Shoulder design for packaging machines

Citation for published version (APA):

Molenaar, J. (1989). Shoulder design for packaging machines. (IWDE report; Vol. 8906). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1989

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

SHOULDER DESIGN FOR PACKAGING MACHINES

J. Molenaar

Report IWDE 89-06
June 1989

The author wishes to express his gratitude to Prof.dr. J. Boersma for illuminating disussions and critical reading of the manuscript and to Mr. A.P.M. Baaijens for putting the formulae into a computer program, with which the results in Tables 1-3 have been calculated.

1. Introduction

In this report, we deal with the design of a part of a packaging machine called "shoulder". In these machines, the packaging material (paper or plastic sheet) is unrolled from a horizontal cylinder and folded against the inner side of a vertical, hollow cylinder. During this folding process, the sheet passes over a curved surface, the shoulder, which is attached to the vertical cylinder. In Fig. 1 an example of the geometry is drawn. After a piece of sheet has been positioned inside the vertical cylinder, it is sealed at the bottom and at the side and filled by dropping the product to be packed from above into the newly formed bag. Then, the bag is drawn downwards, sealed at the top and cut off. This technique allows for packaging at high speed (hundreds of bags per minute), but is sensitive for disturbances if the packaging sheet is not guided over the shoulder in the appropriate way. The curvature of the shoulder should be such, that the sheet is nowhere stretched or torm. In the literature a mathematical discription of possible surfaces is given by Mot [1-4] and Culpin [5]. The former author constructs the shoulder out of pieces of a plane and a cone. The reliability of this approximation is not discussed by this author and is certainly not clear from a theoretical point of view. Culpin has solved the problem exactly. The solution in the present report is not essentially different from his approach. The presentation, however, is more straightforward and also deals with practical aspects of the calculation of shoulders. In $\S 2$ we show that the shoulder is fully determined by specification of a curve in the plane. This planar bending curve corresponds in three dimensions with the intersection of the shoulder and the vertical cylinder. In terms of differential geometry, it is natural to parametrize the shoulder by parameters (s, u) with s the arclength along the bending curve. The planar bending curve, however, is naturally given in terms of Cartesian coordinates. In $\S 3$ we deal with the transformation between these representations.
In practice, one needs a representation of the shoulder in the form $z(x, y)$ with (x, y, z) Cartesian coordinates and z the height of the shoulder above the horizontal (x, y)-plane. Given a pair (s, u), the corresponding parameter pair (x, y) is trivially found, but the map $(x, y) \rightarrow(s, u)$ is not simple to describe analytically. In §4 we give a numerical approach for this mapping, which is easily implemented. In $\S 5$ we numerically investigate various possibilities for the planar bending curve and investigate their practical implications. In the Appendices we deal with the lengthy derivation of some theoretical details.

Figure 1. Sideviews of the shoulder geometry.

2. Determination of a shoulder representation

The shoulder must be isometric with the plane, i.e. it can be mapped unto a part of the plane such that all distances (and thus angles) are preserved. A cylinder and a cone are for example isometric with the plane. The intersection of the shoulder and the vertical cylinder is called the bending curve ($B C$) in three dimensions. Under an isometric mapping $B C$ transforms into a planar bending curve $(\overline{B C})$. In the following, we shall denote quantities referring to the plane by an overbar. Because $B C$ is obtained by wrapping $\overline{B C}$ around a given cylinder in an obvious way, the relation between $B C$ and $\overline{B C}$ is straightforward. We note that $B C$ is the intersection of two surfaces, which are both isometric with the plane. It is known from differential geometry (see e.g. Forsyth [6]), that there exist precisely two surfaces which contain $B C$ and are isometric with the plane.

In the following, we shall present an appropriate representation for the shoulder. Let a point of $B C$ be represented by a three-dimensional vector $\mathbf{r}(s)$, with parameter arclength s. We assume $\mathbf{r}(s)$ to be twice differentiable and choose $\mathbf{r}(0)$ as the highest point of the shoulder. We notice, that in terms of differential geometry the shoulder (and also the vertical cylinder) are so-called developable surfaces. Through each point of $B C$ a straight line passes, which is completely contained in such a surface. These lines "generate" the surface and the surface is specified by giving their directions. See e.g. Weatherbum [7], Haantjes [8] and Struik [9]. We describe the straight line contained in the shoulder and passing through the point $r(s)$ of $B C$ by the unit vector $d(s)$. A point \mathbf{P} on the shoulder is then parametrized by

$$
\mathbf{P}(s, u)=\mathbf{r}(s)+u \mathbf{d}(s) .
$$

We introduce a local, orthonormal coordinate system (t,n,b) at $\mathbf{r}(s)$. The unit tangent vector t is defined as

$$
\mathbf{t}(s)=\mathbf{r}_{s}(s),
$$

the unit normal vector \mathbf{n} as

$$
\mathbf{n}(s)=\frac{-1}{\mathbf{K}(s)} \mathbf{t}_{s}(s)
$$

with the curvature x given by $\mathrm{k}(s)=\left|\mathrm{t}_{s}(s)\right|$, and the unit binormal b as

$$
\mathbf{b}(s)=\mathbf{t}(s) \times \mathbf{n}(s)
$$

Note, that we take for convenience the curvature $\mathrm{k} \geq 0$. With this definition the normal vector n points outwards. The derivatives of these basis vectors are given by the Serret-Frenet formulae

$$
\begin{aligned}
& \mathbf{t}_{s}(s)=-\boldsymbol{k}(s) \mathbf{n}(s) \\
& \mathbf{n}_{s}(s)=\boldsymbol{k}(s) \mathbf{t}(s)+\tau(s) \mathbf{b}(s) \\
& \mathbf{b}_{s}(s)=-\tau(s) \mathbf{n}(s)
\end{aligned}
$$

with $\tau(s)$ the torsion. We may now write quite generally

$$
\mathbf{d}(s)=\cos \alpha(s) \mathbf{t}(s)+\sin \alpha(s)(\cos \phi(s) \mathbf{n}(s)+\sin \phi(s) \mathbf{b}(s)) .
$$

In the sequel, it will become clear why the introduction of the angles α and ϕ is useful.
We represent a point of $\overline{B C}$ by a two-dimensional vector $\overline{\mathbf{r}}(s)$. Note that both $\mathbf{r}(s)$ and $\overline{\mathbf{r}}(s)$ have the arclength s as parameter, because s is preserved under an isometric mapping. Analogous to the definitions above, we have

$$
\begin{aligned}
& \mathfrak{T}(s)=\overline{\mathbf{r}}_{s}(s) \\
& \overline{\mathbf{n}}(s)=\frac{-1}{\overline{\mathbf{K}}(s)} \mathbf{T}_{s}(s), \quad \overline{\mathbf{K}}(s)=\left|\mathbf{T}_{s}(s)\right| \\
& \overline{\mathbf{n}}_{s}(s)=\overline{\mathrm{K}}(s) \mathbf{T}(s) \\
& \overline{\mathbf{d}}(s)=\cos \alpha(s) \mathbf{T}(s)+\sin \alpha(s) \overline{\mathbf{n}}(s) .
\end{aligned}
$$

The last line expresses that the angle α is preserved under the isometric mapping. A point $\overline{\mathbf{P}}$ in the plane is parametrized by

$$
\overline{\mathbf{P}}(s, u)=\overline{\mathbf{r}}(s)+u \overline{\mathbf{d}}(s) .
$$

For each pair (s, u), \mathbf{P}_{s} and \mathbf{P}_{u} are linearly independent tangent vectors which form a basis for the tangent plane in $\mathbf{P}(s, u)$. The fact that under the isometric mapping all distances (and angles) are preserved can be expressed by the following three conditions:

$$
\begin{equation*}
\left|\mathbf{P}_{u}\right|=\left|\overline{\mathbf{P}}_{z}\right| \tag{i}
\end{equation*}
$$

(ii)

$$
\mathbf{P}_{s} \cdot \mathbf{P}_{u}=\overline{\mathbf{P}}_{s} \cdot \overline{\mathbf{P}}_{u}
$$

(iii) $\quad\left|\mathrm{P}_{s}\right|=\left|\overline{\mathbf{P}}_{s}\right|$.
ad i) This condition is automatically fulfilled because $\mathbf{P}_{u}=\mathbf{d}, \overline{\mathbf{P}}_{u}=\overline{\mathbf{d}}$ and $|\mathbf{d}|=|\overline{\mathbf{d}}|=1$.
ad ii) We have

$$
\mathbf{P}_{s}=\mathbf{r}_{s}+u \mathbf{d}_{s}=\mathbf{t}+u \mathrm{~d}_{s}
$$

and

$$
\overline{\mathbf{P}}_{s}=\overline{\mathrm{r}}_{s}+u \overline{\mathrm{~d}}_{s}=\mathbf{\mathrm { t }}+u \overline{\mathrm{~d}}_{s} .
$$

It immediately follows that

$$
\mathbf{P}_{s} \cdot \mathbf{P}_{u}=\cos \alpha=\overline{\mathbf{P}}_{s} \cdot \overline{\mathbf{P}}_{u} .
$$

We already anticipated this condition by writing $\mathrm{d}(s)$ and $\overline{\mathrm{d}}(s)$ in the forms given above.
ad iii) This condition states that

$$
\left|\mathrm{t}(s)+u \mathrm{~d}_{s}(s)\right|=\left|\mathrm{t}(s)+u \overline{\mathrm{~d}}_{s}(s)\right|
$$

should hold for every u. This is equivalent with the conditions $|t|=|\mathbf{I}|$, which is trivially fulfilled, and

$$
\left|\mathbf{d}_{s}(s)\right|=\left|\overline{\mathbf{d}}_{s}(s)\right|
$$

From lengthy but straightforward algebra we find

$$
\begin{aligned}
\left|\overline{\mathbf{d}}_{s}\right|^{2}= & \alpha_{s}^{2}-2 \alpha_{s} \bar{\kappa}+\bar{\kappa}^{2} \\
\left|\mathbf{d}_{s}\right|^{2}= & \alpha_{s}^{2}-2 \alpha_{s} \kappa \cos \phi+\left[\kappa^{2}\left(\sin ^{2} \alpha \cos ^{2} \phi+\cos ^{2} \alpha\right)\right. \\
& \left.+\sin ^{2} \alpha\left(\phi_{s}+\tau\right)^{2}+2 \kappa \cos \alpha \sin \alpha \sin \phi\left(\phi_{s}+\tau\right)\right]
\end{aligned}
$$

Equating terms with α_{s} yields

$$
\cos \phi=\frac{\overline{\mathbf{K}}}{\mathbf{K}}
$$

If we use this relation and equate the remaining parts of the expressions, we find

$$
\tan \alpha=\frac{-k \sin \phi}{\phi_{s}+\tau}, \quad 0 \leq \alpha<\pi
$$

The latter two equations determine ϕ and α if the $B C$ (or $\overline{B C}$) is given. Note, that in general two values ϕ_{1} and ϕ_{2} for ϕ are obtained with $0 \leq \phi_{1} \leq \pi / 2$ and $\phi_{2}=2 \pi-\phi_{1}$, and two corresponding values for α. In the following section, we shall outline how α and ϕ (and thus d) can be calculated from a given planar curve $\overline{B C}$. In Appendix A we show that ϕ_{2} corresponds with the cylinder and ϕ_{1} with the shoulder.

3. Calculation of the shoulder from a given planar bending curve

In practice, one prescribes the planar bending curve $\overline{B C}$ and wants to calculate points on the shoulder. In this section, we present formulae to calculate the vector $\mathbf{d}(s)$, introduced in the preceding section, in a numerically appropriate way. For given values of the radius R of the cylinder and height h of the shoulder, $\overline{B C}$ is given as a curve $z(v)$ in the (v, z)-plane, with v and z Cartesian coordinates. This curve has the properties $z(0)=h, z(-v)=z(+v)$ and $z(\pm \pi R)=0$ as depicted in Fig. 2. We assume $z(v)$ to be three times differentiable. Furthermore, it is assumed that $z_{v v}<0$, i.e. $\overline{B C}$ is concave downwards.

Figure 2. The planar bending curve $\overline{B C}$, given as a function $z(v)$ in the (v, z)-plane. The parameter s denotes arclength.

We may also represent a point of $\overline{B C}$ by a two-dimensional vector $\overline{\mathbf{r}}(v)$:

$$
\overline{\mathrm{r}}(v)=\left[\begin{array}{c}
v \\
z(v)
\end{array}\right] .
$$

If $\overline{B C}$ is wrapped around the cylinder, as shown in Fig. 3, the resulting $B C$ has points represented by a three-dimensional vector

$$
\mathrm{r}(v)=\left[\begin{array}{c}
R \cos (v / R) \\
R \sin (v / R) \\
z(v)
\end{array}\right]
$$

with respect to Cartesian coordinates (x, y, z).

Figure 3. Choice of the Cartesian coordinates (x, y, z).
In the preceding section, we used arclength s as parameter instead of v. The relation between the two is given by

$$
s=\int_{0}^{v}\left(1+z_{v}^{2}\left(v^{\prime}\right)\right)^{1 / 2} d v^{\prime}
$$

Only in a few cases this relationship can be brought into a simpler form by evaluating the integral analytically. For example, if

$$
z(v)=a \cosh \left[\frac{v}{a}\right]
$$

with a some constant, we find that

$$
s=a \sinh \left[\frac{v}{a}\right] .
$$

In the following, we assume that such a reduction is not known and point out how the quantities in $\S 2$, which are given as functions of s, can be calculated as functions of v. We need the factors

$$
\begin{aligned}
v_{s} & =\left(1+z_{v}^{2}\right)^{-1 / 2} \\
v_{s s} & =-z_{v} z_{v v} v_{s}^{4} \\
v_{s s s} & =-z_{v v}^{2} v_{s}^{5}-z_{v} z_{v v} v_{s}^{5}-4 z_{v} z_{v v} v_{s}^{3} v_{s s} \\
& =-v_{s}^{5}\left(z_{v v}^{2}+z_{v} z_{v v v}-4 z_{v}^{2} z_{v}^{2} v_{s}^{2}\right)
\end{aligned}
$$

and the vectors $\mathbf{r}_{v}, \mathbf{r}_{v v}$ and $\mathbf{r}_{w v}$, which directly follow from the explicit expression for $\mathbf{r}(v)$. Then, we may write

$$
\begin{aligned}
& \mathbf{t}(v)=\mathbf{r}_{v} v_{s} \\
& \mathbf{t}_{s}(v)=\mathbf{r}_{v v} v_{s}^{2}+\mathbf{r}_{v} v_{s s} \\
& \mathbf{t}_{s s}(v)=\mathbf{r}_{v v v} v_{s}^{3}+3 \mathbf{r}_{v v} v_{s} v_{s s}+\mathbf{r}_{v} v_{s s s}
\end{aligned}
$$

From $\mathbf{t}, \mathrm{t}_{s}$ and $\mathrm{t}_{s s}$ we may calculate the other relevant quantities. The curvature k and its derivative are given by

$$
\begin{aligned}
& k=\left|t_{s}\right| \\
& \kappa_{s}=\frac{1}{\kappa}\left(t_{s} \cdot t_{s s}\right) .
\end{aligned}
$$

The normal n and binormal b follow from

$$
\begin{aligned}
& n=\frac{-1}{k} t_{s} \\
& b=t \times n=\frac{-1}{k}\left(t \times t_{s}\right) .
\end{aligned}
$$

The torsion τ can be found from the Serret-Frenet formula

$$
\mathbf{n}_{s}=\mathrm{kt}+\tau \mathbf{b},
$$

which implies that

$$
\tau=\left(\mathbf{n}_{s} \cdot \mathbf{b}\right)
$$

From

$$
n_{s}=\frac{-1}{\kappa^{2}}\left(\kappa t_{s s}-\kappa_{s} t_{s}\right)
$$

we conclude that

$$
\tau=\frac{1}{\kappa^{2}}\left(t_{s s} \cdot\left(t \times t_{s}\right)\right) .
$$

In the plane, similar relations hold. We give the relevant ones:

$$
\begin{aligned}
& \mathbf{T}=\overline{\mathbf{r}}_{v} v_{s} \\
& \mathbf{T}_{s}=\overline{\mathbf{r}}_{v v} v_{s}^{2}+\overline{\mathrm{r}}_{v} v_{s s} \\
& \mathbf{T}_{s s}=\overline{\mathrm{r}}_{\mathrm{vvv}} v_{s}^{3}+3 \overline{\mathrm{r}}_{w v} v_{s} v_{s s}+\overline{\mathbf{r}}_{v} v_{s s s} \\
& \overline{\mathrm{~K}}=\left|\boldsymbol{T}_{s}\right| \\
& \overline{\mathbf{K}}_{s}=\frac{1}{\bar{\kappa}}\left(\mathbf{T}_{s} \cdot \mathrm{I}_{s s}\right) .
\end{aligned}
$$

If we compare the expressions for k and $\overline{\mathrm{\kappa}}$, we obtain the relation

$$
\kappa^{2}=\bar{\kappa}^{-2}+\frac{v_{s}^{4}}{R^{2}},
$$

so that in practice it is unnecessary to calculate $\bar{\kappa}$ and κ separately. From $\bar{\kappa}$ and κ, we can find values for ϕ via

$$
\cos \phi=\frac{\bar{\kappa}}{\kappa} .
$$

To find α from

$$
\tan \alpha=\frac{-\kappa \sin \phi}{\phi_{s}+\tau},
$$

one may appropriately use the relations

$$
\sin \phi= \pm \frac{v_{s}^{2}}{\kappa R}
$$

and

$$
\phi_{s}=\frac{-1}{\sin \phi} \frac{1}{k^{2}}\left(\bar{\kappa} \bar{x}_{s}-\bar{\kappa} \kappa_{s}\right) .
$$

The plus sign refers to ϕ_{1}, i.e. the shoulder, the minus sign to ϕ_{2}, i.e. the vertical cylinder. In the following we shall use ϕ_{1}.
An alternative expression for ϕ_{s} reads as

$$
\phi_{s}=\frac{-1}{\kappa^{2} R \cos \phi}\left(\kappa_{s} v_{s}-2 \kappa v_{s s}\right),
$$

which avoids the evaluation of T_{s} and $\mathrm{T}_{s s}$.

4. The inversion problem

One often needs a representation of the shoulder in the form $z(x, y)$, i.e. its height z above the horizontal (x, y)-plane. In $\S 2,3$ we have shown, that the shoulder is commonly parametrized by the pair (u, v). While the map $(u, v) \rightarrow(x, y)$ is trivial, the inverse map $(x, y) \rightarrow(u, v)$ is not easily cast into an explicit form. Here, we follow a numerical approach. A point \mathbf{P} on the shoulder is given by

$$
\mathbf{P}(u, v)=\mathbf{r}(v)+u \mathbf{d}(v)=\left[\begin{array}{l}
r_{1}(v) \\
r_{2}(v) \\
r_{3}(v)
\end{array}\right]+u\left[\begin{array}{l}
d_{1}(v) \\
d_{2}(v) \\
d_{3}(v)
\end{array}\right] .
$$

Given (x, y), we search for the pair (u, v) such that

$$
\begin{aligned}
& x=r_{1}(v)+u d_{1}(v) \\
& y=r_{2}(v)+u d_{2}(v)
\end{aligned}
$$

This leads to the one-parameter equation

$$
y=r_{2}(v)+\left[\frac{x-r_{1}(v)}{d_{1}(v)}\right] d_{2}(v)
$$

For numerical reasons, the parameter v should rather be determined from the equation

$$
\left(v-r_{2}(v)\right) d_{1}(v)-\left(x-r_{1}(v)\right) d_{2}(v)=0
$$

If v has been calculated, u is obtained from either

$$
u=\left(x-r_{1}(v)\right) / d_{1}(v)
$$

or

$$
u=\left(y-r_{2}(v)\right) / d_{2}(v) .
$$

5. Applications

From the viewpoint of the designer, information about the following properties of the shoulder may be of importance:

- The mathematical angle θ at $\mathbf{r} \in B C$. It is the angle between the two planes tangent in \mathbf{r} to the shoulder and the vertical cylinder.
- The angle χ at $\mathbf{r} \in B C$. This angle is measured in the plane through \mathbf{r} and the axis of the vertical cylinder (i.e. the z-axis). This plane intersects the shoulder along some curve. χ is the angle between the tangent in r to this curve and the downward vertical.
- The angle ψ at $r \in B C$. It is obtained by following the path of a specific point of the sheet when sliding over the shoulder and reaching $B C$ in $\mathbf{r} . \psi$ is defined to be the angle between the tangent in r to this path and the downward vertical.
- The paper or plastic sheet is unrolled from a horizontal cylinder mounted perpendicularly to the (x, z)-plane (see Fig. 3). For several reasons, it is advantageous if this cylinder is placed as near to the highest point of the shoulder as possible. However, this cylinder is straight and does not exactly fit to the shoulder. We introduce a measure Curv for the curvature of the shoulder in the vicinity of the horizontal cylinder:

$$
\operatorname{Curv}\left(x_{\mathrm{rol}}\right)=z\left(x_{\mathrm{rol}}, 0\right)-z\left(x_{\mathrm{rol}}, \pi R\right) .
$$

In this formula, the shoulder is assumed to be presented as a known function $z(x, y)$ with x, y, z as denoted in Fig. 3. The x-coordinate of the horizontal cylinder is denoted by $x_{\text {rol }}$. The length of this cylinder should be at least $2 \pi R$, i.e. the circumference of the vertical cylinder. We see that Curv $=0$ if the shoulder would contain the horizontal cylinder. This is never the case, because the only straight lines contained in the shoulder are the ones through the generating vectors \mathbf{d}.

Expressions for the calculation of the angles θ, χ and ψ are derived in Appendix B. We have calculated θ, χ, ψ and Curv for three (families of) $\overline{B C}$'s. The radius of the vertical cylinder and the height of the shoulder are denoted by R and h, respectively.

1. $\mathrm{A} \overline{B C}$ given by a parabola:

$$
z(v)=h\left[\frac{-v^{2}}{(\pi R)^{2}}+1\right] .
$$

Results for various values of h are given in Tables 1a, 1b and 1c.
2. $\mathrm{A} \overline{B C}$ given by a catenary:

$$
z(v)=h\left[-\frac{\cosh (v / b)-1}{\cosh (\pi R / b)-1}+1\right] .
$$

The shape of this $\overline{B C}$ can be adjusted via the parameter b. Results for various values of h
and b are given in Tables 2a-2f.
3. A special case of 2) is obtained if we choose for b the solution b_{0} of the equation

$$
b(\cosh (\pi R / b)-1)=h .
$$

The corresponding $\overline{B C}$ is given by

$$
z(v)=+b_{0}\left(-\cosh \left(v / b_{0}\right)+\cosh \left(\pi R / b_{0}\right)\right) .
$$

For this $\overline{B C}$ the angle θ tums out to be constant along $B C$. In Table 3 its value is given as a function of b_{0} and h.

References

1. Mot, E., The "Shoulder problem" of Forming, Filling and Closing Machines for Pouches, Appl. Sci. Res. 27, october 1972, pp. 1-13.
2. Tiepel, R.E.C.H. and Mot, E., De Theoretische Bouwhoogte van Vertikale Vorm-VulSluitmachines, Verpakking, 25, augustus 1973, pp. 634-639.
3. Mot, E., Enige Aspekten van de Uitvoeringsvorm van Schouders van Vertikale Vorm-VulSluitmachines, Verpakking 26(8), 1974, pp. 404-411.
4. Mot, E., Krachtberekening en -Meting bij Schouders van Vertikale Vorm-VulSluitmachines, Verpakking, 26(12), 1974, pp. 580-588.
5. Culpin, D., A Metal-Bending Problem, Math. Scientist 5, 1980, pp. 121-127.
6. Forsyth, A.R., Lectures on the Differential Geometry of Curves and Surfaces, Cambridge University Press, Cambridge, 1912.
7. Weatherburn, C.E., Differential Geometry of Three Dimensions, Vol. I, Cambridge University Press, Cambridge, 1927.
8. Haantjes, J., Inleiding tot de Differentiaalmeetkunde, P. Noordhoff N.V., Groningen, 1954.
9. Struik, D.J., Lectures on Classical Differential Geometry, Addison-Wesley, ? 1957.

Tables

v	χ	θ	ψ
0	60.02	60.02	60.02
15	59.17	59.46	61.67
30	56.73	57.87	66.20
45	52.94	55.48	72.58
60	48.21	52.60	79.81
75	43.02	49.47	87.14
90	37.79	46.32	94.16
105	32.88	43.27	100.66
120	28.48	40.41	106.55
135	24.64	37.76	111.85
150	21.37	35.34	116.58
165	18.60	33.15	120.81
180	16.27	31.15	124.58

Table la. Values for θ, χ and ψ in degrees for $\overline{B C}$ number 1 with $h=2.850$ and $R=1$. In the first column the position on $B C$ is given by specification of the parameter v (in degrees) as introduced in $\S 3$ and Fig. 2.

ν	χ	$\boldsymbol{\theta}$	$\boldsymbol{\psi}$
0	45.00	45.00	45.00
15	44.60	44.76	46.36
30	43.42	44.08	50.12
45	41.56	43.00	55.55
60	39.18	41.61	61.91
75	36.43	40.02	68.61
90	33.50	38.29	75.28
105	30.53	36.52	81.70
120	27.65	34.75	87.74
135	24.95	33.02	93.35
150	22.46	31.37	98.51
165	20.20	29.80	103.24
180	18.19	28.33	107.57

Table 1b. Data as in Table 1a for $\overline{B C}$ number 1 with

$$
h=2.044 \text { and } R=1 \text {. }
$$

$x_{\text {rol }}$	a.	b.
1.00	2.84	3.39
2.00	2.08	2.50
3.00	1.60	1.93
4.00	1.28	1.55
5.00	1.06	1.29
6.00	0.90	1.10
7.00	0.78	0.96
8.00	0.69	0.84
9.00	0.62	0.76
10.00	0.56	0.68

Table $1 c$. Values for Curv as a function of $x_{\text {rol }}$ for $\overline{B C}$ number 1 with $h=2.850$ (column a.) and $h=2.044$ (column b.), and $R=1$.

\boldsymbol{v}	$\boldsymbol{\chi}$	$\boldsymbol{\theta}$	$\boldsymbol{\psi}$
0	44.99	44.99	44.99
15	44.93	45.10	46.69
30	44.74	45.41	51.40
45	44.40	45.91	58.27
60	43.86	46.54	66.44
75	43.08	47.25	75.26
90	42.04	48.01	84.27
105	40.71	48.75	93.17
120	39.09	49.46	101.72
135	37.19	50.09	109.81
150	35.06	50.66	117.33
165	32.75	51.14	124.24
180	30.32	51.54	130.54

Table $2 a$. Values for θ, χ and θ in degrees for $\overline{B C}$ number 2 with $b=2.0, h=2.50$ and $R=1$. In the first column the position on $B C$ is given by specification of the parameter v (in degrees) as introduced in $\S 3$ and Fig. 2.

\boldsymbol{v}	χ	θ	$\boldsymbol{\gamma}$
0	54.96	54.96	54.96
15	54.68	54.93	56.92
30	53.84	54.84	62.31
45	52.48	54.70	69.99
60	50.64	54.52	78.88
75	48.37	54.34	88.16
90	45.76	54.15	97.31
105	42.88	53.98	106.02
120	39.82	53.82	114.12
135	36.68	53.69	121.55
150	33.52	53.58	128.27
165	30.42	53.48	134.32
180	27.44	53.41	139.72

Table 2b. Data as in Table 2a for $\overline{B C}$ number 2 with

$$
b=2.0, h=3.14 \text { and } R=1 .
$$

\boldsymbol{v}	$\boldsymbol{\gamma}$	\boldsymbol{y}	$\boldsymbol{\gamma}$
0	60.21	60.21	60.21
15	59.78	60.06	62.28
30	58.52	59.66	67.94
45	56.50	59.05	75.93
60	53.83	58.32	85.03
75	50.67	57.57	94.37
90	47.15	56.83	103.42
105	43.44	56.17	111.89
120	39.66	55.58	119.66
135	35.94	55.09	126.69
150	32.37	54.68	132.99
165	28.99	54.35	138.60
180	25.85	54.09	143.58

Table 2c. Data as in Table 2 a for $\overline{B C}$ number 2 with $b=2.0, h=3.50$ and $R=1$.

\boldsymbol{v}	$\boldsymbol{\chi}$	$\boldsymbol{\theta}$	$\boldsymbol{\psi}$
0	47.97	47.97	47.97
15	47.72	47.91	49.62
30	46.99	47.75	54.19
45	45.81	47.51	60.80
60	44.23	47.20	68.57
75	42.33	46.84	76.82
90	40.17	46.48	85.11
105	37.83	46.11	93.18
120	35.38	45.77	100.85
135	32.90	45.45	108.05
150	30.43	45.16	114.72
165	28.02	44.91	120.88
180	25.70	44.69	126.51

Table 2d. Data as in Table 2a for $\overline{B C}$ number 2 with $b=2.50, h=2.50$ and $R=1$.

\boldsymbol{v}	$\boldsymbol{\chi}$	$\boldsymbol{\theta}$	$\boldsymbol{\psi}$
0	58.39	58.39	58.39
15	57.87	53.14	60.28
30	56.33	57.43	65.45
45	53.92	56.36	72.78
60	50.80	55.06	81.15
75	47.21	53.68	89.76
90	43.36	52.30	98.14
105	39.47	51.01	106.03
120	35.70	49.85	113.31
135	32.14	48.32	119.95
150	28.85	47.94	125.96
165	25.86	47.18	131.39
180	23.16	46.55	136.28

Table 2e. Data as in Table 2a for $\overline{B C}$ number 2 with

$$
b=2.50, h=3.14 \text { and } R=1 .
$$

\boldsymbol{v}	$\boldsymbol{\chi}$	$\boldsymbol{\theta}$	$\boldsymbol{\psi}$
0	63.83	63.83	63.83
15	63.14	63.44	65.82
30	61.10	62.33	71.23
45	57.92	60.69	78.80
60	53.86	58.77	87.33
75	49.26	56.77	95.97
90	44.47	54.83	104.24
105	39.77	53.06	111.90
120	35.36	51.50	118.89
135	31.33	50.14	125.18
150	27.74	49.00	130.83
165	24.56	48.03	135.89
180	21.78	47.23	140.41

Table 2f. Data as in Table 2a for $\overline{B C}$ number 2 with $b=2.50, h=3.50$ and $R=1$.

$x_{\text {rol }}$	a.	b.	c.	d.	e.	f.
1.00	2.52	2.87	2.40	2.89	2.57	2.47
2.00	2.11	1.84	1.75	2.13	1.88	1.79
3.00	1.62	1.40	1.33	1.63	1.44	1.37
4.00	1.29	1.12	1.06	1.31	1.15	1.09
5.00	1.07	0.92	0.87	1.08	0.95	0.90
6.00	0.90	0.78	0.74	0.92	0.80	0.76
7.00	0.78	0.68	0.64	0.80	0.70	0.66
8.00	0.69	0.60	0.56	0.70	0.61	0.58
9.00	0.62	0.53	0.50	0.63	0.55	0.52
10.00	0.56	0.48	0.45	0.57	0.50	0.47

Table 2 g . Values for Curv as a function of $x_{\text {rol }}$ for $\overline{B C}$ number 2 .
The columns a.-f. correspond to the values of b, h and R, as used in Tables 2a-2f, respectively.

b_{0}	h	$\boldsymbol{\theta}$
1.0	10.59	90.0
2.0	3.02	53.1
3.0	1.80	36.9
4.0	1.30	28.1
5.0	1.02	22.6

Table 3. Values of θ in degrees for various values of b_{0} (and thus h) in $\overline{B C}$ number 3 with $R=1$.

Appendix A

In this appendix we explicitly show that, indeed, one of the surfaces constructed in $\$ 2$ coincides with the vertical cylinder. At the same time we find out which of the solutions ϕ_{1} and ϕ_{2} with $0 \leq \phi_{1}<\pi$ and $\pi \leq \phi_{2}<2 \pi$ of the equation $\cos \phi=\bar{\kappa} / \kappa$ corresponds with the shoulder. With an eye on the expression for $\mathbf{r}(v)$ in Cartesian coordinates given in $\S 3$, we introduce the following orthonormal basis:

$$
\begin{aligned}
& \mathbf{e}_{1}(v)=\left[\begin{array}{c}
\cos (v / R) \\
\sin (v / R) \\
0
\end{array}\right] \\
& \mathbf{e}_{2}(v)=\left[\begin{array}{c}
-\sin (v / R) \\
\cos (v / R) \\
0
\end{array}\right] \\
& \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

For these basisvector s we have the properties (with a prime denoting differentiating with respect to v):

$$
\begin{aligned}
& \mathbf{e}_{1}^{\prime}=\mathbf{e}_{2} / R \\
& \mathbf{e}_{2}^{\prime}=-\mathbf{e}_{1} / R \\
& \mathbf{e}_{3}^{\prime}=0 \\
& \mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3} \\
& \mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1} \\
& \mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2} .
\end{aligned}
$$

In terms of this basis the $B C$ is given by

$$
\mathbf{r}(v)=R \mathbf{e}_{1}+z(v) \mathbf{e}_{3} .
$$

Its derivatives read as

$$
\begin{aligned}
& \mathbf{r}_{v}=\mathbf{e}_{2}+z_{v} \mathbf{e}_{3} \\
& \mathbf{r}_{v v}=-\mathbf{e}_{1} / R+z_{v v} \mathbf{e}_{3} \\
& \mathbf{r}_{v v v}=-\mathbf{e}_{2} / R^{2}+z_{v v} \mathbf{e}_{3} .
\end{aligned}
$$

The vectors t, t_{s} and $t_{s s}$ are represented by

$$
\mathbf{t}=\mathbf{r}_{s}=\mathbf{r}_{v} v_{s}=\mathbf{e}_{2} v_{s}+\mathbf{e}_{3} z_{v} v_{s}
$$

$$
\begin{aligned}
\mathbf{t}_{s}= & -e_{1} v_{s}^{2} / R-e_{2} z_{v} z_{v v} v_{s}^{4}+e_{3} z_{v v} v_{s}^{4} \\
\mathbf{t}_{s s}= & e_{1}\left(z_{v} z_{v v} v_{s}^{5}\right)\left(\frac{3}{R}\right) \\
& -e_{2}\left(1 / R^{2}+z_{v v}^{2} v_{s}^{2}+z_{v} z_{v v} v_{s}^{2}-4 z_{v}^{2} z_{v v}^{2} v_{s}^{4}\right) v_{s}^{3}+ \\
& \mathbf{e}_{3}\left(z_{v v v}-4 z_{v} z_{v v}^{2} v_{s}^{2}\right) v_{s}^{5} .
\end{aligned}
$$

Using the properties of the basisvectors given above, we find

$$
\mathbf{t} \times \mathrm{t}_{s}=\mathrm{e}_{1} z_{w} v_{s}^{3}-\mathrm{e}_{2} z_{v} v_{s}^{3} / R+\mathrm{e}_{3} v_{s}^{3} / R .
$$

Via these expressions, one can find \mathbf{n} and \mathbf{b} in terms of the basisvectors via the relations

$$
\begin{aligned}
& \mathbf{n}=\frac{-1}{\kappa} \mathbf{t}_{s} \\
& \mathbf{b}=\mathbf{t} \times \mathbf{n}=\frac{-1}{\kappa}\left(\mathbf{t} \times \mathbf{t}_{s}\right) .
\end{aligned}
$$

So, the representation

$$
d=\cos \alpha t+\sin \alpha(\cos \phi n+\sin \phi b)
$$

can be rewritten in the form

$$
\begin{aligned}
\mathrm{d}= & \mathrm{e}_{1} \frac{v_{s}^{2} \sin \alpha}{\kappa}\left[\cos \phi / R-z_{v v} v_{s} \sin \phi\right]+ \\
& \mathrm{e}_{2} v_{s}\left[\cos \alpha+\sin \alpha\left(z_{v v} v_{s} \cos \phi+\sin \phi / R\right) \frac{z_{v} v_{s}^{2}}{\kappa}\right]+ \\
& \mathrm{e}_{3} v_{s}\left[z_{v} \cos \alpha-\sin \alpha\left(z_{v v} v_{s} \cos \phi+\sin \phi / R\right) \frac{v_{s}^{2}}{\kappa}\right] .
\end{aligned}
$$

To evaluate the coefficients, it is useful to have explicit expressions at hand for $\bar{\kappa}, \bar{x}_{s}$ and $\mathrm{\kappa}$. They are obtained from the general equations given in $\S 3$. We arrive at

$$
\begin{aligned}
& \bar{\kappa}=-z_{v v} v_{s}^{3} \\
& \bar{\kappa}_{s}=-v_{s}^{4}\left(z_{v v v}-3 z_{v v}^{2} z_{v} v_{s}^{2}\right) \\
& \mathrm{\kappa}^{2}=\bar{\kappa}^{2}+\frac{v_{s}^{4}}{R^{2}} .
\end{aligned}
$$

If we differentiate the relation between κ^{2} and $\bar{\kappa}^{2}$, we find

$$
\kappa_{s}=\frac{1}{\kappa}\left(\bar{\kappa} \bar{\kappa}_{s}-2 z_{v v} z_{v} v_{s}^{7} / R^{2}\right) .
$$

Further, we shall make use of the relations

$$
\begin{aligned}
& \cos \phi=\frac{\bar{\kappa}}{\kappa} \\
& \sin \phi= \pm \frac{\nu_{s}^{2}}{\kappa R} \\
& \tan \alpha=\frac{-\kappa \sin \phi}{\phi_{s}+\tau} .
\end{aligned}
$$

The plus sign refers to ϕ_{1}, the minus sign to ϕ_{2}. We find by substitution, that the coefficient of \mathbf{e}_{1} in d vanishes if ϕ_{2} is used:

$$
\cos \phi / R-z_{v v} v_{s} \sin \phi=\frac{1}{\kappa R}\left(\bar{\kappa}-z_{v v} v_{s}^{3}\right)=0 .
$$

To work out the coefficient of e_{2} in d for $\phi=\phi_{2}$, we write it in the form

$$
\begin{aligned}
& \frac{v_{s} \cos \alpha}{\phi_{s}+\tau}\left[\phi_{s}+\tau-\sin \phi\left(z_{v v} v_{s} \cos \phi+\sin \phi / R\right) z_{v} v_{s}^{2}\right]= \\
& \frac{v_{s} \cos \alpha}{\phi_{s}+\tau}\left[\phi_{s}+\tau-\frac{v_{s}^{6} z_{v}}{\kappa^{2} R}\left(z_{v v}^{2} v_{s}^{2}+1 / R^{2}\right)\right] .
\end{aligned}
$$

To determine the expression between parentheses, the quantities ϕ_{s} and τ have to be expressed in terms of $k, v_{s}, z_{v}, z_{v v}$ etc. By differentiating the relation $\cos \phi=\bar{\kappa} / k$ and using expressions given above, we find

$$
\begin{aligned}
\phi_{s} & =\frac{-1}{\sin \phi} \frac{1}{\kappa^{2}}\left(\bar{\kappa} \bar{\kappa}_{s}-\bar{\kappa} \kappa_{s}\right) \\
& =\frac{ \pm v_{s}^{6}}{\kappa^{2} R}\left(z_{v v v}-z_{v v}^{2} z_{v} v_{s}^{2}\right) .
\end{aligned}
$$

From the equation $\tau=\left(\left(\mathbf{t} \times \mathrm{t}_{s}\right) \cdot \mathrm{t}_{s s}\right) / \mathrm{k}^{2}$ we obtain that τ can be written as

$$
\tau=\frac{v_{s}^{6}}{\kappa^{2} R}\left(z_{w v v}+z_{v} / R^{2}\right)
$$

Substitution of these representations of ϕ_{s} and τ into the coefficient of \mathbf{e}_{2} yields, that the latter vanishes if ϕ_{2} is used. Thus the solution ϕ_{2} of $\S 2$ corresponds with the cylinder, and consequently the solution ϕ_{1} with the shoulder.

Appendix B

Here, we derive expressions for the angles θ, χ and ψ, defined in $\S 5$.

Along BC the tangent planes of the surfaces which correspond to ϕ_{1} and ϕ_{2} (and thus to d_{1} and \mathbf{d}_{2}, say), have the line through \mathbf{t} as line of intersection. These planes are spanned by the pairs of vectors $\left(t, d_{1}\right)$ and $\left(t, d_{2}\right)$. The angle θ between these planes is equal to the angle between the components of d_{1} and d_{2} perpendicular to t. These components are given by $\sin \alpha\left(\cos \phi_{1} n+\sin \phi_{1} b\right)$ and $\sin \alpha\left(\cos \phi_{2} \mathbf{n}+\sin \phi_{2} \mathbf{b}\right)=\sin \alpha\left(\cos \phi_{1} \mathbf{n}-\sin \phi_{1} \mathbf{b}\right)$. Taking the inner product, we find

$$
\cos \theta=1-2\left[\frac{\bar{k}}{\kappa}\right]^{2},
$$

where we determined the sign of the right-hand side from the requirement $\theta=0$ if $\bar{\kappa}=0$.

To obtain an expression for χ we introduce a vector m which is tangent to the shoulder at $r \in B C$ and lies in the plane through r and the vertical axis. So, m lies along the line of intersection of the tangent plane and the plane spanned by the basis vectors e_{1} and e_{3} as defined in Appendix A. The tangent plane is spanned by t and d and we may write

$$
\mathbf{m}=\lambda \mathbf{t}+\mathbf{d} .
$$

The components of the vectors \mathbf{t} and \mathbf{d} with respect to the basis ($\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$) are given in Appendix A and denoted as $\mathrm{t}=\left(0, t_{2}, t_{3}\right)$ and $\mathrm{d}=\left(d_{1}, d_{2}, d_{3}\right)$. Then, m can be written as

$$
\mathbf{m}=d_{1} \mathbf{e}_{1}+\left(\lambda t_{2}+d_{2}\right) \mathbf{e}_{2}+\left(\lambda t_{3}+d_{3}\right) \mathbf{e}_{3},
$$

from which we find

$$
\tan \chi=-d_{1} /\left(\lambda t_{3}+d_{3}\right) .
$$

From the property $\left(\mathbf{m} \cdot \mathbf{e}_{2}\right)=0$ it follows that

$$
\lambda=-d_{2} / t_{2} .
$$

Thus we arrive at

$$
\begin{aligned}
\tan \chi & =-d_{1} t_{2} /\left(d_{3} t_{2}-d_{2} t_{3}\right) \\
& =v_{s}\left(\cos \phi / R-z_{v v} v_{s} \sin \phi\right) /\left(\sin \phi / R+z_{w v} v_{s} \cos \phi\right)
\end{aligned}
$$

If ϕ_{2} is used, this expression should yield the solution $\chi=0$. This is easily checked by substituting the relations $\cos \phi=\bar{\kappa} / \kappa, \sin \phi=-v_{s}^{2} / \kappa R$ and $\bar{\kappa}=-z_{v v} v_{s}^{3}$. If we use ϕ_{1}, we obtain the altemative expression

$$
\tan \chi=2 v_{s}^{3} \overline{\mathrm{k}} / R\left(\mathrm{k}^{2}-2 \overline{\mathrm{k}}^{-2}\right) .
$$

To obtain an expression for ψ, we remark that the path of a specific point on the sheet in three
dimensions corresponds with a vertical line in two dimensions if the shoulder is isometrically mapped unto the (v, z) plane depicted in Fig. 2. The vector g which is tangent at $\mathrm{r}(v) \in B C$ to the path of the points passing through $\mathbf{r}(v)$ corresponds with a vertical vector $\overline{\mathbf{g}}$ passing through $\overline{\mathbf{r}}(v)$ in Fig. 2. We may write

$$
\mathbf{g}=\cos \gamma \mathbf{t}+\sin \gamma(\cos \phi \mathbf{n}+\sin \phi \mathbf{b}),
$$

where the angle γ is still to be determined.
If we take $\phi=0$, we obtain a representation for $\overline{\mathbf{g}}$:

$$
\overline{\mathbf{g}}=\cos \gamma \overline{\mathbf{t}}+\sin \gamma \overline{\mathbf{n}} .
$$

Because \bar{g} is a unit vector in the positive z-direction, the following relations between γ and the $\overline{B C}$ curve $z(v)$ hold:

$$
\begin{aligned}
& \tan \gamma=z_{v}^{-1} \\
& \sin \gamma=v_{s} \\
& \cos \gamma=z_{v} v_{s} .
\end{aligned}
$$

So, we have the relation

$$
\mathbf{g}=z_{v} v_{s} \mathbf{t}+v_{s}(\cos \phi \mathbf{n}+\sin \phi \mathbf{b}) .
$$

The angle ψ is obtained from the \mathbf{e}_{3}-component of \mathbf{g}. The \mathbf{e}_{3}-components of \mathbf{t}, \mathbf{n} and \mathbf{b} are given in Appendix A. If we substitute them, we find

$$
\left(\mathbf{g} \cdot \mathbf{e}_{3}\right)=z_{v}^{2} v_{s}^{2}+v_{s}\left(\cos \phi \frac{\bar{\kappa}}{\kappa} v_{s}-\sin \phi \frac{v_{s}^{3}}{\kappa R}\right) .
$$

From the relations $\cos \psi=-\left(\mathrm{g} \cdot \mathrm{e}_{3}\right), \cos \phi=\overline{\mathrm{\kappa}} / \mathrm{k}$ and $\sin \phi=v_{s}^{2} / \kappa R\left(\right.$ using $\left.\phi_{1}\right)$ we obtain:

$$
\cos \psi=-1+2 \frac{v_{s}^{6}}{\mathrm{~K}^{2} R^{2}}
$$

