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How ions distribute in a drying porous medium: A simple model
H. P. Huinink,a) L. Pel, and M. A. J. Michels
Department of Applied Physics, Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 16 January 2001; accepted 26 December 2001; published 5 March 2002!

Salt crystallization at surfaces is an important problem for buildings and monuments. We do not
consider the formation of salt crystals as such, but focus on transport properties of ions in a drying
porous medium. We deal with the first phase of the drying process, where the water is still uniformly
distributed throughout the medium. An approximate model is presented, which accounts for both
convection and diffusion. It is shown that the key parameter is the Peclet number at the evaporating
surface, Pe[hL/«D, whereh, L, «, andD are the drying rate, sample size, porosity, and diffusion
constant, respectively. When Pe!1 ~diffusion dominates over convection! the ions remain
uniformly distributed throughout the system. Strong accumulation at the evaporating surface occurs
for Pe@1 ~convection dominates over diffusion!. Crossover behavior is found for Pe'1. Therefore,
it is likely that the first crystals will be formed both in the bulk and at the interfaces of the material
when Pe!1. For high values of Pe the density peak at the evaporating surface will reach the
saturation concentration long before it is reached in the bulk of the material. As a consequence, the
salt starts to crystallize at the interfaces. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1451081#
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I. INTRODUCTION

An important issue in building physics is the crystalliz
tion of salts in porous materials.1,2 Many monuments and
ancient buildings suffer from it, because crystal growth
side the stones causes crack formation. In the spring l
spots of salt crystals blot many new buildings made of fir
clay bricks. Initially, the stones contain water with ions d
solved in it. Either by airflow around the building or by a
increase of the temperature the stones start to dry. Du
this drying process the ion concentration increases until
saturation concentration is reached and the salt crystalliz

An interesting aspect of these processes is that in m
cases crystal growth preferably takes place at or in a reg
near the surface of the porous material. This behavio
poorly understood because it is not easy to measure ion
centration inside a porous material. Until now, most of t
experimental work on this topic was done with destruct
techniques, which have serious drawbacks. They are
time consuming; experiments cannot be repeated with
same sample, which causes considerable scatter in the
Moreover, the resolution is limited by the mechanical tre
ment of the samples. As a consequence, systematic ex
ments are scarce and little is known of the origins of t
tendency of crystals to form near the surface. Recently, it
been shown that NMR is a powerful technique for measur
the combined transport of Na1 and water.3 Due to the non-
destructive nature of the technique and its ability to meas
23Na and1H signals simultaneously, it is a powerful tec
nique for studying the combined drying and crystallizati
process. In this paper, we do not want to investigate

a!Author to whom correspondence should be addressed. Electronic
h.p.huinink@tue.nl
1381070-6631/2002/14(4)/1389/7/$19.00
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crystallization process as such. We want to answer the
lowing questions: How do ions distribute inside a poro
medium during drying before any crystallization occur
What does this tell us about the localization of crystals in
material? We do not take into account crystallization exp
itly. The spots where the first crystals start to grow are
spots where the saturation concentration is reached fi
However, we want to keep the model as simple as possib
be sure that we really understand the transport phenom
before we investigate a model, including crystallization.

To answer these questions, we derive a simple mo
based on the convection-diffusion equation. We limit o
selves to the so-called first drying stage.4,5 This stage of the
drying process covers an important part of the drying p
cess, because approximately 60% of all water evaporate
this regime. This stage has the nice feature that the w
remains uniformly distributed throughout the medium, whi
makes the analysis of the equations simpler. Both analyt
and numerical outcomes will be discussed. The model w
developed to gain more insight into the important parame
of the process and may serve as a guide for NMR exp
ments and computer simulations that we want to do in
near future.

The motion of ions in a drying porous medium is close
related to the transport behavior of ions during a pheno
enon called ‘‘wick action.’’6,7 In both cases, the salt transpo
can be described in terms of the convection–diffusion eq
tion and is driven by convective fluxes induced by evapo
tion. The fact that ion transport during drying requires
model of its own is caused by two important differenc
between wick action and drying. First, during wick action t
water saturation is constant, the porous material is conne
with a liquid reservoir, and the liquid velocity does not va
il:
9 © 2002 American Institute of Physics
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1390 Phys. Fluids, Vol. 14, No. 4, April 2002 Huinink, Pel, and Michels
in position and time, given that the evaporating rate is c
stant. During a drying process the water saturation decrea
We will show that due to the variations in the water satu
tion the liquid velocity becomes time and position depe
dent. The second difference between wick action and dry
is that the total amount of ions is conserved in the la
process. As already mentioned, wick action occurs in a
rous material connected with a liquid reservoir contain
ions ~salt solution!, i.e., the sea. First, in Sec. II we invest
gate the convection–diffusion model describing the proc
of interest. We subsequently discuss the partial differen
equation and its boundary conditions, the analogy with
behavior of a Brownian particle in a potential well, and t
length and time scales of the problem. Section III is de
cated to numerical solutions of this model. Analytic solutio
are investigated in Sec. IV. In Sec. V we will draw concl
sions and discuss the implications for salt crystallization.

II. CONVECTION–DIFFUSION MODEL

A. Starting point

The system we consider is a homogeneous porous c
der of lengthL ~m! with porosity« ~m3/m3! initially saturated
with a salt solution. The liquid water saturationu ~m3/m3! is
defined as the volume of water present in a given volume
the system. The maximal value ofu equals«. A conceptual
model of the system is drawn in Fig. 1. At the top (z50) the
solution is in contact with air, and water vapor can esca
from the medium here. All other boundaries are sealed. D
to the airflow above the top surface, the density of the wa
vapor outside the porous material is kept at a constant v
that is smaller than the equilibrium vapor density of the el
trolyte. As a consequence, the system loses water, and
porous slab slowly dries. We assume that the evapora
process is isothermal, which is true in the case of sl
drying.8 At least two stages can be distinguished in the d
ing process.4,5 In the first stage, the mass transfer at the
surface (z50) is the limiting step in the water transport. A
a consequence, only a small gradient in the water satura
u ~m3/m3! develops and the water saturation can be assu

FIG. 1. Schematic picture of the drying system.
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to be equal to its volume-averaged value,u'^u&. At a cer-
tain saturation level, the evaporation rate drops dramatic
and a front develops and moves into the material. As m
tioned before, we will only consider the first stage of t
drying, where the water stays uniformly distributed throug
out the sample.

In our system there is liquid flow in the direction of th
evaporating surface. Therefore, an ion not only moves du
Brownian motion~diffusion!, but it is dragged by the liquid
too ~convection!. Convection drives the ions toward th
evaporating surface, where they accumulate. Brownian
tion tends to spread the ions uniformly over space. Ob
ously, a good description of the interplay of convection a
diffusion is important. The convection–diffusion equatio
for unsaturated media serves9 as a starting point for the de
scription of the system. We assume that the amount of i
that adsorb on the pore walls is neglible. This assumpt
holds for materials with reasonably wide pores~.1 mm! like
clay bricks and sand stones. By assuming electroneutra
we do not have to treat the transport of both io
separately,10 so we have

]cu

]t
5

]

]z S uD
]c

]z
2cuU D , ~1!

wherec ~m23! is the number density of the electrolyte in th
liquid phase andU ~m/s! is the average velocity of the liquid
at positionz and timet. In Eq. ~1! D[Dw /T (m2/s), where
Dw (m2/s) andT are the diffusion constant of the electroly
in the liquid phase and the electrical tortuosity fact
respectively,11 which is a measure for the tortuosity of th
liquid water network inside the porous medium. The fi
term on the rhs of Eq.~1! accounts for diffusion and the
second term for convection. By using~1! we assume tha
hydrodynamic dispersion is negligible. This assumpti
holds whenuUR/Du!1 ~R is the characteristic pore size o
the medium!,12 which generally is the case for the expe
ments we have in mind (D'1029 m2/s,R'1026 m,U
'1028 m/s). A second assumption in Eq.~1! is that the
water network has no fractal properties on a length scaleL.
Therefore, this equation cannot account for anomalous di
sion and will break down for low values ofu close to the
percolation threshold, where the liquid water network brea
up into isolated clusters. We expect this to occur whenu
reaches the order of 0.1–0.3«.13 However, this assumption
does not narrow the application range significantly, beca
we have already limited ourselves to the first drying sta
(u.0.4«). Finally, we have to remark that in the remaind
of the paper we will considerT to be constant. Generally,T
increases with decreasingu. Although this certainly influ-
ences the details of the dynamics of the process, the qua
tive picture does not change.

Using the fact thatu does not vary significant withz, and
that r5cu ~the number density of the electrolyte!, we can
write Eq. ~1! as follows:
P license or copyright; see http://pof.aip.org/pof/copyright.jsp



k

r
e-

tio

th
d
t
.
on
ll
rk
ci

u
te

n

e
ct

r-

us
ad
ti

le
fi-
an-
ting-

be-
n-

m.
rize

r

-

the
t

at
se
or

y

gth

ior
Pe.

a-
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]r

]t
5D

]2r

]z22
]rU

]z
,

~2!

D
]r

]z
2rU50, at z50,L.

In Sec. II B we will derive an expression forU. It is well
known that Eq.~2! is a specific form of the Fokker–Planc
~FP! equation.14 This enables us to interpretU in terms of an
external potentialV(U[2D]V/]z). We will refer to V as
the viscous potential.

B. Liquid velocity and viscous potential

The liquid velocityU and the viscous potentialV depend
on the details of the drying process. Even when the wate
uniformly distributed throughout the medium, the liquid v
locity U becomes dependent ont andz. The quantitiesu and
U are related to each other via the law of mass conserva

]u

]t
1

]

]z
~Uu!50. ~3!

In Sec. II A we have already mentioned that we focus on
drying regime where the liquid is uniformly distribute
throughout the porous slab. To solve Eq.~3! we assume tha
the evaporation rateh (m/s5m3/m2 s) is time independent
This can be justified as follows. Under constant external c
ditions, a period with a constant drying rate is genera
observed.5 Recently, it has been shown with pore netwo
simulations15 that this constant-rate period is closely asso
ated with the first drying regime, where variations inu with
z are negligible. The vapor pressure just below the top s
face stays close to the equilibrium vapor pressure of wa
We obtain the following expressions forU andu, by solving
Eq. ~3!:

U5
h

uL
~z2L !, ~4!

u5«2
ht

L
. ~5!

We use the boundary condition that there is no water tra
port possible through the bottom face,U50 atz5L, and the
fact that the initial water saturation equals the porosity«.
Note that we did not use an explicit expression for the p
meability to calculateU. This is a consequence of the fa
that we use known saturation profiles~the uniform distribu-
tion of water! in combination with the law of mass conse
vation in the derivation.

The viscous potential is obtained by integrating~4!:

V5H `, z,0

2
hL

2Du S z

L
21D 2

, 0<z<L,

` z.L,

~6!

where we have set the integration constant to zero and
U50 outside the slab. The shape of this potential alre
contains a great deal of information about the characteris
of the transport process. From Eq.~6! it follows that our
Downloaded 22 Jan 2010 to 131.155.151.96. Redistribution subject to AI
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problem is equivalent to the problem of a Brownian partic
in a potential well with a time-dependent shape. The in
nitely high potential at the boundaries of the system guar
tees the conservation of mass and gives rise to the reflec
boundary conditions~2!.

C. Length and time scales

In the preceding section we investigated the relation
tween drying and the liquid velocity. This enables us to ide
tify the important length and time scales of our proble
From~6! we can conclude that two length scales characte
our problem:~a! the sample sizeL and ~b! the one related
with the transport processes,j,

j5
D«

h
. ~7!

Below the length scalej, diffusion becomes dominant ove
convection~at t50!. The depth of the viscous potentialV
increases whenL/j increases~convection becomes more im
portant on the length scale of the sample!. Therefore,L/j is
the key parameter for the process of salt accumulation at
surface (z50). Note thatj is closely related to the Pecle
number atz50 andt50 via Eq.~4!,

Pe[UŨL

D
U5 hL

D«
5

L

j
, ~8!

whereŨ is the liquid velocity at the evaporating surface
time t50. Bothj and Pe are of great practical value, becau
h, «, D, and L can be easily obtained from experiments
literature data. From now on we will refer to Pe atz50 and
t50, defined in~8!, asthe Peclet number of the system. B
using the typical valuesh'1028 m/s, L'0.05 m, D
'1029 m2/s, and «'0.1, we estimate j'0.01 m
and Pe'5.

Just as we can characterize our problem by two len
scales, we can also do this with two time scales:~a! the
diffusion time tD[L2/D and ~b! the drying time tu

[«L/h. With these definitions we can rewrite~8! as follows:

Pe[tD /tu . ~9!

The importance of Pe becomes clear when Eq.~2! is com-
bined with~4!, and a dimensionless times[t/tD and height
y[z/L are introduced,

]r

]s
5

]2r

]y22
Pe

12s Pe

]

]y
@r~y21!#, ~10!

]r

]y
2

Pe

12s Pe
r~y21!, at y50,1. ~11!

From Eq.~10!, we can conclude that the transport behav
of the electrolyte is determined by one single parameter,

III. NUMERICAL CALCULATIONS

A. Procedure

Having obtained an expression forU and V, we can
solve the convection–diffusion equation~2! to obtain the ion
density distributions. However, the evaluation of this equ
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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tion is complicated by nonlinearity introduced by the tim
dependence ofu. Before we try to find analytical solutions
we evaluate this equation numerically with the help of
simple first-order one-sided finite difference~FD! scheme.
This has the following advantages: we do not have to m
additional assumptions, a complete overview of the beha
of Eq. ~10! is obtained, and the outcomes can guide us in
search for analytical solutions.

Changes in the density at a noden can be calculated with
the mass fluxesJ with

rn
i 115rn

i 1
Dt

b
~Jn,n11

i 2Jn21,n
i ! ~12!

and

Jn,n11
i 52

D

b
~rn

i 2rn11
i !1Un11

i rn11
i , ~13!

whereb is the distance between two grid points,rn
i andrn

i 11

are the densities at grid pointn at timesi and i 11, Dt is the
time step, andUn11

i is the liquid velocity atn11 andi. Note
that ~13! only holds when the liquid flow is in the2z direc-
tion. At the boundaries nodesn50 and n5mJ21,0

i

5Jm,m11
i 50. Equations~12! and ~13! change into Eq.~2!

for b→0 andDt→0.
To prevent ‘‘numerical’’ diffusion,b has to be chosen

such thatuUb/Du;Peb/L!1. In the calculations we us
b/L5531023, which is suitable for Pe5@0,10#. Finally, we
want to remark that this FD scheme is stable as long
DDt/b2,0.5. We have solved~2! for different values of Pe
for t5@0,tu/2#.

B. Density profiles

In Sec. II C we conclude that the key parameter to o
problem is the Peclet number, Pe5hL/D«. In Fig. 2, we
have plotted the ion distributions,r/^r&, for various values of
Pe att5tu/2. Here^r& is the volume-averaged density of th
system. Clearly, the ion distribution is extremely sensitive
Pe. For Pe!1(j@L) the ions remain uniformly distributed
throughout the medium due to the dominance of diffus

FIG. 2. Ion density profiles for different Peclet~Pe! numbers att5tu/2.
Downloaded 22 Jan 2010 to 131.155.151.96. Redistribution subject to AI
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transport. Around Pe51 (j'L) the crossover from diffusive
to convective transport takes place, resulting in a signific
accumulation of ions in a region near the evaporating s
face. For Pe@1 (j!L) convection dominates and the ion
are strongly ‘‘attracted’’ by the top surface. For Pe→` the
model gives the following density profile:

r~z,t !5^r&S 11
ht

L«
@Ld~z!21# D , ~14!

whered(z) is the Dirac-delta function. In reality, the densi
does not grow to infinity. At a certain moment the saturati
concentration is reached and the ions crystallize. Althou
complete density profiles, shown in Fig. 2, contain mu
information, they are not very easy to use in a more syste
atic study. From now on we describe the ion distribution w
an excess density profile,rs(z,t)[r(z,t)2r* with r*
5^r&(12ht/L«) @see Eq.~14!#. Although we could have
chosen a different definition forrs, this specific definition
will prove to be very useful for describing the initial beha
ior of the ion density profiles in Secs. III C and IV. We wi
characterizers with two different parameters:~a! H(t)
[rs(0,t)/^r&, which is the height of the density peak atz
50; and~b! W(t), defined as

W~ t ![E
0

L

rszdzY E
0

L

rsdz, ~15!

which is a measure for the width of the density peak.
clarify these definitions, we have plottedr and rs for Pe
51 at t5tu/2 in Fig. 3. In the following sections we useH
andW to subsequently study the initial growth of the heig
and width of the density distribution~Sec. III C! and the
late-stage behavior of the peak~Sec. III D!.

C. Initial growth of the density peak

More information about the shape of the density pe
nearz50 can be obtained by calculating the peak widthW
and heightH, plotted in Figs. 4~a! and 4~b!, respectively. By

FIG. 3. An example (Pe51,t5tu/2) of the density profiles and exces
density profiles,r(z,t) and rs(z,t)[r(z,t)2r* , to illustrate the param-
etersW ~peak width!, H ~peak height! andrs(L,t) that are used to charac
terize such profiles.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1393Phys. Fluids, Vol. 14, No. 4, April 2002 How ions distribute in a drying porous medium
plotting these properties againstAt, diffusive behavior can
easily be discovered. These graphs contain two interes
features:~a! for small t bothW andH scale withAt, and~b!
when t increasesW no longer scales withAt and goes to a
maximum value~this is discussed in the next section, Se
III D !.

To explain the ‘‘short-time’’ behavior ofrs(z,t) it is
important to focus on the difference betweenW and H.
WhereasH is seen to vary withh, «, andD ~H is a function
of j!, W is independent ofh and«. The fact thatW does not
depend onh and «, being parameters that characterize t
liquid flow, but does grow withAt, suggests that the broad
ening of the peak is a purely diffusive process. For smat
the viscous-potential difference felt by diffusing ions is sm
and the diffusion process is not biased into a certain dir
tion.

The j dependence andAt scaling ofH result from the
behavior of the total excess amount of ions,Gs, calculated as
follows:

Gs[E rs~z,t !dz5^r&ht/«. ~16!

When we assume thatHW is proportional toGs ~the peak

FIG. 4. The peak widthW ~a! and heightH ~b! as a function of time for
different values Pe. The straight lines represent analytical results, deriv
Sec. IV.
Downloaded 22 Jan 2010 to 131.155.151.96. Redistribution subject to AI
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area ofrs!, it follows from the combination of~16! andW
}ADt that H}ADt/j. This is in agreement with Fig. 4~b!.

The behavior of the density peak~as described byW and
H! indicates that it should be possible to derive an analyt
expression forrs(z,t) for small t. It follows from the scaling
behavior ofW and H that this expression should have th
following mathematical form:

rs~z,t !5^r&
ADt

j
gS z

ADt
D , ~17!

where the functiong does not contain any other physic
parameter thanz/ADt. In Sec. IV, the exact form ofg and
the expressions forW andH ~as shown in Fig. 4! is derived.
Equation~17! makes clear that initially the shape of the de
sity peak formed at the evaporating surface does not dep
on the sample size.

D. Late-stage behavior of the density peak

In the previous section we studied the initial growth
both the width and the height of the density peak. We fou
that the broadening of the peak is dominated by diffusion
small t. Figure 5 shows that this universal behavior brea
down after a certain time andW goes to or through a maxi
mum value. In this section we will explain two aspects
this late-stage behavior with the analogy of a Brownian p
ticle in a potential well, discussed in Sec. II B.

First, we want to discuss the maximum ofW. The maxi-
mum can have two different origins, illustrated by Fig. 5. F
small values of Pe, the variation in the viscous potentiaV
~6! betweenz50 andz5L is small. Ions tend to distribute
uniformly by diffusion @see Fig. 5~a!#. It follows from the
definition of W ~15! that in this caseW→L/2 ~and W/j
5Pe/2!. The situation is different when Pe is high@see Fig.
5~b!#. The spatial variation inV influences the ion distribu-
tion. The ions are trapped in a region close toz50, whereV
reaches its minimal value. As a consequence,W!L/2. In
Fig. 4~a!, it can be seen that for Pe50.1 and 0.2 the peak
width W is purely limited by the sample size, becauseW/j
5Pe/2 at the maximum. For Pe52, 4 and 10 the peak width
saturates far belowL/2, indicating that the shape of the vis
cous potential limits the width of the density peak. This

in

FIG. 5. Schematic picture of the behavior of a Brownian particle in a v
cous potentialV: ~a! low Pe number (Pe50) and~b! high Pe number (Pe
510). At Pe50 the ions spread uniformly over space and the aver
distance of an ion to the evaporating surface equalsW5L/2. At Pe510 the
ions are confined by the viscous potential in a region close toz50 (W
!L/2).
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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confirmed by the fact that for Pe54 and 10 the peak width
even goes through a maximum. The depth of the visc
potential increases over time@see Eq.~6!#, becauseu de-
creases during the drying process, driving the sharpenin
the density peak.

Second, we want address the point whereW starts to
deviate fromAt for Pe>1. It follows from Sec. III C that
these deviations are due to convection. It is interesting to
that the point where this occurs seems to be independe
Pe ~W/j'0.2, ADt/j'0.27!. To understand this phenom
enon we have to consider the viscous-potential differe
DV experienced by an ion when it moves fromz50 to z
5W. When we assume thatu'«, it follows from ~6! that

DV5
W

j
2

1

2 PeS W

j D 2

. ~18!

Given thatW/j'0.2,DV increases from;0.18 to 0.2, when
Pe increases from 1 to infinity. This explains why the po
where deviations set in is not very sensitive to Pe. To exp
why convection becomes important at this particular mag
tude ofDV ~;0.2!, it suffices to point to the fact that this i
the lower bound of the crossover regime.

IV. ANALYTIC SOLUTIONS

An important outcome of our numerical calculations
the universal behavior of the excess ion densityrs(z,t) in
the beginning of the drying process. At this stage of
processrs(z,t) does not depend onL. With the help of the
numerical results we suggested a particular solution:
~17!. Here we will show that there is indeed an analytic
equation forrs(z,t).

First, we rewrite the convection–diffusion equation a
its boundary conditions~2! by using r(z,t)5r* 1rs(z,t)
and Eqs.~4! and ~5!:

]rs

]t
5D

]

]z S ]rs

]z
2UrsD ,

]rs

]z
1rs

h

uD
1^r&/j50, at z50, ~19!

]rs

]z
50, at z5L.

The interesting difference between~2! and~19! is the source
term introduced via the boundary conditions. Note th
rs(z,0)50. Therefore, in the beginning of the process, t
terms Urs and rsh/uD are small and can be neglecte
resulting in the following set of equations:

]rs

]t
5D

]2rs

]z2 ,

]rs

]z
1^r&/j50, at z50, ~20!

]rs

]z
50, at z5L.
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This set of equations can be solved via a Laplace trans
mation. The solution in the Laplace domain is given by

r̃s~z,s!5
^r&
j
AD

s3

cosh@~z2L !As/D#

sinh~LAs/D !
. ~21!

When we assume thatL→`, which is reasonable for smallt,
we find the following relation forrs(z,t) by inverse Laplace
transformation:16

rs~z,t !5^r&
2

Ap

ADt

j FexpS 2
z2

4Dt D
2

z

ADt
E

z/2ADt

`

exp~2l2!dlG . ~22!

With the help of this equation we obtain the following forH
andW @Eq. ~15!#:

W~ t !5
4

3Ap
ADt, ~23!

H~ t !5
2

Ap

ADt

j
. ~24!

In Figs. 4~a! and 4~b! we have plotted~23! and~24! together
with the numerical results. For smallt Eqs.~23! and~24! are
in excellent agreement with the numerical data.

The ultimate test for Eq.~22! is to compare it with den-
sity profiles for various sample sizes at different times.
principle, all curves should coincide whenrsj/ADt is plot-
ted as a function ofz/2ADt. In Fig. 6 we have plotted
rsj/^r&ADt for a variety of Pe numbers and at differe
times. The agreement between the analytical equation~22!
and the FD results is very good. Small deviations are visi
around z50. These deviations systematically grow wi
ADt/j, which is logical for a short-term solution@Eq. ~22!#.

FIG. 6. Scaled density profiles for different values of Pe andADt/j: ~a!
(Pe,ADt/j)5(1,0.15), ~b! idem5(2,0.10), ~c! idem5(2,0.20), ~d! idem
5(2,0.30),~e! idem5(4,0.20), and~f! idem5(10,0.16). The solid line rep-
resents the analytical solution, given by Eq.~22!.
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The fact that Eq.~22! is in good agreement with th
numerical calculations confirms the idea that we already
forward in our discussion in Sec. III C, namely that the de
sity peak initially broadens purely by diffusion. We explicit
assumed this when we went from Eq.~19! to ~20!.

We can conclude that we have an analytical equation
the shape of the density profile in the beginning of the dry
process. According to Figs. 4 and 6, the analytical expres
holds for ADt/j,0.27 (Pe>1). By using ~24!, it can be
shown that the maximum excess density reached be
ADt/j50.27 is ;30% of the average density. This mea
that we should be able to study this short-term behavior w
NMR.3

V. CONCLUSIONS

A. Ion distribution

We developed a simple model based on the convecti
diffusion equation for the transport behavior of ions in
drying porous medium. The input parameters of the mo
are the drying rateh, porosity «, diffusion constantD, and
sample sizeL. We showed that ions behave like Brownia
particles trapped in a potential well of viscous origin. T
‘‘viscous’’ potential has a minimum at the evaporating su
face. We have found that the depth of the viscous potentia
proportional to Pe[hL/«D ~i.e., the Peclet number att50
at the evaporating surface; a measure for the importanc
convection compared to diffusion!. Due to this potential
minimum ions are ‘‘attracted’’ by and accumulate at t
evaporating surface. Therefore, the driving force for accum
lation is convection.

We made numerical calculations to study the behavio
the density profiles as a function of time for different valu
of Pe. When Pe!1 the ions remain uniformly distribute
throughout the system. Strong accumulation at the evapo
ing surface occurs for Pe@1. Crossover behavior is found fo
Pe'1.

Initially, at the evaporating surface, a sharp peak in
density profile develops as a result of the convection of io
This peak broadens by diffusion. In the beginning this bro
ening process is solely determined by diffusion and indep
dent of Pe. In a later stage of the process, the width of
density peak saturates either by the finite size of the sam
or by the fact that ions experience a significant change in
viscous potential.

An analytic expression can be obtained for the sho
term behavior of the density peak, which is in perfect agr
ment with numerical calculations.

In the near future we hope to be able to compare
outcomes of the model with NMR experiments. We can c
clude from our model that these experiments should be d
for different values of Pe, especially around Pe51. The easi-
est way to do this in practice is by varying the sample sizL
and the drying rateh.
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B. Implications for crystallization

Although we have not incorporated crystallization in o
model, the results indicate where the first crystals will
formed. Crystallization will take place when the salt conte
of the liquid phase reaches the saturation concentrat
When Pe!1, the peak in the density profile is negligible an
it is likely that the first crystals will be formed both in th
bulk and at the interfaces of the material. For high values
Pe the density peak at the evaporating surface will reach
saturation concentration long before it is reached in the b
of the material. As a consequence, the salt starts to crysta
at the interfaces and not in the bulk of the material. The s
of the region where these first salt crystals are located wil
of the orderj.

We can conclude that given a particular porous mate
and salt concentration, salt crystallization at surfaces will
promoted by both a higher drying rate and a larger sys
size, and that these effects can be explained with our mo
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