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1. INTRODUCTION.

An important motivation for our work on timed process algebra ([BAB91,93,92]) is that we intend to
present a uniform framework, in which all constructs that occur in the literature on timed process
algebra can be expressed. In [BAB91], we present our real time absolute time process algebra, in
[BAB93] we achieve a unified treatment of absolute time and relative time expressions. In [BAB92],
we define many discrete time constructs from the literature, both absolute and relative time ones, in our
real time process algebra, and define suitable discrete time subalgebras. This paper is concerned with
immediate or urgent actions, as they appear e.g. in TiCCS [M0OT90, 92], ATP [N1S91], TeCCS
[WAN9OQ], TICCS [CHE9S3].

As an example, consider the TiCCS expression (2).a.b.0. Intuitively, this expression denotes the
process that, after an initial delay of 2 time units, executes first a and then b instantaneously, and then
terminates. Now, in our real time process algebra ACPp, two actions cannot be executed consecutively
at the same point in time, so the process a(2)-b(2) will deadlock after executing the action a at time 2,
and b will not be executed. Nevertheless, we can define the process above in an extension of ACPp.
To this end, we extend our time domain to include infinitesimals, and model the TiCCS expression
above by a process that first executes a and then b at time points both infinitely close to 2, with the
difference of execution times a positive infinitesimal .
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This paper describes the extension of ACPp to amore general time domain, describes the relation
of ACPp over the (standard) positive reals with ACPp over atime domain including nonstandard reals,
and defines suitable subalgebras including urgent actions. Some of these subalgebras correspond to
timed process algebras found in the literature.
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We give an overview of the systems that we will consider. We start with the system BPAp\I, real
time process algebra with initial abstraction and integration. By adding parallel composition and
communication, we obtain ACPpVI. In this system (over atime domain involving nonstandard reals)
we can define urgent actions. We can also directly axiomatise algebras based on urgent actions instead
of our usual real time actions. In this way, we obtain the absolute time algebras BPAsp, PAsp, ACPsp,
and the relative time algebras BPAst, BPAJst, PAst, ACPst. By adding initial abstraction to the
absolute time algebras, obtaining BPAsp, PAsp\, ACPsp, we can interpret the relative time onesin
them. Figure 1 gives an overview of all algebras we consider, and the embedding relations between
them. Boxes with rounded corners denote relative time algebras, square boxes denote absolute time
algebras.

ACKNOWLEDGEMENT. We thank Steven Klusener (CWI Amsterdam) for his useful comments and
suggestions, and Peter van Emde Boas (University of Amsterdam) for his suggestion to use
nonstandard reals or surreal numbers.

2. REAL TIME PROCESSALGEBRA WITH INITIAL ABSTRACTION OPERATOR.

We will first consider the axiom system ACPpV|I. It describes the real time process algebra of [BAB91]

as presented in [BAB92]. The reader is assumed to be familiar with [BAB92], as we only indicate the

differences with that paper. For ACPpv1, we have a bisimulation model M}'f\ asoutlined in [BAB92].
Having available MZ, the various operators and constants of urgent time process algebra are

defined in it. Then, as a subject, nonstandard real time process algebra reduces to an investigation of

certain reducts and subalgebras of M}f\ aswell astheir axiomatic description.

2.1 TIME DOMAIN.

We assume that we have atime domain T. We have the following requirementson T:

i. Tislinearly ordered by <

ii. Oisthesmalest element of T

iii. T isclosed under addition +.

In[BAB91], we used the supremum of a subset of T in de definition of the ultimate delay operator, so
we needed completeness of T. We reformulate this operator in this paper (as we did in [BAB93]) so
that this requirement is not needed anymore. Examples of time domains satisfying these requirements
are N, the naturals, Qxq, the non-negative rationals, R>g, the non-negative reals, or *R>q, the non-
standard non-negative reals. Our prefered time domain, the one we used in [BAB91, 92, 93], is R>.

2.2 BASIC PROCESS ALGEBRA.
A isthe set of (symbolic) atomic actions. The set A is a parameter of the theory. 6 denotes inaction. We

put Ag = A U {0}. The set of constants is the set of atomic actions with time parameter, AT, given by
AT={a(t)| ac A5, te T}.
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Real Time Basic Process Algebrawith Deadlock (BPApd) has two binary operators+,: P x P —
P; alternative composition (weak choice) and sequential composition, respectively. Moreover, the
initialisation operator >>: T x P — P. BPApd hasthe axioms givenin [BAB91, 92].

2.3 ALGEBRA OF COMMUNICATING PROCESSES.

In order to formulate communication between processes, we assume we have given a communication
function | on As. An axiomatization of parallel composition with communication uses the left merge
operator L, the communication merge operator |, and the encapsulation operator oy of [BEK 84].
Moreover, an extra auxiliary operator is needed. In [BAB91,92,93] we used the ultimate delay operator
and the bounded initialization operator as auxiliary operators. However, in order to define the ultimate
delay of an integral expression, we need the supremum of a subset of T. In the time domain R>q, such
a supremum will always exist (or is infinite), but later on, we will consider a time domain where
suprema need not exist. For this reason, we will use a different auxiliary operator here. Since the
axiomatisation of merge used before only needed expressions of the form X > U(Y) (with U the
ultimate delay and > the bounded initialisation), we will have a new binary operator (left strong choice)
for this combination. It turns out that this operator is exactly one half of the strong choice operator @ of
ATP, and that explains the name.

Thus, we have the operator @ : P x P — P (left strong choice) and X @ Y denotes intuitively that
part of X, that can start before an initial action of Y. Notice the similarity of the axioms for the left
strong choice operator with the axioms of the unless operator from [BABK86], [BAW90]. The latter
binary operator also describes a filtering of the first argument by the second. We call the present
version of ACPp ACPp(®). In table 1, we show the axioms that do not appear in [BAB92], that
replace the axioms using ultimate delay or bounded initialisation. The axioms for left merge have a
condition because they do not hold for processesinvolving relative time notation. We have a,b € Asg.

t<s = a(t)® b(s) =a(t) LSC1
t>s = a(t)® b(s) = 4(s) LSC2
X®YZ=X®Y LSC3
X®NY+2)=(X®Y)+(X® 2) LSC4
XY ®Z=(X® 2)Y LSC5
X+V)@®Z=(X® 2)+(Y® 2 LSC6
X=0>Z = alt) L X=(a@®)@ X)X ATCM2®
Y=0>Z = at)XLY=(@®te Y)(XIY) ATCM3®

TABLE 1. New axioms of ACPp(®).

2.4 RELATIVE TIME NOTATION.
We follow the approach to relative time of [BAB92, BAB93]. The basis for this approach to relative
time notation isthe initial abstraction operator. Let fort € T, F(t) beaprocessin P, then t.F(t) denotes
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aprocess that, when started at time r, proceeds as F(r). In table 2, we show the new axioms for initial
abstraction, that give the relation to the left strong choice operator.

(VtF) & X =VL(F® t> X) IA13
X ® (Vt.F) =Vt({t> XD F) IA14

TABLE 2. Axiomsfor initia abstraction and left strong choice.

2.5 INTEGRATION.
We extend our real time process algebra by adding the integral operator, denoting a choice over a
subset of T. That is, if Visasubset of T, and v isavariable over T, then jve P denotes the aternative
composition of aternatives P[t/v] for t € V (expression P witht e T substituted for variable v). In case
the time domain is Rxq, this is an uncountable sum, and that explains the use of the notion of an
integral. For more information, we refer the reader to [BAB91] and [KLU93].

Intable 3, X is aprocess (that does not contain free variables), and F,G are process expressions
(that may contain free variables). We reformulate INT8: this only appliesif the set V has a supremum
in T. The theory presented thus far is called ACPpVI, ACPp plusintegration is ACPpl.

t=supV,teg V = J‘S(v) = §(t) INT8
veV
[F ex=([F) &X INT13
veV veV
j(x @ F)=xo ( J'F) INT14
veV veV

TABLE 3. Axioms for integration and | eft strong choice.

2.6 STRUCTURED OPERATIONAL SEMANTICS.

We obtain areal time transition system TS(X) from a process expression X asindicated in [BAB92].
Here, we just give the SOS rules for the left strong choice operator. We havete T,re T-{0}, x,x"y
are closed process expressions and a € A. On these transition systems, we define bisimulation as
usual. We extend with initial abstraction asin [BAB92].

Ot Ly, ) C ot B, (y,t) L3y
(x@y,t) [(XX1DY,r) x@y,02 =,

2Ry ¢yt Cn)
x@y,H* )

TABLE 4. Structured operational semanticsfor |eft strong choice.
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2.7 STANDARD INITIALISATION AXIOMS.

We present some extra axioms that are useful in the calculations to come, that hold in the model, and
that can be derived from the theory for al closed process expressions. The numbering of these axioms
corresponds to the numbering in [BAB92)].

s>XLr>Y=(s>X@r>Y)Ls>r>Y SI10
t>X®Y)=t> XDt>Y Sl14
X+ (X®Y)=X SI15
a(t) @ t> X=a(t) SI16
t> X a(t) = §(t) SI17

TABLE 5. Standard initialisation axioms involving left strong choice.

3. NONSTANDARD REALS.
In this section, we consider two time domains. on the one hand we have the time domain R>g of non-
negative real numbers, on the other hand we consider a subdomain of *R, the nonstandard model of
the real numbers. For more information on nonstandard real numbers, see [ROB66], [LUX62]. We use
the following notations: t = s meansthat t,s are infinitely closetogether, | ={s € *R|s=0, s > 0}is
the set of positive infinitesimals and t° € R is the standard part of afinitet e *R, the standard real
infinitely close to t. Note that the supremum over a bounded subset of *R need not exist.

Asthe extended time domain we use

Rsgtl=Rspu{p+e:pe R, € € I}.

Note that this set satisfies the requirements of section 2.1. Thus, this domain islinearly ordered, with 0
as least element, and is closed under addition. Also, it is closed under multiplication, and division by a
positive standard real. Notethat for t € Rsg+l, dwayst® existsand t° < t.

alp] = t. J a(p+to+e)

eel

8[p] = \t. JS(p+t°+e)

eel
a = a[0] 3 =9[0]
a(p) =38+ [a(p+e) 8(p) =8+ [8(p+e)

eel eel
p>sX =5+ p> X
s p. F =1t F[t°/p]
GL(X) =t (t+1)° > X

r> gt X =L (t+1)° > 0> X

TABLE 6. Standard time operators.
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3.1 DEFINITIONS.
We have the definitions in table 6 in the algebra over the extended time domain R>g+l. We will always
havet,u e R>otl,p,qe R>p,re R>p,e,ne l.

The standard absolute time signature, >(ACPsyv), contains the following ingredients:

3 (ACPgy): a(p) (ac Ag), 8, +, -,
L, I,0n(HcA),>s, @,
Vs.
The standard relative time signature, >,(ACPq), contains the following ingredients:
Y(ACPg): a(ae Ag), + ol

I, 1L, I,04 (HCA), r>¢,®.
Since we have a[0] = a and a[r] = 5. (a) for all r>0, this signature also contains all constants of the
form a[p].

The standard time signature, 2(ST), is given by X(ST) = 2(ACPs) U X(ACPsg).

4. STANDARDLY INITIALIZED PROCESSES.

In sections 5 and 6, we will give direct axiomatisations of various subalgebras of ACPp\/ |, that are
generated by signature elements of in section 3. Many of these axioms are not valid in the full algebra
MZ over R>g+l. In this section we define the notion of a standardly initialised process. The set of
standardly initialised processes is closed under all operators of the standard time signature, and all
axioms to be presented in sections 6 and 7 will hold in this algebra. We prove these facts at length in
this section. We obtain a subalgebra si—M’fA of M’L. Similarly, we have a subalgebra si-Ma of Ma
(containing absolute time processes only) and a subalgebra si-M 4 of M a(containing relative time
processes only).

4.1 DEFINITION. Let X € P*. We say X isastandardly initialised process, X € SIP, if
X= \/sp p >>s X.

4.2 THEOREM. The following statements are equival ent:
i. XeSIP

i, X=Vt.to > X

i X=X+8 A X=Atto> X
PROOF: i < ii: By definition of Vs.
i < iii: If X =t. t°>¢ X, then

t>X=t> VU ue > X=t> (t°>>sx+§)=t>> (t°>>SX)+t>>8:=

=t> (U U > X)+138 =t X+t>85 =t> (X +5). By extensiondity (IA5) X = X + 5.
ThusX =Vt 12> X = X =X+§,and X = X + § holdsin both ii and iii. Using this,
VUL W S X =t (1> X48)=t> (0> X)+t>§ =

S XSS =t 10> (X+8) =t> o> X =
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=t> (Vu. u°> X). Again by extensiondlity (IA5) Vt. t°>¢ X =~t. t°> X.

4.3 NOTE: A simple example of a process that is not standardly initialised isV't. a(t+1). This process

does satisfy X = X + 5. On the other hand, the process V. J'a(r) is standardly initialised. We will
r=t+1

nevertheless see that the second processis not in the algebra generated by the signature >(ST).

We proceed to show that the set of standardly initialised processesis closed under al operators of the
standard time signature. Actually, we will show something stronger, viz. that both the condition X = X
+§ and the condition X = Vt. t°>> X are preserved by all operators of >(ST). Thus, the algebra si—M,*;
is actually the intersection of two other interesting subalgebras of M,*; . We first list some facts about
initial abstraction that are proved asin [BAB92].

A4 LEMMAANLF +Vt.G = VL.(F + G), Vt.F =t. t> F,Vt.F | Vt.G=+t.(F | G),
Vt.F L Vt.G =Vt.(F L G), Vt.F | Vt.G =t.(F || G), Vt.F® Vt.G = Vt.(F @ G).
PROOF: Asin [BAB92].

4.5 CONSTANTS.
We start to verify the two conditions of 4.2.iii by looking at the constants of >,(ST).

4.5.1 PROPOSITION: & +8 = .
PROOF: A3.

4.5.2 PROPOSITION: § =\t t°> §.
PROOF: Thiswas aready used in the proof of 4.2. We give amore complete proof:

§ =1t IS(t°+e) =t It°>>8(t°+£) =t o> Ié(t°+e) =\t 3.

eel eel eel

4.5.3 PROPOSITION: E(p) +5= E(p).
PROOF: By definition.

4.5.5 PROPOSITION: a(p) = Vt. t° > a(p).

PROOF: a(p) = [a(pre) + B = [a(pte) + . _[ S(to+e) =

eel eel ecl

=L (> [a(pre) + I S(to+e)) (IA4).
eel eel

Now we consider three cases.
i. ift<p,thent> a(p+e) =a(p+e) =t°> a(p+e)foradl e e I;
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i if > p, thent > a(pre) = () forall e e 1, s0t> [a(p+e) + Jé(t°+s)) = JS(t°+s)) by
eel eel eel

ATAS;

ii.ift=p +¢forsomee e I, thent> = p, 0t (> [a(p+e) + J.S(t°+e))=
eel eel

=L [a(pre) +t> JS(t°+e))=\/t.t>>( [atpre) + J S(t>+e)) (ATB3) =

gel el gel el
=\t ( Ja(pre) + J d(e+e) =\t (° > [a(pre)+> J S(to+e)).
eel eel eel el

We seethat in all cases, we obtain
a(p) =t (> [atpre)+to> J'a(t°+e)) =t > ( Ja(pre) + I S(t>+e)) =Vt > a(p).

eel ecl eel el

4.5.6 PROPOSITION: a + & = a.

PROOF: 2 + & = (\t. J a(to+e)) + (VL. j S(to+e)) = VL. ( j a(to+e) + jS(t°+e))

eel eel eel eel

(lemmad4.4) = . ( J'a(t°+a) +8(to+e)) (INTS) = . j a(to+e) (ATAY) = a.

eel eel

4.5.7 PROPOSITION: 2 = Vt. t° > a.
PROOF: & = t. J'a(t°+e) =Lt J a(te+e) =\t o> Vu. ja(u°+e) =Vt t> a

eel eel eel

4.6 ALTERNATIVE AND SEQUENTIAL COMPOSITION.
We continue with the operators +, -.

4.6.1 PROPOSITION: (X + 8) + (Y +3) = (X + Y) +8.
PROOF: Easy.

4.6.2 LEMMA: 5-X = 8.
PROOF: §-X = (V. _[ 3(t>+e)) X = Wt. Ja(t0+s)-x (IA7, INT6) = . j 3(t>+e) (ATAD) = 3.

eel eel eel

4.6.3 PROPOSITION: (X + §)-Y = X-Y +38.
PROOF: A4 and lemma 4.6.2.
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4.6.4PROPOSITION: X =VE. 12 XA Y=L > Y = (X+Y) =+t to> (X +Y).
PROOF: Straightforward, use lemma4.4 and ATB3.

4.6.5 PROPOSITION: X =Vt. t°> X = X-Y =+t to> X-Y.
PROOF: Straightforward, use IA7 and ATBA4.

4.7 STANDARD INITIALISATION AND LEFT STRONG CHOICE.
We continue with the operators >g,® .

4.7.1 PROPOSITION: p s X = p ¢ X + 9.
PROOF: By definition.

4.7.2 PROPOSITION: p s X =Vt t°> p >¢ X.

PROOF: ps X=p> X+ =p> X+t jS(t°+8) =Vt (> p> X+ jﬁ(t°+e)) (IA4) =

eel eel
=NL(E> > p> X+t> 0> jS(t°+e)) (SI7) =Vt t> (> p> X+1°> 3) (ATB3) =
eel

=L (0> p> X+1958) (lemmadd) =Vt t°> (p> X +8) (ATB3) =t.t°> (p>s X).

473LEMMA: S @ 5 =3.

PROOF: § @ & =1t. j S(to+e) @ \t. j S(to-+n) = \t. J'zs(t°+e) @ j §(to+n) (lemma 4.4) =

eel nel eel nel

=t. J'S(t°+g) _® §(t°+1) (INT13,14) = L. J S(to+e) + J' §(to+n) (LSCL,2) =

gnel e<n 21

=t J S(to+e) = &

eel
47APROPOSITION: X =X +3 AY=Y+8 = X® Y=X® Y +3.
PROOF: Straightforward, use LSC4,6 and lemma 4.7.3.

475PROPOSITION: X = VL 12> X AY =Vt P> Y = X@ Y=t t°> (X V).
PROOF: Straightforward, use lemma 4.4 and Sl14.

4.8 PARALLEL COMPOSITION AND ENCAPSULATION.
We continue with the operators II, I, |, on.

481LEMMA: X=X+ = SILX=3.
PROOF: Assume X satisfies X = X + §. We derive
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SILX = (. J' S(to+e)) 1L X =t ( J' Sto+e) I t>> X) (IA8, INTY) =

eel eel

=t [(8(to+e) @ t> X)-(t> X) (Sncet> X=0>t> X by SI2) =

eel

=t [(B(te+e) @ t> (X+8)(t> X)=

eel

=t [((Bto+e) ® t> X) + (B(t+e)® t> 8))(t> X) =

eel

=Vt [((Bt+e) ® t> X) +§(to+e))-(t> X) =

eel

=t [8(to+e)(t> X) (S115) = k. J'S(to+e) (ATA2) = 3.

o
eel eel

4.8.2 PROPOSITION: (X + 8)IL (Y +8) = XIL(Y +5) +3.
PROOF: Straightforward, use CM4 and lemma 4.8.1.

484 LEMMA: § | 5=35.

PROOF: 5 | § = t. J S(to+e) | L. J'S(tom) = t. J S(to+e) | J §(t>+n) (lemma 4.4) =
nel

eel eel nel

=t. Jé(t°+£) | §(to+n) (INT10, INT11) = Vt. J' 3(to+e) (ATCL, ATC2) = 9.

enel eel

4.8.5 PROPOSITION: X = X+ AY =Y +8 = X|Y=X1Y+85.
PROOF: Straightforward, use CM8, CM9 and lemma 4.8.4.

4.8.6 PROPOSITION: X =X +3 AY =Y +8 = XIIY=XIIY +35.
PROOF: Straightforward, use CM 1 and propositions 4.8.2, 4.8.5.

487 PROPOSITION: X = VL. 2> X AY =t t°> ¥ = XILY =+t to> (XLY).
PROOF: Straightforward, use lemma 4.4 and SI8.

4.88PROPOSITION: X = V. 12> X AY =4t 12> Y = XY=+t to>(X|Y).
PROOF: Straightforward, use lemma 4.4 and SI9.

4.89PROPOSITION: X =Vt. t°> X AY =L 2> Y = XY =+t o> (XIY).
PROOF: Combine the previous propositions.

11
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4.8.10 LEMMA: 94(3) = 5.
PROOF: 9n(8) = an(vt. J'S(t°+g)) =t J In(S(t+e)) (1A12, INT12) = t. J S(to+e) (D1) = 5.

eel eel eel

4.8.11 PROPOSITION: dn(X + §) = dy(X) + 5.
PROOF: Trivial, use D3 and 4.8.10.

4.8.12 PROPOSITION: X =Vt 2> X = dn(X) = V. t°> an(X).
PROOF: Straightforward, use IA12 en SI13.

4.9 POSITIVE TIME SHIFT, SHIFTED INITIALISATION.
Next, the operators 6._, r>> .

4.9.1 PROPOSITION: 61 (X) = 6 (X) + 5.
PROOF: Notethat sincer e Rsqg, (t+r)°=t°+r>t°+efordlee |. Usngthis,

SL(X) =Vt (t+r)° > X =t ((t+1)° > X + §((t+1)°)) (SI5) =

=L ((t+)° > X+ S((t+1)°) + J'S(t°+a)) (ATA2) =t ((t+1)° > X + J S(to+e)) =

eel eel

=t ((t+H1)° > X) + L. j S(to+e) (lemmad.d) = 6 L(X) + 5.

eel
4.9.2 PROPOSITION: 6.1(X) = V. t° > 6 (X).

PROOF: 6.1 (X) = VL. (t+r)° > X =t. t°> (t+r)° > X (SI2) = Vt. t° > Ju. (u+r)° > X =
=+t.t° > 6 (X).

4.9.3 PROPOSITION: I >t X =T >t X +9.
PROOF: Asin 4.9.1.

4.9.4 PROPOSITION: I >t X =Vt 1> (r > X).
PROOF: >t X = VL. (t+1)° > 12> X = VL 12 (t+1)° > t° > ¢ X (97) =
=t > VUL (UHN)° > U > X =V 0> (r> g X).

4.10 STANDARD INITIAL ABSTRACTION.
We consider Vs.
4.10.1 PROPOSITION: F=F +8 = gp. F=Vsp. F+3.

PROOF: Vsp. F = Vsp. (F + 8) =t. (F[t/p] + t° > §) = Vt. F[t/p] + Vt. t°> § = Vsp. F + 3.
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4.10.2 PROPOSITION: F=Vt. t°> F = gp. F=+t. t°> Vgp. F.
PROOF: t > Vsp. F = t>> Yu. F[u°/p] = t>> F[t°/p] =t > t° > F[t°/p] = t>> (Nu. u® > F[u°/p]) =
=t> (Vu. u® > Vgp. F). Now use |A5.

This finishes the proof that the algebra of standardly initialised processesis closed under all operators
of the standard time signature. We proceed to prove additional identities that we will use in the
axiomatisations in sections 6 and 7.

4.11 BPA WITH URGENT ACTIONS AND ABSOLUTE TIME.

First, we prove some identities that allow to derive a standard time variant BPAspd of BPApd as
defined in 2.2. The familiar equation X + S = X does not hold for all timed processes, as the example
6(0) + $=58= 0(0) illustrates. Thisis one reason to limit ourselves to standardly initialised processes.
In each case, we will indicate if we need a condition of standardly initialised processes.

4.11.1 PROPOSITION: 3(0) =3.

PROOF: 3(0) = & + [3e) = (V. j B(te+m) +  [8(6) = e ( j s(te+m) +  [t53(e)).
eel

eel ne| ne| eel

Ift> 8(g) = d(t), the summand can be dropped by ATA2 sincet < t°+m for somen € I;
if t> d(¢g) = d(¢), the summand can also be dropped by ATA2 since e < t°+2¢. In both cases

5(0) = . ( JS(t°+n) + j t8(€)) = . JS(t°+n) =75,

nel eel nel

4.11.2 PROPOSITION: 3(p) - X = &(p).
PROOF: Easy.

4.11.3 PROPOSITION: p< (g = S(p) + g(q) = g(q).
PROOF: Easy, from the definition.

4.11.4 PROPOSITION: S(p) + S(p) = a(p).
PROOF: Straightforward.

4.11.5 PROPOSITION: X =Vt. t° > X = a(p) - X = a(p) - (p>s X).
COMMENT: Thisis an example of an identity that only holds for standardly initialised processes.
PROOF: a(p) - X = (8 + Ja(+e) - X = X+ [a(p+e)-X (INTE) =

eel eel

=gl

+ ja(p+e)-(p+e > X) (ATAB) = §-(p>s X) + J' a(p+e)-(p+e > p >¢ X) (assumption) =
eel

eel
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=@+ [a(p+e)-(p>sX) (ATAS,INT6)= a(p) - (p>s X).

eel

4116 PROPOSITION: p<q = pP>g E(q) = B(q).
PROOF: Supposep <q,sop<q+eforeache e |. Then:

p>sa@ =8+p> @+ [a(@+e)=3+p>3+ [p>a(gre) =

eel eel

o

+ [s(pre)+ [a(gre) =T+ [Bpreyra@re) = 8+ [a(g+e) = a(@).
eel eel

eel eel

411.7PROPOSITION: p>q = p>s a(q) = 8(p).
PROOF: Supposep >q,sop>q+eforeache e | asp,qe R. Then:

p>sa@ =8+p> @+ [a(@+e)=3+p>3+ [p>a(gre) =

eel eel

+£ej|6<p+e>+ [3p) =+ [3(p+e)+3(p)=3+ [8(p+e)) = 3(p).

eel eel eel

o

4.11.8 PROPOSITION: p>s (X +Y) =(p >s X) + (p>sY).
PROOF: Straightforward.

4.11.9 PROPOSITION: p >s (X - Y)=(p>»s X) - Y.
PROOF: Straightforward.

4.12 PA WITH URGENT ACTIONS AND ABSOLUTE TIME.
We continue with identities that we will use to axiomatise PAspd, the standard time variant of process
algebrawith free merge (merge without communication).

4121 PROPOSITION: p<(q = E(p) &) E(q) = E(p).
PrOOF: Straightforward, use INT13, INT14, lemma 4.6.3 and the fact that for each € € |, thereisan e
I suchthatp+e<q+nm.

4.12.2 PROPOSITION: p > q = a(p) @ b(qg) = 5(q).
PrROOF: Inthiscase, usethat for eachee | p+e<q.

4.12.3PROPOSITION: X=0>sZ = a(p) L X=(a(p) @ X) - X.
PROOF: We consider 3 cases:
Cael Letee |, r>p+e. Then
r> @p+e)lX+8)=r>ap+e) Lr>X)+r>5=8r) Lr>X+r>§ =
= (3(N® r>X)-(r>X)+r>8 (sncer> X=0>r> X by SI2) =§(1)-(r> X) +r> & (S116) =
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-8(r)+r>>§ 8(r)X+r>>§ (r>>a(p+s))x+r>>§=
=r>(@pt+e)+talp+e)® X)X+r>>8(SI15)-
-r>>a(p+e)X+r>>(a(p+e)®X)X+r>>8 8(r)+r>>(a(p+a)@X)X+r>>6—
=r>(a(p+¢e)@® X)X+r>>8— r>(ap+e@ X)X+8)
Case2. Letee |, p<r<p+e Then
r>>(a(p+s)LLX+8) (r>>a(p+e)LLr>>X)+r>>8 a(p+a)lr>>x+r>>§
-(a(p+e)@r>>X)(r>>X)+r>>8(asmcasel) a(p+e)(r>>X)+r>>8
(smcer>>X-r>>(x+8)-r>>x+r>>8-r>>x+r>>8+6(p+2€)—r>>x+8(p+2€))—
=a(p +¢)- ((p+a)>>r>>X)+r>>6 a(p +¢)- ((p+e)>>X)+r>>8(bySI7 snceX=0>»g7)=
-a(p+e)X+r>>8—(a(p+e)®r>>X)X+r>>8-
=r> (a(p + &)@ X)X+r>>8(SI14)- r>(ap+e)® X)X+8)
Cae3:Letee |, r<p. Then
r>>(a(p+s)LLX+§)=(r>>a(p+e)LLr>>X)+r>>§=a(p+a)lr>>x+r>>§:
=@p+e)@r>»X)(r> X)+r>>§. Now if a(p + €)@ r> X = a(p + ¢€), then we proceed asin
case 2. Otherwise, by SI15, a(p + €) @ r > X must be an aternative composition of 8's with
timestamps lessthan p + €. In this case, we proceed asin case 1. We seethat we haveforallee I, re T
1> @pP+e)LX+8)=r> (@ +e)® X)X +3).
Now letr e T. Then:
r>@p) LX)=r> @ + [a+e) LX) = Jr>>(“ SILX +a(p +¢)lLX) (INT2, INT9, IA16) =

eel eel

= J'r>>(z §+a(p+e)LX) (lemmad8l)= [r>(a(p +e) _ @ X)-X +3) =

el eel

=r> j(a(p+g) @ X)X +5X) (lemma4.6.2) =

€€

=r> j(a(p+e) ®@ X)X+ ® X)X) (uselemma4.7.3and SI15) =
eel
=r> (( Ja(p+£) +78) @ X)X=r> @p) @ X)X.
eel

The proposition now follows by extensionality (IA5).

4124 PROPOSITION: Y =05 Z = a(p)-X L Y=(a(p) @ Y) - (X Il ).
PROOF: Similar to0 4.12.3.

4.13 COMMUNICATION AND ENCAPSULATION.

Next, we add axioms for the communication merge and encapsul ation operator, in order to axiomatise
ACPsp, the standard time variant of ACPp.

4.13.1 PROPOSITION: p # q = a(p) | B(q) = g(min(p,q)).
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PROOF: Assume without loss of generality p < q. Notethat sincep,q € R, for all €, 1 € | we have p+e
< g+n. Then

a(p) I b@)= @+ [a(p+e) | (8+ [b(g+m) = B+ J [atp+e) I b(a+n) (INT10, 11) =
eel nel nel

eel

nel eel

=35+ J [o+e) = B+ [3(pre)) = 3(p).

eel

4.13.2 PROPOSITION: S(p) | B(p) = (aTb)(p).

PROOF: a(p) | b(p) =@ + [a(p+e)) | (3 + [b(p+m) = B + J [atpre) I b(pm) =
eel nel nel

eel

=5+ [albip+e) = S+ [alb(p+e) = @ 1b)(p).
nel eel

eel

4.13.3 PROPOSITION: a(p)-X | b(q) = (a(p) | b(q)) - X.
PROOF: Similar to 4.13.1, 4.13.2.

4.13.4 PROPOSITION: a(p) | b(g)-X = (a(p) | b(q)) - X.
PROOF:; Similar to 4.13.1, 4.13.2.

4.13.5 PROPOSITION: a(p)-X | b(q)-Y = (a(p) | b(q)) - (X II Y).
PROOF: Similar to 4.13.1, 4.13.2.

4.13.6 PROPOSITION: 9H(a(p)) = @ n (@) ().
PROOF: Straightforward, using INT12.

4.14 STANDARD INITIAL ABSTRACTION.
We present identities used to axiomatise ACPs,+, the standard time variant of ACPp\/ .

4.14.1 PROPOSITION: a[p] = Vs g. a(p+q).

PROOF: a[p] = \t. Ja(p+t°+s) = Q. [alprate) = VsQ. [a(pra+e) + 8(are) =

ecl eel eel

=Vsa. [a(prate) +  [8(a+e) =Vsq. [a(prare) + & =Vsd. a(p+a).

eel eel eel
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4.14.2 PROPOSITION: Vsp.F = Vsq.F[a/p] if q isnot freein F.
PROOF: Suppose g isnot freein F. Then

Vsp.F = Vt. F[t°/p] = Vsq. F[t°/p][a/t°] = Vsq.F[a/p].

4.14.3 PROPOSITION: p >>5 Vs.F = p >5 F[p/q].
PROOF: p s Vsq.F = p > Vt. F[to/g] + & = p>> F[t/q][p/t] +8 = p > F[p/q] +& = p>sFlp/q].

4.14.4 PROPOSITION: V5. Vsp. F = Vsq. F[a/p].
PROOF: Vs@. Vsp.F = vt. Vu. F[u/p][t°/q] = Vt. F[u°/p][to/q][t/u] = Vt. F[te/p][t°/q] =
= t. Fla/p][t/q] = Vsa.F[a/p].

4.14.5 PROPOSITION: X = Vgp. X.
PROOF: X = Vt. X = Vsp. X.

4.14.6 PROPOSITION: X =Vt 12> X A Y=Vt 25 Y AVPeERy p>sX=p>sY = X=V.
PROOF: Suppose the conditions hold. Let t € R>g+l. Then

> X=t> (U U > X)=t> (P> X)=t> (P> Y)=t> (Vu.ue >gY)=t> Y,
Now apply extensionality, |A5.

4.14.7 PROPOSITION: X =t. t°>gX = (Vgp.F) + X =Vsp.(F + p > X).
PROOF: (Nsp.F) + X = vt. F[to/p] + t. t° > g X = \t. (F[t°/p] + t° > X) = Vgp.(F + p > X).

4.14.8 PROPOSITION: (Nsp.F)-X = Vgp.(F-X), 9q(Nsp.F) = Vsp.onH(F)
PrROOF: Directly from A7, |A12.

4.14.9 PROPOSITION: X =Vt. 12> X = (Vsp.F)LX=gp.(F IL p>sX),
XIL(Vsp.F)=Vsp.(p>s X L F), (Vsp.F) | X=Vsp.(F | p>sX), X | (Vsp.F)=Vsp.(p>s X | F),
(Vsp-F)@ X = Vsp.(F @ p>sX), X& (Vsp.F) = Vsp.(p >s X@ F).

PROOF: As 4.14.8, using IA 8,9,10,11,13,14.

4.15 BPA WITH URGENT ACTIONS AND RELATIVE TIME.
Now we present identities that will be used in order to directly axiomatize the relative time algebrasin
section 7. First, BPAg.
4.15.1 PROPOSITION: 6106 B(X) = 6"2P(X).
PROOF: 6. oG P(X) =t. (t+1)° > (Vu. (u+p)° > X) = VL. (t+1)°>> ((t+r)°+p)° > X) =
=t (t+1)°> (t+r+p)° > X =Vt (t+r+p)° > X (SI12) = 6"2A(X).

4.15.2 PROPOSITION: 6L (X) + oL(Y) =6 (X +Y), cL(X)Y = cL(X-Y).
PROOF: Straightforward.
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4.16 LEFT STRONG CHOICE AND SHIFTED INITIALISATION.

4.16.1 PROPOSITION: 2 @ b = a.
PROOF: As4.12.1, using lemma 4.4.

4.16.2 PROPOSITION: & @ ol (X) = a.

PROOF: a ® 6 (X) = t. J.a(t°+a) @ At (t+r)° > X =

eel

=t J a(to+e) @ (H+)° > X (lemmadd) =L, J a(to+e) @ (t°+e)> (t+°> X (SI12) =

eel el

=t j a(t°+e) (SI16) = a.

eel

4.16.3 PROPOSITION: 6. (X) @ a=s.

PROOF: 61(X) @ a =t (t+1)° > X @ t. J'a(t°+e) =

eel

=L (t+H)° > X @ Ja(t°+s) (lemma 4.4) = . j(t+r)° > X @ a(te+e) (INT14) =

eel eel
=t _[ (+e) > (tH1)° > X @ a(to+e) (SI12) = i J'a(t°+e) (SI17) = 5.
eel eel
4.16.4 PROPOSITION: 6/(X) @ o (Y)=c (X @ Y).
PROOF: 6/ (X) @ G (Y) =t (t+r)° > X@ Vt. (t+r)° > Y =
=\t (t+1)° > (X@ Y) (lemmad.4, SI14) =6 (X @ Y).

4.16.5 PROPOSITION: I >t a = 6.(3).

PROOF: I >t @ =Vt (t+1)° > t° S sa =t (t+)° > ( + I a(to+e)) =

eel
=t (t+)° > § + j (tHr)°> a(to+e) =t J.B((t+r)°+e)) + 8((t+1)°) =\t jS((t+r)°+e)) =
eel eel eel

=t (t+1)° > § = 6L (3).

4.16.6 PROPOSITION: I >t (X +Y) =r>g X +r>¢ Y.
PROOF: Straightforward.
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4.16.7 PROPOSITION: 1 >gt (X-Y) = (r >gt X)-Y.

PROOF: Straightforward.

4.16.8 PROPOSITION: X = X + § = r>stol(X) = oL(X).

PROOF: It 6.L(X) = VL. (H41)° > 10 ¢ (t+1)° > X =Vt (H+1)° 8 + (t+1)° > 10> (t+1)° > X =

=t (t+1)° > § + (t+1)° > X (SI7, SI2) =t (t+1)° > § + X) =Vt (t+1)° > X = 6(X).

4.16.9 PROPOSITION: p > 1 = p >gt 6L(X) = o L((p-r) >st X).
PROOF: p >t 6.1(X) = Vt. (t+P)° > 10 > (t+1)° > X =Vt (t+D)° 8 + (t+p)° > t° > (t+1)° > X =

=Vt (t+P)° > § + (t+P)° > (t+1)° > X (SI7) =t (t+p)° > (t+1)° > X =
=L (t+1)°> (t+p)° > (t+1)° > X (S17) = VL. (t+1)°>> Vu. (U+p-1)° > u® >¢ X = 6L ((p-1) >t X).

4.17 FREE MERGE.
Next we derive some equations for the left merge in relative standard time, used to axiomatise PAg.

4.17.1 PROPOSITION: X =t. ° > X = all X =a-X.

PROOF: Assume (equivaently) that X satisfiesX = X +8 A X =+t o> X.

Notethat a = Vt. J.a(t°+e) =t J.t>>a(t°+e) =\t [a(t+e). Wedeive

eel eel eel
allX = (\t. j a(t+e)) IL X =+t J a(t+e) L t> X (1A8) =t ( J a(t+e) @ (t> X))-(t>X) =
eel eel eel

=t ( [a(t+e) ® (> X+138))-(t> X) =t ( [attre) @ (> X+ 8 +8(t+2¢)))(t> X) =

eel eel

=t ( Ja(t+£) B (t> X) + a(t+e) @ o(t+2¢))-(t> X) =

eel

=t ( j a(t+e) @ (t> X) +a(t+e))-(t> X) =t j a(t+e)-(t> X) (S115) =

eel eel

=1t j a(t+e)-(t> t° > X) (by assumption) = t. j a(t+e)-((t+e) > t> t° > X) (ATAB) =

eel eel

=1l I a(t+e)-((t+e) > t° > X) (S17) =t. j a(t+e)-((t+€) > X) (by assumption, (t+g)° = t°) =

eel eel

=\t [a(t+e) X (ATAB) = (Vt.  [a(t+e))X (INT6, IA7) = aX.

eel eel

4.17.2 PROPOSITION: Y =\t t°>5 Y = @X)LY =a-(XIlY).
PROOF: Similar to the previous proposition.
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4.17.3 PROPOSITION: 6 L(X)Lal(Y) = c L(XILY).
PROOF: 6(X) Lo (Y) = (V. (t+r)° > X) L (Vt. (t+r)° > Y) =+t ((t+r)° > X) L ((t+r)° > Y)) =
=+t (t+1)° > (X L Y) =L (XLLY).

4174 PROPOSITION: Y =Vt 2> Y = o (X)LY=(cL(X) @ Y) L (r>stY)
PROOF: 6./ (X) L Y = (Vt. (t+r)° > X) L Y =+t ((t+r)° > X L t> Y) (IA8) =
=L ((t+1)° > X t>Y) L (t+r)° > t> Y (3110) =
=L (> (t+1)° > X@ t3 Y) L (t+1)° > > t° >4 Y (512, assumption) =
=Vt (> 6L(X) @ t>Y) L (t+n)° > to>g Y (37) =
=VLt> (6L(X) @ Y) Lt (r>gY) (S14) =
=VL > ((65(X) @ Y) L (r>stY) (SI18)=(cL(X) @ Y) L (r >stY) (lemma4.s, I1A4).

4.18 MERGE WITH COMMUNICATION.
Now we consider identities concerning parallel composition with communication in relative time, to be
used in order to axiomatise ACPg.

~
—_ =

4.18.1 PROPOSITION: 2 | b = a | b.

PROOF: 2 | b =1t. ja(t°+s) L Jb(t°+n)) =

eel nel
=t [a(to+e) | j b(t°+n) (lemma 4.7.3) =
g€l nel
=1t ( J' a(t°+e)) | b(to+n) (INT10, INT11) =
) nel
eel
=1t ( J.S(t°+e)+(a|b)(t°+n)+8(t°+n) (ATC1, ATC2,INT2) =
) nel
eel
=1t J' (a | b)(to+n) (ATA3,INT2)=az|b.

nel

4.18.2 PROPOSITION: (a-X) | b = @[b)-X,a| (b-X) = @lb)-X, @-X) | (0Y) = (ab)-(XIY).
PROOF: Similar to the proof of 4.18.1.

4.18.3 PROPOSITION: & | 6f(X) = .
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PROOF: a | 6.(X) = . J a(to+e) | Vt. (t+r)° > X =t Ja(t°+e) | (t+1)° > X (lemma4.4) =

eel eel

=1t _[ ato+e) | (to+e)> (t+1)° > X (S12) =, J 3(to+e) (SI12) = 9.

eel eel

4.18.4 PROPOSITION: 6 (X) |2 = 5, (a:X)|c(Y) =5, 6 (X) | &Y) = 5.
PROOF: Similar to the proof of 4.18.3.

4.18.5 PROPOSITION: 6L (X) | oL(Y) = aL(X|Y).
PROOF: 6.1(X) | 6L(Y) = VL. (t+1)°>> X | V. (t+1)° > Y =Vt (t+1)°> X | (t+r)° > Y (lemmad.d) =
=Vt (t+1)° > (X | Y) (S19) = 6L (X]Y).

4.19 ENCAPSULATION.
We continue with equations for the encapsulation operator in relative time, to be used for ACPg.

4.19.1 PROPOSITION: aH(E) =aifae H.
PROOF: 9(3) = dp(Vt. J'a(t°+e)) =Vt an( J a(to+e)) (1A12) =

eel eel

=t J dn(a(te+e)) (INT12) = t. Ja(t°+e) (D1) = a.

eel eel

4.19.2 PROPOSITION: d4(a) = & ifae H.
PROOF: 9(3) = ap(Vt. Ia(t°+e)) = Vt. I( J a(to+e)) (1A12) =

eel eel

=t J dn(a(to+e)) (INT12) = t. J'S(t°+g) (D2)="3.

eel eel

4.19.3 PROPOSITION: dH(6.L(X)) = 6L (9H(X)).
PROOF: 0H(0.1(X)) = d(VL. (t+r)° > X) =Vt Op((t+1)° > X) (IA12) = VL. (t+1)° > on(X) (SI113) =
= 6 L(IH(X)).

4.20 EMBEDDING STANDARD RELATIVE TIME INTO STANDARD ABSOLUTE TIME WITH INITIAL

ABSTRACTION.
We finish this section with some identities that are used to embed BPAgg; into BPAgy, PAg into

PAgyy and ACPy into ACPgpy.

4.20.1 PROPOSITION: a = \sp. a(p).
PROOF: From the definition.



22 J.C.M. Baeten & J.A. Bergstra

4.20.2 PROPOSITION: 61(X) = Vsp. (p+1) > X.

PROOF: 6.1 (X) = t. (t+1)° > X = t. (3((t+r)°) + (t+r)° > X) (SI5) =

=t ( J'a(t°+g) + 3((t+)°) + (t+)° > X) =t ( J S(to+e) + (t+)° > X) =

eel eel

=t (8 + (t+1)° > X) =Vsp. @ + (p+r>> X)) =Vsp. (p+1) >s X.

4.20.3 PROPOSITION: I >gt X = Vgp. (p+1) s p >s X.
PROOF: I >t X = VL. (t+1)° > t° ¢ X =L §((t+r)°) + (t+r)° > 12> X (SI5) =

=1t JS(t°+e) +3((t+r)°) + (t+r)° > t°>¢ X =1t S+ (tHe>to>gX=
eel

:\/t (t+l’)° >q t° >s X= \/Sp (p+r)>>5 P >s X.

5. STANDARDISED PROCESSES.

In section 2, we have sketched a theory ACPp\/ | and a model MZ that contain both standard real time
and nonstandard real time processes. In section 4, we concentrated on the subalgebra of standardly
initialised processes. In this section, we will concentrate on the further subalgebra and the model
generated by the standard time processes. For this reason, we introduce the standardisation operator S.

5.1 DEFINITION.
First of al, we define standardisation as an operator on P*. We have the axiomsin table 7.

S(a(t) = a(t”)

S(X+Y) =S(X) + S(Y)
S(X-Y) = S(X)-S(Y)

SC M= [5O

veV vev
S(Vt. F) =+t. S(F)
TABLE 7. Standardisation.

We give some examples:

1. 51®)=5 2. 5(a[p]) = alp] 3. S(a(p)) = a(p).

In the model, S(p) is obtained by replacing each transition (s, t) a&ﬂ ry by transitions (s, t) a—
(s', v) for each v >t of the form v = ro+e for some e € |, and if (s, t) is a state without outgoing
transitions and s # V, then we add transitions (s, ty [{s] r) for each r >t of the form r = t°+¢ for
some e € | and aso transitions (s, t'y [{s]r) (for the samer's) for each transition (s', t') [{S]t).
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5.2 PROPERTIES.

1. Sdoesnot distributeover II, IL, |.

2. Sisaprojection: S(S(X)) = S(X).

3. SH(X)) = IH(S(X))

PrROOF: 1. Consider Il. Lete e .

S(a(1+e) I b(1+2¢)) = S(a(l+e)-b(1+2¢)) = a(1)-b(1) = a(1)-b, but

S(a(1+£))lS(b(1+2¢)) = a(1)lb(1) = a(1)-b(1) + a I b(L) + b(1)-a(l) =
=a(1)-b +a Tb(1)+b)a.

2,3. These proofs go by induction on term structure.

5.3 DEFINITION.
We say that aprocess X is standardised, X € SIS, if S(X) = X. Also, we define this concept directly on
the model Mx. Let fe Mx. Then f is standardised, f € S(Mp), if:
i. foralte Rxgtl, al actions of f(t) have atimestamp not in R>p.
ii. foralte Rsgtl wehavethefollowing: let (p,v) 819@0 be atransition in f(t) . Then:
a foreachr =r + ¢ for somee e | thereisaq' with (p, v)aléi)(m rand (g, r) < (q', r’).
b. for eachr' withr =r' + ¢ for somee € | andr' > v thereisaq' with (p, V)BI@(E,I ry and (q, ry
<, n.
ii. similarly for idle transitions: let {p,v) [{qk) beatransitioninf(t) . Then:
a foreachr' =r + eforsomee e | thereisaq' with{p,v) (gl ryand{(q, r') < (', r').
b. for eachr' withr =r' + e for somee € | andr' > v thereisaq' with {p,v) [Xglr)and{(q,r) <>

@, n.

5.4 PROPOSITION.

a(p), alp] e SIS, a(t) ¢ SIS.

X e SIS = 9n(X),65(X),r>stX e SIS.

X,Ye SIS = X+Y, XY, XIY,XLY, XY, X® Ye DIS.
fordlve V Fe SIS = er SIS.

veV

=

P wbd

5. Xe SIS = Xe SIP
6. Vt.a(t+1) € SIP - SIS.

PROOF: For 1, see 5.1.
2-5: By induction on term structure.

6. SOt a(t°+1)) = Vt. S(a(te+1) = \t. a(to+1) = a[1] # Vt. a(t°+1). For the positive result, see 4.3.
NOTE: 5 ensures that all equations in section 4 hold for all standardised processes. Also notice that a
deadlock possibility may not be preserved by standardisation: the process a(1+e) + 6(1+2¢) (e € 1) has
adeadlock possibility, but its standardisation does not.
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5.5 A GRAPH MODEL WITH ACTIONS AND TIME SEPARATED.

Consider S(M,ﬁ), the collection of processes that satisfy S(X) = X. This collection of processes is also
closed under all elements of the standard time signature. This indicates the existence of an interesting
subalgebra with domain S(M) of the reduct of Mj to the standard time signature.

We obtain a subalgebra (of a reduct of) MZ with domain S(M’,‘A\) and signature Y(ST). In the
following section 6, we will discuss a direct axiomatisation of this algebra. In section 7, we will present
adirect axiomatisation of the elements of this algebra that have only relative time notation (a further
restriction to the signature Y,(ACPg)). Here, we present a simplified presentation of the subalgebra
using transition systems with actions and time separated. This is the model GZ that we will use in
sections 6 and 7.

We define a set of process graphs asin [BAW90] with labels from A U R>q satisfying two extra
conditions:

i. every node has at most one outgoing s-labeled edge (s € Rsq);

ii. ans-labeled edge (s € R>g) may not lead to atermination node.

Let G; be the set of such process graphs with cardinality < 2Xo. To state this precisely, an element of
GZ isaquadruple(N, E, r, T) where N isthe set of nodes, E = N x AUR>g x N isthe set of edges, r
€ Nistheroot node, and T < N isthe set of termination nodes. We will always have that atermination
node has no outgoing edges. A node without outgoing edges that is not atermination node is called a
deadlock node.

We define amapping from S(MX) to G,Z by defining a mapping ¢ from real time transition systems
to process graphs. Let R be areal time transition system. For simplicity, we assumethat R is actualy a
tree, so each node has at most one incoming transition. The set of states of ¢(R) consists of those states
of R with time coordinate in R>g. The root of ¢(R) is the root of R. Now we consider the transitions.
If (s, t) [XS]t)isatransitionin R andt' - t° = p > 0, then we have atransition (s, t°) pl:(E] t'°)in
o(R). If (s, t°) a&ﬂ t) isatransition in R (note that for standardised processes always t° < t for
any a(t)-transition), then we have atransition (s, t°) a|3§l t°) in ¢(R).

This describes ¢. We then obtain a mapping from S(M,Z) to GZ by mapping arepresentative of f €
S(M%) to R(f(0))/<>. '

The inverse mapping can be defined along the same lines. We |leave the verification that thisindeed
defines an isomorphism to the reader.

5.6 NOTE: Thus, we have obtained a series of algebras My, si-Ma, S(Ma), Ga. We can also consider
the subal gebras obtained if we look at absolute time notation processes only, i.e. processes X satisfying
X =0> Z for someZ. Thisrestriction gives us algebras Ma, si-Ma, S(Ma), Ga. On the other hand, we
can look at processes involving relative time notation only. We do thisasin [BAB92].

5.7 DEFINITION: We have the positive time shift operator 6 introduced in [FOK92] with the equations
of [BAB92], e.g. al(a(t)) = a(t+r). On MZ, this operator is obtained by incrementing each time stamp
of astate or an action in atransition system by r.
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5.8 DEFINITION: A process X istrandatableif for all r>0 we haver > X = c{(0 > X). A process X is
standardly trandatableif for dl r e Rsgwehaver>g X = oL(0>>sX).

59 REMARKS: 1. Let X betrandatableand lett=r+s. Then t> X = c+(<5+(X)) <5+(s>> X).

2. a(p) is not standardly trandatable, since 2 > a(5) = a(5) but c+(0>>3 a(5)) cs+(a(5)) = a(7)
3. a[p] is standardly trandatable, sincer > a[p] a[p+r] = <5+(a(p)) ol(0>s a[p])

4. X € si-Mp, then X istrandatableiff X is standardly translatable.

5.10 ALGEBRAS.

We obtain four more algebras. M}, is the subalgebra of M consisting of all translatable processes, si-
MJ is the subalgebra of si-M}‘; consisting of all standardly translatable processes, S(M ) is the
subalgebra of S(M}) consisting of all its standardly translatable processes, G}, is the subalgebra of G
consisting of all its standardly trandlatable processes. G}, is amodel for ACPy, the theory of relative
time standard time process algebra (to be defined in 7.13), while all laws used to axiomatise ACPg are
vaid in si-Mj. We give an overview of all algebras introduced in fig. 2. Again, rectangular boxes
denote absol ute time, boxes with rounded corners denote relative time.

e )
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A
\
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Y
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6. STANDARD REAL TIME PROCESSALGEBRA: ABSOLUTE TIME.

6.1 BASIC PROCESS ALGEBRA.
The process a(p) can let time progress up to and including p, will then execute action a at time p, and

then terminate successfully. The process 5(p) can also let time progress up to and including p, but then

nothing moreis possible (in particular, time cannot progress anymore).

Standard Real Time Basic Process Algebrawith Deadlock (BPAspd) isthe variant of BPApd with
urgent actions. BPAspd has the axioms from table 8 (a € Ag). The time domain is R>p, so we only
alow standard real numbers.

* constants

» functions

5

a(p)

+ PxP>P
“PXP—>P
>¢ RooXP > P

inaction

action (ae Au{d})
alternative composition
sequential composition
standard initialisation

X+Y=Y+X Al
X+Y)+Z=X+(Y+2) A2
X+X=X A3
X+Y)Z=X-Z2+Y-Z A4
(X-Y)-Z=X-(Y-2) A5
X=X+8 A6
Sx=3§ A7
5(0) =5 UTA1L
S(p) - X = &(p) UTA2
p<q = &(p) + d(q) = 3(q) UTA3
a(p) + 8(p) = a(p) UTA4
a(p) - X =a(p) - (p>sX) UTAS
p<q = p>sa()=a() UTB1
p>q = p>sa(q)=(p) UTB2
p>s(X+Y)=(p>sX)+(p>sY) UTB3
p>s(X-Y)=(p>sX) Y uTB4

TABLE 8. BPASpO.
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6.2 OPERATIONAL SEMANTICS.
The operational semanticsis defined on the domain of process graphs defined in 5.5. We have action
rules with two types of transitions:
idle ¢ P x R>p x Rsg X P X R>p, notation (X, p) rl:(Zl] p"
step € P X R>g x A X P x R>p, notation (x, p) al:()_g'_l pY.
If {x, p) rl:&il pH,thenr >0, x =x"and p' = p+r; if (X, p) aIZXII ph,then ae Aandp'=p.

(a(p), p) =1 p)
qHr<p = @(p), 9) '"TLalp), g+

qHr<p = (3(p), qy 'TL3lp), q+r)

(x,p)® [XX1p)

(x+y,p)? LX), (y+x,p)* [XXIp)
(x,p)® (X¥Jp)
(x+y,p)® L) (y+x,p)* X Ip)

(x,p)’ CLGh+r)

(x+y,p)’ COxy,p+1),(y+x,p)  [XYAX,p+r)
(x,p)? [XX1p) (x,p)’ Py
(x-y,p)® [XXTy,p) (xy,p) Gy, p+r)
(x,p)* L Ip)
(x-y,p)° [Fp)

qHr<p = (p>sX, §) TP X, g+

(x,q)% [XX1q), 4=p (x,q)% C&q), g=p
(p>ex,q)? XX1q) (P>ex,q)? CHIg)
(x,q)" COGh+r)

(P>sx,q)" [Psx,qtr)
TABLE 9. Operational semantics of BPASpJ.
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6.3 PARALLEL COMPOSITION.
In a setting with urgent actions, it makes sense to define parallel composition without communication,
as urgent actions composed in parallel will show interleaving. Thus, a(2)llb(2) forces
synchronisation, but we have a(2) I b(2) = a(2)-b(2) + b(2)-a(2). Intable 10, H c A, a,b € As.

J.C.M. Baeten & J.A. Bergstra

p<q = a(p) ® b(q) = a(p) Lscu1
p>q = a(p) @ b(g) = 3(q) LSCU2
X®YZ=X®Y LSC3
X®(Y+2)=(X®Y)+ (X 2) LSC4
XY ®Z=(X®Y)Z LSC5
X+Y)®Z=(X® 2)+ (Y& 2) LSC6
XIY=XLY+YLX M1
X=0>sZ = a(p) L X=(a(p) ® X)X  UTCM2
Y=03>sZ = a(p)X L Y=(a(p) @ Y)- (X Il Y) UTCM3

TABLE 10. Additional axioms of PAsp4.

(x,p)* X1, py, p=0v(y,0)"  [X¥Ip)

xlly,py? Cxxdly,py. ¢y 1x,p)®  Cxylix,p).(xLy,p)®  [Xxly,p)

(x,p)? [X¥Ip),p=0v(y,0)°  [X¥b)

xlly,py? )y Ix,p)® ), (xLy,p)? [X¥b)

(x,p)’ CXIp+r),(y,p)’  [Lh+r)
(xlly,p)" CExlly,p+ry,(xlLy,p)  [Xxily,p+r)

(x,p)? XX p),p=0v(y,0)°  [Xyp)
(x@y,p? XXIp)

(x,p)? CX¥Ip)y, p=0v(y,0)°  [X¥)
(x@y,p® 3p)

x,p) CXp+1r),{y,p)  [OLb+r)
(x@y,p) [XX1®y,p+r)

TABLE 11. Additional operationa rules of PASpd.
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6.4 COMMUNICATION.
Additional axiomsof ACPsp areintable 12. Intable 12, H c A, a,b € As.

alb=bla C1
allc=@lb)lc Cc2
dla=35 C3
p=q = a(p) | b(q) = 3(min(p,q)) uTC1
a(p) | b(p) = (@ Th)(p) uTC2
XITY=XILY+YLX+XIY CM1

X=0>sZ = a(p) L X=(a(p) @ X)X  UTCM2
Y=03>sZ = a(p)X L Y=(a(p) @ Y)- (X Il Y) UTCM3

X+Y)Lz=XLz+YLZ CM4
a(p)-X 1 b(@) = (a(p) 1 b()) - X UTCMS
a(p) | b(a)-X = (a(p) 1 b()) - X UTCM6
a(p)-X 1 b(g)-Y = (a(p) | bq)) - (X I Y) UTCM7
X+Y)I1Z=X1Z+YIZ CcM8
XI(Y+2)=XIY+XIZ CM9
oH(a) =a ifae H D1
oH(a) =8 ifae H D2
In@P) = @n@)P) uTD
IO+ Y) = Ap(X) + OH(Y) D3
OH(X - Y) = 9H(X) - IH(Y) D4

TABLE 12. Additional axioms of ACPsp.
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x,p)2 CXX1p), (y.p)° XyIpY.al b=cxd
(xlly,py° Cxxily, py.(x Ty,p)¢ xXxlly’,p)

x,p)2 CXX1p). (y.p)° X by.alb=cxd
xlly,p)¢ CXxpy, (y Ix,p)¢  [XxXp),
x |y,p) TXXIp), {y | x,p) TIXAp)

X0y CEIp). (y,p)° L bY.alb=ced
(xlly,p)° T, (x | y,p)° TX3Tp)

(x,p) L+, (y,p)  [XFp+r)
(x1y,p) XXy, p+r)

(x,p)a [Xp),agH (x,p)Ir COCh+r)
(On(x),p)® CTI(x"),p) @OH(x),p)" X (X),p+r)
(x,p)? ), aeH

OH(X).p)” L Ip)
TABLE 13. Additional operational rules of ACPsp.

6.5 INITIAL ABSTRACTION.
We extend with initial abstraction asin 2.4, and obtain ACPsp\/ . We extend the semantics asin 2.12.
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a[p] = Vs . a(p+q)

Vsp.F = Vsq.F[a/p] if g isnot freein F
p>sVsq.F=p>sF[p/q]

Vsq. Vsp. F = sq. Fla/p]

X = Vsp. X

VpeRg p>s X=p>sY = X=Y

(Vsp.F) + X =sp.(F + p>s X)
(Vsp.F)-X = Vsp.(F-X)
(Vsp.F)LX=Vsp.(F L p>5X)
XIL(Vsp.F) =Vsp.(p>s X L F)
(Vsp.F) | X=Vsp.(F | p>sX)

X1 (sp.F)=Vsp.(p>s X | F)
OH(sp.F) = Vsp.oH(F)

(Vsp.F) @ X =\sp.(F@ p>sX)
X @ (Vsp.F) =Vsp.(p >s X@ F)

SIAO
SIA1
SIA2
SIA3
SIA4
SIAS

SIAG
SIA7
SIA8
SIA9
SIA10
SIA11
SIA12

SIA13
SIA14

TABLE 14. Axiomsfor initial abstraction.

7. STANDARD REAL TIME PROCESSALGEBRA: RELATIVE TIME.

7.1 BASIC PROCESS ALGEBRA.
The signature of BPAg isasfollows:

e constants a

» functions +PxP->P
“PxP->P
ol:P—>P

Intable 15, r,p > O.

urgenta (a € A).
alternative composition
sequential composition
positive time shift (r>0).

X+Y=Y+X
X+Y)+Z=X+(Y+2)
X+ X=X
(X+Y)Z=XZ+YZ
(X-Y)-Z=X-(Y-2)

0Lo6P(X) = 6"P(X)
ol(X) +cL(Y)=cl(X+Y)
6L (X)-Y = 6L (X-Y)

Al
A2
A3
A4
A5

uT1
uT2
uUT3

TABLE 15. BPAg.

31
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The operational semantics is defined by action rules with two types of transitions:
idle ¢ P x R>g x P, notation x "1
step c P x A x P, notation X Ix1

Herer >0, a e A.

adn
x2 X1 x2 1
xy® XY xy® [y
x2 X1 x2 A1
x+y? X y+x® X1 x+y® Fy+x® 31
ol (x) 'Tx1 pr>0 = oP(x) 'CGA(X)
x' X1 x' X1
oP(x)P Ix1 xy' Xy
X xy v x X3 /1
x+y' X x+y' Y+ X

TABLE 16. Operational semantics of BPAg.

7.2 INACTION.
BPAs« is obtained by introducing § asaconstant representing inaction. The axioms for § are standard
(table 17).

The operational meaning of Sisa process that allows no step whatsoever. In the graph model, 5
will be modeled by the tree with no edges, and one node which is the root but not a termination node.

X+8=X AB

SX=% A7
TABLE 17. Additional axioms of BPAsg«.

7.3 PARALLEL COMPOSITION.
Axiomsareintable18 (ae Ag, X,y,ze P, r,p>0).
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S
I®
o
I

ORI

®ci(X)=a

cl(X) ®a=3

cL(X) @ 6L(Y)=cL(X @ V)
X®YZ=XdY

X® (Y+2)=(X® Y)+ (X 2)
XY®Z=(X®Y)Z
X+Y)®Z=(X® 2)+ (Y 2)

r>sa = o/(5)
r>st(X+Y)=r>gX+r>gY
r>st(X-Y)=(r>sX)Y
r>st6L(X) = 6 L(X)

p>r = p>stol(X) = ol((p-N)>st X)

XIY=XLY+YIX
allX =a-X

@X) LY =a-(XIlY)
X+Y)Lz=XILZ+YILZ
oIX)LY=(clX) @Y) L (r>sY)
ol(X)Lal(Y) =cL(XLY)

LSC3
LSC4
LSC5
LSC6

M1
UM2

UM3
M4
UTM1

UTM2

TABLE 18. Additional axioms of PAgg.

33
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x? X1
xlly® Oxiy,ylIx® Ok xlLy®  Cxiy

x2 1
xly? Cyglx®  Cyaly® Oy

x Xy 7]
xlly" Cxiy' xLy"  Cxtiy

xr X i>p xr X I<p
p>ex X P> g LIPS six
Xt Rk
x@y? Cx1 x@y? 1

x' Cx7y" Ly

x@y' X1y’

TABLE 19. Additional operationd rules of PAgsg.

7.4 COMMUNICATION.
The axioms of ACPg areintable 20. Intable20,H c A, r>0, a,b € As.
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|b=alb

[SRU

XY =XLY+YLX+X|Y

allX =a-X

@X) LY =a-(XIlY)
oIX)LY=(clX) @Y) L (r>sY)
of(X)Lol(Y) =cl(XILY)
X+Y)Lz=XLz+YLZ
@aX)|b = (alb)-X

a| (0X) = (alb)x

@Xx) | (b-Y) = (@lb)-(x1Y)
(X+Y)Z=X|Z+Y|Z
X|(Y +Z) = X|]Y + X|Z

alol(X)=58
cl(X)|a=38
@x)loL(Y) =8

cl(X) | @Y)=3
6L(X) | 65(Y) = 6L(X]Y)

n@) =a ifaeg H
@) =9 ifac H
OH(X +Y) = 9H(X) + In(Y)
IH(X-Y) = IH(X)-0H(Y)
IH(cL(X)) = 6 L(OH(X))

CM1
UM2

UM3
UTM1

UTM2
Cm4

UTM3
UTM4

UTM5
CM8
CM9

UTM6

UTM7

UTM8

UTM9
UTM10

UuTD1

uTD2
D3
D4
UTD3

TABLE 20. Additional axioms of ACPg.
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P rxy® O7alb=c#s
xlly® xiy' x | y©  Oxciy'

X2 x3® Al b=czs
xly Ixaly® xyIx® x31x° x1

x2 Ij:yb [, d| b=c#d
xIly ARIy¢ =0

X' Ij:yr Lyl
x|y X1y
x2 [Xa¢H x? [ ae¢H
n(x)? Caglx) om0 1

X [x1
()" Cagix)

TABLE 21. Additional operational rules of ACPg.

7.5 REMARK: Consider the axiom system ACPg, and omit all signature elements refering to timing,
i.e. omit the operators ol r>st,>>s, ®. Theremaining signature is exactly the signature of the untimed
theory ACP of [BEK84, BAW90] (interpreting aas a, 3 as d), and the axioms over this signature are
exactly the axioms of ACP. Thus, the untimed theory ACP is obtained from ACPg by throwing away
all timing information, or, put another way, ACPg over the one-point time domain T = {0} gives the

untimed theory ACP.

8. TRANSLATIONS.

This section is based on [KLU93]. We provide interpretations of the timing constructs of other process
algebras, involving urgent actions, into our real time process algebra. [.] denotes the interpretation
function. More information, involving the treatment of parallel composition and the modeling of

maximal progress, can be found in [KLU93].

8.1 ATP [N1S91].

o= 5
S=  Sed= | o
p=0
@pPl= a (P
apl= bl
p=0



Real time process algebra with infinitesimals

(IP]
(IP]

Q) + (Rl & [P])

®
@ 3[d]) + (d >t [Q)).

8.2 TCCS OF WANG Y1 [WAN90].

ML= §ed= [ o
p=0
[] = T
aPl= [ TaplP)
p=0
€0.Pl=  oL(P.
P+Ql=  (Pl@ [Q)+(Q® [P

37

(strong choice)

@=z1

(strong choice).

Note that [WAN90] uses a maximal progress assumption. In order to model this, we need to use a
priority operator, asin [BAB93]. This has been worked out in [KLU93].

8.3 TCCSOF MOLLER & TOFTS[MOT90, MOT92].

0] = 8
o= 1= | o
p=0

[a.P] = a-[P]
apPl= [ aplIP]

p=0
M.PI=  oi(P)
[8.P] = c [(IP] @ §)

r=0
P+Ql= (Pl [Q])+(Ql® [P])
P+Ql= [P]+ [Q]

8.4 CHEN [CHE93].

ML= §ed= [ o
p=0
b ~ -~
a@)oPl= | alpliPl + 3e]
pe(b.e]
P+Ql=  [PI+ [Q

[(n.P] = oL([PD).

(only in[M0OT92])

(only in[M0OT92])

(only in[MoT90])

(strong choice; denoted + in [M0OT90Q])
(weak choice; denoted @ in [MOT90]).

(weak choice)
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9. CONCLUSION.
We have modeled urgent actions in our real time process algebra, by extending the time domain to
include nonstandard real numbers, and interpreting urgent actions as an alternative composition of
normal timed actions of ACPp. In thisway, process calculi involving urgent actions can be interpreted
in ACPp. Also, we have indicated subalgebras that allow an operational semantics where actions and
time are separated.

We conclude that our real time process algebra provides a general framework, in which many
features occurring in the literature can be model ed.
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