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1. Introduction

In this report, we deal with the design of a part of a packaging machine called "shoulder". In
these machines, the packaging material (paper or plastic sheet) is unrolled from a horizontal
cylinder and folded against the inner side of a vertical, hollow cylinder. During this folding pro-
cess, the sheet passes over a curved surface, the shoulder, which is attached to the vertical
cylinder. In Fig. 1 an example of the geometry is drawn. After a piece of sheet has been posi-
tioned inside the vertical cylinder, it is sealed at the bottom and at the side and filled by dropping
the product to be packed from above into the newly formed bag. Then, the bag is drawn down-
wards, sealed at the top and cut off. This technique allows for packaging at high speed (hundreds
of bags per minute), but is sensitive for disturbances if the packaging sheet is not guided over the
shoulder in the appropriate way. The curvature of the shoulder should be such, that the sheet is
nowhere stretched or tom. In the literature a mathematical discription of possible surfaces is
given by Mot [1-4] and Culpin [5]. The former author constructs the shoulder out of pieces of a
plane and a cone. The reliability of this approximation is not discussed by this author and is cer-
tainly not clear from a theoretical point of view. Culpin has solved the problem exactly. The solu-
tion in the present report is not essentially different from his approach. The presentation, how-
ever, is more straightforward and also deals with practical aspects of the calculation of shoulders.

In §2 we show that the shoulder is fully determined by specification of a curve in the plane. This
planar bending curve corresponds in three dimensions with the intersection of the shoulder and
the vertical cylinder. In terms of differential geometry, it is natural to parametrize the shoulder by
parameters (s,u) with s the arclength along the bending curve. The planar bending curve, how-
ever, is naturally given in terms of Cartesian coordinates. In §3 we deal with the transformation
between these representations.

In practice, one needs a representation of the shoulder in the form z(x,y) with (x,y,z) Cartesian
coordinates and z the height of the shoulder above the horizontal (x,y)-plane. Given a pair (s,u),
the corresponding parameter pair (x,y) is trivially found, but the map (x,y) = (s,u) is not simple
to describe analytically. In §4 we give a numerical approach for this mapping, which is easily
implemented. In §5 we numerically investigate various possibilities for the planar bending curve
and investigate their practical implications. In the Appendices we deal with the lengthy derivation
of some theoretical details.
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Figure 1. Sideviews of the shoulder geometry.
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2. Determination of a shoulder representation

The shoulder must be isometric with the plane, i.e. it can be mapped unto a part of the plane such
that all distances (and thus angles) are preserved. A cylinder and a cone are for example isometric
with the plane. The intersection of the shoulder and the vertical cylinder is called the bending
curve (BC) in three dimensions. Under an isometric mapping BC transforms into a planar bend-
ing curve (BC). In the following, we shall denote quantities referring to the plane by an overbar.
Because BC is obtained by wrapping BC around a given cylinder in an obvious way, the relation
between BC and BC is straightforward. We note that BC is the intersection of two surfaces, which
are both isometric with the plane. It is known from differential geometry (see e.g. Forsyth [6]),
that there exist precisely two surfaces which contain BC and are isometric with the plane.

In the following, we shall present an appropriate representation for the shoulder. Let a point of
BC be represented by a three-dimensional vector r(s), with parameter arclength s. We assume
r(s) to be twice differentiable and choose r(0) as the highest point of the shoulder. We notice,
that in terms of differential geometry the shoulder (and also the vertical cylinder) are so-called
dei'elopable surfaces. Through each point of BC a straight line passes, which is completely con-
tained in such a surface. These lines "generate” the surface and the surface is specified by giving
their directions. See e.g. Weatherbum [7], Haantjes [8] and Struik [9]. We describe the straight
line contained in the shoulder and passing through the point r(s) of BC by the unit vector d(s). A
point P on the shoulder is then parametrized by

PG,u)y=r(s) + u d(s).

We introduce a local, orthonormal coordinate system (t,n,b) at r(s). The unit tangent vector t is
defined as

t(s) =r,(s),

the unit normal vector n as

i
n(s) = ) ty(s)

with the curvature x given by x(s) = |t,(s)|, and the unit binormal b as
b(s) =t(3) X n(s).

Note, that we take for convenience the curvature k2 0. With this definition the normal vector n
points outwards. The derivatives of these basis vectors are given by the Serret-Frenet formulae

t;(s) =—x(s) n(s)
ng(s) = x(s) t(s) + 2(s) b(s)
b;(s) = —(s) n(s)

with 1(s) the torsion. We may now write quite generally
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d(s) = cos a(s) t(s) + sin a(s) (cos ¢(s) n(s) + sin ¢(s) b(s)).
In the sequel, it will become clear why the introduction of the angles o and ¢ is useful.

We represent a point of BC by a two-dimensional vector r(s). Note that both r(s) and r(s) have

the arclength s as parameter, because s is preserved under an isometric mapping. Analogous to
the definitions above, we have

)= F:(S)

) = - T(s), *(s)= L)

x(s)
As(s) = x(s) ®s)
3(5) = cos o(s) T(s) + sin a(s) 0(s).

The last line expresses that the angle a is preserved under the isometric mapping. A point P in
the plane is parametrized by

P(s,u) =F(s) + u d(s).

For each pair (s,u), P; and P, are linearly independent tangent vectors which form a basis for the
tangent plane in P(s,u). The fact that under the isometric mapping all distances (and angles) are
preserved can be expressed by the following three conditions:

@ IP,| = IP,|
(i) P,-P,=P,-P,
@ii) 1P, 1 =IP,I.

ad i) This condition is automatically fulfilled because P, =d, P, = dand Idl = 1dl =1.
ad ii) We have

Pi=r;+ud;=t+ud,
and

P, =T, +ud,=T+ud,.
It immediately follows that

P, P,,:cosa-—'l_’_,‘ ﬁ.

We already anticipated this condition by writing d(s) and d(s) in the forms given above.

ad iii) This condition states that
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[t(s) + u d,(s)| = 1T(s) + u d,(s))

should hold for every u. This is equivalent with the conditions Itl = ITl, which is trivially
fulfilled, and

ldy(s)| = d(s)!.
From lengthy but straightforward algebra we find
1d,12= 02 - 20,k +x_
1d, 12 = o2 - 20, xcos ¢ + [K*(sin? acos? ¢ + cos® o)
+ sin? oo +‘t)2 + 2x cos o sin o sin ¢(¢, +1)).

Equating terms with o, yields

x-txl

cosd =

If we use this relation and equate the remaining parts of the expressions, we find

~Xsin
laIfl(1='—¢—+’ri R Ofa<n
¢

The latter two equations determine ¢ and o if the BC (or EE) is given. Note, that in general two
values ¢; and ¢, for ¢ are obtained with 0< ¢; < w2 and ¢, =2n — ¢,, and two corresponding
values for o. In the following section, we shall outline how a and ¢ (and thus d) can be calculated

from a given planar curve BC.In Appendix A we show that ¢, corresponds with the cylinder and
¢; with the shoulder.
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3. Calculation of the shoulder from a given planar bending curve

In practice, one prescribes the planar bending curve BC and wants to calculate points on the
shoulder. In this section, we present formulae to calculate the vector d(s), introduced in the
preceding section, in a numerically appropriate way. For given values of the radius R of the
cylinder and height & of the shoulder, BCis given as a curve z(v) in the (v,z)-plane, with v and z
Cartesian coordinates. This curve has the properties z(0) =k, z(~v) = z(+v) and 2(xnR) =0 as
depicted in Fig. 2. We assume z(v) to be three times differentiable. Furthermore, it is assumed
that z,, <0, i.e. BC is concave downwards.

-t R

Figure 2. The planar bending curve BC, given as a function z(v) in the
(v,z)-plane. The parameter s denotes arclength.

We may also represent a point of BC by a two-dimensional vector T(v):

_ Vv
r(v)= [z(v)] .

If BC is wrapped around the cylinder, as shown in Fig. 3, the resulting BC has points represented
by a three-dimensional vector



R cos(v/R)
r(v)=| Rsin(v/R)
z(v)

with respect to Cartesian coordinates (x,y,z).

Figure 3. Choice of the Cartesian coordinates (x,y,z).

In the preceding section, we used arclength s as parameter instead of v. The relation between the
two is given by

s=[A+20)% av.
0

Only in a few cases this relationship can be brought into a simpler form by evaluating the integral
analytically. For example, if



z(v)=acosh [ y_]
a

with a some constant, we find that

szasinh[l}.
a

In the following, we assume that such a reduction is not known and point out how the quantities
in §2, which are given as functions of s, can be calculated as functions of v. We need the factors

ve=(1 +23)—%

Ves = =2, Zyy Vo

Vsss =—z|2rv v§ “’zvzwvvg "4292WV2 Vs
=—v; (22, +2, 2 —4 22 2%, V2)

and the vectors ry, ry, and r,,,, which directly follow from the explicit expression for r(v). Then,
we may write

tv)=r,v
— 2
t(V)=r,, V5 +1, v
t (V) =T, "’2 + 30y Vo Vg + T, Vg

From t, t; and t;, we may calculate the other relevant quantities. The curvature x and its deriva-
tive are given by

x= 1t
X, ——l-(t-t )
s‘”K 3 Ysx -

The normal n and binormal b follow from

b=txn= "Lt (txt,).
X

The torsion 1 can be found from the Serret-Frenet formula
n,=xt+1b,

which implies that
1=(n,-b).

From
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ng = ? (xt—x,ts),

we conclude that
T= 2 (t (XL)).
¥
In the plane, similar relations hold. We give the relevant ones:
=T, v,
=T, V24T, v,

=F. v} +3F F
Tss - rwv vs + 3rw Vs Vs + lPv Vsss

x= 1T,

- 1

Ky == (fs'fss)~
X

If we compare the expressions for x and , we obtain the relation

4
=2 Y
=K + Rz '

so that in practice it is unnecessary to calculate ¥ and x separately. From ¥ and x, we can find
values for ¢ via

x
COsS P = ~—,
0 x
To find o from
e 1
tan o = squ’
O +1

one may appropriately use the relations

o
smno =t -~
¢ xR
and
-1 1 - -
¢’=_"sin¢ 7(7:1:,-10:,).

The plus sign refers to ¢, i.e. the shoulder, the minus sign to ¢,, i.e. the vertical cylinder. In the
following we shall use ¢, .

An alternative expression for ¢, reads as



-1
= e (K, Ve =2 K Vg )
¢8 KZRC{)S¢ (8 S SS)

which avoids the evaluation of T, and T,,.

-10-
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4. The inversion problem

One often needs a representation of the shoulder in the form z(x,y), i.e. its height z above the hor-
izontal (x,y)-plane. In §2,3 we have shown, that the shoulder is commonly parametrized by the
pair (u,v). While the map (u,v) = (x,y) is trivial, the inverse map (x,y) — (4,v) is not easily cast
into an explicit form. Here, we follow a numerical approach. A point P on the shoulder is given
by

ri(v) dy(v)
Pu,vy=r()+ud@)=|ry(v)| +u|d(v)|.
r3(v) ds(v)
Given (x,y), we search for the pair (»,v) such that
I=?’1(\v’)+l¢d1(\’)
y=ryw)+udy(v).
This leads to the one-parameter equation

x-ri(v)

o } da(v).

y =r2<v>+[

For numerical reasons, the parameter v should rather be determined from the equation
O =r2M) di(v) = (x=r1(v)) d2(v) =0.

If v has been calculated, u is obtained from either
u=x-ry(v))/dy(v)

or

u=y-ra(v))/ da(v).
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§. Applications

From the viewpoint of the designer, information about the following properties of the shoulder
may be of importance:

The mathematical angle 8 at r € BC. It is the angle between the two planes tangent in r 10
the shoulder and the vertical cylinder.

The angle y at r € BC. This angle is measured in the plane through r and the axis of the
vertical cylinder (i.e. the z-axis). This plane intersects the shoulder along some curve. y is
the angle between the tangent in r to this curve and the downward vertical.

The angle y at r € BC. It is obtained by following the path of a specific point of the sheet
when sliding over the shoulder and reaching BC in r. y is defined to be the angle between
the tangent in r to this path and the downward vertical.

The paper or plastic sheet is unrolled from a horizontal cylinder mounted perpendicularly to
the (x,z)-plane (see Fig. 3). For several reasons, it is advantageous if this cylinder is placed
as near to the highest point of the shoulder as possible. However, this cylinder is straight
and does not exactly fit to the shoulder. We introduce a measure Curv for the curvature of
the shoulder in the vicinity of the horizontal cylinder:

Curv(x ) = 2(xe01, 0) — 2(x 1, *R).

In this formula, the shoulder is assumed to be presented as a known function z(x,y) with
x,y,z as denoted in Fig. 3. The x-coordinate of the horizontal cylinder is denoted by x ;.
The length of this cylinder should be at least 2n R, i.e. the circumference of the vertical
cylinder. We see that Curv = 0 if the shoulder would contain the horizontal cylinder. This is
never the case, because the only straight lines contained in the shoulder are the ones through
the generating vectors d.

Expressions for the calculation of the angles 6,% and y are derived in Appendix B. We have
calculated 6,%,w and Curv for three (families of) BC’s. The radius of the vertical cylinder
and the height of the shoulder are denoted by R and A, respectively.

1. A BC given by a parabola:

2
z(v)=h[ 4 +1].

(nR)

Results for various values of 4 are given in Tables 1a, 1band Ic.
2. ABC given by a catenary:

,(v,=,,[__cm_v_fb>_-_'z_ 1}

cosh(nR/b)-1

The shape of this BC can be adjusted via the parameter b. Results for various values of A
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and b are given in Tables 2a-2f.

3. A special case of 2) is obtained if we choose for b the solution by of the equation
b(cosh(nR /b)—-1)=h.

The corresponding BC is given by
2(v)=+bg (~cosh(v/bg) + cosh (xR /by)).

For this BC the angle 6 tumns out to be constant along BC. In Table 3 its value is given as a
function of by and A.
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Tables

v % 9 W
0 6002 6002 60.02
15 5917 5946 61.67
30 5673 57.87 66.20
45 5294 5548 72.58
60 4821 5260 79.81
75 43.02 4947 87.14
90 3779 46.32 94.16
105 32.88 4327 100.66
120 2848 4041 106.55
135 2464 3776 111.85
150 2137 3534 116.58
165 18.60 33.15 120.81
180 1627 31.15 124.58

Table 1a. Values for 8,y and y in degrees for BC number 1 with
h =2.850 and R = 1. In the first column the position on BC is given
by specification of the parameter v (in degrees) as introduced in §3 and Fig. 2.

v i 0 v
0 4500 4500 45.00
15 44.60 44.76 46.36
30 4342 4408 50.12
45 4156 43.00 55.55
60 39.18 41.61 61.91
75 3643 40.02 68.61
9 3350 38.29 75.28
105 3053 36.52 81.70
120 2765 3475 87.74
135 2495 3302 93.35
150 2246 3137 98.51
165 2020 2980 103.24
180 18.19 2833 107.57

Table 1b. Data as in Table 1a for BC number 1 with
h=2044andR =1.
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Xrol a. b.
1.00 2.84 3.39
200 208 250
300 160 193
400 128 155
500 106 129
600 09 1.10
700 078 096
8.00 069 084
9.00 062 0.76

10.00 0.56 0.68

Table Ic. Values for Curv as a function of x,q for BC number 1 with
h =2.850 (column a.) and h =2.044 (column b.), and R = 1.

v X 6 L4
0 4499 4499 44.99
15 4493 4510 46.69
30 4474 4541 51.40
45 4440 4591 58.27
60 4386 4654 66.44
75 43.08 4725 75.26
90 42.04 48.01 84.27
105 4071 4875 93.17
120 39.09 4946 101.72
135 3719 5009 109.81
150 3506 5066 117.33
165 3275 5114 12424
180 3032 5154 130.54

Table 2a. Values for 8,y and 9 in degrees for BC number 2 with
b=20, h=2.50and R = 1. In the first column the position on BC is given by
specification of the parameter v (in degrees) as introduced in §3 and Fig. 2.
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v % 6 v
0 5496 5496 54.96
15 5468 5493 56.92
30 5384 5484 62.31
45 5248 5470 69.99
60 5064 5452 78.88
75 4837 5434 88.16
9 4576 54.15 97.31
105 4288 5398 106.02
120 39.82 5382 11412
135 36.68 5369 121.55
150 3352 5358 12827
165 3042 5348 134.32
180 2744 5341 139.72

Table 2b. Data as in Table 2a for BC number 2 with
b=20,h=314andR =1.

v % 8 v
0 6021 6021 60.21
15 59.78 60.06 62.28
30 5852 59.66 67.94
45 5650 59.05 75.93
60 53.83 5832 85.03
75 50.67 57.57 94.37
90 47.15 56.83 103.42
105 4344 56.17 111.89
120 3966 5558 119.66
135 3594 5509 126.69
150 3237 5468 13299
165 2899 5435 138.60
180 2585 5409 143.58

Table 2¢. Data as in Table 2a for BC number 2 with
b=20,h=350andR =1.
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v 4 0 ']

0 4797 4197 4797
15 4772 4791 49.62
30 4699 4775 54.19
45 4581 4751 60.80
60 4423 4720 68.57
75 4233  46.84 76.82
90 40.17 4648 85.11

105 37.83 46.11 93.18
120 3538 4577 100.85
135 3290 4545 108.05
150 3043 4516 11472
165 28.02 4491 12088
180 2570 4469 126.51

Table 2d. Data as in Table 2a for BC number 2 with
b=250,h=250andR = 1.

v x 6 v
0 5839 5839 58.39
15 57.87 5314 60.28
30 5633 5743 65.45
45 5392 56.36 72.78
60 S50.80 55.06 81.15
75 4721 53.68 89.76
90 4336 5230 98.14
105 3947 5101 106.03
120 3570 4985 11331
135 3214 4832 119.95
150 2885 4794 12596
165 25.86 47.18 131.39
180 23.16 4655 136.28

Table 2e. Data as in Table 2a for BC number 2 with
b=250,h=314andR = 1.
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v X e v
0 6383 63.83 63.83
15 63.14 6344 65.82
30 61.10 62.33 71.23
45 5792 60.69 78.80
60 5386 5877 87.33
75 4926 56.77 95.97
90 4447 5483 104.24
105 3977 5306 111.90
120 3536 5150 118.89
135 3133 50.14 125.18
150 27.74 4900 130.83
165 2456 48.03 135.89
180 21.78 4723 14041

Table 2f. Data as in Table 2a for BC number 2 with
b=250,h=350andR =1.

Xrol a, b. o d. e. f.
1.00 252 287 240 289 257 2247
200 211 184 175 213 188 179
300 162 140 133 163 144 137
400 129 112 106 131 115 105
500 107 092 087 108 095 09
600 09 078 074 092 080 0.76
700 078 068 064 080 070 066
800 069 060 056 070 0.61 0.58
900 062 053 050 063 055 052

1000 056 048 045 057 050 047

Table 2g. Values for Curv as a function of x ; for BC number 2.
The columns a.-f. correspond to the values of b, 4 and R, as used in Tables 2a-2f, respectively.
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bo h ]

1.0 1059 90.0
20 302 531
30 180 369
4.0 1.30  28.1
5.0 1.02 226

Table 3. Values of 8 in degrees for various values of
bo (and thus k) in BC number 3 with R = 1.



-21-

Appendix A

In this appendix we explicitly show that, indeed, one of the surfaces constructed in §2 coincides
with the vertical cylinder. At the same time we find out which of the solutions ¢; and ¢, with
0< ¢; <= and < ¢, < 2n of the equation cos¢ = x/x corresponds with the shoulder. With an
eye on the expression for r(v) in Cartesian coordinates given in §3, we introduce the following
orthonornmal basis:

[ cos (v/R)
e;(v)=| sin(v/R)
L 0
[ —sin (v/R)
e(v)=| cos(v/R)
L 0
0
e3=| 0.
1

For these basisvector s we have the properties (with a prime denoting differentiating with respect
10 v):

e’=e/R
e’ =-e /R
e’ =0
e Xey=e3
€ Xe3=€
€3 Xe; =e;.
In terms of this basis the BC is given by
r(v)=Re; +z(v)es.
Its derivatives read as
r,=e+z,€3
rw=-—€ /R +z,¢e;
rm,=—-e2fR2 + Z,v €3,
The vectors t,t, and t;, are represented by

t=rs=r,vi=€v;+e32, Vv,



-22 -

t, = —; vf!R—ezzvzwvﬁ-i-egzwvi

3
ts: = e1<zv Zyy v?) ("R?')
—62(1/R2+23v v§+z,. Zowy vf-4z% z%,, v;‘)vg +

e3(Zym —4 2,23, v2) V3.

Using the properties of the basisvectors given above, we find
= 3 3 3
txt,=e;z,v:—€2z,vi/R+e;v;/R.
Via these expressions, one can find n and b in terms of the basisvectors via the relations

-1
n=—t
x

b=txn=-—‘-‘£—(txts).

So, the representation
d=cosat+sina(cos¢n+singb)

can be rewritten in the form

vZsino

d=ei —-—;c——' [COSQ!R - Zyy Vs Sin¢] +

2
. R 2y Vs
e, v, [cosa +sinafz,, v; coso+sin¢/R)

1+
vi
€3 V; [2, cos o — sin oz, v cosS¢p+sin¢/R) _x_]'

To evaluate the coefficients, it is useful to have explicit expressions at hand for x, x, and x. They
are obtained from the general equations given in §3. We arrive at

X=-2,, V3

Ks = “V?(zwv -3 z%v zy V?)
4
-2 ¥
C=x + —-:5-
R
. . . -2
If we differentiate the relation between % and x , we find

Xy = -i- (EEv -22,,2,v./R?).

Further, we shall make use of the relations
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X
cosd=—
X
st
sing==%—
¢ xR
~¥ 8in
tana:—-——-i.

The plus sign refers to ¢;, the minus sign to ¢,. We find by substitution, that the coefficient of e;
in d vanishes if ¢, is used:

COSG/R —z,, v, sing = ;—% (é—zw v2)=0.

To work out the coefficient of e; in d for ¢ = ¢,, we write it in the form

v cosa . . 2
Y {¢s + 1 —sind(z,, vs cOsO+8ind/R) 2, vil =
S
6
Vv, COS Ve 2
;_M 9, +1— K';};(z%\,vf-l»llkz)].
£

To determine the expression between parentheses, the quantities ¢, and 1 have to be expressed in

terms of x,v,,2,,2,, etc. By differentiating the relation cos¢=x/x and using expressions given
above, we find

-1 - -

¢s”m ;{(sz KKs)
iV6

=x2:2 (sz-zsvzvv?)°

From the equation t = ((t Xt,)- t,;)/x*> we obtain that t can be written as

6
t=—5 (2, +2,/RY)
KR OV S

Substitution of these representations of ¢, and 7 into the coefficient of e, yields, that the latter
vanishes if ¢, is used. Thus the solution ¢, of §2 corresponds with the cylinder, and consequently
the solution ¢, with the shoulder.
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Appendix B

Here, we derive expressions for the angles 6,y and y, defined in §5.

Along BC the tangent planes of the surfaces which correspond to ¢; and ¢, (and thus to d; and
d,, say), have the line through t as line of intersection. These planes are spanned by the pairs of
vectors (t,d;) and (t,d;). The angle 8 between these planes is equal 1o the angle between the com-
ponents of d; and d, perpendicular to t. These components are given by sin o (cos¢; n+sin¢; b)
and sin a (cos ¢, n+sin ¢, b) = sin & (cos¢; n—sin¢; b). Taking the inner product, we find

cosf=1-2 [5} ’
S

where we determined the sign of the right-hand side from the requirement 6 = 0 if x=0.

To obtain an expression for g we introduce a vector m which is tangent to the shoulder atr € BC
and lies in the plane through r and the vertical axis. So, m lies along the line of intersection of the
tangent plane and the plane spanned by the basis vectors e; and e; as defined in Appendix A. The
tangent plane is spanned by t and d and we may write

m=Ait+d.

The components of the vectors t and d with respect to the basis (e;, ;, e3) are given in Appendix
A and denoted as t =(0,75,¢3) and d = (d,d7.d3). Then, m can be written as

m=d;e; +(Aty+dy) ey + (Ats+ds) es,
from which we find
tanyy=~d,/(At3+d3).
From the property (m- e;) = 0 it follows that
A=—dy/t;.
Thus we arrive at '
tany=~d, 13/ (d3t3 —dy13)
= Vg(COSO/R —z,, v;sin¢) / (sing/R + z,, v, COS §).

If ¢, is used, this expression should yield the solution x =0. This is easily checked by substitut-
ing the relations cos ¢ = x/x, sin¢ =—v2/ xR and x=—z,, v>. If we use ¢;, we obtain the altema-
tive expression

tany = 2v3 %/ R(2 - 26).

To obtain an expression for y, we remark that the path of a specific point on the sheet in three
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dimensions corresponds with a vertical line in two dimensions if the shoulder is isometrically
mapped unto the (v,z) plane depicted in Fig. 2. The vector g which is tangent at r(v) € BC to the
path of the points passing through r(v) corresponds with a vertical vector g passing through r(v)
in Fig. 2. We may write

g=cosyt+siny(coson+singb),

where the angle yis still to be determined.
If we take ¢ =0, we obtain a representation for g:

g=cosyf+sinyn.

Because g is a unit vector in the positive z-direction, the following relations between y and the BC
curve z(v) hold:

tany=zy!
siny=v;
COSYy=Z,V,.
So, we have the relation
g=z,v,t+v(coson +sindb).

The angle y is obtained from the e;-component of g. The e;-components of t, n and b are given
in Appendix A. If we substitute them, we find
) x \’3
(g-e3) =2z, vy + v,(cos¢ — v, —sin¢p —).
X xR

From the relations cos y = —(g- e3), cos¢ = ¥/x and sin¢ = v2 /xR (using ¢;) we obtain:

v

¥ RZ'

cosy=-1+2




