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Analysis of wet pressing of paper: the three-phase model.

Part II: compressible air case

D. Bežanović∗, C.J. van Duijn and E.F. Kaasschieter
Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. A one-dimensional three-phase model of wet pressing of paper in the
compressible air case is derived. The techniques and results from the first part of
this paper are used. The model, using suitable transformation, can be rewritten
in the standard parabolic-hyperbolic form. Finally, numerical solutions for typical
examples are given, including also the effects of plastic deformations of paper.

Keywords: paper pressing, compressible air, parabolic-hyperbolic system, cross
conditions, elastic and plastic deformations, upwind method.

1. Introduction

In Part I (Bežanović et al., 2005) we outlined under the simplified con-
ditions of constant air density some characteristics of the wet pressing
process, involving two-phase flow in deformable porous media. In this
second part we investigate a more practical setting. More precisely, we
consider compressible air and prescribe no-flow boundary conditions.
In Part I we considered two possible numerical approaches: saturation
upwind (s-upwind) and front tracking. The emphasize in this part is
on the numerical treatment of the extended model. For this purpose
we use the s-upwind scheme introduced in Part I. We will also make
comparisons with other models and experiments.

This paper is organized as follows. In Section 2 we recall the equa-
tions for the extended model including initial, boundary and the cross
conditions. The most important analytical features of the model are
explained in Section 3. In Section 4 we first give a typical numerical
example. Then we include the effect of permanent (plastic) deformation
of paper and we finally employ the model to address the problem of the
improving the efficiency of press-nip. Conclusions are given in Section
5.

∗ Author for correspondence: e-mail: d.bezanovic@tue.nl
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2. Mathematical model

Most of the assumptions are the same as in Part I. Paper and felt
are considered as deformable porous media and only transversal flow
and deformations are considered. The mechanical response of the solid
structures of the layers is, for the time being, considered to be per-
fectly elastic. Water and solid phase are considered to be intrinsically
incompressible.

Opposite to the previous case, the compression of air is now taken
into account. Air is assumed to obey a perfect gas equation:

pa = pa0 + γ(ρa − ρa0), (1)

where pa0 and ρa0 are the pressure and the density of air at atmospheric
conditions and γ is a known positive constant. Consequently the mass
balance of air in integral form reads

d

dt

∫
V
φ(1 + ε)(1− s)ρa dZ − ρaqa(Z1

0 , t) + ρaqa(Z2
0 , t) = 0.

Here φ denotes porosity, s saturation, ε strain, while qa is the specific air
discharge, relative to the solid phase (for more details see again Part
I). Instead of the transversal spatial coordinate z, the corresponding
material coordinate Z is used. Disregarding capillary effects in pores
we write

pa = pw =: pf ,

and we refer to pf as the fluid pressure. With this assumption, the total
applied pressure pT is divided over solid and fluid phases accordingly
to Terzaghi’s principle (Bear, 1972), implying

pT = ps + pf , (2)

where ps is the effective structural pressure. We assume that the total
pressure is given as a function of time, pT = pT (t). The elastic response
of the solid skeleton of the layers is modelled by a functional relationship
between structural pressure and strain. As in Part I, this relation can
be rewritten in terms of structural pressure and void ratio, yielding

ps = ps(u) = ps0

(
u−q − u−q

0

)
, q > 0. (3)

Terzaghi’s principle (2), together with (1) and (3), gives

ρa = ρa(u, t) := ρa0 +
1
γ

[
pT (t)− ps0

(
u−q − u−q

0

)
− pa0

]
. (4)
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Here, the so-called scaled void ratio u is given by

u = (1− φ0)
φ

1− φ
,

where φ0 = u0 is the value of φ that corresponds to undeformed state.
We use Darcy’s law in material coordinates

qj = −
k(u)kr

j (s)
µj(1 + ε)

∂pj

∂Z
, j = w, a,

where µj is viscosity, k intrinsic permeability and kr
j relative perme-

ability of phase j, j = w, a (subscripts w and a refer to water and
air, respectively). The following functional dependances are used, see
(Bear, 1972; Helmig, 1997):

k = k(u) = k0
u3

(1− φ0)2(1− φ0 + u)
(Kozeny-Carman),

and

kr
w(s) = s

2+3λ
λ , kr

a(s) = (1−s)2(1−s
2+λ

λ ), 0.2 < λ < 3 (Brooks-Corey).
(5)

Analogously to Part I we introduce the dimensionless coordinates

x :=
Z

h0
and t :=

t

tfin
,

where h0 is the total initial thickness of the paper-felt system and
tfin is the total time of the press-nip. Furthermore, we introduce the
dimensionless pressures and air density by redefining

ps :=
ps

ps0
, pf :=

pf

ps0
, pT :=

pT

ps0
and ρa :=

ρa

ρa0
.

With this change, (1), (3) and (4) become, respectively

pf =
pa0

ps0
+ γ∗(ρa − 1), (6)

ps(u) = u−q − u−q
0 ,

and

ρa(u, t) := 1 +
1
γ∗

[
pT (t)−

(
u−q − u−q

0

)
− pa0

ps0

]
, (7)

for a dimensionless quantity

γ∗ = γ
ρa0

ps0
.



4 D. Bežanović, C.J. van Duijn and E.F. Kaasschieter

The final system now reads

(us)t = (Cw(u, s)ux)x (water equation), (8)

and

(u(1− s)ρa(u, t))t = (ρa(u, t)Ca(u, s)ux)x (air equation). (9)

Here the indices x and t denote partial differentiation with respect to
these variables. The functions Cj , j = w, a are given by

Cj(u, s) = −
tfinps0

h2
0

k(u)kr
j (s)

µj(1 + ε(u))
dps

du

=
qtfink0ps0

h2
0µj(1− φ0)2

u2−qkr
j (s)

(1− φ0 + u)2
=: Cj0g(u)kr

j (s).

Equations (8) and (9) hold in both the paper and the felt domain:

paper: Qp = {(x, t) : 0 < x < xc, 0 < t < 1},
felt: Qf = {(x, t) : xc < x < 1, 0 < t < 1}.

Here xc = h0p/h0 corresponds to the paper-felt interface. The values of
the constants in equations (8) and (9), when considered in the subdo-
mains Qp and Qf , are denoted by the superscript i. Thus we have Ci

j0,
φi

0, q
i, gi(u) and kri

j (s), with j = w, a and i = p, f .

2.1. Initial, boundary and cross conditions

When solving equations (8) and (9) in the paper (Qp) and the felt (Qf )
one needs initial, boundary, and cross conditions between them.

Initial condition

The same initial conditions as in Part I are prescribed. Layers are
initially undeformed, giving

u(x, 0) =
{
up

0 = φp
0 for x ∈ (0, xc),

uf
0 = φf

0 for x ∈ (xc, 1).
(10)

Furthermore, initial distribution of the water saturation s is known:

s(x, 0) =
{
sp
0 for x ∈ (0, xc),
sf
0 for x ∈ (xc, 1).

(11)

Boundary conditions
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At the boundaries x = 0 and x = 1 we prescribe a no-flow condition,
assuming that both paper and felt are in contact with impermeable
press-rolls. This gives the Neumann conditions

ux(0, t) = ux(1, t) = 0 for 0 < t < 1. (12)

Cross conditions

As in Part I, the mass and the pressure conservation yield

Cf
0wg

f (u)krf
w (s)ux

∣∣∣
(x+

c ,t)
= Cp

0w gp(u)krp
w (s)ux|(x−c ,t) , (13)

Cf
0aρa0ρag

f (u)krf
a (s)ux

∣∣∣
(x+

c ,t)
= Cp

0aρa0ρa g
p(u)krp

a (s)ux|(x−c ,t) (14)

and

pf
s0

[
(u)qf

∣∣∣
(x+

c ,t)
− (φf

0)qf

]
= pp

s0

[
(u)qp∣∣

(x−c ,t)
− (φp

0)
qp

]
. (15)

The continuity of pa across the interface and (6) imply that also ρa

is continuous. Thus ρa disappears from (14). The pressure condition
implies that the void ratio u is discontinuous across the paper-felt
interface. Conditions (13) and (14) now give the jump in the saturation:

krf
w (s)

krf
a (s)

∣∣∣∣∣
(x+

c ,t)

=
krp

w (s)
krp

a (s)

∣∣∣∣
(x−c ,t)

for 0 < t < 1. (16)

3. Investigation of nature of system

The model consists of the equations (8), (9) in the subdomains Qp and
Qf , subject to the initial conditions (10), (11), the boundary conditions
(12), and the cross conditions (13), (14) and (15) at the paper-felt
interface. As we will see, this system has similar mathematical features
as the simplified system from Part I.

Since the following transformations apply to both the paper and felt
domain we omit the subscript i = p, f , to simplify notation. Dividing
(9) by ρa(u, t) we obtain

(u(1− s))t + u(1− s)
(ρa(u, t))t

ρa(u, t)

= (Ca0g(u)kr
a(s)ux)x + Ca0g(u)kr

a(s)ux
(ρa(u, t))x

ρa(u, t)
. (17)
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Differentiation of (7) gives

(ρa(u, t))t =
1
γ∗

(p′T (t)− p′s(u)ut) and (ρa(u, t))x = − 1
γ∗
p′s(u)ux.

Thus adding (17) and (8) and dividing the obtained equation by

A(u, s, t) = 1− u(1− s)
p′s(u)

γ∗ρa(u, t)
,

we obtain an equation for u:

ut =
1

A(u, s, t)
[((Cw0k

r
w(s) + Ca0k

r
a(s))g(u)ux)x +B(u, s, ux, t)] ,

(18)
where

B(u, s, ux, t) = −
u(1− s)p′T (t) + Ca0g(u)kr

a(s)p
′
s(u)(ux)2

γ∗ρa(u, t)
.

Note that natural bounds for the void ratio (0 < u < u0 = φ0 – state
of compression) and the saturation (0 < s < 1) imply A ≥ 1.

Writing
s = S(u, r, t), (19)

where r is a still unspecified function, and using

st = Suut + Srrt + St,

equation (8) becomes

(S + uSu)ut + uSrrt + uSt = (Cw0g(u)kr
w(S)ux)x,

and, with (18),

S + uSu

A(u, S, t)
[((Cw0k

r
w(S) + Ca0k

r
a(S))g(u)ux)x +B(u, S, ux, t)]

+uSrrt + uSt = (Cw0g(u)kr
w(S)ux)x. (20)

In order to eliminate uxx in the above equation we choose (19) such
that

S + uSu

A(u, S, t)
(Cw0k

r
w(S) + Ca0k

r
a(S)) = Cw0k

r
w(S). (21)

Using (21) in (20) we obtain

uSrrt +
[
F (S)(Cw0k

r
w(S) + Ca0k

r
a(S))′ − (Cw0k

r
w(S))′

]
Sxg(u)ux

= −B(u, S, ux, t)F (S)− uSt,
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for the fractional flow function F (S) given by

F (S) =
mkr

w(S)
mkr

w(S) + kr
a(S)

.

Here
m =

µa

µw
=
Cw0

Ca0

is the air-water viscosity ratio. After elementary transformations we
obtain an equation for r

rt +
fTF

′(S)
u

rx = −B(u, S, ux, t)
uSr

F (S)− fTF
′(S)Su

uSr
ux −

St

Sr
, (22)

where the total (volume) flux is given as

fT = − [Cw0k
r
w(S) + Ca0k

r
a(S)] g(u)ux.

Using (19) we now have a coupled system in terms of u and r: for
given r, the u−equation (18) is second order parabolic; for given u, the
r−equation (22) is first order hyperbolic.

Due to technicalities involved, the details about the transformation
(19) are moved to Appendix A.

From (22) it follows that the direction of characteristics for r is

ẋ(t) =
fT

u

dF

dS
(S). (23)

Using the smoothness of transformation (19) it is possible to verify that
s has the same characteristic speed (23). No-flow conditions at x = 0
and x = 1 imply fT = 0 and thus ẋ(t) = 0, for all t ∈ [0, 1]. Therefore
no boundary conditions for r are needed, since the corresponding char-
acteristics at x = 0 and x = 1 do not enter the computational domain.
The hyperbolic nature of the equation for r explains also why only a
single cross condition is required for this variable (and thus for s) at the
paper-felt interface. It also explains why we may expect shocks for r.
Since transformation (19) (more precisely, Problem (T ), see Appendix
A) defines a smooth transformation, shocks in r carry over to shocks
in s. Using the definition of Problem (T ), an initial condition for r can
be derived, as in Part I.

As in Part I, we can show that if a shock in s occurs at some curve
x = ζ(t), than u and the total flux fT are continuous across the shock (u
is only discontinuous across the interface x = xc). Interpreting equation
(8) across the shock front yields a shock condition

dζ

dt
=

1
u(ζ(t), t)

[fw]
[s]

,
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where fw denotes the water flux

fw = −Cf
w0k

r
w(s)g(u)ux.

Comparing to the model from Part I, where the boundary condition
for u at x = 1 causes the flow, here the source term in u−equation acts
as a driving force inside the domain. This is the fundamental difference
between these two models.

For the sake of completeness, we consider briefly a single layer prob-
lem with no-flow boundary conditions. One easily verifies that constant
in space functions u = u(t) and s = s(t) are the solutions of equations
(8) and (9) and satisfy no-flow boundary conditions. Having in mind
that material coordinates are used, this form of the solutions implies
that there is no flow of fluids (water and air) relative to the solid
particles. Furthermore, one can verify that u(t) decreases as long as
pT (t) increases and vice versa. The physical interpretation is obvious:
as long as the total applied pressure is increased, the medium is be-
ing compressed and inversely. In the case of two layers, due to cross
conditions the solutions u and s depend on x also.

4. Computational results

We will first illustrate the main features of the solutions by a numerical
example. In order to give a better qualitative description, we then take
into account the plastic deformations of the paper. At the end, we
address the problem of improving the efficiency of the press-nip using
the proposed model.

4.1. Details of the scheme

To compute a numerical solution, a modification of the s-upwind method
introduced in Part I is employed. Segment [0, 1] is split up into Nx equal
control volumes (cells) V1, V2, ..., VNx of size (length) ∆x = 1/Nx, with
centers in the points x1, x2, ..., xNx .The time interval [0, 1] is divided
into Nt equal time steps, i.e. we take 0 = t0 < t1 < · · · < tNt = 1,
such that tn+1− tn = ∆t = 1/Nt, n = 0, ..., Nt − 1. Interface points are
defined as x1/2 = 0 and xj+1/2 = xj + ∆x/2, j = 1, ..., Nx.

Integration of (8) and (9) over the control volume Vj for t = tn,
combined with explicit Euler approximation of the time derivative,
gives

un+1
j sn+1

j = un
j s

n
j +

∆t
∆x

(
−(fw)n

j+1/2 + (fw)n
j−1/2

)
,
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un+1
j (1− sn+1

j )ρa(un+1
j , tn+1) = un

j (1− sn
j )ρa(un

j , t
n)

+
∆t
∆x

(
−ρa(un

j+1/2, t
n)(fa)n

j+1/2 + ρa(un
j−1/2, t

n)(fa)n
j−1/2

)
.

When all approximations for t = tn are known, the above two condi-
tions determine uniquely (in general) un+1

j and sn+1
j . More precisely,

using first equation, sn+1
j is expressed in terms of un+1

j . Substitution
into the second equation gives an equation for un+1

j . The fluxes at the
cell interfaces are given by

(fj)n
j±1/2 = −g(u)n

j±1/2k
r
j (s)

n
j±1/2(ux)n

j±1/2, j = w, a.

At the cells interfaces we approximate ux using the central difference
and u and g(u) using centered approximations. On the other side,
kr

j±1/2(s) is, using (23), approximated in an upwind maner:

kr
j (s)

n
j−1/2 =

{
kr

j (s
n
j−1) if un

j−1 ≥ un
j ,

kr
j (s

n
j ) if un

j−1 < un
j ,

j = w, a,

end similarly with kj(s)n
j+1/2.

The initial, boundary and cross conditions are approximated as in
Part I.

We consider now the stability of the numerical scheme. Since the
numerical scheme is based on system (8)–(9), we can not apply straight-
forwardly the criteria for the stability of parabolic and hyperbolic
equations, giving the conditions for time step and grid size. Never-
theless, we will obtain a correct stability condition by considering the
hyperbolic and parabolic parts of the system.

The stability criterion for one-dimensional hyperbolic equations is
based on the fact that during one time step the information (character-
istic) propagates not further than to a neighbouring cell, see (Leveque,
1999) for instance. The second condition follows the stability condi-
tion of the corresponding parabolic part (equation (18)), see (Hall and
Porsching, 1990) for instance, implying that

∆t
(∆x)2

≤ 1
2 maxQp∪Qf

Cw+Ca
a

. (24)

This is a dominant condition. If it is satisfied for some ∆t and ∆x, we
can verify (computing the characteristics speed (23)) that the above
mentioned condition corresponding to the hyperbolic part is readily
satisfied. The numerical experiments show that the condition (24) gives
indeed a criterion for the stability of the numerical scheme.
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Table I. Parameter set used in compu-
tations.

parameter Value

patm [MPa] 0.1

ρatm [Kg m−3] 1.29

γ [MPa Kg−1 m3] 8.3 · 10−2

4.2. Numerical example

We consider now a numerical example. The parameters u0, s0, k0, ps0,
λ, q, h0 and pT0 are the same as in Part I. The parameters for the
perfect gas equation (1) are given in Table I.

The numerical results are given in Figures 1 and 2. For a better
understanding of the results we can consider the time t as a scaled
horizontal (longitudinal) coordinate.

In this example, using the criterion from Part I, the initial shock
is in the saturation s is formed. This shock in s propagates into the
felt domain, the water and air flow from paper to felt. For t ≈ 0.16,
sl becomes larger then sin and the mentioned criterion from Part I for
existence of shock in s is not valid any more. This, shock like initial
behaviour in s, caused by different initial saturations of paper and felt
is reported also in (Kataja et al., 1992).

The fluid pressure and the saturation in paper increase in the first
part of the press-nip and reach their maximum just before the mid-
nip (middle of the nip). Consequently, in this region the water flow
is the most intensive. These are well-known features of the wet paper
pressing, see for instance (Nilson and Larson, 1968; Paulapuro, 2001).
After the mid-nip (middle of the nip) the saturation decreases due to
expansion of air in pores, but the flux at the paper-felt interface keeps
the positive sign up to t ≈ 0.8. After this moment, certain reverse flow,
so-called rewetting, occurs. This effects are also known, see (Nilson and
Larson, 1968; Paulapuro, 2001) for instance.

To improve the behaviour of the model in expansion phase, in the
next section we will take into account permanent deformation of the
paper.

4.3. Plastic deformation of paper

In the example from the previous section, the mechanical behaviour
of fibrous network of paper was assumed to be perfectly elastic. This
implies that absence of (solid) stress means absence of strain and that
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Figure 1. Example 2: distribution of s and u at different times. (a) t = 0, 1/5 and
2/5. (b) t = 3/5, 4/5 and 1.

the stress-strain relationship is the same in compression and expansion
phase. However, compressed wet paper can experience complicated per-
manent and semi-permanent deformations, see for instance (Lobosco
and Kaul, 2001; Nilson and Larson, 1968). In other words, after releas-
ing of pressure, paper does not regain (or at least not immediately)
its original thickness. As reported by (El-Hosseiny, 1990), viscoelastic
properties of the wet paper arise from the flow of fluids through the
pores, while the pure fibrous network appears to be non-viscoelastic.
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(a) (b)
Figure 2. Example 2: saturation (a) and air density (b) in spatial coordinates.

Therefore, we consider only plastic deformations of the wet paper
web. This effect is modelled by assuming that the stress-strain (in fact,
structural pressure-strain) relation is different for the compression and
the expansion phase. Since strain is defined locally, in the expansion
phase different particles inside the paper follow in general different
stress-strain curves, see Figure 3. Using the relation (see Part I)

ε = u− u0,

structural pressure-strain and structural pressure-void ratio relations
directly imply each other, see Figure 3.

We consider only the numerical modelling of plastic effects here. We
do not study the (non-trivial) mathematical implications when these
different structural pressure-void ratio relations for compression and
expansion used in the partial differential equations (8) and (9).

ε, uε = 0
u = u0

ε = ε2
u = u2

ε = ε1
u = u1

ε = −u0
u = 0

ps

Figure 3. Pressure-strain (void ratio) curves for compression and expansion phase.

We will follow the idea from (Kataja et al., 1992), where the two-
dimensional (transversal-longitudinal) model in stationary case is used
to simulate the pressing of wet paper together with a rigid (incompress-
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ible) porous plate. In this study it is assumed that the particle which
is deformed to maximal strain ε, after releasing of the pressure returns
to a strain εplε. Note that, in this interpretation, the absence of plastic
deformations implies εpl = 0.

In the compression phase the relation (3) is used. Let the value of
void ratio of a certain particle in the moment when expansion starts be
u1, see Figure 3. The corresponding strain is ε1 = u1−u0p. As we have
mentioned, we assume that after the releasing of stress, i.e. for ps = 0,
the particle returns to state with strain equal to

ε2 = εplε1 = εpl (u1 − u0p) ,

and the corresponding void ratio

u2 = ε2 + u0p = εplu1 + (1− εpl)u0p.

Taking, as in (Kataja et al., 1992), εpl = 1/2 we have

ε2 =
u1 − u0p

2
and u2 =

u1 + u0p

2
.

We take the structural pressure-void ratio relation in expansion phase
as

pexp
s (u) = ps0

[
u−qexp − u

−qexp

2

]
, (25)

i.e. with the same ps0 as in (3). The parameter qexp is chosen such that
pexp

s (u1) = ps(u1).
In general, every particle has a different compression history and

begins to expand in a different moment comparing to the other parti-
cles. However, due to no-flow boundary conditions, the gradient of void
ratio (and consequently the gradient of strain) is not large (see Figure
1). For this reason we use the same relation (25) for all particles, from
the moment when paper starts to expand.

Apart from relation (25), all others parameters are taken as in ex-
ample from the previous section. In Figures 4(a) and 4(b) we show
the evolution of paper thickness and the mass of water in paper, re-
spectively, both for εpl = 0 (no plastic effects) and εpl = 1/2. We
immediately observe the significant effects of permanent deformations
on the paper thickness. Further, back flow (rewetting) occurs for εpl = 0
and not for εpl = 1/2. Therefore, in the case εpl = 1/2, the water content
in paper decreases during the whole nip. The expansion of paper occurs
only due to expansion of air in the pores. Comparing the influence of
plastic deformations on the solutions, (Kataja et al., 1992) reported
very similar observations.

The effects of plastic deformations do not influence significantly
on the quantity of the total water content in paper. However, they
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Figure 4. Time evolution of paper thickness (a) and the total mass of water in paper
(b) for cases εpl = 1/2 and εpl = 0.

remarkable influence some other important paper properties: the total
thickness and further mechanical behaviour.

There is a quantitative difference regarding the computed magnitude
of water flow, comparing to (Kataja et al., 1992). The possible explana-
tion could be that in this study the authors consider the incompressible
porous plate. Therefore the compression of paper-plate is taken only
by paper layer, implying a more intensive flow from paper to felt.

4.4. Performance of the model

The often used quantity in wet paper pressing is the ‘press impulse’,
i.e. the integral of the total pressure over the nip residence time, see
(Back, 1998). This is a measure of the energy consumed by a press-nip.
An important problem is to consider which press regime has the best
efficiency for a fixed energy, i.e. to consider is which type of press pulses
(which shape of the total pressure curve) for the same impulse produces
best dewatering. This is correlated with the choice of the size of the
press rolls, which consequently exert different pressure curves (for the
same press impulse, the smaller roll exerts higher maximal pressure
but has a smaller nip residence time). We do not consider here the
corresponding influences on paper quality.

We employ the proposed model to answer this question and con-
sider three cases with different press-nip time and the maximal applied
pressure. For i = 1, 2, 3 we take

pTi(t) = αipT0 sin2(πt) and tfin = tfin0/αi,

Here pT0 = 5 MPa, tfin0 = 2.4 ·10−2 s, α1 = 3/2, α2 = 1 and α3 = 2/3,
see Figure 5(a). Note that in all three case the press impulses are equal:∫ tfin

0
pTi(t) dt =

1
2
pT0tfin, i = 1, 2, 3.
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Taking into account plastic effects (with εpl = 0.5) and computing
the evolution of total mass of water in paper (Figure 5(b)) we con-
clude that harder pressure pulses (with higher maximal pressure) pro-
duce better drying results. This conclusion is in agreement with earlier
observations, see (Back, 1998) for instance.
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Figure 5. Three cases of different press pulses (a) and corresponding (time) evolution
of relative paper dryness (b).

The experiments with different felt permeabilities kf
0 suggest that,

as expected, a larger felt permeability improves the drying results.

5. Conclusions

In this paper we have studied a three-phase model for wet pressing
of paper for the compressible air case. We have introduced a suit-
able transformation in order to rewrite the model into the standard
parabolic-hyperbolic form. Employing a suitable upwind method, we
have performed the computations, including also the effects of plastic
deformations.

The comparisons with experimental results show that the proposed
model, although one-dimensional, gives a good qualitative description
of the wet pressing process. At the other hand, the horizontal air flow,
which seems to be of importations in the beginning and in the end
of nip, is not easy to describe using the proposed one-dimensional
transversal model. Therefore a further step to improve the results could
be to consider a two-dimensional model.

In order to compare quantitative output of the model (calculated
dryness gain for instance) with some experimentally obtained values,
we need to adjust values of all parameters to the specific case. We
welcome contributions to this validation process.
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Appendix

A. Transformation (19)

To satisfy (21) we define (19) as the solution of the backward initial
value problem

(T ) :

{
dS

du
=

1
u

(F (S)A(u, S, t)− S) =: Q(u, S, t) for 0 < u < u0,

S(u0) = r.

Taking v = 1/u, problem (T ) transforms into a forward initial value
problem

(T v) :

{
dS

dv
=

1
v

(S − F (S)A(1/v, S, t)) =: Qv(v, S, t) for v0 < v <∞,

S(v0) = r,

where v0 = 1/u0. The smoothness of Qv implies the existence of the
solution Sv(v, r, t) of Problem (T v), see (Coddington and Levinson,
1955, Theorem 1.2, p. 6)) of Problem (T ). By (Coddington and Levin-
son, 1955, Theorem 7.2, p. 25) and (Coddington and Levinson, 1955,
Theorem 7.5, p. 30) it follows that Sv is continuously differentiable in v
and r, as well as in the parameter t. Hence, Problem (T ) has a solution
S(u, r, t) := Sv(1/u, r, t) which is smooth in u, r and t.

Now we fix t ∈ [0, 1] and, to simplify consideration, we restrict to
the special case of Brooks-Corey relative permeabilities (5). For any
û ∈ (0, u0] we have Q(û, 0, t) = 0 and Qs(û, 0, t) = −1/û < 0, whereas
Q(û, 1, t) = 0 and Qs(û, 1, t) = (ûp′s(û)/(γ

∗ρa(û, t))− 1) /û < 0. There-
fore there exists ŝ ∈ (0, 1) such that Q(û, ŝ, t) = 0. In this specific
setting (Brooks-Corey relative permeabilities), the value ŝ is unique for
any given û. In this way we obtain a curve S = ψ(u, t) for u ∈ (0, u0],
defined by Q(u, ψ(u, t), t) = 0 (the dotted curve in Figure 6). Note that
ψ is continuous (by the continuity of Q), and

Q :
{
< 0 for 0 < S < ψ(u, t),
> 0 for ψ(u, t) < S < 1.

Further, since

Q =
1
u

[
F (S)

(
1 + (1− s)

ps0qu
−q

kρa(u, t)

)
− S

]
,

and because 1/u, 1/ρa(u, t) and u−q are decreasing in u, Q is decreasing
in u. This implies that curve ψ(u, t) is increasing in u (i.e. ψ decreases
with decreasing u). Therefore there exists limu↓0 ψ(u, t). This limit
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s

1

0

r

u0 u

ψ(u, t)

Q < 0

Q > 0

Figure 6. Sketch of solutions of Problem (T ) in (u, S) space plane.

must be equal to 0, since all solutions of Problem (T ) end up at the
equilibrium value S = 0 for u ↓ 0, see Figure 6.

For fixed t ∈ [0, 1] and u ∈ (0, u0), s = S(u, r, t) defines a one-to-
one correspondence between s and r. This is a direct consequence of
uniqueness for problem (T ) (orbits cannot intersect).
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Bežanović, D., van Duijn, C.J. and Kaasschieter, E.F.: 2005, Analysis of wet pressing
of paper: the three-phase model. Part I: constant air density. Report CASA 05-16
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