

The nature of delay-insensitive computing

Citation for published version (APA):
Rem, M. (1990). The nature of delay-insensitive computing. (Computing science notes; Vol. 9020). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/a696e526-130c-4312-a016-3011b693d1e0

The Nature of Delay-Insensitive Computing

by

Martin Rem

90/20

December, 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All righ ts reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

The Nature of Delay-Insensitive Computing

Martin Rem
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
e-mail: wsinrem@win.tue.nl

Abstract

Delay-insensitive systems are systems whose correct functioning does not
depend on delay assumptions. In this paper a gradual introduction to delay
insensitivity is given, illustrated by many examples. Precise definitions are
given of delay-insensitivity, decomposition (or refinement), and speed-indepen
dence. Recent results of the associated theory are touched upon.

1 Introduction

Almost all digital circuits contain clocks; not the types of clock that tell the time,
but rather more like metronomes: in its simplest form a clock produces a periodic
signal that alternates between a low and a high voltage level. Its high and low going
transitions are used to synchronize different parts of the circuit.

N ow imagine that the circuit has an input wire whose voltage level is sensed
during the period when the clock is high, i.e. from a high going to the next low
going transition. This sensing is done by producing the logical conjunction of the
levels of the input wire and the clock. The result is stored in a flip-flop. A flip-flop
is a device with two stable states; it enters one of these states depending on the level
of the voltage it is offered.

If the input wire that is sensed happens to make a high going transition towards
the end of the clock period, the voltage produced may be just a small 'runt' pulse,
cf. Fig. 1. If the flip-flop is offered such a marginal pulse, it may linger for a
while in a metastable state before entering one of its stable states. Unfortunately,
there is no upper bound for the time the flip-flop may stay in the metastable state.
This phenomenon is known as the metastability phenomenon[3,13]. It is sometimes
referred to as the glitch phenomenon.

It is essential for clocked circuits that the clock period be chosen sufficiently
long to guarantee that all parts of the circuit stabilize within the clock period. The
metastability phenomenon obviously conflicts with this timing constraint.

The example above exhibits metastability in the presence of asynchronous inputs,
but metastability also arises in arbitration and synchronization. An arbiter is a

1

device that is used to establish mutual exclusion among asynchronous requests. A
synchronizer is a device that delays an asynchronous input in such a way that it is
synchronized with another signal. The latter is usually the clock. Both arbiters and
synchronizers can be realized only if we impose no upper bound on the time they
take to produce their outputs. In essence, they do not produce their outputs until
they have left the metastable states they possess.

In delay-insensitive systems we accept the fact that the durations of subcom
putations may be unbounded. We, therefore, do not use an autonomous clock to
synchronize the parts, but we have the different components of the system signal
their completion explicitlY[l J. We are aware that it may take quite some time before
completions are signaled, but we cater to this by designing the system in such a way
that its correct functioning does not depend on these delays.

A system consists of components and connecting wires. It is called delay
insensitive if it functions correctly under arbitrary and possibly varying delays in
components and wires. Of course, the delays will affect the operating speed of the
system, but this is not considered part of the 'correct functioning'. The type of
correctness we do have in mind will be made precise in the sequel.

2 Communicating data

In order to acquire an operational appreciation of delay-insensitivity, we discuss the
problem of delay-insensitively communicating data from one component to another.
The problem is to send one bit of information from component S to component R,
cf. Fig. 2.

As a first try, we connect the components by two wires: wire v to convey the bit,
and wire r to signal that the data have been sent. The latter is known as a 'data
valid' signal. Initially both wires are low. Component S first gives wire v the value
of the bit to be communicated; after that it makes wire r high. Component R waits
until wire r is high, after which it copies (for instance, into a flip-flop) the value of
Wlfe v.

The above scheme will solve the problem only if we know that the delay in wire
v does not exceed that in wire r. Such a delay assumption, known as a 'bundling
constraint' can, of course, not be made if we want the communication to be delay-

/ input

/ clock

____________ ~I'~------ conjunction

Figure 1: A 'runt' pulse

2

r----' r----'
v ,I

s r
R

'I
L ____ J L ____ J

Figure 2: Communication with a data valid signal

r----' r----'
vO

s vI R
'\

L ____ J L ____ J

Figure 3: Dual rail communication

insensitive.

The solution is to code the bit to be communicated in such a way that R can
detect its arrival[20]. This requires at least two wires to convey the bit: one wire
can only have two states (low and high), but we need a third state to indicate the
absence of a value. Dual-rail encoding is a technique that uses two wires per bit,
cf. Fig. 3. The absence of a value is coded by two low wires. Value 0 is sent by
making wire vO high, and value 1 by making vI high. The two wires are never high
simultaneously.

The above scheme is not very useful if more bits have to be communicated
successively: when may we decide that S can again send a bit? The only way out
is to have R acknowledge that the bit has been received, cf. Fig. 4. Again, all wires
are low initially. A complete cycle of sending one bit and acknowledging its receipt
IS now:

S: vij;[a];vi!;[-.a]

R: [vO Vvl] ;aj;[-.vOA -.vl] ;a!

Statement vi j stands for 'make wire vi (i = 0 or i = 1) high' and, similarly, vi!
stands for 'make vi low'. Statement [a] stands for 'wait until a holds', where high

vO

S
vI

R
I

~I'------------~I I
L ____ J a L ____ J

Figure 4: Communication with acknowledgement

3

a

Figure 5: Generation of acknowledgement

and low are interpreted as true and J aise, respectively. In the above patterns we
have not coded how S determines (at the beginning of its cycle) i, nor how R copies
(at the first semicolon of its cycle) the value received. Notice that after a complete
cycle all wires are low again. This form of signaling is known as Jour-phase signaling.
Component R can generate signal a by using an OR-gate, cf. Fig. 5.

Component S initiates the communication by making wire vi high; S is the active
partner in the communication. Component R starts with waiting for vO or vI to
become high; this is the passive partner. In this case the distinction active/passive
coincides with that of sender/receiver. This is not necessary: we can equally well
have the sender be passive and the receiver active. A complete cycle then consists
of

S: [a];vil;[..,a];vil

R: aT ;[vOV vI];al;[..,vOA..,vl]

Now the receiver is the one that initiates the communication, viz. by making (re
quest) wire a high. The sender does not start sending the bit until it has received
this request. The schemes of active and passive sending are also known as data
driven and demand driven, respectively.

3 C-element

The communication protocols developed above can easily be adapted for sending
multiple-bit messages. We employ two wires per bit and extend the protocols
straightforwardly, cf. Fig. 6. Since R acknowledges complete messages only, one
acknowledge wire suffices.

We have seen that I-bit messages can be acknowledged by means of an OR-gate.
An interesting question is what mechanism we need for 2-bit messages. Consider the
case that S is active. One may be tempted to generate signal a as the conjunction
of vO V vI and wO V wI, cf. Fig. 7.

This implementation, however, is erroneous. A possible sequence of events is

vOj;wOj;aj;vOl;al

At this point the sender is allowed to transmit another message. However, the
low going transition on wO is still on its way, which can interfere with the next
message. The problem is that the low going transition on a is generated too earley.

4

vO

vI

s wO
II R

wI I
•

~I'------------~I I
____ J a L ____ J

vO

vI

wO

wI

a

Figure 6: A 2-bit message

~

OR
~ I

AND l--
OR I

Figure 7: Erroneous implementation of acknowledgement

5

a C b

C

Figure 8: C-element

r----' r----'
I

b
I

L a
C I

p I I
I I Q
I x y I

Figure 9: Synchronizing two components

Obviously, the AND-gate should be replaced by one that does not produce a low
going transition on its outputs until both inputs have gone low.

Such an element is known as a Muller C-element, or simply C-element, cf. Fig.
8. It is sometimes called a last-of or a rendezvous element. If both inputs a and b
have equal values, this value is also produced at output Ci otherwise C remains what
it was. This is a state-holding element: if the values at a and b differ, the value at
C equals the last common value of the inputs.

A C-element is often used to synchronize different components, cf. Fig. 9. Com
ponents P and Q have to be synchronized to accomplish 'mutual inclusion', i.e., they
each have a synchronization point at which they must wait for the other component
to reach its synchronization point. This can be realized by the following protocol
for P:

aT i[X] i5 ia~ i['X]

and similarly for Q. Statement 5 represents the part that is executed in mutual
inclusion with component Q.

4 Think transitions

Above we have tried to give a conventional description of a C-element, viz. by giv
ing how the output values depend on the input values. Such descriptions, however,
are not very adequate for use in delay-insensitive systems. In delay-insensitive sys
tems the transitions are the important events, and what should be specified are the
possible orders in which these events may take place[15]. For the C-element these
possible orders may be specified by the following behavioral expression:

6

(ai,bi;cj ;aLbl ;c!)*

It expresses that first input wires a and b go high (the comma, which takes priority
over the semicolon, expresses concurrency), after which output wire c goes high (the
semicolon expresses order), which is followed by a and b going low, after which c
goes low. From then on it starts allover again (the asterisk expresses repetition).
The assumption is again that initially all wires are low. If we neglect the directions
of the transitions the above expression may be written as

(a,b;c)*

We draw a scheme that shows how the values on the output wires depend on
those on the input wires, writing 'low' as 0 and 'high' as 1:

a b c
0 0 0
1 0 0
0 1 0
1 1 1
0 1 1
1 0 1

The fact that we have different output values for the same input combination shows
that C-elements are indeed sequential (or state-holding) elements.

A behavioral expression specifies an interface between a component and its en
vironment. It specifies when the component may produce output transitions, but
it also specifies when its environment may offer input transitions: input transitions
are not allowed to arrive at 'wrong moments'. If an input transition arrives 'out
of order' this is called computation interference. Now it is becoming clear what we
mean by 'correct functioning' of a system. A system consists of components, each
specified by the possible orders in which the transitions may occur. The components
should be such that the system cannot exhibit computation interference.

In delay-insensitive systems one usually discerns a second correctness require
ment, besides absence of computation interference, and that is absence of transmis
sion interference. We speak of transmission interference if there is a connecting wire
at which there are at least two transitions simultaneously present. We can phrase
transmission interference as a form of computation interference by saying that each
wire from point a to point b is a component with

(ai ;bi ;a! ;b!)*

or simply (a ; b)*, as its behavioral expression.

The behavioral expression does not give a complete description of what a com
ponent 'can do'. Consider, for example, the following expression:

(a? . c' . b? . d l)* ., ., ., .

Symbols '?' and '1' specify that a and c are inputs and band d outputs. We have not
mentioned the directions of the transitions. This component can be implemented
by just two wires that connect a with c and b with d. The same two wires would,
however, also implement, for example,

7

(a? . c' . a? . c' I b?· d' . b? . d')* . , ., .,. .,.,.,.

where the bar denotes the choice-operator, similar to the plus in regular expressions.
The bar has a lower priority than the comma and the semicolon.

Next replace in the above expression d by c, so that only one output remains:

(a ? . c' . a? . c' I b?· c' . b? . c')* . , ., .,. . , ., ., .

This component may be implemented by an OR-gate, as the following table shows:

a b c
0 0 0
1 0 1
0 1 1

In contrast to that of the C-element, this table exhibits exactly one output value
per input combination. Such processes are called combinational.

5 Formal definition of processes and systems

Before giving a formal (operational) definition of delay-insensitivity, we must first
define what processes and systems are. We use a simple trace-theoretic model for
processes:

A process T, sometimes referred to as a directed process, is a triple (1,0, T) such
that

Ino = 0
T c:;: (Iu 0)*

T#0
T prefix-closed

Set I is the set of input symbols and 0 the set of output symbols. The elements of
T are finite-length sequences, known as traces, of elements in I U O. Trace set T is
called prefix-closed if sa E T,* sET for a E I u O.

Example 1 Consider process (1,0, T) with

I={a,b}

0= {c}
T = {c, a, b, ab, ba, abc, bac, abca, baca, ... }

where c denotes the empty trace. This process is a C-element. We usually specify
it by the behavioral expression

(? b?· ')* a., . ,c.

8

a .------.
b c b

.-----'. a

Figure 10: State graph of a C-element

j----,

L ____ .J

Figure 11: A system of four processes

Its trace set consists of all sequences of symbols one encounters when traversing the
graph of Fig. 10, starting in the lower left-hand corner.

A system is a set of processes, such that each symbol of a process occurs in
exactly one process as input symbol and in exactly one process as output symbol.
The connecting wires are not modeled explicitly; each symbol represents a wire,
running from the process of which it is an output symbol to the process of which
it is an input symbol. Thus we have defined what is known as a closed system (no
dangling inputs or outputs) with point-to-point connections. Both conditions may
be weakened, but the restricted definition suffices for our purposes.

Example 2 Consider the system consisting of four processes specified by

Po: (a?,b?;c!)*
P,: (d! ;e! ;c?l'
P2 : (d?;a!)*
P3 : (e? ; b!)*

Process Po is a C-element. A pictorial impression of the system is shown in Fig. 11.

Definition of delay-insensitivity Consider a system of n processes: Po, p,,'"
,Pn -" where Pi = (Ii, ai, Ti). The states of the system are the n-tuples (to, t" ... ,tn -,)

9

with ti E (Ii U Oi)*. We define the reachable states of the system as follows:

1)
2)

(c, c,···, c) is reachable

if (to,"', ti,"" tn-I) is reachable (0 S; i < n) and

a E Oi 1\ tia E Ti
or

a E Ii n OJ 1\ a#tj > a#ti
then (to, ... , t,a, ... , tn-I) is reachable

3) no other states are reachable

where a#t denotes the number of occurrences of symbol a in trace t.

The idea behind the above definition is that in state (to, tl"'" tn_I) trace ti
is the current trace of process Pi. Condition 1) expresses that the initial state is
reachable. In the course of a computation current traces are extended only. They
can be extended with output symbols and with input symbols. The rule governing
these extensions distinguishes output and input. Condition 2) expresses that the
current trace of a process may be extended with an output symbol if the extended
trace belongs to the trace set of the process. Notice that the prefix-closedness
implies that then the current trace was in the trace set as well. The second part of
2) expresses that the current trace may be extended with an input symbol if that
symbol happens to be 'on its way', i.e. if it has been output more often than it has
been received. This extension may lead to a current trace that is not in the trace
set of the process. The reception of an input is actually the only way to bring the
current trace outside the trace set. The model captures that processes do control
(by their trace sets) the sending of outputs but not the reception of inputs.

Examples of reachable states for the system of Example 2 are

(c,c,c,c)

(c,d,c,c)

(c, de, c, c)

(c,de,c,e)

(c, de, c, eb)

(b, de, c, eb)

We have now all ingredients to define delay-insensitivity for systems. State
(to,tl,···,tn- l) is called safe if

1\

The first condition expresses the absence of computation interference and the second
one the absence of transmission interference. A system is called delay-insensitive if
all its reachable states are safe.

The system of Example 2 is an example of a delay-insensitive system. The
following example is not delay-insensitive. Process P denotes the reflection of process
P, i.e. if P = (I,O,T) then P = (O,I,T).

10

Example 3 Consider the system consisting of process Pi of Example 2 and its
reflection:

Pi: (d! ; e! ;c?)*

Pi: (d?;e?;c!)*

Reachable states are

(c:, c:)
(d, c:)
(de,c:)

(de, e)

However, the latter state is not safe; computation interference has occurred: e is not
a trace of proces Pl. The system is, consequently, not delay-insensitive.

Example 4 An example of a system with transmission interference is {Po, Pi}:

Po : (a!, b?)*
Pi: (a?,b!)*

The following table shows some reachable states of this system:

The vertical lines correspond to reachable states, viz. from left to right: (c:, c:), (a, c:),
(a, b), (ab, b), (aba, b), i.e. time goes to the right and the rows of symbols represent
current traces of the processes listed in the first column. Since a#aba > a#b + 1,
the latter state exhibits transmission interference.

6 Decomposition

Suppose a computation is specified as a process and we have to design a delay
insensitive implementation for it. In other words, we have to find a set of processes
into which the specified process can be decomposed [21,12,11,8,18].

Let P be a process and let X be a set of processes such that P rt X. We define
set X to be a decomposition of process P if set Xu {P} is a delay-insensitive system.

Example 5 As a first example of a decomposition we consider set {Po, Pi}:

Po: (a?;b!)*
Pi: (b?;c!)*

This is a decomposition of

Q: (a?;c!)*

11

Consider the system consisting of processes Po, PI, and Q. Its reachable states are
given by the following table:

II ~ I a I : I bib I c I c I a I a I· .. II
where Q is the process given by (a! ; c?)*. All reachable states are safe. The example
shows that a wire may be decomposed into two connected wires.

Example 6 Next we consider two unconnected wires. Let processes Po and PI be
given by

Po: (a? ;c!)"

PI : (b? ; d!)"

Set {Po, PI} is a decomposition of

Q: (a? . cl . b? . d l)" . , ., ., .

as the following table of reachable states shows:

II ~ I a I a I c I c I bib I did I a I .. ·11
where Q is the process given by (a! ; c? ; b! ; d?l'. It is, however, also a decomposition
of, for example,

(a?;c!;a?;c! I b?;d!;b?;d!l'

as can be easily checked. This proves the claim made in Section 4. It also shows that
composition cannot simply be the inverse of decomposition. A suitable definition of
composition can be found in [17,4].

Example 7 A 3-input C-element can be decomposed into two 2-input C-elements:

Q : (a?, b?, c?; e!)"
Po: (a?,b?;d!)*
PI: (c?,d? ;e!l'

Now Q decomposes into {Po, PI}, as can be checked easily.

A decomposition rule is useful only if it satisfies the substitution property. This
property states that if process P decomposes into XU{ Q} and process Q decomposes
into Y then P decomposes into Xu Y. Our decomposition rule indeed satisfies the
substitution property, provided that distinct names are used for the internal wires
in X and Y.

12

Example 8 In this example a process is decomposed into a set of just one process.
In other words, the latter process implements, or 'refines', the other process.

Consider process P, given by

P: (a? ; (b! I c!))*

and process Q = (J,O,T) with J = {a}, 0 = {b,c}, and T given by

(a?;b!)*

Process Q differs from process P in that it does not produce output c. Process P
can be decomposed into process Q, as the following table shows:

This example demonstrates that in the choice between outputs the designer is al
lowed to make an a priori choice. The word 'allowed' means here, of course: without
running the risk of causing computation or transmission interference, since these are
the only correctness concerns we have introduced. In particular have we not consid
ered progress requirements.

A designer is not allowed to make an a priori choice between inputs. For example,
process P does not decompose into Q:

Here we have computation interference: ac is not a trace of Q. As an aside we
mention that Q does decompose into P.

An interesting question is whether a process decomposes into itself. This is in
general not the case. Process Pl of Example 2 is a process that does not decompose
into itself, as we observed in Example 4.

Processes that decompose into themselves are known as delay-insensitive pro
cesses. The C-element is an example of a delay-insensitive process. There are several
characterizations of delay-insensitive processes, the oldest of which was given by J.T.
Udding[16J. As we have seen in Example 2, processes that are not delay-insensitive
can very well be used to construct delay-insensitive systems.

7 Building blocks

The typical way of designing an inverter in CMOS is shown in Fig. 12. The input is
forked to two transistors. This is clearly not a delay-insensitive decomposition of an
inverter into two transistors: if one of the two branches of the fork is exceptionally
slow a conveying connection between power and ground is maintained, a situation
that is more commonly known as a short circuit.

Individual transistors are simply too primitive to be used as building blocks for
delay-insensitive compositions. Delay-insensitive systems require building blocks of
a higher aggregation level. Ebergen[5] has outlined a finite set of building blocks

13

Figure 12: A CMOS inverter

into which all delay-insensitive processes can be decomposed. This set consists of
two types of C-elements, a fork, an exclusive OR, a toggle, and an arbiter. Internally
such building blocks will not be delay-insensitive. They correspond to what Seitz[14]
has termed equipotential regions.

As mentioned in Section 4, combinational processes are processes that have ex
actly one output combination for each combination of input values. An example of
a combinational process is

M: (a ? b?· d l . c? . el)* ., ., ., ., .

as the following table of input values and corresponding output values shows:

a b C d e

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0
1 1 0 1 0
1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
0 0 1 0 1

M is a process with two outputs. According to the table above, output d is the
majority of the input values and output e is a copy of input c. Let process P be
specified by (d? ic!)*. Then C-element (a?,b? ie!l' can be decomposed into {M,P}:

II ~ I a I b I a I bid I die 1 c lei e [alb I· ..II
Thus we have exhibited a delay-insensitive decomposition of a sequential process
into two combinational processes.

14

Brzozowski and Ebergen[2] have shown that sequential processes cannot be de
composed into sets that contain only forks, i.e. processes of the form (a? ; b!, c!)',
and single-output combinational processes. Martin[9] shows that extending these
sets with C-elements does not help very much. Essentially, the only sequential
processes that can then be built are various forms of C-elements.

8 Speed-independent

In the speed-independent computing model, which is older than the delay-insensitive
one[lO], all delays are assumed to be in the components. The wires do not exhibit
delay, which makes transmission interference not an issue.

In order to define speed-independence more precisely, we need to change our
definition of reachable states (which models asynchronous communication) into one
that is based on synchronous communication. For synchronously reachable the sec
ond condition in the definition of reachable reads:

2) if (to, ... , ti, ... , t j , ••• , tn _ 1) is reachable and

a E Oi n I j /\ tia E Ti
then (to,··· , tia, . .. , tja, ... , tn - 1) is reachable

A state (to, t 1,··· ,tn-1) is called safe if

(Vj: 0 ~ j < n: tj E Tj)

A system is called speed-independent if all states that are synchronously reachable
are safe.

The reachable states under synchronous communication form a subset of those
that are reachable under asynchronous communication. Delay-insensitive systems
are, consequently, also speed-independent. The inverse is not true.

We show that a C-element can speed-independently be decomposed into a single
output combinational process Po and a fork P1 [6]:

(a? b?· d' . e?)* *' ., ., .
(d?;e!;c!)*

Process Po is combinational, as the following table shows:

a b e d
0 0 0 0
1 0 0 0
0 1 0 0

1 1 0 1
1 1 1 1
1 0 1 1
0 1 1 1
0 0 1 0

Process P1 is a kind of fork that is (in speed-independent settings) often referred to
as an isochronic fork. In order to demonstrate that C-element

15

c: (a?,b?;c!)*

can speed-independently be decomposed into {Po, PI}, we investigate system {Po, PI, C},
with C given by (a!, b!; c?)*. This system is indeed speed-independent:

Po a b d e a
PI d e c ...
C a b c a

System {Po, PI, C} is not delay-insensitive. An important difference between speed
independence and delay-insensitivity is that in the speed-independent model we can
realize forks that guarantee that one of its outputs arrives earlier at a component
than the other one does.

9 Conclusion

Starting with the problem of communicating data, we have gradually found our
way to an operational, but precise, definition of delay-insensitivity. The virtue of
this operational model is not only its relative simplicity, but also its clear relation
with computing media in general and VLSI circuitry in particular. We have used
trace theory[19,7] to formulate these definitions, since traces are very well-suited
to express nontemporal relations between events. Our treatment exhibits a clear
separation between the communication model, which captures the types of delays
we want the correctness of the system to be independent of, and the correctness
concerns. We have discussed two communication models: one in which the delays
are both in the components and in the wires, and one in which the delays are just
in the wires. With respect to correctness we have, throughout the paper, sticked to
just one correctness concern: absence of interference.

Design is nothing else than decomposing large problems into smaller ones, until
the latter problems either are trivial or have been solved before. Therefore, we
have extensively addressed the concept of decomposition, interleaved with many
examples. There is a limit to delay-insensitivity: one ends up with primitive building
blocks of one kind or another. We have briefly discussed the nature of these blocks.

10 Acknowledgements

I am indebted to Tom Verhoeff, who is the inspirator behind the operational model
in this paper. Ivan Sutherland coined the title of Section 4. Acknowledgements
are also due to Kees van Berkel and the members of the Eindhoven VLSI Club for
numerous discussions on the ins and outs of delay-insensitivity.

References

[1] Clifford Barney. Logic designers toss out the clock. Electronics, Dec. 9, 1985,
42-45

16

[2] J.A. Brzozowski and J.C. Ebergen. On the Delay-Sensitivity of Gate Networks.
Computing Science Note 90/5, TU Eindhoven, 1990

[3] T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Transactions on Computers, Vol. C-22, 1973, 421--422

[4] W. Chen, J.T. Udding, and T. Verhoeff. Networks of communicating pro
cesses and their (de}-composition in The Mathematics of Program Construction
(J.L.A. van de Snepscheut, ed.). LNCS 375, Springer-Verlag, 1989, 174-176

[5J J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits. CWI Tract
56, CWI, Amsterdam, 1989

[6J Mark B. Josephs. Receptive Process Theory. Computing Science Note 90/8, TU
Eindhoven, 1990

[7J Anne Kaldewaij. A Formalism for Concurrent Processes. Ph.D. Thesis, TU
Eindhoven, 1986

[8J Alain J. Martin. Compiling communicating processes into delay-insensitive cir
cuits. Distributed Computing, 1, 1986, 247-260

[9J Alain J. Martin. The limitations of delay-insensitivity in asynchronous circuits
in Beauty Is Our Business (W.H.J. Feijen et aI., eds.) Springer-Verlag, 1990,
302-311

[10J R.E. Miller. Switching Theory, Vol. 2, Wiley, 1965

[l1J Charles E. Molnar, Ting-Pien Fang and Frederick U. Rosenberger. Synthesis of
delay-insensitive modules in 1985 Chapel Hill Conference on Very Large Scale
Integration (Henry Fuchs, ed.) Computer Science Press, 1985, 67-86

[12] Martin Rem. Concurrent computations and VLSI circuits in Control Flow and
Data Flow (M. Broy, ed.) Springer-Verlag, 1985, 399-437

[13] Science and the citizen. Scientific American, 228, April 1973, 43-44

[14] C.L. Seitz. System timing in Carver Mead and Lynn Conway, Introduction to
VLSI Systems. Addison-Wesley, 1980, 218-262

[15J I.E. Sutherland. Micropipelines. Commun. ACM, 32, 1989, 720-738

[16] Jan Tijmen Udding. A formal model for defining and classifying delay
insensitive circuits and systems. Distributed Computing, 1, 1986, 197-204

[17J Jan Tijmen Udding and Tom Verhoeff. The Mathematics of Directed Specifica
tions. Technical Report WUCS 88-20, Washington University, 1988

[18J C.H. (Kees) van Berkel and Ronald W.J.J. Saeijs. Compilation of communicat
ing processes into delay-insensitive circuits in 1988 IEEE Int. Conf. on Com
puter Design, IEEE Computer Society Press, 1988, 157-162

[19J Jan L.A. van de Snepscheut. Trace Theory and VLSI Design. LNCS 200,
Springer-Verlag, 1985

17

[20] Tom Verhoeff. Delay-insensitive codes-an overview. Distributed Computing, 3,
1988, 1-8

[21] Alexandre Yakovlev. Designing self-timed systems. VLSI Systems Design,
September 1985, 70-90

18

In this series appeared :

No. Author(s)

85/01 R.H. Mak

85/02 W M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.M.L.J .Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 GJ. Houben
J. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/07 R. Gerth
L. Shira

86/08 R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/13 R. Gerth
W.P. de Roever

Title

The formal specification and derivation of CMOS-circuits.

On aIithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal speCification of
information systems.

Some reflections on the implementation of trace structures.

The partition of an information system in several
systems.

A framewoIK for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFIP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
i'lUif}.ing object oriented systems (Fund. Informatica

Ii!

86/14 R. Koymans

87/01 R. Gerth

87/02 Simon J. Klaver
Chris F.M. Verbeme

87/03 G.J. Houben
J.Paredaens

87/04 T.Verhoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 R.Koymans

87/08 H.MJ.L. Schols

87/09 J. Kalisvaart
L.R.A. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J.C.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J .L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage
ment toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

Jr

87/18 C.W.A.M. van Overve1d An integer algorithm for rendering curved
surfaces.

87/19 A.J.Seebregts Optimalisering van fIle allocatie in
gedistribueerde database system en.

87/20 G.J. Houben The R2 -Algebra: An extension of an algebra
J. Paredaens for nested relations.

87/21 R. Gerth Fully abstract denotational semantics for concurrent
M. Codish PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the M1lbius Sequence.

88/02 K.M. van Hee Executable Specification for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples.

88/04 G.J. Houben The Nested Relational Algebra: A Tool to Handle
J .Paredaens Structured Information.
D.Tahon

88/05 K.M. van Hee Executable Specifications for Information Systems.
G.J. Houben
L.]. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication.

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract
R. Gerth way.
W.P. de Roever

88/08 K.M. van Hee A Formal model for System Specification.
G.]. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling.
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive Circuits.

88/11 G.J. Houben A graphical interface formalism: specifying nested
J .Paredaens relational databases.

88/12 A.E. Eiben Abstract theory of planning.

88/13 A. Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.B. Mak recursive types.

(~ J

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
1.P.Katoen

88/17 K.M. van Hee
G.1. Houben
L.1. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 1.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
1.T.Udding

89/6 T.Verhoeff

89[7 P.Struik

89/8 E. H.L. Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
speCification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Commurtication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

89/13 A.T.M.Aerts A progr;un generator for simulated annealing
K.M. van Hee problems.
M.W.H. Hesen

89/14 H.C.Haesen ELDA, data manipulatie taal.

89/15 J.S.C.P. van der Woude Optimal segmentations.

89/16 A.T.M.Aerts Towards a fr;uneworlc for comparing data models.
K.M. van Hee

89/17 Mol. van Diepen A formal semantics for Z and the link between
K.M. van Hee Z and the relational algebra.

90/1 W.P.de Roever-H.Barringer Formal methods and tools for the development of
C.Courcoubetis-D.Gabbay distributed and real time systems, pp. 17.
R.Gerth-B.Jonsson-A.Prmeli
M.Reed-J.Sifakis-J.Vytopii
P.Wolper

90/2 K.M. van Hee Dynamic process creation in high-level Petri nets,
P.M.P. R;unbags pp. 19.

90/3 R. Gerth Foundations of CompoSitional Progr;un Refinement
- safety properties - , p. 38.

90/4 A. Peeters Decomposition of delay-insensitive circuits, p. 25.

90/5 J.A. Brzozowski On the delay-sensitivity of gate networlcs, p. 23.
J.C. Ebergen

90/6 A.J.J.M. Marcelis Typed inference systems : a reference document, p. 17.

90(1 A.Jol.M. Marcelis A logic for one-pass, one-attributed gr;unmars, p. 14.

90/8 M.B. Josephs Receptive Process Theory, p. 16.

90/9 A.T.M. Aerts Combining the functional and the relational model,
P.M.E. De Bra p. 15.
K.M. van Hee

90/10 Mol. van Diepen A formal semantics for Z and the link between Z and the
K.M. van Hee relational algebra, p. 30. (Revised version of CSNotes 89/17).

90/11 P. America A proof system for process creation, p. 84.
F.S. de Boer

90/12 P.America A proof theory for a sequential version of POOL, p. 110.
F.S. de Boer

90/13 K.R. Apt Proving termination of Parallel Progr;uns, p. 7.
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer A proof system for the language POOL, p. 70.

90/15 F.S. de Boer Compositionality in the temporal logic of concurrent systems,
p. 17.

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A. C. Verkoulen

A fully abstract model for concurrent logic languages, p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences,
p.29.

Design and implementation aspects of remote procedure calls,
p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.IS.

Data, Process and Behaviour Modelling in an integrated
specification framework, p.

	Abstract
	1. Introduction
	2. Communicating data
	3. C-element
	4. Think transitions
	5. Formal definition of processes and systems
	6. Decomposition
	7. Building blocks
	8. Speed-independent
	9. Conclusion
	10. Acknowledgements
	References

