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Abstract. In this paper we propose a framework for SOA covering such
important features as proper termination (soundness) and correct corre-
lation of tasks. Within this framework, we define a method for the cal-
culation of the price of services. Our framework is compositional in the
sense that composing a system from subsystems that meet our correct-
ness requirements we obtain a system that still meets these requirements.

1 Introduction

In the Service Oriented Architecture (SOA) paradigm, a system is a network
of components. Each component can be a service provider and a service client
at the same time. Through its sell-side interface, the service offers and delivers
services to its clients, and through its buy-side interface it may request services
from suppliers. Both clients and providers may be other components.

The service a component may deliver is defined by a workflow, which is
also called the orchestration of the service. This workflow consists of a partially
ordered set of tasks. Each task may invoke a new service instance of another
component. The interaction between the components is depending on the com-
munication protocols and is called the choreography.

Since SOA-based systems are open in the sense that components may enter
and may leave the network, we have to take into account the possibility that a
service breaks down during service delivery, i.e. a service may fail. For a SOA
there is an obvious correctness criterion: each service should always return a
result to its client: either it delivers the requested items or it returns a failure
signal. After the result is reported, all service activities are terminated. We call
this property the proper completion of a service. We may require a system to have
this property independent of the number of active components in the system.

One more essential but still not elaborated feature of the SOA paradigm
is the similarity with the supply chain paradigm. According to this paradigm
components are more or less autonomous agents that deliver their services in



return for a reimbursement and they pay their suppliers for the services they buy
in order to deliver their own service. Only services with an (expected) positive
added value, i.e. services that on average receive more money than they spend,
will survive. So besides the correctness criteria there is a performance criterion
that says that components should only provide services if their expected added
value is positive. We call this property profitability.

These SOA principles are described by many authors and the concepts start
to converge to common understanding. There exist languages such as BPEL [3]
and WSDL [7] that allow us to define orchestration and to some end choreog-
raphy. However there is, to our best knowledge, no example of a components
framework that has covered all features described above in a consistent way. As
a “proof of concept” we construct such a components framework in this paper.

We make some simplifying assumptions on the protocols for sell and buy
side and on the stochastic process of finding suitable suppliers. The framework
can easily be extended to other, more realistic, assumptions. We give sufficient
conditions for a SOA-based system to satisfy both the proper completion and the
profitability criterion. Moreover, a system composed within our framework from
components that meet these two requirements will also meet these requirements,
i.e. our framework is compositional with respect to them.

In Section 2 we introduce some basic notions. In Section 3 we introduce the
components framework and show that all service instances have the proper com-
pletion property. In Section 4 we introduce the economical aspects of services:
the cost parameters and the probabilities for choices in the orchestration and
give sufficient conditions for components to be profitable. We conclude in Sec-
tion 5 with a discussion of possible extensions, a review of related works and
future work.

2 Preliminaries

In this section we introduce the basic definitions we need in the rest of the paper.

Petri nets A Petri net [10, 12] is a bipartite graph whose nodes are places and
transitions. For the sake of simplicity, we assume that a Petri net contains at
least one place.

Definition 1 (Petri net). A Petri net is a tuple N = (P, T, F ) where P is
a (non-empty finite) set of places, T is a set of transitions, P ∩ T = ∅, and
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs.

To define the state of a net, we associate to every place of a Petri net N =
(P, T, F ) a (non-negative) counter. The values of the counters of all places of the
net form a marking (state) of the net. A marking M ∈ M(N) can be interpreted
as a vector, function, or multiset over the set P of places. A marking M ∈ M(N)
is visualized by putting M(p) tokens (black dots) into every place p.

Firings of transitions may change the state of a net. A transition t may fire
in marking M when it is enabled in M , i.e. every its input place p (a place



such that (p, t) ∈ F ) contains at least one token. If an enabled transition fires,
it removes one token from every its input place and adds a token to every its
output place (i.e. a place p such that (t, p) ∈ F ). We denote by M

t

−→ M ′.
A Petri net N = (P, T, F ) together with a marking M is called a marked

Petri net, denoted (N,M). A marked Petri net induces a state space, where
every state corresponds to a marking that can be reaches as a result of some
firing sequence. This set of reachable markings is called the reachability set of
the marked Petri net (N,M) and is denoted N [M〉.

Worfklow nets A workflow net (WF-net) [1] is a Petri net that is specifically
tailored towards modelling workflow processes. Typically, a workflow has a well-
defined point of entry (where new cases start) and a well-defined point of exit
(where handled cases end). Furthermore, every activity in a workflow typically
forwards the case from the point of entry to the point of exit. These three
requirements are reflected in workflow nets.

Definition 2 (WF-net). A workflow net is a Petri net N = (P, T, F ) such
that (1) there exists exactly one input place i, i.e. •i = ∅, (2) there exists exactly
one output place o, i.e. o• = ∅, and (3) every place and transition lies on some
path from i to o.

An important correctness property of workflows is soundness [1], which com-
prises the requirements that for every case the point of exit can be reached,
and that when this point is reached no work is being left behind, and moreover
for every activity there are some cases possible for which the activity can be
executed.

Definition 3 (soundness). A workflow net N = (P, T, F ) is called sound iff
(1) for every M ∈ N [i〉: o ∈ N [M〉, and (2) for every t ∈ T there exists a
M ∈ N [i〉 such that M enables t.

Soundness can be automatically checked by a number of Petri net tools, like
the tool Woflan [13, 14].

3 Components framework without values

In the SOA domain, Petri nets are used to model components that communicate
with each other through an interface, which is typically modelled by places [9].
For this reason, we distinguish interface places from other places. An interface
place can either be an input place or an output place. An input place has no
input arcs, whereas an output place has no output arcs. Note that, as a result,
a component is not allowed to communicate with itself.

As mentioned in the introduction, we can distinguish between sell-side com-
ponents and buy-side components. Typically, when some service wants to use
another service, that is, if the former consumes a service that is being provided
by the latter, the former first requests a quote from the latter. Based on the offer
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Fig. 1. The sell-side of a component

from the provider (which is optional, as the provider may decide not to offer the
service), the consumer decides to either accept or reject the offer. If the offer is
accepted, the provider actually provides the service, which might either succeed
or fail. This result is communicated to the consumer, which pays the provider if
the result was a success (no-cure-no-pay).

To provide the service, the provider might have to consume third-party ser-
vices in some order. Clearly, the provider needs to orchestrate these third party
services on-the-fly to achieve its goal. In contrast, the negotiation between the
provider and the customer is more of a choreographed nature.

Choreography The choreography in the framework consists of the sell-sides of
the components and the buy-sides of the tasks. Figure 1 visualizes the sell-side of
a component, whereas Figure 2 visualizes the buy side of a task. As usual, circles
represent places and squares represent transitions. For the ease of reference, sad
smileys have been used for the failure places and happy smileys for the success
places.

Underlying assumption for the sell-side of a component is that a component
can handle a predefined number of requests simultaneously. This predefined num-
ber corresponds to the number of tokens which are initially put into the place
idle. Thus, if the maximum number of requests is being handled, then no offer
can be made for the next request.

The buy-side of a task includes a place that contains a number of prospects.
A prospect corresponds to a third-party service that can actually perform the
task. If the task is started, an undefined number of prospects is queried for a
quote. If a prospect denies the request (no offer), the prospect is done. Otherwise,
the quote can either be accepted or rejected by the buy-side of the task.

Orchestration The service a component performs can be a simple task, like
retrieving some information from an underlying database, but it can also be a
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compound task that needs to orchestrate a number of (sub)tasks. In principle,
such an orchestration can be arbitrarily complex, but in this paper we consider
four types of operations to construct compound tasks:

1. sequence, i.e. performing a number of tasks in a given order,
2. parallel composition, i.e. performing a number of tasks simultaneously,
3. choice, i.e. performing one task chosen from several tasks, based on some

decision, and
4. while, i.e. performing a task as long as some condition holds.

Nevertheless, we would like to stress that the framework can be extended with
additional orchestration types if needed (as long as soundness is guaranteed, see
next section). Reason for restricting to this set of operations in this paper, is that
these four types are sufficient to explain the matters at hand, whereas additional
types might only distract the reader.

Figures 3–6 visualize these four basic orchestration types. Again, we use the
sad smileys for the failure places and the happy smileys for the success places, and
we use grey boxes to visualize the orchestrated tasks. For the sake of simplicity,
we used only two tasks for the sequence, parallel composition, and choice, but
it is not hard to see that this scheme can be extended to any number.

We provide a brief explanation for the parallel orchestration: This orches-
tration fails if any of the tasks fails, and succeeds if all the tasks succeed. An
alternative would be to use 2n transitions (where n is the number of tasks) to
handle this orchestration scheme, but such a scheme scales badly leading to the
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net explosion. Therefore, we use a scheme that requires only 2n + 3 transitions
and 2 additional places: failures and successes. These places hold the failure and
success messages (tokens). If n successes have been signalled, and hence no fail-
ures, the orchestration may signal success. If some failures have been signalled,
then we allow the signalled successes to be converted into failures. After all
successes have been converted this way, the orchestration can signal its failure.

For the while case, if the specified condition holds, then the T transition can
fire, otherwise the F transition can fire.

Example Figure 7 shows an example service using the component framework,
containing one choreography component (the sell side of the service), three or-
chestration components (which are compound tasks), and four (simple) task
components (the buy side of the service). The choreography component and the
task components are fixed (see Figures 1 and 2), but the orchestration compo-
nents are not (so they are not displayed). Using the orchestration components
(see Figures 3 to 6) we can build a complex orchestration hierarchy.

Orchestration soundness Clearly, any orchestration should lead to either a
success or a failure. For this, we can simply use the soundness property, using the
scheme as visualized by Figure 8. As a result, an orchestration is called sound if
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Fig. 8. Checking orchestration soundness

and only if the orchestration extended with the scheme visualized by Figure 8 is
sound.

However, we argue that we only need to check soundness on simple tasks, as
any orchestration is sound if and only if its tasks are sound. This is straightfor-
ward to check using only Figures 3 to 6. In case the framework is to be extended
by some new orchestration types, we need to check this requirement (the orches-
tration is sound if and only if the tasks are sound).

A possible implementation in BPEL In order to show that our framework
is practically feasible in a SOA setting, we show how the sell side of a component
could be implemented in BPEL [3]. The resulting BPEL model is abstract, as it
only contains the control-flow perspective. To keep the listing as short as possible,
we have removed lines which only contain end-tags. After all, the indentation of
the listing contains sufficient information to have these end-tags restored. The
BPEL process mimics the behavior of the Petri net fragment shown in Fig. 1.
Note that we need a way to keep track of the number of simultaneously running
instances for this process, and that we might have to decide whether or not we
want to make an offer.

1 <process name=“Sell side of the component’’>



2 <partnerLinks>
3 <partnerLink name=“client” partnerLinkType=“any”
4 myRole=“component” partnerRole=“client”/>

5 <partnerLink name=“task” partnerLinkType=“any”
6 myRole=“component” partnerRole=“task”/>

7 <sequence>
8 <receive partnerLink=“client” operation=“request”
9 createInstance=“yes”/>

10 <if>
11 <condition>number of instances &lt; maximum and want to offer</condition>

12 <sequence>
13 <invoke partnerLink=“client” operation=“offer”/>

14 <pick>

15 <onMessage partnerLink=“client” operation=“reject”>

16 <empty/>

17 <onMessage partnerLink=“client” operation=“accept”>

18 <sequence>
19 <invoke partnerLink=“task” operation=“start”/>

20 <pick>

21 <onMessage partnerLink=“task” operation=“failure”>

22 <invoke partnerLink=“client” operation=“failure”/>

23 <onMessage partnerLink=“task” operation=“success”>

24 <sequence>
25 <invoke partnerLink=“client” operation=“success”/>

26 <receive partnerLink=“client” operation=“payment”/>

27 <else>
28 <invoke partnerLink=“client” operation=“no offer”/>

4 Value-based services

In this section we will extend the model by assigning a cost to each outsourced
task. Each task has a maximal acceptable price, which means that if no service
provider is willing or able to perform the task for an amount of money within this
price limit, we consider this as a failure of the task. Note that the outsourcing
of a task may also fail due to problems with the service provider, but that is
a different and independent cause. Remember that a service provider gets only
paid after delivering its service. First, we will present the cost model for the
outsourcing of one task. Afterwards we will compute the total expected cost of
the an offered service, i.e. the expected cost of all tasks in one orchestration. The
price we ask for a service should be at least the expected cost of the execution
of the service in order to be profitable.

4.1 Expected cost of a simple task

Each task needs one type of service. For each service we request, we suppose to
know a discrete probability distribution p such that the lowest price X we have
to pay equals k with probability pk, i.e. P[X = k] = pk. For each task there is



a maximal price we are prepared to pay: m. So the expected cost of a task is∑m
i=1

i · pi.
The probability that the outsourcing of a task succeeds depends not only on

the deal making with a service provider but also on the successful execution of the
service provider. Each service provider has a probability of successful delivery of
the service. Let this probability be q and we assume that failure is an independent
event. Then the probability s of successful outsourcing is s := q ·

∑m
i=1

pi and
the probability that the outsourcing fails is 1 − s. The expected cost C of a
task is C := q ·

∑m
i=1

i · pi since we only have to pay for a service if it has
completed successfully. Note that the conditional expected cost, given that the
task is successful, is C/s which equals (

∑m
i=1

i · pi)/(
∑m

i=1
pi). With these data

we can make the model for the whole service.
A question to be answered is whether this is a realistic model of the cost of

a task. In order to answer it, we consider a more detailed model of the service
brokerage. We assume there are many service providers that can deliver the
requested service, and they all have their own price. So there are ak providers
that will deliver the service for k where k = 1, 2, 3, . . . . We assume that the
sequence a = (a1, a2, a3, . . . ) is unbounded. So we assume that if the price is high
enough there is always somebody who will provide the service. The cumulative
number of providers that is prepared to offer the service for price not higher than
k is Ak =

∑k
i=1

ai. At some point in time, when our task will request the service,
there are N other tasks before us that require the service simultaneously. Here
N is random variable. So the probability that we will get the cheapest offer for
price k is:

Pk = P[Ak−1 ≤ N < Ak] =

Ak−1∑

i=Ak−1

P[N = i]. (1)

We assume that the a-sequence can be looked up, for example in the UDDI, and
that the probabilities can be estimated from the log files of the UDDI.

4.2 Expected cost of a compound task

As derived above, a simple task t has expected cost C(t), a probability of success-
ful termination s(t) and a probability of failure 1 − s(t). Next we will consider
the expected cost of a compound task. We will do this using the principle of
structural induction, where we consider the four construction rules of Section 3.
Consider two tasks a and b with expected cost C(a) and C(b), respectively and
with success probabilities s(a) and s(b), respectively. We denote the sequential
coupling of a and b by a.b, the parallel coupling by a||b, the choice coupling by
a + b and the while iteration of task a by a∗. We may assume these task are
either be simple or compound.

Sequence The expected cost of the compound task is

C(a.b) = C(a) + s(a) · C(b) (2)



and the success probability is

s(a.b) = s(a) · s(b). (3)

To verify this note that if task a has finished successful then we have to pay
the service provider and if it is not successful, then we do not start task b.

Parallel The expected cost of the compound task is

C(a||b) = C(a) + C(b) (4)

and the success probability is

s(a||b) = s(a) · s(b). (5)

Note that we have to pay a service provider if the task has successful termi-
nated independent of the other task, but the whole task is only successful if
both tasks were successful.

Choice Assume that task a is chosen with probability α and task b with prob-
ability β. Then the expected cost of the compound task is

C(a + b) =
α

α + β
· C(a) +

β

α + β
· C(b) (6)

and the probability of success is

s(a + b) =
α

α + β
· s(a) +

β

α + β
· s(b). (7)

While Here we have to consider the probability of repetition. Let the probability
of action T in Figure 6 be α and the probability of action F be 1 − α. The
expected cost is

C(a∗) = α ·C(a)+α ·(α ·s(a)) ·C(a)+α ·(α ·s(a))2.C(a)+ . . . =
α · C(a)

1 − α · s(a)
(8)

and the success probability is

s(a∗) = (1−α)+(1−α)·(α·s(a))+(1−α)·(α·s(a))2+. . . =
1 − α

1 − α · s(a)
. (9)

Note that each cycle of the task has expected cost C(a), independent if it is
a success or a failure.

So if we start with simple tasks, the four rules give us the expected cost and
success probabilities of the compound tasks. So with structural induction we can
define these characteristics for all compound tasks. Important for this associa-
tivity of the first three construction rules:

C((a.b).c) = C(a) + s(a) · C(b) + s(a) · s(b) · C(c) = C(a · (b · c)) (10)



s((a.b).c) = s(a) · s(b) · s(c) = s(a · (b · c)) (11)

C((a||b)||c) = C(a) + C(b) + C(c) = C(a||(b||c)) (12)

s((a||b)||c) = s(a) · s(b) · s(c) = s(a||(b||c)) (13)

C((a + b) + c) = α+β
α+β+γ

· ( α
α+β

· C(a) + β
α+β

· C(b))

+ γ
α+β+γ

· C(c) = C(a + (b + c))(14)

s(a + (b + c)) = s(a + (b + c)) (15)

where we have for each task probabilities α, β and γ.
So a service can only be profitable if the price P that has to be asked to the

client satisfies s · P > C where C is the expected cost of the compound task of
the service and s is the success probability.

5 Conclusion

In our previous work [2], we have developed a SOA-based architecture frame-
work which is similar to the service component architecture [4]. In this paper,
we extended this work by a component framework which allows to check the
soundness property compositionally. Furthermore, our model takes the price of
a service into account.

Nonfunctional properties, also known as quality of service (QoS), are of in-
creasing importance when designing a service oriented architecture. In this pa-
per, we restricted our approach to profitability; that is, to cost. Cardoso et al. [6]
present a QoS model for time, reliability, and cost of workflows. Each task has
a QoS attribute. Based on these attributes, the cost of the overall workflow can
be computed using the METEOR workflow system. In [15], Zeng et al. present
a framework for QoS-aware service selection. Price is one of the nonfunctional
properties which are taken into account. Paoli et al. [11] address the problem of
designing a composed system that has to guarantee certain quality criteria such
as security, completion time, and also costs. It is shown how these criteria can
be computed on the structure of a service. To this end, quality evaluation rules
(similar those in [6]) for sequence, parallel, switch, and loop are proposed. To
summarize, all three approaches cover a broader spectrum of QoS criteria than
costs. However, probabilities for successful termination and for the price calcula-
tion of tasks and services are not considered. In [5], the authors present a general
framework for the evaluation of the financial consequences of outsourcing, while
in [8] the authors investigate pricing mechanisms appropriate for web services.
This is, however, far beyond the scope of this paper.

For the future work we plan to extend our framework with more types of
choreography protocols, in particular protocols that will ease cancellation of
services and allow for compensation mechanisms. We are also going to develop
a more sophisticated model of brokerage and price forming.
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