

On the correctness of some algorithms to generate finite
automata for regular expressions
Citation for published version (APA):
Eikelder, ten, H. M. M., & Geldrop - van Eijk, van, H. P. J. (1993). On the correctness of some algorithms to
generate finite automata for regular expressions. (Computing science notes; Vol. 9332). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/11fd09d3-7fb6-4212-8c54-9f552117bf29

Eindhoven University of Technology

Department of Mathematics and Computing Science

On the Correctness of some Algorithms to
Generate Finite Automata for Regular Expressions

by

H.M.M. ten Eikelder and H.PJ. van Geldrop

93/32

Computing Science Note 93/32
Eindhoven, September 1993

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

ON THE CORRECTNESS OF SOME ALGORITHMS TO
GENERATE FINITE AUTOMATA FOR REGULAR

EXPRESSIONS

H.M.M ten Eikelder & H.P.J. van Geldrop
Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We discuss the method given by Glushkov, McNaughton-Yamada and Berry-Sethi and a related
method given by Aho, Sethi and Ullmann to generate a deterministic finite automaton accepting
the language of a given regular expression. For both methods a formal description and a simple
correctness proof is given.

Contents

1 Introduction

2 Preliminaries

3 A basic property

4 Automata for a restricted class of regular expressions

5 Automata for arbitrary regular expressions

6 Deterministic automata

7 Conclusions

1

1

3

6

10

13

16

1 Introduction

There are several methods to construct a deterministic finite automaton that accepts the language
described by a given regular expression. In this note we discuss two methods. The first method! is
described by G1ushkov [Glu, theorem 16], McNaughton and Yamada [MY, page 44] and Berry and
Sethi [BS, Algorithm 4.4]. A strongly related method has been given by Aho, Sethi and Ullman
[ASU ,Algorithm 3.5]. In this note we give a simple correctness proof for both methods. It is based
on a simple property, from which the correctness of both methods can easily be derived. The proof
uses neither techniques like derivatives of regular expressions (see [BID nor algebra's of automata as
in [Wa].

Both methods consist in fact of two steps: (i) first the construction of a non-deterministic automaton
corresponding to the given regular expression is described, (ii) then this automaton is converted into
a deterministic one. Since step (ii) is a standard construction, we shall mainly focus on step (i). In
Section 2, regular expressions and various related notions, such as the language C(e) corresponding
to a given regular expression e, will be defined. In Section 3, an alternative "language" K:(e) cor­
responding to e is defined. In general .c(e) <;; K:(e). However, we shall formulate a condition C(e)
which implies that the languages are equal. This property is the basis for the correctness proof of
the two constructions. A special kind of finite automata is introduced in Section 4. We describe
two mappings of regular expressions to finite automata. One of these mappings corresponds to the
McNaughton-Yamada, Glushkov and Berry-Sethi construction, the other corresponds to the Aho­
Sethi-Ullman construction. It is easily proved that both mappings, applied to an arbitrary regular
expression e, yield automata that accept the language K:(e). Hence, if the condition C(e) holds, we
have automata accepting .c(e). The restriction that this construction can only be applied to the class
of regular expressions satisfying C(e) will be removed in Section 5. There .we show how for an arbi­
trary regular expression e a "marked version" e' can be constructed such that C(e') holds. Moreover
the automata for .c(e') can easily be adapted such that they accept .c(e). In general this process
yields non-deterministic automata. The conversion to deterministic automata (step (ii) above) is in
fact a standard construction and is described in Section 6. For automata obtained with the Aho­
Sethi-Ullman mapping we show that the combination of step (i) and (ii) finally leads to the algorithm
described in [ASU].

2 Preliminaries

In this section we give the definitions of various well-known notions in the field of regular languages.
In this note we always assume that V is a (finite) alphabet.

Definition 1 (REv, regular expressions over V) The set REv of regular ezpressions over V is
the smallest set X satisfying the following rules. For a E V, e,J E X:

< EX
a EX
(e I f) EX
(e. f) EX
e' EX

0

As usual we shall reduce the number of parentheses by: (i) giving priorities to the operators: prio(*) >
prio(·) > priom, (ii) using the associativity of the operators· and I , (iii) not writing outermost
parentheses.

1 The methods described by Glushkov, McNaughton-Yamada and Berry-Sethi are very similar. However, the used
markings (see section 5) are different.

1

Definition 2 (C, language defined by regular expression) The mapping
Cv : REv- 'P(V') is defined recursively as follows. For all a E V, e, f E REv:

o

Cv«) = {<}
Cv(a) = {a}
Cv(e I f) = Cv(e) U Cv(f)
Cv(e· f) = Cv(e)Cv(t)
Cv(e') = (Cv(e»'

Language (and string) concatenation is denoted by juxtaposition. Cv(e) will be called the language
defined by the regular expression e. If the alphabet V is obvious, the mapping Cv will be written as
C.

Definition 3 (Null) The predicate Null on REv is defined recursively as follows. For all a E V, e, f E
REv:

o

Null(<) = true
Null(a) = false
Null(e I f) = Null(e) V Null(t)
Null(e . f) = Null(e) 1\ Null(t)
Null(e') = true

Definition 4 (First) The mapping First: REv- 'P(V) is defined recursively as follows. For all
a E V,e,f E REv:

First«) = 0
First(a) = {a}
First(e I f) = First(e) U First(t)

. { First(e)
Fmt(e . f) = First(e) U First(t)

if .Null(e)
otherwise

First(e') = First(e)
o

Definition 5 (Last) The mapping Last
a E V,e,f E REv:

Last«) = 0
Last(a) = {a}
Last(e I f) = Last(e) U Last(t)

{
Last(t)

Last(e . f) = Last(e) U Last(t)

Last(e') = Last(e)
o

REv- 'P(V) is defined recursively as follows. For all

if .Null(t)
otherwise

Definition 6 (Follow) The mapping Follow: REv- 'P(Vx V) is defined recursively as follows. For
all a E V, e, f E REv:

Follow«) = 0
Follow (a) = 0

2

o

Follow(e If) = Follow(e) U Follow(J)
Follow(e· f) = Follow(e) U Follow(J) U (Last(e)x First(J))
Follow(e') = Follow(e) U (Last(e) x First(e))

It is easily seen that NUll(e) = " E .c(e). The sets First(e) and Last(e) consist of all symbols that can
appear as the first, respectively last, element of a string from .c(e). Furthermore (a, b) E Follow(e) if
.c(e) contains a string that has ab as a substring. Summarizing, if wE V ... , then

wE .c(e)
(7) =}

(w =" A Null(e))V
(W1 E First(e) A wn E Last(e) A (lfi: 1:-:; i < n: (Wi, Wi+d E Follow(e)))

where n =\ w \. Note tha.t in general the reverse implication does not hold, take for instance e = aa and
w = aaa. In the next section we shall impose an additional condition on e which ensures equivalence
in (7).

3 A basic property

Here we formulate a condition which ensures equivalence in (7). This equivalence will be the basis
for our explanation of the Glushkov-McNaughton-Yamada and Berry-Sethi algorithms. First we give
some definitions.

Definition 8 (in ,#) The mapping in : V x REv-> IB (written in infiz notation) is defined
recursively as follows. For all a, b E V, e, f E REv:

a in e = false
a in b = (a = b)
a in e . f = a in e V a in f
a in elf = a in e V a in f
a in e'" = a in e

The mapping # : V x REv-> IN is defined recursively as follows. For all a, b E V, e, f E REv:

o

=0

{
0 if a I' b

= 1 if a = b
#(0, e . f) = #(0, e) + #(0, f)
#(0, elf) = #(0, e) + #(0, f)
#(o,e') = #(o,e)

#(0, ,,)

#(a, b)

So a in e means that the alphabet symbol a OCCUIS somewhere in the regular expression e and #(a, e)
denotes the number of occurences of a in e.

3

Definition 9 (C, S) The mapping C: REv~ IB is defined as follows. For all e E REv:

C(e) = (Va E V :: #(a, e) :0; 1)

The mapping S : REv~ P(V) is defined as follows. For all e E REv:

S(e) = {a E V 1 a in e}

o

So C(e) means that each alphabet symbol appears at most once in the regular expression e . For
instance C(a. b 1 c) holds but C(a. b 1 a) does not hold. Furthermore S(e) is the set of alphabet
symbols that actually appear in e, e.g. S(a. b 1 c) = {a, b, c}. Using definition 8 the following relations
are easily proved.

(10) Ch 1 e2) = C(e.) A C(e2) A (S(e,) n S(e.) = 0)

(11) C(e, . e2) = C(e,) A C(e2) A (S(e,) n S(e2) = 0)

(12) C(e') = C(e)

To formulate the main theorem of this section we give the following definition2.

Definition 13 (P,.Ie) The mapping P : V· X REv~ IB is defined as follows. For all w E V· and
e E REv:

P(w,e)

(w = e A Null(e»V
(Wl E First(e) A wn E Last(e) A (Vi: 1:0; i < n: (Wi, Wi+l) E Follow(e)))

where n =1 W I.
The mapping .Ie : REv~ P(V') is defined as follows:

.Ie(e) = {w E V· 1 P(w,e)}

o

Clearly (see (7» we have that for all regular expressions e

C(e) ~ .Ie(e)

In the remaining part of this section we shall formulate conditions which imply that both languages
are equal. The equality is then proved using induction with respect to the regular expression. The
following lemma's correspond to the various cases in that proof.

Lemma 14 .lC(e) = {e}

2Note that P(w,e) is equal to the right hand side of (7).

4

Proof: Trivially P(w,<) = (w = <).
o

Lemma 15 For all symbols a E V :

K:(a) = {a}

Proof: Trivially P(w, a) = (w = a) for all a E V.
o

Lemma 16 For all e" e, E REv with S(e,) n S(e,) = 0 :

K:(e, Ie,) = K:(e,) U K:(e,)

Proof: It is sufficient to prove that for all w E V·:

P(w, e, Ie,) = P(w, e,) V P(w, e2)

<=: Trivially for all e" e, E REv: P(w, e,) V P(w, e,) =} P(w, e, Ie,)
=}: For w = < this follows immediately from the definition of Null. Using S(e,) n S(e,) = 0 we observe
that for w oF < : P(w,e, I e,) II w, E S(e;) =} w E S(e;)' for i = 1,2. Hence, for w oF < : P(w,e, I
e,) II w, E S(e;) =} P(w, ei) for i = 1,2.
o

Lemma 17 For all e" e, E REv with S(e,) n S(e,) = 0 :

K:(e, . e,) = K:(e,)K:(e,)

Proof: It is sufficient to prove that for all w E V':

P(w,e"e,) = (3u,v E V':w =uv : P(u,e,) II P(v,e,))

<=: Trivially for all e" e, E REv: P(u, e,) II P(v, e,) =} P(uv, e, . e,)
=}: This implication is proved by using the observation that, since S(e,) n S(e,) = 0, we have
P(w,e"e,) =} w E S(e,)'S(o,)'.
o

Lemma 18 For all e E REv:

K:(e') = K:(e)'

Proof: It is sufficient to prove that for all w E V":

P(w, e') = w E K:(e),

<=: Trivially P«,e') and P(u,e) IIP(v,e') =} P(uv,e').
=}: Assume P(w,e') holds. Using Follow(e') = Follow(e) U (Last(e) x First(e)) we conclude that
there exists a (possibly empty) index set I C; {I, ... , I w I-I} such that

(lfi: 1 ::; i <I willi rt I: (Wi, WH,) E Follow(e)) II

(lfi: i E I: (Wi, Wi+,) E (Last(e) x First(e)) \ Follow(e))

5

Hence w can be written as a concatenation of I =1 I 1 +1 strings, say w = vI .. . v' such that P(vi,e)
holds for all i E {I, ... , I}. This means that W E !C{e)' ~ !C{e)".

o
N ext we state the main theorem of this section.

Theorem 19 Let e E REv such that C{e) holds. Then

.c{e) = !C{e)

Proof: Using the lemma's 14 - 18 the induction proof is easily given.
o

4 A utomata for a restricted class of regular expressions

The result proved in theorem 19 can be used to construct two types of finite automata accepting the
language of a given regular expression. In the first instance this method can only be applied to regular
expressions for which condition C holds. In the next section we shall dispose of this restriction. First
we give a definition of the used type of finite automaton.

Definition 20 (SNFA) A special finite automaton (SNFA) is a 5-tuple (Q, W, LI., S, F) with:

o

Q a finite set of states,
W a finite alphabet,
.6., the transition relation, is a subset of Q x W x Q I
S~ Q is the set of start states,
F~ Q is the set of final states.

The characteristic properties of an SNFA automaton are that: (i) it has a set of start states and (ii)
there are no ~-transitions. The set of all SNFA automata over an alphabet V will be denoted by
SN:FAv. In cases where the alphabet is obvious, the subscript V will be omitted.

Definition 21 (!Lv) The language !Lv{M) accepted by an SNFA M = (Q, w, LI., S, F) is defined as:

!Lv{M)

o

Again the subscript V will be omitted when obvious.

Next we define two mappings from regular expressions to SNFA's.

Definition 22 (Glushkov McNaughton-Yamada Berry-Sethi mapping) The mapping
MG : REv--> SN:FA is defined by MG{e) = (Q, V, LI., {@},F) where:

@IlV
Q = S{e) U {@}
F = Last{@. e)

6

.Il.~ Qx Vx Q is such that
(p,a,q) E.Il. = (p,q) E Follow(@·e)Aa=q

o

This method of constructing a finite automaton is part of a construction that has already been
described by McNaughton and Yamada [MY] ,Glushkov [Glu] and Berry-Sethi[BS]. Note that MG(e)
is always a deterministic automaton because (p, a, q,) E .Il. A (p, a, q,) E .Il. => q, = q,.

Definition 23 (Aho-Sethi-Ullman mapping) The mapping MA : REv~ SNFA is defined by
MA(e) = (Q, V,.Il., S, {@}) where:

o

@>1V
Q = S(e) U {@}
S = Fir.t(e . @)
.Il.~ Qx Vx Q is such that
(p,a,q)E.Il. = (P,q)EFollow(e.@)Aa=p

This construction can be found in [ASU]. In general MA(e) will be a non-deterministic automaton3
.

Next we describe the languages accepted by these automata.

Theorem 24 For all e E REv :

!L(MG(e)) = K(e)

Proof: Let e E REv and let M = MG(e) = (Q, V,.Il.,{@},F). We consider two cases. For strings
wE V' with length n =1 W I> 0:

wE !L(M)
= { definition 21 }

(3qo, ... ,q" E Q:: qo E S Aq" E F A (Vi: 0::: i < n: (qi, Wi+" qi+,) E .Il.))
= { definition 22 }

(3qo, ... ,q" E Q:: qo = @Aq" E Last(@·e) A

(Vi: 0::: i < n: Wi+l = qi+l A (qi' qi+,) E ({@} x First(e)) U Follow(e))

= {n>O}
(@,Wl) E ({@} x First(e)) U Follow(e) A w" E Last(@.e) A

(Vi: 0 < i < n: (Wi, Wi+l) E ({@} x First(e)) U Follow(e))

= {@~V}

W, E First(e) A w" E Last(e) A
(Vi: 1::: i < n: (Wi,Wi+l) E Follow(e))

{ definition 13 }

wE K(e)

For the empty string:

< E !L(M)
{ definition M }

@ E Last(@ . e)
{@~V}

3Note that the reverse automaton, i.e. the automaton obtained by reversing all transition arrows and interchanging
initial and final states, is detenninistic.

7

o

Null(e)
{ definition13 }

< E qe)

Theorem 25 For all e E REv :

Proof: Similarly to the proof of theorem 24.
o

Theorem 26 Let e E REv such that C(e) holds. Then:

lL(MG(e»= .c(e)
IL(MA(e»= .c(e)

Proof: Trivial using the theorems 19 and 24 respectively 25.
o
Hence we have shown, that if C holds for a regular expression e, the automata MG(e) and MA(e)
accept the language corresponding to e. Note that MG{e) is a deterministic automaton. In the
next section we shall construct automata for the case that C(e) does not hold. In general that will
unfortunately lead to nondeterministic automata.

Example 27
Consider the regular expression e = 1 I 2' . 3. Then

S(e) = {I, 2, 3}
Last(@ . e) = {I, 3}
Follow(@ . e) = {(@, 1), (@,2),(@,3), (2, 2), (2, 3)}

The corresponding automaton MG(e) = (Q, V,~, {@},F)is given by

Q = S(e) U {@} = {I, 2, 3,@}
F = Last(@ . e) = {I, 3}
~ = {(p, q, q) I (p, q) E Follow(@· ej} = {(@, 1, 1), (@, 2, 2), (@, 3, 3), (2, 2, 2), (2,3, 3)}

8

The automaton has the following graphical representation'.

@

1

Note that this is indeed a deterministic automaton.
Furthermore

First(e . @) = {l, 2, 3}

2

3

Follow(e . @) = {(l,@)'(2,2),(2,3),(3,@)}

Hence the automaton MA(e) = (Q, V, Ll, S, {@}) is given by

Q = S(e) U{@}={I,2,3,@}
S = First(e . @) = {I, 2, 3}

2

2

3

Ll = {(p,p, q) I (p, q E Follow(e . @)} = ((l,l,@), (2,2,2)' (2, 2,3), (3, 3,@)}

with the following graphical representation.

2

2
2 3

3

I
~ ________ I ________ ~I~

Note that this is not a deterministic automaton. Since condition C(e) holds, we obtain from theorem
26 that both automata given above accept the language .c(e).

o

As already suggested by the example above, there is a simple relation between the automata obtained
via the Glushkov McNaughton-Yamada Berry-Sethi mapping and the Aho-Sethi-Ullman mapping. To
make this remark more explicit, we define the mappings

ReVM : SNFA.~ SNFA. by

4 Start states will be depicted with an unlabeled incoming arrow and final states will be depicted by two concentric
circles.

9

RevM((Q, V,~, S, F)) = (Q, V, ~', F, S))
with (p,a,q) E ~ = (q,a,p) E~'

and

Rev, : REv---> REv by

Rev,(e) = e
Rev,(a) = a for all a E V
Rev,(e, Ie,) = Rev,(e,) I Rev,(e,)
Rev,(e, . e,) = Rev,(e,) . Rev,(e,)
Rev,(e') = Rev,(e)'

So RevM reverses SNFA's and RetJe reverses regular expressions. Then, for all e, the following relations
hold:

RevM(MG(e))= MA(Rev,(e))
RevM(MA(e))= MG(Rev,(e))

Both relations are easily proved using SOllle simple properties of Null First Last and Follow. In fact
this property could also be used to prove the correctness of one of the automata from the correctness
of the other one.

5 Automata for arbitrary regular expressions

Next we consider an arbitrary regular expression e E REv. In general C(e) will not hold. However, we
can construct a related alphabet V' and regular expression e' E REv' such that C(e') holds. Then the
automaton accepting .evl(e'} can easily be adapted to an automaton accepting the original language
Cv(e).

Definition 28 (Marking) A marking with respect to a regular ezpression e over an alphabet V is a
triple < V',e', unmark > such that:

- V' is an alphabet
- e' E REv'
- C(e') holds
- unmark: V'---> V is such that e = unmark,(e')

where unmarkl : REv'-+ REv is defined as the unique homomorphic extension5 of unmark to REvl.
o

In the sequel of this section we assume that < V',e',unmark > is a marking with respect e E REv.
Then, since C(e') holds, the mappings described in the previous section yield the automata MG(e')
and MA(e'), both accepting C(e'). Next we show that these automata can be "unmarked", thus
yielding automata accepting C(e). To achieve this goal we give the following definitions

Definition 29 (Unrnarkings) The mappings unmark,: V"---> V', unmark3 : P(V")---> P(V')
and unmark.: S./IfFAv'---> S./IfFAv are defined as follows:

unmark,(e)
unmark,(a)

=e
= unmark(a) for all a E V'

5i.e. unmarkt(e);; e, unmark1(a);; unmark(a), unmark1(el I e2):;;;; unmark1(eJ) I unmark1(e2), unmark1(el'
e2) ;; unmark} (el) . unmark} (e2) and unmark1 (j*) ;:::: (unmarkt(J))*.

10

unmark2(",y) = unmark2(",)unmark 2(y) for all "', y E v"

unmark3 (L) = {unmark2 (",) 1 '" E L}

unmark.((Q, v', f),!, S, F)) = (Q, V,.:l, S, F) with
.:l = {(p, unmark(a), q) 1 (p, a, q) E .:l'}

So the mapping unmark: V' ---+ V gives rise to similar "unmarkings" for regular expressions, strings,
languages and finite automata6 •

Lemma 30 unmark3 0 LV' = .evo unmark 1

Proof: It is easily shown using induction that for all e" E REv' : unmark3 (L:v' (e")) = L:v(unmark, (e")).
o

Lemma 31 unmark30 ILvl = ILvo unrnark4

Proof: Let M = (Q, V', .:l', S, F) be an SNFA over V'. Then unmark.(M) = (Q, V,.:l, S, F) with.:l =
{(p, unmark(a), q) 1 (p, a, q) E .:l'}. We have to show that unmark3 (1L v ' (M)) = ILv(unmark.(M)).
Let W E V· with n =1 wi. Then

o

wE ILv(unmark.(M))
= { definition 21 }

(3qo, ... , qn E Q :: qo E S II qiwi E F II (Vi: 0 ~ i < n: (qi, Wi+" qi+,) E .:l))

{ (p, a, q) E .:l = (3a' E V' : a = unmark(a') : (p, a', q) E .:l') }

(3qo, ... ,qn E Q::
qo E S IIqn E F II (Vi: 0 ~ i < n: (3a' E V': Wi+! = unmark(a'): (qi, a', qH,) E .:l'))

= { interchanging quantifications}

(3qo, ... ,qn E Q::
qo E S II qn E F II (3v E V,. : W = unmark2 (v) : (Vi: 0 ~ i < n : (qi, VHl, qi+!) E .:l'))

= { interchanging quantifications}

(3v E V,. : W = unmark2(v) :
(3qo, ... ,qn E Q:: qo E S IIqn E F II (Vi: 0 ~ i < n: (qi,Vi+l,qi+,) E .:l'))
)

{ definition 21 }

(3v E V,. : W = unmark2(v) : v E ILv,(M))

wE unmark3 (lLv,(M)

Recall that we assume in this section that < V', e', unmark> is a marking of the (arbitrary) regular
expression e over V. The following theorem gives finite automata accepting C(e).

6The sets REv, P(V) and SNFA can all be given a r-algebra structure, see for instance [Wa]. Then various
mappings can be considered as E-homomorphisms and in some proofs we could use the initiality of the algebra REv.
However, we feel that in this simple case introducing that machinery is not useful.

11

Theorem 32 Both automata unmark.(MG(e')) and unmark.(MA(e')) accept the language .c(e).

Proof:

!Lv (unmark.(MG (e')))
= {lemma 31 }

unmark3(!Lv' (MG(e')))

= { C(e'), theorem 26 }

unmark3(.cv' (e'))

= {lemma 30}

.cv(unmark. (e'))

{ unmark.(e') = e }

.cv(e)

The proof for the automaton unmark.(MA(e')) proceeds similarly.

o

So far we have assumed that < V', e', unmark> was a marking of e. It is easily seen that such
markings exist. We give some examples

• In e E REv each occurrence of an alphabet symbol, say a, is replaced by the pair
< a, position of this occurrence of a in e >. Then V' = Vx {I, ... ,n} where n is the number
of occurrences of alphabet symbols in e, and the mapping unmark: V'--+ V is projection on the
first coordinate.
For instance the expression e = a· (a 1 b)' ·bover V = {a,b} is mapped onto e' =< a,l > .«
a,2 > 1< b,3 >)'. < b,4 > over V' = Vx {I, ... , 4}. This marking, with the second pair element
written as a subscript, is used by Glushkov [Glu] and by Berry and Sethi [BS] .

• In e E REv each occurrence of an alphabet symbol, say a, is replaced by the position of this
occurrence of a in e. Then V' = {I, .. " n} where n is the number of occurrences of alphabet
symbols and the mapping unmark: V'--+ V is defined by

unmark(k) = "symbol at position k in e"

For instance the expression e = a· (a 1 b)'· b over V = {a, b} is mapped onto e' = 1· (213)'·4
over V' = {I, ... , 4}. This marking is used in [ASU], algorithm 3.5.

Example
Consider the regular expression e = a 1 a' . b. As the symbol a appears twice, it does not satisfy the
condition C(e). Following the second method above < {I, 2, 3}, e', unmark> with e' = 1 1 2' ·3 and
unmark(l) = a, unmark(2) = a, unmark(3) = b is a marking of e. Note that e' equals the regular
expression used in example 27. Hence the automata MG(e') and MA(e') are equal to the automata
given in example 27. After unmarking we obtain the automaton unmark.(MG(e')) with graphical
representation

12

a

a
@ 2

a b b

and the automaton unmark.(MA(e')) with graphical representation

a

a
2 3

b

1 l-----a-----+{10

Theorem 32 implies that both automata accept the language C(e).
o

6 Deterministic automata

The mapping from regular expressions to automata described in the sections 4 and 5 consists of three
steps:
(a) mark the regular expression e to obtain a marked version el,

(b) apply one of the mappings MG or MA, as described in section 4, to e', thus obtaining an SNFA
accepting C(e'),
(c) unmark the obtained SNFA to obtain an SNFA accepting C(e).
The intermediate automaton MG(e) is deterministic, while, in general, the intermediate automaton
MA(e) is not deterministic. However, due to the unmarking process we will generally end up with a
non-deterministic automaton 7. Since we ultimately want a deterministic automaton accepting £(e),
a fourth step has to be added: transform the automaton obtained in step (c) into a deterministic
one. The process of transforming a non-deterministic automaton into an equivalent deterministic
automaton is well-known; it is usually denoted by the term "subset construction". The set of states
of the resulting deterministic automaton is the powerset of the set of states of the original automaton.
Hence this leads to a rather large automaton. In most cases this automaton contains states that
cannot be reached from the start state. Eliminating these unreachable states may lead to a smaller
but equivalent (deterministic) automaton. Here we will use the subset construction, followed by

1rr unmark is not injective, the mapping unmark", can map a deterministic SNFA into a non-deterministic one.

13

the elimination of unreachable states. For this combination we will use the term "subset-reachable
construction". We now give the various formal definitions.

Definition 33 (DFA) A deterministic finite automaton (DFA) is as-tuple
(Q, V, 0, s, Ac) with:

o

Q a finite set of states,
V a finite alphabet,
6, the transition mapping, is a mapping Q x V ---+ Q,
sEQ is the start state,
Ac <;; Q is the .. t of final states.

The set of all DFA's will be denoted by 1XFA.

Definition 34 The language lL' (M) accepted by a DFA M = (Q, V, 6, s, Ac) is defined as:

o

lL' (M) = {w E V" 10"(s, w) E F}

where the mapping 0" : Q x V" -+ Q is defined by

O"(q, <) = q
o"(q, awl = o"(o(q, a), w)

Definition 35 (Subset construction) The mapping Subset: SN:FA-+ 1J:FA is defined by:

Subset« Q, V, t., S, F» = (1'(Q), V, 6, {S}, F,)

where

o(R,a) = {q E Q 1 (:lr E R:: (r,a,q) E t.)}
F, = {R E 1'(Q) 1 R n F "# 0}

Due to the absence of e-transitions the subset construction for SNFA's as described above, is somewhat
simpler than the version for more general nondeterministic automata. It is a standard result that the
deterministic automaton obtained by the subset construction accepts the same language as the original
automaton, i.e.

(36) lL' , Subset = lL

Definition 37 (Elimination of unreachable states) The mapping Reachable: 1J:FA-+ 1J:FA is
defined by:

Reachable«Q, V,O,s,F)) = (Q" V,b"s,F,)

with

Q, = W(s,w) 1 wE V"}
.I, = 6 lQ,xv
F, = FnQ,

where .I" is the mapping introduced in definition 34

Trivially the elimination of unreachable states does not change the language accepted by the automa­
ton, i.e.

14

(38) IL' 0 Reachable = IL'

The composition Reachableo Subset corresponds to the subset-reachable construction mentioned above.
From (36) and (38) we obtain that

(39) IL' 0 Reachableo Subset = IL

The following standard theorem describes an algorithm for the subset-reachable construction.

Theorem 40 (Algorithm for subset-reachable construction) For all SNFA's
M = (Q, V,.:l,S,F):

o

Reachableo Subset«Q, V,.:l,S,F)) = (D, V,b,s,Ac)

where D, b, s, Ac are computed by the following algorithm:

var Z, G : 1'(1'(Q)) ; U, T : 1'(Q) ; a: V
I Z:= 0; G:= {S}
; do Goj 0-

let T E G
; Z:= Z U {T} ; G:= G \ {T}
; forallaEVdo

od
od

U := {q E Q I (3p E T :: (p, a, q) E .:l)}
if U ric G U Z _ G:= G U {U}

DUE G U Z - skip
fi
biT, a) := U

;D:=Z; s:={S}; Ac:={UEDlunFoj0}

Next we apply the subset-reachable construction to an SNFA obtained by step (a)-(c) above. So let
e be an arbitrary regular expression over an alphabet V and let < V', e', unmark> be a marking
of e. If in step (b) the Aho-Sethi-Ulhnan version is chosen we obtain the following automaton (see
definitions 23 and 29):

unmark.(MA(e'))

where

Q = S(e') U {@}

(Q, V,.:l, S, {@})

.:l = {(p,unmark(a),q) I (p,q) E Follow(e' ·@)I\a=p}
S = Fir.t(e' . @)

Applying the subset-reachable construction to this SNFA yields:

Subseto Reachable(unmark.(MA(e'lll = (D, V,b,s,Ac)

where D, b, s, Ac are computed by the following algorithm:

var Z, G: 1'(1'(Q)) ; U, T: 1'(Q) ; a: V
I Z:= 0; G:= {Fir.t(e'.@)}
; do Goj 0-

let T E G

15

o

Z:=ZU{T}; G:=G\{T}
forallaEVdo

od
od

U := {q E Q I (3p E T :: (p, q) E Follow(e' . @) /\ a = unmark(p))}
if U rt G U Z ~ G:= G U {U}
DUE G U Z ~ skip
fi
b(T,a) := U

; D:= Z; s:= {First(e' .@)}; Ac:= {UE D I@EU}

where Q = S(e') U {@}

This strongly resembles algorithm 3.5 in section 3.9 of [ASU]. The only essential difference is the
treatment of the empty set as state of the deterministic automaton. In [ASU] the empty set is
excluded from the states of the constructed deterministic automaton, although the transition function
can have the empty set as an entry_ In our opinion that is incorrect, either the empty set is treated
as a ordinary state (sometimes called the "dead state"), or it is totally excluded (in that case a
partial automaton is obtained). Here we have chosen the first version. The marking used in [ASU]
is the second one described in Section 5. The functions firstpos, lastpos and nullable, used in [ASU],
correspond to our functions First, Last and Null. Furthermore the function Jollowpos is related to our
relationS Follow by: q E followpos(p) = (p, q) E Follow(e' . @).

7 Conclusions

We have given a simple correctness proof of the automata constructions of McNaughton-Yamada
[MY], Glushkov [Glu] and Berry-Sethi [BS] and a related method described by Aho, Sethi and Ullman
[ASU]. The correctness proof of both constructions relies on theorem 19, i.e. C(e) '* K(e) = C(e).
The only difference between the proofs for the two methods consists of the proof of IL(MG(e)) = K(e)
for the Glushkov McNaughton-Yamada Berry-Sethi version versus lL(MA(e» = K(e) for the Aho­
Sethi-Ullman version. Moreover, the construction is given in two steps: (i) construct the intermediate
nondeterministic automaton (unmark.(MG(e')) Iesp. unmark.(MA{e'))) and (ii) apply the subset­
reachable construction to it. Since step (ii) is a standard construction, this greatly simplifies the
correctness proofs. Only in [BS] are these two steps also separated. Most computations are done in
terms of regular expressions and languages. Algebras of automata, as in [WaL or derivatives of regular
expressions, as in [BS], are not used.
Finally we remark that the condition C(e) in theorem 19 is too strong. For instance for e = (a I a.b),
the condition does not hold, but still K(e) = C(e).

References

[ASUJ Aho, A.V., R.Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools,
Addison-Wesley Reading, MA, 1988.

[Br] Brzozowski, J .A. "Derivatives of regular expressions", J .ACM 11(4):481-494, 1964.

[BS] Berry, G. and R. Sethi. "From regular expressions to deterministic automata",
Theoretical Computer Science, 48: 117-126, 1986.

[Glu} Glushkov, V.M. "The abstract theory of automata" I Russian Mathematical Surveys,
16: 1-53, 1961

(MY] McNaughton, R. and H. Yamada. "Regular expressions and state graphs for automata",

8 The regular expression under consideration is not explicitly mentioned in [AS VJ.

16

IEEE Trans. on Electronic Computers 9(1):39-47, 1960.

[Wa] Watson, B.W. "A taxonomy of finite automata transformations and constructions",
internal report, Eindhoven University of Technology, 1993.

17

In this series appeared:

91/01 D. A1stein

91/02 R.P. NederpeJt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
1. v.d. Woudc

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voennans
1. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 AJ.l.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Ge1drop

91/30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient paraIIel programs, p.
14.

The modeIIing and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J .C.M. Baeten
J.A. Bergstra

92/04 1.P.H. W.v.d.Eijnde

92/05 J .P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. NederpeJt

92/08 R.P. Nederpclt
F. Kamareddine

92/09 R.c. Backhouse

92/10 P.M.P. Rambags

92/11 R.c. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J .C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljce

92/17 W.M.P. van der Aalst

92/18 R.Nederpclt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real -time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

Thc fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A uni tied approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

ir

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beclcn
W.J.J.Stut
P.A.C.Vcrkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 KM. van Hee

93/10 KM. van Hee

93/11 KM. van Hee

93/12 KM. van Hee

93/13 KM. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonom y of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detcrministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Excrcises in Multiprogramming, p. 97

A Formal Detcrministic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systcms Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

92/22 R. NederpeJt
F.Kamareddine

92/23 F.Kamareddine
E.K.lein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
I.H.M. Korst
P.J. Zwietering

93/05 I.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 I.C.M. Baeten
I.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fw, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Fonnal Detenninistic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Fonnal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Fonnal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Fonnal Approach
Part III: Modeling Methods, p. IO\.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

9::·'.

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. KraLSch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. MUller

93/31 W. Korver

A Real-Time Process Logic. p. 31.

A Trace-Based CompOSitional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program­
ming. p. 15.

Freeness Analysis for Logic Programs - And Correct­
ness? p. 24.

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Proofs. p. 23.

Pure Type Systems with Definitions.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems. p. 31.

Multi-dimensional Petri nets. p. 25.

Finding all minimal separators of a graph. p. II.

A Semantics for a fine A-calculus with de Bruijn indices.
p. 49.

GOLD. a Graph Oriented Language for Databases. p. 42.

On Vertex Ranking for Pennutation and Other Graphs.
p. II.

Derivation of Delay Insensitive and Speed Independent
CMOS Circuits. using Directed Commands and
Production Rule Sets. p. 39.

	Abstract
	Contents
	1. Introduction
	2. Preliminaries
	3. A basic property
	4. Automata for a restricted class of regular expressions
	5. Automata for arbitrary regular expressions
	6. Deterministic automata
	7. Conclusions
	References

