

Categoral views on computations on trees (Extended abstract)

Citation for published version (APA):
Hasuo, I., Jacobs, B. P. F., & Uustalu, T. (2007). Categoral views on computations on trees (Extended abstract).
In L. Arge, C. Cachin, T. Jurdzinski, & A. Tarlecki (Eds.), Proceedings of the 34th International Colloquium on
Automata, Languages and Programming (ICALP 2007) 9-13 July 2007, Wroclaw, Poland (pp. 619-630). (Lecture
Notes in Computer Science; Vol. 4596). Springer. https://doi.org/10.1007/978-3-540-73420-8_54

DOI:
10.1007/978-3-540-73420-8_54

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1007/978-3-540-73420-8_54
https://doi.org/10.1007/978-3-540-73420-8_54
https://research.tue.nl/en/publications/cadfb20b-3a93-437e-b4d6-4f94b5f1f137

Categorical Views on Computations on Trees
(Extended Abstract)

Ichiro Hasuo1, Bart Jacobs1, and Tarmo Uustalu2

1 Institute of Computing and Information Sciences, Radboud University Nijmegen,
Postbus 9010, NL-6500 GL Nijmegen, The Netherlands

http://www.cs.ru.nl/~{ichiro, bart}
2 Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, EE-12618 Tallinn, Estonia
http://www.cs.ioc.ee/~tarmo

Abstract. Computations on trees form a classical topic in computing.
These computations can be described in terms of machines (typically
called tree transducers), or in terms of functions. This paper focuses
on three flavors of bottom-up computations, of increasing generality. It
brings categorical clarity by identifying a category of tree transducers
together with two different behavior functors. The first sends a tree
transducer to a coKleisli or biKleisli map (describing the contribution
of each local node in an input tree to the global transformation) and the
second to a tree function (the global tree transformation). The first be-
havior functor has an adjoint realization functor, like in Goguen’s early
work on automata. Further categorical structure, in the form of Hughes’s
Arrows, appears in properly parameterized versions of these structures.

1 Introduction

Tree transformations are functions sending trees to trees. Such transformations
are of broad interest in computing, notably in language processing, and are often
studied in relation to certain types of realizing machines. They form a classical
topic.

In this paper we aim at a systematic study of phenomena and constructions
related to bottom-up tree transformations. We first sketch two motivating obser-
vations: these will later be given detailed accounts.

Behavior-realization adjunction. It is a fundamental idea in computer science
that we associate with a “computable” function a “machine” which realizes it.
Those machines which realize tree transformations are often called tree trans-
ducers and have been extensively studied as a continuation of automata theory:
see [10,11,2] and also more recently [1].

Here comes our first question. What do we mean by saying “a machine c
realizes a transformation l”? Given a transformation l, is there a machine which
realizes it? Is there a canonical choice among such realizers? We shall answer
these questions, following the idea of Goguen’s behavior-realization adjunction [3]
for (a more elementary setting of) automata, see also [9].

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 619–630, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

620 I. Hasuo, B. Jacobs, and T. Uustalu

Tree functions from local behaviors. We start with relabeling bottom-up tree
transformations that only change labels on each node of an input tree, like l on
the left.

a4
a2

a0 a1

a3 l�−→
b4

b2
b0 b1

b3

a4
a2

a0 a1

a3 k�−→ b4

(1)

Now let us consider another function k which operates on the same input trees
as l does but returns the root label of the output tree of l. That is, k = ε ◦ l
where ε extracts the root label. It may seem that k (which shall be called a local
behavior) carries less information than l does—ε throws information away. But
when l is relabeling bottom-up we can recover l from k.

Our main contribution is to give an account of some classes of tree transfor-
mations in terms of diagrams like this:

TT
LBeh

��
Real

��

�

TF
��
TF↑ � � �� TF

LBeh
W

��
(2)

Here, TF and LBeh are two behavior functors from the category of tree trans-
ducers (“machines”) to tree functions and to local behaviors. For relabelings,
the functor W is an isomorphism: this embodies the equivalence of the two
behaviors TF and LBeh as hinted at above; for more general types of tree trans-
formations, it will be epi. The category TF↑ is included in TF of tree functions
in general: we shall give a categorical characterization of being “bottom-up”.
The local behaviors are coKleisli maps of certain comonads, in one case biKleisli
maps of a distributive law of a comonad over a monad, and agree with the idea
of comonadic notions of computation as those that send “values-in-contexts”
to “values” [13,12] (the latter reference deals with attribute grammars, another
type of tree computations). The behavior-realization adjunction is presented as
Real � LBeh .

In each of the Sects. 2–4, we shall develop a situation like (2) for a specific class
of tree transformations—and hence a corresponding class of tree transducers.
Namely, relabeling bottom-up tree transducers in Sect. 2; rebranching bottom-
up tree transducers in Sect. 3, and bottom-up tree transducers in full generality
in Sect. 4. In Sect. 5 we generalize our categorical formulation in an orthogonal
direction: we uncover further compositional structures using Hughes’s Arrows [5],
and thus a way to view tree transformations as “structured computations” in
programming semantics.

2 Relabeling Bottom-Up Tree Transducers

In this section we will consider a class of tree transducers (TTs) that operate
on well-founded trees of a fixed branching type F (a set functor), with labels

Categorical Views on Computations on Trees 621

at their nodes taken from a parameter set, or alphabet. These transducers take
A-labeled trees to B-labeled trees for fixed alphabets A, B, but Section 5 will
sketch a properly parameterized version. They work bottom-up by only changing
the labels of an input tree and are thus shape-preserving.

For this class of TTs, we shall turn the informal diagram (2) from the intro-
duction into the diagram below. It has: two behavior functors LBeh and TF ; a
functor W establishing equivalence of two kinds of behavior; and an adjunction
Real � LBeh .

TT(A, B)

LBeh
��

Real
��

�

TF
		

TF↑(A, B) � � �� TF(A, B)

LBeh(A, B)
W

∼=

(3)

That the branching type of our trees is expressed by a set functor F generalizes
more traditional universal-algebraic signatures, given by a set Σ of operations
f, each with an arity |f| ∈ N. Such a signature yields a functor Z �→

∐
f∈Σ Z |f|.

The A-labeled trees of the branching type F (for brevity, we also say A-trees)
live in the initial algebra of the functor A×F , whose carrier we denote by DA,
leaving F implicit. The algebra structure A × FDA

∼=→ DA will be denoted by
σA. Obviously D1 is the set of unlabelled trees or tree-shapes.

Definition 2.1. A (relabeling bottom-up) tree transducer (TT) is a function
A×FX

c→ B×X in Sets, where the set X is called the state space. A morphism
of such TTs from A × FX

c→ B × X to A × FY
d→ B × Y is a function f : X →

Y satisfying (B × f) ◦ c = d ◦ (A × Ff).
TTs and morphisms between them form a category which we denote by TT

(A, B), leaving again the dependence on F implicit. Obviously, TT(A, B) is
nothing but the comma category (A × F ↓ B ×).

Example 2.2. The operation of a TT is best described on an example. As the
branching type F we take 1+()2, describing well-founded binary trees. Consider
a TT A × (1 + X2) c→ B × X and the leftmost tree below as an input.

a4

a2

a0 a1

a3 �
(b0, x0) (b1, x1)

(b3, x3) �
(b4, x4)

(b2, x2)

(b0, x0) (b1, x1)

(b3, x3)

The bottom-up computation starts at the leaves: let (a0, κ1(∗)) c�→ (b0, x0),
where κ1, κ2 are coproduct injections. This assigns a label b0 and a state x0 to
the corresponding leaf of the output tree. Similar mappings at the other leaves
lead to the middle tree. At the inner position of a2, the label on the output tree
is determined by the input label a2 as well as by the states x0, x1 of the successor
nodes. They are already available precisely because we proceed in a bottom-up
manner. Now we get (b2, x2) from the outcome (a2, κ2(x0, x1))

c�→ (b2, x2). We
continue this way and get the tree on the right from (a4, κ2(x2, x3))

c�→ (b4, x4).

622 I. Hasuo, B. Jacobs, and T. Uustalu

By forgetting about the states xi, we finally obtain the output tree of the com-
putation. It is obvious that the shape of the input tree is preserved. This will
change in the next section.

For a TT c, we shall now define two behaviors TF (c) and LBeh(c). The former
is a function that carries an A-tree to a B-tree; the latter carries an A-tree to
an element in B, as hinted at in the introduction.

Definition 2.3. A TT A × FX
c→ B × X induces its tree function behavior

TF (c) : DA → DB and its local behavior LBeh(c) : DA → B via the following
two diagrams, both using the initiality of σA.

A × FDA ������

∼=σA

��

A × F (DB × X)

c̆
��

A × FDA ������

∼=σA

��

A × F (B × X)
A × Fπ2��

A × FX
c��

DA

TF (c) ��

��������� DB × X
π1��

DA ���������

LBeh(c) ��

B × X
π1��

DB B

where the algebra structure c̆ on the left is given by the composite

A × F (DB × X)
〈Fπ1,Fπ2〉−→ A × FDB × FX

c−→ B × FDB × X
σB−→ DB × X

the underlining indicating what the maps act on.

The mapping A �→ DA carries a comonad structure. It is the cofree recursive
comonad on F [14]. A local behavior LBeh(c) : DA → B is a morphism A → B
in the coKleisli category of the comonad D. This is a general phenomenon.

By a simple diagram chase it can be seen that a morphism of TTs is indeed
a “behavior-preserving map” wrt. the above two behaviors.

Lemma 2.4. Assume we have a morphism f from one TT c to another d. Then
LBeh(c) = LBeh(d) and TF (c) = TF (d).
�

In Example 2.2 we have illustrated how a TT acts in a bottom-up fashion on
trees. Before we can show that the TF behavior from Def. 2.3 is indeed “bottom-
up” we need a characterization of bottom-up tree functions. Intuitively, these
are the functions l : DA → DB such that:

l

(a

t1 t2

)

is of the form
l(t1) l(t2)

.

Categorical Views on Computations on Trees 623

The following definition captures this intuition in categorical terms.

Definition 2.5. A tree function l : DA → DB is said to be (relabeling) bottom-
up if it is a morphism of coalgebras, as in:

FDA
Fl �� FDB

A × FDA
π2

��

B × FDB
π2

��

DA
l ��

∼= σ−1
A

��

DB

∼= σ−1
B

��
(4)

Lemma 2.6. For a TT A × FX
c→ B × X, the induced tree function TF (c) :

DA → DB is bottom-up.
�

Now we can define the three semantic domains appearing in (3). We write:

– LBeh(A, B) for the set of maps DA → B, i.e., LBeh(A, B)=HomC(DA, B);
– TF(A, B) for the set of maps DA → DB, i.e., TF(A, B) = HomC(DA, DB);
– TF↑(A, B) ↪→ TF(A, B) for the subset of bottom-up maps DA → DB.

These three sets are considered as discrete categories. This enables us to consider
behavior mappings as functors from TT(A, B), in a degenerate fashion.

Lemma 2.7. The mappings LBeh and TF in Def. 2.3 extend to functors

LBeh : TT(A, B) → LBeh(A, B) and TF : TT(A, B) → TF(A, B) .

The functor TF factors through the embedding TF↑(A, B) ↪→ TF(A, B).
�

A realization functor Real : LBeh(A, B) → TT(A, B) is defined to send a
local behavior k : DA → B to the TT 〈k, DA〉 ◦ σA : A × FDA → B × DA.
This TT has a canonical state space, namely the set DA of all A-trees; in all
but degenerate cases, this state space is infinite. In fact Real yields the initial
realization and we get a behavior-realization adjunction in the spirit of [3].

Theorem 2.8. We have Real � LBeh, and since the category LBeh(A, B) is
discrete, this adjunction is actually a coreflection.

Proof. The statement is equivalent to the following. For a given local behavior
DA

k→ B, the realization Real(k) is the initial one among those which yield k as
their LBeh behavior. Let A × FX

c→ B × X be one of such TTs. The following
fact is shown by diagram chasing.

DA
f→ X is a morphism of TTs from Real(k) to c if and only if 〈k, f〉 is

an algebra homomorphism from the initial algebra σA to c ◦ (A×Fπ2) :
A × F (B × X) → B × X .

Initiality of σA yields existence and uniqueness of such f , hence the initiality of
Real(k).
�

624 I. Hasuo, B. Jacobs, and T. Uustalu

Next we shall establish an isomorphism between the two (local and tree func-
tion) behaviors, which we already discussed in the introduction. By Lemma 2.7,
Theorems 2.8 and 2.9 we have established the situation (3).

Theorem 2.9. The following composite W of functors is an isomorphism.

W =
(
LBeh(A, B) Real−→ TT(A, B) TF−→ TF↑(A, B)

)

Proof. The functor W sends a map k : DA → B to its coKleisli extension Dk ◦
δA : DA → DDA → DB. Let E : TF↑(A, B) → LBeh(A, B) be the functor
carrying a bottom-up tree function l : DA → DB to εB ◦ l : DA → DB → B.
Thus E post-composes the tree function with extraction of the root label. Then
E ◦ W = Id because D is a comonad. For the opposite direction W ◦ E = Id,
bottom-upness is crucial.
�

3 Rebranching Bottom-Up Tree Transducers

In this section we pursue the same idea as in the previous section, but for a
more general class of bottom-up TTs, namely rebranching TTs. They no longer
preserve tree shapes, in fact they take trees of one branching type F to trees of a
possibly different branching type G, by reorganizing the branching of any node
of the input tree from type F to type G.

We shall establish the following situation, which is almost the same as (3). The
main differences are: 1) the fixed parameters are now functors F, G for branching
types (instead of sets A, B of labels) meaning that we consider transformations of
F -branching trees (F -trees for short) into G-trees; 2) the isomorphism between
LBeh and TF↑ is not present.

TT(F, G)

LBeh
��

Real
��

�
TF

����������

TF↑(F, G) � � �� TF(F, G)

LBeh(F, G) W

�� �����������
(5)

A novelty in this section is what we call “placeholders-via-naturality”. TTs
are conventionally systems of transition rules in which placeholders appear ex-
plicitly. In our categorical approach, they have quite a different presentation as
natural transformations (Def. 3.1). The correspondence between these seemingly
different notions will be described via the Yoneda lemma.

Let us first present the conventional notion of rebranching TTs. Let Σ and
Δ be universal-algebraic signatures: we consider transformations of Σ-trees into
Δ-trees. Conventionally, a rebranching TT with a state space X is presented as
an element of the set

∏
f∈Σ

(
X |f| −→ (

∐
g∈Δ |f||g|) × X

)
. (6)

It is illustrative to think of the cardinality |f| as a set {y1, . . . , y|f|} of placeholders,
of the set X |f| on the left as the set of graphs of functions from |f| to X and of the

Categorical Views on Computations on Trees 625

set |f||g| on the right as the set of length-|g| lists over |f|. For example, assume that
some f is binary and a TT (6) carries (f, ((y1, x1), (y2, x2))) to ((g, (y2, y1, y1)), x)
with a ternary g. This is understood graphically as follows.

f

x1 y1 x2 y2

�−→ x g

y2 y1 y1

(7)

This is “bottom-up” because the state x is determined by the states x1, x2
assigned to its successor nodes. Placeholders y1, y2 designate how the subtrees
are reorganized in the bottom-up construction of a tree function behavior l.

f

t1 t2

l�−→ g

l(t2) l(t1) l(t1)

The name rebranching comes from the fact that, on the right hand side of (7),
exactly one function symbol occurs, so that a layer in a input tree is sent to
exactly one layer of the output tree, and only the branching within the layer
changes. In Sect. 4 we will abandon also this requirement.

We now present our categorical definition of TTs.

Definition 3.1. A (rebranching bottom-up) TT is a natural transformation
F (×X)

γ
=⇒ G ×X between set functors. The set X is called its state space.

A morphism of TTs from F (× X)
γ

=⇒ G × X to F (× Y) δ=⇒ G × Y is
a function f : X → Y satisfying (G × f) ◦ γ = δ ◦ F (× f). We denote by
TT(F, G) the category of TTs and morphisms.

This categorical formulation may seem very different from the conventional one
(6). But somewhat remarkably the two agree for functors arising from traditional
signatures.

Let F, G be induced by universal-algebraic signatures Σ, Δ: namely, F =∐
f∈Σ()|f| and G =

∐
g∈Δ()|g|. The following calculation shows the equiva-

lence between (6) and Def. 3.1 via the Yoneda lemma.
∏

f∈Σ

(
X |f| → (

∐
g∈Δ |f||g|) × X

)

=
∏

f∈Σ

(
G|f| × X

)X|f|

by definition of G

=
∏

f∈Σ

(
()|f| ⇒ (G × X)X|f|)

by Yoneda

=
∏

f∈Σ

(
(× X)|f| ⇒ G × X

)
by × X |f| � ()X|f|

=
(∐

f∈Σ(× X)|f|
)

⇒ G × X

= F (× X) ⇒ G × X by definition of F .

On the third line the set of placeholders (the first occurrence of |f| on the second
line) is absorbed into naturality, hence “placeholders-via-naturality”.

We now proceed to the tree function behavior of our TTs. The tree functions
here take F -trees to G-trees. Going slightly more general than necessary for this

626 I. Hasuo, B. Jacobs, and T. Uustalu

section (but preparing for the next), we write F ∗Z for the carrier of the initial
(Z +F)-algebra, i.e., the set of unlabelled F -trees with variables (graft-points)
from a set Z. For the algebra structure F (F ∗Z) ∼=→ F ∗Z we write αF

Z . F -trees
simpliciter (i.e., those without variables) arise as the special case F ∗0. The set
(or discrete category) of tree functions F ∗0 → G∗0 will be denoted by TF(F, G).

Definition 3.2. A TT F (×X)
γ⇒ G ×X induces its tree-function behavior

TF (γ) ∈ TF(F, G) by the following algebra initiality diagram.

FF ∗0 ��������

∼=αF
0

��

F (G∗0 × X)
γG∗0��

GG∗0 × X
αG

0 × X∼= ��

F ∗0
γ̃

���������

TF (γ)
��

G∗0 × X
π1��

G∗0

(8)

Here again, similarly to the situation for relabelings, not all the tree functions
F ∗0 → G∗0 are induced by a TT but only “bottom-up” ones are.

Definition 3.3. A tree function F ∗0 l→ G∗0 is said to be (rebranching) bottom-
up, if there exists a natural transformation called a witness F (×F ∗0) ω=⇒ G
which makes the following diagram commute.

GF ∗0
Gl �� GG∗0

F (F ∗0 × F ∗0)
ωF ∗0

��

FF ∗0
F 〈id, id〉 ��

F ∗0
(αF

0)−1 ∼=��

l
�� G∗0

∼= (αG
0)−1

��

(9)

By TF↑(F, G) we denote the set (discrete category) of tree functions F ∗0 → G∗0
which are rebranching bottom-up. We have TF↑(F, G) ↪→ TF(F, G).

Witnesses are not necessarily unique. A simple example is the tree function that
sends an unlabelled binary tree to the unlabelled unary tree of its height.

Lemma 3.4. For a TT F (×X)
γ⇒ G ×X, the induced tree function TF (γ) :

F ∗0 → G∗0 is (rebranching) bottom-up.

Proof. Take ω = π1 ◦ γ ◦ F (× (π2 ◦ γ̃)), where γ̃ is from (8).
�

Definition 3.5. Given a TT F (×X)
γ⇒ G ×X, we define its local behavior

LBeh(γ) to be F (× F ∗0) ω⇒ G from the proof of Lemma 3.4.

Categorical Views on Computations on Trees 627

In Sect. 2 we observed that a local behavior DA → B is a coKleisli map. This
is also the case in this section. In fact, the mapping F �→ F (F ∗0 ×) extends
to a comonad on the functor category [Sets,Sets], so that any natural transfor-
mation F (F ∗0×) ω⇒ G is therefore a coKleisli map from F to G. We denote
their set (discrete category) by LBeh(F, G).

Lemma 3.6. The operations LBeh and TF in Definitions 3.5 and 3.2 extend
to functors LBeh : TT(F, G) → LBeh(F, G) and TF : TT(F, G) → TF↑(F, G).

�

Theorem 3.7. We have an adjunction (actually a coreflection) Real � LBeh,
where the realization functor for local behaviors Real : LBeh(F, G) → TT(F, G)
sends a local behavior F (× F ∗0) ω⇒ G to a TT with Z-components

F (Z × F ∗0)
〈ωZ ,Fπ2〉→ GZ × FF ∗0

GZ×αF
0→ GZ × F ∗0 .
�

Proposition 3.8. The functor W = (LBeh(F, G) Real→ TT(F, G) TF→ TF↑
(F, G)) is an epimorphism.
�

4 Relayering Bottom-Up Tree Transducers

In this section we will consider our most general class of bottom-up tree trans-
formations, which can send a layer in an input tree to a truncated subtree in
the output tree. For reasons of space, we must be fairly brief. We establish the
same situation as in the previous section, except that we do not have to single
out any condition of bottom-upness of tree functions. As we do not restrict state
spaces to be finite, any tree function can arise as the behavior of a relayering
bottom-up TT.

A categorical presentation of relayering TTs is obtained much like that of
rebranching TTs in Sect. 3, using “placeholders-via-naturality”. We recall the
notation F ∗Z for the carrier of the initial (Z +F)-algebra. It is now important
for us that the functor F ∗ carries a monad structure, in particular a multiplica-
tion μF : F ∗F ∗ ⇒ F ∗ that can be defined via initiality.

Definition 4.1. A (relayering bottom-up) TT is a natural transformation of
the form F (×X)

γ
=⇒ G∗ ×X. Such TTs form a category TT(F, G) together

with an obvious notion of morphism.

The difference from Def. 3.1 is that we have G∗ instead of G in the codomain.
This corresponds to allowing terms over placeholders rather than applications
of single function symbols in the right-hand sides of transition rules (7): for
example,

f

x1 y1 x2 y2
�−→ x g

g′

y2 y1

y1 y2

(10)

628 I. Hasuo, B. Jacobs, and T. Uustalu

Definition 4.2. A TT F (×X)
γ⇒ G∗ ×X induces its tree-function behavior

TF (γ) : F ∗0 → G∗0 by the following algebra initiality diagram.

FF ∗0 ��������

∼=αF
0

��

F (G∗0 × X)
γG∗0��

G∗G∗0 × X
μG

0 × X��

F ∗0
γ̃

���������

TF (γ)
��

G∗0 × X
π1��

G∗0

(11)

For relayering TTs any tree function is bottom-up: a tree function l : F ∗0 → G∗0
is realized by the TT whose Z-component is

F (Z × F ∗0) Fπ2−→ FF ∗0
αF

0−→ F ∗0
〈l,F ∗0〉−→ G∗0 × F ∗0 G∗!×F ∗0−→ G∗Z × F ∗0 ,

where ! denotes the empty map 0 → Z. This realization however does not give
an adjunction.

The local behavior induced by a TT γ is a natural transformation LBeh(γ) :
F (× F ∗0) ⇒ G∗ . Such natural transformations are biKleisli maps of a dis-
tributive law of the comonad F �→ F (× F ∗0) of the previous section over the
free monad delivering monad F �→ F ∗. We denote their set (discrete category)
by LBeh(F, G).

For a realization functor for local behaviors Real : LBeh(F, G) → TT(F, G)
we obtain an adjunction (actually a coreflection) Real � LBeh , similarly to the
rebranching case.

5 Allowing Parameters to Vary

In Sect. 2 we saw the fundamental diagram (3) relating tree transducers, local
behaviors and tree functions. In that diagram we kept the alphabets A, B fixed.
In this section we shall identify additional mathematical structure that emerges
by allowing the alphabets to vary. For this purpose we utilize the notion of
Arrows—as introduced by Hughes [5], but described more abstractly as monoids
in categories of bifunctors in [4]—and also Freyd categories (or as fibered spans).

Arrows were devised for the purpose of reconciling impure “structured com-
putations” with purely functional computation. Commonly an Arrow A(−, +)
is a bifunctor C

op × C → Sets: in this case A(A, B) is the set of structured
computations (of the kind designated by A) from the type A to B. Since we
want to consider TT(A, B) of relabeling transducers as a category of struc-
tured computation, we shall use Cat-valued Arrows instead: these are bifunctors
C

op×C → Cat with additional structure arr and >>>.1 The notion of Cat-valued
Arrows are in fact the same thing as Freyd categories [8] (enriched by Cat in

1 For the sake of brevity, we ignore here the compatibility with products which is
usually given by an operation first.

Categorical Views on Computations on Trees 629

a suitable way): this was shown in [7]. Moreover, a Cat-valued Arrow—as a bi-
functor C

op×C → Cat—induces a fibered span via the generalized Grothendieck
construction (see, e.g., [6, Ch. 9]).

In the remainder of the section we shall parameterize the diagram (3) and
obtain the corresponding situation for Arrows. In this case we have C = Sets as
the base category. We do this only for relabelings due to limited space.

The bifunctor TT(−, +) is such that TT(A, B) is the category of relabelings
from A-trees to B-trees. It sends a morphism (α, β) : (A, B) → (C, D) in C

op ×
C—hence α : C → A and β : B → D—to the functor TT(A, B) → TT(C, D)
given as follows. On objects:

(
A × FX

c→ B × X
)

�−→
(
C × FX

α×FX−→ A × FX
c→ B × FX

β×FX−→ D × FX
)

and on morphisms it is the identity.
Interestingly, there is also a monoid structure TT ⊗ TT >>>→ TT arr← I on the

bifunctor TT—this makes TT an Arrow (see [4]). We shall describe it a bit
more concretely. For TTs A × FX

c−→ C × X and C × FY
d−→ B × Y with

matching output/input, their composition c >>> d has X × Y as its state space:

A × F (X × Y)
〈Fπ1,Fπ2〉−→ A × FX × FY

c−→ C × X × FY
d−→ B × X × Y .

The operation arr for TT carries a morphism A
f→ B in C to a TT with a trivial

state space 1: namely A × F1 π1→ A
f→ B

∼=→ B × 1. It is easy to check that arr
and >>> satisfy the appropriate naturality and monoid equations.

Just like TT(−, +) carries the structure of an Arrow we can identify similar
structure on LBeh(−, +), TF(−, +) and TF↑(−, +). It then turns out that the
diagram (3), but then without the fixed alphabets, also exists in parameterized
form, even with preservation of this Arrow structure. For example, the behavior-
realization adjunction is now described as an adjunction between Arrows.

Theorem 5.1. We have the following situation in the 2-category Arrow.

TT(−, +)

LBeh
��

Real
��

�

TF
		

TF↑(−, +) � � �� TF(−, +)

LBeh(−, +)
W

(12)

�

6 Conclusions and Future Work

We have given a categorical account of three classes of bottom-up tree trans-
formations. Notably, we have generalized traditional signatures to functors and
replaced traditional descriptions of TTs based on placeholder notation with nat-
ural transformations, winning simplicity and clarity. In future work, we will

630 I. Hasuo, B. Jacobs, and T. Uustalu

elaborate on our basic picture in a form where, in addition to “extensional” tree
functions, we also have “intensional” tree functions, capable of tracking which
node in an input tree goes where in the output tree. And we will also include
top-down computations, using the theory of containers, as well as bottom-up
and top-down computations with look-ahead.

Acknowledgement. T. Uustalu was partially supported by the Estonian Science
Foundation grants No. 5567 and 6940.

References

1. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications. Book draft (2005)

2. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison.
Math. Syst. Theory 9(3), 198–231 (1975)

3. Goguen, J.: Minimal realization of machines in closed categories. Bull. Amer. Math.
Soc. 78(5), 777–783 (1972)

4. Heunen, C., Jacobs, B.: Arrows, like monads, are monoids. In: Brookes, S., Mislove,
M. (eds.) Proc. of 22nd Conf. on Math. Found. of Program. Semantics, MFPS-
XXII. Electr. Notes in Theor. Comput. Sci., vol. 158, pp. 219–236. Elsevier, Ams-
terdam (2006)

5. Hughes, J.: Generalising monads to arrows. Sci. of Comput. Program. 37(1–3),
67–111 (2000)

6. Jacobs, B.: Categorical Logic and Type Theory. North-Holland, Amsterdam (1999)
7. Jacobs, B., Hasuo, I.: Freyd is Kleisli, for arrows. In: McBride, C., Uustalu, T.

(eds.) Proc. of Wksh. on Mathematically Structured Functional Programming,
MSFP ’06, Electron. Wkshs. in Comput. Sci., BCS (2006)

8. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math.
Struct. in Comput. Sci. 7(5), 453–468 (1997)

9. Rosebrugh, R.D., Sabadini, N., Walters, R.F.C.: Minimal realization in bicategories
of automata. Math. Struct. in Comput. Sci. 8(2), 93–116 (1998)

10. Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theory 4(3), 257–
287 (1970)

11. Thatcher, J.W.: Generalized sequential machine maps. J. Comput. Syst. Sci. 4(4),
339–367 (1970)

12. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. In: van Eekelen,
M. (ed.) Trends in Functional Programming 6, Intellect, pp. 145–162 (2007)

13. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Horváth, Z. (ed.)
CEFP 2005. LNCS, vol. 4164, pp. 135–167. Springer, Heidelberg (2006)

14. Uustalu, T., Vene, V.: The dual of substitution is redecoration. In: Hammond, K.,
Curtis, S. (eds.) Trends in Functional Programming 3, Intellect, pp. 99–110 (2002)

	Categorical Views on Computations on Trees (Extended Abstract)
	Introduction
	Relabeling Bottom-Up Tree Transducers
	Rebranching Bottom-Up Tree Transducers
	Relayering Bottom-Up Tree Transducers
	Allowing Parameters to Vary
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

