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Abstract 
Knowledge base systems (KBS's) are gammg popularity among software users and 
developers. It is, however, not clear what a KBS is and which functions it has to fulfill. In 
this paper we investigate the notion of what could be called a rule based KBS. We wish to 
answer two main questions. First, we want to determine what is a KBS intended for, i.e. 
what should it compute. The second question is, which components are needed in KBS to 
compute what is intended. Based on logic programming and deductive database theory we 
elaborate a model of KBS's in which we can answer these questions. Applying the model 
for examining software tools we observe that it serves as a good guide in evaluating and 
developing KBS's. 
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1 Introduction 

Knowledge base systems (KBS's) can be considered as the link between theoretical AI, 

deductive databases and practice. There are several good software tools that are classified 

as a KBS, but it is in no sense standardized what a KBS is, or which functions it has to 

fulfill. Definitions of a KBS are mostly informal, like the following one from [MAR88]: 

"A knowledge base system is a computer program, where application specific knowledge 

and application independent deduction rules are separated as good as possible." 

A closer look on this informal defini tion discloses that it is too vague. Therefore, it cannot 

serve as a guide in evaluating software, or in designing a KBS. Another deficiency of this 

approach is that taking 'application specific' and 'application independent' as a basis of 

knowledge organization is a risky choice. Namely, the notion of 'application' is quite 

arbitrary and so is the border between application specific and application independent. 

We take a more formal approach. First, we explicitly identify knowledge base systems 

with rule based systems. Thereafter we classify knowledge by the following hierarchy: 

- The Universe of Discourse, ego the world of printers. 

- Factual (situation specific) knowledge, ego the symptoms of a broken printer. 

- Instructive knowledge that applies to more situations of the same type, e.g. fault detection 

instructions for printers. This knowledge utilizes factual knowledge, and is often in the 

form of implications, ego symptoms =l fault. 

- Meta knowledge that does not concern the modeled world, but the system itself, in 

particular, the usage of the formerly mentioned knowledge. Meta knowledge is meant to 

steer the reasoning process of the system and it is sometimes expressed in the form 

condition =l action. 

The distinction between instructive and meta knowledge is not always made, as it turns out 

from the next example, cf. [FL V88]: 

if (the amplified of gi ven_line = yes and 
the type_class of a_modem = LINE_DRIVER) or 
the type_class of a_modem = BASE_BAND 

then set the value of a_modem to removed and (1) 
forget all following rules from the selection and (2) 
try all rules from context FIND_MODEM from this_script (3) 

Hereby (1) leads to a new fact, while (2) and (3) are obviously pan of the process control. 

In this article we do not consider the 'administrative' functions and components of a KBS, 

such as user interface, explanation module, etc. We do not consider certainty factors either, 
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although they play an important role in several knowledge base systems. We regard the use 

of certainty factors simply as assigning numbers to formulae and coupling a numeric 

computation to the logical deduction. We concentrate on one single module and we set up 

a framework that formally describes the 'thinking kernel' of a KBS. Naturally, we do not 

claim that this is the only possible formal interpretation of KBS's, but it i§. a fonnal one and 

it answers our two basic questions, that is 

1) What is a KBS intended for, i.e. what should it compute? 

2) Which components are needed in a KBS to compute what is intended? 

Our approach has a flavor of deductive database theory and logic programming [LLO 87), 

[MIN 88) and can be characterized as a proof-theoretical view (as opposed to a 

model-theoretic view cf. [GMN84)). 

As the results of Section 6 indicate our answers to the above questions turned out to be 

very useful when evaluating existing software tools. 

2 Basic notions 

A language skeleton or database skeleton is a triple S = (F, P, ar), where F and Pare 

disjoint finite sets of function symbols and relation symbols respectively; ar : F u P -j IN is 

the arity function. Constants are function symbols with zero arity. 

A tenn is defined as follows: 

- every constant is a term; 

- every variable is a term; 

- for f E F with ar(f) = n and terms tl' .. ,tn: f(t
1
, .. ,tn) is a tenn. 

There are no other terms. 

An atom is defined as follows: 

for pEP with ar(p) :0 nand tenns tl' .. ,tn: p(tl' .. ,tn) is an atom. When none of the terms 

contains a variable, an atom is called ground. 

For an atom a, both a and ,a are literals. a is a positive literal, whereas ,a is a negative 

literal. 

The notations T(S), A(S) and L(S) stand for the set of all tenns of S, the set of all atoms of 
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S and the set of all literals of S. respectively. If E is a set of expressions then [E] denotes 

the set of all ground instances of the elements of E. Throughout this paper a rule means a 

normal clause with a not empty body. A rule-base is a finite set of rules. 

Let r be the rule A I- LI 1\ .,. 1\ Ln and let u stand for a finite set of literals. The 

immediate consequences of u via the rule r are 

T{r}(u) = u v { Aa I a is a substitution. {Lla •...• Lna} ~ u }, 

where T has its standard meaning from [LL087]. In accordance with the commonly used 

term "applying a rule to a database" we introduce r(u) as a shorthand for T {r} (u). 

Example 0 

Let u = ( pea). pCb) } and let r be the rule q(x) <----- p(x). 

Then r(u) = u v (q(a). q(b)} 0. 

3 Definition of a knowledge model 

In this section we develop the notion of a knowledge model to answer our first question: 

what do we want to compute. We follow the terminology of [BR089]. in order to show the 

similarities between aspects of our model and the database model of [BR089]. 

Let S be a database skeleton. The database universe (DB universe) belonging to Sis: 

U(S) = ( u ~ [L(S)] I there is no LEU such that LEu and -,L E u }. 

The database states (DB states) are the elements of U(S). 

Observe the nature of our database notion. A language skeleton S determines the set L(S) 

as the set of all elementary statements. Database states are consistent ground subsets of 

L(S). the set of all possible database states is the database universe U(S). Notice that with 

considering only ground databases we do not impose any serious restriction. since any time 

a literal L(x) would occur we can replace (represent) it by [L(x)]. A database state u E U(S) 

is considered as a collection of true statements. that is if we have u = {L
l 
•...• Ln} then 

we assume that each L I •...• Ln is true. 

Obviously one might not want to consider all the possible database states. but only those 

ones that satisfy some conditions. This leads to the following notion. If S is a database 

skeleton. U(S) is its database universe. then an integrity constraint is a function 
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c : U(S) -; {TRUE, FALSE, UNDEFJ. 

We assume that every constraint is specified by a first order formula q> (not necessarily in 

the language of S) in the following way: 

{

TRUE if u 1= q> 
cro(u): FALSE if u 1= -,q> 

'Y UNDEF otherwise 

where u 1= q> and u 1= -,q> is decided by identifying u with the conjunction of its literals. 

Notice that additionally to the usual truth values TRUE and FALSE, we also have UNDEF 

that stands for undefined, thus 3-valued logic is used. The value UNDEF occurs for 

instance if u does not contain enough information to tell the truth value of q>. 

Example 1 

If U(S):{ (p(a»),{p(a),q(b»),{p(a),-,q(b»), ... ), q> IS q(b)+-p(a),then 

cq>({p(a),q(b)}) : TRUE 

c<p({p(a),-,q(b)}) : FALSE 

c<p({p(a)}) : UNDEF. 

In the last case q(b) is not an element of the DB state. Therefore, no assertion can be made 

about the truth of q> w.r.t. (pea)}, consequently the value c<p«(p(a)}) is undefined. 0 

Example 1 also illustrates the importance of the distinction between rules and constraints. 

Applying <p as a rule, we obtain q(b) deduced from pea), even though q> was meant as 

defining formula of a constraint, that is for control. The crucial difference between rules 

and constraints is in their purpose: rules are objects to deduce new facts with, while 

constraints are to filter the DB universe. The reason why constraints are frequently mixed 

up with rules is twofold: 

- the constraint c<p and its defining formula <p are often not distinguished, 

- <p can be an implication in the language of S, in which case it looks like a rule. 

Let U(S) be a database universe, C a set of constraints. A u E U(S) is a feasible 

database state with respect to C, if 

It c E C : c(u) : TRUE V c(u) : UNDEF. 

The feasible database universe corresponding to C is defined as 

U : U(S) ~ C: ( U E U(S) I u is feasible w.r.t. C }. 

A knowledge base is usually described as a set of 'facts and rules'. We maintain the same 

notion in our terminology. We define a knowledge base as a pair (u,R) of explicitly stored 
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information (u) and some rules (R) to add information implicitly. Given a language 

skeleton S, and a set of constraints C, a knowledge base is a pair (u,R), where 

- u E U(S) t C is a feasible database state, 

- R is a rule base, where all the rules are in the language of S. 

In the sequel we do not mention the presence of S, C and R; if not stated otherwise, U will 

denote the feasible DB-state U(S) tc. 

To obtain the implicit information the rules of R can be used to extend u with deduced 

facts to get a new (feasible!) database state u'. This can be repeated for u' to get u" etc. 

until we reach the so called deductive closure of u. If u E U, R is a rule base, then a 

deductive closure of u by R is a set u V v ~ [L(S)] such that 

- u V v E U (is consistent and feasible), 

- LEV => 3 rl'",r
j 

E R : L E r}--(r] (u))) and 

- u V v is maximal within [L(S)]. 

Observe that v ~ [A(S)] always holds since only atoms are allowed in the head of clauses. 

At this point we make no assertions about how new facts are derived, nor how 

consistency and feasi bility are preserved. 

The purpose of a rule-base is to specify the facts (knowledge) contained in its deductive 

closure. Roughly speaking we can say that a knowledge base 'means' its deductive closure. 

Let us observe again the notion "applying a rule to a DB-state". As was defined before, 

when a rule is applied to a DB-state, all facts that can be derived then, are actually derived 

"in one atomic action". One could say that the granularity for deducing facts is the 

DB-state. The resulting DB-state should be feasible then, otherwise the rule is not allowed 

to be used at all on the original DB-state. (Actually the original DB-state can be considered 

to be not feasible, as is elaborated in [SCH91]). In practice however, when applying a rule 

to a DB-state, some software deduce one fact at a time ("granularity for deduction is fact") 

and repeat this until the resulting DB-state would not be feasible anymore. This can lead to 

serious trouble, as can be seen in the following example. 

Example 2 

Let S = (F, P, ar) a language skeleton, with F = {a, b}, P = {p, q}, area) = ar(b) = 0, 

ar(p) = ar(q) = 1 and 

C = { ccp} where cp {=l If x,y E F : p(x) II p(y) => x = y. (There is at most one pl. 
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Let u = (q(a), q(b)) and R = (r) = (p(x) +-q(x)). 

According to the definition of r(u), here r(u) = (q(a), q(b), p(a), p(b)}, which is not feasible. 

When the granularity for deduction is fact, then there are two different sets that satisfy the 

definition of the deductive closure: (q(a), q(b), p(a)} and (q(a), q(b), p(b)). 

Observe that none of these sets can be extended any further; although p(b), respectively p(a) 

is deducible by R, the resulting DB state is not feasible. So in the latter case the result of 

r(u) depends on how the system computes the deductive closure. This is not a desirable 

situation: one has to consider implementation details on a conceptual level. D 

The next objective of this section is to give a characterization of the set of all facts with 

respect to a rule base. We approach the question 'from outside' and introduce the notion of 

a knowledge function to embody the concluded-from-the-DB-state relation 'in one go'. A 

knowledge function kR : U -l U is a function where for every u E U ~(u) is a deductive 

closure of u via R. 

Building a KBS one has to specify a model that describes the possible facts, the possible 

conclusions (implications) and specifies the conclusions that are actually made. These can 

be specified by a knowledge model that is a triple (U, R, kR), where 

- U = U(S) ~C is the feasible database universe, 

- R is a rule base, where all the rules are in the language of S, 

- ~ : U -l U is the knowledge function. 

Notice that we use U as a primitive although it could be defined as a derivate of a language 

skeleton S and a set of constraints C. In practice, however, the concept of a DB universe 

will be more useful. 

We look upon a knowledge model as the outside of a KBS that identifies what we intend 

to compute by a rule-base within this knowledge model. Formally, if (U, R, kR) is a 

knowledge model and (u,R) is a knowledge base (u E U), then the set L(S) can be divided 

into the following subsets. 
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L(S) 
Figure 1 

negative 

positive 

- content of u 

- information content of (u.R) 
deducible facts 

- forbidden information 

CJ inaccessible literals 

- ~(u) a maximal set of literals that can be deduced from u by R, thus we call it the 

infonnation content of (u, R); u contains the explicitly stored facts, ~(u) \ u contains the 

implicit infonnation, stored by R, unfolded by~. ~(u) \ u only contains positive facts 

because of the facts, that only positive literals are in the head of a rule. 

- {-,L I L E ~(u) } is the set of forbidden information. Due to the consistency of ~(u), 

literals from ( -,L I L E kR(u) } are all false. 

- ~(u) U { -L I L E ~(u) } is the range of knowledge of (u, R). This set contains all those 

literals the truth value of which can be detennined by (u,R), ~ and the consistency 

requirement. 

- L(S) \ (~(u) u { -,L I L E ~(u) }) is the set of inaccessible literals. No statement can be 

made about these literals based on (u,R) and ~. 
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Now we can answer our first question (see Section 1). In our view a knowledge base 

(u,R) is built to represent its information contents, it 'means' ~(u). (One could also say 

that a knowledge base represents its whole range of knowledge, but this would not make 

much difference.) A KBS is considered as a tool that supports the definition of a 

knowledge base (u,R) and the computation of ~(u). Analysis of this latter will be the topic 

of the next section. 

4 Definition of a knowledge base system 

Here we integrate dynamic features by not only telling which conclusions can be drawn, 

but also specifying how to draw the conclusions. This will show the 'inside' of kR, and at 

the end we will have answered our second question by having defined the computational 

components of a knowledge base system. 

In the sequel we assume that a knowledge model (U, R, kR) is given. The working of a 

knowledge base system can informally be stated as follows. Having a knowledge base 

(u,R) the system is given a conjunction of literals as a query. To answer the query, the 

truth value of each literal has to be decided on the basis of (U, R, ~). 

Formally a query is a conjunction g = LI A ... A Ln' its literals will be called hypotheses. 

If it can not lead to confusion we identify g = Ll A ... A Ln with the set (Ll , ... ,Ln)' 

When given a query the system has to determine in which of the subsets of figure I each 

of the hypotheses fall. If L. falls in k (u) then L. is true, if it falls in the set of forbidden 
I -"R I 

information then L. is false and so is g. If no L. is forbidden and an L. is inaccessible, then 
I 1 1 

we can not make an assertion about L. , nor can we about g. We remark that hypotheses 
I 

may have variables. In this case it is understood that they are quantified existentially and 

an appropriate substitution is also expected in the answer. 

As it turns out from the above, to answer a query the system may have to compute at 

least a .part of kR(u). This is done by a reasoning process, consisting of elementary 

inference steps where both the DB state (known literals) and the goal (hypotheses still to be 

proved) can be changed. Any phase of such a reasoning process can be described by a pair 

(u,g), where u is the actual DB state, g is the goal. Such a pair (u,g) is called a reasoning 

state. Considering the actual goal as the set of hypotheses we still need to decide about, we 

can regard a reasoning process as an attempt to reduce the goal to empty. A reasoning 

chain within the knowledge model (U, R, kR), is a sequence «uo,go), .. ,(uk,gk» of reasoning 
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states such that k E IN and for every i, 1 :::; i :::; k: 

a) ui_1 (;; ui (;; kR(ui_1) (no loss of information) 

b) 1) gi = gi-l' or 

2) gi = (gi_l\A)S such that AS E ~(ui_l) for an atom A E gi-l' or 

3) g. = (g. 1 V {L1,··,L })S where A ~ L1,··,L E R and AS E g. 1 ' 
1 1- n n 1-

c) (ui-1,gi-1)"# (ui,gi)' 

where S is a ground substitution. 

Next we will have a look on how a transition from (u. I,g· 1) to (u.,g.) can be made. Let 
1- 1- I 1 

"7/ = { (u,g) I u E U, g is a goal in S J. For every transition in a reasoning chain a hypothesis 

from g and a rule from R has to be chosen. Therefore we need: 

a goal selection function y: 1/. -j L(S), such that y«u,g» E g and 

a rule selection function p : 1/. --l R. 

The set of goal selection function will be denoted as G, while RS stands for the set of rule 

selection functions. 

An inference rule (I-rule) is a function i: 1/. --l 1/. that generates a new reasoning state. We 

can distinguish the following cases where il satisfies (a) and (bI), i2 satisfies (a) and (b2) 

and i3 satisfies (a) and (b
3
) from the definition of reasoning chain. 

1. knowledge base extended 

i1«u,g» = (u v {AS}, g) where AS E ~(u) \ u, A ~ L
t
, ... ,Ln E p«u,g» for apE RS, 

{L1, ... ,Ln}S (;; u. 

2. hypothesis proved 

i2«u,g» = (u, (g \ {A})S) if A E y«u,g)) for ayE G and AS E u, or 

i2«u,g» = (u v {AS}, (g \ (Al )S) if A E y«u,g)) for ayE G, AS E kR(u) \ u, 

and A ~ L
t
, ... ,Ln E p«u,g)) for apE RS, {L1, ... ,Ln}S (;; u. 

3. goal reformulated 

i3«u,g» = (u, (g V (LI , ... ,Ln ))6) where A E y«u,g» for ayE G, 

At- L I, ... ,Ln E p«u,g» for apE RS and AS E g. 

It is easy to see that for any inference rule i and reasoning state (u,g), the sequence 

«u,g), i«u,g» is a reasoning chain. 

We are now able to give a first provisional notion of a knowledge base system (KBS). 

Given a knowledge base (u,R), a KBS is a computer program to compute the range of 

knowledge of (u,R). For this purpose a KBS consists of sets G and RS and an inference 

procedure, which takes as arguments the sets G and RS and which generates a reasoning 
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chain that proves g if possible. The following pre- and postconditions determine such an 

inference procedure lP: 

( (u,R) is a knowledge base, g is a goal, Uo = u, go = g ) 

IP(G,RS) 

( 3 n E IN : «uo,gol, ... ,(un,gn» is a reasoning chain) 

Notice that from the pre- and postconditions it is clear to see, that an inference procedure 

only produces correct reasoning chains (soundness). Conversely, we aim to reach the 

situation where g = O. We therefore define a perfect inference procedure lP as follows: 
n 

For every input (uo,go): 

if there exists a reasoning chain «uo,go), ... ,(un,0» 

then the postcondition for IP is: ( 3 n E IN : «uo,gol, ... ,(un,0» is a reasoning chain ). 

In the foregoing we implicitly assumed that u was present. In practice, however, it 

happens frequently that the system questions the user during a reasoning process. We do 

not interpret this as a reasoning action but rather as completing u E U by information that 

was not stored beforehand. 

There are situations where it is not enough to be able to compute only the range of 

knowledge of (u,R). This is the case when for a hypothesis LEg holds that La E kR(u) or 

--,La E ~(u) for no substitution a. In this case L belongs to the set of inaccessible literals 

W.T.t. ~(u), thus the truth value of L can not be decided by the knowledge model. In 

practice one often turns to some rule beyond the knowledge model to obtain an answer for 

such an L. An external rule (E-rule) is a partial function that assigns a truth value to some 

of the inaccessible literals: 

e: ( L E [L(S)] I L E kR(u) A..,L E kR(u) ) -H {TRUE, FALSE, UNDEFINED}. 

Example 3 

The well-known Closed World Assumption (CW A) is the following E-rule: 

eCWA : ( L E [L(S)]I L E kR(u) A..,L E kR(u) ) -; (TRUE, FALSE) such that 

= {TRUE if L = .., A, for an A E A(S) 
eCWA(L) 

FALSE ifL E A(S) 

o 
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Implicitly the "classical" CWA-definition assumes the presence of only positive literals into 

the database. In that case the first line of the definition is not needed. 

Example 4 

The Negation as Finite Failure rule can be formulated as follows 

e
NFF

: ( -, A E [L(S)ll A E A(S) \ kR(u) ) -'; (TRUE, FALSE) such that 

= { TRUE if all the attempts to prove A finitely fail 
eNFF(-,A) 

FALSE if otherwise 
o 
The presence of E-rules has consequences for the earlier given definitions of reasoning 

chain and I-rules and thus also for the notions of inference procedure and KBS. With 

E-rules namely it is possible to deduce facts that are not element of the range of knowledge 

of (u,R). One can say that with the presence of E-rules the range of knowledge of a KBS 

(the information which can be computed with a KBS) includes the range of knowledge of 

(u,R). For a KBS with E-rules we therefore need to adapt the definitions of reasoning 

chain, I-rules and inference procedure slightly. 

An extended reasoning chain within the knowledge model (u,R,~) is a sequence 

«uo,gJ, ... ,(uk,gJ) of reasoning states such that condition b) and c) of the definition of 

reasoning chain holds and the condition, that for every i, 1 ::; i ::; k: u. 1 I;; u .. 
1- 1 

A function i: 11 --; 11 is an extended I-rule if and only if one of the following conditions 

holds: 

- i is an I-rule 

- i«u,g)) = (u u (AS),(g\{A))S) if A E y«u,g)) for ayE G, AS E ~(u), -,AS E kR(u) and 

3 e E E : e(AS) = TRUE, where S is a ground substitution. 

* The set of extended I-rules will be denoted as I . The function i from the second condition 

* will be denoted as i . 

When an inference procedure is also able to use the set E as an argument, we will call it an 

extended inference procedure. It produces extended reasoning chains as can be seen by the 

* pre- and postconditions of an extended inference procedure IP : 
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( (u,R) is a knowledge base, g is a goal, Uo = u, go = g ) 

* IP (G,RS,E) 

( 3 n E IN : «uo,go), ... ,(un,gn» is an extended reasoning chain) 

The definition of a perfect extended inference procedure is mutatis mutandis the same as 

that from a perfect inference procedure. 

We are now able to give the ultimate definition of a knowledge base system. Let u·s 

suppose we have a language skeleton S and a set of constraints C. A knowledge base 

system (or rather, the computational part of a knowledge base system) consists of: 

- U a feasible DB universe, 

- u E U a feasible DB-state (set of data) 

- R 
- G 
- RS 

- E 

* 

a rule base 

a set of goal selection functions 

a set of rule selection functions 

a set of E-rules and 

- IP (G, RS, E) an extended inference procedure. 

The knowledge hierarchy of the introduction can be precisely formulated now: 

- U contains the knowledge about the Universe of Discourse, 

- u contains situation specific knowledge (facts), 

- R is the instructive knowledge, 

* - G, RS, E, and IP (G,RS,E) form the meta-knowledge. 

* The set I of extended I-rules gives a framework for a KBS. The reasoning chain, which 

will be generated by the extended inference procedure can be described by a convolution of 

* elements from I. Strategies, with which the extended inference procedure works, can 

sometimes have an impact on the extended I-rules, which are used to describe the resulting 

* reasoning chain. With forward chaining, for example, only inference rules iI' i2 and i will 

* be used. Backward chaining uses i2, i3 and i . In fact, a reasoning chain reflects the way 

of reasoning which has to be made for arriving at the conclusion (which is a proof of g, if 

possible). To put it in another way: the reasoning chain reflects the proof for a conclusion 

to which the system has arrived. This proof may not be the same as the process of the 
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reasoning. In particular it is possible that during this process one goes into a dead-end 

direction. One than turns back to an earlier point in the reasoning process to continue into 

another direction (backtracking). Such sideways will not be found back into the resulting 

reasoning chain. A consequence of this is that all the facts, that were deduced when going 

to the sideway, will be removed from the database when turning back to that earlier point. 

When some of these removed facts will be needed later on in the reasoning process, they 

will be deduced again and so will be found into the resulting reasoning chain. The example 

of the next chapter will clarify this. 

5 AnExample 

As an illustration for the former given model and its components consider the following 

example of a Prolog-like knowledge base system. 

Given is a knowledge base system with the following content: 

G = ("Select hypotheses according to the textual order") 

RS = (" Select a rule according to the textual order") 

E = ( "If the hypothesis is a ground hypothesis, then answer is 'False', else answer is 'No 

solution'" (I), 

"Use the NFF-rule for a negative hypothesis" (2») 

* IP (G,RS,E) = 
("Select rules from R according to the backward chaining strategy" (1) 

"If hypothesis_to_solve is selected 

Look into database for unification 

If no success 

Select rule_to_use 

Endif 

Endif" (2) 

"If no rule_to_use can be found 

Backtrack 

Endif' (3) ) 
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Suppose the following knowledge base is given (in which rules about family relations and 

facts about the Dutch Royal Family): 

R =( father(X,Y) <- relation(X,Z),mother(Z,Y). (1) 

relation(X,Y) <- divorced(X, Y). (2) 

relation(X,Y) <- married(X,Y). (3) 

brother(X,Y) <- mother(Z,x), mother(Z,Y), X '" Y. (4») 

u =( mother(beatrix,willem_alexander), (1) 

mother(beatrixjohanjriso) , 

married( claus ,beatrix) 

(2) 

(3) ) 

The following goal is offered to the system (with thanks to the Dutch comedians Walden 

and Muijselaer for their inspiration): 

g =( father(c1aus,Y), not(brother(Y johanjriso» ) 

(Prince johan_friso asks: "Who is a son of my father (Claus), but is not my brother ?") 

Figure 2 shows schematically which procedure will take place to solve the goal. 
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Figure 2 

father(elaus, Y). NOT(brother(Y.johan-friso)) 

· ! (a) 
• · · · 

father{elaus. Y) - relation(elaus.Z). mother{Z. Y) 
j 

i (b) 
: 
• 
• · 

(d) 

-----

(el 

divorced(elaus.Z) f 

--------
------------

relation(elaus,Z) - married(elaus.Z) 

(e) 

Z = beatrix 

--.-.-
Y = willem-alexander 

--(9) --

brother(willem-alexander,johan-fTiso) 

(h) 

! 

(i) 

Y = johan-friso 
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* Comment: (where "IP" is short for "IP (G,RS,E» 

a. According to the goal-selection rule this hypothesis will be proven fIrst. Because no 

unification can be found, according to metarule (2) from IP, a rule will be selected from 

R. Because the process of solving the goal is done according to the backward-chaining 

strategy (metarule (1) from IP), rule (1) is selected as into this rule the head matches 

with the hypothesis to be proven. The clauses into the tail of the rule will be put into g 

(again because of the BW-chaining strategy). 

b. Goal-selection gives this hypothesis fIrst. The metarule from RS gives this rule to use 

as a result. 

c. No unifIcation can be found, nor a rule to use (using (2) from IP). Therefore 

backtracking takes place (metarule (3) from IP). 

d. According to RS. 

e. According to (2) from IP a unification can be found. The goal-selection metarule gives 

hypothesis mother(beatrix, Y). 

f. (2) from IP gives a unifIcation. 

g. Metarule 2 from E gives this hypothesis. 

h. Via a similar way of reasoning as before this hypothesis can be proven. Because of this 

and metarule (2) from E the original hypothesis is FALSE. 

i. Backtracking and resuming the process of reasoning at the end gives the result. 

Parts of the reasoning chain, which will be built for the above query: 

Starting reasoning state: 

u: ( mother(beatrix,willem_alexander), mother(beatrix,johanjriso), 

married(claus,beatrix) } 

g: ( father(claus,Y), not(brother(Y,johan_friso» } 

Reasoning state after step (a): 

I-rule i3: 

u: unchanged 

g: ( relation(claus,Z), mother(Z,Y), father(claus,Y), not(brother(Y,johan_friso» } 
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Reasoning state after step (d): 

I-rule i3: 

u: unchanged 

g: ( married(claus,Z), relation(claus,z), motber(Z,Y), father(claus,Y), 

not(brother(Y johanjriso)) } 

Reasoning state after step (e): 

I-rule i2(b): 

u: unchanged 

g: ( relation(claus,beatrix), mother(beatrix,Y), father(claus,Y), 

not(brother(Y,johanjriso)) } 

Reasoning state at the end: 

u: ( father(claus,johan_friso), relation(claus,beatrix), 

mother(beatrix, willem_alexander), mother(bea trix,johanjriso), 

married(claus,beatrix) } 

g: () 

When the whole of the reasoning chain would have been written down, one could have 

noticed that, due to the fact that only the backward chaining strategy was used, inference 

rule i 1 was not used during the construction of the reasoning chain. 

6 Application of the Fonnal Model 

The formal model of a knowledge base system, as was developed in section 4, has been 

used to evaluate two expert system shells and an implementation of Prolog. This evaluation 

had two objectives: 

l. Verify that all aspects of the model were correct and that all phenomena which occurred 

in the evaluation could be described with the elements of the model. 

* 2. Investigate how the sets G, RS, and E and the inference procedure IP (G,RS,E) were 

implemented and which possibilities the tool gave to formulate U and R. 
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The tools under investigation were KES-JI (in the sequel called Tool A), Acquaint (Tool 

B) and Turbo-Prolog. KES-II is a frame-based shell written in C. Acquaint also is a 

frame-based shell, written in Lisp. All three tools need at least an IBM-XT or compatible. 

For this evaluation a simple case was developed. Eight queries were offered to the system 

and the answers of the queries were anal yzed. In this experiment we did not use 

application specific meta knowledge. The results were as follows. 

Component: D and R 

Tool A: Definition of D(S), R in different sections. It is not possible to define constraints. 

Tool B: It is not possible to define constraints. 

Prolog: The DB state u is contained in the unit clauses. Obligation to group facts and 

rules with the same head. Due to the RS-component facts must be written before 

the rules. 

Component: G 

Tool A: Selection according to the textual order. 

Tool B: Selection according to the textual order in the head of a chosen rule. 

Prolog: Selection according to the textual order. 

Component: RS 

Tool A: Selection according to the textual order in the rule base. Since all rules are 

evaluated (even if the answer is already known) the order is not important. 

Tool B: Every rule is given a weight, which depends on three factors. The rule with the 

highest weight is chosen first. 

Prolog: Selection according to the textual order in the rule base. 

Component: E 

Tool A: Value "unknown" when no rule is applicable. When an expression from a 

hypothesis is not contained in any rule, the value is asked. 

Tool B: Value "unknown" when no rule is applicable or when an expression from a 

hypothesis is not contained in any rule. 

Prolog: For negative hypotheses the Negation as Failure rule is used. The reasomng 

process is interrupted when no answer is found within a limit. 
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* Procedure IP (G,RS,E) 

Tool A: Exclusively backward chaining. 

Tool B: Alternating use of backward chaining and forward chaining. Goal selection takes 

place after the rule selection. 

Prolog: Backward chaining, depth-first with backtracking. 

From this experiment we also concluded that neither Tool A nor Tool B had a complete 

separation between the rule-base and the set of inference rules. Aspects from the meta 

knowledge could be programmed together with the rules. Properly using such a system 

* therefore requires a very good insight in the elements of G, RS, E and IP (G,RS,E), 

something that can not be expected from an end user. 

For this experiment the model proved to be guiding. It was possible to explain all 

observations in terms of our model. Therefore, we have confidence that the model is sound 

and has a great value in evaluating and developing tools and languages of knowledge based 

character. 

7 Conclusions 

The aim of this paper was to find a formal answer to the questions what a KBS is 

intended to compute, and which components are required to compute it. In Section 3 we 

formally defined knowledge bases, their information content and set the purpose of a KBS 

as facilitating the computation of the information content of a knowledge base. 

In Section 4 we defined the notion of a reasoning chain and determined the necessary 

components of a procedure that produces a reasoning chain to every query given to the 

knowledge base. These components were: goal selecting functions, rule selection functions 

and external rules. A KBS then was identified as a system where all these components are 

present and integrated in an inference procedure. The framework we obtained gave a good 

understanding of a KBS. Its components and functions could be clearly distinguished. 

Using this framework as a reference model for testing software tools, we have observed that 

it provided a very good insight in the tested systems. We believe that this feature can very 

well support design and evaluation of knowledge base systems. 
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