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An Analytic Green’s Function for a Lined Circular Duct
Containing Uniform Mean Flow

Sjoerd W. Rienstra∗
Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Brian J. Tester†

University of Southampton, Southampton S017 1BJ, UK.

An analytic Green’s function is derived for a lined circular duct, both hollow and annular, containing uniform
mean flow, from first principles by Fourier transformation. The derived result takes the form of a common
mode series. All modes are assumed to decay in their respective direction of propagation. A more compre-
hensive causality analysis suggests the possibility of upstream modes being really downstream instabilities. As
their growth rates are usually exceptionally large, this possibility is not considered in the present study.

We show that the analytic Green’s function for a lined hollow circular duct, containing uniform mean flow,
is essentially identical to that used by Tester e.a. in the Cargill splice scattering model. The Green’s function
for the annular duct is new.

Comparisons between the numerically obtained modal amplitudes of Alonso e.a. and the present analytic
results for a lined, hollow circular duct show good agreement without flow, irrespective of how many modes
are included in the matrix inversion for the numerical mode amplitudes. With flow, the mode amplitudes do
not agree but as the number of modes included in the matrix inversion is increased the numerically obtained
modal amplitudes of Alonso e.a. appear to be converging to the present analytical result.

In practical applications our closed form analytic Green’s function will be computationally more efficient,
especially at high frequencies of practical interest to aero-engine applications, and the analytic form for the
mode amplitudes could permit future modelling advances not possible from the numerical equivalent.

Nomenclature

a = duct diameter
Cm , Dm = linear combinations of Bessel functions Jm and Ym

ex , er , eθ = unit vectors in x , r , θ -direction
Em = auxiliary functions of κ

Fm , Hm,Fm ,Hm = auxiliary functions of r and α

G(x; x0) = Green’s function (in pressure)
Gm(r, x) = m-th circumferential Fourier component of G(x; x0)

H (x) = Heaviside step function
h = hub diameter
Jm , Ym = Bessel functions of the first and second kinds of order m
m = circumferential modal order
M = Mach number
n = unit outer normal vector at r = 1
p, v, ρ, c, φ = time-harmonic pressure, velocity, density, sound speed, potential perturbations
x , r , θ , t = axial, radial, azimuthal angle, time coordinate
Z1, Zh = impedance of outer, inner wall
α = radial modal wave number; (square root of minus) eigenvalue of Laplace operator
β = (1 − M2)1/2

∗Associate Professor, Department of Mathematics & Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind-
hoven, The Netherlands. AIAA Member.

†Associate Consultant, ISVR, University of Southampton, Highfield, Southampton S017 1BJ, UK; AIAA Senior Member.
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µ = radial modal order
σ = reduced axial wave number
ω = Helmholtz number (dimensionless angular frequency)
	 = ω/β


 = ω − κ M

I. Introduction

IN some recent work, Tester e.a.1 described the development and validation of an analytical model for the scattering
of spinning modes by liner splices, originally derived by Cargill2 and based on the Kirchhoff approximation. In

his original formulation, Cargill used the hard-walled radial eigenfunctions in the Green’s function for a circular duct
containing uniform flow. In the recent work1 an analytic, closed form Green’s function was used that was deduced
from that given by Tester3 for a lined 2D duct containing uniform flow. This was assumed to be an approximation
although it can be shown that it is a special case of the result derived by Swinbanks4 for a lined 2D duct containing
sheared flow.

More recently Alonso e.a.5 have proposed an ‘exact’ Green’s function based on the numerical inversion of a matrix,
which is being evaluated in the course of the present work

In the current work we derive an analytic Green’s function for a lined circular duct, both hollow and annular,
containing uniform mean flow, from first principles, and show that the hollow version is essentially identical to that
used in reference [1]. Comparisons are presented with the ‘numerical’ Green’s function of Alonso e.a..5, 6

We will assume for now that all modes are decay in their respective direction of propagation. More comprehensive
causality analyses,3, 7, 8 suggests the possibility that one (or two in case of an annular duct) upstream-running modes
are really downstream-running instabilities. We will show that any suspected mode, if desired, may be easily included
as an instability in the present format, but since their growth rates are usually exceptionally large, this possibility is
not further explored in the present study.

II. The problem

Consider a cylindrical duct of radius a > 0 (possibly annular with inner radius ah), a mean flow of subsonic Mach
number M , sound speed c0 and density ρ0 and harmonic pressure and velocity perturbations p̃ of angular frequency
ω̃. We make dimensionless

x̃ = xa, t̃ = ta/c0, ω̃ = ωc0/a, p̃ = ρ0c2
0 Re(p eiωt ). (1)

The Greens function G(x; x0) is represented by the pressure field p(x) that is excited by a point source at x0, and
satisfies the equation

∇2G −
(

iω + M
∂

∂x

)2
G = δ(x − x0). (2)

Note that we use the
eiωt - convention. (3)

The Ingard-Myers impedance boundary condition9, 10 with flow, a linear relation between pressure and velocity, be-
comes in terms of the pressure at r = 1

(
iω + M

∂

∂x

)2
G + iωZ1

∂G

∂r
= 0 at r = 1. (4)

For a hollow duct finiteness of G is assumed at r = 0. For an annular duct we have at the inner wall r = h(
iω + M

∂

∂x

)2
G − iωZh

∂G

∂r
= 0 at r = h. (5)

Finally, we adopt radiation conditions that says that we only accept solutions that radiate away from the source position
x0.
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III. Solution

A. The hollow duct

We represent the delta-function by a generalised Fourier series in ϑ and Fourier integral in x

δ(x − x0) = δ(r − r0)

r0

1

2π

∫ ∞

−∞
e−iκ(x−x0) dκ

1

2π

∞∑
m=−∞

e−im(ϑ−ϑ0) . (6)

where 0 < r0 < 1, and write accordingly

G(x, r, ϑ; x0, r0, ϑ0) =
∞∑

m=−∞
e−im(ϑ−ϑ0) Gm(r, x) =

∞∑
m=−∞

e−im(ϑ−ϑ0)

∫ ∞

−∞
Ĝm(r, κ) e−iκ(x−x0) dκ. (7)

Substitution of (6) and (7) in (2) yields for Ĝm

∂2Ĝm

∂r2 + 1

r

∂Ĝm

∂r
+

(
α2 − m2

r2

)
Ĝm = δ(r − r0)

4π2r0
, (8)

with
α2 = 
2 − κ2, 
 = ω − κ M. (9)

This has solution

Ĝm(r, κ) = A(κ) Jm(αr) + 1
8π

H (r − r0)
(
Jm(αr0) Ym(αr) − Ym(αr0) Jm(αr)

)
(10)

where Jm and Ym denote the m-th order ordinary Besselfunctions11 of the first and second kind, H (r − r0) denotes the
Heaviside stepfunction. Use is made of the Wronskian

Jm(x) Y′
m(x) − Ym(x) J′

m(x) = 2

πx
. (11)

A prime denotes a derivative to the argument, x . A(κ) is to be determined from the boundary conditions at r = 1,
which is (assuming uniform convergence) per mode

i
2Ĝm + ωZ1Ĝ′
m = 0 at r = 1. (12)

A prime denotes a derivative to r . This yields

A = 1

8π

[
Ym(αr0) − i
2 Ym(α) + ωαZ1 Y′

m(α)

i
2 Jm(α) + ωαZ1 J′
m(α)

Jm(αr0)

]
, (13)

and thus

Ĝm(r, κ) = Jm(αr<)
i
2 Fm(r>, α) + ωZ1 Hm(r>, α)

8π Em(κ)
, (14)

where

Em(κ) = i
2 Jm(α) + ωαZ1 J′
m(α) (15a)

Fm(r, α) = Jm(α) Ym(αr) − Ym(α) Jm(αr) (15b)

Hm(r, α) = α J′
m(α) Ym(αr) − α Y′

m(α) Jm(αr) (15c)

r> = max(r, r0) (15d)

r< = min(r, r0) (15e)

By substituting the defining series we find that Fm and Hm are analytic functions of α2, while both Em and Jm(αr<)

can be written as αm times an analytic function of α2. As a result, Ĝm(r, κ) is a meromorphic function of κ . It has
isolated poles κ = κ±

mµ, given by Em(κ±
mµ) = 0.
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The final solution is found by Fourier back-transformation: close the integration contour around the lower half
plane for x > x0 to enclose the right propagating modes, and the upper half plane for x < x0 to enclose the left
propagating modes. We find

dEm

dκ

∣∣∣∣
κ=κmµ

= ωZ1 Jm(αmµ)

[
(κmµ + 
mµM)

(
1 − m2

α2
mµ

− 
4
mµ

(ωαmµ Z1)2

)
− 2iM
mµ

ωZ1

]
, (16)

and introduce the quantity

Q±
mµ = ±

[
(κmµ + 
mµM)

(
1 − m2

α2
mµ

− 
4
mµ

(ωαmµ Z1)2

)
− 2iM
mµ

ωZ1

]
, (17)

where the +, − signs apply to right, left-running modes. The integral is evaluated as a sum over the residues in the
poles at κ = κ+

mµ for x > x0 and at κ−
mµ for x < x0, in short-hand notation given by

Gm(r, x) = − 1
4 i

∞∑
µ=1

Jm(αmµr<)
i
2

mµFm(r>, αmµ) + ωZ1 Hm(r>, αmµ)

ωZ1 Qmµ Jm(αmµ)
e−iκmµ(x−x0) (18)

where αmµ = α(κmµ). From eigenvalue equation Em(κ±
mµ) = 0 and the Wronskian (11) we obtain

i
2
mµ Fm(r>, αmµ) + ωZ1 Hm(r>, αmµ) = −(

i
2
mµ Ym(αmµ) + ωαmµ Z1 Y′

m(αmµ)
)

Jm(αmµr>)

= − 2ωZ1

π Jm(αmµ)
Jm(αmµr>). (19)

So we can skip the distinction between r> and r< to achieve the soft wall modal expansion

Gm(r, x) = − 1

2π i

∞∑
µ=1

Jm(αmµr) Jm(αmµr0)

Qmµ Jm(αmµ)2
e−iκmµ(x−x0) (20)

where for x > x0 the sum pertains to the right-running waves, corresponding to the modal wave numbers κ+
mµ found

in the lower complex half plane, and for x < x0 the left-running waves, corresponding to κ−
mµ found in the upper

complex half plane. Equation (20) is essentially equivalent to equation (2) of [1] a.
Only if a mode from the upper half plane is to be interpreted as a right-running instability (see [3, 7, 12]), its

contribution is to be excluded from the set of modes for x < x0 and included in the modes for x > x0. What we
essentially do is deform the integration contour into the upper half plane, so the form of the solution remains exactly
the same.

It may be noted that the solution is continuous in r0, in particular in the points r , 0 and 1. As may be expected
from the symmetry of the configuration, the clockwise and ant-clockwise rotating circumferential modes are equal,
i.e. Gm(r, x) = G−m(r, x).

B. The annular duct

By choosing suitable variables we can make the solution for the annular duct similar to the one for the hollow duct.
First we introduce two independent solutions of the scaled Bessel equation, i.e. the homogeneous version of (8), by

Cm(r; α) = a Jm(αr) + b Ym(αr), (21a)

Dm(r; α) = c Jm(αr) + d Ym(αr), (21b)

aUnfortunately, equation (2) of Tester et al. [1] contains some minor typographical errors. The corrected form is given by

G(x, r, θ |x0, r0, θ0) = − 1

2π i

∑
m,n

Jm(k±
rmnr) Jm(k±

rmnr0)

χ
±
mn�

±
mn

exp
[−ik±

xmn |x − x0|] exp
[−im(θ − θ0)

]
where k±

xmn = (∓Mx k + χ±
mn)/(1 − M2

x ), χ±
mn = (

k2 − (1 − M2
x )k± 2

rmn
)1/2 with Im(χmn) ≤ 0, and

�±
mn = J ′

m(k±
rmn)2 + Jm(k±

rmn)2

[
1 − m2

k± 2
rmn

∓ 2iMx (1 ∓ k±
xmn Mx /k)

Zχ
±
mn

]

This is equivalent to the present form if we identify ω = k, αmµ = krmn , κmµ = ±kxmn , (κmµ + 
mµM) = ±χmn and Qmµ Jm (αmµ)2 =
χmn�mn , with the understanding that the upper sign is taken for the x > x0 (i.e. the right running modes) and the lower sign for x < x0 (i.e. the
left running modes). This notation has the advantage that the reciprocity rule is more obvious, that is, if we exchange the observer position for the
source position, the modes are the same as those we would use by simply reversing the sign of the Mach number in the above equations.
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where ad �= bc and Cm is supposed to satisfy the inner wall boundary condition, so a and b satisfy

b

a
= − i
2 Jm(αh) − αωZh J′

m(αh)

i
2 Ym(αh) − αωZh Y′
m(αh)

(22)

Although not necessary for the final result, we will assume for convenience that ad − bc = 1 and

a = i
2 Ym(αh) − αωZh Y′
m(αh), b = −(

i
2 Jm(αh) − αωZh J′
m(αh)

)
.

Cm and Dm have now the Wronskian

CmD ′
m − DmC ′

m = (ad − bc)
2

πr
= 2

πr
. (23)

The prime denotes a derivative to r . The solution of (8) that satisfies the inner wall boundary condition is

Ĝm(r, κ) = A(κ)Cm(αr) + 1
8π

H (r − r0)
(
Cm(r0; α)Dm(r; α) − Dm(r0; α)Cm(r; α)

)
. (24)

The boundary condition at r = 1 requires that A equals

A = 1

8π

[
Dm(r0; α) − i
2Dm(1; α) + ωZ1D ′

m(1; α)

i
2Cm(1; α) + ωZ1C ′
m(1; α)

Cm(r0; α)

]
, (25)

and thus

Ĝm(r, κ) = Cm(r<; α)
i
2Fm(r>, α) + ωZ1Hm(r>, α)

8πEm(κ)
(26)

where

Em(κ) = i
2Cm(1; α) + ωZ1C
′
m(1; α) (27a)

Fm(r, α) = Cm(1; α)Dm(r; α) − Dm(1; α)Cm(r; α) (27b)

Hm(r, α) = C ′
m(1; α)Dm(r; α) − D ′

m(1; α)Cm(r; α). (27c)

In a similar way as with the hollow duct we can show that Ĝm is a meromorphic function in κ . Its Fourier integral
that defines Gm can be evaluated in the form of a summation over the residues in κmµ, the zeros of Em(κ). From the
defining relation Em(κmµ) = 0 and the Wronskian we have at κ = κmµ

i
2Fm(r>; αmµ) + ωZ1Hm(r>, αmµ) = −(
i
2Dm(1; αmµ) + ωZ1D

′
m(1; αmµ)

)
Cm(r>; αmµ)

= − 2ωZ1

πCm(1; αmµ)
Cm(r>; αmµ)

and so we have

Gm(r, x) =
∫ ∞

−∞
Ĝm(r, κ) e−iκ(x−x0) dκ

= − 1

2π i
sign(x − x0)

∞∑
µ=1

ωZ1

E ′(κmµ)

Cm(r; αmµ)Cm(r0; αmµ)

Cm(1; αmµ)
e−iκmµ(x−x0) .

By carefully substituting definitions and Wronskians we obtain

[
dEm

dκ

]
κ=κmµ

= ωZ1

[(
κmµ + 
mµM

)(
1 − m2

α2
mµ

− 
4
mµ

(αmµωZ1)2

)
− 2i
mµM

ωZ1

]
Cm(1; αmµ)

− 2ωZ1

πCm(1; αmµ)

[
b

da

dκ
− a

db

dκ

]
κ=κmµ

Furthermore, we have[
b

da

dκ
− a

db

dκ

]
κ=κmµ

= 2ω2 Z2
h

π

[
(κmµ + 
mµM)

(
1 − m2

α2
mµh2 − 
4

mµ

(αmµωZh)2

)
+ 2i
mµM

hωZh

]
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and Cm(h; α) = −2ωZh/πh. If we introduce

Q(1) ±
mµ = ±

[
(κmµ + 
mµM)

(
1 − m2

α2
mµ

− 
4
mµ

(αmµωZ1)2

)
− 2i
mµM

ωZ1

]
, (28a)

Q(h) ±
mµ = ±

[
(κmµ + 
mµM)

(
1 − m2

α2
mµh2 − 
4

mµ

(αmµωZh)2

)
+ 2i
mµM

hωZh

]
, (28b)

(again, the ± signs apply to right, left-running modes) we have finally in short-hand notation

Gm(r, x) = − 1

2π i

∞∑
µ=1

Cm(r; αmµ)Cm(r0; αmµ)

Q(1)
mµCm(1; αmµ)2 − h2Q(h)

mµCm(h; αmµ)2
e−iκmµ(x−x0) . (29)

C. Lorentz-type or Prandtl-Glauert transformation

We obtain for hard walls some simplification by the following Lorentz-type or Prandtl-Glauert transformation. In this
case the left and right-running values of αmµ are symmetric, i.e. α+

mµ = α−
mµ, while the corresponding values of κmµ

are point symmetric in −ωM/(1 − M2). When we transform

β =
√

1 − M2, x = β X, ω = β	, κ±
mµ = ±σmµ − 	 M

β
, 
±

mµ = ∓Mσmµ + 	

β
, κmµ + 
mµM = ±βσmµ,

where we can just write αmµ and σmµ without left/right distinction, we obtain

Qmµ = βσmµ

(
1 − m2

α2
mµ

)
.

So altogether we have for the hollow duct

Gm(r, x) = −eiM	(X−X0)

2π iβ

∞∑
µ=1

Jm(αmµr) Jm(αmµr0)

σmµ

(
1 − m2

α2
mµ

)
J2

m(αmµ)
e−iσmµ|X−X0| . (30)

Similarly for the annular duct we get

Gm(r, x) = −eiM	(X−X0)

2π iβ

∞∑
µ=1

Cm(r; αmµ)Cm(r0; αmµ) e−iσmµ|X−X0|

σmµ

[(
1 − m2

α2
mµ

)
C2

m(1; αmµ) − h2
(

1 − m2

α2
mµh2

)
C2

m(h; αmµ)
] . (31)

Note that apart from the term exp[iM	(X − X0)], Gm only depends on M2 and |x − x0|. Therefore, |Gm(x, r)| is
symmetric in x − x0 for any subsonic Mach number.

IV. Causality

By analogy with the Helmholtz instability along an interface between two media of different velocities, it was
recognised by Ffowcs Williams and Tester3 that one mode per circumferential order (or two in annular ducts) may
have the character of an instability. This means that the mode seems to propagate in the upstream direction while it
decays exponentially, but in reality its direction of propagation is downstream and it increases exponentially. Tester3

verified this conjecture by the causality argument of Briggs and Bers13–15 (using physically reasonable frequency
dependent impedance models) and found that the suspected wave indeed may be an instability, at least according to
the Briggs-Bers formalism (based on tracking the modal wave numbers for complex ω = ωr + iωi , with ωi → −∞,
to see if they cross the real κ-axis). This was confirmed analytically by Rienstra in [7] for an incompressible limit of
waves along an impedance of mass-spring-damper type, but now using the related causality criterion of Crighton &
Leppington16, 17 (based on tracking the modal wave number for ω = |ω| exp(i�), with � varying from 0 to −π/2).
Rienstra & Peake [8] have shown that, although the Briggs-Bers procedure is technically not applicable and we should
use the Crighton-Leppington formalism, the result of a possible instability is confirmed.
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Figure 1(a) shows the behaviour of axial wave numbers κmµ for complex ω, with impedance model

Z(ω) = R + iaω − ib

ω
, (32)

which satisfies the fundamental requirements for Z to be physical and passive (see e.g. [18]), viz. Z is analytic and
non-zero in Im(ω) < 0, Z(ω) = Z∗(−ω) and Re(Z) > 0. One mode crosses the real κ-axisb and the integration
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(a) Causality contours for complex ω according to the Crighton-
Leppington formalism. The crosses indicate the location of the
modes when Im(ω) = 0.
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(b) The deformed intgration contour capturing the instability

Figure 1. Z = 1 + 1.385i, ω = 10, M = 0.7, m = 5, a = 0.15, b = 1.15

contour of the inverse Fourier transform should to be taken as given in figure 1(b). In other words, this mode is to be
counted among the right-running modes of the lower half-plane. The results after assembling the residue contributions
from below the contour for x > x0 and from above the contour for x < x0 are exactly the same in form as given by
equations (20) and (29), so it is unnecessary to repeat these expressions here.

Having decided that, per m, one mode (two for annular ducts) is sometimes to be interpreted as an instability, we
have cornered ourself in a difficult position. Except for impedances near the imaginary axis7 the predicted unstable
mode has invariably a large growth rate, making its presence in any physical reality at least subject to a discussion.
Our linear model is based on the assumption of small perturbations. This is especially the case for the Ingard-Myers
boundary condition, where the wall streamline is supposed to undergo small deflections. While it may be argued
that large amplitudes of the acoustic field, away from the wall, will not immediately result into qualitatively different
behaviour and are therefore acceptable to some extent, it is clear that large deflections of the wall streamline are simply
unacceptable in the present model and a nonlinear model is required. Although it is possible that the instability has
genuine effects acoustically in the scattering of modes at a hard-soft transition,8 it seems futile to include the instability
in a description of the field in a lined section. For this reason we have in all examples of the present paper assumed
that the modes decay in their direction of propagation. In order to keep a mathematically consistent solution (e.g.
continuous at x = x0) we have not suppressed any possible instability, but always included it among the modes from
the other side.

It is clear that the problem of the instability is still an open question.

V. Numerical examples

Numerical evaluation of the pressure field is not too difficult if we are able to find all the modal wavenumbers κmµ

necessary for the required accuracy. We adopted the method, outlined in [7], which is based on continuation from the
(assumed easily found) hard-wall values to the sought soft-wall values. The crux of the method is that we start from a
suitable hard-wall direction |Z | → ∞ in the complex impedance plane in order to capture all wavenumbers occurring
at the finite impedance, say, Z0. This is not entirely straightforward. When we trace the wavenumbers backwards,

bIncidentally, this case is taken from [8], where it is shown that the Briggs-Bers test does not decide the mode to be unstable.
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from the soft-wall to the hard-wall values, there are certain intervals of arg(Z) where some wavenumbers disappear to
infinity. These would be impossible to find if we started there with our forward search. It transpires that a search along
vertical lines in the complex Z plane, from Z = Re(Z0) − i∞ when M = 0 and from Z = Re(Z0) + i sign(M)∞
otherwise, guarantees finding of all the wave numbers.

To be completely specific, we define Z0 = R0 + iX0 and parameterise

1

Y (λ)
= Z(λ) = R0 + iδ cot(λ), 0 ≤ λ ≤ λ0 = arccot(δX0), (33)

where δ = 1 if M �= 0 and δ = −1 if M = 0. Solutions κ for the hollow duct are now implicitly given for any λ by
the identity

f (κ, Y ) = Y Em(κ) = i
2Y Jm(α) + ωα J′
m(α) ≡ 0. (34)

We know the hard-wall solutions corresponding to λ = 0. After differentiation of f to λ we obtain an ordinary
differential equation in κ that can be integrated numerically as an initial value problem. We thus pick a mode by
choosing an initial value and solve numerically by standard methods

d f

dλ
= ∂ f

∂κ

dκ

dλ
+ ∂ f

∂Y

dY

dλ
= 0 (35)

to obtain an approximation for κ(λ0). If we deal with a surface wave, we divide f by Jm . The accuracy of the
final result may be optimised by one or two Newton iterations. For an annular duct we do something similar with
f = Y1YhEm .

The number of terms we need for Gm(r, x) depends on the convergence rate. This depends greatly on the value
of x − x0, because the convergence is exponentially fast, through the occurring exponential exp(−iκmµ(x − x0)),
whenever x − x0 �= 0. Only when x = x0 the convergence is algebraic, typically like ∼ n−2 when r �= r0 and
like an alternating ∼ n−1 when r = r0. It makes the series for Gm absolutely convergent and differentiable for any
x �= x0, r �= r0, and just conditionally convergent and continuous at x = x0, r = r0. At the worst position, i.e. at
x = x0, r = r0, we will typically need a few hundred terms for one percent accuracy.

As the series at the left and right side of the source plane are not symmetric whenever M �= 0, we will have a
discontinuity at x = x0 for any finite number of terms. Although this jump is a marked evidence of any insufficient
accuracy, the absence of the jump is not always an indication of convergence. Also when M tends to zero the jump
will disappear, but just by the solution becoming symmetric. It has no relation to the accuracy of the series.

To illustrate the points noted above, we present the m = 3-circumferential component Gm in figure 2 for a source
at x0 = 0, r0 = 0.7 and ω = 10 in an annular duct with h = 0.3, Z1 = 1 − i and Zh = 1 + i and a mean flow of
M = 0.5. Gm is plotted at r = 0.7 for −1 ≤ x ≤ 1. In addition the complex axial wave numbers κmµ are presented.
We observe two surface waves in the first quadrant, both candidate for instability. In order to make sure that the series
has converged we used 400 radial modes, but the difference with less than that is only visible right at the source.

In addition to this example for annular ducts we have compared extensively our analytic Green’s function for
hollow ducts with the ’numerical’ Green’s function described by Alonso e.a..5 We consider two cases, one with no
mean flow, M = 0, and one with a typical ‘intake’ Mach number of M = −0.45. A typical non-dimensional frequency
is ω = 28 for the flow case and we choose ω = 31.354 for the zero flow case so that the cut-on ratio is about the same
for both cases. The impedance is Z1 = 2.5 − i0 in both cases. The number of cut-off modes initially assumed is 40
for both the analytical and numerical Green’s function evaluation and only the positive modes 28 (−4) 0 are shown.
The source position is always at the wall, r0 = 1, and the observer position is also on the wall, r = 1, and at the same
azimuthal location as the source but at a variable axial distance from the source both to the left and right of the source
plane. The typical location of the axial wave numbers in the complex κ-plane for both cases is presented in figures
3. The presence of a very well cut-off surface wave in the case with flow anticipates the convergence problems to be
reported below when the source is positioned at the wall, right inside the region where the surface wave is important.

For the first (zero flow) case, we show in Figure 4 the absolute value or modulus of each radial mode amplitude as
a function of radial mode number: the figures on the left refer to the ‘left running modes’ i.e. the modes propagating
outward from the source in the negative x direction, while the figures on the right refer to the ‘right running modes’,
i.e. those propagating outward from the source in the positive x direction. The upper figures refer to our analytical
Green’s function, the lower figures to our evaluation of the mode amplitudes from the numerical Green’s function.5 In
Figure 5 we show the corresponding mode amplitude phase results.

In this zero flow case, the analytical and numerical mode amplitudes agree to better than 10−14 and the mode
amplitudes are the same for the left running modes as for the right running modes, as is the total field, a well-known
result since the eigenvalues are identical, as illustrated in Figure 6. Here we have summed the radial modes for each
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Figure 2. 400 modes at r = r0 = 0.7 with M = 0.5, ω = 10, h = 0.3, m = 3, Z1 = 1 − i, Zh = 1 + i

azimuthal mode in the Green’s function and plotted the axial variation of each azimuthal mode (modulus and phase) for
a short distance to the left and right of the source plane, as well as the total Green’s function (in both cases excluding
the constant factor −(2π i)−1). Although these fields are the same on each side of source, this does not necessarily
mean that we have a fully converged value at and near the source plane. This is demonstrated in Figure 7, where the
same azimuthal quantities from both sides of the source plane are plotted as a function of the total number of radial
modes included in each azimuthal mode for the analytical Green’s function. It can be seen that none of the azimuthal
mode amplitudes appear to have converged to a limit, at least not with the number of cut-off radial modes set at 40.

When we increase this number to a much higher number, say 200, we see, as in Figure 8, that convergence has been
achieved (and in fact the left and right hand limits do agree as well) but if we require better than 1/2 dB accuracy we
need something of the order of 200 modes. We cannot demonstrate this as easily with the numerical Green’s function,
as we have to invert, for each azimuthal mode number, a 2N × 2N matrix where N is the number of radial modes.
As we increase N much above 70, the matrix appears to become ill conditioned and we can no longer solve for the
numerical mode amplitudes. However, below that limit the rate of convergence appears to be similar to that of the
analytical Green’s function.

For the flow case, the picture changes in some ways, in particular we have lost the left/right symmetry for the
mode amplitudes, as shown in Figures 9 and 10. In Figure 11 we show the ratio of the analytical and numerical mode
amplitudes and it can be seen that the two results agree to better than 20% in modulus for the cut-on modes although
these differences appear to grow without limit for the very well cut-off modes. As a result the axial variation of the
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Figure 3. Location of κmµ for comparable no-flow and flow cases. Note with flow the very well cut-off surface wave, which yet plays a role
near the wall around the source plane.

analytical and numerical Green’s function agree fairly well away from the source plane, but at and near the source
plane there are significant differences as shown in Figure 12, especially to the right of the source plane. Here there is
a larger discontinuity in the analytical Green’s function than in the numerical one (∼ 6 dB v. ∼ 3 dB).

However, with reference to the zero-flow case, if we increase the number of cut-off modes to 200 as before, the
convergence behaviour is similar in some ways, but strikingly different for the modes to the right of the source plane
as shown in Figure 13. Here there are dramatic jumps in the azimuthal mode amplitudes in the region of radial
mode orders 80–95, which has been identified as the effect of a very well cut-off ‘surface wave’ which makes a large
contribution at and near the duct wall (see figure 3). Once this has been included, the convergence is similar to the zero
flow case. When this high number of radial modes is included in the analytical Green’s function, the discontinuity at
the source plane disappears as shown in Figure 14.

We therefore conclude that, provided a sufficient number of modes are included in the analytical Green’s function,
it does appear to exhibit continuity at the source plane. The agreement between the analytical and numerical Green’s
function is not as good as we would like for the non-zero flow cases we have investigated to date and our comparative
testing of the two models will continue. But we suggest that, setting aside the possibility that we have not evaluated
the numerical Green’s function correctly, what seems to happening is this. The numerical Green’s function with its
enforced continuity at the source plane, when evaluated with an insufficient number of cut-off modes, attempts to
achieve that continuity by slightly adjusting the amplitude of the cut-on modes and making larger adjustments to the
well cut-off modes. If that is correct, when we proceed to evaluate the numerical Green’s function with progressively
larger numbers of radial modes, we should see a convergence of the numerical mode amplitudes to their analytical
counterparts, for M not equal to zero.

A first step in that direction is shown in Figure 15, where we have increased the number of cut-off modes in the
numerical Green’s function from 40 to 70 and as in Figure 11 show the ratio of the analytical and numerical mode
amplitudes for the same conditions as the flow case described above. In comparison with the ratios in Figure 11, Figure
15 shows ratios much closer to unity up to the highest mode number shown. This appears to confirm our suggestion
that given sufficient cut-off modes the numerical Green’s function amplitudes will converge, eventually, to those given
by our analytical result.

VI. Conclusions

Since the duct modes are not known to be orthogonal or bi-orthogonal to any convenient set of basis functions, we
did not derive the Green’s function for time-harmonic sound waves in a lined circular duct with uniform mean flow in
the usual way,19 but by Fourier transformation. The found result takes the form of a common modal series.

The issue of a possible instability is still an open question. Causality considerations show mathematically, at least
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in the linear model, that some upstream running decaying modes are really downstream running instabilities. We have
deliberately excluded this possibility from the examples, because the exponentially large fields that would result have
little resemblance with physical reality. As there is no experimental evidence yet that the instability really exists, it
may be an anomaly of the present model. Another possibility is that the experiments have not yet been able to detect
the associated nonlinearly saturated wave form.

Comparison of our analytical mode amplitudes (for the hollow duct version of our solution) with the numerical
solution of Alonso e.a. showed a good agreement without mean flow, irrespective of how many modes are included in
the matrix inversion for the numerical mode amplitudes. A large number of modes are required for convergence near
the source. With flow, the mode amplitudes do not agree but as the number of modes included in the matrix inversion is
increased the numerically obtained modal amplitudes of Alonso e.a. appear to be converging to the present analytical
result. In addition, this numerical exercise showed the importance of including all relevant modes, especially when
they behave as surface waves. When source and observer position are at the wall, they are in the regime of the surface
wave, so irrespective of the modal decay rate, overlooking the surface wave produces an unconverged solution and a
detectable discontinuity of the field at the source. A reliable method to find all modes, based on their behaviour with
impedance Z along lines parallel to the imaginary axis is described in some detail.
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Figure 4. Analytic v. numerical Green’s function mode amplitude: modulus (ω = 31.354, M = 0, Z1 = 2.5, r0 = 1, 40 cut-off modes).
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Figure 5. Analytic v. numerical Green’s function mode amplitude: phase (ω = 31.354, M = 0, Z1 = 2.5, r0 = 1, 40 cut-off modes).
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Figure 6. Axial variation of analytic and numerical Green’s function azimuthal mode amplitudes (ω = 31.354, M = 0, Z1 = 2.5, r0 = 1,
40 cut-off modes).
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Figure 7. Analytic Green’s function azimuthal mode amplitude convergence (ω = 31.354, M = 0, Z1 = 2.5, r0 = 1, 40 cut-off modes).
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Figure 8. Analytic Green’s function azimuthal mode amplitude convergence (ω = 31.354, M = 0, Z1 = 2.5, r0 = 1, 200 cut-off modes).
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Figure 9. Analytic v. numerical Green’s function mode amplitude: modulus (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1, 40 cut-off modes).

15 of 18

American Institute of Aeronautics and Astronautics



10
0

10
1

−3

−2

−1

0

1

2

3

Radial Mode Number

P
ha

se
(M

od
e 

A
m

p)
 −

Analytical Left Running Modes (−)

10
0

10
1

−3

−2

−1

0

1

2

3

Radial Mode Number

P
ha

se
(M

od
e 

A
m

p)
 +

Analytical Right Running Modes (+)

10
0

10
1

−3

−2

−1

0

1

2

3

Radial Mode Number

P
ha

se
(M

od
e 

A
m

p)
 −

Numerical Left Running Modes (−)

10
0

10
1

−3

−2

−1

0

1

2

3

Radial Mode Number

P
ha

se
(M

od
e 

A
m

p)
 +

Numerical Right Running Modes (+)

28
24
20
16
12
 8
 4
 0

28
24
20
16
12
 8
 4
 0

28
24
20
16
12
 8
 4
 0

28
24
20
16
12
 8
 4
 0

Figure 10. Analytic v. numerical Green’s function mode amplitude: phase (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1, 40 cut-off modes).
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Figure 11. Ratio of analytic and numerical Green’s function mode amplitudes (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1, 40 cut-off modes).
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Figure 12. Axial variation of analytic and numerical Green’s function azimuthal mode amplitudes (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1,
40 cut-off modes).
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Figure 13. Analytic Green’s function azimuthal mode amplitude convergence (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1, 200 cut-off modes).

17 of 18

American Institute of Aeronautics and Astronautics



−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−40

−30

−20

−10

0

10

20

30

x−x
0

S
P

L 
on

 w
al

l, 
dB

Analytical Mode Amplitude on each side of source plane

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−3

−2

−1

0

1

2

3

x−x
0

P
ha

se
 o

n 
w

al
l, 

dB

Analytical Mode phase on each side of source plane

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−40

−30

−20

−10

0

10

20

30

x−x
0

S
P

L 
on

 w
al

l, 
dB

Numerical Mode Amplitudes on each side of source plane

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−3

−2

−1

0

1

2

3

x−x
0

P
ha

se
 o

n 
w

al
l, 

dB

Numerical Mode phase on each side of source plane

28
24
20
16
12
 8
 4
 0
Total

28
24
20
16
12
 8
 4
 0
Total

28
24
20
16
12
 8
 4
 0
Total

28
24
20
16
12
 8
 4
 0
Total

Figure 14. Axial variation of analytic and numerical Green’s function azimuthal mode amplitudes (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1,
200 cut-off modes for analytical, 40 for numerical).
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Figure 15. Ratio of analytic and numerical Green’s function mode amplitudes (ω = 28, M = −0.45, Z1 = 2.5, r0 = 1, 70 cut-off modes).
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