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Summary 

For an unconditional Schauder system of Banach spaces X m1 mEl and a Kothe power set P 

of nonnegative sequences on I an inductive limit of Banach spaces Xind(P) and a projective 
limit of seminormed spaces Xproj(P) are constructed. Topological properties of Xind(P) and 
Xproj(P) are discussed and put in correspondence with properties of p. 
The dual spaces Xind(P)' and Xproj(P)' turn out to be of the same type. An interesting 
feature is the symmetry condition on P ensuring the existence of a Kothe set a such that 
Xind(P) = Xproj(a) and Xproj(p) = Xind(a). 
Thus locally convex spaces which are both inductive limits and projective limits of Banach 
spaces, can be constructed. 
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Introduction 

Starting point of our discussions is a Schauder system (Xm)mEI of closed subspaces of a 
Banach space X. Examples of such a system are Schauder bases and block Schauder bases. 
In the carthesian product C = XmEI Xm a Banach space X is identified which is the building 
block in our construction. For each nonnegative sequence a on I, i.e. each function a from I 
to [0,(0), the mapping Aa from C into C is defined by 

(Aa u) (m) = a(m) u(m) UEC. 

To the sequence a we link a Banach space Xind(a) and a seminormed space Xproj(a), 

X proj (a) = {u Eel Aa U EX} . 

For a pointwisely directed set P of nonnegative sequences on I, this leads to an inductive 
system {Xind(a) I a E p} and a projective system {Xproj(a) I a E pl. 
The present paper contains a detailed discussion of the corresponding inductive limit 

Xind(p) = U Xind(a) 
aEp 

and projective limit 

Xproj(P) = n Xproj(a). 
REI' 

As such it is a revision and adaption of the theory presented in [Ma], Chapter 3, where the 
Xm are dosed orthogonal subspaces of a Hilbert space II. 
The plan of the paper is as follows. 
In Section 1 we summarize some relevant notions of Banach space theory such as unconditional 
convergence, basic sequence, Schauder basis, Schauder decomposition and, in this connection, 
we recall some useful results. Let w+(I) denote the set of all nonnegative sequences on I. 
In Section 2 we study the structure of the collection P(w+(I)) of all subsets of w+(I). In 
P(w+(I), a quasi-ordering ~, an equivalence relation, a classification and the so called hash­
operation, P ~ pM, are defined. The third and fourth section treats the spaces Xind(P) and 
Xproj(p) and in the fifth section several topological properties of these spaces are linked with 
the ~-symmetry property of the sequence set p. In the last section, we show that the dual 
spaces Xind(P Y and Xproj(P)' have the same structure as the spaces Xind(P) and Xproj(p), 
i.e. they can be described as projective/inductive limits of subspaces of the product space 
xmEI X:n. 
The underlying paper is almost completely self-contained and only som(' knowledge of the 
fundamentals of functional analysis is required for reading it. The theory yields a wealth of 
examples of inductive and projective limits of Banach spaces. Moreover, it can be applied in 
the description of different types of distribution theories for suitable choices of the Schauder 
system (Xm)mEI and the sequence set p. For instance if P consists of bounded sequences, 
only, we get the triple 
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§1. Schauder systems 

Throughout we shall let X be a lla,nach space with norm 11·\1. For a count.able set 1 let .1'(1) 
be the collection of all finite subsets of I. 

Definition 1.1. 
A sequence x : 1 -> X is said to be unconditionally summable if the net 

(~ x( i)) FE "'(I) 

is convergent in X. If x is unconditionally summable, then by 

L xCi) 
iEI 

its finite-sum limit is denoted. 

The following observations are rather straight forward. 

Proposition 1.2. 
Let the sequence x : I -> X be unconditionally summable. Then 

(a) For any subset J C I the subsequence y : j 1-+ xU), j E J is unconditionally summable. 

(b) For any choice of signs e : I -> {-1, 1} the sequence i 1-+ e( i) x( i), i E I, is uncondi­
tionally summable. 

( c) For any permutation 1t' of I the sequence i 1-+ x( 1t'( i)) is unconditionally summable. 

Because of its relevance for the rest of the paper we also mention the following proposition. 

Proposition 1.3. 
Let x : I -> X be unconditionally summable and let ..\ : 1 -> C be a bounded sequence. Then 
the sequence i 1-+ ..\( i) x( i), i E I, is unconditionally summable. 

Proof. 
We may as well assume that the sequence ..\ is real valued by considering the real and imagi­
nary parts separately. 
Since x is unconditionally summable there exists IFe E .1'(1) such that for all IF E .1'(1) with 
IFnlFe =0 

II L: x(i)1I < e 
iEF 

for any e > O. 
Now let e > 0 and let IF E .1'(1) such that IF n]}~ = 0. 
By Hahn-Banach there exists a real linear function I : X -> 1R such that 11111 = 1 and 
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l( L: A(i) xCi)) = II L: A(i) x(i)11 . 
iEF iEF 

Now define S : I -> {-1, 1} by 

Then 

SCi) = { 
-1 

1 if l(x(i)) > 0 

if l(x(i)) < 0 

1\ L: A(i) x(i)1\ = L: A(i) l(x(i» 
iEF iEF 

< sup IA(i)1 L: l(SCi) xCi)) 
iEI iEF 

$ 1\11\ sup IA(i)111 L: SCi) x(i)1\ 
iEl iEF 

$ 2.:: 1\111 sup IA(i)1 . 
iEI 

Hence (L: A(i) xCi)) is a Cauchy net in X. 
. F FE.F(I) .E 

o 

Let {Xi}iEI be a countable collection of closed subspaces of X indexed by I. Each Xi is 
a Banach space under the induced topology and we regard it as such. 

Definition 1.4. 
Let {Xi}iEI be as above. The collection {Xi}iEl is said to be a minimal system iffor each 
mE I 

Xm n < {Xi liE I, if. m} > = {OJ . 

The collection {Xil iEI is said to be an unconditional Schauder system if there exists a closed 
subspace X of X such that for each x E X there exists a unique unconditionally sum mabIe 
sequence {xihEI with Xi E Xi and x = L: Xi· 

iEI 

As important examples of unconditional Schauder systems we mention the unconditional 
Schauder bases and unconditional basic sequences. 

Definition 1.5. 
Let {€111 I mEl} be a countable collection in a Banach space X. Then {em I mEl} is an 
unconditional Schauder basis in .l' if to each x E .l' there exists a unique sequence of scalars 
a = (a(m))mEI such that the sequence (a(m) (:m)mEI is unconditionally summable and 
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x = 2: a( m) em . 
mel 

The collection is an unconditional basic sequence if it is an unconditional Schauder basis in 
its closed linear span < {em I mEl} >. 

For example the standard basis {en}nE.N is an unconditional basis in every lp- space, 1 ~ P < 
00, and the Haar system an unconditional basis in Lp , 1 < p < 00. For more on unconditional 
bases and basic sequences we refer the reader to [LT]. 

Definition 1.6. 
For a minimal system {XdiEI let XiEI Xi denote its carthesian product with the product 
topology. We may identify Xm E Xm with (Xm 8m; );EI so that Xm is also regarded as a 
subspace of the carthesian product. We shall indicate this by writing Xm in stead of Xm. 
The elements of XiEI Xi will be written as x, y, etc., and their components by x( m), y( m) 
or x(m), y(m) when regarded as elements ofXm or Xm, respectively. 

Throughout {XihEI will denote a minimal system in X. 

Definition 1.7. 
For each mEl, we define 

(a) The projections Pm : XiEI Xi""" Xm by 

Pm X = x(m). 

(b) The evaluations Em : XiEI Xi ...... Xm by 

Em X = x(m). 

Next we introduce a Banach space X C XiEI Xi such that the collection {XihEI is an un­
conditional Schauder system in X. 

Definition 1.8. 
Define the space X C XiEI Xi by 

X = {x E XiEl Xi I The sequence (x(m»mEI is unconditionally summable in X) 

and impose on X tbe topology induced by the unconditional semi norm 

IIxliu = sup II 2: x(m)lI· 
FE-"'(I) mEF 

Proposition 1.9. 

II . lIu is a norm . 
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Proof. 
It is clear that II . 11'1.1 is a seminorm. So all we have to prove is IIxllu = 0 => 
Suppose Ilxllu = O. Then :EiEI x( i} = O. So for fixed mEl, x( m) + :Ei;em 
which it follows that x( m) 0 because the collection {XiliEI is minimal. 

Proposition 1.10. 
The operators Em, mEl, are continuous from X onto Xm. 

Proof. 

IIEmxl1 $ Ilx(m)11 $ sup II L: x(i)1I = IIxll .... 
FEJ"(I) iEF 

Corollary 1.11. 
The canonical embedding from X into XiEI Xi is continuous. 

Theorem 1.12. 
X is a Banach space. 

Proof 

x=o. 
x( i) = 0 from 

o 

o 

Let {xkhEJV be a Cauchy sequence in X. Since X is continuously embedded in XiEI Xi, and 
since this product space is complete, there exists x E XiEI Xi such that limle ..... oo I!xle( m) -
x(m)11 = 0, mEl. 
Since {xkhEN is a Cauchy sequence in X we have 

II L: (Xk(i) - XI( i))11 < e . 
iEF 

Letting I -+ 00 we obtain 

II L: (xk(i) - xCi)1I < e . 
iEF 

From this it follows that x E X and that limk ..... oo Ilxk - xllu = o. 

Remark: The sequence of Banach spaces {XdiEI is an unconditional Schauder decom­
position of the Banach space X. If we define X c X by 

X = {L: x( i) I x E X} 
iEI 
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then with its natural unconditional norm 

ilL x( i)lh := Ilxliu 

iEI 

X is a Banach space. 
Working with the unconditional norm 1\ 111 (and so with II lIu) gives us the convergence 
properties we require. However we would much prefer to work with the original topology of 
X and so avoid to renorm the space X. Clearly this happens whenever X equals the closed 
linear span < {Xi liE I} >, where the closure 1s taken with respect to the norm of the 
Banach space X because for all x E X 

so, in this case, X is complete both with respect to II . II and II . Ill. and II . II and II . 111 are 
equivalent. 

Next we associate a so called unconditional constant to the collection {XihEI' 

Definition 1.13. 
Let Ms : XiEI Xi ---+ XiEI Xi be the multiplication operator defined by 

(Msx) (m) = Oem) x(m) , mEl 

where 0 : I ---+ {-I, I} is some choice of signs. 

Proposition 1.14. 
For every choice of signs 0, the operator Ms maps X boundedly into X, and there exists a 
constant J( :s: 2 such that IIMsll :s: K for allO. 

Proof. 
Let E> I ---+ {-I, 1} be some choice of signs and let x E X. Let IF C I be a finite set. 
Define 

IF+ = {m E I I E>(m) = 1}, IF_ = {m E I I E>(m) = I}. 

Then 

II L E>(m) x(m)1\ :s: II L x(m)1\ + II L x(m)1I 
mEl" mEl"+ mEl"_ 

:s: 2 IIxliu . 

D. 

We define unconditional constant of the system {XihEI to be 2 suPs IIMsl1 and we de­
note this constant by C. 
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(The reason for the multiplication by 2 will become clear in the next proposition.) For the 
remainder of the paper we shall always take C to be the unconditional constant of {X.diEI' 

Proposition 1.15. 
Let x E X and let y E XiEI Xi be defined by y(m) = ..\(m) x(m) , mEl, where ..\ E 100 (1). 
Then y E X and 

lIyll" :5 C sup 1..\(m)1 IIXllu . 
mEl 

Proof. 
Assume the scalars ..\( m) are real. By Proposition 1.3, y E X. So there exists a continuous 
linear functionall : X -lR with 11111 = 1 and LmEI ..\(m) l(x(m)) = II LmE! A(m) x(m)\lu. 
Define () : 1 - {-1, I} by 

Oem) = sign l(x(m») . 

Then 

IIYllu :5 L IA(m) Ill(x(m))1 
mEl 

:5 SUp IA(m)1 ilL Oem) x(m)lIu 
mEl mel 

:5 ~c SUp IA(m)1 IIxll". 
mEl 

If the scalars are complex then we consider separately the real and imaginary parts to obtain 

lIyll" :5 C SUp 1..\(m)1 IIXIl,,· 
mEl 

o 

Corollary 1.16. 
For each A E [00(1) the operator A), : X _ X defined by 

(A>.x) (m) = A(m) x(m) , mEl 

is bounded with IIA>.II :5 C 11..\1100' 

Remark 1. -,....".,..--,-,-=---
If X = < {Xi liE I} >, there exists Kl > 0 such that for all x E X 

So each Ms can be seen as a bounded operator from (X, 11·11) into (X, II·ID and 
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Define Cl = 2 sup, sUPalEX 11M, xII_ 
Then we see that for each bounded sequence A E 100 (1) the operator A).. : (X, II-II) - (X, II-II) 
is bounded with norm smaller than Cl sUPmEI IACm)l. 

Remark 2. 
In first instance we do not want to identify X and X. The reason for this is the following. 
For each sequence a on 1 the mapping Aa : xieI Xm - XmeI Xm is defined by 

(Aax) (m) = a(m) x(m) . 

Now for a bounded sequence a, Aa can also be defined as a bounded operator on X as 

Aa x = E a(m) x(m) 
mel 

and Aa(X) is a well-defined subspace of X. However for an arbitrary sequence a, Aa cannot 
be that simply defined and we need completions to describe the space Aa(X). 
However, Aa(X) is always properly defined. 
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§2. Sequence sets 

Let I denote a countable set, as usual, and let w+(I) be the set of all nonnegative sequences 
(= functions) on I. 
In w+(I) we introduce the usual pointwise operations: addition (a + b) (m) = a(m) + b(m), 
multiplication (a. b) (m) = a(m) b(m) scalar multiplication (Aa) (m) = Aa(m) and expo­
nentiation (aA) (m) = a( m» •. By 1 we denote the sequence I( m) = 1 and by 6; the sequence 
defined by Dj(m) = 1 if m = j and Dj(m) = 0 else. 

Definition 2.1. 
Let a E w+(I}. Then the sequence a- is defined by a-em) = a(m)-l if a(m) > 0 and 
a-em) = 0 else. 
Further, we set Xa = a- a. 

Next we define a partial ordering :s; and a quasi-ordering ~ in w+(I). 

Definition 2.2. 
Let a, bE w+(I). We write a:S; b ifVmEI : a(m) :s; b(m), a ~ b if 3),>0: a ~ A b, and a rv b 
if a ~ b and b ~ a. 
The relation rv is an equivalence relation. 

The quasi-ordering in w+(I) induces a quasi-ordering in the collection of all subsets of w+(I}. 

Definition 2.3. 
Let p, (1 C w+(I). We write p ~ (1 if VaEP 3bEC7 : a ~ b. We write p R:l (1 if p ~ (1 and (1 ~ p. 
We also introduce some terminology. 

Let p C w+(I). Then p is said to be separating if {15m I mEl} ~ p, and quasi-directed 
if p + p ~ p, i.e. if Va,bEP 3 CEP : a ~ c and b ~ c. 

Two equivalent sequence sets are both separating (quasi-directed) or both not. 

The subsets of w+(I) can be classified in three types. 

Definition 2.3. 
A set pC w+(I) is said to be type 1 if p is equivalent with a finite subset of w+(I), type 2 if 
p is not type 1 and p is equivalent with a countable subset of w+(I), and type 3 if p is not 
type 1 and not type 2. 

Example. 
The set 100'+(1) is type 1, 100 '+(1) R:l {I}. The set <;,+(1) of all sequences a E w+(I) with 
a finite support is type 2. With a diagonal argument it follows that w+(I) is a type 3 set itself. 

Quasi-directed type 1 and type 2 sets have a standard form. 

Proposition 2.4. 
For a quasi-directed subset of w+(I), 
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(a) p is type 1 iff p ~ {a} for some a E w+(I) 

(b) p is type 2 iff p ~ {ale IkE IN} with for all k E lN, ale $ ak+l and .(ale+! ~ ale). 

Proof. 

(a) If p is type 1 and quasi-directed, then there are b l , ... , b,. such that p ~ {bl, ... , b,.}. Now 
observe that {bt , ... , b,.} ~ {bt + ... + b,.}. The converse is trivial. 

(b) If p is type 2 and quasi-directed, then there are (ble)leeJV such that p ~ {ble IkE IN}. 
Put ale = b t + ... + b le . Then ale+! ;::-: ale and p ~ {ale IkE IN}. Similarly, the condition 
..... (ale+! ~ ale) can be taken care of. 0 

We mention the following lemma. 

Lemma 2.5. 
Let p C w+(I) be totally ordered. Then p is type 1 or type 2. 

Proof. 
Let p = {aa I a E A} with A a totally ordered set such that aa $ a{3 ¢::::} a $ {3. We have 

We consider two cases 

a. 3meeI: sup {aa(mo) I a E A} = 00 • 

For every k E IN there exists ale E A with aa .. (mo) > k. Put ble = aa ... Then by (1) it 
simply follows that p ~ {ble IkE IN}. 

b. V'meI: sup {aa(m) I a E A} < 00 • 

Define 8 E w+(I) by s(m) = sup {aa(m) I a E A}. We may as well assume that sCm) > 0 for 
all mEl. 
Then p ~ {s}. If p ~ {s}, p is type 1. If not, then .(s ~ aa) for all a EA. So we ha.ve 

There exists a countable set {hj I j E IN} c p with bm ( m) > l s( m), mEl. We prove that 
{hj I j E IN} ~ p. So let a E A, then by (**) 
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o 

Next we introduce the operation p 1-+ p' on the collection of all subsets of w+(I). 

Definition 2.6. 
Let p C w+(I). The set p' C w+(I), called p hash, is defined by 

For each pC w+(I), pU is separating and quasi-directed. We have p C pal and pi = pm. Also, 
p ~ (1 implies p' = (1'. Quite naturally the notion of symmetric sequence set comes up. 

Definition 2.7. 
Let p C w+(I). The set p is called symmetric if p ~ pU. 

Observe that symmetric sequence sets are separating and quasi-directed. We have the fol­
lowing result for type 1 sets. 

Theorem 2.8. 
Let p C w+(I) be type 1. Then p is symmetric iff p is separating and quasi-directed. If 
p ~ {a} is symmetric then p. ~ {a-1}. 

It is a remarkable fact that the same result holds for type 2 sets. 

Theorem 2.9. 
Let p C w+ (I) be type 2. Then p is symmetric iff p is separating and quasi-directed. 

Proof. 
By Proposition 2.4 we may assume that p = {aj I j E IN} with "1m 3j : a;(m) > 0 and 
"Ij : aj ~ aj+! /\ .(aj+l .$ aj). 
Suppose p is not symmetric. Then there is b E pU such that "Ij : .(b ~ j Aj). Define 
Ij = {m E I I b( m) > j A;( m)}. Then Ij :J Ij+b Ij ::fi 0 and nj Ij = 0. So each Ij is infinite 
and there exists a sequence (mj)j€1V in I such that mj E Ij and mj ::fi mj', j ::fi j'. 
Define c E w+ (1) by 

o if m ¢ {mj I j E IN} 

c(m) aj(m)-l if m = mj /\ aj(m) > 0 

j b(m)-t if m = mj /\ aj(m) = 0 . 

Then b . c ¢ 100(1), and for each fixed io E IN and j ~ jo, j E IN, with ajoCmj) > 0 

so that c E pl. We arrive at a contradiction. o 
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Remark: If follows from the preceding theorem that all sets IP'+(I), 1 < p < 00, are 
type 3. 

Lemma 2.10. 
Let p and (1 denote two type 2 sequence sets with p quasi-directed and (1 symmetric. Assume 
pC (1'. 
Then there exists c E w+(I) such that 

p ~ {c} C (1' . 

Proof. 
We may assume that p = {aj I j E IN} and (1 = {bj I j E IN} with aj ~ a,i+b bj ~ b,i+l 
and at . b l f. O. We define c E (1' as follows 

c(m) = inf {Iaj . hjloo(bj(m))-t I j with bj(m) > O} 

(Here 1·100 is the norm of [00(1).) 
It remains to prove that p ~ {c}. 
Take a fixed jo E IN. Then for all j E IN and mEl with ajo(m) > 0 and bj(m) > 0, 

ajo(m) hj(m) < 1 
lajo . bjloo 

and so 

c(m) > inf { laj' bjloo I j with bj(m) > o} ajo(m) . 
lajo . bjl oo 

{ 
la" h·1 } 

Let "fio = min la ~ . ~'I 11 ~ j ~ io . 
30 3 

Then c ~ 'Yio aio' 

The preceding result has the following two important consequences. 

Corollary 2.11. 
Let p be a symmetric type 2 set. Then p' is type 3. 

Proof. 

o 

If pi were type 1, then p R; p" would be type 1 also by Theorem 2.8. If p' were type 2, then 
Theorem 2.10 states that there would be c E p' with p' ~ {c} taking (1 = p' and so p' would 
be type 1, a contradiction. 0 

Corollary 2.12. 
Let p and (1 be symmetric type 2 sets. Then p.(1 is a symmetric type 2 set with (p.(1)f = pL(1'. 

Proof. 
Clearly p . (1 is separating quasi-directed and type 2 whence p . (1 is symmetric. Further it is 
clear that pI . (1' C (p . (1)'. For the converse, we note that 

13 



u E (p . a). '¢=::} { u} . pea' . 

Now {u} . p is quasi-directed and a is symmetric. Hence there exists c E a l such that 
{ u} . p $ {c}. It means that U E {c} . p' C a l . p. • 0 

The results presented in this section have been firstly presented by Kuylaars in his mas­
ter's thesis [Ku]. The proofs as presented here are taken from the PhD thesis [Maj. 
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§3. The inductive limits Xind(p) 

Let {Xi}iEI be a minimal system of closed subspaces of a Banach space X. Let X denote 
the associated Banach subspace of the carthesian product XiEI Xi as described in Section 1. 
Further, for each mEl let Pm : XiEI Xi -+ Xm denote the canonical projection as defined 
in Definition 1.7. 
For each a E w+(I) we define the vector spaces Xind(a) and Xproj(a). Then for a separating 
quasi-directed sequence set P C w+(I) we obtain the inductive limit Xind(p) and the pro­
jective limit Xproj(p). Topological properties of the inductive limit will be discussed in this 
section. In the next section we consider the projective limit. The theory is an adaption and 
refinement of the theory in [Ma]. 

Definition 3.1. 
Let a E w+(I). The linear operator Aa : XiEI Xi -+ XiEI Xi is defined by 

Aa == 2: a(m) Pm . 
mEl 

Definition 3.2. 
Let a E w+(I). The space Xind(a) is defined to be the space Aa(X) endowed with the norm 
1\·lla, 

IIxlla == IIAa- Xii,. , x E Aa(X) . 

To see that Xind(a) is a Banach space observe that Aa maps Aa-a(X) isometrically onto 
Xind(a) and Aa-a(X) is a closed subspace of X since Pm : X -+ Xm is continuous for each 
m E I. It is clear that the collection of Banach spaces {Xm I m E supp a} is an unconditional 
Schauder decomposition of Xind(a). 

Lemma 3.3. 
Let a, bE w+(I). The following are equivalent 

(i) a:5 b 

Proof. 

(iii) ::} (ii) Trivial 

(ii) ::} (i) Suppose Aa(X) C Ax(b). Then Ab-a(X) C Ab-b(X) C X. From the dosed graph 
theorem it follows that Ab-a is a bounded operator on X. So there exists ]( > 0 such 
that 
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Consequently, 

Since, also a(m) Pm(X) C hem) Pm(X), we get 

a(m) S; J( b(m) 

or equivalently a ;:; h. 

(i) => (iii) Suppose a ;:; h. Then supp( a) ~ supp(h) and for all x EX, 

Since h-a E lOO(I), Ab-a is a bounded linear operator from X to X by Corollary l.16 so 
that Ab- a x E X and Aa x E Ab(X). 
~1oreover for all z E Aa(X) 

IIzllb = IIAb- zllu 

S; C \lAb-ali IIzlia 

where C is the unconditional constant. 
Hence Xind(a) <.....j. Xind(h). 

Proposition 3.4. 
Let a E w+(I). Then Xind(a) <.....j. Xiel Xi and Xm <.....j. Xind(a) for all m E supp(a). 

Proof. 
For all j E I and z E Xind(a), 

IlPj zllu S; aU) C IIzlia 

and so the canonical injection from Xind(a) into Xiel Xi is continuous. 

o 

The second assertion is a consequence of Lemma 3.3 because for all mE supp(a), lim ;:; a. 0 

It follows from Lemma 3.3 that each separating and quasi-directed sequence set pC w+(I), 
henceforth called a Kothe set, yields the inductive system of Banach spaces {Xind(a) I a E pl. 

Definition 3.S. 
Let p C w+(I) be a Kothe set. The inductive limit Xind(P) is defined by 
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Corollary 3.6. 
Let pC w+(I) be a Kothe set. Then Xind(P) is a Hausdorff space. In particular, Xind(P) '---" 
Xiel Xi and Xm '--+ Xind(P)· 

Proof. 
Continuity of the canonical injections follows from Proposition 3.4. Since XieI Xi with prod­
uct topology is a Hausdorff space, so is the space Xind(P). 0 

Theorem 3.7. 
Let p, (1 C w+(I) he Kothe sets 

(i) If P ~ (1 then XindCP) '--+ Xind«(1). 

Oi) If P ~ (1 then Xind(P) = Xind«(1). 

Proof. 
Let P ;5 (1. Then for all a E P there is b E (1 such that a ~ b. So hy the lemma ahove for 
all a E P there exists b E (1 such that Xind(a) '--+ Xind(b). Consequently, UaEp Xind(a) C 
UbEcr Xind(b). If j denotes the canonical injection from Xind(P) into Xind«(1) then, hy defi­
nition of the inductive limit topology, whence j is continuous. 0 

Remark 
If the Kothe set P is type 1 then Xind(p) is a Banach space, since in this case P ~ { a} and so 
Xind(P) = Xind(a). If P is type 2, Xind(P) is a countahle inductive limit of Banach spaces. 

Theorem 3.8. 
Let P C w+(I) he a Kothe set 

(i) The space Xind(P) is harreled. 

(ii) The space Xind(p) is homological. 

Proof. 
Each Banach space is barreled and homological. Being an inductive limit of harreled and 
homological spaces Xind(P) is harreled and homological (cf. [Sch], ch. II). 0 

Remark. 
The inductive limit Xind(P) is, in general, not strict. In Section 5 we present a necessary and 
sufficient condition on a Kothe set P such that Xind(P) is a regular inductive limit. 

A crucial point in our setup is that we can describe the topology on the inductive limit 
Xind(P) in terms of well specified semi norms when P is a so called moulding set. 

Definition 3.9. 
A Kothe set P C w+(I) is called moulding if there exists a sequence r E [1'+(1) such that 
{r}·p~p. 
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Remark. 
If {r} . P ';:;j p, then supp( r) = I, {r-1 } . P ';:;j P and {r} . p' = p' {r-l} . p'. 

If p c w+(I) is a moulding set, then for all a E p there exist b E P and s Eitel) such 
that a = b· s. 

Before we state the main theorem of this section, we prove the following lemma. 

For moulding sets, Xind(p) admits the following characterization. 

Lemma 3.10 
x E Xind(P) iff there exists a sequence x E XiEI Xm and a E p such that sup Ilx(m)lI .. < 00 

mEl 
and x(m) = a(m) x(m) , mEl. 

Proof. 

=> Let x E Xind(P). Then x = Aax for some x E X and a E p. Now Ilx(m)lI .. ~ e Ilxll ... 

{=: Let ( E 't(l) be such that {O . p ';:;j p. Then a(m) x(m) = «(-1 . a) (m) (m) x(m) and 

L: (m) Ilx(m)llu < 00. 

mEl 

Lemma 3.11-
Let U E w+(I) and let Aux E X. Then IIAuxll .. < lie implies u(m) IIx(m)\lu < l, mEl. 

Proof. 

u(m) Ilx(m)ll.. = lIu(m) x(m)ll .. 

= IIPm L: u(i) x( i) II .. 
iE! 

~ e IIAuxll .. < 1 

where for the last inequality Corollary 1.16 is used. o 

Theorem 3.12. 
Let p C w+(I) be a moulding set. The inductive limit topology of Xind(P) is generated by 
the collection of semi norms {Pu I U E pi}, where 

Proof. 
First, observe that Pu is well-defined on Xind(P) because for z E Xind(P), Z :::: Aa x, we have 
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by Corollary 1.16. And by the same corollary for all a E p and x E X 

Hence Pu is a continuous semi norm on Xind(p) and the inductive limit topology is stronger 
than the topology generated by the collection {Pu I U E pI}. 

Now let n be a convex balanced subset of Xind(p) such that for each a E p, n n Xind(a) 
is a neighbourhood of zero in Xind(a). Let ko denote the gauge of n. Then for each a E p 
there exists ea > 0 such that 

koCz) sea IIzll •. 

Also, since p is separating, for each mEl, there exists a E p such that a( m) > 0, whence for 
z E Xm C Xind(a) 

So for all mEl, ko I is continuous and we can define W E w+(I) by 
Xm 

w(m) = sup {ko(x) I x E X m , IIxliu = I} . 

Then for all a E p and all mEl, 

a(m) w(m) = sup {a(m) ko(x IlIxllu ) I x E Xm} 

::; sup {ko(Aax) I IIAaxli. I x EX} 

which shows w E pl. 
Now since p is a moulding set there exists r E 11.+ (I) with L: r( i) = 1 such that {r} . pI = pU. 

iEI 
Let u = r-1 

• wand consider those z E Xind(P) for which Pu(z) < l/C. Then U E pI and 

ko(z) = ko(L: z(m») s L: ko(z(m») 
mEl mEl 

::; L: w(m) IIz(m)lIu = L: rem) u(m) IIz(m)llu 
mel mEl 

< L: rem) = 1. 
mEl 

Hence zEn. 
It follows that the topology generated by the semi norms Pu, U E p' is stronger than the 
inductive limit topology. 0 
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§4. The projective limit XPl'oj(p) 

In the preceding section we showed how to associate to each Kothe set P C w+(I) and each 
minimal system {XdiEI in a Banach space X an inductive limit Xind(P). 
Here we associate a projective limit XPl'oj(p) to P and {XihEI' 

Definition 4.1. 
Let a E w+(I). The topological vector space Xproj(a) is defined to be the vector space 

endowed with the seminorm 

The seminormpa is a norm if and only if supp(a) = I. In that case, Xproj(a) is a Banach space. 

Lemma 4.2. 
Let a, bE w+(I). Then a ;$ b iff Xproj(b) '-+ Xpl'oj(a). 

Proof. 

<=) Let x E Xpl'oj(b). Then Aax = Aab-(AbX), So Aax E X and 

i.e. 

Xpl'oj(b) '-+ Xproj(a) . 

:::::» There exists "'{ > 0 such that for all x E Xproj(b) 

Since Xm C Xproj(b) we :find that a( m) ~ "'{ b( m) for all m E I. Hence a ~ b. 0 

So for a Kothe set P C w+(I) the set {Xpl'oj(a) I a E p} is a projective system. 

Definition 4.3. 
Let P C w+(I) be a Kothe set. TIle projective limit Xproj(p) is defined by 

XPl'oj(p) is the space naEp Xproj(a) together with the topology generated by the separating 
system of seminorms {Pa I a E p}. 

We have the following reformulation of Theorem 3.11. 

Corollary 4.4. 
Let p C w+(I) be a moulding set. Then 
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Theorem 4.5. 
Let p, cr C w+ be Kothe sets. Then 

(i) P;:; cr iff Xproj(cr) ........ Xproj(p) 

(ii) P ~ cr iff Xproj(p) = Xproj(cr) . 

Proof. 
The proof is an immediate consequence of Lemma 4.2 and is omitted. o 

Remark. 
If P is type 1, P ~ {a}, then Xproj(P) is a Banach space, Xproj(P) = Xproj(a-1

). If P is type 
2, then Xproj(p) is a metrizable locally convex space. 

Theorem 4.6. 
Let P C w+(I) be a Kothe set. The space Xproj(P) is complete. 

Proof. 
Let (Xa)aEA be a Cauchy net in Xproj(p). It means that (AaXa)aEA is a Cauchy net in the 
Banach space X. Further for each mEl the net (Pm Xa)aEA is a Cauchy net in X m • So 
there exists x in XiEI Xi such that 

Let a E p. Then 

a(m) Pmx = lim a(m) Pmxa = 
a 

Hence Aa x E X. 

Theorem 4.6'. 
Let P C w+(I) be a moulding set and let x E XiEI X m • Then x E Xproj(p) iff for all a E P 

sup a(m) IIx(m)llu < 00 • 
mEl 

Proof. 

o 

:::} Let x E Xproj(P). Then Aax E X fol' all a E p, whence a(m) Ilx(m)llu = II(Aax) (m)lIu ~ 
C IIAaxllu. 
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{::: Let for all a E P, sup a(m) Ilx(m)lIu < 00. Then for b E P, there exists s E It (I) such 
mEl 

that b E p, whence L II(AbX) (m)11 s sup (b(m) s(m)-l Ilx(m)lIu) L s(j) < 00. 

~I md ~ 

We come to the main theorem of this section in which the bounded sets of Xproj(p) are char­
acterized in case p is a moulding set. 

Theorem 4.7. 
Let p C w+(I) be a moulding set. Then 

(i) For all u E pI and all bounded subset B of X the set Au B is bounded in Xproj(P). 

(ii) For a bounded subset W in Xproj(p) there exists u E pI and a bounded subset B of X 
such that Au maps B homeomorphically onto W with respect to the relative topologies. 

Proof. 

(i) For all x E X, a E p and U E p', Aa(Aux) = Aa.ux E X. So Aux E Xproj(p) and 

(*) Pa(Au x) = IIAa.u xII s C la· uloo IIxliu . 

It follows that for each B C X bounded, the set Au(B) is bounded in Xproj(P). 

Oi) Let W be a bounded subset of Xproj(P). Let r E It such that {r}· P ~ p. For mEl put 

u(m) = r(m)-l sup {IIPmxllu I x E W} . 

Since p is separating, W bounded and Pm continuous on Xproj(P) we have u(m) < 00 for 
all mEl. Let a E p. Since a . r-1 :;; b, there exist M > 0 such that IIAa . .,.-l xII s M for 
all x E W, which by unconditionality gives r(m)-l a(m) IlPmxllu .s MC for all mEl 
and x E W. Hence la· ul oo < 00, and so U E pl. 
Further, for all x E W we have Au-ux = x and IIP",,(Au- x)lIu s r(m) , mE supp(u). 
Put B = {Au- x I x E W}. Then B is a hounded set in X, the set W equals Au(B) and 
Au is a bijection from B onto W. 
N ow we prove that Au is a homeomorphism. 
By (*) it follows that Au maps B continuously onto W, and it remains to prove that Au­
is continuous from W onto B. For any finite subset IF of I we put WF = U- XF where 
XF denotes the characteristic sequence of IF. Then {WF} :;; p and there exists aF E p 
and AF > 0 such that Wp S Ap aF. Let x E Wand let e > O. Take IF such that 
L rei) < e/2. Then for all yEW with IIAaF(x - y)11 < e;/2CAF we have 

iEI\F 
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IIAu-{x - y)!I ::; IIAwp(x - y)1I + 
mEsuppu\F 

::; C AI" IIAap(x - y)11 + 2:: rem) < e . 
mEI\F 

o 

Corollary 4.8. 
Let P C w+(I) be a moulding set and let x E XiEI Xi. Then x E Xproj(p) iff there exists 
U E p' and y E X such that x = Au y. 
Put differently, Xproj(p) = Xind(pl) as sets! 

Corollary 4.9. 
Let p C w+(I) be a moulding set and (Xn)nEN be a sequence in Xproj(P). Then the sequence 
converges to zero in Xproj(p) iff there exist U E p. and a null sequence (Yn)nEN in X such 
that Xn = AuYn, n E IN. 

Corollary 4.10. 
Let pC w+(I) be a moulding set and let W denote a subset of Xproj(P). Then W is compact 
iff there exists U E p' and a compact subset K of X such that W = Au(K). 

Theorem 4.11. 
Let pC w+(I) be a moulding set. Then the space Xproj(p)is semi-Montel iffVmEI : dim(Xm) < 
00, i.e. each Pm is of finite rank. 

Proof. 

-<=) Let Bm denote the closed unit ball in Xm • Then Bm is bounded and closed in Xproj(p) and 
therefore a compact subset of Xproj(P). Hence Bm is compact in Xm and so dim(Xm) < 00 

(since Xm is a Banach space). 

=» Let W denote a closed and bounded subset of Xproj(P). Let r E It be such that {r} . p ~ 
p. There exists a bounded and dosed subset B of X such that Au : B -----+ W is a 
homeomorphism. Put J( == Ar(B). Then J( is compact since Ar is a compact operator 
from X into X, 

Ar = 2:: rem) Pm , Pm finite rank. 
mEl 

Let u == U· r-1 . Then u E pd and W == Au(J(). Since Au 
W is compact. 
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§5. Symmetric sequence sets 

We recall that a Kothe set P C w+(I) is said to be symmetric if P R:j pll. In this section, 
we describe topological properties of Xind(p) and Xproj(p) for symmetric moulding sets P 
additional to the properties presented in the preceding sections. In fact for moulding sets p 
the symmetry condition turns out equivalent with a number of topological conditions on the 
spaces Xind (p) or Xproj (p). First we present an auxiliary result. 

Lemma 5.1. 
Let p C w+(I) be a moulding set. Then Xproj(pl) Xind(pU) and Xind(pl) = Xproj(pU) as 
topological vector spaces. 

Proof. 
It follows from Corollary 4. that Xproj(p') = Xind(pU) as sets. The topology of Xproj(P') is 
brought about by the semi norm x 1-+ II Au xII , U E p'. Since pm = p' the result follows from 
Theorem 3.12. Further, observe that Xind(pl) = Xind(PUf) = Xproj(pU). 0 

This lemma has the following immediate consequence. 

Theorem 5.2. 
Let p C w+(I) be a moulding. Then the following statements are equivalent 

(i) p is symmetric. 

(ii) Xind (p) = X ind (pU) as topological vector spaces. 

(iii) Xproj (p) = X proj (pa.) as topological vector spaces. 

(iv) Xind(P) = Xproj(pl) as topological vector spaces. 

(v) Xproj(P) = Xind(PU) as topological vector spaces. 

Proof. 
The implications (i) => (ii) {:} (iv) and (i) => (iii) {:} (v) follow from Theorem (3.7) and 
Lemma (5.1). 
For (ii) => (i) let b E pal and let x E X with Ilx(m)11 = r(m) , mEl, where r E INI) is 
such that {r} . p :::::: p. (We may assume that the Banach spaces Xm are non trivial.) 
There exists Xo E X and a E p such that Ab x = Aa Xo. Hence for all mEl, (Ab x) (m) = 
(Aaxo) (m) so that 

b(m) rem) ~ C a(m) Ilxollu, 

i.e. {b} :5 p. 
For the implication (iii) => (i), let b E pll. Then the semi norm x 1-+ IIAbxllu is continuous 
on Xproj(P). It follows that there exists A > 0 and a E p such that for aU x E Xproj(p) 
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or, equivalently b ::; a. 

Theorem 5.3. 
Let P C w+(I) be a moulding set. Then the following are equivalent 

(i) P is symmetric. 

(ii) Xind(p) is complete. 

(iii) Xproj(P) is barreled. 

(iv) Xproj (p) is bomological. 

Proof. 

o 

The implications (i) =? (ii), (i) =? (iii) and (i) =? (iv) follow from Theorem (3.8), (4.6) and 
(5.2). 

(ii) =? (i) Suppose Xind(p) is complete. Let b E pU and let x E X. The set F(I) of all finite 
subsets of I is a directed set under the ordering by inclusion. For each IF E F(I) define 
Xp E X by 

Xp= L Pm x . 
mEP 

Then (AbXP )PEJ"(I) is a Cauchy net in Xind(P), because for all U E p. the net (Au(Ab Xp )FEF(I) 

is a Cauchy net in X and hence its limit Abx belongs to Xind(p). We conclude that 
Xind(PU) C Xind(p) and so pU ~ p. 

(iii) =? (i) Let b E pU. Then the set 

W = {x E Xproj(p) I sup [b(m) II Pm X III :s; I} 
mEl 

is a barrel, Le. W is a closed, convex, absorbing and balanced subset of Xproj{p). So there 
exists a E p such that 

W:J {x E Xproj(p) IIIAaxli :s; I} 

whence 

or b::; a. 

(iv) =? (i) Let b E pU and consider the convex and balanced set 
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which absorbs every bounded subset of Xproj(P). Hence W is a neighbourhood of a and 
similarly as in the proof of (iii) :::} (i) we obtain a E P with b ~ a. 0 

As a further consequence we mention 

Corollary 5.4. 
Let P be a symmetric moulding set. Then the following are equivalent 

(i) Each Banach space Xm is finite dimensional. 

(ii) Xind(P) is semi-Montel. 

(iii) Xproj(p) is semi-Montel. 

Corollary 5.5. 
Let P be a symmetric moulding set. 

(i) A sequence (Xn)nEN in Xind(P) converges to zero iff there is a E P such that (Xn)nEN 

converges to zero in the Banach space Xind(a). 

(ii) A set Win Xind(P) is bounded iff there is a E P such that W is a bounded subset of the 
Banach space Xind(a). 

(iii) A set K in Xind(p) is compact iff there is a E P such that K is a compact subset of the 
Banach space Xind(a). 

Remark. 
Although Xind(P) is not a strict inductive limit, in general, it very much behaves like one if 
P is a symmetric moulding set. The inductive limit is said to be regular. 
If p is type 2, then Xproj(p) is a Frechet space and Xind(P) is a so called DF-space, d. 
[Sch], p.88 DF-spaces are regular inductive limits. This result has already been obtained by 
Grothendiek, [Grl. By Theorem 2.9 and Theorem 5.2 the same result has been derived. 
Also by Theorem 2.11 if P is type 2 then p' is type 3 and so the inductive limit topology of 
Xind( p) is not metrizable. The aforementioned statement reflects the classical result that a 
countable inductive limit of Banach spaces is not a Frechet space unless it is a Banach space. 
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§6. The dual of Xind(P) and Xproj(p) 

In this section we develop a description of the duals of the inductive limits Xind(P) and the 
projective limits Xproj(p) in the terminology of the preceding sections. When P is a moulding 
set the fact that the topology of both cases is induced by seminorms allows us to obtajn a 
satisfactory representation of the dual. 
Recall that we have a minimal collection of closed subspaces Xi, i E I, of a Banach space 
X and from these we construct an unconditional Sehauder system (X, II lIu) where X = 
{x E Xi€I Xi I L:m€I Em X converges unconditionally}. We now construct an unconditional 
Schauder system on the dual space XI using the duals of the spaces {Xi}. 

Definition 6.1. 
Let X:n denote the dual of X .... , mEl. On X:" we impose the norm topology induced from 
Xm given by the norm 

IIfll~ = sup {f(x) I x E X m , IIxll = I}, f E X:n . 

When we give X:" this topology we write (X:,., II 1I:n). 

Definition 6.2. 
Let XI denote the dual of X and impose on X' the usual norm topology induced by X, i.e. 

IIfll~ = sup {If(x)11 x E X, IIxliu = I} . 

We can identify the elements of X:" with a subspace of X' as follows: define im X:" -'r X' 
by 

It is clear that the identification is unique. 

Considered as a subspace of X' we can impose on X:,. the induced topology and when we do 
this we write (X:,., II II~,,,,,), 
We have the following proposition 

Proposition 6.3. 

(X:n, II 1I:n) is isomorphic to (X:,., II '1I~,m) . 

Proof. 
The mapping im defined above is 1 - 1, linear and onto. So all we have to show is that the 
norms are equivalent. 

- Let f E (X:,., 11·11:n). Then 

Ilim(J)II~.m = Ilf 0 Emll~.m ~ Ilfll~ II Emll ~ C IIfll~ . 
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Let IE (X:n, II 1I~.m)· Then 1= imCl) for some i E (X:n, II II;") and 

II ill;" sup {li(x)11 x E Xm, Ilxll = 1} = 

= sup {licEmx)11 x EX, IIEmxl\ = 1} 

::; sup {licEmx)11 x E X, IIxllu = 1} . 

Hence (with a slight abuse of notation) 

II/II~ ::; 1I/1I~.m ::; C II/II~ . 

So X:n is a closed subspace of X, and (X:n, \I 1I~.m) is a Banach space. o 

We are in danger here of drowning in our own notation, since there are so many identifications 
going on. However the preceding proposition allows us to simplify and henceforth we shall 
regard X:n as the closed subspace of X' consisting of all linear functionals of the form 

I D lEX' O.lm , 

where Pm is the projection of X onto X m • 

Lemma 6.4. 
Let I E X'. Then there exists a unique sequence {fm}mEI, 1m E X:n such that for all x E X 

I(x) = L Im(x). 
mEl 

Proof. 
Let I E X' and let x E X. Then 

I(x) = L (f 0 Pm) (x) . 
mEl 

So with 1m = 10 Pm existence of the sequence has been proved. 
Now suppose 

I(x) = L Ym(X) , X EX, 
mEl 

where Ym E X:n. Then for m' E I 
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Hence the result. o 

Corollary 6.S. 
The collection of Banach spaces {X:n}mEI establishes a minimal collection in the Banach 
space XI. 

Proof. 
We have to show that for each mEl 

x:n n < {X~ Ii 1: m} > = {O} . 

Since the norm closure of a subspace of a Banach space equals its weak *-closure the result 
is a straightforward consequence of Lemma 4.4. 0 

Having a minimal collection we can introduce projective and inductive limits. For this we 
introduce some notation. 

Definition 6.6. 
We define the space X+ c X, by 

X+ = {f E XiEI X; I f is unconditionally summable in X'} 

and we impose on X+ the topology given by the unconditional norm II lit, 

IIfll;!" = sup II L f(m)II~· 
FE.1"(I) mEF 

Remark. 
Since the elements of X are sums of unconditionally summable sequences in XiEI Xi, the 
norm II lit on X+ is equivalent to the dual norm II ·II~. 
SO we are in the same position as in the beginning of Section 2 and for each Kothe set 
P C w+(I) we can introduce the inductive limit X~d(P) and the projective limit X:roj(p), 
Herefor we must replace Xm by X:n and X by X+. 

We want to prove that for moulding sets p, X~ip) and X:ro/p) represent the duals of 
Xproj(p) and Xind(P), respectively. By < ',' >m we denote the duality pairing of Xm of X:n. 
Proposition 6.7. 

(i) Let x E Xind(P) and f E X:roj(p), Then the sequence « x( m), f( m) >m)mEI is abso­
lutely summable. 

(ii) Let x E Xproj(p) and f E X~d(P). Then the sequence ( < x( m), f( m) >m)mEI is absolutely 
summable. 

Proof. 
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(i) There exists a E P and x E X such that 

x(m) = a(m) x(m) . 

Now by definition of xtroj(P)' the sequence {a(m) f(m)}mel belongs to X+. Hence 

< x(m), f(m) >m=< x(m), a(m) f(m) >m, mEl, 

and the result follows. 

Oi) Similarly. 

We have the following defmition. 

Definition 6.8. 
Let P be a Kothe set 

(i) On the product Xind(P) X xtroj(P) we define the pairing < .,. >ip, 

<X,f>ip= L <x(m), f(m»m . 
mEl 

(ii) On the product Xproj(p) x Xind(P) we define the pairing < .,. >pi, 

(x,f) L < x(m), f(m) >m . 
mEl 

Theorem 6.9. 
Let p be a Kothe set. 

(i) For each f E xtroj (p) the linear functional 

is continuous. 

(ii) For each f E X~d (p) the linear functional 

is continuous. 

Proof. 

(i) Let f E xtroj(P) and let 1 denote the linear functional 
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lex) =< x, f >pi , x E Xind(P) . 

We have to prove that II is continuous for each a E p. But this follows from the 
Xilld(a) 

inequality 

1< Aa x, f >ip I ~ Ilxllu IIA~fll~, x EX. 

(ii) Let f E X~d(P). Then there is a E P and f E X+ such that 

f(m) = a(m) }(m) , mEl. 

So 

1< x,f > I ~ IIAax liu 1I11l~, x E Xproj(P) 

and the result follows. 

Theorem 6.10. 
Let P be a moulding set in w+(I). 
A linear functionall on Xind(P) is continuous iff there is f E X;ro)P) such that 

lex) =< x, f >ip • 

Proof. 
One side of the equivalence is a consequence of the preceding theorem. 
So let I E Xind(P)'. Then for each a E P there is a sequence fa E XmEI X:" such that 

(*) I(Aa x) = L < x(m), t(m) >m, X EX 
mEl 

(d. Lemma 4.4). 
Further, for each mEl there is f( m) E Xm such that 

since Xm t....+ Xind(P). 
It follows from (*) and (**) that fo(m) = a(m) f(m). 
Now f E xtroj(p) since 

sup a(m) IIf(m)lI~ = 
mEl 

= SUp Ill· Aa 0 Pmll~ ~ C Ill. Aall 
mEl 
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applying Theorem (4.5'). o 

Theorem 6.11. 
Let P be a moulding set in w+(I). 
A linear functional m on Xproj(p) is continuous iff there is 9 E X~d(P) such that 

k(x) =< x,g >pi 

Proof. 
One side of the equivalence being a consequence of Theorem 5.9 we only have to show that 
each k E Xproj(P)' corresponds to agE X~d(P) as indicated. 
So let k E Xind(P)'. Then there are D > 0 and a E P such that 

Ik(x)1 $ D IIAa(x)lluc . 

The space Xa = {Aa(x) I x E Xproj(P)} is a subspace of X. Define the linear functional a on 
Xa by 

Then for all y E Xa we have 

By Hahn-Banach, ka extends to a continuous linear functional on X and so there exists a 
sequence f E xmEI X:n such that for all y E Xa 

ka(y) L < y(m), f(m) >m 
mEl 

or, equivalently, for all x E Xproj(P) 

k(x) = L a(m) < x(m), f(m) >m 
mEl 

We show that Aa f E XmEI X:n belongs to X~d(P). 
First observe that IIf(m)11 $ C IIkali. Since P is moulding there exists r E It(l) and bE P 
such that a = b· r. It follows that 

and AT' f E X+ because 

L rem) Ilf(m)11 $ C 1I!.~all L r(m). 
mEl mEl 
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k(x) =< x,g >pi • 

o 

For a moulding set we have characterized the bounded set of Xproj(p) and hence of X:roj(p). 
This characterization yield the following result. 

Theorem 6.12. 
Let P be a moulding set. The strong topology ,B(Xind(p), X:roj(p» is equivalent to the in­
ductive limit topology on Xind(P). 

Proof. 
As we have shown in Theorem 4.7 a set V C X:roj(p) is bounded if and only if there exists 
a bounded subset Vo of X+ and U E pi such that V = {Au(f) I ! E Vol. It follows that 

sup I < x,g >ip I = sup 1< Au x,! > I 
gEV fEVo 

::; (sup II/l\uc) IIAu xlluc . 
fEVo 

Hence the seminorm x 1--+ SUPgEV I < x,g >ip I is continuous with respect to the inductive 
limit topology. 
Conversely, denoting by E+ the unit ball in X+ we get 

I\Au xl\uc = sup I < Au,!> I 
fEE+ 

Corollary 6.13. 

= sup 1< x,g > I . 
gEA,,(E+) 

o 

Let P be a symmetric moulding set. Then the strong topology ,B(Xproj(P), X!d(P)) is equiv­
alent to the projective limit topology on Xproj(p). 

Proof. 
For symmetric moulding set XPl'oj(p) = Xind(P') and X!d(P) = X:roj(pl). Cf. Theorem 5.2. 
o 

Theorem 6.14. 
Let p be a symmetric moulding set. Then both Xind(p) and Xproj(p) are reflexive locally 
convex spaces if each Banach space Xm is reflexive. 
In particular, if each Xm is finite dimensional. 
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