal is to show what the effects are of the improve-
ment of random redundant storage compared to the conventional strategy of full
striping, and of the time-based approach compared to the block-based approach.
We do not aim at covering the complete spectrum of system design in this chapter,
but we try to illustrate effects and trends for several system settings and variations
in system parameters, such as block size and number of clients.

For a discussion on the issues involved in system design we refer to Gemmell, Vin,
Kandlur, Rangan & Rowe [1995]. Several other papers give a nice description
of the implementation of a prototype, such as the following four papers. Beren-
brink, Brinkmann & Scheideler [1999] describe the hardware structure and the
data placement strategy of the PRESTO multimedia server and give simulation re-
sults. Ghandeharizadeh & Muntz [1998] discuss the performance of a multimedia
server named MITRA. Next to explaining the design of the prototype, they discuss
several issues such as multi-zone disks, batching strategies to reduce bandwidth re-
quirements, and VCR functionality. Muntz, Santos & Berson [1998] introduce the
RIO multimedia server. The paper explains the working of the server, discusses the
storage strategy, and presents probabilistic and simulation results. Shenoy, Goyal,

87

88 Server Design

Rao & Vin [1998] discuss the implementation of a multimedia server called Sym-
phony. The system supports both real-time and non-real-time requests and enables
multiple block sizes. The paper also discusses the performance of the prototype
and failure recovery in case one of the disks breaks down.

This chapter is organized as follows. In Section 6.1 we discuss the general setting
of the cases that we analyze and we introduce the parameters and trade-offs that
play a role the system design. In the two subsequent sections we discuss specific
cases. In Section 6.2 we discuss the design of a video-on-demand server in an air-
plane or hotel and on a larger scale in, for example, a city or district. In Section 6.3
the focus is on professional applications, such as film editing, medical servers, or
digital libraries. An important difference between these professional applications
and video on demand is that in these applications the clients have a very active role,
in the sense that they are browsing through the available data, instead of watching
one video for a long time. Consequently, for these applications the response times
a critical issue. Furthermore, for some of the applications, such as film editing, the
bandwidth requirements of streams are typically much higher, and the requests are
write as well as read requests. In Section 6.4 we present conclusions and possible
extensions.

6.1 Case study introduction

Discussing the design of a server we mainly focus on the choice of which storage
and retrieval strategy to use for a given set of system requirements. Performance
aspects that are important in the design of such a system are, for example, response
time and system cost. The system performance is influenced by the setting of the
system, such as the storage and retrieval strategy that is used, the number of hard
disks, and the bandwidth of the streams. We can distinguish a large number of
parameters that influence the performance of a multimedia server. These parame-
ters can take a role as a requirement in one setting and as a performance criterion in
another. We start by indicating which parameters can be distinguished in Table 6.1.

If we want to state a problem definition it is necessary to assume fixed values for
a subset of the parameters. The other parameters can then be used to optimize the
system with respect to one or more performance criteria. The most obvious criteria
are response time and cost per client.

Response time. From a client’s point of view the response time is the time between
the request for a media object and the actual start of playout at the client’s terminal.
However, we focus on the video server and do not take communication delays

6.1 Case study introduction 89

disk storage capacity (per zone)
transfer rate (per zone) and switch time
disk cost

disk array number of disks
storage and retrieval strategy

clients number of clients
maximum consumption rate

buffers buffer strategy
block size
buffer cost

Table 6.1. Parameters in the design of a multimedia server.

into account, so we define the response time to be the time between the arrival
of the request at the server and the start of sending out the video into the external
network. The response time depends on the storage and retrieval strategy, the buffer
strategy and and the block size. Response times can be considered both from a
worst-case and average-case perspective. We use the worst-case response time as
a performance criterion. As we use synchronized disks and triple buffering, this
worst-case response time equals two times the period length.

System costs (cost per client). The variable costs of a multimedia server mainly
consist of the cost of RAM and the cost of the hard disks of the disk array. So
the cost per client depends on the block size and buffer strategy, on the number of
disks, and also on the maximum number of admissible clients.

Next to these optimization criteria we can also use one of the above system pa-
rameters, for example, minimizing the number of disks. In the remainder of this
chapter we use the same example disk as in the previous chapter, thereby fixing
the transfer rate and storage capacity per zone and the parameters of the switch
time function. The total storage capacity of the disk equals 40GB. Furthermore,
we assume that triple buffering is used as buffer strategy, so that within the server
a buffer of size three times the block size is used for each stream. In the exam-
ples in this chapter we evaluate the consequences of variations in number of disks,
stream bandwidth, block size, and number of clients on the choice for the storage
and retrieval strategy.

The next two sections are organized as follows. We start each section with an ex-
planation of the characteristics of the case and describe some possible applications.
Then, we analyze several settings quantitatively and describe the results. We end
both sections with some conclusions.

90 Server Design

6.2 Video on demand

A video-on-demand server offers video streams to multiple clients simultaneously.
As clients are expected to watch a video for a long time, the response times are
not a critical issue. In fact, they can often be masked by a leader or advertisement.
Examples of possible video-on-demand settings are the following.

� A hotel manager wants video on demand in her hotel, consisting of 200
rooms. She requests the response time to be smaller than 10 seconds and
that at least 500 movies are offered. The question is to design a server at
minimum cost that satisfies these requirements.

� An airline company wants to offer video on demand in its planes. It is very
likely that all passengers of a plane want to see a movie simultaneously, so
the number of clients equals the number of chairs in the plane. The number
of movies does not need to be larger than 20, as in this case the video-on-
demand system is an alternative to broadcasting a small number of movies.
The question is to design a system with a minimal number of disks that
enables all passengers to watch these movies on demand.

� A content provider wants to offer television on demand in a district of a town.
The data is extracted from broadcast channels and consists of all television
programs of the last week. The number of possible clients is very large, but
the provider accepts an admission control algorithm that bounds the number
of streams that are admitted simultaneously.

The examples give an idea of the broad range of video-on-demand applications.
They also show that the requirements and optimization criteria can change per
setting. To get an insight in the effect of changes of the parameters on the preferred
storage strategy, we describe several settings and discuss some trade-offs in the
remainder of this section.

6.2.1 Fixed number of disks

We start with the following scenario. Suppose that we have a disk array of ten
disks, which we want to use for a video-on-demand server. We first assume that
we still have the possibility to adapt the size of the total buffer space in the server.
For this setting we maximize the number of clients that can be served with a fixed
block size. We compare the results of striping, random striping with parameter
r = 2 and LP matching (RS(2)), partial duplication withq = 0:5 and LP matching,
random duplicate storage with max-flow (RDS-MF), and RDS with LP matching
(RDS-LPM). Table 6.2 presents the results for a block size of 1MB, 2MB, and
5MB. It gives the maximum number of clients for which the 99% value of the

6.2 Video on demand 91

period length is smaller than the period length corresponding to the block size,
given that a client has a maximum bit rate of 6Mb/s= 0:75MB/s.

striping RS(2) partial RDS-MF RDS-LPM
1MB 75 230 300 274 330
2MB 129 323 365 327 408
5MB 222 414 420 370 472

Table 6.2. Maximum number of clients that can be offered simultaneously by 10
disks for a given block size.

The results show that for this setting the redundant storage strategies outperform
full striping considerably, mainly due to the large switch overhead when using
striping. In case of blocks of 1MB, the striping subblocks are of size 0:1MB, im-
plying that the switch time is a factor two to five larger than the transfer time. For
larger blocks we see that the efficiency of striping increases. Comparing the redun-
dant data strategies we see that RDS with time-based load balancing enables the
admission of the largest number of clients and that using the time-based retrieval
algorithm enables 20%–28% more clients compared to the block-based approach.
Furthermore, we see that the block-based approach for RDS outperforms random
striping in case of a small block size, but that it is the other way around if the block
size increases. This can be explained as follows. Random striping with LP match-
ing exploits the multi-zone character of the disks, such that the disks are more
efficiently, but for small blocks this effect does not compensate the larger switch
overhead compared to RDS. Comparing random striping and partial duplication,
both having storage overhead of 50%, we see that for smaller block sizes partial
duplication outperforms random striping, but for larger block size random striping
comes close to partial duplication. We can explain this as follows. For smaller
blocks random striping loses performance because of a larger switch overhead.
However, random striping can better exploit the multi-zone character of the disks,
as in partial duplication for some blocks no alternative is available. Apparently, for
larger blocks this effect compensates for the larger switch overhead.

The worst-case response time of the above settings does not depend on the storage
strategy, but only on the block size and is 2.67, 5.33, and 11.33 seconds, respec-
tively. The number of movies that can be stored on the array of 10 disks depends on
the degree of duplication, and is 89 for striping, 59 for random striping and partial
duplication, and 44 for RDS for movies of 100 minutes. The buffer size per client
equals three times the block size, so the total buffer size is linearly dependent on
the number of admitted clients.

92 Server Design

Another point of view on the comparison between RDS and striping, is given by
the following example. Consider in Table 6.2 the two entries printed in bold. By
using RDS with LP matching the server with ten disks and a buffer of 2448MB
can admit 408 clients when using blocks of 2MB. A server with ten disks and a
buffer of 3330MB that uses striping can still serve only 222 clients. Furthermore,
the response time for the server with striping is larger than for the server with RDS.

6.2.2 Fixed number of clients

Consider the following design problem: Given a number of clients and a require-
ment on the response time, design a server with a minimum number of disks. We
assume that the maximum response time should be at most 10 seconds and con-
sider the problem for 100, 250, and 1000 clients. We configure the system such
that the size of a block corresponds to the 99% value of the period length, which
should be at most 5 seconds, to obtain a worst-case response time of at most 10
seconds. This means that the blocks should be at most 3:75MB. For this block
size we determine the minimum number of disks for which the period length is at
most 5 seconds. Given this minimal number of disks, we minimize as a second
criterion the response time, by decreasing the block size in steps of 0:25MB. We
consider the Table 6.3 gives the results for full striping, random striping withr = 2
and the list scheduling heuristic, partial duplication withq = 0:5 and LP matching,
and RDS with LP matching.

100 clients 250 clients 1000 clients
striping 4 (3MB) 22 (3:75MB) infeasible
RS(2) 3 (2:5MB) 7 (3MB) 27 (3:75MB)
partial 3 (2MB) 7 (2MB) 26 (3:75MB)
RDS-LPM 3 (1:25MB) 6 (2:5MB) 22 (3:75MB)

Table 6.3. Minimum number of disks needed to serve a given number of clients
with a maximal response time of 10 seconds. Within brackets the minimum block
size is shown for the determined number of disks.

The results show that full striping is not suited for large systems as can be expected,
as the subblocks become too small and the required bandwidth cannot be reached.
This is the case for 1000 clients. The redundant data storage strategies are compet-
itive. We see that RDS outperforms the other two strategies, but we remark that the
LP matching algorithm is really time consuming for large instances. This means
that for the instances with 1000 clients we should switch to the list scheduling
heuristic that was introduced in Chapter 4. If we would have used list scheduling

6.2 Video on demand 93

in case of RDS we would have needed 25 disks for 1000 clients, which means that
random striping performs almost as good. For partial duplication the same remark
holds, such that random striping outperforms partial duplication in case of a large
number of clients

We give some final comments on the results of Table 6.3. If 60% of the data
would have been duplicated in the partial duplication strategy, 6 disks would have
been sufficient to serve 250 clients and in case 80% was duplicated 23 disks would
have been sufficient for 1000 clients. The decrease in block size that is reported
in the table results in a decrease in worst-case response time. This worst-case
response time can be determined by multiplying the block size that is reported
within brackets by a factor 2.67.

Note that the costs of hard disks and buffer have decreased dramatically in the past
decade, such that the total costs become very low. For example, as the price of a
hard disk of 40GB is approximatelye 100, using 22 disks for 1000 clients results
in a disk cost per client of just overe 2. However, minimizing the number of disks
to serve a given number of clients is also of advantage for the probability of disk
failures and for simplicity within the server, as, for example, the internal network
can be simpler.

6.2.3 Conclusion

The two scenarios discussed above show that duplication outperforms the alterna-
tives in case of video on demand. The only drawback is the smaller number of
movies that can be offered. Especially for smaller systems, with fewer disks, this
might be a significant drawback. For these settings partial duplication and random
striping offer interesting alternatives. Full striping is only competitive if the num-
ber of disks is small and the blocks large, where the latter means that the response
time is high. In a striping strategy it is harder to exploit the multizone character
of the disks, compared to the other strategies. without losing the independence
between subsequently requested blocks. We also note that if information about the
popularity of the movies is available, this can be used to improve partial duplica-
tion, such that this strategy becomes more competitive to full duplication. Finally,
we note that over the past decades the storage performance of hard disks increased
at a higher rate than the disk bandwidth. If the future development of hard disks
follows these lines, redundant data strategies become even more preferable in the
future.

94 Server Design

6.3 Professional applications

In the video-on-demand applications of the previous section a client typically starts
a video and spends a long time watching it. Now, we consider databases that
contain video data that is used for browsing and editing. All the time clients send
requests for (short) video files to the server. They browse through the data, so
the most important performance criterion is response time. Below, we give some
examples.

� A data agency gathers news clips from all over the world and offers news on
demand to press agencies. A large number of incoming streams and a large
number of outgoing streams should be combined. Typically, a small amount
of the data is requested by a large number of clients. The clients want to
browse through the video data to compose their own news reports.

� In a film editing studio, movies are constructed out of raw film material.
The streams in such an environment have very high bandwidth requirements.
Typically, the rate can be as high as the transfer rate of a disk. The request
pattern is unpredictable. Over time, the editors request new streams, and they
sometimes write a stream to disk. To create a good working environment,
low response times are required.

� In a hospital a large database of short high-quality video files is available to
the staff. The database contains for example X-ray videos. Upon request a
doctor wants to see a certain file. Again response time is the main perfor-
mance criterion.

6.3.1 Increasing bit-rates

In the previous section the bit-rate of the videos was assumed to be 6Mb/s. In this
section we evaluate the performance of the algorithms for streams with higher bit-
rates. We first show how to deal with an increasing bandwidth using the results of
the previous section. Then, we analyze the performance of the storage and retrieval
strategies for bit-rates that are approximately as large as the disk bandwidth.

We first readdress the results presented in Table 6.2. The table gives the number
of clients that can be served for a certain block size for several storage strategies.
The data in the table can also be interpreted as the number of blocks that can be
retrieved in a period, where the period length corresponds to the block size. This
means that instead of retrieving one block per client per period, we can also retrieve
two blocks per client per period, thereby serving half of the number of clients at a
doubled bit rate. Note that the buffer size per client needs to be increased to avoid
buffer underflow and overflow. To be more precise, in case at most two blocks

6.3 Professional applications 95

are read per client per period, a buffer size of five blocks is sufficient. To avoid
underflow and overflow the buffer should request one block if the buffer filling
at the beginning of the period is between three and four blocks and two blocks
is the filling is at most three blocks. The worst-case response time remains two
times the worst-case period length. So, using the last column of Table 6.2, we
can conclude that a server with 10 disks and 1MB blocks, can serve 330 clients at
6Mb/s, and 165 clients at 12Mb/s. At the cost of an even larger buffer per client 41
clients can be served at 48Mb/s. The worst-case response time equals 2:67s. This
response time might be too large for browsing applications. This response time can
be halved by using blocks of 0:5MB. Then, 235 blocks can be retrieved per period
if RDS with LP matching is used.

We continue with systems where the bit-rate of the requested streams is as large as
the bandwidth of a disk. The bandwidth of the disk that we use in the simulations
ranges from 22 to 45MB/s. We evaluate the performance of systems that offer
streams with a homogeneous bit-rate, ranging from 20 to 80MB/s. As we are
discussing browsing applications, the worst-case response time should be small,
we assume one second, so the period length should be at most 0:5s. This means
that each client should receive in each period an amount of 10 to 40MB of data.
Table 6.4 gives the number of clients that can be served by 10 disks for five storage
and retrieval algorithms for bit-rates ranging from 20 to 80MB/s. The block size
is not fixed, but is chosen in such a way that a maximum number of clients can be
served. For the random redundant storage strategies there is a trade-off between
the block size and the load balancing performance. If the block size increases, the
switch overhead decreases, but also the number of blocks per period decreases. The
latter effect restricts the possibilities for load balancing and exploiting the multi-
zone character of the disks.

block size 20MB/s 40MB/s 60MB/s 80MB/s
striping variable 9 5 3 2
partial 2MB 9 4 3 2
RS(2) 5MB 12 6 4 3

RDS-MF 2MB 10 5 3 2
RDS-LPR 3:33MB 14 7 4 3

Table 6.4. Number of clients that can be served by ten disks for four possible bit-
rates and five storage and retrieval strategies. The column with block sizes gives
and optimal block size in the sense that the number of clients is maximized. For
the random redundant storage strategies it is constant, but for striping the optimal
block size is the amount of data to be received by each client in each period.

96 Server Design

Looking at the results we see that for instances with very high bit-rates striping is
competitive with the random redundant storage strategies. For the time-based ap-
proach of RDS, we used LP rounding to solve the retrieval problem as LP rounding
outperforms LP matching for these large block sizes. RDS with LP rounding out-
performs the other strategies. Partial duplication with 50% of the blocks stored
twice performs poorly. The number of blocks per period becomes too small, such
that there is not enough load balancing freedom available to obtain efficient disk
usage. For random striping we used the LP rounding algorithm as this preemptive
algorithm outperforms the list scheduling algorithm for these large blocks. For the
redundant storage strategies the table gives the optimal block size. Increasing the
block size any further results in a drop in performance, due to too little load bal-
ancing freedom. Striping uses blocks as large as the amount of data that a client
needs per period, i.e. 10, 20, 30, 40MB, respectively. In that way striping is able to
exploit the possibility to increase the block size to the fullest. An idea to improve
the performance of striping for these instances is to store the striped data only on
the outer half of the disk. In that way the total amount of stored data is still the
same as in case of RDS. Experiments show that such a system could serve 12, 7, 5,
and 4 clients, respectively, so it outperforms RDS with LP rounding for the highest
two bit-rates.

6.3.2 Reading versus writing

Until now we focussed on servers from which clients retrieve data. Storing the data
on the server is assumed to be done off-line. However, if we consider film editing,
a large fraction of the requests are write requests. In case of writing, redundancy
results in an increase of the workload compared to non-redundant storage. In this
section we discuss the effect of redundancy in servers that support write and read
requests.

We again look at a server that contains MPEG streams, so we assume that all read
and write requests concern streams of 0:75MB/s. We use blocks of 0:5MB and
2MB so the worst-case response time equals 1:33s and 5:33s, respectively. In this
analysis we apply the following algorithm for writing a duplicated stream. For
each block two disks are chosen randomly and a combination of zones is chosen
randomly in the same way as in the previously applied storage strategies. Then,
both blocks are assigned. For random striping writing is done in a similar way.
A more sophisticated writing algorithm would be needed to keep the preferred
distribution of the data, but this is considered to be outside the scope of this thesis.
Table 6.5 gives the results for four storage and retrieval strategies, two block sizes,
and 33% and 50% write requests.

6.3 Professional applications 97

write req. striping partial RS(2) RDS-LPM

33% 50 129 120 1620:5MB
50% 50 116 108 118

33% 129 258 255 2702MB
50% 129 224 230 226

Table 6.5. Number of streams that can be served by ten disks for 33% and 50%
write requests for four storage and retrieval strategies and two block sizes.

As can be expected, the results show that RDS has the largest drop in performance
when the fraction of write requests increases. We see that for 2MB sized blocks
and 50% writing the three random redundant storage strategies perform equally
well. The small differences are not significant as the numbers are simulation re-
sults. It is worth mentioning that for this setting the variation in period length was
smallest for random striping, which makes that strategy preferable. The smaller
variation can be explained as follows. For RDS we see instances where the value
of LP matching equals the lower bound, which is probably due to the fact that
the disk with maximal load has only write requests. Such instances make that the
worst-observed value is considerably larger than for random striping. For partial
duplication a similar argument holds.

Combining the results of Table 6.4 and the fact that the performance of the redun-
dant strategies decreases due to write requests, we can conclude that full striping
outperforms the random redundant strategies in case of high bit-rates and a large
fraction of write requests.

We end this section with a remark on the buffer strategy. For reading we assigned
a single buffer of size three times the block size to each stream. In the experiments
above we assumed that it is possible to control the fraction of write streams exactly,
in such a way that in each period 50% of the blocks have to be written. Then, a
buffer of three times the block size is sufficient. However, in practice the fraction
of write requests varies over time. So a better buffer implementation is to have a
large writing buffer, as it is not relevant from which client a block comes that has to
be written. In this way the server can deal with short-term variations in the fraction
of write requests. A detailed discussion of the buffer effects is considered outside
the scope of the thesis.

6.3.3 Conclusion

The results of this section show that the redundant storage strategies perform well
for high bit-rates. However, we saw that for small systems that offer streams with

98 Server Design

very high bit-rates striping is at least competitive. Striping is even more preferable
when the fraction of write requests increases. Furthermore, if bandwidth instead
of storage is the bottleneck resource, striping over the outer half of the disk further
improves this strategy.

For servers that combine reading and writing of MPEG streams we saw that if a
small response time is required and the fraction of writing is 0.33, RDS is the best
strategy. For a larger fraction of writing, random striping and partial duplication
become at least competitive. Striping is not able to compete with the redundant
strategies for MPEG streams when a small response time is required.

6.4 Discussion

In this chapter we evaluated the performance of random redundant storage strate-
gies and the retrieval algorithms in the design of video-on-demand and other mul-
timedia servers. The results show that random redundant storage is applicable and
preferable in a wide range of settings. Furthermore, this chapter shows that a large
number of trade-offs have to be considered in the design of a system. We high-
lighted several of them, but we do not aim to be complete in this matter. In this
discussion section we describe related issues and add further comments.

Buffer size. The buffer requirement for a stream with a high bit-rate is large,
as in each period a large amount of data arrives. A way to decrease this buffer
requirement is by taking a smaller period and serving each client more frequently
with smaller data blocks. That solution results in a larger switch overhead, so
there is a trade-off between disk efficiency and buffer requirement. Another way
to decrease the buffer requirement is by retrieving multiple blocks per period per
stream, as explained in Section 6.3.1. If each client receives two half-sized blocks
per period the buffer size needs to be 2.5 block sizes instead of 3. Furthermore, as
more blocks have to be retrieved per period, the load balancing algorithms perform
better. Again, this is at the cost of a larger switch overhead.

Performance guarantee. To configure the server we used in this chapter the 99%-
value of the estimation of the period length that follows from simulations. This
might lead to a period longer than the one that is accounted for, once every 100
periods, but note that it means that this is expected to happen once every 100worst-
case periods. A system that is configured on this value performs in practice much
better, as, for example, there is only a very small probability that all clients require
a maximum bit-rate at the same time. Next to that, one may alternatively use the
99:9% value or add a safety margin to the 99% value. The cases described in

6.4 Discussion 99

this chapter illustrate how the techniques that are described in this thesis can be
implemented and exploited. A performance evaluation in a prototype with actual
streams can be a next step in the design of a server. In that way the actual failure
probabilities can be measured.

Disk failures. An important performance issue of a video server is its performance
when one disk fails. For RDS and random striping, all data is still available in case
of a disk failure. For striping and partial duplication extra precautions should be
taken to prevent loss of data. For wide striping it is possible to add one extra disk
on which a parity subblock is stored for each block [Patterson, Gibson & Katz,
1988]. For partial duplication a similar parity method can be designed.

Heterogeneous streams. In the discussion section of Chapter 4 we explained that
the time-based models can be used for heterogeneous streams. One way to do this
is by splitting up the higher bit-rate videos into larger blocks. However, this leads to
a more complex storage structure. Another way to deal with heterogeneous streams
is by retrieving more blocks for clients that are watching at a higher bit-rate, in the
same way as explained in the first part of Section 6.3.1. A minor disadvantage is
that a more complex buffer algorithm is needed to avoid underflow and overflow
for the clients that watch at higher bit-rates.

7
Conclusion

In this thesis we discussed the use of random redundant storage strategies in video-
on-demand systems. In these strategies each video file is split up into blocks and
each block is stored on one or more randomly chosen disks. We assume that the
disks within the server are synchronized and that the server works in periods of
variable length. In each period a large number of blocks has to be retrieved from
the disks and the next period starts as soon as all disks have finished. The perfor-
mance of a storage strategy is measured by the period length and this period length
depends on the load balancing performance of a storage strategy and how efficient
the disks are used.

We defined the retrieval problem for the random redundant storage strategies as
follows. For each requested block it has to be decided which disk(s) to use for its
retrieval such that the period length is minimized. We analyzed two versions of the
retrieval problem. In the block-based retrieval problem (BRP) the period length is
determined by the maximum number of blocks assigned to any disk. In the time-
based retrieval problem (TRP) the period length is defined as the completion time
of the disk that finishes last, where the switch times and the actual transfer times
of the blocks are taken into account.

101

102 Conclusion

We modeled and analyzed the retrieval problems from a combinatorial optimiza-
tion point of view. We showed that they form a special class of multiprocessor
scheduling problems. We modeled BRP as an integer linear programming problem
and we defined the edge weight partition problem as the special variant of BRP in
case of duplicate storage. Furthermore, we related the problem to the maximum
density subgraph problem and showed that BRP can be seen as a special case of the
maximum flow problem. We modeled TRP as a mixed integer linear programming
problem and showed that the model can be applied to a broad range of settings.

We proved that BRP can be solved in polynomial time, by showing that BRP is a
special case of the maximum flow problem. TRP is proved to be NP-complete in
the strong sense. We also discussed the complexity of some special cases. TRP
with duplicate storage and no preemption and set-up times is NP-complete in the
strong sense. TRP with the number of machines defined in the problem definition
can be solved in pseudo-polynomial time by a dynamic programming algorithm,
even if preemption and set-up times are included. If job preemption is allowed
without set-up times, TRP is solvable in polynomial time.

For BRP we adapted known maximum flow algorithms. We showed how the spe-
cial structure of the maximum flow graph of BRP can be used to improve for BRP
the general time complexity results of these algorithms. We also described a para-
metric maximum flow algorithm that solves BRP in the same time complexity as it
solves the decision variant of BRP. Finally, we developed a linear time algorithm
for the special case of random chained declustering. For TRP we designed two al-
gorithms that construct a feasible solution out of the solution of the LP relaxation.
For these algorithms we derived instance dependent performance bounds. We re-
ported on the value of these bounds for several practical settings. Next to the LP
based algorithms, we designed a linear time list scheduling algorithm.

The maximum flow algorithm solves BRP to optimality. With a probabilistic anal-
ysis we showed that with high probability a good load balance is obtained with this
algorithm for BRP. Using the time-based approach we can improve on the results
of the block-based approach, both in period length and in variation of the period
length. The amount of improvement depends on a large number of parameters.
We quantified with simulations the improvement for several settings. Furthermore,
we illustrated with cases the effects of these improvements in disk efficiency on
system performance parameters, such as response time and number of admissible
clients. The results show that duplicate storage with a time-based algorithm enables
exploitation of the multi-zone character of the disks by increasing the fraction of
blocks that is read from the outer zones. Next to that, we showed that the fraction
of time that disks are idle due to synchronization, turns out to be very small.

Conclusion 103

The time-based models and algorithms can be applied to a broad range of stor-
age strategies and system settings. We showed that it works for random duplicate
storage, partial duplication, and random striping. The models can also be adapted
to hold for heterogeneous settings, such as heterogeneous disks or heterogeneous
streams. A large advantage of random redundant storage strategies is that no as-
sumptions have to be made about client behavior. By storing the blocks randomly,
we make sure that in each period the blocks that have to be retrieved are a random
choice out of the possible combinations. Consequently, the performance bounds
on the period length hold without any assumptions regarding the requested blocks.
Random redundant storage leads to very efficient disk usage, mainly at the cost
of storage overhead. This means that if disk bandwidth is a scarce resource com-
pared to disk storage capacity, random redundant storage is the preferred strategy
for video-on-demand systems.

Bibliography

AERTS, J., J. KORST, AND S. EGNER[2000], Random duplicate storage strategies
for load balancing in multimedia servers,Information Processing Letters 76,
51–59.

AERTS, J., J. KORST, F. SPIEKSMA, W. VERHAEGH, AND G. WOEGINGER

[2002], Load balancing in disk arrays: Complexity of retrieval problems,
accepted for publication inIEEE Transactions on Computers.

AERTS, J., J. KORST, AND W. VERHAEGH [2001], Load balancing for redun-
dant storage strategies: Multiprocessor scheduling with machine eligibility,
Journal of Scheduling 4, 245–257.

AERTS, J., J. KORST, AND W. VERHAEGH [2002], Improving disk efficiency
in video servers by random redundant storage,Proceedings Conference on
Internet and Multimedia Systems and Applications (IMSA’02), 354–359.

AHUJA, R.K., T.L. MAGNANTI , AND J.B. ORLIN [1989], Network flows, Hand-
books in Operations Research and Management Science 1, Optimization,
Chapter IV, 211–370. Elsevier Science Publishers.

ALEMANY, J., AND J.S. THATHACHAR [1997], Random striping for news on
demand servers, Technical Report TR-97-02-02, University of Washington.

AZAR, Y., A.Z. BRODER, A.R. KARLIN , AND E. UPFAL [1999], Balanced allo-
cations,SIAM Journal on Computing 29, 180–200.

BERENBRINK, P., A. BRINKMANN , AND C. SCHEIDELER [1999], Design of
the PRESTO multimedia storage network,Proceedings International Work-
shop on Communication and Data Management in Large Networks (CDM-
Large’99).

BERENBRINK, P., A. CZUMAJ, A. STEGER, AND B. VÖCKING [2000], Balanced
allocations: The heavily loaded case,Proceedings Symposium on Theory of
Computing (STOC’00), 745–754.

BERENBRINK, P., R. LÜLING, AND V. ROTTMANN [1996], A comparison of data
layout schemes for multimedia servers,Proceedings European Conference
on Multimedia Applications, Services, and Techniques (ECMAST’96), 345–
364.

BERENBRINK, P., M. A. RIEDEL, AND C. SCHEIDELER [1999], Simple compet-
itive request scheduling,Proceedings ACM Symposium on Parallel Algo-

105

106 Bibliography

rithms and Architectures (SPAA’99), 33–42.
BERSON, S., S. GHANDEHARIZADEH, R.R. MUNTZ, AND X. JU [1994], Stag-

gered striping in multimedia information systems,Proceedings ACM SIG-
MOD Conference on Management of Data, 79–90.

BERSON, S., R.R. MUNTZ, AND W.R. WONG [1996], Randomized data alloca-
tion for real-time disk I/O,Proceedings IEEE COMPCON, 286–290.

CHANG, E., AND H. GARCIA-MOLINA [1997], Effective memory use in a media
server,Proceedings Very Large Database Conference (VLDB’97), 496–505.

CHANG, E.,AND A. ZAKHOR [1996], Cost analyses for VBR video servers,IEEE
Multimedia, 56–71.

CHERVANAK , A.L., D.A. PATTERSON, AND R.H. KATZ [1995], Choosing the
best storage system for video service,Proceedings ACM multimedia, 109–
119.

CHUA, T.S., J. LI, B.C. OOI, AND K.-L. TAN [1996], Disk striping strategies for
large video-on-demand servers,Proceedings ACM Multimedia, 297–306.

COFFMAN, E., L. KLIMKO , AND B. RYAN [1972], Analysis of scanning policies
for reducing disk seek times,SIAM Journal of Computing 1, 269–279.

DAN, A., D.M. DIAS, R. MUKHERJEE, D. SITARAM , AND R. TEWARI [1995],
Buffering and caching in large-scale video servers,Proceedings COMP-
CON, 217–224.

DINIC, E. [1970], Algorithm for solution of a problem of a maximal flow in a
network with power estimation,Soviet Math. Doklady 11, 1277–1280.

FENG, W.C., AND J. REXFORD [1999], Performance evaluation of smoothing al-
gorithms for transmitting prerecorded variable-bit-rate video,IEEE Trans-
actions on Multimedia 1, 302–313.

GALLO , G., M.D. GRIGORIADIS, AND R.E. TARJAN [1989], A fast parametric
maximum flow algorithm and applications,SIAM Journal on Computing 18,
30–55.

GAREY, M.R., AND D.S. JOHNSON [1979], Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman and Company,
San Fransisco.

GEMMELL , J., H.M. VIN, D.D. KANDLUR, P.V. RANGAN, AND L.A. ROWE

[1995], Multimedia storage servers: A tutorial,IEEE Computer 26, 40–49.
GHANDEHARIZADEH, S.,AND R.R. MUNTZ [1998], Design and implementation

of scalable continuous media servers,Parallel Computing 24, 91–122.
GOLDBERG, A.V. [1984], Finding a maximum density subgraph, Technical Re-

port UCB CSD 84/171, University of California, Berkeley.
GOLDBERG, A.V., AND R.E. TARJAN [1988], A new approach to the maximum-

flow problem,Journal of the ACM 35, 921–940.
HSIAO, H., AND D.J. DEWITT [1990], Chained declustering: A new availability

Bibliography 107

strategy for multiprocessor database machines,Proceedings International
Conference on Data Engineering (ICDE’90), 456–465.

KARZANOV, A.V. [1974], Determining the maximal flow in a network with the
method of preflows,Soviet Math. Doklady 15, 434–437.

KORST, J. [1997], Random duplicated assignment: An alternative to striping in
video servers,Proceedings ACM Multimedia, 219–226.

KORST, J., V. PRONK, AND P. COUMANS [1997], Disk scheduling for variable-
rate data streams,Proceedings European Workshop on Interactive Dis-
tributed Multimedia Systems and Telecommunication Services (IDMS’97),
119–132, LNCS 1309.

KORST, J., V. PRONK, P. COUMANS, G. VAN DOREN, AND E. AARTS [1998],
Comparing disk scheduling algorithms for vbr data streams,Computer Com-
munications 21, 1328–1343.

LENSTRA, J.K., D.B. SHMOYS, AND E. TARDOS [1990], Approximation algo-
rithms for scheduling unrelated parallel machines,Mathematical Program-
ming 46, 259–270.

LOW, C.P. [2002], An efficient retrieval selection algorithm for video servers with
random duplicated assignment storage technique,Information Processing
Letters 83, 315–321.

LÜLING, R., AND F. CORTÉS GOMÉZ [1998], Communication scheduling in
a distributed memory parallel interactive continuous media server system,
Proceedings Workshop on Architectural and OS Support for Multimedia Ap-
plications, in conjunction with ICPP’98.

MARTELLO, S.,AND P. TOTH [1990], Knapsack Problems: Algorithms and Com-
puter Implementations, John Wiley and Sons, New York.

MERCHANT, A., AND P.S. YU [1995], Analytic modeling and comparisons of
striping strategies for replicated disk arrays,IEEE Transactions on Comput-
ers 44, 419–433.

MICHIELS, W., J. KORST, AND J. AERTS [2002], On the guaranteed throughput
of multi-zone disks, submitted toIEEE Transactions on Computers.

MOTWANI, R., AND P. RAGHAVAN [1995], Randomized Algorithms, Cambridge
University Press.

MUNTZ, R.R., J.R. SANTOS, AND S. BERSON [1998], A parallel disk storage
system for real-time multimedia applications,International Journal of In-
telligent Systems 13, 1137–1174.

NEMHAUSER, G.L., AND L.A. WOLSEY [1989], Integer programming, Hand-
books in Operations Research and Management Science 1, Optimization,
Chapter VI, 447–528. Elsevier Science Publishers.

NERJES, G., P. MUTH, AND G. WEIKUM [1997], Stochastic service guarantees
for continuous data on multi-zone disks,Proceedings ACM International

108 Bibliography

Symposium on Principles of Database Systems (PODS’97).
OYANG, Y.-J. [1995], A tight upper bound of the lumped disk seek time for the

SCAN disk scheduling policy,Information Processing Letters 54, 355–358.
ÖZDEN, B., A. BILIRIS, R. RASTOGI, AND A. SILBERSCHATZ [1995], A disk-

based storage architecture for movie on demand servers,Information Sys-
tems 20, 465–482.

PAPADIMITRIOU , C.H., AND K. STEIGLITZ [1982], Combinatorial Optimiza-
tion: Algorithms and Complexity, Prentice Hall, Inc., New Jersey.

PAPADOPOULI, M., AND L. GOLUBCHIK [1998], A scalable video-on-demand
server for a dynamic heterogeneous environment,Proceedings Workshop on
Advances in Multimedia Information Systems, (MIS’98), Springer-Verlag,
4–17, LNCS 1508.

PATTERSON, D.A., G.A. GIBSON, AND R.H. KATZ [1988], A case for redun-
dant arrays of inexpensive disks (RAID),Proceedings ACM SIGMOD Con-
ference on Management of Data, 109–116.

PINEDO, M. [1995], Scheduling: Theory, Algorithms, and Systems, Prentice Hall,
Inc., New Jersey.

REHRMANN, R., B. MONIEN, R. LÜLING, AND R. DIEKMANN [1996], On
the communication throughput of buffered multistage interconnection net-
works, Proceedings ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA’96), 152–161.

RINNOOY KAN, A.H.G. [1987], Probabilistic analysis of algorithms,Annals of
Discrete Mathematics 31, 365–384.

RUEMMLER, C., AND J. WILKES [1994], An introduction to disk drive modeling,
IEEE Computer 27, 17–28.

SALEM , K., AND H. GARCIA-MOLINA [1986], Disk striping,Proceedings Inter-
national Conference on Data Engineering (ICDE’86), 336–342.

SANDERS, P. [2000], Asynchronous scheduling for redundant disk arrays,
Proceedings ACM Symposium on Parallel Algorithms and Architectures
(SPAA’00), 98–108.

SANDERS, P. [2001], Reconciling simplicity and realism in parallel disk models,
Proceedings ACM-SIAM Symposium on Discrete Algorithms (SODA’01),
67–76.

SANDERS, P., S. EGNER, AND J. KORST [2000], Fast concurrent access to par-
allel disks, Proceedings ACM-SIAM Symposium on Discrete Algorithms
(SODA’00), 849–858.

SANTOS, J.R., R.R. MUNTZ, AND B. RIBEIRO-NETO [2000], Comparing ran-
dom data allocation and data striping in multimedia servers,Proceedings
ACM Sigmetrics, 44–55.

SCHOENMAKERS, L.A.M. [1995], A new algorithm for the recognition of series

Bibliography 109

parallel graphs, Technical report, CWI, Amsterdam.
SHENOY, P.J., P. GOYAL , S.S. RAO, AND H.M. VIN [1998], Symphony: An

integrated multimedia file system,Proceedings SPIE/ACM Conference on
Multimedia Computing and Networking (MMCN’98), 124–138.

SHENOY, P.J., P. GOYAL , AND H.M. VIN [1995], Issues in multimedia server
design,ACM Computing Surveys 27, 636–639.

SHENOY, P.J.,AND H.M. VIN [1999], Efficient striping techniques for variable
bit rate continuous media file servers,Performance Evaluation Journal 38,
175–199.

SHENOY, P.J.,AND H.M. VIN [2000], Failure recovery algorithms for multimedia
servers,ACM Multimedia systems 8, 1–19.

TETZLAFF, W., AND R. FLYNN [1996], Block allocation in video servers for
availability and throughput,Proceedings SPIE/ACM Conference on Multi-
media Computing and Networking (MMCN’96).

TOVEY, C.A. [1984], A simplified NP-complete satisfiability problem,Discrete
Applied Mathematics 8, 85–89.

VIN, H.M., S.S. RAO, AND P. GOYAL [1995], Optimizing the placement of mul-
timedia objects on disk arrays,Proceedings International Conference on
Multimedia Computing and Systems (ICMCS’95), 158–165.

Author Index

A
Aarts, E., 5, 16
Aerts, J., 8–10, 15, 44, 46, 85
Ahuja, R.K., 9, 32
Alemany, J., 8
Azar, Y., 9

B
Berenbrink, P., 7, 9, 25, 87
Berson, S., 7, 8, 85, 87
Biliris, A., 6
Brinkmann, A., 87
Broder, A.Z., 9

C
Chang, E., 5
Chervanak, A.L., 6
Chua, T.S., 6
Coffman, E., 15
Cortés Goméz, F., 5, 25
Coumans, P., 5, 16
Czumaj, A., 9

D
Dan, A., 5
DeWitt, D.J., 7, 41
Dias, D.M., 5
Diekmann, R., 5
Dinic, E., 32
Doren, G. van, 5, 16

E
Egner, S., 8, 9, 44, 64, 85

F
Feng, W.C., 25

Flynn, R., 8

G
Gallo, G., 9, 32, 40
Garcia-Molina, H., 5, 6
Garey, M.R., 10, 47, 51
Gemmell, J., 5, 87
Ghandeharizadeh, S., 7, 87
Gibson, G.A., 6, 7, 99
Goldberg, A.V., 9, 30, 32, 36, 37, 39
Golubchik, L., 7
Goyal, P., 5, 88
Grigoriadis, M.D., 9, 32, 40

H
Hsiao, H., 7, 41

J
Johnson, D.S., 10, 47, 51
Ju, X., 7

K
Kandlur, D.D., 5, 87
Karlin, A.R., 9
Karzanov, A.V., 32
Katz, R.H., 6, 7, 99
Klimko, L., 15
Korst, J., 5, 7–10, 15, 16, 20, 35, 44,

46, 58, 64, 85

L
Lüling, R., 5, 7, 25
Lenstra, J.K., 57
Li, J., 6
Low, C.P., 36

110

Author Index 111

M
Magnanti, T.L., 9, 32
Martello, S., 52
Merchant, A., 7
Michiels, W., 15
Monien, B., 5
Motwani, R., 64
Mukherjee, R., 5
Muntz, R.R., 7, 8, 85, 87
Muth, P., 6, 7

N
Nemhauser, G.L., 10
Nerjes, G., 6, 7

O
Ooi, B.C., 6
Orlin, J.B., 9, 32
Oyang, Y.-J., 5, 15
Özden, B., 6

P
Papadimitriou, C.H., 33, 34
Papadopouli, M., 7
Patterson, D.A., 6, 7, 99
Pinedo, M., 9, 23
Pronk, V., 5, 16

R
Raghavan, P., 64
Rangan, P.V., 5, 87
Rao, S.S., 5, 88
Rastogi, R., 6
Rehrmann, R., 5
Rexford, J., 25
Ribeiro-Neto, B., 8
Riedel, M. A., 25
Rinnooy Kan, A.H.G., 10
Rottmann, V., 7
Rowe, L.A., 5, 87
Ruemmler, C., 5, 14, 22
Ryan, B., 15

S
Salem, K., 6
Sanders, P., 8, 9, 64
Santos, J.R., 8, 85, 87
Scheideler, C., 25, 87
Schoenmakers, L.A.M., 29
Shenoy, P.J., 5, 7, 18, 88
Shmoys, D.B., 57
Silberschatz, A., 6
Sitaram, D., 5
Spieksma, F., 46
Steger, A., 9
Steiglitz, K., 33, 34

T
Tan, K.-L., 6
Tardos, E., 57
Tarjan, R.E., 9, 32, 36, 37, 39, 40
Tetzlaff, W., 8
Tewari, R., 5
Thathachar, J.S., 8
Toth, P., 52
Tovey, C.A., 48

U
Upfal, E., 9

V
Vöcking, B., 9
Verhaegh, W., 8–10, 46
Vin, H.M., 5, 7, 18, 87, 88

W
Weikum, G., 6, 7
Wilkes, J., 5, 14, 22
Woeginger, G., 46
Wolsey, L.A., 10
Wong, W.R., 8

Y
Yu, P.S., 7

Z
Zakhor, A., 5

Samenvatting

In een zogenaamd ‘video-on-demand’-systeem kunnen klanten op ieder moment
een film naar keuze opstarten. De films liggen opgeslagen in een centrale ‘server’,
en worden bij aanvraag over een extern netwerk naar de klant gestuurd. De server
voorziet een groot aantal klanten tegelijk van hun eigen, continue stroom van video
data. In een video server onderscheiden we drie delen: een verzameling harde
schijven (disks) waarop de video data opgeslagen ligt, een geheugen van waaruit
de data het externe netwerk ingestuurd wordt, en een intern netwerk dat de disks
verbindt met het geheugen. Als een klant een film opstart krijgt hij een deel van
de het geheugen als persoonlijke buffer toegewezen. Vanuit deze buffer wordt de
video naar de klant gestuurd. De films worden opgesplitst in blokken van constante
grootte en deze blokken worden op de disks opgeslagen.

We nemen aan dat de server in periodes werkt, en wel als volgt. Aan het begin van
een periode wordt gekeken welke buffers ruimte hebben voor een volgend blok en
de corresponderende blokken worden aangevraagd bij de disks. Ieder aangevraagd
blok wordt toegewezen aan een disk, opgehaald, en verstuurd naar de correspon-
derende buffer. De volgende periode begint als alle disks klaar zijn met het ophalen
van de aan hen toegekende blokken. In de server hebben we een algoritme nodig
dat beschrijft hoe de data blokken worden opgeslagen op de disks en een algo-
ritme dat de aangevraagde blokken toewijst aan de disks, waarbij de combinatie
van beide algoritmen ervoor moet zorgen dat de disks effici¨ent gebruikt worden.

In dit proefschrift analyseren we de werking van aselecte, redundante op-
slagstrategi¨een. Van elk blok video data worden ´eén of meer kopi¨een opgesla-
gen op aselect gekozen disks. Voor de aangevraagde blokken die op meer dan
één disk opgeslagen liggen, moet een keuze gemaakt worden welke disks te ge-
bruiken voor ieder blok. Dit resulteert in het volgende zogenaamde ‘retrieval’
probleem dat in iedere periode opgelost dient te worden. Gegeven is een verza-
meling blokken en voor ieder blok is gegeven op welke disks het opgeslagen ligt.
Ken nu de blokken toe aan de disks zodanig dat de periodelengte geminimaliseerd
wordt. De verwachte periodelengte geeft aan hoe effici¨ent de disks in de server
gebruikt worden en is dus een maat voor de prestatie van een opslagstrategie met

112

Samenvatting 113

bijbehorend retrieval-algoritme.

We beschouwen twee retrieval-problemen, die verschillen in de definitie van peri-
odelengte. In het blok-gebaseerde retrieval-probleem (BRP) minimaliseren we het
maximaal aantal blokken dat aan een van de disks is toegewezen, en in het tijd-
gebaseerde retrieval-probleem (TRP) minimaliseren we de daadwerkelijke eindtijd
van de disk die het laatst klaar is. TRP is gebaseerd op een gedetailleerder model
dan BRP. In TRP nemen we de daadwerkelijke leestijden van de blokken mee in
de beslissing van toewijzing en staan we toe dat een blok gedeeltelijk van meer
dan één disk opgehaald wordt. Het voordeel van het meenemen van de leestij-
den in het model is dat we bij het toekennen van de aangevraagde blokken aan
de disks gebruik kunnen maken van de eigenschap dat magnetische schijven een
hogere leessnelheid realiseren bij het lezen aan de buitenkant van de disk dan aan
de binnenkant. De vrijheid om een blok in delen van meerdere disks te lezen heeft
als voordeel dat het beter mogelijk is de hoeveelheid werk gelijkmatig te verdelen
over de disks. Een nadeel is dat het totaal aantal verplaatsingen van de leeskoppen
van de disks toeneemt.

We analyseren beide retrieval-problemen met technieken uit de combinatorische
optimalisering. We laten zien dat de retrieval-problemen een speciale klasse
van multiprocessor planningsproblemen vormen. We modelleren BRP als een
geheeltallig lineair programmeringsprobleem en laten zien dat we het probleem
kunnen oplossen met behulp van een speciale ‘maximum flow’ graaf. Dit betekent
dat BRP oplosbaar is in polynomiale tijd. We modelleren TRP als gemengd
geheeltallig lineair programmeringsprobleem en bewijzen dat het probleem NP-
lastig is in de sterke zin. We beschrijven twee benaderings-algoritmen voor TRP,
gebaseerd op LP-relaxatie, en een heuristiek gebaseerd op ‘list scheduling’.

Met een probabilistische analyse van BRP laten we zien dat gerandomiseerde re-
dundante opslagstrategi¨een goed presteren, in de zin dat de kans op een . Met
simulaties kwantificeren we de verbetering van TRP ten opzichte van BRP. De re-
sultaten geven aan dat TRP het mogelijk maakt de disks effici¨enter te gebruiken,
met name door gebruik te maken van de eigenschap dat disks sneller kunnen lezen
aan de buitenkant dan aan de binnenkant. Aan de hand van een aantal toepassin-
gen laten we zien hoe de toegenomen disk-effici¨entie gebruikt kan worden om,
bijvoorbeeld, het aantal klanten toe te laten nemen.

Dit proefschrift laat zien dat aselecte redundante opslagstrategi¨een een goede keuze
zijn voor video-opslag in video-on-demand-systemen. De modellen en algoritmen
zijn toepasbaar op een groot scala aan toepassingen en leiden tot zeer effici¨ent disk
gebruik.

Curriculum Vitae

Joep Aerts was born on 26 May 1975 in Riel, The Netherlands. He studied techni-
cal mathematics at the Technische Universiteit Eindhoven. He graduated with hon-
ors in April 1998, on the subject of test time reduction algorithms for core-based
ICs. The Master’s project was carried out at the Philips Research Laboratories in
Eindhoven under supervision of Emile Aarts, Cor Hurkens, Jan Karel Lenstra, and
Erik Jan Marinissen.

In May 1998 Joep started as a Ph.D. student at the Technische Universiteit Eind-
hoven. The research, that resulted in this thesis, was performed at the Philips
Research Laboratories in Eindhoven under supervision of Emile Aarts, Jan Korst,
and Wim Verhaegh.

114

Meyrueis, Lozère, 26 juni 1977. Warm, bewolkt weer.
Ik pak mijn spullen uit mijn auto en zet mijn fiets in
elkaar. Vanaf terrasjes kijken toeristen en inwoners toe.
Niet-wielrenners. De leegheid van die levens schokt me.

[Tim Krabbé, De Renner]

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-
gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-01

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathe-
matics and Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics
and Computing Science, TUE. 1996-08

D. Turi . Functorial Operational Semantics and
its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Speci-
fication Formalism. Faculty of Mechanical En-
gineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars . Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan . The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink . Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE. 1998-02

J. Verriet . Scheduling with Communication for
Multiprocessor Computation. Faculty of Math-
ematics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty
of Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty
of Mathematics and Computing Science, TUE.
1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of
Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evo-
lutionary Search. Faculty of Mathematics and
Natural Sciences, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty
of Mathematics and Natural Sciences, RUG.
1999-05

M.P. Bodlaender. Schedulere Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn . Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Mathe-
matics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-
allel Progam Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon . Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-03

W.O.D. Griffioen . Studies in Computer Aided
Verification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the Math-
Spad Editor. Faculty of Mathematics and Com-
puting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier . A Framework for Debugging Het-
erogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space
Structure. Faculty of Mathematics and Natural
Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a computa-
tional approach to knowledge, observation and
communication. Faculty of Mathematics and
Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Faculty
of Mathematics and Computing Science, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Test-
ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk . Generation and presentation
of formal mathematical documents. Faculty
of Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp . Reactive machine control: A
simulation approach using χ. Faculty of Me-
chanical Engineering, TU/e. 2001-13

D. Bošnǎcki. Enhancing state space reduc-
tion techniques for model checking. Faculty
of Mathematics and Computing Science, TU/e.
2001-14

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis: theoretical and experimen-
tal aspects. Faculty of Mathematics and Natural
Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification
and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Fac-
ulty of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2002-03

S.P. Luttik . Choice Quantification in Process
Algebra. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construc-
tion: Algorithms and Complexity. Faculty
of Mathematics and Computer Science, TU/e.
2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifica-
tion of Probabilistic, Real-time and Parametric
Systems. Faculty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences,
UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Checking
of Timed and Hybrid Systems. Faculty of
Science, Mathematics and Computer Science,
KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-
ing. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-09

D. Tauritz . Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of
Semantical Models. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2002-12

L. Moonen. Exploring Software Systems. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Com-
putation to Constraint Satisfaction and Data
Mining. Faculty of Mathematics and Natural
Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Science,
TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty
of Mathematics and Computer Science, TU/e.
2002-16

J.J.D. Aerts. Random Redundant Storage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

	Contents
	Preface
	1. Introduction
	2. Storage and retrieval in a video server
	3. Block-based load balancing
	4. Time-based load balancing
	5. Performance analysis
	6. Server design
	7. Conclusion
	Bibliography
	Author index
	Samenvatting
	Curriculum Vitae

