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Experience is the name
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Chapter 1

Introduction

1.1 Background

Dropwise condensation from a gaseous supersaturated state is of relevance to many en-
vironmental and technological processes. With reference to environmental applications,
for example, the formulation of quantitative models for weather predictions requires the
numerical solution of condensing flows. The prediction of fall-out phenomena, following
nuclear explosions, has also acquired dramatic relevance due to nuclear weapons testing or
nuclear accidents. In these cases, condensation occurs primarily on foreign particles (ions,
dust or salt crystals) and is normally termed heterogeneous condensation. In industry,
heterogeneous condensation is important, for example, for condensation on substrates in
metallurgical applications, or for the production of sprays in the pharmacological industry.

There exist also examples in which condensation nuclei are produced spontaneously
within the vapour phase. In these cases, the actual phase transition is preceded by homo-
geneous nucleation, which involves the formation of metastable clusters due to molecular
fluctuations, and then proceeds as droplet growth due to condensation on the nuclei. Phase
transition through homogeneous nucleation plays a key role in many natural and industrial
processes, as well. For example, the formation of aerosols is associated with many catalytic
reactions influencing, amongst others, the atmospheric ozone concentration. The forma-
tion of plumes by condensation of hot exhaust gasses or the venting of a tank into vacuum
are examples of interests for the aerospace industry. In steam turbines applications, homo-
geneous condensation may lead to an increased loss of efficiency (thermodynamic wetness
loss) and/or to the erosion of turbine blades. In the petrochemical industry, nucleation of
water and higher hydrocarbons may lead to advanced methods for condensate separation,
thereby reducing significantly the costs for the exploitation and handling of oil and natural
gases. In all these industrial applications, a key element for their success is related to the
possibility of predicting and, therefore, controlling the homogeneous/heterogeneous nucle-
ation rate processes. Obviously, a fundamental prerequisite for controlling any process
relies on the understanding of its physical mechanism.
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From this standpoint, expansion flows in supersonic nozzles are extremely useful and
provide excellent test cases for condensation studies. The study of homogeneous conden-
sation in supersonic nozzle flows presents many advantages over test cases involving cloud
chambers or wave tube methods. The accurate modelling of nozzle flows is, in fact, ex-
tremely sensitive to the quality and accuracy of nucleation and droplet growth theories.
Consider, for example, that a typical inaccuracy in determining nucleation rates in expan-
sion wave tubes experiments is 1 to 2 orders of magnitude. The same inaccuracy, when
testing nucleation models in nozzle flows, would lead to significant discrepancies. Pressure
distributions, frequency data, and droplet sizes are, in fact, very sensitive parameters to
test the quality of nucleation rates. Furthermore, thanks to the large subcoolings that can
be achieved in nozzle flows, experiments of condensing nozzle flows may convey information
on some unknown physical properties, such as surface tension. It is, therefore, the aim of
this thesis to gain more physical insight on the modelling of nucleation and droplet growth
processes by a systematic and thorough study of homogeneously condensing nozzle flows.

1.2 Phenomenology

The general problem of non-equilibrium condensing flows can be incorporated in the frame-
work of relaxation gas dynamics. Therefore, its physical understanding rests largely on the
role played by the relaxation times of the internal rate processes. From an heuristic view-
point, the effects of nonequilibrium condensation can be summarised as follows. During the
expansion of a condensable vapour in a supersonic nozzle, the thermodynamic state in the
flow may approach the coexistence region between the vapour and liquid phase. Neverthe-
less, due to the high cooling rates [O(10%) K's™!|, the gaseous phase may depart radically
from the equilibrium phase distributions. A state of high supersaturation is therefore
achieved, indicative of a metastable non-equilibrium state of the vapour phase. In absence
of foreign particles, the actual phase transition is preceded by homogeneous nucleation,
involving the formation of small clusters of molecules due to statistical fluctuations. As
these metastable clusters exceed some critical size, the process of droplet growth sets in,
leading to the formation of a stable liquid phase.

The accompanying release of latent heat to the flow has a strong impact on the flow
pattern. Depending on the initial stagnation conditions, different flow regimes may result.
If the amount of heat, released at a certain axial location in the nozzle, is below some critical
amount, then only a local increase in temperature, pressure, and density is observed over
a relatively small distance (subcritical flow), as shown in Fig. 1.1-top. If the amount of
heat released exceeds this critical value, the flow becomes thermally choked and a steady
shock appears embedded in the nucleation zone, as shown in Fig.1.1-bottom.

The details of the condensation process are immediately inferable from Fig. 1.2. First
nucleation sets in just upstream of the nozzle throat (x = 0) and no perturbation of the
flow properties is observed. As soon as the droplet growth process starts and significant
heat is released to the flow, a shock appears due to the compressive effects from excessive
heat release, thus interrupting the nucleation process.
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Subcritical Flow

Figure 1.1: Schlieren pictures of steady flow experiments. Nozzle: S2. Flow direction:
from left to right. Courtesy of G.H. Schnerr & S. Adam (S. Adam, PhD thesis, Universitét
Karlsruhe, 1996).

log,,J  p/p, 0/9,..,
250 10—+ r 71171
[m®s™];

20.0+ 0.8

15.0- 0.6

10.0- 0.4

5.0 0.2

0.0- 0.0

Figure 1.2: Example of a supercritical flow prediction. Axial distributions of pressure
p/po, condensate mass fraction g/gmaz, and nucleation rate J. The pressure profile p,q/po
for dry nozzle flow is also included. Nozzle: G2.
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As a result, the nucleation rate becomes a sharply peaked function of x. If the amount
of heat released increases further, a steady flow solution cannot be obtained and self-
sustained oscillations appear due to the non-linear coupling between the flow and the
nucleation process. Schnerr & Adam [3] presented a detailed discussion on the modality
of these oscillations and their dependence on the nozzle geometry. There exist different
types of oscillating regimes. Figure 1.3 shows the schlieren streak recording of the different
oscillations modes [2, 3.

Mode I Mode I1 Mode II1

Figure 1.3: Schlieren streak recording of the different modes of oscillation in nozzle S2.
Flow direction: from left to right. Time scale: from top to bottom. Courtesy of S. Adam
and G.H. Schnerr (JFM, Vol. 348, pp. 1-28, 1997).

The thin vertical line in middle of each recording indicates the nozzle throat. Proceeding
from left to right, first Mode I is depicted. This oscillation mode is characterised by
upstream propagating disturbances crossing the nozzle throat. Then, Mode II is presented
where the disturbances die out before reaching the throat. The last mode, denoted as Mode
I1I, is characterised by very rapid, small-amplitude oscillations. Schnerr and Adam [2, 3]
also reported the first example of bifurcations in these types of flows with the occurrence
of asymmetric flow regimes. An example of the flow structure is shown in Fig. 1.4.
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Figure 1.4: Example of a schlieren recording of an asymmetric periodic oscillating flow.
Nozzle: Al. Flow direction: from left to right. Courtesy of G.H. Schnerr & S. Adam (S.
Adam, PhD thesis, Universitat Karlsruhe, 1996).

The occurrence of these self-sustained oscillations (either symmetric or asymmetric)
has a strong impact on the droplet formation and size. On a time-averaged basis, the
condensation zone is spread over a much greater distance in the flow direction than a
simple steady-flow analysis would indicate. Further, the predicted droplet size spectra vary
in time, ranging from an almost monodispersed distribution with larger mean diameters
to broad distributions with much smaller mean diameters. Unfortunately to date, an
experimental confirmation of this trend has not been provided yet. In fact, progress in
the experimental determination of droplet spectra via optical techniques has been scarce
and much less satisfactory, mostly due to the difficulties of both resolving the details of
the spectrum and inverting optical transmission data. Furthermore, most of the efforts
concentrated on the experimental study of wet-steam in nozzle flows or steam turbines
due to the importance of these types of flows for technological applications. Despite the
noteworthy progress, there is still the inability of any theory to provide a truly satisfying
physical explanation of the observed facts. In particular, the effect of unsteadiness on
nucleation and droplet growth is not fully understood, and reliable unsteady droplet size
measurements are not yet available to corroborate the theoretical models. This work aims
to contribute to a better understanding of these complicated phenomena.

1.3 Literature overview

An extensive body of literature exists on the modelling of non-equilibrium flows with
condensation, especially with reference to wet-steam condensation. Although it is very
difficult to draw a line (due to the many common features), this section focuses mainly on
the directly relevant investigations for this thesis: namely, previous works on homogeneous
condensation in water vapour/carrier gas mixtures. The literature overview with respect
to the employed experimental techniques is deferred to chapters 4 and 5.

Early investigators of air flow in supersonic wind tunnels were surprised by the observa-
tion of two shock-like disturbances in the flow. The first visualisation of such disturbances
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was presented at the Volta Congress in Roma, in 1935, by Prandtl [148] and is reproduced
below in Fig. 1.5. In the ensuing discussion, Wieselberger suggested that a possible cause
could be attributed to the presence of water vapour in the air flow.

Figure 1.5: Schlieren photograph of an X-shock, presented by Prandtl at the Volta
congress [148], in Roma.

Hermann [56] investigated systematically this phenomenon and demonstrated that these
disturbances were indeed caused by condensation of water vapour in air. A unified ki-
netic and thermodynamic analysis of moist air and steam condensation was proposed by
Oswatitsch [94-96] in 1942. He was the first to suggest that the modelling of nonequi-
librium condensation should be separated in two distinct processes, namely homogeneous
nucleation and droplet growth. Oswatitsch [95], Head [52], Lukaiewicz and Royle [78],
and Wegener [155] performed early experiments aimed to establish empirical correlations
between supply relative humidity, nozzle geometry and size, and onset of condensation.
Important contributions to an understanding and analysis of condensation phenomena
were also provided by Daum and Gyarmathy [24], Willmarth and Nagamatsu [161], and
Wegener and Mack [156]. In 1966, Hill [58] re-examined the existing data on condensation
of steam and moist air in supersonic nozzles and compared them with the prediction based
on nucleation and droplet growth theory. The theoretical predictions were obtained with
a 1-D numerical code for steady flows. Hill was among the first to stress the importance of
an adequate droplet growth calculation, before theory and experiment can be compared.
In more recent years, Schnerr [116,118] visualised by means of schlieren techniques com-
plex two-dimensional structures, for steady flows, in strongly curved nozzles due to the
non-linear interactions of pressure waves and nucleation fronts.

The phenomenon of self-sustained oscillations in slender nozzle flows was first discovered
and visualised by Schmidt [113]. Barschdorff [7] obtained, both for moist air and pure
steam, the first quantitative results for the frequency of oscillations and established how
the latter depends on the supply relative humidity. Zierep and Lin [166] derived the
first similarity law for the dimensionless frequency as a function of nozzle throat height,
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expansion rates, and supply conditions. Further quantitative data for pure steam nozzle
flows were provided by Barschdorff and Filippov [8] and by Deych et al. [32], who were
amongst the first to measure droplet sizes in pure steam nozzle flows. The first droplet size
measurements in nozzle flows of moist air were proposed by Conrad [23] in 1977. Wegener
and Cagliostro [157] and Matsuo et al. [82,83] conducted further experiments using either
supersonic wind tunnels or a Ludwieg tube, for mixtures of water vapour and carrier gas.
Here, very high frequencies were reached (=~ 6 KHz) due to the fact that, in the Ludwieg
tube facility, supersaturated stagnation conditions could be easily reached. The influence
on the variation of inert gas concentration was experimentally investigated by Wegener
and Mosnier [158], using water vapour either in helium or in argon. Early investigations of
homogeneous condensation of moist air in a Prandlt-Meyer expansion flow were performed
by Smith [129] for steady flow regimes. The occurrence of self-sustained oscillations, in
supersonic expansion flows around sharp corners, was first visualised by Frank [37, 38].

A study of theoretical solutions for steady nozzle flows with heat addition was presented
by Zierep [167]. Sichel [126] studied analytically unsteady nozzle flows with heat addition.
Barschdorff and Filippov [8] provided, under the assumption of one-dimensional unsteady
flow with condensation, a semianalytical solution and derived a simplified formula for the
frequency of the oscillations. Blythe and Shih [11] introduced the use of asymptotic meth-
ods for the description of the condensation shock structure in nozzle flows. Further studies
on the detailed structure of the condensation zones, for both subcritical and supercritical
flows, have been conducted by Delale et al. [28—-30], using the asymptotic prediction method
proposed by Blythe and Shih. More recently, Delale et al. [31] investigated the stability
limit of stationary shock waves where bifurcations to unsteady periodic flow occur.

The first numerical calculations of unsteady two-phase nozzle flows with non-equilibrium
condensation of pure steam were obtained, with a 1-D code, by Saltanov and Thalenko [110].
They were also able to capture the characteristics of the two oscillations modes (I and II).
Skillings and Jackson [127] adopted a Lagrangian framework and tracked the evolution of
25 different droplet classes, in their 1-D code for pure steam. Numerical simulations of the
two different oscillation modes were also provided by Guha and Young [46]. Collignan [22]
first determined, numerically, the frequency minimum in wet steam nozzle flow with a 1-D
Euler code.

The first 2-D calculations of wet steam flow were presented by White and Young [159].
They clarified the effects of the periodic quenching of the nucleation rate on the droplet size
distribution and predicted the instantaneous formation of a bimodal distribution within the
oscillation period. A 2-D Euler solver has also been developed by Walpot et al. [84,150]
by blending together modelling elements from Hill [58], Young [162], and Schnerr and
Dohrmann [117]. Mundinger [91] developed a 2-D numerical scheme of high accuracy for
the calculation of unsteady flows of water vapour/carrier gas mixtures. Utilising this code,
Schnerr and Mundinger [119] and Schnerr et al. [121] performed a systematic investigation
of the frequency dependence on the stagnation conditions and nozzle geometry. Here, for
slender nozzles and in agreement with the experiments of Adam [2], three modes of oscil-
lations were determined and a sharp frequency minimum determined. Furthermore, they
proved that strongly two-dimensional flow fields have a stabilising effect on the flow. More
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recently, Adam [2] and Adam and Schnerr [3] discovered a new instability phenomenon in
homogeneously condensing flows which has been also experimentally confirmed. Here, in
a perfectly symmetric nozzle, a systems of upstream propagating oblique shocks suddenly
develops, with strong effects on the frequency and droplet size distribution. The influence
of possible heterogeneous effects in nozzle flows of water vapour/carrier gas mixtures has
been numerically investigated by Heiler [54,55]. He concluded that, with increasing num-
ber of foreign particles, the frequency of oscillation decreases till the flow stabilises due to
subsonic heat addition.

1.4 Thesis overview

The aim of this thesis is to provide an experimental database which is subsequently used
to validate several condensation models. Due to the fact that a complete model check can
only be done when both droplet sizes and frequency data (or pressure distributions) are
available, special emphasis is given to the accurate experimental determination of droplet
sizes, frequencies, and density fields The structure of this thesis is, therefore, a modular
one. Chapter 3, 4, and 5 concentrate on the experimental methods and techniques, whereas
in chapters 2 and 6 several condensation models are discussed and validated.

Specifically, chapter 2 focuses on the modelling of homogenous nucleation and droplet
growth processes. Efforts are made to highlight the key features and critical aspects in
the modelling process. Particularly, the extrapolation of surface tension data to low tem-
peratures is analysed in light of equilibrium thermodynamics. Surface tension plays, in
fact, an essential role in the performance of nucleation models, especially for nozzle flows
nucleating at very high subcoolings.

Chapter 3 concentrates on the practical and operational aspects of the experimental
equipments. Here, detailed specifications on the various set-ups can be found. Chapter 4
discusses some important features of holographic imaging, which are of particular rele-
vance for interferometric study of transparent media. It is shown that the quality of the
interferograms depends mostly on the properties and quality of the adopted hologram type.

Chapter 5 contains a review on methods for the measurement of droplet sizes. Em-
phasis is given on the accuracy of the measurements with respect to noise level, number
of signals recorded, scattering effects, and distance from the regime of Rayleigh scatter-
ing. Particularly, the validity of the single scattering assumption is verified by means of a
Monte Carlo numerical simulation. The results are, then, compared with the theoretical
predictions from single scattering theory. This comparison shows clearly that, despite the
high droplet number densities, the measurements are not jeopardised by multi-scattering
effects.

Chapter 6 compares different condensation models on the basis of a large selection of
experimental results for water vapour/carrier gas mixtures. Starting from the droplet size
measurements, which allow a thorough validation of the condensation models, an optimised
model is derived which best correlates all experimental data. Chapter 7 contains the
conclusions of the present investigation.



Chapter 2

Physical model and computational
method

2.1 Introduction

In section 1.2, the qualitative effects of nonequilibrium condensation in transonic nozzle
flows have been illustrated. Macroscopically, they result in two major products, namely the
release of latent heat to the flow and the spontaneous generation of a liquid droplet cloud,
whose properties strongly depend on the coupling between the flow and the condensation
process itself. In addition, it is also pointed out that the modelling of nonequilibrium
condensation can be separated in two distinct processes, namely: homogeneous nucleation
and droplet growth. Homogeneous nucleation refers to the spontaneous formation, within
the vapour phase, of stable clusters by the kinetic process of evaporation and impingement
of molecules; droplet growth refers to the process in which stable droplets increase in size
by gaining more and more molecules.

In this chapter, the modelling of condensing flows is discussed in more detail, in the
hypothesis of a gaseous mixture of condensable vapour (water vapour) and an inert gas
(nitrogen and/or air). The topic is tackled in a very broad manner, ranging from ther-
modynamic to numerical issues. An extensive body of literature already exists on this
subject [3,48,49,54,58,162,165|, and these works are referred to as much as possible. De-
spite the noteworthy progress, there are still a few open questions regarding the modelling
of liquid droplet condensation in presence of an inert gas. It is, thus, on these unresolved
issues that the present analysis is mainly focused. One of the major difficulties is the
correct prediction of the nucleation rate J as function of the thermodynamic state at very
large supercoolings, i.e. for temperatures in the range of [220 + 235 K]. At these low
temperatures, in fact, significant uncertainty exists with regard to the surface tension of
subcooled liquid water. This uncertainty makes the assessment of nucleation models ex-
tremely critical, since it strongly depends on the extrapolation of surface tension data to
low temperatures. This is discussed in subsection 2.3.2, where a new fit for the surface
tension is introduced on the basis of experimental results and thermodynamic considera-



10 CHAPTER 2. PHYSICAL MODEL AND COMPUTATIONAL METHOD

tions. A second relevant issue concerns the modelling of the droplet growth process in the
presence of an inert gas. For practical and computational purposes, it is often assumed
that the condition of thermal equilibrium between the droplet and the vapour is approx-
imately maintained throughout the growth process. In other words, the droplet and gas
temperature are considered equal T; = T,,. This assumption relies on the surmise that, due
to the high concentration of inert gas molecules, the droplet is promptly and effectively
cooled down. In sections 2.4.1.1 and 2.4.2, it is shown that this supposition is incorrect
and that significant errors are introduced in the evaluation of the droplet growth rate.
By comparing different formulations of the growth law, the appropriate driving potentials
are identified and the importance of accounting correctly for the energy flux between the
droplet and its environment is ascertained. Further, it is shown that the temperature dif-
ference has a strong influence on the condensation process, particularly in the initial stage
of droplet growth, where the quenching of the nucleation rate occurs.

This chapter consists of two distinct parts. The first part describes the physical mod-
elling of the two-phase vapour-liquid mixture. In particular, section 2.2 summarises the
thermo-fluid-dynamic model, while sections 2.3 and 2.4 illustrate various condensation
models and discuss their underlying assumptions. The second part of this chapter de-
scribes concisely the numerical method. For a more detailed description, the reader is
referred to Prast [104].

2.2 Thermodynamic properties and conservation laws

Consider a mixture of a carrier inert gas (nitrogen and/or air) and a condensable vapour
(water vapour), both initially in the gaseous phase. Objective of this section is to char-
acterise the thermo-fluid-dynamic state of this mixture, while it expands from a dry to
a wet state. The issue is not trivial since, unless the condition of local thermodynamic
equilibrium is satisfied, it is theoretically impossible to describe the state of the mixture
by means of simple thermodynamic relations, such as equation of state, internal specific
energy e, specific heats, speed of sound, etc. It should be recalled, in fact, from Callen [18],
that these properties are defined and have physical meaning only if the condition of local
thermodynamic equilibrium is satisfied everywhere in the flow field.

The general behaviour of non-equilibrium condensing flows was examined by Marble [79]
(1969) from the viewpoint of relaxation gas dynamics and later (1982) revised and extended
to more general conditions by Young and Guha [163|. Summarising the most relevant is-
sues, the approach of the above mentioned authors is closely followed. First, it is observed
that, until the moment homogeneous nucleation sets in, the flowing mixture is in a state
of metastable thermodynamic equilibrium. Thus, the standard thermo-fluid-dynamic rela-
tions can be applied to each of the gas components. Upon the occurrence of homogeneous
nucleation, the system changes to a liquid-vapour mixture consisting of a large number
of droplets, which are assumed for simplicity to be spherical, immersed in a homogeneous
gaseous background. Since the total mixture is not in thermodynamic equilibrium (i.e. the
droplet growth process is active), there will be in general an interface exchange of mass,
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momentum, and energy. Each of these processes is characterised by its own relaxation time
7; and the physical understanding of the complex flow field rests largely on the role played
by these relaxation times.

This problem was studied in detail by Young and Guha [163] for the flow of a wet
vapour. However, the analysis is valid and can be reformulated to include also an inert
diluter. Young and Guha identified essentially three different relaxation processes: thermal
equilibrium of the droplets, interface velocity slip, and thermal equilibrium of the whole
medium. Each of them is associated to one of the above mentioned internal rate processes.
Their analysis led to the following: the relaxation process for the droplet thermal equilib-
rium is the fastest one, which implies that the droplet temperature approaches relatively
fast its equilibrium value 7,'. If the droplets are small (r; < 107% m), then also the
interface momentum transfer reaches fast its equilibrium state, and there is no velocity
difference between the two phases. The third relaxation process, i.e. where the gas phase
temperature relaxes to its equilibrium value, develops relatively slowly and can, therefore,
be considered as frozen. In other words, due to the high cooling rates, typically being
(—dT'/dt) of the order of 0.3 K/us, the variations driven by the flow field are faster than
the thermal variations due to condensation. Thus, the mechanics and thermodynamics of
the gas and liquid phase are uncoupled and the gas phase flow behaves like that of a simple
single phase gas.

Based on the foregoing discussion, the fluid dynamic behaviour of the two-phase mixture
can be described by the system of conservation laws, corresponding to the conservation
of the total mass, momentum, and energy, combined with the equation of state for the
mixture gas phase, plus an additional equation describing the formation of the condensate
mass. For completeness, the most relevant relations are summarised below.

The total mass of mixture M, present in a control volume, is given by

M =M, + M, + M, (2.1)

where the subscripts a, v, [ indicate the inert carrier gas, the vapour, and the liquid phase,
respectively. The liquid mass fraction g is simply

M M,

=" = : 2.2
g M Ma + M,U + Ml’ ( )
and the maximum condensate mass is
M’UO
max — ; 2.3
g i (2.3)

where the subscript (0) refers to the stagnation conditions. For small wetness fractions
(g < 0.1), the volume occupied by the liquid phase can be neglected, since it is of 4 to
5 orders of magnitude smaller than the volume occupied by the gas phase. Under this
assumption, the density of the mixture is equal to:

Q:Qa+gv
1—g’

(2.4)

lwhere the notation T, stands for saturation temperature.



12 CHAPTER 2. PHYSICAL MODEL AND COMPUTATIONAL METHOD

where o, and o, are the density of the carrier and vapour components, which can be
expressed as

Oa = (1 - gmaa:) 0, (2'5)
Ov = (gmaz - g) 0. (26)

The isochoric and isobaric specific heats ¢,o and c,9, and the specific gas constant R of
the mixture, calculated with respect to the reservoir conditions, are defined as:

Coo = (1 - gmam) Cva + 9maz Covv, (27)
Cpo = (1 - gmax) Cpa + 9maz Cpu, .
RO = (1 - gmaﬂ:)Ra + gmamRv- (29)

The static pressure of the mixture, under the hypothesis of an incompressible liquid phase,
is simply the sum of the partial pressure of the gas components:

P = Do+ Do- (210)

Under the hypothesis of perfect gases, which is a reasonable assumption for the vapour
and inert gas pressures considered in this thesis, it results:

PDa = 0aR.T, (2.11)
P = 0, R,T. (2.12)

Thus, the equation of state for the whole mixture becomes:

p = oT [(1 - gmam)Ra + (gmaa: - Q)Rv]u
= oT(Ry— gR,). (2.13)

The specific internal energy and enthalpy of the mixture can be expressed as:

€ = (]- - gmaw)ea + (gmax - g)ev + ger,

= ¢l +9(RT—L) (2.14)
h = (1= gmaz)ha + (Gmaz — 9o + ghu,
= cpol —gL; (2.15)

where L denotes the latent heat of condensation. Its expression in terms of the temperature
T, together with all gas physical properties, is provided in Appendix A.

The condition Ty; = T, automatically yields for the droplet temperature the equality
pa = psr(Ty,7a), since at equilibrium these two are related by the Clausius-Clapeyron
equation. The notation p,, represents the phase equilibrium pressure at a curved liquid-
vapour interface:

Dsr (Tda Td) = Psco €XP Ke(Tda Td)a (216)
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where the subscript “co” refers to a phase equilibrium at a flat interface and the Kelvin

factor Ke is defined as
20

o R, Tyrg

The relevant speed of sound for the non-equilibrium condensing mixture is, on the
basis of our introductory discussion, the thermally frozen speed of sound, calculated at
constant entropy s and condensate mass g. In other words, this is the propagation speed
of a sound wave in a medium where a) the droplets and the vapour move together without
slip, b) the droplets are locally in thermal equilibrium (7; = T5), and c¢) the droplet and
vapour temperatures are uncoupled 7; # T, as are their pressures p, # ps.. Following
Mundinger [91], this results into:

op dp p (Op
f
89 $,9 8@ €,9 Q2 86 0,9

The droplet temperature 7} is calculated explicitly by means of an energy balance at the
droplet surface, as shown in section 2.4.1.

To conclude this section, the whole set of equations is reported hereafter. Because
of its importance, it is stressed again that this single phase formulation holds only if
the condition of mechanical equilibrium (i.e. no slip between droplets and gas/vapour) is
identically satisfied throughout the flow field. Further, assuming the flow to be inviscid and
thermally non-conducting, for each control volume the system of equations in conservative
form reduces to the balance equations for mass, momentum and energy supplemented with
an equation for the rate of change of the liquid mass fraction:

Ke(Td,Td) = (217)

Conservation of mass:
do  9(ou) | O(ov)
ot ox dy

Momentum balance:
Oeu) | 0(eu® +p) , 9euv)

=0, (2.19)

=0 2.20

ot Ox oy ’ (2.20)
d(ov) | 9ovu)  9(ov® +p)

= 2.21

ot oz T oy 0 (2.21)

Conservation of energy:

9(eE)  O((eE +p)u)  I((oF +p)v)
=0 2.22
o T ar T oy ! (2.22)
Condensate mass formation:
t
Dy 47 3 J(t) / J(r) or(t,7) ,
— = [— () ——= 4 t d 2.23

— 00

where u and v are the cartesian velocity components in the x- and y- direction, respectively,
and E is the total energy (E = e + 1/2[u? + v?]). The symbolism Dg/Dt denotes the
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“substantial derivative” of g and represents the change of condensate mass in a Lagrangian
frame of reference: D 9
g g

Ft = 8_t + K : Vg. (2.24)
Equation (2.23) expresses the variation of condensate mass along a pathline as the sum of
two terms. The first term represents changes in g due to the production, by homogeneous
nucleation, of new droplets; the second term represents the growth of droplets, born at the
time 7. Equation (2.23) is a complicated integro-differential equation. There exists several
different ways to integrate this equation [54,58,159], one of these is briefly discussed in
Appendix C. The system of equations is formally closed once a specific relation is provided
for the nucleation rate process J and for the droplet growth rate dr/dt as a function of
the thermo-fluid-dynamic state. In the subsequent sections, several nucleation and droplet
growth models are reviewed, especially with regard to the still existing uncertainties in the
models.

2.3 Homogeneous nucleation

Homogeneous nucleation involves the formation of metastable clusters from a population
of vapour molecules in a supersaturated state, which are big enough to act as condensation
nuclei. The notion of “sufficiently big” is specified more precisely later in this section.
During this process, embryos of all sizes are continuously agglomerating and evaporating,
due to molecular fluctuations within the vapour phase. It should be noted that the for-
mation of molecular clusters is not an exclusive prerogative of a supersaturated vapour.
However, the probability that they may lead to irreversible droplet growth is directly re-
lated to the occurrence of a supersaturated vapour state. As a first step, thus, the notion
of supersaturation has to be established. The latter can be defined as follow:

[S— - (2.25)

pSOO(T) ’

where p; oo(7") is the saturation vapour pressure of a vapour in equilibrium with a flat
liquid surface, at the temperature 7. Obviously, in saturated equilibrium it holds p, =
ps(T) and S = 1. Thus, the notion of supersaturation is directly connected to that of
thermodynamic non-equilibrium. Once supersaturated, the system searches its way back
to equilibrium by condensing either onto an eventually available surface (such as liquid bulk
surface, foreign particles or wettable walls) or by spontaneously forming clusters in the gas
phase, that are large enough to act as condensation nuclei. With regard to nozzle flow
applications, Heiler [54,55] proved that heterogeneous effects can be neglected due to the
comparatively low concentrations of foreign particles present in laboratory experiments,
such as those performed in our department. Therefore, this section concentrates solely on
the process of homogeneous nucleation.

The free energy of formation of a cluster containing n molecules can be expressed, on
thermodynamics grounds [75,85], as the sum of two terms:

AG, = —nkgT InS + o agn??, (2.26)
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where kg is the Boltzmann constant, ¢ is the surface tension of liquid water, and aq is a
molecular surface area, defined as ay = (367)Y3(v;)?/3, v; is the liquid molecular volume.
The first term represents the decrease in free-energy due to the formation of the liquid bulk
phase, the second term, instead, represents the increase in free-energy due to the formation
of the interface between the two phases. If S < 1, then AG,, increases monotonically with
n and, thus, the probability of phase transition tends to zero; if, instead, S > 1 there exists
always a critical value of n* such that it becomes energetically favourable to initiate the
phase transition. The critical value n*, or equivalently the critical radius r*, can be found
by setting the derivative of Eq. (2.26) with respect to r equal to zero, leading to

e__ 20(T)

This critical cluster of radius r* is in metastable equilibrium with its vapour. It should
be noted that increasing the degree of supersaturation results in decreasing both the acti-
vation barrier AG,, and the critical embryo size r*. In other words, by increasing S, the
probability that a certain cluster exceeds fortuitously the critical sizes increases. At this
point, homogeneous nucleation effectively starts, and phase transition can finally begin.

It is not the purpose of this thesis to review the status of nucleation theory. Excellent
reviews on the state-of-art for nucleation research and its derivation can be found in [1,75,
76,97]. Suffice here to say that basically all nucleation theories assume the nucleation rate
J - that is the rate of formation of metastable clusters per unit time and volume - to be
proportional to the equilibrium number density of critical embryos. That is

J = K exp(AG,+/kpT). (2.28)

The explicit form for the factors K and AG,,- depends on the specific models adopted for
the kinetic process of clusters agglomeration and for the free-energy, respectively. It should
be stressed that in this formulation of the nucleation rate, thermodynamic equilibrium
parameters are used to characterise a non-equilibrium process (essentially because of a lack
of a better alternative). In light of this remark, huge discrepancies have to be expected
between theoretical predictions and experimentally measured nucleation rates, in particular
for nucleation models that strongly rely on the capillarity approximation. In the next
section, two of these models are briefly reviewed.

2.3.1 Classical nucleation theory

By blending together elementary thermodynamics and kinetics considerations, a closed
expression for the nucleation J can be derived, expressing the latter as a function of
the thermodynamic state of the nucleating vapour. The resulting formula represents the
Classical Nucleation Theory (CNT), which has been, aside from slightly different variants,
widely applied to the study of transonic condensing flows. In this section, two different
variants are considered, namely the above mentioned (CNT) model and the Internally
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Consistent Classical Theory (ICCT) version. Their formulation is reported below:

2 3
P 20 4 ©
7 _ P 2T . 2.29
Nt oV Tm? [ 27 (In 5)2] ’ (2.29)
1 Oag
JICC’T S JCNT exp @, Q)] ]{}BT’ ( 30)

where m is the mass of a vapour molecule, and © is a dimensionless surface tension, mea-
suring the relative importance of surface to thermal energy. The two models, thus, differ
essentially from each other for the presence of the factor 1/.S, which is somehow connected
to the detail of the applied cluster model, and for the presence of the exponential factor
exp ©. The latter is directly connected to issues of self-consistency in modelling the forma-
tion energy AG, [75]. On this issue, no general agreement can be found in the literature.
Therefore, the comparison between experimental and theoretical values is employed as a
pragmatic base for preferring one model to the other. Following this approach, Luijten [75]
suggested, on the basis of wave tube experiments, that for water-nitrogen systems the
best agreement is found using the (ICCT) formulation. In Luijten’s work [77,98], “best
agreement” means that the ICCT theory overestimates the actual nucleation rate by two
orders of magnitude, as opposed to the CNT theory which underestimates it by 3-4 orders
of magnitude.

Unfortunately, the extrapolation of Luijten’s results to homogeneously nucleating noz-
zle flows is not straightforward, essentially for three reasons. First, Luijten’s conclusions
are derived for a vapour nucleating in a range of temperatures and supersaturations dif-
ferent from those encountered in condensing nozzle flows. Second, the performance of a
certain nucleation model depends strongly on the substance and temperature range at
which nucleation actually takes place. Enlightening is in this respect the article of Gir-
shick and Chiu [43]. Third, the ambiguities on the surface tension of subcooled water -
typically at temperatures of the order of 230 K - make the assessment of the quality of
nucleation models highly questionable. In section 2.3.2, the approach employed in this
work to overcome these uncertainties is briefly illustrated. A detailed description can be
found in chapter 6.

On the basis of these considerations, there is no sound justification for preferring the
ICCT to the CNT model, in the sense that both theories require a correction. Given the
uncertainties, it seems a good course of action to simply introduce an empirical factor &
in the nucleation expression; while it is relatively irrelevant if this correction is applied to
the ICCT or to the CNT model. The experimental validation of nucleation theory will
then indicate the correct value for the parameter £. In the forthcoming sections, the ICCT
model is retained. The CNT model is maintained only for reference. In chapter 6, in
fact, our theoretical predictions are compared with those of other condensation models,
based on the CNT formulation. Here, one of the results is anticipated: the validation
of nucleation theory, in the range (218 < T < 275K) and (3 < S < 50), confirmed
Luijten’s findings Jicor/Jewp = 10%. Summarising, thus, the implemented nucleation rate
is JI{CCT = & Jicor, where & = 0.01. The expressions for the vapour pressure and surface
tension are provided in Appendix A.
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As concluding remarks, it should be mentioned that both nucleation models are based
on macroscopic properties (i.e. capillarity approximation) and assume a cluster to be spher-
ical and smooth, with an interface of zero thickness. Second, this value of J represents the
steady-state solution. This means that the fluz J, at which the number density of clusters
varies in time, is constant and independent of cluster size. The question now is whether
this formulation of the nucleation rate can still be applied to nozzle flows where the flow
field may vary in time faster than the characteristic time required to reach the state-state
nucleation solution. According to Abraham [1], a steady-state solution for the nucleation
rate is reached within a characteristic time 7* of 1077 — 10~% 5. For the nozzles considered
in this study, typical cooling rates are within a range of [0.2 — 0.8] K/us, thus, implying a
temperature variation of less than 1 K in one microsecond. For a periodically oscillating
flow, a typical value of the period is of the order of 7 = O(107®) s, which is three to four
orders of magnitude higher than 7*. In conclusion, the steady-state nucleation formula-
tion can in good approximation be applied both to steady and unsteady condensing nozzle
flows.

2.3.2 Extrapolation of surface tension data to low temperatures

In section 1.1, it is observed that nozzle experiments of condensing flows may constitute
a precise tool for validating condensation models. In fact, as pointed out by Young [162]:
“when both pressure measurements and droplet size data are available, the accuracy of
nucleation and droplet growth theory can be tested to a certain extent independently”.
Unfortunately, in the case of water vapour/carrier gas mixtures, this validation process
is strongly hampered by the significant uncertainty with regard to the surface tension
of subcooled liquid water. This uncertainty makes the assessment of nucleation models
extremely critical, since it strongly depends on the extrapolation of surface tension data
to low temperatures of the order of 230 K. Despite its importance, this problem has been
only marginally addressed in the literature. Typically, most authors dealing with nucleation
studies have bypassed the issue and simply adopted a linear fit to extrapolate the surface
data to even lower temperatures. This approach is, in fact, undertaken by Luijten [75]
for his high pressure nucleation study, and maintained by Prast [104] for his simulations
of condensing nozzle flows. The fit is based on the experimental data of Hacker [50], who
managed, by means of a simple and reliable method, to achieve the largest subcoolings so
far reported in literature. His data go down to roughly 250 K and are plotted in Fig. 2.1.
The fit proposed by Luijten and Prast o*? is reported hereafter and shown graphically in
the same figure.

Luijten - Prast surface tension fit
otP(T) =0.127245 — 1.89845-107* T [N/m];  for T <268.0 K (2.31)

Since for some of the experiments considered in chapter 6, nucleation occurs at tempera-
tures well above 265 K, a different correlation is chosen by the present author, which is
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presented later in this section. A second surface tension fit, which has been extensively
applied to condensing flows, was proposed by Schnerr and Dohrmann [117]. The Schnerr
and Dohrmann fit is also included in Fig. 2.1.

Schnerr - Dohrmann surface tension fit

(76.1 4+ 0.155 - (273.15—T)) - 1073 [N/m]
for T > 249.39K

((1.1313 = 3.7091 - 10 3 T) T*- 10 — 5.6464) - 106 [N/m)
for T < 249.39K

o*P(T) = (2.32)

The first branch of this curve (7" > 249.39 K) follows Pruppacher and Klett [105]; the
second branch represents the authors’ extrapolation of surface tension data to lower tem-
peratures. As it can be inferred immediately from Fig. 2.1, considerable differences appear
only in the extrapolated range. Schnerr and Dohrmann [117] argue that their extrapolation
is in agreement with the experimental results of Peters and Paikert [100]. However, in this
article the surface tension is not directly measured, but derived under the assumption that
the CNT theory is correct?.
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Figure 2.1: Surface tension o of liquid water and its extrapolation to low temperatures
according to various authors.

In the present section a new fit is presented, which is also shown in Fig. 2.1. For T" >
250 K, the LD-fit follows Pruppacher and Klett. In this range of temperatures, Hacker’s

2Schnerr [122] correctly points out that the agreement between experiment and numerical simulation,
based on the CNT (or ICCT) model, cannot lead to conclusions about the thermodynamic state of small
clusters, because of the simplifications in the classical theory in describing the homogeneous nucleation
process. In particular, when the clusters are very small, it is to be expected that the surface energy of
these clusters will be strongly size dependent, so that the capillarity approximation will not hold.
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and Pruppacher’s data do not differ appreciably. However, the Pruppacher and Klett
formula provides slightly better results for the frequency dependence with supersaturation
and therefore their fit has been preferred. It should be noted that, for 7' ~ 248 K, Hacker’s
and Pruppacher’s data coincide both in value and slope. Thus, Hacker’s experimentally
determined trend is assumed as base to start the surface tension data extrapolation.

New surface tension fit: LD fit

8.52000 - 1072 — 3.54236 - 10~* T + 3.50835 - 1076 T2
—8.71691-107°T3 [N/m]  for T <2500K

(76.1+0.155- (273.15— T)) - 1073 [N/m] (2.33)
for T >2500K

O_LD (T) —

In deriving this extrapolation, a different approach is adopted, based on thermodynamic
and experimental considerations. Experimentally, the available and well-documented pub-
lished data on vapour/carrier gas condensation have been collected and compared with the
theoretical predictions. In order to avoid the simple “fitting” of theory to experiments, a
well-defined strategy has been undertaken in this work. First, the quality of nucleation
and droplet growth theory has been assessed separately, in a range of temperatures where
no arbitrariness exists on surface tension data (7" > 260 K). Then, the optimised and
validated condensation model has been used to gain more insight on the surface tension
dependence on temperature for subcooled liquid water. The details of this approach can
be found in sections 6.1 and 6.6.

Thermodynamically, the issue is more complex and requires familiarity with the pos-
tulatory approach to thermodynamics conceived by Tisza and excellently developed and
divulged by Callen [18]. In this section, the most important issues which led to the for-
mulation of the thermodynamic constraint are summarised. For an understanding of its
physical meaning and implications, the reader is referred to the book of Callen [18]. The
analysis proceeds from the recognition that o is, by definition, the surface tension of liquid
water in equilibrium with its own vapour. As pointed out in section 2.3, the expression for
the nucleation rate J contains solely parameters defined for the corresponding thermody-
namic equilibrium state. This is not surprising since ¢ is defined, solely at equilibrium,
as the superficial intensive parameter associated with the presence of an interface between
the vapour and the bulk liquid phase.

Since one is referring to equilibrium parameters, all the properties and postulates of
equilibrium thermodynamics must hold, in particular, the so-called Nernst postulate or
third law of thermodynamics. It states that the entropy of any system vanishes at zero
temperature. As a consequence of this postulate, a number of the cross partial derivatives
in the fundamental relations must also vanish, such as the specific heats. To illustrate the
implications of the Nernst postulate on the surface tension, consider as thermodynamic
system a vapour in equilibrium with its own liquid at a flat interface. This composite
system 1is closed, i.e. is surrounded by walls which are restrictive with respect to the total
energy, total volume and total number of molecules. The internal energy of the total system
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may be written as
U=U"+U'+U?, (2.34)

where U and U! are the internal energies of the bulk vapour and liquid phases and U* is the
contribution of the interface layer to the actual internal energy U. At equilibrium [1,18],
the fundamental relation for the Gibbs potential is G = U + pV — T'S and its complete
differential dG is

dG = —-SdT +Vdp+ocdA+ udN, (2.35)

where S, V, N are the total entropy, volume, and number of molecules, respectively, A
is the area of the interface, and p is the chemical potential. The condition of thermody-
namic equilibrium implies that temperature 7', pressure p, and chemical potential p are
uniform throughout the system. According to the Nernst postulate, the change in entropy
corresponding to an isothermal stretching of the interface vanishes at zero temperature,
hence

oS
(—) — 0 as T — 0, (2.36)
OA) 1N

and, by applying the appropriate Maxwell relation, which follows directly from (2.35):

(8—5) =— (8—0> — 0 as T — 0. (2.37)
0A) ron T ) ypn

Relations such as (2.37) are valid for all intensive parameters, which can be derived from
the fundamental relation. Particularly, it holds for the intensive variable ¢. In conclusion,
any plausible extrapolation of surface tension data to lower temperatures must satisfy this
condition. Of course, Eq. (2.37) establishes only a trend for the surface tension fit, and it
does not guarantee that the o”? fit reproduces correctly the dependence of surface tension
with temperature. The quality of the fit has to be proven by a careful comparison with a
variety of experimental data, as shown in chapter 6.

Figure 2.1 illustrates also the surface tension fit proposed more recently by Strey et
al. [134]. Although this fit satisfies the thermodynamic constraint, it differs considerably
from the experimentally determined surface tension values already for temperatures 7' <
260 K. On the basis of this observation, the proposed fit was not taken into consideration.

Strey et al. surface tension fit

oS7Y(T) = (93.6635 + 0.009133 T — 0.000275T%) - 102 [N/m]. (2.38)

2.3.3 Nucleation: a summary

In the previous sections, two different nucleation models have been presented. In eluci-
dating these models, the importance of surface tension fits has been extensively discussed.
This section elaborates further on the difference among the various models. Basically three
combinations are considered. The first one Jfgé? is proposed by the present author: it
combines the ICCT model, corrected by a factor £ = 0.01, with a new fit for surface
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tension o-P. The second combination Jfag; differs from the first one only for the expres-
sion of the surface tension: here the Luijten-Prast fit is employed. The third combination
J58+ was proposed by Schnerr and Dohrmann [117]. It employs the CNT model and the
surface tension fit proposed by the same authors. In order to get some insight on the
differences between these models, their ratio has been plotted in Fig. 2.2 for three values of

the supersaturation S. In Fig. 2.2(a), the J3X; and the JfEéITD models are compared. For
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Figure 2.2: Comparison of nucleation models: (a) Jigar over JSRr; (b) Jegor over
Jicer:

temperatures 1" > 240 K they do not differ considerably: the Jfgé? values are roughly one
order of magnitude higher than the J3X, ones. Nevertheless, this discrepancy may still
induce significant differences in the frequency, as shown in chapter 6. For temperatures
T < 240 K, instead, the difference between the two models may amount to almost ten
orders of magnitude depending on the supersaturation, the J2X producing in this range
the highest nucleation rates. This difference is imputable mainly to the surface tension fit.
Figure 2.2(b) compares, instead, the Jfgé? model with the Jfgé; one. Here considerations
similar to the previous case apply. For temperatures 7" > 240 K, no appreciably difference
is observed. For temperatures 7' < 230 K, the J}Eé; values become too low and the model
is not able to reproduce correctly all features of the condensation process. Figure 2.2 shows
clearly that huge differences in the predicted nucleation rates appear at increasingly lower
temperatures, essentially because of the different extrapolations chosen by the various au-
thors. One of the objectives of chapter 6 is to individuate a “reasonable” extrapolation
(within the experimental accuracy) by combining a critical and rigorous examination of
nozzle experiments with theoretical considerations.
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2.4 Droplet growth

The process of droplet growth involves the net flux of mass (vapour molecules) towards the
droplet, and the simultaneous net flux of energy (latent heat) away from the droplet. The
mechanism of these transfers depends to a large extent on the Knudsen number Kn. The
latter is defined as the ratio of the mean free path of vapour molecules to the diameter of the
droplet (Kn =1/2r,), where | = 2u+/RT /p and p is the dynamic viscosity of the mixture.
For small Kn, the transfer is governed by diffusion; for large Kn, growth is controlled
by the kinetic process of impingement of vapour molecules onto the droplet (gas-kinetic
regime). Thus, a generally applicable growth model requires a set of equations valid for all
Knudsen numbers. Unfortunately, an accurate solution of this problem at intermediate Kn
numbers is to date not yet available. A copious literature exists, addressing this problem
at various level of complexity [39,48,49,58,101,165]. The large variety of models proposed
in the literature can be classified into two main categories. One category is based on the
inclusion of rarefied gas effects even when modelling the transitional or diffusion controlled
growth regimes. The Langmuir model represents, in this respect, an elegant method to
encompass in a single model both continuum and rarefied gas effects. In this model, the
flow field around a droplet is divided into an outer zone, where the equations of continuum
mechanics apply, and an inner region (Knudsen layer) where the transfer processes are
kinetically controlled, as shown in Fig. 2.3.
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Figure 2.3: The Langmuir model.

The work of Young [165] represents, within this framework, the current state-of-art in
dropwise condensation at arbitrary Knudsen numbers and in the presence of an inert gas.
It provides clear physical insights into the growth mechanism. First, Young examines the
transport processes in light of linear irreversible thermodynamics and is able to clarify all
the appropriate driving potentials (thermodynamic forces) for the droplet growth process,
namely the temperature (AT = T, — T) and vapour pressure difference (Ap, = ps —
Py). Second, by accurately modelling the molecular velocity distributions in the Knudsen
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layer, the model is able to predict many features of the kinetics of condensation which are
normally only revealed by a direct solution of the Boltzmann equation. In Young’s model,
the energy and mass fluxes are evaluated both in the Knudsen layer and in the continuum
region. Next, the flux matching occurs on a sphere of radius r; = rq+ 31 (i.e. the interface
i), where [ is a constant of order unity. Thus, the description of the transition regime
depends, to a certain extent, on the choice of (.

In the second approach, the droplet growth rate is calculated in the gas kinetic and/or
continuum regime - where an accurate description of the process is possible - and then
multiplied by a correction factor f(Kn) to obtain the growth at intermediate Kn. The
general form of the growth rate is, therefore, of the type:

LTS " ) ik

dt dt dt (2.39)

ct k
where the subscripts ct and £ denote the continuum and kinetic regime, respectively. There
exist several methods to derive the correction factor f(Kn). An exhaustive and unifying
review on the subject has been presented by Fuchs and Sutugin [39]. Here, the main
findings from their review are briefly summarised. Following from the general theory of

transfer processes, f(Kn) can be expressed as

1
1+ \NEKn’

where different values have been proposed in literature for the parameter A. Fuchs and
Sutugin argue that a promising solution is the one proposed by Sahni [111]. Within this
framework, Gyarmathy proposed a droplet growth model, hereafter denoted as gya63, and
described in section 2.4.3. From a computational standpoint, the gya63 model is very
attractive and has been widely applied. It is this consideration that motivated the present
author to validate the gya63 model. Another way of determining the correction factor
f(Kn) is by conjugating the free molecular and diffusive fluxes. In this approach, first the
energy and mass fluxes are calculated independently both for the continuum and kinetic
regime. Then, an expression for these fluxes in the intermediate situations is simply found
by means of an interpolating fit between these two limits. The interpolation fit is derived
by way of a flux-matching technique similar to those used by Young. The flux-matching
can occur either at an intermediate interface or at the droplet surface. Following the latter
approach, Gyarmathy proposed a second growth model, indicated hereafter as gya82, and
described in section 2.4.1.

For a variety of binary mixtures, Peeters et al. [99] compared the results of the tran-
sitional Young and gya82 models with their experimental growth trajectories. From their
experiments, which have been carried out in a range of Kn numbers from 0.5 down to the
continuum limit, they concluded that the gya82 model predicts a broader transition regime
in terms of Knudsen number Kn and gives a good description of the droplet growth for the
near free molecular regime.

In the present work, the gya82 model is used. However, this particular choice is not
fundamental. For the experiments considered here, the growth process occurs always at Kn

F(Kn) = (2.40)
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numbers in the range 2—50. For this range, droplet growth can be accurately described with
the Hertz-Knudsen (HK) formula, subject to the condition that the appropriate driving
potentials and boundary conditions are implemented. This is shown in section 2.4.2 where
Young’s analysis is employed to select the proper boundary values.

2.4.1 The Gyarmathy model (gya82)

The gya82 model has been extensively described in literature [49, 75], therefore a detailed
derivation of the model is not presented here. Instead, this section focuses on the most
important relations, which characterise the model, and discusses their underlying assump-
tions from the standpoint of the Langmuir model. As stated in section 2.4, the key feature
of the gya82 model consists in expressing the growth rate, occurring at intermediate Kn
numbers, in terms of the growth rates occurring in the two limiting cases of Kn = 0 and
Kn — oo. Therefore, the first necessary step is to derive an expression for the mass and
energy fluxes in these limiting cases.

Continuum limit

M = 4xr Drm (Dsr — Pooo)
- d Rva Dsr Pvoo )5

(2.41)
. 1 .
B¢ = §(Td + Too) My + dmkmra(Ta — Tec),

where the subscript “c0” refers to the far field region. The thermal conductivity k,,, the
binary diffusion coefficient D,,, and the density of the mixture p,, are evaluated at the
intermediate temperature 7,,, defined, according to Hubbard et al. [62], as

1
T, = 5200+ Tw). (2.42)

The expressions for the binary diffusion coefficient and for the thermal conductivity of
the gas-vapour mixture can be found in Appendix A. The underlying assumptions of
Egs. (2.41) are: p,; = ps and T; = T,;. The first assumption is quite reasonable in the
continuum limit; the second one T; = T,; may lead to erroneous predictions for pure vapours
or low concentration of inert gas, as extensively discussed by Young [165] and Onishi [92].
For dilute mixtures, as those considered in the present study, the assumption 7T; = T} is
reasonable.

Free molecular limit

Mfm — 4 2 Dsr . Pvoo ) ’
ra <\/szde V2R T

R
} — &) Pgoo (pr - Tg)-l . R
Efm — 4 2[pvm (va 2 + T _Too +Mfm( v__U>T‘
””[ 2Ryl 2R, T, J(d ) vy )
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Contrary to the continuum limit, here the assumptions at the interface become: p,; = Pyoo
and T; = T,.. In section 2.4.2.1, it is investigated for which Knudsen number range these
assumptions can be retained.

Transition regime

As a first step, Gyarmathy introduced a non-dimensional expression for the mass and
energy transfer. The definition of these Nusselt numbers is the following:

N M
Uy, = :
M 271—7‘d/Z)mod(psr - pvoo)/pgoo
. 2.44
. p (244)
A .
E 277 gk (T — T’
where pyo is the inert gas pressure in the far field and D,,,q is defined as
D, p
Dinod = ——9%2 2.45
= "R, T, (245)

Both k,, and D,,,; have to be evaluated at the intermediate temperature 7,,, given by
Eq. (2.42). Then, the Nusselt number Nu'", at intermediate Knudsen numbers, can be

expressed as:

Nu'™ = N (2.46)
14 Nuct/Nufm + f(Kn)’ '

Gyarmathy attributed relation (2.46) to Kang [65] and Fukuta and Walter [40], who ob-
tained it from flux matching methods, for both energy and mass transfers, based on the
Langmuir model. Next, Gyarmathy extensively argues, on the basis of experimental data,
that it is appropriate to omit the function f(Kn). Therefore, the remaining expression,
also known as Sherman interpolation formula [124], can be written as

ct m
Nt = YN (2.47)
Nuet + Nufm
which shows the correct asymptotic behaviour for both small and large Kn numbers. That
is: Nu'™ — Nu/™ as Kn — oo, and Nu'™ — Nu* as Kn — 0.

In this formulation, the droplet temperature Ty is treated as an input variable. However,
in practical situations, the latter is unknown and has to be calculated from the energy
balance at the droplet surface, which effectively provides, in the gya82 model, the coupling
between the mass and energy flux:

B = % (Maha) = Mhy + Myha, (2.48)

where hgand M, represent the droplet enthalpy and total mass, respectively. Now, if
the far field conditions T, and p,s vary slowly with respect to the thermal relaxation
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time of the droplet, which, as clarified in section 2.2, is always the case for nozzle flow
applications [163], the internal energy flux of the droplet can be neglected. Then, the
above equation can be rewritten as:

E = —M (hys — hq) + Mhyy = —ML + Mh,,, (2.49)

where L is the latent heat of condensation and h,, is the vapour enthalpy at equilibrium.
The above assumption of quasi-equilibrium between mass and energy transfer is known as
the “wet-bulb approximation”.

Equation (2.49), combined with the appropriate expression for E, provides an implicit
formula from which the droplet temperature Ty can be calculated via an iterative procedure.
Unfortunately, this evaluation is computationally quite time consuming, therefore explicit
approximate expressions have been proposed by several authors [6,48,80,90,149]. They are
all based on a Taylor expansion of p,, = ps(Ty) around of pse(T). Thus, it is implicitly
assumed that the vapour pressure at the droplet surface p,, is approximately equal to
the curvature corrected saturation pressure. As explained earlier (see section 2.2), this is a
reasonable assumption for the problem considered here. Smolders [130] evaluated a number
of explicit models and concluded that the best results were obtained with the formulation
due to Gyarmathy [48]. In evaluating the first order coefficient for the Taylor expansion,
Gyarmathy used a simplified version of the wet-bulb equation, specifically:

H=-ML, (2.50)

where H represents the heat transfer. In this formulation, H can be calculated without
major difficulties in the continuum limit, where it results: Het = A7 gk (Ty — Two). Prob-
lems, though, arise in the free molecular regime, where no clear distinction can be made
between convective and diffusive energy fluxes. The issue has been clarified by Prast [104].
By comparing the full wet-bulb expression (Eq. 2.49) with its simplified version (Eq. 2.50),
both evaluated in the free molecular limit, he showed that Gyarmathy’s approximation con-
sists in neglecting the term M/™TyR, /2 in Eq. (2.43), which is, for water vapour/carrier
gas mixtures, much smaller (< 5%) than MI™L. Therefore, Eq. (2.50) can be employed
without introducing a significant error.

Following then Eq. (2.50), the explicit formulation for the droplet temperature can be
cast in the general form:

(% — 1) = f(Seo, Kewo) [C1 + Co] . (2:51)

Here Ke,, is the Kelvin factor, defined as Key, = 20/(p R, Toora).- The terms Cy, Cy, 0w,
and f(Ss, Kes) are all functions of the far field conditions:

f(Seo, Keow) = InSy — Keo;

Too Do DmodL Nutr

c, = —=- —Sy|; 6= M. 2.52
L
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where po. is the pressure of the mixture in the far field. In deriving this explicit relation
(Eq. 2.51), Gyarmathy further assumed: T% ~ 1, and;’i ~ 1. It should be noticed
that these approximation are solely due to mathematical rather than physical constraints.

Smolders [130] formulated a second order correction to the Gyarmathy explicit formula:

T
(72 ~1) = S5 Ko C1 + G0 1) (253)
where o
=C? — C!
271 2 _
b~ gy (S = Kew) (2.54)

Prast [104] evaluated in detail the accuracy of Eq. (2.53) with respect to the implicit
solution. He concluded that in the whole range of relevant growth, the error remains
always confined to +5%. More details on the derivation of Smolders’ explicit formula can
be found in Appendix B.

Once the droplet temperature has been calculated, the droplet growth rate can be
computed either via the energy or via the mass conservation law, which in terms of Nusselt
numbers reads as follow:

dr?2  Nu'l NU - Dinod Dyoss — Par
dra _ N5 oy = N Pmod Puoo = Par.

= 2.55
dt pr L 1 Pgoo (2.55)

2.4.1.1 The driving potentials

This section illustrates in more detail to what extent the inclusion of temperature differ-
ences between the gas phase and the liquid droplets is relevant for modelling the growth
process. Specifically, our objective is to prove that the droplet growth rate is controlled
by two thermodynamic forces, namely the vapour pressure difference Ap, = P — Pooo and
the temperature difference AT = T; — T,., combined with the assumption of local phase
equilibrium at the droplet surface.

The analysis presented here is not new: these considerations, at different degree of
complexity and generality, can be traced down to the works of many authors throughout
the last century [18,49,164,165]. However, for reasons of completeness and clarity, the
theoretical framework within which the interpretation of the droplet growth process should
be viewed is summarised here. To this aim, the growth process is first analysed from the
standpoint of linear irreversible thermodynamics. Then, the gya82 model is re-interpreted
in light of these findings. It is shown that, despite the many simplifications, Gyarmathy
was able to incorporate, in a simple manner, the key features of the growth process, in full
agreement with the thermodynamic findings.

The correct description of an irreversible process (such as droplet growth) relies on the
identification of all thermodynamic “forces” (or affinities), which drive the process, and
the system’s response to these forces, the so-called associated fluxes [18]. A convenient
way to identify all the relevant affinities, which characterise a given irreversible process, is
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to determine the rate of entropy production. Young [164,165] derived this relation for the
case of dropwise condensation:

S Ap, AT
ro =i (52) + o (70) (250

where J,,, and J,. represent the mass and heat conduction fluxes from the droplet, respec-
tively. For small departures from equilibrium (|AT|/T» < 1 and |Ap,|/pvec < 1), the
phenomenological relations for mass and heat transfer take the form:

Ap, AT
= <L L —
= fe (52) o (20
Ap, AT
e = o (G) 2 (52) 1

where the coefficients Ly, Lig, Lgm, and L, are often called kinetic coefficients and are
functions of the local intensive parameters. Algebraic expressions for these coefficients have
been derived by Young [165].

(2.57)

Here, the implications of Eqgs. (2.56) and (2.57) are briefly discussed. Particularly,
Eq. (2.56) states that the growth process is governed by two thermodynamic forces: the
partial vapour pressure difference and the temperature difference. Relations (2.57) show
that the mass and heat transfers are functions of both driving forces and, therefore, are
mutually interdependent. In some specific problems, one of the two driving forces may
become zero, thus simplifying considerably the treatment (see, for example, Peters [101]).

With reference to the gya82 model, its underlying assumptions are now reviewed in
light of the proper thermodynamic framework. In his work on “The spherical droplet in
gaseous carrier streams”, Gyarmathy ( [49], pp. 114) clearly identifies two driving forces
for the heat and vapour mass fluxes, namely the above mentioned temperature and vapour
pressure differences. However, his main assumption (pp. 135) is to regard the heat and mass
transfers as decoupled. In other words, Gyarmathy assumes that these transfer processes,
although occurring simultaneously, are not influenced by each other, or more accurately
their mutual influence is weak. As a consequence of this main assumption, he adopts the
following simplifications (Table 4, pp. 136):

1) M is only a function of Ap,;
2) H is only a function of AT.

Note that Gyarmathy provides also correction factors to take into account the cross-
influence of heat and mass transfer. Thus, the fully correct model could eventually be
implemented as well. In this simplified version, the coupling between heat and mass trans-
fer is re-introduced via the wet-bulb equation. The latter, thus, not only serves to formally
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close the system of equations, but also expresses the mutual influence and interdependence
between the rate of heat and mass transfer.

To prove that these arguments are not arbitrary speculations, consider Fig. 2.4(a) and
(b). Here the following two combinations are considered: .J IL(%_; for the nucleation rate,
and the gya82 model for the droplet growth process, with and without wet-bulb correction.
As it can be inferred immediately from Fig. 2.4(a), the wet-bulb model predicts large
temperature differences in the initial phase of the growth process. This can be understood
because while the gas temperature decreases rapidly due to the expansion, the droplet
temperature stays constant due to the release of latent heat at the droplet surface.

T,7, K] R, [nm] dr/dt [mis] T [K] R, [nm] dr/dt [m/s]
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Figure 2.4: Axial distribution of temperatures T, T,, modal radius R4, and droplet
growth rate dr/dt. Models: (a) Jjivy and gya82 with wet-bulb equation (Ty # T); (b)
JILCPCTf and gya82 with the assumption Ty = T. Nozzle: G2. Stagnation conditions:

P, = 8.67-10% Pa, Ty = 296.6 K, Sy = 0.50.

The macroscopic consequence of this is twofold. First, the temperature difference ef-
fectively damps the growth process: (dr/dt)yet pup is roughly two times smaller than
(dr/dt)r,—r. That is, because of the high latent heat of water, the growth rate is limited
by the rate at which heat can be conducted away from the droplet. Second, smaller modal
radii R4 are predicted by the wet-bulb law: since the rate of heat addition is considerably
lower in this model, the nucleation rate is quenched somewhat farther downstream, as
shown in Fig. 2.5. As a consequence, more critical clusters are produced while the total
amount of liquid mass stays the same. In chapter 6, the correctness of this theoretical
analysis is verified by comparing the theoretical droplet sizes with the experimental results
for a number of droplet growth models.
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Figure 2.5: Comparison of nucleation rates as derived by the following condensation
models: Jilvf and gya82 with and without wet-bulb. Nozzle: G2. Stagnation conditions:
Py = 8.67-10* Pa, Ty = 296.6 K, Sy = 0.50.

2.4.2 Validity of the Hertz-Knudsen model

In section 2.4.1.1, the existence of two driving potentials, which control the growth process,
has been ascertained. Objective of this section is to understand whether the good perfor-
mance of the gya82 model is due solely to the inclusion of all relevant thermodynamic forces
or to a combination of the latter and transitional growth effects. To this aim, the droplet
growth law is reduced to the more simple and direct Hertz-Knudsen (HK) formula [57,68].
Incidentally, it should be observed that this simplification is less restrictive than it appears
at first sight. In fact, recalling the Langmuir model depicted in Fig. 2.3, the HK formula
can always be applied, provided the interfacial values 7; and p,; are known. Young [162,165]
provided two explicit formulas for calculating these interfacial values. These formulas are
used in the following subsections to select the proper boundary conditions for the HK
formulation. Then, by comparing the gya82 and HK models, the validity of the proposed
simplification is proved.

2.4.2.1 Near free-molecular growth regime

A modified expression for the droplet growth in the near free-molecular flow regime can be
cast, following Young [165], in the form:

1— i ﬁ — l qcPoi _ GePor
2r2 ) dt  p |V2rR,T;, 21 R,T;]°

(2.58)
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where the bracketed term on the left hand side represents Schrage’s correction, py;, T;, 7;
are the interfacial values as defined in Fig. 2.3, and Ty, p,, are the temperature and vapour
pressure at the droplet surface, respectively. Recalling the definition of the interface radius
r; =14+ (1, the Schrage’s correction can be re-written as follow:

Assuming for 3 a value of 0.75% and a Kn number of about 1.5 — 2, the Schrage factor
corresponds to a correction of about 3 — 5%. Since for the experiments considered in
this study, the Kn number is always larger than two, the Schrage factor can be neglected
without introducing an appreciable error. Further, as clarified in the previous sections 2.2
and 2.4.1, the droplet temperature T, has to be explicitly calculated using Eq. (2.53); while
the surface vapour pressure p,,. is equal to the curvature corrected saturation pressure
Dor = Dsr(Ta,74). The only unresolved issue is, thus, the value to choose for p,; and 7T;. In
the free molecular limit (Kn > 1), a very good approximation for the interfacial variables
1S: Pui = Puoo and T; = T
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Figure 2.6: Axial distributions of the Knudsen number Kn and condensate mass fraction

9/ 9maz, downstream of throat. Nozzle: G2. Case: S50 - Stagnation conditions: Py =
8.67-10* Pa, Ty = 296.6 K, Sy = 0.50.

Unfortunately, for the experiments considered in this work, this assumption is not ad-
hered to straightforwardly. As an example, the axial distributions of the Knudsen number
and condensate mass fraction along the nozzle axis are plotted in Fig. 2.6, for the represen-
tative case S50. As it can be inferred from this plot, the relevant growth occurs at values
of the Knudsen number of O(1). To identify the proper conditions for the applicability of
the HK formula, some results from Young’s analysis are considered. As a starting point, it

3This value of 3 seems to yield the best results [99,165].
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should be recalled that from conservation of momentum, the pressure is uniform along any
ray emanating from the droplet centre, provided the radial bulk velocity of the gaseous
phase is much smaller than the local speed of sound. Thus, for a pure vapour, it always
results Pyi = Pvoo # Psr at any Knudsen number. In presence of an inert gas, though,
this inequality does not hold anymore. In fact, conservation of momentum simply implies
Di = Dgi + Pvi = Doo = Dgoo T+ Pvoo, thus no a priori relation exists between p;, pyoo, and
Psr. Young [165] derived, in the continuum limit, an explicit relation for the ratio between
the (Knudsen layer) vapour pressure jump (ps, — pyi) and the overall pressure difference
(Psr — Puoo). The graphic representation of this is plotted in Fig. 2.7 for a set of Knudsen
numbers Kn representing the approach to the continuum limit.
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Figure 2.7: The Knudsen layer vapour pressure jump for water in air, as derived from
Young [165].

Figure 2.7 is very interesting: it shows that for a pure vapour [log;;(Pgoo/Pvoc) — —],
the equality p,i = pueo 1S always identically satisfied. As soon as the concentration of
inert gas is increased, the proper value for the interfacial vapour pressure is somewhere in
between the two limiting conditions p,,. and p,s. Further, the transition from one limit to
the other depends upon the Kn number and inert gas concentration logy(Pgeo/Pvec) values.

In the present application, inert gas concentrations of 1.5 < logy(Pgoo/Pvec) < 2 are
considered at Kn numbers of O(1). Therefore, a relation expressing the ratios 7T; /7., and
Dui/Pooo valid for this range of Kn numbers and inert gas concentration is required. These
relations are also provided by Young [165], [Eq. (47) and (53) (pp. 2949-2950)]. Here, the
vapour pressure jump is expressed in terms of the fluid dynamic field variables and interfa-
cial temperature 7}, where the latter has to be determined via a flux-matching technique.
To avoid this complicated calculation, a simplified expression for the interfacial tempera-
ture T; is used. This expression was also proposed by Young in an earlier paper [162]. It
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reads®:
T, =T, — 6(Tqs — Ts), (2.60)
where K
3.7831%
b= —7— Bl (2.61)
(1+28Kn) + 3'78ﬁ
The Prandtl number is defined by
Pr= % (2.62)

where 1 and k are the dynamic viscosity and thermal conductivity of the vapour-gas mix-
ture, respectively. Their definition can be found in Appendix A. For the nozzle experiments
considered in the present study, the relevant part of the growth occurs typically at the fol-
lowing conditions: T, = 259 K and p,, = 0.48 bar. Figure 2.8 shows the variation of the
parameter ¢ as function of the Kn number. Clearly, the condition 7T; = T, can be retained
basically down to Kn = 2 without introducing a significant error.
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Figure 2.8: Parameter ¢ versus the Knudsen number. The evaluation is conducted at the
following representative conditions: pe, = 0.48 bar, T, =259 K, T, = 267 K, ry = 20 nm,
and (3 = 0.75.

Once the interfacial temperature 7; is known, the corresponding value of the vapour
pressure at the interface p,; can be evaluated from Young’s relation [165] [Eq. (53), pp. 2950],
which, assuming the evaporation ¢. and condensation g. coefficient equal to 1.0, has been

re-arranged as follows:
DPuvi DPsr (Td - T'z)
1 = — 2_

YEquation (2.60) is not able to predict the Knudsen layer temperature jump, since T; — T, as Kn — 0.
However, this simplified approach is of no relevance in the near free-molecular regime where T; should
results approximately equal to 7.
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where 12
2
r; Tidkn [ R Poo
—(1_ R 2.64
n ( 2Tz~2)7'd Sc (Rv) Puoo ( )
The Schmidt number is defined by
7
= —. 2.65
= (265)

Here u, p, and D are the dynamic viscosity, density, and binary diffusion coefficient of the
vapour-gas mixture, respectively. Equations (2.60) and (2.63) can now be used to calculate
the interfacial properties for a representative nozzle simulation (case S50). In fact, the
thermo-fluid-dynamic flow field is solved using the ICCTZP~¢ model for the nucleation
rate, and the gya82 model for the droplet growth law. Then, the flow variables are used
as inputs to calculate the interfacial properties by means of Egs. (2.60) and (2.63). The
results are plotted in Fig. 2.9.

Pv’ Pvi [Pa] g/gmax T’ Ti [K] g/gmax
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0 15 0
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(a)
Figure 2.9: Axial distribution, downstream of throat, of the interfacial and far field
conditions, for a typical nozzle flow. Nozzle: G2. Case: S50 - Stagnation conditions:
Py =8.67-10* Pa, T, = 296.6 K, Sy = 0.50.

From the equality of p,; and T; with their corresponding far field values, the applica-
bility of the gas kinetic equations is proven. Concluding, thus, the droplet growth rate
reduces simply to:

dr 1 P P

dt o |V2rRT  onRT, |

As an additional proof of our assertion, the same case (S50) is re-calculated several
times, using the models presented in Table 2.1. The results of this comparison are plotted
in Fig. 2.10 where a remarkably good agreement is found between the HK and gya82

(2.66)
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model. This indicates again that, for the water vapour/carrier gas systems and the range
of Kn numbers considered here, no appreciable difference exists between the predictions of
the gya82 and HK formulations. This holds even when the wet-bulb approximation is not
implemented.

Case | Nucleation rate | Droplet growth model

gva82 & wet-bulb

S50 [CCTED ¢ gyad2 & Ta=T
HK & wet-bulb
HK & Ty=T

Table 2.1: A synoptic sketch of different condensation models. All models are applied to
case S50.
dr/dt [m/s]
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Figure 2.10: Comparison of growth rate dr/dt, as predicted by the different droplet
growth laws presented in Table 2.1. Nozzle: G2. Case: S50 - Stagnation conditions:
Py = 8.67-10* Pa, Ty = 296.6 K, Sy = 0.50.

The same trend is also confirmed by the fluid dynamic variables, which match very well
for the gya82 and HK formulations, provided all proper driving potentials are included, as
shown in Fig. 2.11(a), (b). However, with respect to the fluid dynamic field, the omission
of the wet-bulb correction reveals some effects on the axial distributions of the modal
radius and temperature. The observed discrepancies can be explained as follows: the
implementation of the gya82 growth law differs from the (HK) one by the inclusion of
transitional effects. For the present range of Knudsen numbers, this difference is totally
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negligible when compared to the effects due to the thermodynamic force (AT'), which
strongly dominates the growth process. Therefore, when this thermodynamic potential is
omitted, the tiny differences between the two models become relatively important, thus
producing the observed differences.

T K] R, [nm]
300 I T I T I T T I T 120 I T T I T T I I
- n HK - wet-bulb 1 - = HK-wet-bulb ]
. gya82 - wet-bulb - —— gya82 - wet-bulb i
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ool TN
240 -
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X [cm X [cm]
(a) (b)

Figure 2.11: Comparison of the thermo-fluid-dynamic field, as predicted by the conden-
sation models of Table 2.1. (a) Temperature distribution. (b) Maximum droplet radius.
Nozzle: G2. Case: S50 - Stagnation conditions: Py = 8.67-10* Pa, Ty = 296.6 K, Sy = 0.50.

f [Hz] R, [NM]

2500 \ = .
. | 350 - -
| unsymmetric L unsymmetric -

2000 i 300 - ]
L | + Exp. N
| | r HK - wet-bulb -

1500 |- - 250 1 HK-(T,=T) |
| | L gya82 - wet-bulb |
L HK - wet-bulb | 200 R gya82 - (Ty=T) |

1000 - HK-(T,=T) - - 0 og_ @ ™ 8o 1
. gyas2 - wet-bulb -| 150 - —E—Y—Q!“?"!" T S
i gya82 - (T,=T) - I o o ]

500 | | | | | | | | | 100 | | | | | |
1.0 1.2 1.4 1.6 1.0 1.2 14 1.6
So So
(a) (b)

Figure 2.12: Comparison of frequency of oscillations (a) and maximum droplet radius (b),
as predicted by the condensation models of Table 2.1. Nozzle: G2. Stagnation conditions:
Py = (8.67 £ 0.015) - 10* Pa, Ty = 296.6 + 0.4 K.
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Frequency Data [Hz]
Case | Sy | Experiment | HK & HK & gya82 & | gya82 &
wet-bulb T,=T wet-bulb T, =T
J41 | 1.102 1248 1061 1485 1047 1404
J55 | 1.249 1449 1338 1937 1322 1864
J58 | 1.327 1494 1511 2343 1500 2301
Jb3 | 1411 1636 1702 asymmetric 1692 asymmetric
J46 | 1.546 1898 2055 asymmetric 2041 asymmetric
(a)
Maximum Droplet Radius Data [nm]
Case | Sy | Experiment | HK & HK & gya82 & | gya82 &
wet-bulb T,=T wet-bulb T,=T
J41 | 1.102 160 147 327 136 274
Jb5 | 1.249 119 154 346 142 297
J58 | 1.327 162 157 321 145 315
Jb3 | 1411 167 157 asymmetric 145 asymmetric
J46 | 1.546 166 156 asymmetric 143 asymmetric
(b)

Table 2.2: Frequency data (a) and maximum droplet radius (b) as predicted by the

condensation models of Table 2.1.

Nozzle: G2. Stagnation conditions: Py =

0.015) - 10* Pa, Ty = 296.6 £ 0.4 K.

(8.67 +
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The same conclusions hold also for the unsteady flow regimes, where the experimentally
determined droplet size and frequency of oscillations are compared with the theoretical
predictions from the models listed in Table 2.1. The results of this comparison are reported
in Fig. 2.12 and in Table 2.2(a) and (b). Again no significant difference is observed between
the HK — wet-bulb and gya82 — wet-bulb models. From these results, the following can be
concluded:

1) for the Kn range of our experiments [2 — 50], the growth process is dominated
by gas kinetic effects. Thus, the choice of the HK formula to describe the
growth process is a proper one. Transitional effects play a marginal role;

2) for the Kn range of our experiments [2 — 50|, the correct modelling of the
growth process is obtained solely by the inclusion of all relevant driving po-
tentials;

3) the transitional formulation of the gya82 model describes satisfactorily the
passage from free molecular to transitional regime down to Kn numbers of
roughly 2. Note that Young’s model stays longer (& till Kn = 1) in the free
molecular regime than the gya82 model. Therefore Young’s model performs
also correctly in the Knudsen range considered here [2 — 50].

2.4.3 The Gyarmathy 63 model

In 1963, Gyarmathy [48] proposed a simplified droplet growth model for the whole range
of Knudsen numbers, which, to date, has been widely applied. Following Gyarmathy, the
droplet growth rate can be expressed as:

dr 1 L2 Poo — Pvoo Ro Too)] -t ( r*

Z - (K 1—— | In(Sw), 2.67
TR A Iy v R a— > m) 2 (So0) (2:67)

where £ is the thermal conductivity, r4 is the droplet radius, p., the pressure of the mix-
ture in the far field, and r* the critical radius corresponding to the thermodynamic state
(Too, Poos Seo)- As correction factor, Gyarmathy suggested the following®:

1

Kn)= —
fay(Bn) = =7

(2.68)

According to Fuchs and Sutugin [39], the value 3.18 is too high and the correction formula
does not show the correct asymptotic behaviour for the free-molecular regime. Therefore,
the gya63 model, can possibly lead to wrong predictions in the limit Kn > 1. In deriving
Eq. (2.67), Gyarmathy implicitly used some linearisation in the expression for the droplet
temperature, which he approximated as follows:

*

r
Td = Ts(pvr) - E ATsub; (269)

SFor reasons of consistency with the gya82 model, the same mean free path I = 2uv/RT /p is adopted.
In the original article, Gyarmathy used the following definition I = 1.5uv RT /p.
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where [ATsup = T5(Puoo) — To| is the subcooling. Note that the droplet calculation provided
by Smolders (see section 2.4.1) is an extension of Eq. (2.69). Summarising, thus, the
gyab3 and gya82 model differ from each other essentially with respect to the choice of the
correction factor f(Kn) as well as the calculation of the droplet temperature.

2.5 Computational method

This section describes briefly the main features of the computational method employed in
the simulations presented in this thesis. The method is based on the work of Mundinger [91]
and has been further extended by Prast. For a detailed description of the numerical scheme
and its accuracy, the reader is referred to Prast [104].

In order to solve numerically the system of Eqs. (2.19) - (2.23), first the integro-
differential Eq. (2.23) is transformed from a Lagrangian to an Eulerian frame of refer-
ence. This is achieved by adopting Hill's approach [58]. Hill’s method consists of tracking
the evolution in time and space of the low-order moments of the size distribution and is
described in Appendix C. The major advantage of Hill’s method is that many physical
properties of the droplet cloud can be estimated, without any a priori knowledge of the
size distribution itself, as explained in Appendix C as well. However, as pointed out by
McGraw [86], the parameterisation of a distribution in terms of its lower-order moments
does not define the size distribution univocally. That is, two size distributions can exhibit
the same set of low-order moments, despite substantial qualitative differences, such as mul-
timodal versus monomodal. This poses serious limitations to the ability of the numerical
method in predicting the actual form of the droplet spectra in unsteady flow conditions,
where a slight bimodality has already been theoretically predicted [159]. For a detailed
derivation of the equations for the moments, the reader is referred to Prast [104]. Here,
only the final result is reported, expressing the rate of condensate mass production in terms
of a set of four coupled equations. The complete system then reduces to

oU OF 9G

i R 2.70
ot Tar Ty (2.70)

where U is the vector of unknowns, F' and G represent the convective fluxes in the x— and
y— direction respectively, and S is the source term:
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This hyperbolic system of partial differential equations is first divided into a homogeneous
and inhomogeneous part, according to the Fractional-Step-Method of Oran and Boris [93],
yielding:

(2.71)

outem  9F  0G

oL 9% 2.7
ot T ar oy ! (2.72)
U .
o om. 2
U~ swrm .73

Both systems of Eqs. (2.72) and (2.73) are then discretised with a cell-centered Finite-
Volume-Method on a body fitted structured mesh. Following the MUSCL approach, the
convective fluxes are calculated at the cell interfaces with the flux vector splitting of van
Leer in the version for real gases, according to Shuen et al. [125]. The extrapolation of the
latter to the cell interface is performed using the k-scheme of Anderson, Thomas, and van
Leer [4] with the van Albada limiter. This technique provides a spatial accuracy of the
third order, except near shocks where the limiter reduces it to first order spatial accuracy
to prevent oscillations. The time integration is explicit and second-order accurate, using
the scheme of Bélcs et al. [13]. At the nozzle inlet, non-reflecting boundary conditions are
implemented, following Poinsot and Kele [102]. All experiments considered here have a
supersonic outflow. At such nozzle outlets, all flow variables are obtained by extrapolation
from the interior. At a solid wall, according to the assumption of inviscid flow, the velocity
component normal to the wall is zero. The pressure at the wall is obtained using the
method of Deconinck and Struys [25] which assures a low numerical entropy production.

The influence of the computational grid density on the numerical solution has been
investigated by Mundinger [91] and Adam [2], both for steady and unsteady flow regimes.
Following their conclusions, similar mesh densities have been adopted for the nozzle flow
calculations presented in this thesis. Details can be found in Appendix D.

2.6 Conclusions

In this chapter, a review is presented of the modelling of non-equilibrium condensation for
a mixture of water vapour and carrier gas. The fundamental idea of splitting the conden-
sation process into a nucleation and droplet growth process dates back to Oswatitsch [94].
The numerical method relies on the scheme developed by Schnerr et al. [91,117]. Their
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scheme is chosen because of its capability in accurately resolving complex shock struc-
tures, for both steady and unsteady cases. Several physical models have been considered.
Starting from the Schnerr and Dohrmann model [33], which guarantees an accurate deter-
mination of pressure distributions and frequencies of oscillations, two essential modifica-
tions have been made, specifically: the surface tension fit and the droplet growth model.
By blending together thermodynamic considerations (i.e. the Nernst Postulate), measured
surface tension data and experimental validation, a new surface tension fit is proposed.
The new fit not only gives good results for condensing flows in a wide temperature range
(215 < T < 270 K), as shown in chapter 6, but also satisfies the thermodynamic constraint
0o /0T — 0 asT — 0.

For the droplet growth process, the Gyarmathy model [49] is implemented, which is valid
in the whole range of Knudsen numbers. However, as extensively discussed in section 2.4.1,
the fundamental difference with the Schnerr/Dohrmann model lies in the inclusion of the
temperature difference AT =T, —T as additional thermodynamic driving potential; while
transitional effects play a negligible role. The existence of AT = T; —T as thermodynamic
force that controls the growth process is substantiated on the basis of:

a) linear irreversible thermodynamic theory, which has been applied to dropwise
condensation by Young [165];

b) theoretical considerations of Young [165] and Gyarmathy [49];

c) comparison of numerical results for droplet size with experimental data.
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Chapter 3

Wave tube experiments

This chapter describes the experimental methods and procedures adopted to characterise
condensing flow fields, both in steady and periodic oscillating flow regimes, and to mea-
sure some of its relevant parameters, such as density fields, droplet sizes, frequencies of
oscillations, just to name a few. These topics are tackled mostly from an operational and
practical point of view, while all the relevant theoretical issues are deferred to chapters 4
and 5. The experiments are performed in a so-called Ludwieg tube. This facility is a simple
and effective device to produce steady initial conditions of short duration, without employ-
ing pressure regulators or similar accessories. A detailed description of the TUE Ludwieg
tube and its operating principles can be found in section 3.1. Two diagnostic techniques
have been utilised to obtain qualitative and quantitative information on the flow field.
Double exposure holographic interferometry is an excellent tool to determine both visually
and quantitatively the density field. The technique is mostly applicable to steady flow sit-
uations. Nevertheless, by a careful optimisation of the experimental procedure and the use
of an accurate trigger unit, it is possible to obtain snapshots of periodic oscillating flows
as well. Section 3.2 describes the interferometer, its operation, and the reconstruction
procedure. A white light extinction method has been employed to optically characterise
the droplet cloud at the nozzle exit. From this characterisation, both the time-resolved
droplet modal radius r,,(¢) and number density n4(t) can be deduced. The optical set-up,
its operation and calibration procedures are examined in section 3.3.

3.1 The Ludwieg tube

In this section, a particular example of expansion wave tube is discussed, namely the
Ludwieg tube. This facility was conceived and first introduced by Ludwieg [73] in 1955. Its
design and operating principles have been extensively described in literature [35,74]. The
Ludwieg tube was initially developed for testing of vehicles flying at high transonic speeds.
Its application to condensing nozzle flows was first proposed and successfully applied by
Wegener at Yale University [64,89,157]. The TUE Ludwieg tube, depicted schematically
in Fig. 3.1, consists of a long tube of square cross section, with a nozzle mounted in

43
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its test section. Downstream of the nozzle, a diaphragm is situated, which separates
the Ludwieg tube from a vacuum vessel. Initially, the supply section (upstream of the
diaphragm) is filled with the condensable mixture at high pressure (typically P;,; = 1 bar),
while the dump section (downstream of the diaphragm) is evacuated. Upon rupture of
the membrane, an expansion fan travels through the nozzle into the supply section. A
flow is thereby initiated from the supply to the dump section. As the flow in the nozzle
throat becomes choked, expansion waves cannot travel upstream anymore and only a finite
expansion fan goes past the throat. This results in a steady supply condition for the nozzle
flow. This situation persists for about 50 ms and terminates when the reflected expansion
fan returns to the nozzle inlet, where it is reflected again. This mechanism is schematically
illustrated in Fig. 3.1, together with the variation of the inlet pressure Pi,: as a function
of time. Pj,: is measured by a dynamic pressure transducer, indicated in the figure as
Pk, and located at 1 m from the nozzle throat.

Supply Section Nozzle
N ‘ \
Flow %* to the duzﬁ section
\ Exr;r;;ion Fan vD\iaphragm -
by oo T

eeeeeeeee S

T T position---» P,y
Pk,  Throat

inlet
-\

=t
(=]
A

Expansion Fan

Figure 3.1: Sketch of Ludwieg tube, expansion wave, and inlet pressure diagram (not in
scale).

This type of wind tunnel presents several advantages. Due to the small size of the
supply tube, initial mixtures may be prepared at well-defined conditions and relatively low
cost. It is also easily possible to vary the initial conditions, specifically supply pressure,
temperature, and saturation ratio [S;u = Pu/Psco(T)]. The pressure range is limited mostly
by the strength of the glass windows (used for optical access) and diaphragm material. The
temperature range essentially depends upon the power of the electrical heating system
and quality of the insulation. In the present investigation, the supply pressure is always
kept constant at atmospheric value; while two different supply temperatures are applied
21 and 37°C, respectively. The supply saturation ratio is varied within a wide range, from
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dry to saturated conditions (0 < S;n; < 1). It is noteworthy mentioning that, because of
the unsteady expansion fan, a supersaturated stagnation condition can be readily achieved
with this device (0 < Sp < 1.8). Further, various cooling rates can be readily obtained by
inserting nozzle blocks of different expansion rates in the test section. Because the testing
time is very short, special instrumentation is required. A detailed description of the set-up
and its peripherals is presented in the next subsection.

3.1.1 The experimental equipment

A schematic description of the experimental set-up is shown in Fig. 3.2. The supply section
is 12 m long and consists of a Ni-coated steel tube with an internal square cross-section of
10x10 em?. The tube is also thermally controlled and an initial temperature as high as
40°C can be achieved. A polyester membrane (Melinex polyester film) of 20 pum thickness
separates the test section from the vacuum vessel. The membrane rests against cross-
shaped supports with resistance wires mounted on them (Kanthal wires, ¢ = 0.1 mm, R =
150 2/m). The membrane can be opened by electrically heating the wires. The volume
of the vacuum vessel is 0.4 m®. A re-circulation system is also connected to the supply
tube by valves (V; and V3): it comprises a circulation pump CP (Verder VDE 0530) with
a capacity of 50 ltr/min, a water vapour HyO and gas N, injectors, a pressure gauge P,
and a transducer RH (Vaisala HMP 234). The transducer HMP-234 incorporates a Pt100
temperature sensor and the so-called Humicap sensor, whose operating principle is based
on changes in the capacitance of the sensor as its polymer film absorbs water molecules.

N,
@ T I\X RH
% \4 Pk, Pk, N %—Vj

I i

Ps N

P
VT
%—@ P \T é/ @Vz

cP HO P

In|

|

VP,
VP,
PS  pressurised section RH Humicap sensor
TS test section Pkis pressure transducers
VT vacuum tank VP12 vacuum pumps
CP circulation pump Vi23 valves
P pressure gauge Py Barocel (600A)

Figure 3.2: Sketch of Ludwieg tube and its peripherals.

Static pressure measurements are performed in the supply tube at two different locations
upstream (Pk;) and downstream (Pks) of the test section, as indicated in Fig. 3.2. Two
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piezoelectric calibrated transducers (Kistler 5011A-10 and Kistler 5001SN) are employed
for this purpose. The sensitive membrane of the transducers is coated with epoxy resin
in order to prevent erroneous reading due to temperature gradients. The thickness of
the coating is approximately 0.2 mm. All data (e.g. pressure and extinction signals) are
recorded by means of a LeCroy transient recorder (Model 8013A - module 6810).

Figure 3.3: View of the test-section and nozzle G2.

Nozzle Data

Nozzle Type l h*  Ry. Ri, (—dT/dx)]_, (—dT/dt)]_,
[em] [em] [em] [em] — [K/cm] [K/ ]
G1 Parallel outflow 20 2 8 6 25.74 0.820
G2  Parallel outflow 50 2 30 400 3.15 0.100
S1 Circular arc - 12 10 10 8.14 0.237
S2 Circular arc - 3 40 40 8.14 0.237

Table 3.1: Geometric characteristics, temperature gradients, and cooling rates for the
investigated nozzles. All values are evaluated at the representative stagnation temperature
Ty = 293 K. Nozzles G1 and G2 from this work. Nozzles S1 and S2 from Schnerr and
co-workers [119,120, 168].

The nozzle is placed at a distance of 1 m from the diaphragm at a windowed position
along the tube, as shown in Fig. 3.3. As windows, two Perspex plates are used. Two



3.1. THE LUDWIEG TUBE 47

nozzles, designated as G1 and G2, are utilised in this study. Their exit isentropic Mach
numbers are M = 2.5 and 2.0, respectively. Their pertinent specifications are tabulated
in Table 3.1 together with those from nozzles employed in previous studies. In this table,
the symbols Rj_ and Rj, indicate the radii of curvature to the left and to the right of the
nozzle throat, respectively; while h* denotes the throat height.

Nozzle G1 has a strong two-dimensional character and has been mostly employed for
visualisation purposes. Nozzle G2, instead, is very slender. Due to its low cooling rate, it
is possible to produce optically detectable droplets, and therefore it has been extensively
employed to measure droplet sizes. To this aim, quartz windows have been placed at 24 cm
from the nozzle throat, as shown in Fig. 3.3. The contour profiles for both nozzles (G1 and
G2) are given in Appendix D.

3.1.2 Experimental procedure

A “series” of experiments is defined as a sequence of wave tube runs with constant stag-
nation pressure Py and temperature 7j, and varying vapour fraction or supersaturation
So. In the experiments considered in this work, the stagnation pressure is always equal to
Py = (8.7 £ 0.015) - 10* Pa, while two different stagnation temperatures are considered,
specifically Ty, = 280 and 296 + 0.4 K. The possible error in the determination of the
supply saturation ratio S;,; is of the order of +1 % for S;,; values in the range [0...0.9]
and of the order +£2 % for S;,; in the range [0.9...1.0]. A typical inaccuracy for the supply
temperature 7j,; is of 0.1 °C for the Humicap electronics at +20 °C. Prior to each exper-
iment, the supply pressure P;,;, temperature 7;,;, and saturation ratio S;,; are obtained.
The supply pressure is, then, used as a reference value to deduce the pressure P, at the
nozzle inlet, from the time pressure profile, measured by the LeCroy transient recorder.
Then, by applying standard gas dynamic relations, the stagnation conditions can be de-
rived. The relations between supply and stagnation conditions are reported in Appendix E.

The preparation procedure is the following. First, upon mounting a new membrane,
both the supply section and the re-circulation system are evacuated with pump VP, (Pfeif-
fer duo 016B) in order to eliminate any impurities in the tube. Typically, the evacuation
proceeds down to a pressure of 10 Pa. The vacuum vessel is also evacuated with pump
VP, (Speedivac ISC 450B) to prevent premature self-destruction of the membrane due
to pressure differences. Subsequently, distilled water is injected into the system, where it
vaporises instantaneously due to the extreme low pressure. Then, the carrier gas (typically
nitrogen) is injected. To secure the preparation of a homogeneous mixture and prevent
local condensation effects, the circulation pump CP is active during the whole filling proce-
dure. The filling is interrupted as soon as atmospheric conditions are reached in the tube.
The mixture is circulated until the Humicap reading reaches a stationary value, which is
assumed as the supply value for the mixture temperature and saturation ratio humidity.
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Upon reaching this condition, the vacuum vessel is evacuated again and the experiment
can be started.

3.2 Holographic interferometer

In compressible flows, the line integral of the density along the light path can be mea-
sured by means of holographic interferometry. The adjective “holographic” indicates that
at least one of the interfering wavefronts is generated holographically. The theoretical
aspects of holographic interferometry are illustrated in chapter 4. This section describes
comprehensively the holographic interferometer and its operation. A preliminary design
of the interferometer was developed by Theeuwes [138], who performed a feasibility study
for the application of holographic methods to the study of compressible flows. From the
original set-up, only the structural elements and a number of optical components have been
retained; while both the layout and the optical system have been radically modified by the
present author. A detailed discussion on the differences between the two optical systems,
essentially Fresnel or Image holography, can be found in sections 4.2 and 4.3. Figure 3.4(a)
shows a three dimensional view of the interferometer and its location with respect to the
Ludwieg tube. A first important requirement to fulfil is the stability requirement: me-
chanical vibrations from the surroundings or temperatures fluctuations should not affect
the interferometric recording significantly. To assure the damping of unwanted vibrations,
concrete blocks of about 500 kg, positioned on rubber mats have been adopted as optical
base. Theeuwes [138] performed several stability tests and estimated a resonance frequency
lower than 25 Hz for the whole system. On the basis of his tests, the same optical base
is adopted for the present interferometer. Most of the optical components are mounted
on stiff aluminium rail profiles with riders (Spindler & Hoyer - X95 system), as shown
in Fig. 3.4(a). To minimise temperature fluctuations, the interferometer is placed in a
temperature-controlled and isolated environment, where the ambient temperature is kept
at the constant value of Ty,,, = 22 £ 0.5°C.

Figure 3.4(b) shows a schematic top view of the interferometer, where an outline of
the optical configuration is presented. The light source of the interferometer consists of
a ruby pulse laser/continuous wave HeNe laser combination. The pulse laser (HLS2 -
Lumonics Ltd.) generates a 30 ns pulse at a wavelength of A\ = 694.3 nm and at an
energy level adjustable in the range of [0.01 + 1] Joule. The adjustment of the energy
output is achieved by varying the laser amplifier delay in the range [300 < 500], at a
constant capacitor voltage of 190 V. The continuous wave CW-HeNe laser (Uniphase -
Mod. 1136P) has a wavelength equal to A’ = 632.8 nm and an output power of 20 mW.
The pulsed ruby laser is used to expose the holographic plates, whereas the CW-HeNe
laser serves to reconstruct the holograms. The CW laser is incorporated in the laser head
of the pulsed laser in such a way that the optical axes of the two laser sources coincide, as
schematically shown in Fig. 3.4(b). Inside the pulsed laser head, both beams are spatially
filtered by a pinhole, located in the focal plane of a positive lens. Due to this construction,
both beams diverge with an angle of 0.01 steradians. To correct for this divergence, a
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positive lens (Ly, f = 1000 mm) is placed outside the laser head, at a distance f from
the pinhole. Aside from reconstruction purposes, the CW-HeNe laser is also employed to
align the optical components of the interferometer, prior to each experimental run. Upon
entering the set-up, the light beam is divided into a reference and scene beam, where the
term scene beam refers to the one passing through the test section. This is achieved by
means of a 1 A-retardation plate (HLP) and a polarising beam splitter (PBS). This optical
configuration offers also the possibility of varying the intensity ratio between the scene and
reference beam, as needed.

For the recording of a hologram, an optimal intensity ratio of 6 <+ 5 between object and
reference beam is required. After the polarising beam splitter, a i)\—plate (QLP) is placed,
whose function is to polarise circularly the beams. This guarantees that the requirement for
observing interference is always automatically met, as explained in section 4.2.1. Because
of its importance, the scene beam is described first. Mirrors M; and M, serve simply to
re-direct the scene beam, which is then expanded by the negative lens (L,, f = —63.5 mm)
and collimated by the spherical mirror (SM;, f = 1500 mm). The parallelism of the beam
is accurate up to a maximum divergence angle of 0.005 rad. This precision is achieved
by requiring the simultaneous crossing of four channels, 10 cm long and 1 mm wide. It is
worth mentioning explicitly the following: first, in order not to deteriorate the scene beam,
a high quality elliptical plane mirror (with a dielectric-coating) is chosen for M; (Spindler
& Hoyer - ¢ x L = 22.4x31.5mm, No. 340483). This mirror is especially designed for
high-energy laser applications at an angle of 45° of incidence. Second, a negative lens
is used to expand the beam in order to avoid focusing of the latter by a positive lens,
which might cause ionisation of the surrounding air, when the pulsed laser is fired. After
traversing the test section, the scene beam is imaged onto the holographic plate (HP) by
the optical system SM, (f = 1600 mm), M3 (Spindler & Hoyer - ¢ = 50 mm, No. 340016,
ARB2 coated), and L3 (f = 1000 mm). The optical properties and advantages of this
configuration are discussed in section 4.3.

The reference beam path is somewhat easier to describe. A succession of mirrors (My,
Ms, Mg, My) is employed, which reflect the unexpanded reference beam several times,
in order to secure the equality of paths between the two interfering beams. In fact, the
difference in paths should not exceed the coherence length of the laser. In the present
application, it resulted l.oher = 1 m and Alpguns = 1 cm. For mirror M7, the same
considerations and hence characteristics hold as for mirror My (i.e. M7 = M;). Finally a
combination of lenses (L4 and Lj), identical to L; and L, respectively, is used to image
the collimated reference beam onto the holographic plate. Mirror TM is a tilting mirror
which, by means of a mechanical device, is canted in between the two exposures in order
to create a set of reference horizontal fringes, as explained in section 4.4.
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RPL Ruby pulse laser PBS  Polarising beam splitter
QLP % — A plate TM  Tilting mirror
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Figure 3.4: Schematic representation of the holographic interferometer: (a) three-
dimensional view; (b) outline of the interferometer, top view.
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3.2.1 Reconstruction set-up

After chemical processing, the hologram is placed back in the interferometer in its original
position. The reconstruction of the original wavefront takes place by simply re-illuminating
the hologram with the reference beam. As light source, the CW-HeNe laser is employed;
as reconstruction set-up, the reference path of the interferometer is adopted, as shown in
Fig. 3.5. The only difference is the interposition between lens L, and Ljs of an additional
lens (Lg, f = —100 mm), whose function is of expanding further the reference beam.

SM; Laval nozzle

| / \SMZ

Ms
f
QLP—= | |
AT |
PBST A7 QLP M,
HLP
L1
Ludwieg tube
CW RPL
RPL Ruby pulse laser PBS Polarising beam splitter
QLP i — A plate ™ Tilting mirror
HLP % — A plate HP Holographic plate
Ml,.__ﬁ Mirror L1’3,5’7,8 Convex lens
SMi2  Spherical mirror Laag Concave lens
P Pinhole Ph Photographic camera

CwW Continuous laser HeNe

Figure 3.5: Schematic representation of the reconstruction set-up. The only active beam
is the reference one, indicated in the picture with a solid black line.

As a matter of fact, the quality and uniformity of the reconstruction beam influences
greatly the quality of the reconstructed image. Since the CW-HeNe laser shows significant
irregularities in its intensity distribution, only its central core is used and, therefore, a
stronger beam expansion is required. The light diffracted by the hologram is imaged by
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lenses L; and Lg (L; = Lg, f = 800 mm, ARB2 coated) onto a photographic camera
(Nikon, F-801s). To select the correct order of the image and to improve the quality of
the photograph, the residual background light is spatially filtered by the pinhole (P). In
taking a photograph of the interferogram, the camera lens is focused onto the hologram to
assure that a sharp image of the test section is recorded onto the photograph. Further, a
long exposure time is selected in order to average out possible non-uniformities or noise of
the light source.

As pointed out in section 4.2.2, if the wavefront is reconstructed with a different laser
beam (Arec # Ares), then a shift in the location of the reconstructed image is produced.
To counteract this effect, the hologram is rotated until the reconstructed image is coaxial
with the optical axis of lenses L; and Lg. After developing the photographic film, the
negatives are scanned with a high resolution scanner (Minolta, F-2800) at a resolution of
[3000x 3000] pixels. The photographic processing is preferred to direct digital acquisition
due to the higher resolution of photographic materials and their higher signal-to-noise ratio
with respect to standard CCD cameras.

3.3 Multi-wavelength light extinction set-up

A sketch of the multi-wavelength light extinction set-up (MWLS) is provided in Fig. 3.6,
together with all the relevant geometric properties of the optical system. The design of the
MWLS is, in its essence, inspired by the work of Walters [151]. For the present application,
a high spatial and temporal resolution are additionally required. How these requirements
are met in practice is elucidated next.

Lamp Ludwieg
D1 D2
L L2 Tube
L3
| \\ i\ L4 D3
| |
| \
& st | L]
] ‘\ J |
[VERY,
reference

detector

6 L spectrum

Micrometer 12345 67 U
detectors
L1: fi =50mm L3: fs =100mm D1: dy =1mm
L2: f, =50mm L4: fy =25mm D2: dy =2mm

D3: d3 = 0.35mm

Figure 3.6: Multi-wavelength light extinction set-up (not in scale).
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A Xenon lamp (Oriel 6221, P = 450 W) is employed as light source. The lamp is
mounted in a metal box together with the two lenses L1 and L2, that image the light
source onto the diaphragm D1, situated in the back focal plane of lens L3. The divergence
of the beam is characterised by an angle v = d;/2f;. In principle, the smaller the angle
«, the higher the spatial resolution of the set-up, at the expense of beam power. As a
compromise, the beam diameter is chosen equal to 2.0 mm and is determined by the size
of diaphragm D2. Lens L3 collimates the beam, which then crosses the Laval nozzle on its
symmetry axis at 24 cm from the nozzle throat. After traversing the test section, the light
beam is focused by lens L4 onto the entrance slit (D3) of the spectrograph. The latter is
described in detail in subsection 3.3.1.

3.3.1 Spectrograph and detection system

An enlarged view of the spectrograph and detection system is provided in Fig. 3.7. The
main function performed by the spectrograph is to resolve the white light beam into its
spectral components. The entering beam is focused by lens L4 onto the entrance slit D3.
The ratio between the beam diameter at D1 and at D3 depends solely on the ratio of the
focal distances of lenses L3 and L4, which is equal to f3/fs = 100/25 = 4. Thus, at D3, a
beam diameter of 250 um is obtained.

ﬁ\

L4 D3
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spectrum
L

1234567
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Micrometer

Spectrograph: Oriel Multispec 77400
Grating: Oriel 77417
- spectral range: 400-1100 nm
- resolution: 1.0 nm

Figure 3.7: The spectrograph.

The entrance slit D3 is situated in the focal plane of mirror M1, which has the function
of collimating the beam. The parallel beam is then re-directed towards the grating G. This
grating, suitable for wavelengths in the range [400 + 1100] nm, resolves the white light
beam into its spectral components. Mirror M2, then, images this spectrum at the exit
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plane of the spectrograph. For each wavelength, constructive interference is accomplished
in a separate direction. Therefore, each wavelength will correspond with a unique position
at this exit plane. The angular position of the grating can be adjusted by changing the
position of the micrometer, thus producing a shift of the spectrum at the exit plane. By
placing a detector at a certain location of this plane, the light intensity corresponding with
a certain wavelength can be measured. By mounting a CCD array at the exit plane, it is
possible to measure the whole extinction spectrum. However, since the response time of the
available CCD array was roughly 1 ms, and therefore too slow for detecting frequencies
of 1kHz or higher, it was necessary to develop a different detection system, capable of
acquiring data at a higher rate. A schematic drawing of the new detection system is shown
in Fig. 3.8. The latter has been developed, at our laboratory, by Holten. It consists of a
plane support, allocating seven equidistant slits. Behind each slit, a photodiode (Siemens
BPW 34) is placed, able to detect frequencies up to 100 kHz. The distance between two
consecutive slits is 3.0 mm and their width amounts to only 400 um. The response of
the photodiodes is given in Appendix F. With this system, it is then possible to measure
simultaneously extinction signals at seven different wavelengths.

A

wavelength spectrum, 18mm —p

i 3 o

3 mm 0.4 mm

Figure 3.8: Detail of the detection system. Data acquisition takes place at seven equidis-
tant locations in the spectrum.



Chapter 4

Holographic interferometry

4.1 Introduction

Flow visualisation techniques are important diagnostic tools for the experimental investiga-
tion of transparent media since they provide instantaneous qualitative information through
two/three-dimensional images of the flow field. Further, they may also provide information
on the spatial variation of some field properties, by measuring the distortions undergone
by the wavefront which traverses the flow field. These distortions are produced every time
a light beam passes through a medium where gradients in the refractive index are present.
The refractive index of an optical medium is defined as the ratio between the speed of
light in vacuum and the speed of light in that particular medium. Therefore, gradients
in the refractive index cause the different parts of the wavefront to propagate at different
speeds and, thus, introduce phase distortions. By means of interferometry this phase delay
is measured, which is proportional to a line integral of the density along the light path
through the flow field. In this respect, it provides not only a means to visualise these
distortions, but it can be also used for obtaining quantitative information on the density
field. This chapter deals with a particular application of interferometry and specifically
holographic interferometry. This means that at least one of the interfering wavefronts is
generated holographically.

Holography is a unique imaging technique since, contrary to traditional photographic
or digital methods, it assures that both the amplitude and phase of the wavefront can
be retrieved, thus providing an exact replica of the original wave. The first experiments
in holography were conducted by Dennis Gabor in 1948 [41,42]. In spite of the fact that
recording media respond only to irradiance, Gabor first recognised that both the amplitude
and phase of a wave scattered by an object could still be stored. This can be achieved by
recording on a transparency the interference pattern due to this scattered wave and a mu-
tually coherent reference wave. Second, he demonstrated that, upon chemically processing
the photographic film, a kind of grating was obtained by way of a fringe configuration,
which he called hologram. Then, upon re-illuminating the hologram with a collimated
beam, a replica of the original wave was produced by diffraction from this grating. Two

95
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remarks stem immediately from this brief description: first the phenomena of interfer-
ence and diffraction are central to an understanding of the process of holographic imaging.
These phenomena are, therefore, tackled in a concise manner in subsection 4.2.1. Second,
the properties of the hologram and the quality of the reconstructed image strongly depend
on the diffraction or imaging conditions that exist between the object and the photographic
plate. Thus, one refers to a Fresnel hologram when the recording plane lies in the region
of Fresnel diffraction, whereas it is a Fraunhofer hologram when the transformation from
object to the hologram plane is best described by the Fraunhofer diffraction equation. It
is beyond the scope of this chapter to provide a detailed classification and analysis of the
different types of holograms and related properties. For more information, the reader is
referred to the many existing textbooks, such as those of Vest [147], Caulfield [19], Collier
et al. [21]. A recent review on the most recent developments in the technique of holographic
imaging can be found in Hariharan [51].

This chapter focuses on a particular type of hologram: the image hologram and its ap-
plication to the technique of double exposure interferometry. The image hologram possesses
a series of properties which make it particularly attractive for the study of two-dimensional
flow fields, and is therefore described in some detail in section 4.3. Section 4.4 describes
the technique of double exposure interferometry, while in section 4.5 the specific method
employed to analyse the interferograms is discussed.

4.2 Principles of holographic imaging

The fundamental problem addressed by holography is that of recording and later recon-
structing both the amplitude and phase of an optical wave scattered by a coherently il-
luminated object. The formation of a hologram is an interferometric process, while the
reconstruction of holographically recorded optical waves involves diffraction. To this pur-
pose, this section starts with a concise summary of interference and diffraction phenomena.
Then, the processes of wavefront reconstruction and image formation are explained for the
case of an off-axis Fresnel hologram. This choice is dictated by two main reasons. First,
the optical system required to generate Fresnel holograms is one of the simplest and, thus,
it is the most suitable one to introduce the basic concepts of holographic imaging. Second,
the importance of the imaging conditions and the advantages of image holography are best
appreciated when comparing different optical systems.

4.2.1 Interference and diffraction

Interference

A standard technique to convert phase information into intensity variations, for recording
purposes, is interferometry. It consists of adding to the unknown wavefront a second one,
mutually coherent with the first and of known amplitude and phase. Then, the irradiance
of the sum of the two complex fields depends on both the amplitude and phase of the
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unknown wavefront. Thus if

E\(2,y) = |Boi (z,y)| e 9, (4.1)
represents the complex amplitude of the unknown wavefront and if

Ey(x,y) = |Eoa(z, y)| e~02@9), (4.2)

represents the reference wave, the irradiance of the sum of the two beams: F = E; + E,,
is given by:

I = |EP =B +|E + 2|E| | B cos(¢1 — a),
= Il + I2 +g (11[2)1/2 (i(()S((bl - (}52)1 (43)
bias modulation

where I, I, are the irradiances of two waves and A¢ = (¢; — ¢2) represents the phase
difference between the two waves at the considered location. In the above formula, one
can distinguish a bias irradiance (background), and a modulation term (contrast). In the
latter term, the phase ¢; of the unknown wavefront is, then, encoded by way of a fringe
pattern. Note that if the two vectors are perpendicularly polarised, the total irradiance is
simply the sum of the two irradiances, and no interference is observed. In all other cases,
some degree of interference is present. The total irradiance varies from a minimum value
Lnin = I + 1, —2(I115)"/? at points where A¢ = (2m+1)7 (m is an integer), to a maximum
Imaz = I + Iy + 2(I1 15)'/? where A¢ = 2mm. The visibility (contrast) of the fringes is
defined as:

Ima:r: - Imzn

—_— (4.4)

Lz + Lnin
To obtain the phase delay from an interferogram, the contrast of the fringes should be as
high as possible. For the best visibility, the intensity of the beams should be equal as well
as their polarisation.

The above analysis is strictly valid under the assumption of monochromatic light
sources. However, real sources are always radiating within a well-defined range of wave-
lengths A\ to which corresponds a set of frequencies Av. The coherence length is then
defined as c¢/Av =~ \}/A), where c is the speed of light and ) is the average wavelength of
the light source. If the mismatch between the pathlengths of the interfering beams exceeds
the coherence length of the light source, then the fringe visibility decays to zero.

Diffraction

Diffraction relates simply to the fact that if a portion of a wavefront is obstructed by
some obstacles, the remaining unobstructed part gives rise to a very complicated interfer-
ence pattern whose characteristics depend on the geometry of the obstacles, and on the
reciprocal distance between the light source and the plane of observation. Recalling the
Huygens-Fresnel principle [53], one can envision the unobstructed wavefront as an array of
in-phase coherent oscillators, which act as sources of secondary spherical wavelets. Then,
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the difference in phase among each contribution is crucial to the determination of the field
at P, as shown in Fig. 4.1.

)y
- P
. >)> S
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Figure 4.1: Schematic representation of diffraction from an aperture.

For a detailed treatment of diffraction, the reader is referred to the book of Hecht [53].
Here only a few basic notions are recalled, which are fundamental for an understanding
of the reconstruction process. Essentially the characteristics of the diffracted field de-
pend on the relative distance of the light source and/or the plane of observation from
the aperture. If this relative distance is small, then the phenomenon known as Fresnel or
near-field diffraction appears. In this case, the curvature of the incoming and outgoing
wavefronts cannot be neglected. If the plane of observation is moved to a greater distance
(infinity), the Fraunhofer or far-field diffraction is obtained. In practice, as long as both
the incoming and outgoing wave can be approximated to being planar over the extent of
the diffracting aperture (i.e. differing therefrom by a small fraction of the wavelength),
Fraunhofer diffraction prevails. As a practical rule of thumb, Fraunhofer diffraction occurs
when R > a?/)\ where a is the width of the aperture and R is the smaller of the two
distances from the source (S) to the aperture (3) and from the latter to the screen (o),
ie. R= min{RSE, RZJ}.

Because of its importance in understanding the functioning of gratings and its relevance
for the image hologram, a short description of Fraunhofer diffraction is presented. A
practical realisation of the Fraunhofer condition, where both (o) and (S) are effectively at
infinity, is achieved by using the arrangement depicted in Fig. 4.2(a). The effect of lens
L, placed behind the object is that of shifting the image plane (o) from infinity to its
back focal plane. Recalling a few notions of Fourier analysis [44], the field distribution
of the Fraunhofer diffraction pattern can be expressed as the Fourier transform of the
field distribution across the aperture. Bearing in mind this interpretation, the function
performed by the lens in Fig. 4.2(a) becomes clear. The object scatters plane waves (its
Fourier components), which are collected by the lens, and parallel bundles of rays are
brought to convergence at its back focal plane. If a screen is placed there, the so-called
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Figure 4.2: Fraunhofer diffraction. (a) Typical set-up to visualise Fraunhofer diffraction.
(b) One of the many sets of wavefronts emitted from a line of coherent point sources.

transform plane, the far field diffraction pattern of the object would be seen, or in other
words the spatial frequency spectrum of the diffracting object. Incidentally, it is important
to realise that in case the aperture of the lens is not large enough to collect all diffracted
light, the higher spatial frequencies are rejected and effectively the lens acts as a low-pass
filter. This effect is known as wignetting and represents the limiting factor which ultimately
defines, for a given imaging system, the sharpness and resolution of the image.

The irradiance distribution within the diffraction pattern due to N coherent and iden-
tical point sources, shown in Fig. 4.2(b), is given by [53]:

_ sin®[N(kd/2) sin 6]
~ % sin?[(kd/2)sind]

(4.5)

where N is the number of oscillators, d is the distance between two consecutive oscillators,
and k is the wave number. The quantity 6 = kdsinf represents the phase difference
between adjacent sources. This expression produces to a series of sharp principal peaks,
separated by small subsidiary maxima. The principal maxima occur in directions 6,,, such
that 6 = 2mm, where m = 0,+1,4+2,... . Then it follows that:

dsin 0, = mA. (4.6)

Equation (4.6) is known as the grating equation for normal incidence. The values of m
specify the order of the various principal maxima. The m = 0, or zeroth-order, peak
corresponds to the undeflected light (§ = 0), different values of m correspond to higher
orders and are obtained at larger angles f. The smaller the distance (d), the lower will be
the number of visible orders. A repetitive array of diffracting elements, either apertures
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or obstacles, that has the effect of producing periodic alterations in the phase and/or
amplitude of an emergent wave is said to be a diffraction grating. In the case of a sinusoidal
grating, Eq. (4.6) still holds, however only few orders are observable: the zero-frequency
central peak and the first orders (m = £1) on either side of the centre.

4.2.2 Holographic imaging and magnification

Objective of this section is to introduce the principles of wavefront reconstruction and im-
age formation by means of holographic techniques. The characteristics of the reconstructed
image strongly depend on the location and type of optical waves used in the recording and
reconstruction process. To illustrate this dependence, the analysis of Goodman [44] is
briefly summarised hereafter.

Consider, therefore, two point sources representative of the reference and object wave,
respectively, and situated at the positions (z,, ¥, z.) and (., Yo, 2, ), as shown in Fig. 4.3(a).
Further, it is assumed for generality that during the reconstruction process, the hologram
is illuminated by a point source situated at the coordinates (x,,¥,, 2,), as indicated in
Fig. 4.3(b). The recording wavelength is A;, the reconstruction one is A,.

Reference

(Xe;¥r5Z0)
Reconstruction
Object % (Xps¥p,2p) X
(Xo:Yo:20)
,,,,,,,,,,,,, 1 >
Recording Hologram
medium

(a) (b)

Figure 4.3: Generalised recording (a) and reconstruction (b) systems.

Since only spherical waves are considered, the complex amplitude of the total field, due
to the interference of reference and object beams, is:

Uit(z,y) = U, exp {—i)\w

1%r

(@ — )+ (y — m} n

m
U, —1
+ exp{ 2)\

1%0

(@ —2) + (y - yo>2]} , (4.7)

where the subscripts (r,s) denote reference and object wave. U, and U, represent the am-
plitude and relatives phases of the two spherical waves, i.e. U, and U, are both complex.



4.2. PRINCIPLES OF HOLOGRAPHIC IMAGING 61

The resultant intensity at the photographic plate is:

[z,y) =[O + [0 (4.8)
+U,U; exp {—i o l@ =)+ =) iy )+ (v yo)Q]}

- -
v~

t3

+U;U, exp {ZA; (@ —2.)* + (y —u)’] — iAszo (= 20)* + (y — yo)2]} :

- 7
-~

tq

Assuming that, after chemical processing, the transparency has an amplitude transmittance
proportional to exposure, the film transmittance can be written as

T(2,y) = 70 + Bt I(2,y), (4.9)

where (3 is the slope (a negative number for a negative transparency) of the amplitude
transmittance versus exposure characteristic of the photographic material, ¢ is the expo-
sure time, and 7y is a constant background transmittance. To regenerate the image, the
hologram is illuminated with a reconstruction beam, which may (or may not) coincide with
the reference beam of the recording phase. To keep the analysis as general as possible, a
spherical wave of wavelength A, is chosen as reconstruction beam:

(@) + (g - zm} . (4.10)

The complex amplitude U;(z,y) of the transmitted wave can be obtained by multiplying
the film transmittance (Eq. 4.9) by the reconstruction wave U,... After some algebra, the
two wavefronts of interest behind the transparency can be expressed as

US(xay) = ﬂtt3UT€C(x7y)7
Ugz,y) = PttyUeec(x,y).

Goodman [44] showed that these two waves emerging from the hologram can be expressed
as a product of quadratic-phase exponentials and, thus, can be cast in the form

Ui(xz,y) = A;exp {—i )\W [(z—2;)* + (y — yi)Q]} , (4.12)

244
where the subscript “i” stands for image wavefront. By equating the corresponding phase
terms expressing the (x,y, z) dependence, the coordinates of the image of the point source

can be found. These are:
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Equations (4.13) provide the fundamental relations that allow to predict the location of
the images created by the holographic process. These results can be generalised to an
extended object by regarding the latter as a collection of mutually coherent point sources.
As can be deduced from these relations, the location of the image strongly depends on
the positions of the reference and object wave and on the wavelengths used. Depending
on the optical configurations, these images can be one real and the other virtual or both
real. The last-named case occurs, for example, when both the reference and object waves
originate from infinity (i.e. parallel waves). Then, relations (4.13) indicate clearly that both
conjugate images are also at infinity (2; = oo) and, thus, only real images are produced.

From equations (4.13), it is also possible to derive the transverse and axial magnification
of the holographic process. These magnifications are given by:

-1

Mt _ 8x2 _ 8:% —|1— é )\120 ’
oz, Yo Zr o Aazp
4.14
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C 020 (020 \2z Nz + %o T U

It is worth noticing that, in general, these two magnifications will not be identical. Consid-
ering Eqgs. (4.13) and (4.14), it can be deduced that the use of reference beams of different
wavelengths for the recording and reconstruction process introduces a shift in the image
location and is responsible for additional axial and transverse distortions in the final im-
age. Further, even if the wavelength is not changed, the holographic imaging process is
not able to reconstruct the wavefront without introducing some degree of distortion in the
image, as inferable from Eq. (4.14). Fortunately, this conclusion does not hold for the
image hologram, which holds a privileged status among most holograms types. In fact,
if all wavefronts are at infinity (i.e. parallel waves), then both magnifications tend to the
limiting value of one: that is, the hologram is able to transform plane waves into plane
waves, without introducing distortions, and is insensitive to the reconstruction wavelength.

4.2.3 Fresnel holography

This section illustrates how the principles of holographic imaging, introduced in the pre-
vious section, can be applied to an extended object. The analysis is conducted for one
of the simplest configurations of the imaging system, shown in Fig. 4.4(a) and under the
following assumptions:

(i)  both the object and reference beam originate from the same light source;

(ii)  the reference wave is a collimated beam of uniform intensity, impinging
on the hologram at an offset angle 0;

(iii)  the photographic plate is located in the region of Fresnel diffraction from
the object.
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Under these hypotheses, the complex amplitude of the object beam at any point (x,y), on
the recording plane zy, can be written as:

Uo(xa Y, ZO) = uo('ra Y, ZO) €xp [—Z(,O(.’E, Y, ZO)]? (415)
while that due to the reference beam is:
Ur (.’L', Y, ZO) = Uyr (.’E, Y, ZO) €xp (_7"277-67‘:[)7 (416)

where & = sinf/\ is the spatial frequency at which the reference beam crosses the pho-
tographic plane along the x axis. The resultant intensity at the photographic plate is,
omitting the z coordinate:

I(z,y) = |Us(z,y)+Us(z,y), (4.17)

= |Un(z,y)|* + |[Us(2,9)|* + wuoe PEW 2T 4 gy gy, et¢lm¥)e=i2mrr

To reconstruct the image, the hologram is illuminated once again with the same reference
beam used to record it, as shown in Fig. 4.4(b).

. \
Real image
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(a) (b)
Figure 4.4: Fresnel hologram: off-axis configuration. (a) Recording process. (b) Recon-

struction process.

In the usual fashion, Eq. (4.9) yields for the complex amplitude U(x,y) of the trans-
mitted wave:

Ut(xﬂy) = UT(xvy) T(I,y),
Ui(z,y) + Us(z,y) + Us(z,y) + Us(z, y), (4.18)
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where
Ui@,y) = (ro+ Btud)u, exp (—i2né,a),
Usp(z,y) = Btu, |Uy(,y)|* exp (—i2né ),
Us(z,y) = BtulU,(z,y), (4.19)
Us(z,y) = BtuU;(a,y) exp (—idn&,x).

The transmitted wave U;(x,y) results in the sum of four terms, each corresponding to
one of the terms of Eq. (4.17). The first term on the right-hand side U;(z,y) is merely
the attenuated reference beam, which is a plane wave directly transmitted through the
hologram. The second term Us(x,y) creates a halo around U; (z,y), whose angular spread
is determined by the extent of the object boundaries |U,(z,y)|*. The third term Us(z, %)
is, aside from a constant factor, identical to the original object wave. Thus, it must appear
to an observer to be caused by the original object, in spite of the fact that the latter
has been removed. In other words, Us(z,y) generates a virtual image of the object in its
original position. This image is at an angle # with respect to the directly transmitted wave.
Similarly, the fourth term Uy(x,y) gives rise to the conjugate image. This corresponds to
a real image as a result of an actual focusing of light in space. The factor [exp (—idn&, x)]
indicates that the conjugate image is deflected from the z axis at an angle 6, approximately
twice the angle at which the reference beam intersected the z axis: 6; ~ 2sin™'(£,)\). From
these considerations, it is clear that the two images reconstructed with this configuration
are angularly separated and, thus, do not overlap. The minimum angle § (or similarly
minimum spatial frequency &) for which no overlapping of images occurs can be derived
from Fourier analysis and results in the condition: &, > 3 &z, Where &4, is the highest
spatial frequency in the object beam spectrum.

S

4.3 The image hologram

This section deals with a particular application of holographic imaging, which is especially
attractive for transparent media and two-dimensional fields. The idea for adopting such
optical configuration is essentially inspired by the work of Takayama, Onodera et al. [60,
81,135], who combined a schlieren system with a holographic interferometer. A schematic
representation of the set-up is plotted in Fig. 4.5. To understand the properties of a
hologram produced with this configuration, first an heuristic description of the optical
properties of this set-up is provided.

The object beam is collimated by the lens L; and the spherical mirror PM;. Upon
traversing the test section, the beam is diffracted and/or distorted by any obstacle or
non-homogeneity present in the test chamber. This distorted wavefront can be resolved
into a new set of plane waves (its Fourier components), each corresponding to a specific
order (i.e. spatial frequency) and travelling in a specific direction. As an example, one
of these components is also depicted in Fig. 4.5. The objective mirror PM; serves as a
transform lens producing the Fraunhofer diffraction pattern of the object on the transform
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plane ¥, (which is located in the front focal plane of Ly). In other words, it produces on
Y; a two-dimensional Fourier transform of the object beam. That is, the spatial frequency
spectrum of the object is spread across this plane. Lens Ly projects this diffraction pattern,
distributed over ¥; on the image plane. Therefore, the combined effects of PM, and L, is
to image the test section (i.e. plane 3,) onto the holographic plate .

f
A diffracted wave |
Sperlcal seroth-order Sperlcal
mirror - mirror
PM; > PM,

L.

—77
—

g

/
/
Test chamber '%,
) R
L NN
S
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Figure 4.5: Schematic representation of the optical system used to generate the image
hologram.

Note that the specific location of the plane ¥, does not affect the quality of the image,
but only the phase of the complex amplitude distribution. This property is very impor-
tant and useful when dealing with interferometric studies of transparent media, where in
presence of strong refractive fields, it may be necessary to shift the plane of focus in order
to minimise refraction errors [72,147]. The reference beam passes outside the test section
and is collimated by a combination of lenses analogous to L; and L;. Then, it impinges
at an angle # on the hologram, where interferes with the object beam. A more detailed
description of the holographic interferometer can be found in section 3.2. This section
focuses primarily on the characteristics and properties of the generated hologram.

The optical configuration described above produces a special type of hologram, which
can be defined as an off-axis image hologram, using collimated beams. Image holograms are
characterised by the fact that a real image of the object is recorded, instead of the object
itself. As mentioned before, this is, in fact, the function exploited by mirror PM, and lens
Ly. The main advantage of the image hologram is that a sharp image of the test section
can be obtained. The diffraction efficiency of the set-up is, in fact, determined by the
aperture of the objective mirror PM,. If this is large enough to collect all diffracted light,
then a sharp image can be produced. This is not true in the case of Fresnel holograms,
where the high spatial frequencies are inevitably lost. A second important feature of this
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optical configuration is the use of collimated beams both for recording and reconstruction
purposes. As explained in section 4.2.2, this assures the generation, in the reconstruction
phase, of two real images, completely free of distortions. A few properties of the image
hologram are discussed in more detail in subsection 4.3.1 and compared to those of classical
Fresnel holography.

Denoting with U,(&,n) = u,(&,n) exp[—ip(€,n)] the complex amplitude of the object
wave in the plane of focus ¥,, the first step is to determine the complex amplitude of the
object wave Uy(z,y), in the recording plane ;. The optical system (depicted in Fig. 4.5)
projects an image of the object wave on this plane. According to geometrical optics (i.e. the
effects of diffraction are neglected), the complex amplitudes of image and object are related
by

1
Uh(l‘, y) = Tas Uo(fﬂ?), (420)
|M|
where z, y denote the coordinates in the recording plane and the factor M = —f5/f;

represents the magnification of the imaging system.

Assuming that the reference beam is a simple collimated wave, impinging on the holo-
gram at angle # to the object beam, it can be expressed as U,.(x,y) = u,.(x, y) exp|—i27&o x].
The intensity pattern recorded on the photographic plate is:

I(Iay) = |Ur('r7y) + Uh(xvy)|2;

B , , . . (4.21)
- |UT('T7y)| +|Uh($,y)| +UTUh+UTUh'

After chemical processing the transparency, the transmitted wave U;(z, y) can be obtained
by multiplying the reconstruction beam U, (x,y) by the amplitude transmittance 7(x,y)
(Eq. 4.9). As for Fresnel holography, U;(z,y) results in the sum of four terms. The two
wavefronts of interest, denoted with Us(x,y) and Uy(z,y) are

U3($7y) = ﬂtuzUh(xvy)a
Ui(z,y) = BtulU;(z,y)exp (—idm&,m). (4.22)

Contrary to the case of Fresnel holography, both Us and U, are, in this case, plane waves.
As demonstrated in section 4.2.2, if plane wavefronts are used in the recording and recon-
struction procedure, only plane waves are transmitted by the hologram. Uj; propagates
along the original direction of the object wave; U, is deflected by an angle 6y &~ 2 sin(&\).
The reconstruction process is, then, accomplished by placing the hologram in a beam of
coherent light and using a lens to take the Fourier transform of the complex wavefront
emerging from the hologram. This operation can be achieved by placing a lens right after
the hologram, to minimise the vignetting effect, and observing the Fraunhofer diffraction
pattern in the back focal plane of this lens. This configuration is shown in Fig. 4.6.
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hologram

reconstruction
beam

Figure 4.6: Reconstruction of real images from an image hologram. Real images are
obtained only if collimated beams are employed both in the recording and reconstruction
process.

Since the Fourier transform operation may be regarded as a decomposition of a com-
plicated wavefront into a collection of plane waves propagating in different directions, two
conjugate plane wavefronts, corresponding to two real images, will appear in the back fo-
cal plane of lens L3, as shown in Fig. 4.6. Due to the presence of the exponential term
exp (—idn,x), the image Uy, is shifted with respect to Us; by an amount (2&,). These
two conjugate images can only be distinguished by the fact that they are inverted. To
obtain a photographic and/or digital recording of the interferogram, one of these images
has to be selected. Since in the plane &, 1, no sharp image can be obtained, the actual
reconstruction system is in practice more complicated than the one depicted in Fig. 4.6. A
detailed description of the reconstruction set-up can be found in section 3.2.1. Here only
its main components are briefly listed. First, a system of lenses is required to obtain a
sharp image of the hologram on the desired plane. Second, the quality of the reconstructed
image is greatly improved by spatially filtering the chosen wavefront from any undesired
background light.

4.3.1 Properties of the image hologram

This subsection focuses on some of the advantages offered by the collimated image holo-
gram relative to traditional Fresnel holography. This review is certainly not exhaustive.
For more detailed information, the reader is referred to the book of Caulfield [19] and
Hariharan [51].
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Image aberration

In general, the quality of the image obtained with holographic imaging techniques is
strongly limited by all sorts of aberrations introduced during the reconstruction process. In
this context, the collimated image hologram offers a major advantage. Since in this type of
hologram both the object and the reference wave are effectively at infinity in the recording
step, this assures that practically aberration free images may be always reconstructed, even
when the reconstruction beam is not coinciding with the recording reference beam. The
reason for this is that if a hologram must change the curvature of an incident wave, aber-
rations are inevitably introduced. However, whenever the object and the reference source
are projected to infinity, all the waves incident on the holograms in the recording step are
plane waves. If the hologram is then reconstructed with any plane wave, an aberration-free
image results, because a hologram can transform an incident plane wave into another plane
wave without introducing aberrations.

Image sharpness and Resolution limit

As pointed out in section 4.2.1, the sharpness of an image is strongly dependent on the
aperture of the objective lens. If this is not large enough to collect all diffracted light
from the object, this results in a loss of image sharpness and resolution. Goodman [44]
showed that if the diameter of the lens is at least twice the diameter of the object field,
then a space-invariant Fourier transform of the object may be obtained, provided that no
spatial frequency greater than R/2\d is present in the object frequency spectrum, where
R is the radius of the objective lens and d is the distance from the object to the lens. This
frequency takes the name of cut-off frequency of the imaging system and, in this specific
application, it is equal to f., = 7.20-10* m~!. In case of an off-axis Fresnel hologram, the
cut-off frequency is much lower due to the smaller aperture of the holographic film. To
increase its value, the distance d between object and lens is often reduced. However, this
results in a decrease of the resolving power of the imaging system. The latter is, in fact,
defined as 1/(Al)min, where (Al)pmin = 1.22f)/d is the smallest resolvable separation in
the image and f is the focal distance of the imaging lens. This optical configuration, thus,
guarantees the best compromise between image resolution and sharpness.

4.4 Double exposure holographic interferometry

Holographic interferometry represents one of the most important scientific applications of
holographic imaging. There exist several different modalities of performing holographic
interferometry, a detailed treatment on this topic can be found in the books of Vest [147]
and Schumann [123]. Despite this large variety, they all rely on the ability of a hologram
to store two or more complex wave fields on the same recording medium. Then, due to
the linearity of the recording process, these wavefronts are all reconstructed independently.
The subsequent interference pattern is generated upon reconstruction and is only visible in
the imaging plane of the camera lens. Holographic recording introduces, thus, a third di-
mension, namely time, in that it is now possible to compare, interferometrically, wavefronts
generated at different time instants.
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This section focuses specifically on the technique of double exposure interferometry. In
this process, two recordings are made on the hologram: one serves as reference state, the
other serves to measure the spatial variation of the quantity of interest. For this particular
application, the two exposures correspond to the following states: a reference state with
the mixture at rest (no flow) and a second recording with the flow activated in the test
section. The major advantage of such technique is that all imperfections due to the optical
components (lenses, mirrors etc.) cancel out reciprocally, thus improving the quality of the
measurements. To appreciate fully this property of double exposure interferometry, the
resultant intensity on the photographic plate is calculated explicitly. Irrespective of the
specific imaging conditions (Fresnel, Fourier, ... hologram types), the wavefronts impinging
on the recording plate can be cast in the form:

Un(z,y) = un(z,y)e 2@,
Up(z,y) = up(z,y)e tolntaeyl (4.23)

Un(z,y) = up(z,y)e”™,
where Uy, (2, %) and U, (,y) represent the object waves and U, (z,y) is the reference wave,
which is assumed to be same in the two recordings. The underlying assumption in Eq. (4.23)
is that small disturbances or deformations influence primarily the phase of the object wave
and not its amplitude, which, as first approximation, can be considered constant between
the two exposures. Indicated with Uy = U, + U, and Uy = U, + U,’Z the total complex
amplitude at each recording, the total irradiance is given by:

I(z,y) = |Ui(z,9)" + [Us(z,y)[*
= U+ Up) (U + U + (U + U, (U, + U, ), (4.24)
= W’ + U U +UU; + u} + u? + U U +U U + wl.
N—— \b,_/

It is important to realise that this equation provides an intensity distribution, which does
not correspond to the desired interferogram, but is simply an encoding of the desired infor-
mation. After chemically processing the hologram, this intensity pattern is then translated
into a certain transmission, according to Eq. (4.9). Supposing that the hologram is recon-
structed with the same reference beam used during the recording, the two imaging terms
(a, b), which give rise to the desired interference pattern, can be expressed as:

U3(‘T’ y) = ﬂtuzUh(‘T’ y)a

, (4.25)
U4(IL', y) = ﬂtUzUh(@", y)

These two waves are generated during the reconstruction procedure. As they interfere
with each other, the desired interferogram is produced which carries the information on
the changes in the flow field. This interferogram, thus, is visible only in the plane of focus
of a camera lens looking through the hologram. Apart from a constant attenuating factor,
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the two waves Us and U, are identical to the original object waves, and the final interfer-
ence pattern is given by:

Ip(z,y) = |Us(z,y) + Us(z,y)|> = 20162 [1 + cos Ap(z, y)]. (4.26)

This intensity distribution provides the information on the changes occurred in the test
section between the two exposures. The interferogram is also referred to as infinite fringe
interferogram and the fringe pattern is directly proportional to variations in density.

If the reference beam is tilted in between the two exposures, then an additional set
of fringes is produced and the interferogram is called a finite fringe interferogram. To
understand how this set of carrier fringes can be introduced, consider Fig. 4.7(a) showing
the tilting of the reference beam between the two recordings. In the hypothesis that both
reference beams U, and U; are situated in the y-z plane, follows that:

U.(z,y) = ure_“;"?, (4.27)

where k = kyey + k.€. is the wave number vector. Since the wavelength of the reference
beam does not change during the two exposures, its modulus is simply k£ = 27A~! and its
components along the coordinates axis are k, = cos v, and k. = cos «,, respectively.

holographic
film

holographic A
film

Uo

first exposure cos(o,) A
‘ Ur z cos(aLy)
U7 N
" second exposure
y

(a) (b)

Figure 4.7: Schematic representation of the recording process in the finite fringe interfer-
ogram. (a) Tilting of the reference beam. (b) Spatial angular frequency k of the reference
beam U,(x,y).

Denoted with f, and f, the spatial frequencies (f; = cosa; A™1, i = y,2), the four
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wavefronts impinging on the hologram during the two exposures are given by:

U.(x,y) upe 2yt sz,

Un(z,y) = up(z,y)e w0

U;(x, y) = upe 2yt f A, (4.28)
Uilz (z,y) up(z, y)e_i[¢0(m:y)+A<p($,y)];

where the primes denote the wavefronts in the second exposure. Further, it is implicitly
assumed that the amplitude of the object wave does not change appreciably, and the
reference beam is simply a plane wave of uniform intensity. Then the irradiance I recorded
on the hologram is given by:

I(z,y) = (U, + Uy) (U, + Up)* + (U, + Uy,) (U, + U, (4.29)

After some algebra and recalling the expression for the amplitude transmittance Eq. (4.9),
the following two interfering waves emerge from the hologram:

U3(37, y) = ﬁtuzUh(xa y)a

, (4.30)
U(z,y) = BtuiU(z,y)e e "1y,
where the quantity ¢ = 27(f, — f.)z is constant along the photographic plate. Following
exactly the same procedure as in the previous case, it can be shown that the intensity
distribution of the interferogram is given by

IF(a:,y) = (Ug + U4) (U3 + U4)*,

, (4.31)
= ZClui[l + cos(Ap(z,y) + 2n(f, — fy)y +9)].

Since the phase term ¢ is constant on the film plate, the set of carrier fringes is only
dependent on the y-coordinate and results in a horizontal fringe pattern. The orientation
of the lines (vertical or horizontal) depends simply on the way the reference beam is
tilted in between the two recordings. If the tilting, instead of occurring in the yz-plane,
as supposed here, is made in the xz-plane, then a series of vertical lines will appear. The
resulting interference pattern, thus, shows carrier fringes modulated by the phase difference
Ay due to density variations in the flow field. As an example, a typical interferogram is
shown in Fig. 4.8. The flow proceeds from left to right. At inflow, the density of the
mixture is almost constant and thus the fringe pattern stays basically horizontal. As
the expansion proceeds along the nozzle, the density decreases and correspondingly the
fringe pattern bends downward. This process continues until significant latent heat is
released to the flow due to condensation effects. At this point the fringe pattern bends
upwards indicating the local increase in the mixture density. This qualitative explanation
is translated into quantitative information in section 4.5, where the extraction of density
data from interferometric images is discussed.
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Figure 4.8: Finite fringe interferogram. Nozzle: G2. Exp. H61 - Stagnation conditions:
Py =9.13-10* Pa, Ty = 283.1 K, Sy = 0.613.

4.5 The interferogram

As discussed in the previous section, upon reconstruction of a hologram the two waves
scattered by the object at different times are simultaneously reconstructed. Their instan-
taneous interference pattern represents a contour map of the changes experienced by the
object between the two exposures. In the case of transparent media, the quantity actually
measured by interferometric studies is the change in refractive index due to some changes
in the object volume. Assuming that the refractive index is uniform during the first expo-
sure ng, the optical pathlength difference A® between the distorted and undistorted beam
can be written as [147]:

A = / n(2(s), 5(s), 2(5)) — mods, (4.32)

which results in a phase delay of

2m
86 =2 [in(a(s). (51, 25) ~ nalds, (4.33)
where n(z,y, z) is the refractive index distribution during the second exposure, A is the
wavelength of light, and s is the coordinate along the ray path. When refraction is negli-
gible, then the rays remain straight lines and the path integral becomes a line integral

9 L
ao="" / (2,5, 2) — noldz, (4.34)

0
where L is the width of the test section and x, y are the coordinates perpendicular to the
light propagation direction z. Equation (4.34) provides the actual phase delay, which is
sought. It is, in fact, the phase delay due to changes in the refractive index [n(z,y, 2) — ny]
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the quantity of interest, and not the delay due to integration along different paths. For
2-D fields it was shown that, in order to minimise refraction errors [61,72], a plane at 2/3
of the width of the test section (measured from the entrance plane) should be imaged onto
the hologram.

For humid nitrogen, the density may be derived from the refractive index using the

Gladstone-Dale relation:
(n—1) = Kp, (4.35)

where the Gladstone-Dale constant K for the mixture is given by
K = (1 —g) KN2+9KH20. (436)

Here, g is the specific humidity and the Gladstone-Dale constants [129,138] for nitrogen and
water vapour are Ky, = 0.236-1072 m3/kg and K,o = 0.316-1072 m?/kg, at a wavelength
of A = 694.3 nm. Because of the low specific humidity encountered in the experiments,
K is evaluated using the nozzle supply specific humidity. Thus, in determining K, the
presence of the condensate is neglected. Since the condensate mass fraction cannot exceed
the supply specific humidity (g4 & 0.007), the resulting error in density measurements
is small. As can be inferred from the above discussion, the phase delay determined by
interferometry is a direct measure for the density integrated along the light path.

4.5.1 Interferogram analysis

There exist a large number of techniques for extracting density data from an interferogram.
They can be essentially classified in two main categories: (semi-automated) fringe counting
and bias phase modulation. An exhaustive review on these two classes can be found
in [109,140]. An additional method is provided by Fourier transform analysis, which
lends itself quite efficiently to the self-extraction of the phase information. Furthermore,
it possesses the additional advantage of being suitable to remove a significant amount of
experimental noise. Two-dimensional Fourier transform analysis is most successful when an
appropriate heterodyning process is implemented in the interferometry technique, provided
that the spatial frequency of the heterodyning is sufficiently large. The method has been
extensively described by Bone et al. [14], Bone [15], and Babinsky and Takayama [5]. More
recently Houwing and Takayama [60] improved this technique for automated interactive
data analysis and demonstrated its application to a wide range of flow configurations.
The selection of a suitable algorithm relies strongly on the subject under study and
the environmental recording conditions. For our specific application, a semi-automatic
fringe counting method is adopted. The technique relies on the fact that the difference
between the maxima (or minima) of two neighbouring fringes is 27. By ordering all maxima
in a consecutive manner, the phase values in the whole field can then be determined
by interpolation. Fringe counting methods have two major disadvantages. First, they
require additional information to establish whether a phase shift represents an increase
or a decrease in density. This problem is usually bypassed on the base of knowledge of
the physics of the phenomenon studied. The second disadvantage refers to its low spatial



74 CHAPTER 4. HOLOGRAPHIC INTERFEROMETRY

resolution, which is strongly dependent on the fringe density in a certain area, and thus
varies over the image. Further, for weakly refractive fields with small gradients, only broad
fringes are obtained, so that only a few widely separated maxima are present. To overcome
this problem, heterodyning frequencies are introduced by tilting one of the mirrors in the
reference beam path. At any rate, because of the sinusoidal variation of the intensity with
the phase difference, the accuracy with which the maxima (or minima) can be located is
usually not better than 0.1 of the fringe spacing. Despite these drawbacks, the method
has been adopted due to its simplicity and commercial availability (TimWin application
package).

The analysis proceeds as follows. First, the image is analysed for noise and shade
removal. A high noise level in the digitised picture can seriously hamper the quality and
accuracy of the phase extraction process. Second, the grey value image is reduced to one
containing only fringe maxima and minima. This operation is called binarisation of the
fringe pattern and is performed by thresholding the picture. The threshold range has to
be determined separately for each interferogram. Based on this segmentation of the image,
the skeleton is determined. This is achieved by thinning the region of fringe maxima to a
line structure, which then constitutes the fringe skeleton. Whenever needed, the skeleton
is completed (manually) by linking interrupted lines, removing line crossings, and adding
missing points. As an example, the skeleton of the interferogram shown in Fig. 4.8 is

plotted below.
50 54 60

18

Figure 4.9: Skeleton and semi-automatic fringe ordering. Nozzle: G2. Exp. H61 -
Stagnation conditions: Py = 9.13 - 10* Pa, Ty = 283.1 K, Sy = 0.613.

The accuracy of the skeletonising process is strongly affected by the noise level in the
image. The presence of irregularities, in fact, may drastically jeopardise the automatic
detection of the fringe skeleton. Ideally the fringe pattern in an interferogram should be
described by a simple sinusoidal intensity distribution, in practice this is not the case due to
imperfections in the optical components, non-uniformities, and noise of the light source. To
minimise the noise level, the reconstruction procedure is optimised with respect to quality
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of the reconstruction beam and exposure time. Details on the reconstruction procedure can
be found in section 3.2.1. In this way, no intervention on the photo histogram is required
(i.e. the intensity distribution on the photo was almost sinusoidal), and the skeleton can
be derived in a straightforward manner.

Once the skeleton is obtained, the fringes are interactively ordered. The phase difference
between successive fringes is ambiguous, since it is only known modulo 27w. The process
of determining the number of 27 steps to be added to these raw values is called phase
unwrapping. Thus, phase unwrapping requires a knowledge of the sign as well as the
magnitude of the raw phase. This information has to be provided by the user. This is
done by drawing an imaginary vector (Fig. 4.9) on the fringe skeleton, which indicates the
direction of increase and/or decrease of the phase. As a starting point, where the phase
difference is equalled to zero (reference point), the bottom left of the nozzle is chosen. A
grey value is then assigned to each fringe according to the order indicated by the vector.

The phase map for the whole field is subsequently calculated by interpolation. A built-in
procedure in TimWin performs the required interpolation using a second order algorithm.
The resulting image is a grey value image, in which the grey value represents the height of
the point in question. A mask, derived in the pre-processing stage, helps to keep the image
clean by removing parts outside the nozzle. Figure 4.10 shows the interpolated unwrapped
phase map corresponding to the interferogram of Fig. 4.8.

Figure 4.10: Unwrapped phase map. Nozzle: G2. Exp. H61 - Stagnation conditions:
Py =9.13-10* Pa, T, = 283.1 K, S, = 0.613.

The density difference Ap between a point in the flow field and the reference point is:

8= preg — 7oz [ — (7], (437)
where Wy is the computed phase, p,.; = 1.1 kg/m? is the density assigned to the reference
point, 7 is the distance vector between field point and reference point, 5 is the wave vector
of the fringes corresponding to the superimposed linear phase distribution, A = 694.3 nm is
the wavelength of the light source, K is the Gladstone-Dale constant for the mixture (given
by Eq. 4.36), and L = 10 c¢m is the optical path length. The axial density distribution,
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determined with this procedure, is presented in Fig. 4.11. It should be noted that this
density distribution is characterised by a quite low noise level, thus confirming the good
quality of the recording and reconstruction process. The comparison between theoretical
and experimental density fields can be found in chapter 6, where the validation of various
condensation models is performed.
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Figure 4.11: Density distribution measured along the nozzle midline. Nozzle: G2. Exp.
H61 - Stagnation conditions: Py =9.13-10* Pa, Ty = 283.1 K, Sy = 0.613.



Chapter 5

Droplet sizing by light extinction

5.1 Introduction

The development of instrumentation for accurate measurements of droplet size distribu-
tions is important for a diversity of applications: fuel spray combustion, nuclear reactor
safety, meteorology, and a variety of industrial processes. In this chapter the optical charac-
terisation of a droplet cloud, generated by homogeneous nucleation in supersonic expanding
flows, is the subject of interest. In this context, characterisation of the cloud implies that
the time dependent droplet modal radius, number density, and (if possible) the variance
in droplet size are determined, at the nozzle exit, as accurately as possible. The relevance
of such measurements is twofold. First, droplet size is a key parameter in assessing the
quality of the proposed condensation models, as discussed in chapter 6. Second, in light of
the industrial application which motivated this study, the droplet size distribution affects
drastically the efficiency of the separator. Ideally one would like to obtain, constantly in
time, a maximum modal radius with an almost monodispersed size distribution. Whether
this is at all attainable and at which conditions is one of the questions to be addressed in
the following chapters.

A large variety of experimental methods for optical fog characterisation has been pro-
posed in the past years. A comprehensive review of the theoretical issues pertinent to
optical characterisation of disperse systems can be found in [69]. A survey of recent de-
velopments was edited by Gouesbet and Gréhan [45], and a more general overview of
techniques for droplet sizing was given by Tayali and Bates [137]. More recently two novel
techniques for droplet sizing have been proposed. The so-called “rainbow” technique, de-
veloped at the von Karman Institute, was successfully applied to droplet sizing by van
Beeck [9]. Sorensen et al. [133] combined fractal and light scattering theory and were
able, by means of scattering-extinction measurements, to describe the random chainlike
structure of combustion generated soot aerosols. Despite the noteworthy progress, the
experimental determination of droplet spectra via optical techniques in condensing nozzle
or turbine flows has been less satisfactory. This is due to the difficulties of both resolving
accurately in time the details of the spectrum and inverting the optical transmission data

7
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for dense clouds of nanometre droplets with a high degree of polydispersion. As a matter
of fact, most of the above mentioned techniques were developed for the characterisation of
clouds originated in less extreme conditions than those normally encountered in condensing
flows, namely: lower degree of polydispersion, larger droplet sizes, lower optical densities,
and steady or slowly varying flow regimes. Therefore, their application to the study of
condensing flows is, by far, not straightforward.

To the author’s knowledge, in the past years only few groups have been actively working
in this field. The works of Conrad [23] in 1977 and of Moses and Stein [88] in 1978
represent the first attempts to validate nucleation and droplet growth models. They both
used light scattering techniques to determine the mean droplet size in steady nozzle flow
for moist air and wet-steam, respectively. Unfortunately, due to the large experimental
uncertainties, their studies cannot be considered conclusive in assessing the quality of the
various condensation models. In 1980, Walters [153] determined, for the first time and
fully, the droplet size distribution in the case of condensing steam and in a variety of
experimental configurations. His method consists of recording the attenuated white-light
flux at eighteen different wavelengths by using a sequence of special optical filters. The
technique is mainly applicable to steady flow situations and its description and validation
are presented in an earlier paper [151]. Walters’ method proved to be extremely successful
in experimentally determining the spectral turbidities and inverting those data to obtain
accurate information on the size distribution function. Due to its accuracy and to the
availability of a detailed technical documentation, it has been widely employed to perform
wetness measurements in the low-pressure (LP) stages of steam turbines. Among these,
one can mention the work of Skillings et al. [128], Kantola [66], Walters [154], and White et
al. [160]. In the last-named case, it was possible to measure droplet sizes, with “reasonable”
accuracy, down to 50 nm, which is at the very limit of optical detection. In 1986, Tatsuno
and Nagao [136] developed an optical fiber sizer, based on the forward scattering method.
The performance of the sizer was accurately verified in the [0.1 + 5.0 um| diameter range.
They also measured average droplet sizes in LP turbines, obtaining results very similar
to those of Walters and Skingley [152]. Although very promising, their method can only
be applied to measure droplets larger than 0.2 ym in diameter and, therefore, cannot be
employed to typify droplet clouds in nozzle flows where the droplet sizes are in the range
of [30 + 200 nm| in modal radius. More recently (1997), Cinar et al. [20] investigated the
nucleation process of steam flowing through a nozzle at high pressures and temperatures.
To this aim, they performed extinction measurements (employing only one wavelength)
using a mercury lamp as a light source. The scarcity of data on the experimental procedure
makes it very difficult to verify the reliability of the performed measurements.

Based on this review, the method of Walters is chosen: it proved to be the most
successful and reliable one for measuring droplet sizes in the range of [30 + 200 nm|, which
is the expected range in our experimental environment. In order to be able to follow the
time evolution of the droplet size distribution in unsteady flow regimes, a few modifications
have been introduced, which increased its temporal resolution up to values of the order of
1 us and made it particularly appealing for measuring rapidly changing phenomena with
a satisfactory accuracy. A detailed description of the set-up can be found in chapter 3.
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Hereafter some theoretical issues and limitations are discussed which are pertinent to
the reliability and accuracy of the experimentally determined droplet sizes. A first diffi-
culty arises from the fact that almost all existing techniques for retrieving size information
from the spectral data are based on the assumption of single scattering. However, droplet
clouds generated by homogeneous nucleation are, optically, extremely dense media. In
such cases, multiscattering effects may play a major role and hamper, therefore, the in-
terpretation of the transmission data. An additional complication stems from the high
degree of polydispersion of the size distribution, which makes the inversion of the optical
transmission data more cumbersome. Finally an additional problem is represented by the
fact that, in many applications, one is dealing with droplet clouds of nanometre size. Due
to the theoretical impossibility of obtaining the size information in the Rayleigh regime, it
is necessary to develop a criterion in order to assess whether the Rayleigh limit is reached
and, consequently, exclude these points from the analysis.

These issues are discussed in a detailed manner in the following sub-sections. Specifi-
cally section 5.2 deals with some basic scattering theory. This theory has been described
in several textbooks, such as those of Bohren and Huffman [12], Kerker [67], and van der
Hulst [63], and therefore its mathematical derivation is not repeated here. Instead, it is
preferred to recall, whenever necessary, some basic theoretical notions and stress immedi-
ately their implications for the interpretation and analysis of the experimental results. In
section 5.3 the specific inversion method is discussed and some results are presented. Here,
the term “inversion” refers to the method used to derive the size distribution from the
measured spectrum. The chapter ends with a detailed analysis of the influence of forward
scattered radiation on the extinction measurements. The study encompasses both single
and multiple-scattering effects and is discussed in section 5.4. Although this section is not
essential for an understanding of the droplet sizing procedure, it plays a major role in as-
sessing the reliability of the latter both from an experimental and theoretical perspective.
The most important outcome of this analysis is the verification of the applicability of the
Lambert & Beer law for a variety of experimental conditions and optical thickness as high
as eight.

5.2 Basic scattering theory

In this section, the interaction of light of arbitrary wavelength with a single particle (or a
collection of particles), embedded in a homogeneous medium, is considered. If a particle
is illuminated by an electromagnetic wave, as shown in Fig. 5.1, the electric charges in
the particles are set into oscillatory motion by the electric field of the incident wave. As
a result of this, part of this electromagnetic energy is re-emitted as secondary radiation,
the so-called scattered wave, part is, instead, transformed into other forms. The latter
process is called absorption. With the expression light extinction, one means that energy
is removed from the forward direction, i.e. the direction of propagation of the incident
light wave. This attenuation of the light beam is the result of the combined effect of
scattering and absorption of electromagnetic energy by the droplet(s). The magnitude of
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Figure 5.1: Scattering by an obstacle.

the extinction depends on the ratio between the droplet size and the wavelength of the
light used. It is now clear that scattering, absorption, and extinction are not mutually
independent processes and that the solution of the scattering problem must be derived
from the equation of conservation of electromagnetic energy (Maxwell equations) with the
appropriate boundary and initial conditions.

The problem of scattering of the electromagnetic field by an arbitrarily shaped body has
not yet been solved in general form. However, the specifics of the propagation of radiation
can be analysed in the case of elementary shapes, such as a sphere. This problem was
rigorously solved by Gustav Mie, in 1907. Here, it suffices to note that solving the scattering
problem implies determining the properties of the scattered light at any given position in
space, namely its irradiance, polarisation, and phase. For many practical purposes, the
most important property is the irradiance, i.e. the energy flux per unit area, so the following
treatment is restricted essentially to the last-named parameter.

With reference to Fig. 5.2, consider a point P at a large distance r from the particle
(kr > 1), where k is the wave number of the light, defined as k = 27/A, and A is the
wavelength in the surrounding medium. The direction of scattering, i.e. the direction from
the particle to the point of observation, is characterised by the scattering angle 6 and the
azimuthal angle . At the observation point (P), the following relation holds between the
irradiances of the incident and scattered wave, Iy and I, respectively:

Iy

IS k2T2

F(0,p), (5.1)
where F (6, ¢) depends on the polarisation of the incident wave and the orientation of the
particle with respect to the former. For the case of a spherical particle and unpolarised
incident light, the exact expression for F (6, ¢) can be found in Appendix G.

An alternative quantitative description of the scattering process is represented by the
notion of a scattering cross-section C.. The scattering cross-section is defined as the
ratio of total scattered-energy flux to that incident per unit area. In other words, the
total energy scattered in all directions can, by definition, be put equal to the energy of the
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Figure 5.2: Scattering by an arbitrary particle.

incident wave falling on an area Cl.,, yielding:

I, dA 1
ffAT = Osca = F F(G,go) dw, (52)

where dw = sin 0dfdyp is the element of solid angle in a droplet-centred coordinate system
and the integral is taken over all directions.

In an analogous way, the energy absorbed inside the particle can, by definition, be put equal
to the energy incident on the area Cg, and the energy removed from the original beam
can be put equal to the energy incident on the area C.,;. Application of the conservation
law of energy yields:

Cemt = Csca + Cabs- (53)

The quantities Ceyt, Csea, Caps are called the extinction, scattering, and absorption cross
sections, respectively.

The efficiency factors can be derived directly from the corresponding cross sections. These
factors are dimensionless quantities and are defined as the ratios of the scattering, absorp-
tion, and extinction cross sections to the characteristic geometric cross section G.

Cea:
Qewt = Gq !
Csca
sca — 5.4
Qs = & (5.4
Oa s
Qabs b
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Obviously the efficiency factors obey also the relation:

Qe:ct = Qsca + Qabs- (55)

Indicating the size parameter by o = 2mwry/\ (r4 represents the droplet radius), the refrac-
tive index of the light beam in the surrounding medium by m, and the scattering angle by
g, it is worth emphasizing that Qs is solely a function of o and m, since § = 0° (forward
direction).

5.2.1 The fundamental extinction formula

In this subsection, the theoretical dependence of the extinction efficiency on the size pa-
rameter («) is presented for the case of a spherical water droplet in nitrogen. In such
situations, absorption can be neglected and the solution of the extinction problem reduces
to solving the scattering one. With reference to Fig. 5.2, the relation between scattered
and incident wave can be cast, in the most general case, in the form:

Esca = - é Ez'nca

E;, . eik(r—2) Sy Ss3 Ey;
E..)  —ikr \S:s S E.)’

where S is the amplitude scattering matriz. Its elements S; (j = 1, 2, 3, 4) depend, in
general, on the scattering angle § and the azimuthal angle . This matrix assumes a
very simple form in the hypothesis of an incident plane electromagnetic wave, scattered
by a spherical homogeneous droplet. Now Mie theory can be applied and results into
S3 = Sy = 0. Mie theory provides also a rigorous determination of the efficiency factors
in terms of the orthogonal components of the scattered light, which are polarised perpen-
dicularly and parallel to the scattering plane, respectively. These components are shown
in Fig. 5.2. Their detailed analytical expressions can be found in Appendix G. Assuming,
for convenience, the incident electric field Emc = FEy e, to be x-polarised, the fundamental
extinction formula reduces to the following relation:

(5.6)

4 -
Qext = kQ—T?i Re[(X - ex)o=o), (5.7)

where 74 is the droplet radius and X is the vector scattering amplitude. The latter is related
to the elements S; of the amplitude scattering matrix as follows:

X = S, cos Y el + S1sin @ e. (5.8)

Equation (5.7) is a particular form of the optical theorem. This theorem expresses the
fact that, although extinction is the combined effect of absorption and scattering in all
directions, it depends only on the scattering amplitude in the forward direction. For
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a complete understanding of the derivation and implications of the optical theorem, the
reader is referred to the book of Bohren and Huffman [12] (pp. 69-77). Here only its
most important consequence is reported: extinction is effectively the manifestation of
interference between incident and forward scattered light. However, conservation of energy
requires that the light removed from the incident beam by interference is accounted for by
scattering in all other directions. This equivalent description of the extinction mechanism
is applied in the next section to calculate the total extinction by a collection of particles.

Theoretical curves of attenuated light flux versus the size parameter, according to Mie
theory, show corresponding series of extrema (extinction peaks), as depicted in Fig. 5.3.
This illustrates clearly that extinction is, indeed, the result of interference between inci-
dent and forward scattered light, which results in a decrease of energy flux in the forward
direction. Rigorously speaking, this plot expresses the variation of the extinction efficiency
versus «, for a fixed value of the refractive index (m). In this particular case, this approx-
imation can be retained since the refractive index of water in nitrogen does not change
appreciably in the range of wavelengths considered here [400 — 800 nm|. The validity of
this assumption is confirmed by the work of Thorméhlen et al. [139], who investigated the
dependence of the refractive index on wavelength, temperature, and density for subcooled
water and steam.

| |
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Figure 5.3: The extinction efficiency Q..+ for a homogeneous spherical water droplet as
a function of the size parameter o (m = 1.33).

In Fig. 5.3, it is possible to distinguish two limits. For a@ < 1 scattering occurs in the
Rayleigh regime. In this limit, it can be shown that

1
Qeazt X Fa (59)
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Due to this inverse proportionality, it is impossible in the Rayleigh limit to retrieve infor-
mation on the droplet size distribution, as explained in the next section (5.2.2). For oo > 1,
the scattering process is described by Fraunhofer diffraction theory and Q.,; tends, in this
limit, to the value of two.

5.2.2 Extinction by a slab filled with particles

The results presented in the previous section hold for a single spherical droplet embedded
in a homogeneous medium. Aim of this section is to generalise the fundamental extinction
formula to a collection of spherical droplets. Let us consider such a collection confined to
a finite volume bounded by two semi-infinite planes, as shown in Fig. 5.4(a). The present
treatment is restricted to the following assumptions:

(i) elastic scattering: the scattered light has the same frequency as the inci-
dent light. This implies that all quantum mechanical effects are excluded;

(ii) incoherent scattering: the irradiances of the waves scattered by the various
particles can be added without regard to their respective phase;

(ili) single scattering: the number of particles is sufficiently small and their
separation sufficiently large that, in the neighbourhood of any particle,
the total field scattered by all the particles is small compared with the
incident field.

[
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Figure 5.4: Extinction by a slab filled with droplets. (a) Schematic representation of the
slab. (b) Phase relation between two identical droplets.
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It is important to realise that, even in the hypothesis of incoherent scattering, light scattered
in the forward direction (e, = e,) is always coherent. This can be understood immediately
from Fig. 5.4(b): in fact the phase difference Ay at a point (P) in the far field is given by

Ap =k [F12- (s — er)]. (5.10)

Therefore when (e, = e,), Ay is identically zero regardless of the droplet separation. On
the basis of Eq. (5.10), the calculation of the total extinction coeflicient should take into
account the phase relations among the scattered waves. However, recalling the equivalence
principle stated by the optical theorem, the computation of the total extinction can be
related to that of total scattering, which is, under the present assumptions, incoherent.

Under these hypotheses, if a plane light wave impinges on an infinitesimal slab filled
with particles, the attenuation of the light beam (dI) can be calculated as:

dI = —BI,dz, (5.11)

where

B(A,m) = /Qewt(?,m) flra) mrldry. (5.12)
0

Equation (5.12) follows directly from the assumption of incoherent scattering. It states
that the attenuation coefficient of the cloud is simply the sum of the extinction coefficients
of all droplets. Since they are not necessarily identical, their size dispersion is described
by the function f(ry).

Generalisation to a slab of finite thickness is straightforward since the latter can be seen
as a sequence of infinitesimal slabs. Then, if f(r,) is the same everywhere on the path of
the original light beam, integration of Eq. (5.11) yields

I=1Ie " (5.13)

Equation (5.13) is the so-called Lambert-Beer law. In this formula, [ represents the ge-
ometrical path length, i.e. the distance that the attenuated light beam travels through
the droplet cloud. Underlying equation (5.13), and hence the exponential attenuation of
irradiance in particulate media, is the requirement that the product Il < 1, i.e. multiple
scattering effects are negligibly small. This condition is justified more rigorously in sec-
tion 5.4. Here the following heuristic explanation suffices: when multiple scattering effects
are strong, it must be realised that light that is scattered and taken away from the orig-
inal beam can be brought back in the original beam by a second scattering event and no
distinction can be made between this scattered light and the attenuated light of the inci-
dent beam. Clearly, the greater the scattering cross-section, particle number densities, and
slab thickness [, the greater will be the multiple scattering contribution to the irradiance.
Since all these effects can be encompassed in the optical thickness ¢ = [, if the latter
is sufficiently small, one may ignore multiple scattering effects and still make use of the
Lambert-Beer law. This condition may be somewhat relaxed if the scattering contribution
to the total attenuation is small, as shown in subsection 5.4.3.2.
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In view of the functional relationship between extinction coefficients and size distribu-
tion function (see Eq. 5.12), by measuring these coefficients at n different wavelengths, a
set of n linearly independent equations is obtained. By solving this system of equations,
the desired information about the droplet cloud can be acquired. The number of extinction
signals to be recorded depends on the number of parameters identifying the size distribu-
tion function and the specific inversion technique used. The only drawback is encountered
when the droplets are considerably smaller than the wavelengths used (o < 1). In this
case (near-Rayleigh regime), the functional dependence of the extinction coefficients upon
wavelength is such that the rank of the system coefficient matrix tends to two and thus is
lower than the number of unknowns n. Therefore, there exist infinitely many solutions all
of which are obtained by determining two suitable unknowns, in terms of the remaining
n-2, to which arbitrary values can be assigned.

Since in condensing nozzle flows one may be often working in the near-Rayleigh regime,
special care must be paid to ascertain the reliability of the inversion analysis in this limit.
This is achieved by defining an ad hoc parameter (Rayleigh parameter), as a measure of
the deviation of the experimental data from the Rayleigh limit. The Rayleigh parameters
are introduced in the next subsection 5.2.3.

5.2.3 The Rayleigh parameters

The possibility of retrieving, with the desired accuracy, size information from the extinction
spectrum relies on the condition of being far away from the Rayleigh regime. In fact, in
the limit of Rayleigh scattering, the following relation holds:

Boc (ngrg A=), (5.14)

and no distinction can be made between droplet size and number density. In order to
evaluate how distant the experimental data are from this limiting condition, the following
ratios have been defined:

B

Ri - )
ey

i=2,....n (5.15)

where )\; is the largest wavelength used in the experiments, specifically 772.3 nm. This
definition is based on the following simple reasoning: in the Rayleigh limit Eq. (5.14) holds,
thus by eliminating the wavelength dependence, all the extinction coefficients tend to the
same limiting value (nq75). Their ratio, then, will tend to one, individuating in this way
the regime of Rayleigh scattering.

The great advantage of the Rayleigh parameters is that they offer indirectly an imme-
diate indication on the droplet size, without any complex analysis or complicated calcu-
lations. Figure 5.5 shows the theoretical dependence of the R;; on the droplet size, for
the wavelength range adopted in the experiments [400 <+ 800] nm. The calculations are
conducted according to Mie theory and for a monodispersed distribution.
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Figure 5.5: Theoretical curves of the Rayleigh parameter R;; versus droplet modal radius
(ra) and for a monodispersed distribution (¢ = 0).

This plot demonstrates unequivocally the ability of the Rayleigh parameters in pre-
dicting whether the analysis is meaningful or not. In the Rayleigh regime, they all tend
to the limiting value of one, independently of the specific wavelength considered. In other
words, only for values of the parameter R significantly smaller than unity, it is theoretically
possible to extract accurate information from the experimental data. Furthermore, for a
given modal radius, the longer the wavelength, the higher is the value of the corresponding
Rayleigh parameter: that is, the longest wavelengths are the first to enter the Rayleigh
limit.

5.3 Droplet sizing

As mentioned in the previous sections, the relation between the wavelength dependent
extinction coefficient 3(\,m) and the size distribution function f(r) can be written as a
Fredholm integral equation of the first kind:

oo

B\, m) = na / o £(r) Qm(%TT,m) dr, (5.16)

0

where ., is the kernel function provided by Mie theory and n,4 is the droplet number
density. The inverse problem of reconstructing the function f(r) from the spectral extinction
involves the inversion of Eq. (5.16). Because the information content in a set of extinction
measurements is limited, inverse problems are usually ill-posed and do not possess a unique
solution.



88 CHAPTER 5. DROPLET SIZING BY LIGHT EXTINCTION

There are several ways to tackle the inversion problem: Twomey [144] gave a detailed
account of the mathematics of inversion and described many of the schemes used to solve
inverse problems. More recently, Bertero et al. [10] discussed the general formulation of
this class of problems and reviewed more solution methods. Unfortunately no “universal”
method could be found in literature which provides, for any sort of applications, satisfactory
results: in fact, the solution of the inverse problem depends strongly on the appropriate
combined choice of the measurement and inversion technique. In general, techniques for
solving the inverse problem are classified as either analytical or empirical. Analytical tech-
niques involve formal solutions of Eq. (5.16). Because of their ill-posed nature, they require
the use of a priori information regarding the distribution function or a careful optimisation
of the inputs. Empirical inversion techniques generally require that a proper discretization
model of the extinction process be developed. Walters [153] reviewed two of these empirical
methods for application to spectral turbidities in steam flow. Those methods consist of:

(a) finding an empirical distribution that satisfies (5.16);
(b) the direct inversion of (5.16), expressed as a quadrature in matrix form, and
subjecting solutions to a smoothing constraint.

Method (b), known as the matrix inversion method of Philips and Twomey [142,143],
has the advantage that the unknown size distribution may be generated directly from
the data without making any a prior: assumption. Although this method did yield good
results for condensing flows, it has two major disadvantages. First, the choice of the
smoothing parameter affects strongly the final results. Second, the acquired solution very
often oscillates. Method (a), instead, makes use of trial functions which depend on a
parameter vector p. A parametric model of the extinction process is accordingly developed.
The parameters are, then, adjusted within physically realistic bounds so that a least squares
fit of the measured data is obtained. This method by trial function has been heavily
criticised in its premises by Twomey [142,143]. Nevertheless, it was widely applied yielding
often satisfactory results. Walters applied this method to condensing nozzle flow and
the final results in determining realistic monomodal distributions were of very accurate.
Walters argues that although the mathematical principle of this method is questionable,
its apparent success must be justified by the smoothness of the size distribution function
compared to the kernel Q.,;. For the case of turbine flows, where a distribution with a
large dispersion or even a bimodal distribution can be readily expected, method (b) seems
to be more accurate than method (a) in predicting all the features of the size distribution
function. In a later paper [154], Walters improved further the Twomey matrix method by
devising a new procedure for the detection of bimodality in the spectral data.

By careful assessment of the physics of the condensation process in nozzle flows and
by a particular choice of the Laval nozzle, it is reasonable to expect, for the specific cases
considered, a smooth monomodal size distribution function. Based on this consideration,
the trial function method was, then, chosen due to its simplicity and direct applicability.
An additional consideration which led to prefer the trial function method is due to the
particular functional dependence exhibited by the extinction coefficients with wavelength
in the near-Rayleigh regime. In this limit, as explained in the section 5.2.2, the relative
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variance cannot be determined accurately and, thus, the ability of method (b) in better
characterising size distribution with a larger dispersion is no longer valid.

5.3.1 The inversion technique

The trial function method employed here is based on the previous work of Snoeijs [131] and
van Dongen et al. [34]. It was originally developed to study droplet size distributions due to
heterogeneous condensation in adiabatically expanding vapours. Although its conceptual
base remains unaltered, a few modifications were necessary to adapt it to the conditions
encountered in homogeneously condensing nozzle flows. These modifications were imple-
mented by van Poppel [103] and are summarised below for completeness. First, following
van Dongen et al. [34], the particle distribution function is specified as:

1 —(y* +¢%) r
—In(-_ 1
oy CTP [ 5o : y=M{_—), (5.17)

where p is the parameter vector (r,,£), r,, is the modal radius, and ¢ is the relative
variance. This function is the well-known zeroth-order log-normal (ZOL) distribution; it
has the advantage of being defined in the domain r,, > 0, in agreement with the physical
reality. Some examples of ZOL functions are shown in Fig. 5.6.

f(r,p) =

vEemer e ()

Figure 5.6: Normalised zeroth-order log-normal distributions. Distribution parameters:
rm = modal radius, ¢ = relative width.

By measuring the extinction coeflicients [; at a set of n equidistant wavelengths \;, a
corresponding set of theoretical 3’s can be defined at the same wavelengths. Those are
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given by the following expression:

o0

2nr d .
ﬂtheo(/\ia m, p) =Ny / 7”"2 Qezt(Ta m) f(rda p) drda 1= ]-7 <., N (518)
0 2
In order to find the best choice of parameters to describe the unknown size distribution, the
sum of squares of the theoretical B.,'s and corresponding experimental 3,4,’s is minimised.

The latter is defined as:

n

R(p) = Z(ﬂtheo,i - ﬁewp,i)2a (519)

=1

where n is the number of extinction coefficients measured at the n different wavelengths.
In this way the combination of parameter values of the trial function is found for which the
set of theoretical extinction coefficients is closest to the experimental ones. The parameters
of the ZOL distribution function can vary in the specified range:

lower bound upper bound
ng:  10°m=3 101 m=3
Tm: D NmMm 1 um
g: 0 0.5

Standard numerical methods are used to determine the minimum value of the residue
R(p) and the corresponding optimum values of the parameters involved. The least squares
procedure requires the numerical evaluation of the integrals (5.18) for a large number of
parameter values, which is not attractive. To simplify this numerical evaluation, several
steps are adopted. First, the dependence of ).,; on the refractive index m is ignored.
Based on the measurements of Thormé&hlen et al. [139], at a pressure of 0.5 bar and in a
temperature range of [0 + 20] °C, the relative error in refractive index Am/my is of order
1%, when neglecting its dependence on the wavelength. Second, the extinction efficiency
Qext 1s evaluated and tabulated for a large number of discrete values «;, at a representative
value of the refractive index my = 1.33. Therefore, in the following sections, the dependence
of # and ¢, on the refractive index m is not explicitly indicated anymore.

Despite these simplifications, the minimisation procedure is in some cases still cum-
bersome. This complication is caused by the insensitivity of the 3’s, in the near-Rayleigh
regime, to the relative variance €, so that it is difficult to determine this parameter accu-
rately in the presence of noise. This insensitivity is the crucial factor responsible for the
difficulties in inverting the data. To overcome such difficulties, Van Poppel [103] introduced
the e-discrete method. It consists in applying subsequently constant-¢ fits where, at each
successive fit, the relative width is varied in the range [0 < 0.5], with steps of Ae = 0.05.
From these constant-¢ fits, it is possible to reconstruct the time dependence of the relative
variance, with now ¢ not as a continuous parameter, but as a parameter that can attain
only certain discrete values. The reconstruction is done by determining, for each measuring
point, the value of ¢ corresponding with the smallest residue R,,;, and storing the related
ZOL parameters.
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Van Poppel [103] compared in detail the e-discrete method to the e-continuous fit.
He showed that both methods yield almost identical results with respect to the ZOL
parameters. Further, the qualities of the fits are comparable in magnitude and the quality
is slightly better for the e-discrete method. This is because in the discrete method the
whole range of ¢’s is analysed. Consequently, contrary to the continuous method, where
local minima may be intercepted, it is more likely that a global minimum is found.

5.3.2 Accuracy & reliability of the inversion method

This subsection focuses on a number of issues which are crucial in assessing the accuracy
and reliability of the inversion technique. In general, the quality of the inversion depends
upon the number of wavelengths recorded and the relative importance of the noise in
the measured irradiances. First, it is necessary to individuate an adequate criterion for
evaluating whether a set of parameters, that minimise the residue R(p), is indeed a good
approximation of the real droplet size distribution. To this purpose, it must be realised
that a minimum value of zero for R(p) can almost never be obtained as a direct result of
noise in the measurements. The most dominant noise source is detector noise. Therefore,
the quality of the fit has been related to the latter, since it provides a lower bound for
the minimisation of the residue. This issue is tackled in subsection 5.3.2.1, where a direct
indication of the accuracy of the analysis is given. However, it should be noted that this
information is in itself sterile if not combined with the corresponding value of the Rayleigh
parameters, which indicate whether the analysis is also physically meaningful.

Finally, the convergence of the inversion technique with respect to the number of sig-
nals employed has to be checked. Recalling that the trial function method consists of
parameterising a model and adjusting these parameters to obtain a least squares fit to the
data, it is well known that a large number of data points is necessary for an accurate fit.
Typically it was found that, for small size parameters (a < 3), one requires about ten data
points. This number increases drastically with the size parameter: for a > 20 hundreds
of data points may be required for a fit of much lower quality [106]. In this specific case,
seven wavelengths are used; thus the sensitivity and reliability of the solution has to be
examined also with respect to the number of wavelengths employed. This issue is discussed
in subsection 5.3.2.2.

5.3.2.1 Detector noise

In this section, the quality of the least squares fit is related to the detector noise level. To
this purpose, it should be recalled that the Lambert-Beer law (Eq. 5.13) provides a func-
tional relation between variations in the attenuated beam irradiance and the extinction
coefficients. Since these irradiances are affected by detector noise, so are the correspond-
ing extinction coefficients. Indicating with u(3) the expectation value for the extinction
coefficient (i.e. the value the latter would assume upon averaging over several periods), it
results:

ﬂemp,i = M(ﬂemp,i) + Aﬂe:}:p,i (520)
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where Af,..,; represents the inaccuracy in the determination of 3 due to detector noise. It
is noted here that, in general, AB.,,; will depend on the value of 3 itself, because detector
noise is not strongly dependent on the absolute value of the transmitted irradiance. If the
trial function matches the unknown size distribution perfectly, the minimisation is optimal
when

ﬂtheo,i = ,U'(ﬁe:cp,i)- (521)

Unfortunately, the actual value for p(f.sp;) is not known a priori, and thus an alternative
procedure must be devised to estimate the noise level in the detectors. Recalling Eq. (5.19),
the corresponding value of the residue R(p) in the ideal case of a perfect fit is:

n

Rperfect = Z(Aﬁemp,i)2- (522)

=1

In practice, the actual value for the residual R is always larger than Rpe,fece. Unfortunately
the value of Ryerfect is also unknown. However, its expectation value p(Rperfect) can be
calculated by taking the expectation value of Eq. (5.22), yielding:

n

Z(Aﬂexp,i)Ql = Z K (Aﬁezp,i)2 = Z 0-/231-7 (523)
=1 =1

=1

% (Rperfect) = U

where g, is the standard deviation in the extinction coefficient ;. Therefore, the expec-
tation value p(Rperfect) can be calculated if o is known for each detector. Via equation
(5.13), op is related to oy, and this relation can then be re-written as:

o5 = %JI- (5.24)
In this way, an estimate of the maximum achievable accuracy p(Rperfect) is reconnected to
an evaluation of the noise in the detectors, which can be obtained by means of a proper
calibration, as explained in Appendix F. The time-averaged value of the actual residue
Ravg is then compared with ((Rperect) to establish the quality of the fit.

Figure 5.7 shows this comparison (Raug, ((Rperfect) versus Sp) for an experimental se-
ries, varying Sy. It is clearly seen that the difference between R4,y and p(Rperfect) is small,
so that the quality of the fit is not poor when compared to the time-averaged noise level
in the detectors. Furthermore, the quality strongly depends on the initial conditions. This
is due to the attenuation of the light beam being stronger at higher supersaturations, so
that the relative importance of the noise in the measured irradiances increases with Sg.
Despite the good agreement, the specific values of R, do not provide any indication of the
signal-to-noise ratio, which is another important element in establishing the significance
of the measurements. Obviously, for a given noise level, the signal-to-noise ratio is di-
rectly connected to the magnitude of the measured light attenuation. Figure 5.8 illustrates
the typical time dependence of the extinction coefficients, corresponding to the following
experimental conditions: Py = 8.752 - 10* Pa, T, = 296.6 K, S, = 1.188.
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Figure 5.7: Time-averaged residue R,,, and its expectation value jt(Ryerfect) as function
of the stagnation supersaturation Sy. The residual values are averaged over five periods.
Nozzle: G2. Stagnation conditions: Py = (8.69 4+ 0.015) - 10* Pa, Tp =296.8 + 0.4 K.
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Figure 5.8: Experimentally determined extinction coefficients. Nozzle: G2. Exp. 37 -
Stagnation conditions: Py = 8.752 - 10* Pa, Ty = 296.6 K, Sy = 1.188.

The periodic character of the flow is immediately deducible from the plot. Further,
it can be seen that, during one period of oscillation, the ’s attain a distinct maximum
and minimum value. The difference [3(\7,t) — B(A1,t)] is often referred to as the dynamic
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range in the extinction coefficients, at the time instant ¢. As a measure of the signal-to-
noise level, the following ratios are defined:

max A min A
SNl(ma;c) ﬁni(l)a SNl(mzn) %7(1)’
/j'( perfect) /J/( perfect)

max A min A
SN7(ma:L‘) = ﬂ ( 7) ; SN7(mzn) = ﬂ ( 7) ;
#(Roperfect) #(Roperfect)

which provide the dynamic range of the signal-to-noise ratio for a specific experiment. In
other words, these ratios are a measure of the relative importance of the maximum and
minimum level of signal (i.e. G4z, Bmin) With respect to the noise level. Since these ratios
are wavelength dependent, the shortest and longest one have been considered: all the other
signals are contained within these bounds. Figure 5.9 shows the result of this evaluation
for all the experiments performed.
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Figure 5.9: Signal-to-noise ratios as function of the stagnation supersaturation Sy. Their
values are calculated for the following wavelengths: Ay = 772.3, A\; = 434.5 nm. Nozzle:
G2. Stagnation conditions: Py = (8.69 & 0.015) - 10* Pa, Ty = 296.8 + 0.4 K.

For values of the supersaturation smaller than 1.0, the signal-to-noise ratios SNj(min)
are quite low in the whole wavelength range. This indicates that, when the 3()\;) values
approach their minimum value in time, the noise level in all signals is quite high: the
droplets are so fine that no significant light attenuation is produced. For values of the
supersaturation smaller than 0.8, the SNj(n..) values are also small. This indicates that
all experiments, conducted for Sy < 0.8, do not yield reliable droplet size data. As a
concluding remark, it is important to observe that the highest information content is to be
found near the extinction peaks, where the largest droplets are expected.
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5.3.2.2 Effect of the number of wavelengths used

As stressed in section 5.3.2, errors in the calculated solution for the droplet size distribution
may be expected depending on the number of wavelengths used. In general, the higher
the number of spectral data employed, the higher the reliability of the obtained solution.
In this section, the sensitivity of the solution is checked by comparing the results obtained
from the inversion technique using three, four, five, six, and seven wavelengths.
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Figure 5.10: Influence of the number of wavelengths used on the characteristics of the
droplet size distribution. Nozzle: G2. Exp. 37 - Stagnation conditions: Py = 8.75 -
10% Pa, Ty = 296.6 K, Sy = 1.188.

top Properties of the size distribution (74, ng, €) and estimated liquid mass fraction (g)
at the time instant: ¢; = 33.10 ms. (near minimum f3)
bottom : Properties of the size distribution (4, ng, €) and estimated liquid mass fraction (g)

at the time instant: ¢ = 33.31 ms. (near maximum f3)
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Note that, for a given trial function, the minimum number of extinction data strongly
depends on the size parameter « [106]. For Exp. 37 (whose extinction coefficients are
shown in Fig. 5.8), the solution provided by the inversion method is inspected at two
different instants of time: t; and t,. They are representative of the two flow regimes
normally encountered in the experiments, as discussed in section 5.3.3.1. All characteristic
properties of the droplet size distribution are examined, namely: the modal radius 7,y,,
droplet number density ng4, and relative width . As additional test, also the estimated
liquid mass fraction g is calculated.

Figure 5.10 illustrates the results. It can be inferred immediately that the solution
obtained from the least squares procedure depends, indeed, on the number of extinction
signals used. With three or four attenuation signals, the analysis shows a considerable
scatter. From 5 wavelengths on, instead, the solution converges to a limiting value. Note-
worthy is also that, even in the near-Rayleigh regime (7, of the order of 30 nm), the
behaviour of the solution remains similar. This implies that this dependence on the num-
ber of wavelengths is, indeed, a peculiarity of the inversion method and not an effect due
to the higher inaccuracies typical of the near-Rayleigh regime. Although the trial func-
tion method appears to have reached a correct solution already for five wavelengths, it is
preferred to work always with seven signals, since this provides additional control variables.

5.3.3 Results: an example

As an example of the potential of the proposed method to follow the droplet size and
number density in time, a typical solution, corresponding to Exp. 37, is discussed in detail.
The occurrence of a periodic oscillating flow can already be inferred from the extinction
signals, shown in Fig. 5.8. From these signals, at seven different wavelengths, the Rayleigh
parameters R;; have been calculated as functions of time for each wavelength. Two of
them are shown in Fig. 5.11(c). It is clear that, during part of a period, the values of these
parameters approach unity, which indicates that the particle sizes and wavelengths are near
to the regime of Rayleigh scattering. However, in between, the R;; become significantly
smaller than unity, which points to droplet sizes beyond the Rayleigh regime.

By comparing Fig. 5.11(a) and (c), a very good correspondence can be observed between
the values of the droplet radii and those of the parameters R;;, namely: the maxima in
droplet radii always correspond to the lowest values of the R;;. For values of the Rayleigh
parameters close to unity, droplet radii of the order of 35 nm (near-Rayleigh regime) are
accordingly predicted by the inversion method. At these conditions, large errors inevitably
occur, as indicated by the error bar given in Fig. 5.11(a). Nevertheless, the agreement
between the calculated and measured droplet sizes is generally quite good, as shown in
chapter 6. Figures 5.11(b) and (d) show the variation in time of the droplet number density
ng and relative variance €. A first remark is that the droplet size maxima correspond to
minimum values of the number densities (thus less droplets are produced), while the size
distribution is almost monodispersed. A second remark is that, for most part of the period,
extremely dense clouds are produced, which are characterised by very fine droplets and
large dispersions ¢ around 0.40. Since the scattering of light by droplets of this size (35
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nm) is quite small, the spectral curve shows very little identifying structure. Therefore,
an accurate evaluation of the relative width £ cannot be accomplished at these conditions.
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Figure 5.11: Characteristic properties of the droplet size distribution and Rayleigh pa-
rameters as function of time, obtained from the inversion technique. Nozzle: G2. Exp. 37
- Stagnation conditions: Py = 8.752-10* Pa, Ty = 296.6 K, Sy = 1.188, gmaz = 25.20 g/kg.

top left :  Modal radius (7,,).
top right :  Droplet number density (ng).
bottom left :  Rayleigh parameters (R;1), calculated directly form the extinction data at the

following wavelengths: A5 = 551.1, Ay = 434.5 nm.
bottom right : Relative variance (¢).
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As an additional check, the condensed mass fraction is computed. The latter is pro-
portional to the third moment of the size distribution and can be determined using the

following expression:
4 .
g= —Wﬂndrf’ne%sz,
3 p
where p; and p have been estimated at 9.8 - 10® and 0.22 kg/m?, respectively. Both values
are representative of the experimental conditions. If one calculates the ratio ¢/¢maqs, where

Jmaz 18 the water vapour mass in the supply vessel, it follows that:

(5.25)

9/ Gmaz
t1 = 33.31ms: 0.93
ty = 33.50ms: 1.92

The unrealistic value obtained for the time instant ¢, (near-Rayleigh regime) confirms once
again the high inaccuracy of the solution in this regime. Errors in the evaluation of the
relative variance or droplet number density can readily explain this incongruity.

Despite these limitations, the results presented here are in line with the numerical
predictions of White and Young [159]. They were the first to predict the characteristics of
the droplet size spectrum for unsteady flows of condensing steam through a nozzle. Their
findings can be summarised as follows:

1) due to the periodic quenching of nucleation larger droplets are produced.
In their calculations the droplet Sauter mean radius varies in the range
[40 = 150] nm;

2) as a result of the unsteadiness, broader distributions are observed than
those normally encountered in steady flows;

3) for a brief instant of time the droplet spectrum shows a bimodal character.

Except for finding (3), which lies beyond the limit of optical detection for the given droplet
sizes, the results presented here constitute the first experimental validation of their findings.

5.3.3.1 Accuracy of the solution

In the previous sections, the accuracy of the solution has been checked in detail with respect
to noise level and stability of the inversion method. Further, emphasis has been given to
the theoretical and numerical constraints, which may hamper substantially the reliability
of the inversion procedure in the near-Rayleigh regime. Nevertheless, no detailed check
has been performed so far to validate the quality of the solution in its totality, that is with
respect to its accuracy and realistic physical grounds.

This objective can be achieved by comparing the experimentally determined extinction
spectrum ((\;) with its theoretical counterpart Q..:(\i, Teher) averaged over all particle
sizes. As characteristic size 7.4, the Sauter Mean radius r3, is chosen:

_ [ f(ra,p)ridra
f f(Tda p) T?i drd,

T32 (5.26)
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where f(ry,p) is the postulated distribution function and the parameter vector p is given
by the inversion method. Then, an averaged extinction efficiency g(\;, 732) can be assigned
to 732, on the basis of the experimentally determined extinction coefficients [f..,(\;):

_ . /Bezp(/\ia T32)
g(XisT32) = T f(rap)r2dra (5.27)

The quantity g(\;,r32) is often referred to as spectral turbidity. Its dependence on both
wavelength and size can be combined in the size parameter agy, calculated using the Sauter
Mean radius (a3 = 27732/A). In a similar fashion, an averaged theoretical extinction effi-
ciency Qert(v32) can be assigned to rso:

Ngq f 7”% Qext()‘i) f(rda p) drd )

Qoo 72) = 5 1o )

(5.28)

The theoretical values for the extinction coefficients Fine,(\;) are derived from Mie theory
and from the postulated size distribution f(r4, p), where p is obtained by the inversion
method. In other words, @(O@Q) represents the theoretical value of the averaged ex-
tinction efficiency that corresponds to the experimentally deduced characteristics of the
droplet size distribution.

If the size distribution is monodispersed, then Eqs. (5.27) and (5.28) simplify consider-
ably. Specifically, it follows that 73y = 74, a3y = @, and Qept(32) = Qeur(a). Furthermore,
the spectral turbidity can be simply calculated as follows:

Beap(@)

2’
TNGTy,

g(a) = (5.29)

where 14 and ng denote the droplet modal radius and number density, respectively, which
are obtained directly from the inversion procedure.
With reference to Exp. 37 (whose time dependent solution in shown in Fig. 5.11),

let us investigate its extinction spectrum at the following two instants of time: ¢; =
33.10 and ¢, = 33.31 ms. From Fig. 5.11, it is possible to infer the following:

t= tl t= t2
relative variance ~ 0.40 ~ 0
scattering regime near-Rayleigh Mie

Since in the Rayleigh regime the relative variance £ can never be obtained accurately,
Eq. (5.29) is employed for the time instant ¢;, as well. Of course, discrepancies must be
expected since the solution is, at this time, considerably polydispersed. The results are
shown in Fig. 5.12 together with the theoretical curves corresponding to the regimes of
Rayleigh and Mie scattering.
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Figure 5.12(a) shows the result for the time instant ¢;, where low extinction coefficients
are detected (3 & Bmin)- The discrepancy between theory and experiments is, as mentioned
earlier, not surprising since Eqgs. (5.27) and (5.28) should have been used. Despite this
incongruity, each set of data points can still be associated with a specific part of the
theoretical curve: thus indicating undoubtedly that one is, in fact, working in the near-
Rayleigh regime. As direct consequence, it follows that, for large part of the period, only
the modal radius can be obtained in a reliable way. Any deduced variation in the relative
variance (¢) must be regarded simply as an indication of its effective time dependence,
rather than as an accurate measure of the latter.
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Figure 5.12: Theoretical extinction efficiency and spectral turbidity as function of the
size parameter (a).

Figure 5.12(b), instead, refers to the case where high extinction peaks are observed
(8 = Bmaz)- The good agreement between the observed g(«) and corresponding Qeu:(«)
has important implications, which are discussed next. First, it provides unquestionable
proof that the measured spectrum is indeed beyond the Rayleigh regime. This is undoubt-
edly a major result, since no droplet sizing measurement can be considered trustworthy
without such a proof. Second, it shows that the experimentally determined transmittances
characterise accurately the extinction spectrum of the flowing mixture. In other words,
experimental inaccuracies or forward scattered radiation do not hamper the quality of the
extinction measurements. Third, the solution provided by the trial function method is very
accurate and reliable in correspondence of the extinction peaks. As a direct consequence
of this analysis, the validation of the different condensation models (see chapter 6) is based
exclusively on those points where maximum droplet sizes are observed.
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5.4 The influence of scattering on extinction measure-
ments

In ideal extinction measurements only the attenuated light from the source is observed.
In such situations, the transmitted light flux is accurately described by the Lambert-
Beer law. This ideal situation, however, cannot be fully realised, because generally the
light scattered in the forward direction cannot be eliminated completely. The influence of
scattering on the extinction measurements is basically twofold. For optically dense media,
multiple scattering effects are strong and no distinction can be made between forward
scattered light, which has undergone several scattering events, and the attenuated light of
the incident beam. Second, due to the finite size of any detector system, there is always
a certain fraction of light, scattered in some small but finite range of angles around the
forward direction, which may jeopardise the quality of the extinction measurements. In
general the larger the particle, the greater the possible discrepancy between measured and
calculated extinction.

To estimate and minimise the effects of forward scattered radiation on the extinction
measurement, the following approach is adopted. On one hand, the design of the optical
set-up is optimised to keep forward scattering contributions small and easy to compute.
This issue is tackled in sub-section 5.4.1. On the other hand, a Monte Carlo simulation,
encompassing both single and multiple scattering effects, was applied by van Poppel [103]
to ascertain quantitatively the effects of forward scattered radiation on the extinction
measurements. The results from the Monte Carlo simulations are, then, compared with
the theoretical case in which only single scattering occurs. This led to the formulation
of design criteria for the optical set-up and the identification of limiting factors for the
measured transmittances, so that the influence of forward scattering was kept within a few
percent of the experimentally determined extinction signals.

5.4.1 Detection with a finite field of view

As pointed out in the introduction, scattered light in the forward direction cannot always
be separated from the attenuated light of the original beam. In order to minimise this
effect, it is necessary to increase the separation quality of the detection system. Depending
upon the actual situation, there exist essentially two different approaches:

a) the lens-pinhole detector system;
b)  the open detector system.

Both methods have been discussed by Deepak and Box [26,27]. The second technique
is particularly advantageous in measurements with very narrow beams (i.e. beam diame-
ters of the order of 0.8 mm or smaller). For our application, the first method is preferred
since it has an exact and constant angular field of view. In literature, the latter is often
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referred to as the finite-field-of-view technique. The detection system consists of three
elements, as sketched in Fig. 5.13: a positive lens with focal distance f, a pinhole with
diameter d, positioned in the focal plane of the lens, and a conventional detector that
accepts all incident light regardless of the direction of propagation.

l Kinc

K / Test Section
|

sca

e max

—— pinhole

detector

Figure 5.13: Schematic illustration of the lens-pinhole detection system.

Only the light that is incident on the lens with a direction of propagation that lies
within a certain maximum angle 6,,,,, around the optical axis of the lens, is detected
by the system, see Fig. 5.13. It is obvious that this maximum detection angle obeys the
relation:

d

Hmaa: = ﬁ (530)

This detection system reduces drastically the effect of scattering when 6,4, is chosen small
enough, as explained in section 5.4.3 where the influence of the scattering process on the
extinction measurements is simulated numerically.

5.4.2 Incoherent single scattering

Single scattering occurs if the major part of the light scattered by the droplet cloud does not
undergo a second scattering event. Smolders [130] derived an equation for the contribution
of single scattering to the extinction signal.

Consider an unpolarised light beam of cross-section A and irradiance I, incident per-
pendicularly to a slab of thickness [ and filled with droplets, as shown in Fig. 5.14. The
droplets have a radius r4 and a number density ny. The attenuation of the light beam is
measured with a detector having a half angle of detection 6,4,
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incident wave

Figure 5.14: Slab filled with particles.

At a location (S) behind the slab, the irradiance of the scattered light due to a droplet
at a depth Az in the slab is (details can be found in Appendix G):

I, =C O, (5.31)

with
C; = Ioe_ﬁm”y#r‘3 [i1 (o, m, ) + i2(a, m, )], (k1) (5.32)
C, = e Al-A2) (5.33)

In equations (5.32) and (5.33), (3 is the extinction coefficient of the droplet cloud, i; and
io are the irradiance components of the scattering matrix S. Term (C;) represents the
irradiance of the light scattered by the droplet at P, and term (C) indicates the attenuation
due to the remaining part of the slab. In the hypothesis that the angle of detection is small,
the power scattered by one droplet and received by the detector is:

P! = Ioe_ﬂl%io(oa, m)0?Z . = Ipe Plar? fo(a, m)

maxr

2
9 ema:m

(5.34)

where io(a,m) = i1(a,m,8 = 0) = is(a,m,6 = 0). In this expression (Eq. 5.34), the
scattered power does not depend on the position of the droplet. Therefore, the total
received power, due solely to single scattering contributions, can simply be obtained by
multiplying the power scattered by one droplet with the volume of the illuminated slab
and the number density of the droplets:

io(Oé, m) 92
2 max*

Ps = ndAlIOe*ﬁlm“g

(5.35)

The power of the attenuated light beam is given by the expression:

P, = Alye " (5.36)
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Then, the ratio between Eqs. (5.35) and (5.36) yields the final expression:

P, ig(ar,m)
I = ndlmﬁiaz 2. = 0Bl

io(Oé, m) 2
Qemt(aa m)az mar

If the condition of single scattering is not satisfied, P, will not equal the total scattered
power that is detected; instead it will simply represent the single scattering contribution to
the total detected power. In the next section, the multiple scattering process is simulated
and the results compared with Eq. (5.37) in order to verify when deviations from single
scattering become manifest.

(5.37)

5.4.3 Multiple scattering

The locution multiple scattering refers to situations in which each particle, acting as an
isolated and randomly positioned scatterer, contributes to the radiant energy incident on
the other scatterers. This circumstance may be encountered in the case of dilute media and
large geometrical thickness (as in interstellar clouds), or in the case of large particle number
density with small geometrical thickness (usual situation in industrial plants and laboratory
experiments). In general, the extent of multiple scattering effects increases with turbidity
and with the size of the illuminated volume. The extension of single scattering theory
to an array of scatterers has been the subject of extensive experimental, computational,
and theoretical studies since many years. Despite the extensive body of literature, few
articles provided a practical guideline to quantify the effects of multiple scattering on the
extinction measurements. More recently, Guidt et al. [47] performed particle diagnosis
at large optical thickness, where multiple scattering phenomena occur. They proposed a
new method for measuring particle sizes and number densities: the visible infrared double
extinction technique (VIDE) at high optical thickness. A spin-off of this research is the
study of the limitations of the Lambert-Beer law on which the technique relies. They
concluded that measurements up to an optical thickness of 9 are still feasible with respect
to the application of the Lambert-Beer law. Their conclusion seems, at first sight, quite
surprising. However, a closer look to the experimental data reveals that such a high optical
thickness is achieved at corresponding values of the size parameter o of 0.8. Under this
condition, the particles are much smaller than the employed wavelengths, therefore their
contribution to forward scattering is very small, thus permitting measurements at such
high value of 6.

In this section, the results of Guidt et al. are generalised to encompass, in their totality,
the effects of scattering on the extinction measurements. As shown in subsection 5.4.3.2,
our results agree perfectly with those of Guidt. To this purpose, a Monte Carlo simula-
tion of the scattering and extinction process in the test section is developed. The basic
idea underlying the simulation is that the total detected power can be expressed as the
sum of two contributions: the scattered power P; and the attenuated power P,. By in-
dependently evaluating these powers, one can obtain a quantitative information on the
influence of scattering effects on the extinction measurements. Furthermore, by comparing
the value obtained for the scattered power P; with those obtained from Eq. (5.35), which
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provides the single scattering contribution, one can also infer the relative importance of
multiple scattering effects. The results are presented in subsection 5.4.3.2. In the following
subsections, the mathematical model underlying the Monte Carlo simulation is described.

5.4.3.1 Mathematical model

The mathematical model of the scattering process is based on the work of Bucher [16,
17].  The simulation program assumes a homogeneous cloud within two plane-parallel
boundaries, as sketched in Fig. 5.15. The cloud is assumed to have constant macroscopic
properties and is modelled as an infinitely long slab of thickness /. In the simulation,
photons leave from an identical location and have the same initial direction, therefore the
effects of beam width and divergence are not taken into account. Each photon represents
the same amount of energy. Typical ray paths are illustrated in Fig. 5.15 for all possible
cases: singly/multiply scattered or undisturbed ray. Rays leaving the slab from the top
boundary represent back scattered light and are not counted for. Rays exiting the slab from
the bottom boundary indicate transmitted light and are, therefore, tracked. A scattered
ray is detected only if its exit angle 0.,; is less than 6,,,,. These photons contribute to
the scattered power P,. If the photon leaves the tube undisturbed, it is also detected
and contributes to the power P, of the attenuated original beam. By tracing many paths,

A: Singly scattered photon
B: Undisturbed photon
C:  Multiply scattered photon

Figure 5.15: Schematic representation of possible photon paths in the test section.

which are generated randomly in the simulation, one obtains a representative sample of
the simulated scattering process in the medium. The distance d that a ray travels between
two successive scattering events is randomly selected with a probability density function

p(d) = Be P4 (5.38)
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The choice of this probability density function is made plausible in Appendix H. Here, it is
worth noting that the exponential distribution of path lengths is based on the hypothesis of
a cloud of scatterers randomly distributed throughout the cloud volume and with a mean
free path <x > given by the inverse of the extinction coefficient. Recalling the definition
of the non-dimensional parameter 6, it results:

§=0l=1/<z>, (5.39)

where [ is the geometrical length of the test section. It is now clear why the condition
6 < 1 is the fundamental one for excluding multiple scattering effects. If the mean-
free path between the scatterers is smaller or of the same order of magnitude than the
geometrical path length, then proximity effects can no longer be neglected.

When a scattering event takes place, a scattering angle # and an azimuthal angle ¢
are independently chosen. The angles # and ¢ are defined as indicated in Fig. 5.2. The
azimuthal angle ¢ is randomly selected with a constant probability between 0 and 27. This
uniform distribution is the direct consequence of the assumption of spherical scatterers.
The #-angle probability density function depends on the scattering mechanism. In this
case, the correct expression for this function is given by equation:

(’il + ZQ) sin 6
fow(il + ZQ) sin 6 d@’

p(f) = (5.40)

where i and iy follow from Mie theory (Appendix G). The detected scattered rays and the
undisturbed rays are counted separately, so that the ratio between these numbers yields
the power ratio Ps/P,. In the experimental environment, this should be close to zero since
one wants to measure only the attenuation of the incident light.

5.4.3.2 Monte Carlo simulation: results

In this subsection, some of the results from the Monte Carlo simulations are presented.
In general, the magnitude of the powers P, and P, depends on a set of parameters char-
acterising either the extinction process or the optical configuration of the set-up. These
are namely: the extinction coefficients 3, the size parameter «, the detector distance dg,
defined as the distance the attenuated light beam has to bridge between the test section
and the lens, the lens diameter dje,s, the geometrical path length [, and the maximum
detection angle 6,,,,. Some of these parameters are indicated in Fig. 5.15. Due to the geo-
metrical configuration of the set-up, some of the parameters have a fixed value, specifically:
dger = Hem, diens = 8mm, and | = 10 em. A parametric study is performed to evaluate
the dependency of the ratio P;/P. upon a specific parameter while keeping constant all
others. The values of these constant parameters are taken as the exact or representative
values for our experimental conditions.

First, the influence of the detector entrance angle 6,,,, is investigated and the results
are shown in Fig. 5.16. As it can be inferred from Fig. 5.16, an increase of 6,,,, has a
dramatic effect on the power ratio P;/P,. For this reason, the entrance angle of the set-up
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Figure 5.16: The effect of the entrance angle 0,,,, on the power ratio P,/P,.
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Figure 5.17: The effect of the extinction coefficient (3 and size parameter « on the power
ratio Ps/P,.

is chosen equal to 7 mrad, so that the influence of forward scattering is confined to values
lower than 0.2 per cent. Figures 5.17 (a) and (b) illustrate the dependence of the ratio
P, /P, on the extinction coefficient § and size parameter «, for both single and multiple
scattering situations. It follows that the effect of forward scattered power can be neglected
when o < 5 and < 30. At these conditions, the scattered power P, will be less than
0.1% of the attenuated power of the original beam P,. These requirements are satisfied in
all experiments, since the size parameter « varies in the range [0.4 + 3] and the extinction
coefficients do not exceed the value of 25 [m™!].
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Figure 5.17 illustrates also the functional relationship between The optical depth ¢ and
the extent of multiple scattering effects. From the observation of this plot, it follows that
the notion of 6 < 1 is meaningful only when related to the size parameter o. For particles
much smaller than the wavelength (o < 1), the forward scattered contribution is so small
that, even for extreme optical densities (6 > 9), extinction measurements can still be per-
formed in agreement with the results of Guidt et al. [47]. For these situations, the limiting
factor is represented by the phenomenon of reddening of a white light beam on passing
through a collection of very small particles: shorter wavelengths are extinguished sooner
and more effectively than longer ones. It is, thus, this phenomenon rather than multiple
scattering effects, which may hamper extinction measurements in condensing nozzle flows.

5.5 Conclusions

The preceding sections have presented an elaborate treatment of the technique of droplet
sizing by light extinction. In particular, special care has been paid in assessing the quality of
the method both with regard to experimental and theoretical issues. For the experimental
side, a detailed study is performed to evaluate the influence of forward scattered radiation
on the extinction measurements. Based on this study, the set-up has been designed in
such a way as to contain this influence within few percent. An important pay-off of these
simulations is the validation of the Lambert-Beer law on whose applicability the analysis
fully relies. As for the numerical and theoretical counterpart, a detailed check is performed
on the reliability of the inversion method. Result of this analysis is that the characteristics
of the droplet size distribution can be, indeed, determined with great accuracy only in
correspondence to the high extinction peaks. These are, in fact, the only instants in
time where the droplet cloud is completely outside the Rayleigh regime. Despite these
limitations, the derived time dependent variation in the droplet size agrees qualitatively
with the theoretical predictions of Young. Due to the very small size of the droplets for
supersaturation values lower than 0.9, the results are not reliable during the entire period
of oscillation. Therefore, for the validation of the proposed condensation models, which
is discussed in chapter 6, the comparison between experimental and theoretical results is
restricted to experiments with stagnation supersaturations higher than 1.0 and limited to
the extinction peaks.



Chapter 6

Results and discussion

6.1 Introduction

The aim of this chapter is to validate condensation models for water vapour/carrier gas
mixtures, at nozzle stagnation pressures of about 1bar. A thorough validation is, to the
author’s knowledge, for the first time possible for a water vapour/carrier gas mixture
thanks to the availability of droplet size data. The accuracy of a given condensation model
depends ultimately on the accuracy of the underlying theories of nucleation and droplet
growth. As pointed out by Young [162], the quality of these theories can be tested to a
sufficient extent independently only when both droplet sizes and pressure distributions (or
alternatively frequency data) are available for a given experiment.

In order to accurately validate condensation models, a number of necessary steps have
to be undertaken, which are, because of their importance, clearly outlined in the following.
First, the reliability of droplet growth theory has to be established. This is achieved
by comparing the predictions from different growth laws with droplet size experiments.
In the course of this analysis, the equally important role of heat and mass transfer -
for the correct quantitative evaluation of the droplet growth rate - is also experimentally
confirmed. Then, by analysing the frequency data for a number of nozzles, the proper (and
consistently applied) correction factor for the nucleation rate is individuated, which given
the uncertainties in nucleation theory is a sensible course of action. It is explicitly stressed
that this evaluation is performed in a range of temperatures in which surface tension
data have been experimentally determined. Therefore, there is no arbitrariness in
the surface tension values and the quality of the nucleation model can be ascertained
independently of the extrapolation of surface tension values to low temperatures.

Once the proper nucleation and droplet growth model have been selected, the analysis
proceeds with the examination of nozzle flows nucleating at increasingly larger subcoolings.
A comparative study has been, then, undertaken to select a surface tension fit which best
correlates all the collected experiments and satisfies the thermodynamic constraint given by
the Nernst Postulate: do /0T — 0 as T — 0. Obviously, the accuracy of this extrapolation
depends on the accuracy of the experimental data. Therefore, additional independent tests
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are required to confirm the validity of the fit proposed by the present author.

A large number of the available published and well-documented data on condensing
nozzle flows of water vapour/carrier gas mixtures have been collected and re-examined in
light of the strategy just outlined. The results of this analysis are presented in the next
sections and include steady/unsteady flow regimes, nearly one-dimensional till complex
two-dimensional flow fields. To facilitate the understanding of the analysis, it is always
clearly indicated which stage of the validation process is being considered. However, the
implications and extent of this study can be fully assessed only when cast in a general
perspective.

6.2 Condensation models

All condensation models analysed in this study are grouped in Table 6.1, with a clear
indication of their constitutive elements. Note that the term “condensation model” refers
to a specific combination of surface tension, nucleation, and droplet growth theory.

Author Abbr. Surface - | Nucleation | Empirical Droplet
Tension Model Factor Growth Model

Schnerr et al. SD - HK oSP CNT E=1 HK (T; =T)

CNT — wb SD — HK®® o5P CNT E=1 HK (wet-bulb)
Luijten — Prast | LP — gya82 olf ICCT £E=1 gyas2
ICCT - gya82 | LP¢ — gya82 olP ICCT £=0.01 gyag2

this author LD — gya82 otP ICCT £=0.01 gya82

this author | LD — HK® olP ICCT £ =0.01 HK (wet-bulb)

this author LD — gya63 ol ICCT £=0.01 gya63

Table 6.1: A synoptic overview of the condensation models considered in this study.
Abbreviations:

CNT = C(lassical Nucleation Theory; gya63 Gyarmathy growth model [48];
ICCT = Internally Consistent Classical Theory; gya82 = Gyarmathy growth model [49];
HK = Hertz-Knudsen growth formula [57,68].
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6.3 Nozzle G2

The results and considerations presented in this section are central in the development and
understanding of the present work. In fact, the validation of nucleation and droplet growth
theories and the extrapolation of surface tension data to lower temperatures rely strongly
on the analysis of droplet size experiments. Since these experiments are so crucial to our
findings, a brief discussion on their accuracy and reliability is repeated in subsection 6.3.2.
A more detailed survey can be found in section 5.4. This section is organised as follows: a
phenomenological description on the interdependence of nucleation process, flow field, and
properties of the droplet cloud is provided in subsection 6.3.1. Subsection 6.3.2 presents the
analysis of droplet size experiments and the validation of condensation models. Subsection
6.3.3 discusses the results of the holographic experiments.

6.3.1 Phenomenology

The most important macroscopic product of condensing nozzle flows is the generation
of a droplet cloud, whose characteristics strongly depend on the interaction between the
transonic flow field and the nucleation process. To clarify this mutual interdependence, a
simple heuristic explanation is offered in this section.

Intuitively, one can immediately realise the direct correlation between the features of
the nucleation pulse and the attributes of the droplet size distribution: the nucleation rate
is, for example, directly proportional to the droplet number density of the cloud. The width
of the nucleation peak determines, to a certain extent, the relative variance of the droplet
size distribution. The modality of the distribution function (e.g. monomodal or bimodal)
is directly connected to the number of nucleation pulses occurring along the nozzle axis.
In unsteady flow regimes, such as the ones considered in this section, this interdependence
becomes somewhat more complicated due to the periodic quenching of the nucleation rate
by upstream travelling disturbances. To illustrate this situation, the time evolution of
the temperature and nucleation rate is plotted, along the nozzle axis, in Fig. 6.1. The
calculation simulates Exp. J42 and is performed using the corrected Luijten-Prast model
(LP¢-gya82).

Figure 6.2 illustrates the effects that these time dependent profiles have on the charac-
teristics of the droplet size distribution. Although this figure is derived for Exp. J42, the
trend is general, holds for all the experiments presented here, and has been experimentally
confirmed, as shown in Fig. 5.11. As immediately inferable from Fig. 6.2, the droplet modal
radius exhibits a clear maximum (R,, ~ 150 nm) during one period of oscillation, to which
corresponds an almost monodispersed distribution (¢ &~ 0). For most part of the period,
smaller droplets (R, =~ 70nm) and wider distributions prevail. This variation in time is
due to the interplay between the nucleation process and the flow field shown in Fig. 6.1: as
the temperature perturbation propagates upstream, it quenches the nucleation at different
positions along the nozzle axis (curves 6, 1, 2, 3, 4,). The lower the nucleation rate (i.e. less
condensation nuclei are produced), the bigger the modal radius becomes, in that the total
water vapour fraction is constant. As the disturbance moves away, the nucleation process
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re-acquires again its maximum strength (curve 5). This corresponds to the smallest modal
radius and the widest distribution (¢ & 0.41 in Fig. 6.2).
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Figure 6.1: Numerically derived profiles of nucleation rate and temperature along the
nozzle axis, at 6 subsequent instants of time (At = 0.86ms). Nozzle: G2. Exp. J42 -
Stagnation conditions: Py = 8.63 - 10* Pa, Ty = 296.9 K, Sy = 1.30.
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Figure 6.2: Numerically derived properties of the size distribution as function of time.
Point of observation: nozzle axis at 24 cm downstream of the throat. Nozzle: G2. Exp. J42
- Stagnation conditions: Py = 8.63 - 10* Pa, Ty = 296.9 K, Sy, = 1.30.

In this section, the comparison between experimental data and theoretical predictions
is limited to the frequency of the oscillations and the maximum modal radius (Rya.). As
discussed in chapter 5, reliable droplet size information can be extracted from the extinction
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measurements only if the size parameter a = 277/ is bigger than one (a > 1). In other
words, the measuring point should correspond to a situation outside the regime of Rayleigh
scattering. In the experiments analysed here, the size parameter o decreases to values of
about 0.73 for modal radii of roughly 70 nm, indicating that the measurements occur in
the regime of near-Rayleigh scattering. For this reason, these points are excluded and the
analysis concentrates solely on the maximum extinction values, for which reliable droplet
size information can be derived. Specifically, the experimental inaccuracy varies between
5 and 10 %, depending on the stagnation supersaturation. This corresponds to an error in
the maximum values of the modal radius between 10 and 20 nm.

6.3.2 Droplet size experiments

For all droplet size experiments, the stagnation pressure is approximately 0.865 bar, while
the stagnation supersaturation (relative humidity) varies in the range [1+1.6]. The temper-
ature, at which maximum nucleation occurs, can be inferred from Fig. 6.1. Although small
differences might be observed in the predictions from the different models, the temperature
range at which nucleation occurs remains essentially the same.

Due to the interaction between the nucleation process and the upstream moving dis-
turbances, maximum nucleation rates take place at different temperatures in the range
[260 + 270] K. Within this range, as clearly shown in Fig. 2.1, surface tension data have
been experimentally measured and, most important, there is a general agreement between
the various fits proposed in literature. Having clarified that the results of the various
condensation models only slightly depend on the choice of the surface tension fit, the ex-
perimental results can now be compared with the corresponding theoretical predictions.
Figures 6.3 to 6.6 compare the predicted frequency of oscillations and the maximum modal
radius with the experimental values, for each model listed in Table 6.1. The stagnation
conditions for all experiments are: Py = (8.69 + 0.015) - 10* Pa, Ty = 296.8 + 0.4 K.

Two general remarks stem immediately from observing these plots. First, only when
both nucleation and droplet growth theory are correctly evaluated, it is possible to match
the entire sets of data with the corresponding experimental values, as deducible from
a comparative study of the models’ predictions. Second, the droplet sizes are correctly
predicted every time the temperature difference AT = T,—T is implemented in the droplet
growth formula, either directly via the wet-bulb equation or indirectly as in the gya63
formulation. This fact corroborates the theoretical analysis presented in section 2.4.1.1,
which can be summarised as follows: there exist two thermodynamic forces AP, and
AT which govern the irreversible process of droplet growth. Omission of AT as driving
potential leads to an incorrect value of the droplet size by, approximately, a factor 3.

Having discussed these general aspects, the differences among the various condensation
models are now examined in detail. Figure 6.3 compares results of the two versions of
the Luijten-Prast model (original and corrected) with those of the LD-gya82 model. The
droplet radius is correctly predicted by all models. Discrepancies, instead, appear in the
frequency data. In the LLP-gya82 model, the nucleation rate is too high and leads to an
overestimation of the frequency value by roughly a factor 1.4. However, when the nucleation
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rate is reduced by a factor' 100, the model is able to simulate properly all features of the
condensation process.
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Figure 6.3: Comparison of experimental data and theoretical predictions according to
the following models: LP-gya82, LP‘-gya82, LD-gya82. Nozzle: G2. (a) Frequency of
oscillations. (b) Maximum modal radius.
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Figure 6.4: Comparison of experimental data and theoretical predictions according to
the following models: LP*-gya82, LD-gya82, LD-HK"®. Nozzle: G2. (a) Frequency of
oscillations. (b) Maximum modal radius.

lin conformity with Luijten’s measurements [77,98].
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Figure 6.4 juxtaposes the results from the following models: LD-gya82, LD-HK®*?
and the LP¢-gya82. As already discussed in section 2.4.2, for the experiments considered
in this study, no substantial difference exists between the Hertz-Knudsen and the gya82
formulations. In the range of Knudsen numbers (Kn > 2), growth occurs in the near gas-
kinetic flow regime and transitional effects play only a marginal role. In the same fashion,
the LD-gya82 and LP®-gya82 models do not differ much in their predictions. The different
trend in frequency with supersaturation is due to the different surface tension fits. The
Pruppacher-Klett [105] formula, employed in the LD-gya82 model, leads to a slightly better
agreement with the experimental trend of the frequency versus supersaturation.

fHz] Rypay [NM]
2500 \ 400 ‘
L o Exp. R | - Exp. |
- -4— - LD-gya63 A~ o .
2000 - LD - gya82 ] 300 - - 4-- -gya f
L J | —e— LD-gya82 J
1500 ] 200 |
Upg @ og
[ 1 ;__Q_IQD*_EQ__‘____E_J
4 :
1000 + ] 100 - |
500 ‘ ‘ 0 \ !
1.0 1.2 14 1.6 1.0 1.2 14 1.6

(a) (b)

Figure 6.5: Comparison of experimental data and theoretical predictions according to
the following models: LD-gya82 and LD-gya63. Nozzle: G2. (a) Frequency of oscillations.
(b) Maximum modal radius.

In Fig. 6.5, two different droplet growth models are compared: gya82 and gya63. The
nucleation rate is the same in both models: J;cor in combination with the o%P surface
tension fit. Also in this case, no significant differences are observed and a satisfactory
agreement between predictions and experiments is obtained.

Interesting conclusions can be derived by a closer examination of the Schnerr and
Dohrmann model (see Fig. 6.6). This model predicts a fairly accurate frequency dependence
with stagnation supersaturation, but clearly overestimates the droplet sizes by a factor
2.5 — 3, as shown in Fig. 6.6(b). Moreover, when the wet-bulb equation is implemented
in the Hertz-Knudsen formula (i.e. SD-HK“® model), the results are reversed: now the
droplet sizes are correct, but the frequency is wrong because the nucleation rate is too
weak, as clearly deducible from Fig. 6.6(a). To understand this apparent incongruity in
the model, let us consider, for a simple steady flow case, the interaction between nucleation
and droplet growth and its impact on the final droplet size. Fig. 6.7 illustrates these effects
for the two models SD-HK and SD-HK®®.
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Figure 6.6: Comparison of experimental data and theoretical predictions according to the
following models: SD-HK, SD-HK®®, LD-gya82. Nozzle: G2. (a) Frequency of oscillations.
(b) Maximum modal radius.
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Figure 6.7: Comparison of theoretical predictions from the SD-HK model, with and with-
out wet-bulb. Nozzle: G2. (a) Axial distributions of nucleation rate Jon7 and condensate
mass fraction ¢/gmaes. (b) Axial distribution of modal radius. Stagnation conditions:
Py =8.67-10* Pa, Ty = 296.6 K, Sy = 0.50.



6.3. NOZZLE G2 117

Having ascertained that the Jonp is weaker than J,p, this implies that the vapour
starts nucleating at the wrong position along the nozzle axis. When the simplified HK
formulation (7, = T') is used, the excessive release of latent heat, at the beginning of the
growth process, shifts the quenching of the nucleation process upstream. In other words,
it compensates for the delayed nucleation event. In this case, the shock location (or the
frequency in an unsteady flow situation) will be correct. However, the nucleation is cut too
early, too few condensation nuclei are produced, consequently the droplets grow too much.
On the other hand, when the wet-bulb equation is implemented, the nucleation is quenched
at the correct moment (i.e. the correct droplet size is obtained), but due to delayed start
of the nucleation process, the axial position is wrong (i.e. the wrong frequency will result).

On the basis of this analysis, it becomes evident that the quality of a condensation
model can be adequately and fully checked only when both droplet sizes and frequency
(or pressure distributions) are available?. The Schnerr and Dohrmann model (SD-HK)
has been thoroughly and carefully verified with respect to onset of condensation, shock
position, frequencies, and modes of oscillations. From this point of view, their model pro-
vides very good results, as confirmed throughout this work as well, and their conclusions
remain valid. However, their modelling requires improvements. As clarified in the preced-
ing analysis, the good performance of the SD-HK model is due to a partial cancellation
of effects rather than to an accurate model of the nucleation and droplet growth process.
Specifically, the following elements should be modified:

(a) introduction of an empirical factor to compensate for the too low values of Jonr;
(b) inclusion of both energy and mass transfer in the determination of the growth rate;
(¢) modification of the surface tension fit.

With reference to point (c), this is discussed in section 6.6, where the extrapolation of sur-
face tension data to lower temperatures is analysed on the basis of the experimental results
for nozzle G1 and on the basis of theoretical considerations.

The conclusions and arguments provided in this section rely on the accuracy of the
droplet size measurements. A nontrivial question is how reliable and accurate are these
results. In chapter 5, the answer to this question is discussed extensively from both a
qualitative and quantitative perspective. Nevertheless, because of the extreme relevance of
this issue, the main conclusions of chapter 5 are summarised here in a descriptive manner.
Both theory and experiments (see Fig. 6.2 and 5.11) reveal a monodispersed size distribu-
tion in correspondence of the maximum modal radius. In this case, a simple and accurate
correlation can be established between the theoretical extinction efficiency Qeyt nrie(c),
as provided by Mie theory, and the corresponding experimental quantity Qeytesp(). Fig-
ure 6.8 illustrates graphically the results of this correlation. Hereafter, it is explained briefly
how the experimental (st csp is derived. More details can be found in section 5.3.3.1.

2Young [162] was amongst the first to insist on the necessity of droplet size measurements, already as
early as 1982.
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Figure 6.8: Comparison of theoretical and experimental extinction efficiency as function
of the size parameter (o). Nozzle: G2. Exp. 37 - Stagnation conditions: Py = 8.752 -
10* Pa, Ty = 296.6 K, So = 1.188.

The experimental extinction efficiency is defined as

Beap(Ai)
ext,ex = T 9 > 1
where 5
TTra
= . 6.2
0= 6:2)

Here, .., is the measured extinction coefficient, n, and 74 are the droplet number density
and modal radius, respectively, as derived from the extinction measurements. The size
parameter o depends on the wavelength \; used and on the measured droplet size r,. For
each time instant, seven values of Qqtczp can be calculated corresponding to one of the
seven different wavelengths employed in the extinction measurement. These seven values
are plotted in Fig. 6.8 as black dots.

The good agreement between theory (black line) and experimental values (black dots)
gives the undeniable proof that the derived droplet size is quite accurate, at least in cor-
respondence of its maximum value. Note that only when both droplet size 4 and number
density ng are correct, it is possible to match the theoretical curve following from Mie
scattering theory. An error in one or the other parameter yields shifts in the horizontal
and vertical directions. Particularly, the horizontal shift indicated in the picture would cor-
respond to a droplet radius twice the measured one. Obviously, the difference in droplet
sizes between the Schnerr & Dohrmann and the experiments (= 3 times bigger than the
experimental one) can not be attributed to experimental inaccuracies.
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6.3.3 Holographic - interferometric experiments

This section illustrates a few examples of density fields, visualised by means of double
exposure holographic interferometry. Unlike for nozzle G1, here a quantitative comparison
between theory and holographic interferometric experiments could not be carried out, due
to the difficulty of realising a steady-flow situation. Because of its very slender profile
near the throat and its low cooling rate, the onset of condensation takes place, at low
relative humidities, downstream of the test section window. As soon as the water vapour
content is increased, the flow becomes immediately unsteady. Figure 6.9 presents three
interferograms corresponding to snapshots of the flow field taken at different time instants.

h=100ms W

to = 10.2ms

ts = 10.4ms

e

Figure 6.9: Interferometric visualisation of Mode I. Snapshots taken at time intervals
of At = 0.2ms. Flow direction: from left to right. Nozzle: G2. Serie: I - Stagnation
conditions: Py = 8.83-10* Pa, Ty = 296.6 K, Sy = 1.363.

Note that each interferogram is the result of a different experiment, since the interfer-
ometer is basically designed for the visualisation of steady flows. By a careful preparation
of the mixture, it is possible to reproduce the stagnation supersaturation within 1%. The
stagnation conditions for this “series” are: Ty = 282.6 K; Py = 8.83 - 10* Pa; Sy = 1.363.
Figure 6.10 compares the experimental density profiles, along the nozzle midline, with the
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numerical results, obtained with the LD-gya82 model. Although only a qualitative com-
parison is possible, the simulation and the experiments show essentially the same trend.
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Figure 6.10: Experimental (a) and numerical (b) density profiles, along the nozzle mid-
line. Nozzle: G2. Serie: I - Stagnation conditions: Py = 8.83 - 10* Pa, Ty = 296.6 K, Sy =
1.363.

6.4 Nozzle S2

As mentioned in section 1.2, different modes of oscillations may occur in a homogeneously
condensing flow, depending on the supply relative humidity. Adam and Schnerr [3] per-
formed a comprehensive experimental and numerical investigation of these modes, using
several nozzles. In order to test the ability of the condensation models in capturing these
features, nozzle S2 has been chosen essentially for two main reasons: the availability of
reliable experimental data and the temperature range at which nucleation takes place. At
a stagnation temperature of 295 K, nozzle S2 nucleates between [247 = 240] K. Within
this range, very close to the limit of Hacker’s measurements (250 K'), the surface tension
trend will, most probably, still follow Hacker’s experimentally based fit. For this reason,
nozzle S2 enables the verification of the conclusion from nozzle G2, with no additional
change in the modelling (surface tension fit). Figure 6.11 and 6.12 show the comparison
of experimental and numerical frequency values, obtained from the various models.
Again the results from the LP-gya82 model confirm that the nucleation rate is too high,
as clearly inferable from Fig. 6.11(b). When the correction £ = 0.01 is implemented, then
the model predictions agree fairly well with the experimental results. It should be noted
that, for nozzle S2, the LD-gya82 and the LP¢-gya82 give exactly the same results, since,
in this temperature range, they both follow Hacker’s trend. The SD-HK also performs very



6.4. NOZZLE S2 121

well and no substantial difference appears between the results of the SD-HK and those of
the LD-gya82. Figure 6.12 compares the results of the gya63 and gya82 models. As for the
G2 nozzle, no significant differences are observed. Note, in passing, that the predictions of
the LD-gya63 almost coincide with those of the SD-HK formulation.
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Figure 6.11: Frequency of oscillations versus stagnation supersaturation. (a) Models: SD-
HK, LD-gya82, Experiments. (b) Models: LP-gya82, LP*-gya82, Experiments. Nozzle: S2.
Stagnation conditions: Py =1.00-10° Pa, Ty = 295.0 K.
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Figure 6.12: Frequency of oscillations versus stagnation supersaturation. Models: LD-
gyab63, LD-gya82, Experiments. Nozzle: S2. Stagnation conditions: Py = 1.00 - 10° Pa,
Ty =295.0 K.
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6.5 Nozzle S1

Objective of this section is to verify the ability of the different condensation models in
reproducing the main features of strong two-dimensional flow fields. For the S1 nozzle,
such complicated 2-D structures have been experimentally visualised by Schnerr [114,116]
by means of schlieren techniques. In this section, two examples are considered: one is the
characteristic “X-shock”, the other shows an interesting example of the interaction between
the condensation front and the strongly two-dimensional flow field (hereafter denoted as
case ST1).

In Fig. 6.13, the experimental schlieren pictures [114] are compared with the corre-
sponding numerical ones obtained with the LD-gya82 model. As immediately deducible
from Fig. 6.13, the condensation model (LD-gya82) is able to capture the main character-
istics of the flow field in both cases. The S71 case, however, needs some clarifications. For
this case, maximum nucleation rates occur at about 7' = 230 K. If the stagnation condi-
tions indicated by the experimenter are used in the simulation, the results are in conflict
with those from all other experiments considered here, including the X-shock.

Specifically, a much lower value of the surface tension is required at the same temper-
ature (7" = 230 K) for the S71 case than for all other experiments. However, as indicated
by Schnerr [114] in his work on “Homogene Kondensation in stationéren transonischen
Stromungen durch Lavaldiisen und um Profile” (pp. 128), the inaccuracy in the value of
Sp increases with increasing supply humidity. Particularly, the inaccuracy increases from
about 1.8% at low humidities to almost 3.7% at high humidities. Furthermore, the in-
accuracy in the stagnation temperature 7j is about 0.5 K. It appears to be possible to
reconcile the S71 experiment with the prediction from our model within the indicated error
bounds. Therefore, the S71 case was run with values of Sy = 0.75 and Ty = 287.3 K, in
order to prove the ability of the model in capturing the main features of the complex 2-D
structure®. Nevertheless, due to these uncertainties in the stagnation conditions, it is very
difficult to evaluate the performances of the different models in the S71 case. Therefore,
the comparison has been limited to the “X-shock” case.

Figure 6.14 compares the flow field obtained from the LD-gya63, SD-HK, and LP-gya82
models, for the X-shock case. The gya63 model agrees fairly well with the experimental re-
sults, shown in Fig. 6.13 (top left). The Schnerr and Dohrmann model provides reasonable
results. However, the “X-shock” is already slightly cut, due to local excessive heat release.
With reference to the LP-gya82 model, the nucleation rate is again too strong when the
empirical factor & = 1 is used. The two condensation patches, propagating downstream,
are interrupted by the presence of a strong normal shock, as clearly visible in Fig. 6.14. If
the empirical factor is reduced to & = 0.01, then the results are very similar to those of the
LD-gya82 model (Fig. 6.13, bottom left), since in this range of temperatures the surface
tension fits basically coincide.

3In fact, the first numerical model employed by Schnerr and Dohrmann [117] showed perfect agreement
with the experiments. The numerical results were based on the assumption of a solid condensate, using
an empirical relation for the surface tension and a condensation coefficient equal to 0.2.
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Figure 6.13: Comparison of experimental [114] and numerical schlieren pictures. The
numerical schlieren plots are obtained using the LD-gya82 condensation model.

top left :  Experiment: X-shock.

Stagnation conditions: Py = 1.0 - 105 Pa, Ty = 295.0 K, So = 0.372.
top right :  Experiment: S71.

Stagnation conditions: Py = 1.0 - 105 Pa, Ty = 286.8 K, Sy = 0.713.
bottom left :  Numerical schlieren result for the X-shock.

Stagnation conditions: Py = 1.0 - 105 Pa, Ty = 295.0 K, Sy = 0.372.
bottom right : Numerical schlieren result for case S71.3.

Stagnation conditions: Py = 1.0 - 105 Pa, Ty = 287.3 K, Sy = 0.750.
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LD-gya63 SD-HK LP-gya82

Figure 6.14: Comparison of theoretical predictions according to different condensation
models. Experiment: X-shock. Stagnation conditions: Py = 1.0 - 10° Pa, Ty = 295.0 K,

6.6 Nozzle G1

In this section, two steady flow experiments are presented for nozzle G1, one corresponding
to a subcritical and one to a supercritical flow regime. The experiments have been con-
ducted in our laboratory using the holographic interferometer and unwrapping technique
described in chapters 3 and 4. Despite their apparent simplicity, these experiments are ex-
tremely valuable for our analysis, since the maximum nucleation rate occurs at very large
subcoolings: T = 219 K for experiment H14, and 7" = 230 K for experiment H19. They
provide, thus, precious information on the extrapolation of surface tension data down to
approximately 220 K. Figures 6.15 shows the density distributions along the nozzle axis,
as predicted by the various condensations models of Table 6.1, for the subcritical case®.
Note that in this case, the relevant part of the growth process occurs at Kn numbers in
the range [40 — 50].

As discussed already in section 2.4.3, the gya63 droplet growth formula is not expected
to provide accurate results in the limit Kn > 1. As discussed by Fuchs and Sutugin in
their review article [39], in this limit, the correction factor f(Kn) should tend to the limit

lim f(Kn)= L

— 6.3
Kn—o0 1+ 2.66Kn’ (6.3)

4The experimental inaccuracy in the isentropic part of the density profile is ascribable to an erroneous
localisation of the fringe skeleton, whose precise determination is strongly related to the local fringe spacing.
At the condensation onset, the local concentration of the fringes assures a considerably higher accuracy in
the determination of the density profile.
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and not, as suggested by Gyarmathy, as

. 1

) = e
The good performance of the gya63 model, observed in the previous sections, can be
explained in light of a possible cancellation of effects. The droplet temperature calculation
is, in fact, not very accurate, when compared to Smolders’ formulation [130], and leads to
an overestimation of the actual growth rate. However, this effects is apparently partially
compensated, in the Kn range [2 <+ 10], by the increased value of the factor A (A = 3.18).
In the limit Kn — oo, this partial compensation of inaccuracies ceases to be valid, leading
to the observed discrepancies.
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Figure 6.15: Density distributions along the nozzle axis, as predicted by the various
condensations models of Table 6.1. Nozzle: G1. Exp. H14 - Stagnation conditions: Py =
8.60 - 10* Pa, Ty = 279.9 K, Sy = 0.928.

With reference to the Luijten-Prast model, if the original version is implemented
(i.e. £ = 1), again a large difference is observed between prediction and the experimental
results. Specifically, case H14 exhibits a clear shock at approximately 0.5 cm downstream
of the nozzle throat, case H19 becomes, even, unsteady. When the empirical factor is re-
duced to £ = 0.01, on the basis of Luijten’s nucleation results [77,98] and our own droplet
size experiments (see section 6.5), the agreement between the theoretical predictions of
the LP¢-gya82 model and the experimental values becomes excellent for experiment H19,
as shown in Fig. 6.16. In the H14 case, instead, a substantial difference is still present,
as can be inferred from Fig. 6.15(a), while the LD-gya82 model agrees very well with the
experimental density distribution. Here, the only difference between the LP%-gya82 and
the LD-gya82 formulations is in the extrapolation of the surface data to lower temperatures
(see Fig. 2.1).
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Figure 6.16: Density distributions along the nozzle axis, as predicted by the following
models: SD-HK, LD-gya82, LP*-gya82. Nozzle: G1. Exp. H19 - Stagnation conditions:
Py =8.48-10*Pa, Ty = 279.8 K, Sy = 1.240.

As it can be see from Fig. 2.1, the P fit is, at T = 219 K roughly 1.4 % lower than
the 0¥ one. Now, the thermodynamic constraint

g—; —0 as T —0, (6.5)

states that the surface tension cannot increase continuously with decreasing temperature,
Exp. H14 provides the experimental confirmation of this trend. At this point, the strategy
outlined in the introduction to this chapter (section 6.1) should not be forgotten. Recall
that the o” has not been derived such that the chosen nucleation and droplet growth
models would nicely fit the experiments. In the present study, first the quality and relia-
bility of nucleation and droplet growth theory has been assessed separately by analysing
the droplet size experiments (nozzle G2). Then, these findings have been confirmed by
the experiments of Adam [2] with nozzle S2. Recall, as well, that in both nozzles (G2
and S2), nucleation occurs at temperatures at which surface tension data are known, or
very near to this range. Finally, this validated condensation model has been employed to
derive the P extrapolation fit. Implicitly, it is assumed here that the nucleation model
performs equally well independently of the temperature. There is some doubt about this
hypothesis, as testified by the recent work on the scaling of nucleation rate (CNT theory)
by McGraw [87]. Nevertheless, throughout this study, this assumption is maintained on
the basis of the following arguments:
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(a) the temperature trend of the ICCT theory is confirmed by the experiments in
nozzles G2 and S2 ;

(b) the pressure is the same in all experiments (typically the stagnation pressure is
roughly 1.0 bar);

(c) the extrapolation is performed over a relatively small temperature range, of the
order of (20 — 25) degree.

Furthermore, as shown later in this section, the assumption that the ICCT has the cor-
rect behaviour allows to fulfil the existing thermodynamic constraint without additional
modification to the modelling.

The Schnerr & Dohrmann model provides also excellent results in predicting the pres-
sure/density distributions. In addition to the comments already made in section 6.3 on
the accuracy of the nucleation and droplet growth formulations, a few remarks are also
required on the surface tension fit used by the authors. The o°P fit has been derived un-
der the assumption that the CNT theory is correct. The same approach was also adopted
by Peters and Paikert [100], who independently obtained the same trend for the surface
tension fit. In the same fashion, one could assume that the reduced ICCT is correct and
obtain the ol? surface tension fit. To obtain more insights in this problem, the ratio
log,y Jicer/Jont is plotted in Fig. 6.17, adopting the same surface tension fit for both
models: the Pruppacher-Klett formula extrapolated down to 200 K.
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Figure 6.17: Comparison between Jrccr and Jont, adopting for both the Pruppacher
and Klett formula for the surface tension.

From the plot, it is clear that the reduced Jrccor is always stronger than Joy7 and be-
comes increasingly stronger with decreasing temperatures. Therefore, if one assumes Jonr
to be correct, then the increasing weakness of the nucleation rate must be compensated
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by a decrease in surface tension, exactly as predicted by Schnerr and Peters. However,
if one assumes J;cor to be correct, the “natural” increasing trend of the J;ceor theory
can be exploited and the surface tension does not need to be decreased so much. As a
matter of fact, the assumption of correct Jyceor theory, allows us, in a natural way, to
follow the experimental trend measured by Hacker and to satisfy the thermodynamic con-
straint 0o /0T — 0 as T — 0. It is for these reasons that in the present study, the Jicor
formulation has been preferred.

6.7 Conclusions

This chapter is centred on a review and validation of condensation models. Here, the termi-
nology “condensation model” refers to a specific combination of nucleation, droplet growth,
and surface tension formulations. The validation is performed in a stepwise manner, aimed
at evaluating the quality and accuracy of each constitutive elements separately from each
other. To pursue this objective, the well-documented experimental data on homogeneous
condensation of water vapour/carrier gas mixtures have been collected and re-examined
according to a well-defined strategy.

First, by analysing droplet size experiments, the accuracy of nucleation and droplet
growth theories is tested independently in a range of temperatures, in which surface tension
data are experimentally available. On the basis of this check, it can be concluded that both
CNT and ICCT theory do not provide a correct quantitative description of the nucleation
rate, at least in the pressure and temperature range considered in this thesis (p ~ 1bar,
220 < T < 270 K). As a matter of fact, both CNT and ICCT require the introduction
of empirical factors to compensate for their erroneous predictions. Furthermore, it is
ascertained that for an accurate prediction of the droplet number density and size, both
the heat and mass transfer between the droplet and the surrounding vapour have to be
simultaneously determined. Omission of one or the other leads to incorrect results. In fact,
the rate of release of latent heat ultimately determines the axial position where nucleation
is quenched.

Specifically, the gya82 droplet growth model, based on the assumption of an instan-
taneous balance between heat and mass transfer leads to good results for all experiments
considered in the present study. In the numerical implementation of the gya82 model, an
explicit growth formula is derived by performing a number of mathematical linearisations.
Note, in passing, that these simplifications do not have a big influence in the range of
supersaturations and Knudsen numbers considered in this thesis. The gya63 model per-
forms reasonably well down to Kn numbers of approximately 10, while at higher Kn values
the growth rate is overestimated. Higher Knudsen values, i.e. smaller droplets, correspond
to high supersaturations and larger temperature differences AT between droplet and sur-
rounding vapour. Since the correction factor, adopted by Gyarmathy (A = 3.18), is too
high in the entire Kn range - thus leading to a lower growth rate - the strong behaviour
of the gya63 model must be attributed to an inaccurate droplet temperature calculation.
Provided that the heat transfer is also taken into account, the Hertz-Knudsen formulation



6.7. CONCLUSIONS 129

provides also good results since, in all experiments considered here, growth occurs in the
near free molecular regime. This proves that the droplet growth results, produced by the
gya82 model, are only slightly affected by the quality of the Sherman interpolation formula.

Upon verifying these results for a variety of nozzle flows, for which surface tension is
known, an optimised model has been derived. Its constitutive elements are: the reduced
ICCT nucleation model and the explicit gya82 growth formula. In the course of this
verification, it is found that the accurate predictions of the Schnerr and Dohrmann model
with respect to shock position and frequency of oscillations, are imputable to a partial
cancellation of effects. Specifically, the delayed nucleation event is compensated by a
higher growth rate, which shifts forward the quenching of the nucleation rate. From this
analysis, it emerges also clearly that a full validation of condensation models can only be
achieved when both the predicted droplet sizes and pressure distributions are correlated
with experimental data.

To gain more insight in the extrapolation of surface tension data to lower temperatures,
nozzle flow experiments nucleating at increasingly lower temperatures have been consid-
ered. The Luijten-Prast fit does not provide good results at large subcoolings, down to
temperatures of 220 K. This provides an indirect indication that surface tension cannot in-
crease continuously with decreasing temperature, as required by the Nernst postulate. The
Schnerr and Dohrmann fit is in agreement with the thermodynamic constraint and does
provide good results, since it is derived in such a way as to guarantee the correct behaviour
of CNT theory. By assuming the reduced ICCT behaviour to be correct, one derives the
LD-fit which agrees with the experimental trend provided by Hacker, satisfies the limiting
thermodynamic condition (i.e. Nernst Postulate), and provides good predictions. In light
of the uncertainties of nucleation models in correctly predicting the temperature trend,
modifications to the above mentioned extrapolations of surface tension might be expected
as soon as new findings will become available.
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Chapter 7

Conclusions and recommendations

The preceding chapters describe both experimental and theoretical aspects of homoge-
neously condensing nozzle flows. In such types of flow, the actual phase transition is
preceded by homogeneous nucleation and then followed by droplet growth, which leads to
the formation of a liquid droplet cloud. The associated release of latent heat produces
a complex non-linear interaction between the flow field and the nucleation and droplet
growth processes, which affects strongly the flow pattern and its stability. Therefore, the
accurate modelling of homogeneous condensation relies essentially on the accuracy of its
constitutive elements. By experimentally determining pressure/density profiles, droplet
sizes, and frequencies of oscillations, it is possible to assess separately the accuracy of both
nucleation and droplet growth theory.

The aim of the present work is to provide an experimental database for the validation
of condensation models. To this purpose, the first part of this thesis is dedicated to a
discussion of models proposed in the literature on nucleation and droplet growth processes.
The second part of this thesis is dedicated to the development of experimental techniques
for the accurate determination of density distributions, droplet sizes, and frequencies of
oscillation. As test fluids, mixtures of water vapour in nitrogen or air are considered, at the
following stagnation conditions : pressures of 1bar, temperatures of the order of 290 K,
and different degrees of supersaturations (0 + 1.6). Under such conditions, the inception
of nucleation may occur at very large subcoolings (T of the order of 220 K') and droplet
growth takes place mostly in the (near) free molecular regime. For nucleation theory, two
variants of the classical nucleation theory have been considered: the CNT model in the
version proposed by Volmer, Frenkel, and Zeldovich [36], and the ICCT model, ascribed
to Girshick and Chiu [43]. The latter was chosen on the basis of Luijten’s results [75,
77). A simplifying assumption underlying all variants of classical nucleation theories is
the “capillarity approximation”, which implies the use of macroscopic thermodynamic
equilibrium parameters to describe a non-equilibrium microscopic process. As a result,
inaccurate models’ predictions have to be surely expected. This has led to the introduction
of an empirical factor to reconcile experiment and theory. In addition, by blending together
thermodynamic considerations (i.e. the Nernst Postulate), measured surface tension data
and results from nozzle flow experiments, a new extrapolation of surface tension to lower
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temperatures is proposed.

Droplet growth is an intrinsically irreversible process involving the net transfer of mass
and energy between the droplet and the surrounding vapour. As substantiated by lin-
ear irreversible thermodynamic theory, its correct description relies on the simultaneous
solution of the interphase rate equations for the transport of mass and heat conduction.
Directly connected to the evaluation of heat transfer, is the determination of the droplet
temperature T,;. Here, an explicit formula is employed to determine 7, based on the pre-
vious studies of Gyarmathy [48,49] and Smolders [130]. This formulation relies on two
main assumptions: the instantaneous balance between heat and mass transfer (i.e. wet-
bulb approximation), and the equality of the vapour pressure at the droplet surface with
the curvature corrected saturation pressure (p,, = ps.). A discussion on the applicability of
these approximations to condensing nozzle flows is presented in chapter 2. For the droplet
growth process, three models have been considered: the Hertz-Knudsen formulation and
two transition models of Gyarmathy, denoted as gya63 and gya82, respectively. The gya63
model [48] is presented in a closed formulation. Here, a first-order accurate droplet tem-
perature approximation, also based on the assumption p,, = ps, is indirectly employed in
the modelling. In the Hertz-Knudsen and gya82 model, the droplet temperature is treated
as input variable. In both models, the droplet temperature is determined using the second-
order approximation of Smolders [130]. The correct evaluation of the rate of heat addition
is particularly important at the beginning of the growth process: it determines, in fact,
the axial position at which nucleation is quenched and, therewith the final droplet number
density and size.

Experimentally, the flow is visualised by means of double-exposure holographic inter-
ferometry. The design of the interferometer is based on the set-up of Takayama [135]. The
optical configuration is such as to produce an image hologram with collimated beams. The
main advantage of this optical configuration consist in the generation of sharp images of
the test section and in the possibility of varying the OPL (optical path length) in such a
way as to minimise the effects of refraction. Although the quality of the interferometric
studies is rather good, a number of improvements are required for an optimal utilisation of
the set-up. Specifically, the substitution of the polarising beam splitter with high-energy
semi-transmitting mirrors should be considered, in order to prevent undesirable internal
reflections which cause spurious fringes.

For droplet size measurements, a multi-wavelength light extinction technique is em-
ployed in combination with the trial function method. The set-up is similar to Walters’
design [151]. However, for the present application, a number of modifications have been
introduced in order to improve the spatial and temporal resolution. Due to the extreme
relevance of droplet size measurements, special care has been taken in assessing the quality
of the method with respect to both experimental and theoretical aspects. For the experi-
mental part, the influence of forward scattered radiation on the extinction measurements is
simulated numerically by means of a Monte Carlo method. Based on this study, the set-up
has been designed in such a way as to contain this influence within a few percent. An
important pay-off of these simulations is the validation of the Lambert-Beer law on which
the analysis fully relies. As for the numerical and theoretical counterpart, a detailed check
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is performed on the reliability of the inversion method. An important conclusion from this
analysis is that the characteristics of the droplet size distribution can be determined with
great accuracy only in correspondence to the high extinction peaks. These are, in fact, the
only instants in time where the droplet cloud is completely outside the Rayleigh regime.
In addition, all experiments, carried out at stagnation supersaturation lower than 0.9, are
not reliable due to the small size of the detected droplets. In all these cases, the extinction
of light is so weak that the measured transmitted intensities have a very low signal-to-
noise ratio. For these reasons, in the validation of the proposed condensation models, the
comparison between experimental and theoretical results is restricted to experiments with
stagnation supersaturations higher than 1.0 and limited to the extinction peaks.

In the present study, the terminology “condensation model” refers to a specific combi-
nation of nucleation, droplet growth, and surface tension formulations. The validation is
performed in a stepwise manner, aimed at evaluating the quality and accuracy of each con-
stitutive element separately from each other. To pursue this objective, the well-documented
experimental data on homogeneous condensation of water vapour/carrier gas mixtures have
been collected and re-examined according to a well-defined strategy.

First, by analysing droplet size experiments, the accuracy of nucleation and droplet
growth theories is tested independently in a range of temperatures, in which surface tension
data are experimentally available. On the basis of this check, it can be concluded that CNT
and ICCT theory both do not provide a correct quantitative description of the nucleation
rate, in the pressure and temperature range considered in this thesis (p ~ 1bar, 220 <
T < 270 K). On the basis of these results, the empirical correction factor £ for the ICCT
formulation is determined (£ = 0.01), in agreement with Luijten’s results [75,77]. For the
droplet growth process, it is ascertained that the explicit droplet temperature calculation
leads to the correct rate of heat transfer, regardless of the specific growth law to which it
is applied, i.e. Hertz Knudsen or gya82. Both formulations provide very good results for
all experiments considered in the present study. This indirectly proves that the growth
process occurs mostly in the (near) free molecular regime and transitional effects play
only a marginal role in the range of Kn numbers considered [2 + 50]. The gya63 model
performs reasonably well till Knudsen numbers of approximately 10, while at higher Kn
values the actual growth rate is overestimated. Higher Knudsen values, i.e. smaller droplets,
correspond to high supersaturations and larger temperature differences between droplets
and surrounding vapour. On the basis of theoretical considerations [39], it is shown that
the correction factor, adopted by Gyarmathy, is too large in the entire Kn range, thus
leading to a reduction of the growth rate. Therefore, the good behaviour of the gya63
model must be attributed to an inaccurate droplet temperature calculation.

In literature, alternative formulations have been proposed on the transition correction
as function of the Kn number, e.g. the work of Sahni [111] and Fuchs & Sutugin [39]. An
interesting line of research would be to combine the explicit droplet calculation of Smol-
ders, which on the basis of our droplet size experiments appears to be the most accurate,
with these alternative formulations. However, it should be noted that the droplet growth
experiments described in this thesis would represent only a partial check of this alternative
formulation since in our experiments growth occurs mostly in the (near) free molecular



134 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

regime. Additional experiments for condensing nozzle flows with Kn numbers in the range
1-+0.01 would be required for a complete validation. In this respect, droplet size measure-
ments, for nozzle flows operating at a higher pressure, would be highly recommended.

Upon testing condensation models for a variety of nozzle flows in which surface tension
is known, an optimised model is derived. Its constitutive elements are: the reduced ICCT
nucleation model and the explicit gya82 growth formulation. The model is able to predict
with satisfactory accuracy all features of condensing nozzle flows, namely: macroscopic
gas dynamic properties, droplet sizes, and frequencies of oscillations. In the course of this
validation, it is shown that the accurate predictions of the Schnerr and Dohrmann model
with respect to shock position and frequency of oscillations, are attributable to a partial
cancellation of effects. Specifically, the delayed nucleation event is compensated by a higher
growth rate, which shifts forward the quenching of the nucleation rate. From this analysis,
it emerges also clearly that a full validation of condensation models can only be achieved
when both predicted droplet sizes and predicted pressure distributions are correlated with
experimental data. To gain more insight in the extrapolation of surface tension data to
lower temperatures, nozzle flow experiments, nucleating at increasingly lower temperatures,
have been considered. By analysing these experiments, the following can be concluded: the
Luijten-Prast extrapolation leads to inaccurate predictions at large subcoolings, down to
temperatures of 220 K. This fact provides an indirect indication that surface tension cannot
increase continuously with decreasing temperature, as required by the Nernst postulate.
Both the (Schnerr and Dohrmann) ¢°” and (these authors) o“? extrapolations provide
good results at such low subcoolings. In deriving these extrapolations, it is implicitly
assumed, in both cases, that the nucleation model performs equally well independently of
the temperature. Specifically, Schnerr and Dohrmann assumed CNT to be correct, while
the present author preferred the ICCT variant. In the present study, the ICCT formulation
is preferred since it predicts increasingly higher nucleation rates at low temperatures. This
feature allows the derivation of a simple fit, which satisfies all existing thermodynamic
constraints and provides, in combination with the ICCT model, good results also at large
subcoolings. However, the proposed model can by no means be considered as a final result.
From nucleation studies, in fact, it is well known that classical nucleation theory (and its
variants) do not reproduce the temperature trend correctly. As an example, the reader is
referred to the recent work of McGraw [87] on the scaling of nucleation rate (CNT theory),
on the basis of thermodynamic considerations. It is, thus, to be expected that, in light of
new findings in nucleation studies, modifications will have to be made to the extrapolations
of surface tension data.
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Appendix A

Physical properties

This appendix summarises the physical properties used in the numerical simulations. The
reported formulas and values refer only to the condensation model proposed by the present
author. In the present study, two inert carrier gases are considered: nitrogen and air. Their
physical properties and constants are listed below, including their units and the source from
which they are taken. Values are given for the mass of a molecule m, specific gas constants
R, specific heat at constant volume c, and at constant pressure c,, thermal conductivity
k, and dynamic viscosity u.

Nitrogen

m = 4.651-10720

R, = 296.81

Cpa = 1041

Cpa = 743.57

k= 2.55-102(T/295)08%8
m 17.6 - 107 (T/295)0767
Air

m = 4.810-107%

R, = 287.04

Cpa = 1004

Coa = 117

k= 1.48-1072(T/295)%50
i = e (T)T,)*% (T, + 8) /(T + s)

In the last expression (Sutherland’s formula), p,q = 19.1-107%kgm™" s~

[kg]
[J/ (kg K)]

[
[

(Wmt K]

[

J/(kg K)]
J/(kg K)]

kgm=!s™1]

is a reference

viscosity value, T, = 273.15 K is a reference temperature and the constant s is, for dry air,

equal to s = 110. The material properties of water vapour are reported next.
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Water Vapour

m = 2.991-10% (k9] [59]
R, = 461.52 17/ (kg K)) [107]
Cpp = 1859 17/ (kg K)) [107]
o = 1397.5 17/ (kg K)] [107]
k= Do+ DT+ DyT?+ DsT? [Wm ' K] [108]
p = (1.823-1075V/T)/(1 +673/T) [kgm™ts7] [71]
The values of the coefficients Dy, Dy, Dy, D3, are:
Dy, = 7.341-107° [Wm™ K™ [108]
D, = —-1.013-107° [Wm™t K2 [108]
D, = 1.801-1077 [(Wm ' K3 [108]
D3 = —9.100-10~" [Wm=! K] [108]

Note that the dynamic viscosity and thermal conductivity of the gas-vapour mixture are
defined as follows:

(1 - gmaz) o + (gmam - g) Moy

po= T : (A.1)
1-— mazx ka maxr kv
po— (1~ gma) 1:29 9) k. (A.2)

where the subscripts “a, v” denote the carrier gas and the water vapour component, re-
spectively.

Latent heat

From the Clausius-Clapeyron relation, the following relation can be derived for the latent
heat of condensation:

L(T)= R,(ApT?+241, T3+ B, T — Cy) [J/kg] [132]

The values of the coefficients Ay, A11, B, Cy, are:

Ay = —2.7246-10 2 [1/K] [132]
Ay = 1.6853-107° [1/K? [132]
B, = 24576 [—] [132]
Co = —6094.4642 (K] [132]
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Saturation pressure

Following Vargaftik [145], the saturation pressure is expressed as:

T 1 1
= 610. —5.14211n [ ——— ) — 6828. = — P
Psco = 610.8 exp [ 5 n (273'15> 6828.77 (T 273.15)] [Pal

Binary diffusion coefficients
water-nitrogen: D = 24.5-107%(7/295)%%5 /p(bar) [m? s
water-air: D = 24.9-107%(T/295)"7 /p(bar) [m? s

Density of liquid water

The density of liquid water is expressed, following Pruppacher and Klett [105], as:

AO+A1t+A2t2+A3t3+A4t4+A5t5 [kg/m{}]

alt) = T+ B, 1 for t>0°C
Ag + Azt + Agt*  [kg/m?] for t<0°C
with ¢ in °C' and the constants:
Ay = 999.84 [kg/m?]
A; = 18.224944 [kg°C/m?]
Ay = —7.92221-1073 [kg°C? /m?]
A3 = —55.44846-107° [kg°C3/m?]
Ay = 149.7562-107° [kg°C*/m?]
As = —393.2952-10712 [kg°C®/m?]
Ag = 999.84 [kg/m?]
A; = 0.086 [kg°C/m?]
Ag = —0.0108 [kg°C?/m?]
By = 18.159725-1073 [°C]

Surface tension of liquid water

(A.3)

(A4)

During the supersonic expansion of water vapour/carrier gas mixtures in Laval nozzles
large subcoolings are achieved and the temperature drops well below the triple point (73, =
273.15 K). In these circumstances, it is not sure whether the condensate remains in the
liquid phase. Dohrmann [33], Mundinger [91], and Adam [2] obtained a good agreement

between theory and experiments by assuming the condensate to remain liquid.
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More recently, Strey et al. [134] obtained the experimental confirmation of this, by ob-
serving the Mie peaks from scattered light. Therefore, the assumption of liquid condensate
is retained throughout this work.

The surface tension dependence on temperature follows the empirical formula derived
by Pruppacher and Klett [105] for 7' > 250 K. For the extrapolation of o to low tempera-
tures, the reader is referred to sections 2.3.2 and 6.6.

8.52000 - 1072 — 3.54236 - 10~* T + 3.50835 - 106 T2
—8.71691-10°T3 [N/m]  for T <250.0K

LD
o (T) =1 (76.1+0.155(273.15— 7)) - 103 [N/m]
for T >250.0K

(A.5)
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Droplet temperature calculation

This appendix describes the derivation of Smolders’ explicit, second-order accurate, droplet
temperature relation. A more detailed treatment can be found in the thesis of Smol-
ders [130] and Prast [104]. Here, the most relevant passages and simplifying assumptions
are summarised. As a starting point, the expressions for the mass and energy transfers are
substituted in the definitions of the Nusselt numbers (Eq. 2.44), for both the free molecular
and continuum limit. As mentioned already in section 2.4.1, in the determination of the
droplet temperature only the energy transfer due to heat conduction is considered. In the
free molecular limit, this simplification consists in neglecting the term M/™T,R, /2 with
respect to M/™L. Due to the high value of the latent heat of water, an error smaller than
5 % is committed. In this approximation, the expressions of the Nusselt numbers become:

Free molecular limit

7R T » Se
N/™ = 1 11— /=] | = B.1
uM T R * ( Td ) Pvoo _pvr] Kn’ ( )
25%+4+1Pr
Nuylm — z i B.2
Y T 2% Kn’ (B-2)

where v = ¢,0/¢y0, the Schmidt number Sc is defined by Eq. (2.65), and the Prandlt number
Pr by Eq. (2.62). Both the Sc and Pr numbers should be evaluated at the intermediate
temperature 7,,, defined following Hubbard et al. [62] as T,,, = 1/3(2T;+Tw). A bar over
a group of variables indicates averaged properties of the gas/vapour mixture. In deriving
Egs. (B.1)-(B.2), it is implicitly assumed that the gas mixture behaves as a calorically
perfect gas. In the continuum limit, the expressions of the Nu numbers read as follows:

Continuum limit

e )
Nu§, = 2 (pmipw ) , (B.3)
Pgoo
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N Y ) In [1 + (cpv(Tzo—Td))i| o
uH - (va (Too_Td)> . ( ° )
L

In the hypothesis that ¢,, (T —Ty)/L and (p, — Pur)/Pgoo are much smaller than unity, both
expressions of the Nusselt numbers (Nut!, Nuf) tend to the limiting value of two. This
assumption is retained throughout the present work.

~ The droplet temperature T} is then calculated from the approximated wet-bulb equation

(H = —L M), expressed in terms of Nusselt numbers:
Td 0 Pvoo — Por
— 1) = B.5

where p,, is equal to the curvature corrected saturation pressure p,, = ps.(Ty, r4) and 6 is
defined by Eq. (2.52). For clarity, the definition of 4 is repeated below:

DmodL Nu’;\:[
k Nug

0 = (B.6)
Equation (B.5) provides an implicit relation for the droplet temperature. However, by
introducing some simplifying assumptions, it is possible to derive an explicit relation which
relates the droplet temperature to the droplet size and the environmental conditions. A
first simplification is to assume that the latent heat L and all transport coefficients are
basically constant within the range (7, T ) and may, therefore, be calculated in the far
field (i.e. at T.,). The wet-bulb relation (Eq. B.5) can now be re-written as:

Too Poo Td Dor
— Seo — =1 =- —1). B.

Implicitly, in Eq. (B.7), it is assumed that the parameter 6 (i.e. the Nu numbers) is also
evaluated in the far field. This is a necessary approximation in order to make the wet-
bulb equation explicit. Essentially, this approximation reduces to the surmise that the
square-bracketed term in Eq. (B.1) is approximately equal to one. Equation (B.7) is still
not explicit due to the presence of p,., = pu(T4,74). To eliminate p,,, two additional
simplifications are introduced. First, the vapour pressure at the droplet surface p,, is
approximated as:

Puor = Psoco (Td) €Xp Keoo; (B8)

that is, the Ke is not evaluated at the droplet surface but in the far field. The term psoo(74)
can be obtained from the integrated Clausius-Clapeyron equation, which yields:

wpe] - E () ®9

Second, a Taylor series expansion of p,, around p,. is performed with truncation after the

first-order term, yielding:
1n<p””> = &, <p’”” —1), (B.10)
p’UOO p’UOO
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where the factor &,, can be estimated using relation (B.7):

1 Too Doo Td
nR 14 — S| (7 —1). B.11
1ty s (325 (72-1) (BAY
By combining Egs. (B.7), (B.8), (B.9), and (B.10), the following relation is obtained:
T, T Poo Lo To -1
% 1) = f(Sw, Keoy) | —2— S ) & e B.12
(Too ) F (oo, Ko [ewsoo (pm ) St R T T, } (B.12)

Finally, to obtain an explicit equation, Smolders [130] further assumes Ty, & T, and &, ~ 1,
which yields the desired expression:

Ty T Doo Lo 17!
—L 1) = f(Sa, Keo) |—2— — S . B.13

The accuracy of Eq. (B.13) with respect to the implicit solution (Eq. B.12) has been
studied in detail by Prast [104]. He showed that, at low temperatures (T = 230 K),
significant errors (up to 50 %) are introduced by using Eq. (B.13). To improve the quality
of the solution, Smolders [130] formulated a second-order correction to Eq. (B.13). This
correction was obtained by comparing Eqs. (B.12) with (B.13) and by using Eq. (B.11) for
the expression of &;,:

3Ct — G
(C1+ Cy)?

where Cy and Cy are defined in Eqgs. (2.52). Finally, the second-order, explicit relation
becomes:

(In Soo — Kewo), (B.14)

1N

(f—d — 1> = f(Soo; Keoo)[C1 + Co] 1 (1 = 6y). (B.15)
Prast [104] evaluated also the quality of Eq. (B.15) with respect to Eq. (B.12), for con-
densing nozzle flow applications. A significant improvement is obtained by using Smolders’
correction, which leads to an inaccuracy of +5% in the phase of relevant growth.

Once the droplet temperature has been calculated, the droplet growth rate can be
computed via the mass conservation law:

d_T?i = _Nuj\Z(TOO)DmOd Dyoo — psr(Td)‘ (B.16)
dt P Pgoo

Note that Eq. (B.16) is a simplified version of Eq. (2.55), in that the transition Nu number
is evaluated at T, and not at T;. However, assuming a temperature difference (Ty — Tt)
of approximately 20 °C', this simplification corresponds to an error smaller than 4 % in the
expression of Nuf\;‘ .
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Appendix C
Hill’s method

To integrate the integro-differential equation (Eq. 2.23), expressing the formation of the
condensate mass, Hill’'s method is used. This method consists in tracking the time evolution
of the lower moments of the size distribution function. In the first place, let us define the
n-th moment of the droplet size distribution f(r) as:

0Qn = /T"f(?“)dr- (C.1)

This integral can also be evaluated in terms of the nucleation rate and subsequent droplet
growth. Assume the droplet, formed at a time 7, has a size R(¢,7) at the current instant

t. Then, it results:
i

o(t) n
0Qn = / —=J(7)r"(t, 7)dT. C.2
2SIy (e (©2)
In fact, J(7)dr/o(7) is the number of droplets formed in between 7 and 7 + d7, per unit
mass of mixture. If there is no velocity slip between droplets and gas, the same number of
droplets is still present in the same mass element at time ¢. Since pQ,, is defined per unit
volume, the integral in Eq. (C.2) has to be multiplied by o(?).

The moment equations are obtained by taking the total (material) derivative of Q,:

DQn _ 1 *N J(t) n—1 Dr
Di _@J(t)r +/mnr Fth' (C.3)

— 00

If the growth rate of the droplet formed is independent of size and, therefore, indepen-
dent of 7, the equation becomes:

DQ, 1 wn DT
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Note that the material derivative of Eq. (C.2) yields:

009n
ot

+ V- (0Qnv) = Q, (% +V- (QQ)) + 0 (aagtn +uv- VQn> - (C.5)

The first term on the right-hand-side (RHS) of Eq. (C.5) is zero due to the continuity
equation (i.e. mass conservation). Therefore, the substantial derivative of 0Q,, becomes
simply:
90Qn DQ,
ot Dt
The parameters of the size distribution (ng, r,, €) are related to the lowest four mo-
ments as follows:

+ V- (0Qnv) = 0 (C.6)

Na — QQO,
ot
m = 9 C.7
" Q20,v/0,0; (C.7)

- IH(QOQ2>
Q)




Appendix D

Nozzles and computational grids.

An example of a typical mesh, employed in the numerical simulations for Nozzle G1, is
shown in Fig. D.1. In Table D.1, the typical mesh densities, used for all the investi-
gated nozzles, are given. These values have been selected on the basis of the results from
Mundinger [91] and Adam [2], who studied in detail the influence of grid density on the
numerical solution.

Figure D.1: Example of the computational grid. Nozzle: G1.

Nozzle Type ! h*  Rj_ 5. (—=dT/dt)] , Mesh Resolution
[em] [em] [em]  [em] [K/ ]
G1 Parallel outflow 20 2 8 6 0.820 200 x 30
G2 Parallel outflow 50 2 30 400 0.100 200 x 30
S1 Circular arc - 12 10 10 0.237 240 x 130
S2 Circular arc - 3 40 40 0.237 200 x 30

Table D.1: Standard data and mesh resolution employed in the numerical simulations of
the investigated nozzles.

159



160 APPENDIX D. NOZZLES AND COMPUTATIONAL GRIDS.

The contour of nozzles G1 and G2 is given in Table C.2.

Nozzle G1 Nozzle G2

x [em] ylem] | x [em] 'y [em] x [em] y[em] | x [em] y [em]
-7.746  3.000 2.165 1.391 -21.541  5.000 2.950 1.011
-7.454  2.995 | 2.456 1.478 -20.820 4.991 3.670 1.017
-7.163  2.979 | 2.748 1.562 -20.100 4.965 | 4.391 1.024
-6.871 2.952 | 3.039 1.643 -19.380 4.922 | 5.111 1.033
-6.580 2.915 | 3.331 1.719 -18.659 4.861 5.831 1.042
-6.288  2.866 | 3.622 1.792 -17.939 4.783 | 6.551 1.054
-5.997 2.806 | 3.914 1.862 -17.219 4.687 | 7.272 1.066
-5.706 2.735 | 4.205 1.928 -16.498 4.573 | 7.992 1.080
-5.414  2.653 | 4.496 1.990 -15.778  4.441 8.712  1.099
-5.123  2.558 | 4.788  2.049 -15.058 4.291 9.433 1.111
-4.831 2.450 5.079 2.104 -14.337 4.122 | 10.153 1.129
-4.540 2.329 | 5.371 2.157 -13.617 3.935 | 10.873 1.148
-4.248  2.195 | 5.662  2.206 -12.897 3.728 | 11.594 1.168
-3.957 2.046 | 5.954  2.253 -12.177  3.501 | 12.314 1.186
-3.665 1.889 | 6.245 2.296 -11.456 3.254 | 13.034 1.212
-3.374  1.746 | 6.537  2.337 -10.736  2.987 | 13.755 1.237
-3.082 1.618 | 6.828 2.374 -10.016  2.721 | 14.475 1.262
-2.791 1.502 7.120 2.409 -9.295 2.476 | 15.195 1.289
-2.499 1.400 7.411 2.442 -8.575 2.252 | 15,916 1.317
-2.208 1.311 7.703 2472 -7.855  2.047 | 16.636 1.346
-1.916 1.233 | 7.994 2.499 -7.134 1.861 | 17.356 1.377
-1.625 1.167 | 8.286 2.524 -6.414 1.694 | 18.076 1.409
-1.333 1.112 8577  2.546 -5.694 1.545 | 18.797 1.442
-1.042 1.068 | 8.869  2.567 -4.973 1.41 19.517 1.476
-0.750 1.035 | 9.160 2.585 -4.253 1.303 | 20.237 1.512
-0.459 1.013 | 9.452 2.601 -3.533 1.209 | 20.958 1.549
-0.167  1.002 9.743 2.615 -2.812 1.132 | 21.678 1.583
0.124 1.001 | 10.035 2.626 -2.092 1.073 | 22.398 1.613
0.416 1.014 | 10.326 2.636 -1.372 1.031 | 23.119 1.638
0.707 1.042 | 10.618 2.644 -0.652 1.007 | 23.840 1.657
0.999 1.084 | 10.909 2.649 0.069 1.000 | 24.559 1.673
1.290 1.140 | 11.201 2.653 0.789 1.001 | 25.280 1.683
1.582 1.212 | 11.492 2.655 1.509 1.003 | 25.000 1.688
1.873 1.300 2.230 1.006

Table C.2: Set of data points describing the top contour of nozzles G1 and G2.



Appendix E

The holographic experiment

Here, a brief outline is presented of a typical holographic interferometric experiment. Before
carrying out an experiment, the optical alignment of the set-up has to be checked, by
means of the CW-HeNe laser. The alignment presents no serious difficulties: the only
strict requirement is the projection of a sharp image of the test section on the holographic
plate. The ratio between the intensities of the scene and reference beam has to be also
checked. Optimal results are obtained with a ratio of 6 + 5. The alignment of the optical
system is checked for the pulsed laser as well. In practice, this is a very fast check, since the
system is tuned in such a way that the path for the HeNe and Ruby pulse laser basically
coincide. Once the alignment has been verified, the experiment can start.

Upon preparing the test mixture, as explained in section 3.1.2, a first exposure is made
with the mixture at rest in the test section. Then, the mirror (TM) (see Fig. 3.4) is
tilted and the experiment is started by breaking the diaphragm. A delay trigger unit
assures that the laser is triggered at the desired moment, typically 30 — 35ms after the
breaking of the membrane. The delay unit has an accuracy of 1 us, thus enabling a precise
determination of the time instant the laser is fired. This feature has been successfully
exploited to obtain snapshots at different time steps At of the order of 0.2 ms, for the
visualisation of periodically oscillating flows. These snapshots are made during different
experiments. Thus, in order to obtain acceptable results, it is essential to reproduce exactly
the same initial conditions. For the pressure and temperature values, this can be achieved
very accurately. For the initial relative humidity, whose reproducibility is of 1.6 — 4 %,
this condition can only be reached after several runs for which the same supply conditions
are repetitively applied. The good agreement between numerically and experimentally
determined density fields confirms the validity of this approach.

As photographic material, the AGFA 8E75 HD emulsion has been used, on the ba-
sis of a selection performed by Theeuwes [138]. For phase holograms, a large number of
chemical processing procedures can be found in the literature. Here, the one suggested by
the manufacturer (AGFA) is adopted. First, the emulsion is developed with GP61 (20°C')
for 2min. After rinsing it in flowing water (2min, at 20+ 2°C), the emulsion is fixed
for 5min in a dilute bath (1 part fixer + 4 parts distilled water) of either G321 or G334.
After rinsing the hologram in water, as described above, the hologram is bleached. For
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bleaching, a dilute bath of GP431 (1 part) and distilled water (4 parts) is employed. The
bleaching process lasts until the hologram becomes completely transparent. The compo-
sition of the developer and bleach can be found in the technical information from AGFA.
For completeness, the recipes of the GP61 and G321 are reported below.

Distilled water | 700 ml
Metol 6g

Hydrochinon Tg
Phenidone 0.8¢

NaySO;4 30g
NayCO3 60 g
KBr 2q
Na,EDTA lg

Table E.1: Ingredients for the preparation of the developer GP61. Add distilled water
till 1 ltr.

Distilled water 600 ml

Ferri nitrate nonahydrate | 150 ¢

KBr 30g
Fenosafranine 300mg
Ethanol 200ml

Table E.2: Ingredients for the preparation of the bleach GP431. Add distilled water till
11tr.

E.1 Determination of the stagnation conditions

As explained in section 3.1.2, the stagnation conditions for a given experiment are not
directly measured, but have to be derived from the conditions in the supply vessel. Prior
to each experimental run, the supply pressure Pj,;, temperature T},;, and supersaturation
Sini are measured. Furthermore, by means of the pressure transducer Pk, the pressure
P;ier at the nozzle inlet is dynamically determined following the passage of the expansion
fan.
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This section illustrates the relation among stagnation, supply, and inlet conditions,
derived from standard shock-tube, gas dynamic relations and subject to the assumption of
isentropic flow and calorically perfect gas. Specifically, it holds:

y—1
P’inlet ’

1 —2
Enlet = Enz |:1 + ’YT Minlet:| )

2

Mine =
let 7_1

N (E.1)
— 1 y—1
PO = F)'mlet [1 + VT Mi2nlet:| )
-1
TO = Cri'nlet |:1 + fYT Mz?nlet:| : (EQ)

To determine the stagnation supersaturation Sy, first the water vapour partial pressure
Do is obtained from the supply conditions:

where psoo(Tin;) is the saturation pressure. Then, it follows immediately

5= fETo)' (E.4)
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Appendix F
MWLS set-up

This appendix describes two important aspects of the multi-wavelength light extinction
set-up, which are both relevant for a correct execution and evaluation of the experimental
results. Specifically, the calibration of the detection system and the evaluation of detector
noise.

F.1 Calibration of the detection system

Objective of the calibration procedure is to express the direct correspondence between the
micrometer reading and the spectrum location in a simple analytical form. The calibration
was performed by Vervoort [146] according to the following procedure: 1) a laser beam is
aligned at the entrance diaphragm (D3) of the Spectrograph (see Fig. 3.7); 2) the microm-
eter is positioned in such a way that a maximum signal is detected at each of the seven
detector; 3) this procedure is repeated for four different lasers, emitting at the wavelengths
(A = 543.5, 632.5, 670.0, and 780.0 nm); 4) from these data, a linear relation between
wavelength and micrometer position can be established for each detector:

Detector 1: A1 =285.9p+ 189.5 (F.1)
Detector 2: Ay =281.2p+ 141.9 (F.2)
Detector 3: A3 = 285.1p+ 81.50 (F.3)
Detector 4: Ar =290.3p+ 13.20 (F.4)
Detector 5: A5 = 284.5p — 28.80 (F.5)
Detector 6: A¢ =293.7p — 108.1 (F.6)
Detector 7: A7 =290.4p — 157.3 (F.7)

In the above relations, A represents the central wavelength, expressed in [nm] and the
parameter p indicates the position of the spectrograph micrometer. Once the micrometer
position is chosen, the central wavelength, detected at each slit, can be also computed, using
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equations (F.1) - (F.7). For all experimental runs considered in this work, the micrometer
reading was 2.038, corresponding to the following central wavelengths:

Detector Number | Central wavelength [nm] 4+ 1 nm
1 772.3

715.0

662.6

604.8

551.1

490.6

434.5

N[O |OU |~ W N

Table F.1: Central wavelengths detected at the different slits. Micrometer reading: 2.038.

F.2 Detector noise evaluation

In section 5.3.2.1, it is shown that the maximum achievable accuracy in the determination
of droplet sizes is directly connected to the noise level in the detectors. In this section, the
procedure to evaluate the detectors’ physical noise is elucidated. First, the transmitted
intensities [I](t); @ = 1,...7] are corrected for their offset values. Second, the intensity
fluctuations due to energy fluctuations of the light source have also to be taken into account.
This is accomplished by measuring, during one experimental run, the light intensity I,.(t)
of the Xenon lamp by means of a reference detector placed just before the test section, as
shown in Fig. 3.6. Then, the measured intensities can be corrected for these fluctuations
via the following relation:

Lo I!
L(t) = WHG _ e—ﬁil’
1(t) I

i=1,...7, (F.8)

where [ is the width of the test section, (3 is the extinction coefficient, and I,y is the time-
averaged value of I,(¢). Similarly, I!(¢) is the directly transmitted signal at each wavelength
and [y is the corresponding time-averaged value, calculated before condensation occurs.
To evaluate the standard deviation o;/I,! the following procedure is adopted. For different
intensity levels, obtained by varying the light source power, the intensity I is measured
for a short time interval, while there is no flow activated in the test section. Therefore, it
results 3 =0 and e #! = 1.

The relative standard deviation o;/I can be, now, calculated from the left hand side of
equation (F.8). The calculated o;/I values and the measured detector signals have been
correlated with a hyperbolic fit for each detector. These relations are listed below for all

1The subscript ¢ has been dropped for simplicity.
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detectors:
14
Detector 1: o _ S 2.23-107%, (F.9)
I UV — Uy
1.12
Detector 2: o1 _ +7.12-1074, (F.10)
I v—wy
1.
Detector 3: or _ 133 +2.74-107%, (F.11)
UV — Uq
Detector 4: or_ 166 _ 5.05-107°, (F.12)
I v—uy
1.48
Detector 5: I _ +1.33-1074, (F.13)
I UV — Vg
1.72
Detector 6: o _ 12 _ 5.21-107% (F.14)
I v—wy
1.90
Detector 7: EL- —2.88-1077, (F.15)
I UV — Uy

where v represents the measured light intensity at each detector and v, the corresponding
voltage in the absence of incident light (dark value). Both v and v, are expressed in mV'.
To conclude this subsection, the response diagram of the detectors is plotted in Fig. F.1.
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400 530 660 790 920 10

Figure F.1: Response of the detectors (Siemens BPW 34).
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Appendix G

Mie theory

This appendix contains the analytical expressions for the amplitude scattering matrix and
the efficiency factors, which are introduced in chapter 5, in the hypothesis of a homogeneous
sphere and incident plane wave. As explained in section 5.2.1, the relation between incident
and scattered field amplitudes is:

E e*r=2) (g, 0 Ei;
= — . G.1
<E> “ikr L0 5 ) \&B, (G-1)

The complex amplitude functions are given by

[e o]

2n+1
Si(a,m,0) = nz:; m [an(a, m)m,(cos @) + b, (a, m)7,(cosh)] , )
Sy(a,m, ) = Zl % (an (0, m) 7 (08 8) + by (ct, m)r (c05 0)]

In the above equations, 7, and 7;,, are defined as

M) = o PE)
(G.3)
r() = Tule)

with P! being the associated Legendre functions. The coefficients a, and b,, in equa-
tions (G.3), are given by:

= VAm)(@) = mi(ma(a)

Y U (ma)Gn(e) — mipn(ma)(a) °
(G.a)

N my, (ma)Ga(a) = Yn(ma)(),(a) °



170 APPENDIX G. MIE THEORY

Yn(2) = \/Ejnﬂm() 3
Gl(2) = \/7 ni1/2(2 |

In these equations, .J, and H, represent the Bessel functions of the first kind and the
second Hankel functions, respectively. The expressions for the Bessel, Hankel, and Legendre
functions can be found in [70].

The corresponding expressions for the efficiency factors are:

with

Qext(a,m) = Z (2n + 1)Re [an(a, m) + b, (a, m)],

Qscal,m) = Z (2n+1) |an o, m)|* + |bn(a, m)| } (G.6)

n=1

Qabs(aa m) = Qemt( «, ) - Qsca(aa m)

Finally, in the hypothesis of unpolarised incident light, the irradiance of the scattered
wave is

I

IS = k2 7"2 f(97 gp)’

(Q.7)
_ %(%)2[il(a,m,9)+i2(aama‘9)]a

where i; and i, are the scattered irradiances per unit incident irradiance and are polarised
parallel and perpendicular to the scattering plane, respectively. Their expressions, as
function of the amplitude scattering matriz coefficients are:

il(a, m, 9) = ‘51(047 m, 9)‘27

iy(a,m,0) = |Sy(a,m,0)[% (G8)



Appendix H

Probability density function for
distance

In chapter 5, an exponential distribution of path lengths (Eq. 5.38) is assumed in order
to express the probability density between two successive scattering events. Hereafter, the
reasoning for such a choice is elucidated.

Indicating with z the distance covered by the photon while traversing the test section,
let ¢ dx be the probability that the photon is scattered within x and x + dz, assuming it
reached the position z without being scattered. Indicating with P(x) the probability that
the photon is scattered before it has reached station z, the probability that a photon is,
then, scattered within zandx + dx is [1 — P(x)] gdz. For P(z) the following equation
holds:

P(a)= [ 1= P@)]qds (H1)
0
which can be cast in differential form as:

dP(x)

=[1-P . H.2
) - Py (H2)
The solution to this equation is:
P(z)=1—e"%. (H.3)
The probability density function p(z) corresponding with P(x) is:
dP(x) Y
= = :”. H.4
pa) =T g (H.4)

The mean free path <x > of a photon between two successive scattering events can now
be expressed in terms of q:

z 1
<x>=/ rp(z)de = 5; (H.5)
0
therefore it results 1
_ . H.6
p() oS¢ = (H.6)
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The mean free path <z > can be estimated by dividing the total distance covered by the
photon [ for the total number of droplets present in the testing volume N, . Indicated with
nq the droplet concentration, it results N, = [ C\..: nq. In this expression, it was taken into
account that the ray does not “see” the geometrical cross section 772, but the extinction
cross section C,,; = thﬂrg, which equals the scattering cross section in the absence of
absorption. The average distance between two successive scattering events is, then:

1 1
_ . H.7
<> Qextlmr2ng [ (H.7)

Substitution of this expression into Eq. (H.6) yields:

p(x) = Ge . (H.8)



Appendix I
Droplet size experimental data

This appendix summarizes the results of droplet size experiments, conducted for a mixture
of water vapour in nitrogen, at different degree of stagnation supersaturation. In Table 1.1,
the following items are listed: experimental run, stagnation pressure Py, temperature 7,
and supersaturation Sy, maximum modal radius R,,..., and frequency of oscillations Freq.

Run Py x 10* [Pa] Ty [K] So  Rupae [nm] Freq [HZ]

37 8.75 296.6 1.19 162 1347
38 8.77 2969 1.51 167 1856
41 8.63 296.8 1.10 160 1248
42 8.63 296.9 1.30 161 1509
43 8.65 296.9 1.29 160 1489
44 8.65 297.0 1.46 165 1814
46 8.65 296.9 1.55 166 1898
47 8.64 296.9 1.15 121 1274
50 8.57 296.5 1.29 163 1492
52 8.68 296.9 1.22 164 1417
53 8.67 296.8 1.41 167 1636
55 12.8 2972 1.25 119 1449
o6 8.67 296.7 1.22 153 1422
o7 8.68 296.8 1.54 160 1849
58 8.69 296.8 1.33 162 1494
59 8.69 296.8 1.38 173 1566
63 8.67 296.6 1.10 159 1232
70 8.70 296.9 1.51 170 1873
71 8.70 296.8 1.46 170 1761
72 8.69 296.9 1.47 171 1756
73 8.69 296.9 1.40 167 1646

Table I.1: Experimental droplet size and frequency of oscillations data.
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Summary

Dropwise condensation from the gaseous supersaturated state plays an important role in
numerous problems of interest in science and technology, such as the formation of aerosols or
condensed matter in astrophysical applications, expansion flows in steam turbines, humid
air flows around aircraft wings or in phase separation devices. The present investigation
comprises a systematic study of condensing supersonic nozzle flows of water vapour in
nitrogen (or air) and encompasses both a theoretical and experimental analysis.

In nozzle flows, the nonequilibrium condensation process is initiated by homogeneous
nucleation, that is the spontaneous formation of metastable clusters from the vapour phase,
and then followed by droplet growth. The subsequent release of latent heat affects strongly
the flow pattern and leads, depending on the amount of heat released and the location, to
either steady or periodically oscillating flow regimes. As a consequence of this coupling, the
characteristics of the droplet cloud will depend on the coupling between the supersonic flow,
nucleation and droplet growth rates. It is immediately clear that an accurate modelling
of the entire nonequilibrium process relies on the quality of both nucleation and droplet
growth models.

In the literature, many different models have been proposed and verified thoroughly.
However, no definitive conclusions could be derived due to the scarcity of reliable experi-
mental data on droplet sizes. Measured droplet sizes constitute a sensitive test for assessing
the quality of the proposed condensation models, in that only when both frequency data
(or pressure distributions) and droplet sizes are available, it is possible to evaluate to a cer-
tain extent separately the quality of nucleation and growth theories. Our first objective is,
therefore, to provide this set of data by developing a facility capable of following the time
evolution of the droplet size distribution. Our second objective is to validate condensation
models and to gain more insights into the physical background. To this aim, this research
has developed along three parallel lines: an experimental, a theoretical, and a numerical
study.

Experimentally, the flow field has been visualised by means of double exposure holo-
graphic interferometry. As hologram type, the image hologram has been chosen since this
optical configuration, combined with the use of collimated beams, offers many advantages
in the visualisation of phase distortions in optically transparent media. The time depen-
dent droplet size distribution is determined by means of a multi-wavelength white light
extinction set-up, characterised by a high spatial and temporal resolution. Due to the
importance of droplet size measurements, attention has been paid in assessing the reliabil-
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ity and accuracy of these data. The quality of the measurements has been checked with
respect to noise level, number of signals recorded, scattering effects, and distance from the
regime of Rayleigh scattering. A by-product of this analysis is the assessment of the va-
lidity of single scattering approximations (Lambert-Beer law) for a variety of experimental
conditions. The experiments have been carried out in two different nozzles: one with a
high cooling rate (G1) and one with a low cooling rate (G2).

Theoretically, literature data on nucleation and droplet growth theories have been re-
vised. The “Internally Consistent Classical Nucleation Theory” (ICCT) is chosen to de-
scribe the nucleation process. The “Classical Nucleation Theory” (CNT) is kept only for
reference. Due to the experimental unavailability of surface tension data for subcooled
water (220 < T < 250 K), extrapolation from the known data is necessary. In deriving a
possible extrapolation, use is made of the Nernst Postulate, which implies that the partial
derivative of surface tension with respect to temperature approaches zero as T' — 0. The
so-called Gyarmathy transitional droplet growth model has been adopted. An important
feature of the model is the inclusion of a temperature difference between the droplet and
surrounding vapour, as a consequence of the released latent heat. This temperature differ-
ence is very important, particularly in the initial phase of the droplet growth process, and
determines the maximum supersaturation and maximum nucleation rate.

For the numerical simulations, a two-dimensional, time accurate unsteady Euler solver,
developed by Prast, is used. A comparative study has been conducted for different nucle-
ation and droplet growth models. By comparing the numerical and experimental results,
the quality of the different condensation models could be ascertained. As experimental
database, both our own measurements and the measurements published by Schnerr and
co-workers (nozzles S1 and S2) have been employed.

In performing this comparison, a precise strategy is adopted. First, the droplet size
experiments from nozzle G2 are employed to evaluate the quality of nucleation and droplet
growth theories. The evaluation occurred in a temperature range where no uncertainty
exists on surface tension values and led to the following conclusions. In the temperature
range (260 =+ 270 K), both ICCT and CNT do not predict correctly the actual nucleation
rate. This led to the introduction of an empirical factor (€ = 0.01) to compensate for the er-
roneous ICCT predictions. Accurate droplet sizes are predicted only when the temperature
difference between droplet and surrounding vapour is taken into account. Subsequently,
the study proceeds with analysing nozzle experiments nucleating at increasingly larger
subcoolings. Agreement between theory and experiment could be obtained with a new
extrapolation of surface tension fit to low temperatures, in compliance with the thermody-
namic constraint derived from the Nernst postulate. The entire set of experimental data
can be best correlated with a numerical model based on the following combination: reduced
ICCT for the nucleation rate, the transitional Gyarmathy model for the droplet growth
process and, the newly proposed surface tension fit.



Samenvatting

Druppelvorming vanuit een oververzadigde gasvormige toestand is van belang voor tal
van wetenschappelijke en technologische problemen. Voorbeelden zijn: de vorming van
aerosolen in astrofysische toepassingen, expansiestromingen in stoomturbines, luchtstro-
mingen rond vleugelprofielen of de scheiding van zuiver gasvormige en condenseerbare
componenten. Het in dit proefschrift beschreven onderzoek heeft betrekking op een sys-
tematische studie van condenserende nozzle stromingen van waterdamp in stikstof en lucht
en omvat zowel theoretisch als experimenteel werk.

In nozzle stromingen wordt het niet-evenwichts condensatieproces geinitieerd door ho-
mogene nucleatie, de spontane vorming van metastabiele clusters vanuit de dampfase,
gevolgd door druppelgroei. De daarbij vrijkomende latente warmte heeft een sterke invlioed
op de stroming en kan, afhankelijk van de lokatie en de sterkte van de vrijkomende warmte,
leiden tot stationaire of oscillerende stromingen. Als gevolg daarvan zullen de eigenschap-
pen van de gevormde druppelwolk afhangen van de koppeling tussen supersone stroming,
nucleatie en druppelgroei. Het is duidelijk dat een nauwkeurige modellering van het gehele
niet-evenwichtsproces berust op de kwaliteit van de nucleatie- en druppelgroeimodellen.

In eerder werk zijn veel verschillende modellen toegepast en grondig geverifieerd. Echter,
definitieve conclusies waren niet goed mogelijk als gevolg van het ontbreken van experi-
mentele data met betrekking tot druppelgroottes. Gemeten druppelafmetingen vormen
een gevoelige test voor de kwaliteit van de condensatiemodellen in die zin dat wanneer
zowel druppelgrootte als oscillatiefrequentie beschikbaar zijn het in zekere zin mogelijk
is nucleatie en druppelgroei separaat te valideren. Het eerste doel was dan ook om een
meetmethode te ontwikkelen voor de bepaling van de temporele ontwikkeling van de drup-
pelgrootteverdeling. Het tweede doel was om condensatiemodellen te valideren en inzicht
te verwerven in de fysische achtergrond ervan. Het onderzoek bevatte een experimentele,
een theoretische en een numerieke studie.

Het stromingsveld is experimenteel bestudeerd door middel van “dubbel puls holo-
grafische interferometrie”. Als hologramtype is gekozen voor het afbeeldingshologram om-
dat deze optische configuratie, gecombineerd met toepassing van parallelle bundels, zeer
geschikt is voor het vastleggen van faseveranderingen in optisch transparante media. De
tijdsathankelijke druppelgrootteverdeling is vastgelegd door middel van spectraal opgeloste
lichtextinctie, gekenmerkt door een hoge ruimtelijke en temporele resolutie. Vanwege het
belang van de druppelgroottemetingen is veel aandacht besteed aan de betrouwbaarheid
en nauwkeurigheid van de experimentele gegevens. De kwaliteit van de metingen is onder-
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zocht met betrekking tot ruisniveau, aantal gekozen golflengtes, meervoudige verstrooiing
en voldoende “afstand” in de parameter ruimte tot het regiem van Rayleigh verstrooiing.
Een nevenproduct van het onderzoek is het vastleggen van criteria voor enkelvoudige ver-
strooiing voor een reeks van experimentele condities. Experimenten zijn uitgevoerd met
twee verschillende nozzles, een met hoge koelsnelheid (G1) en een met lage koelsnelheid
(G2).

Wat betreft de theorie zijn nucleatie- en druppelgroeimodellen vergeleken en geévalueerd.
De “Internally Consistent Classical Nucleation Theory” (ICCT) is gekozen om het nucle-
atieproces te beschrijven. De “Classical Nucleation Theory” (CNT) is gebruikt als ref-
erentie. Omdat voor de oppervlaktespanning van onderkoeld water tussen 220 en 250 K
geen experimentele gegevens beschikbaar zijn, is extrapolatie noodzakelijk. Daarbij is ge-
bruik gemaakt van het “Nerst postulaat”, dat leert dat de temperatuur afgeleide van de
oppervlaktespanning tot nul nadert voor 7' — 0. Het z.g. transitiemodel van Gyarmathy
is gebruikt om de druppelgroei te beschrijven. Een belangrijk aspect daarvan is dat reken-
ing gehouden wordt met het temperatuurverschil tussen druppel en omgeving als gevolg
van het vrijkomen van latente warmte. Dit temperatuurverschil is erg belangrijk in het
begin van druppelgroei en is in sterke mate bepalend voor de waarde van de maximale
oververzadiging en van de maximale nucleatiesnelheid.

Wat betreft de numerieke analyse is gebruik gemaakt van een twee-dimensionale, tijd
opgeloste Euler code, ontwikkeld door Prast. Een vergelijkende numerieke studie is uit-
gevoerd voor verschillende nucleatie- en druppelgroeimodellen. Voorts zijn numerieke en
experimentele uitkomsten met elkaar vergeleken, zodat de kwaliteit van de verschillende
condensatiemodellen kon worden vastgesteld. Wat betreft de experimentele data is zowel
gebruik gemaakt van eigen metingen als van metingen gepubliceerd door Schnerr en medew-
erkers (de nozzles S1 en S2).

De uitvoering van deze vergelijkende studie is gedaan als volgt. Eerst zijn de druppel-
groottemetingen, verkregen voor nozzle G2, gebruikt om de kwaliteit van nucleatiemodel
en druppelgroeimodel vast te stellen. In eerste instantie werden alleen die experimenten
geévalueerd, waarbij geen onzekerheid bestond over de waarde van de oppervlaktespan-
ning. Dit leidde tot de volgende conclusies. In het temperatuurbereik (260-270 K) wordt
de nucleatiesnelheid noch door ICCT, noch door CNT correct voorspeld. De ICCT voor-
spelling moet met een factor £ = 0.01 gecorrigeerd worden. Correcte druppelgroottes
worden alleen verkregen als het temperatuurverschil tussen druppel en omgeving in reken-
ing wordt gebracht. Vervolgens is de analyse uitgebreid tot experimenten waarbij nucleatie
plaatsvindt bij een lagere temperatuur. Overeenkomst tussen theorie en experiment kon
worden verkregen op basis van een nieuwe extrapolatie van de oppervlaktespanning naar
lagere temperatuur, rekening houdend met de beperking gegeven door het Nernst pos-
tulaat. De volledige set van experimentele gegevens correleerde goed met het numerieke
model gebaseerd op de volgende combinatie: gereduceerd ICCT voor de nucleatiesnelheid,
het model van Gyarmathy voor de druppelgroei, en een enigszins aangepaste extrapolatie
voor de temperatuurafthankelijkheid van de oppervlaktespanning.
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