

A formal derivation of a sliding window protocol

Citation for published version (APA):
Hoogerwoord, R. R. (2006). A formal derivation of a sliding window protocol. (Computer science reports; Vol.
0631). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/5c1f0071-8602-4e7f-b25b-cf3acc99bb47

A Formal Derivation of a Sliding Window Protocol

Rob R. Hoogerwoord

Contents

0 Introduction 1
0.0 On systematic protocol design . 1
0.1 Sliding Window Protocols . 2
0.2 On the method . 3

0.2.0 Establish statements . 4
0.2.1 Selection statements . 4

0.3 Unreliable communication channels 5
0.3.0 The rule of Import and Export 5
0.3.1 How to keep unbounded nondeterminism manageable 6
0.3.2 How to model a duplicating channel 7
0.3.3 How (not) to model loss of items 7

0.4 Implementation issues . 8
0.5 Real-time issues . 10

1 First Approximation 12
1.0 The Sending Client and the Send Buffer 12
1.1 The Receiving Client and the Receive Buffer 13
1.2 A progress requirement . 14
1.3 The Receive Buffer . 15
1.4 The system thus far (i) . 18

2 Forward Communication 19
2.0 The Receiver Proper . 19
2.1 The Sender Proper . 20
2.2 Progress . 21
2.3 The system thus far (ii) . 23

3 Backward Communication 25
3.0 Acknowledgements . 25

i

ii

3.1 A minor improvement? . 27
3.2 Progress . 28
3.3 The final solution . 30

4 Epilogue 33
4.0 What we have learned . 33
4.1 Still to be investigated . 33

Bibliography 35

Chapter 0

Introduction

0.0 On systematic protocol design

My main point of view is that a distributed algorithm just is a parallel algorithm,
with the additional property that its variables can be partitioned in such a way that
their values can be stored, without too much trouble, in the machines on which
the distributed algorithm will be implemented. In particular, it is desirable that
all modifications of a variable are confined to components that are destined to be
excuted by one and the same machine in the distributed system.

In addition, inspections of the values of shared variables require some care. If
the value of a variable is needed outside the machine holding its value, some form
of communication must be used to send that value to where it is needed. That is,
in a truly distributed system, shared variables are neither modified nor inspected
outside the machines holding their values, and all interaction between components
in different machines take place via communication.

A viable design strategy now is to view designing a distributed algorithm as
designing an ordinary parallel algorithm, without too much regard, at least initially,
for the requirement of distribution. In a way, the latter can (and should) be viewed
as an implementation issue, to be dealt with at the right moment, which usually
means: not too early in the design. In particular, very often the program can and,
therefore should, be conveniently formulated in terms of (a limited use of) shared
variables. Communication by means of (synchronous or asynchronous) transmission
of items is a way to implement these shared variables in a distributed way; preferably,
this is introduced into the game only after the main design is complete, almost as an
afterthought, so to speak. The advantage of this approach is that the design evolves
in a need-driven way: only when the main design has been completed it becomes
clear what form and amount of communication is needed.

1

2 rh280b

In earlier studies, like [3] and [4], I have demonstrated the feasibility of this
approach. Here we illustrate the approach with yet another example, namely the
systematic construction of a (so-called) Sliding Window Protocol. This problem
distinguishes itself from the earlier studies in two respects:

• several aspects can be distinguished that admit a clear Separation of Concerns;

• the design is largely driven by progress considerations.

0.1 Sliding Window Protocols

There is no such thing as “the” Sliding Window Protocol. Actually, the name refers
to a whole class of protocols that differ in their details.

A Sliding Window Protocol provides an efficient solution to the problem how
to transfer a sequence of (data) items – a (potentially infinite) data stream – via an
unreliable communication channel. The communication channel is unreliable in the
following ways:

• Any item sent through the channel needs not arrive at the receiving end; that
is, items sent may become lost . To be able to guarantee progress we have to
assume, however, that not all items are lost: if sufficiently many items have
been sent sufficiently many items also will arrive; otherwise, the channel would
be completely useless.

• Any item sent through the channel may arrive more than once at the receiving
end; that is, items may be duplicated by the channel. Again, to prevent the
channel from becoming completely useless, we have to assume that the amount
of duplication is finite.

• The channel does not (necessarily) have the FIFO-property; that is, items need
not arrive at the receiving end in the same order in which they have been sent.

Despite the channel’s unreliability, the protocol has to reliably provide transmis-
sion of the items offered by the sending side – from now onwards called “the Sender” –
to the receiving end – from now onwards called “the Receiver” – . This transmission
is required to have the FIFO-property: all items are to be delivered to the Receiver
in the same order in which the Sender has offered them for transmission.

For the purpose of the protocol a second (unreliable) communication channel is
available, from the Receiver back to the Sender, via which, for example, acknow-
ledgements may be sent back. To distinguish the two communication channels, we
will call the channel from the Sender to the Receiver the forward (communication)

rh280b 3

channel and we will call the other channel the backward (communication) channel .
Both channels are unreliable as defined above.

As far as I know, the oldest discussion of such a Sliding-Window Protocol is a
publication [8] by Stenning, from 1976. Stenning’s presentation is remarkably mod-
ern, in that he formulates invariants and attempts to give a proof of the correctness
of the algorithm. The only other formal treatment of the subject I know of is a
(post-mortem) publication [7] by van de Snepscheut. His approach is to start with
a sequential program and to gradually transform it, preserving its correctness, into
a distributed program. Van de Snepscheut uses synchronous communication and
assumes the communication channels to have the FIFO-property; like ours, van de
Snepscheut’s treatment also can be considered as a systematic attempt to design
the protocol.

0.2 On the method

We use a method for development of parallel programs that is based on the theory
by Owicki and Gries, as originally presented in [6] and as further developed into a
design discipline by Feijen and van Gasteren in [2].

The main ingredient of this discipline is the notion of global correctness, which
entails that every assertion in every parallel component of a parallel program must
be globally correct . This means that every such assertion is invariant under – that is,
not violated by – every atomic statement in every other component of the parallel
program.

Techniques have been developed to keep the number of global proof obligations
manageable and to use these proof obligations as guiding principles for program
construction. We do not summarize these techniques here, as we assume the reader
to be familiar with [2].

A technique that is of particular importance and that deserves to be mentioned
separately is that it is possible to construct the annotation – that is, the whole of all
assertions – in the program in a step-by-step fashion: both adding a new assertion
and strengthening an already present assertion never violates the correctness of any
assertions already present in the program: all we have to do is to prove (local and
global) correctness of the new assertion.

In the same vein, guards both in selections and in synchronizing statements may
be safely strengthened without violating the correctness of the existing annotation;
we refer to [2] for details.

4 rh280b

0.2.0 Establish statements

For purposes of synschronization we use, so-called, establish statements, with this
syntactic shape, in which B is a boolean expression:

est B .

This statement is only eligible for execution in states where expression B has value
true , but its execution entails no state change whatsoever: it is a guarded skip . In
states where the value of B is false the statement is blocking the component in
which it occurs: then the component’s execution is postponed until the expression
has become true .

The proof rule for (local) correctness of postcondition Q in:

{ P } est B { Q } ,

is:
[P ∧ B ⇒ Q] , which can also be written (equivalently) as:

[P ⇒ (B ⇒ Q)] , or as:

[B ⇒ (P ⇒ Q)] .

0.2.1 Selection statements

In addition we use, so-called, selection statements, with this syntactic shape, in
which k is variable and B is a boolean expression – “ k such that B ” – :

k : B .

This statement is equivalent to the assignment to variable k of any – not further
specified – value for which boolean expression B has value true . If no such value
exists at the time of evaluation of B the statement is blocking the component in
which it occurs: then the component’s execution is postponed until the expression
has become true for at least one possible value of k . Thus, selection statements
can be used for synchronisation. Actually, we can think of the selection proper as
having been prefixed with a synchronizing statement “ est (∃k :: B) ”.

For example, k : sp ≤ k < sq assigns a value to k in the interval [sp . .sq) ; if
sp < sq such a value exists and the statement’s execution terminates, but as long as
sp ≥ sq the interval is empty and the statement is blocking.

rh280b 5

0.3 Unreliable communication channels

0.3.0 The rule of Import and Export

As we are heading for the design of a distributed communication protocol, we need
communication primitives that, in effect, constitute the interface between the pro-
tocol and the unreliable communication channels. In the final protocol, the above
mentioned synchronization statements will only be used for local purposes, that is,
for synchronization between parallel components within a single machine, either the
Sender or the Receiver.

No matter how unreliable the communication channels are, in one respect they
are extremely predictable: they do not make up items as every item delivered to
the receiving end has been sent once from the sending end. This is reflected in the
following Rule of Import and Export.

Communication is asynchronous, which means that sending and receiving an
item are two distinct events that do not – as in the case of synchronous communi-
cation – form a single indivisible action.

Sending an item E is denoted as a send-statement – with pre- and postcondition
P – :

{ P } send E { P } ,

whereas receiving an item into a local variable x is denoted as a receive-statement
– with pre- and postconditions Q and R – :

{ Q } receive x { R } .

The Rule of Import and Export then states that local correctness of R amounts to:

[P ∧ Q ⇒ R(x := E)] .

In this study we will apply this rule tacitly, without explicitly referring to it: when-
ever we have introduced a receive-statement with a desired postcondition R we will
see to it that, as far as R ’s local correctness does not follow from the statements
precondition, every send-statement has R(x := E) as its precondition.

The Rule of Import and Export is only valid for communication via the same
communication channel. In Sliding Window Protocols only two communication
channels play a role, which we have dubbed the “forward channel” and the “back-
ward channel”. To distinguish communication via these channels we use primitives
send and receive for forward communication and we use send-ack and receive-ack
for backward communication.

6 rh280b

Receive-statements are (potentially) blocking: an item cannot be received before
it has been sent. Send-statements are assumed to be non-blocking and are assumed
to be always executable. Depending on the actual communication channels this
assumption may or may not be realistic.

0.3.1 How to keep unbounded nondeterminism manageable

The prototype of a (sequential) program with unbounded nondeterminism has the
following shape, in which X and Y are natural constants:

{ 0≤X ∧ 0≤Y }
x, y := X,Y

; { invariant: 0≤x ∧ 0≤ y }
do 0 6=x → x := x−1 ; y := “any natural number”
[] 0 6= y → y := y−1
od

Here the statement y := “any natural number” indicates that, each time this as-
signment is executed, variable y is given an arbitrary natural number as its new
value that is not a priori bounded: any natural number is as good as any other.

An obvious invariant of the repetition is 0≤x ∧ 0≤ y . Although execution of the
repetition may require a number of steps that is unknown in advance, termination
is guaranteed nevertheless: the pair 〈x, y 〉 , with lexicographical ordering, serves as
variant function, as we observe that both 〈x−1, n 〉 , for any natural number n , and
〈x, y−1 〉 are lexicographically less than 〈x, y 〉 . In addition, the lexicographical
order on pairs of naturals is well-founded; thus, termination of the repetition is
guaranteed.

Yet, we can represent this form of unbounded nondeterminism in a deterministic
way, by means of clairvoyance: we assume – for the sake of argument only – that the
successive natural numbers to be assigned to y in the repetition’s body are available
in an infinite array B [0 . .∞) , say, which is assumed available in advance. For each
execution of y := “any natural number” the first “unused element” from array B
is taken; this is implemented by means of an additional index variable p , say, as
follows:

{ 0≤X ∧ 0≤Y }
x, y, p := X,Y, 0

; { invariant: 0≤x ∧ 0≤ y ∧ 0≤ p }
do 0 6=x → x := x−1 ; y := Bp ; p := p+1
[] 0 6= y → y := y−1
od

rh280b 7

As each increase of p is accompanied by a decrease of x , an additional invariant of
the repetition is that x+p is constant; as the initial value of x+p is X , so is this
constant, and the value of p is bounded accordingly: p≤X is invariant too.

Having thus eliminated the unbounded nondeterminism, termination of the rep-
etition can now be proved simply by means of a natural-valued variant function,
whose initial value is an upper bound for the number of steps the repetition will
take. This variant function is:

x + y + (Σi : p≤i<X : Bi) ,

the initial value of which is X +Y + (Σi : 0≤i<X : Bi) . Notice that this equals
X +Y plus the (finite) sum of all values assigned to y during the repetition.

0.3.2 How to model a duplicating channel

In a very similar way, a channel that is allowed to duplicate items arbitrary but
finite amounts of times can be modelled by assigning an arbitrary natural number
to each item. This number then represents the number of (identical) copies of the
item that will be delivered at the receiving end of the channel. Just as in the
previous subsection, instead of using unbounded nondeterminism, in phrases like
“any natural number”, we use an infinite array D[0 . .∞) from which these numbers
will be drawn, together with an additional index variable representing the number
of items sent through the channel. Array D is constant, with the interpretation
that Dn is the maximal number of copies of item n , where n is the ordinal number
of the item, counted from 0 onwards; that is, an item sent gets ordinal number n
whenever n items already have been sent before it.

We assume all elements of D to be positive: Dn = 1 represents the case where
item n is not duplicated and will be delivered only once, whereas Dn> 1 represents
the case where item n is duplicated Dn−1 times.

To record how many copies of an item are actually “still under way” we will
use an auxiliary variable d [0 . .∞) , such that di is the number of copies of item i
“still under way”. The channel then is assumed to deliver only copies of items i for
which di is positive, and with each reception of a copy of item i array element di
is decreased by 1 .

0.3.3 How (not) to model loss of items

A channel is allowed to not deliver any particular item, but to be able to guarantee
progress we must, of course, restrain the amount of items lost appropriately. This
can be achieved by associating, with each item delivered to the receiving end of

8 rh280b

the channel, an arbitrary natural number that represents the number of items lost
before this item is received.

More precisely, we identify the arriving items by means of consecutive numbering,
counting from 0 onwards; to distinguish these numbers from the numbering used
in the previous subsection, we call the current numbers “arrival numbers”. So, the
arrival number of an item is the number of items that have been received before it.
With the item with arrival number m we associate a natural number Cm : this is the
number of items lost just before arrival of item m . So, when the item with arrival
number m is received a total of m+1 items really have been received and a total
of (Σi : 0≤i≤m : Ci) items have been lost; thus, a total of (Σi : 0≤i≤m : Ci+1)
items have been sent, resulting in the reception of the first m+1 items.

Notice that this bounds the number of items sent per item received: as soon as
the Sender has sent at least (Σi : 0≤i≤m : Ci+1) items at least m+1 will actually
arrive. In this study, therefore, we will not use this formalization directly. Instead,
we use as a consequence what we call the

Bounded Loss Assumption .

This assumption states that if the Sender continues to send items through the chan-
nel the Receiver will continue to receive items from the channel as well. That is, if
progress of the Sender is guaranteed progress of the Receiver is guaranteed as well.
Note that this is a direct consequence of the above formal rendering of item loss.

Finally, we emphasize that the above principle gives no information on the identi-
ties of the items lost or received. As a very simple example, consider the special case
where Ci = 1 , for all natural i , and consider the case where the Sender sends “red”
items and “white” items strictly alternatingly. If the channel now delivers white
items only, so all red items are lost, then this channel still satisfies the Bounded
Loss Assumption: after all, it delivers every other item sent.

Of course, this phenomenon has grave consequences for the design of a reliable
transmission protocol: the only way to guarantee that at least one red item is
received is to design the protocol in such a way that, after a while, only red items
are sent! Fortunately, all Sliding Window Protocols have this property.

0.4 Implementation issues

We recall that a bounded buffer can only temporarily bridge speed differences be-
tween a producer of items and a consumer of items: in the long run a producer
and a consumer, even when connected via a bounded buffer, can only proceed at
the same average speed . This is achieved by synchronization: the consumer must be
synchronized to prevent it from taking items from an empty buffer, and the producer

rh280b 9

must be synchronized to keep the number of items in the buffer bounded, that is,
to prevent buffer overflow . This kind of synchronization sometimes is also referred
to by the phrase “flow control”.

A First-In First-Out buffer can most conveniently be represented by an infinite
array of items b [0 . .∞) , say, together with two indices p and q , say, satisfying the
invariant:

0 ≤ p ≤ q ,

such that b [p . . q) represents the actual content of the buffer. Adding an item x
to this buffer then amounts to:

b[q] := x ; q := q+1 ,

whereas b[p] is the buffer’s element to be taken first and where p := p+1 amounts
to removing this first element from the buffer. Of course, both inspection and
removal of the buffer’s first element are subject to the precondition p< q : if p= q
the buffer is empty .

If the buffer is bounded it satisfies an additional invariant:

q ≤ p+N ,

where N is the (finite) capacity of the buffer. In this case the infinite array can
be implemented as a finite array fb [0 . .N) , say. After all, the number of relevant
elements of b [p . . q) now is at most N , and these can be conveniently represented
by fb as follows:

(∀i : p≤i<q : b[i] = fb [imodN]) .

Now, the buffer’s first element is fb [pmodN] and the buffer’s first empty slot is
fb [qmodN] .

Such an implementation is known as a “cyclic array”, and it is nice, but we take
it for what it really is: just an implementation. In this study we will happily use
infinite arrays to represent buffers and we will pay little attention to their finite
implementations, by means of cyclic arrays or otherwise.

* * *

In the same vein, suppose we have an infinite boolean array b [0 . .∞) , together with
two natural variables p and q . Suppose the following invariants are given:

Q0 : 0 ≤ p ≤ q ,

Q1 : (∀ : 0≤i<p : b[i]) ,

10 rh280b

Q2 : (∀ : q≤i : ¬b[i]) .

This may be used, for example, to represent a finite subset of the naturals by means
of the relation that every natural n is an element of the set if and only if b[n] .

To implement this we do not really need an infinite array: because of Q1 the
segment b [0 . . p) is not particularly interesting, as it can be compactly represented
by variable p alone. Similarly, the segment b [q . .∞) is not very interesting ei-
ther, as it can be compactly represented by q alone. What remains is the segment
b [p . . q) , which can be stored in a finite array c [0 . . r) , say, where r = q−p . From,
p , q , and c the elements of b can be reconstructed, as follows, for any natural n :

b[n] = true , if n < p

b[n] = c[n−p] , if p≤n < q
b[n] = false , if q ≤ n

Again, we consider this as an implementation issue of minor importance, and we
will happily use infinite arrays like b as we see fit.

0.5 Real-time issues

In our presentation of the design all components receiving items from communication
channels will have the following general structure:

∗ [receive x
; “process x ”
]

Here the part “ process x ” will contain no blocking statements in general and, hence,
no other receive statements in particular. As a result, such a component is only
synchronized with its environment via the (one-and-only) “ receive x ” statement.

If the communication channel via which x is received delivers items faster than
(the execution of) the component can consume them, some items may be lost and/or
other errors may occur. Such errors can only be prevented, either by assuming the
presence in the communication channel of sufficient buffering of items that cannot
yet be received by the component, or by imposing the real-time requirement that
the component is executed fast enough.

The latter means that, actually, the component is always ready to perform its
(first or next) “ receive x ” statement before arrival of the (first or next) item from

rh280b 11

the channel. In low-level implementations this real-time requirement can be met
by implementing the component as a, so-called, interrupt-service routine, which is
executed with very high priority: as soon as the communication channel presents an
item for reception, an interrupt is triggered, and the corresponding interrupt-service
routine takes care of actually receiving that item. This modus operandi is only
feasible, of course, if the amount of work involved with consuming item x is small
enough so as not to disturb the scheduling of regular activities inside the executing
machine too much.

In our presentation of the design we will see to it that this is the case, and we will
not address the issue of this real-time rqeuirement anymore: we just assume that the
components receiving items from the communication channels are fast enough, and
we do not assume the presence of buffers at the receiving ends of the channels. Any
buffering required for the sake of the protocol will be programmed explicitly, includ-
ing the flow control needed to keep the amount of items in these buffers bounded.
In addition, in our presentation of the design the parts “process x ” in the receiving
components will essentially entail little more than recording the event that an item
has been received (and which).

Finally, we remark that we can safely use a send -statement in the part “process
x ”, because we have assumed send -statements to be non-blocking. Thus, the oc-
currence of an occasional send -statement in such a part will not gravely affect the
real-time obligations associated with it.

Chapter 1

First Approximation

1.0 The Sending Client and the Send Buffer

At the sending side we model the interface with the protocol as a separate com-
ponent, called “Sending Client”, which has the following structure – explanation
follows – :

∗ [“produce item x ”
; X [sq] := x ; sq := sq +1
]

Each time Sending Client has “produced” an item it offers this item for transmission
by storing it in infinite array X [0 . .∞) at its first free position, as represented by
index variable sq . (Notice that, in the above code, x just is a local variable of the
repetition’s body.) Thus, array segment X [0 . .sq) represents all items that ever
have been offered for transmission. Initially, no items have been offered, hence the
initial value of sq is 0 , and an obvious system invariant is 0≤ sq .

The protocol will implement reliable transmission of the elements of X [0 . .sq)
via the unreliable communication channel. As a result of this activity, at any mo-
ment in time some of X ’s elements will have been transmitted successfully whereas
others have not been transmitted successfully (yet). The elements that have been
transmitted successfully will, in general, not correspond to a consecutive segment of
X , but we will see that it nevertheless turns out useful to introduce an additional
index variable sp , with invariant:

Q0 : 0 ≤ sp ≤ sq .

The initial value of sp must be 0 too, and the intended interpretation now is that
at least all elements of X [0 . .sp) (and perhaps some more) have been transmitted

12

rh280b 13

successfully via the channel. As a result, the items in this array segment are not
relevant anymore for the protocol and, therefore, they need not be retained.

Therefore, we consider array segment X [sp . .sq) as the “Send Buffer”. Unless
Sending Client is appropriately synchronized, this buffer is in principle unbounded.
If so desired the buffer can be bounded by strengthening invariant Q0 , thus:

Q0a : 0 ≤ sp ≤ sq ≤ sp +W ,

where constant W is the Send Buffer’s capacity. To guarantee the invariance of
Q1 Sending Client must be properly synchronized: the required precondition of
“X [sq] := x ; sq := sq +1 ” then is: sq < sp +W . We do not consider bounding
the Send Buffer as specific to the Sliding Windows Protocol but, as we will see
later, we will need the stronger invariant Q0a for the sake of the protocol anyway,
and in what follows W will be called the “Window Size”. Constant W is as-
sumed to satisfy: 1≤W . The protocol will only transmit items from array segment
X [sp . .sp +W) ; as we will see, this restriction turns out necessary to guarantee
progress. By incorporating this we obtain this program for

Sending Client:

∗ [“produce item x ”
; est sq < sp +W
; { 0 ≤ sp ≤ sq < sp +W }
X [sq] := x ; sq := sq +1

]

warning: As a matter of fact we are discussing two essentially different prob-
lems here, whose solutions not necessarily coincide. On the one hand there
is no point in having a Window Size that exceeds the capacity of the Send
Buffer, but all by itself there is no reason why the two should be equal. It
is perfectly conceivable to have a Send Buffer whose capacity is larger than
the Window Size. In such an arrangement, Sending Client is able to buffer
more items for transmission than the protocol will actually transmit.

2

1.1 The Receiving Client and the Receive Buffer

At the receiving side we model the interface with the protocol as a separate compo-
nent, called “Receiving Client”, with the following structure – explanation follows – :

14 rh280b

∗ [est rq < sq
; { 0 ≤ rq < sq }
Z [rq] := X [rq] ; rq := rq +1

; “private consumer activity”
]

Array segment Z [0 . .rq) represents all items delivered to Receiving Client, and
the statement “Z [rq] := X [rq] ; rq := rq +1 ” represents delivery of the next item.
Initially no items have been delivered at all, so initially rq = 0 .

Array Z is only used to model delivery adequately; thus, Z [0 . .rq) represents
the complete delivery history of the protocol. In any concrete implementation, of
course, array Z may not be required: it is up to the designer of Receiving Client to
decide how delivered items will be consumed further.

Because item delivery cannot run ahead of sending the items by the Sending
Client, an obvious invariant must be:

Q1 : 0 ≤ rq ≤ sq ,

which gives rise to rq < sq as a precondition, and as a guard, to the delivery oper-
ation. Hence, the synchronization by means of “ est rq < sq ” is unavoidable: this is
part of the problem and not specific to the Sliding Windows Protocol.

By construction, Receiving Client also maintains this invariant:

Q2 : (∀i : 0≤i<rq : Z [i] =X [i]) ,

which expresses that all delivered items have been sent (previously) by Sending
Client. In addition, this guarantees First-In First-Out delivery as well: Receiving
Client initializes the elements of array Z in precisely the same order as Sending
Client stores them in array X .

1.2 A progress requirement

Together Sending Client and Receiving Client correctly implement FIFO-trans-
mission of items from the former to the latter. In reality, however, the system
is distributed and neither client can contain references to variables of the other; that
is, the use of shared variables is prohibited and all communication will have to take
place via the unreliable channels.

In particular, the guard rq < sq , in Receiving Client, cannot be implemented
directly, as it contains variable sq , which is private to Sending Client. Therefore,
this guard will have to be strengthened to a, yet to be determined, boolean expression
rB , say, thus:

rh280b 15

∗ [{ ?? rB ⇒ rq < sq }
est rB

; { 0 ≤ rq < sq }
Z [rq] := X [rq] ; rq := rq +1

; “private consumer activity”
]

Because the new guard will be stronger than the old one, correctness of the annota-
tion is preserved, but now we are faced with the following progress requirement :

R0 : rq < sq ⇒ “after finitely many steps of the system, rB is true ” .

Notice that states where rq = sq constitute no problem: as we have seen al-
ready, Receiving Client becoming blocked in such states not only is harmless but
even is unavoidable: rq = sq means that all items offered by Sending Client have
been delivered to Receiving Client, hence progress of Receiving Client must become
impossible.

To guarantee true progress, that is, to guarantee absence of (the danger of)
individual starvation, the guard rB must not only become true but it must become
stable as well. We will see to it, however, that all guards in the protocol are stable:
once they have made the transition from false to true they will remain true forever.
Notice, by the way, that the original weaker guard, rq < sq , is stable indeed.

1.3 The Receive Buffer

Both index variable sq and array X are variables of the Sender, hence they must be
eliminated from Receiving Client. For this purpose the expression X [rq] must be
replaced by a different but equivalent expression. This will require communication
with the Sender, as only the Sender can provide items from array X .

In view of the unreliability of the communication channels and in view of the
fact that the channels do not preserve the order of transmitted items, we must allow
for the possibility that items arrive at the Receiver that are not X [rq] . Hence,
some form of buffering at the Receiver is needed, for the purpose of storing items
that arrive out of order.

We represent this buffer as an infinite array Y [0 . .∞) of items, together with
a boolean array rc [0 . .∞) , that satisfy the following invariant:

Q3 : (∀i :: rc [i] ⇒ Y [i] =X [i]) .

This invariant expresses that the elements of Y for which the corresponding el-
ements of rc are true are equal to the corresponding elements of X . Boolean

16 rh280b

array rc is necessary here because, due to the irregularities in the channel, we
may not expect the content of the Receive Buffer to fill a consecutive segment in
array Y . Thus, boolean array rc represents the set of all indices i for which
Y [i] =X [i] is guaranteed. Initially, invariant Q3 holds, of course, provided that
initially: (∀i :: ¬rc [i]) .

In the above program for Receiving Client we are only interested in X [rq] . In
view of the condition rq < sq and invariant Q1 , only the values of rc [i] for i < sq
will be of interest. This is also in line with the operational interpretation of the
game: boolean rc [i] indicates whether a copy of array element X [i] is available
in the Receive Buffer, and for sq ≤ i this will never be the case, because for sq ≤ i
array element X [i] has not even been initialized!

Therefore, it is safe to introduce the following additional invariant:

Q4 : (∀i :: sq≤i ⇒ ¬rc [i]) ,

which trivially holds initially, because of the initial value of rc . By the instantiation
i := sq we conclude that Q4 implies ¬rc [sq] as a special case.

On account of Q3 , array element X [rq] now is equal to Y [rq] , provided rc [rq]
is true ; in addition we derive:

rc [rq]

⇒ { Q4 , with contraposition }
rq < sq ,

so for the still to be chosen expression rB we can use rc [rq] , as this implies rq < sq ,
as required. Initially, the elements of rc are false and once they have become true
they will remain true forever. Hence, the guard rc [rq] is stable.

Thus, by substituting these results we obtain the following new version of the
program for

Receiving Client:

∗ [est rc [rq]
; { rc [rq] , hence: 0≤ rq < sq ∧ Y [rq] =X [rq] }
Z [rq] := Y [rq]

; rq := rq +1
; “private consumer activity”
]

With this choice for the guard rB our original progress requirement R0 can now
be reformulated:

rh280b 17

R1 : rq < sq ⇒ “after finitely many steps of the system, rc [rq] is true ” .

We still have to decide how arrays rc and Y are to obtain their values. We
have already decided that all elements of rc are false initially; in addition, we will
see to it that every element of rc makes the transition to true exactly once, and
once it is true it will remain true . Hence, the guard rc [rq] is stable.

Because the assignment rq := rq +1 has rc [rq] as its precondition, we obtain
yet another invariant for free, namely:

Q5 : (∀i : i<rq : rc [i]) .

Together, arrays rc and Y constitute the Receive Buffer. On account of invari-
ant Q3 , the buffer positions i with sq ≤ i are (still) empty. On account of Q4 and
because of the order in which the elements of Y are copied into Z , the contents
of the buffer positions i with i < rq may be considered (no longer) relevant; hence,
these positions can be considered empty (again) as well.

As a consequence, the contents of the Receive Buffer is confined to the array
segments rc [rq . .sq) and Y [rq . .sq) . So, the Receive Buffer will actually contain
at most sq−rq items.

Finally, in the previous section we have introduced (in the Sender) a variable
sp , with the intended interpretation that at least all elements of X [0 . .sp) have
been “transmitted successfully”. This can now be defined as “being present in the
Receive Buffer”, that is, element X [i] has been “transmitted successfully” if and
only if rc [i] and, hence, Y [i] =X [i] . So, the intended meaning of variable sp is
captured adequately by the following additional invariant:

Q6 : (∀i : i<sp : rc [i]) .

This invariant also tells us when sp may be incremented, namely when rc [sp]
is true . As there is no reason why incrementing sp should be synchronous with
the activity of Sending Client, we introduce a dedicated parallel component, in the
Sender, for this purpose, called “Co-Sender” – notice that sp < sq is the required
additional precondition for the invariance of Q0a – .

Co-Sender:

∗ [est rc [sp]
; { rc [sp] , hence by Q4 : sp < sq }

sp := sp +1
]

This is a component in the Sender, because sp is a Sender variable; as a result,
variable rc , which is a Receiver variable, may not be used here. How this is to be
implemented will be taken care of later, though.

18 rh280b

1.4 The system thus far (i)

In its current state the design is still incomplete – it lacks progress – , but at least all
its invariants and assertions are correct. Thus far the system consists of invariants
Q0a up to Q5 and three components, namely the Sending and Receiving Clients
and Co-Sender:

Q0a : 0 ≤ sp ≤ sq ≤ sp +W

Q1 : 0 ≤ rq ≤ sq

Q2 : (∀i : 0≤i<rq : Z [i] =X [i])

Q3 : (∀i :: rc [i] ⇒ Y [i] =X [i])

Q4 : (∀i :: sq≤i ⇒ ¬rc [i])

Q5 : (∀i : i<rq : rc [i])

Q6 : (∀i : i<sp : rc [i])

initially: sp = 0 ∧ sq = 0 ∧ rq = 0 ∧ (∀i :: ¬rc [i]) .

Sending Client:

∗ [“produce item x ”
; est sq < sp +W
; { 0 ≤ sp ≤ sq < sp +W }
X [sq] := x ; sq := sq +1

]

Co-Sender:

∗ [est rc [sp]
; { rc [sp] , hence by Q4 : sp < sq }

sp := sp +1
]

Receiving Client:

∗ [est rc [rq]
; { rc [rq] , hence: 0≤ rq < sq ∧ Y [rq] =X [rq] }
Z [rq] := Y [rq] ; rq := rq +1

; “private consumer activity”
]

Progress requirement, yet to be satisfied:

R1 : rq < sq ⇒ “after finitely many steps of the system, rc [rq] is true ” .

Chapter 2

Forward Communication

2.0 The Receiver Proper

The current state of the design is such that we still have meet progress requirement
R1 : in states where rq < sq the boolean rc [rq] becomes true within finitely many
steps of the system: as soon as rc [rq] is true , Receiving Client can proceed and
can consume its next item, by incrementing rq . Thus, completion of the design is
mainly driven by this progress requirement.

For this purpose we introduce an additional parallel component in the Receiver,
called “Receiver Proper”, that will establish rc [rq] . Invariant Q3 now tells us that
the assignment rc [rq] := true requires Y [rq] =X [rq] as its precondition. The
only way to establish this is to assign the value of X [rq] to Y [rq] , and X [rq] can
only be obtained by receiving it from the Sender via the (forward) communication
channel.

Because we have no control over the order in which sent items will be received
via the communication channel we cannot0 simply require that just item X [rc] is
received. So we have to allow for the possibility that any item X [h] , say, from
the Send Buffer is received by Receiver Proper; if this happens this value can be
assigned to Y [h] and rc [h] can be made true . Invariant Q4 requires that h
satisfies h< sq , which, therefore, will be a postcondition of the receive statement.

In addition, we do not assume items to identify their own indices in array X
– that is, their positions in the Send Buffer – ; actually, different elements of X
may even be equal: we do not assume items to be “self-identifying”. Therefore,
every item will be sent together with its index in X ; so, the Sender will send pairs
〈h,X [h] 〉 , satisfying 0≤h< sq . These considerations give rise to the following

0Well, we could, but this would lead to a straightforward hand-shake protocol, which would not
be very efficient.

19

20 rh280b

design for Receiver Proper:

∗ [receive 〈h, x〉
; { 0≤h< sq ∧ x=X [h] }
Y [h] := x ; rc [h] := true

]

remark: This component is subject to the real-time requirement mentioned in
Section 0.5; as its only job is to transfer received values to their proper places
in the Receive Buffer – which, after all, is the net effect of the assignments
“Y [h] := x ; rc [h] := true ” – this should pose no large difficulties.

2

Thus, Receiver Proper sets elements of boolean array rc to true , while respecting
the system invariants. It has the possibility to set rc [rq] to true as well, as required,
but this is not (yet) guaranteed. To guarantee that rc [rq] becomes true in finitely
many steps, the Sender must be designed towards this goal: after all, to ensure
progress in Receiver Proper we have to construct a matching component actually
sending pairs received by Receiver Proper.

2.1 The Sender Proper

In the Sender we now introduce an additional parallel component, called “Sender
Proper”, the purpose of which is to send items from the Send Buffer, paired with
their indices, via the communication channel. This must be organized in such a way
that, eventually, item X [rq] is guaranteed to be received by Receiver Proper.

By invariant Q3 , there is no point in transmitting an item X [k] for which rc [k]
already is true ; therefore, we restrict transmission to indices satisfying ¬rc [k] . As
a special case, by invariant Q6 , there is no point in transmitting an item with an
index less than sp ; hence, we restrict the transmission of items to the ones with
indices at least sp . Finally, the Send Buffer contains no items with indices at least
sq 1; so, we further restrict the items to those with indices less than sq .

Thus, we obtain the following design for Sender Proper – explanation follows – :

∗ [k : sp ≤ k < sq ∧ ¬rc [k]
; { sp ≤ k < sq }

send 〈 k ,X [k] 〉
]

1This is partially reflected by invariant Q1 ; a more complete formalization would involve an
additional boolean array, to represent the set of items in the Send Buffer.

rh280b 21

The statement k : sp ≤ k < sq ∧ ¬rc [k] assigns a value to variable k such that
sp ≤ k < sq ∧ ¬rc [k] ; if sp = sq this range is empty and no such value exists, so
the statement is blocking the component: if sp = sq the Send Buffer is empty and
Sender Proper will become blocked until Sending Client offers more items for trans-
mission: Sender Proper is synchronized with the Sending Client, as it should be.

If, however, sp < sq and if, in addition, (∀i : sp≤i<sq : rc [i]) then Sender
Proper will become blocked too, but in this case all items in the Send Buffer have
been successfully delivered to the Receive Buffer. Now component Co-Sender will
proceed and will increment sp to (eventually) the current value of sq : a state satis-
fying sp < sq ∧ (∀i : sp≤i<sq : rc [i]) is an (unstable) transient state that will not
last forever.

2.2 Progress

Component Sender Proper has been constructed in such a way that no items will
be selected for which already has been established that they have been transmitted
successfully, as represented by boolean array rc . This turns out to be sufficient to
guarantee progress: we can now prove that progress requirement R1 is satisfied.

To be able to formulate this proof we must represent the amount of duplication
of items in the communication channel. For this purpose we introduce an auxiliary
variable sn , to distinguish all individual send events, and a constant natural func-
tion D [0 . .∞) , with the interpretation that Di is the maximal number of copies,
including the original, of the item sent in transmission i , for all i : 0≤ i < sn .

In addition we introduce an auxiliary array variable sd [0 . .∞) , to represent the
number of copies of a particular item “still under way” in the channel. Because
pairs 〈 k,X [k] 〉 with the same index k cannot be distinguished, we do not, how-
ever, let sd i represent the number of copies “still under way” of the pair sent in
transmission i ; instead, sdk will be the total number of copies “still under way”
of any pair 〈 k,X [k] 〉 with index k . Hence, instead of augmenting the statement
send 〈 k ,X [k] 〉 with the obvious sdk := Dsn we decorate it with sdk := sdk +Dsn ;
in addition, we decorate the statement receive 〈h, x〉 , in Receiver Proper, with
sdh := sdh−1 . These additions yield the following code for Sender Proper and
Receiver Proper:

Sender Proper:

∗ [k : sp ≤ k < sq ∧ ¬rc [k] ; sdk := sdk +Dsn ; sn := sn + 1
; { sp ≤ k < sq }

send 〈 k ,X [k] 〉
]

22 rh280b

Receiver Proper:

∗ [receive 〈h, x〉 ; { 1≤sdh } sdh := sdh−1
; { 0≤h< sq ∧ x=X [h] }
Y [h] := x ; rc [h] := true

]

Notice that, in Sender Proper, we have added the extra statements to the selec-
tion of k , instead of to the actual send -statement. This corresponds to a (harmless)
act of clairvoyance: the premature increase of sdk (with Dsn) can be viewed as a
prediction of the amount of duplication the item will incur during its actual trans-
mission. For the sake of the proof of progress, we consider the assignments to sdk
and sdh as being indivisible parts of the immediately preceding statements.

Initially, all elements of sd are assumed to be 0 , of course, and an obvious
invariant is (∀i :: 0≤ sd i) .

* * *

Now we are ready for the proof that progress requirement R1 is satisfied. We
consider states satisfying rq < sq ∧ ¬rc [rq] . It now suffices to show that as long as
this condition holds the system’s activity will eventually terminate, and that it will
do so in a state where rc [rq] .

Because ¬rc [rq] we conclude, by invariant Q6 , that sp ≤ rq ; hence, rq is in the
range of the selection k : sp ≤ k < sq ∧ ¬rc [k] in Sender Proper. So, this selection
is non-blocking and Sender Proper will proceed indefinitely – that is, as long as
rq < sq ∧ ¬rc [rq] remains true – . By the Bounded Loss Assumption this means
that Receiver Proper will proceed indefinitely too.

Now, the pair – with lexicographic ordering – :

〈 (# i : i<rq +W : ¬rc [i]) , (Σi : rc [i] : sd i) 〉

is a useful variant function for the communication channel. Receiver Proper repeat-
edly receives pairs 〈h, x〉 , and here two cases can be distinguished:

• If ¬rc [h] the subsequent assignment rc [h] := true decreases the first element
of the variant function by 1 ; this assignment also increases the pair’s second
element by sdh but this is harmless in view of the lexicographic ordering.

• If rc [h] then the first element of the variant function remains the same, and
its second element decreases by 1 , because the reception of the pair 〈h, x〉
always is accompanied by a decrease of sdh by 1 : hence, because rc [h] the
sum (Σi : rc [i] : sd i) decreases by 1 too.

rh280b 23

Moreover, no other statement in the above program increases the variant function. In
particular, the only potentially conflicting statement is sdk := sdk +Dsn in Sender
Proper, but this statement has ¬rc [k] as its precondition, hence this assignment
to sdk does not affect the second element of the variant function.

* * *

Finally, we observe that, without decreases of the first element of the variant func-
tion, its second element, (Σi : rc [i] : sd i) , can only be decreased a finite amount
of times. Hence, the variant function’s first element, (# i : i<rq +W : ¬rc [i]) ,
must be decreased eventually as well. Hence, as long as the required condition,
rq = sq ∨ rc [rq] , has not been achieved, the number of indices for which ¬rc [i]
will continue to be decreased, thus eventually leading to a state satisfying rc [rq] ,
because we have:

(# i : i<rq +W : ¬rc [i]) = 0 ⇒ rc [rq] .

2.3 The system thus far (ii)

Q0a : 0 ≤ sp ≤ sq ≤ sp +W

Q1 : 0 ≤ rq ≤ sq

Q2 : (∀i : 0≤i<rq : Z [i] =X [i])

Q3 : (∀i :: rc [i] ⇒ Y [i] =X [i])

Q4 : (∀i :: sq≤i ⇒ ¬rc [i])

Q5 : (∀i : i<rq : rc [i])

Q6 : (∀i : i<sp : rc [i])

initially: sp = 0 ∧ sq = 0 ∧ rq = 0 ∧ (∀i :: ¬rc [i]) ∧
sn = 0 ∧ (∀i :: sd i = 0) .

Sending Client:

∗ [“produce item x ”
; est sq < sp +W
; { 0 ≤ sp ≤ sq < sp +W }
X [sq] := x ; sq := sq +1

]

Co-Sender:

24 rh280b

∗ [est rc [sp]
; { rc [sp] , hence by Q4 : sp < sq }

sp := sp +1
]

Sender Proper:

∗ [k : sp ≤ k < sq ∧ ¬rc [k] ; sdk := sdk +Dsn ; sn := sn + 1
; { sp ≤ k < sq }

send 〈 k ,X [k] 〉
]

Receiving Client:

∗ [est rc [rq]
; { rc [rq] , hence: 0≤ rq < sq ∧ Y [rq] =X [rq] }
Z [rq] := Y [rq] ; rq := rq +1

; “private consumer activity”
]

Receiver Proper:

∗ [receive 〈h, x〉 ; { 1≤sdh } sdh := sdh−1
; { 0≤h< sq ∧ x=X [h] }
Y [h] := x ; rc [h] := true

]

Chapter 3

Backward Communication

3.0 Acknowledgements

In the current state, the design is correct and progress is guaranteed, but in two
of the Sender’s components, namely Sender Proper and Co-Sender, the Receiver’s
variable rc still occurs. To obtain a truly distributed implementation this variable
must be eliminated from these components.

To do so we introduce a new Sender variable, sc , also an infinite boolean array,
that will take over the role of rc in the Sender. The relation between sc and rc is
given by the following new invariant:

Q7 : (∀i :: sc [i] ⇒ rc [i]) .

Invariant Q7 is satisfied initially if initially (∀i :: ¬sc [i]) .
Now we strengthen the guard rc [sp] in Co-Sender to sc [sp] , thus retaining its

correctness and eliminating variable rc . Also, we replace ¬rc [k] in Sender-Proper
by ¬sc [k] . This effectively weakens the guard it is part of, so, we will have to
reconsider the progress argument.

Also for the sake of progress we must provide for a way to set the elements of
sc to true . Because of invariant Q7 every assignment sc [l] := true has rc [l]
as its precondition. To establish this we use dedicated items, via the backward
channel from the Receiver to the Sender, to communicate exactly this fact. These
items are called “acknowledgements”; every such acknowledgement contains an index
identifying an element of array rc .

Because arrivals (at the Sender) of acknowledgements are asynchronous events
we introduce yet another dedicated component, “Co-Sender 1”, to process them.
Arrival of an acknowledgement containing index l signals that rc [l] is true ; hence,
after this arrival, array element sc [l] may be set to true as well.

25

26 rh280b

An acknowledgement with index h may only be sent whenever rc [h] is true .
Because the only assignment to rc occurs in Receiver-Proper, we add a statement
“ send-ack h ” right after the assignment rc [h] := true .

remark: This is a true design decision: once rc [h] has become true as many
acknowledgements with index h may be sent as we like. Notice, however, that
we are dealing with conflicting requirements here. On the one hand, sending
acknowledgements with index h with as high a frequency as possible guar-
antees the swift arrival of an ackowledgement with index h at Co-Sender 1;
on the other hand, this may unnecessarily consume capacity of the backward
communication channel needed for acknowledgements with other indices (or
needed for any other purposes, for that matter).

Moreover, for any particular index h we wish the stream of acknowledge-
ments with index h to terminate. In the current design, one acknowledge-
ment is sent per pair received via the forward channel: thus the number
of acknowledgements with index h is at most the number of pairs 〈h, x〉
received. If the latter is finite so will be the former.

2

These additions lead to the following new components Sender-Proper, Co-Sender,
Co-Sender 1, and Receiver-Proper:

Sender Proper:

∗ [k : sp ≤ k < sq ∧ ¬sc [k]
; { sp ≤ k < sq }

send 〈 k ,X [k] 〉
]

Co-Sender:

∗ [est sc [sp]
; { sc [sp] , hence, by Q7 and Q4 : rc [sp] ∧ sp < sq }

sp := sp +1
]

Co-Sender 1:

∗ [receive-ack l
; { 0≤h< sq ∧ rc [l] }

sc [l] := true
]

rh280b 27

Receiver Proper:

∗ [receive 〈h, x〉
; { 0≤h< sq ∧ x=X [h] }
Y [h] := x ; rc [h] := true

; { 0≤h< sq ∧ rc [h] }
send-ack h

]

3.1 A minor improvement?

In view of the real-time requirements associated with processing arriving acknow-
ledgements component Co-Sender 1 is attractive: the required “processing” per
received acknowledgement consists of the single assignment sc [l] := true only.

As this is the only assignment setting elements of sc to true , and as it is com-
ponent Co-Sender’s purpose to perform assignments sp := sp +1 with precondition
sc [sp] , components Co-Sender and Co-Sender 1 can be combined into a single

component, called “Combined Co-Sender”, – provided this does not unacceptably
aggravate the real-time obligations just mentioned – , as follows:

∗ [receive-ack l
; { 0≤ l < sq ∧ rc [l] }

sc [l] := true
; do sc [sp] → { sc [sp] , hence, by Q7 and Q4 : rc [sp] ∧ sp < sq }

sp := sp +1
do

]

Notice that the use of a repetition is necessary here, because of the possibly irregular
order of arrival of items: arrival of a single acknowledgement may give rise to a large
increase of variable sp ; this repetition takes over the role of the original repetition
in component Co-Sender.

On account of invariant Q0a execution of the above repetition terminates after
at most sq−sp steps; by virtue of the same invariant this is at most W . Thus,
the (worst-case) amount of work needed to process any received acknowledgement
is at most W , which is more than the single assignment in the previous version but
which still is bounded. (And, of course, on the average sp is increased by 1 per
newly received acknowledgement.)

28 rh280b

3.2 Progress

As in the previous chapter, we consider system states satisfying rq < sq ∧ ¬rc [rq] .
As before, this and the invariants then imply sp ≤ rq < sq ∧ ¬sc [rq] , so rq is in the
range of the selection k : sp ≤ k < sq ∧ ¬sc [k] in Sender Proper. Hence, this selec-
tion is non-blocking and Sender Proper will proceed indefinitely. By the Bounded
Loss Assumption Receiver Proper will proceed indefinitely as well, and for every pair
thus received Receiver Proper sends an acknowledgement back to the Sender; once
more by the Bounded Loss Assumption but now for the backward communication
channel, component Combined Co-Sender will proceed indefinitely too.

remark: Notice that here we use that a cascade of two unreliable communica-
tion channels is equivalent to a single unreliable communication channel.

2

Therefore, it suffices to construct a variant function and to show that the actions
of Combined Co-Sender effectively decrease the varient function, and that no other
action increases it.

As before, for his purpose we introduce auxiliary variables to represent, for ev-
ery index, the number of pairs with that index “still under way” in the forward
communication channel, and also the number of acknowledgements with that index
“still under way” in the backward communication channel. Constant natural func-
tions D and C are used to model the amounts of duplication in the forward and
backward communication channels respectively. This yields the following decorated
components.

Q0a : 0 ≤ sp ≤ sq ≤ sp +W

Q1 : 0 ≤ rq ≤ sq

Q2 : (∀i : 0≤i<rq : Z [i] =X [i])

Q3 : (∀i :: rc [i] ⇒ Y [i] =X [i])

Q4 : (∀i :: sq≤i ⇒ ¬rc [i])

Q5 : (∀i : i<rq : rc [i])

Q6 : (∀i : i<sp : rc [i])

Q7 : (∀i :: sc [i] ⇒ rc [i])

initially: sp = 0 ∧ sq = 0 ∧ rq = 0 ∧ (∀i :: ¬rc [i]) ∧ (∀i :: ¬sc [i]) ∧
sn = 0 ∧ (∀i :: sd i = 0) ∧ rn = 0 ∧ (∀i :: rd i = 0) .

rh280b 29

Sending Client:

∗ [“produce item x ”
; est sq < sp +W
; { 0 ≤ sp ≤ sq < sp +W }
X [sq] := x ; sq := sq +1

]

Sender Proper:

∗ [k : sp ≤ k < sq ∧ ¬sc [k] ; sdk := sdk +Dsn ; sn := sn + 1
; { sp ≤ k < sq }

send 〈 k ,X [k] 〉
]

Combined Co-Sender:

∗ [receive-ack l ; { 1≤rd l } rd l := rd l−1
; { 0≤ l < sq ∧ rc [l] }

sc [l] := true
; do sc [sp] → { sc [sp] , hence, by Q7 and Q4 : rc [sp] ∧ sp < sq }

sp := sp +1
do

]

Receiving Client:

∗ [est rc [rq]
; { rc [rq] , hence: 0≤ rq < sq ∧ Y [rq] =X [rq] }
Z [rq] := Y [rq] ; rq := rq +1

; “private consumer activity”
]

Receiver Proper:

∗ [receive 〈h, x〉 ; { 1≤sdh } sdh := sdh−1 ; rdh := rdh+Crn ; rn := rn +1
; { 0≤h< sq ∧ x=X [h] }
Y [h] := x ; rc [h] := true

; { 0≤h< sq ∧ rc [h] }
send-ack h

]

30 rh280b

In terms of these auxiliary variables, we now use the following triple – with lexico-
graphical ordering, as before – as variant function; the third element in this triple
now accounts for (copies of) acknowledgements “still under way” in the backward
channel:

〈 (# i : i<rq +W : ¬sc [i]) , (Σi : sc [i] : sd i) , (Σi : sc [i] : rd i) 〉 .

We now consider the following statements and their influence on the value of this
variant function; the first two cases pertain to Combined Co-Sender:

• receive-ack l , while ¬sc [l] : here the subsequent assignment sc [l] := true de-
creases the first element of the variant function, thus decreasing the value of
the variant function, as required.

• receive-ack l , while sc [l] : here the assignment rd l := rd l−1 decreases the
third element of the variant function, while leaving the first two elements
unchanged, thus decreasing the value of the variant function, as required.

• receive 〈h, x〉 , while ¬sc [h] : the assignments to neither sd [h] nor rd [h]
change the value of the variant function.

• receive 〈h, x〉 , while sc [h] (and, hence, also rc [h]) : the second element of
the variant function decreases due to the assignment sdh := sdh−1 , whereas
its first element remains unchanged.

• sdk := sdk +Dsn (in Sender Proper) : because this assignment has precondi-
tion ¬sc [k] it does not influence the value of the variant function.

As in the previous Chapter, the value of the variant function cannot be decreased
indefinitely: eventually, a state will emerge satisfying ¬sc [rq] , because:

(# i : i<rq +W : ¬sc [i]) = 0 ⇒ sc [rq] .

3.3 The final solution

Omitting the auxiliary variables introduced for the sake of the correctness proof, we
obtain the following set of components implementing a Sliding Window Protocol.

Q0a : 0 ≤ sp ≤ sq ≤ sp +W

Q1 : 0 ≤ rq ≤ sq

Q2 : (∀i : 0≤i<rq : Z [i] =X [i])

rh280b 31

Q3 : (∀i :: rc [i] ⇒ Y [i] =X [i])

Q4 : (∀i :: sq≤i ⇒ ¬rc [i])

Q5 : (∀i : i<rq : rc [i])

Q6 : (∀i : i<sp : rc [i])

Q7 : (∀i :: sc [i] ⇒ rc [i])

initially: sp = 0 ∧ sq = 0 ∧ rq = 0 ∧ (∀i :: ¬rc [i]) ∧ (∀i :: ¬sc [i]) .

Sending Client:

∗ [“produce item x ”
; est sq < sp +W
; { 0 ≤ sp ≤ sq < sp +W }
X [sq] := x ; sq := sq +1

]

Sender Proper:

∗ [k : sp ≤ k < sq ∧ ¬sc [k]
; { sp ≤ k < sq }

send 〈 k ,X [k] 〉
]

Combined Co-Sender:

∗ [receive-ack l
; { 0≤ l < sq ∧ rc [l] }

sc [l] := true
; do sc [sp] → { sc [sp] , hence, by Q7 and Q4 : rc [sp] ∧ sp < sq }

sp := sp +1
do

]

Receiving Client:

∗ [est rc [rq]
; { rc [rq] , hence: 0≤ rq < sq ∧ Y [rq] =X [rq] }
Z [rq] := Y [rq] ; rq := rq +1

; “private consumer activity”
]

Receiver Proper:

32 rh280b

∗ [receive 〈h, x〉
; { 0≤h< sq ∧ x=X [h] }
Y [h] := x ; rc [h] := true

; { 0≤h< sq ∧ rc [h] }
send-ack h

]

Chapter 4

Epilogue

4.0 What we have learned

Firstly, it proves definitely faesible to design protocols like the Sliding Window
Protocol in a systematic way, along the lines of an Owicki-Gries style of reasoning,
and as developed into a discipline in [2]. The use of variant functions in progress
discussions turns out to be effective. As a matter of fact, the progress arguments
happened to be smoother and simpler than I expected at the outset. As such, this
was an encouraging experience.

The use of asynchronous communication poses no particular problems; in this
respect this study distinguishes itself from [7], where synchronous communication is
assumed.

An important aspect in presentations of more complicated designs is the use
of nomenclature: what to name and, more importantly, what not to name. It is
possible, for instance, to model the operation of the communication channels by
assigning ordinal numbers to messages sent, thus modelling the complete history
of the channels. It remains to be seen, however, to what extent this additional
information contributes to the clarity of exposition. Also, for the sake of simplicty
and clarity, we have deliberately chosen to use the Bounded Loss Assumption – see
Section 0.3.3 – rather informally: complete formalization is tedious and adds little.

4.1 Still to be investigated

The indices used to identify both the items transmitted and the acknowledgements
can be reduced modulo a constant that depends on the window size. This requires,
however, additional assumptions on the behaviour of the communication channels,
to the extent that messages travelling along the channels cannot be overtaken by

33

34 rh280b

later messages indefinitely. First-In First-Out channels are a (very) special case of
this. This has already been investigated in [8] and in [1], but a smooth development
of this requires some more work. In [7] the channels are assumed to be FIFO, which
makes the situation simpler.

In [7] the acknowledgements do not carry a single index number but a whole
set of indices. This provides more information back to the Receiver, thus increasing
the performance of the protocol but at the expense of larger messages used for
acknowledgements. It remains to be investigated what the relative (dis)advantages
of this variant are.

The version of the protocol presented here provides for unbounded buffering of
items in Receiving Client, by means of array Z . Bounding the amount of items
buffered here requires a normal form of flow control that involves extra acknow-
ledgements back to the Sender. As this additional flow control is independent of the
Sliding Window Protocol per se, so are the additional acknowledgements. Hence,
the resulting system uses two, in principle unrelated, types of acknowledgements.
Because, however, the protocol is asynchronous, its correct operation is insensitive
to additional delays in the communication. Therefore, the two kinds of acknowledge-
ments can be combined: one type of acknowledgement can serve both purposes. It
remains to be investigated, though, what the consequences of such a design decision
are. Can progress still be guaranteed? What is the, potentially negative, effect on
the performance – read: throughput – of the system?

Bibliography

[1] R.E.J. de Backer, A sliding-window protocol .
master’s thesis, Eindhoven University of Technology, 2001.

[2] W.H.J. Feijen, A.J.M. van Gasteren, On a Method of Multiprogramming .
Springer-Verlag, New York, 1999.

[3] R.R. Hoogerwoord, A Formal Development of Distributed Summation.
CS-Report 00-09, Eindhoven University of Technology, 2000.

[4] R.R. Hoogerwoord, Leslie Lamport’s Logical Clocks: a tutorial .
CS-Report 02-01, Eindhoven University of Technology, 2002.

[5] A. van Leeuwen, The sliding window protocol .
master’s thesis, Eindhoven University of Technology, 2006.

[6] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs I . Acta
Informatica 6, pp. 319-340, 1976.

[7] J.L.A. van de Snepscheut, The Sliding-Window Protocol Revisited .
Formal Aspects of Computing 7, pp. 3-17, 1995.

[8] N.V. Stenning, A data transfer protocol .
Computer Networks 1, pp. 99-110, 1976.

35

