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INDUCTIVE AND PROJECTIVE LIMITS OF
WEIGHTED UNCONDITIONAL SCHAUDER SYSTEMS

by

J. Cumming and S.J.L. van Eijndhoven

Summary

For an unconditional Schauder system of Banach spaces X,,, m € I and a K6the power set p
of nonnegative sequences on I an inductive limit of Banach spaces Xjna(p) and a projective
limit of seminormed spaces Xpro5(p) are constructed. Topological properties of Xjnq(p) and
Xoproj(p) are discussed and put in correspondence with properties of p.

The dual spaces Xjna(p)' and Xproj(p) turn out to be of the same type. An interesting
feature is the symmetry condition on p ensuring the existence of a Kothe set o such that
Xina(P) = Xproj(0) and Xproj(p) = Xina(0).

Thus locally convex spaces which are both inductive limits and projective limits of Banach
spaces, can be constructed.
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Introduction

Starting point of our discussions is a Schauder system (X,,)nex of closed subspaces of a
Banach space X. Examples of such a system are Schauder bases and block Schauder bases.
In the carthesian product C = X1 Xm a Banach space X is identified which is the building
block in our construction. For each nonnegative sequence a on I, i.e. each function a from I
to [0,00), the mapping A, from C into C is defined by

{Aqu) (m)=a(m)u(m) , uwueC.
To the sequence a we link a Banach space Xjhq(a) and a seminormed space Xpro5(a),
Xind(@2) = Aa(X) , Xproj(a)={ueC|AueX}.

For a pointwisely directed set p of nonnegative sequences on I, this leads to an inductive
system {Xjna(a) | a € p} and a projective system {Xproj(a) | a € p}.
The present paper contains a detailed discussion of the corresponding inductive limit

Xina(p) = U Xina(2)

acp

and projective limit

Xoroj(P) = ] Xproj(a) -

acp

As such it is a revision and adaption of the theory presented in [Ma], Chapter 3, where the
Xm are closed orthogonal subspaces of a Hilbert space H.

The plan of the paper is as follows.

In Section 1 we sumimarize some relevant notions of Banach space theory such as unconditional
convergence, basic sequence, Schauder basis, Schauder decomposition and, in this connection,
we recall some useful results. Let w*(I) denote the set of all nonnegative sequences on I.
In Section 2 we study the structure of the collection P(w*(I)) of all subsets of w*(I). In
P(w*(I)), a quasi-ordering =<, an equivalence relation, a classification and the so called hash-
operation, p — p¥, are defined. The third and fourth section treats the spaces Xinqa(p) and
Xproj(p) and in the fifth section several topological properties of these spaces are linked with
the f-symmetry property of the sequence set p. In the last section, we show that the dual
spaces Xjna(p)' and Xproj(p) have the same structure as the spaces Xjna(p) and Xproj(p),

i.e. they can be described as projective/inductive limits of subspaces of the product space
Xmel X:n .

The underlying paper is almost completely self-contained and only some knowledge of the
fundamentals of functional analysis is required for reading it. The theory yields a wealth of
examples of inductive and projective limits of Banach spaces. Moreover, it can be applied in
the description of different types of distribution theories for suitable choices of the Schauder
system (Xm)meq and the sequence set p. For instance if p consists of bounded sequences,
only, we get the triple

AYind(p) — X Xproj(ao) .



§1. Schauder systems

Throughout we shall let X’ be a Banach space with norm || -||. For a countable set I let F(I)
be the collection of all finite subsets of L.

Definition 1.1.
A sequence x : I — X is said to be unconditionally summable if the net

( '62;, x(i)) Fer(l)

is convergent in X. If x is unconditionally summable, then by
> x(3)
iel

its finite-sum limit is denoted.

The following observations are rather straight forward.

Proposition 1.2.
Let the sequence x: I — X be unconditionally summable. Then

(a) For any subset J C I the subsequence y : j — x(j), j € J is unconditionally summable.

(b) For any choice of signs ® : I — {—1,1} the sequence ¢ — O(¢) x(¢) , ¢ € I, is uncondi-
tionally summable.

(c¢) For any permutation 7 of I the sequence i — x(#(¢)) is unconditionally summable.

Because of its relevance for the rest of the paper we also mention the following proposition.

Proposition 1.3.

Let x : I — X be unconditionally summable and let A: I — € be a bounded sequence. Then
the sequence i — A(¢) x(z), 7€ I, is unconditionally summable.

Proof.

We may as well assume that the sequence X is real valued by considering the real and imagi-
nary parts separately.

Since x is unconditionally summable there exists IF, € F(I) such that for all ' € F(I) with
ok, =

132 x(@)ll <e
icF

for any ¢ > 0.
Now let € > 0 and let IF € F(I) such that F N IF, = 0.
By Hahn-Banach there exists a real linear function / : X — IR such that ||{]| = 1 and



IOIROEOVE DIRIOEC] P

i€F iEF
Now define ® : I — {—~1,1} by

1 lz(i))>0
o) =
-1 i l(2(i) <0

Then
132 2@ x(Dll = 3 M) i(x(3)
icF iEF
< sup PG| X UO6) x(1))
i€l icF
<M sap DO Y2 @) x(D)]
iel ieF
<2 Il sup [A(E)] -
iel
Hence (Z A) x(i))FeF(I) is a Cauchy net in X. O

ieF
Let {X;};e1 be a countable collection of closed subspaces of A’ indexed by I. Fach X; is
a Banach space under the induced topology and we regard it as such.

Definition 1.4.

Let {Xi};cx be as above. The collection {X;};g is said to be a minimal system if for each
mel

XmnN< {Xi|i€el, i#m} >={0}.

The collection {X;};cy is said to be an unconditional Schauder system if there exists a closed
subspace X of X such that for each z € X there exists a unique unconditionally summable
sequence {z;};er with z; € X; and 2 = Z Zi.

iel
As important examples of unconditional Schauder systems we mention the unconditional
Schauder bases and unconditional basic sequences.

Definition 1.5.

Let {e,, | m € I} be a countable collection in a Banach space X'. Then {e, | m € I} is an
unconditional Schauder basis in X if to each z € A there exists a unique sequence of scalars
a = (a{m))mex such that the sequence (a(m)e€m)mer is unconditionally summable and



= Z a(m)em .

mel

The collection is an unconditional basic sequence if it is an unconditional Schauder basis in
its closed linear span < {e, | m €1} >.

For example the standard basis {e,}nesv is an unconditional basis in every [,- space, 1 < p <
o0, and the Haar system an unconditional basisin Ly, 1 < p < co. For more on unconditional
bases and basic sequences we refer the reader to [LT].

Definition 1.6.

For a minimal system {X;};c1 let X;cy X; denote its carthesian product with the product
topology. We may identify m € Xm with (2m 6mj)jer s0 that Xy, is also regarded as a
subspace of the carthesian product. We shall indicate this by writing X,, in stead of X,,.
The elements of %;c1 X: will be written as x,y, etc., and their components by x(m), y(m)
or z(m), y(m) when regarded as elements of X,,, or X,,, respectively.

Throughout {X;};c1 will denote a minimal system in X.

Definition 1.7.
For each m € I, we define

(a) The projections Pp, : X;e1 X; — X by
P x = x(m) .
(b) The evaluations E,, : X;e1 Xi — X by

Epx=2z(m).

Next we introduce a Banach space X C X1 X; such that the collection {X;};¢y is an un-
conditional Schauder system in X.

Definition 1.8.
Define the space X C X;ep X; by

X = {x € X;e1 Xi | The sequence (X(m))mer is unconditionally summable in X'}
and impose on X the topology induced by the unconditional seminorm

”x”u=FS€1£I) 1> x(ml .

meF

Proposition 1.9.

| - ll« is a norm .



Proof.

It is clear that || - ||u is a seminorm. So all we have to prove is ||xllu =0 = x=0.
Suppose |||, = 0. Then ¥,y 2(i) = 0. So for fixed m € I, x(m) + ¥4, 2(i) = 0 from
which it follows that 2(m) = 0 because the collection {Xj};c1 is minimal. a

Proposition 1.10.
The operators E,,, m € I, are continuous from X onto X,,.

Proof.

| Em x|} < [j2(m)]] SP@%) 132 =@l = llzll -

icF

Corollary 1.11.
The canonical embedding from X into X;¢3 X; is continuous.

Theorem 1.12.
X is a Banach space.

Proof

Let {x}}ren be a Cauchy sequence in X. Since X is continuously embedded in X1 X;, and

since this product space is complete, there exists x € X;ey X; such that limpeo [|zx(m) —
z(m)| =0, meL
Since {xg}renv is a Cauchy sequence in X we have

Veso Inen Viisn Vrerq

IS (@) -zl < e .

icF
Letting | — oo we obtain

Veso INen Visn VEerqy

IS (za(i) —2z(i)]) < €.

ieF
From this it follows that x € X and that limp—,e |[Xk — X||. = 0.

Remark: The sequence of Banach spaces {Xi};cy is an unconditional Schauder decom-
position of the Banach space X. If we define X C X by

X ={Y «(i) | x € X}

iel



then with its natural unconditional norm

122 20l = lIxllu

icl

X is a Banach space.

Working with the unconditional norm || ||; (and so with || ||.) gives us the convergence
properties we require. However we would much prefer to work with the original topology of
X and so avoid to renorm the space X. Clearly this happens whenever X equals the closed

linear span < {X;|i € I} >, where the closure is taken with respect to the norm of the
Banach space X because for allz ¢ X

llzll < llzlls

$0, in this case, X is complete both with respect to || - || and || - ||1, and || - || and || - ||; are
equivalent,

Next we associate a so called unconditional constant to the collection {X;}ir-

Definition 1.13.
Let My : X;e1 Xi — X1 Xi be the multiplication operator defined by

(Mgx) (m)=6(m)x(m) , mel

where 6 : I — {—1,1} is some choice of signs.

Proposition 1.14.

Yor every choice of signs 6, the operator My maps X boundedly into X, and there exists a
constant K < 2 such that ||Mp|| < K for all 6.

Proof.

Let © : I — {—1,1} be some choice of signs and let x € X. Let IF C I be a finite set.
Define

Fy={mel|®(m)=1}, F.={mel|O(m)=-1}.

Then
120 ©m)x(m)| <|| 3 x(m)l+1l Y =(m)|
melF melFy melF_
<2 |Ixfu -
Hence || Mg x|l < 2 ||2]|u- o.

We define unconditional constant of the system {X;};c1 to be 2 supy ||Mpl|| and we de-
note this constant by C.



(The reason for the multiplication by 2 will become clear in the next proposition.) For the
remainder of the paper we shall always take C to be the unconditional constant of {X;};cy.

Proposition 1.15.

Let x € X and let y € X;c1 X; be defined by y(m) = A(m) x(m), m €I, where X € [*°(I).
Then y € X and

lylle < C sup [Mm)| |x]lu -
mel

Proof.

Assume the scalars A(m) are real. By Proposition 1.3, y € X. So there exists a continuous
linear functional I : X — IR with ||f]| = 1 and 3",,ex A(m) (x(m)) = || Emer A(m) x(m)|}u.
Define 8: 1 — {-1,1} by

f(m) = sign l(x{(m)) .
Then

¥l < D2 1A(m) | [He(m))]

mel

< sup IA(m)l 1D 6(m) x(m)||u

mel
< 3C sup [A(m)] {Ix|w -

If the scalars are complex then we consider separately the real and imaginary parts to obtain

ylle £C sup [A(m)] |xll -
mel

Corollary 1.16.
For each A € I°(I) the operator Ay : X — X defined by

(Aax) (m)=A(m)x(m) , mel
is bounded with ||Ax]| € C ||A]lco-

Remark 1.
If X = < {X;|i€1I} >, there exists K1 > 0 such that forallz € X

lizll < llzll < Ky l=]| -
So each My can be scen as a bounded operator from (X, || - ||) into (X, || -||) and

8



(IMyz|| < ||Msz|]s < KKzl .

Define Cy = 2 supg sup.ex |[Moz||.
Then we see that for each bounded sequence A € I°°(T) the operator Ay : (X, ||-]l) = (X, ||-]D
is bounded with norm smaller than C; sup,,cy |A(m)].

Remark 2.
In first instance we do not want to identify X and X. The reason for this is the following.

For each sequence a on I the mapping Aa : X;cf Xm — Xmel Xm is defined by
(Aax) (m) = a(m) x(m) .

Now for a bounded sequence a, Aa can also be defined as a bounded operator on X as

Aax = E a(m) x(m)

mel

and Aa(X) is a well-defined subspace of X. However for an arbitrary sequence a, Aa cannot
be that simply defined and we need completions to describe the space Aa(X).
However, Aa(X) is always properly defined.



§2. Sequence sets

Let I denote a countable set, as usual, and let w*(X) be the set of all nonnegative sequences
(= functions) on 1.

In w*(I) we introduce the usual pointwise operations: addition (a 4+ b) (m) = a(m) + b(m),
multiplication (a - b) (m) = a(m) b(m) scalar multiplication (Aa) (m) = Aa(m) and expo-
nentiation (a) (m) = a(m)*. By 1 we denote the sequence 1(m) = 1 and by §; the sequence
defined by §;(m) = 1if m = j and §;(m) = 0 else.

Definition 2.1,

Let a € wt(I). Then the sequence a~ is defined by a~(m) = a(m)™! if a(m) > 0 and
a~(m) = 0 else.
Further, we set xa = a™ a.

Next we define a partial ordering < and a quasi-ordering § in w*(I).

Definition 2.2.

Let a, b € w*(I). We writea < bifV, cy:a(m) < b(m),a s bifIyy0:a< Ab,andan~b
ifasbandb g a.
The relation ~ is an equivalence relation.

The quasi-ordering in w* (1) induces a quasi-ordering in the collection of all subsets of w*(I).

Definition 2.3.

Let p, 0 Cw*(I). We write p S 0 if Vagp Jpeo 16 5 b. Wewrite poif pSoand o S p.
We also introduce some terminology.

Let p € wt(X). Then p is said to be separating if {6, | m € I} £ p, and quasi-directed
ifp+pSpie fVyphe, Jecp:aScandb Sec.

Two equivalent sequence sets are both separating (quasi-directed) or both not.
The subsets of w*(I) can be classified in three types.

Definition 2.3.

A set p C wt(I) is said to be type 1 if p is equivalent with a finite subset of wt(I), type 2 if
p is not type 1 and p is equivalent with a countable subset of w*(I), and type 3 if p is not
type 1 and not type 2.

Example.

The set I=+(I) is type 1, {°*F(I) ~ {1}. The set ¢*(I) of all sequences a € w*(I) with
a finite support is type 2. With a diagonal argument it follows that w*(I) is a type 3 set itself.
Quasi-directed type 1 and type 2 sets have a standard form.

Proposition 2.4.
For a quasi-directed subset of w*(I),

10



(a) pis type 1iff p = {a} for some a € w*(I)

(b) pis type 2iff p~ {ai | k € IV} with for all k € IV, ap < ag41 and ~(ag41 S ak).

Proof.

(a) If p is type 1 and quasi-directed, then there are by, ..., b, such that p = {bs,...,b,}. Now
observe that {by,...,b,} = {by + ... + b,}. The converse is trivial.

(b) If p is type 2 and quasi-directed, then there are (by)rerv such that p = {bs | k € IN}.
Put ap = by + ... + b. Then agyy > a, and p = {a; | £ € IN}. Similarly, the condition
~(ag4+1 S ax) can be taken care of. 0

We mention the following lemma.

Lemma 2.5.
Let p C w*(I) be totally ordered. Then p is type 1 or type 2.

Proof.
Let p = {a, | @ € A} with A a totally ordered set such that a, < ag <= a < 3. We have

() (Fmer : ax(m) <ag(m)) =>a<p.
We consider two cases
a. el ¢ sup{as(mo)|a€ A} =0 .

For every k¥ € IN there exists ap € A with a,,(mp) > k. Put by = a,,. Then by (1) it
simply follows that p~ {bs | k € IV}.

b. Vel @ sup{aq(m)|a€ A} < co.

Define s € w*(I) by s(m) = sup {aq(m) | @ € A}. We may as well assume that s(m) > 0 for
allme L

Then p S {s}. If p = {8}, p is type 1. If not, then —=(s  a,) for all @ € A. So we have
(%) VacA Smael @ 2aa(my) < s(my) .

There exists a countable set {b; | j € IN} C p with b,(m) > 1 s(m), m € I. We prove that
{bj | 7€ IN} R p. Solet a € A, then by (*x)

aa(me) < "21"3(ma) < by (Ma)

11



and by () aq < b, . a
Next we introduce the operation p ~ p¥ on the collection of all subsets of w(I).

Definition 2.8.
Let p C wt(I). The set p! C wt(I), called p hash, is defined by

o= {uewH(D) |Vac, : a-uel®(D)}.

For each p C wt(I), p¥ is separating and quasi-directed. We have p C p' and p! = pM¥. Also,
p =~ o implies p! = o!. Quite naturally the notion of symmetric sequence set comes up.

Definition 2.7.
Let p C wt(I). The set p is called symmetric if p = pM.

Observe that symmetric sequence sets are separating and quasi-directed. We have the fol-
lowing result for type 1 sets.

Theorem 2.8.

Let p C w*(I) be type 1. Then p is symmetric iff p is separating and quasi-directed. If
p ~ {a} is symmetric then pf ~ {a~1}.

It is a remarkable fact that the same result holds for type 2 sets.

Theorem 2.9.
Let p C wt(I) be type 2. Then p is symmetric iff p is separating and quasi-directed.

Proof.

By Proposition 2.4 we may assume that p = {a; | j € IN} with V,, 3; : a;(m) > 0 and
Vi : aj <ajp A(aja S ay)

Suppose p is not symmetric. Then there is b € pM such that V; : -(b < jaj;). Define
I; = {m e1I|b(m)>ja;j(m)}. Then I; D Ly, I; # 0 and n; I; = @. So each I; is infinite
and there exists a sequence (m;)jemv in I such that m; € I; and m; # mjp, j # 5.

Define ¢ € w*(I) by

0 if m¢{m;|jeN}
c(m) =< aj(m)™* if m=m;i;Aa;(m)>0
b(m)™ i m=mjAam)=0.
Then b - ¢ ¢ 1*°(1), and for each fixed jo € IN and j 2> jo, jve IV, with a;(m;) >0
(c-az) (m;) = (aj -a;) (my) <1

so that ¢ € pl. We arrive at a contradiction. O

12



Remark: If follows from the preceding theorem that all sets IP»*(I), 1 < p < oo, are
type 3.

Lemma 2.10.

Let p and o denote two type 2 sequence sets with p quasi-directed and o symmetric. Assume
p C ol
Then there exists ¢ € w*(I) such that

ps{cical.

Proof.

We may assume that p = {a; | j € N} and 0 = {b; | 7 € IN} with a; < aj41, b; < by
and a; - by # 0. We define ¢ € o! as follows

c(m) = inf {|a; - bélm(bj(m))"l | 7 with bj(m)> 0}

(Here | - |eo is the norm of [*°(I).)
It remains to prove that p £ {c}.
Take a fixed jo € IN. Then for all j € IV and m € I with aj,(m) > 0 and b;(m) > 0,

ajo(m) b;(m)
lap il

and so

aj, * bjleo

(m) >inf{l-'€i’f-'—f’-’l'2‘i— |5 with bj(m) >0} az(m).

. [ |aj - byl L
Let y5 =ming 77— 1< j < .
Jo {lajo . b;‘ l 2 30}
Then ¢ > v;, a;,. O

The preceding result has the following two important consequences.

Corollary 2.11.
Let p be a symmetric type 2 set. Then pt is type 3.

Proof.

If p! were type 1, then p = p* would be type 1 also by Theorem 2.8. If p! were type 2, then
Theorem 2.10 states that there would be ¢ € p! with p* $ {c} taking ¢ = p! and so p! would
be type 1, a contradiction. a

Corollary 2.12.
Let p and o be symmetric type 2 sets. Then p-o is a symmetric type 2 set with (p-or)” = pl.ol.

Proof.

Clearly p - o is separating quasi-directed and type 2 whence p - ¢ is symmetric. Further it is
clear that p¥ . of C (p- o). For the converse, we note that

13



ue(p-o) < {u}-pcod.

Now {u} - p is quasi-directed and o is symmetric. Hence there exists ¢ € o! such that
{u}-p 5 {c}. It means that u € {c}-p! C o - p!. o

The results presented in this section have been firstly presented by Kuylaars in his mas-
ter’s thesis [Ku]. The proofs as presented here are taken from the PhD thesis [Mal.

14



§3. The inductive limits X;,q4(p)

Let {Xi};ex be a minimal system of closed subspaces of a Banach space A. Let X denote
the associated Banach subspace of the carthesian product X;¢y X; as described in Section 1.

Further, for each m € I let Py, : X;¢1 Xi — X, denote the canonical projection as defined
in Definition 1.7.

For each a € w*(I) we define the vector spaces Xinq(a) and Xproj(a). Then for a separating
quasi-directed sequence set p C w*(I) we obtain the inductive limit X,a(p) and the pro-
jective limit Xpr05(p). Topological properties of the inductive limit will be discussed in this
section. In the next section we consider the projective limit. The theory is an adaption and
refinement of the theory in [Ma].

Definition 3.1.
Let a € wt(I). The linear operator Ag : X;ep Xi — X X is defined by

Aa = Z a(m) Pp .

mel

Definition 3.2.
Let a € wt(I). The space X q(a) is defined to be the space Aa(X) endowed with the norm

Il - lla,
Ixlla = [|Aa- %l , = €Aa(X).

To see that Xj,4(a) is a Banach space observe that Ay maps Aa—o(X) isometrically onto
Xind(a) and Ag-o(X) is a closed subspace of X since Py, : X — X, is continuous for each
m € 1. It is clear that the collection of Banach spaces {X,,, | m € supp a} is an unconditional
Schauder decomposition of Xj,a(a).

Lemma 3.3.
Let a, b € w*(I). The following are equivalent

(1) ash
(ii) Aa(X) C Ap(X)

(iii) Xina(a) = Xina(b)

Proof.
(iii) = (ii) Trivial

(ii) = (i) Suppose Aa(X) C Ax(b). Then Ap-4(X) C Ap-p(X) C X. From the closed graph
theorem it follows that Ap-, is a bounded operator on X. So there exists K > 0 such
that

15



|Ab-a X|lu < K ||2fs -

Consequently,
(b= a) (m) | x| < K [|Paxllu
Since, also a(m) Pn(X) C b(m) Pn(X), we get
a(m) < K b(m)
or equivalently a $ b.
(i) = (iii) Suppose a £ b. Then supp(a) C supp(b) and for all x € X,
Aax = Ap(Ap-aX) .
Since b~a € I*°(I), Ap-, is a bounded linear operator from X to X by Corollary 1.16 so

that Ap-ox € X and Aax € Ap(X).
Moreover for all z € Ay(X)

lzlle = llAp-z]lu
<C Aol [lzlla
where C' is the unconditional constant.
Hence Xjnq(a) — Xina(b). a0
Proposition 3.4.
Let a € w*(I). Then Xjpa(a) — X;ep Xi and X,n — Xina(a) for all m € supp(a).

Proof.
For all j € I and z € Xjna(a),

1P 2llu < a(s) C lizlla

and so the canonical injection from Xjnq(a) into Xy X; is continuous.
The second assertion is a consequence of Lemma 3.3 because for all m € supp(a), ém S a. O

It follows from Lemma 3.3 that each separating and quasi-directed sequence set p C w*(I),
henceforth called a Kothe set, yields the inductive system of Banach spaces { Xjna(a) | a € p}.

Definition 3.5.
Let p C wt(I) be a Kothe set. The inductive limit Xj,a(p) is defined by

Xind(p) = limindae, Xina(a) .
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Corollary 3.6.

Let p C wt(I) be a Kothe set. Then Xina(p) is a Hausdorff space. In particular, Xind(p) —
Xiel Xi and X Xind(p)-

Proof.
Continuity of the canonical injections follows from Proposition 3.4. Since X;¢y1 X; with prod-
uct topology is a Hausdorff space, so is the space Xina(p)- o

Theorem 3.7.
Let p,o C wt(I) be Kothe sets

(i Ifpgo then Xpa(p)— Xinalo)
(i fpmo then Xna(p)= Xina(o).

Proof.

Let p $ 0. Then for all a € p there is b € ¢ such that a $ b. So by the lemma above for
all a € p there exists b € o such that Xinq(a) — Xina(b). Consequently, Uag, Xina(a) C
Ubee Xind(b). If j denotes the canonical injection from Xijna(p) into Xina(o) then, by defi-
nition of the inductive limit topology, whence j is continuous. 0

Remark

If the Kothe set p is type 1 then Xina(p) is a Banach space, since in this case p = {a} and so
Xina{p) = Xina(a). I p is type 2, Xjna(p) is a countable inductive limit of Banach spaces.

Theorem 3.8.
Let p C wt (1) be a Kthe set

(i) The space Xjna(p) is barreled.

(ii) The space Xjna(p) is bornological.

Proof.

Each Banach space is barreled and bornological. Being an inductive limit of barreled and
bornological spaces Xinq(p) is barreled and bornological {cf. [Sch], ch. II). O
Remark.

The inductive limit X;,q(p) is, in general, not strict. In Section 5 we present a necessary and
sufficient condition on a Kdthe set p such that Xina{p) is a regular inductive limit.

A crucial point in our setup is that we can describe the topology on the inductive limit
Xina(p) in terms of well specified seminorms when p is a so called moulding set.

Definition 3.9.

A Kothe set p C w*(I) is called moulding if there exists a sequence r € I**+(I) such that
{r}-p=p.
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Remark.
If {r}-p~p, then supp(r) = I, {r™'} - p= p and {r} - p = p¥ = {r~1} - p.

If p C w*(I) is a moulding set, then for all a € p there exist b € p and s € If (I) such
thata=b-s.

Before we state the main theorem of this section, we prove the following lemma.
For moulding sets, Xina(p) admits the following characterization.
Lemma 3.10

x € Xjna(p) iff there exists a sequence X € X;e1 Xm and a € p such that sup ||%(m)|]. < o0
1

and x{(m) = a{(m) x(m), meL e

Proof.

= Let x € Xjpa(p). Then x = Aa X for some X € X and a € p. Now [|Z(m)|s £ C ||%]}x-

<« Let ¢ € 1§ (I) be such that {¢} - p = p. Then a(m) %(m) = ({~! - a) (m) {(m) X(m) and
> ¢(m) [I%(m)]lu < os.

mel

Lemma 3.11.
Let u € w*(I) and let Ayx € X. Then ||Aux||u < 1/C implies u(m) ||x(m)|l. <1, meL

Proof.
u(m) |lx(m)lle = [[u(m) x(m)||
= ||Pm Z u(?) x()|lu
iel
<C ||Aux]lu <1
where for the last inequality Corollary 1.16 is used. o

Theorem 3.12.

Let p C w*(I) be a moulding set. The inductive limit topology of Xna(p) is generated by
the collection of seminorms {py | u € p!}, where

Pa(z) = |Auzlle s %€ Xinalp), ueph.

Proof.
First, observe that py is well-defined on X;na(p) because for z € Xina(p), 2 = Aa X, we have

f\uz = Au(Aax) = Au.ax € X 5
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by Corollary 1.16. And by the same corollary for alla € pand x € X
Pa(Aax) = [Awax|fu £ C |u-ale [[Aax]a -

Hence py is a continuous seminorm on X;uq(p) and the inductive limit topology is stronger
than the topology generated by the collection {py | u € p!}.

Now let Q be a convex balanced subset of Xina(p) such that for each a € p, @ N Xjna(a)
is a neighbourhood of zero in Xjnq(a). Let kq denote the gauge of Q. Then for each a € p
there exists €5 > 0 such that

VieXia(a) ka(z) < €a ||zlla -

Also, since p is separating, for each m € I, there exists a € p such that a(m) > 0, whence for
z € X, C Xjna(a)

ka(z) < eq ||zlla = a(m)—“l ea ||2llu -

Soforallmel, kg ’ x is continuous and we can define w € wt(I) by

w(m) =sup {kq(x) |x € X, ||x|la=1}.
Then for alla € pand all m € 1,
a(m) w(m) = sup {a(m) ka(x /||x|ls) | x € Xm}
<sup {ka(Aax) / [[Aax|la | x € X}
<éa
which shows w € pt.
Now since p is a moulding set there exists r € {**+(I) with Z r(i) = 1 such that {r}-pt = pb.

iel
Let u = r~! - w and consider those z € Xina(p) for which py(z) < 1/C. Then u € p! and

ka(z) =ka(}) 2(m)) < 3 ka(z(m))

mel mel
<Y wm) llz(m)llu = 3 r(m) u(m) z(m)llu
mel mel
< Z r(m)=1.
mel
Hence z € Q.
It follows that the topology generated by the seminorms py, u € p! is stronger than the
inductive limit topology. ]
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§4. The projective limit X,q;(p)

In the preceding section we showed how to associate to each Kéthe set p C w*(I) and each
minimal system {X;};cy in a Banach space X" an inductive limit Xj,a(p).
Here we associate a projective limit Xpp05(p) to p and {Xi}er.

Definition 4.1.
Let a € wt(I). The topological vector space X yo;(a) is defined to be the vector space

Ag (X) = {x € X;ex Xi | Aa(x) € X}
endowed with the seminorm
pa(x) = HAa XHu .
The seminorm pg is anorm if and only if supp(a) = L. In that case, Xyro5(a)is a Banach space.

Lemma 4.2.
Let a,b € wt(I). Then a $ b iff Xjp05(b) — Xpro;(a).

Proof.

<) Let x € Xppoj(b). Then Agx = Agp-(Apx). So Agx € X and
lAax]le <C JabT|eo [[Apx|

i.e.
Xproj(b) — Xproj(a) .
=) There exists ¥ > 0 such that for all x € Xpro;(b)
Aaxllu <7 [|Ab x| -

Since X, C Xproj(b) we find that a(m) <y b(m) for all m € I. Hence a < b. o

So for a Kothe set p C w(I) the set {Xpro5(a) | a € p} is a projective system.

Definition 4.3.
Let p C wt(I) be a Kéthe set. The projective limit Xproj(p) is defined by

Xproj(ﬁ) = limprojaep Xpmj(a) .

Xproj(p) is the space Nagp Xproj(a) together with the topology generated by the separating
system of seminorms {p, | a € p}.

We have the following reformulation of Theorem 3.11.

Corollary 4.4.
Let p C wt(I) be a moulding set. Then
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Xina(p) = Xproj(0*) -

Theorem 4.5.
Let p,0 C wt be Kothe sets. Then

(i) pS o il Xproj(0) = Xproj(p)

Proof.

The proof is an immediate consequence of Lemma 4.2 and is omitted. O
Remark.

If pis type 1, p & {a}, then Xpp(p) is a Banach space, Xproj(p) = Xproj(a™). If p is type
2, then Xpro5(p) is a metrizable locally convex space.

Theorem 4.6.
Let p C w(I) be a Kéthe set. The space Xpro5(p) is complete.

Proof.

Let (Xa)aca be a Cauchy net in Xproj(p). It means that (AaXa)aca is a Cauchy net in the
Banach space X. Further for each m € I the net (P, Xq)aca is a Cauchy net in X,,. So
there exists X in X;c1 X; such that

Ppx = lién PpXy .
Let a € p. Then
a(m) Ppx = lién a(m) Py %o =
= m(lién Aaxs) .
Hence Ay x € X.

Theorem 4.6°.
Let p C w*(I) be a moulding set and let x € X;ef Xm. Then x € Xproj(p) iff forallae p

sup a(m) [x(m)|ls < oo .

Proof.

= Let x € Xproj(p). Then Agx € X for all a € p, whence a(m) |[x(m)|| = |[|[(Aax) (10)]|u <
C lAax|lu.
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< Let for all a € p, sup a(m) ||x(m)|ls < co. Then for b € p, there exists s € {{(I) such
mel

that bs™ € p, whence Y [[(Apx) (m)] < suI} (b(m) s(m)™! ||Ix(m)]lu) ZI s(j) < o0.
mel me i€

We come to the main theorem of this section in which the bounded sets of Xp05(p) are char-
acterized in case p is a moulding set.

Theorem 4.7.
Let p C w*(I) be a moulding set. Then

(i) For all u € p! and all bounded subset B of X the set Ay B is bounded in Xpro5(p).

(ii) For a bounded subset W in Xpro;(p) there exists u € p! and a bounded subset B of X
such that Ay maps B homeomorphically onto W with respect to the relative topologies.

Proof.

(i) Forallx € X, a€pand u € p!, A (AuxX) = AguX € X. S0 Ayx € Xproj(p) and
(%) Pa(Aux) = [[Aaux|| < C la- ufe [|x]lu -

It follows that for each B C X bounded, the set Ay(B) is bounded in Xproj(p)-

(it) Let W be a bounded subset of Xroi(0). Let r € If such that {r}-p = p. For m € I put
u(m) = r(m)™* sup {||Pnx|l. | x € W}.

Since p is separating, W bounded and P,, continuous on Xpp.5(p) we have u(m) < oo for
all m € I. Let a € p. Since a-r~! § b, there exist M > 0 such that ||A .1 x|| < M for
all x € W, which by unconditionality gives r(m)~! a(m) ||Pm x|lu < MC for all m € I
and 2 € W. Hence |a- u|e < 00, and so u € pl.

Further, for all x € W we have Ay-yX = x and ||Pu(Ag- %)|lu £ 7(m) , m € supp(u).
Put B = {Ay4-x | x € W}. Then B is a bounded set in X, the set W equals Au(B) and
Ay is a bijection from B onto W.

Now we prove that A, is a homeomorphism.

By («) it follows that A, maps B continuously onto W, and it remains to prove that A,
is continuous from W onto B. For any finite subset IF of I we put wp = u~ xF where
xF denotes the characteristic sequence of JF. Then {wg} S p and there exists ag € p
and Ag > 0 such that wp < Apag. Let x € W and let ¢ > 0. Take JF such that

> 7(i) <e/2. Then for all y € W with ||Aag(x — ¥)|| < €/2CAp we have
i€\ F
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A-x = <lAwe@ -9+ > wm) ™ ||Pa(x =¥l
meEsupp u\F

<Cor aplx-yll+ X r(m)<e.
mel\F

Corollary 4.8.

Let p C w*(I) be a moulding set and let x € X;ey Xi. Then x € Xproj(p) iff there exists
u € pf and y € X such that x = Ay y.
Put differently, Xproj(p) = Xina(p") as sets!

Corollary 4.9.

Let p C w*(I) be a moulding set and (x,)nenv be a sequence in Xyo5(p). Then the sequence

converges to zero in Xpro;(p) iff there exist u € p¥ and a null sequence (¥n)nen in X such
that X, = Ay yn, n€N.

Corollary 4.10.

Let p C wH(I) be a moulding set and let W denote a subset of Xro5(p). Then W is compact
iff there exists u € p! and a compact subset K of X such that W = Ay(K).

Theorem 4.11.

Let p C w*(I) be a moulding set. Then the space Xpro5(p) is semi-Montel iff V,e1 1 dim(X,,) <
00, i.e. each P, is of finite rank.

Proof.

<) Let By, denote the closed unit ball in X,,. Then B, is bounded and closed in Xproj(p) and

therefore a compact subset of Xy,05(p). Hence B, is compact in X,,, and so dim(X,,) < o
(since Xy, is a Banach space).

=) Let W denote a closed and bounded subset of Xpyo;(p). Let r € I be such that {r}-p =~
p. There exists a bounded and closed subset B of X such that A, : B — Wis a

homeomorphism. Put K = Ay(B). Then K is compact since Ay is a compact operator
from X into X,

Ar = Z r(m) Pm , Pn finite rank .
mel

Let @ =u-r7!. Then it € p! and W = Ag(K). Since Ag : X — Xproj(p) is continuous,
W is compact. O
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§5. Symmetric sequence sets

We recall that a Kdthe set p C wt(I) is said to be symmetric if p &~ p'. In this section,
we describe topological properties of Xina(p) and Xpro3(p) for symmetric moulding sets p
additional to the properties presented in the preceding sections. In fact for moulding sets p
the symmetry condition turns out equivalent with a number of topological conditions on the
spaces Xina(p) or Xproj(p). First we present an auxiliary result.

Lemma 5.1.
Let p C w*(I) be a moulding sct. Then Xp,.(.j(p') = Xina(p") and Xind(p!) = xproj(ﬂ") as
topological vector spaces.

Proof.

It follows from Corollary 4. that Xpre;(p!) = Xina(p') as sets. The topology of Xprs(pb) is
brought about by the seminorm x + ||A,x|| , u € pb. Since oM = o the result follows from
Theorem 3.12. Further, observe that Xina(p%) = Xina(p) = Xpmj(p“). ]

This lemma has the following immediate consequence.

Theorem 5.2,
Let p C w¥(I) be a moulding. Then the following statements are equivalent
(i) p is symmetric.

(il) Xina(p) = Xina(p*) as topological vector spaces.

(iil) Xproj(p) = Xproj(p') as topological vector spaces.

(iv) Xina(p) = Xpmj{p’) as topological vector spaces.

(v) Xproj(p) = Xina(p") as topological vector spaces.

Proof.

The implications (i) = (ii) « (iv) and (i) = (iii) & (v) follow from Theorem (3.7) and
Lemma (5.1).

For (ii) = (i) let b € p" and let x € X with ||x(m)|| = r(m), m €I, where r € If (I) is
such that {r}-p ~ p. (We may assume that the Banach spaces X,, are non trivial.)

There exists xo € X and a € p such that A, x = AaXxo. Hence for all m € I, (Apx) (m) =
(Aaxg) (m) so that

b(m) r(m) < C a(m) |[xolu ,
ie. {b} S p.
For the implication (iii) = (i), let b € p!. Then the seminorm x + ||Ap x||, is continuous

on Xproj{p). It follows that there exists A > 0 and a € p such that for all x € Xproj(p)

MAsxllu <A |[Aaxlu ,
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or, equivalently b £ a. O

Theorem 5.3.
Let p C wt(I) be a moulding set. Then the following are equivalent

(i) p is symmetric.
(ii) Xina(p) is complete.
(iil) Xproj(p) is barreled.

(iv) Xproj(p) is bornological.

Proof.

The implications (i) = (ii), (i) = (iii) and (i) = (iv) follow from Theorem (3.8), (4.6) and
(5.2).

(ii) = (i) Suppose Xina(p) is complete. Let b € pM and let x € X. The set F(I) of all finite
subsets of I is a directed set under the ordering by inclusion. For each IF € F(I) define
xg € X by

Xgp = Z P, x.
meF

Then (Ap xF)Fer)is 2 Cauchy net in Xina(p), because for all u € P! the net (Au(Ap XF))Fer()
is a Cauchy net in X and hence its limit Ay x belongs to Xina(p). We conclude that
Xina(P") C Xina(p) and so M 5 p.

(iii) = (i) Let b € p!. Then the set

W = {x € Xproj(p) | sup [b(m) || P x|l] < 1}

is a barrel, i.e. W is a closed, convex, absorbing and balanced subset of Xpro3(p). So there
exists a € p such that

W D {x € Xproj(p) | |Aax|l < 1}
whence

Aarso vxexmj(p) Vmel : b(m) ||Pm x|l £ M||Aax]|

orb £ a.

(iv) = (i) Let b € p! and consider the convex and balanced set

W = {x € Xproj(p) | l|Abx]| < 1}
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which absorbs every bounded subset of Xy05(p). Hence W is a neighbourhood of a and
similarly as in the proof of (iii) = (i) we obtain a € p with b 5 a. O

As a further consequence we mention

Corollary 5.4.
Let p be a symmetric moulding set. Then the following are equivalent

(i) Each Banach space X,, is finite dimensional.
(i1) Xina(p) is semi-Montel.

(iil) Xproj(p) is semi-Montel.

Corollary 5.5.
Let p be a symmetric moulding set.

(i) A sequence (Xp)neav in Xina(p) converges to zero iff there is a € p such that (X, )nen
converges to zero in the Banach space Xjpq(a).

(ii} A set W in Xjna(p) is bounded iff there is a € p such that W is a bounded subset of the
Banach space Xinq(a).

(iit) A set K in Xj,q(p) is compact iff there is a € p such that K is a compact subset of the
Banach space Xjnq(a).

Remark.

Although Xina(p) is not a strict inductive limit, in general, it very much behaves like one if
p is a symmetric moulding set. The inductive limit is said to be regular.

If pis type 2, then Xyro5(p) is a Frechet space and Xina(p) is a so called DF-space, cf.
[Sch], p.88 DF-spaces are regular inductive limits. This result has already been obtained by
Grothendiek, [Gr]. By Theorem 2.9 and Theorem 5.2 the same result has been derived.
Also by Theorem 2.11 if p is type 2 then p! is type 3 and so the inductive limit topology of
Xind(p) is not metrizable. The aforementioned statement reflects the classical result that a
countable inductive limit of Banach spaces is not a Frechet space unless it is a Banach space.

26



§6. The dual of Xia(p) and Xo5(p)

In this section we develop a description of the duals of the inductive limits Xjna(p) and the
projective limits Xproj(p) in the terminology of the preceding sections. When p is a moulding
set the fact that the topology of both cases is induced by seminorms allows us to obtain a
satisfactory representation of the dual.

Recall that we have a minimal collection of closed subspaces X;, ¢ € I, of a Banach space
X and from these we construct an unconditional Schauder system (X, || |lu) where X =
{x € X1 Xi | Xmer Em x converges unconditionally}. We now construct an unconditional
Schauder system on the dual space X’ using the duals of the spaces {X;}.

Definition 6.1.

Let X/, denote the dual of X, m € I. On X, we impose the norm topology induced from
X given by the norm

[/l = sup {f(2) | 2 € Xm, |lall =1}, fe X, .
When we give X/, this topology we write (X7, || |I%)-

Definition 6.2.
Let X' denote the dual of X and impose on X' the usual norm topology induced by X, i.e.

£l = sup {If(2)| | x € X, [Ixlu =1} .

We can identify the elements of X/, with a subspace of X' as follows: define 7,,, : X}, — X’
by

im(f)=f Em , f€Xn,.

It is clear that the identification is unique.

Considered as a subspace of X' we can impose on X/, the induced topology and when we do
this we write (X7, [| lum)-
We have the following proposition

Proposition 8.3.

(Xms |l lizm) is isomorphic to (Xp, || - [lsm) -

Proof.

The mapping i, defined above is 1 — 1, linear and onto. So all we have to show is that the
norms are egquivalent.

— Let f € (Xp, || - [I7). Then
lim(Nlum = 11f © Emllim < 1l [1Emll < C 1 fllm -
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- Let f € (Xp, || fum)- Then f = in(f) for some f € (X}, || I7n) and
17l = sup {|f(2)] | © € Xum, |l = 1} =
= sup {|f(Emx)| | x € X, ||Emx]| = 1}

< sup {|f(Emx)l | x € X, [xllu=1} .

Hence (with a slight abuse of notation)

11l < 1l < € A1l -

So X}, is a closed subspace of X' and (X}, || ||s) is 2 Banach space. 0

We are in danger here of drowning in our own notation, since there are so many identifications
going on. However the preceding proposition allows us to simplify and henceforth we shall
regard X!, as the closed subspace of X' consisting of all linear functionals of the form

foPn , feX

where P, is the projection of X onto X,,.

Lemma 6.4.
Let f € X'. Then there exists a unique sequence {fm}mel, fm € X,, such that forallx € X

f@)=3" fulz).

mel

Proof.
Let f € X! and let x € X. Then

fx)= 3 (foPa)(x).

mel

So with fm = fo Pp, existence of the sequence has been proved.
Now suppose

)= 3 gm(x), x€X,

mel

where g, € X/,. Then for m’' €1

(foPw)(2) = f(Po &) = gm:() -
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Hence the result. O

Corollary 6.5.

The collection of Banach spaces {X,,}mer establishes a minimal collection in the Banach
space X',

Proof.
We have to show that foreach me 1

X .n<{Xi|i#m}>={0}.

Since the norm closure of a subspace of a Banach space equals its weak *-closure the result
is a straightforward consequence of Lemma 4.4. o

Having a minimal collection we can introduce projective and inductive limits. For this we
introduce some notation.

Definition 6.6.
We define the space Xt C X' by

X* = {f € x4¢1 X; | f is unconditionally summable in X'}
and we impose on X+ the topology given by the unconditional norm || ||7,

3 (), .

Ifll¥ = sup |
Fe}'(l) meF
Remark.

Since the elements of X are sums of unconditionally summable sequences in Xy X, the
norm || ||} on X* is equivalent to the dual norm || - ||%,.

So we are in the same position as in the beginning of Section 2 and for each Kothe set
p C wH(I) we can introduce the inductive limit X ,(p) and the projective limit Xg'mj-(p).
Herefor we must replace X,, by X!, and X by X*.

We want to prove that for moulding sets p, Xi:d(p) and X;mj(p) represent the duals of

Xproj(p) and Xina(p), respectively. By < -, >,, we denote the duality pairing of X, of X/ .

Proposition 6.7.

(i) Let x € Xina(p) and f € X7, .(p). Then the sequence (< x(m), f(m) >m)me is abso-
lutely summable.

(ii) Letx € Xp;.oj(p) and f € X ,(p). Then the sequence (< x(m), £(m) >m)mer is absolutely
summable.

Proof.
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(i) There exists a € p and % € X such that
x(m) = a(m) x(m) .
Now by definition of X;_oj(p), the sequence {a(m) f(m)},,c1 belongs to X*. Hence

< x(m), f(m) >m=< &(m), a(m) f(m) >m , mel,

and the result follows.
(ii) Similarly.

We have the following definition.

Definition 6.8.
Let p be a Kéthe set

{1) On the product X q(p) X X;mj(p) we define the pairing < -, >ip,

<X, f >ip= Z < x(m), f(m) >m .
mel

(i1) On the product Xppoj(p) X Xina(p) we define the pairing < -, - >pi,

(x,f)= Y <x(m), f(m) >m .
mel

Theorem 6.9.
Let p be a Kothe set.

(i) For each f € X;mj(p) the linear functional
X< X, >, € Xinalp)

is continuous.

(ii) For each f € X (p) the linear functional
x =< x>0, %X € Xproj(p)
is continuous.
Proof.
(i) Let f€ X:,rmj(p) and let [ denote the linear functional
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{x)=<x,f>p , «€Xalp).

We have to prove that ! is continuous for each a € p. But this follows from the

ind

inequality

| <AaX, >4 | <[X]lu [Aafl, %eX.
(ii) Let f € X ,(p). Then there is a € p and f € Xt such that

f(m)=a(m) f(m) , mel.

So
|<x,f> | <lAaxl 17 % € Xonci(0)

and the result follows. : m]

Theorem 6.10.

Let p be a moulding set in w*(I).
A linear functional { on Xjnq(p) is continuous iff thereis f € X{f (p) such that

r0j
Proof.

One side of the equivalence is a consequence of the preceding theorem.
So let I € Xina(p)'- Then for each a € p there is a sequence f; € X,y X7, such that

(*)  lAa%) =D <x(m), fu(m)>n, x€X
mel

(cf. Lemma 4.4). )
Further, for each m € I there is f(m) € X, such that

(%%) [(Pax) =< x(m), f‘(m) >m, X € Xina(p)

since X = Xinalp)-
It follows from (%) and (x) that £,(m) = a(m) f(m).

Now f € X;oj(p) since

sup a(m) [[f(m)|l,, =
mel

=sup ||/ Ago Pmllu < C ||I-Adll
m€1
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applying Theorem (4.5). O
Theorem 6.11.
Let p be a moulding set in wt(I).
A linear functional m on Xprj(p) is continuous iff there is g € X ,(p) such that
E(x) =< x,9 >pi .

Proof.

One side of the equivalence being a consequence of Theorem 5.9 we only have to show that
each k € Xproj(p)’ corresponds to a g € Xf 4(p) as indicated.
So let & € Xjna{p)'. Then there are D > 0 and a € p such that

Ik(z)] < D {|Aa(2)]]uec -

The space X, = {Aa(x) | x € Xproj(p)} is a subspace of X. Define the linear functional a on
X, by

ka(Aa(x)) = k(x) , x€Xa.
Then for all y € X, we have
ka(h) < C ||yl -

By Hahn-Banach, &, extends to a continuous linear functional on X and so there exists a
sequence f € X,,cy X,, such that for all y € X,

ka(y)= Y <y(m), f(m) >m

mel

or, equivalently, for all z € Xpro5(p)

k(z) = z a(m) < x(m), f(m) >n .

mel
We show that Az f € X,,¢1 X), belongs to X?,;d(l’)-

First observe that ||f(m)|| < C ||k,]|. Since p is moulding there exists r € If(I) and b € p
such that a = b - r. It follows that

Ag = Ap(A, £)

and A, f € Xt because

Y (o) [lEm)| < € kall 3 x(m).

mel mel
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So g = Asf € Xt ,(p) and
k(x) =< x,9 >pi .

0O

For a moulding set we have characterized the bounded set of Xpro5(p) and hence of Xpmj( p).
This characterization yield the following result.

Theorem 6.12.
Let p be a moulding set. The strong topology 8(Xina(p), X
ductive limit topology on Xjua(p).

proJ(p)) is equivalent to the in-

Proof.
As we have shown in Theorem 4.7 a set V X: J(p is bounded if and only if there exists
a bounded subset Vp of X+ and u € p! such that V = {A.(f) | f € Vo}. It follows that

sup|<x,g>q,! :supi<A z, f>]
geVv feVo

L (sup [[fllue) lAu|luc -
feve

Hence the seminorm z = sup ey | < 2,9 >ip | is continuous with respect to the inductive
limit topology.
Conversely, denoting by E* the unit ball in X+ we get

lAuzllue = sup | < Au,f>|
fEET

= sup |<z,9>].
gEAL(ET)

Corollary 6.13.

Let p be a symmetric moulding set. Then the strong topology 8(Xproj(2), Xih4(p)) is equiv-
alent to the projective limit topology on Xpro;(p).

Proof.

For symmetric moulding set Xproj(p) = Xinal(p!) and X (p) = pr‘)J(p‘l) Cf. Theorem 5.2.
]

Theorem 6.14.

Let p be a symmetric moulding set. Then both Xina(p) and Xppej(p) are reflexive locally
convex spaces if each Banach space X,, is reflexive.

In particular, if each X, is finite dimensional.
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