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How ions distribute in a drying porous medium: A simple model

H. P. Huinink,? L. Pel, and M. A. J. Michels
Department of Applied Physics, Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 16 January 2001; accepted 26 December 2001; published 5 Margh 2002

Salt crystallization at surfaces is an important problem for buildings and monuments. We do not
consider the formation of salt crystals as such, but focus on transport properties of ions in a drying
porous medium. We deal with the first phase of the drying process, where the water is still uniformly
distributed throughout the medium. An approximate model is presented, which accounts for both
convection and diffusion. It is shown that the key parameter is the Peclet number at the evaporating
surface, PehL/eD, whereh, L, ¢, andD are the drying rate, sample size, porosity, and diffusion
constant, respectively. When Ré& (diffusion dominates over convectiprthe ions remain
uniformly distributed throughout the system. Strong accumulation at the evaporating surface occurs
for Pe>1 (convection dominates over diffusipbrCrossover behavior is found for 4. Therefore,

it is likely that the first crystals will be formed both in the bulk and at the interfaces of the material
when Pe<l1. For high values of Pe the density peak at the evaporating surface will reach the
saturation concentration long before it is reached in the bulk of the material. As a consequence, the
salt starts to crystallize at the interfaces. 2002 American Institute of Physics.

[DOI: 10.1063/1.1451081

I. INTRODUCTION crystallization process as such. We want to answer the fol-
lowing questions: How do ions distribute inside a porous
medium during drying before any crystallization occurs?

ancient buildings suffer from it, because crystal growth in_What does this tell us about the localization of crystals in the

side the stones causes crack formation. In the spring Iargr%laterial? We do not take into account crystallization explic-

spots of salt crystals blot many new buildings made of fired1Y- The hspots r\\Nhere the.flrst crystals sjtart JFO growha:je ;he
clay bricks. Initially, the stones contain water with ions dis- spots where the saturation concentration Is reached first.

solved in it. Either by airflow around the building or by an However, we want to keep the model as simple as possible to

increase of the temperature the stones start to dry. Duringe sure that we really understand the transport phenomena
this drying process the ion concentration increases until thB&fore we investigate a model, including crystallization.
saturation concentration is reached and the salt crystallizes. 10 answer these questions, we derive a simple model
An interesting aspect of these processes is that in manf@sed on the convection-diffusion equation. We limit our-
cases crystal growth preferably takes place at or in a regiofélves to the so-called first drying staieThis stage of the
near the surface of the porous material. This behavior i§lrying process covers an important part of the drying pro-
poorly understood because it is not easy to measure ion cof€SS, because approximately 60% of all water evaporates in
centration inside a porous material. Until now, most of thethis regime. This stage has the nice feature that the water
experimental work on this topic was done with destructiveremains uniformly distributed throughout the medium, which
techniques, which have serious drawbacks. They are verpakes the analysis of the equations simpler. Both analytical
time consuming; experiments cannot be repeated with th@nd numerical outcomes will be discussed. The model was
same sample, which causes considerable scatter in the daggveloped to gain more insight into the important parameters
Moreover, the resolution is limited by the mechanical treat-of the process and may serve as a guide for NMR experi-
ment of the samples. As a consequence, systematic experirents and computer simulations that we want to do in the
ments are scarce and little is known of the origins of thisnear future.
tendency of crystals to form near the surface. Recently, ithas The motion of ions in a drying porous medium is closely
been shown that NMR is a powerful technique for measuringelated to the transport behavior of ions during a phenom-
the combined transport of Naand watef Due to the non- enon called “wick action.”’ In both cases, the salt transport
destructive nature of the technique and its ability to measurean be described in terms of the convection—diffusion equa-
ZNa and'H signals simultaneously, it is a powerful tech- tion and is driven by convective fluxes induced by evapora-
nique for studying the combined drying and crystallizationtion. The fact that ion transport during drying requires a
process. In this paper, we do not want to investigate thenodel of its own is caused by two important differences
between wick action and drying. First, during wick action the
aAuthor to whom correspondence should be addressed. Electronic maiWater saturation is constant, the porous material is connected
h.p.huinink@tue.nl with a liquid reservoir, and the liquid velocity does not vary

An important issue in building physics is the crystalliza-
tion of salts in porous material$ Many monuments and
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airflow to be equal to its volume-averaged valdes (). At a cer-
tain saturation level, the evaporation rate drops dramatically
and a front develops and moves into the material. As men-
tioned before, we will only consider the first stage of the
drying, where the water stays uniformly distributed through-
out the sample.

In our system there is liquid flow in the direction of the
evaporating surface. Therefore, an ion not only moves due to
Brownian motion(diffusion), but it is dragged by the liquid
too (convection. Convection drives the ions toward the
= evaporating surface, where they accumulate. Brownian mo-
porous medium tion tends to spread the ions uniformly over space. Obvi-

{containing a salt solution) ously, a good description of the interplay of convection and
impermeable matrix diffusion is important. The convection—diffusion equation

for unsaturated media serVess a starting point for the de-
scription of the system. We assume that the amount of ions
that adsorb on the pore walls is neglible. This assumption
holds for materials with reasonably wide pofesl um) like

in position and time, given that the evaporating rate is conglay bricks and sand stones. By assuming electroneutrality,

We will show that due to the variations in the water saturaseparately® so we have

tion the liquid velocity becomes time and position depen-

dent. The second difference between wick action and drying

is that the total amount of ions is conserved in the latter

process. As already mentioned, wick action occurs in a po- ﬁe: i( 6D ‘9_‘3_00U) 1)
rous material connected with a liquid reservoir containing at oz Jz ’

ions (salt solution, i.e., the sea. First, in Sec. Il we investi-

gate the convection—diffusion model describing the process

of int(_erest. W? subsequently dis_quss the partial diﬁe_remia\llvherec (m~3) is the number density of the electrolyte in the
equanpn and its boqndary gond_mons, the gnalogy with th‘?iquid phase andl (m/s) is the average velocity of the liquid
behavior of a Brownian particle in a potential well, and theat positionz and timet. In Eq. (1) D=D,,/T (m?s), where

. . - W ’

length and t'm? scales.of the pr.oblem. Sect|on_ Nl is d.Gd"DW (m?/s) andT are the diffusion constant of the electrolyte
cated to numerical solutions of this model. Analytic solutions.

. . . . in the liquid phase and the electrical tortuosity factor,
are investigated in Sec. IV. In Sec. V we will draw conclu- . 1o .
i : o o respectively* which is a measure for the tortuosity of the
sions and discuss the implications for salt crystallization.

liquid water network inside the porous medium. The first
term on the rhs of Eq(1l) accounts for diffusion and the
second term for convection. By usird@) we assume that
hydrodynamic dispersion is negligible. This assumption
A. Starting point holds whenUR/D|<1 (R is the characteristic pore size of

The system we consider is a homogeneous porous cylif€ mediun, which generally is the case for the experi-
der of lengthL (m) with porositye (m¥/m?) initially saturated Ments we have in mind [1”19_9 mzls,Rwllo‘G m,U
with a salt solution. The liquid water saturationim¥m3) is ~ ~10 ° m/s). A second assumption in E€l) is that the
defined as the volume of water present in a given volume ofvater network has no fractal properties on a length stale
the system. The maximal value éfequalse. A conceptual Therefore, this equation cannot account for anomalous diffu-
model of the system is drawn in Fig. 1. At the tap=(0) the  sion and will break down for low values df close to the
solution is in contact with air, and water vapor can escapdercolation threshold, where the liquid water network breaks
from the medium here. All other boundaries are sealed. Du&P into isolated clusters. We expect this to occur witen
to the airflow above the top surface, the density of the watefeaches the order of 0.1-@.8® However, this assumption
vapor outside the porous material is kept at a constant valudoes not narrow the application range significantly, because
that is smaller than the equilibrium vapor density of the elecwe have already limited ourselves to the first drying stage
trolyte. As a consequence, the system loses water, and tif@>0.4¢). Finally, we have to remark that in the remainder
porous slab slowly dries. We assume that the evaporatioaf the paper we will considef to be constant. Generally,
process is isothermal, which is true in the case of slowincreases with decreasing Although this certainly influ-
drying® At least two stages can be distinguished in the dry-ences the details of the dynamics of the process, the qualita-
ing proces$:® In the first stage, the mass transfer at the toptive picture does not change.
surface g=0) is the limiting step in the water transport. As Using the fact that does not vary significant with and
a consequence, only a small gradient in the water saturatioiat p=cé (the number density of the electrolytave can
6 (m*m?) develops and the water saturation can be assumedrite Eq. (1) as follows:

FIG. 1. Schematic picture of the drying system.

IIl. CONVECTION-DIFFUSION MODEL
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#p  dpU

9% 9z’

(7p_
a

D2 ,U=0, atz=oL ?
E—p =U, atz=0,.L.

In Sec. IIB we will derive an expression fdJ. It is well
known that Eq.(2) is a specific form of the Fokker—Planck
(FP) equation** This enables us to interpretin terms of an
external potentiaV(U=—DdV/dz). We will refer toV as
the viscous potential.

B. Liquid velocity and viscous potential

The liquid velocityU and the viscous potential depend

on the details of the drying process. Even when the water is
uniformly distributed throughout the medium, the liquid ve-

locity U becomes dependent ¢oandz The quantities? and

U are related to each other via the law of mass conservatio

1%
—_—t —

o+ 55 (U)=0. 3)

m

How ions distribute in a drying porous medium 1391

problem is equivalent to the problem of a Brownian patrticle
in a potential well with a time-dependent shape. The infi-
nitely high potential at the boundaries of the system guaran-
tees the conservation of mass and gives rise to the reflecting-
boundary condition$2).

C. Length and time scales

In the preceding section we investigated the relation be-
tween drying and the liquid velocity. This enables us to iden-
tify the important length and time scales of our problem.
From (6) we can conclude that two length scales characterize
our problem:(a) the sample sizé and (b) the one related
with the transport processes,

De 7
Below the length scalg, diffusion becomes dominant over
convection(at t=0). The depth of the viscous potentidl
increases wheh/ ¢ increasegconvection becomes more im-
portant on the length scale of the samplEhereforel/¢ is
the key parameter for the process of salt accumulation at the

In Sec. Il A we have already mentioned that we focus on they tace g=0). Note that¢ is closely related to the Peclet
drying regime where the liquid is uniformly distributed , mper az=0 andt=0 via Eq.(4)

throughout the porous slab. To solve E8) we assume that
the evaporation rath (m/s=m>/m?s) is time independent.

This can be justified as follows. Under constant external con-

hL L

UL _
PEEF_E_E' (8)

ditions, a period with a constant drying rate is generally o o _ _
observed. Recently, it has been shown with pore networkWhereU is the liquid velocity at the evaporating surface at
simulations® that this constant-rate period is closely associ-timet=0. Both{ and Pe are of great practical value, because

ated with the first drying regime, where variationsénvith

h, &, D, andL can be easily obtained from experiments or

z are negligible. The vapor pressure just below the top surliterature data. From now on we will refer to Pezat0 and
face stays close to the equilibrium vapor pressure of watet= 0, defined in(8), asthe Peclet number of the system. By

We obtain the following expressions forand 6, by solving
Eq. (3):

B h

U—E(Z—L), (4)
_oht

H—S—T. (5)

using the typical valuesh~10"8 m/s, L~0.05m, D
~10 °m?s, and &~0.1, we estimate £&~0.01m
and Pe=5.

Just as we can characterize our problem by two length
scales, we can also do this with two time scal&s: the
diffusion time 7,=L%/D and (b) the drying time 7,
=¢L/h. With these definitions we can rewrit8) as follows:

(€)

PeETD/Tg.

We use the boundary condition that there is no water trans-

port possible through the bottom faté=0 atz=L, and the
fact that the initial water saturation equals the porosity

The importance of Pe becomes clear when &f.is com-
bined with(4), and a dimensionless time=t/ry and height

Note that we did not use an explicit expression for the peryY=2Z/L are introduced,

meability to calculatdl. This is a consequence of the fact

that we use known saturation profilése uniform distribu-

tion of watep in combination with the law of mass conser-

vation in the derivation.
The viscous potential is obtained by integrati@g;

z<0
hL (z

0
1

(6)

z>L,

where we have set the integration constant to zero and us

ap  d%p Pe 4

s ay? —1—5Pe@[p(y_1)]’ (10
op Pe 1 =0,1 11

From Eq.(10), we can conclude that the transport behavior
of the electrolyte is determined by one single parameter, Pe.

IlI. NUMERICAL CALCULATIONS

epd Procedure

U=0 outside the slab. The shape of this potential already Having obtained an expression f&f and V, we can
contains a great deal of information about the characteristicsolve the convection—diffusion equati¢®) to obtain the ion

of the transport process. From E@®) it follows that our

density distributions. However, the evaluation of this equa-
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FIG. 2. lon density profiles for different PecléRe numbers at= 7,/2.

Huinink, Pel, and Michels

Pzt <p> p*l<p>

p’(zt)<p>

04 06 08
ZL

1.0

FIG. 3. An example (Pelt=7,/2) of the density profiles and excess
density profiles,p(z,t) and p?(z,t)=p(z,t)—p*, to illustrate the param-
etersW (peak width, H (peak heightandp?(L,t) that are used to charac-
terize such profiles.

tion is complicated by nonlinearity introduced by the time

dependence of. Before we try to find analytical solutions,

we evaluate this equation numerically with the help of atransport. Around Pel (¢~L) the crossover from diffusive

simple first-order one-sided finite differen¢éED) scheme.

to convective transport takes place, resulting in a significant

This has the following advantages: we do not have to mak@ccumulation of ions in a region near the evaporating sur-
additional assumptions, a complete overview of the behavioface. For Pe-1 (£<L) convection dominates and the ions
of Eq. (10) is obtained, and the outcomes can guide us in ouare strongly “attracted” by the top surface. For-Peo the

search for analytical solutions.

Changes in the density at a nadean be calculated with

the mass fluxed with

i+1_ i

At .
Pn pn*’?(‘]ln,n#rl_‘]lnfl,n) (12)

and

) D . ) ) )
In,n+1:_H(PIn_PInJrl)"'U:wlplrwla (13

whereb is the distance between two grid poing$,andp-"*

are the densities at grid pointat timesi andi +1, At is the
time step, andJ},, , is the liquid velocity an+1 andi. Note
that (13) only holds when the liquid flow is in the z direc-
tion. At the boundaries node:=0 and n=mJ_,,
= 'm]m+1=0. Equations(12) and (13) change into Eq(2)
for b—0 andAt—0.

To prevent “numerical” diffusion,b has to be chosen
such that|Ub/D|~Peb/L<1. In the calculations we use

b/L=5x10"2, which is suitable for Pe[0,10]. Finally, we

want to remark that this FD scheme is stable as long as

DAt/b?<0.5. We have solve@®) for different values of Pe
for t=[0,7,/2].

B. Density profiles

In Sec. 1IC we conclude that the key parameter to ou

problem is the Peclet number, PaL/De. In Fig. 2, we
have plotted the ion distributiong/{p), for various values of

Pe att= 7,/2. Here(p) is the volume-averaged density of the
system. Clearly, the ion distribution is extremely sensitive to

model gives the following density profile:

ht
p(zt)=(p)| 1+ _[Lo(2)-1]], (14)
where §(z) is the Dirac-delta function. In reality, the density
does not grow to infinity. At a certain moment the saturation
concentration is reached and the ions crystallize. Although
complete density profiles, shown in Fig. 2, contain much
information, they are not very easy to use in a more system-
atic study. From now on we describe the ion distribution with
an excess density profilep?(z,t)=p(z,t)—p* with p*
=(p)(1—ht/Le) [see Eq.(14)]. Although we could have
chosen a different definition fgu“, this specific definition
will prove to be very useful for describing the initial behav-
ior of the ion density profiles in Secs. 1l C and IV. We will
characterizep? with two different parameters(a) H(t)
=p?(0;t)/{p), which is the height of the density peak at
=0; and(b) W(t), defined as

L L
W(t)zf p"zdz/ J p’dz,
0 0

which is a measure for the width of the density peak. To
clarify these definitions, we have plottgdand p” for Pe
=1 att=7,/2 in Fig. 3. In the following sections we us¢
andW to subsequently study the initial growth of the height
I,and width of the density distributiofSec. 1110 and the
late-stage behavior of the peé&&ec. Il D).

(15

C. Initial growth of the density peak

More information about the shape of the density peak

Pe. For P&1(£>L) the ions remain uniformly distributed nearz=0 can be obtained by calculating the peak witlth
throughout the medium due to the dominance of diffusiveand heightH, plotted in Figs. 4a) and 4b), respectively. By
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08 Pe =0 Pe=10
' W=4(Dt/ z)"*13
(bt/) Pe =10 2 I E r 2
0 A < - 0
0.6 V2 <z>=W=L/2 2V
. -
=
=
04 (Dt)”z/.;,E -4 <z>=W=<<L /2 - -4
z/L z/L

0.2 1

(@)

Pe=10

05
0102

0

H=2(Dt/ 7)"™?/¢

(b)

0.0 0.4 0.8
(D)1

1.2

16 2.0

FIG. 4. The peak widttW (a) and heightH (b) as a function of time for

FIG. 5. Schematic picture of the behavior of a Brownian particle in a vis-
cous potentiaV: (a) low Pe number (Pe0) and(b) high Pe number (Pe
=10). At Pe=0 the ions spread uniformly over space and the average
distance of an ion to the evaporating surface equaisL/2. At Pe=10 the
ions are confined by the viscous potential in a region close=t® (W
<L/2).

area ofp?), it follows from the combination of16) andW
/Dt thatHo /Dt/£. This is in agreement with Fig.(8).

The behavior of the density peés described by and
H) indicates that it should be possible to derive an analytical
expression fop?(z,t) for smallt. It follows from the scaling
behavior of W and H that this expression should have the
following mathematical form:
Dt [ z
£ 9

Dt

where the functiong does not contain any other physical
parameter tham/ JDt. In Sec. IV, the exact form off and
the expressions faW andH (as shown in Fig. ¥is derived.
Equation(17) makes clear that initially the shape of the den-

p’(z.t)=(p) , 17

different values Pe. The straight lines represent analytical results, derived ifity peak formed at the evaporating surface does not depend

Sec. IV.

plotting these properties againgt, diffusive behavior can

on the sample size.

D. Late-stage behavior of the density peak

In the previous section we studied the initial growth of

easily be discovered. These graphs contain two interestingoth the width and the height of the density peak. We found
featuresia) for smallt bothW andH scale with\t, and(b)  that the broadening of the peak is dominated by diffusion for
whent increasedV no longer scales with/t and goes to a small t. Figure 5 shows that this universal behavior breaks
maximum value(this is discussed in the next section, Sec.down after a certain time and/ goes to or through a maxi-

D).

To explain the “short-time” behavior op“?(z,t) it is
important to focus on the difference betwe&v and H.
WhereadH is seen to vary withh, &, andD (H is a function
of ¢, Wis independent ofi ande. The fact thatW does not

mum value. In this section we will explain two aspects of
this late-stage behavior with the analogy of a Brownian par-
ticle in a potential well, discussed in Sec. 11 B.

First, we want to discuss the maximum\&f The maxi-
mum can have two different origins, illustrated by Fig. 5. For

depend orh and &, being parameters that characterize thesmall values of Pe, the variation in the viscous potential
liquid flow, but does grow with/t, suggests that the broad- (6) betweenz=0 andz=L is small. lons tend to distribute
ening of the peak is a purely diffusive process. For small uniformly by diffusion[see Fig. %)]. It follows from the
the viscous-potential difference felt by diffusing ions is smalldefinition of W (15) that in this caseW—L/2 (and W/ ¢
and the diffusion process is not biased into a certain direc=Pe/2. The situation is different when Pe is higbee Fig.

tion.

The ¢ dependence angt scaling ofH result from the
behavior of the total excess amount of ioh$§, calculated as
follows:

T‘TEJ p’(z,t)dz=(p)ht/e. (16

When we assume tha&dW is proportional tol'? (the peak

5(b)]. The spatial variation irv influences the ion distribu-
tion. The ions are trapped in a region closete0, whereV
reaches its minimal value. As a consequengegL/2. In
Fig. 4(a), it can be seen that for Pe).1 and 0.2 the peak
width W is purely limited by the sample size, becalsés
=Pe/2 at the maximum. For B&, 4 and 10 the peak width
saturates far below/2, indicating that the shape of the vis-
cous potential limits the width of the density peak. This is
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confirmed by the fact that for Pe4 and 10 the peak width 1.4 —
even goes through a maximum. The depth of the viscous
potential increases over timesee Eq.(6)], becaused de- 12§ ° b
creases during the drying process, driving the sharpening of > A ¢
the density peak. o 107

Second, we want address the point whevestarts to = °d
deviate from+/t for Pe=1. It follows from Sec. Il C that % 081 X e
these deviations are due to convection. It is interesting to see ’g 06 | f
that the point where this occurs seems to be independent of Yo _
Pe (W/£~0.2, Dt/¢~0.27). To understand this phenom- ) 04 ——analytic
enon we have to consider the viscous-potential difference ]
AV experienced by an ion when it moves fras0 to z 02 |
=W. When we assume th@t¢, it follows from (6) that ’

W o1 (w2 0.0 » -
AV= e 2_Pe< E) (18 0 0.5 1 15 2

z(Dt)"?12
Given thatW/£~0.2,AV increases from-0.18 to 0.2, when FIG. 6. Scaled d - | f Pe o/
Pe increases from 1 to infinity. This explains why the point caled density profiles for different values of Pe ¢ @

Pe,JDt/£)=(1,0.15), (b) idem=(2,0.10), (c) idem=(2,0.20), (d) idem
where deviations set in is not very sensitive to Pe. To explair. (2,0.30) (€) idem= (4,0.20), andf) idem=(10,0.16). The solid line rep-
why convection becomes important at this particular magniresents the analytical solution, given by E22).
tude of AV (~0.2), it suffices to point to the fact that this is

the lower bound of the crossover regime.

This set of equations can be solved via a Laplace transfor-
mation. The solution in the Laplace domain is given by

"ips)— (p) \/7cosr[(z— L)\s/D] 2
z,8)= — .
An important outcome of our numerical calculations is P 3 sint(Lys/D)

the universal behavior of the excess ion dengifyz,t) in
the beginning of the drying process. At this stage of theWhen we assume that— oo, which is reasonable for smajl
processp’(z,t) does not depend oh. With the help of the we find the following relation fop?(z,t) by inverse Laplace
numerical results we suggested a particular solution: Egransformatiort®
(17). Here we will show that there is indeed an analytical

IV. ANALYTIC SOLUTIONS

2
equation forp?(z,t). P (20)=(p) —— 2 \bt exy{ z )
First, we rewrite the convection—diffusion equation and \/_ £ 4Dt
its boundary conditiong2) by using p(z,t)=p* +p“?(z,t)
. Z o0
and Eqgs.(4) and (5): _ oo _exp(—)\z)d)\ . 22)
apo_ d [dp” " Dt Jz2bt
t Paz\ e Ve With the help of this equation we obtain the following fdr
andW [Eqg. (15)]:
”7’) N (p)E—0, atz—0 (19
+p—=+(p at z=0, 4
oD W(t)= —— VDX, (23
- 3w
L —=0, atz=L
z | H(t)= 2 ot (24)
The interesting difference betwe€?) and(19) is the source \/; £

term introduced via the boundary conditions. Note that

p?(z,0)=0. Therefore, in the beginning of the process, the
terms Up“ and p°h/#D are small and can be neglected
resulting in the following set of equations:

In Figs. 4a) and 4b) we have plotted23) and(24) together
with the numerical results. For smalEgs.(23) and(24) are

' in excellent agreement with the numerical data.

The ultimate test for Eq.22) is to compare it with den-

ap” *p” sity profiles for various sample sizes at different times. In
T_D 922’ principle, all curves should coincide whef&/\/Dt is plot-

ted as a function ofz/2\/Dt. In Fig. 6 we have plotted
ap” p”&l{p)/Dt for a variety of Pe numbers and at different
—7 T(p)E=0, atz=0, (200 {imes. The agreement between the analytical equagan

and the FD results is very good. Small deviations are visible
E:o at 7= L around z=0. These deviations systematically grow with
9z ' ' JDt/¢, which is logical for a short-term solutidiEq. (22)].
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The fact that Eq.(22) is in good agreement with the B. Implications for crystallization
numerical calculations confirms the idea that we already put Although we have not incorporated crystallization in our

f(_)rward n our discussion in Sec. Il C’. namely that the_ qen'model, the results indicate where the first crystals will be
sity peak |n|'F|aIIy broadens purely by diffusion. We explicitly formed. Crystallization will take place when the salt content
assumed this when we went from E@9) to (20). of the liquid phase reaches the saturation concentration.

We can conclude _that we h:_ave an anglyt_ical equation.fowhen Pe<1, the peak in the density profile is negligible and
the shape of the density profile in the beginning of the drqut is likely that the first crystals will be formed both in the

process. According to Figs. 4 and 6, the analytical EXPIESSIOR 1k and at the interfaces of the material. For high values of

holds for \/ﬁ/§<0.27 (Pe=1). By using (24)' it can be Pe the density peak at the evaporating surface will reach the
shown that the maximum excess density reached beforg

\/_ - _ % of th . hi aturation concentration long before it is reached in the bulk
Dt/£=0.27 is ~30% of the average density. This MEeANS of the material. As a consequence, the salt starts to crystallize

that we should be able to study this short-term behavior withy; e interfaces and not in the bulk of the material. The size
NMR. of the region where these first salt crystals are located will be
of the orderé.

We can conclude that given a particular porous material
A. lon distribution and salt concentration, salt crystallization at surfaces will be
We developed a simple model based on the convecion 7O Sl Y \PCL T B PR B8 e e
diffusion equation for the transport behavior of ions in a ’ P :
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