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A NEW VORTICITY DISTRIBUTION 'BLOB’ FOR GENERATION AT
FREE SURFACES

W.W.F. Pijnappel & C.W.M. van der Geld
Eindhoven University of Technology, Faculty of Mechanical Engineering
P.O. box 513, 5600 MB Eindhoven, the Netherlands

Summary

The creation of vorticity by a uniform flow at a free interface is modelle,dvby
a new concept of vorticity distributions. The tangential stresses induced at
the surface are shown to be better than that of the common ’blob’-models.

Introduction

In the past a considerable volume of numerical methods have been estab-
lished coping with turbulent flows. The discrete vortex blob methods give
direct physical insight in and accurately predict the development of the
flow behind an obstacle. Until now these studies have been restricted to
flows around solid objects [1], [2], [3]. The turbulence in the fluid is a
- consequence of the no-slip condition at the solid surface.

In this contribution flows around free boundaries are modeled. The cre-
ation of vorticity is then caused by tangential stresses at the free surface.
The strength of the vorticity is weak and localised, which gives rise to a
reexamination of the use of the well known blobs for representing localised
vorticity. This is the object of this paper. Due to shortcomings of the
blob model, an alternative way is suggested to circumvent the use of blobs
as sources of vorticity creation. To. this end a new boundary vorticity
distribution is introduced. ‘
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The numerical model in short

The following modelling assumptions are made : incompressible, isother-
mal, two-dimensional flow around a simply connected free surface. Veloc-
ities at infinity are finite and without a component in the y-direction, in
polar coordinates :

U ~ Uygrsin(d) (r — oo) t (1)

The viscosity inside the bubble is very small compared with the outer
fluid, and is therefore neglected. The pressure inside the bubble is as-
sumed to be constant. The mathematical model comprises two functions,
the stream function and the function describing the bubble surface. The
stream function is composed of three different types of functions, as will
be explained in the next subsection. One of these functions is the new
vorticity distribution that is the main topic of this paper.

The stream function

The flow field is described by a stream function V¥ satisfying the Poisson

equation V2¥ = —w . Using polar coordinates, the instantaneous velocities
in radial and tangential direction are
ov P
Up = — N ug=-——— 2
rof T o @)

The stream function ¥ is split! into a rotational part, ¥,, and a potential
part U, '
\I’ = \IJrot + \I,pot ' (3)
with
Vi, =0 A V2,0 = —w (4)
The potential part describes the flow far away from the bubble. In the

vicinity of the bubble viscous effects lead to vorticity being shed from the
free surface. This vorticity is modeled by ¥,;.

The harmonic function ¥, is developed in the origin. Its domain is the
unbounded- fluid domain exterior of the bubble.

o n = bn . . :
Tpor = 3 an cos(nf) + - sin{nd) + Ur sin(9) (5)
n=0"T n=0

Note that there is no vortex and no source at the origin of the coordinate
system. The coefficients a,, and b, are time-dependent.

!Fach flow field can be uniquely described in this manner, as discussed by van der
Geld [6]
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At any instant of time two types of vortices prevail in the fluid : a finite
number of free discrete vortices and what shall be named the boundary
vorticity distributions. Discrete vortices are being used in many shapes,
most of them close to the Gaussian shape [3]. They will be described
first. The rather awkward application of these vortices to the boundary
conditions prevailing at a free surface will be considered in some detail
to facilitate comparison with the new vorticity distributions later in this
paper. ‘

The contribution to the streamfunction ¥, of a discrete vortex at polar
coordinates (r;,6;) is :

T; ) '
U, i(r,0) = i In(o? 4+ 7% + r? — 2rr; cos(9 — 0;)) (6)

T; is the strength of the vortex and o is the core radius taken constant in
time without loss of generality. o
The flow field induced around a nearly spherical 2-D bubble by a discrete
vortex close to a bubble and the subsequent convection experienced by the
vortex are approximately described for small ¢ by a mirror image system
consisting of three vortices. If the point P on the bubble interface closest
to a discrete vortex D has curvature ¢ and the center of curvature of P is
C then vortex D is accompanied by a vortex situated on the line segment
CP at distance C_CP; from C with opposite strength, and a vortex at the
centre C with the same strength as vortex P. Thus, every discrete vortex
close to the bubble boundary is accompanied by two imaginary vortices to
form a mirror image system. As long as the vorticity is already detached
from the free surface, this is a satisfactory solution.

The tangential stress condition at the bubble interface, ‘however, cannot-
adequately be satisfied using the above-mentioned potential function and
discrete vortices. In contrast to a solid boundary, where the no-slip bound-
" ary condition can be satisfied by a vortex sheet at the boundary describing
a discontinuous velocity jump, the tangential stress condition at the free
surface requires continuous velocity gradients. A new boundary vorticity
distribution is presented below that satisfies this and other conditions.

First the governing equations and boundary conditions are presented along
with some remaining details of the numerical algorithm. The failure of the
discrete blobs to satisfy the tangential stress condition is examined next,
only to be followed by the presentation of the new boundary vortigiity
distribution (BVD).
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Governing equations and numerical algorithm

The tangential stress condition at the interface reads
{Pliquidﬁ = ‘?Pgasﬁ . (7)

Here P is the stress tensor, 7 is the normal unit vector, pointing into the
fluid and # is the tangential unit vector.

o (2272 () 1.2 (20
t’)?n—n((u)-{-?az)(tr n9)+48r(r80)nrne> (8)

At every timestep a new boundary vorticity distribution is computed with
the help of this tangential stress condition.

The potential part of the streamfunction is calculated by examining the
evolution of the pressure along contours which intersect the bubble bound-
ary twice.

The pressure drop between two points in the liquid is calculated by inte-
grating the Navier Stokes equation

Du

Py =Pi—Vp+ NV 9)

The only unknowns are the time derivatives of all coefficients a,,and b, in.

W,ot- Due to the curvature of the surface of the bubble the surface interface
shows a pressure jump given by the normal stress condition:

1P yasfi — APrigiai = (10)
[

Here r, is the radius of curvature and = is the surface tension coefficient.
The integrated Navier Stokes equations and the normal stress conditions
along a closed contour which intersect the interface twice sum up the zero
total pressure drop which yields an equation in the unknowns %‘ and %.
Several of these equations, each corresponding to a different contour, are
put together in a matrix that is solved for the unknowns. This procedure
has more detailedly been described by [6].

The bubble radius R is supposed to be a single-valued function of the angle
0. The function R(#) is expanded in a Fourier series. The bubble shape
is calculated at each timestep by a least squares cubic splines fit using the
kinematic boundary conditioen, that reads

orR(®) _ ., _,, 28
5 = U~ Yo (11)

Time-integration of this equation with the Adams-Bashford method yields
the time evolution of the surface.
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Figure 1: Tangential stress induced on the free interface of a circular bubble
with radius 1 mm. by a mirror image system with o = 0.05 mm.

Figure 2: Tangential stress-induced on the free interface of a circular bubble
with radius 1 mm. by a single BVD with a'= 10
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The discrete blobs attempt

There is a simple way to satisfy the tangential stress condition at a discrete
set of points on the bubble surface. Newly created discrete vortices are
put at so-called ’creation point’ away from the bubble interface, possibly
extended to mirror image systems as described above. The strengths of
these vortices are calculated from the tangential stress condition.

The resulting strengths of these vortices turn out to be strongly dependent
on the distance between the creation points and the interface. They are
also that large, that the bubble experiences irrealistic forces at its boundary
as demonstrated below. The main problem seems to be that the vorticity
in this method is created at a distance from the interface.

E.g., consider a circular 2-D bubble of radius 1 mm, and a system of three
vortices. One of strength 1 s™! at a distance of 1.05 mm from the center of
the bubble. One mirror vortex of strength -1 at a distance of 1/1.05 mm
from the centre, and one vortex of strength 1 in the center of the bubble.
The tangential stress induced on the free interface by this mirror image
system is shown in Fig. 1 for vortices with core radius ¢ = 0.05 min. If
the core radius does not exceed 0.016787 the tangential stress plot exhibits
only one peak.

Now add a uniform flow of 0.1 m/s; the streamfunction is ¥ = —12in(9);
the number of creation points is 40 and the creation points are placed at
equal distances, 1.05 mm from the center of the bubble. If the core radius is
o = 0.016787 the tangential stress induced on the surface by the potential
flow plus the vortices at the creation points and their images is as shown
in Fig. 3. It is a curve enclosed by an enveloping sine and the #-axis. This
characteristic is also exhibited for other values of ¢. E.g. for o = 0.05 the
tangential stress varies between -243 and 243; for o = 0 between -90 and
90. For ¢ = 0.02252 the variation is minimal, between -12 and 12.

For o = 0.05 the created vortices have strengths between -128.7 and 128.7,
for sigma = 0.02252 between -44.3 and 44.3 and for o = 0 between -24.5
and 24.5.

The strength of the new vorticity distribution will be seen to be of order
one.

The New Boundary Vorticity Distribution

During a timestep At the vorticity that is created at the free surface smears
out. Let us assume that after At the new vorticity distribution can be
conveniently be described as having a strength inversely proportional to
some power of the distance to the center of local surface curvature; as
defined below. This will lead to the new boundary vorticity distribution
(BVD) introduced in this section.

Select a finite number p of so-called pivotal points’, representative of the
interface. This can be achieved if the surface is split up into a finite number
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Figure 3: Tangential stress induced on the free interface of a circular bubble
with radius 1 mm. by a complete mirror image system with 40 creation

points and o = 0.016787
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Figure 4: Tangential stress induced on the free interface of a circular bubble

with radius 1 mm. by a complete BVD envelop and o = 10
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Figure 5: Tangential stress induced on the free interface of a circular bubble

with radius I mm. by a complete BVD envelop and o = 40

p of circular arcs. The pivotal points are the midpoints of the arcs and
lie on the bubble surface. To each pivotal point with its associated arc
correspond a center of curvature, M, and a half-cone C defined as the
interior of the area enclosed by two semi-infinite lines. These lines start
from M, the vertex of the half-cone and each goes through an endpoint of
the circular arc with radius of curvature r.. Within the half-cone C the
vorticity distribution function w is taken constant at constant distances to
M. w is zero inside the bubble and in the exterior of the half-cone.
Outside the bubble but within the half-cone boundary

w = c[rot? (12)

Here r is the distance from a point to M. With ones value of ¢, the
total circulation induced by the cone is given by TI', which is unknown
beforehand. In the power a is a constant,e.g. o = 10. Let ¢, be the angle
between the semi-infinite lines bordering the cone, then ¢ is a normaliza-

tion constant satisfying:
ard

= :2(,252
The velocities induced by this BVD is calculated with the Biot-Savart law.
For a half-cone, symmetric in the positive x-axis, with the vertex in the
origin, the radial velocity component u, is

(13)

c

a4 re®

= 3:0ER (f(0 = o) = f(O+9)) ‘ (14)

Uy

with ¢ = ¢/2 and

7o Rcos(r)) T

flr) = sin(m)amt"m< Rsin(r)

-5 sin(ar) signum(sin(r))
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— cos(ar)In(r,) — -;—{ R) — cos(ar) }In(rz

i=a—~1 a-z
+ R? —2r.Rcos(T Z cos (R> (15)

o oa—1 \r,

With the use of these formulae and the continuity equation all induced
velocity components and their derivatives are computed. These velocities
are required for the contour integrations to determine %’f‘ and &= ‘% For
example, Fig. 2 shows the tangential stress at the interface for a s1ngle
boundary vorticity distribution with its vertex in the center and the half-
cone symmetric in the x-axis. The cone angle is ¢, = 2= and the strength
is 1 st —1). The striking difference in amplitude between the tangential
stress induced by a mirror image system and a BVD is not surprising if
one considers that the latter vorticity is primarily created at the bubble
interface and not away from the interface. The further the creation point
is put from the interface, the larger the strength of the free vortex must
be to obtain the same induced tangential stress at the interface.

Fig. 4 and Fig. 5 show the residual tangential surface stress for a system
of 40 BVD’s equally spread around the circular bubble, so with ¢, = 16'
In Fig. 4 o = 10 and in Fig. 5 @ = 40. As might be expected the residual
stresses. caused by boundary distributions are much smaller than for free
vortices. An increase in the value of « does not lead to a further a decrease
in the residue. The strengths of BVD’s with o = 10 lay between -1.5 and
1.5.

The vortxclty w created at the interface should approximately sat:sfy the
following equation [8].

o
gy = = > 1
=2 (9
where U represents ﬂﬂg’- + ﬂﬁ’i “and r. is the radius of curvature once
again. Using o = 10 in the plecedmg example 4% = 1.000737 for all points

at the interface. This is in good agreement w1th the theoretic prediction.

Transport away from the free surface

One of the main reasons f}r\the introduction of discrete vortices is to simu-
late transportation of .vorticity by the flow. Therefore after each timestep
the BVD’s are translated into discrete vortices, which are not tied to a
fixed place. The convection of the discrete vortices is simulated using the
Biot-Savart law. Ogami and Akamatsu [4] have shown that the diffusion
can be simulated using the what they call Diffusion Velocity Method. The
effect of their diffusion technique is visible in the long run. Without the
diffusion the vortex blobs incline to stay closer together.
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Figure 6: Wake flow and bubble deformation by a uniform flow of water
of 100 mm/s past an airbubble of 2 mm in diameter

Testcases

The numerical algorithm has been subjected to several tests. The os-
cillatory -behaviour of the interface in a potential flow corresponds with
theoretical predictions [5] and the transformation of a big bubbles with a
diameter larger than 20 mm. agrees with results of Walters and Davidson
(7). Consider next an air bubble floating in a uniform water flow of 100
mm/s. The bubble surface is covered with 40 BVD’s. The distance of the
creation points are at a distance of 0.05 mm from the interface and the
core radius-is 0.05 mm. In Figure 3 the fluid flow is plotted after 0.03 s.
The timestep was 1.0e-4 s. These results are promising although further

computations are necessary for full testing. ’

Conclusions

The concept of fixed creation points at which vorticity is created does
not satisfy the requirements. The strengths of the vortices are strongly
dependent on the distance of the creation points from the interface and
are in all cases too large, causing an unstable interface.

A new concept of boundary vorticity was introduced. The stress created
at the interface are in good agreement with theoretical predictions and the
created vorticity is small as it should. The new boundary vorticity model
can be incorporated into existing models [6]
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