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Introduetion 

0.0 Motivation 

Computer Grapbics is the discipline concerned with the generation of images by means of 
computers. Nowadays. the most common type of devices on which these images are shown 
is a raster device. like raster monitors and (laser) printers. In this thesis we consicter 
problems associated with the generation of images on raster monitors and printing devices. 
For an overview text on Computer Grapbics we refer to [Foley & van Dam 1982] and 
[Newman & Sprou111979]. 

The images displayed on raster monitors and printing devices are digital images: they con
sist of a finite number of discrete elements, called pixels. regularly arranged in a square 
grid. A pixel may be considered as an element of Z 2

• hence a digital image is a subset of Z 2 . 

Usually. with each pixel a colour or gray level value is associated. 

Since the objects that are to be displayed are mostly defined in R3 or R2 , the display pro
cess includes a digitisation mapping from R.3 or R.2 to Z2• In this thesis we concentrate on 
digitisation mappings from R.2 to Z2 . 

Thus far. in Computer Grapbics literature, digitisation is dealt with by presenting algo
rithms. The specification. if any. of these algorithms mostly deals with closeness: the 
resulting set of pixels should correspond to the original object in R2 as good as possible. 
However. a format specificatien of the correspondence is seldom presented; the rèader is 
assumed to have an intuitive idea what is meant. As an illustration we shall quote from 
three well-known books on Computer Graphics: in these books. digitisation algorithms are 
called scan conversion algorithms. 

[Newman & Sproull 1979] 

• On p.21. a number of criteria for computer-generated lines are discussed. namely 

Lines shordd appear straight(" ... we must approximate the line by choosing 
addressable points close to it. If we choose well, the line will appear 
straight: if not. we shall produce crooked lines ... "). 
Lines shordd terminate accurately. 
Lines slwuld have constant density. 
Line density shordd be independent of line length and angle. 
Lines shordd be drawn rapidly. 
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2 Introduetion 

Note that the last criterion concerns the algorithm to generate lines. not the lines 
themselves. 
The algorithms that are subsequently presented are compared to the lirst and last 
criteria only. A more explicit description of straightness of computer generated 
lines can be found in the discussion of one of these algorithms. called the sym
metrical DDA (p.23): 

The symmetrical DDA generates accurate lines. since the displacement of a 
displayed dot from the true line is never greater than one-half a screen unit. 

However. they fail to define the notion displacement. 

• On p.215 the definition of scan conversion is given: 
... computing the pattem of dots that most closely matches a stored definition 
of the image. 

"Closely" is not worked out any further. 

• On p.229 the definition of solid-area scan conversion is given: 
Tbe taskof computing an area's mask from a geometrical description of the 
shape of the object ... 

where the m.ask of an area is 
... a representation that defines which pixels lie within the solid area. 

• On p.232 is given: 
The scan conversion of a polygon involves finding all pixels that lie inside 
the polygon boundaries ... 

[Foley & van Dam 1982] 

• On p.l33 the definition of scan conversion is given: 
Tbe process of converting a line. point. and area representation to the pixel 
array of the image storage is called scan conversion. 

• On criteria for line algorithms only the following is said (p.432): 
The basic task of a scan-conversion algorithm for lines is to compute the 
coordinates of the pixels which lie near the line on a two-dimensional raster 
grid. 

A measure for this nearness is not explicitly presented. 

• In the discussion of scan conversion algorithms for circles. the fóllowing sentence 
occurs (p.443): 

On each step. the algorithm selects the point P; (x;. y1 ) which is closest to the 
true circle ... 

and this appears to be the whole specification. 

• The specification of a scan conversion algorithm for polygons is dismissed in the 
following words (p.457): 

We must determine which pixels on the scan line are within tbe polygon. 
and set the conesponding pixels ( ... ) to the appropriate values. By repeating 
this for each scan line which intersects the polygon. we scan-convert the 
entire polygon. 
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[Rogers 1985] 
Here rasterisation ("the process of determining which pixels will provide the best 
approximation to the desired Une ... ", p.29) and scan conversion ("the processof con· 
verting the rasterized picture stored in a frame buffer to the rigid display pattern of 
video ... •, p.17) are properly distinguished. 

• For line drawing algoritbms, the samecriteria as in [Newman & Sproull 1979] are 
presented, and discussed likewise (p.29). Closenessis not explained. 

• On solid area scan conversion the following is said (p.69): 
Scan conversion techniques attempt to determine. in scan line order, whether 
or not a point is inside a polygon or contour. 

In each of these books, precise specifications of digitisation algorithms for lines are missing. 
Note that in all three books the scan conversion for polygons is considered to generate the 
set of all pixels within the polygon, that is, the digitisation of a polygon V c R2 is V (1 Z2. 

Problems with digitisation algorithms are noticed by. for example. [Forrest 1985]. [Frank
lin 1986], [Corthout & Jonkers 1986a]. [Bresenham 1986]. [Cook 1986]. [Crow 1977]. We 
think that there are two principal causes for these problems: 

• negligent use of fioating point aritbmetic. and 

• the deficiency of a format specification of the algorithm. 

Probieros due to fioating point aritbmetic may be avoided by using integer arithmetic only. 
A well known digitisation algoritbm that is based on integer arithmetic is tbe Bresenham 
algoritbm for line segments ([Bresenham 1965], also presented in, for instanee [Foley & 
van Dam 1982]), to be discussed in Chapter 2. 

A precise specification of what the algorithm is expected to do not only allows verification 
of the correctness of the algorithm (see [Dijkstra 1976]. for example), but may also be of 
help in the design of the algorithm. A nice example hereof is presented by [van Overveld 
1986]. 

For the specification of an algorithm one needs a forma! framework, in which one can 
define requirements of digitisation mappings. This thesis aims at providing such a frame
work, based on the concept that any partial function from R2 into Z2 is a digitisation 
function. Several desirabie properties of digitisation functions are formulated, thus leading 
to a classification. We concentrate on two properties, closeness and convexity. Convexity 
is a property only recently formulated ([Franklin 1986]). The importance of closenessis 
obvious. Convexity is desirabie in applications where windowing is used, see for instanee 
[Luby 1986]. Note that in our view on digitisation. closeness is not Ionger a necessary pro
perty of digitisation functions, though. in most applications, still a highly desirabie one. 
For digitisation functions that are not close, a measure to express their quality with regard 
to closeness is introduced. 
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To show the implications of this new view on digitisation. we extensively discuss digitisa
tion functions for line segments. shortly called line functions. We first give an axiomatic 
definition of line functions. and then distinguish several classes. each associated with a 
particular property. We shall show that closeness and convexity are diflicult to combine. 

In the field of Image Analysis. where digitisation is an important issue too. one is 
interested in the following question. Given a (close) digitisation function. what criteria 
characterise pixel sets as digitisations of that function. For line functions. examples of cri
teria can be found in [Freeman 1970]. [Rosenfeld 1974]. [Brons 1974]. [Wu 1982]. [Hung 
1985]. and [Dorst 1986]. 

In the Computer Grapbics field. the reverse question is relevant: given certain properties of 
digitisations or digitisation functions (which may differ for various applications). what 
functions satisfy these properties. 

0.1 Overview of this thesis 

In Chapter 1. several desirabie properties of digitisation functions are introduced. including 
closeness. The vicinity measure will be defined, which expresses the quality of a digitisa
tion function with respect to closeness. Furthermore. some examples of digitisation rune
tions will be presented. 

In Chapter 2. digitisation functions for straight line segments are discussed. Several exam
ples are presented. and classified with respect to the properties introduced in Chapter 1. 
Furthermore. it will be proven that f or some combinations of properties no digitisation 
functions exist that satisfy all these properties. 

Chapter 3 deals with a special class of digitisation functions for straight line elements. 
namely the class of recursive functions. Three examples are presented and classified. 

In Chapter 4 the property convexity is treated in more dètaiL It will be shown that each 
permutation induces a convex line function on alimited domain. 

In Chapter 5 the results are discussed. as wellas implications for future research. 

The following section contains some remarks on the notational conventions used in this 
thesis. 
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0.2 Notational convendons 

- For denoting variables. we shall use the characters 
i,j,k,l,m,n for elements of N 
a,b,c for elementsof Z 
x,y,z for elementsof lt 
p,q,r,s for elementsof Z2 

v, w for elements of lt2 

P,Q,R,S for subsets of Z2 

V, W for subsets of lt2 

- Elements of lt2 will be called points : a point will be denoted as an ordered pair of real 
numbers (x .y ). Fora point v = (x .y ). wedefine v.x := x and v.y := y. 
Elementsof Z2 will be called pixels. The pixel (0.0) will be denoted as Q, 

- We extend the use of the common arithmetic operators to points in a straightforward 
way: 

v + w := (v.x +w.x. v.y +w.y ). 

lv J := Clv .x J.lv.y J ). 
and so forth. 

- If H is a set of characters. then H* denotes the set of all strings. including the empty 
string E. whose elements are contained inH. If u is a string. and h a character. then 
N.,.(h) denotes the number of occurrences of h in u. 

The power set of a set V will be denoted as P(V ). 

- The set of intêgers between the values m and n will be denoted as [m .. n ]. i.e .. 

[m . .n] := {i EZ I m ~i ~n }. 

- Universal quantification is denoted as 

(A. x : R(x): P(x )): 

it expresses that for all x satisfying restrietion R(x ). predicate P(x) holds. Instead of x. 
a sequence of variables may be used. In the same way 

(Jix : R(x): P(x )): 

is used to denote existential quantification. 

- A similar notation will be used for operations on sets. For instance, 

(Ui: R(i): V(i)) 

denotes the union of all sets V(i ). where i satisfies restrietion R(i ). and 

(§Y.!ll i: R(i): x (i)) and (max i: R(i): x (i)) 

denote the sum and maximum respectively of all numbers x (i). where i satisfies res
trietion R(i ). (Apart from ~ and min • we sball also use the notations max(x • y ) 
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and min(x. y) for the maximum and minimum values of the numbers x and y.) 

- In proofs, equalities or ineqU:alities are often derived in a sequence of steps. For exam
ple. to prove that V 0C V 2• one may derive that V 0= V 1 and V 1 c V 2 . To avoid the 
annoyance of writing down the formula of V 1 twice, we shall often use the following 
layout. 

Vo 
= { hint why V 0 = V 1 } 

v1 
c I hint why V 1 = V 2 I 

v2 
This convention is taken from [Dijkstra & Feijen 1984]. 
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Digitisation functions 

1.0 Introduetion 

We consider digitisation as a mapping from P(R2 ) into P(Z2). In this cbapter we provide 
a framework in which it is possible to specify a broad range of digitisation functions. 
corresponding to the different needs of different computer grapbics applications. Eacb 
application may need its own set of desirabie properties. witb its own priority distribu
tion. 

An evident desirabie property is closeness; its formal definition is based on a distance 
function. As said in Chapter 0. digital images consist of a finite number of discrete ele
ments. called pixels. arranged in a square grid. This square grid may be represented by Z2. 

To measure distances of pixels. we do not use the Euclidean notion of distance. but define a 
distance function in which the distance of two pixels is expressed in the number of pixels 
that separates them. This distance function will be formally introduced inSection 1. 

Section 2 contains the general deftnition of digitisation functions. tagether with some 
examples. Sections 3. 4. and 5 deal with the properties translation invariance, closeness. 
and convexity respectively. Section 4 includes the introduetion of a vicinity measure. which 
expresses the quality of a digitisation function with respect to closeness. Section 6 con
tains some concluding remarks. 

1.1 Metric space 

The digital images we consider are subsets of the metric space (Z2• d ). where the distance 
function d: R2XR2 -+ Ris defined by 

d(v.w) := max( lv.x-w.x l.lv.y-w.y I). 

Fora treatise on metric spaces in general we refer to [Shreider 1974]. and on (Z2.d) to 
[Rosenfeld & Pfaltz 1968]. 

The following property follows directly from the deftnition of the distance function d; it 
expresses that the distance of two points is invariant under translation. 

7 
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Property 1.0: 

0 

For all v 0 • v 1• w ER2• 

d(w+v 0 .w+v 1) = d(v 0.v 1). 

The distance of a point to a nonempty set of points is defined by 

d(v.W) := (infw:weW:d(v.w)). 

where inf stands for infimum. 

Digitisation functions 

A neighhour of a pixel p is a pixel at distance 1 of p . that is, a pixel q such that 
d (p .q )= 1. In the tigure below all neighbours (indicated bye) of pixel p (indicated by 
0) are shown. 

• • • 

In many papers on this subject. the name d 8 or d 8 is used instead of d. referring to the 
number of neighbours each pixel bas in this metric space . 

. A path 1T from p to q is a sequence of pixels ro.rt> ... , rn such that ro= p. rn =q. and for 

. all i: O<i ~n. r; is a neighbour of r;-1. We shall eaU n tbe length of the path. Thesetof 
allelementsof the path is denoted as <1T>. i.e .• 

<'IT>={r; !O~i~n }. 

Note that 'IT=r0.rh ... , rn is a path from r 0 torn if and only if rn .r"_v ... , r 0 is a 
path from rn to r 0 . This second path is referred to as 'IT-1• 

For given p and q. the lengtbs of the paths from p to q have a lower bound, as is 
expressed by the following property. 

Property 1.1: (See [Rosenfeld 1978]. for instance) 

The length of a path from p to q is at least d (p • q ). 
0 

lf P is a subset of Z2 containing .the pixels p and q • then p and q are said to be connected 
in P if a patb from p to q exists whose elements are all contained in P. Note tbat the rela
tion "connected in Pft is both reflexive. symmetrie. and transitive, and therefore yields an 
equivalence relation; its classes are called the connected components of P. P ltself is called 
connected if it bas only one connected component, that is. if any pair of· points in P is 
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connected in P. 

1.2 Digitisa.tion function 

Digüisation functions are partial functions from P(R2) into P(Z2). Domain and range of 
a digitisation function f are denoted as D 1 and R 1 respectively. The domain of most digi
tisation functions used in Computer Grapbics nowadays. is a restricted class of subsets of 
R2 : the class of allline segments. for example, or the class of all polygons. Such functions 
are referred to as line segment digitisation functions and convex polygan digitisation func
tions respectively. 

Two simple digitisation functions with domain P(R2) are now presented. 

Example 1.2: 

For all V~R2 • 

f(V) = 0. 

0 

Tbis digitisation function bas no practical use; the following one. however, is commonly 
used for polygons, as noted in Chapter 0. 

Example 1.3: 

For all V~ R2 • 

f(V)= vnz2• 

0 

In the following sections we shall introduce a classiftcation of digitisation functions. based 
on various criteria. 
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1.3 Translation mvarianee 

The first criterion concerns the invariance of a digitisation function under translation. To 
express this formally, we introduce an operator that translates subsets of R2. 

For w an element of R2 and V a subset of R2 , the translation operator 6l is defined by 

w$V := {w+vlveV}. 

For this operator. the following property holds. 

Property 1.4: 

0 

For all w , w 0, w 1 € R2 and all V , V 0, V 1 ~ R
2, 

w E9 (VoU V 1) = (w 6l Vo) U (w E9 V 1) 

(w 0+w 1)E9 V= woED (w 1E9V) 

w E9 (V 0 nV 1) = (wE9V 0 ) n (wE9V 1). 

(a) 

(b) 

(c) 

A digitisation function f is called translotion invariant iff for all V eD1 and all p eZ2 such 
that pEil V E D 1. 

f(pE9V)= pE9f(V). 

Although this property might seem to be very natura! for digitisation functions. we shall 
see in the succeeding chapters that it is incompatible with some combinations of other 
desirabie properties. 

Example 1.5: 

0 

The digitisation function of example 1.2 is translation invariant, since for all w eR2 , 

wEDe= G. 

Example 1.6: 

The digitisation function of example 1.3 is translation invariant. since for all V!: R2 

and p E Z2 holds, 

f(pE9 V) 

= { definition f I 

(pEil v) n Z2 

= I definition E9 
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{ p + v 1 v e v } n Z2 

= I calculus} 

{p+vlveVAp+veZ2 } 

:::: I p eZ2 } 

{ p + v 1 v e v A v e z2 } 

= I calculus} 

{ p + v 1 v e v n Z2 } 

= I definition of $ 

p$(V nz2) 

= { definition of f } 

pmf(V). 

0 

On the analogy of Property l.O. the following property expresses that the distance of a 
point to a set of points is invariant under translation. 

Property ].7: 

0 

For all v 0 • v 1 E R2 and W !: R2 • 

d(v 0+v 1.v0 $ W) = d(v 1• W). 

1.4 Closeness 

In most Computer Grapbics applications. digitisation functions are required whose images 
resembie the criginals as much as possible. In this section we shall formalise the word 
'resemble'. 
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1.4.0 Close digitisation 

A set P 1: Z2 is called a close digitisation of a set V 1: R2 ilf 

(A.p: peP: ffiv: v eV: d(p.v)< 1)) 

A (A v : v e V : (];_p : p e P : d (p • v ) < 1) ) . 

(cdO) 

(cdl) 

The notatien P t- V is used to denote that P is a close digitisation of V. 

There are three remarkable aspects in this definition. Firstly. the symmetry between condi
tions (cdO) and (cdl). Secondly. the use of the distance function d instead of the 
Euclidean distance function. And thirdly. the use of value 1 in the predicates of the 
existentlal quantifications. 

Concerning the symmetry. we would like to remark that the second condition is hardly 
ever mentioned explicitly. However. this condition guarantees that close digitisations are 
'large' enough. Consider. for instance. the sets 

P= {(0,10).(0,-10)}. V= {(x.y)eR2 Ix 2 +y 2 ~ 100}. 

Pand V do satisfy (cdO). but hardly anyone would consider P a good digitisation of V. 

The use of the distance function d is motivated as follows. Consider for p eZ2 the set 

CRS(p) := {veR2 1 d(v.p)< 1} (a) 

whicb is called the close region of sensitivity of p. See Figure l.O(a). Substituting tbe 
Euclidean distance function ford in (a) would result in a circular region of sensitivity. as 
is illustrated in Figure 1. O(b). 

~: '-~ 
(a) (b) 

Figure 1. 0 

Regions of sensitivity of pixel p. 

• • • . ~ . 
• • • 

(c) 

p is indicated by 0, its neighbours are indicated by •· 

a) close regim. of sensitivity 
b) Euclidean region of sensitivity 
c) optimal region of sensitivity 

We think tbat the regionsof sensitivity associated witb d. go better witb the square grid 
in which we consider our digital images. than the circular regions do. The notion 'region 
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of sensitivity' is introduced by [Dorst 1986]. though in a slightly different tneaning. 

The third retnark concerns the value 1 in conditions (cdO) and ( cdl). Since z = ll2 is the 
SMallest value such that for any pixel p a point v exists such that d (p, v )~z, the fol
lowing class of close digitisations tnay be seen as 'optitnal' digitisations. 

P is called an optiTTU1l digüisation of V iff 

(A.p : p E p : (&_V : V E V : d (p • V ) ~ llz) ) 

1\ (A_ V : V E V : (&_p : p E p : d (p , V)~ lf2) ). 

The notation P ~ V is used to denote that P is an optimal digitisation of V. 

The set 

ORS(p) := { v ER2 1 d(v .p)~ ll2} 

(odO) 

(odl) 

is called the optiTTU1l region of sensitivüy of p. In Figure t.O(c) the optitnal region of sensi
tivity of pixel p is shown. 

Conditions (cdO) and (cdl) may be rewritten as 

(A.p: pEP: CRS(p)fl V ;11! 0) 

1\ (A.v:veV:CRS(v)t1P;o!0), 

where the definition of CRS bas been generalised for points. 

In a similar way. conditions (odO) and (odl) may be rewritten using ORS(p ). 

(cd'O) 

(cd'!) 

Obviously, any optimal digitisation is also a close digitisation. In Figure 1.1 a set V is 
shown. together with some close digitisations. The digitisation in Figure 1. l(d) is optimal. 
The one in (c) is a subset hereof. but is not optima! since condition (odl) is not satisfied. 

The following properties are stated without proof. The first one expresses that the union 
of two close (optimal) digitisations is also a close (optimal) digitisation. 

Property 1.8: 

For all P0.P1Ç.Z2 and VÇ.R2• 

Pof- V 1\ P1 f- V =* (PoU Pt) f- V 

and 

D 

The following property expresses that a close digitisation of V contains all pixels of V. 
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(a) (b) 

(c) (d) 

Figure 1. 1 

A line segment in R2, together wuh examples of close digitisations; 
the one of (d) is also optimal. 

Property 1.9: 

For all P!:; Z2 and V~ R2• 

P 1- v:::;. vnz2~P. 

0 

The following property expresses that any close digitisation of a set containing pixels only, 
is the set itself. 

Property 1.10: 

For all P 0 • P 1 ~ Z2 • 

Po 1- P1 :::;. Po= P1. 

0 
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1.4.1 Close digitisation function 

The notions 'close' and 'optimal' are extended to digitisation functions in a straightfor
ward manner. 

A digitisation function f is called close iff f(V) is a close digitisation of V. for all V eD1• 

that is. iff 

C&Y: VEDt:f(V) f- V). 

Similarly. f is called optinud iff 

C&Y: VEDt:f(V) I= V). 

Example 1.11: 

D 

The digitisation function of example 1.2 is not close, since condition (cdl) is not 
satisfied for V~0. 

Example 1.12: 

D 

The digitisation function of example 1.3 is not close: for V= { v }. where v eR2\Z2• 

f(V)=0. and hence condition (cd1) is not satisfied. 

We proceed with the introduetion of two digitisation functions that are close and optimal 
respectively. 

The digitisation functions f1- : P(R2)-+ P(Z2) and ft= : P(R2)-+ P(Z2) are defined by 

f 1- cv) == { p e Z 2 1 C.~.v : v e v : d (p. v) < o } 
f 1= cv) == { p e Z2 1 C~.v : v e v : d (p. v) :!i;. 'h) } 

f 1- (V) is called the Close Embedding of V, and f 1= (V) the Optinud Embedding of V. Simi
larly. f 1- and f 1= are called the Close Embedding function and Optinud Embedding Junc
tion respectively. 

These functions have the following properties. 

Property 1.13: 

The digitisation function f 1- is close, and f 1= is optimal. 
D 
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Property 1.14: 

For all V s;;;; R2
• 

Proof: 

From Property 1.9. 
0 

Property 1.15: 

Ir and 

Proof: 

are translation invariant. 

0 

Let r eZ2 . Then for any V ÇR2 holds. 

f!..- (r @V) 

= I definition of 1 r 
{ p EZ2 1 (~y :VEr E:lil V: d (p. V)< 1)} 

= I definition of @ and renaming dummy variabie v l 

{ p E Z2 I (~y : V E V : d (p. r +v) < 1 ) } 

= { renaming dummy variabie p l 

{r+peZ2 1 (&_v :veV:d(r+p.r+v)<1)} 

I Property 1.0 and definition of E:EI l 

r e { p E Z2 I (&.V : V E V : d (p • V ) < 1 ) } 

= l definition of f r 
r ~&Ir (V). 

For I'"' a similar derivation may be used. 

Property 1.16: 

For all V • V o. V 1 ç R2 • 

Digitisation functions 
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Ir f~ 

1r(V)=(UP:Pr:;.Z21\P~V:P) I~(V)=(UP:Pr:;.Z2AP!=V:P) 

Ir (fr (v)) =Ir cv) 1~ <I~ cv))= 1~ cv) 
(f r and f ~ are idempotent) 

V 0 r:;. V 1 => Ir (V o) r:;. f r (V 1) I V 0 r:;. V 1 ::::;.. f ~ (V o) r:;. f ~ (V 1) 

(f r and f ~ are monotone) 

fr(VoUVl) = fr(Vo) u 1r(V1) I J~(VoUVt) = f~(Vo) u I~(Vt) 
(f r and U are distributive) (I~ and U are distributive) 

0 

The digitisation functions fr- and f ~ are not distributive with regard to intersection. as 
is shown in the following example. 

Example 1.17: 

Let w 0 = (lh, lh). w 1 = ( -lh. -1h). and let V 0 • V 1 r:;. R2 be defined as follows. 

Th en 

V 0= { v E R2 I d ( v . w 0) < 1f2 }. 

V1={veR2 1 d(v,w 1) < lh}. 

V0 nV1 =1Z1 

and hence 

Since 

f r (V o) = f ~ (V o) = { (0,0). (1.0). (1.1). (0.1)} 

and 

it follows that 

Therefore 

• 

• 
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0 

ft- CV on V 1) lJii!: ft- (Vo) n[f- CVt) 

lts (V on V 1) lJii!: lts (V o) ntts (V t). 

1.4.2 Vicinity measure 

Digitisation functions 

For digitisation functions that are not close. one would like to have the possibility to 
express how 'unclose' these functions are. For this purpose we introduce tbe vicinity 
measure e1 : D 1 .... R+(including 0). which yields the maximum distance of any element of 
f(V) to V and of any element of V tof (V). lts definition is based on J.. as introduced in 

section 1.1. 

Fora digitisation function f the vicinity functû:m e1: Dr .. R+u {oo} is defined by 

0 ifV=01\f(V)=0 
e1(V) := max(e01(V).e11(V)) ifVlJI'!:0Af(V)lJii!:0 

00 otherwise. 

where the functions eo, .e 1t: n, .... R+u {ooI are defined by 

e01(V) ·- ([!!]Lp:pef(V):d(p.V)) 

elt(V) := ([!!]Lv:veV:d(v,f(V)). 

and where [!!JL stands for supremum. Note the symmetry in the definition of e1 . 

Ex.a:mple 1.18: 

0 

Let V = {(x .y )e R2 I x 2 + y 2 ~ 100 ). and let f be a digitisation function such that 
e1(V) = {(0.10).(0.-10)). 
Thene01(V)= O.whereaset1(V)= 10.Hencee1(V)= 10. 

Ex.a:mple 1.19: 

0 

For the digitisation function of Example 1.2. 

{
0 ifV=0 

et(V) = oo ifVlJI'!:0. 
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Example 1.20: 

For the digitisation function of Example 1.3, 

= o if v n z2 = v 
if v n z2 = 0 " v ~ 0 

E (0, co) otherwise. 

0 

Property 1.21: 

For any close digitisation function f holds. 

(a) 

For any optima! digitisation function f holds. 

(b) 

0 

Note the occurrence of ~ instead of < in (a); this is because the supremum of an infinite 
set whose elements are all smaller than 1. might equal 1. 

In Chapter 2. the vicinity measure will be discussed in more detail. 

For translation invariant digitisation functions. the vicinity function is invariant under 
translation, as is expressed in the following property. 

Property 1.22: 

lf f is a translation invariant digitisation function, then for all V E D t and all p E Z 2 

such that p E& V E D 1 holds, 

e1(pE& V)= e1(V). 

Proof: 

Let V eD1 . such that V ~0 and f(V)~ 0. Let p EZ2 such that pE& V eD1 . Then 

e1 (pE&V) 

I definition of e1 and V ~0 and f(p E& V)~0 l 

max( (!il!J2 v : v E p $ V : d ( v .f (p E& V)), 

(!il!J2q : q Ef(p E& V): d (q .pE& V))) 

I f is translation invariant l 

max( (!il!J2v : v e pE& V: d (v ,pE& f(V)). 
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0 

(~q: q E p(§)f(V): d(q ,pE&V))) 

{ renaming dummy variables) 

max( (~v: v eV: d(p+v .pE&f(V)), 
(~q :qef(V):d(p+q.p(§)V))) 

{ Property 1. 7 ) 

max( (~v: v eV: d(v ,f(V)), 
(~q: q ef(V): d(q, V))) 

= { definition of e 1 ) 

e1(V). 

1.5 Convexity 

Subsets of R2 are of ten specified by a finite number of elements of R2 and an implicit func
tion that maps these elements into a subset of R2• For example, line segments are usually 
specified by their two end points, triangles by their three vertices, and n -gons by their n 
vertices. Hence, if f is a digitisation function whose domain is the set of allline segments 
in R2

, and g is the function that mapsapair of end pointstoa line segment, then f • g is a 
function from R2xR2 into F(Z2). 

The following definition concerns digitisation functions whose domain depends on such a 
function g. 

Let n > 0, g be a function from (R2)n into F(R2), and let f be a digitisation function such 
that D 1= Rg. 
Thenf is called convex with respect to g iff for all yE (R2)n and all Yf. E (/ o g ~))n: 

f 0 g (Yf. ) s;;; f 0 g ~) (a) 

For instance, if f is a line segment digitisation function, and g : R2xR2-·F(R2) is a func
tion that maps any pair of points to the line segment in R2 that connects these points, then 
condition (a) means that f o g , applied to any pair of points from a set f o g ( v , w ) should 
generatea subset of f o g (v, w ). More formally expressed (where [v, w] denotes the line 
segment in R2 connecting v and w and f [ v , w 1 denotes f ([ v , w ]) ): 

<A V ' w : V ' w E R2 : (.Ap ' q : p ' q E f [V ' w 1 : f [p ' q 1 !: f [V ' w ]) ). 

A similar condition is firstly mentioned by [Franklin 19861. whocalled it the 'subset pro
perty'. In [Luby 19861 it is called the 'subpath property'. Franklin states that the line 
segment digitisation functions commonly used do not satisfy this property. In the follow
ing chapter we shall show that convexity hardly combines with closeness. 
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Convexity is a desirabie property for line segment digitisation functions in interactive 
applications where parts of lines on the screen have to be erased and dispiayed again. See 
[Luby 1986] for examples of applications. lf the digitisation function is convex, then eras
ing may be performed by digitising the part that is to be erased using the same digitisation 
function and setting these pixels to background colour. If the digitisation function would 
not be convex, then pixels not betonging to the original set might be set to background 
colour, and, reversely. pixels that do belong to the original set. may not have been set to 
background colour. Also. if the erased part is displayed again afterwards. a convex digiti
sation function guarantees that the resulting pixel set is exactly the same as it was before 
erasing the part in question. 

Chapter 4 deals with the construction of convex digitisation functions for line segments 
within a limited domain. 

1.6 Concluding remarks 

In this chapter we have introduced the notion digitisation function. and formulated some 
properties that may be desirabie in particuiar applications. These properties are translation 
invariance~ closeness, and convexity. 

Of these properties, closeness is the most important one. A vicinity measure bas been intro
duced to express the quality of a digitisation function with respect to closeness. The Close 
Embedding and Optimal Embedding functions are examples of digitisation functions that 
are close. In [van Overveld 1987a] an algorithm is presented for the generation of the 
Embedding digitisations. 

The notion region of sensitivity is introduced based on the definition of dose digitisation. 
The other way around is also possible: starting from some definition of region of sensi
ti.vity, the notion close digitisation may then be defined by conditions (cdO) and (cdl). 
This may be useful. for instance, in cases where a partition of R2 (instead of a covering) in 
regions of sensitivity is required. In this case, each element of R2 is contained in exactly 
one region of sensitivity. An example of such definition of region of sensitivity is 

RS(p) := {veR2 I..lh~v.x-p.x<'h/\ -lfz~v.y-p.y<lh.}. 

as is illustrated below. where p is indicated by 0. 
It might be interesting to investigate the implications of such definition . 

• • • 
. ~ . 
• • • 
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Line functions 

2.0 Introduetion 

In this chapter we discuss line segment digitisation functions (in short: line functions). 
Like all digitisation functions. their range is a subset of P(Z2

). The line functions we con
sider have as domain the set of all line segments in R2 connecting two pixels. This is the 
set of line segments that is usually considered in Computer Graphics. 

If f is a line function. then the elements of R 1 will be called digitised line segments of f. 
We shall denote the line segment in R2 that connects the pixels p and q as [p. q ]. Note 
that if p = q . then [p . q] degenerates to {p). For clarity. we shall of ten omit the 
parentheses from expressions like f ([p. q ]). 

In Computer Grapbics literature. line functions are seldom discussed explicitly: instead. 
algorithms are presented. and one is supposed to know intuitively what pixels should be 
generated by these algorithms. 

The algorithm commonly used for digitising line segments is the Bresenham algorithm 
([Bresenham 1965], also presented in [van Berekei & Mailloux 1965]). which uses integer 
arithmetic only. For a line segment [p.q] with p.x <q.x. p.y ~q.y. and 
q.y-p.y ~ q.x-p.x. it generates the pixel set 

{(x. fg (x )-lfZl )E Z2 1 p.x ~x ~q.x }, 

where the function g: R- R is the function that prescribes the y -value of points contained 
in the line segment [p. q] as a function of their x -value. The Bresenham algorithm selects 
for each x e[p.x .. q.x] a pixelp. where p.x =x. that minimises d(p.(x .g(x ))). 

The set of pixels generated by this algorithm is connected. and contains q .x - p.x + 1 pixels. 
It is also a close digitisation of [p .q ]. as will be shown in Sectien 2.4.5. Besides the line 
function associated with the Bresenham algorithm. there are many more line functions. 

In section 1 we present the general definition of a line function. and we relate the proper
ties of Chapter 1, translation invariance. closeness. and convexity. to this definition. In 
sectien 2 we shall introduce a new kind of vicinity measure for line functions. In sectien 
3 we introduce a new property for line functions. namely minimality. This property refers 
to the number of pixels in the digitised line segments. In this section we also introduce the 
notion minimal path, and its representation by means of chain codes. In sectien 4 we 

23 
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present seven examples of line functions, classifying them with regard to the properties 
mentioned above. In section 5 we present some important theorems on the incompatibility 
of some combinations of properties. Finally, we conclude with some remarks in section 6. 

2.1 Definition 

The following defi.nition of line functions is a very general one: we only require that the 
endpoints of a line segment are contained in a finite. connected pixel set. 

A function f tbat maps line segments in R2 with pixel endpoints onto subsets of Z2 is 
called a line function iff f satisfies the following properties. 

lfO) (àp.q :p,qEZ2 : {p.q }~f[p,q]) 

lfl) (A..p, q : p .q eZ2 : f[p .q] is finite and connected) 

Notice that. since [p. q ] = [q. p ]. any line function is consistent under the exchange of p 
and q. Tomeet this requirement in the examples of section 4, we shall use the following 
proposition. which expresses what the position of two pixels is with respecttoeach other. 

NF(p ,q):: ( p.x <q.x V (p.x = q.x 1\ p.y :Ei q.y )). 

In words. NF(p ,q) expresses that p is the leftmost pixel of {p.q }. or. if p.x =q.x. it is the 
downmost one. Note that for all pixels p .q holds 

NF(p .q) V NF(q ,p ). 

and 

( NF(p. q ) A NF(q • p) ) : ( p = q ). 

For pixels p. q we shall use the notation p. q for the permuted pair of pixels that satisfi.es 

{p.q} = {p.q} 1\ NF(p,q). 

The following property expresses that if p is the leftmost pixel of {p. q} (or the down
most one). then r+p is the leftmost of {r+p.r+q} (or the downmost one respectively). 

Property 2.0: 

For all p. q • r E Z2• 

NF(p.q) ~ NF(r+p .r+q ). 

0 

In the previous chapter some properties of digitisation functions have been introduced. 
namely translation invariance. closeness. and convexity. We shall apply these general 
definitions to line functions. 



2.1 Definition 25 

A line function is translation invariant iff 

(Ap. q . r : p. q . re Z2 : I (rEil [p. q]) = r Eil I [p. q]). 

Since rEil [p .q ]= [r+p .r+q ]. this is the same as 

(Ap.q.r :p.q.reZ2 :f[r+p.r+q]= r Ellf[p.q]). 

In Section 1.4 we have deftned what close digitisation functions are; applying this to line 
functions we get the following characterisation: a line function f is close iff for all 
p,qeZ2 holds. 

(Ar : ref[p .q]: (&_v : v dp .q]: d (r. v )< 1)) 

A (A V : v € (p , q ) : (lir : r E f [p , q ) : d (r • v ) < 1)). 

In Section 1.5 the notion convex digitisation function has been introduced. as well as its 
application to line functions: a line function f is convex iff 

(Av. w: v. w eR2 : (Ap.q: p .q ef[v .w ]: f[p .q ]S:f[v. w ])). 

Since we only deal with line segments whose endpoints are pixels, this may be rewritten as 

(Ar .s : r. s eZ2 : (Ap .q : p .q E/[r .s]): f[p .q ]!:f[r .s ])). 

In section 2.4 we present various examples of line functions. where each function will be 
investigated with respect to the above properties. 

2.2 Vicinity for line functions 

In Section 1.4 the vicinity measure for digitisation functions has been introduced. Apply
ing this definition to line functions. it follows that the vicinity measure e1 fora line func
tion f is defined by 

where 

e 1 ([p. q}) = max( e01([p .q ]). e t 1([p ,q]) ). 

e Ot ([p • q D = (.m!!. r : r e f [p . q ] : d (r . [p • q ]) ). 

e lt([p,q D = (~v: v E[p .q]: d(v .f[p.q ])), 

From now on. the parentheses in expressions of e 1 , e 01 • and e 11 will be omitted. 

We shall demonstrate that. due to the connectedness of f[p .q ]. 

el1 [p.q] ~ 1+e01[p.q]. (a) 

Because of this inequality. we shall introduce for line functions a new kind of vicinity 
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measure. one that depends solely on e 01 . Note that. if (a) holds. then for all line rune
tions f. and all p.q eZ2• 

e01 [p.q]~ e1 ([p.q])~ 1+e01[p.q]. 

First some notational remarks. 

For p. q E Z2• p 'if!.: q . [p, q] wil! denote the infinite line in R2 that contains both p and q. 

Forp=q.[p,q]:= {p}. 

Next we present some properties that will be needed to prove (a). 

Property 2.1: 

For all p. q E Z2• and all V E [p . q ], 

d (p, V)+ d (V, q) = d (p, q ). 

0 

The following property expresses that the distance of a pixel r to an infinite line equals 
the distance of r to the intersectien point of that line with either the line through r of 
slope 1 or of slope -1. 

Property 2.2: 

Hint: 

0 

For any p.q ,r eZ2, pF:q, 

d(r,[p,q]) = d(r.v). 

where v E R2 is the intersectien point of [p . q] with 

{
y+x = r.y+r.x 
y-x = r.y-r.x 

If v E [p , q ]. then also 

if (q.y-p.y h (q.x-p.x) ~ 0 
otherwise. 

J (r , [p , q ]) = d (r . v ). 

We present an intuitive argument only. 
Thesetof all points that have distance z to pixel r forma square with center r. If z 
increases. starting at 0. the first square to hit the line [p . q] determines J (r , [p, q ]1). 
If the line is horizontal or vertical. the square will be hitted along one of its edges. 
otherwise in one of its corners. The corners are elements of the lines through r with 
slopes 1 and -1. 
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In the following lemma (a) is proven. 

Lemma 2.3: 

For any line function f and pixels p, q E Z2, 

e11 [p,q]~ l+e01[p,q]. 

Proof: 

Let f be a line function and p, q E Z2. 

If p=q. then 

(~V : V e(p . q] : d (V , f (p , q ])) = d (p .f (p , q ]) 

==0 

~ l+e 01 [p , q ]. 

Let P';>!;q. 
Suppose p.x ~q.x and p.y ~q.y. 
Let r 0 .r1 , ..• , rn be a path in f[p ,q] from p to q. 
For i eN, O~i ~n, we define P(r;) to be the intersectien point of [p ,q] with the 
line through r 1 defined by 

y+x = r1 .y+r;.x. 

Then, according to the above property. 

d(r;.[p.q]) = d(r;.P(r1 )), 

and, for P(r; )e[p .q]. 

d(r;.[p.q]) = d(r;.P(r1 )). (b) 

Because r 0 ,r 1, .•. , rn is a path from p to q. [p,q] is partitioned into segments 
[so.sd. · · · ,[sk-I•sk]• where so=p. sk=q. and for all i,O~i<k. s1=P(rJ) for 
some j: 0~ j ~n. Note that for i;>!: j, P(r;) may equal P(r~ ). hence k may be less 
than n. 
The distance of P(rJ) and P(rJ +I) is maximal if r 1+1-r1 = (1,1) or if 
r 1+1-r1 = (-1. -1), as is illustrated in the figure below. where all possible relative 
positions of two neighbours occur. · 

q 

p 
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Define !:u: := q .x-p.x and !J.y := q .y-p.y • and assume. without loss of generality. 
tbat !J.y ~ !:u:. 
lf ri +l-ri = (1,1) or ri +1-ri = (-1, -1), tben we may derive tbe following (see also 
the figure below ). 

d (P(ri ), P(ri+l)) 

Is = (P(ri+t).x. P(rJ ).y) I 

d (P(r1 ). s) 

= { [ri. P(ri )] and [ri +I• P(ri +1)]1 both have slope -1, and [p. q] bas slope a, 
and definition of s • and geometry I 

..ti 
cos<ah . (l + ) sm 4 1r a 

= I !J.x*sin(a) = !J.y*cos(a)} 

2!J.x 
!J.x + Ay 

~ I 0~ !J.y ~ !J.x 

2. 

... - ... -

Hence, for all i .O~i <k. 

[p. q] 

(c) 

Let vE[p.q]. Then vE[s;.si+tl forsome i,O~i <k. From (c) and Property 2.1, it 
follows tbat 
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d(v,si)~ 1 V d(v,si+ 1) < =1. 

Suppose, without loss of generality, that 

d(v,s;)~ 1. 

Let r; be the pixel that satisfies 

si=P(r; ). 

Th en 

d(v,f[p,q]) 

~ I definition d and ri ef[p .q] l 

d(v.r;) 

~ I trîangle inequality ford l 

d(v,s;)+d(s;.r;) 

~ { (d) and (e) l 

1 + d (ri .P(r; )) 

{ (b) l 

1 +d(rJ .[p.q]) 

~ {e01[p,q];;:: d(rJ,[p,q])} 

1 + e o1 [p . q ]. 
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(d) 

(e) 

Since v was an arbitrary point of [p. q ]. we have proven that for p. q such that 
p.x ~q.x and p.y ~q.y. 

el1 [p.q]~ 1+e01 [p.q]. 

The other cases may bedealt with in a similar way. 
0 

From the above lemma it follows that e01[p.q] suffices to express the quality of a digi
tised line segment with regard to closeness. 

It will turn out that for several line functions that are not close. e 01 [p, q] depends on 
d (p,q ). Therefore we introduce the function E1 : N-+ R+u {oo }, which measures the max
imal deviation if the distance of the endpoints is fixed. E1 is defined by 

E 1 (n ) := (~p. q : p, q E Z2 1\ d (p . q )= n : e 01 (p. q ]). 

E 1 is called the deviatton fun,ctton of f. 
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Property 2.4: 

If f is a close line function, then for all n € N, 

E1(n) ~ 1. 

Proof: 

Let f be a close digitisation function. p, q E Z2, and r E f[p, q ). 

Line funetions 

From condition (cdO) of close digitisations. it follows that v e [p, q] exists such that 
d (r. v) < 1. Hence. J (r .[p,q]) < 1. for any r ef[p .q]. Since 

eOf[p,q]= (maxr :ref[p,q]:d(r,[p,q])), 

it follows that eOt(P .q] < 1. for all p .q eZ2
. Hence. Ef(n) ~ 1. 

0 

In Section 2.4. expressions for the deviation of the example line functions that are not 
close will be derived. 

Note that for translation invariant line functions f. 

e01(r+p.r+q) = e01[p.q]. 

for all p .q .r eZ2
• Forthese functions E1(n) may be rephrased as 

Et(n) = (maxq : q EZ2 A d (~q )=n : eO,[Q,q ]). 

2.3 Minimality 

In this section we introduce a new property of line functions. one that bas to do with the 
number of elements in the digitisations. 

2.3.0 [)eEunitÎCQI 

Let f be a line function. Because of condition lfl in the definition of line function, for all 
p .q eZ2 • f[p ,q] contains a path connecting p and q. From Property 1.1 we know that the 
length of this path is at least d (p. q ). Hence the following lemma holds. 

Lemma 2.5: 

For any line function f. 

(A_p.q :p.qeZ2 : #f[p.q]~ d(p.q)+ 1). 

0 
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Line functions for which the above inequality may be replaced by an equality will be 

called minimal. Hence, a line function I is minimal iff 

(A.p.q: p.q eZ2 : # l[p.q 1= d(p.q) + 1). 

Por any minimal line function I. the elementsof l[p .q] may be uniquely arranged in a 
sequence 1T such that 1T is a path from p to ij. The length of this path is d (p. q ). Such 
paths are called minimal paths. In the following subsection we shall concentrate on 
minimal paths and their representation by means of chain codes. 

Line functions commonly used in Computer Grapbics and Image Analysis are minimaL 
However. non-minimal line functions arealso worth investigating: to support line func
tions in which anti-aliasing is incorporated. for instance, or to solve the decreasing inten
sity problem. 

In Computer Graphics. anti-aliasing is a technique to reduce the staircase appearance (due 
to the discreteness of the grid) of digitised line segments. If pixels may be assigned an 
intensity value. this staircase effect may be reduced by assigning small intensity values to 
pixels 'in the neighbourhood' of the digitised line segment. (See [Poley & van Dam 1982]. 
for instance.) Hence. assuming that line functions may be combined with functions that 
generate intensity values. anti-aliasing requires nonminimalline functions. 

The decreasing intensity problem has to do with the following phenomenon. Consider for 
neN the n+1 line segments [p.(p.x+n.p.y+m)]. where O,m,n. Any minimalline 
function will map these line segments in pixel sets containing n + 1 elements each. whereas 
the length of the real segments increases from n to ..fin if m increases from 0 to n. Por 
solving this decreasing intensity problem. one needs a line function for which the cardinal
ity of these digitised line segments increases from n to ..Jïn if m increases from 0 ton. 
Such a function cannot be minimaL 

2.3.1 Minimal pà.ths and chain codes 

A minimal path from p to q is a path of length d (p • q ). For any pair of pixels. at least 
one minimal path exists that connects these pixels. Below. all minimal paths from p = Q. to 

q = (3.1) are shown. Por the sake of clearness we have also drawn the connections between 
neighbours. 
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V: 
(3.1) ••• )' (3.1) •• ~ (3.1) 

Q Q~· Q~·. . . . . . 

Q~(3.1) • ;---- (3.1) : ~ (3.1) 
Q.-'·.. Q/.:: 

[Rosenfeld 1978] uses the name geodesics for minimal paths. He proves the following 
property. 

Property 2.6: 

0 

For any minimal path r 0.r~>···,rn, each subsequence r;.r;+h····r1 . where 
O~i ~ j ~n. is a minimal path from r; tori. 

For given p and q. the value of f[p. q ]. where f is a minimal line function. will be a sub
set of the set of all pixels that are elements of minimal paths from p to q. Therefore we 
introduce the notion Minimal Path Set. in short MPS. which is defined by 

MPS(p .q) := ( U .".: Tr is a minimal path from p to q : <Tr> ). 

The following properties of MPS hold. 

Property 2.7: 

MPS(p. q ) = MPS(q • p) 

Proof: 
This follows from < Tr> = < ."-1 >. 

0 

Property 2.8: 

MPS(p • q ) = { r E Z2 I d (p . r ) + d (r . q ) = d (p • q ) } . 

Proof: 
The proof consists of two parts. 

• First, we prove that 
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MPS(p.q)S: {reZ2 1 d(p.r)+d(r.q)=d(p.q)}. 

Suppose rE MPS(p ,q ). 
Then a minimal path 1r=ro.rt, .. . , rn exists such that ro= p, rn =q. n =d (p ,q ). 
and re <1r>. Let r=ri. From Property 2.6 it follows that r 0.r 1, ... , ri is a 
minimal path from p tor. and ri .ri+l• ... , rn a minimal path from r to q. Hence 

d (p. r) = i and d (r . q) = n -i. 

Therefore 

d (p, r ) + d (r . q ) = i + (n -i) = n = d (p. q ). 

and consequently. 

r E { r E Z2 I d (p • r ) + d (r • q ) = d (p • q ) } . 

• Next. we prove that 

MPS(p.q) :2 {reZ2 1 d(p.r)+d(r,q)=d(p.q)}. 

Suppose r eZ2 and d(p .r) + d(r .q) = d(p.q ). 
Let Po·P~> ... , Pi be a minimal path from p tor and qo.ql, ... , qi a minimal 
path from r to q. Then i= d (p. r) and j = d (r. q ). De:line 1r as the concatenation 
of the two paths: 

Then 1r is a path from p to q of length 

i+ j = d (p. r) + d (r. q ) = d (p , q ). 

Hence 1r is a minimal path. Since re <1r>. it follows that r eMPS(p .q ). 

We have now proven that 

MPS(p.q)= {reZ2 1 d(p.r)+d(r.q)=d(p.q)}. 

Some examples of Minimal Path Sets are given below. 



34 IJne functions 

• (3.3) 

• . •• (3.2) • . • • . • • • (3.1) • • • . 
Q • • •• (3.0) Q• • • Q • • .2.• 

• • • . 

MPS(Q,(J.O)) MPS(Q,(3.1)) MPS(Q,(3,2)) MPS(Q,(3.3)) 

According to [Freeman 1970]. each path may be associated with a chain code. which is an 
element of 10.1,2,3.4.5.6.7)*. in the following way. 

A path 1r=r0.r 1 , ... , rn bas chain code y=c1c2 ···en. where 

0 if ri-ri-l= (1.0) 3 2 1 
1 if r 1 -ri-l= (1,1) 

2 if r 1-r;-l = (0.1) 

3 if r 1-r1- 1 = (-1.1) 
Cj = 4 if r;-r;-1 = (-1.0) 

4 

5 if r 1-r1_ 1 = (-1.1) 

6 if r;-r;-1 = (0.-1) 

7 if r 1 -r1_ 1 = (1.-1). 5 6 7 

For the relation between a chain code element '. tE (0.1.2.3.4.5.6.7). and the vector 
r1-r1_ 1 (see the figure above) we will use the function v. Hence v(O) = (1.0). 
v (1) = (1.1). and so forth. 

As an e:xample. the minimal paths from p = Q to q = (3.1) are Sbown again. now accom
panied by their chain codes. 

711 001 010 

\/:(3,1) ;._:__/. (3 ,1) ~(3.1) 
Q Q Q . . . . 

. 
zv.<3.1) ~(3.1) A(3.1) 

Q Q Q 

171 100 117 
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A chain code y=c 1c 2 ···en is said to have length n. We shall write y[i] for c; 
(O<i ~n ), and y[i :j] for c;ci+1 ···ei. On the analogy of paths. <y> will denote the 
set of elements of y, i.e., < ')' > = { c; I 0< i ~n } . < ')' > is called the Dlphal:>et of ')'. If a 
path 11' bas chain code y, then the chain code of 71'- 1 will be ref erred to as y -I. 

Prom the above definitions the following property may be derived. 

Property 2.9: 

Por any path r 0,r 1, ... , rn with chain code y. and all i :O~i ~n, 

r1 = ro+ t v(y[j]). 
J=l 

0 

[Rosenfeld 1978] proves that a path 71'= r 0 ,rl> ... , rn is minimal if and only if 

ro.y <r1·Y < ... <rn .y V ro.Y >r1·Y > ... >rn .y. 

Since for any path 71'= r 0 , r 1, ... , rn holds that 

r1.x-r1- 1.xd-1.0.1} A r;.y-r1- 1.ye{-t,O,l}. 

and that 11' is minimal iff d (r 0, r n ) = n , the following property holds. 

Property 2.10: 

Por any minimal path 11' = r 0• r 1 , ... , r n holds 

(ro.x <r1.x < ... <rn.X ~ r,..x-ro.x = n) A 

(ro.x >r1.x > ... >rn .x ~ ro.x -rn .x = n) A 

(ro·Y <rl·Y < ... <rn .y ~ ·rn .y-ro·Y = n) A 

(ro·Y >r1·Y > ... >rn .y ~ ro.y-rn .y = n ). 

0 

This property may be expressed in terms of chain codes: 

Property 2.11 : 

Por the chain code ')' of any minimal path r 0• r 1 , ... , r n holds 

(<y>~{7,0,1} ~ rn.x-ro.x =n) A 

(<y>~{3.4.S} ~ r 0.x-rn.x =n) A 
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0 

( <y> !': { 1.2,3} ~ r,. .y-r0 .y = n) A 

( <y> !': {5,6,7} ~ r 0 .y-r,. .y = n ). 

Line functions 

Note that the conjuncts of Property 2.11 are not mutual exclusive. If. for instance, 

then 

<y> !': { 7.0,1} A <y> !': {1,2,3}. 

hence <y > !': { 1 }. 

We now know from Property 2.11 that the alphabet of the chain code of a minimal path 
contains at most 3 elements. For p and q with I q.y-p.y I ~ q.x-p.x = d (p. q) for 
example. each minimal path from p to q has a chain code whose alphabet is a subset of 
17.0,1). The following Jemmas express the necessary and suilleient conditions for an ele
ment of 10.1.2,3.4.5,6,7)* to be the chain code of a minimal path. 

Lemma 2.12: 

Let p and q be pixels such that d (p ,q) = n = q.x -p.x. 
Let u be an element of 17.0,1)* of length n. 
Then u is the cbain code of a minimal path from p to q if and only if 

N.,.(l)-Na(7)= q.y-p.y. 

Proof: 

(a) 

• First we prove that condition (a) implies that u is tbe chain code of a minimal 
path from p to q. 
Let u be an element of {7,0,1)* of length n. and let NuCO-Nu(7) = q.y -p.y. 
Define the path TT=r 0,r1, ... , r,. by 

ro := p. 

r1 := r;- 1 +v(u[l]), O<i~n. 

Then TT is a path from p to Tn of length n and with chain code u. We shall prove 
that r,. =q. 

= { definition of r; 

" p + .Ev(u[i]) 
i= 1 

= {u E {7,0,1}* and v (1)= (1,-1), v (0)= (1,0), v(1)= (1.1) } 
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(p.x + n .p.y +N.,.(1)- N.,.(7)) 

= { n = q.x-p.x and (a)} 

q. 

Thus 11' is a minimal path from p to q. and its chain code is u. 

• Now we prove that the chain code of any minimal path from p to q satisfies condi
tion (a). 
Suppose 71'= r 0 , r 1> •.• , r n is a minimal path from p to q. Let y be the chain code 
associated with this path. 
From Property 2.11 it follows that y E {7.0,1}*. Then 

= 

q.y-p.y 

{ q = p + t V ( y [i D } 
i=l 

" l:v(y[i]).y 
i=l 

{ ')' E {7,0,1}* and V (7).y =-1, V (O).y = 0, V (l).y = 1 } 

N.,.(I)-Ny{7). 

This completes the proof for p and q such that d (p, q) = n = q.x-p.x. 

The next three lemmas may be proven in a simHar way. 

Lemma 2.13: 

0 

Let p and q be pixels such that d (p .q) = n = p.x -q.x. 
Let u be an element of {3,4,5}* of length n. 
Then u is the chain code of a minimal path from p to q if and only if 

Na(3)-N .. (5) = q.y-p.y. 

Lemma 2.14: 

0 

Let p and q be pixels such that d (p. q) = n = q.y-p.y. 
Let u be an element of {1,2,3}* of length n. 
Then u is the chain code of a minimal path from p to q if and only if 

N.,.(1)-N.,.(3) = q.x-p.x. 
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Lemma 2.15: 

Let p and q be pixels such that d (p . q ) = n = p.y -q .y. 
Let u be an element of 15.6,7}* of length n. 

Line functions 

Then u is the chain code of a minimal path from p to q if and only if 

N.,.(7)-N.,-(5) = q.x-p.x. 

0 

The above lemmascan be used to state something about the shape of the Minimal Path Set 
MPS(p. q ). It turns out that MPS(p • q ) consists of all pixels within the box that has p 

and q as opposite vertices and whose edges are parallel to the diagonal lines y =x and 
y =-x. This is expressed in the following lemma. For convenience we :tirstly introduce 
some shorthands: if p is a pixel. then t:.p will stand for p.y-p.x. and 'V p for p.y + p.x. 
In the figure below tbe meaning of these notations is illustrated. 

', . . ," 
• '• /, • " y=x+flq 

'< ,' . ,•" .... , . . ,'' 
y--x+'Vp ', ,/ • • '•, • / 

',.,, ,•''. • • • ... , ... ,' q . 
' , , ', ' -. . . . -. ~ . ' , , ... 

• p :-: • • • • ,•' • ..., 
, ' , ', . / .... - ', , ' , ... 

,,' • 'e,,e'. '· y=-x+Vq 
; A 

·' . ,, ', . 
" ' " ' 

y=x+flp . ·" .. , 

Lemma 2.16: 

MPS(p .q) = {rE Z 2 I min(t:..p. t:.q) ~ t:.r ~ max(t:.p. t:.q) A 

min('\lp.'\lq)~ 'Vr ~ max('\lp.'\lq)}. 

Proof: 

Let p and q be pixels. and let n = d (p • q ). 

Suppose q .x - p.x = n. 
Then lq.y-p.y I ~q.x-p.x, and consequently 

t:.q ~!lp A 'V p ~ '\lq. 

Therefore. the set 
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{reZ2 1 min(Ap.Aq)~ Ar~ max(Ap.Aq) A 

min( V p, V q) ~ Vr ~ max(V p. V q)} 

can be expressed more simply as 

{ r E Z2 I Áq ~ Ár ~ Áp A V p ~ V r ~ V q } ' 

for which we will use the abbreviation DB (of Diagonal Box). 

• First. we shall prove that MPS(p • q ) !: DB. 
Suppose rE MPS(p. q ). 

39 

Then a minimal path from p to q exists that contains r. Let 1r be such a path. and 
let y denote its chain code. Then 

n 
q = p + l:v(y[i]) (1) 

i= 1 

From Property 2.6 we know that y[l: d (p. r )] is the chain code of a minimal path 
from p to r . hence 

d <e...r) 
r = p + 1.. v(y[i]). (2) 

i=1 

and combined with ( 1) this leads to 

r = q- t v(y[i]). (3) 
i=d{p,r)+1 

Since, according to Property 2.11. y[i]d 7,0,1}. and v(7)=(1.-1), v(O)==(l.O), and 
v(1)=(1.1). 

d<e...,r) 
1.., v(y[i]).x = d(p.r) 
i=1 

and 

d <e...r) 
-d(p.r)~ 1.. v(y[i]).y~d(p.r), 

i=1 

hence. 

d <e...rJ d <e...r) 
(Ar- Ap).y = 1.. v(y[i]).y- 1.. v(y[i]).x ~0 (4) 

î=1 i= 1 

and 

d ('-'r) d <e...r ) 
(Vr -Vp).y = J... v(y[iJ).y + 1.., v(y[i]).x ~ 0. (5) 

i=1 i=1 

(4) and (5) combined with (2) lead to 
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!::.r ~ Ap. \Ir~ \lp. (6) 

For 

Î. v(y[i]). 
i =d (p .rl+l 

inequalities similar to (4) and (5) may be derived. and these combined with (3) 
lead to the inequalities 

Ar~ Aq. \Ir~ 'ïlq. (7) 

From ( 6) and ( 7) it f ollows that r E DB. and hence MPS(p • q ) ~ DB. 

• Now we shall prove that DB !;;:; MPS(p • q ). 
Suppose r E DB. 
From the definition of DB it follows that 

r.x-p.x ~ lp.y-r.y I A q.x-r.x ~ lq.y-r.y I. 

This implies 

d(p.r)+d(r.q)= (r.x-p.x)+(q.x-r.x)= q.x-p.x = d(p.q). 

With Property 2.8 it then follows that r E MPS(p. q ). 

The lemma is now proven for pointspand q with d(p.q)=q.x-p.x. The cases in 
which d(p,q)=q.y-p.y. d(p.q)=p.y-q.y. and d(p.q)=p.x-q.x may be proven 
in a similar way. 

As said before. minimalline functions generate pixel sets that are associated with minimal 
paths. lf f is a minimal line function. then c (f [p. q]) (or c • f [p, q ]) will denote the chain 
code associated with the minimal path from p to ij. From the deftnition of chain codes the 
following property may be derived. 

Property 2.17: 

For all minimal line functions f and all p. q • r E Z2 holds 

c (d& f[p. q]) = c • f[p, q]. 

0 

Corollary 2.18: 

For all minimal line functions f that are translation invariant. and all p.q .r eZ2 

holds 
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cof[r+p.r+q] = c•f[p.q]. 

0 

2.4 Examples of line functions 

2.4.0 Introduetion 

In this section we present several examples of line functions. All line functions will be 

discussed with :respect to the properties translation invariance. minimality. convexity and 
closeness. 

In order to prove that the functions presented are indeed line functions. we have to prove 
that they satisfy conditions lfO and lfl of the definition of line functions. These conditions 
are 

lfO) (A_p.q: p.q eZ2 : {p.q} ~f[p.qJ) 

lfl) (A_p. q : p .q eZ2 : f[p .q] is ftnite and connected ). 

We shall use the following auxiliary sets and functions. 
The set 0 0 !: R2 is deftned by 

Oo := {(x,y)eR2 IO~y ~x}. 

The functions / 1:0 0--+ P(R2). where i E { 0; .... 7 }. are defined by 

fo(p) == P. 

f2(p) := ( -p.y • p.x ). 

14(p) := ( -p.x • -p.y ). 

MP) := (p.y .-p.x ). 

ft(p) := (p.y .p.x ). 

fl(p) := (-p.x .p.y ). 

/:,(p ) := ( -p.y • -p.x ). 

f,(p) := (p.x • -p.y ). 

The functions / 1 are generalised to subsets of 0 0 in the usual way: for P!: 0 0 • 

/;(P) := {j,(p) I pEP}. 

Note that the functions / 1 are combinations of reflections in the y =x. y = 0. and x= 0 
axes. and hence each /; preserves distance and straightness. that is. 

d (/; (p ).f,(q)) = d(p .q ). 

/; [p . q 1 = [t, (p )./; (q )]. 

The octants 0 1 • where iE I 0 ..... 7 }. are defined by 
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Th en 

R2 = (u i : i E I o ..... 7) : 0; ). 

Alongside. the sets 0; are illustrated. 

To investigate the suitability of the nonminimal line functions. presented in the following 
subsections. to solve the decreasing intensity problem. we shall give expressions for the 
cardinality of f[p. q ). 

2.4.1 The Bonnding Box fnnction 

The Bounding Box function I: Z2x Z2 .... p (Z2) is defined by 

f[p.q] := {(x .y )EZ2 1 min(p.x .q.x} ~x~ max(p.x .q.x} A 

min(p.y,.q.y) ~ y ~ max(p.y ,q.y) }. 

In the sequel. the set 

{(x .y )EZ2 1 min(p.x .q.x) ~x~ max(p.x .q.x) A min(p.y .q.y) ~ y ~ max(p.y .q.y)} 

will be referred to as BB(p .q ). In Figure 2.0. the function value f[Q, (7 .5)] is shown. 

Figure 2. 0 

f[Q,(7.5)]. where fis the Boun.ding Box function. 

From the defi.nition of the Bounding Box function the following properties may be derived. 

Property 2.19: 

The Bounding Box function is a line function. 
0 
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Property 2.20: 

For the Bonnding Box function f. 

#f[p.q]= (lq.x-p.x 1+1)•(1q.y-p.y 1+1). 

D 

Property 2.21: 

The Bounding Box function is translation invariant. 
D 

Property 2.22: 

The Bounding Box function is convex. 
0 

From. the second property it follows im.m.ediately that f is not a minimal line function; 
however. it does not solve the decreasing intensity problem.. since for fixed p and 
q.x = p.x+n. the num.ber of elem.ents in f[p.q] increases from. n+l to (n+l)Z if q.y 
increases from. p.y to p.y +n. 

From. Figure 2.0 lit can beseen that the Bounding Box function is not close. In the follow
ing property we give an expression for its deviation: in the proof we use that f is transla
tion invariant. 

Property 2.23: 

For the Bounding Box function f. 

Proof: 

Reeall that 

Et(n) = (m.axq: q eZ2 A d(Q,q )=n; e01(Q,q]), 

where 

eOt[Q,q] = (maxr: r ef[Q,q]: J (r, [Q,q]) ). 

In Figure 2.1(a) it can be see that for q e00 U 0 7• 

e Ot[Q,q J = (max r : r E/[51 q]: J (r. [Q,q])) = J (s. [Q,q ]). 

where s = (q.x. 0). With a= J (s. [Q, q ]). a can be com.puted. using Property 2.2. 
from. the equation (see Figure 2.1(b)) 
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0 

Q 

(a) 
Figu:re 2. 1 

(b) 

a) pixel s EI [ Q, q ]1uzs maxi'I1Ull distance to [Q, q J 
b)a = d(s,[p,q]). 

a : (q.x -a) = lq.y I : q.x. 

It follows that 

J (s. [Q,q J) = lq.y l•q.x 
lq.y l+q.x. 

Similar equations may be derived if qE0 0 U o,. 
Thus. the deviation function satisfies 

Et(n) = (maxk. k e[O .. n ]: kkn ) 
~- +n 

n = 2' 

Line functions 

q 

s 

Consequently, the deviation of the Beunding Box function is lînear in d (p ,q ). 

2.4.2 The Minimal Path Set function 

The Minimal Path Set function 1: Z2xZ2 - P(Z2
) is defined by 

f[p .q] := MPS(p ,q ). 

In Figure 2.2 the function value I [Q, ( 7 .5)) is shown. 

Using Lemma 2.16. the following property on the numbers of pixels in f[p ,q] may be 
proven. 

Property 2.24: 

For the Minimal Path Set function f, 

# f[p.q] = flh( IVq-V pI +1)*( IL\q-.6.p I +l)l 

0 
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•• 
(1.5) 

• • 

Fi.gure 2. 2 

f{Q.,(7,5)], where fis the Mininuzl Path Set function. 

Property 2.25: 

The Minimal Path Set tunetion is a line function. 

Proof: 

0 

lfO) Since any path connecting p and q contains p and q, it follows that p and q 
are contained in MPS(p • q ). 

lfl) From the above property it follows that MPS(p, q) is finite. 
Let r , SE MPS(p . q ). From the definition of MPS(p • q ) it f ollows that a 
minimal path 1r0 exists that contains r. Since <1r0 > ~ MPS(p .q ). a path in 
MPS(p ,q) exists from p tor. In the same way a path 1r1 in MPS(p ,q) exists 
from p tos. The concatenation of 1r0 and 1r1- 1 is a path in MPS(p .q) from r 
tos. 
Hence. MPS(p. q) is connected. 

We shall now prove that the Minimal Path Set function is translation invariant and con
vex. 

Property 2.26: 

The Minimal Path Set function is translation invariant. 

Proof: 

f[r+p.r+q] 

= { Property 2.8 l 

{ .s:e z2 1 d <r + P • s ) + d <s • r +q > = d <r + P • r +q > } 
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= { Property 1.0 I 

{seZ2 1 d(p.s-r)+d(s-r.q)= d(p.q)} 

= { renaming dummy variabies I 

{r+tEZ2 1 d(p,t)+d(t,q)= d(p,q)} 

= { definition of E9 and Property 2.8 and defi.nition of f } 

rE9f[p.q]. 

0 

Property 2.27: 

The Minimal Path Set is convex. 

Proof: 

0 

Suppose r. sE MPS(p .q ). Then, according to Lemma 2.16. 

min(~p, ~q) ~ ~r ~ max(~p, ~) 1\ 

min(~p , ~q ) ~ ~s ~ max(~p, ~ ). 

Similarly. for any t eMPS(r .s ). 

min(~r. !1s ) ~ !1t ~ max(l1r. as). 

Combining (1) and (2) gives us 

min(l1p. ~q) ~ at ~ max(ap .IJ.q ). 

In the same way it may be shown that 

min(V p. \i'q )~ Vt ~ max(V p. \i'q). 

Thus. t E MPS(p • q ). and we have proven that 

MPS(r, s )~ MPS(p, q ). 

Hence. the Minimal Path Set function is convex. 

(1) 

(2) 

From Property 2.24 it follows that the Minimal Path Set function is not minimal. In fact. 
for p=Q.and q.x =n. 

# f[p.q] = flh( ln+q.y 1+1).( ln-q.y 1+1)1; 

The right hand side of (a) may be rewritten as 

(a) 
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Hence. the Minimal Path Set function offers no solution for the decreasing intensity prob
lem. since if q.y increases from 0 to n. then # f[p.q] decreases from rlh(q.x +1)~ to 
q.x +1. which is almost the opposite of what is required for an decreasing intensity sol ver. 

From Figure 2. 2 it can be seen that the Minimal Path Set function is not close. In the 
derivation of its deviation function we shall use that the Minimal Path Set function is 
translation invariant. 

Property 2.28: 

For the Minimal Path Set function f, 

Proof: 

Let q e0 0 U 0 1. Then it can beseen that 

eo,[Q,q]= (maxr :ref[Q,q]:d(r,[Q,q])) 

= d (s , [Q, q ]), 

where s is one of the 'corners • of MPS(p • q ) other than p and q. However. if 
q.x +q.y is odd, these corners are not contained in Z2• as shown in the figure below. 
and in this case s 0 has maximal distance to [p , q ]. 

,, . . . ,• -- . . 
. . •'. . '• . , ' 

•• _,•'·~ q 
Q.~. ,•'. 

-... "' ' , 
• • '"- ... ,•' so • 

The following expression for e o1[Q, q] may be derived. 

q.x-lq.y I 
2 

if q.x + lq.y I even 

q.x-lq.y 1-1 + lq.y I 
2 q.x+lq.yl 

otherwise. 

For cases in which q t: 0 0 U 0 1• similar expressions may be derived. For the deviation 
function. which is defined by 

Et(n) := (maxq : q eZ2 A d (Q, q )= n : e01[Q,q ]), 

it then follows that 
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0 

Thus. the deviation of the Minimal Path Set function is linear in d (p ,q ). and equals. for 
evC!l n, the deviation of the Bounding Box function. 

2.4.3 The Franklin tunetion 

The function g :00 U 0 1 U 0 6 U0 7 -+ P(0 0 U 0 1U06 U0 7) is defined by 

{ } {
{ (p.x. j) I j E[O •• p.y]} if p.y ~0 

g(p) := (i.O)I te[O .. p.x] u {( ')I . [p o]} if <0 p.x . 1 1 E .y.. p.y . 

Below. the function value g ((7,5)) is illustrated. 

The function g may be considered as a digitisation function for line segments with one 
endpoint in the origin and the other endpoint contained in 0 0 U 0 1U 0 6 U0 7. The Frank
lin function f: Z2xZ2 -+ P(Z2) is a translation invariant generalisation of g; it is defined 
by 

f[p.q] := p $ g(q-p) .. 

Note that for any p and q • 

q- p E 0 0 U 0 1 U 0 6 U 0,. 

This function is suggested in [Franklin 1986] as an example of a convex line function. In 
[Luby 1986]. this function is called the "square grid geometry". 
The following properties of the Franklin.function may be derived. 

Property 2.29: 

The Franktin function is a line function. 
0 
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PropertY 2.30: 

The Franklin function is translation invariant. 
D 

Property 2.31: 

The Franklin function is convex. 
D 

See Figure 2.3 forsome examples of digitised line segmentsof f. 

Q. 
Q. 

(7.-5) 
(-5.-7) 

(a) (b) 

Ftgure 2. 3 

Two digitised line segments of the FrankZin function: 

a) f [Q, ( 1 .-5)] 
b) f[Q, (-5.-7)] 

As may beseen in Figure 2.3. the Franklin function is notminimaL From the definition of 
the Franktin function it follows that 

# f[Q, q] = q.x + lq.y I + 1. 

Hence. if q .y increases from 0 to q .x • then # f [ Q, q ] increases from q .x + 1 to 2q .x + 1. 

In Figure 2.3 it can beseen that the Franklin function is not close. The following can be 
stated on its deviation. 

Property 2.32: 

For the Franktin function f. 
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Proof: 

Similar to the Bonnding Box function. in Property 2.23. 
0 

In the .following section we shall introduce a line function that resembles the FrankJin 
function. except that this new function is minimaLand bas a somewhat better deviation. 

2.4.4 The Adapted Franklin function 

Again. we introduce an auxiliary function: the notation t:.p is used for p.x-p.y. The func
tion g: 0 0 -+ P(0 0 ) is defined by 

g(p) := {(i.O)I te[O .• t:.p]} U {(t:.p+j.j)l je[O .. p.y]}. 

Below. the function value g((7.5)) is shown. 

(7.5) 

The function g is now generalised to line segments by using the transformation functions 
/; and imposing translation invariance. 

Tbe Adapted Franklin function I: Z2x Z2 ..... p (Z2) is defined by 

where i is such that q-p e 0; . 

Property 2.33: 

The Adapted Franktin function is a line function. 
0 
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In Figure 2.4 some examples of digitised Adapted Franklin line segments are shown. 

(5.7) (-5,7) 

(1,-5) 

Q. 

(a) (b) (c) 

Figure 2. 4 

Digitised ltne segments of the Adapted Franklin function: 

a) f[Q,(5,1)] 

b) f[Q,(1.-5)] 

c) f[Q,(-5,7)] 

Like the Franklin function, the Adapted Franklin function is translation invariant and 
convex. 

Property 2.34: 

The Adapted Franktin function is translation invariant. 
0 

The proof that the Adapted Franklin function is convex is somewhat complicated. because 
of the occurrence of /; in its definition. 

Property 2.35: 

The Adapted Franklin function is convex. 

Proof: 

Let/ be the Adapted Franklin function, and suppose p. q e Z2• Since f is translation 
invariant, we may assume that p = Q, 

Furthermore. we assume, without loss of generality, NF(Q, q ). This implies that 
qe0 0 U0 1 U06U07. The cases qe0 0 (case I) and qe0 1 U06U0 7 (case II) are 
dealt with separately. 

I. Letqe00.Then/[Q,.q]= g(q). 

For r .s ef[Q,.q ]. such that NF(r .s ). the following cases may be distinguished. 

Q. 
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A) r = (m .0) A s = (n .0) with O~m ~n ~q.x-q.y 

B) r = (m .0) A s = (q.x-q.y +n .n) with O~m <q.x -q.y A O<n ~q.y 

C) r = (q.x-q.y+m.m) As= (q.x-q.y+n.n) withO~m~n~q.y. 

For each case it may be derived in a straightforward way that f[r. s ]S: f[Q, q ]. 

U. Suppose q e01 U06U 01. Since NF(Q, q ). for q EO;. 

0 

f[Q,q] = /; 0 g 0 /; -l(q ). 

Using I. it may be proven that for r .s ef[Q,q] such that NF(/1 -l(r )./1 -
1(s )). 

(a) 

By distinguishing the samecases as in I, it may then be derived that for i= 1 and 
i=1. 

NF(/; - 1(r )./1 -
1(s ))A/; -l(r )./; - 1(s )ego f1 -l(q) ::;:. NF(r .s ). (b) 

Hence. for i= 1 and i= 7. 

f[r .s] 

= { NF(r . s ) and definition of f l 
rED /;•g•f1- 1(r-s) 

S: l (a) l 

f[Q,q ]. 

If i= 6. (b) holds for r. s such that / 1 -
1(r )./; -•es) satisfy cases B and C (see I). 

Hence, in these cases 

f[r.s] S: f[Q,q]. 

For case A. 

but in this case it may be proven that 

r $ /;•g•/;- 1(r-s) = S $ /;•g•/;- 1(s-r), 

which means that in this case too 

f[r .s] S: f[Q,q ]. 

Unlike the Franklin function, the Adapted Franklin function is minimat as is proven in 
the following property. 
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Property 2.36: 

The Adapted Franklin function is minimal. 

Proof: 

0 

Por p E 0 0, g (p ) is deftned by 

g(p) := {(ï.O)I O~i~Ap} U {(Ap+j.j)l O~j~p.y}. 

where Ap = p.x-p.y. Since 

{(i,O)I O~i~Ap} n {(Ap+j.j)l O~j~p.y} = {(Ap,O)}, 

the number of elements in g (p) is (Ap + 1) + (p.y + 1)- 1 = p.x + 1. Since p E 0 0, 

d (Q,p) = p.x. hence 

#g (p) = d (Q, p) + 1. 

Since the number of elements of a set is not changed by a translation, nor by a 
transformation /;. it follows that for all p and q, 

#f[p,q] = d(p,q) + 1. 

From Section 3 we know that a minimal line function generates minimal paths. These 
minimal paths may be represented by chain codes. The following lemma expresses what 
the cbain codes of Adapted Franklin digitisations look like. 

Lemma 2.37: 

Let cre{O ••.. , 7 }*. 
Then er is the chain code of an Adapted Franklin line segment iff 

er= Oiti V er= 2î1i V er= 011i V er= 611i (a) 

forsome i. jeN. 

Proof: 

• First we shall prove that the chain code of any Adapted Franklin line satisftes (a). 
Suppose p E0 0• The auxiliary function g for the Adapted Franklin line is defined 
by 

g(p) := {(t.O)i O~i~Ap} U {(Ap+j,j)l O~j~p.y }, 

where Ap = p.x-p.y. From this it can beseen that the unique path from Q. top in 
g (p ) has chain code 

wPll'·.l'. 

The functions fl./6./7 transform the set g (p) into 
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{(O,i)l O~i~ll.p} U {(j,ll.p+j)l O~j~p.y}, 

{(0.-i)l O~i~Ap} U {(j.-(ll.p+j))l O~j~p.y}. 

{(i ,0)1 O~i ~Ap} u { (ll.p+ j .-j) I O~j ~p.y} 
respectively, which results in chain codes 

2l!.p 1 P->' • 6l!.p ?P.Y ' ~ 7N' 

respectively. Since for all p, q E Z2, 

q-p E 0 o U 0 1 U 0 6 U 0 1• 

it follows that the chain code of any Adapted Franklin line satisfies (a). 

• Conversely. we shall prove that for any CF satisfying condition (a), p and q exist 
such that a= c • f[p.q ]. 
Suppose CF E { 0, ... , 7}* satisfies condition (a). 
If a= 0; 11 • then the sequence r 0• r 1, ... , r 1 + 1 is defined by 

Q. k=O 
rk := k 

l:v(CF[l]) O<k ~ i+j. 
/;1 

forms a path from r 0 to r 1+J with chain code CF. We shall prove that 

{r.. I o~ k ~ ï+i} = tl!i<ï+j.j)J. 

which implies that CF is the chain code of an Adapted Franklin Line. 

Since V (0) = (1.0). v(l) = (1.1). and CF= 01 tJ' it follows from (b) that 

{
(k,O) O~k~i 

rk = (k . k -i) i ~ k ~ i + j. 

Hence. 

{ rk I 0 ~ k ~ i+ j } 

= { (c) and definition of g for the Adapted Franklin function I 
g ((i+ j. j )) 

= {(i+j.j)E00 and/o=ll 

f[Q. (i+ j. j)]. 

(b) 

(c) 

From the first part of the proof we know that the functions ft,f6,j, transform 
c • f[Q. (i+ j. j)] into 21 tJ. 61 ?J. 01 7J respectively. Hence. with p := Q.and 
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(i+ i. j) if CT = o; t' 
fl(i+j.j) ifCT=2ilj 

q ;: l6(i + j • j) if CT = 6; 7i 

f,(i + j , j) if CT = fi 7i , 

c•l[p.q]= CT. 
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Tbe Franktin fwiction. though notminimaL also generates pixel sets of which the elements 
may be arranged in unique paths from p to q. For the chain codes of these paths we state 
the following lemma, without proof. 

Lemma 2.38: 

Let CTE{O ••••• 7 }*. 
Then CT is the chain code of a Franklin line segment iff 

CT= Oi2J V CT= Oi6J 

forsome i. jeN. 
0 

As can be seen in Figure 2.4. the Adapted Franktin function is not close. Tbe following 
can be said on its deviation function. 

Property 2.39: 

For the Adapted FrankJin function I. 

~ ~ E1(n)~ (3-2.Ji)n. foralln~3. 

Proof: 

Let I be the Adapted Franklin function, and p. q E Z2• Since I is translation invari
ant. we may assume that p = Q. 
Let q e 0 0• In the ftgure below it can be seen that 

e 01 [Q, q] = d (r. [Q, q ]), 

where r= (q.x-q.y ,0). 
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0 

Q 

a= J (r . [Q, q]) can be computed from the equation 

a :(q.x-q.y-a) = q.y :q.x; 

it follows that 

d (r. [Q,q]) = q.y (q.x -q.y) 
q.y +q.x 

The deviation function E1 satisfies 

E1(n) = (mn_k: k E[O .. N]: k ~;:) ). 

Line functions 

q 

Considered as a function on Ik ER I O~k ~n I. E1 bas maximum value (3-2,/ï)n. 
for k = ( v'ï-l)n. Furthermore. for n ~ 3 and k = Lî n J. it may be shown that 

k(n-k) n 
k+n ~ 6· 

Consequently, the deviation of the Adapted Franklin function is linear in d (p .q ), but 
smaller than the deviation of the Minimal Path Set. Bounding Box. and Franktin functions. 

2.4.5 The Bresenham function 

Before we introduce the following line function. we mention that for any p e00 • the line 
segment that connects Qand p satisfies 

[Q,p]= {(x.(P·Y/p)x)eR2 1 O~x~p.x }. 

Basedon the above equation. we introduce the function g :00 - P(0 0 ) defined by 

g(p) := {(x.f<'·YI, .. )x-thj)eZ2 1 O~x~p.x }. 

Hence. g (p) contains from each column between 0 and p.x the pixel that is most close to 
the intersection point of the line segment and that column. Below. the pixel set g ((7. 5)) 
is shown. 
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(7.5) 

The function g is generalised in the same way as with the Adapted Franklin function. 
The Bresenham function f: Z2xZ2 -+ P(Z2) is defined by 

where i is such that q-p E 0; . 
In [Bresenham 1965]. as well as in [van Berekei & Mailloux 1965]. algorithms are 
presented that generate the above pixel sets; for a proof see. for instance. [Bresenham 

1985]. 

Property 2.40: 

The Bresenham function is a line function. 

Proof: 

Letp.qeZ2 • 

lfO) From the definition of g it follows that for all r E0 0 • 

{ (0, r-lhl), (r.X, f('"Yf,._.)r .X -!.hl)} !';;; g (r ), 

hence, 

{ Q.. r } !';;; g (r ). 

Analogously to the Adapted Franklin function. that is. the corresponding part 
of the proof of Property 2.33. it then follows that 

{p.q} ç f[p.q]. 

lf1) From the definition of g it follows that g (p) is a finite set. 
We shall now demonstrate that g (p) is connected for any p E 0 0• 

p•·Y/p_.(x +1)-thj- w·Y/1'-')x-lhl 

< { (A,z: z ER: z-112~ rz-lhl < z+lh)} 

P.Y/p(X + 1)+112- ((P.Y/1'-' )X -112) 

{ arithmetic } 

I'·Y/p + 1 
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{pE00 } 

2. 

Consequently. 

rP.Y/..,..(x+l)-~- w·Y~)x-~ < 2, 

and since both operamis are elements of z. 
rP·1f,,.(x +1)-1!~- f<'"Y/p.o)x-thj ~ 1. 

Then. for any x EZ. O~x <p.x. 

d( (x +l.rP·'I, .. (x+l)-~). (x .fC"·'I,. .. )x-thj)) ~ 1. 

and this implies that g (p ) is connected. 

Line functions 

Connectedness and finiteness are not violated by a transformation / 1 , nor by a 
translation. 

0 

Like the Adapted Franklin function, the Bresenham function is translation invariant and 
minima!. 

Property 2.41: 

The Bresenham function is translation invariant. 
0 

Property 2.42: 

The Bresenham function is minima!. 

Proof: 

0 

For the Bresenham function. g (p) is defined by 

g(p) := ~(x. r(P-Y//'S)x -~)EZ2 1 O~x ~p.x }. 

Therefore. #g(p)= p.x +1 = d(Q,p)+l. and consequently 

#f[p.q]= d(p.q)+l. 

The Bresenham function is not convex: consider. for example. in Figure 2.5 the digitised 
line segments f{Q,(16.5)] and /[(8.2). (14.4)]. The latteroneis nota subset of the former 
one, although (8.2) and (14.4) are both elementsof the farmer one. 
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Figure 2. S 

lllustration tlu:a the Bresenham function is not convex. 
The elementsof f[Q. (16.5)] and /[(8,2). (14.4)] are 

indicated by • and 0 respectively. 

Unlike the previously introduced line functions. the Bresenham function is close. 

Property 2.43: 

The Bresenham function is close. 

Proof: 

59 

Let f be the Bresenham line function. We shall demonstrate that for p .q eZ2 • such 
that p=Q.and q e00 , f[p .q] is a close digitisation of [p. q ]. that is, 

(Ar : r ef[p ,q]: (~v : v e[p .q]: d (r, v )< t)) (a) 

(A,v :ve[p,q]:(~r :ref[p.q]:d(r,v)<l)). 

Reeall that 

[Q, q] = {(x. ('·14 ... )x )eR2 I O~x ~q.x } and 

f[Q,q 1 = {(x. W''l,...)x -lkj)eZ2 1 O~x ~q.x }. 

(a) Suppose r E f [p. q ]. 
Then r eZ2• O~r .x ~q.x. and 

(H4.a )r .x - 1h ~ r.y < ("'4 .. )r .x +lfi. 
Since (r.x ,(f·Yf..,.)r.x )e[Q.q]. and I (t·Y/,_.)r.x-r.y I~ lfi, 

d(r .(r.x .(•74...)r.x )~ 1fi < 1. 

hence condition (a) is satisfi.ed. 

(b) Suppose v e [Q, q ]. 

(b) 

Defi.ne x := fv.x-lkj. w := (x .(t->'f...)x ). and r := (x. f<"'4.a)x-lhl). Then 
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0 

Line functions 

wE [Q,q]. and r ef[Q,q ]. 
Since lx-v.x I ~lf2. and q.x ~q.y. 
1(H4t)x-v.y l~lh. hence d(v ,w )~lh. 

Also d (r . w )~ 1h, hence 

a lso 

. 
[Q, q] 

. ~~~ 
~v.w • 

~~ 

d(v.r)~ d(v.w)+d(w.r)~ lh+lh= 1. 

If d (v .r )< 1. then condition (b) is satisfied. 

Suppose d (v ,r )= 1. Consequently. in this case·d (r. w) = d (w. v) = lh. This is 
only possible in tbe following situation (recall that 

a~ral<a), 

~/:>: --;2-q] 

. . . 
r 

' , 
·' . 

where v.y -w.y = v.x -w.x = lh. Then 

H4t(x+1)= ("'/, .. )x+ 1 A 

r"'/,.x(x+l)-lf:il = f('-1/p)x-thj + 1 = r.y+1 = v.y. 

Since for s := (x + 1. f"'4< (x + 1)-1kj ). 

sef[Q,q] A d(v.s)= lh. 

condition (b) is satisfied in this case too. 

From this it follows that f[Q,q] is close. 

f is not optimal. as is illustrated below: for p = .Q. and q = (5, 2). the point v. defined by 
v = (1.4,0.56). is an element of [p.q]. whereas nor ef[p.q] exists such that d(r ,v )~Ik. 

(5.2) 
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2.4.6 The Close Embedding function 

We now present a line function based on the digitisation function f !- . which was deftned 
in Chapter 1 by 

1!-(V)= {peZ2 1 (]iv:veV:d(p.v)<1)}. 

The Close Embedding function I: Z2xZ2 ~ P(Z2) is defined by 

l[p.q) := f!- [p.q ). 

In Figure 2.6. the function value I[Q, (7,.5)) is shown. 

(7 ,.5) 

Figure 2. 6 

f[Q, (7,.5)). where I is the Close Embedding function. 

From Chapter 1 we knowalready that f is close (Property 1.13) and translation invariant 
(Property 1.1.5). We shall use that f is translation invariant in the proof of the following 
property. 

Property 2.44: 

The Close Embedding function is a line function. 

Proof: 

Letp.qeZ2 • 

From the definition of f ';- it follows that 

f[p.q]= {reZ2 1 mv:ve[p.q]:d(r.v)<l)}. 

lfO) Since p .q e[p ,q ]. and d (p .p )=d (q .q )= 0, {p .q }!:l[p',q]. 

lfl) Since [p.q]ÇBB(p.q). it follows that any nf[p.q] is contained in BB(p.q). 
Consequently. f[p .q] is finite. 

We shall now prove that f [p • q ] is connected. Since f is translation invariant, 
we may assume that p = Q, 
Let r e00 . 

Then it can be seen that the Bresenham digitisation is a subset of the Close 



62 Line functions 

Embedding digitisation: 

{(x.f<'"'/,. .. )x-lf2])eZ2 1 O~x~r.x}!: flQ..r]. 

We denote the intersectien point of the Bresenham digitisation with column 
x= i as r;. and the intersectien set of flQ.. r] with x= i as R;. More formally. 
for i eN. O~i ~r.x. 

r; .- (i. W'lr ... )i -lf~ ). and 

R; ·- {s eflQ..r] I s.x =i}. 

Then it can beseen that 

r; ER;. 

f[Q,r]= (U i :O~i~r.x :R;). 

(a) 

(b) 

and. from the proof that the Bresenham function is a line function, Property 
2.40. 

d(r1.r1_ 1)= 1 foralli :O<i~r.x. (c) 

Furthermore. for all i eN, O~i ~r.x, 

R; is connected. (d) 

as can beseen by the following argument. 
Suppose (i.n)ER; and (i.n+2)eR1 • Then v,we[p.q] exist such that 
d(v .(i .n ))<1 and d(w .(i .n+2))< 1. Since any line segment containing 
v and w passes through the region of sensitivity of the pixel (i .n +1). this 
pixel is also an element of R; . 

y=n+2 

y=n+l 

y=n 

X=i 

~-: 

~~-.} 
:-- - -~ } 
~~-.} 
~~-· 

region of sensitivity of (i.n+ 2) 

region of sensitivity of (i.n+l) 

region of sensitivity of Ö.n) 

This may be generalised to pixels (i . n ) and (i • n + j) where j > 2. 
Hence. R; is connected. 

From (a). (b). (ç), and (d) it follows that flQ..r] is connected. This holds for 
all r e0 0 • also for /; -l(ij-p ). 

Let r e0 1 U 0 6 U 0 7• and let i be such that /; -l(r )e00 . Then. according to the 
above part. f(Q,f1 -l(r )] is connected. Since it may be proven that 
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and connectedness is not violated by a transformation / 1 • it follows that f[Q,r] 
is connected. 

0 

As can be seen in Figure 2.6, the Close Embedding function is not minimal. We shall 
derive an expression for the nl,lDlber of pixels contained in /[p .q ]. We first introduce 
some new notions. 

With each p E Z2 we associate a subset of R2• notated as S (p ). and de:fined by 

S(p) ·- {(x .y )ER2 1 p.x ~x ~p.x +1 A p.y ~y ~p.y +tl. 

Note that 

R2 = (Up:peZ2 :S(p)). 

A set S(p) is called a unit square. Below, this set is illustrated. 

p 

Furthermore. we de:fine the following subsets of S(p ). 

Corner(S(p )) := {p,p+(l,O).p+(l.l).p+(O,l) }. 

and 

S(p) := {(x,y)eS(p) I p.x <x <p.x+lA p.y <y <p.y+l }. 

The elements of S (p) are called internal points of S (p ). Now it can be seen that for 
pvt:q. 

fl-[p.q]= (Ur :reZ2 A (E_v :veS(r):ve[p.q]):Corner(S(r))). 

Property 2.45: 

For the Close Embedding function f, 

#f[Q,q] = 2(q.x+ lq.y I)- gcd(q.x, lq.y I)+ 1. (a) 

where gcd( m. n ) denotes the greatest common divisor of m and n , and gcd( n . 0) is 
supposed to equal n. 
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Proof: 

The proof consists of three parts. 

• Suppose q .x = 0. 
Th en 

t [Q, q 1 = [Q, q 1 n Z2
• 

and consequently 

Since 

# f[Q,q] = lq.y I +1. 

2(q.x + lq.y I)- gcd( q.x. lq.y I)+ 1 

21q.y I- lq.y I + 1 

= I q.y I + 1. 

equation (a) is satisfied. 
For reasons of symmetry. this is also true in case that q .y = 0. 

• Suppose q.x >0 and lq.y I >0 and gcd( q.x. I q.y I)= 1. 
Define V as the set of points in [Q, q] that have an integer x- or y -coordinate: 

V:= {(x.y)e[Q,q]l xeZV yeZ}. 

Because gcd( q.x. I q.y I)= 1. the only elements in V with both integer x- and y
coordinate are Q and q. hence 

#V= q.x + 1 + lq.y I+ 1-2 = q.x + lq.y I. 

Let ro.r 1, ... , rq.x+lq.yl-1 be the sequence of allelementsof V, in increasing x
order. that is. 

ro=QA rq.x+lq.yl-l=q A (A.i:O~i<q.x+lq.yl-1:r;.x <r;+I.x). 

The unit square that contains r 0 and r 1 • contributes its four corners to the set 
f[Q,q ]. If the line segment [Q,q] is foliowed from Q to q. then with each r;. 
O<i <q.x+ lq.y 1-1. a new unit square is entered. which shares ~wo of its corners 
with the previous unit square. Hence. 

# f[Q,q] = 4 + 2(q.x+ lq.y 1-2). 

Since gcd( q.x • I q .y I ) = 1. equation (a) is satisfied. 

• Suppose q .x > 0 and I q .y I > 0 and gcd( q .x • I q .y I ) > 1. 
Letn = gcd(q.x.lq.y I). Define 

Po ·- Q, 

p; ·- i*('"'!.. f·YI"), for i : O<i ~n. 

Then P; E [Q, q ]. and 
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0 

(A, i : O~i <n : gcd( lp;+J·X -p; .x I. lp1+t·Y -p; .y I)= 1). and (b) 

[Q,q)= (Ui :O~i<n :[p;.Pi+l]). (c) 

Combining (c) with Property 1.8 implies 

f[Q,q] = (U i : O~i <n : f[p; •Pi+l])· (d) 

From (b) and tbe second part of this proof it follows that 

#f[p;.P;+J] = 2{f-1'1.. + '•''!..). 

Furthermore, 

f[Pi-t•P;] n f[p; ·Pi+tJ = {p; }. 

Combinîng (d), (e), and (f) results in 

#f[Q,q] = n( 2(q.x+ lq.y I))- (n-1) 
n 

= 2(q.x + lq.y 1)- n +1. 

Hence, equation (a) is satisfied in this case too. 

(e) 

(f) 

Note that if q.x is :lixed and prime, and O~q.y ~q.x. 

q.x + 1 if q.y = 0 
# f[Q, q] = 2q.x + 2q.y if O<q.y <q.x 

3q.x + 1 if q.y =q.x. 

hence, if q.y increases from 1 to q.x. then #f[Q, q] increases linearly in q.y, but diserepan
des occur for q.y = 0 and q.y = q.x. This is due to the following property of f 1- . 

1 ifreZ2 

# f 1- ({ r } ) = 4 if r e R2 \ z2 

2 otherwise. 

For q.x not prime. the number of elementsin f[Q,q] ftuctuates even more. Consequently. 
the Close Embedding function does not solve the decreasing intensity problem. 

The Close Embedding line function is not convex. as is illustrated in Figure 2.7. Here. 
f[Q, (10,4)] contains (0,1) and (5.3). but /[(0.1). (5. 3)] is nota subset of f[Q, (10.4)]. 
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......... 
• • . • • • (5,3) 

·~·00·. 
·00 • 

(0.1) • • • 
Q. ••••• 

Figure 2. 7 

Line functions 

(10.4) 

/llustration that the Close Ernbedding line function is not convex. 
The elementsof f[Q, (10.4)] and /[(0.1). (5.3)] are indicated by 

• and 0 respectively. 

2.4.7 The Optimal Embedding function 

The line function introduced in this section is based on the digitisation function f 1= • 
which was defined in Chapter 1 by 

f~e=(V)= {peZ2 1 (]iv:veV:d(p.v)~lh)}. 

The Optima! Embedding function f:Z2xZ2 -+ P(Z2 ) is defined by 

I [p • q 1 := I 1= [p . q 1. 
In Figure 2.8. the function value f[Q, (7,.5)] is shown. 

(7.5) 

Figure 2. 8 

f(Q,(1.5)]. where fis the Optimal Embedding function. 

In Chapter 1 it has been shown that f is optima! (Property 1.13) and translation invariant 
(Property 1.1.5). 

Property 2.46: 

The Optima! Embedding function is a line function. 

Proof: 

This may be proven in the same way as for the Close Embedding function. though in 
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tbe part where R1 is proven to be connected, the picture should be replaced by tbe 
one below. 

y-n+l • 

y=n+l • 

y-n 

0 
x=i 

} region of sensitivity of (i,n+l) 

} region of sensitivity of (i.n+ 1) 

} region of sensitivity of (i,n) 

In Figure 2.8 it can beseen that I is notminimaL The following property deals with tbe 
number of pixels in l[p. q ]. 

Property 2.47: 

For the Optimal Embedding function I, 

j

q.x + lq.y I+ 1 ifgcd(q.x, lq.y 1)>0 A 
:fl: I[Q.q] = (9 .. /P<f..C,If.yl) even V 19·Y'fa..«, .... ,.,11) even) 

q.x + lq.y I+ 1 + gcd( q.x. lq.y I) otherwise, 

where gcd( n , 0) is supposed to equal n. 

Proof: 

Reeall that for I Is the region of sensitivity of a pixel is 

R(p) = {(x .y )eR2 1 lx-p.x I "lh A ly-p.y I "lh }, 
and tbat 

I[Q.q] =(U r: r€Z2 A R(r )n[p,q ]#: 0: {r }). 

The construction of tbe proof is similar to the one above. 

• Suppose q .x = 0. 
Tben 

I[Q.q]= [Q,q]nZ2• 

and consequently 

:fi:I[Q,q] = lq.y 1+1. 

Since 

(a) 
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lq.y I= 0 => gcd(q.x, lq.y I)= 0 

lq.y I > 0 => q.x even, 
gcd(q.x,lq.yl) 

equation (a) is satisfied. 
For reasons of symmetry, this is also true in case that lq.y I =0. 

• Suppose q.x >O and I q.y I >0 and gcd( q.x, I q.y I)= 1. 
Define V as the set of points of [Q, q) with x- or y -coordinates that are odd multi
ples of lh: 

Since 

V := {(x.y)E(Q,q]! x-lhEZ V y-lheZ}. 

#{(x,y)e[Q,q]l x-lheZ}= q.x A 

#{(x.y)e[Q,q] I y-lheZ} = lq.y I. 

it follows that 

#V= q.x + lq.y 1-#{(x.y)eV I x-lhEZ A y-lheZ}. 

We shall show that 

} {
0 if q.x even V lq.y I even 

#{(x.y)EV I x-1hEZ A y-lf2EZ = 1 otherwise. 

- Suppose q.x even or lq.y I even. 
Furthermore. suppose that (n +lh.m +lh)E [Q,q ]. forsomen .m EZ. 
Th en 

12m+ll _ ~ 
12n+ll - q.x 

(b) 

Since gcd( q.x. lq.y I)= 1. and In +lh I < q.x, it follows that 12m +11 = lq.y I 
and 12n +11 = q.x. However. because at least one of q.x and lq.y I is even. this 
leads to a contradiction. Thus. 

q.x even V lq.yl even =;. #{(x,y)EV I x-lheZA y-lheZ}= 0. 

Suppose q.x odd A q.y odà 
Then the point r halfway the line segment [Q,q ]. 

r = ( t·•/2. t·Y/2). 

is contained in {(x .y )EV I x-lh EZ A y- 1h EZ}. 

Suppose an other points E [Q,q) exists such that s.x - 1h EZ and s.y-1h EZ. Then 

...;.;_"'--_;;;..;,<-.:.. = l.i:L!._ A lr.y-s.y I EN A lr.x-s.x I EN A lr.y-s.y I < lq.y I. 
q.x 

Because gcd( q.x. lq.y I)= 1. this is impossible. and therefore r is the only 
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element of 

{(x.y)eV I x-lheZ 1\ y-1heZ}. 

Thus. 

q.xoddl\ q.yodd => #{(x.y)eVIx-lheZ/\y-1heZ}= 1. 

Now define n := #V. 
Let r 0 , r I> •.. , r n _ 1 be the sequence of all elements of V ordered in increasing x -
value. that is, 

(Ai : O<i <n : r;- 1.x < r; .x). 

Q. itself contributes one element to f[Q,q]. If the line segment [Q,q] is foliowed 
from Q. to q. then with each r; not contained in 

{(x.y)eV I x-lheZ/\ y-lheZ} 

one new region of sensitivity is entered. contributing one element to f[Q,q ], and 
with each r; , if any, contained in 

{(x,y)eV I x-1heZ/\ y-lheZ} 

three new regions of sensitivity are entered, contributing three elements to f [Q, q ]. 
Corisequently. 

q.x even V lq.y I even => # f[Q,q] = 1 + (q.x + lq.y I) 

q.x odd 1\ lq.y I odd => #f[Q,q]= 1+(q.x+lq.y 1-2)+3. 

Since gcd( q.x. lq.y I)= 1. this results in 

_ {1+q.x + lq.y I iffo&/cod<fo&,lf.yl)even V 19'11/ac4< 9.x,19.11>even 
#f[Q,q]- 1 +q.x + lq.y I +gcd(q.x.lq.y I) otherwise. 

Hence. equation (a) is satisfied. 

• Suppose q.x >O and lq.y I >0 and gcd(q.x, lq.y I)> 1. 
Similar to the reasoning in the third part of the Proof of the previous Lemma, the 
line segment [Q,q] may be divided into n parts [p; .p;-1]. where 
n = gcd(q.x,lq.y l).p;eZ2 , 

and 

Th en 
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{
n*(1+'""1.+ 19•11/")-(n-1) if 9.)(/"even V 1

f-Y
1/"even 

n *(1 + PJ. + 19
"
11

/" + 1)- (n -1) otherwise 

{ 
1 + f.A In + 1f·Y 

1
/" if f.A/" even V lf.Y 1/" even 

= 1 + f.A/n + 1
f·Y 

1/" + n otherwise. 

Thus. equation (a) has been proved. 

0 

Note that for q.x a fixed prime and 0~ I q.y I ~q.x . . 

if I q.y I even 
# f[Q,q ]= 

1 + q.x + I q.y I 
2+q.x+lq.yl 
1+2q.x + lq.y I 

if lq.y I odd 1\ lq.y I <q.x 
lq.y l=q.x. 

Hence. a discrepancy occurs at lq.y I =q.x when lq.y I increases from 0 to q.x. This is due 
to the following property of f 1= • 

1 

#ft= ({r }) = 4 
2 

if r - (1h. 1h) t Z 2 

if r- (lf.d2) eZ2 

otherwise. 

For q.x not prime. the number of elementsin f[Q,q] fluctuates even more. Consequently. 
the Optimal Embedding function does not solve the decreasing intensity problem. 

The Optimal Embedding function is not convex: f[Q,(10.4)]. for example. contains (1,1) 
and (6,3). but f[(l.l). (6. 3)] is nota subset of f[Q, (10.4)]. See Figure 2.9. 

(10.4) 

Figure 2. 9 

/Uustration that the Optirru:d Emhedding line function is not convex. 
The elementsof f!Q_ (10.4)] and f[(l.l). (6.3)] are indicated by • 

and 0 respectively. 
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2.5 Combinations of properties 

In this section we shall prove that some combinations of properties are confiicting. The 
first one concerns optimality and minimality. 

Lemma 2.48: 

There are no minimal. optimal line functions. 

Proof: 

0 

Suppose f is an optimal line function. 
Consider the line segment [Q, (4.1)]. See the 
figure alongside. This line segment contains 
the pointS V= C~. %6) and W = (9~. %6). 
According to the definition of optimal line 
function. f[Q, (4.1)] must contain pixels p 
and q such that d (p .v )~ 1h and 
d (q .w )~'h. Hence f[Q, (4.1)] contains both 
(2,0) and (2.1). which implies that f is not 
minimaL 

(4.1) 

··~ 
~· .. 

Next. we derive some properties concerning the chain codes of the paths generated by 
minimal. convex line functions. 

Property 2.49: 

Let f be a minimal. convex line function. and p. q e Z2• 

Let 17=r0.rl> ... , rn. where n=d(p.q). be the minimal path from p to q associ
ated withf[p.q]. Then for all i. jEN with O~i ~j ~n. 

c•f[r;.ri]= c•f[p.q][i+1:j]. 

Proof: 

Because f is convex. 

Because f is minimal. 

f[r;.ri]= {r;.ri+l•·· .,ri}. 

and hence 

c•f[r;.ri] = c •f[p.q][i+1:j]. 

0 
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Although there are various convex line functions, the additional requirement for minimal
ity and translation invariance is rather restrictive: the following lemma expresses that the 
chain codes of such line functions have a simple structure. 

Lemma 2.50: 

Let f be a translation invariant. minimaL convex line function, p, q E Z2, a e ( 0 ..... 7 } . 
and a e { 0 ..... 7 }*. Then 

c•f[p,q]=aaa:::;. ada}*. 

Proof: 

0 

We shall use induction on the length of CF • 

• lf CF bas length 0. tb en a E { a }*. 

• Suppose for all CF eI 0 ..... 7 }* with length at most n, where n ~0. 

c•f[p.q] = aaa :::;. ada }*. 

Let a E { 0 ..... 71* have length n + 1. Then 

c•f[p.q]= aCTa 

:::;. I Property 2.11 I 

c•f[p+v(a).q]= aa !\ c•f[p.q-v(a)]= au 

:::;. { translation invariance } 

ua = au 

:::;. { length of CF is at least 1 I 

CF = a V (!i')' : ')' E { 0 .... , 7 }* : CF = a ya ) 

:::;. { induction assumption for y } 

ada }*. 

The lemma has now been proven. 

Corollary 2.51: 

Por any translation invariant. minimaL convex. line function f, and any p .q eZ2• 

where a 0 .at. ... , a 7 is a permutation of 0,1. .... 7. 
0 
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From Property 2.11 we know tbat tbe alpbabet of tbe cbain code of any minimal patb bas 
at mosttbree elements. For q-pe00 U0 7 • for example. tbis alpbabet is a subset of 
{0.1.7}. In combination witb tbe above Corollary and Lemma 2.12. tbe cbain code of 
c • I [p • q ] bas structure 

wbere a .b ,c is a permutation of 7,0,1. and i 7+i 0+i 1 = lq.x -p.x I. and i 1-i? = q.y-p.y. 
However, tbe range of possible cbain codescan be restricted even more. as is stated in the 
following lemma. 

Lemma 2.52: 

Let 1 be a translation invariant. minimal. convex line function. and let p. q e Z2• such 
that q-p e00 U 07; Then 

c•f[p.q] = a;•b;bc;•, 

where a,b,c is a permutation of 7,0,1, and i1+i 0+i 1 = lq.x-p.x I. and 
i 1-i 7 = q.y-p.y. and 

i 0 > 11\ i 1>0A i 7 >0 ~ b = 0. 

Proof: 

0 

From Lemma 2.12 and Corollary 2.51 it follows that 

c • l[p .q] = a;•b;6 c;•. 

where a .b ,c is a permutation of 7,0,1. and i 7+i 0+i 1 = lq.x-p.x I, and 
ici7= q.y-p.y. 
Suppose i 0> 11\ i 1> 0 A i 7> 0. 
If a=O or c=O then c•l[p.q] contains either the substring 17 or 71. From Pro
perty 2.11 it follows that l[p.q] contains r and s such that c•l[r.s]= 17 or 
c•l[r.s]= 11. This means that s = r+v(1)+v(7)= r+(2.0). Since I is transla
tion invariant. it follows from Corollary 2.18 that 

c•I[Q,(2,0)]= 17 V c•I[Q,(2.0)]= 71. (a) 

However. since i 0 ;;,.2, c • l[p .q] also contains the substring 00, which would imply. 
following a similar reasoning. that c • I[Q, (2,0)] = 00. This contradiets (a). and 
tberefore b = 0. 

Similar lemmas may be proven for the cases q-pe0 1 and q-pe06• We will present 
them without proof. 

Lemma 2.53: 

Let I be a transliltion invariant. minimal, convex line function. and let p. q e Z2• such 
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0 

that q-p e0 1. Then 

c•f[p.q]= a
1
"b

1
bc

1
'. 

LiJtoe .functions 

where a.b.c is a permutation of 1.2.3, and i 1+i 2+i3= lq.y-p.y I. and 
i 1-i 3 = q.x-p.x. and 

Lemma 2.54: 

0 

Let f be a translation invariant. minimaL convex line function. and let p.q eZ2• such 
that q-p e06. Then 

c • f [p . q ] = a 
1
• b 

1
• c 

1
' • 

where a,b,c is a .permutation of 5,6,7. and i 5+i6+i 1 = lq.y-p.y I. and 
i 1-i 5 = q.x-P.x, and 

From the line functions presented tbus far. tbe Adapted Franklin function is tbe only one 
which is minima!, translation invariant. and convex. The chain code structure of its digi
tised lines is previously described by Lemma 2.37: that structure is a special case of the 
structure described by the above lemmas. We also know that the Adapted Franklin func
tion is not close. The following theorem states that any translation invariant. minimal. 
convex line function has a deviation function that is at least linear in d (p. q ). 

Theorem 2.55: 

For all translation invariant. minimal. convex line functions f. and all n EN. n ;:;: 6, 

Proof: 

Let f be a translation invariant, minimal. convex line function. 
Let n eN. n ;:;:6. 
Define q := (n . k ). where k = lt n J We shall show that 

e01 [Q,q];:;: ~. 

Then, from the definition of E1 • (a) follows. 
Reeall that 

(a) 
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e01[Q,q] =. (maxr . r ef[.Q,q]: J (r. [Q,q]) ). 

We extend e 0 to pixel sets in the f ollowing way. For P S:: Z2• 

eO(P) := (mll!.r: reP: d(r .[Q,q]) ). 

Note that with the above definition. 

e01[Q,q] = eO(f[p ,q ]). 

From Lemma 2 . .52 it follows that the chain code')' associated with f[.Q,q] satisfi.es 

i i i y=a•bbcc 

where a .b ,c is a permutation of 7.0.1. and 

ï,+io+il=n 

i1-i7=k 

i 0 >1 A i 1 >0 A i 7 >0 ,... b = 0. 

We shall show that for any path fl' from .Q. to q whose chain code satisfi.es (b-e). 

eO(<fl'>) ~ ~. 

Then it fol1ows that 

Let'" be a pa tb from .Q. to q whose chain code CT satisfi.es (b-e). 

• Suppose i 0 > 1. Then (e) implies that 

CT = litQ'o7i7 V CT = 7i7o'olit. 

Examples of." are shown below. 

. . . . . " . . . 
. . . . . . . . 

:z.::::·:.q 
. . . . .... 
Q. • • • • • • • Q. 

1S 

(b) 

(c) 

(d) 

(e) 

(f) 

It can be seen that of all paths whose chain codes satisfy (b).(c).(d). and (f). the 

ones associated with 1; 10; 0 and o' 0 t 11 have the smallest eO value. From Property 

2.37 we know that o' 0111 is the chain code of an Adapted Franklin line. and from 
the proof of Property 2.39 we know that the e 0 value of its associated path is at 
least "4. 
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Since 1
1 1o'0 and o' 0111 are symmetrical with regard to [Q, q]. we may conclude that 

if i 0 > 0, then for any path 1T whose chain code satisfies (b-e). 

eO( <1T>) ;':l< %-· 

• Suppose i 0 ~ 1. 
From (b) and (c) it follows that 2i 1 = n +k -i 0 , hence. 

{
0 if n +k even 

io = 1 if n+kodd. 

- If i 0 = 0 (hence n +k is even). it follows from (b), (c). and (d) that 

where 

i 1 + i 7 = n A i 1 - i 7 = k. 

The associated paths are shown alongside. It can be 
seen that in these cases e 0( < 1T > ) = i 7• Since 

i 7 = !(n-k)= !n ;':l< l.n z 4 6 ' 

it follows that if i 0 = 0, then for any path 1T 

whose chain code satisfies (b), (c). and (d). 

e0(<7r>) ;':l< %'· 

. 0. 
0 0· 

0 q 

0 
0 ... 
••• .. 

- If i 0 = 1 (hence n +k is odd). it follows from (b). (c). and (d) that 

where 

CT= 0717111 V CT= 71701 11 V CT= 7171;10 V 

CT= lit7i70 V CT:::: 1;107h V CT= 01it7i7, 

The paths associated with these chain codes are shown below. 

.. . . . . . . . . 
q 

. . " ... 
:::~· 

Q_~::: 
0 

It can beseen that forthese paths 1T, eO( <7T>) ;':l< i 7• Since 
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i7 = !(n-1-k) = !(n-1-l!nj) ~ !n-.!. ~ !!.., for n ~ 6. 
2 2 2 4 2 6 

it follows that if i 0 = 1. then for any path 1r whose chain code satisfies (b), (c). 
and (d), 

e0(<1r>)~ %· 

Now we have proven that for any path 1r whose chain code satisfies (b-e). 

(g) 

and thus the path 1r associated with f[Q,q] also satisfies (g). which completes the 
proof. 

Corollary 2.56: 

No minimal. convex. translation invariant line function exists that is close. 
D 

2.6 Concluding remarks 

In this chapter we have introduced a new concept of line digitisation function. This 
definition is rather generaL However. several classes of line functions are distinguished, 
hased on various properties of line functions; restricting oneself to one of these classes·is 
like incorporating the associated property into the definition of line function. Tbe proper
ties considered are translation invariance, minimality, convexity. and closeness. 

The main theerem of this chapter (Theerem 2.55), implies that no translation invariant, 
minimal. convex line function exists that is close. We even conjecture that convexity and 
closeness are mutual exc1usive properties for line functions. 

From Theerem 2.55 we know that the deviation óf any translation invariant. minimal. 
convex line function is at least linear in d (p .q ). An important consequence hereef is that 
one bas to drop minimality or translation invariance if one wants to search for convex line 
functions that have smaller deviation functions. This idea wîll be worked out in Chapter 
4. 

In Sectien 2.4, seven examples of line functions have been presented. In Table 2.0 these 
functions are classified with regard to the above properties. The digitisations of the line 
segment [Q,(l1.4)] forthese functions are shown in Figure 2.10. 
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Property 

Line Function 

minimal tr. invar. convex close 

Bounding Box + + 

Minimal Path Set + + 

Franklin + + 

Adapted FrankZin + + + 

Eresenham + + + 

Close Embedding + + 

Optima/. Embedding + + 

Table 2.0 

Classificati.on of the line functions of Section 2.4 

The Beunding Box and Minimal Path set functions are merely presented to show that the 
notion of line function as introduced in this chapter. allows for rather exotic digitisation 
functions. They are not considered to be very useful. The same holds for the Franklin 
and Adapted Franklin function. Nevertheless. if minimality. translation invariance. and 
convexity is required. the Adapted Franklin line function is about the best we can get. 

The Bresenham function turns out to be minimaL translation invariant. and close; its prac
tical use is beyond dispute. 

The Close Embedding and Optimal Embedding functions are close and optimal respec
tively. and they are both translation invariant. When combined with a suitable intensity 
function. we expect these functions to be candidates for line digitisation functions moor
porating anti-aliasing. 

We shall now spend a few words on algorithms forthese line functions. Any algorithm 
that computes f [p; q] for a particular line function f and arbitrary pixels p and q. 
should genera te the same set of pixels when the input parameters . p and q are 
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(a) 

(c) 

(d) 

(f) 

Concluding re:mark.s 

• • • • • • • • (11,4) • 

• • • • • • 
• • • 

• • • 
• • • • • • 

Q. 

Q. 

Figure 2.10 

• 

• • • 
• • • • 

• • • • • • • 

• • • • • 
• • • • . 

• • . 

V arious digitisations of the Une segment {Q,( 11 ,4) ). 

a) Beunding Box function 
b) Minimal Path Set func:tion 
c) FrankUn function 
d) Adapted Franklin function 
e) Bresenham. function 
f) Close Embedding function 
g) Optimol Embedding function. 
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(11.4) 

(b) 

(11.4) 

(e) 

(11.4) 

(g) 

interchanged. Although this may seem a trivia! remark. most existing algorithms for lîne 
functions do not meet this requirement. An extensive treatment on this subject can be 
found in [Bresenham 1986). 

The deftnition of the Franklin and the Adapted Franklin line functions are such that 
(integer) algorithms for these functions may easily be derived. For the Bresenham 
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function. we refer to the literature. [Bresenham 1965]. [van Berekei & Mailloux 1965]. or 
[Foley & van Dam 1982]. for instance. These algorithms. however. need some adjustments 
in order to guarantee consistency with regard to endpoint interchange. 

For the Close Embedding and Optimal Embedding functions we refer to [van Overveld 
1987a]. where algorithms are presented which use integer arithmetic only. 
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Recursive line functions 

3.0 Introduetion 

In this chapter we present three other line functions. which will be defined recursively. 
Fora general treatment of recursiveness we refer to [Yasuhara.1971] or [Eilenberg & Elgot 
1970]. 

The line functions presented in this chapter. are based on the following principle: define a 
pixel r somewhere halfway the line segment [p. q ]. and subsequently define 

I [p. q] = f[p. r] U l[r. q ]. 

r is called the split point of f[p, q ]. Different definitions of r induce different line func
tions. 

There are two reasans why we consider this class of recursive line functions. Firstly. the 
algorithms to generate recursive line functions are easily derived from the definition. If in 
these definitions only integer values occur. the algorithms will generate the correct images 
for any permitted input on any machine. In order to make these functions attractive for 
hardware implementations. the operations used in the definition should be as simple as 
possible. 

Secondly. the above split point technique is a divide--and-conquer technique: the task of 
computing l[p .q] is split up into two smaller tasks. (See [Aho et al 1974] for a general 
treatment of divide--and-conquer techniques.) lf the subtasks have about the same size. 
several operations may be performed in logarithmic instead of linear time complexity. A 
well-known example hereof is finding a number in a sorted sequence by binary search 
([K.nuth 1973]). For a split point line function I. the point-cantalnment test (finding out 
whether a given pixel r is contained in f[p. q]) would have logarithmic time complexity. 

In order to guarantee that l[p. r] and l[r. q] have about the same size. r should be chosen 
near the point v = ~(p+q \ halfway the line segment [p .q ]. lf v is nota pixel. that 
is. if p.x +q.x or p.y +q.y is odd. one bas to choose one of the pixels nearby. Of course. it 
is possible to compute which of these pixels bas the smallest distance to the line segment. 
but this requires quite a few operations. Since we wish. with an eye to fast hardware 
implementations. as few and as simpte operations as possible. it is more convenient to 
choose a pixel by rounding the values 1h.(p.x +q.x) and ~(p.y +q.y) in a definite way. A 
natural operation for this is integer division by two. or. if shift operations are supported. a 

81 
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shift to the right. Since the elfeet of a right shift depends on the way integers are 
represented in computers ( whether the •two's complement notation" is used or not. see 
[Tanenbaum 1984]). we shall abstract from this operation. 

In Sectien 1 we present two functions that generate split points. Based on these functions. 
in Sectiens 2. 3. and 4. three different line functions are introduced. These line functions 
will be discussed with respect to translation invariance. minimality. convexity, and close
ness. Section S contains some concluding remarks. 

3.1 Ari thmetic 

In this sectien various properties and definitions have been assembied that will be needed 
in the following sections. Most of the properties are presented without proof. 

To denote the distance of a point to Q, we introduce the length function l: R.2- a.+. defined 
by 

l(v) := d (v . .Q.). 

In the previous chapter the notion of octants bas been introduced. Tbe following lemma 
expresses tbat within eacb octant the length of the sum of two points equals the sum of 
the lengtbs of the points. 

Lemma 3.0: 

For any octant 0 1 • and all points v. w e01 • 

l(v+w)= l(v)+l(w). 

Proef: 

Let v. w E00 . Then 

l(v+w) 

= I definition l and d 

max(lv.x+w.x l,lv.y+w.y I) 

= {v.we00 ) 

v.x +w.x 

I de:finition l and d and v. w e00 ) 

l(v)+l(w). 
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If v and w are contained in one of theether octants, a similar reasoning·holds. 
0 

For the maximum function the following holds. 

Property 3.1: 

For all x .y .z eR., 

a) x ~y => max(x ,z) ~ max(y .z) 

b) max(x +y .z +y) = max(x ,z) + y. 

0 

Now two so-called bitwise operators are introduced; for their deftnition we need the 
binary representation of natural numbers. lf a eN, and 

n {0 ifQ=O 
a = L,a;2;. where a; e{ 0.1} and a"= 121 J if a >0 

i=O . L oga . . 

then an .an-l• ... , a 0 is called the binary represerttation of a. 

If an,an-l•· .. , ao and bm,bm-1• ... , bo are the binary notations of a and b respec
tively. and l = min(n . m ), then we define the complement of a by 

..,a :=· f(t-a1 )21 • 

i=O 

and the bitwise conjunction of a and b by 

I 
a &b := L,c121 

i=O 
{ 

1 if a;= b; = 1 
where c; = 0 otherwise. 

We shall frequently use integer division by 2. denoted as div 2. and defined by 

adiv2 := 
lfJ 
rtl 

if a ~0 

if a <0. 

Fora -a gjy2 we introduce the notation a vid 2. that is. 

am2 := a- agjy2. 

Associated with integer di vision by 2 is the operator mod 2. defined by 

a !!!Q42 := a - 2(a gjy2). 

We shall use the following properties. 
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Property 3.2: 

0 

For all a • b e Z and n . m eN holds. 

a) (-a )div 2 = -(a div 2) 

b) la ldivl = laQ!Y.ll 

c) a ~b • adiv2~ bdiv2 A avid2 ~ byjg_2 

d) (max(a .b ))divl = max(adiv2.bdiv2) 

e) a >1 • O<adiv2<a 

0 if a even 
f) am2!!2= 1 ifaoddAa>O 

-1 ifa oddA a <0 

g) (-.n)div2 = -.(nQ!Y.l) 

h) (-.n )mod 2 = -.(n !!12!!2) 

i) (n&m)div2 = (nW,y_2)&(mQ.iy2) 

j) (n&m)modl = (nm2!!2)&(mmod2) 

The operators introduced above are extended to pixels in a straightforward way. For 
example. for p eZ2

• 

pdiv2 := (p.xdiv2.p.yQ!Y.2). 

Property 3.3: 

For all octants 0; and all p holds. 

pEO; • pW,y_2 E 0; A pyjg_2 E 0;. 

Proof: 

We shall prove the property for the octants 0 0 and 02 only: the other octants may 
be treated in a similar way. 

• pEOo 

• { deiinition Oo l 

0~ p.y ~ p.x 

• I Property 3.2(c) and 0 div 2 = 0 l 

0~ p.ydiv2~ p.xdiv2 A 0~ p.yyjg_2~ p.xVid2 

• I definition 0 0 } 
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pEOz 

=> { definition 0 2 I 

0~ -p.x ~ p.y 

=> { Property 3.2(c) and 0 div 2 = 0 ) 

0 ~ (-p.x )div 2 ~ p.ydiv2 /\ 0 ~ (-p.x )vid 2 ~ p.y vid 2 

=> { Property 3.2(a) l 

0 ~ -(p.x div 2) ~ p.y div 2 A 0 ~ -(p.x vid 2) ~ p.y vid 2 

=> { definition 0 2 } 

pgjy2e0 2 A pvid2 e 0 2 . 

0 

To compute split points we introduce two functions. sdv and s fl. 

The first f'pnction. sdv: Z2xZ2 ..... Z2• is defined by 

sdv(p.q) := p +(q-p)IDY.2. 

Since (q-p)!fu[2 may beseen as an integer approximation of v = lh.(q-p). sdv(p.q) 
may be seen as an integer approximation of v. where v is rounded in the direction of p. 
No te that. in general. sdv (p. q );: sdv (q . p ). More precisely. tbe following properties hold. 

Property 3.4: 

For all p .q eZ2 • 

(sdv(p.q)= sdv(q.p)) 5 (q.x-p.x even A q.y-p.y even). 

0 

Property 3.S: 

d(p.sdv(p,q)) = d(p.q)div2. 

Proof: 

d(p .sdv (p .q )) 

= { definition sdv 

d (p .p+(q -p )div2) 
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0 

= { Property 1.0 } 

d(Q,(q-p)div2) 

= { definition of d } 

max( l(q.x-p.x )div21, l(q.y-p.y )gjy21) 

= I Property 3.2(b.d) } 

max(lq.x-p.x I. iq.y-p.y I.)Q!y_2 

= { definition of d } 

d (p .q )div 2. 

Property 3.6: 

d (p ,sdv(p ,q)) + d (sdv(p.q ).q) = d (p ,q ). 

Proof: 

0 

d(p.sdv(p.q)) + d(sdv(p,q).q) 

= I definition sdv and Property 1.0 } 

d(Q,(q-p)div2) + d(Q,(q-p)vid2) 

= { defin ition of l } 

l((q-p)Qh:.2) + l((q-p)vid2) 

I Property 3.3 and Lemma 3.0} 

l(q-p) 

= { definition of l and Property 1.0 I 

d(p .q ). 

Recursive line f'llDCtioDB 

ln the following sections we shall prove properties by induction on d (p .q ). The following 
corollary will then be frequently used. 

Corollary 3. 7: 

If d (p , q) > 1 and r = sdv (p , q ). then 
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0 < d (p . r ) < d (p , q) 1\ 0 < d (r . q ) < d (p , q ). 

0 

Corollary 3.8: 

If r = sdv(p .q ). then 

d (p . q ) even ::;. d (p , r ) = d (r • q ) = 1ful (p . q ) 

d(p,q)odd::;. (d(p,r)= l}.z(d(p.q)-1) 1\ d(r,q)=.lh(d(p,q)+l)). 

0 

The second function. s fl: Z2xZ2 -+ Z2• is defined by 

sfl(p.q) == llh(p+q~. 

s fl (p. q) may be seen as an integer approximation of v = lh(p +q ). where v is coordinate
wise rounded downwards. Note that for all p and q 

s fl(p .q > = sfl<q .p) = P + Llh<q-p >J = q + LlhCp-q >J. 
Furthermore. for p and q such that q-p e00 U 0 1• 

sdv (p. q ) = s fl (p • q ). 

In Figure 3.0 the differences between sdv (p. q ), sdv (q . p ), and s fl (p. q) are illustrated. 

q 

~~ 
• p • • • 

'q'\' : : . : :/· : ·p: :p·\· : : : . . . . . . . ... . . .. . . . . . . . . . . . . 
. 0 . . . . . 0 .. 
. . . . . . . . . .. . . . 
. . .. . . . . . . . 

(a) 

p q 

(b) (c) 
Figu:re 3. 0 

DiJlerences between v = lh(p+q ). sdv(p.q ). sdv(q .p). sfl(p.q ). 
indicated by o, e, •· and 0 respectively. 

p=ji 
a)q = (3.5) b)q = (-3.5) c)q = (-3.-5) d)q:.;: (3,-.5) 

The following properties of s fl are the analogies of Properties 3.5 and 3.6. 

q 

(d) 



88 Recursive line functions 

Property 3.9: 

d(p.q)-1 ~ 2*d(p.sfl(p.q)) ~ d(p.q)+ 1. 

Proof: 

0 

2*d(p.sfl(p.q)) 

= { definition s fl } 

2*d <P. L lf2(p +q >J > 

I definition of d } 

2*max( lp.x-~l:z(p.x+q.x~ l,lp.y-L1h(p.y+q.y)J I) 

= I properties of max and I I } 

max( 12p.x -2L11:z(p.x +q.x ~ I. 12p.y -2~/:z(p.y +q.y ~ I ) 

= I r := (p +q >- 2l Wp +q ~ l 
max( 12p.x - (p.x +q.x) + r .x I. 12p.y - (p.y +q.y) + r.y I ) 

~ I la+b I~ la I+ lb I and Property 3.1(a)} 

max( lp.x-q.x I+ lr.x I. lp.y-q.y I+ lr.y I) 

~ I (Aa: a eZ: a-2l"iJ E { 0,1 }) and definition of rand Property 3.1(a)} 

max( lp.x-q.x I+ 1. lp.y-q.y I+ 1) 

= I Property 3.1(b) } 

max( lp.x -q.x I. lp.y -q.y I)+ 1 

I definition of d } 

d(p .q) + 1. 

The other inequality may be proven in a similar way. 

Property 3.10: 

d (p • q ) ~ d (p . s fl (p . q )) + d (s fl (p • q ). q) ~ d (p. q) + 1. 

Proof: 

Since sfl(p.q) = sfl(q .p). Property 3.9 also holds ford(sfl(p .q ).q ). hence 

2*d(sfl(p.q).q) ~ d(p,q)+ 1. 

Th en 

d (p . s fl (p. q )) + d (s fl (p. q ). q ) 
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:S: { Property 3.9 and d(v .w )=d(w ,v)} 

lfz(d (p .q )+ 1) + lfz(d (p .q )+ 1) 

= d (p,q) + 1~ 

The other inequality follows from the triangle inequality of d. 
0 

Corollary 3.11 : 

If d (p. q) > 1 and r = s fl (p. q ). then 

0 < d (p, r) < d (p, q ) A 0 < d (r, q ) < d (p , q ). 

0 

Corollary 3.12: 

If r = s fl(p ,q ), then 

d (p , q ) even => d (p • r ) = d (r • q ) = 1/zd (p , q ) 

d(p.q)odd => (d(p.r)= lfz(d(p.q)+l) V d(r,q)= Yz(d(p.q)+1)). 

0 

3.2 The Corthout-Jonkers function 

3.2.0 Defmition 

As explained before. the line functions presented in this chapter differ in the defi.nition of 
the split point. The fi.rst function is based on the function s fl. 

The Corthout-Jonkers function f : Z2xZ2-+ P(Z2) is defined by 

{
{p.q} ifd(p.q):S:l 

f[p.q] := f[p.sfl(p.q)]Uf[sfl(p.q).q] ifd(p.q)> 1. 

Some examples of pixel sets generated by this function areshown in Figure 3.1. 

In [Corthout and Jonkers 1986a] a point containment algorithm is presented for Bezier 
sbapes on a discrete grid. Their argument for using discrete shapes only is the wish for 
robustness; when continuous shapes are used one is at the mercy of the restricted machine 
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(a) 

.Q. 

(b) 

(9.4) 

(c) 

.Q. 

(9.-3) • 

Figure 3.1 

Some examples of Gorthout-Jonkers lines. 

a) f[Q, (9. 4)] 
c)f[Q,(7.-7)] 

b) f[Q, (9. -3)] 
d) f(Q,(4,-4)] 

(d) 

.Q. 

(7.-7) 
• • (4.-4) 

precision in real-arithmetic. They define Bezier curves of arbitrary order in integer space 
by means of recursion. based on properties of Bezier curves in continuous space. Tbe line 
function presented above is their Bezier curve of order 1. 

We shall prove that the Corthout-Jonkers function is a translation invariant line function. 
whicb is neither minima]. nor convell., nor close. An upper bound for the deviation will be 
derived that is logarithmic in d (p .q ); this upper bound will be shown to be strict for par
ticular va lues of d (p • q ) . 

Because of the recursive nature of the definition. · all proofs concerning the Carthout
Jonkers function arebasedon induction on d (p .q ). As an introduetion tothese kinds of 
proofs. the following property. though seemingly trivial, is proved formally. 

Property 3.13: 

f is a line function. 

Proof: 

We have to prove that f satisfies both lfO and lfl. that is. 
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0 

Since 

lfO) { p. q } ç; f[p. q] 

lfl) f[p .q] is finite and connected. 

Proof of lfO) 
• H d (p. q ) '- 1. then. by definition of f. { p. q } ç; f [p. q ]. 

~Let n ~ 1. and assume 

(A.p .q : d (p .q )'-n : {p .q } ç; f[p .q ]). 

Let p and q be such that d (p .q) = n +1. 
By definition of f. 

f[p.q] = f[p.sjl(p.q)] U f[sjl(p.q).q]. 

Because of Corollary 3.11. the induction assumption may be applied to both 
f[p. s jl(p .q )] and f[s jl (p .q ). q ]. hence p ef[p .s jl(p .q )] and 
qef[sjl(p.q).q]. Consequently. 

{p.q} ç; j[p.q]. 

Proof of lfl) 
• If d (p ,q) '- 1, then, by definition of f, f[p .q l= {p, q }. Since { p ,q } is both 

fini te and connected. f [p , q ] is fini te and connected. 

• Let n ~ 1. and assume 

(A_p .q: d(p ,q >'-n : f[p .q] is finite and connected). 

Letpand q be such that d(p,q) = n +1. 
By definition of f , 

f[p,q]= f[p.sjl(p,q)] U f[sjl(p.q).q]. 

Because of Corollary 3.11, the induction assumption may be applied to both 
f[p.sjl(p.q)] and f[sjl(p;q).q]. hence f[p.sjl(p,q)] is finite and con
nected and f[s jl (p. q ), q] is ftnite and connected. Furthermore. because of 
lfO. s jl (p .q) is contained in both f[p. s fl (p. q )] and f[s fl (p ,q ). q]. Conse
quently. f[p. q] is finite and connected. 

sfl((r+p).(r+q)) = r +sjl(p.q). 

the function s jl is invariant under translation, and thus it can be seen that the following 
property holds. 
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Property 3.14: 

f is translation invariant. 
0 

f is not minima!. as can beseen in Figure 3.1(c): .bere #f[p .q )= 9. wbereas d(p .q )= 7. 
f is not convex, as is illustrated in Figure 3.2: (2,0) and (6.2) are both elements of 
f[Q.(7,3)}. whereas /[(2,0),(6.2)] is nota subset of j[Q.(7 .3)}. 

. . . . . . ·- . . . 
• • • • • • (7 .3) 

•. ·~· •. • ... (6.2) . 0 . . . 
.Q. • t!) • • • • • 

·(2.0) • • • • 

Figure3. 2 

niUstration that the Corthout-Jonkers function is not convex. 
The elementsof j[Q. (7,3)] and /[(2,0), (6.2)] are 

indicated by • and 0 respectively. 

f is not close. as can be seen. for example. in Figure 3.1(c): for v = (1.-1). which is an ele
ment of [Q. (7.-7)]. nor ef[Q. (7,-7)] exists such that d (r. v) < 1. 

3.2.1 Deviation 

As said previously. the Corthout-Jonkers function is not close. We shall :first derive an 
upper bound for its deviation. and subsequently show that for some values of n this 
upper bound is strict. 
Reeall that the deviation function E1 is defined by 

Et (n) = (ff.Yt!p. q: p .q eZ2 A d (p .q) = n : e01[p ,q ]), 

where 

eOt(p.q]= (maxr :rEf(p.q]:d(r,(p.q})). 
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3.2.1.0 Upper bound 

To start with, we associate with each element of f [p. q] a: number. the so-called level 
number. Consider. for this purpose, the following derivatiori (in thè sequel referred to as 
Derivation CJ). obtained by repeatedly applying the defi.nition of f. 

f(p,q] 

= {r 1 :=Llh(p+q~} 

f[p.rd U /frt.q] 

= { rz := llh(p +r1)j and r3 := llhCr1+q )j I 

f[p,r2] U /h.rd U /frt.rJ] U f[rJ.q] 

= { r4 == llh(p+r2~ and rs := llf2Cr2+r1)j and 

= 

r 6 := llh(r 1 +r 3~ and r 7 := llh(r 3+q )j } 

/[p,r4] U /h.r2l U f[r2,rs1 U /lrs.r1l U 
ffrt,r6] U /[r6,r3] U j[r3.r7] U f[r,.q] 

For this line function and this p and q • p and q are said to have level number 0, r 1 level 
number 1. r 2 and r 3 level number 2. r 4• r 5, r 6. and r 7 level number 3. and so forth. This 
is illustrated below, where the line segment [p .q] is supposed to be horizontaL i.e .. 
p.y=q.y. 

level number: 0 3 2 3 1 3 2 3 0 

• • • • • • • • • 
pixel: P 

Note that the level of a pixel r; , where r; is the split point of [r i • r" ], equals 

1 + maxOevel of ri .level of rt ). 

and that rJ and rt have different levels for r; ;:ér 1. 

For p.qeZ2.p;éq, let lv(p.q) denote the maximum level of any pixel in f[p.q]; 
lv (p. q) depends on d (p .q ). as is expressed in the following property. 

Property 3.15: 

Por any p .q eZ2, p;éq. 

lv(p,q) = r2logd(p,q >l (a) 

Proof; 
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0 

Recursive line functions 

We shall use induction on d (p , q ) . 

• Suppose d (p . q )= 1. Then. 2log d (p , q) = 0. 
Also. by definition of f. 

f[p.q}= {p.q }. 

Hence. the two pixels of f [p. q] have level 0, and thus (a) is satisfied. 

• Suppose neN.n~1. and assume that for allpand q with 1~d(p,q)~n. (a) 
·holds. 
Let p .q eZ2• such that d(p .q )=n +1. Then 

lv(p ,q) 

= ( d(p.q )> 1 and definition of f and definition of level number} 

1 + max(lv (p .s fl(p .q )).lv (s fl(p ,q ), q )) 

= ( d (p .q )> 1 and Corollary 3.11 and the induction assumption } 

1 + max(r21og d (p .s ft (p .q nl. 2logdsf lq) 

= ( Corollary 3.12} 

1 + r2loglhd (p. q >l if d (p ,q) even 

1 + r2loglh(d (p .q )+ ol if d (p .q) odd 

= { properties of 2log and r l } 
r21ogd(p.q)l ifd(p.q)even 

r2Iog(d (p .q )+ 1)1 if d (p .q) odd 

( d (p .q )> 1 and (i > 1" i odd) ~ r21og (i+ 1)1 = r2log ~ } 

r21ogd(p.q)l 

Now we introduce a notion for the maximum distance of any pixel of f[p.q] of level 
number Ie. to [p .q ]. 
Formally. for p .q eZ2 .p ;tt:q, and Ie e N,k ~lv (p. q ). 

ak(p.q) := (maxr :ref[p,q]A rhaslevelk :d(r,[p,q])). 

We shall introduce an increasing sequence (b~. )~. tN• and show that for all Ie eN. and all 
p.q eZ2• where p;tf:q and lv(p.q )~Ie. 
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(b) 

In this case an upper bound for the deviation function E1 can be expressed in terros of 
(b.t ),t EN• as the following derivation shows. 
Let n eN. 

E1(n) 

= I definition of E1 } 

(§.illlp , q : p ,q E Z2 I\ d (p , q )= n : e Of [p . q]) 

= I definition of e 01 [p. q] } 

(§.illlp, q : p, q E Z2 I\ d (p , q )= n : (max r : rE f [p . q]: d (r. [p, q])) ) 

= { definition of at (p • q ) I 

(§.illlp. q : p .q eZ2 /I. d (p. q )= n : (max k : k EN A k tr.lv (p ,q): ak (p, q )) ) 

tr. { assuming (b) } 

(§.illlp ,q: p.q eZ2 A d(p ,q )=n : (~k: keN A k tr.lv(p ,q): b.t)) 

tr. { assuming (b.t )kEN is increasing ) 

(§.illlp.q: p,q EZ2 A d(p,q )=n: blv(p.q)) 

= { Property 3.15 } 

(§.illlp.q :p.qeZ2 A d(p,q)=n :bf2 ,_ lJ) 
log.t"',q 'I 

= { substitution } 

= 

(§.illlp. q : p , q E Z2 A d (p , q )= n : br2 1) 
lognl 

{ bf21og,.l is independent of p and q l 

bf2tog,.l' 

The sequence (bk )tEN is defined by 

bo ·- 0 

b 1 ·- llz 

bl+2 := llz(bt+t+bt) + llz. for l ;li:O. 

Befare we prove that at (p. q) tr. b, for any p • q E Z2 such that lv (p. q) ;li: k • we first show 
tbat (bt )kEN is an increasing sequence indeed. 

Property 3.16: 



96 ltooursive line functions 

For all l EN holds. 

z (t- (-'hY) 
b1 =3+ 9 . (a) 

Proof: 

By induction onZ. 

• For l = 0 and l = 1. it f ollows f rom the definition of b 0 and b 1 that (a) is satisfied. 

• Letl~O.andassumethatforallkeN,k ~l+l.bk satisfies(a). Then 

= { definition of (bk )HN I 

'h(bl+l+bl) + 'h 

= { induction assumption I 

lh( l +1 + (1- (-lh)1+1) + .l + (1- (-'h)l)) + lh 
3 9 3 9 

= l arithmetic } 

l +2 (1- (-'h)1+2) 
-3-+ 9 . 

Hence b1+2 satisfies (a). 

0 

Note that the above property implies that (bk )k €N is indeed increasing. This will be used 
in the proof of the following property. 

Property 3.17: 

For all keN. and all p ,q eZ2 • where lv(p .q )~k, holds 

ak (p • q ) ~ bk . 

Proof: 

We shall distinguish three cases: k =0. k = 1, and k > 1. 

• Let k=O. 

(b) 

For any p.qeZ2, tbe only elementsof f[p,q] with level 0 arepand q itself. 
Hence, a 0(p ,q) = 0 for any p and q, and consequently, a 0(p .q) ~ b0 • 

• Let k = 1. 
Let p ,q eZ2, such that d (p ,q )> 1. 
f [p, q] contains only one element of level 1. namely the split point 
r = s fl (p , q) = Lv J. where v = 'h(p +q ). Because of the deftnition of J , 
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d (r , [p, q]) " d (r , v ), 

and since 

d (r, v) = max( lr.x-v.x I, lr.y-v.y I)" 1/z, 

it follows that 

a 1(p.q)= d(r.pq)" d(r,v)" llz= b 1. 
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• Let k > 1. and assume that for all l eN. l <k. and for all p.q such that 
lv (p, q) ~ l. (b) is satisfied. 
Let p .q eZ2• such that lv(p .q) ~k, and let r ef[p .q] have level k. 
Suppose r is the split point of f[r;. ri ]. where split point r; has level i and ri has 
level j. Then r = Lllz(r; +ri )j. Note that, with Derivation CJ. r; and ri have 
different levels numbers. which are both smaller than k. Let v ,;" llz(r; +ri ). Then. 
using Property 2.2. 

d(v.[p.q])= llz(d(r;.[p.q])+d(r1 ,[p.q])). (c) 

as is illustrated below. 

Since 

l!z(d (r; ,[p.q]) + d (r1 .[p ,q])) 

" l defi.nition of ak (p • q) l 

l!z(a;(p .q) + a1 (p .q )) 

" ( induction assumption l 

llz(b; + b J ) 

·-. [p.q] 

" l (b~; )k <Nis increasing and t ;é j and i <k and j <k 

ll.z(bt -1 + bk-2). 

it follows from (c) that 

d (V , (p, q]) " llz(bk -1 + bk -2). 

Since 

(d) 
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d(r,{p.q]) ~ d(v,[p.q])+d(v,r). 

and d (v .r) ~ 1h, it follows that 

J (r , [p , q ]) ~ J ( v , [p , q )) + lh. 

Then we may derive the following. 

J (r. [p ,q]) 

~ { (e) l 

d(v.[p,q])+lh 

~ t (d) l 

lh(bt _1 + ht _2) + lh 

= { definition of ht 

bk • (Derivation A.) 

Since this holds for any r ef[p .q] that bas levelk. we have proven that 

ak (p • q ) ~ b, . 

(e) 

Since for all n eN. 

E,<n) ~ br2 1' logn 

and 

+2 (1- (-lh)1+2) 
+ 9 . 

we may conclude that we have found.an upper bound for E1(n) which is logarithmic in 
n. Compared to the non-close functions presented in the previous chapter. this is a sub
stantial improvement. In the following subsection we shall show that this upper bound is 
strictforsome values of n. 
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3.2.1.1 Upper bound is strict 

In this section we shall show that for allkeN a pair of pixels p .q exists such that 

a1(p .q) = b1 for alll :O'l ,k, 

For such p and q • 

E(d(p.q)) = bt. 
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We assume that p.x 'q.x. and define !J.x (p .q) := q.x-p.x and tJ.y (p .q) := q.y-p.y. 
Suppose r ef[p .q] has level number k and is such that 

adp.q) = d(r,[p,q]). 

Let r be the split point of f[r1 , rJ ]. where split point r1 has level i and r1 has level j. 
Then r = lv J, where v = lh(r1 +rJ ). 
Now consider Derivation A of the previous subsection. In order to arrive at 

the following two conditions must hold. 

d(r,[p.q]) = d(v.(p.q])+lh 

and 

(a.O) 

(a.l) 

Analysing all possible positions of r relative to v (see Figure 3.3). it follows that (a.O) is 
satisfied if the slope of line segment [p .q] is negative, and if r = v-(lh.lh). hence. p and 
q must satisfy 

ll.y (p .q) .. ( ) < 0 A p.x +q.x odd A p.y +q.y odd. 
<AX p ,q 

Condition (a.l) implies that r1 and r1 should be of levelk-land k-2. and 

(b.O) 

d(r;.[p.q])= 4t-l(p.q)= bt-1 A d(r,.[p.q])= a~c-2(p.q)= bk-2· (b.l) 

By repeating these considerations for r; and r 1 , it follows that two different sequences of 
split points may maximise the distance to [p .q]. namely the sequence r 1,r2.r5 .... (see 
Derivation CJ), and the sequence r 1.r3 .ró•·· .. We shall investigate the sequence r 1,r2.r5 •••. 

first. 

Since for all integers a and b. 

a+b even ..,. a-beven. 

it follows from (b.O) that p and q must satisfy 

tJ.x (p .q) = 2kx +1 A ll.y (p .q) = -(2k", +1). forsome k,. ,k", EN. 

Furthermore, since r 1 = llh(p+q ~ = llh(p+(ll.x(p .q ).ll.y(p .q ))~. 

(c) 
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(0) ~--

[p,q] .~~. • V ~~~ 

(1) 

·--~ 

·~~~V • ,'•. [p,q] 

~·· 
[p,q] / r ~# 

[]-~
p.q·-~-. 

[p,q] / (a) . 

(2) 

(3) 

Figure 3. 3 

.. ~ 
··, r ••. [p,q] 

·-~--(] 
-~··· 

(b) ·- [p,q] 

T1re admitted positian.s of r = lv J relative to v = lh.(p +q ). 

a) q.y-p.y > 0 b} q.y-p.y < 0 
q.x-p.x q.x-p.x 

0) r = v 1) r = v-(1,-2,0) 2) r = v-(lk.lk) 3) r = v-(0, 1.&) 

r 1 = llk(p.x+p.x+2k,..+1,p.y+p.y-(2k1 +1))j = (p.x+k,.,p.y-(k1 +1)). 

Similarly, in order to satisfy condition (b.O) for r 2=Llk(p.r 1~. both p.x+r 1 .x and 
p.y +r 1.y should be odd, which is equivalent tok,.. and k1 +l are odd. Hence, 

(d) 

and 

r2= l'h(p.x+p.x+2l,..+1,p.y+p.y-(2l1 +l))j = (p.x+l,..,p.y-(l1 +1)). 

Since 

rs = llf2(r2+rl~· 
a necessary condition for r 5 to satisfy condition (b.O) is that both r 2.x +r 1.x and 
r 2.y +r 1.y are odd. which is equivalent to lx +1 and z, are odd. Hence. 

(e) 

Consequently, 

ll:x (p ,q ), Ay (p .q) 

= { equation (c) ) 

2k,.. + 1. -(2k" + 1) 
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= I equation (d) I 

1+2(2lx + 1}, -(1+2(2l_. )) 

( equation (e) } 

1+2+8m,, -(1+4+8m, ). 

Repeating the above reasoning. we arrive at the following statement. 

Property 3.18: 

Let kEN. and 

Ä.xk = l+(sumi:l~i~ln;lJ:22'- 1 ), 

Ä.Yk = -(sumi: O~i ~liJ: 22i). 

Then for all p and q such that q-p = (Ä.x". Ä.yk ). and alll eN. O~l ~k. 

al (p . q ) = bt . 

Proof: 

0 

Define the sequence s1 by 

p ifi=O 
S; =:: lVz(p+q)j ifi=l 

lVz(s;-1+s1_ 2 )j if l<i ~k. 

Then it may be proven by induction on i that for all i eN. O~i ~n. 

d(s;.[p.q])= b1 • 
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In the table below b, is shown for several values of k . together with the associated Axk 
and Ä.y" values. 
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k bt I flxt -flyk 

1 lh = 0.5 3 1 

2 % = 0.75 3 5 

3 % =::: 1.13 11 5 

4 23ft. =::: 1.44 11 21 

5 S7k2 =::: 1.78 43 21 

6 ns;64 =::: 2.11 43 85 

7 313/128 =::: 2.45 171 85 

8 711hs6 =::: 2.78 171 341 

9 159%12 =::: 3.11 683 341 

10 3527ft024 =::: 3.44 683 1365 

As an examplef[Q,(ll.-5)] is shown in Figure3.4. together with s 1.s 2• and s 3 . 

p 

q 

Figur.e 3. 4 

lllustration of maximum distances at level!, 2. and 3. 

p = Q, q = (11. -5). s 1= (5. -3). s2= (2. -2). s 3= (3. -3). 

Note that the digitised line segment also contains pixels of level 4 ((4.-3) for example). 
but that the distances of these pixels to [p. q] are smaller than b 3 . 

A derivation similar to the one preceding Property 3.18 may be used to obtain expressions 
for flx(p.q) and fly(p.q) such that r 1, r 3• r 6 .... have maximal distances to [p.q]. lt 
turns out that in this case the absolute values of flxk and flyt are interchanged compared 
with the first case. as is stated in the following property. 
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Property 3.19: 

D 

Let kEN. and 

llxk = (sumi: O~i ~l~J: 221
). 

ÀYt = -(l+(sumi: l~i~ln;lJ :22i-1)) 

Then for all p and q such that q-p = (llxk .llyk ). and alll eN.O~l ~k. 

at(p.q)== bt. 

In Figure 3.5 f[Q, (21.-11)] is shown. together with s 1• s 2• s 3• and s 4• 

p 

Figwe 3. 5 

.lllustratwn of maximum distonces at levell, 2, 3. and 4. 

p=Q,q==(Zf.-11). 
sl=(l0.-6). s2=(15,-9). s3=(12,-8), s 4=(13.-9). 

q 

Note that the digitised line segment also contains pixels of level 5 ((14,-9) for instance). 
but that these have a sml!-ller distance to [p .q] than b 4 • 
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3.3 The Adapted Corthout-Jonkers function 

Unlike the Carthout-Jonkers function. the function presenled in this section is minimat 
The definition of the split point is based on sdv . as introduced in section 1. 

3.3.0 Deftnition 

The Adapted Carthout-Jonkers (in short: Adapted CJ) function f: Z2xZ2 -+ P(Z2) is 
defined by 

{ p, q } if d (p. q ) ~ 1 

f[p.q 1 := f[p.sdv(p ,q)] U f[sdv(p ,q).q 1 if d(p.q) > 1 A p.y ~ q.y 

f[p.sdv(q.p)]U f[sdv(q,p).q1 ifd(p.q)> lA p.y >q.y. 

lnformally. the split point of f[p.q]. where NF(p.q). is rounded in the direction of the 
endpoint with the smallest y -coordinate. Some examples of pixel sets generated by this 
function are shown in Figure 3.6. Note that for p.qeZ2 • where NF(p.q) and 
q-pe00 U0 1• the Adapted CJ function generates the samepixel sets as the Corthout
Jonkers function. 

Again. all proofs arebasedon induction on d (p .q ). 

(9.4) 

(c) 

(a) 

(9,-3) (7,-7) 

(b) Figure 3. 6 

Soms examples of Adapted CJ lines. 

a)f[Q,(9,4)] b)f[Q.(9.-3)] c)f(Q.(7.-7)] 
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Property 3.20: 

f is a line function. 

Proof: 

The proof is the same as in Property 3.13. except that Corollary 3.7 should be used 
insteadof Corollary 3.11. 

0 

The following property may be proven using 

sdv((r+p).(r+q)) = r +sdv(p.q). 

Property 3.21: 

f is translation invariant. 
0 

f is not. convex. as is illustrat.ed by Figure 3.7: /[(3,0).(7,2)] is not. a subset of f[Q,(9.3)]. 
although (3.0) and (7.2) are both element.s of f[Q,(9.3)]. 

(9,3) 

Figure 3. 7 

lllustration that the Adapted CJ function is not convex. 
The elementsof f[Q, (9,3)] and /[(3,0). (7.2)] are 

indicated by • and 0 respectively. 

I is not close, as can beseen in Figure 3.6(a): for v=(3,1). which is an element of 
[2,(9,3)]. nor ef[Q,(9.3)] exist.s such that d (r, v) < 1. . 
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3.3.1 Minimality 

In this section we shall prove that the Adapted CJ function is minimaL We use the fol
lowing properties. which arebasedon the definition of the Bounding Box from Chapter 2. 

Property 3.22: 

For all p .q eZ2 • 

f[p.q] ~ BB(p.q). 

Proof: 

0 

• If d (p. q) ~ 1. then f [p, q J = { p. q } ~ BB(p. q ). 
• Let n ~ 1. and assume 

(A_p,q :d(p.q)~n :f[p.q]!:; BB(p.q)). 

Let p and q be such that d (p ,q) = n +1. and p.y ~ q.y. Then 

f[p.q J 

= I d (p . q ) > 1 and definition of f } 

f[p.sdv(p.q)] U f[sdv(p.q).q] 

= { definition of p. q and (Ar. s : r. SE Z2 : [r. s 1 = [s. r]) } 

f[p. sdv (p ,q )] U f[sdv (p .q ).q] 

~ { d (p. q) > 1 and Corollary 3.11 a:nd the induction assumption } 

BB(p, sdv (p .q)) U BB(sdv(p ,q ).q) 

~ { p.x ~ sdv (p. q ).x ~ q .x and p.y ~ sdv (p , q ).y ~ q.y and definition of BB ) 

BB(p ,q) 

= { definition of p . q and definition of BB } 

BB(p.q ). 

If fo.y > q.y. then f[p .q J~ BB(p ,q) may be proven in a similar way. 

Corol.lary 3.23: 

Por all p , q E Z2 hol ds. 

p.y ~ q.y => sdv(p.q)eBB(p.q) 
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p.y <q.y => sdv(q.p)eBB(p.q) 

0 

Property 3.24: 

Por all p .q eZ2 and all rE BB(p, q) holds 

BB(p • r ) n BB(r , q ) = { r } . 

Proof: 
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(a) 

Prom Section 2.4.1 we know that BB is translation invariant. Therefore we may 
assume that p=Q.and q.x ;lil: 0. 
Let q E0 0 U 01. 
Let r E BB(Q, q ). Prom the definition of BB it then f ollows that 

0~ r.x ~ q.x. 

Suppose s e BB(Q, r ) n BB(r • q ). Then 

0~ s.x ~ r.x A r.x ~ s.x ~ q.x, 

hence r.x = s.x. 
Similarly. r.y = s.y. thus s = r, and (a) is proven for q e0 0 U 0 1. 

Por q E 0 6 U 0 1 • (a) may be proven similarly. 
0 

Property 3.25: 

Por all p .q eZ2 holds 

Proof: 

p.y > q.y => f[p ,sdv (p .q )] n f[sdv(p ,q ),q 1 = { sdv (p ,q)} 
p.y <q.y => f[p.sdv(q,p)]nf[sdv(q.p),q]= {sdv(q.p)} 

Suppose p.y > q.y. 
Th en. 

f[p,sdv(p.q)] n f[sdv(p.q).q] 

~ { Corollary 3.23 and Property 3.24 } 

BB(p.sdv(p,q)) n BB(sdv(p.q).q) 

~ I Property 3.24 I 

{ sdv (p .q) }. 
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Since, according to condition lfO of line functions, 

sdv (p .q )ef[p, sdv(p .q )] A sdv (p ,q )ef[sdv(p ,q ), q ], 

we have proven that 

f[p .sdv (p .q )] n f[sdv (p .q).q] = {sdv (p .q) }. 
The second part of the property may be proven similarly. 

0 

Now we are ready to prove that f is minimaL 

Property 3.26: 

The Adapted CJ function is minimat 

Proof: 

0 

We have to prove that #f[p .q] = d (p .q) + 1. for all p and q. 
• If d(p.q)'t!f: 1. then #f[p.q] = # {p,q} = d(p.q)+ 1. 
• Let n ~ 1. and assume 

(A_p .q : d (p .q )'t!f:n : # f[p .q] = d (p .q) + 1). 

Let p and q be such that d (p .q) = n +1. and p.y 't!f: q.y. Then 

# f[p.q] 

= l d (p ,q) > 1 and definition of f I 
#(f[p.sdv(p.q)] U f[sdv(p.q).q]) 

= I Property 3.25 I 

#f[p .sdv(p ,q )] + # f[sdv (p ,q ). q]- 1 

I d (p. q) > 1 and Corollary 3.7 and the induction assumption I 

(d (p .sdv(p .q )) + 1) + (d (sdv (p .q ).q) + 1) -1 

= { Property 3.6 and definition of p. q and d (r , s) = d (s , r ) ·J 

d(p.q)+ 1. 

lf p.y > q.y. then it may be proven in a similar way that 

I [p . q l = d (p . q H t. 
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From the previous chapter we know that digitisations of minimal line functions may be 
represented by chain codes. In the following chapter. where a convex line function will be 
constructed based on the Adapted CJ function, more will be said on the structure of the 
chain codes associated with the Adapted CJ function. 

3.3.2 Deviation 

As has been indicated already in section 3.3.0. the Adapted CJ function is not close. In 
this section we shall investigate its deviation function. It turns out that the same upper 
bound as for the Corthout Jonkers function may be derived. but unlike the Corthout 
Jonkers function, this upper bound is not strict. 

Again. we associate with each element of f[p .q] a level number. in the same way as we 
have done with the Corthout Jonkers function. Also. if lv (p. q) denotes the maximum 
level of any pixel in f[p • q ]. then lv (p • q ) depends on d (p • q) in a way simHar as with 
the Corthout Jonkers function. 

Property 3.27: 

For any p .q EZ2• p:;&:q. 

lv(p .q) = r2logd (p .q ~. 

Proof: 

0 

SimHar to the proof of Property 3.15. except that Corollaries 3.7 and 3.8 must be 
used instead of 3.11 and 3.12. 

Consider a line segment [p. q ]. and its Adapted CJ digitisation f[p. q]. Since f is transla-
tion invariant. we may assume that p=Q.and q.x ~0. . 

Consider the point v = 1hq halfway this segment. 
If q EOoU 01. then for the split point r of f[Q,q ]. defined by r = sdv(Q,q ). the follow
ing four positions with regard to v are possible: 

r= 

V 

v- (lh,O) 
V- (Y.z,Y.z) 
v-(O,lh) 

if q.x. even 1\ q.y even 
if q .x odd 1\ q .y even 
if q.x odd A q.y odd 
if q.x even 1\ q.y odd. 

lf q E06U07, then for the split point T = sdv(q ,Q) the following fOUT relations With V 

are possible: 
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r = 

v if q.x even A q.y even 
v + (lfz. 0) if q.x odd A q.y even 
v + (112, -112) if q.x odd A q.y odd 
v + (0.-1h) if q.x even A q.y odd. 

In Figure 3.8(a) and (b) these possibilities are shown for q e0 0 and q e0 7 respectively. 

~--
[p.q) .~~. • • • • 

(0) 

~-: 
[p.q] /, • ~~ 

~·· ,, r 

[p.q)' ~--· 

[p.q] / 

(2) 

(1) 

(3) 

(a) (b) 

Figure 3. 8 

The admitted positwns of r rel.ative to v = -} q. 
a)r = sdv(Q.q) b)r = sdv(q.Q) 

O)r = v 

la) r = v-(112,0) 
2a) r = v-(1h,112) 

3a) r = v -(0.112) 

lb) r = v +(112.0) 
2b) r = v +(112. -112) 

3b) r = v +(O,..lk) 

It can be seen that d (r. (Q. q]) is maximal for 

or=v-(0,112) ifqEOo 

o r =V+ (0,-11z) jf q E07. 

Then 

d(r.[Q.q])= 2(1+~(q))' wherea(q)= 
1 !~ 1 . 

Tbis will be shown for the case q e00• See the figure below. 

(a) 
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I ___ ..1 . ", : 
I ' I 

so • ', t __________ _. ___ ~ 
s1 ..._,..J r 

z 

1 
2 

[Q,q] 
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Here. applying Property 2.2, J (r , [Q, q ]) = z. Since v .y -r .y = lh, and triangles [s O• r , v ] 
and [Q, (q.x , 0), q] are congruent. it follows that 

r .x - s 0 .x = _!l;;1__. 
hq.x 

From the congruency of triangles [s 0• s 1• s 2] and [Q, (q.x. 0). q] the following equation may 
be derived. 

Hence, 

z ;(._!l::1__
2 

· -z) = q.y :q.x. 
*q.X 

z = --;--"q'-'-.x'--.".. = --;----"-1...,..-;"-
2(q.x +q.y) 2(1+a(q )) ' 

and thus 

J (r ,[Q,q]) = 2(1+~(q )) . 

Equation (b) also holds for q eO,. If q E01 U 06• then (b) holds for 

a(q) = ....!E_I .x I • 

q.y 

(b) 

Since the maximal distance of the split point r to [Q, q] depends on q • there is a complica
tion in comparison with the Corthout Jonkers function, where J (r, [Q, q]) was maximally 
lh. However, since 0 ' oe(q ) ' 1. and hence 

1~ 1 ,.!. 
4""' 2(1+oe(q )) 2' 

it follows immediately that the upper bound that we have derived inSection 3.2.1 for the 
deviation of the Corthout Jonkers function, is also an upper bound for the deviation of the 
Adapted CJ function. 

Although we are able to prove. in a way quite similar as in Section 3.2.1 that for the 
Adapted CJ function 
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at (p , q ) ~ ck (p , q ) 

where Ct (p , q ) is defined by 

co(p ,q) := 0 

and satisfies 

1 
2(1+a(p ,q )) 

1 k 1-{-lt2)k 
ck(p,q) = (l+a(p,q)) <3+ 9 ), 

where a(p ,q) is defined by 

a(p,q) := min~ lq,y-p.y I, ltx-p.x I~, 
max lq.y-p.y I, q.x-p.x I 

this doesnothelp us in finding a smaller upper bound for the deviation E1(n ): 

E1(n) 

= l definition of E 1 l 

(~p , q : p , q E Z2 1\ d (p , q )= n : e 01 [p , q ]) 

= l definition of eo1 [p ,q 1 I 

(~p.q :p,qeZ2 1\ d(p,q)=n :(maxr :ref[p.q]:d(r.[p.q]))) 

= { definition of ak (p • q ) } 

(~p.q: p.q eZ2 /\ d(p.q)=n: (maxk: keN/\ k ~lv(p.q): ak. (p,q )) ) 

~ { equation (c) } 

(~p. q : p, q E Z2 /\ d (p. q )= n : (max k : k EN A k ~lv (p. q): ck (p. q))) 

~ { (ck(p .q ))H(O .. ""(p.q)J is increasing} 

(~p.q :p,qeZ2 A d(p.q)=n :clv(p.q)(p,q)) 

= ( Property 3.27 and substitution } 

(~p.q :p,qeZ2 A d(p.q)=n :cf2 1Cp.q)) 
lognl 

= { equation (d) l 

(~p.q: p,q eZ2 A d(p,q 

= { property of ~ l 

[zlognJ 1-(-lh,)[2tognl • 2 - • 1 . 
( 3 + 9 h(~p.q.p,qeZAd(p.q)-n.t+a(p.q)) 

(c) 

(d) 
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= { defi.nition of et(p. q) ) 

hl 1-(-lh)2Jognl 
( 3 + 9 hl 

= { defi.nition of (bk )k EN l 

Still, if we compare the Adapted CJ and Corthout-Jonkers digitisations of the line segment 
[Q, (11,-5)] (a segment for which the upper bound was strict in case of the Corthout
Jonkers function), then the Adapted CJ function is obviously better than the Corthout
Jonkers function. See Figure 3.9. 

(11.-5) 

Figure 3. 9 

Digitisations of the Une segment [Q, (11.-5)]. 
The Carthout-Jonkers digitisation is indicated by 0 and the 

Adapted CJ digitisation by •· 

3.4 The Symmetrie function 

The definition of the two previous functions was based on the principle 

{
{p.q} ifd(p.q)~1 

f[p,q]= f[p,r]U f[r,q] ifd(p.q)> 1. 

where for each function a different defi.nition of the split point r was used. For both the 
Corthout-Jonkers and Adapted CJ function, d (p. r);>é d (r. q) if d (p. q) is odd. in which 

·case asymmetry is introduced. In the following function symmetry is preserved by the 
use of two split points. if necessary. 
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3.4.0 Deflnition 

The Symmetrie function f is defined by 

{
{p.q} ifd(p.q)~l 

f[p,q] := f[p.sdv(p.q)]Uf[sdv(q.p).q] ifd(p,q)>l. 

Note that sdv(p.q) differs from sdv(q.p) when q.x+p.x or q.y+p.y is odd. Note also 
that if in the above definition sdv is replaced by s fl , then f would be the Cortbout
Jonkers function, since f or all p and q holds that s fl (p , q) = s fl (q • p ). 

In Figure 3.10 some examples of pixel sets generated by this function are shown . We 
shall prove that f is a translation invariant line function. whicb is not minimal. nor con
vex. nor close. Apart from the difference indicated above. it differs from the other two 
functions in its deviation: we shall prove that the Symmetrie function bas a deviation 
upper bound which is still logarithmic in d (p ,q ). but smaller than the one of the 
Adapted CJ function. 

Again. all proofs arebasedon induction on d (p .q ). 

(9.-3) • 

Figure 3.10 

Some exampl.es of Symmetrie lines. 

a) fi.Q, (9. 3)] 
c)fi.Q,(7.-7)] 

b) f[Q, (9. -3)] 
d) f[Q, (6. -5)] 

• • 
(7.-7) • 

In order to prove that f is a line function, we shall use the following property. 

Property 3.28: 

For all p , q E Z2• 

d(sdv(p.q).sdv(q.p)) E: 1. 

Proof: 

(6.-5) 
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0 

d (sdv (p . q ) • sdv (q . p ) ) 

= I definition of sdv } 

d (p + (q -p )div2,q + (p-q )div 2) 

I Property 1.0 } 

d (p-q .(p-q )div 2- (q -p )div2) 

= I Property 3.2(a) } 

d (p-q, 2*((p -q )div 2)) 

= I definition of mod 2 l 
d(p-q ,(p-q )- ((p-q )mod2)) 

{ Property 1.0 l 

d((p-q )mod 2,Q)) 

~ I Property 3.2(f) and definition of d } 

1. 

Property 3.29: 

f is a line function. 

Proof: 

lfO) This part is exactly the same as the corresponding part in the proof of Property 
3.29. except that Corollary 3.7 should be used insteadof 3.11. 

lfl) • lf d (p .q) ~ 1. then { p .q } is finite and connected. and hence. f[p .q] is ftnite 

• 

and connected. 
• Let n ~ 1. and assume 

(A_p. q : d (p .q )~n : f[p .q] is ftnite and connected). 

Letpand q be such that d(p.q) = n +1. 
By definition of f . 

f[p.q]= f[p,sdv(p.q)] U f[sdv(q.p).q]. 

Because of Corollary 3.7. the induction assumption may be applied to both 
f[p. sdv (p. q )] and f[sdv (q .p ).q ]. hence 

f[p. sdv (p. q )] is finite and connected 1\ 
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f[sdv (q, p ). q J is finite and connected. 

Then. hecause of Property 3.28. 

f[p. sdv (p .q )] U f[sdv (q. p ). q] is finite and connected. 

Consequently. 

f[p, q] is finite and connected. 

0 

Since sdv is invariant under translation. i.e .. 

sdv((r+p),(r+q)) = r +sdv(p.q). 

the following property holds. 

Property 3.30: 

f is translation invariant. 
0 

f is not minimal. as can heseen in Figure 3.10: in (a) and (b) #f(p,q] = 12. whereas 
d (p. q) = 9. and in (d) #f[p. q] = 8. whereas d (p. q) = 6. In the following subsection an 
expression for the cardinality of f[p .q] will be derived. 

f is not convex. as is illustrated in Figure 3.11: (2.0) and (7,1) are both elements of 
f[Q,(9.2)]. whereas /[(2.0),(7 .1)] is nota subset of f[Q,(9,2)]. 

.. . . . . . . . . . . 
:::: ~(~.2) 
Q.~.l)· 

(2.0). • • • • • • • 

Figure 3.11 

Jllustration. tluzt the Sy1TU11Stric function is twt convex. 
The elementsof f[Q, (9.2)] wui /[(2,0). (7.1)] are 

iru:ficated by • wui 0 respectively. 

In Figure 3.12 it can beseen that f is notclose either: for v = (4,-80/21), which is an element 
of [Q,(27.-20)]. nor ej[Q,(27.-20)] exists such that d (r. v) < 1. 
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Figure 3. 12 
(27,-20} 

mustration that the Symmetrie function is not close: 
v = (4.-81'/2,)e[Q, (27.-20)]. whereas J (v .f([Q, (27,-20))) > 1. 

3.4.1 Cardinality 

As indicated in Section 4.0. the Symmetrjç function is not minima!. In this section we 
shall present an expression for the number of elements in f[p. q ]. The following proper
ties may be proven in a way similar to Property 3.22 and 3.24. 

Property 3.31: 

For all p.q eZ2 • 

f[p .q] C: BB(p .q ). 

0 

Property 3.32: 

For all p .q eZ2• 
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{

0 ifsdv(p,q)~sdv(q.p) 
BB[p. sdv (p. q )] n BB[sdv (q . P ), q] = { sdv (p. q) } if sdv (p, q) = sdv (q • p ). 

0 

The operators .., and &. which occur in the properties below. have been introduced in Sec
tion 3.1. 

Property 3.33: 

For all p , q E Z2, 

#(l[p.sdv(p.q)] n l[sdv(q.p).q]) = ((-. lq.x-p.x 1)&(-. lq.y-p.y l))mod2. 

Proof: 

0 

From the previous two properties we may derive that 

{

0 if sdv(p.q)~ sdv(q.p) 
I [p • sdv (p • q ) 1 n I [sdv (q · P ) · q D s;;; { sdv (p , q ) } if sdv (p • q ) = sdv (q • p ). 

According to condition lfO of line functions. sdv (p .q )EI[p. sdv (p ,q )]. and thus, if 
sdv (q .p) = sdv (p .q ). then 

sdv(p.q)E l[p.sdv(p.q)]n l[sdv(q,p).q]). 

Tben we may derive that 

#(l[p.sdv(p.q)] n l[sdv(q.p).q]) 

= I above reasoning I 

{
0 if sdv(p.q)~ sdv(q.p) 
1 if sdv (p , q ) = sdv (q , p ) 

= I Property 3.4 I 

{
0 if q.x-p.x even 1\ q.y-p.y even 
1 otherwise 

= I definition of & and .., and case analysis I 

((-. lq.x-p.x 1)&(-. lq.y-p.y l))mod2. 

Now we arrive at the actual property a bout the cardinality of I [p • q ]. 

Property 3.34: 

For all p .q EZ2 , 



3.4 The Symmetrie function 119 

#l[p.q]= d(p.q)+1+(-.d(p.q))&k. 

where 

k =min( lq.x-p.x I. lq.y-p.y I). 

Proof: 

• Suppose d (p .q) = 0. 
Then p = q. and #l[p .q] = # {p l = 1. 
Also,sincemin(lq.x-p.x l.lq.y-p.y I)= 0. 

d(p.q)+l+(-.d(p.q))&k = 1. 

hence (a) is satisfied. 

• Suppose d (p • q ) = L 
Then #l[p.q]= #{p.q}= 2. 
Also. since.., 1= 0. 

d(p.q)+1+(-.d(p.q))&k = 1+1 = 2. 

hence (a) is satisfied. 

(a) 

• Letn eN.n ~1. and assumethat for all p.q EZ2 such that d(p.q )~n. (a) holds. 
Suppose p ,q EZ2• d (p ,q )= n +1. 
Because I is translation invariant. we may assume that p=Q.and q.x ~0. Further
more. withoutlossof generality. we assume that lq.y I ~q.x. We shall prove that 

# I[Q,q] = q.x + 1 + (-.q.x )& lq.y I. 

in which case (a) is satisfied. 

# f[Q,q] 

= I d ( Q, q )> 1 and definition of f l 

# (f [Q, sdv (Q, q )] U f[sdv (q .Q). q]) 

= { definition sdv and Property 3.2(a) } 

# (f[Q,qdiv2] U l[q-qgjy2,q]) 

= { Property 3.33 l 

# f[Q,qdiv 2] + # f[q-qdiv2.q]- ((-.q.x )&(-. lq.y I ))mod 2 

= I translation invariance of I l 

2* # f[Q, q div 2]- (( -.q.x )&(.., I q.y I ))mod 2 

= I d (Q,q )> 1 and Corollary 3.7 and the induction assumption l 

2( q.x div 2 + 1 + (-.(q.x div2))&( lq.y ldiv 2))- ((-.q.x )&(-. iq.y I ))mod2 

= I Properties 3.2(g) and 3.2(i) l 
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0 

2(q.x div 2) + 2 + 2( ((-,q.x )& 1q.y 1 )div2)- ((-,q.x )&(-. 1q.y I ))mod 2 

= { definition of mod 2 l 

q.x - q.x mod 2 + 2 + (-,q.x )& lq.y 1- ((-,q.x )&1q.y I )mru!_2- i 
((-,q.x )&(-, lq.y l))mru!_2 

= { case analysis } 

q.x + 1 + ( ..,q.x )& lq.y I. 

Hence, (a) has been proven. 

From the above property it follows that for d (p. q) a power of 2. # l[p. q] is maximal 
f or k = d (p • q )- 1. Namely. f or d (p • q ) = 2" . 

.., (d (p. q )) = 2" - 1. 

and hence (.., d (p . q ) ) & k is maximal f or k = 2" -1. Furthermore. for d (p • q ) = 2" -1. 
the number of elements in I [p. q] equals d (p. q )+ 1. regardless of the value of k • because 

.., d (p • q ) = 2" . 

and for any k < 2" • 

2" & k = 0. 

3.4.2 Deviation 

Again. we associate with each element of l[p.q] a level number: if l[p,q] has two split 
points. then these split points have both level number 1. The split point(s) ·of 
l[p.sdv(p,q)] and l[sdv(q,p).q] have level number 2. and so forth. Again.lv(p,q) 
denotes the maximum level of any pixel in I [p • q ]. lv (p • q ) depends on z = 2log d (p • q ) • 

but equals the floor of z. whereas for the Corthout-Jonkers and Adapied CJ functions, 
lv (p. q) equals the ceiling of z. 

Property 3.35: 

Por any p, q E Z2. p 'Fq, 

lv (p . q ) = l2log d (p . q )J. (a) 

Proof: 

We shall use induction on d (p, q ). 
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0 

• Suppose d (p. q )= 1. Then. 2log d (p • q ) = 0. 
Also. by definition of f. 

f[p.q] = {p.q }. 

Hence, the two pixels of f [p. q] have level 0. and thus (a) is satisfted. 

• Suppose n eN. n ~ 1. and assume that for all p and q with 1 ::E;d (p .q )::E;;n, (a) 
holds. 
Let p ,q eZ2• such that d (p .q )=n +1. Then 

lv(p .q) 

= I d (p ,q )> 1 and definition of f and definition of level number I 

1 + max( lv (p , sdv (p , q ) ) .lv (sdv (q • p ) • q ) ) 

= I d (p, q) > 1 and Corollary 3. 7 and the induction assumption l 

1 + max( l2logd (p .sdv (p .q ))j ·l2Iogd (sdv (q .p ). q >j ) 
= I Property 3.5 } 

l + l2log (d (p ,q )W:t2)J 

= I definition of W:t l 

1 + l2Iog (Vul (p. q ))J if d (p. q) even 

1 + l2log ('k(d (p • q )-l))J if d (p. q) odd 

= { properties of 2Iog and r 1 } 

l2Iogd (p.q >j if d (p .q) even 

l21og (d(p. q )-l)J if d (p . q) odd 

= { d (p , q ) > 1 and (i > 1 A i odd) => l2log (i -l)J = l2log ~ l 

l21og d (p • q >j. 

In a way quite similar as at the end of Sectien 3.3.2. an upper bound for E1(n) may be 
derived. namely 

Because of the floor function. this is indeed a small impravement compared to the 
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deviation function of the Carthout-Jonkers function. However, if we campare the Sym
metrie and Carthout-Jonkers digitisations of the line segment [Q, (11,-5)] (a segment for 
which the upper bound was strict in case of the Carthout-Jonkers function), then the 
Symmetrie function is obviously better than the Carthout-Jonkers function. See Figure 
3.13. 

(11.-5) 

Figure 3.13 

Digitisations of the line segments [Q, (11.-5)]. 
The Cortlwut-Jonkers digitisation is indicated by 0 and the 

Symmetrie digitisation by •· 

We conjecture that the above upper bound for the deviation of the Symmetrie function 
may be sharpened substantially. 

3.5 Concluding remark.s 

In this chapter we have introduced three recursive line functions. Because they are based 
on simple integer operations. they are candidates for fast hardware implementations. 
Furthermore. the recursive nature may be exploited by the use of parallel processors. 
which would speed up the generation time substantially. 

A drawback of these functions is the absence of closeness. This is due to. the accumulation 
of rounding errors. For the deviation function of the Carthout-Jonkers function it is pro
ven that 

(a) 

where l = r21og nl. For particular values of n . this upper bound is proven to be strict. For 

sereens of size 1024 X 1024 pixels. (a) implies a maximal deviation of approximately 
1%+%. In [Corthout & Jonkers 1986b] a re:finement of the definition of Bezier shapes in 
discrete space is presented, in which the grid is upscaled on each recursion step. Thus. the 
accumulation of rounding errors is avoided. and the pixel sets that are generated are close 
digitisations. Furthermore. the authors claim that for line segments. this upscale is not at 
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the expense of extra bits. This seems to be a promising development. 

The deviation functions of the Adapted CJ and the Symmetrie function also satisfy (a), 
where for the Symmetrie function 

l = l2lognj. 

Thus. for the Symmetrie function, the deviation upper bound given by (a) is smaller then 
for the Adapted CJ function. In a way simHar as inSection 3.2.2 it may be proven that for 
the Adapted CJ function. the ~ distance of any pixel r ef [p, q 1 to [p . q] ( which is at 
most J (r. [p. q ])). does not exceed 

n (1- (-1h)n) 
3+ 9 . 

where n = r2logd(p .q )1. 
We have not been able to ftnd strict upper bounds for the deviation functions of the 
Adapted CJ and Symmetrie function. 

For comparison. the value of f[Q. (21,-11)] is shown in Figure 3.14, for all three functions. 
Remember that this line segment is an example wbere the upper bound of the Adapted 
Corthout-Jonkers function is strict. 

To give an expression of the appearance of the digitised lines on a high resolution device. 
we have also included some ftgures of digitised line segments generated on a Sun worksta
tion (resolution 1152X 900 pixels) and subsequently printed on a laser printer. Figure 
3.15 concerns a line segment for which the deviation of the Corthout-Jonkers function 
equals b 9 == 3.11. In the second example (Figure 3.16). the differences between the 
Bresenham digitisation on the one hand. and the recursively deftned digitisations on the 
other hand. are smaller than in the previous one. 

From these ftgures we may conclude that for the qualiftcation of line functions an other 
measure might be needed. one that expresses the smoothness of digitised line segments. 

Finally we would like to mention that in [de Roo et al 1980] an interesting algorithm is 
presented that generates values of the Symmetrie function. This algorithm is not the 
straight forward translation of the defi.nition. but is based on "rolling out" previously gen
erated line parts. They even present a schematic hardware representation of this algorithm. 
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(a) 

(21.-11) 

(b) 

(21.-11) 

(c) 

(21.-11) 

Figure 3. 14 

f[Q, (21. -11)]. where fis 

a) the Symmetrie function. 
b) the Adapted CJ fwu:tion 
cJ the Carthout-Jonkers function 
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Figure 3.15 

Digitisations of [Q, (683.-341)] 

a) Eresenham 
b) Symmetrie 
c) Adapted CJ 
d) Cortlwut-Jonkers 

Figure 3. 16 

Digitisations of [Q, (700.-150)] 

a) Eresenham 
b) Symmetrie 
c) Adapted CJ 
d) Cortlwut-Jonkers 

(a) 

(b) 

(c) 

(d) 

125 

(a) 

(b) 

(c) 

(d) 
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Construction of convex llne functions 

4.0 Introduetion 

This chapter deals with the construction of a class of convex line functions. Reeall that a 
line function f is convex if and only if for all pixels r. s ef[p. q 1 holds that /[r. s 1 is a 
subset of f[p .q ]. 

In Section 2 we have proved that no translation invariant. minimal. convex line functions 
exist that are close. Moreover. we have demonstrated that the deviation function of any 
translation invariant. minimal. convex line function bas a lower bound which is linear in 
d (p. q ). Hence. to find convex line functions with smaller deviation functions. one has to 
give up translation invariance or minimality. In this section we shall present a class of 
minimat convex line functions on domain D = [O.,N12x[O .. N]2• These functions are not 
close: for each function f from this class. the deviation value E1(N) bas a lower bound 
that is logarithmic in N. 

Although the restricted domain of these functions might seem a serious limitation. we 
wouldlike to remark that convexity is a property that is important for applications where 
computations on graphical objects are performed in image space. This space is finite, since it 
depends on the resolution of the graphical device that is used. 

The following strategy will be used, where we restriet ourselves to line segments [p .q] for 
which O~p.x ~q.x ~N. where N is a fixed natura! number. and q-p e0 0. 

Suppose that g is a translation invariant, minimal line function. which itself is not con
vex, and suppose that g satisfies the following two conditions. 

For all p .q EZ2 • where O~p.x ~q.x ~N and q -p EOo. 

0) a pair of pixels t 0• t 1 exists with x -coordinate 0 and N respectively. such that p 
and q are contained in g [t o. t 1]. that is. t 0• t 1 must satisfy 

(a) 

1) if both t 0 • t 1 and t 2• t 3 satisfy (a). then the subsets of g [t 0 • t 11 and g [t 2• t 3] asso
ciated with the path between p and q. are exactly the same. 

Then we may defi.ne the function f by 

127 
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f[p,q] := {reg[to.t1] I r.x e[p.x .. q.x]}. 

where t 0 , t 1 satisfy (a). In other words, f [p, q] is the subset of g [t o. t 1l corresponding to 
the path between p and q in g [t 0 , t 1]. This is illustrated in the tigure below. where the 
elements of g [t 0 , t 1] are indicated by • and the elements of f [p , q] by 0. 

to 
p 

(N.O) 

Note that. because of condition 0. for any p and q, a pair t 0, t 1 exists that satisfies (a), and 
because of condition 1 it does not matter which t 0 , t 1 is chosen, hence the above definition 
of f is consistent. 

From the above definition it follows immediately that fis convex since r,sef[p.q] 

implies that 

r ,sE {t eg[t 0.td I t.x e[p.x .. q.x] }. 

where t 0 , t 1 satisfy (a). Then t 0 , t 1 also satisfy 

to.x = 0 A t1.x =NA t 1-toE00 A r,seg[t0,tl]. 

which implies that 

f[r.s]!: f[p,q]. 

Hence. any translation invariant, minimal line function g ( which itself need not be con
vex) that satisfies conditions 0 and 1. induces a line function f that does have the convex
ity property, In this chapter we shall investigate what line functions g satisfy conditions 
0 and 1. 

In Section 1. conditions 0 and 1 are rephrased in terros of chain codes: these rephrased con
ditions are called the all height condition and the equal height condition. Next it is proven 
that these two conditions are equivalent to two other. simpler ones. called the once-a-one 
condition and the non-decreasi.ng condition. In Section 2 it is shown that the Adapted CJ 
function satisfies the once-a-one condition and the non-decreasing condition. Hence, the 
Adapted CJ function induces a convex line function fAcJ on domain D. InSection 3 fAcJ is 
generalised to line segments [p, q] where q-p is contained in other octants than 0 0. 

Furthermore. inSection 3 the deviation function of !ACJ will be investigated. 

In Section 4, it is shown that the class of translation invariant. minimalline functions that 
satisfy the once-a-one condition and the non-decreasing condition. is charàcterised by the 
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class of permutations of the numbers 1. .... N. Hence. eacb permutation of tbe numbers 
l. .... N induces a convex line function on domain D. and tbe number of convex line func
tions that may be constructed this way is N!. 

Sectien 5 contains the concluding remarks. 

4.1 Equivalent conditions 

Let g be a translation invariant. minimal line function. From Chapter 2 we know that 
with each pixel set g [p . q] a chain code c • g [p. q] is associated. Here. we are interested in 
the values and chain codes of g [t 0 , t 1]. where 

(b) 

Since g is translation invariant. we consicter the case t 0.y = 0 only. Furthermore. since 
t 1-t0 e0 0.we only need to investigate the values and chain codes of g[.Q, (N .n)]. where 
n e[o .. N]. Therefore we defi.ne for any minimal. translation invariant line function g. the 
sequence of chain codes (u n (g ))" E[O .. Nl by 

0' n (g) := c • g (.Q, (N ,n )]. 

In words. u,. (g ) is the chain code of the path corresponding to the g digitisation of the 
line segment connecting Q. and (N. n ). In Figure 4.0. the function values g [.Q, (N. n )] and 
their associated chain codes are shown for the Bresenham function (Section 2.4.5) and 
N=5. 

From Property 2.11 it follows that if g is a minimal line function. then for any t 0 ,t 1 

satisfying (b). the chain code of g[t 0 .td is an element of {7.0,1l*. From. Lemma 2.12 it 
fellows that CT E {7.0.1}* of length l is the chain code of a minimal path from p to q if and 
only if 

q.x-p.x = l A q.y-p.y = N.,.(t)- N.,.(7). 

We therefore introduce for such chain codes the height tunetion h: {7,0.1)*-+Z, defi.ned by 

h (u) := N.,(l)- N.,.(7). 

The height of a string in {7.0,1}* corresponds to the difference of y-coordinates of the end
points of any minimal path which bas this string as chain code. For instance. 
h (00100) = 1 and h (07110) = 1. From the definition of CT n (g) the following property 
may be derived. 

Property 4.0: 

If g is a minimal line function. then for all n E [O .. N ], 
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(a) (b) (c) 

Q. ··-·-·-·-·-· (5,0) . • • ~ (5.1) ~ Q. ......--.-. • . • 
Q. • 

(5.2) 

7
: : : . . (5.5) . . • • • • (5.4) 

::·.:: z.:::.: Q.:::7:. 
. . . . . . . . . . ~::: 

Q. • • • • • Q. • • • • • 

(5,3) 

(f) (e) (d) 

Figure4. 0 

The digitisations g [Q, (5. n )]. where g is the Eresenhom function. 

a) er 0(g) = 00000 d) er 3(g) = 10101 

b) er 1(g) = 00100 e) er ig) = 11011 
c) er 2(g) = 01010 f) ers(g) = 11111 

D 

The height function satisfies the following property. expressing that if a minimal path is 

partitioned into 2 subpaths. then the sum of the height of the chain codes associated with 

the subpaths equals the height of the chain code associated with the original path. The 
property is presented without proof. 

Property 4.1: 

D 

For alll EN and all chain codeserE {7,0,1)* of length l, 

(,~i: i E[l..l]: h(er) = h(er[1:i])+h(er[i+1:Z])). 

For any translation invariant. minimal line function g it is possible to express in terms of 
chain codes a necessary and suflicient condition for a pixel r to be contained in 

g [Q, (N. n )]. This condition. presented in the following property. will be used totranslate 
the conditions of Section 4.0 into the all height condition and equal height condition. 

Property 4.2: 

For any translation invariant. minimal line function g. n e [O .. N ]. and re Z2 , where 



4.1 Equivalent conditions 131 

O~rx~N. 

reg[!L(N,n)] <»- h(u"(g)[l:r.x])= r.y. 

Proof: 

0 

Let g be a translation invariant, minimal line function, and n E [ O .. N ]. 
Let r 0 • r I> •.. , rN be the minimal path from Q. to (N • n ) associated with 
g [.2- (N. n )]. From Property 2.11 it follows that the chain code of this path. u n (g ). 

is an element of 17.0.1}*. 

• Suppose ng [.Q, (N .n )]. 
Property 2.10 implies that r = r;. where i = rx. Property 2.6 implies that 
r 0 ,r 1, .•• , r; is a minimal path from Q. tor. The chain code of r 0,r 1, .•• , r; is 
u" (g )[J:i ]. Lemma 2.12 then implies that 

h (u n (g )[l:i]) = r.y. 

• Suppose pixel r. where O~r.x ~N. satisfies 

h (u" (g )[1:i]) = r.y. 

Then. according to Lemma 2.12. u" (g )[1:i] is the chain code of a minimal path 
from.Q. tor. hence. applying Property 2.9. 

r = Ëv(u"(g)(j]). 
j=l 

From Property 2.9 it follows that r is an element of the path r 0 , r 1, ..• , rN, and 
heneer eg[.Q,(N ,n )]. 

Using the above property. we shall now rephrase the conditions of Section 4.1. Consider 
Condition 0, which expresses · that for all p ,q eZ2 such that O~px ~qx ~N and 
q-p E 0 0, a pair of pixels t 0• t 1 exists such that 

(a) 

This condition may be rewritten in the following way. where p. q. t 0• t 1 are considered to 
be elementsof Z2

• and i. j ,k .l.m of Z. 

(A.p.q: O~p.x ~q.x ~N 1\ q-p e00 : 

(Jito.tt:tox = 0/\ t1x = N 1\ tt-toEOo:p,qeg[to.t 1])) 

{ renaming p.x as i. q.x as j. q.y-p.y as k. p.y as l. t 0.y as m. 'and t 1.y as n 

(A.i. j .k .l: O~i ~j ~N 1\ O~k ~j-i: 
(Jim ,n : O~n-m ~N :(i .l). (j .k +l)e g [(0. m ). (N ,n )])) 

= I g is translation invariant } 



132 Construction of convex line functions 

(Ai, j ,k ,l: O~i ~j ~N 11 O~k ~j-i: 
(Rm ,n: O~n-m ~N :(i .l-m ), (j ,k +l-m )Eg[Q,(N ,n -m)])) 

I Property 4.2 } 

(AL j ,k .l: O~i ~j ~NA O~k ~j-i: 
(lim,n: O~n-m ~N: h(CTn-m(g )[1:i])= l-m 

A h(CTn-m(g )[1:j])= k+l-m )) 

I Property 4.1 l 

(Ai.j,k,l :O~i~j~N 11 O~k~j-i: 
(Rm .n : O~n -m ~N : h (CT n-m(g )[l:i]) = l-m 

11 h(CTn-m(g )[i+1:j])= k )) 

I renaming n-m as n } 

(Ai.j,k,l :O~i~j~N A O~k~j-i: 

(&m.n :nE[O .. N]:h(CTn(g)[l:i])= l-m A h(CTn(g)[i+1:j])= k )) 

I proposition calculus } 

0') (Ai.j,k :O~i~j~N 11 O~k~j-i: 
(lin :nE[O .. N]:h(CTn(g)[i+1:j])= k )) 

Condition 0') will be referred to as the all height 

condition. lts meaning may be illustrated as fol
lows. If the sequence (CT" (g ))n E [O,.N] is con
sidered as an array (see the figure alongside). 
then the all height condition expresses that the 
chain codes in each column-range [i +l..j] 

should cover the height values 0, 1.. . ., j -i. 

1 ".i i+ I ... j j+l ... N 

t- --7 cro(g) 

t- --7 O't(g) 

Now we shall rephrase Condition 1 of the previous section. This condition expresses that, 
if for given p and q, the pairs t 0 • t 1 and t 2 , t 3 both satisfy (a). then the parts of g [t 0 , t 1] 

and g [t 2 , t 3] between p and q are the same. This is equivalent to 

1') for all i, j .kEN, where O~i ~j ~N and O~k ~i-j, and all n,mE[O .. N]. 

h(CTn(g )[i +l:j]) = k 11 h(CT m(g )[i +l:j])= k => CTn(g )[i+l:j) ~CT m(g )[i+l:j]. 

This condition will be referred to as the equal height condition. 

We shall now formulate two other conditions, and subsequently prove that these two new 
conditions are equivalent to conditions 0' and 1'. Reeall that the chain code associated with 
g [Q, (N, n )] is an element of {7 .0.1}*. 

The first condition, called the non-decreasing condition. e:xpresses that the y -values of the 
subsequent pixels in the path from Q to (N, n) associated with g [Q, (N. n )]. do not 
decrease. In terros of chain codes this is formulated as follows. 
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(An : n E [O .. N J: er,. (g )e {0,11* ). 

The second condition expresses that if a 1 occurs at inde.x i in chain code er,. (g ), than in 
all chain codes er m (g ). where m > n . also a 1 occurs at index i: 

(Ai.n :ie[l..N]A nE{O .. N-1]: 

er n (g )[i]= 1 => er n+l(g )[i]= 1). 

This condition will be referred to as the once-a-one condition. 

In the remaining part of this sectîon the following will be proven. Given a sequence of 
chain codes (u,.),. E[O .. N]• each of length N, where for all n E [O .. N ]. 

CTn E{7,0.1l* Á h(CTn)= n, 

then the conjunction of the all height condition and the equal height condition is 
equivalent to the conjunction of the non-decreasing condition and the once-a-one condi
tion. This is shown by subsequently proving: 

• (non-decreasing condition A once-a-one condition) 
=> all heigbt condition (Lemma 4.3) 

• (non-decreasing condition A once-a-one condition) 
=> equal height condition (Lemma 4.4) 

• (all height condition A equal height condition) 
=> non-decreasing condition (Lemma 4. 7) 

• (all height condition A equal height condition) 
=> once-a-one condition (Lemma 4.8) 

Lemma 4.3: 

(non-decreasing condition A once-a-one condition ) => all height condition. 

Proof: 

Assume that the non-decreasing condition and once-a-one condition hold. 
Let i, j.k e[O .. N]. i :(.j, k :(.j-i. We have to prove that forsomen e[O .. N1. 

h(er,.[i+l:j]) = k. 

Define the function H: [O .. N ]-+ N by 

H(n) := h(er,.[i+l:j]). 

Since h (er,.) = n . the non-decreasing condition implies that h (er,. ) equals the 
number of ones occurring in er,.. Hence. each element of er 0 equals 0. and. since the 
length of er N equals N. each element of er N equals 1. Consequently. 
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H(O)= 0 A H(N)= j-i. (a) 

Furthermore, because of the once-a-one condition and the n~n-decreasing condition, 

(A.n: n E[O .. N-1]: H(n )~ H(n+l) ). (b) 

which means that H is an increasing function. Because h (er n )= n , er n +l contains 
one 1 more than er" ; in combination with the once-a-one condition this implies that 

(A.n : n E[O .. N-1]: H(n +1) ~ H(n )+1 ). (c) 

which means that H increases with steps of 1. Hence. combining (a). (b). (c). it fol
lows that the range of H equals [O .. i- j]. Since lt.; ~i-j, it follows that n E[O .. N] 
exists such that H (n )= k , which is equivalent to 

h(er,.[i+l:j]) = k. 

The all height condition has thus been proven. 

Lemma4.4: 

(non-decreasing condition A once-a-one condition ) => equal height condition. 

Proof: 

0 

Assume that the non-decreasing condition and once-a-one condition hold. 
Let i. j .k .n.me[O .. N], i ~j. k ~j-i. such that 

h(er"[i+l:j])=k A h(erm[i+l:j])=k. 

We have to provethater .[i+ l:j ]=er m[i + l:j ]. 
Suppose. withoutlossof generality, that n<m. 
Because of the non-decreasing condition. h(ern[i+l:j])= k implies that er,.[i+l:j] 
contains k ones. Then, due to the once-a-one condition. er mli + l:j] also contains ones 
at these indices. Since h(erm[i+l:j])=k. and erm€{0,1)*. these are the only ones that 
er mli + l:j] contains. hence 

er .[i +l:j] = U m[i +l:j]. 

We have now proven that the all height condition and equal height condition are necessary 
conditions for the non-decreasing condition in combination with the once-a-one condition. 
The proof that they are also sufficient conditions is based on induction on N. In order to 
apply the induction assumptions in a correct way. we need the following two lemmas. 

Lemma4.S: 

Let N>l. If for (er.),.E(O .. N]• where each ern has length N and U:n€{7,0.1)* and 
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h (er,.)= n. the all height condition and equal height condition hold. then the 
sequence (er,.),. E[O .• N] may be rearranged in a sequence (er',.)" <[O .. NJ such that 

(a) (An: n e[O .. N-1]: h(er',.[l:N-1]) = n) 

(b) CE.i: i e[O .. N-1]: er';{l:N-1] = er'N[l:N-1]) 

(c) the all height condition and equal height condition hold for 

(er',. [1:N -1]),. <[O .. N-tl 

Proof: 

Let N > 1. . 
Let (er,. )n E[O .. N] be a sequence of N + 1 chain codes. each of length N. such that for 
all n e[O .. N]. 

er,. e{7,0,1}* 1\ h(er 11)= n. 

Th en 

N N 
L h (er,.) = L n = 1hN (N + 1). (d) 

n.=O n:O 

Suppose that (er,. )n e[O .. N] satisfies the all height and equal height conditions. 

Consider the N + 1 substrings er,. [ 1 :N -1] of length N -1. From the all height condi
tion it follows that for all k e[O .. N -1]. an n E {O .. N J exists such that 
h(er,.[l:N-l])=k. Hence. tbe sequence (er,.),.E[O . .Nl may be rearranged into a 
sequence (er',..),. E[O • .Nl such that for all n e[O .. N -1]. 

h(er',.[l:N-1]) = n. 

(This is illustrated in Figure 4.1) 
Hence, a) is satisfied. 

Furthermore. 

N-1 N-1 
L h(er',.[l:N-1]) = L n = lh:(N-l)N. 

n=O 
(e) 

Let')' be defined by ')' := er'N[1:N-1]. Since er',. [N]E {7,1.0} and h(er'N )E[O .. N]. it 
follows that h(er'N[1:N-l])e[-LN -1]. bence h (y )e[-l..N -1]. 
We sball now prove that h (y )e [O .. N-1). 

Suppose 

h(y)=-1. 

Wethen may derive the following. 

lh.N(N+t) 

= { equation (d) l 
N 
L h(er n) 

n=O 

(f) 



136 

0 

Construction of convex line functions 

= I (CT',.). E[O .. N] is arearrangement of (CT,.). E(O .. Nll 

N 
L h (CT'n) 

n =0 

= I Property 4.1 l 
N N 
Lh(CT',.[l:N-1])+ Lh(CT'n[N]) 

n=O n=O 

1 definition of Î' } 

N-l N 
h()')+ Lh(CT'n[l:N-1])+ Lh(CT'.[N]) 

n=O n=O 

{ equations (e) and (f) } 

N 

-1 + lf2(N-l)N + Lh(CT',.[N]). 
n =0 

From this it follows that 

N 
.Eh(CT'.[N]) = N+l. 

n =0 

This implies that for all n E [O .. N ]. CT'• [N ]= 1. and thus CT,. [N ]= 1. This con
tradiets with the all height condition. which prescribes that n E (O .. N] exists such 
that CT,. [N] = 0. 

Hence. we may conclude that h ( Î' )E[O .. N -1]. 
Consequently. according to (a). iE [O .. N -1) exists such that h (CT'Jl:N -1]) = h (')' ). 
Applying the equal height condition then leads to 

CT'1[1:N-1] = Î'· 

Thus, b) is satisfied. 

(g) 

Furthermore. because of b), the all height and equal height condîtions also hold for 
the sequence of chain codes (CT',. [l:N -1]). E(o .. N-ll· since the exchision of Î' does not 
change anything. 

Tbis completes the proof. 

In quite a similar way the following lemma may be proven. 

Lemma4.6: 

Let N>l. If for (CT,.)nE[O .. N]• where each CT,. has length N and CTn€{7.0.11* and 
h (CT n) = n. the all heîght condition and equal height condition hold. then the 
sequence (CT,. )nf[O . .N] may be rearranged in a sequence (er'" )n E[O .. NJSUCb that 
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O"o 
(Tl 

O'N 

0 

Equivalent c:onditions 

1 2 N 1 2 ... 
~ w=O -+ cr'o ~ w=O 

~ w=l -+ er' I ~ w=l 

~ 
c(N-1 ~ w=N-1 

~ w=N -+ 
c(N 

Figure 4.1 

Illustratton. of rearrangement of (u n )n E[O . .Nl into (u'n )" E[O • .N]-

(a) (,&n:nE[O .. N-l]:h(u'"[2:N]= n) 

(b) (!li :ie[O .. N-1]:u';[2:N]= u'N[2:N]) 

(c) the all height condition and equal height condition hold for 
(u'n (2:N])" E[O .. N-1) 
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-+ 
-+ 

-+ 

We shall now prove that the all height condition and the equal height condition together 
imply the non-decreasing condition and the once-a-one condition. 

Lemma4.7: 

(all height condition A equal height condition ) =;> non-decreasing condition . 

Proof: 

We shall use induction on N . 

• LetN=O. 
Then u 0 = E, which implies that u 0E{O.l}*. and hence the non-decreàsing condi
tion holds for (u n )n €[0 .. 0]· 

• Let N=l. 
Then, since u 0 and c::r 1 have length 1. and h (u 0) = 0. h (u 1) = 1. 

O'o = 0. and 0'1 = 1. 

Hence. u" E {0.1}*. and thus the non-decreasing condition holds for (c::r" )n E[O .. l]· 

• Let N > 1. and assume that for all M <N it bas been proven that for (c::r n )" E[O • .M]· 

where each u n bas length M and u n e {7.0,1}* and h (u")= n. the all height con
dition and the equal height condition together imply the non-decreasing condition. 

Let (c::r" )" E[O • .N] be a sequence of N + 1 chain codes, each of length N. such that for 
all n e [O .. N ]. 
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U n E {7,0.1)* 1\ h (u n) = n. 

Suppose the all height condition and equal height condition hold for (u n )n E[O •• NJ· 

From Lemma 4.5 it follows that the sequence (u n ),. E[O .. Nl may be rearranged in a 
sequence (u'n ),. E[O .. Nl such that the all beight condition and equal heigbt condition 
hold for (u'n [l:N -1]),. E[O .. N-1]• and 

(&_i: i e[O .. N-1): u';[1:N-1) = u'N[l:N-1]). (a) 

We then may apply the induction aSsumption on the sequence 
(u',.[l:N-l])nE[O .. N-l]• from which it follows that for all n e[O .. N-1]. 

U'n [l:N -1]E {0.1)*. 

In combination with (a) this leads to 

Ct\n : n e[O .. N]: u',. [1:N -l]e lO,l)* ). 

and thus. since (u',. ),.E[O •• N] is arearrangement of (u n )n E[O .. N]• 

(án : n E[O .. N]: u n [l:N -l]E {0.1)* ). 

In a quite similar way. using Lemma 4.6. we may prove that 

(án : n E [O .. N]: u n [2:N ]e {0.1)* ). 

Combining (b) and (c) results in 

(An : n e[O .. N]: u n E{0.1)* ). 

and thus the non-decreasing condition holds for (u n )n E[O .. N 1· 

(b) 

(c) 

Lemma4.8: 

(all height condition 1\ equal height condition ) => once-a-one condition . 

Proof: 

We shall use induction on N . 

• LetN=O. 
Then u 0 = e. which implies that the once-a-one condition holds for (u n ) .. E[O •. o]· 

• LetN=L 
Tben. since u 0 and u 1 have length 1. and h (u 0 ) = 0, h (u 1) = 1. 

u 0 = 0. and u 1 = 1. 

Hence. the once-a-one condition holds for (u n )n E[O .. l]· 

• Let N >1. and assume that for all M <N it has been proven that for (u")nE[O.M]> 
where each Un bas length Mand u"e{7.0,1)* and h(un)=n.the all height 
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condition and the equal height condition together imply the once-a-one condition. 

Let (u")" E[O •. Nl be a sequence of N + 1 chain codes. each of length N. such that for 
all n e [O .• N ], 

UnE(7.0,1}* A h(u")=n. 

Suppose the all height condition and equal height condition hold for (u")" E[O . .N]

From Lemma 4.5 it follows that the sequence (u,. )n e[o . .NI may be rearranged in a 
sequence (u'")ne[o .. N] such that h(u'.[l:N-1])= n for all ne[O .. N-1]. and the 
all height condition and equal height condition hold for (u'"[l:N-lD"e[o .. N-1]. 

and ani E [O .. N -1] exists such that 

(a) 

We then may apply the induction assumption on the sequence 
(u'" [l:N -1])" e[o . .N-ll· from whicb it follows that the once-a-one condition holds 
for (u'" [l:N -1])" E[O .. N-11· 

From (a) it follows that U'; and u'N differ only in their last element. Since 
(u'")" e[o .. N] is a rearrangement of (u")" e[o . .N]• Lemma 4.7 implies that 
u'n E (0.1}*, for all n e[O .. N]. and therefore either 

(b) 

or 

(c) 

Assume without loss of generality that (b) holds. 
Now we rearrange the sequence (u'")" e[o . .N] into (y,. )" e[o .. N] by inserting u'N 

between u'; and u';+l· (See Figure 4.2 for an illustration hereof.) Since 
u'; [l:N -1] = u'N [l:N -1]. and the once-a-one condition holds for the sequence 
(u'"[l:N-l])"e[o . .N-ll• it then follows that the once-a-one condition holds for 
(y" [O .. N -1])" e(O . .N]• that is. 

(ài.n :i e[l..N -l]A n E [O .. N-1]: y" [i]= 1 =;. Yn+l[i] = 1). (d) 

We shall show that the once-a-one condition also holds for (y" [N ])" e[o .. NJ· that is, 

(,An : n e[O .. N-1]: Yn [N] = 1 =;. Yn+t[N] = 1). (e) 

Since (y")"ero .. N] is arearrangement of (u")"ero . .NJ• two differentelementsof 
(y" )"e[o .. NJ must have different heights. Then it can be seen that Y;-1[N]:;: 1. 
because in that case h (y;-1) would equal h (y; ). Hence. since y" E {0.1}*. it follows 
that y; _1[N] = 0. By induction on j it can then be proven that 

(Aj: j e[O .. i]: y;[N] = 0 ). (f) 

Similarly, it may be proven that 
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0 

a'o 
er' I 

0"'; 

O"'N-1 

(l"N 

(td : j di + l..N 1 : ')'; [N 1 = 1 ). (g) 

From (f) and (g) it follows that (e) is satisfied, and furthermore, that 

(An: n E[O .. N]: h(y.) = n ). (h) 

From (d) and (e) it follows that the once-a-one condition holds for the sequence 
(y,.)nE[O .. N]- From (h) it follows that (yn)nE[O .. N] is the same sequence as 
(er,.),. E[O .. N]• and therefore the once-a-one condition holds for (er n )n E[O .. N]· 

I 2 N-1 N 

r w=O ~ 
1 2 N-1 N 

r w=l ~ Yo r w=O ~ 

Y1 r w=l ~ 

r w=i ~ =*" 
Yi-1 r w=i-1 ~ 

Y; r w=i ~ 0 

I 

'Yî+l r w=i ~ r w=N-1 ~ Yi+2 r w=i+l ~ 

r W=i ~ 'YN r w=N-1 ~ 

Figure4. 2 

lllustration of the rearrangement of (er',. )n E[o .. N] into (y. )n E[O .. NJ· 

Theorem 4.9: 

The conjunction of the all height condition and the equal height condition is 
equivalent to the conjunction of the non-decreasing condition and tbe once-a-one con
dition. 

Proof: 

From Lemmas 4.3, 4.4, 4.7. and 4.8. 
0 

In Section 4.0 we have shown that any translation invariant, minimal line function g 

satisfying certain conditions. induces a convex line function on domain D. These condi
tions were rephrased as the all height condition and the equal height condition. Because of 
the above theorem, any translation invariant, minimalline function g for which the chain 
code sequence (er" (g )) .. E[O .. Nl satisfies the non-decreasing condition and the once-a-one 
condition. induces a convex line function. In the following secdon we shall investigate 
which of the translation invariant. minimal line functions presented thus far. generate 
chain code sequences (er n (g )),. E[O . .Nl that do satisfy the non-decreasing and once-a-one 
conditions. 
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4.2 Functions satisfying the non-decreasing and once-a-one condition 

In this section we shall investigate whicb of the translation invariant. minimal line func
tions presented thus far. genera te chain code sequences (u n (g )),. E[O .. N 1• for which the 
non-decreasing condition and once-a-one condition hold. 

Of the line functions presented in Sectien 2.4. only the Adapted FrankJin and Bresenham 
functions are translation invariant and minimaL However, the Adapted Franklin function 
itself is convex. so the construction of a new function based on the Adapted Franktin 
function. as propased in Section 4.0 bas no use at all. 

If g is tbe Bresenham function. then. according to its definition inSection 2.4.5. 

g[.Q,(N.n)]= {Cx.f("/N)x-lf.Î])I xe[O .. N]}. 

Since 

it follows that (u,. (g )),. E[O • .N] doesindeed satisfy the non-decreasing condition. However. 
it does not satisfy the once-a-one condition. as can be seen in Figure 4.0. For example. 
u 1(g )[3] = (c • g [Q, (5.1 )])[3] = 1. whereas 17 2(g )[3] = (c • g [Q, (5,2)])[3]) = 0. 

Of the reeursive line functions presented in Cbapter 3, only the Adapted CJ function is 
minimaL In Figure 4.3. the sets g [Q, (5. n )] are shown. where g is the Adapted CJ func
tion. together with their associated chain codes. It can be seen that for this sequence of 
chain codes tbe non-decreasing condition and once-a-one condition hold. 

In the remaining of this sectien we shall prove that the Adapted CJ function g indeed 
satisfies the required conditions. For this purpose we shall introduce the function Y that 
gives an expression for the y -values of the pixels in g [Q, (N. n )] as a function of both n 

and x. The non-decreasing condition and once-a-one condition will then be proven by 
using various properties of Y. 

Since the Adapted CJ function g is minimal. the chain code associated with g [Q, (N, n )] is 
an element of (7.0.d*. Furthermore, for each i e[O .. N]. g[Q,(N .n)] contains exactly one 
pixel p such that ·.p.x =i. This observation underlies the following definition. 

The function Y N: [O .. N f-+ Nis implicitly defined by the following equation. 

{(i .YN(n ,i}) I i e[O .. N]} = g[Q,(N ,n)]. 

In words. Y N(n. i) is the y-value of the pixel in g [Q, (N .n )] whosex -value equals i. 

For notational ease. Y N (n . i ) will be denoted in the sequel as Y (N; n . i ). 

Property 4.10: 

For all Ne N. and all n E [O .. N ], 
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(a) (b) (c) 

.. (:,0~ ~ (:··~ ~ (:2) 

/ 

(5.5)· •.••. 

: : : : ;~ 
9_ ·9_7:::: 

(f) (e) 

Figure 4. 3 

(5.4) • • • • • • 

:: :~ 
Q_~::: 

(d) 

The digi.tisations g [.Q, (5, n )]. where g is the Adapted Cl function. 

a) 0' 0(g) = 00000 d) 0'3(g) = 01101 
b) u 1(g) = 00001 e) 0' 4(g) = 11101 
c) uz(g) = 01001 f) CT 5(g) = 11111 

Y (N ; n . 0) = 0 1\ Y (N ; n , N) = n. 

(5.3) 

Proof: 

D 

This follows from the lfO condition of line functions. which implies that 
Q.eg [.Q, (N ,n )] and (N .n )Eg [.Q, (N ,n )]. 

Let 1'n -be the· chain code associated with {(ï.Y(N;n,i)) I ie[O .. N]}. that is. with 
· g [.Q, (N ,n )]. Since 'Yn E (7,0.1}*. it can beseen that for all i e[l..N]. 

0 iff Y(N;n,i)-Y(N;n.i-1)= 0 
Yn[i]= 1 iffY(N;n,i)-Y(N;n,i-1)= 1 

7 iff Y(N ;n .i)-Y(N ;n ,i-1) = -1. 

Hence. to prove that ( y n )n E [O .. N 1 satisfies the non-decreasing condition. it suffices to prove 
that 

(Ai: iE[l..N]:O~ Y(N:n,i)-Y(N;n,i-1)~ 1), (a) 

and for the once-a-one condition it suffices to prove that 

(,An,i :ne[O .. N-1]/\ ie[LN]: (b) 
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Y(N;n.i)-Y(N;n,i-1)= 1 ~ Y(N;n+U)-Y(N;n+l.i-1)= 1). 

We shall use the following property to prove that the Adapted CJ function generates chain 
codes that satisfy both (a) and (b). 

Property 4.11: 

For all N EN. N > 1. and all n .i e[O .. N]. 

{
Y(N div 2;n div 2. i) if iE [O .. N div 2] 

Y(N;n.i) = ndiv2+Y(N-Ndiv2;n-ndiv2.i-Ndiv2) ifie[Ndiv2 .. N]. 

Proof: 

0 

First note that. since NillY_2 is contained in both ranges. Y(Ndiv2;ndiv2.Ndiv2) 
must equal n div2 + Y(N -N div2;n-ndiv2,0). lndeed. from Property 4.10 it can 
be seen that both expressions equal n div 2. 

Let N eN. N > 1. and n e[O .. N]. 

Th en 

{(i.Y(N;n,i)) I i e[O .• N]} 

· { definition of Y } 

g[Q,(N,n)J 

= { definition of the Adapted CJ function } 

g[Q,(Ndiv2.ndiv2)] U g[(Ndiv2.nillY_2).(N .n)] 

= I translation invariance of the Adapted CJ function} 

g[Q,(N div2.n div2)] U ((N div2,ndiv2) ~ g[Q, (N -N illY_2.n -n div 2)]) 

= I definition of Y } 

{(i.Y(NillY_2:ndiv2.i)) I i e[O .. Ndiv21} U 

( (N div 2.n.div2) ~ { (i.Y(N -N illY_2:n.-ndiv2,i )) I i e[O .. N -N div2]}) 

= I definition ~ } 

{(i,Y(NillY_2;n.illY_2.i)) I i e[O .. Ndiv21} U 

{ (N div 2+i ,ndivl+Y(N-N div2;n -n.div2.i )) I i e[O .. N-N div2]} 

= I renaming dummy variable i in the second set } 

{(i.Y(Ndiv2;nillY_2,i)) I ie[O .. Ndiv2]} U 

{(i ,n.div 2 + Y(N -N illY_2;n-nillY_2,i-N illY_2)) I i e[N gjy2 .. N] }. 

Hence, the property has been proven. 
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We shall now prove that the Adapted CJ function satisfies (a) and (b). 

Property 4.12: 

Por all N eN, N >0. and all n e[O .. N] and i e[t .. N]. 

0~ Y(N;n.i)-Y(N;n.i-1)~ 1. 

Proof: 

0 

This will be proven by induction on N. 

• Let N= 1. 
Then, using Property 4.10. 

Y(l:O.l)-Y(l;O,O) = 0 1\ Y(l;l.l)-Y(l:l.O) = 1. 

hence, for all n E [0 .. 1] and all iE [1..1]. 

0~ Y(l;n,i)-Y(l;n,i-1)~ 1. 

• Let N >1. and assume that for all M <N, and all n e[O .. M]. i e[l..M]. 

0~ Y(M;n,i)-Y(M;n,i-1)~ 1. 

Let n E[O .. N] and i e[l..N]. 
If i ~N div2, then 

Y(N;n .i)- Y(N ;n .i-1) = Y(N div2:niDY.2.i)- Y(N div2;ndiv2,i-1). 

and thus. applying the induction assumption. 

0 ~ Y(N;n .i)- Y(N;n ,i-1) ~ 1. 

For i > N div 2. it may be proven in the same way. 

The following property may be proven in a similar way. 

Property 4.13: 

For all N eN. N >0. and all n E[O .. N-1]. i e[l..N]. 

Y(N;n.i)-Y(N;n,i-1)= 1:::::;. Y(N:n+l,i)-Y(N;n+l.i-1)= 1. 

0 

Corollary 4.14: 

0 

For the Adapted CJ function g. (CT n (g ))n E!O • .N] satisfies the non-decreasing condition 
and the once-a-one condition. 
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Hence. the Adapted CJ function induces a convex line function on domain D. In the fol
lowing section this convex function will be defined formally. and its deviation will be 
investigated. 

4.3 A convex Une function basedon the Adapted CJ function 

In this section we shall define a convex line function f. which is based on the Adapted CJ 
function g in a way as described inSection 4.0. 

Let NeN.N>O. For p.qe[O .. N]2• such that q-pe0 0 • we shall define f[p.q] as the 
subset of g [t 0• t 1] between p and q. where t 0 , t 1 satisfy 

(a) 

From the previous three sections we know that this is a consistent de:li.nition. 

Por p.q e(O .. NJ2 such that q-pl00• we shall use the functions /; again. which were 
introduced in Chapter 2. 

For p ,q e[O .. N]Z, such that q -p e0 1• we can simply apply the above definition to fl- 1(p) 
and ft- 1(q ). since ft-1(p )-ft- 1(q )e0 0• and then transform the resulting set back with ft. 

For p.qe[O .. NF. such that q-pe06 U0 7, we first translate p and q downwards such 
that p is situated at the x-axis. then apply transformation h-1• and next the definition is 
applied to the thus transformed endpoints. The resulting set is then transformed and 
translated back again. 

More formally. for p ,q e[O .. N]2. wedefine f(p .q] as 

{reg [to. t 1l I r .x e[p.x .. q.x]} 
f[p.q] .- ft·f[fl-l(p).ft-1(q)] 

(O.p.y) E& h• f[f7- 1(p-(O, p.y )),f7-1(q -(O.p.y ))] 

where t 0 , t 1 satisfy (a). 

ifq-pe00 

ifq-pEOl 

ifq-pe06U01. 

Based on the above definition. and on the discussions in the previous sections, the follow
ing property may be formulated. 

Property 4.15: 

0 

On tbe domain (O .. N]2x[O .. N]2. the function f satisfies the line function conditions 
lfO and lfl. Furthermore. f is minimaland convex. 
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fis not translation invariant. For instance, if N=5, then for p 0=Q.and qo=(3.2). 

f[po.qoJ = {Q,(1,0),(2.0.(3,2)} 

and for p 1=(1,0) and q 1=(4.2). 

f[pl.ql] = { (1.0),(2.1). (3.2).(4.2) }. 

See tbe tigure alongside, wbere g [(Q, (5.3)] is shown. 
Hence, 

whereas 

. . . . . . 
:: :;;.: 

Q_~::: 
. . . . . . 

(5.3) 

However. f may be considered to be partly translation invariant, namely in the y
direction for p. q such that q-p E0 0 U 0 7• and in the x -direction for p. q such that 
q-p e0 1 U 0 6. This is expressed more formally in the following property. 

Property 4.16: 

For all p .• qe[O .. N]2 such that q-pe00 U0 7• and all reZ2 such that r.x=O and 
r+p.r+qe[O .. NJ2. 

f[r+p.r+q]= r$f[p,q]. 

Similarly. for all p ,q E[O .. N ]2 such that {i-p e0 1 U 0 6 , and all r eZ2 such that 
r.y =0 and r +p ,r +q e[O .. N]Z, 

f[r+p.r+q] = r $ f[p.q]. 

Proof: 

Let p.qe[O .. NF such that q-pe00 • and reZ2 such that r.x=O and 
r+p.r+qe[O .. N]2. Then. 

f[r+p.r+q] 

= { definition f and r.x = 0 ) 

{s eg[to.ttl I s.x e[p.x .. {i.x] }, 
whereto.x=O A lt.x=N A lt-loE00 A r+p,r+qeg[to.ttl 

I renaming t 0-r as t 0 and t 1-r as t 1 } 

{ s eg [r +t0 .r +t t1 I s.x E[p.x .. q.x] }. 
whereto.x=O A t 1.x=N 1\ t 1-t 0 E00 A r+p.r+qeg[r+t 0.r+t 1] 

= { translation invariance of g and definition of $ } 
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r EB f[p.q]. 

The cases in whichq-pe0 1 U0 6 U0 7• may be reduced to the case q-pEOo. 
0 

From the previous chapter we know that an upper bound for the deviation of the Adapted 
CJ function g is given by 

Eg(d) ~ %f2logdl + 1~(1-(-lh)r210gdh 
A general upper bound for E1(d ). where d E[O .. N]. is given by 

E1(d) ~ 2Eg (N) ~ 2*( t + l-~lh)l ). where l = ~2log~. (b) 

This is illustrated in the figure below. where p .q. and r (where r E/[p .q]) are supposed 
to have maximum distance 

d = l.. + 1-(..lk)i 
3 9 

to the line segment [t 0, t 1]. In this case, J (r . [p • q ]) may equal 2d. 

-~-

However. by making a good choice for N. this upper bound may be decreased. For 
instance. if N = 21 • then the pixels of g [.Q, (N. n )] are all beneath the line segment 
[Q, (N .n )]. namely. for all pixels (x. Y(21 ;n .x ))Eg [.Q, (N. n )). 

Y(2l ) t:. n *r.X ;n ,r.x ...-: --1 -, . 2 

which may be proven by induction on l. Hence. the factor 2 in (b) may be eliminated, and 
we may state that if N is a power of 2. f or all d e [ O .. N ]. 

Et(d) ~ Eg(N) ~ t+ 1-~Y. 
Instead of using the upper bound from Chapter 3 for the deviation Eg (N ). we may also 
try to find an exact expression for E, (N ). using the function Y. 

E
8
(N) 

= I definition Eg and translation invariance of g 
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(maxq : q e00 A d(f1q )= N: e08 [f1q]) 

= I definition of 0 0 and d I 

(maxn : n e[O .. N]: eO, [f1 (N ,n)]) 

= { defi.nition of e Og ) 

Construction of convex line functions 

(maxn : n e[O .. N]: (mg_i :i e[O .. N]: J ( (i,Y(N :n ,i)), [f1(N .n)])) 

= I using Property 2.2 I 

(maxn :nE[O .. N]:(maxi :ie[O .. N]: n~N I Y(N;n,i)-i~n I) 

= { aritbmetic } 

(mg_n :ne[O .. N]: n!N(mg_i :ie[O .. N]: I N*Y(N;n,i)-hn I)). 

If N is restricted to have a certain level. that is, if r2log~ = l. then one can searcb for the 

N that minimises Eg (N ). For instance. for l = 4, it turns out that Eg (16) = 1.105, 
whereas Eg(9)= 0.8. We have not worked this out any further. but we expect that 
E8 (N ), and hence a general upper bound for E1 (d ). may decrease if N is chosen appropri
ately. 

Since f is not translation invariant. it is difiicult to fi.nd an exact expression for E/d ). 
where dE [O .. N ]. 

4.4 Permutations 

In this section we shall show that each permutation of the numbers 1.. .. , N induces a 
sequence of chain codes ( y n ),. , [o • .N l· each of Iength N. that satisfies both the non
decreasing condition and the once-a-one condition. and for which h (')t,. )= n. Conse
quently. each permutation induces a convex. minimal line function on domain 
D = [O .. N]2x[O .. NJ2. 

We shall also show that any sequence of chain codes ( y,. ),. , [o .. N l• each of length N. that 
satisfi.es both the non-decreasing condition and the once-a-one condition, and for which 
h ( y,. )= n . induces a permutation. Hence. the class of convex line functions coQ.structed 
as described in Section 4.0 is fully characterised by the class of permutations of N 
numbers. Consequently. N! different convex line functions may be constructed that way. 

A function G: [l..N]-+[LN] is a permutation if and only iffor all n E[1 .. N]. 

(E_i : i E [l..N]: G (i) = n ). 

Permutations will be denoted as (G (1) G (2) · · · G (N )). 
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Suppose that the function G: [l..N]-+ [l..N] is a permutation. We shall associate a 
sequence of chain codes with G that satisfies the once-a-one condition. Informally spoken. 
we may interpret G (i )= m as: the first 1 at index i occurs in y m . Formally. we define the 
sequence of chain codes ( y n (G ))n <[O .. N J• each of length N. as follows. 

{
0 ifn <G(i) 

'Yn (G )[i) := 1 if n ;a: G (i). (a) 

It then follows immediately that ()'n (G ))n E[O .. NI satisfies the non-decreasing condition and 
once-a-one condition. 

Example 4.17: 

0 

The permutations G 0 = (12345) and G 1 = (35214) result in the chain code 
sequences 

'Y o<G o) = 00000 ')'o(G 1) = 00000 

'Yl(Go) = 10000 'Yl(Gl) = 00010 

'Y2(Go) = 11000 Y2(G 1) = 00110 

'Y 3(Go) = 11100 'Y3(G 1) = 10110 

Y4(Go) = 11110 'Y _.{G 1) = 10111 

'Ys(Go) = 11111 'Ys(Gl) = 11111 

respectively. which correspond to the pixel sets shown in Figure 4.4 and Figure 4.5. 

• • • • • • 
00000 

.. ·~ 

.-.---:- 10000 

Figure4. 4 

:: ~~ 
~~~~-

:::7 
Y. :1~00. 

Tlut chain codes and correspar.ding pixel sets, 
associated with tlut permulation (12 3 4 5). 

The sequence of chain codes (yn (G ))n e[o .. N] as deftned by (a) also satisfies h (y,.) = n, as 
will now be proven. 
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• • • • • • 
• 00000 

Construction of oonvex line functions 

• . . __;_.e..- • .-.-. ... 
• • • • 00010 • 

Figure 4. 5 

:: :?. 
7.: 1?11? 

The chain codes and correspcnding pixel sets, 
associated with the permutation (3 5 2 1 4). 

Property 4.18: 

For all permutations G:[l..N]->[LN], the sequence of chain codes (yn(G))nE[O .. NJ 

defined by (a) satisfies. for all n e[O .. N], 

h(yn(G)) = n. 

Proof: 

0 

h(yn(G)) 

= { definition of w and 'l'n (G )e {0,1)* } 

# {i e[LN] I 'l'n (G )[i]= 1} 

= { definition 'l'n (G) ) 

#{i dLN] I G(i)~ n} 

= I G is a permutation I 

# {idt..NJI i~ n} 

= n. 

Thus, we have shown that each permutation induces a sequence of chain codes (yn )nE[O . .N] 

that satisfies the non-decreasing condition, the once-a-one condition. and h ( ')' n )= n. for 
all n e[O .. N]. 

Reversely. any sequence of chain codes ( ')' n )n E[o . .N l satisfying these conditions induces a 
permutation, as will now be shown. 

Let ( ')' n )n E [o .. N 1 be a sequence of chain codes. each of length N. that satisfies the non
decreasing condition. the once-a-one condition. and h (y") = n for all n e[O .. N]. 
Define the function G: [l..N ]-> [l..N] as follows. 
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G (i) := (min m :mE [l..N] 1\ 'Y m [i]= 1 A 'Y m-tli] = 0: m ). 

Note that for any i E[l .. N] this minimum exists. since y 0[i 1= 0 and y N[i 1= 1. 

Property 4.19: 

G is a permutation. 

Proof: 

Let i .j E[t..NJ. i ;>~!i: j. 
Suppose G (i ) = G ( j) = n. 

151 

Then 'Yn[i1= 1. Yn-tltl= 0, Yi[i]= 1, and Yï-I[i]= 0. Hence. 
h ( 'Yn) ~ h ( 'Yn-1)+2. This contradiets with h (yn) = n and h (y,.-1) = n -1. 
Hence. G (i) ;>lf G (j ). and thus G is a permutation. 

0 

Exam.ple 4.20: 

0 

For N = 5, we have seen in Figure 4.3 that the sequence of chain codes 
(u n (g )),. E(O •. N)• where g is the Adapted CJ function.·is 

u o(g ) = 00000 
u l(g ) = 00001 
u 2(g) = 01001 
u 3(g) = 01101 
uig) = 11101 
u 5(g) = 11111. 

This corresponds to the permutation G = (4 2 3 S 1). 

Now the question arises whether a permutation exists. for given N. that induces a convex 
line function that is close. 

In [Luby 19861. a similar construction of convex line functions is presented, based on so
called N -trees. and it is shown that there is a one-to-one correspondence between N -trees 
and permutations of N numbers. Hence. a one-to-one correspondence exists between N
trees and chain code sequences (u,.),. E(O • .N) that satisfy the non-decreasing condition. 
once-a-one condition. and h (u,.)= n for all n e [O .. N1. Such chain codes provide a one
to-one correspondence between 8-connected paths (tbe paths we consider) and 4-connected 
patbs (the paths Luby considers). Since Luby measures distances of paths witb tbe same 
distance function d as we use, bis results are applicable to our situation. Tbeorem 19 of 
bis paper expresses tbat any N -tree induces a patb of lengtb N that contains a pixel with 
distance at least c log(N)- 1 ( where c = 1hoo) to the line segment connecting the end
points of the path. Applying this to our situation, tbis means that for a convex line func
tion f on domain [O .. NJ2x[O . .N]2, induced by a permutation in a way described in this 
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chapter. a lower bound exists for E1(N) that is logarithmic in N. Hence, such a function 
cannot be close f or N large enough. 

4.5 Concluding remarks 

In this chapter we have investigated the construction of a class of convex line functions on 
domain D = [O .. N]2x[O .. N]2. 

The construction is based on a translation invariant. minimal line function that must 
satisfy two conditions. namely the all height condition and the equal height condition. 
These conditions are proven to be equivalent with the non-decreasing condition and the 
once-a-one condition. We have proved that any permutation of N numbers induces a 
sequence of chain codes that satisfies the non-decreasing and once--a-one conditions. Thus. 
any permutation of N numbers induces a convex line function. Furthermore. any convex 
line function that is based on a deftnition scheme as used in this chapter. is sbown to 
induce a permutation. 

We have also shown that the Adapted CJ function induces a convex line function f whose 
deviation value E 1 (N ) has an upper bound which is logarithmic in N. [Luby 1986] shows 
that for any convex line function f that is based on a permutation. E1 (N) is at least loga
rithmic in N. The question remains what permutation minimises the value E 1 (N ). 

Although the line functions presented in this chapter are not close. it remains an open 
question whether a close. convex line function on domain Z2xz,2 exists. We conjecture that 
such a function does not exist. 

For those who are interested in algorithms for the generation of the line functions 
presented in this chapter. we refer to [van Lierop et al 1986]. where a recursive and a 
non-recursive algorithm are presented that generate the values of the convex line function 
associated with the Adapted CJ function. The recursive algorithm bas time complexity 
00og2 N )+0 (d (p .q )). The non-recursive alg~rithm. which requires preprocessing time 
0 (N ). bas time complexity 0 (d (p. q )). In that same paper. also algorithms can be found 
for convex digitisation functions for line segments with endpoints in Q2• The recursive one 
bas time complexity O(logN )+O(d (p .q )). and the non-recursive one O(d (p .q )). 
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Final remarks 

5.0 Results 

ln this thesis digitisation is dealt with in a format way. uncoupled from algorithms. Any 
function from P(R2) to I'(Z2) is considered to be a digitisation function. The prescription 
of a digitisation function may be used as a format specilication for an atgorithm that bas 

to generate vatues of that digitisation function. 

Desirabie properties of digitisation functions have been formulated. and several examples 
of line functions. illustrating the broad range of possibilities. have been discussed with 
respect to these properties. 

An important result is that any translation invariant. minimal. convex line functîon has a 
deviation which is at least linear in the distance of the endpoints (Theorem 2.55). hence 
such a function cannot be close. This might explain why convexity is hardly paid atten
tion to in Computer Grapbics literature. since most common line functions are translation 
invariant, minimal. and close. Nevertheless. apart from its theoretica! interest, convexity 
might be a desirabie property in applications where windowing is used ([Luby 1986]). 

Because of the above result, one has to abandon translation invariance or minimality if one 
wants to find convex line functions with smaller deviation values. We have described a 
construction metbod for minimal. convex line functions on a limited domain 
D = [O .. N)2x[O .. N)2: this metbod is based on a translation invariant, minimal line func
tion that satislies certain conditions, called the once-a-one condition and the non
decreasing condition. The Adaptive CJ function. which is one of the recursive line func
tions discussed in Chapter 3, happens to satisfy these conditions. The deviation of the con
vex line function that is derived from the Adapted CJ function bas a general upper bound 
that is logarithmic in N. 

Furthermore, it has been proven that a one-to-one correspondence exists between, on the 
one hand. translation invariant. minimal line functions on domain D that satisfy tbe 
non-decreasing and once-a-one conditions. and on the otber band. permutations of N 
numbers. Consequently. eacb permutation of N numbers induces a minimal. convex line 
function on domain D. A general upper bound for the deviation of these functions is at 
least logarithmic in N. 

153 
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The consideration that closeness is a desirabie property instead of a necessary one. opens 
the way to new kinds of digitisation functions, like the recursive ones preserited in 
Chapter 3. The operations needed for straightforward implementations are additions. 
shifts. and comparisons. all easily implementable in hardware. Furthermore. since the 
recursive nature of these functions may be exploited by the use of parallel processors. 
these functions seem to be good candidates for future hardware implementations. The 
results of the work of Corthout et al support this conjecture. See [Corthout & Jonkers 
1986b]. 

We have the following recommendations for the choice of a line function. 

If closeness is required. the Bresenham. Close Embedding. or Optimal Embedding rune
tions are appropriate. 

If convexity is required, the function derived from the Adaptèd CJ function is a candi
date. or any other function that may be derived from a permutation, as described in 
Chapter 4. 

lf fast hardware implementations have the highest priority. the recursive functions 
from Chapter 3 should be considered. 

5.1 Remaining questions 

In this thesis we have focussed on the properties closeness and convexity. Of course. other 
properties may be conceivable. [Serra 1982] imposes four criteria on morphological 
transformations (of which digitisation functions may be considered to be a special class). 
namely translation invariance. scale invariance. local knowledge. and semi-continuity. lt 
should be investigated how functions can be defined that have these properties, and how 
these properties combine with the ones mentioned in this thesis. 

As remarked in Section 1.6. the definition of closeness might also be based on the definition 
of a region of sensitivity. The implications of such a defi.nition should be investigated. 

An interesting question that remains is whether closeness and convexity are conflicting 
properties or not. We conjecture that they are contlicting indeed. 

An other subject that deserves further investigations is the search for the permutation that 
induces the convex line function with the smallest deviation. 

The main part of this thesis deals with line functions. To what extent may the theory 
presented in this thesis be applied to other kinds of objects. like polygons, for example1 If 
the idea of splitting line segments into two more or less equal parts is generalised to trian
gles. (see the figure below) we come to the following definition of a triangle digitisation 
function. The triangle with vertices p • q , r is denoted as [p, q , r ]. 
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q 

~~·· 
p r 

Sz 

{p.q.r} if d(p.q)~lA d(q.r)~lA d(r.p)~l 

otherwise 

where so.sl,s2 are split points of [p.q ]. [q .r ]. and [r.p] respectively. 

In [van Overveld & van Lierop 1986] algorithms can be found for the digitisation of trian
gles and triangular patches. basedon the above detinition. In [Corthout & Jonkers 1986a] 
point containment tests are presented for similarly de:fined Bezier shapes. 

Digitisation is only one aspect of the display process. Other aspects inherent to the render
ing of objècts. sucb as anti-aliasing and shading. have not been addressed. Both anti
aliasing and shading impose an intensity or colour value on each pixel. 

A common techriique for anti-aliasing is to incorporate it into the digitisation function. for 
example by making the intensity value of a pixel depend on the area of the part of the pix
els region of sensitivity covered by the object. This requires a lot of computations. 

Fortunately. there is another anti-aliasing technique. one that is independent of the digiti
sation. In this case. anti-aliasing is considered as a mapping from the frame buffer FB 
( where the colour of each pixel is stored) into FB: the anti-aliasing algorithm postprocesses 
the result of the digitisation algorithm. 

It is almost impossible to separate shading from digitisation; furthermore, it is difficult to 
avoid real arithmetic. However, in [van Overveld & van Lierop 1986] a start is made by 
the incorporation of shading into the digitisation algorithm using integ!!r arithmetic only. 
[van Overveld 1987b] is a continuation hereof. 
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Summary 

For the generation of digital images from continuous objects. a digitisation mapping from 
R2 (or R3) to Z2 is required. Thus far, in Computer Grapbics literature. digitisation is 
dealt with by presenting algorithms: formal specifications of these algorithms are setdom 
presented. In this thesis we abstract from algorithms; we present a frameworkin which 
desirabie properties of digitisation functions are formulated formally (Chapter 1). 

One of these properties is closeness, which expresses that the digitisation of an object 
should correspond as good as possible to the original object. Otber properties are transla
tion invariance and convexity. Tbus far, closeness has been considered to be a necessary 
requirement for digitisation functions. In this thesis, however, we also deal with digitisa
tion functions that are not close. A measure is introduced to express the quality of these 
functions with regard to closeness; this measure is called the vidnity function (Chapter 1). 

To show the implications of this new view on digitisation. we concentra1;e on digitisation 
functions for line segments. shortly called line functions. For these functions a special 
kind of vicinity measure is introduced. called the deviation function. Apart from the pro
perties mentioned above, a new property for line functions is formulated. namely m.inirru:d
ity. Several examples of line functions are discussed (Chapter 2). 

lt is proved that translation invariant. minimal. close line functions are not convex. It is 
even conjectured that closeness and convexity are confticting properties (Chapter 2). 

In Chapter 3, three recursive line functions are discussed. These line functions are not 
close; an upperbound for their deviation function is derived that is logarithmic in the dis
tanee of the endpoints. 

In Chapter 4 we focus on convexity. We show that on a restricted domain D. a convex line 
function can be constructed from any translation invariant. minimal line function that 
satisfies certain conditions. lt is shown that one of the recursive functions of Chapter 3 
satisfies these conditions. Furthermore. it is provedthat there is a one-to-one correspon
dente between line functions satisfying these conditions. and permutations. Consequent1y; 
each permutation induces a convex line function on domain D. None of these functions is 
close. 

In short, this thesis deals with digitisation in a formal way; if properties like recursiveness 
or convexity are given priority over closeness. one must resort to other than the traditional 
digitisation functions. · 
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Samenvatting 

Om digitale beelden te kunnen maken van continue objecten is een digitalisatiefunctie 
nodig van R2 (of R3) naar Z2. In de computergrafische vakliteratuur werd digitalisatie tot 
nu toe afgedaan met het presenteren van algoritmen; van deze algoritmen worden zelden 
formele specificaties gegeven. In dit proefschrift abstraheren we van algoritmen: we 
presenteren een raamwerk waarin gewenste eigenschappen van digitalisatiefuncties formeel 
beschreven kunnen worden (Hoofdstuk 1). 

Een van deze eigenschappen is nabijheid. die uitdrukt dat de digitalisatie van een object zo 
goed mogelijk moet corresponderen met het object zelf. Andere eigenschappen zijn 
translatie-invariantie en convexiteit. Tot nu toe werd nabijheid altijd als een nodige eigen
schap van digitalisatiefuncties beschouwd. In dit proefschrift bestuderen we echter ook 
functies die niet nabij zijn. We introduceren een maat om de kwaliteit van deze functies 
met betrekking tot nabijheid in uit te drukken (Hoofdstuk 1). 

Om te laten zien wat deze nieuwe kijk op digitalisatie voor gevolgen heeft. concentreren we 
ons op digitalisatiefuncties voor lijnstukken, in het kort lijnfuncties genoemd. Voor deze 
functies introduceren we een nieuwe nabijheidsmaat. namelijk de afwijkingsfunctie. 
Behalve de hierboven genoemde eigenschappen. formuleren we nog een andere gewenste 
eigenschap voor lijnfuncties. genaamd minimaliteit. Verscheidene voorbeelden van 
lijnfuncties worden behandeld (Hoofdstuk 2). 

Er wordt bewezen dat translatie-invariante. minimale. nabije functies niet convex zijn. We 
vermoeden zelfs dat nabijheid en convexiteit elkaar uitsluiten (Hoofdstuk 2). 

In Hoofdstuk 3 worden drie recursieve lijnfuncties besproken. Deze functies zijn niet 
nabij; er wordt een bovengrens voor hun afwijkingsfunctie afgeleid die logaritmisch is in 
de afstand van de eindpunten. 

In Hoofdstuk 4 gaat het om convexiteit. We laten zien dat op een begrensd domein D. van 
elke translatie-invariante. minimale lijnfunctie die aan bepaalde voorwaarden voldoet. een 
convexe lijnfunctie afgeleid kan worden. Een van de recursieve lijnfuncties uit Hoofdstuk 
3 voldoet aan deze eigenschappen. Bovendien bewijzen we dat er een een-eenduidige relatie 
bestaat tussen lijnfuncties die aan die eigenschappen voldoen. en permutaties. Daardoor 
induceert elke permutatie een convexe lijnfunctie op domein D. Deze lijnfuncties zijn niet 
nabij. 

Kort samengevat: dit proefschrift behandelt op formele wijze het onderwerp digitalisatie; 
als aan eigenschappen zoals recursiviteit of convexiteit de voorkeur wordt gegeven boven 
nabijheid. dan moet men zijn toevlucht nemen tot andere dan de gebruikelijke digitalisa
tiet uncties. 
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0. Het is gewenst dat digitalisatiefuncties een zo klein mogelijke afwijking hebben, maar 
dit hoeft, met name bij interaktieve grafische toepassingen, niet altijd de hoogste 
prioriteit te hebben. 

1. Het ondoordacht gebruik van "ftoating point" arithmetiek heeft de populariteit van 
retoucheerprogramma's doen toenemen. 

2. Van alle translatie invariante. minimale. convexe lijnfuncties. heeft de Adapted 
Franklin functie de kleinste afwijking. 

3. Minimale lijnfuncties waarvan de "chain codes" aan de lineariteitscondities uit de 
Beeldbewerking voldoen. zijn niet convex. 

( L.-D. Wu. On the Chain Code of a Line, IEEE PAMI4 (3). 1982. pp. 347-353 ] 

4. Zoals het gebruik van Z-buffers voor het berekenen van de zichtbare oppervlakken 
toenam naarmate computergeheugens compacter en goedkoper werden. zal in de 
toekomst het gebruik van Item Buffers voor het snel identificeren van op het scherm 
aangewezen objecten steeds gangbaarder worden. 

[M.L.P. van Lierop. lntermediate data structures for display algorithms. in: Data 
Structures for Raster Graphics, F.J. Peters, L.R.A. Kessener. M.L.P. van Lierop 
(eds.). Springer Verlag. 1986, pp. 39-55] 

[H. Weghorst. G. Hooper. D.P. Greenberg, Improved computational methods for ray 
tracing. ACM Trans. on Grapldcs 3 (1). 1984. pp. 52-69] 



5. Bij het transformeren van een in "leaf codes" gecodeerd computerbeeld. kan de sor
teerslag vermeden worden indien gebruik gemaakt wordt van de intrinsieke boom
structuur van deze codering. 

[I. Gargantini. Translation. rotation. and superposition of linear quadtrees, Int. J. of 

Man-Mach. Stud. 18, 1983, pp. 253-263] 

[ M.L.P. van Lierop. Geometrical Transformations on Pictures Represented by 
Leafcodes. Computer Vision, Graphics, and Image Processing 33, 1986, pp. 81-98 ] 

6. Door een "bottom-up" methode te combineren met het selectief uitstellen van som
mige verbindingen. wordt de complexiteit van het ontwerpen van topologische chip 
layouts drastisch verlaagd, terwijl toch een grote mate van flexibiliteit gegarandeerd 
wordt. 

[1 M.L.P. van Lierop. A fiexible bottorn-up approach for layout generation. 
Integration, the VLSI journal3, 1985. pp. 49-59] 

7. Het bewijs van Stelling 3.3 in het boek "Computational Geometry" van Preparata en 
Shamos is fout. 

[ F.P. Preparata and M.l. Shamos. Computational Geometry; an lntroduction. 
Springer-Verlag. 1985 ) 

8. De gelden uit het Informatica Stimulerings Plan voor het LBO en MBO. zijn tot nu toe 
meer ten goede gekomen aan jongens dan aan meisjes. 

9. De voorgedrukte kaarten die gebruikt worden om bij auteurs afdrukken van artikelen 
aan te vragen. met daarop de aanhef "Dear Sir". getuigen van stereotiep denken bij 
wetenschappers. 


