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Chapter 1

General introduction

This thesis crosses a wide variety of disciplines. Combustion and numerical simulations are

explored disciplines and their terminology is well-established. New is the �eld of acoustics

and new concepts are introduced in this thesis. In acoustics, the concepts noise, sound

or sound waves, acoustic oscillations or acoustic waves are used arbitrarily. Each concept

de�nes pressure perturbations to a steady state pressure in a gaseous medium. These

perturbations propagate at the speed of sound, which is a quantity that depends on the

composition of the medium.

Acoustic theories make a distinction between linear and nonlinear acoustics. Linear acous-

tics deal with small amplitude perturbations so that general 
ow equations can be lin-

earised. In a stagnant medium these perturbations involve a displacement of 
uid parti-

cles. To justify a linearisation of the 
ow equations, the 
uid particle displacement should

be small compared to the characteristic length scale in the geometry considered. High-

frequency waves or waves that travel over long distances are part of nonlinear acoustics.

The geometries are often closed systems and due to re
ections, standing waves, or modes,

are common. In linear acoustics, these modes are unstable in the case that a source of

sound is present in that system. In general, the amplitude of a standing wave is bounded

by nonlinear e�ects, arising from sources and viscous e�ects that are dependent on the

amplitude. In other cases, the propagating waves are distorted in such a way that shock

formation may occur.

The framework of this thesis, which is described in the next section, is limited to linear

acoustics in a closed geometry, the central-heating boiler, and tries to unravel the problems

manufacturers of boilers have to cope with.

1.1 Stability of heating devices

In many practical applications heat is supplied to a gas 
ow. Examples are rockets, gas

turbines, afterburners of jet engines and, present in almost every Dutch house, the central-

heating boiler. The stability of these devices has been subject to research for many years,

1



2 CHAPTER 1. GENERAL INTRODUCTION

see Candel [5], Culick [7] and Putnam [42].

Since modern central-heating boilers often are closed systems equipped with fully premixed

burners, they are susceptible to self-sustained oscillations that can be observed as hum-

ming and whistling noises. It appears that in practical applications the stability of these

boilers is determined by a large number of parameters such as, the position of the burner

in the duct system, the volume of the heat exchanger, the length of the duct, the load of

the burner, etc. Since some of these parameters may vary from installation to installation,

it is di�cult to suppress instabilities under all circumstances. As a result, manufacturers

are often forced to use ad hoc solutions which might be e�ective in one situation but do

not in others.

Although the problem of humming burners is known for many years, its solution is far

from easy. Manufacturers are frequently limited by high demands, such as high e�ciency,

comfort and low emissions. Consequently, there is a higher risk that the design becomes

unstable. A few years ago the Gasunie Research and the association of boiler manufactures

VFK have started an investigation on the practicability of central-heating boilers. In the

framework of these investigations, a number of projects was set up and �nanced by Novem,

Gasunie and EnergyNed/Gastec. The result shows that general applicable solutions are not

available. The circumstances in which instabilities occur are depending on both the acous-

tic behaviour of the boiler system and the in
uence of the 
ame working as a heat supplier

in that system. Instead of drawing up guidelines for suppressing instabilities, TNO-TPD

developed a simulation model to predict the instability of a boiler within certain margins

to study the e�ects of design changes on these instabilities. In these predictions the net

production of acoustic energy is determined and a vital part is the quality of the descrip-

tion of the interaction between burner/
ame system and the acoustics in the boiler.

The call for an accurate description of this interaction was the reason to launch a project,

under the name of 'Center for Noise in Boilers', in which the Eindhoven University of

Technology participates. This thesis is a contribution to this project and provides models

for an accurate description of the interaction between the burner/
ame and acoustics. As

a start and introduction to the �eld, the well-known problem of acoustic instabilities is

elaborated further by means of the Rijke tube problem in the next section and the steps

which were taken in this thesis are presented in section 1.3.

1.2 Thermoacoustics

The phenomenon of self-sustained oscillation in a heating device belongs to the �eld of

thermoacoustics which deals with the interaction between heat and sound. Thermoacous-

tics describe how pressure waves can be generated by a 
uctuating heat release in an

acoustic medium like a gas-mixture. The heat-driven acoustic oscillations can roughly be

divided into two main categories, viz. the convection/conduction-driven oscillations and

the combustion-driven oscillations.

Well-known examples from the �rst category are the Sondhauss tube [53] and the Rijke
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Figure 1.1: Three heat-driven oscillation devices

tube [47] and its 'inverse' the Bosscha & Riese con�guration [2] (see �gure 1.1). One of

the �rst to describe an example of a combustion-driven oscillation was Higgins [22] who

reported the 'singing 
ame' in 1777. He showed that he could produce sound by placing a

hydrogen di�usion 
ame inside a closed or open-ended tube.

Lord Rayleigh [45] was the �rst to give an explanation for the development of heat-driven

oscillations. Quoted:

"If heat be periodically communicated to, and abstracted from, a mass of air

vibrating (for example) in a cylinder bounded by a piston, the e�ect pro-

duced will depend upon the phase of the vibration at which the transfer

takes place. If heat be given to the air at the moment of greatest condensa-

tion, or taken from it at the moment of greatest rarefaction, the vibration

is encouraged. On the other hand, if heat be given at the moment of great-

est expansion, or abstracted at the moment of greatest condensation, the

vibration is discouraged."

In other words: acoustic oscillations gain energy when heat is added to a gas at the moment

of greatest compression or when heat is extracted from the gas at the moment of greatest

expansion. Damping occurs if the heat is removed at the moment of greatest compression

or added at the moment of greatest expansion.

In 1954, Putnam & Dennis [43] put Lord Rayleigh's hypothesis for a heat-driven oscillation

into a formula. They stated that acoustic energy is produced when the following inequality

is satis�ed: Z T

0

p0(t)q0(t)dt > 0; (1.1)

where p is the pressure, q the heat release, T denotes the time of one period of a cycle and

symbols with 0 denote the 
uctuating quantities.
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Figure 1.2: Rijke tube of length L with distributions of the pressure p0 and the velocity


uctuations u0 for the fundamental mode.

To satisfy this inequality, a coupling must exist between the pressure wave and the heat

source. If the phase di�erence between the heat and the pressure oscillations is within

ninety degrees, acoustic energy will be produced. A phase di�erence larger than ninety

degrees will cause acoustic damping. In this case the integral equation (1.1) is negative.

A di�erence in phase of exactly ninety degrees results in zero energy gain of the acoustic

oscillation, which corresponds to the integral in equation (1.1) being zero.

A clear illustration of the role of the Rayleigh criterion can be given by describing the Rijke

tube, which is the classical example to explain the thermoacoustic oscillations.

The Rijke tube is a vertical tube which is open at both ends with a heated gauze placed

inside the lower-half of the tube. This heated gauze causes an upward air 
ow due to free

convection. The fundamental mode in the tube has pressure nodes at the tube ends and

a pressure anti-node at the centre. Conversely, the velocity wave has a node at the centre

and anti-nodes at each end. Higher modes than the fundamental one are not considered.

They are weaker because of increased acoustic losses.

Figure 1.2 shows the Rijke tube con�guration and the pro�le of the amplitude of the

pressure 
uctuations p0(x; t) and the velocity 
uctuations u0(x; t) in the tube for the fun-

damental mode. The di�erence in phase between the pressure and the velocity waves is

exactly ninety degrees, which is determined by the linearised Bernoulli's equation.

The 
uctuations in the amount of heat q0(x; t) transferred to the gas by the gauze is pro-

portional to the velocity 
uctuations u0(x; t). If the heat transfer would instantaneously
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w
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Figure 1.3: Memory e�ect of the boundary layer near the gauze.

react on the velocity wave, then the heat transfer 
uctuations would be ninety degrees out

of phase with the pressure wave. According to the Rayleigh criterion (1.1), this phasing

would not drive nor damp oscillations.

However, the Rijke tube con�guration of Figure 1.2 does e�ectively produce acoustic en-

ergy. The reason is that the heat release follows the velocity with a certain time delay

� . This delay is due to the memory e�ects of the boundary layer near the gauze which is

explained in the following.

In the mean 
ow direction in the tube, the heated gauze can be viewed upon as strips

of metal with width w and temperature Tw. Along the strips viscous and thermal bound-

ary layers will develop. The thickness of the thermal boundary layer is �T as shown in

�gure 1.3. We assume that the boundary layers are thin with respect to the length of the

strip. For small 
uctuations u0 of a uniform 
ow around an average value u0 the 
uctu-

ations in the heat transfer coe�cient can be calculated as described by Schlichting [50].

We approximate the velocity and temperature �elds by linear pro�les in direction normal

to the strip. Such an approximation is only valid for low frequencies and small pertur-

bations. Then the heat transfer q at the wall is inversely proportional to the boundary

layer thickness: q / 1=�T. The viscous and thermal boundary layer thickness satisfy the

Von Karman equations [50], which are equations found from an integral formulation of

the conservation laws using the boundary layer approximation. In this approximation the

boundary layers develop starting at the far upstream side of the strip where its 
uctuating

part �0T is transported downstream. It can be demonstrated that the perturbations in �T
move along the strip with a velocity 2

3
u0, which implies that there is a delay of the heat

transfer 
uctuations q0 with respect to perturbations u0 of the mean 
ow. According to the

Rayleigh criterion, this time delay might produce acoustic energy, which causes the Rijke

tube to be excited at its fundamental frequency.

Figure 1.4 shows the velocity, the pressure and the heat release 
uctuations as a function

of time at the position of the heated gauze in the lower-half of the Rijke tube. The hatched

area in �gure 1.4 indicates that the integral in equation (1.1) is positive, corresponding to

acoustic energy production.

Note that if the heated gauze is placed in the upper-half of the tube, the thermoacoustic

oscillations will be damped instead. The di�erence is that in the lower-half of the tube

the phase of the velocity wave lies ninety degrees ahead of the phase of the pressure wave,

whereas in the upper-half of the tube it lies ninety degrees behind. In the upper-half,

the delay of the heat release 
uctuations on the velocity wave results in the phase shift

between the pressure and the heat release 
uctuations to be larger than ninety degrees,
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which causes acoustic damping. As illustrated in �gure 1.5 then a negative integral results

in acoustic damping.

The problem investigated in this thesis is one of the second category: the combustion-

driven oscillations. To follow the example of the Rijke tube we basically have to look for a

similar delay in the response of the heat transfer 
uctuation generated by the burner/
ame

to the velocity 
uctuations. The total heat transfer in burner-stabilised 
ames is the dif-

ference in heat released by the reactions occurring in the 
ame and heat that is lost to the

burner. The 
ame consumes mass at a rate that is in general not equal to the mass 
ow

rate. This mass burning rate is proportional to the temperature of the 
ame. As in the

Rijke tube problem the temperature (or enthalpy) 
uctuations and mass 
ow propagate at

di�erent velocities. In cold 
ows, enthalpy 
uctuations travel with the gas velocity which

is less than the propagation speed of the mass 
ow 
uctuations (proportional to the speed

of sound). Enthalpy 
uctuations occur at the burner when the 
ame moves. These 
uc-

tuations propagate towards the 
ame and result in temperature 
uctuations, which cause


uctuations in the mass burning rate. The delay allows us to apply the Rayleigh criterion

to the combustion-driven oscillation and predict whether a 
ame sustains oscillations, like

in the Rijke tube problem.

1.3 How to read this thesis

This thesis covers a theoretical and numerical investigation of the acoustic behaviour of

one- and two-dimensional burner-stabilised lean methane/air 
ames placed inside a central-

heating boiler. The main objective is to obtain a function that accurately describes the

transfer of sound waves by a burner-stabilised 
ame. This problem is solved by dividing

it into sub-problems by using a number of length and time scales. Two length scales can

easily be distinguished: an acoustic length scale that measures the distance sound waves

travel and the typical length scale of a 
ame.

The length scale of the 
ame considered is much smaller than the acoustic length scale,

so the speed at which sound waves travel through such small areas can be considered as

in�nitely high. Therefore, on the 
ame scales the wave is independent of the spatial coor-

dinates. The frequency of the sound wave is an important time scale. The model for the

chemical processes can be simpli�ed by considering the time scale in which the reactions

take place. If the sound wave frequency is low enough, the reactions can considered to be

quasi-stationary and the very complex chemistry models with many reactions and species

can be replaced by reduced chemical models such as one-step chemical models. Note that

high frequency waves may violate the in�nite speed of sound assumption. This thesis con-

siders low frequency sound waves only, because in practice, problems in central-heating

boilers occur at relatively low frequencies, typically < 103 Hz.

In acoustics, sound waves are low amplitude waves, which allow linearisation of the 
ow

equations. We must carefully use this assumption in the simulations of 
ame, since chem-

ical processes in a 
ame are far from linear. Furthermore, the relatively small dimen-
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Figure 1.6: Streamlines in 
ames that are stabilised on a perforated plate. Dash-dotted

lines are symmetry lines.

sions in central-heating boiler con�gurations allow us to model sound waves as plane (one-

dimensional) waves.

In central-heating boilers, 
ames mostly are stabilised on plates, which are porous or

perforated with small holes. On a local scale, the 
ow through these burners is complex

(see �gure 1.6). However, it has been shown for the steady-state case that if the diameter

of the perforations is small enough, the 
ame itself can be approximated as being one-

dimensional [52]. It is expected that this limit is also found in the acoustic response of the

so-called surface burners, which are often used in central-heating boilers nowadays. Beside

the objective of validating this limiting behaviour, the theory behind the precise form of the

response of such 
ames is investigated. One of the burner con�gurations that is very close

to that one-dimensional limit is the ceramic foam burner [3]. This con�guration is used in

the theoretical approach as well. In the derived analytical models, another assumption can

be made using the large activation energy approximation, so that all reactions take place

in an in�nitely thin reaction layer. By using these assumptions it is possible to derive an

analytical model for the acoustic 
ame response, which can be used as a transfer function

of the burner/
ame in the central-heating boiler.

This thesis starts with a detailed model describing the 
ow and transport equations for

reacting 
ows. This model, which predicts the full linear (acoustic) and nonlinear be-

haviour of the reacting 
ow, is discussed in chapter 2. In this chapter, the equations are

formulated in case of large waves lengths, relatively to the burner/
ame dimensions. From

an acoustic point of view, the combustion zone is considered to be a `black box'. This

black box is used to couple the acoustical quantities on both sides of the 
ame. A useful

technique in acoustics, which describes the acoustics of complete systems, is the transfer

matrix method. This technique is discussed at the end of chapter 2. Chapter 3 covers

the numerical methods that are used to solve the reacting 
ow equations, describing the

acoustics of the burner-stabilised 
ame. The content of the black box is revealed in a
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following numerical and theoretical analysis. In chapter 4 the acoustic behaviour of a pure

one-dimensional 
ame is studied and in chapter 5 the two-dimensional e�ects of the �nite

diameter of the holes in a perforated plate burner are studied. Finally, in chapter 6, the re-

sults obtained from the theoretical studies on the acoustical behaviour of one-dimensional

burners are used for the determination of instabilities in a simpli�ed boiler system.

Notation

This thesis is a numerical as well as a physical investigation, and uses notations from both

�elds. Vectors (and vector functions) in a physical sense are written in bold-faced type

characters (e.g. the velocity vector u and the spatial coordinates x). In the numerical

investigation the vector notation is used to denote the collection of (vector) variables

de�ned on grid points. These type of vectors are boldfaced and underlined (e.g. u for the

velocity vector u). Note that matrices are normal type characters and (physical) tensors

are double over-lined bold characters (e.g. ��� for the stress tensor).
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Chapter 2

Acoustics in a reacting 
ow

This chapter introduces a model that describes the acoustic behaviour of a system in

which a burner-stabilised 
ame is placed. Two disciplines come into play here. The �eld of

acoustics investigates the linear behaviour of 
uctuations in the reacting 
ow in such a way

that the 
ame is looked upon as a distinct acoustical element in the system. The second

discipline is combustion and deals with reactions occurring in the 
ame. It also provides

the starting point for the derivation of a model that describes the details to determine

the acoustic behaviour of the 
ame. The entire 
ow problem is described by transport

equations. Arguments for simplifying the 
ow equations are given in the next section.

2.1 Introduction

To predict the acoustic behaviour of central-heating boilers, we are allowed to simplify

the system on many levels. Each simpli�cation is based on local 
ow properties in the

central-heating boiler.

The �rst simpli�cation is to consider low-amplitude waves only. In acoustics these waves

are described by the linearised transport equations. The assumption of linearity is accurate

for the acoustic behaviour in most parts of the system. However, the conversion of fuel in


ames is a nonlinear process and is hard to describe by means of linear equations.

In our problem the advantage is that this nonlinear process takes place in a small area

only. This advantage enables us to separate the burner/
ame from the rest of the system.

If an acoustic �eld is present in the system, the burner/
ame area acts as a collection of

point sources interacting with this �eld. Figure 2.1 shows a small source emitting sound

waves in a medium. At a distance of a few wavelengths this source acts as a point source.

The acoustical size of a source is characterised by the dimensionless Helmholtz number:

He =
L

c0�
; (2.1)

where L is a characteristic length scale, � is a characteristic time scale and c0 the ambient

speed of sound. In regions where the 
uctuating quantities vary over distances L, which

11
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compact region point source
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Figure 2.1: Compact region acts as point source in an acoustic �eld; the dotted lines

represent propagating wave fronts.

are small compared to the wave length of the acoustic disturbances, the 
ow equations can

locally be simpli�ed by eliminating the acoustics from those equations. Such a region is

called compact. For a more precise de�nition we distinguish the typical 
ame time scale

� = D=u20, where D is the di�usion coe�cient of the fuel, and the 
ame length scale

L = D=u0 in the burner/
ame region. Note that the thickness of the 
ame scales with L.

Using the time and length scales in the burner/
ame region the Helmholtz number equals

the ambient Mach number Ma. In a compact region we thus have He = Ma � 1, which

allows us to use the low-Mach number approximation of the equations to describe the local

behaviour of an acoustic �eld in a compact region. This approximation is often referred

to as the `incompressible' approximation or Combustion Approximation [4], since pressure

variations do not a�ect the properties of the 
ame in the compact region.

As chemical reactions take place in the 
ame, entropy waves will emerge in the burnt gases.

However, the Mach number is low enough to assume that entropy 
uctuations emerging

from the 
ame are damped out before they reach the boundary of the compact region.

This allows us to assume that outside that region isentropic conditions are present in an

acoustic �eld with the 
uctuations in the pressure and velocity as its state variables. If

this is not true, entropy 
uctuations should be included as state variable as well.

Simpli�cations are made on the level of the geometry of the central-heating boiler. It is

assumed that the acoustic �eld can be described by one-dimensional waves, since in such

a (duct) system the cross-
ow dimensions are much smaller than the wave lengths present

in the acoustic �eld. This assumption allows us to use the commonly used transfer matrix

method to describe the acoustic behaviour of a complete system, using 1D acoustics. The

burner/
ame is then considered as a transfer function connecting the acoustic �elds at both

sides of the burner/
ame region. This transfer function is often referred to as a `black box',

which owes its name to the fact that it was never modelled accurately. The connection by

transfer functions is applied intuitively. Mathematically, it is a leading-order theory (in
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Mach number), which is explained in section A.3 of the appendix.

The next sections simplify the general time-dependent reacting 
ow equations for a burner-

stabilised 
ame, which are described in section 2.2. In section 2.3 the Combustion Ap-

proximation is applied on these equations. In section 2.4 the geometric con�guration of

the burner is discussed. The transfer matrix method is described in section 2.5.

2.2 Reacting gas 
ows

A chemically reacting gaseous 
ow system can be described by a set of transport equations,

i.e. the convection-di�usion-reaction equations of the chemical components, continuity

equation, the enthalpy conservation equation and the Navier-Stokes equations describing

the conservation of momentum. This set of equations has to be closed with constitutive

relations, such as the gas law. The complete set is presented in section 2.2.1, and in

section 2.2.2 the model for the chemistry is discussed.

2.2.1 Transport equations

Consider a reacting gas mixture with N chemical components. Several processes play a role

in a chemically reacting gas 
ow. The unsteady convection/di�usion/reaction equation of

species i is [59]:

@�Yi

@t
+r � (�(u+U i)Yi) = _�i: (2.2)

The quantities �, Yi, u, U i and _�i denote the mass density, the mass fraction of species i,

the gas mixture velocity, the di�usion velocity of species i and the chemical source term of

species i, respectively.

In most combustion problems each species can be considered to behave as a perfect gas.

The partial pressure is then given by:

pi = niRunivT; (2.3)

where ni is the molar density (or concentration) of species i, Runiv the universal gas constant

and T the temperature of the mixture. According to Dalton's law, the static pressure p is

equal to the sum of the partial pressures, which gives:

p = �
Runiv

�M
T; (2.4)

where the mean molar mass �M is de�ned by:

�M =

"
NX
i=1

Yi

Mi

#�1
; (2.5)
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where Mi is the molar mass of species i.

The di�usion of a species is caused by temperature gradients (Soret e�ect), concentration

gradients and pressure gradients. In combustion processes the Soret e�ect and the di�usion

caused by pressure gradients are negligible [1].

The di�usion velocities U i are described by the Stefan-Maxwell equation [13]. However, the

evaluation of this equation is still very complicated. In laminar combustion, the di�usion

velocities are approximated by a Fick-like expression:

YiU i = �DimrYi; (2.6)

with Dim the di�usion coe�cient for species i in a mixture m. For trace species (Yi � 0)

this formulation is quite accurate. This assumption of strong dilution is reasonable if the

oxidizer is air, because nitrogen is in excess in this case. In addition, the sum of the

di�usion 
uxes YiU i must be zero. The chemical source term _�i in the right-hand side of

equation (2.2) will be treated in more detail in section 2.2.2 where the reaction chemistry is

discussed. Since chemical reactions are mass conserving the following relation must hold:

NX
i=1

_�i = 0: (2.7)

Furthermore, the sum of all mass fractions equals one:

NX
i=1

Yi = 1: (2.8)

Summation of the N convection/di�usion/reaction equations in (2.2) leads to the overall

time dependent mass conservation equation:

@�

@t
+r � (�u) = 0; (2.9)

which can be veri�ed easily. The total energy density is given by:

E =
1

2
juj2 + e; e = h� p

�
; (2.10)

where e is the internal energy and the enthalpy h is de�ned as:

h =

NX
i=1

hiYi: (2.11)

Furthermore, hi is the speci�c enthalpy of species i:

hi = h0i +

Z T

T 0
cp;i( ~T )d ~T ; (2.12)
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with h0i being the formation enthalpy of species i at a certain reference temperature T 0.

cp;i is the speci�c heat capacity of species i, which de�nes the heat capacity at constant

pressure as:

cp =

NX
i=1

cp;iYi: (2.13)

The conservation of energy in a reacting 
ow is described by:

@�E

@t
+r � (�uE) +r � q +r � ( ��P � u) = �u � g; (2.14)

where g is the gravitational acceleration, tensor ��P = p��I + ��� . In this thesis, the stress

tensor ��� of the mixture is identical to the expression for a single-component Newtonian


uid:

��� = �� �(r
 u) + (r
 u)T
�
+
2

3
�(r � u)��I; (2.15)

where � is the dynamic viscosity of the mixture. In fact, this expression is formally not

correct since terms involving the gradients of the di�usion velocity U i, are neglected with

respect to those of the average velocity u. Otherwise the assumption �i = Yi� with �i the

dynamic viscosity of species i, has to be posed, to derive equation (2.15) rigorously [4]. It

can be shown that (2.15) is accurate for laminar combustion [59].

Heat transport caused by concentration gradients (Dufour e�ect) and pressure gradients

are negligible in combustion processes [23]. In this case the heat 
ux q is given by:

q = ��rT + �

NX
i=1

hiYiU i + qrad; (2.16)

where � is the heat conductivity coe�cient. Heat 
ux due to radiation is neglected (qrad =

0).

Apart from the convection/di�usion/reaction equations of the species and the total energy,

the momentum equations or Navier-Stokes equations are needed to describe a reacting 
ow

completely. The conservation of momentum is described by:

@�u

@t
+r � (�u
 u) = �rp+r � ��� + �g: (2.17)

The system of conservation equations, including the ideal gas law, is closed and describes

time dependent reacting 
ows.
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2.2.2 Combustion chemistry

In the previous section, the reacting 
ow equations are introduced, but the reaction rate

for a species i, _�i, in the species equation (2.2) is not speci�ed yet. In hydrocarbon

combustion the reactions involve chain reactions, which means that the oxidation of fuel

is governed by many elementary reactions. For methane/air mixtures these elementary

reactions are reasonably well-known. Detailed chemical models for CH4 combustion consist

of approximately 36 species and 210 reactions [16].

In general, many reactions simultaneously occur in a reacting mixture. Consider a gas

mixture with M elementary reversible reactions among N species. A single reversible

reaction with index k ranging from 1 to M can then be written as:

NX
i=1

� 0i;kMi 


NX
i=1

� 00i;kMi (2.18)

with � 0i;k and � 00i;k the stoichiometric coe�cients for the reactant and product species i of

reaction k, respectively. The symbol for the species i is given by Mi. The variation of

concentration of species i, ci = �Yi=Mi, in time due to reaction k is given by [3]:

@ci;k

@t
= (� 00i;k � � 0i;k)

 
kf;k

NY
j=1

c
�0
j;k

j � kb;k

NY
j=1

c
�00
j;k

j

!
: (2.19)

The reaction rates kf;k and kb;k represent the speci�c reaction rates of the forward and

the backward reactions of reaction k, respectively. The total variation of ci due to all the

reactions is found after summation of relation (2.19) over the M reactions:

_�i =Mi

MX
k=1

@ci;k

@t
: (2.20)

The speci�c reaction rates kf;k and kb;k depend on the temperature T and are of the form

of the Arrhenius relation:

k = A exp

�
� Ea

RT

�
; (2.21)

where A is the frequency factor, which may be temperature dependent:

A = BT 
 with 
 2 [�1; 2]: (2.22)

The reaction rate data (Ea, B, 
) for each reaction can be found in the literature [15].

In numerical simulations, using a detailed model for the oxidation of methane, as many

as 36 species equations must be solved each time step and together with the evaluation

of the source terms, this would be a time-consuming task. Reduction of the number of

species and reactions is a remedy.
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CH4

CH3

CH3O CH2O

HCO

CO

CO2

1) H + O2  OH + O

2) O + H2  OH + H

3) H2 + OH  H2O + H

4) OH + OH  O + H2O

5) H + O2 + M  HO2 + M

6) H + HO2  OH + OH

7) H + HO2  H2 + O2

8) OH + HO2  H2O + O2

9) CO + OH  CO2 + H

10) CH4 + M  CH3 + H + M

11) CH4 + H  CH3 + H2

12) CH4 + OH  CH3 + H2O

13) CH3 + O  CH2O + H

14) CH2O + H  HCO + H2

15) CH2O + OH  HCO + H2O

16) HCO + H  CO + H2

17) HCO + M  CO + H + M

18) CH3 + O2  CH3O + O

19) CH3O + H  CH2O + H2

20) CH3O + M  CH2O + H + M

21) HO2 + HO2  H2O2 + O2

22) H2O2 + M  OH + OH + M

23) H2O2 + OH  H2O + HO2

24) OH + H + M  H2O + M

25) H + H + M  H2 + M

Figure 2.2: C-1 basic reaction chain of lean methane/air oxidation, consisting of 25 reac-

tions among 16 chemical components (N2 is an inert species).
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For the methane/air mixtures considered in this thesis, the equivalence ratio � is de�ned

as:

� =
2XCH4

XO2

; (2.23)

where XCH4
, XO2

the mole fractions in the unburnt mixture. We only consider � < 1, i.e.

lean mixtures.

The C-1 chain, as shown in �gure 2.2, can be used to describe the chemistry [15] for these

lean mixtures. This so-called skeletal mechanism consists of 25 reversible reactions among

16 chemical components, including inert nitrogen N2. Methane reacts with oxygen through

several intermediate chemical components to CO2 and H2O, where radicals, such as O, H

and OH, are involved in most of the reaction steps. It is also possible that reactions occur

following the C-2 chain and higher hydrocarbons. Especially for fuel-rich mixtures, the

latter reaction paths are important.

If only information is required for the global combustion quantities like temperature, burn-

ing velocity and concentration pro�les of the products, then the chemistry can be simpli�ed

even further. A one-step reaction mechanism is su�cient in some cases. An example of a

one-step overall reaction mechanism is given by:

CH4 +O2 ! CO2 + 2H2O: (2.24)

The overall reaction rate _�CH4
of methane for this reaction can be expressed by [11]:

_�CH4
= � MCH4

M�
CH4

M�
O2

A�pY �
CH4

Y �
O2

exp

�
� Ea

RT

�
; (2.25)

where the overall reaction order p is equal to � + �. The overall activation energy Ea

and the frequency factor A are somehow related to all the intermediate reactions. For

the reaction rate (2.25), the unknown coe�cients A, �, � and Ea can be obtained by ex-

perimentally measuring the overall reaction rate of 
at methane/air 
ames under several

conditions [57]. Overall reaction mechanisms are used in a number of numerical models of

our group to compute methane/air combustion processes [11, 30].

This global reversible reaction mechanism and the skeletal reaction mechanism are used

for the combustion chemistry calculations in this thesis, since we restrict our work to lean


ames.

2.3 Combustion Approximation

In this section, the governing equations are simpli�ed by using the property that the gas

velocity is low compared to the speed of sound (the Mach number is O(10�4)). Details

of the derivation of the low-Mach number equations can be found in section A.1 of the

appendix. The dimensionless pressure is written in a series of the Mach number Ma:

p = p0 +Ma p1 +Ma2p2 +O(Ma3); (2.26)
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where pi are O(1)-functions. As shown in the analysis in the appendix the leading-order

and �rst-order pressure are functions of time only:

p0 = p0(t) and p1 = p1(t); (2.27)

whereas the second-order pressure p2(x; t) is determined by the second order Navier-Stokes

equations. In dimensionfull form these equations are given by:

@�u

@t
+r � (�u
 u) +rp =r � ��� + �g: (2.28)

The gas law reads:

p0 = �
Runiv

�M
T: (2.29)

The dimensionfull function p0(t) is determined from the acoustic zone by matching. In

this thesis the pressure variations outside the combustion zone are acoustic waves, which

are, as shown in section A.2 of the appendix, �rst-order 
uctuations superposed on a

constant leading-order pressure. Thus, following the matching principle in section A.3 of

the appendix, we have pressures p0 =constant and p1 = p1(t), which does not a�ect the

reacting 
ow up to a leading-order accuracy. A consequence of the constant leading-order

pressure is that this pressure also vanishes from the energy equation (2.14), yielding:

@�h

@t
+r � (�uh) +r � q = 0; (2.30)

with q de�ned by:

q = ��rT � �

NX
i=1

hiDimrYi: (2.31)

The leading-order species equations and mass conservation equation remain unchanged

and are given by (2.2) and (2.9). It is important to keep in mind that the solution of

the system of equations (2.2), (2.9), (2.28), (2.29), and (2.30) is valid up to leading-order

accuracy. This system of equations is used to model the reacting 
ow in a compact region

of the system. The next section describes the con�guration of the burner.

2.4 Burner/
ame con�gurations

In laminar premixed combustion, roughly two types of 
ames can be distinguished: adi-

abatic 
ames and burner-stabilised 
ames. Adiabatic 
ames have a characteristic mass

consumption rate and the corresponding velocity in a quiescent gas is called the adiabatic

burning velocity sL. Consider a one-dimensional con�guration where gas is 
owing from

left to right. If the gas velocity is less than the adiabatic burning velocity the 
ame will
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d

p

30
o

Figure 2.3: Perforated plate con�guration.

move to the left. The 
ame can be prevented from moving to the left by cooling the gas

on the upstream side. The burning velocity will adapt until it equals the unburnt mixture

velocity. This means that not all heat is added to the gas, because some heat is lost to the

burner by cooling.

Materials that suit for cooling are for example a gauze, perforated plate or ceramic foam.

By placing those materials in the gas 
ow, heat is lost to stabilise the 
ame. In the follow-

ing, a slit-burner con�guration and a one-dimensional con�guration are presented, which

are used in this thesis.

The perforated plate is a three-dimensional con�guration, where the holes are situated in

a structured way as shown in �gure 2.3. The multi-dimensional reacting 
ow problem is

numerically hard to solve with the current numerical models. Therefore, a two-dimensional

multi-slit con�guration is introduced here instead. It is believed that this con�guration

gives a good indication of the local e�ects in the three-dimensional case.

The con�guration of a micro-slit burner is composed of an array of parallel micro-slits, as

schematically shown in �gure 2.4. The parameters used in the geometry are the thickness

t, the pitch p and the diameter d. The ratio � = d=p gives the volumetric porosity of the

burner plate and is chosen to be equal to the porosity of the three-dimensional perforated

plate in �gure 2.3. The average 
ow rate in every micro-slit is therefore equal to the mass


ow rate in the corresponding three-dimensional con�guration. It may be expected that

the qualitative results obtained with the two-dimensional model are valid for the experi-

mental burners of �gure 2.3 if the slit thickness is equal to the diameter of the perforation.

However, quantitatively, small di�erences are to be expected.

Last, but not least, the geometry of a one-dimensional problem is even simpler and easier

to solve. It is de�ned as a special case of the multi-slit burner with very small d, keeping

� constant. The 
ame looses its heat to the solid. In case of a ceramic foam, the 
ow
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Figure 2.4: Perforated plate with diameter d, pitch p, and thickness t.

inside the burner can be approximated by a two-phase 
ow, and for each phase convection-

di�usion equations are derived to describe this interaction [3]. The gas energy equation is

given by:

��gcp;g
@Tg

@t
+ ��gcp;gu �rTg �r � (��grTg) = �S(Ts � Tg)� �

NX
i=1

hi _�i; (2.32)

and in a similar way for the solid:

(1� �)�scs
@Ts

@t
�r � ((1� �)�srTs) = ��S(Ts � Tg): (2.33)

Subscripts g and s denote the variables in the gas mixture and material (solid), respec-

tively. � is the heat transfer coe�cient between the two phases and S the speci�c internal

surface, where the heat transfer takes place. In this model, all the heat is radiated at the

burner surface, where the resulting burner surface temperature is a function of the surface

emissivity and the temperature of the surroundings. In the transport equation of the gas

phase (2.32), the heat release:

Qrel =

NX
i=1

hi _�i; (2.34)

is also present, since the 
ame might stabilise inside the material [3]. Di�erent ways are

possible to model the burner. In this thesis, it is assumed that the 
ame does not stabilise

inside the burner, so no heat is released in that region. Furthermore, we use the type

of burners where the temperature pro�les are solutions of limiting cases of (2.32) and

(2.33). It is assumed that the speci�c heat of the material is in�nite cs = 1. In this

case, temperature changes in time of the solid phase inside the burner are not possible:

Ts(x; t) � �Ts(x). Another situation is that the heat transfer coe�cient � is in�nite which

implies that the gas temperature equals the temperature of the solid: Tg = Ts � T . Hence,

equations (2.32) and (2.33) add up to

�cpu �rT �r � (�mrT ) = 0; (2.35)
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Figure 2.5: Simple con�guration of a heating system divided into 8 elements.

where the subscript g is dropped from the speci�c heat cp, and �m = ��g+(1� �)�s. The
common de�nition of ideally-cooled burners is the case that the temperatures of the solid

and the gas are equal to the inlet gas temperature: Ts(x; t) � �Tu.

In this thesis two situations are used in the investigation: the ideally-cooled burners with

�m !1 and the ceramic foam burners with �nite �m.

2.5 Transfer matrix method

In the previous sections, we presented the governing equations of a (reacting) 
ow in a

compact region. The solution that satis�es the Combustion Approximation is accurate up

to leading-order Mach number and analytical or numerical models are used to describe

the acoustic behaviour of the burner/
ame placed in an acoustic system. In section A.4

the precise form of the transfer matrix of a burner/
ame in low-Mach number 
ows is

described.

The propagation of noise by plane waves through an acoustic system can be described

using the transfer matrix method (also called the transmission matrix or the four-pole

parameter representation [41]). The method is explained by applying it on a simple con-

�guration which is shown in �gure 2.5. In this �gure a tube with a sudden contraction is

shown (element 3), wherein a burner/
ame (elements 5 and 6) is placed. This con�guration

is in fact a very simple model of a central-heating boiler. Adopting pressure 
uctuations

p0 and velocity 
uctuations u0 as the two state variables forming the acoustic �eld, the

following matrix relation can be written so as to relate state variables on the left (l) and

right (r) side of an element i:

�
p0l
u0l

�
= T i

�
p0r
u0r

�
; (2.36)

where the transfer matrix for element i is denoted by T i.

The transfer matrix T of the total system, i.e.

T = T 7T 6T 5T 4T 3T 2; (2.37)
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with

T =

�
T11 T12
T21 T22

�
; (2.38)

represents the relation between the acoustic �elds at both ends of the system, i.e. between

[p01; u
0

1]
T and [p08; u

0

8]
T.

The combined transfer matrix of elements 5 and 6 is the most complex one in this system

and will be the end product of this thesis. The transfer matrix for the combustion zone

is determined by the Combustion Approximation equations as described in the previous

section. In the combustion zone we de�ne the acoustic �eld to be the 
uctuations in the

leading-order velocity and in the �rst-order pressure [p0; u0]T. Since the p0 is a function of

time only the transfer matrix simply reads:�
p0l
u0l

�
=

�
1 0

0 V�1
� �

p0r
u0r

�
; (2.39)

where V represents the matrix element of the velocity 
uctuations transfer by the burner/
ame

region. Analytical expressions are available for the other elements and are given in sec-

tion A.5 in the appendix.

Knowing the transfer matrices for all elements we can proceed in two ways to determine

the instabilities. We distinguish the free system and the driven system. In the free sys-

tem (�gure 2.5) we e�ectively determine the eigensolutions of the system. These are the

acoustic �elds which emerge after perturbation of the system in state of rest. The frequen-

cies related to these solutions are the resonance frequencies. In general, these resonance

frequencies are complex numbers, representing damped and growing oscillations, i.e. the

pressure:

p0(t) = p̂(!) exp(i!t) = p̂(!) exp(�Im(!)t) exp(iRe(!)t); (2.40)

where Im(!) is the damping factor and Re(!) the frequency of oscillation.

If we use the boundary conditions p01 = Z1u
0

1 and p08 = Z8u
0

8, where Z1 and Z8 are the

acoustic impedances, we �nd

1

Z8

=
T21(!)Z1(!) + T22(!)

T11(!)Z1(!) + T12(!)
; (2.41)

with Tij de�ned by (2.37). An eigensolution satis�es the boundary condition u08 = 0, and

the corresponding resonance frequencies ! are derived from:

T21(!)Z1(!) + T22(!) = 0: (2.42)

The sign of Im(!) determines whether the eigensolution is a damped solution: p0 ! 0

or a growing solution: jp0j ! 1. The eigensolution oscillates with frequency Re(!). In a

damping mode the 
ame produces less acoustic energy than is radiated at the open end. In

a growing mode the 
ame always produces more acoustic energy than the radiated energy,
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Figure 2.6: Acoustically driven system.

so that the amplitudes of those modes increase.

The second way of investigation is determining the energy production in a driven system.

Instead of the condition (u08 = 0), we prescribe the velocity as shown in �gure 2.6. Given

u08, we determine the pressure p
0

8 at the source:

p08(!) = Z8(!)u
0

8; (2.43)

Z8(!) =
T11(!)Z1(!) + T12(!)

T21(!)Z1(!) + T22(!)
: (2.44)

The leading-order acoustic power of the source can also be determined, since in a tube the

acoustic energy 
ux W is de�ned by [41]:

W = Su0p0; (2.45)

in which the bar denotes time-averaging and S the cross sectional area of the tube. Or,

evaluated at the source:

W (!) = S
1

2
ju08j2Re(Z8): (2.46)

From equation (2.46), it follows that the source drains energy from the system, if the

right-hand side is negative. The source drains energy from the system if the system itself

produces acoustic energy. On the other hand, if the system drains energy, the source

produces energy It can be shown that the frequencies at which eigensolutions grow are the

frequencies at which the 
ame produces energy. Results of this method, applied to the

simpli�ed central-heating boiler, are presented in chapter 6.



Chapter 3

Numerical model

In the previous chapter a model has been introduced for the burner-stabilised 
ame. This

chapter describes the numerical treatment of the transport equations. (2.2), (2.9), (2.28),

(2.29), (2.30), and the equation of state (2.29). After a short introduction the computa-

tional domain is de�ned for which boundary conditions are needed. The transport equa-

tions, together with the boundary conditions, are approximated on discrete times and

places resulting in a set of coupled algebraic equations. These equations are then solved

using methods described in the next sections.

3.1 Introduction

Analytical solutions for the transport equations cannot be found, but in such cases a

numerical approximation can accurately predict the 
ow. The solution will be determined

in a discrete number of points in space and in time. The error of the discrete solution is

measured in terms of the time step and mesh sizes used in the approximation. In a typical

two-dimensional 
ow problem the number of unknowns is quadratically proportional to the

inverse of the mesh size. In order to resolve to quick changes of the quantities in the 
ame,

small mesh sizes must be used. To deal with the number of grid points, mesh re�nement

is applied and the computational domain is limited. If in regions far from the 
ame

the 
ow does not change, or is known analytically, the domain is limited using the proper

boundary conditions. Section 3.2 will discuss the boundary conditions which can be used in

a two-dimensional 
ow geometry. Important is the treatment of the acoustic waves, which

should not re
ect back on these boundaries. In section 3.3 the discrete approximation of

the transport equations is given. The spatial and temporal discretisation is based on the

method-of-lines, which treats the space and time dependencies separately. The resulting

set of algebraic equations is solved by using the pressure-correction method, which treats

the pressure dependence explicitly. The low-Mach number approximation allows us to

eliminate the time derivative of the density from the mass conservation equation. The

conservation of mass has become a constraint for the 
ow �eld. The explicit pressure-

correction method corrects the pressure in such a way that mass conservation is satis�ed.

25
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Figure 3.1: The dotted rectangle encloses the computational domain for the multi-slit

burner con�guration. The vertical dotted lines are symmetry boundaries and the lower

and upper dotted lines are the in- and out
ow boundaries, respectively.

The complete procedure is described in section 3.4. Section 3.5 validates the numerical

approach for one-dimensional 
ow problems. The one-dimensional shock tube problem or

Riemann problem is numerically solved and compared to the analytical solution. The 
ow

in this problem is described by the non-reacting Euler equations, and is compressible, in

the sense that the Mach number is not necessarily low. The low-Mach number assumption

is validated by comparing the acoustical response of a burner-stabilised one-dimensional


ame, described by the full compressible equations and the Combustion Approximation.

The linearity in the acoustic behaviour, as is assumed in the transfer matrix method, is

tested in section 3.5 as well.

3.2 Boundary conditions

In a multi-slit burner con�guration, the computational domain can be limited to a small

partition, as shown in �gure 3.1. The symmetry axes are situated in the centre of the 
ow

channel and at the centre of each plate segment. In the lower part of the 
ow, the domain

can also be limited using the properties of the 
ow through a slit. A steady-state 
ow

through that slit is close to a Poiseuille 
ow, a parabolic velocity pro�le with a maximum

velocity in the centre of the slit and zero at the wall. This velocity pro�le could be used as

a boundary condition if the burner plate is in�nitely thick. A quasi-steady approach can be

used as boundary condition for the 
uctuating parts of the quantities at low frequencies. It

can be shown that the acoustic boundary layer is con�ned to a thickness of �A = (2�=!)1=2

(where � = �=� is the kinematic viscosity of the gas) near the walls. In order to apply this

steady-state approach we should have �A=d > 1, where d is the diameter of the perforations.
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π/2 3π/2π0

Figure 3.2: Five snap shots of a 
uctuating velocity pro�le in one cycle. Due to inertia,

the main 
ow lags behind the boundary layer.

Hence, the range of frequencies f at which this holds is:

f <
�

�d2
: (3.1)

For methane/air mixtures � � 1:3� 10�5 m2=s and the diameter of the holes used in this

thesis varies between 0:1 mm and 1 mm. This means that the critical frequency ranges from

4 to 400 Hz. Depending on the frequency, the boundary layer is in phase with the pressure


uctuations and the mass 
ow lags behind due to inertance, as shown in �gure 3.2. The

exact time dependent boundary conditions are not known. Therefore, a part of the in
ow

area is modelled as well (see �gure 3.1) and homogeneous in
ow conditions are imposed.

In the two-dimensional geometry of �gure 3.1 the conditions for the 
ow variables at the

walls are the no-slip, no-
ux and ideal-cooling conditions:

u = 0; T = Twall;
@Yi

@n
= 0; (3.2)

where n is the normal vector of the wall.

At the in- and out
ow boundaries we have to be careful, because of the presence of prop-

agating waves in the numerical domain. A numerical di�culty arises, when waves are

simulated as if there are no in
ow and out
ow boundaries. Since the burner/
ame region

is situated in an in�nite region, imposing the acoustic open and/or closed end boundary

conditions would cause acoustic wave re
ections. Hence, standing waves may emerge that

dissipate slowly.

A way to circumvent this is to impose non-re
ecting boundary conditions. This can be

achieved by using the hyperbolic properties of the equations and the assumption that the


ow �eld is homogeneous at the in- and out
ow boundaries. These one-dimensional condi-

tions prescribe the incoming `acoustic' waves and take care of the waves leaving the domain.

Hyperbolic di�erential equations can be rewritten in a set of wave equations, as shown in

section B.2 of the appendix. There, the non-re
ecting boundaries for the one-dimensional

reacting Euler equations are presented.

Formally, in the Combustion Approximation, the speed of sound is in�nite and the pro-

cedure explained in section B.2 cannot be followed straightforwardly. Some boundaries

conditions for the equations in the Combustion Approximation are determined using prop-

erties in the acoustic �eld at low Mach numbers.

In the low-Mach number analysis, di�usive terms appear in the second-order species and
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energy equations, and third-order momentum equation only. These terms disappear at the

boundaries and we have:

@�

@t
+

@

@x
(�u) = 0; (3.3)

@�Yi

@t
+

@

@x
(�uYi) = 0 with i = 1; � � � ; N; (3.4)

@�h

@t
+

@

@x
(�uh) = 0; (3.5)

@�u

@t
+

@

@x
(�uu) = �@p

@x
+ �g; (3.6)

which are consistent with equations in the acoustic zone up to the �rst-order species and

energy equation, and the second-order momentum equations. This set of di�erential equa-

tion is hyperbolic, if the pressure gradient is �xed.

It is clear that the eigenvalues of the hyperbolic system are all equal to u. This means

that near the in
ow and out
ow, the waves propagate towards the burnt side of the 
ame.

The Riemann invariants belonging to the eigenvalues are the 
ow variables: �, Yi, u and

h, and should be imposed at the in
ow:

u(0; t) = uin
ow(t); Yi(0; t) = Yi;in
ow; T (0; t) = Tin
ow(t): (3.7)

The pressure level in the compact zone is determined up to a constant. This level should

be �xed on one side of the domain; the average pressure level in one of the acoustic zones:

p = �p0 at the downstream boundary; (3.8)

which is the leading-order pressure. The next term is a time-dependent acoustic pressure.

Condition (A.52) leads to the consistent boundary condition for the pressure derivative:

@p

@x
= 0 at the in
ow boundary: (3.9)

3.3 Method of lines approximation

The 
ow is described by a set of nonlinear partial di�erential equations, boundary and

initial conditions. These equations are solved by the method of lines, where the solution

is obtained for a discrete number of lines (xj; t) in the (x; t)-space. The resulting ordinary

di�erential equations are solved using the Backward Euler time integration.

3.3.1 Spatial discretisation

Many di�erent ways are known to discretise the spatial derivatives. We have chosen to

use a �nite volume method, because this method is based on approximations of the 
uxes,

which have a physical meaning. Moreover, this method deals with the integral formulation



3.3. METHOD OF LINES APPROXIMATION 29

eW E

n

s

w
P

N

∆x

y∆

S

Figure 3.3: A staggered grid con�guration. The solid rectangle denotes the cell for the

scalar conservation equations. The cells for the momentum equations are dashed.

of a conservation equation. Then, this conservation property is preserved numerically,

independent of what kind of discretisation scheme is used. For any sub-domain V we have:

Z
V

@�

@t
dV +

I
�V

f � ndS �
Z
V

s(�) dV = 0; (3.10)

with � a conserved quantity (i.e. �; �Yi; �u, ...), f a combination of convective and di�usive


ux terms, and s is a source term.

A �nite volume approximation is obtained in the following way: the unknowns are approx-

imated at a speci�ed number of grid points in a staggered way, as shown in �gure 3.3. The

species mass fractions Yi, the temperature T and pressure p are de�ned in the cell centres

and the vertical velocity in the middle of the horizontal edges and the horizontal velocity in

the middle of the vertical edges. With every grid point, a control volume is associated, in

which the conservation equation is approximated. Here, we choose a cell-centred, rectilin-

ear equidistant grid, with midpoint rule approximation for the integrals in equation (3.10).

Each grid point P has neighbours, which are labelled as N, E, S and W, for north, east,

south and west, respectively. The grid point P is located in the middle of a rectangular

control volume and the staggered grid points, which are labelled n, e, s and w, are de�ned

on the faces of the volume. Applying the midpoint rule to all the integrals, we �nd, after

division by �x�y:

@�(xP; t)

@t
+
F (xn; t)� F (xs; t)

�x
+
G(xe; t)�G(xw; t)

�y
� s(xP)

= O(�x2) + O(�y2); (3.11)
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where the subscripts denote the place at which terms are evaluated. Next, let �P(t) denote

the approximation for �(xP; t). The conservation law is now approximated by:

d�P

dt
+
Fn � Fs

�x
+
Ge �Gw

�y
= sP; (3.12)

where Fn, Fs, Ge and Gw are the numerical approximations of the 
uxes, and sP = s(�P)

is the approximated source term.

The (discrete) 
uxes in (3.12) are obtained using an exponential scheme, based on the

exact solution of the steady one-dimensional convection-di�usion equation:

dF

dx
= 0; F (x) = u��D

d�

dx
; (3.13)

with a constant velocity u = un and a constant di�usion coe�cient D = Dn locally at the

interval (xP; xN) (see �gure 3.3 for the de�nition of n, N, and P). The solution to (3.13) is:

�(x) = �P +
�N � �P

exp
�
u�x
D

�� 1

�
exp

�
u(x� xP)

D

�
� 1

�
; (3.14)

where �x = xN � xP. Evaluation of the 
ux in point n, Fn = F (xn), gives:

Fn = un�P � un
�N � �P

exp

�
un�x
Dn

�
� 1

; (3.15)

or equivalently,

Fn = un
1

2
(�P + �N)�Dn

�
Pen

exp(Pen)� 1
+
1

2
Pen

�
�N � �P

�x
; (3.16)

with Pen the P�eclet number Pe = u�x=D, evaluated in point n. This is Spalding's scheme

and switches smoothly from central-di�erence for di�usion dominated to upwind for convec-

tive dominated 
ow and has been successfully used in laminar 
ame computations [11, 52].

See Thiart [54], Ghilani et al. [18] and Van 't Hof [58] for more accurate discretisation

schemes.

The derivation of the one-dimensional integration scheme is easily extended to two-dimen-

sional problems. The resulting scheme is the sum of two one-dimensional schemes, one in

x-direction and the other in y-direction.

3.3.2 Time integration

The set discretised di�erential equations (3.12) can be generalised to:

d�

dt
= F (�); (3.17)
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for a given function F and � is the vector of unknowns. An underlined variable is a

vector of discrete variables de�ned in all grid cells together. Reacting 
ow problems are

sti�, because of the small time scales present in the 
ow. For reasons of stability, when

explicit time-integration schemes are used, one has to take the time-step size smaller than

or comparable to the smallest physical time scale. Beside the small times scales present

in the reaction (especially the production and consumption of radicals, some of which are

O(10�9) s), we have to deal with the propagation time of sound waves. In air at room

temperature the propagation velocity c is 325 m/s. If we have a mesh that has a grid size

of, let say, the thickness of the reaction zone, �x = O(10�4), then we should take time-step

size �x=c = O(10�6) s to obtain stability. For low-frequency wave calculations these small

time step sizes are unwanted. The Combustion Approximation formally assumes c !1,

which would result in a zero time-step size.

To circumvent the need for a small time step arising in an explicit integration scheme,

we use an implicit time integration scheme, the simplest of which is Backward Euler. It

de�nes the approximate solutions �
n
by:

�
n
= �

n�1
+�tF (�

n
); (3.18)

given a time step �t and �
0
. So, for each time step a large system of nonlinear equations

must be solved.

3.4 Solution procedure

Solving a set of discretised one-dimensional di�erential equations is not fundamentally

di�erent from solving a set of two-dimensional equations. However, the one-dimensional

case has the advantage that the number of unknowns and equations is in general far less

than in the two-dimensional case. Advantages can also be found in the structure of these

equations.

Many numerical methods are available to solve the set of discretised di�erential equations.

The best choice is the one that complies with the most important requirements: short com-

puting time and small storage. Also the Combustion Approximation has its contribution

to that choice. The set of equations is solved by a pressure correction method, originally

developed for the incompressible 
ow problems. The incompressible methods cannot be

adopted straightforwardly, since in combustion large density variations exist. However,

the equations in the Combustion Approximation can be rewritten in a form to which an

extension of the incompressible pressure correction method can be applied. In low-Mach

number 
ows, the time derivative of the density can be eliminated from the continuity

equation. This leads to an equation comparable to the divergence free velocity condition.

These constraint equations are preferable to the continuity formulation for stability reasons

[58]. The generalised pressure correction method is explained in the next section.
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3.4.1 Two-stage pressure correction method

The pressure correction method presented here has close resemblance to the PISO (Pressure

Implicit with Splitting Operators) of Issa [25] and is studied in great detail by Van 't Hof

[58]. Pressure correction schemes produce an approximation for the solution at a new time

level, by consecutive solutions in time. This is done by calculating predictor values for

some of the variables �rst, after which these values are corrected to satisfy the constraint

equation by projection.

We apply the two-stage pressure correction scheme [58] to the discretised version of the

system of equations (2.2), (2.9), (2.28), (2.29) and (2.30). First, large vectors of unknowns

are introduced: � contains the species and enthalpy de�ned in each grid cell:

� =
�
Y T
1 ; : : : ; Y

T
N�1; h

T
�T
; (3.19)

and u contains the velocity components de�ned in each (staggered) grid cell. By using this

notation, the discretised equations can be written into a convenient way:

�n � �n�1

�t
= A1(�

n) + A2(�
n)u� (3.20)

u
� � u

n�1

�t
= B1(�

n;u�) +B2(�
n)pn�1 (3.21)

u
n � u

n�1

�t
= B1(�

n;u�) +B2(�
n
)pn (3.22)

P1(�
n)un = P2(�

n); (3.23)

where the subscripts n and � denote consecutive time solutions and a predictor solution,

respectively. If � 2 R
MN (M scalar equations de�ned inN grid points on a two-dimensional

grid), then the image of the nonlinear operators A1 : R
NM ! R

NM , A2 : R
NM ! R

NM�2N ,

B1 : R
MN�2N ! R

2N , B2 : R
MN ! R

2N�N , P1 : R
MN ! R

N�2N , and P2 : R
MN ! R

N .

Note that equation (3.23) is the discretised constraint equation:

�r � u = �D�

Dt
; (3.24)

in which the total derivative on the right-hand side is the expansion rate. As � =

�(T; Y1; : : : ; YN�1), the time derivatives can be eliminated using the species and energy

equations.

Note that a second constraint equation can be derived for the pressure. In the two-stage

pressure correction method, this pressure equation is imposed implicitly, which implies

that the numerical solution depends on the initial conditions for the pressure. A three-

stage pressure correction scheme is presented in [58], which explicitly impose the pressure

equation.

The new values �n, un and pn de�ned in (3.20) to (3.23) can be found, because the pressure

can be decoupled from the other variables. To do so, we subtract (3.21) from (3.22), which

yields the increment equation for the velocity:

u
n = u

� +�tB2(�
n)(pn � pn�1): (3.25)
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Next, we combine (3.23) and (3.25) to a Poisson equation:

�tP1(�
n)B2(�

n)(pn � pn�1) = P2(�
n)� P1(�

n)u�: (3.26)

The new values �n, un and pn can be found in the following two steps, a predictor and

corrector step:

1. Calculate �n and u� by solving (3.20) and (3.21) in a coupled way.

2. Solve (3.26) for pn, and update un from (3.25).

Equation (3.26) is a linear equation, involving one scalar �eld only. This equation and

the equation for the predictor solution in step 1 can be e�ciently solved using standard

techniques, of which the one used for our calculations is described in the next section.

3.4.2 Block Gauss-Seidel method

The equations that have to be solved in step 1 in the pressure correction method can be

written in a general form:

F (�) = 0: (3.27)

We solve this set of nonlinear equations with the well-known Newton method. In this

method the sequence of solutions �k is de�ned by:

�k+1 = �k � J�1(�k)F (�k); (3.28)

and a suitable solution �0, where J is the Jacobi matrix or Jacobian:

(J)ij :=

�
@F

@�

�
ij

=
@Fi

@�j
: (3.29)

The evaluations of the Jacobian can be less computer expensive if the matrix is not updated

every Newton step, but, for example, once every time step. This method is called the mod-

i�ed Newton method. Directly inverting the penta-diagonal Jacobian in two-dimensional

problems is computationally expensive.

Therefore, an iterative method is proposed. There are many ways known [48]. All classical

methods are based on approximations of the Jacobian. Most of these methods are still in-

e�cient because of the dimensions of the Jacobian which must be stored somewhere. The

method adopted in our calculations is a so-called matrix-free method, which circumvents

the need of large storage. In each grid point the set of equations Fi(�
k) = 0 is solved using

the Modi�ed Newton Method, in which the already solved unknowns �k
j
with j < i, are

used in the evaluation. This is called the Block Gauss-Seidel method.

This way of solving sets of discretised di�erential equations may be more e�cient when a
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time extrapolation method is applied before each new time step to get a better initial guess.

However, the gain in computing time is less than mentioned in [58]. The extrapolation

method is described in section B.1.3.

If this method does not satisfy the computing time requirements, the calculation of the

Jacobian matrices may be more e�cient if the Broyden iteration method is used instead

of Newton's method. In this method the iteration matrix converges from an initial guess

to the correct Jacobian, which is explained in section B.1.1. It result in an decrease in

computing time with a factor 2 to 3 [58].

On top of that, a multi-grid solver is implemented. The block Gauss Seidel method is a

smoother rather than a solver and after a few smoothing steps the residual hardly decreases.

But the residual is quite smooth and this means that a representation of that residual on

a coarser grid can be used to obtain a solution on a coarser grid, thus less computing time

(another factor 2 decrease, but becomes less useful when coarse grids are used and even

counterproductive in combination with the extrapolation method) [58]). The multi-grid

method is explained in section B.1.2.

3.4.3 One-dimensional 
ow problem

Despite the fact that the pressure correction method is applicable to 
ow problems of arbi-

trary dimensions, the calculations on the acoustic behaviour of the one-dimensional 
ame

are performed following a slightly di�erent procedure.

In one-dimensional 
ow problems the variables depend on one spatial coordinate only. In

this situation, the pressure correction method is ine�cient since only one velocity compo-

nent is solved. In this case, the momentum equation can be decoupled from the equations

and if the pressure distribution is of concern, the momentum equation is integrated. Mass

is conserved implicitly by solving the discretised continuity, species and enthalpy equations

in a coupled way. Still, Backward Euler is applied as the time integration method, resulting

in solving equation (3.18), or the more general equation (3.27), each time step. At this

point one can choose to apply an iteration method such as Block Gauss-Seidel, but the

structure of the Jacobian allows us to use block-LU decomposition to invert the Jacobian

in a direct way, which is a more e�cient way to invert a matrix than Block Gauss-Seidel

iterations.

This one-dimensional procedure will be tested in section 3.5. The one-dimensional shock-

tube problem or Riemann problem is numerically solved and compared to the analytical

solution in section 3.5.1. The 
ow in this problem is non-reacting and compressible, in

the sense that it is not a low-Mach number 
ow. In essence, this problem only vali-

dates the time-dependency of the computer program. The low-Mach number assumption

is validated by comparing the acoustical responses of a burner-stabilised one-dimensional


ame described by the compressible equations and by the Combustion Approximation in

section 3.5.2.
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Figure 3.4: In the shock tube two gas states are separated by a membrane (top picture).

At t = 0 the membrane is removed and an expansion wave, a contact discontinuity and a

shock wave form in the tube (bottom �gure).

3.5 Numerical validation of the model

Two time-dependent 
ow problems are used to validate the one-dimensional numerical

procedures, such as the discretisation and the method to solve the set of algebraic equa-

tions. The �rst test problem is a shock tube problem of a non-reacting 
ow, which will

be solved using the Euler equations. Even though shocks do not appear in our study on

the acoustic behaviour of 
ames, it is interesting to know whether the numerical model

captures shock waves correctly. The results are presented in section 3.5.1. In the transfer

matrix method, it is assumed that the 
ame has a linear response. In section 3.5.2 the

in
uence of the magnitude of the acoustic perturbation on the linearity is investigated. At

the same time, the low-Mach number approximation should be correct and this is validated

in section 3.5.3. The results are analysed and obtained by assuming speci�cally a linearity

of the burner/
ame response. This assumption allows us to determine the response in an

e�cient way, which is explained in section B.4 of the appendix.

3.5.1 Riemann problem

The shock tube or Riemann problem is an interesting test case, since it has an exact

solution to the full set of one-dimensional (non-di�usive) Euler equations. This problem

contains a shock wave, a contact discontinuity and an expansion wave.

The 
ow can be experimentally realised by the sudden removal of a membrane in a long

tube separating two initial gas states at di�erent pressure and densities. If viscous e�ects

can be neglected along the tube walls and an in�nite tube length is assumed, the exact

solution can be obtained on the basis of separate regions of uniform conditions, as shown

in the top picture in �gure 3.4. At time t = 0 the membrane is removed from the tube and

a pressure discontinuity propagates to the right, and simultaneously, an expansion wave

propagates to the left. In addition, a contact discontinuity separating the two gas regions

propagates to the right in the tube. This is illustrated in the bottom part of �gure 3.4.

Figure 3.5 shows the solution to the problem in space and time.

This solution is constructed using the characteristics (see section B.3) and is compared

to the numerically obtained solution on a grid with 1000 points. In this simulation the
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Figure 3.5: Solution in x; t-plane of the Riemann problem, wherein the grey area is the

expansion wave.

initial pressure for air at t < 0 is p = patm on the left side and a factor 10 lower at the

right side of the membrane. The initial temperature is 298 K and there is no 
ow present

in the entire tube. The numerical domain is 10 m in length and the membrane is placed

at x = 0 m. At t = 6 � 10�3 s, a snap shot of the pressure is shown in �gure 3.6. The

exponential scheme, as presented in section 3.3.1, reduces to a �rst-order upwind scheme,

since the Euler equations does not have di�usive terms. The results show that the model

predicts the exact pressure pro�le well and the position of the shock is correct.

In �gure 3.7 the evolution of the temperature pro�le in time is shown. Here, the non-

re
ective boundary conditions for an in�nitely long tube are tested. The results show that

initially, the temperature at the membrane position is not predicted well, but converges to

the exact solution as time evolves. The temperature pro�le at the discontinuity is smoothed

by numerical di�usion and hardly any re
ection of wave at x = �4:9 m is shown in the

plot when the expansion wave and the shock wave have passed the boundaries.

The results of the shock tube problem show that the numerical model can accurately predict

the positions of discontinuities, but due to arti�cial di�usion the solution is somewhat

smoothened. Also, the non-re
ecting boundary conditions perform well.

3.5.2 Linearity

The transfer matrix method is based on a linear theory, and the linearity assumption

should be veri�ed before this method can be applied to 
ows wherein a 
ame is present.

The behaviour of every 
ame can be linearised provided that the distortions in the 
ow are

small enough. In case of the response of a 
ame, the amplitude of the upstream velocity


uctuations should be chosen small enough to render a linear response. As the reactions,

which take place in the 
ame, are far from linear, this amplitude could turn out to be very

small. This nonlinearity plays an important role in the reaction rates _�i. If we linearise a
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Figure 3.6: Pressure distribution in the tube from the numerical simulation (solid line),

compared with the exact solution (dashed line) at t = 6� 10�3 s.
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single Arrhenius term (2.21), using a perturbed temperature T = �T + �T 0 with � small, we

obtain:

k = A exp(��)
 
1� ��

T 0

�T
+
�2�2

2

�
T 0

�T

�2
!
+O(��2); (3.30)

where � = Ea=(R �T ). From this expansion, it is clear that the magnitude of �� determines

the linearity of the system. Since the activation energy in most 
ames is large (in fact, many

models assume an in�nitely large activation energy), the 
uctuating quantities should be

chosen small, e.g. O(��1). In numerical simulations, the amplitude of the perturbations

cannot be taken arbitrarily small because of the accuracy of the numerical method and

the maximum number of digits of the computer representation. Thus, an amplitude for

the upstream velocity 
uctuations is chosen in such a way that (1) the response is linear

and a sweep is applicable (see section B.4 for an explanation of this type of signal), and

(2) the loss of accuracy caused by the number representation of the computer is minimal.

Figure 3.8 shows the response of the downstream velocity 
uctuations as function of the

amplitude of the upstream velocities for several frequencies. The 
ame is modelled with

the low-Mach number approximation and � = 0:8 and �uu = 15 cm/s. It shows that the

amplitudes can be chosen quite large, up to 10�2. Figure 3.8 shows that an amplitude

of 0:1 gives a deviating response for a frequency of 100 Hz. A scaled amplitude of 10�5
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is a good choice. Because the �gure does not indicate that the response is in
uenced by

the loss of accuracy for even lower amplitudes, we can conclude that such loss of accuracy

does not play a role at that choice. The numerically obtained responses, with this value

for amplitude of the upstream velocity 
uctuations, can be used in the transfer matrix

method, safely.

3.5.3 Low-Mach number approximation

Another important assumption made in the modelling is the low-Mach number assumption

on which the numerical method is based. One should validate this assumption before using

the model in the investigation.

For the purpose of validation we implemented the set of compressible 
ow equations. For

reasons of simplicity, di�usion coe�cients, viscosity and reaction rates in the model remain

pressure independent. In section B.2.2 of the appendix the boundary conditions are derived,

resulting in N � 1 wave equations for the species transport, one entropy-wave equation

and two wave equations describing sound waves travelling with velocity u + c and u � c,

respectively.

First, the constant stationary pressure assumption in the low-Mach number approximation

is validated. Figure 3.9 shows the relative pressure drop �p=�p0 over a burner-stabilised


ame, with � = 0:8; �Tu = 300 K and �p0 = 1 atm=101325 Pa, as function of the stationary

upstream velocity. Integration of the momentum equation gives a relation for the pressure

drop:

�p

�p0
= �

�M

Runiv

�
�Tb � �Tu
�T 2
u

�
�u2u: (3.31)

The 
ame temperature �Tb ranges between 1500 K and 2000 K, so the pressure drop is

approximately a parabolic function of the upstream velocity. The result shows that the

pressure di�erences are negligible (�p � �p0), indicating that the constant pressure as-

sumption is a valid one.

According to the low-Mach number approximation, the transfer matrix for the 
ame

reduces to an undisturbed pressure transfer and a transfer function V that is O(1) (see

equation (2.39)). In case of a �nite Mach number, using the fully compressible version of

the model, the four elements are solved by two independent simulations of the same 
ame

to obtain two responses of p0 and u0, on the upstream and downstream sides of the 
ame.

So we have four equations and four unknown elements Tij, which can be solved. These

independent simulations are performed by prescribing the incoming sound waves at the far

upstream side of the 
ame in the �rst simulation and the incoming sound wave at the far

downstream side in the second simulation. The boundary conditions on the opposite sides

are non-re
ecting. Independence could also be achieved by prescribing sound waves on one

side in both simulations, but posing an open-end condition in the �rst simulation and the

closed-end condition in the second simulation on the other side. These methods should give

equal results. In �gures 3.10 to 3.13 the elements of the inverse of the transfer function are
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Figure 3.9: The relative stationary pressure drop �p=�p0 over a one-dimensional

methane/air 
ame as function of the stationary upstream velocity. A parabolic curve

is �tted through the data points (cross symbols).

shown for a typical methane/air 
ame used in this thesis (� = 0:8, upstream temperature
�Tu = 300 K and one-step chemistry) for di�erent upstream velocities. The o�-diagonal

elements (A�1)12 and (A�1)21 are scaled with the characteristic impedance of the (virtual)

tube on the downstream side of the 
ame: Zb = ��b�cb. Element (A�1)11 is almost unity

and (A�1)22 is a O(1) function, which is a factor 100 larger than the o�-diagonal elements.

The wiggles in graphs can be interpreted as the nonlinear e�ects of the 
ame. However,

the magnitude of the wiggles is negligible. It can be shown that the o�-diagonal elements

are O(Mab) and can be omitted from the transfer matrix in the low-Mach number approx-

imation [24].

In �gure 3.14 the transfer function V is shown comparing the low-Mach number approx-

imation with the simulations with variable pressure for a typical methane/air 
ame with

� = 0:8 and �Tu = 300 K. The transfer functions obtained from both models compare very

well in the entire frequency domain (maximum 2 percent error), and we conclude that

the low-Mach number approximation or Combustion Approximation is also suitable for

simulating the acoustic response in lean burner-stabilised methane/air 
ames.
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Figure 3.10: The amplitude (a) and phase (b) of element (A�1)11 in the transfer matrix of

a one-dimensional 
ame with variable pressure. Solid lines: �uu = 10 cm/s, dashed lines:

�uu = 15 cm/s, and dotted lines �uu = 20 cm/s.
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Figure 3.11: The amplitude (a) and phase (b) of element (A�1)12 in the transfer matrix of

a one-dimensional 
ame with variable pressure. Solid lines: �uu = 10 cm/s, dashed lines:

�uu = 15 cm/s, and dotted lines �uu = 20 cm/s.
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Figure 3.12: The amplitude (a) and phase (b) of element (A�1)21 in the transfer matrix of

a one-dimensional 
ame with variable pressure. Solid lines: �uu = 10 cm/s, dashed lines:

�uu = 15 cm/s, and dotted lines �uu = 20 cm/s.
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Figure 3.13: The amplitude (a) and phase (b) of element (A�1)22 in the transfer matrix of

a one-dimensional 
ame with variable pressure. Solid lines: �uu = 10 cm/s, dashed lines:

�uu = 15 cm/s, and dotted lines �uu = 20 cm/s.
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Figure 3.14: The amplitude (a) and phase (b) of element (A�1)22 for a one-dimensional


ame with variable pressure (solid line) and the low-Mach number approximation (dashed

line), for three inlet velocities.
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Chapter 4

Acoustics in one-dimensional 
ames

In this chapter, an acoustically perturbed one-dimensional 
ame is studied analytically

and numerically. These perturbations can be imposed externally, but in some cases, the


ame oscillates spontaneously. The acoustic behaviour of these 
ames is described by a set

of frequency dependent relations. This set forms the analytical model, which is presented

in section 4.2. In section 4.3 experimental results are presented. The results obtained with

the analytical and numerical models, and comparison with experiments can be found in

section 4.4.

4.1 Introduction

Up to 20 years ago, only phenomenological models were available for predicting the acous-

tic behaviour of 
ames. In these models, the heat release of the 
ame is coupled to the

acoustic �eld (see for example the model of Dowling in section C.1). Depending on the

time lag between those quantities, a 
ame causes resonance in a duct system. In the inves-

tigation of the stability of such systems, this time lag is the parameter that characterises

the burner. Several of these models are applicable for adiabatic or almost adiabatic 
ame

conditions, in which the response is quite di�erent from that in burner-stabilised 
ames.

An analytical model has been developed by McIntosh & Clark for burner-stabilised 
ames.

This work actually provides a transfer function V for the 
uctuating velocity (see sec-

tion C.2). However, the derivation is laborious and the physical picture of the acoustic

behaviour cannot be easily understood. For this reason we developed a simple model that

makes it possible to understand the physical background of the numerically observed phe-

nomena more easily.

In the next sections, we try to sketch that picture. Important to know in advance is that,

in a burner-stabilised 
ame, there exists a coupling between the heat loss of the 
ame to

the burner and the 
ame velocity. When the 
ame moves, the heat loss will change, which

in
uences the temperature of the 
ame, and consequently, the 
ame velocity. If this heat

loss gives positive feedback to the 
ame velocity, this might lead to resonance in the 
ame

response. This phenomenon has already been observed in numerical simulations (see �gure

45
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3.13) where, for a certain frequency, a resonance peak is present in the amplitude of the

responses. For that frequency, the amplitude of the emitted wave is much larger than a

steady-temperature increase would normally cause.

In the following simple model, the 
ame acts as a rigid structure moving with the 
ame ve-

locity and is described by the so-called G-equation. The coupling between the 
uctuating


ame position and the mass 
ow is described in the next section.

4.2 Analytical model

To derive the model, the set of low-Mach number equations is used. These equations are

simpli�ed by assuming unit Lewis numbers and it is further assumed that all species have

constant and equal speci�c heats (cp = �cp):

@�Y

@t
+
@�uY

@x
� @

@x

�
�

�cp

@Y

@x

�
= _�; (4.1)

@�T

@t
+
@�uT

@x
� @

@x

�
�

�cp

@T

@x

�
= ��H

�cp
_�; (4.2)

where Y is the mass fraction of methane, _� is the consumption rate of methane, and �H

is the combustion enthalpy (see section A.6). The source term in equation (4.2) can be

eliminated by introducing the enthalpy J :

J = �H Y + �cpT: (4.3)

Then, equation (4.2) can be replaced by the enthalpy equation:

@�J

@t
+
@�uJ

@x
� @

@x

�
�

�cp

@J

@x

�
= 0: (4.4)

Furthermore, it is assumed that the activation energy is large enough to reduce the area

in which the chemical reactions take place, to one point xf on the x-axis. So, the term _�

is a delta function. Note that this location is time dependent and that dxf=dt de�nes the

local 
ame velocity uf.

4.2.1 Extended de�nition of the mass burning rate

To model the movement of the 
ame, the recently introduced 
amelet concept [10] for

laminar 
ames is adopted. This 
amelet model splits the set of one-dimensional species

equations into a G-equation, describing the motion of the 
ame, and a 
amelet system,

describing the inner-
amelet structure and the mass burning rate. These two parts are

coupled by the local 
ame stretch rate K, which is de�ned as the fractional rate of change

of the mass M(t) contained in an arbitrary volume V (t) in the 
ame, moving with the


ame:

dM

dt
=

Z
V (t)

�K dV with M(t) =

Z
V (t)

� dV; (4.5)
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which in the limit of in�nitely small volume V (t) yields [9]:

K =
1

M

dM

dt
: (4.6)

The stretch rate, as de�ned in equation (4.6), is an extension of the usual stretch rate

de�nition [59] and holds for general 
ames with �nite thickness. Flame curvature and


ow straining e�ects are obviously not present in one-dimensional burner-stabilised 
ames

and the sole contribution to the 
ame stretch rate is related to unsteady 
ame thickness

variations [10], hence:

�K = �@m
@x

; (4.7)

where m = �sL is the local mass burning rate in the 
ame. This relation shows that the

di�erence between the mass burning rate at the 
ame front and the burner plate is related

to the stretch rate. Equation (4.7) can be integrated from the burner plate at x = 0 to

obtain the mass burning rate in the entire domain:

m(x; t) = mu(t)�
Z x

0

�Kd�: (4.8)

The motion of Y=constant is described by the G-equation:

�
@Y

@t
+ �u

@Y

@x
= m

@Y

@x
; (4.9)

and the 
amelet equation for the inner-
ame structure is given by [10]:

@

@x
(m Y )� @

@x

�
�

�cp

@Y

@x

�
� _� = ��KY: (4.10)

Note that the full unsteady equation for Y is found when equations (4.7), (4.9) and (4.10)

are combined. The model derived in this chapter assumes zero-
ame stretch rate K = 0,

which means that the mass burning rate depends on the time only, or m(x; t) = mu(t) (see

equation (4.8)). Thus, the 
ame structure behaves as a rigid oscillating structure, without

internal dynamics. The assumption of zero stretch is introduced to solve the G-equation

for Y analytically. Due to heat loss to the burner, this procedure cannot be followed for

the temperature or enthalpy.

From numerical simulations this assumption of zero stretch is veri�ed by determination of

the variations in the mass burning rate m = �sL on various locations between burner and


ame. The mass burning velocity sL is obtained from uf = u � sL as a function of time.

The technique used to determine uf can be compared with Particle Image Velocimetry, as

used in the experimental determination of velocities in a 
ow. Solutions on three time steps

determine the motion in space, from which the velocity uf is calculated, using a quadratic

polynomial �t. This method works well in the regions where the pro�les have relatively



48 CHAPTER 4. ACOUSTICS IN ONE-DIMENSIONAL FLAMES

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

Frequency [Hz]

|m
’/m

’ u|  
 [−

]

(a)

0 50 100 150 200 250 300 350 400
−10

0

10

20

30

40

50

60

70

Frequency  [Hz]

P
ha

se
 m

’/m
’ u   

[d
eg

]
(b)

Figure 4.1: Amplitude (a) and phase (b) of mass burning rate 
uctuations as function of

the frequency at di�erent locations, normalised by the mass burning rate 
uctuations at

the burner outlet. Solid line: x = 0 mm, dashed line: x = 0:05 mm, dash-dotted line:

x = 0:2 mm, and dotted line x = 0:5 mm

large gradients.

In �gure 4.1 (a), the numerically obtained ampli�cation of mass burning rate 
uctuations

is given as function of the frequency at di�erent locations. The result shows that, close to

the 
ame front (stand-o� distance is about 0.55 mm for this 
ame), the mass burning rate

response deviates considerably from unity for high frequencies. For these high frequencies,

mass burning rate 
uctuations propagating towards the burner plate are damped out more

easily, which results in an increased amplitude ratio for jm0(x; t)=m0(0; t)j. For frequencies
around 100 Hz (close to the 
ame resonance frequency) the maximum ampli�cation of the

mass burning rate is about 1.25 in the area between burner and 
ame.

Figure 4.1 (b) shows that near the 
ame front the mass burning rate 
uctuations are at a

maximum 60 degrees ahead. From this result, we conclude that the mass fraction pro�le

shows signi�cant internal deformation for all frequencies, so that the 'rigid-
ame' model is

not accurate. The in
uence of the stretch rate K could then be taken into account using

weak stretch analysis.

4.2.2 Response of the mass burning rate

In this study, we neglect these in
uences and assume that K = 0. By using the assump-

tion that the mass burning rate is a function of time only, we are able to couple the 
ame

velocity to the 
uctuating mass 
ow at the burner plate. This coupling �nally yields three

relations that describe the acoustic response of the 
uctuating mass burning rate, 
ame
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position, and 
ame temperature, respectively.

First, the spatial dependency of the density is eliminated from the equations by transfor-

mation of (x; t) to the density-weighted coordinates or Von Mises coordinates ( ; �):

 (x; t) =
1

��u

Z x

0

�(�; t) d� and �(x; t) = t; (4.11)

where the bar denotes the steady part of a quantity. The G-equation (4.9), for K = 0, is

written in these coordinates as:

��u
@Y

@�
+ �u(�)

@Y

@ 
= mu(�)

@Y

@ 
; (4.12)

where �u(�) = ��uu(0; �) is the mass 
ow rate at the burner outlet  = 0. Since the 
ame

moves as a rigid structure with speed uf, the density weighted position  f of the 
ame is

related to the mass burning rate as:

��u
d f

d�
= �u �mu: (4.13)

It is assumed that the thermal conductivity obeys �� = ��u��u. This is a plausible assump-

tion, since � / T 0:7 [15]. This assumption simpli�es the di�usion terms in the 
amelet

equation for the inner-
ame structure, as well as the enthalpy equation:

mu

@Y

@ 
�

��u

�cp

@2Y

@ 2
=

��u

�
_�; (4.14)

and

��u
@J

@�
+ �u

@J

@ 
�

��u

�cp

@2J

@ 2
= 0 for  > 0: (4.15)

Equations (4.12), (4.13) (4.14), and (4.15) form the basis for the analytical study. From

these relations, we derive the pro�les for J and Y . These quantities have a steady part and

a 
uctuating part, for example, J = �J + J 0. All the relations are linearised with respect

to the undistorted quantities.

In the steady-state situation, �mu = ��u, the 
amelet equation (4.14) has an analytical

solution �Y ( ). At  = � f all fuel is burnt, or �Y ( � f) = 0, yielding the steady-state mass

fraction pro�le:

�Y ( ) = �Yu � �Yu exp

�
 � � f

�

�
for  � � f ; (4.16)

and �Y ( ) = 0 elsewhere, where � = ��u=(��u�cp) is the 
ame thickness.

The steady enthalpy �J( ) = �J(0) = �cp �Tb for  > 0. Hence, a relation for the steady stand-

o� distance can be derived when the steady enthalpy �J( ) is evaluated at the burner outlet,

 = 0:

� f = � ln

�
Tad � �Tu

Tad � �Tb

�
; (4.17)
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where �H �Yu+�cp �Tu = �cpTad is used, Tad being the adiabatic 
ame temperature. For  � 0,

the temperature is �xed, so �J exponentially decreases between  = �1 and  = 0.

The 
uctuating part of the enthalpy J 0( ; �) is the solution of the convection-di�usion

equation (cf. equation (4.15)):

��u
@J 0

@�
+ ��u

@J 0

@ 
�

��u

�cp

@2J 0

@ 2
= 0 for  � 0: (4.18)

The solution of equation (4.12) is given by:

Y ( ; �) = �Y ( �  0f(�)); (4.19)

where �Y ( ) is the steady-state solution. Note that (4.19) is a solution of (4.12), but not

a solution of the (time-dependent) 
amelet equation (4.14).  0f(�) is the harmonically


uctuating part of the stand-o� distance  f :

 0f(�)

�
=
�0u �m0

u

��u!̂
; (4.20)

with !̂ the complex dimensionless frequency de�ned by:

!̂ =
�

�uu
!: (4.21)

The harmonic solution of equation (4.18) is given by:

J 0( ) = J 0(0) exp

�
 

2�
(1�

p
1 + 4!̂)

�
; (4.22)

where J 0(0) is a harmonic function, which is used as a boundary condition for the enthalpy


uctuations. To obtain the exact form of this boundary condition, we use the properties

of the temperature at the burner outlet and at the 
ame position. Substitution of (4.19)

in (4.3), the space- and time-dependent enthalpy gives:

J( ; �) = �cpT ( ; �) + �H �Y ( �  0f): (4.23)

From (4.16), the second term reads:

�H �Y ( �  0f) = �H

�
�Yu � �Yu exp

�
 � � f

�

�
exp

�
� 

0

f

�

��
: (4.24)

Using this expression, the enthalpy J linearises to:

J( ; �) = �cpT ( ; �) + �H

�
�Y ( ) + �Yu exp

�
 � � f

�

�
 0f
�

�
: (4.25)
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At the burner outlet,  = 0, we obtain the boundary condition for J 0 as function of the

oscillating 
ame position  0f(�):

J 0(0; �) = �H �Yu exp

�
�
� f

�

�
 0f
�
: (4.26)

Using equation (4.22), (4.26), and the constant steady enthalpy �J , we derive a harmonic

relation for the 
uctuating 
ame temperature T 0b as function of the harmonic 
ame position

 0f :

T 0b = (Tad � �Tu) exp

�
�
� f

�

�
exp

�
� f

2�
(1�

p
1 + 4!̂)

�
 0f
�
: (4.27)

The last ingredient is a relation between the 
ame temperature 
uctuations and the mass

burning rate. In the steady-state situation, there exists an exponential relation between

the 
ame temperature �Tb and mass 
ow rate �mu [26]:

�m2
u / exp

�
�Ta
�Tb

�
; (4.28)

where the activation temperature Ta is related to the Zeldovich number Ze as:

Ta = Ze
�T 2
b

�Tb � �Tu
: (4.29)

The linearisation of equation (4.28) yields a quasi-stationary relation. To do so, it is

assumed that the 
ame temperature instantaneously reacts on mass burning rate changes:

m0

u =
Ze

2

��u
�Tb � �Tu

T 0b: (4.30)

From equations (4.20), (4.27), and (4.30) the response of the (harmonically) oscillating

mass burning rate in a one-dimensional burner-stabilised 
ame is derived. Elimination of

 0f and T
0

b from these equations yields:

m0

u

�0u
=

MN

MN + !̂
� A(!̂); (4.31)

with

M =
Ze

2

1

�Tb � �Tu
;

N = (Tad � �Tu) exp

�
�
� f

�

�
exp

�
� f

2�
(1�

p
1 + 4!̂)

�
:

(4.32)

In the quasi-steady limit, !̂ = 0, the 
uctuating mass burning rate is equal to the 
uctu-

ating mass 
ow, as expected.
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4.2.3 Transfer function for the velocity 
uctuations

In the previous section, three relations are derived that describe the acoustical behaviour

of a one-dimensional burner-stabilised 
ame, in terms of the response of the mass burning

rate as function of the inlet velocity 
uctuations. Integration of the energy equation yields

the response of the 
uctuating velocity in the burnt gases in a straightforward way, as will

be shown in this subsection.

The 
uctuating energy balance is determined using the energy equation (4.2). Integration

from x = 0 to x =1 gives, using �T = �uTu:

�cp(�bTb � �uTu) = Qrel �Qbur; (4.33)

where the energy sources Qrel and Qbur are recognised as the total heat release and heat

loss to the burner, respectively. The total heat release is de�ned as:

Qrel � ��H
Z

1

0

_� dx; (4.34)

provided that all reactions are concentrated at the 
ame front. The heat loss to the burner

is de�ned as:

Qbur � �(0)
@T

@x

����
x=0+

: (4.35)

Equation (4.33), by using �bTb = ��u �Tu, yields the 
uctuating energy balance:

�cp��u �Tu(u
0

b � u0u) = Q0

rel �Q0

bur: (4.36)

In the following we derive the expressions for Q0

rel and Q
0

bur where we switch back into Von

Mises coordinates.

The source term _� in (4.34) is given by the mass fraction 
amelet equation (4.10). Inte-

gration of this function from  = 0+ to  =1 yields:

�H m(0)Y (0)��H
��u

�cp

@Y

@ 

����
 =0+

= ��H
Z

1

0

��u

�
_� d (= Qrel) : (4.37)

Using the solution Y , linearisation of (4.37) results in the following 
uctuating heat release:

Q0

rel = �cp( �Tb � �Tu)m
0

u: (4.38)

Obtaining the 
uctuating part of the heat loss is not straightforward. The enthalpy in

the vicinity of the burner outlet ( = 0) can be recast in a relation for the temperature

at the burner outlet. Since we know the enthalpy and the mass fraction solutions, the

temperature simply yields the di�erence of the two:

�cpT ( ; �) = J( ; �)��H Y ( ; �); (4.39)
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where J and Y are given in the section 4.2.2. The spatial derivative of equation (4.39) in

 = 0 is:

�cp
@T

@ 

����
 =0+

= J 0(0)
1

2�
(1�

p
1 + 4!̂) + �H �Yu

1

�
exp

�
�
� f +  0f
�

�
(4.40)

with J 0(0) given in the previous section by equation (4.26).

By using the relation for J 0(0), we linearise the second term of the right hand side of

equation (4.40), assuming small  0f . This yields:

@T 0

@ 

����
 =0+

= �1

�
(Tad � �Tu) exp

�
�
� f

�

�
1

2

�
1 +

p
1 + 4!̂

�  0f
�
: (4.41)

Using � = ��u=(��u�cp) and (4.35), the 
uctuating part of the heat loss to the burner is found:

Q0

bur = ��cp ��u(Tad � �Tu) exp

�
�
� f

�

�
1

2

�
1 +

p
1 + 4!̂

�  0f
�
: (4.42)

From equation (4.38) we see that the 
uctuating heat release Q0

rel is a function of the


uctuating mass burning rate m0

u and the 
uctuating heat loss Q0

bur is a function of the


uctuating 
ame position  0f . The relations for the responses of these quantities are already

derived in the previous sections. Substitution of equations (4.20), (4.27), and (4.30) into

the energy balance (4.36), �nally gives a relation of the response of the 
uctuating velocity

at the burnt side and the 
uctuating inlet velocity:

u0b
u0u

= 1 +
�Tb � �Tu

�Tu
A(!̂) + Tad � �Tu

�Tu
exp

�
�
� f

�

�
1

2

�
1 +

p
1 + 4!̂

� 1�A(!̂)
!̂

: (4.43)

4.2.4 Thermoacoustics in ceramic foam burners

So far, we studied the thermoacoustic behaviour of idealised burners, in the sense that

they were assumed to absorb heat from the 
ame, in�nitely fast. The result is that the

burner remains at the ambient temperature �Tu (the gases that 
ow through the burner,

are also �xed at T = �Tu for x < 0). In section 2.4 it was explained that in that case

the thermal conductivity �s of the burner material, as well as the volumetric heat transfer

coe�cient �S between gas and burner material, are in�nite. This situation does not

often occur in reality. For that reason, we extend the analysis to ceramic type burners,

which have a �nite conductivity. This extension yields a temperature change in the burner

area, so that the burner surface becomes hot. It is assumed that the heat loss of these

burners is dominated by thermal radiation of the burner surface. This means that three

burner-material parameters �s, � (porosity) and � (surface emissivity) come into play. The

volumetric heat transfer coe�cient �S and the speci�c heat cs are still assumed to be

in�nite, making an analytical treatment still possible.

With this last assumption, we �nd that the temperature of the gas and burner material
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are equal to a temperature �T (x), satisfying the leading-order equation found by adding the

temperature equations for the gas and solid phases (cf. equations (2.32) and (2.33)):

��u�cp
d �T

dx
� �m

d2 �T

dx2
= 0; (4.44)

where the e�ective parameter �m is constant inside the burner (cf. equation (2.35)). On

the downstream side of the burner, only the gas properties play a role and the temperature

is described by equation (4.2). The discontinuous change of �m, at the interface x = 0,

leads to a discontinuous derivative of T at x = 0. This is related to the fact that the heat

exchange between the gas and burner takes place at x = 0 with an in�nite rate (�S !1).

The heat at the interface is radiated to the surroundings at this interface. In a steady-state

situation, this heat loss is given by [3]:

�Qbur = ��u�cp;g(Tab � �Tb) = ��(T 4
surf � T 4

surr); (4.45)

with Tsurf = �T (0) the surface temperature and Tsurr the temperature of the surrounding.

For a given mass 
ow rate ��u and 
ame temperature �Tb, Tsurf is directly found from

equation (4.45). The burner is assumed in�nitely thick, i.e. the boundary condition is
�T = �Tu at x = �1. Because of the high heat capacity of the burner material, the length of

the region with considerable temperature gradient is very small compared to the thickness

of the burner. Therefore, while solving (4.44) the burner can be assumed in�nitely thick,

i.e. the boundary condition is �T = �Tu at x = �1. The (stationary) temperature inside

the burner is given by:

�T (x) = �Tu + (Tsurf � �Tu) exp(x=�c); (4.46)

with the length scale �c = �m=��u. For  > 0, the temperature increases from Tsurf to �Tb:

�T ( ) = [Tsurf exp( � f;c=�)� �Tb + ( �Tb � Tsurf) exp( =�)][exp( � f;c=�)� 1]�1; (4.47)

or

�T ( ) = ( �Tu � Tad + �Tb) + (Tad � �Tu) exp[( � � f;c)=�]: (4.48)

The increased surface temperature results in an altered stand-o� distance � f;c:

� f;c = � ln

�
Tad � �Tu

Tad � �Tb + Tsurf � �Tu

�
: (4.49)

Note that, in case of Tsurf = �Tu, this expression gives (4.17).

Two questions arise: (1) how does the acoustic velocity change in the burner area due to

the �xed exponential temperature pro�le and (2) are there new ingredients in the acoustic

response of the 
ame, compared with an ideally cooled burner?

The �rst question has a simply answer: as already indicated, the combination of an in�nite

heat transfer coe�cient and the large speci�c heat of the burner leads to a temperature
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pro�le inside the burner (equation (4.46)) which remains unchanged by acoustic distortions.

So, the gas is accelerated due to a decreasing density, and mass conservation gives the

relation between the 
uctuations at the burner outlet x = 0 and the velocity 
uctuations

at x = �1:

u0(0)

u0u
=

��u

��(0)
=
Tsurf
�Tu

: (4.50)

From here, we follow section 4.2.3. Nothing has changed but the stand-o� distance. For

unit-Lewis number, we still get for the familiar response of the mass burning rate at the

burner outlet:

m0(0)

�0(0)
= A(!̂); (4.51)

but now, the stand-o� distance is given by (4.49).

At each position inside the burner, the velocities can be obtained by dividing the corre-

sponding 
ow rates by the local density. In the case of the surface temperature di�erent

from the unburnt gas temperature �Tu, the 
ame velocity and the 
uctuating energy balance

(cf. equation (4.36)) read:

��u
d f

d�
= �(0)�m(0); (4.52)

and

�cp��(0) �T (0)[u
0

b � u0(0)] = Q0

rel �Q0

bur; (4.53)

where the 
uctuating total heat release and heat loss are obtained in the same way as

(4.38) and (4.42), respectively. This results in the following response of the 
uctuating

velocity at the burner outlet:

u0b
u0(0)

= 1 +
�Tb � Tsurf

Tsurf
A(!̂)

+
Tad � �Tu

Tsurf
exp

�
�
� f;c

�

�
1

2

�
1 +

p
1 + 4!̂

� 1�A(!̂)
!̂

: (4.54)

This equation, multiplied by the transfer function for the burner (cf. equation (4.50)),

gives the complete transfer function which connects the 
uctuating velocities at the burnt

and unburnt sides:

u0b
u0u

=
Tsurf
�Tu

+
�Tb � �Tsurf

�Tu
A(!̂)

+
Tad � �Tu

�Tu
exp

�
�
� f;c

�

�
1

2

�
1 +

p
1 + 4!̂

� 1�A(!̂)
!̂

: (4.55)
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4.2.5 Flame instability

Small random 
uctuations are always present, but in general do not lead to instabilities

because the 
uctuations are damped via the coupling of between the 
ame motion and

the heat loss to the burner. Instability occurs when the ampli�cation is higher than the

system is able to damp via enthalpy transport. This happens e.g. in case of large activation

energy (rich 
ames). Small distortions spontaneously grow in time until they are of such

a magnitude that they could extinguish the 
ame. These conditions are far from linear.

However, linear theory can predict whether 
ame modes are unstable or not. This will be

studied in this subsection.

For the steady burner-stabilised 
ame (�0u = 0), the 
ame modes can be determined

from the harmonic relations (4.20), (4.27), and (4.30). The 
uctuating temperature, mass

burning rate and stand-o� distance can be eliminated from these equations, resulting in a

frequency condition or dispersion equation for the frequency !̂ of the 
ame mode, satisfying:

!̂ +MN(!̂) = 0; (4.56)

where M and N are given by (4.32).

The sign of Re(!̂) determines the damping or growth rate of a distortion in the 
ame.

Thus, if it is negative, then the distortion will damp out, otherwise that mode grows and

the system becomes unstable. In order to determine the instabilities, we are interested in

that frequency at which distortions neither damp nor grow. This is called neutral stability.

To obtain those frequencies, we have to solve !̂ from:

a = Re(�MN(!̂)); (4.57)

b = Im(�MN(!̂)): (4.58)

where a = Re(!̂) and b = Im(!̂). The real and imaginary part of �MN(!̂) can be found

by looking at the quadratic polynomial p(c):

p(c) � c2 + c� (a+ ib): (4.59)

A root of this polynomial is given by:

c = �1

2

�
1�

p
1 + 4(a+ ib)

�
: (4.60)

Using this root and (4.32) gives:

MN(!̂) = Z exp

�
�
� f

�
c

�
; (4.61)

with

Z =
Ze

2

�
Tad � �Tb
�Tb � �Tu

�
: (4.62)
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Note that Re(c) > 0. The root c is a complex number, which can be written as c = k + il.

Substitution in equation (4.59) yields:

(k + il)2 + k + il � (a + ib) = 0: (4.63)

Or, by looking at the real and imaginary parts separately:

a = k2 � l2 + k; (4.64)

b = 2kl + l or k =
b

2l
� 1

2
: (4.65)

From the �rst relation, we eliminate k, to obtain a quadratic relation for l2:

4(l2)2 + (l2)(1 + 4a)� b2 = 0: (4.66)

Knowing that l is real, the solution reads:

l2 =
1

2

r
(a+

1

4
)2 + b2 � 1

2
(a+

1

4
): (4.67)

Given the relation (4.65) for k and the implicit relation (4.67) for l, equations (4.57) and

(4.58) can be written as

a = �Z exp

�
�
� f

�
k

�
cos

�
� f

�
l

�
; (4.68)

b = Z exp

�
�
� f

�
k

�
sin

�
� f

�
l

�
: (4.69)

In case of neutral stability, we must have that a = 0, which corresponds to l = ��=(2 � f).

With these values for a and l, we can determine b from equation (4.67):

b =
1

4

vuut(2���
� f

�2

+ 1

)2

� 1; (4.70)

k =
� f

��
b� 1

2
: (4.71)

These values for a, b, k and l hold for the neutral stability point. On the other hand, the

magnitude of the e�ective coe�cient Z at the neutral stability point (i.e. the critical value

Zc), can be found from equations (4.69) and (4.71):

Zc = b exp

�
�
� f

2�

�
exp

�
b
� 2
f

��2

�
; (4.72)

with b given by equation (4.70).
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Figure 4.2: Sketch of the burner head showing one pressure transducer, the laser beams of

the laser-Doppler velocimeter and the burner deck. The burner deck and the upper part

of the tube are (thermostatically) cooled. The total length of the tube below the burner

deck is approximately 45 cm.

4.3 Experimental transfer function

The measurement of the transfer matrix element, coupling the acoustic velocities before

and after the 
ame, involves the time-correlated measurement of the velocity upstream of

the 
ame and downstream of the 
ame. These measurements are performed by Schreel

et al. [51]. A way of determining pressure waves inside a tube is by means of multiple

pressure transducers �tted in the wall of the tube [41]. If the medium in the tube has

constant properties (density and temperature), two microphones su�ce to characterise the

complete wave. From the pressure wave and the properties of the medium and the tube,

the velocity wave can be determined. The upstream region of the 
ame does have the

desired constant density and temperature, but the downstream region does not, because

the hot gas cools down rapidly. Therefore, the two microphone method has been chosen

in the upstream region, but a direct measurement of the velocity in de downstream region

by means of laser-Doppler velocimetry (LDV) is used instead. The LDV method uses two

laser beams and at the intersection the velocity is determined by measuring the frequency

di�erence in the re
ected waves from small particles entrained in the 
ow [29].

The burner

The burner system essentially consists of a 50 cm long tube with a diameter of 5 cm (see

�gure 4.2). The bottom is closed with a 
ange, in which a small hole serves as inlet for
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the premixed methane/air mixture. Some grids are �tted right after the inlet to settle the


ow. In the lower part of the tube a hole is made in the side which is coupled by a 
exible

hose to a loudspeaker. The top is an open end, to allow the exhaust gas to escape. The

burner plate is placed approximately 7 cm below the exit. This was done to avoid problems

with the determination of the velocity 
uctuations. An open end nearly acts as a perfect

re
ector of acoustic waves with, in �rst order, a maximum of the velocity 
uctuations at

the open end. A small portion of the acoustic energy, however, is radiated out, and a small

transfer region exists in which the velocity 
uctuations decrease strongly from the values

associated with the wave inside the tube to the values outside the tube. The length of this

region is approximately equal to the diameter of the tube. For this reason, the combustion

area is placed 7 cm inside the tube. The part of the tube downstream of the burner plate

and the burner plate itself are water cooled at nominally 50 �C. The burner plate itself

is a perforated plate made of brass with a thickness of 2 mm. The perforation pattern is

hexagonal, with a hole diameter of 0.5 mm and a pitch of 0.7 mm. The hole size is small

enough that a 
at methane/air 
ame stabilises on top of it (see chapter 5). To allow for

the use of the two-microphone method, two pressure transducers are mounted in the side

of the tube. Optical access to the downstream region of the 
ame is somewhat di�cult

since the burner plate is placed 7 cm before the open end. Three small holes have been

made in the downstream part of the burner. Two serve as entrance for the two LDV laser

beams, and through the third hole the scattered laser light from seeding particles in the


ow is detected. In this way the velocity is measured in the middle of the tube at a height

of 4 mm above the burner plate.

In principle, one does not measure the transfer matrix element of the 
ame in this way,

but the transfer matrix of the 
ame combined with the burner plate. Test measurements

showed however that the transfer matrix of the burner plate without 
ame is very close to

unity for the frequencies of interest, and the in
uence can be neglected.

Another variable behaving di�erently in the experiments in the one-dimensional approx-

imation of the system is the temperature of the burner plate surface. Since the 
ame is

burner stabilised, some heat loss will occur via the burner plate. This will result in a

parabolic temperature pro�le across the burner plate. But since we are measuring very

close to the 
ame, the assumption will be made that the LDV measurement can be inter-

preted as a measurement of a true one-dimensional 
ame with a burner surface temperature

equal to the temperature right below the measurement point. Also, the gas will be heated

when passing through the burner plate and as a result the 
ow velocity will increase.

4.4 Results and discussion

In this section, numerical results with respect to the response of 
uctuations in the mass

burning rate, total heat release, heat loss to the burner and velocity are compared with

the analytical model. First, the 
ame resonance phenomenon is studied. This resonance is

observed in all responses of the 
ames in this thesis. The transfer functions obtained from

one-step calculations, detailed calculations, and equation (C.12) derived by McIntosh et
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al. [34] are also compared.

The response also predicts the stability of the 
ame. If the activation energy is large

enough, the 
ame may oscillate spontaneously. The circumstances, in which this occurs,

are described below.

Response of a perturbed 
ame

In our model, the phenomenon of resonance is easily recognised when the enthalpy 
uc-

tuations J 0 at the burner are in counter phase with the 
ame velocity u0f = u0 � s0L. This

is explained in �gure 4.3, where a snapshot of a moving 
ame is shown. Assume that the


ame is moving from a maximum distance variation x0f towards the burner, with the cor-

responding 
ame velocity u0f = dx0f=dt, then the mass fraction pro�le at the burner outlet

is also moving, resulting in a decreasing value of Y 0. This induces enthalpy 
uctuations at

the burner (x = 0), which act as a boundary condition for the 
uctuations in the enthalpy

J 0 for x > 0. Depending on the di�usion coe�cient and the stand-o� distance, the phase

di�erence of J 0 at the burner outlet x = 0 and the 
ame front x = xf can be �=2. This

means that J 0 increases at x = x0f , as shown in �gure 4.3. The 
ame temperature T 0b and

the burning velocity s0L, or mass burning rate m
0, have the same phase as the enthalpy, so

s0L (or m0) increases. In case of a resonance, the 
ame velocity is dominated by the mass

burning velocity u0f = u0 � s0L � �s0L. Hence, u0f and s0L have opposite signs. This causes

even higher 
ame velocity 
uctuations, which means that we have a system that ampli�es

oscillations. Only one mode is found, for the reason that short-length waves are damped

out.

In other words: resonant behaviour is observed when there is a �=2 phase lag between the


ame temperature and the heat loss to the burner. In this case, the variation in the burn-

ing velocity `assists' the acoustic velocity perturbation giving a large acoustic perturbation

in the burnt gas region. In the following this phenomenon is theoretically and numerically

demonstrated by considering a methane/air 
ame, which has an equivalence ratio � = 0:8

and an upstream velocity �uu = 15 cm/s. This mixture has a density of ��u = 1:131 kg/m3

and heat conductivity ��u = 2:75 � 10�2 J/(K m s). The temperature of the burner is

�xed at �Tu = 300 K, the steady 
ame temperature is �Tb = 1836 K, and the adiabatic


ame temperature is Tad = 2013 K. The e�ective Zeldovich number Ze in equation (4.29)

is obtained by numerical evaluation of stationary burner-stabilised 
ames for di�erent gas

velocities. Half the slope in the graph of ln(�uu) as function of 1= �Tb can be considered as

the e�ective activation temperature Ta. Ze = 13:2 is then found for a 
ame with upstream

velocity �uu = 15 cm/s. From equation (4.17), we �nd � f=� = 2:3. However, the comparison

between the analytical and numerical results improves when the higher value 2.8 is used.

This means that equation (4.17) underestimates the stand-o� distance. A reason for this

is that in the model the 
ame front is assumed to be in�nitely thin, while numerically it

has a �nite thickness: the equilibrium is reached far downstream.

The absolute values and the phase shifts of the responses of s0L, Q
0

rel and Q
0

bur to the up-

stream velocity 
uctuations are shown in �gures 4.4 to 4.6. In these �gures, analytical

results are compared with numerical results.
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Figure 4.3: Snapshot of the phase of x0f ; Y
0; J 0; T 0; s0L and u0f in case of resonance.

Figure 4.4 shows that the curves for js0L=u0uj match for low frequencies reasonably well,

but the phase shows a discrepancy for higher frequencies. For low frequencies we observe

the quasi-stationary behaviour: the mass burning velocity 
uctuations are equal to the

gas velocity 
uctuations. For higher frequencies, the 
ame cannot react on the distortions

anymore (js0L=u0uj ! 0) and in the vicinity of a frequency of 100 Hz, the curve shows a peak

value. Mass 
ow 
uctuations with this frequency induce strongly ampli�ed mass burning

rate 
uctuations, as explained earlier.

Figure 4.5 shows the response of the total heat release on the upstream velocity 
uc-

tuations. Again, around 100 Hz the response shows a resonance peak, the amplitude is

underestimated by the analytical model; the phase is predicted well. According to equa-

tion (4.38), the response of the total heat release should be proportional to the response

of the mass burning rate. However, the numerically obtained phase shift in �gure 4.5 (b)

shows a decrease for higher frequencies, whereas in �gure 4.4 (b) an increase is seen in the

numerical results.

Figure 4.6 shows the response of the heat loss to the burner Q0

bur=u
0

u. In the quasi-

stationary limit ! ! 0 we see that the numerical phase shift approaches �� which is in

accordance with the model. This value is found independent of �uu in the analytical model.

In the numerical simulations this is not always the case, when much lower upstream ve-

locities are considered. This di�erent behaviour is the result of approximations in the

analytical model. It is assumed that the heat loss increases when the 
ame moves towards

the burner. This is intuitively clear because the stand-o� distance decreases, if the temper-
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Figure 4.4: Amplitude (a) and phase (b) of response of the burning velocity on the velocity


uctuations. Solid line: numerical model with one-step chemistry. Solid line with symbols:

numerical model with skeletal chemistry. Dashed line: analytical model.
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Figure 4.5: Amplitude (a) and phase (b) of response of total heat release on the velocity


uctuations. Solid line: numerical model with one-step chemistry. Solid line with symbols:

numerical model with skeletal chemistry. Dashed line: analytical model.
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Figure 4.6: Amplitude (a) and phase (b) of response of the heat loss on the burner on the

velocity 
uctuations. Solid line: numerical model with one-step chemistry. Solid line with

symbols: numerical model with skeletal chemistry. Dashed line: analytical model.

ature gradient increases. However, the quasi-stationary numerical response (! ! 0) of the

heat loss �Qbur does not only depend on the gas velocity, but also on the 
ame temperature.

The relation between these quantities is given by:

�Qbur = ��u�cp(Tad � �Tb): (4.73)

equation (4.35). We see that for low velocities and for almost adiabatic 
ames, the heat

loss is small. This means that �Qbur has a maximum at a certain gas velocity �uu. Thus,

for a stationary 
ame �Qbur(�uu) has a negative as well as a positive slope. Consequently,

the phase of the quasi-stationary response of Q0

bur on u
0

u is either zero or �� near ! = 0.

In the case of a 
ame at �uu = 15 cm/s the numerical calculations show a positive slope,

which is the case for the analytical model as well (see equation (4.42)). If lower upstream

velocities are used in the numerical model (e.g. 10 cm/s ), we observe a zero phase in the

quasi-stationary limit.

Figure 4.7 shows the response of the downstream velocity 
uctuations to the upstream

velocity 
uctuations for di�erent models. In this �gure, the response equation (C.12) of

McIntosh is also included. The results show that the phase shift tends to zero for high

frequencies.

Both the one-step model and skeletal model in the numerical simulations predict the

resonant behaviour in the acoustic response. The discrepancies between the models are

mainly due to the fact that the parameters in the one-step model are �tted for a wide

range of 
ames. Thus, for an accurate prediction of the response, even a simple model is

useful. Another result is shown in �gure 4.8, where the resonance peak frequency is plot-

ted as function of the upstream velocity �uu. It shows that burner-stabilised 
ames have
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Figure 4.7: Amplitude (a) and phase (b) of the transfer function for the velocity 
uc-

tuations. Solid line: numerical model with one-step chemistry. Solid line with symbols:

numerical model with skeletal chemistry. Dashed line: analytical model. Dashed dotted

line: McIntosh
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Figure 4.8: Resonance frequencies as function of the upstream gas velocity for the di�erent

models Solid line: numerical model with one-step chemistry. Solid line with symbols:

numerical model with skeletal chemistry. Dashed line: analytical model. Dashed dotted

line: McIntosh



4.4. RESULTS AND DISCUSSION 65

a maximum resonance frequency. This frequency slightly di�ers between the investigated

models, but show a similar behaviour.

Quasi-stationary limit !̂ ! 0

Finally, the quasi-stationary limit !̂ ! 0 of the analytical model presented in section 4.2,

and the response derived by McIntosh et al. are compared. Di�erent limits are obtained

and the reasons for this di�erence are discussed.

In the analytical model (4.43) we �nd that:

u0b
u0u
!

�Tb
�Tu

+
2

Ze

�Tb � �Tu
�Tu

; !̂ ! 0; (4.74)

in which two terms can be distinguished: the ratio of gas temperatures �Tb= �Tu and an

additional term dependent on the Zeldovich number. From a quasi-steady analysis, we

also �nd this expression. By taking the limit in equation (C.12) of McIntosh, we �nd

another limit:

u0b
u0u
!

�Tb
�Tu
; !̂ ! 0: (4.75)

Clearly, this limit shows that relation (C.12) discards terms of higher order in Ze�1. The

jump conditions for the 
ame for small scale perturbations were justi�ed up to order

O(Ze�1) and McIntosh anticipated here that these jump conditions are valid for high-order

terms. This, however, was not proven [32].

The transfer function (4.43) predicts the correct quasi-steady limit, without using Large

Activation Energy Asymptotics.

Ceramic foam burner

In �gure 4.9, the responses of a 
ame stabilised on ceramic foam are shown. The surface

temperature is �xed at di�erent values (Tsurf = 293 K, 500 K, 750 K, and 1000 K). As the

surface temperature increases, the 
ame stabilises closer to the burner, which results in a

higher resonance frequency. The magnitude of the ampli�cation decreases, and completely

vanishes for high surface temperatures. It is clear that the analytical model predicts the

resonance frequencies well for low surface temperatures, and underestimates the magnitude.

However, the analytical model overestimates the response of the Tsurf = 1000 K case. For

these high temperatures, the 
ame stabilises so close to the burner that fuel is burnt inside

the burner, and the model does not cover these circumstances. The transfer function

(4.55) predicts the resonant 
ame frequencies well, for higher surface temperatures the

model breaks down.
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Figure 4.9: Amplitude (a) and phase (b) of the response of 
uctuating velocities of a 
ame

stabilised on a burner with di�erent (�xed) surface temperatures. Solid line: Tsurf = 293 K,

dashed line: Tsurf = 500 K, dashed dotted line: Tsurf = 750 K and dotted line: Tsurf =

1000 K. The lines without symbols are obtained from the analytical model and the others

are numerical calculations with skeletal chemistry.
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Figure 4.10: The e�ect on the Kaskan plot when the activation energy is increased.

Flame instability

Similar to the externally perturbed 
ames, the 
ame spontaneously oscillates if the phase

di�erence of the enthalpy 
uctuations at the 
ame front is such that the 
ame helps to

increase the 
ame motion. This only occurs when the ampli�cation of the mass burning

rate by the 
ame temperature 
uctuations is large enough to cancel out the damping of

the 
uctuating enthalpy. The frequency and growth rate at which the 
ame oscillates

depend on the feedback coe�cient Z. The neutral stability of burner-stabilised 
ames

is determined by the critical value Zc of Z in equation (4.62). The way to obtain the

critical value is to increase the activation energy while keeping the 
ame temperature �Tb
constant. This procedure can be interpreted as changing the mixture properties. So, an

activation energy Ea = 137:173 kJ/mole in the one-step chemistry mechanism corresponds

to a methane/air mixture with � = 0:8, whereas a larger activation energy corresponds to

a mixture of a higher hydrocarbon fuel. A larger activation energy can also be obtained

by considering rich methane/air 
ames (� > 1).

In �gure 4.10, the sensitivity of the 
ame temperature �Tb due to variations in �uu is presented

in a Kaskan-plot, being a graph of ln(�uu) as function of 1= �Tb(cf. equation (4.28)). When

the activation energy is increased, the sensitivity increases and the negative slope becomes

steeper, which leads to an increase of Z in equation (4.62).

Figures 4.11 and 4.12 show the results for the growth rate and the resonance frequency as

function of the activation energy. These numerical growth rates are obtained by perturbing

the steady solution at time zero, and following the time evolution of, in this case, the


uctuating outlet velocity. The growth rate is easily determined by looking at the slope
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Figure 4.11: Growth rates for four velocities as function of the activation energy: the

line with the circles: �uu = 5, symbol �: �uu = 10; diamonds: �uu = 15, and squares:

�uu = 20 cm/s. Solid lines: analytical model, dashed lines: numerical results. The thin

dotted line denotes the zero-stability line (growth rate is zero).

of the logarithm of the amplitude as function of time. The �gures show that, if the inlet

velocity decreases, the growth rate increases and the resonance frequencies decrease, for

�xed Ea.

Theoretically, this can be understood by looking at the relation between a and b, derived

from equations (4.68) and (4.69). Figure 4.13 shows this relation for four inlet velocities

(the frequencies are still dependent on the 
ame temperature). It is clear that the resonance

frequencies increase when the inlet velocity �uu decreases. From this �gure we also see that

frequencies lower than the neutral frequency a = 0, the growth rate is negative, hence

these modes are damped out, whereas the higher frequency modes are unstable. For each

inlet velocity a unique resonance frequency can be found, which corresponds to a unique

critical value Z = Zc.

Figure 4.14 shows the imaginary part of MN(!̂) (cf. equation (4.32)) as function of the

frequency b for several values Z. For this particular 
ame (�uu = 15 cm/s, � = 0:8),

Z = 2:6. For this and any other 
ame, it is possible to �nd the critical value Zc, where

the 
ame is neutrally stable. Above this value, the 
ames are unstable.

By interpolation, the numerical activation energies and their corresponding Z on the

neutral-stability line are determined (see the dotted line in �gure 4.11). Figure 4.15 shows

the results for the values Zc obtained from the numerical simulations and the theoretical

model. On a logarithmic scale, these values show roughly a linear dependence on the inlet

velocity. However, the analytical model predicts substantially larger critical values than

in the numerical simulations. This means that the 
ames are more unstable than the
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Figure 4.12: Resonance frequencies for four velocities as function of the activation energy:

lines with the circles: �uu = 5, symbol x: �uu = 10; diamonds: �uu = 15 and squares:

�uu = 20 cm/s. Solid lines: analytical model, dashed lines: numerical results.
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Figure 4.13: Relation between the growth rate a and resonance frequency b for four inlet

velocities. Dashed line 20 cm/s, solid line 15 cm/s, dash-dotted line 10 cm/s, and dotted

line 5 cm/s. Line a = 0 corresponds to the neutral stability.
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Figure 4.14: The imaginary part of the frequency condition for several values of Z and

�uu = 15 cm/s. The intersection with the dashed line represents the resonance frequencies.

At the critical value Zc the 
ame is neutrally stable.

theoretical model predicts.

It must be noted that the methane 
ames (� = 0:8 and Ea = 137:173 kJ/mole) used in

this thesis are all stable (a < 0). It is known that rich methane/air 
ames are unstable

for su�ciently low inlet velocities [19], since they have larger e�ective values for Ea. The

model derived in section 4.2.5 qualitatively predicts the trends in the resonance frequencies,

but fails for the determination of growth rates. This result is also found in [19], where it is

shown that a higher-order analysis (in Ze�1) is needed to predict the main features of the

growth rate.

Experiments

Below, results from the numerical simulations are compared to the experimental results,

using the setup described in section 4.3. In �gure 4.16 the frequency dependence of V is

plotted for � = 0:8 and �uu = 14 cm/s. One can clearly see the resonance at about 150 Hz

in the experiments. For low frequencies the absolute value of the transfer function tends

to a value around 7, which corresponds to the stationary limit, where �ub = ( �Tb= �Tu)�uu.

For higher frequencies the ampli�cation drops to values around 1. The correspondence

to the numerical simulation is good. Both the phase and the magnitude of the transfer

function are quantitatively close to the measured values. For four di�erent values of the

inlet velocity (�uu = 10 cm/s, �uu = 14 cm/s, �uu = 18 cm/s, and �uu = 22 cm/s), experi-

ments have been carried out at � = 0:8 and with a cooling water temperature of 50 �C
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Figure 4.15: Values Z for a methane/air 
ame, and the critical values Zc as function of

the inlet velocity. Dashed lines are results using the model, and the dash-dotted lines are

numerically obtained results.
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Figure 4.16: The frequency dependence of the absolute value and phase of the transfer

function V for �uu = 14 cm/s and � = 0:8. Thick lines are numerical results and thin lines

with symbols are experimental results. Clearly a resonance can be identi�ed which is well

predicted by the numerical simulation.
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Figure 4.17: The dependence of the transmission coe�cient on the frequency for several

upstream 
ow velocities �uu with �xed � = 0:8. The left two graphs represent the experi-

mental data, and the right two graphs represent the numerical simulations.

(so that Tsurf = 50�C). The net e�ect of the variation in mass 
ow is that both the 
ame

temperature and the stand-o� distance are in
uenced. For low decreasing mass 
ows, the

stand-o� distance will increase, but the 
ame temperature will decrease. The experimental

results show indeed lower resonance frequencies and increasing ampli�cation. For a 
ow

near the adiabatic burning velocity (�uu;ad = 23:9 cm/s), the stand-o� distance increases

again, which results in a sudden decrease in resonance frequency. For 22 cm/s, this res-

onance frequency is undetectably low. These results are more or less con�rmed by the

simulations. The strong ampli�cation at 10 cm/s is not predicted, nor the strong decrease

in resonance frequency at 22 cm/s. The overall picture is, however, the same. For the

experiment near the adiabatic burning velocity one has to take into account that small

errors (either experimentally or numerically) can have a strong impact on the result. In

numerical simulations the behaviour as observed experimentally at 22 cm/s, has also been

obtained for di�erent settings.
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The results show a clear resonance type of behaviour for a 
at 
ame, with ampli�cation fac-

tors as high as 25. These resonances occur in the region 80{200 Hz, depending on the 
ow

properties. For shorter stand-o� distances (controlled by the burner surface temperature)

higher resonance frequencies are observed. The correspondence to numerical simulations is

good, both qualitatively and quantitatively. This indicates that the numerical model can

be used to calculate the acoustical properties of the burner in a full scale acoustical model

for heating devices.
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Chapter 5

Acoustics in two-dimensional 
ames

Real 
ames are three-dimensional structures. In the special case that the 
ame does not

change in certain directions, the 
ame becomes a less complicated structure. The one-

dimensional 
ames in chapter 4 are believed to be a special case of the two-dimensional


ame stabilised on a slit burner. If the diameter of the slits is small enough, the e�ects

parallel to the burner plate can be neglected. In this chapter, the stationary and acous-

tic behaviour of 
ames for such small perforation diameters are investigated numerically.

This investigation might also give clues for an extended acoustic transfer model of two-

dimensional 
ames stabilised on a burner.

5.1 Introduction

In the literature, experimental and numerical studies are performed on the acoustic inter-

action of Bunsen type 
ames on relatively large single-slit burner con�gurations [12, 20].

In these studies, an extended analytical model of Flei�l et al. [17] is adopted to describe

the shape of the 
ame as function of time. The model uses a G-equation description of

the 
ame front. It is assumed that the burning velocity is constant and that the total

heat release is proportional to the 
ame front area. The model predicts the wrinkles in the


ame shape caused by the 
uctuating velocity �eld, which are also seen in experimental

work [12]. This model can be applied only to strongly perturbed Bunsen 
ames, and does

not describe the phenomena observed in a burner-stabilised 
ame.

The type of 
ame that is closer to the one-dimensional case of chapter 4 is the 
at 
ame,

which stabilises on a perforated burner plate with small perforations. This 
ame shows

small changes in directions other than the global 
ow direction [57]. The con�guration,

as de�ned in section 2.4, models a perforated plate for which the dimensions of the per-

forations are chosen small so that a 
at 
ame is formed. This micro-slit burner will be

studied numerically in this chapter. In �gure 5.1 the numerical domain is shown. The grid

is equidistant (24 cells in horizontal direction and 336 cells in vertical direction). The do-

main is chosen quite small to limit the total number of cells and have a spatial resolution

comparable to the smallest resolution in the one-dimensional calculations. The limited

75
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Figure 5.1: Computational domain of the micro-slit burner. The domain is limited by

using symmetry, in
ow and out
ow boundaries.

vertical length (1.05 cm) has an in
uence on the steady-state solution: the di�usion terms

are not completely negligible at the out
ow. This small domain, however, does not have a

big impact on the acoustic phenomena (slightly increased resonance peak, due to a higher


ame temperatures). For a good comparison, the one-dimensional simulations in this chap-

ter are conducted on the same domain with an equal equidistant grid. For larger domains,

local grid re�nement should be applied to limit the number of grid points [58].

Section 5.2 gives a numerical analysis of the stationary 
ame on a micro-slit burner and

section 5.3 investigates acoustic phenomena of this 
ame. In both sections the zero limit

of the diameter (d ! 0) is used to make a connection between the one-dimensional (cf.

chapter 4) and two-dimensional 
ames. The results give insight to the two-dimensional

acoustic e�ects of 
ames stabilised on a micro-slit burner.

5.2 Analysis of the stationary micro-slit burner

The steady case of a micro-slit burner problem has been studied numerically by De Goey

et al. [8] using the streamfunction-vorticity formulation for the steady 
ow �eld. From

[8], it has become clear that the diameter versus pitch ratio d=p is very important and

should be chosen larger than 0.5, otherwise blow-o� occurs at relatively large velocities.

This ratio should also be smaller than 0.8, otherwise burner loads become too large. A

diameter versus pitch ratio of 2/3 is a compromise and small diameters d with this �xed

ratio show geometrically 
at 
ames. The limit d ! 0 with �xed d=p corresponds to the

one-dimensional burner-stabilised 
ames [52].

In contrast to the one-dimensional 
ames, the slit burner con�guration includes a complex


ow pattern around a blu� body. An isothermal 
ow passing obstacles is an extensively

studied problem. Many aspects to the problem can be recognised, such as counter-
ow
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Figure 5.2: De�nition of the isotherms, distances Tiso and �

patterns in the wake of the body as found in the backward facing step problem.

Near the burner outlet, pressure singularities and high heat 
uxes are present. Numerically,

it is hard to resolve those details. Thus, the two-dimensional problem should be solved on

very �ne grids in all directions, despite the 
ame being almost one-dimensional. In order

to limit CPU-time, all the results are generated using one-step chemistry.

Another aspect is the formation of the parabolic 
ow pattern in the perforations of the

plate. This particular 
ow pro�le is dependent on the Reynolds numbers Re of the 
ow.

If Re > 2300, the 
ow is turbulent. In such a 
ow, the velocity is almost homogeneous,

except in the boundary layers, where the velocity quickly varies from the no-slip conditions

to the mean 
ow velocity. In the 
ow through the slits, studied in this chapter, Reynolds

numbers are low enough (Re � 10) to assume that the 
ow is laminar.

In the study by Bosch [8], an indicator of the 
ame stand-o� distance is introduced. The

parameter � is de�ned as being the di�erence in height of a certain isotherm with value Tiso
in the centre of the 
ow channel and in the centre of the plate segment. Consequently, � is

equal to zero if the 
ame is one-dimensional. Furthermore, �Tiso(d) is the distance of the

isotherm above the burner plate at the centre of the slit channel for a given diameter d.

If the 
ame becomes more curved, the height found at the centre boundary will di�er more

and more from the one found at the side boundary. Schematically, this idea is presented

in �gure 5.2, where four isotherms are shown for three steady-state computations. The

�Tiso values are calculated for isotherms equal to 900 K, 1200 K, and 1500 K, in a 
ame

with � = 0:8 and �uu = 15 cm/s. Figure 5.3 shows the results of �Tiso(d)� �Tiso(0) for the

same 
ames. Note that the 
ame stabilises closer to the burner when d is increased. For

d = 1 mm, the 
ame distance increases again. � divided by half the pitch gives the typical

curvature of the 
ame. In [8] the (steady) 
ame is said to be 
at if 2�=p is less than 0.1

for the 900 K isotherm. The reference value of T = 900 K has been chosen, because this

is the approximate temperature above which chemical reactions become important. This

criterion gives a global indication of the 
atness of the 
ame. According to the criterion,

the three geometries are 
at (d = 1 mm: 2�=p = 0:070, d = 0:5 mm: 3:38 � 10�2, and

d = 0:25 mm: 3:70� 10�3). The critical diameter dc is the largest diameter for which the

criterion holds. In [8], it is found that this value is 0.35 mm for skeletal chemistry with
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Figure 5.3: Isotherm distance di�erences �Tiso(d) � �Tiso(0) as function of the diameter.

Circles: Tiso = 900 K, crosses Tiso = 1200 K, and squares: Tiso = 1500 K.

�xed d=p = 2=3.

The position of the 
ame front (de�ned as the line with the local maxima of the total

heat release) is dependent on the diameter and varies above the burner plate, when the


ame is not one-dimensional. Figure 5.4 shows the 
ame fronts for three perforation

diameters. The results show that the 
ame has a minimum distance from the burner at

approximately d = 0:5 mm, which can also be seen in �gure 5.3. For decreasing diameters,

the 
ame front becomes 
atter, as expected. For comparison, the stand-o� distance for the

one-dimensional case is 0.55 mm. Even with the smallest diameter used (d = 0:25 mm)

the perforations are large enough to stabilise the 
ame closer to the plate. Results from

[8], with one-step chemistry, show that the pressure drop across the 
ame, caused by the

expansion of the hot gases, distorts the 
ow �eld signi�cantly. The position where the


ow becomes homogeneous again is called the outlet length. The cold-
ow (
ow without

the 
ame) outlet lengths are far greater than a typical stand-o� distance of the 
ame.

For a slit diameter d = 1 mm and uniform inlet velocity �uu = 15 cm/s the cold-
ow

outlet length is approximately Loutlet = 4 mm, whereas the stand-o� distance �xf for a

one-dimensional burner-stabilised 
ame with this inlet velocity is 0:55 mm. However, in


at 
ames the 
ow becomes homogeneous again at distances smaller than the stand-o�

distance. In �gures 5.5 (a) and (b) the velocity �eld is shown for a perforated plate with

d = 0:25 mm. Due to the presence of the 
ame and the small dimensions of the plate

segments, no recirculation zone is present just downstream the plate segments. It also

shows that the velocity pro�le inside the perforations is a Poiseuille 
ow and becomes

homogeneous again at two tenths of a millimetre above the burner plate, well below the


ame front.



5.2. ANALYSIS OF THE STATIONARY MICRO-SLIT BURNER 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.518

0.52

0.522

0.524

0.526

0.528

0.53

0.532

y  [mm]

x f  [
m

m
]

d=0.25 mm

d=1 mm 

d=0.5 mm 

Figure 5.4: Position of 
ame fronts at burner with varying perforation diameters.

The sharp edges of the plate cause a pressure singularity at the corner of the burner

plate as shown in �gure 5.5 (c). On the in
ow side of the burner plate pressure builds up

and the contraction causes a pressure drop, which is 0.4 Pa for d = 0:5 mm and 0.7 Pa

for d = 0:25 mm (�p=�p0 = O(10�6), of the same order as found in section 3.5.3). At the

out
ow, the pressure drops quickly, resulting into a pressure sink at the edge on top of

the plate, as shown in �gure 5.6. These two-dimensional e�ects are larger if the diameter

decreases, but con�ned to a smaller area. The enthalpy also has a sink on the out
ow side

of the burner, as shown in �gure 5.7. This is caused by the heat loss of the 
ame near the

plate segment.

Compared to the ideally cooled burner, the average temperature at the cross sectional

area at x = 0 is higher, which results in a heat loss at the walls inside the burner plate

for x < 0. Figure 5.8 shows the local heat loss for di�erent diameters. It can be seen that

at the corner on the burnt side most heat is lost and the heat loss decreases towards the

symmetry axis. An exception is the computation for d = 1 mm, where near the centre

of the plate segment, the mass 
ow is low and the heat loss becomes higher. In the limit

d ! 0, the heat loss is expected to be homogeneous at the top wall of the plate segment.

However, a peak is present at the corner, where the 
ame at the centre of the 
ow loses

most of its heat.

From the analysis of the isotherms, it is clear that the gas temperature pro�le inside the

burner plate is not equal to the temperature of the burner plate. Heat is transferred to

the burner at a �nite rate inside the burner area for x < 0. Figure 5.9 shows the average

temperature pro�le in the burner plate. A global heat transfer coe�cient �S can be

de�ned by integration of the temperature di�erence along the y-axis inside the burner and
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Figure 5.5: Flow through the perforated plate for a 
ame with �uu = 15 cm/s, � = 0:8 and

d = 0:25 mm.
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Figure 5.7: Enthalpy distribution in the perforated plate con�guration for a 
ame with

�uu = 15 cm/s, � = 0:8 and d = 0:5 mm.
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Figure 5.9: The temperature pro�le near the burner plate for di�erent diameters in case of

� = 0:8 and �uu = 15 cm/s. The pro�le is averaged over the y-axis. Solid line: d = 0:25 mm,

dashed line: d = 0:5 mm, dash-dotted line: d = 1 mm, and thin line: d = 0 mm (1D).
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Figure 5.10: The temperature pro�le near the burner plate for di�erent �S values in

case of � = 0:8 and �uu = 15 cm/s. Solid line: two-dimensional calculation (averaged),

d = 0:5 mm, dashed line: one-dimensional calculation, �S = 11:2 W/(cm3K), dash-

dotted line: �S = 5 W/(cm3K), dotted line: �S = 3 W/(cm3K), and thin solid line:

one-dimensional calculation with �S =1.

comparing it to the total energy per unit length that is lost to the burner �Qbur (W/m):

�S

Z
A

( �T � �Ts) dA = �Qbur; (5.1)

where �Ts is the (�xed) temperature of the burner plate and A the surface of the 
ow

inside the burner plate. This heat transfer coe�cient can be used in the one-dimensional

simulations to model a perforated burner plate. For d = 0:5 mm it is found that �S =

11:2 W/(cm3K). Figure 5.10 shows one-dimensional simulations with various heat transfer

coe�cients for a burner with �uu = 15 cm/s, � = 0:8, and porosity d=p = 2=3. The results

show that the heat transfer coe�cient �S = 11:2 W/(cm3K) can be used for modelling this

particular burner plate. Lower heat transfer coe�cients result in higher gas temperatures

inside the burner plate, yielding a smaller stand-o� distance. In stationary one-dimensional


ame calculations, a �nite �S captures the global structure of the temperature pro�le.

Besides that, the stand-o� distance of the two-dimensional calculation is captured as well.

(�xf;1D = 0:511 mm in the one-dimensional calculation with �S = 11:2 W/(cm3K) value)

compared to 0.52 mm in the two-dimensional simulation (see �gure 5.4).
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Figure 5.11: Velocity 
uctuations at several phases in the centre of the burner plate (x =

�0:25 mm). The dashed line corresponds to phase zero, with respect to inlet velocity


uctuations. The frequency (100 Hz) is near the resonance frequency of the similar one-

dimensional 
ame with �uu = 15 cm/s and � = 0:8, and d = 0:5 mm.

5.3 Analysis of the unsteady micro-slit burner

There are reasons to expect that the acoustic behaviour of the micro-slit geometry also

tends to the one-dimensional behaviour when d ! 0, and d=p is �xed. Contrary to the

parabolic structure of the steady velocity �eld inside the burner, the 
uctuations in the

velocity in the slit depend on the ratio of unsteady and viscous forces, which is linear in

the frequency of the perturbations. For low-frequency 
uctuations, the 
ow slowly adapts

following the parabolic 
ow pro�le (see section 3.2). The velocity 
uctuations inside the

burner-plate are not parabolic at 100 Hz, as shown in �gure 5.11. The 
uctuations in

the mean 
ow slightly lag behind those in the boundary layer. The 
uctuating enthalpy

is quite di�erent from the one-dimensional case. Figure 5.12 shows three phases in one

cycle at 100 Hz, near the resonance frequency of the 
ame, with �uu = 15 cm/s, � = 0:8

and d = 0:5 mm. In these plots the one-dimensional simulation is shown as well. Clearly,

the amplitude of the 
uctuations are highest at the plate segments. The amplitude of

the enthalpy 
uctuations downstream is lower than in the one-dimensional case. The

amplitude decreases for positions within the channel 0 < y < d=2. It appears that the net

contribution of the enthalpy 
uctuations at x = 0 is lower for the perforated plate than

for the one-dimensional 
ame. Figure 5.13 shows the enthalpy 
uctuations as function of

time at the 
ame front (�xf;1D = 0:55 mm and �xf;2D = 0:519 mm). The amplitude of the

two-dimensional simulation is lower and shows a larger phase shift in comparison to the

one-dimensional simulation (d = 0 mm). The variation in 
uctuations along the y-axis

are very small (within 3 percent of the global 
uctuations) and the extra phase shift is
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not caused by the di�erence in the stand-o� distance. This means that the 
uctuating

two-dimensional 
ame is a 
at 
ame as in the stationary case. The main di�erence with

the one-dimensional 
ame is the change in the phase and amplitude in the enthalpy, as

shown in �gure 5.13.

The same decrease in amplitude and increase in phase shift is observed in the 
ame

velocity u0f, mass burning velocity s0L, and gas velocity u0(xf;2D), as shown in �gures 5.14

to 5.16. As expected, the mass burning velocity is in phase with the enthalpy 
uctuations

at the 
ame front. The limit of the transfer function for d ! 0 (with d=p �xed) for a

reacting 
ow through a slit burner is also investigated. The in
uence of the contraction in

the 
ow is small. In the previous chapter the in
uence of the porosity of the burner was

neglected and this assumption is justi�ed as shown in �gure 5.17 for the �uu = 15 cm/s,

� = 0:8 
ame. The porosity in the one-dimensional simulations has a little e�ect on the

response, in terms of the position of the resonance peak and the phase. A slight increase

in the amplitude is observed, but for a porosity d=p = 2=3 this is about 10%. This means

that the velocity 
uctuations are homogeneous again before they reach the 
ame.

In �gure 5.18, the transfer function of the velocity perturbations is shown for three

two-dimensional calculations with �xed d=p = 2=3. The solid lines are the one-dimensional

results. For large diameters, the resonance peak is lower and, for diameters close to zero, the

phase of the response slightly di�ers from the one-dimensional situation: a larger time lag

is present for high frequencies. Furthermore, the resonance peak shifts to lower frequencies

when the diameter increases (d=p �xed). In the previous section it was demonstrated that

a �nite heat transfer coe�cient was su�cient to explain the shift in the global stationary

stand-o� distance (for d = 0:5 mm we found that �S = 11:2 W/(cm3K)). Figure 5.19

shows the response in one-dimensional simulations for di�erent values �S. It is clear that

the resonance peak for �S = 11:2 W/(cm3K) would be too high (ampli�cation factor is

greater than 14) compared to the corresponding peak for d = 0:5 mm (dash-dotted line,

ampli�cation factor is about 12) in �gure 5.18. For lower �S the resonance frequency does

not match the frequencies found in the one-dimensional simulations as seen in �gure 5.13.

Thus, the observed two-dimensional behaviour cannot be explained by the in
uence of

global one-dimensional parameters like the porosity d=p and �S alone. The main di�erence

between the one-dimensional and two-dimensional behaviour can likely be found in the

change in enthalpy 
uctuations.

5.4 Concluding discussion

The complexity of the 
ow through the burner plate does not allow for a simple analytical

model, like the one derived in chapter 4. From the stationary analysis, we have seen that

the enthalpy at x > 0 is far from constant, which is an essential assumption in the one-

dimensional model. The non-constant enthalpy is also found in the unsteady simulations.

However, the non-constant properties are restricted to a small area around the burner

plate. From the simulations, it is shown that the variables are constant in y-direction

(within a few percent) at the 
ame front position. For the observed perforation diameters,
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the 
ame can be assumed to remain 
at at the 
ame front position during motion.

An important di�erence is the position of the 
ame. The burner plate is not able to cool the

gas as e�ectively as in the one-dimensional case and the 
ame stabilises closer to the plate.

The one-dimensional simulations with a �nite heat transfer coe�cient �S show a lower

resonance peak. This e�ect should be incorporated in the model. However, using a �nite

heat transfer in one-dimensional simulations does not resolve completely the decreased res-

onance frequency as observed in the two-dimensional case (cf. �gures 5.18 (a) and 5.19 (a)).

In literature, little can be found on the analytical treatment of the two-dimensional

equations. Flei�l [17] does not use the 
ow equations, but makes rigorous assumptions

on the 
ow variables being homogeneous except at the 
ame front position. Therefore,

this work does not give insight into how to treat the equations for inhomogeneous 
ows.

McIntosh [32] investigated cellular instability of 
ames, in which the periodicity in y-

direction of the problem was used to solve two-dimensional e�ects (two-dimensional 
ame

structures with small wave numbers, where the burner plate is still one-dimensional). A

similar technique is applied to the micro-slit burner problem in appendix D to make an

attempt to model the acoustic behaviour of the burner-stabilised 
ame.

However, to solve the resulting equations, rigorous assumptions should be made on the

steady 
ow �eld and thickness of burner plate. These assumptions are questionable in

our con�guration and, unfortunately, the resulting model does not explain the observed

decreasing resonance peaks.
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Figure 5.12: Fluctuating enthalpy in the perforated plate for d = 0:5 mm and d = 0 mm

(the one-dimensional case) for three phases in one cycle.
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Figure 5.13: Enthalpy 
uctuations at the 
ame front as function of time. Solid line:

d = 0 mm and dashed line: d = 0:5 mm. Vertical dotted line denotes phase zero of

the reference inlet velocity 
uctuations. The arrow points to phase zero of the enthalpy


uctuations.
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Figure 5.14: Flame velocity 
uctuations at the 
ame front as function of time. Solid line:

d = 0 mm and dashed line: d = 0:5 mm. The vertical dotted line denotes phase zero of the

reference inlet velocity 
uctuations. The arrow points to phase zero of the 
ame velocity


uctuations.
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Figure 5.15: Vertical component of gas velocity 
uctuations as function of time. Solid line:

d = 0 mm and dashed line: d = 0:5 mm. The vertical dashed line denotes phase zero of

the reference inlet velocity 
uctuations. The arrow points to phase zero of the velocity


uctuations.
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Figure 5.16: Vertical component of mass burning velocity 
uctuations as function of time.

Solid line: d = 0 mm and dashed line: d = 0:5 mm. The vertical dotted line denotes phase

zero of the reference inlet velocity 
uctuations. The arrow points to phase zero of the mass

burning velocity 
uctuations.
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Figure 5.17: Amplitude (a) and phase (b) of the response of an ideally cooled one-

dimensional burner-stabilised 
ame (� = 0:8, �uu = 15 cm/s, and �Tu = 298 K), for several

porosity values. Solid line: d=p = 1, dashed line: d=p = 0:875, dash-dotted line: d=p = 0:8,

and dotted line: d=p = 2=3.
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Figure 5.18: Amplitude (a) and phase (b) of response of the outlet velocity for di�erent

diameters (dotted line: d = 1 mm, dash-dotted line: d = 0:5 mm, dashed line: d = 0:25 mm

and solid line: d! 0.)
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Figure 5.19: Amplitude (a) and phase (b) of the response of the downstream velocity with

�S = 1 (solid line), �S = 5 W/(cm3s) (dashed line), �S = 3 W/(cm3s) (dash-dotted

line) and �S = 1 W/(cm3s) (dotted line) for a one-dimensional 
ame with burner porosity

d=p = 2=3.
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Chapter 6

Concluding remarks

In the previous chapter it has been demonstrated that the surface burners, frequently used

in central-heating boilers, produce almost one-dimensional 
ames. The diameter of the

perforations in these burners should be chosen small enough in those cases. The choice of

diameters pitch ratios in these surface burners is limited, because of 
ashback and blow

o� phenomena. It has been demonstrated by one-dimensional simulations that the burner

plate has a small in
uence on the response: the magnitude and frequency of the resonance

peak do not di�er very much. So, the one-dimensional analytical model in chapter 4 can

be used safely to investigate the acoustic behaviour in micro-slit burners. This model is

used in the transfer matrix method to determine the acoustic stability of a simpli�ed boiler

with micro-slit (or 
at) burners. This is presented at the end of this chapter. First, the

mechanism for 
ame resonance is explained.

Mechanism to explain the acoustic behaviour

The mechanism of 
ame resonance is related to the coupling between the 
ame position

and the heat loss to the burner. As the 
ame front moves, enthalpy 
uctuations emerge

at the burner surface, where the temperature is �xed and the mass fraction pro�le moves

with the 
ame front. These enthalpy 
uctuations propagate towards the 
ame front and

are damped. Depending on the 
ame parameters and frequency, the phase between the

enthalpy 
uctuations at the 
ame front and those at the burner surface, can be �=2.

Since the resulting 
ame temperature 
uctuation is coupled to the mass burning rate,

these 
uctuations are in phase with the 
ame velocity. In this case the 
ame movement

ampli�es itself and shows a resonance peak in the acoustic transfer.

As practical burners do not have in�nite conductivity, the burners heat up. The analytical

model has been adapted for those cases and shows that the ampli�cation at the resonance

frequency is lower. Also the resonance frequency is higher for higher surface temperatures,

because the 
ame stabilises closer to the burner and higher frequencies are needed to

establish the �=2 phase di�erence.

For 
ames with increasing activation energies (equivalence ratios greater than 1), the 
ame

may oscillate spontaneously without the presence of an acoustic �eld. The mechanism is

93
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2∆1l∆ l
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flue duct

l3∆

uS dS

Figure 6.1: The simpli�ed heating device, consisting of a mixing chamber, burner/
ame,

heat exchanger, and a 
ue duct. The system is considered one-dimensional and and does

not have acoustic radiation losses to the surroundings.

equal to the one described above, but the movement induces temperature 
uctuations at

the 
ame front that result in mass burning rate 
uctuations, of which the e�ects are greater

than the damping e�ect in the enthalpy 
uctuations. In this case, perturbations will grow

in time. It is concluded that the lean methane/air 
ames used in this thesis are stable and

resonance only occurs in combination with the acoustic system wherein they are present.

From numerical simulations it was demonstrated that the response of the burner-stabilised


ame di�ers when using detailed and global chemistry. This is mainly caused by the

accuracy of the parameters in the global scheme. These parameters are �tted for the

burning velocity and 
ame temperature in the steady-state situation. Qualitatively, both

schemes predict all acoustic phenomena observed in the experimental setup.

Stability analysis of a simpli�ed heating boiler

In section 4.2.3 the transfer function of a one-dimensional burner-stabilised 
ame was

derived. Although a stable 
ame is not a source of sound, it can function as an ampli�er

in the heating device. Depending on the 
ame parameters, the 
ame can either absorb

or produce acoustic energy. In case of a 
ame producing acoustic energy, a distortion is

ampli�ed to an acoustic �eld with large amplitudes. The amplitude in the acoustic �eld

is bounded by the non-linear e�ects. If an acoustic element exists in the system that

absorbs energy, the system is called stable if more energy is absorbed than is produced by

the 
ame. Examples are acoustic radiation to the surroundings at the open ends, or the

viscous dissipation in the tubes of the system.

Figure 6.1 shows a model of a simpli�ed heating device. The elements in this system are

distinguished as: a mixing chamber, a burner-stabilised 
ame, a heat exchanger, a 
ow

contraction, and a 
ue duct. �l denotes the length of a pipe segment, and Sd, Su are

the cross sectional surfaces. Two relations determine the stability of the system. The �rst

relation is the frequency condition (cf. equation (4.56) for a free 
ame), which is satis�ed

for the resonance frequencies of the free system. The system is stable if the imaginary part

of the (complex) frequency is positive: the eigensolution is damped in time, as shown in

equation (2.40). The real part is the frequency at which the solution oscillates. In case

of damping modes, the 
ame actually weakens the acoustic �eld. The frequency condition

for the con�guration in �gure 6.1 is given by equation (2.42) with Z1 = 0 (impedance for



95

0 100 200 300 400 500 600

400

600

800

1000

1200

1400

Frequency  [Hz]

T
   

   
[K

]
su

rf

stable 

unstable 

Figure 6.2: The stability plot of the simple heating device, as function of the surface

temperature Tsurf and the frequency of the source. In the white regions, the system is po-

tentially stable, whereas the dark regions the system is potentially unstable. The black lines

represent three modes (resonance frequencies) of the system, solutions of equation (6.1).

an open end), which yields:

tan(k�l1) tan(k
p
Tub�l3)

Su

Sd

p
TubV +

tan(k
p
Tub�l2)

�
tan(k�l1)

p
TubV + tan(k

p
Tub�l3)

Su

Sd

�
� 1 = 0;

(6.1)

where Tub = �Tu= �Tb, k = !=�cu, and V is the transfer function of the velocity 
uctuations by

the 
ame. The second relation describes the energy production by the driving mechanism

at the closed end of the system, but is complex and therefore left to the reader, because it

does not add new insight to the matter.

In section 4.2.4 a model is derived for variable surface temperatures. It is interesting to

know the e�ect of the surface temperature on the stability of the system. One of the

problems related to central-heating systems is a cold startup. At startup many devices

appear to be very noisy and sometimes they become stable after a while. The stability

can be visualised by plotting the acoustic energy production as function of the frequency

of the external force and the surface temperature. Figure 6.2 shows this stability plot.

The values for the dimensions are �l1 = 0:3 m, �l2 = 0:3 m, �l3 = 1:0 m, Su = 0:3 m,

and Sd = 0:06 m. The other parameters are Tad = 2012:5 K, Ta = 2� 14412 K (methane


ame � = 0:8), �Tu = 300 K, �Tb = 1836:4 K, �uu = 15 cm/s, ��u = 2:75� 10�2 J/(K m s),

cp = 1:286 � 103 J/(kg K), and ��u = 1:13170 kg=m
3
. This particular system is unstable

for every burner type covered by the model. The �rst mode (37.4 Hz) is stable for surface
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Figure 6.3: The stability plot of a real heating device, as function of the surface temperature

Tsurf and the frequency of the source. In the white regions, the system is potentially stable,

whereas the the system is potentially unstable in the dark regions. The black lines represent

the modes (resonance frequencies) of the system.

temperatures up to 800 K. For hotter surfaces, the amplitude of this mode will grow in

time, and becomes unstable. The second and third modes are more troublesome. For

realistic surface temperatures (up to 1200 K), these modes are in the unstable region. The

absence of acoustic losses results in the obvious checkerboard appearance. If acoustic losses

would be modelled, the regions of instabilities would become smaller, and from experience,

the e�ciency of the acoustic losses is greater for higher frequencies. In practice it mostly

appears that the regions of instability are not present for frequencies higher than 500 Hz.

Therefore, these results might not be representative for realistic heating devices. The cold

start up phenomenon is not con�rmed by �gure 6.2 for the lowest mode. The temperature

at the turning point (> 1350 K) for the other two modes is far too high for realistic surface

temperatures. However, the result shows that surface temperature has a signi�cant in
u-

ence on the acoustic behaviour of the system. This interpretation above is quasi-steady,

the question remains whether cold start up is such a process, of which stability can be

abstracted from the stability plots.

Figure 6.3 shows the stability plot of a more realistic heating device [46], where acoustic

losses such as friction and radiation were taken into account. Here, it can be seen that the

regions of instability are much smaller. All modes, except the second one, are in the stable

region. The second mode (at approximately 70 Hz) shows that, the device is unstable for

surface temperature from room temperature to 500 K, which is an indication for a cold

start up problem in this heating device.

The results from the transfer matrix method should be validated for this device by mea-
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surements. Furthermore, parameters such as equivalence ratio, activation energy should be

investigated for their in
uence on the acoustic behaviour of this particular heating device.
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Appendix A

Matched asymptotics

Two areas can be distinguished: (1) the acoustic region and (2) the combustion area, as

shown in �gure A.1. The solutions in these regions match at the boundaries between the

regions. In the next sections, we formally determine the leading-order 
ow equations in

these regions, and make a connection between the combustion solution to the solution in

the acoustic regions, wherein the burner/
ame is situated.

Section A.6 derives the Zeldovich progress variable that simpli�es the analyses consider-

ably.

A.1 Combustion zone

The objective of this section is to give insight into the compressible Navier-Stokes equa-

tions for a reacting 
ow at low-Mach numbers, if the 
ow is a�ected by acoustic e�ects.

In a burner-stabilised 
at 
ame, we have a characteristic length scale L, let say the 
ame

thickness, and a single-time scale: the time it takes for a particle to travel one length

scale. Using an asymptotic analysis, based on single-length and time scales, the equations

simplify considerably.

In the analysis, the global chemical behaviour of the mixture is modelled by a single reac-

(1) (2) (1)(1)

Figure A.1: Simpli�ed boiler con�guration, where the 
ow direction is from left to right.

Separate regions are distinguished: (1) acoustic regions and (2) combustion area. The

dotted lines denote the boundaries where the solutions are matched.

99
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tion. Furthermore, we assume constant heat capacity cp = �cp, equal di�usion coe�cients

Dim � D, and equal Lewis numbers:

Lei =
�

�cp�Dim

� Le: (A.1)

In this case all species are functions of one product species Y and the transport of Y is

described by:

@�Y

@t
+r � (�Y u) +r � (�UY ) = _�; (A.2)

with U the di�usion velocity of the species and _� the production rate.

We introduce the reaction energy �H, for which the derivation can be found in detail in

section A.6 for a one-step reaction scheme of methane combustion. Since combustion is

an exothermic process, �H > 0. In general, the energy of reaction depends on the initial

and �nal compositions of the gas mixture. Equation (2.11), together with constant heat

capacity, gives:

h = �H Y + �cpT; (A.3)

where, for the sake of convenience, we choose hb = �cpTb. The equation of state for a perfect

gas is given by:

p = �RT; (A.4)

with R the gas constant. From (2.4), (2.10), and (2.11), another thermodynamic relation

is obtained:

p = (
 � 1)�(E � 1

2
juj2 ��H Y ); (A.5)

where 
 = cp=cv is the speci�c heat ratio.

The compressible 
ow equations (2.14), (2.17), (A.2), (A.4), and (A.5) are non-dimensionalised

with respect to a reference state, denoted by the subscript 1, e.g. far �eld or stagnation

conditions in the unburnt zone. We non-dimensionalise the equations by using the reference

quantities. A characteristic length scale L of the 
ow, which is in our case the di�usion

length Dim=u1, is introduced.

We de�ne the dimensionless quantities by:

�0 =
�

�1
; p0 =

p

p1
; u

0 =
u

u1
; T 0 =

T

T1
;

�0 =
�

�1
; �0 =

�

�1
; x

0 =
x

L
; t0 =

t

L=u1
; (A.6)

h0 =
h

p1=�1
; E 0 =

E

p1=�1
; H 0 =

H

p1=�1
; U

0 =
U

D=L
;

_�0 = _�
L

�1u1
; �H 0 =

�H

p1=�1
:
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The reference quantities are chosen such that the dimensionless 
ow quantities remain of

order O(1) for any low reference Mach number:

M1 =
u1p

p1=�1

: (A.7)

To avoid the dependence on 
, we shall work with:

M =
p

M1: (A.8)

Note that

up
p1=�1

=
u

u1
M ! 0 for M ! 0 (A.9)

and

p

�1u21
=

p

p1

1

M2
!1 for M ! 0: (A.10)

Using the relations (A.6) in the 
ow equations, we may write the dimensionless reacting-


ow equations as follows (the primes are dropped):

@�Y

@t
+r � (�uY ) + 1

Re1Le1Pr1
r � (�UY ) = _�; (A.11)

@�

@t
+r � (�u) = 0; (A.12)

@�u

@t
+r � (�u
 u) +

1

M2
rp = G; (A.13)

U = � 1

Y
rY; (A.14)

where G = �1=Re1r � ��� + (1=Fr2
1
)�(�er), Re1 = �1u1L=�1 is the Reynolds number,

Fr1 = U1=
p
gL is the Froude number, Pr1 = �1�cp=�1 is the Prandtl number, and

Le = �1=�cp�1Dim. Also,

@�E

@t
+r � (�Hu) = Q (A.15)

with

Q = � M2

Re1
r � (��� � u) + M2

Fr2
1

�(�er) � u

+

�




 � 1

�
1

Re1Fr1
r � (�rT ) + 1

Re1Pr1Le1
r � (��HrY ) ;
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where er is a unit vector in the direction of the gravitational �eld. Assuming Pr = cp�=� =

Pr1, we obtain �=�1 = �=�1, or �
0 = �0.

The dimensionless expressions of the total enthalpy per unit mass and the total energy are:

H = h+M2 1

2
juj2; (A.16)

E = H � p

�
: (A.17)

The dimensionless equations of state for a perfect gas read:

p = �T; (A.18)

h = �H Y +




 � 1
T: (A.19)

Using equations (A.5), (A.16) to (A.19), we may express the pressure in terms of the

conservative variables �, �Y , �u and �E by:

p = (
 � 1)

�
�E �M2 1

2

j�uj2
�

��H �Y

�
: (A.20)

In single-time scale, single-space scale low Mach number asymptotic analysis, each 
ow

variable is written as a series expansion, e.g. the pressure:

p(x; t;M) = p0(x; t) +Mp1(x; t) +M2p2(x; t) + O(M3): (A.21)

The expansions are substituted into the dimensionless governing equations and we can

divide the equations into orders of Mach number. The leading-order continuity equation

reads:

@�0

@t
+r � (�u)0 = 0; (A.22)

and similarly, the leading-order species equation:

@(�Y )0

@t
+r � (�uY )0 � 1

Re1Pr1Le1
r � (�rY )0 = _�0: (A.23)

By expanding the density �, we obtain the relations (�u)0 = �0u0, (�u)1 = �1u0 + �0u1
and (�u)2 = �2u0 + �1u1 + �0u2.

The leading-, �rst- and second-order momentum equation are given by:

rp0 = 0; (A.24)

rp1 = 0; (A.25)

@(�u)0

@t
+r � (�u
 u)0 +rp2 = G0; (A.26)
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with G0 = 1=Re1r � ��� 0 + (1=Fr2
1
)�(�er). The leading-order energy equation yields:

@(�E)0

@t
+r � (�Hu)0 = Q0 (A.27)

with

Q0 =

�




 � 1

�
1

Re1Pr1
r � (�rT )0 + �H

Re1Pr1Le1
r(�rY )0: (A.28)

Since the work done by the viscous and buoyancy forces is of order O(M2), the leading-

order energy source term Q0 is governed by heat-conduction and heat release rate only and

the Prandtl number Pr1 is of order O(1) and the Froude number squared Fr2
1
is of order

O(Re1Pr1), provided that the ratio (
 � 1)=
 is of order O(1) in both cases. However,

if the Reynolds number Re1 is of order O(M2), i.e. the reference pressure p1 is of order

of the viscous force per unit area O(�1u1=L), or if the Froude number Fr1 is of order

O(M), i.e. the reference pressure p1 is of the order of the hydrostatic pressure O(�1gL),

then the work done by the viscous or buoyancy forces, respectively, will also contribute

to the leading-order energy source term Q0. The reaction rate _� is assumed to be O(1),

provided that the mass 
ow is O(1).

For the equation of state, the asymptotic expansion yields:

p0 = (
 � 1)((�E)0 ��H (�Y )0); (A.29)

T0 =
p0

�0
: (A.30)

The low-Mach number equations for a reacting 
ow are governed by the leading-order con-

tinuity (A.22), species (A.23) and energy (A.27) equations, together with the second-order

momentum equation (A.26) and the leading-order equations of state (A.29) and (A.30).

This analysis shows that certain terms in the governing equations may be neglected to ob-

tain the so-called Combustion Approximation. These equations describe also the `acoustic'

properties of the 
ame. The acoustic �eld outside the burner/
ame region is analysed in

the next section.

A.2 Acoustic zone

Following the general idea of sources being placed in an acoustic �eld, this section considers

the source as a point in a multi-dimensional medium. Other con�gurations, like line sources

or pulsating spheres etc., are a superposition of these point sources. The goal of this section

is to recover the wave equation from the equations.

At large distances from the point source (order M�1 in terms of the characteristic 
ame

thickness), it is considered that an acoustic �eld is present. Thus, we write:

x̂ =Mx; (A.31)
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to scale the acoustic zone to the characteristic length in the compact zone. Time is not

rescaled, since for large wave lengths, a typical unit of time can be considered to be

comparable to L=u0, where L is the characteristic 
ame length and u0 is the steady 
ow

velocity [33]. A typical frequency for these conditions could be in the region of 200 Hz.

We de�ne all quantities as series expansions in Mach number:

�(x̂; t) = �0(x̂; t) +M�0(x̂; t) +M2�0(x̂; t); (A.32)

which are substituted in equations (A.11), (A.12), (A.13), (A.15) and (A.19). The leading-

order equations yield:

@(�Y )0

@t
= 0; (A.33)

@�0

@t
= 0; (A.34)

r̂p0 = 0; (A.35)

@(�E)0

@t
= 0; (A.36)

p0 = �0T0; (A.37)

This means that �0 = �0(x̂), Y0 = Y0(x̂) and constant p0, since p0 = (
 � 1)((�E)0 �
�H (�Y )0) and, via the gas law (A.37), we have T0 = T0(x̂).

The �rst-order equations yield:

@(�Y )1

@t
+ r̂ � (�uY )0 = 0; (A.38)

@�1

@t
+ r̂ � (�u)0 = 0; (A.39)

@(�u)0

@t
+ r̂p1 = 0; (A.40)

@(�E)1

@t
+ r̂(�Hu)0 = 0; (A.41)

p1 = �1T0 + �0T1: (A.42)

Equation (A.38) describes the convection of species and (A.39) the continuity equation.

With use of the leading-order relations we have:

@u0

@t
+

1

�0
r̂p1 = 0; (A.43)

@p1

@t
+ 
p0r̂ � u0 = 0; (A.44)

which are the wave equations. These equations can be combined to (@=@t � (A.44) �

p0r̂� (A.43)):

@2p1

@t2
� r̂ � (c20r̂p1) = 0; (A.45)
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with c0 =
p

p0=�0, the leading-order speed of sound. Note that c0 is a function of x̂. The

work done by the viscous and buoyancy forces does not a�ect the �rst-order pressure p1,

unless conditions Re = O(M2) or Fr = O(M), respectively, hold.

If the leading-order speed of sound c0 is approximated by the ambient speed of sound

c1 (with the ambient chosen as reference state), equation (A.45) is the basic equation of

acoustics to describe propagating pressure disturbances.

A matching procedure connects the leading-order quantities in the acoustic �eld to the

leading-order quantities in the burner/
ame region. This procedure is presented in the

next section.

A.3 Matching principle

In the previous section we determined the 
ow equations in the acoustic zone and the

burner/
ame area. The solutions in these zones must be matched in order to obtain a

general solution up to a certain accuracy. The values are matched by the principles of

matched asymptotic expansions (Van Dyke [56]). For a one-dimensional 
ow problem

(assuming that the solution is only dependent on x), it can be shown that the following

matching conditions must apply on the upstream side of the burner/
ame region:

Y c
0 (�1; t) = Y a

0 ; (A.46)

pc0(t) = pa0; (A.47)

uc0(�1; t) = ua0(0; t); (A.48)

pc1(t) = pa1(0; t); (A.49)

T c
0 (�1; t) = T a

0 (0); (A.50)

�c0(�1; t) = �a0(0); (A.51)

and the gradients:

@Y c
0

@x

����
�1

=
@pc1
@x

����
�1

=
@uc0
@x

����
�1

=
@T c

0

@x

����
�1

= 0; (A.52)

where superscript c denotes values in the burner/
ame region, and a those in the acoustic

region.

In exactly the same way, matching conditions are applied on the downstream side (x =

+1) of the combustion zone. Together, they form a uniform solution; i.e. the inner-

solution in the burner/
ame region smoothly changes into the outer-solution in the acoustic

region for low Mach numbers.

This illustrates that solutions of the acoustic equations and the combustion equations are

related mathematically in a strictly de�ned way. We investigate the two regions separately.

In the acoustic region, the �rst-order velocity and pressure 
uctuations satisfy (A.43) and

(A.44), and are obtained analytically. Via the matching principle, these solutions are used

in the numerical simulations, where they serve as 
uctuating boundary conditions. More
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precisely, the leading-order velocity uc0 is prescribed at the boundary of the numerical

domain. The other quantities are constant at that boundary.

All the results are considered to be of leading-order (in Mach number) accuracy, so, for

higher order e�ects you either have to leave the low-Mach number formulation and include

a set of higher order equations, or solve the full set of 
ow equations with the variable

pressure.

A.4 Transfer matrix for a compact source

In the previous section, the velocity, pressure, and temperature in the acoustic and the

compact zone are coupled for a one-dimensional con�guration. Since at low Mach numbers

the pressure p1 is an independent variables, the coupling of the pressure 
uctuations on

both sides of the 
ame is unity and the coupling between the velocity 
uctuations is a

function independent of the pressure, but can still be dependent on the temperature or

density 
uctuations. In fact, more quantities should be included in the acoustic �eld: the

density and all the mass fractions.

As mentioned in section 3.2, the constraint equation is almost a divergence free velocity

constraint @u0=@x = 0. With the remark that in the one-dimensional case, the momentum

equation uncouples, a set of wave equations for the density, enthalpy, and mass fractions

can be de�ned. All these quantities are constant along lines dx=dt = u0. Therefore,

density and mass fraction 
uctuations emerging from the 
ame should be matched to the


uctuating quantities in the acoustic zones. Also, density or mixture variations could be

present on the unburnt side of the 
ame.

For a low-Mach number 
ow, we de�ne the following eight-pole coupling between the

acoustic �elds, using the dimensionless quantities:2
664
p
0a
1

u
0a
0

�
0a
0

Y
0a
0

3
775
unburnt

=

2
664
T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

3
775
2
664
p
0a
1

u
0a
0

�
0a
0

Y
0a
0

3
775
burnt

: (A.53)

The exact expressions for the elements Tij are obtained from the Rankine-Hugoniot equa-

tions for a reacting 
ow in an in�nitely thin region (compact zone). Integration of equa-

tions (A.22), (A.23), (A.25), and (A.27) for the one-dimensional case gives:

[(�u)0]
1

�1
= 0; (A.54)

[p1]
1

�1
= 0; (A.55)�

(�uY )0 � 1

Re1Pr1Le1

�
�
@Y

@x

�
0

�
1

�1

=

Z
1

�1

_� dx � �Qrel;0

�H
; (A.56)

�
(�uH)0 � �H

Re1Pr1Le1

�
�
@Y

@x

�
0

�
1

�1

=

�




 � 1

�
1

Re1Pr1

Z
1

�1

@

@x

�
�
@T

@x

�
0

dx

� �Qbur;0; (A.57)
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where we conveniently assume that no temperature gradients are present at x =1. This

is an important assumption that is explained in the following.

By using the de�nition for H0, the gas law, and substituting (A.56) in (A.57) gives a simple

relation that connects the velocity 
uctuations to the heat production in a burner-stabilised


ame:

p0




 � 1
[u0]

1

�1
= Qrel;0 �Qbur;0 (A.58)

Linearisation of equations (A.54) to (A.57) determines the elements in the transfer matrix.

However, a 2x2 matrix connecting the pressure and the velocity 
uctuations is su�cient if

two additional assumptions are made. First, the linearised equation (A.54), which relates

the density 
uctuations on both sides of the 
ame (in short notation):

��uu
0

u + �0u�uu = ��bu
0

b + �0b�ub; (A.59)

The (constant) leading-order density in the acoustic zone implies u0b=u
0

u = ��u=��b and

together with (A.58) states that 
uctuating heat production of the burner/
ame is pro-

portional to the 
uctuating velocity:

�




 � 1

�
p0

�
�Tb
�Tu
� 1

�
u0u = Q0

rel �Q0

bur: (A.60)

This is true if there is no mean 
ow present. In fact, the burner/
ame generates density


uctuations that propagate towards the burnt side. Therefore, it is assumed that the

density 
uctuations vanish by di�usion (it can be shown that the temperature gradients in

the constraint provides a di�usion term in the wave equation for the density) before they

reach the adjoining element in the acoustic zone (cf. the equilibrium zone in the theory of

McIntosh in section C.2). So, the density variations in the burner/
ame do not in
uence

the acoustic system. Secondly, it is assumed that the contents in unburnt gas mixture does

not vary and that the reactions take place in the compact zone only. Thus, the acoustic

system is independent on 
uctuations of the mass fractions.

By taking the two assumptions into consideration, the transfer of the burner-stabilised


ame is described by a 2x2 matrix:

T burner=
ame =

�
1 0

0 V�1
�
; (A.61)

where V is a frequency dependent function. Note that for low frequencies the damped

density assumption does not hold and the in
uence of varying density on the pressure and

velocity �elds depends on the way adjoining acoustic elements couples density (or entropy)

to the sound waves. In gas turbines, this coupling is an important mechanism in the

acoustic system [27].
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Figure A.2: Simple con�guration of a heating system divided into 8 elements.

A.5 Elementary transfer matrices

The derivation of the transfer function of other acoustic elements than the burner/
ame

system (A.61) will be discussed here. First, the acoustic �eld is determined in an inviscous

stationary medium. In such a medium the pressure and velocity 
uctuations satisfy the

classical linear one-dimensional wave equations in a stagnant 
ow:

�0
@u0

@t
+
@p0

@x
= 0; (A.62)

@�0

@t
+ �0

@u0

@x
= 0; (A.63)

from which the density is eliminated, yielding:�
@2

@t2
� c20

@2

@x2

�
p0 = 0; with c20 =

@p

@�

����
s

; (A.64)

where the derivative in the second expression is taken at constant entropy s. These equa-

tions can be obtained using the low-Mach number approximation, as described in sec-

tion A.2 of the appendix. The 
uctuating pressure becomes, neglecting mean 
ow e�ects:

p0(x; t) = C1 exp

�
i!(t� x

c0
)

�
+ C2 exp

�
i!(t+

x

c0
)

�
; (A.65)

for which a harmonic time dependence exp(i!t) is assumed. The solution (A.65) represents

a superposition of two propagating waves with amplitudes C1 and C2 moving in opposite

directions with velocity c0. Equation (A.65) can be rewritten to

p0(x; t) = [C1 exp(�ik0x) + C2 exp(ik0x)] exp(i!t); (A.66)

where k0 = !=c0 = 2�=�, k0 is the wave number of propagation, and � is the wavelength.

From equation (A.62) and using equation (A.66) we obtain the 
uctuating velocity:

u0(x; t) =
1

Z0

[C1 exp(�ik0x)� C2 exp(ik0x)] exp(i!t); (A.67)

where Z0 = �0c0 is the characteristic impedance of the medium.

Upon making use of the wave relations (A.66) and (A.67), a relation can be derived between



A.5. ELEMENTARY TRANSFER MATRICES 109

the acoustic �eld (p0r; u
0

r) at a distance L from the point where the �eld is given by (p0l; u
0

l).

Assume that position l is located at x = 0 and the acoustic �eld at that location is written

as:

p0l = A+B;

u0l = (A� B)=Z0;

with A = C1 exp(i!t) and B = C2 exp(i!t). The acoustic �eld at x = L is then equal to:

p0r = A exp(�ik0L) +B exp(ik0L)

= [(A +B) cos(k0L)� i(A� B) sin(k0L)]

= [p0l cos(k0L)� iZ0u
0

l sin(k0L)]; (A.68)

u0r = [A exp(�ik0L)� B exp(ik0L)]

= [
A�B

Z0

cos(k0L)� i
A+B

Z0

sin(k0L)]

= [u0l cos(k0L)� i
p0l
Z0

sin(k0L)]; (A.69)

which can be written in the matrix form:�
p0l
u0l

�
=

�
cos(k0L) iZ0 sin(k0L)
i
Z0

sin(k0L) cos(k0L)

� �
p0r
u0r

�
: (A.70)

This is the transfer matrix for a tube of length L.

For a sudden contraction in a medium without mean 
ow, we have the following transfer

matrix, Munjal [41]: �
p0l
u0l

�
=

�
1 0

0 Sd
Su

� �
p0r
u0r

�
; (A.71)

where Sd is the cross sectional area of the small tube and Su is the cross section of the

other tube, as shown in �gure A.2 (element 3). In general, a contraction dissipates acoustic

waves.

For a wave propagation through a thin plate, like a perforated burner plate (element 6 in

�gure A.2), there would be little time lag between the two sides. All medium particles

would move with the same velocity, let say, u. Thus, integration of (A.62) over the volume

occupied by the 
ow through the plate gives:

S(p0l � p0r) = �0Sl
du0

dt
; (A.72)

where S is the cross sectional area of the perforations, and l the thickness of the plate.

Condition (A.72) can be written as p0l � p0r = i�0l!u
0 with u0 = u0l = u0r, which yields the

transfer matrix of a burner plate:�
p0l
u0l

�
=

�
1 Zg

0 1

� �
p0r
u0r

�
; (A.73)
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where Zg = i�0!l is the impedance of the burner plate [49, 41]. This implies that a plate

has little resistance to the acoustic �eld. Note that in practical situations, a burner plate

with small perforations absorbs acoustic energy, due to the pressure drop, which is small

in our case (see section 5.2, for a slit burner con�guration).

At the open termination of a tube acoustic energy is radiated. The following radiation

impedance, for the tube terminated without a 
ange, is posed:

Zopen end �
�
k20S

2
d

16
+ ik0�

�
Z0; (A.74)

with � the end correction given by � = 0:6133Sd=2. � is obtained by a close empirical �t

for k0Sd=2 � 0:5 [41]. At a closed end we have u0 = 0 by de�nition, hence, Zclosed end =

1. In section 2.5 it is assumed that no acoustic energy is radiated at the open end, or

Zopen end = 0.

A.6 Zeldovich progress variable

Introduction of additional restrictive assumptions is useful in the analysis of many prob-

lems. The objective of this section is to express the species equations and energy equation

in a simpli�ed form. The assumption of equal Lewis numbers allows us to describe all

species as function of one tracer species, e.g. that of methane. In the global reaction

CH4+2O2 �! CO2+2H2O the consecutive mass fractions can be described as function of

the Zeldovich progress variable Z, which is 1 at the unburnt side and 0 at the burnt side.

This variable is closely related to the mass fraction of methane in a lean gas mixture:

YCH4
(Z) = YCH4;uZ; (A.75)

YO2
(Z) = YO2;uZ + [YO2;u � 2YCH4;u

MO2

MCH4

](1� Z); (A.76)

YCO2
(Z) =

MCO2

MCH4

YCH4;u(1� Z); (A.77)

YH2O(Z) =
MH2O

MCH4

YCH4;u(1� Z); (A.78)

YN2
= 1� YCH4;u � YO2;u: (A.79)

The enthalpy h can also be written in a simpli�ed form. Following the de�nition (2.11)

and assuming that all speci�c heat capacities are equal (cp = �cp), we write:

h = �H YCH4
+ �cpT + hc; (A.80)

with

�H = h
(0)

CH4
+ 2h

(0)

O2

MO2

MCH4

� h
(0)

CO2

MCO2

MCH4

� 2h
(0)

H2O

MH2O

MCH4

and (A.81)

hc = h
(0)

CH4
YCH4;u + h

(0)

O2
YO2;u + h

(0)

N2
YN2;u ��H YCH4;u � �cpT0: (A.82)



Appendix B

Numerical model in detail

In this appendix, the numerical model is elaborated. Firstly, some numerical methods

are explained that enhance the numerical procedure. Secondly, non-re
ecting boundary

conditions are derived, using the theory on hyperbolic partial di�erential equations. These

boundary conditions are tested on the Riemann or shock tube problem, from which an

analytical solution is available.

In section B.4, the method of abstracting acoustical data is explained.

B.1 Enhanced numerical procedure

In this section numerical methods are described, which are used frequently to enhance the

procedure described in chapter 3. More details can be found in the thesis of Van 't Hof

[58].

B.1.1 Broyden iteration method

A very good alternative for Newton's method is the Broyden iteration method [40]. This

method uses a sequence of matrices Bk
i with approximations of the inverse of the Jacobian

corresponding to the set of equations in cell i. Each iteration, the matrix Bk
i becomes a

better approximation. This method avoids the direct evaluation of the Jacobian, which is

in general a CPU-expensive job.

We start with an initial guess for B0
i and we update the solution �ki similar to the Newton

method:

�k+1i = �ki � �Bk
i Fi(�

k); (B.1)

where � is a relaxation parameter, and update the matrix Bk+1
i = Bk

i + �B, with:

�B = Bk
i

(�� 1)Fi(�
k
) + Fi(�

k+1
)

kFi(�k)� Fi(�
k+1)k2 (Fi(�

k
)� Fi(�

k+1
))T : (B.2)

111
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MΩ M-1Ω

Figure B.1: A coarse grid 
M�1 is constructed from the �ner grid 
M by removing grid

lines.

This matrix update is obtained by requiring that

(Bk
i + �B)(Fi(�

k
)� Fi(�

k+1
)) = �ki � �k+1i ; (B.3)

so matrix Bk+1
i is an improved approximation of the inverse of the Jacobian. There are

many ways to construct �B. The idea is to change Bk
i as little as possible and it can be

shown that our choice (B.2) is a solution of (B.3) which minimises k�Bk2.

B.1.2 Multi-grid solver

The Gauss Seidel method proposed in section 3.4 is used as a smoother rather than a solver.

In some problems, after a few Gauss-Seidel iteration steps, one notices that the residual

decreases very little. In general, the small scale 
uctuations in the residual are easily

smoothed out, while the large scale 
uctuations maintain. An improvement of convergence

is obtained when using multi-grid methods. For both solving the predictor step (3.20) to

(3.23) and solving the Poisson equation (3.26), the convergence increases drastically. In

the multi-grid procedure, a number of grids is de�ned that are successively coarser. After

a number of Gauss-Seidel steps on a �ne grid, the residual is projected on a coarser grid

and a defect is determined on the coarse grid. The solution on the �ne grid is improved

by the correction of an estimate of the defect. The communication between the grids is

realised by restriction and prolongation operators.

The implementation of the di�erent grids varies between di�erent approaches. The

simplest form is the successive elimination of all even grid lines in a rectangular grid 
M ,

as shown in �gure B.1. The new grid point is de�ned as the average of the four points

on the �ner grid. In this case, one obtains grid 
M�1, in which each grid cell contains

the surface of four grid cells from the �ner grid. In this way we obtain a series of grids


M ;
M�1; : : : ;
1.

In our case the governing equations are nonlinear and the discretisation yields a nonlinear

set of equations on 
M :

FM(�M) = fM : (B.4)

Suppose that after a few iterations a solution �M is obtained, then the defect is de�ned as:

rM = fM � FM(�M): (B.5)
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The correction is solved on 
M�1:

FM�1(�M�1) = FM�1(RM�M)� �rM�1; (B.6)

where RM is the restriction operator, rM�1 is the restricted defect RMrM and � a relaxation

parameter. The approximation �M�1 is used to correct the solution on the �ner grid:

�M := �M + PM�1(�M�1 �RM�M); (B.7)

where PM�1 is the prolongation operator.

The linear Poisson equation (3.26) (in a short notation: Pdp = C) is also solved using the

multi-grid method. The correction �dpM on the �ner grid is calculated from:

PM�dpM = rM ; with rM = CM � PMdpM : (B.8)

By using the restriction operator RM we solve on the coarser grid:

PM�1�dpM�1 = rM�1; (B.9)

such that we can correct the pressure di�erence dpM on the �ner grid:

dpM := dpM + PM�1�dpM�1: (B.10)

B.1.3 Least squares extrapolation in time

The multi-grid scheme as described in the previous section is e�cient, both with respect

to operations and memory use. Still, however, a multi-grid V-cycle is very expensive: it

requires a lot of computational e�ort. Much time can be saved by using the information

of previous time steps to obtain a good approximation of �n before the multi-grid method

is used. De�ning the search vectors snj by:

sn1 = �n�1 � �n�2; sn2 = sn1 � sn�11 ; sn3 = sn2 � sn�12 ; � � � : (B.11)

We introduce nonlinear extrapolation, given by:

�n = �n�1 + [sn1 ; � � � ; snNk
]� +O(�tNk+1); (B.12)

where � is a vector chosen in such a way that the residual is minimised in the two-norm.

The number of search vectors denoted by Nk, is chosen small, e.g. Nk = 3. The vector �

is approximated by the least squares solution of the linearisation of problem:

F (�n) = 0: (B.13)

With the residual function F from (B.13), we can calculate the matrix Mn, given by:

Mn =
�
F (�n�1 + sn1 )� F (�n�1); � � � ; F (�n�1 + snNk

)� F (�n�1)
�
: (B.14)
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Now the vector � is found from:

� = �((Mn)TMn)�1(Mn)TF (�n�1): (B.15)

It must be noted that, if Nk is not small enough, the current extrapolation method becomes

very ine�cient, and su�ers from round-o� errors. Van 't Hof [58] did not encounter these

problems with Nk � 3. In this study, the current form was chosen because it deals with

nonlinearities in a correct way, and because it is very 
exible with respect to the de�nition

of search vectors sj.

B.2 Hyperbolic partial di�erential equations

Consider a set of n quasi-linear �rst-order Partial Di�erential Equations in two independent

variables x 2 
 � R and t. In a short notation, these equations read:

P (x; t; �)
@�

@t
+Q(x; t; �)

@�

@x
= r(x; t; �); (B.16)

with �; r 2 C
n and P;Q 2 C

n�n and suppose that P�1 exists. We may classify this system

of equations following [28] and [60] as:

De�nition B.2.1 The system of equations (B.16) is called

1. strictly hyperbolic when all eigenvalues of P�1Q are real and distinct;

2. strongly hyperbolic when all eigenvalues of P�1Q are real and the matrix is nonsin-

gular;

3. weakly hyperbolic or parabolic when the eigenvalues are real, but the matrix is sin-

gular;

4. elliptic when all eigenvalues are strictly imaginary.

Problems with mixed eigenvalues are not classi�ed, but are present in, for example, the

transport equations for reacting 
ows. In the next subsection we derive the wave-equivalent

of a hyperbolic PDE of the form (B.16).

B.2.1 Characteristics and invariants

We will take a closer look at the strong hyperbolic equations. We write P�1Q = S�S�1

with li the rows of matrix S
�1, i = 1; � � � ; n, and � a diagonal matrix. If we de�ne r̂ = P�1r

we write:

S�1
@�

@t
+ �S�1

@�

@x
= S�1 r̂; (B.17)
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or

li � @�
@t

+ �ili � @�
@x

= li � r̂; i = 1; � � � ; n: (B.18)

If we use w, de�ned as dwi = li � d�� li � r̂dt then (B.18) is written as:

@wi

@t
+ �i

@wi

@x
= 0; i = 1; � � � ; n: (B.19)

We see that the curves dx
dt

= �i are the (basic) characteristics, because wi is constant

along paths x(t) satisfying dx
dt

= �i. The quantities wi are referred to as the characteristic

variables or Riemann variables.

B.2.2 Posing boundary conditions

From the previous section we know the path (and its direction in the x; t-plane) along

which Riemann variables are preserved. Following the ideas of [21, 55], we are able to pose

conditions at the in
ow and out
ow boundaries of our domain. Hedstrom proposed that

the Riemann variables wi of the incoming waves must be prescribed:

@wi

@t
= fi(t): (B.20)

For a `nonre
ective' boundary, we state that the incoming waves are not present or @wi

@t
= 0.

This means that:

li � @�
@t
� li � r̂ = 0; (B.21)

at such a boundary. This results in a boundary condition for the di�erent Riemann vari-

ables with index i:

li � @�
@t

+ gi � li � r̂ = 0; (B.22)

with

gi =

�
�ili � @�@x for outgoing characteristics

0 for incoming characteristics
: (B.23)

In this study we want to simulate sound waves by de�ning a source at one of the boundaries.

We prescribe the Riemann variables belonging to incoming characteristics as: @wi

@t
= fi(t),

with fi(t) a given (harmonic) function. Then wi =constant propagates with the propaga-

tion speed �i into the domain. We have:

li � @�
@t
� li � r̂ = fi(t); (B.24)
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for these incoming characteristics.

In general, we may combine (B.22) and (B.24) as follows:

S�1
@�

@t
+ �S�1

@�

@x
= S�1r + F; (B.25)

at the di�erent boundaries, with � a diagonal matrix de�ned by �ii = �i for the outgoing

characteristics, and �ii = 0 for incoming characteristics. F is a vector containing the

Fi = fi.

B.2.3 Euler equations for one-dimensional reactive 
ows

The boundary conditions are to be situated far from the 
ame where di�usion e�ects can

be neglected and no reactions take place ( _� � 0).

In this case, the transport equations, as formulated in chapter 2 reduce to the Euler

equations:

@�Y

@t
+
@�uY

@x
= 0; (B.26)

@�

@t
+
@�u

@x
= 0; (B.27)

@�u

@t
+
@�u2

@x
+
@p

@x
= 0; (B.28)

@�E

@t
+
@�uH

@x
= 0; (B.29)

p = �RT; (B.30)

where �E = �H � p, H = h + 1
2
u2, E = e + 1

2
u2 and R = Runiv= �M . We now derive a

di�erential equation for � = [Y T; �; u; T ]T by eliminating the pressure using (B.30), where

we have generalised the mass fractions of the species with Y = [Y1; : : : ; YN�1]
T. Then the

system can be written in the form of (B.16):

P (�)
@�

@t
+Q(�)

@�

@x
= ~r(�); (B.31)

with

P =

2
6664

�I Y 0 0

0 1 0 0

0 u � 0

�
�
@e

@~Y

�T
H � RT �u �R


�1

3
7775 ; (B.32)
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and

Q =

2
6664

�uI uY �Y 0

0 u � 0�
@p
@Y

�T
u2 +RT 2�u �RM

�u
�
@h
@Y

�T
Hu �(u2 +H) �ucp

3
7775 ; (B.33)

with I the unity matrix. The eigenvalues of

P�1Q � S�S�1 (B.34)

are �i = �ii = u; � � � ; u; u; u � c and u + c, with c2 = 
p=� de�ned as the speed of

sound. Thus, according to the de�nition B.2.1, we have a strongly hyperbolic system. The

transformation matrices S and S�1 for the Euler equations are given by, respectively:

S =

2
664

I 0 0 0

0 � � �

0 0 �c c

�T
p

�
@p
@Y

�T �T (
 � 1)T (
 � 1)T

3
775 ; (B.35)

and

S�1 =

2
66664

I 0 0 0

� 1
�c2

�
@p
@Y

�T 
�1



1
�

0 � 1

T

1
2�c2

�
@p
@Y

�T 1
2
�

� 1
2c

1
2
T

1
2�c2

�
@p
@Y

�T 1
2
�

1
2c

1
2
T

3
77775 : (B.36)

r equals zero due the assumptions at the boundaries. The eigenvectors of the corresponding

eigenvalues are:

dwi = dYi; (B.37)

dwN = � 1

cp
ds; (B.38)

dwN+1 =
1

2�c2
dp� 1

2c
du; (B.39)

dwN+2 =
1

2�c2
dp+

1

2c
du; (B.40)

where the entropy s is de�ned as Tds = pd(1=�) + cvdT .

These Riemann variables are, in the homogeneous case, the quantities that are preserved

along paths in the x; t-plane with dx=dt = �i.

The boundary conditions are derived from the Riemann variables following section B.2.2.

In case of a source, for example at the left boundary, we prescribe the incoming Riemann

variable wN+2 (corresponding to eigenvalue �N+2 = u+ c) as:

@wi

@t
= fi(t): (B.41)
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open closed

N+2 N+2w w

Figure B.2: Open and closed boundaries

Here, we pose the harmonic input signal:

fN+2(t) = A! cos(!t); (B.42)

with ! the frequency of the signal and A a dimensionless amplitude. Other examples of

boundary conditions are the open and closed ends, which are p0 = 0 and u0 = 0, respectively.

We can construct those boundary conditions from the Riemann variables. Figure B.2 shows

the two cases. For a closed end we pose that the amplitude of the outgoing sound waves

is equal to the amplitude of the incoming waves, or,

@wN+2

@t
=
@wN+1

@t
: (B.43)

For an open end we pose that the incoming waves are of the same amplitude as the outgoing

wave, with opposite sign:

@wN+2

@t
= �@wN+1

@t
: (B.44)

In the same way we can de�ne half-re
ecting/half-open ends by introducing re
ection

coe�cients.

B.3 Exact solution of Riemann problem

The shock tube or Riemann problem has an exact solution to the full set of one-dimensional

Euler equations containing a shock wave, a contact discontinuity and an expansion wave.

The initial conditions are the following:

u = uL; p = pL; c = cL; for x < 0; t < 0;

u = uR; p = pR; c = cR; for x > 0; t < 0; (B.45)

where pR < pL and the membrane is located at x = 0. We will assume that the regions

contain the same gas at the same temperature.

At time t = 0 the membrane is removed from the tube and a pressure discontinuity
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Figure B.3: Solution in x; t-plane of the Riemann problem, wherein the grey area is the

expansion wave. The thin lines are the characteristics C0;C+ and C�, along which the

corresponding Riemann variables are constant.

propagates to the right, and simultaneously, an expansion wave propagates to the left.

In addition, a contact discontinuity that separates the two gas regions propagates to the

right in the tube. This is illustrated in �gure B.3, which also shows the characteristics

describing the path along which information is transported (see section B.2.1). We will

distinguish four regions: region R contains the undisturbed gas at low pressure. It is

separated by a shock wave from region 1 which represents the disturbed low-pressure gas.

The contact discontinuity separates the disturbed high-pressure region 2, which in turn has

been disturbed by an expansion wave W propagating to the left into the undisturbed high-

pressure region L. The velocities of the discontinuities are constant since they propagate

in a uniform gas.

The shock between regions R and 1 holds the normal shock relations. One has, as function

of the pressure ratio P � p1=pR:

�1

�R
=

1 + �P

� + P
; with � =


 + 1


 � 1
; (B.46)

M =
C � uR

cR
= (1 + �P )

1

2

r

 � 1

2

; (B.47)

u1 � uR

cR
= (P � 1)

1


M
; (B.48)

and

c21
c2R

= P
� + P

1 + �P
: (B.49)
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The quantity C is the propagation speed of the shock in region R andM the Mach number.

The contact discontinuity allows a density change but the pressure and velocity are con-

tinuous. Therefore, the contact discontinuity propagates with a velocity equal to u1. Over

the discontinuity the jump conditions

p2 = p1; u2 = u1; (B.50)

have to be satis�ed.

The expansion wave is formed by the characteristics with slope u � c and information

between the regions L and 1 is transported along the C+ and C0 characteristics. Along C0

the entropy is constant or

pL

�


L

=
p2

�


2

(B.51)

using the isentropic relation. Along C+ the Riemann variable


 � 1

2
uL + cL =


 � 1

2
u2 + c2 (B.52)

is constant.

From (B.52), we obtain a relation between u1 and p1:

u1 � uL =
2


 � 1
cL

"
1�

�
p1

pL

� 
�1

2


#
; (B.53)

using the conditions for the contact discontinuity (B.50), (B.51), and the isentropic relation

c2

cL
=

�
�2

�L

� 
�1

2

: (B.54)

Elimination of u1 in equation (B.53) by using the shock relations (B.47) and (B.48) leads

to an implicit relation for the pressure ratio P :r

 � 1

2


P � 1

(1 + �P )1=2
=
cL

cR

"
1�

�
P
pR

pL

� 
�1
2


#
+
uL � uR

cR
: (B.55)

Finally, the continuous evolution of the variables in the expansion wave has to be deter-

mined. The information from the left region is transported along the characteristics C0

and C+, which means that

pW

�W




=
pL

�L




; (B.56)

and


 � 1

2
uW + cW =


 � 1

2
uL + cL: (B.57)
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In addition, the expansion wave is constructed by the C� characteristics with dx=dt =

uW � cW. By eliminating cW using (B.57) each characteristic is de�ned by:

dx

dt
=

 + 1

2
uW � cL � 
 � 1

2
uL: (B.58)

Using that the Riemann variable 1
2
(
 � 1)uW � cW is constant along the characteristics,

(B.58) can be integrated. In region W, the velocity uW, speed of sound cW and pressure

pW become:

uW =
2


 + 1

�
x

t
+ cL +


 � 1

2
uL

�
; (B.59)

cW = uW � x

t
; (B.60)

pW = pL

�
cW

cL

� 2



�1

(B.61)

for

 + 1

2
uL � cL � 
 � 1

2
uL <

x

t
<

 + 1

2
u1 � cL � 
 � 1

2
uL:

By calculating the pressure ratio P all quantities are determined. The temperature can be

determined by using the perfect gas law p = �RT , where R is the gas constant. In �gure 3.6

in section 3.5.1, the pressure distribution at a certain time is shown. The temperature,

density and velocity are shown at a time t = 6 � 10�3 sec after removing the membrane

in �gures B.4 to B.6, respectively. As in �gure 3.6, the discontinuities are smoothened by

arti�cial di�usion.

B.4 Obtaining acoustical data

In the study of the acoustics in a burner/
ame system, frequency dependent results must

be obtained from the simulations, where the 
ame is perturbed with an external sinusoidal

source.

One way to proceed is to do one simulation for each frequency. This procedure is time

consuming. Instead of using one frequency at a time, we can use broad-band signals. These

signals contain a broad spectrum of frequencies. Examples of these signals are shown in

�gure B.7: block and sweep signals. Another example is noise, which mostly contains high

frequency signals. However, high frequency simulations need even more time and spatial

resolution, so noise is not useful in this study. The block signal is of greatest interest, be-

cause it is easy to implement, and analytically, the spectrum contains all frequencies. The

sweep has also a wide range spectrum. The signal is a sinusoidal wave, with the frequency

varying in time. The simplest form of frequency change is a linear function that varies

the frequency from a low frequency to a high frequency. This input signal is also used in

practical burner applications, in which the response of real life devices is determined.
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Figure B.4: Temperature pro�le in the tube from the numerical simulation (solid line),

compared with the exact solution (dashed line) at t = 6� 10�3 s.
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Figure B.5: Density pro�le in the tube from the numerical simulation (solid line), compared

with the exact solution (dashed line) at t = 6� 10�3 s.
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Figure B.6: Flow velocity in the tube from the numerical simulation (solid line), compared

with the exact solution (dashed line) at t = 6� 10�3 s.
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Figure B.7: Examples of broad-band signals: (a) sweep, (b) block signal.
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In the case of a linear response the input signal and the output signals are processed using

standard discrete Fourier transforms. From the simulations the input and output signals

are sampled in time. The frequency dependent response is simply the division of the dis-

crete Fourier transforms of the samples of the output signal and the samples of the input

signal.



Appendix C

Other analytical models

Numerous investigations have been performed on heat-driven and combustion-driven 
ames.

An extensive review can be found in [44].

In early theoretical studies on burner/
ame systems, the 
ame response was based on sim-

ple phenomenological models. The response was looked upon as a source of heat, which

is related to the mass 
ow input. Section C.1 gives an example of an investigation that

treats the 
ame, when placed inside a tube, as a black box. The more fundamental theory

is given in section C.2. This theory considers the species and 
ow equations to describe

the 
ame/burner system in detail.

C.1 Analytical model by Dowling

The method to determine resonance frequencies used by Dowling [14], considers the exact

pro�les for the acoustic �eld inside a tube system (see �gure C.1) with and without a mean


ow. Dowling's aim was to investigate the e�ects of mean 
ow, drag inside the heating

element, and heat input distributed over a �nite length, on the frequency of the thermoa-

coustic oscillation. Another focus of investigation was the e�ect of the form of coupling

between the heat input and the unsteady 
ow.

An unsteady heat source is placed at a single plane x = b, across which the mean tempera-

ture jumps from �T1 to �T2. The inhomogeneous wave equation which describes the pressure

222 cρT

x=lx=0

Q’(t)rate of heat input per unit area

x=b

2ρ uu 1111 cT

Figure C.1: The tube with closed and open ends used by Dowling.

125
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perturbation generated by an unsteady heat input q0(x; t) is given by [14]:

1

�c2
@2p0

@t2
� ��r �

�
1

��
rp0

�
=

 � 1

�c2

�
@q0

@t

�
: (C.1)

It is assumed that the unsteady heat input is concentrated at the plane x = b, and described

by q0(x; t) = Q0(t)�(x � b), where � denotes the Dirac �-function. On both sides of the

plane two di�erent states are present, each with a di�erent temperature, density and speed

of sound. The solution on both sides is described by equations (A.65) and (A.67), and an

additional jump condition over the plane x = b is derived, which relates the heat input to

the acoustic �eld. This basically is the transfer matrix of the heat input zone.

The acoustic modes in the system satisfy an implicit dispersion relation. Dowling uses

one-dimensional Green's functions to obtain this relation. The Green's function, denoted

as G(xjx0), satis�es the harmonic pulse response of the wave equation,

���c2
d

dx

�
1

��

dG

dx

�
+ !2G = ��cp(
 � 1)�(x� x0); (C.2)

and the boundary conditions. G(xjx0) is derived by adding Heaviside functions to the

solution of the homogeneous equation.

Writing q0(x; t) = q̂(x) exp(i!t), the solution of equation (C.1) is then given by p(x; t) =

p̂(x) exp(i!t), where

p̂(x) =
i!

�cp

Z
G(xjx0)q̂(x0) dx0: (C.3)

For q̂(x0) = Q̂�(x0 � b), we have:

p̂(0) = i!Q̂G(0jb); (C.4)

with

G(0jb) = ��c1�c2

!

sin(�)
�T1�c2 sin(�) sin(�)� �T2�c1 cos(�) cos(�)

; (C.5)

� =
!b

�c1
; � =

!(l � b)

�c2
: (C.6)

In summary, a Green's function can be a useful tool in the investigation of thermoacoustic

oscillations as well. However, it is not su�cient to simply investigate the Green's function

alone. Also, the form of the coupling between the heat input and the 
ow should be

considered. Thermoacoustic instability mostly involves coupling between the heat input

and the 
ow. The unsteady heat input occurs as a response to 
uctuations in the pressure.

This can be expressed in the phenomenological form:

Q̂ = Z(!)p̂(0); (C.7)



C.2. ANALYTICAL MODEL BY MCINTOSH & CLARK 127
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acoustic zonepreheat zone

(1980, 1984b)

acoustic zone equilibrium zone

combustion zone

1982, Appendix 1986b

flame holder

Appendix B 1985Appendix A 1985

Figure C.2: The areas of the con�guration, which are used in the papers by McIntosh et al.

on the stability of burner-stabilised premixed 
ames. The �gures correspond to the year of

the published paper that investigates the stability of or provides relations for a particular

part of the con�guration.

for some function Z(!). Substituted in equation (C.4) leads to:

p̂(0)[1� i!Z(!)G(0jb)] = 0: (C.8)

The frequency ! satisfying (C.8) are the resonance frequencies of the system.

If the heat input responds to the 
ow, the oscillation frequency is shifted in comparison to

the frequencies obtained by assuming a speci�ed source.

Dowling shows that mean 
ow e�ects are found to be signi�cant. With a mean stagnation

temperature rise �T2= �T1 of a factor six, the frequency of thermoacoustic oscillations for an

inlet Mach number of 0:15 can be reduced to half its value with no mean 
ow. The results

also show that for Mach numbers lower than 0:05 the mean 
ow e�ects are negligible. For


ows used in this thesis the mean 
ow Mach number is of order O(10�4) (see also the

validation of the low-Mach number assumption in section 3.5.3).

The drag force exerted by a grid or 
ame holder with a blockage ratio of 50% or less is

found to have a negligible e�ect on the frequency of thermoacoustic oscillations for Mach

numbers less than 0.1. In the calculations on the two-dimensional slit-burner con�guration

in this thesis, the blockage ratio is 33%. This means that no drag force e�ects are expected

in our case.

C.2 Analytical model by McIntosh & Clark

Figure C.2 shows the way the one-dimensional domain for a burner-stabilised one-dimensional


ame is divided in the work done by McIntosh & Clark. Five zones are distinguished. Two

acoustic zones far up- and downstream, the pre-heat zone, the combustion zone and the

equilibrium zone. The dashed line in �gure C.2 is the burner plate or 
ame holder, on

which the 
ame stabilises. Staying in the context of transfer functions, McIntosh & Clark
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derived relations that connect the 
uctuating quantities in up- and downstream regions. In

�gure C.2 the references can be found, where these relations are derived and investigated.

In 1980 (Clark et al. [6]), the static stability of the one-dimensional 
ame is analysed.

They introduced Large Activation Energy Asymptotics (LAEA) to solve the stationary


ame equations. The asymptotic analysis shows that the length of the combustion zone is

O(��1) compared to the 
ame zone, which is O(��1). � is the dimensionless activation

energy. In 1982, McIntosh et al. [38] studied the response of the 
ame on mass 
ow and

gas composition variations. The resulting equations showed that O(1) changes in either

mass 
ux or composition produce similar (i.e. O(1)) changes in 
ame position, but very

small changes (i.e. O(��1)) in 
ame temperature. The results reveal `peak frequencies' for

which the oscillations (i.e. response) are at a maximum. Furthermore, near these peaks

the phase of the oscillations is rapidly changing with frequency, and the peak frequency lies

close to the frequencies where the phase di�erence between the temperature oscillations

and inlet velocity 
uctuations is �=2. This is also the case for the response of the mass

burning velocity (see �gure 4.3 in our model).

In 1984 (McIntosh & Clark [39]), a second-order model in ��1 is derived, and in the same

year, results of this model are used for studying the one-dimensional burner-stabilised


ame placed in an acoustic �eld. A transfer function for the velocity 
uctuations is de-

rived. Using this relation, the stability of a 
ame placed in a tube with in�nite length was

investigated (McIntosh [31]).

In the 1985 paper [32], McIntosh studied the cellular instability of stabilised 
ames. This

investigation extended the theory to two-dimensional problems. Jump conditions for the

quantities through the combustion zone are derived. Also, the e�ect of the burner on

the acoustic �eld is given. It is assumed that, within the burner material, the 
ow obeys

Darcy's law, which links the pressure gradient with the 
ow velocity.

In 1986 and 1987 (McIntosh [33, 34]) the one-dimensional 
ame is placed in a tube with

�nite upstream length. The stability analysis takes into account acoustic forcing and feed-

back. The appendix of the 1986 paper gives a clear derivation of the transfer function for

the velocity 
uctuations.

Finally, recent papers (McIntosh [35] and McIntosh et al. [37]) applied the theory to the

Rijke tube con�gurations and compared them with experiments.

Although the work of Clark & McIntosh largely covers the acoustic description of burner-

stabilised one-dimensional 
ames, it is theoretically complex and not easily understood.

The model presented in this thesis is based on assumptions that simplify the relations

considerably. A summary of the di�erences and the resulting transfer function is given

below.

McIntosh's theory is applicable for arbitrary Lewis numbers. The model in this thesis

assumes unit Lewis numbers. Derivation of an extension of our model to arbitrary Lewis

numbers is not easy, because the enthalpy equation cannot be easily solved for non-unit

Lewis numbers. The di�usion of the mass fraction enters the equation, which couples the

species equation to the enthalpy equation. For this reason, the enthalpy 
uctuations are

dependent on the mass fraction variations in the entire domain (pre-heat, combustion, and

equilibrium zones).
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McIntosh switches to the density-weighted coordinate x1 in the same way as done in this

thesis (cf. section 4.2.2). As mentioned above, the equations are linearised provided that

the order of perturbations � satis�es:

��1 � ��Ma2: (C.9)

In this thesis, the in�nitely thin combustion zone assumption can be interpreted as taking a

very large activation energy. This is applied in the analysis before linearisation. McIntosh

linearises before applying LAEA. In his paper [39] he argued that O(�2) terms should be

included in case of linearising afterwards. Furthermore, this method can then be valid for

� within a fairly tight band:

1� �� ��1=2: (C.10)

After linearisation, McIntosh applies the Combustion Approximation on the equations.

The values and gradients in the burner/
ame region and the acoustic zones are matched

up to leading-order terms, following the principles of matched asymptotic expansions, as

in this thesis.

The resulting equations are solved for harmonic solutions. In the acoustic zones the classic

acoustic solution is obtained, and the linear solutions in the burner/
ame region eventually

gives, by using the jump conditions, the relation connecting the 
uctuating velocities:

u0b = �
1

T01
Vu0u; (C.11)

where u0u and u0b are the upstream and downstream 
uctuating velocities, respectively.

T01 = �Tu= �Tb is the ratio of the cold upstream temperature to the initial 
ame tempera-

ture, and V is the transfer function. For unit-Lewis numbers this transfer function yields

(McIntosh [37]):

V � �T01 �
(1� T01)

�
1
2
+ r
�
exp

�� �1
2
+ r
�
x1;f
�

2T01

�
r exp(�2x1;f) + w

�(1�T01)

� ; r =

r
w +

1

4
; (C.12)

where x1;f is the steady dimensionless 
ame stand-o� distance or adiabaticity, given by:

x1;f = ln

�
Tad � �Tu

Tad � �Tb

�
; (C.13)

w being the dimensionless complex dimensionless frequency:

w = i!
D

�u2u
; (C.14)

where D is the species mass di�usion coe�cient at the cold inlet. A complex equation for

the ampli�cation of the acoustic pressure was obtained by relating equations describing
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emitted and incident upstream and emitted downstream waves through the transfer func-

tion. From this equation, the e�ect of a �nite upstream tube length was predicted.

An example of the application of this transfer function in a stability analysis is studied

in McIntosh et al. [37]. In this paper, the stability of two Rijke tube con�gurations is

investigated. The �rst one is the Rijke tube model with acoustical open ends (see �g-

ure 1.2). When the wave equations and the open tube conditions are applied along with

the velocity transfer function and a jump condition that takes into account the e�ect of

the 
ame holder on the acoustic �eld, the following frequency condition emerges:

V cosh(!l1)
sinh(!l1)

�
p
T01

cosh(!l2
p
T01)

sinh(!l2
p
T01)

+
p
T01Zg

cosh(!l1) cosh(!l2
p
T01)

sinh(!l1) sinh(!l2
p
T01)

= 0; (C.15)

where Zg is the impedance of the 
ame holder (cf. equation (A.73)):

p02 � p01 = 
Zgu
0

1: (C.16)

In a good approximation Zg � iXg, Xg being a measure for the blockage in the tube.

The Rayleigh criterion (1.1) is satis�ed for this type of burner when [36]:

phase(V) � cot

�
Im(V)
Re(V)

�
> 0: (C.17)

Results show that the loci of phase(V) = 0 match exactly with the loci of Re(!) = 0 when

the frequency is plotted against the adiabaticity. This indicates that the criterion (C.17)

is applicable to a wide range of Rijke tube con�gurations, such as the simple con�guration

as used by Dowling (see �gure C.1).

When the upstream end of the tube is acoustically closed, then the equivalent condition

(C.15) is given by:

V �
p
T01

cosh(!l1) cosh(!l2
p
T01)

sinh(!l1) sinh(!l2
p
T01)

+
p
T01Zg

cosh(!l2
p
T01)

sinh(!l2
p
T01)

= 0: (C.18)

The Rayleigh criterion (C.17) is still the criterion for resonance, so the global signi�cance

of the frequency-adiabaticity plot is unchanged in this case as well. Thus, as long as the

adiabaticity is known, one can predict whether a certain frequency will be resonant or

not. The dependence on the activation energy is not very signi�cant, so the chemistry of

the combustion is not very crucial in these results. E�ectively, for a given frequency the

resonance prediction is only dependent on the amount of heat loss. In order to get an

estimate of the frequency of oscillation, it is necessary to consider the complete solution

of equations (C.15) or (C.18). Results show a good comparison with experimental results,

where Xg = 0 was taken in the model [37].



Appendix D

An analytical two-dimensional model

A theoretical model for almost 
at 
ames is presented in this appendix.

In y-direction the solution is periodical (one period is the pitch between two perforations

as shown in �gure D.1) and the 
ow 
uctuations are harmonic. Like in the one-dimensional

situation, the entire mass fraction pro�le is assumed to be rigid and moves in x-direction

only. The presence of the plate does not change the pro�le in time, or equivalently the

plate is thin enough that gas di�uses to the unburnt gas easily. In x-direction density-

weighted coordinates are used. Furthermore, some assumptions of constant velocity and

density are made to be able to obtain analytical solutions. Also the approximations of

constant heat capacity cp = �cp and constant �� are made. The following two-dimensional

model will prove that under some strict assumptions (two-dimensional) 
at 
ames can be

approximated by one-dimensional 
ames.

We start with the formulation of the two-dimensional enthalpy equation:

�
@J

@t
+ �u

@J

@x
+ �v

@J

@y
� @

@x

�
�

cp

@J

@x

�
� @

@y

�
�

cp

@J

@y

�
= 0: (D.1)

The new coordinate system is:

 (x; y; t) =
1

��u

Z x

0

�(x0; y; t) dx0; (D.2)

�(x; y; t) = y; (D.3)

�(x; y; t) = t: (D.4)

We obtain the transformed derivatives:

@

@x
=

1

��u
�
@

@ 
; (D.5)

@

@y
=

1

��u

Z x

0

@�

@y
dx0

@

@ 
+

@

@�
; (D.6)
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Figure D.1: Perforated plate with diameter d and pitch p.

@

@t
= � 1

��u
(�u(x; y; t)� �u(0; y; t))

@

@ 

� 1

��u

Z x

0

@

@y
(�v) dx0

@

@ 
+

@

@�
:

(D.7)

In short notation, using

H =

Z x

0

@�

@y
dx0 and W =

1

��u

Z x

0

@

@y
(�v) dx0; (D.8)

the enthalpy equation (D.1) is written as:

��u
@J

@�
+ (W + �u(0; �; �))

@J

@ 
+ �v

�
H

@

@ 
+

@

@�

�
J �

��u

�cp

@2J

@ 2

� ��u

�

1

�cp

�
H

@

@ 
+

@

@�

�
�

�
H

@

@ 
+

@

@�

�
J = 0:

(D.9)

With the assumption that � (as well as �) is constant in the y-direction, v is approximately

zero (H, W , and @ �J=@y are zero), a di�erential equation for the enthalpy 
uctuations can

be derived. Linearisation gives:

��u
@J 0

@�
+ ���u(0; �)

@J 0

@ 
�

��u

�cp

@2J 0

@ 2
�

��u

�cp

@2J 0

@�2
= 0: (D.10)

We recognise the one-dimensional enthalpy equation with an additional second-order deriva-

tive, which dissipates the enthalpy waves in �-direction. By using the periodical nature

(period p, where p is the pitch of a slit) of the problem, we construct a solution J 0 of

(D.10), which has the form:

J 0( ; �; �) = exp(!�)Ĵ( ; �) = exp(!�)

1X
n=�1

Ĵn( ) exp

�
2�n�i

p

�
; (D.11)
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or identically,

J 0( ; �; �) = exp(!�)

"
Ĵ0( ) + 2

1X
n=1

Ĵn( ) cos

�
2�n�

p

�#
: (D.12)

The easiest way to proceed is using (D.11) to determine the di�erential equations for each

Ĵn:

!��uĴn + ���u(0; �)
@Ĵn

@ 
�

��u

�cp

@2Ĵn

@ 2
+

��u

�cp
Ĵn

�
2�n

p

�2

= 0; (D.13)

These equations need boundary conditions at  = 0, like in the one-dimensional case. This

boundary condition is also a sum of harmonic functions:

Ĵ2D(�) = Ĵ(0; �) =

1X
n=�1

Ĵn(0) exp

�
2�n�i

p

�
: (D.14)

In this model we assume that the mass fraction pro�le is one-dimensional, so movement

of the pro�le will cause an enthalpy 
uctuation at the burner plate. In the true one-

dimensional case, these 
uctuations will take place where the temperature is �xed. In a

slit-burner these e�ects only take place at the walls, and mainly at the out
ow side of the

burner plate. We assume that all heat is lost through this wall and that the heat that is

lost through the wall inside the burner plate is negligible. If the slit has a diameter d, the

total amount of heat at the out
ow wall is a factor p=(p� d) higher than in the case that

the 
ame could lose its heat over the entire pitch width.

As in the one-dimensional model, the 
ame position  f(�) is related to the enthalpy 
uctua-

tions (or temperature 
uctuations) at the 
ame front. The model assumes that 
uctuation

appears at the out
ow side of the burner plate only:

Ĵ2D(�) = F̂ 1[d=2;p=2](�); (D.15)

with the block function de�ned as

1[d=2;p=2](�) =

�
1 if � 2 [d=2; p=2]

0 elsewhere;
(D.16)

and F̂ the Fourier components of a homogeneous boundary condition (is independent on

�). This is a strong condition, because the heat loss varies over the burner plate.

The integral of Ĵ2D(�) over the burner plate, in particular in the limit p! 0, results in the

one-dimensional boundary condition (which is notated as Ĵ1D). We must have:

2

p

Z p=2

0

Ĵ2D(�) d� =
2

p

Z p=2

0

F̂ d� = Ĵ1D: (D.17)
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This implies that:

F̂ =
p

p� d
Ĵ1D; (D.18)

which means that it is assumed that all heat loss is concentrated on this boundary.

The boundary condition for Ĵ is written as a sum over the Fourier components Ĵn(0):

Ĵ2D(�) =
p� d

p
F̂ � 2

�

1X
n=1

1

n
sin

�
n�d

p

�
cos

�
2n��

p

�
F̂ : (D.19)

The two-dimensional boundary condition J2D is then determined by considering the move-

ment of the rigid two-dimensional mass fraction pro�le (it is also assumed to be independent

in �-direction).

With the boundary conditions and di�erential equations we construct the solution. For

each mode we have:

Ĵn( ) = Ĵn(0) exp

0
@  

2�

8<
:1�

vuut1 + 4

"
!̂ + �2

�
2n�

p

�2
#9=
;
1
A ; (D.20)

with Ĵn(0; �) the terms appearing in (D.19). The total solution reads:

Ĵ( ; �) =
p� d

p
exp

�
 

2�
(1�

p
1 + 4!̂)

�
F̂

� 2

�

1X
n=1

1

n
sin

�
n�d

p

�
cos

�
2n��

p

�

� exp

0
@  

2�

8<
:1�

vuut1 + 4

"
!̂ + �2

�
2n�

p

�2
#9=
;
1
A F̂ :

(D.21)

From (D.21), we exactly know how the enthalpy 
uctuations, induced by the (one-dimensional)

mass fraction pro�le, propagate towards the 
ame front. The mass fraction is a one-

dimensional quantity, so a homogeneous stand-o� distance is de�ned as in a one-dimensional


ame. The global 
uctuation at the 
ame front  0f is related to the average 
ame temper-

ature 
uctuations. This is the integral of the enthalpy at  = � f , where Y = 0, divided by

half the pitch p:

2

p

Z p=2

0

Ĵ( � f ; �) d� = Ĵ1D; (D.22)

which is equal to the result of the one-dimensional case.

The conclusion from this is that under the strict assumptions made, the model indicates

that a burner-stabilised 
ame with half the pitch p and diameter d induces enthalpy 
uc-

tuations at the 
ame front that are a factor (p � d)=p of the one-dimensional case. This
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is true for each p, provided that p=d is constant. So perforations have a damping e�ect in

the entire frequency domain.

The di�usive term in the �-direction causes the enthalpy to 
uctuate at the 
ame front in

the centre of the slit, but with lower amplitudes. The overall 
uctuation is determined by

integrating over the 
ame front. This relation is then used to determine the mass burning

rate 
uctuations and the 
ame velocity. Integration of (D.21) over the 
ame front cancels

out all higher modes (n > 0) terms and we obtain the true one-dimensional enthalpy 
uc-

tuation distribution at the 
ame front again. This result is not dependent on p.

The complete analysis in chapter 5 showed remarkable phase di�erences between the one-

and two-dimensional model. So, apparently some of the assumptions made on the way

heat is transferred to the burner are too strong. In future research, the two-dimensional

in
uences need to be analysed further.
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Summary

Central heating devices are equipped with modulating burners. These devices are some-

times unstable and give rise to noise problems. In order to predict instabilities, TNO-TPD

developed a tool based on the transfer matrix method wherein the acoustic system is one-

dimensional and divided into acoustic elements. Each element couples the pressure and

velocity 
uctuations on both sides. In this thesis, the element for the burner/
ame is

investigated numerically and theoretically. The burner is a perforated plate, which can be

looked upon as a one-dimensional con�guration if the diameter of the perforations is small

enough. An important question is how small the diameter must be to guarantee this.

In chapter 1, an introduction to thermoacoustics is given. For example, the Rijke tube is a

well-known con�guration, where heat is added to the gas by a heated gauze. If this gauze

is placed in the lower half of the vertical tube, the sound is sustained. This phenomenon is

explained by the memory e�ect of the boundary layers at the gauze. The Rayleigh-criterion

states that a phase shift exists between the pressure and heat transfer in such a way that

acoustic energy is added to the �eld. A burner-stabilised 
ame shows similar phenomena

as the heated gauze. In a 
ame heat is released by the chemical reaction, but heat is

lost to the burner. There exists a phase di�erence between the net heat and the pressure


uctuations via mass 
ow variations. Also 
ame resonance may occur in the burner/
ame.

Under circumstances, the 
ame ampli�es sound waves up to levels above the normal gas

expansion factor, due to the temperature di�erence.

In chapter 2, the governing equations are presented. This model describes reacting 
ows

by transport equations and thermodynamic relations. These equations are simpli�ed by

the low-Mach number Combustion Approximation. Also, the burner-plate con�guration is

de�ned, together with an approximation of the 
ow through a porous burner. The acous-

tics in the central heating device can be described by the one-dimensional wave equation.

This equation is the basis of the transfer matrix method, which is explained at the end of

chapter 2.

Chapter 3 describes the numerical method. Due to the Combustion Approximation, the

density can be eliminated from the system, which yields an expansion equation. Numeri-

cally, this equation cannot be solved easily. A pressure correction method is applied to the

set of discretised equations. To solve this set e�ciently, multi-grid, time-extrapolations and

Broyden iteration methods are implemented. In principle, one method su�ces for the one-

and two-dimensional simulations, but in the one-dimensional case, the iteration matrix is

tri-diagonal and the pressure is uncoupled completely, which means that the equations can
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be solved very e�ciently by using an essentially di�erent method.

In chapter 4, phenomena like 
ame resonance are explained by an analytical model. The

basis of this model is that the motion of the 
ame, e.g. the mass fraction pro�le, is de-

scribed by the G-equation. The 
ame is assumed rigid and moves with a 
ame velocity,

which is the di�erence between the gas velocity and the mass burning velocity. When

the 
ame moves, the enthalpy 
uctuations emerge at the burner plate. These 
uctuations

propagate towards the 
ame, which result in temperature 
uctuations at the 
ame front.

Here, the 
uctuations in
uence the amount of fuel being burnt, because the mass burning

rate is directly coupled to the temperature via the Zeldovich number. If a phase di�erence

between the enthalpy 
uctuations and the 
ame velocity exists the movement might am-

plify itself, causing 
ame resonance. This movement can also occur spontaneously, which

is called 
ame instability. Both the response on 
uctuating mass 
ow and spontaneous

oscillations are investigated.

Chapter 5 is a numerical analysis of the two-dimensional 
at 
ames. The diameter of the

perforations in the plate is an important parameter. The limit of the diameter to zero

is believed to render the one-dimensional acoustic response of burner-stabilised 
ames,

which is shown in this chapter. Below a certain diameter, geometrically, the 
ame can

be considered as 
at. However acoustically, a damping e�ect can be observed indirectly.

The resonance peak found in the one-dimensional simulations are higher than in the two-

dimensional case. The gas inside the burner cannot be cooled ideally, so the 
ame stabilises

closer to the burner. However, this does not explain all observed di�erences. The lower res-

onance peak is probably related to the lower magnitude of the enthalpy 
uctuations at the

perforated plate. From time dependent simulations it is shown that enthalpy 
uctuations

are highest at the centre of the plate segments. The 
uctuations at the walls inside the

burner do not contribute to the total enthalpy 
uctuations. When the diameter decreases,

all heat at the centre of the 
ow can be transferred more easily and the maximum distance

of the 
ame front to the walls of the burner becomes smaller.

In chapter 6, the response of the burner/
ame on acoustic 
uctuations is used to determine

the stability of a simpli�ed heating device. The in
uence of burner surface temperature

on the acoustic behaviour is investigated. Many noise problems in practical burners occur

at start-up, when the burner is cold, and disappear when normal burner surface temper-

atures are reached. However, the results show that the simpli�ed system do not resolve

the observed problems occurring in real central heating systems. Our analysis con�rms

the important role of burner surface temperature in the acoustic behaviour of the heating

device, but should be investigated further at di�erent systems before recommendations for

practical burner design can be made.



Samenvatting

Centrale verwarmingsketels zijn vervaardigd met traploos instelbare branders. In som-

mige gevallen zijn deze systemen instabiel en kunnen geluidsproblemen optreden. Om

deze instabiliteiten te voorspellen heeft TNO-TPD een computer programma ontwikkeld

dat gebaseerd is op de overdrachtsmatrixmethode. In dit model wordt de akoestiek als

eendimensionaal beschouwd en het systeem wordt verdeeld in akoestische elementen. Elk

element koppelt de druk- en snelheids
uctuaties aan beide uiteinden. In dit proefschrift

wordt het element voor de brander/vlam theoretisch en numeriek onderzocht. De brander

is een geperforeerde plaat die als een eendimensionale con�guratie beschouwd mag worden

als de diameter van de perforaties klein genoeg zijn. Het is belangrijk te weten hoe klein

de diameter moet zijn.

In hoofdstuk 1 wordt er een inleiding gegeven over thermo-akoestiek. Als voorbeeld wordt

de Rijke-buis genoemd. In deze buis wordt warmte afgegeven aan het gas door een ver-

warmd gaasje. Als dit gaasje op een kwart aan de onderkant van de de buis wordt geplaatst,

zal er een aanhoudende toon hoorbaar zijn. Dit fenomeen wordt uitgelegd aan de hand

van een geheugen e�ect van de grenslagen in de stroming door het gaasje. Het Rayleigh-

criterium zegt dat er een bepaalde fasedraaiing tussen de druk en de warmteafgifte bestaat,

zodanig dat akoestische energie toegevoegd wordt aan het gas. Voor een brander/vlam in

een buis vertoont een vergelijkbare akoestisch gedrag. In een vlam wordt het gas opge-

warmd door verbranding en gekoeld door warmteverlies aan de brander. Onder bepaalde

omstandigheden versterkt de vlam geluid bovenop de normale gas expansie door tempera-

tuursverschillen.

In hoofdstuk 2 wordt het theoretische model gepresenteerd. Dit model beschrijft het rea-

gerende mengsel met transportvergelijkingen en thermo-dynamische relaties. Deze verge-

lijkingen kunnen worden vereenvoudigd door gebruik te maken van het lage Mach getal.

Hier wordt tevens de geometrie van de poreuze brander en de stroming door deze brander

beschreven. De akoestiek wordt beschreven door de eendimensionale golfvergelijking. Deze

vergelijking is de basis van de overdrachtmatrixmethode die uitgelegd wordt aan het eind

van dit hoofdstuk.

Hoofdstuk 3 beschrijft het numerieke model. Door de lage-Machgetal benadering kan de

dichtheid ge�elimineerd worden en de continu��teitsvergelijking wordt een expansievergelij-

king. Numeriek kan deze vergelijking niet eenvoudig opgelost worden. Een drukcorrec-

tiemethode wordt toegepast op de vergelijkingen en onder andere een multi-grid methode

helpt bij het iteratief oplossen ervan. In principe kan �e�en code ontwikkeld worden om
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een- en meerdimensionale problemen op te lossen, maar door gebruik te maken van de tri-

diagonale iteratie matrix en ontkoppeling van de druk kan het eendimensionale probleem

op een andere manier zeer e�ci�ent opgelost worden.

In hoofdstuk 4 worden fenomenen, zoals resonantie, uitgelegd aan de hand van een theo-

retisch model. De basis van dit model is dat de beweging van de vlam, in het bijzonder

het massafractie pro�el, beschreven wordt door de G-vergelijking. Er wordt verondersteld

dat de vlam star beweegt. Wanneer de vlam beweegt ontstaan enthalpie
uctuaties aan de

uitlaat van de brander. Deze 
uctuaties verplaatsen zich naar de vlam, welke tempera-

tuur
uctuaties veroorzaken in het vlamfront. Hier be��nvloeden de 
uctuaties de verbran-

ding. Als er een fasedraaiing bestaat tussen de enthalpiegolven en de vlamsnelheid, dan

is het mogelijk dat de vlam deze beweging versterkt en vlamresonantie veroorzaakt. Deze

versterkte vlambewegingen kunnen ook spontaan optreden, dat vlaminstabiliteit wordt ge-

noemd. Resonantie en vlaminstabiliteiten worden aan de hand van het model onderzocht.

Hoofdstuk 5 is een numerieke analyse van tweedimensionale vlakke vlammen. De diame-

ter van de perforaties in de branderplaat is een belangrijke parameter. Onderzocht moet

worden of de limiet van de diameter naar nul de eendimensionale brander-gestabiliseerde

vlammen vertaalt. De stationaire limiet is al onderzocht en dat dit ook geldt voor het

akoestisch gedrag wordt in dit hoofdstuk aangetoond. Het blijkt dat de stationaire vlakke

vlam eerder als eendimensionaal opgevat wordt in vergelijking tot het akoestische gedrag,

dat een demping vertoont in de vlamresonantie. Het verschil met de eendimensionale vlam

is dat het gas niet ideaal gekoeld kan worden, zodat de vlam dichterbij de brander sta-

biliseert. Echter, dit verklaart niet alle verschillen. De afgezwakte resonantie moet gezocht

worden in een gemiddeld kleinere amplitude van de enthalpie
uctuaties op de brander-

plaat. Uit tijdsafhankelijke simulaties is gebleken dat de 
uctuaties op hun hoogst zijn in

het midden van de plaatsegmenten en de 
uctuaties die ontstaan op de wanden binnen in

de plaat geven een verwaarloosbare bijdrage aan het totaal. Naarmate de diameter kleiner

wordt kan de vlam beter zijn warmte afstaat aan de brander omdat de gemiddelde afstand

van de vlam naar de brander kleiner wordt.

Tot slot, in hoofdstuk 6 wordt de responsie van de brander/vlam gebruikt om de stabiliteit

van een sterk vereenvoudigd systeem te bepalen. De oppervlaktetemperatuur wordt on-

derzocht op zijn invloed op het akoestisch gedrag van het systeem. Het opwarmen van een

ketel bij een koude start geeft in ketels geluidsproblemen, die verdwijnen als de brander op

temperatuur komt. Echter, de resultaten geven aan dat het vereenvoudigde systeem niet

dit gedrag vertoont.
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