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Abstract 

 The model of Stone and Jenkins for gravity segregation in steady, horizontal gas-

liquid flow in homogeneous porous media is extremely useful and apparently general, but 

without a sound theoretical foundation.  We present a proof that this model applies to 

steady-state gas-liquid flow, and also foam flow. We solve for the lateral position of the 

point of complete segregation of gas and water flow, but there is still no rigorous solution 

for the curves separating override, underride and mixed zones, or for the vertical height 

of the position of complete segregation. 

Introduction 

 Gravity segregation between injected gas and water reduces gas sweep and oil 

recovery in gas-injection improved oil recovery processes (Lake, 1989).  A useful model 

for gravity segregation is that of Stone (1982) and Jenkins (1984) for steady-state gas-

water flow in a homogeneous porous medium.  Stone and Jenkins argue that although in 

the field gas and water are usually injected in alternating slugs, over sufficiently long 

distances and sufficiently long times the process approximates steady coinjection of the 

two fluids.  Their problem statement begins with the following assumptions: 

1. Homogeneous, though possibly anisotropic (kv ≠ kh), porous medium. 

2. The reservoir is either rectangular or cylindrical with an open outer boundary.  

The injection well is completed over the entire vertical interval.  The reservoir 

is confined by no-flow barriers above and below. 

3. The system is at steady state, with steady injection of fluids at volumetric rate 

Q and injected fractional flow of water fw = fJ.  This implies that any 

remaining oil in the region of interest is at its residual saturation and 

immobile. 
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Stone and Jenkins then add the standard assumptions of fractional-flow theory for 

immiscible multiphase flow: 

4. Incompressible phases.  No mass transfer between phases. 

5. Absence of dispersive processes, including fingering, and negligible capillary-

pressure gradients. 

6. Newtonian mobilities of all phases. 

7. Immediate attainment of local steady-state mobilities, which depend only on 

local saturations. 

Assumptions (6) and (7) are clearly valid for gas-water flow, but are more debatable 

when extending the model to foam flow, as described below.  Stone and Jenkins then 

make the following additional simplifying assumptions: 

8. The reservoir splits into three regions of uniform saturation, with sharp 

boundaries between them, as illustrated in Fig. 1: 

a) an override zone with only gas flowing 

b) an underride zone with only water flowing 

c) a mixed zone with both gas and water flowing 

9. At each lateral position x (or r), the pressure gradient in the x (or r) direction 

is the same in all three regions; i.e., (∂/∂z(∂p/∂x)) = 0.  But ∂p/∂x can (and 

does) vary with x. 

 Based on these assumptions, Stone and Jenkins derive equations for the distance 

Lg (in a rectangular reservoir) or Rg (in a cylindrical reservoir) that the injected gas-water 

mixture flows before complete segregation, i.e. segregation length, of gas and water flow 

and for the shape of the boundaries separating the three regions in the reservoir.  Shi and 

Rossen (1998b) show that the equation for a rectangular reservoir can be recast in a way 

that is useful to the discussion that follows: 

 3



















∆
∇

≡=
v

hm

Lg

g

Lk
Hk

g
p

RNL
L

ρ
)(1  (1) 

where L is the length of the reservoir; Ng and RL are dimensionless gravity number and 

reservoir aspect ratio, respectively; (∇p)m is the lateral pressure gradient in the mixed 

zone at the injection face; and ∆ρ is density difference between phases, g gravitational 

acceleration, and H reservoir height.  For a cylindrical reservoir, the corresponding result 

is 
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Here gravity number and aspect ratio are defined as functions of the segregation length 

Rg.  Moreover, the pressure gradient used in the gravity number, [(∇p)m(R g)], is defined 

as the lateral ∇p that would be present in the mixed zone at this radial position Rg in the 

absence of any gravity segregation.  The factor 2 in Eq. (2) derives from the cross-

sectional area for flow in a cylindrical domain, i.e. 2πr. 

 Figure 2 shows a sample prediction of Stone and Jenkins for gas-water flow with 

the parameter values given in Appendix A.  The rock properties and relative-permeability 

curves are derived from data of Persoff et al. (1991) for nitrogen-water flow in Boise 

sandstone, and viscosities are those of nitrogen and water at room temperature.  An 

interesting feature of this plot is that mobilities are uniform in the three regions but flow 

rates are not; pressure gradient and volumetric flux in the mixed zone decrease linearly 

with distance from the well, even in a rectangular reservoir, as shown.  The rates of loss 

of gas to the override zone and of water to the underride zone, in units 

(volume/time)/(unit length in the lateral direction) are uniform in the mixed zone, 

unaffected by the decrease in lateral pressure gradient. The boundaries between the zones 

are not linear, however.  As one moves away from the injection face, gas and water leave 

the mixed zone faster than the zone shrinks in height; hence the total lateral volumetric 
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flux ut in the mixed zone decreases, as does lateral pressure gradient, as one moves away 

from the injection face.  At any given value of x, ∇p is the same in all three zones. 

 The model of Stone and Jenkins fits simulations of gas-water flow over a wide 

range of parameter values. Still more remarkably, the model fits gravity segregation in 

simulation of foam injection as well (Shi and Rossen, 1998b), as long as assumptions (1) 

to (7) hold.  The model fits simulation results in spite of the complexity of foam behavior, 

the extremely large reductions in gas mobility caused by foam, and the abrupt collapse of 

foam often observed over a narrow range of water saturation (Khatib et al., 1988; de 

Vries and Wit, 1990; Fisher et al., 1990; Persoff et al., 1991; Rossen and Zhou, 1995; 

Aronson et al., 1994; Alvarez et al., 2001).  An example is given in Fig. 3.  Shi and 

Rossen (1998b) and Cheng et al. (2000) vary injected foam quality, foam strength, foam 

mechanistic model, flow rates, reservoir dimensions and properties, and even finite-

difference grid refinement over a wide range of values with virtually no deviation from 

predictions of Stone and Jenkins (cf. Fig. 4).  The model also fits experimental data in a 

2D sandpack for gas-water flow (Holt and Vassenden, 1996), and for foam flow as well, 

if one allows an empirical adjustment to account for an ability of foam to suppress 

vertical migration in imperfectly homogeneous media (Holt and Vassenden, 1997). "Fit" 

should be defined carefully in this context.  Finite-difference simulations cannot resolve 

either the vertical or lateral position of complete segregation, Hg or Lg, to better than the 

size of one grid block.  In the simulations, the regions appear remarkably uniform in 

saturation.  The boundaries between regions appear sharp to within one or two grid 

blocks, as expected in the presence of numerical dispersion.  Shi and Rossen (1998b) 

compare the extent of gravity override qualitatively with the model predictions, while 

Cheng et al. (2000) and Shan (2001) show agreement between model and simulations to 

within about 4% in Lg (almost to within grid resolution).  The value of Hg cannot be 

compared directly to the simulations because the predicted override zone is usually much 

thinner than one grid block.  It is not clear whether the shape of the boundaries between 
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regions in simulations has been compared quantitatively to the model; in any case 

quantitative comparisons would be limited by numerical dispersion and grid resolution at 

the boundaries; cf. Fig. 4. 

The implications of Stone and Jenkins' model are profound.  Equations (1) and (2) 

imply that, for a given reservoir and density difference between phases, the only way to 

increase the distance gas and water travel together before complete gravity segregation is 

to increase the lateral pressure gradient in the reservoir, at the cost, of course, of 

increased injection-well pressure.  Equivalent improvements are predicted, for instance, 

from injecting a strong foam at low flow rates, a weak foam at higher rates, or no foam at 

all at very high rates, to achieve the same value of (∇p)m.  Moreover, if injection-well 

pressure is limited, it may be impossible to achieve a desired improvement in vertical 

sweep.  These conclusions, and this paper, however, apply only to continuous-injection 

foam processes.  Shi and Rossen (1998a) and Shan and Rossen (2002) show that 

alternating-slug foam processes with sufficiently large slugs (larger than those envisioned 

by Stone and Jenkins) can achieve much better vertical sweep without adversely affecting 

injection-well pressure. 

Uncertain Theoretical Foundation 

 Thus Stone and Jenkins' model fits a wide range of simulation results and some 

laboratory data for gas-water flow with or without foam.  However, the theoretical 

justification for the model is uncertain. 

 Stone (1984) remarks that the process of gravity segregation in 2D flow is similar 

to gravity segregation in a stagnant porous medium, for which a fractional-flow solution 

is available (Siddiqui and Lake, 1992); that is, he asserts that the assumptions in his 

model can be derived from considering an element of fluid spanning the height of the 

reservoir, moving away from the injection well in time as shown schematically in Fig. 5.  

It can be seen in two ways that this is not so.  First, while a stagnant porous medium is a 
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closed system, the moving element in Fig. 5 is open.  Lateral velocities differ between 

and vary within the three regions; therefore, for instance, in the override zone gas flows 

into the element from behind and out its front face with different velocities.  Second, 

gravity segregation in a stagnant medium may feature two shocks, but also one or two 

spreading waves (cf. Fig. 6).  Hence one does not always observe two shocks, with 

uniform regions between, as in Stone and Jenkins' model. 

 Jenkins (1984) shows a sample fractional-flow function for gravity segregation in 

a stagnant medium, like Fig. 6, with a shock and a spreading wave, and argues that the 

average saturations observed in the various zones in 2D flow correspond to the average 

saturations of any spreading waves predicted from the fractional-flow solution for the 

stagnant case.  This does not explain the observation of two shocks with three uniform 

regions in the simulations of 2D flow.  Moreover, the upper and lower regions in the flow 

simulations are at their endpoint saturations (or zero saturation of one phase), not at some 

average saturation of a spreading wave with finite mobility of both phases; cf. Fig. 4. 

 Thus, ironically, a clearly useful model that fits a wide range of simulation results 

and has important implications for field application is without a firm theoretical 

justification. 

 In this paper we prove that a process that obeys assumptions (1) to (7) does 

indeed spontaneously segregate into three uniform regions with shock fronts between 

them, and fits Eqs. (1) and (2) for Lg or Rg in rectangular and cylindrical flow, 

respectively. We are unable to determine the shape of the boundary between the regions 

apart from their endpoints at the top and bottom of the injection face and their 

termination at a distance Lg or Rg from the injection face. 

Derivation of Equations 

 The key step in this derivation is the substitution of the stream function ψ for 

vertical position z in the partial differential equations for flow.   
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Darcy's law for this system gives, for phase i = water or gas 

)()( ziwii egpkSu ρλ +∇−=   , (3) 

where iu , λi and ρi are respectively the volumetric flux vector, mobility and density of 

phase i; k  is the permeability tensor, which we assume has only diagonal elements kh and 

kv, respectively; ze  is the unit vector in the vertical direction (pointing upwards).  It is 

also convenient to introduce the reduced water saturation 
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where Sir is the residual saturation of phase i. 

 Mass conservation gives 
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with the condition 

Sw + Sg = 1  . (6) 

Defining 

gwt uuu +=   , (7) 

λt(Sw) = λw(Sw) + λg(Sw)  , (8) 

it follows that  

0)( =tudiv   . (9) 

Combining Eqs. (7), (8) and (3) gives 
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Multiplying Eq. (10) by λw gives 
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where 

fw ≡ λw / λt   . (12) 

Equation (9) suggests using the stream function as a basic flow variable.  Setting 
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we find from Eq. (10)  
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Differentiating Eqs. (14) and (15) with respect to z and x, respectively, and subtracting 

the resulting expressions gives the ψ-equation 
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where xe  is the unit vector in x-direction and where 
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At steady state, the water saturation is governed by  

0)( =







−−•∇ z

t

gw
gwvtw egkuf

λ
λλ

ρρ   . (18) 

The corresponding boundary conditions are summarized in Fig. 7. 

 Both Eqs. (16) and (18) are of the form 0=• G∇ .  Where G  is smooth, this 

equation has its classical interpretation.  But across some curve C in the x,z plane where 

G  is discontinuous, the equation has no meaning and should be interpreted in a weak or 

integrated sense.  This implies that 

[ ]nG •  = {jump of normal component of G } = 0  across C  . (19) 

Applied to Eq. (16), this jump condition becomes 
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   across C. 

Using the definition of ψ and Eq. (10) one observes that Eq. (20) is equivalent to the 

pressure condition  

[ ]sp •∇  = {jump of tangent component of p} = 0   across C, 

implying that the pressure variations on both sides of C are identical, i.e., that pressure is 

continuous across C. 

Solution for Steady-State Water Saturation 

 Next we formulate the problem in terms of the water fractional-flow function.  Let 
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f ≡ fw(Sw) (22) 

and 

F(Sw) ≡ 
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The monotonicity of fw(Sw) allows us to consider F as a uniquely defined function of f.  

Therefore, we also may write F = F(f). Using this and Eq. (9), Eq. (18) becomes 
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The behavior of the function F = F(f) is illustrated in Fig. 8 and discussed further below. 

 Let us suppose that utx > 0 in the entire flow domain (this has to be verified a 

posteriori). Since utx = - ∂ψ/∂z, this implies that for any fixed x > 0, ψ is strictly 

decreasing with respect to z. Instead of (x,z), we now take (x, ψ) as independent variables. 

Writing 
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Substituting these expressions into Eq. (24) gives the first-order conservation law 
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in the domain x > 0, 0 < ψ < Q. 

 Equation 29 is in the same form as familiar fractional-flow problems, except that 

x replaces time and ψ replaces space as independent variables and the displacement 

depends on the function F(f) rather than fw(Sw) for 1D displacements (Lake 1989) or 

F(Sw) for gravity segregation without horizontal flow (Siddiqui and Lake, 1992; cf. Fig. 

6).  Of course both F and f are functions of Sw (or, equivalently, S), but it is dF/df = 

(dF/dSw)/(df/dSw) that governs the slope of characteristics.  

 The solution to Eq. (29) is subject to the boundary condition  for 0 < 

ψ < Q, which plays the role of the initial condition in conventional fractional-flow 

problems, and f(0,x) = 0, f(Q,x) = 1 for all x > 0 (cf. Fig. 7).  That is, the total injection 

rate Q enters along the injection face, no water flows along the top boundary of the 

reservoir and no gas flows along the lower boundary.  The method of characteristics 

applied in the ψ,x plane indicates that characteristics with slope dF/df  < 0 issue from the 

lower corner of the reservoir, and the slope must decrease monotonically from that at f = 

f

Jff =)0,(ψ

J, the injected fractional flow, to f = 1 at the bottom of the reservoir.  Similarly, 

characteristics issue from the top corner with slope dF/df > 0 and must have 

monotonically increasing slope from f = fJ to f = 0.  Figure 8 shows an example of the 

function F(f) for the same set of gas-flood parameters as in Figs. 2 and 4.  If this function 

is everywhere concave as shown here, then there are no spreading waves; instead, there 

are two shock fronts between regions of constant state with values of f = 0, fJ and 1.  We 

return to the issue of the shape of the function F(f) below. 

 The upper shock, separating f = 0 and f = fI, is given by  

x
f
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The lower shock, separating f = fI and f = 1, is given by 
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where denotes the total mobility in mixed region.  Eq. (33) is the solution for Lm
tλ g given 

by Stone (1982); Shi and Rossen (1998b) show that it is equivalent to Eq. (1). 

 For x > Lg, the solution has a shock parallel to the x-axis, separating f = 0 and f = 

1.  

 The shocks (Eqs. (30) and (31)) are straight lines in (x,ψ) space, but are curves in 

(x,z) space.  Equation 33 gives the exact expression for the x coordinate Lg for the point 

of complete segregation of flow; Stone and Jenkins also estimate the z coordinate Hg: 
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where Mgw is the ratio of gas mobility in the override zone to water mobility in the 

underride zone.  In deriving this expression they assume that all flow is horizontal at the 

point (Lg,Hg) of complete segregation of liquid and gas.  Clearly at some distance 

downstream of this point this assumption holds and Eq. (34) is valid, but it is doubtful 

that it applies at x = Lg.  Although the endpoints of the shock fronts at the corners of the 

reservoir, and the lateral distance Lg to the point of complete segregation, are known in 
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(x,z) space, we have no solution for the curved shock fronts themselves.  They would 

result from a free-boundary problem based on Eq. (16).  This equation has to be solved in 

the separate (as yet unknown) subdomains (override, underride, mixed) with Eqs. (20), 

(30) and (31) as free-boundary conditions.  See Appendix B for further discussion. 

Segregation distance in cylindrical reservoirs 

 Let (x,y) denote the horizontal coordinates and 22 yxr += the distance towards 

the injection well. Assuming axial-symmetric flow, with 

zzrr eueuu += ,  where ),(1 yx
rr =e , (35) 

the relation between the fluxes and the stream function becomes 
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As above, we set 
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which results in the equation 
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implying the radial segregation distance 
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This is the equation for Rg given by Stone (1982); Shi and Rossen (1998b) show that it is 

equivalent to Eq. (2). 
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Shape of the Function F(f) 

 Here we show that only shocks emerge from the corner points (x = 0, ψ  = 0) and 

(x = 0, ψ = Q).  This follows from the fact that the domain below the function F(f), i.e.  

D ={(f,t): 0 ≤ f ≤ 1, 0 ≤ t ≤ F(f)}   , (40) 

is star-shaped with respect to the points (f = 0, F(0) = 0), and (f = 1, F(1) = 0).  This 

property uses only monotonicity of the mobilities λg(S) and λw(S). 

 Let us consider the point (f = 0, F(0) = 0).  Since 

F(f) = 
)(

)()(
S

SS

t
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λ
λλ

 = f λg(S)  , (41) 

where f and S are related by f = λw(S)/ λt(S), and since f increases strictly with S, we 

observe that λg(S) decreases strictly with f from λg(0) > 0 as f = 0 towards λg(1) = 0 as f = 

1.  As a consequence,  

0)0()0(')(lim
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f
fF λ  (42) 

and  

)()( S
f
fF
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decreases strictly as f increases (i.e., as S increases).  This proves that D is star-shaped 

with respect to (f = 0, F(0) = 0) and that a shock is the only solution between f = 0 and f = 

fJ. 

 Similarly, one can write  

F(f) = (1-f)λw(S)   . (44) 

Using the monotonicity of λw(S) we obtain 
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and (F(f)/(1-f)) decreases strictly as f decreases (i.e., as S decreases).  Therefore D is also 

star-shaped with respect to (f = 1, F(1) = 0) and again a shock is the only solution 

between f = fJ and f = 1. 

 This proof requires only that λw(S) be monotically increasing and λg(S) be 

monotonically decreasing with S.  This property applies to most foam models (Rossen et 

al. 1999; Shi, 1996) as well as more-conventional fluids.  The case of foams that obey the 

“limiting capillary pressure” model (Rossen and Zhou, 1995; Zhou and Rossen, 1995) 

deserves additional comment.  Such a foam collapses abruptly at a limiting water 

saturation S*; as a result there are a range of values of λg and f, but only one value of λw, 

at S*.  According to Eqs. (43) and (44), the portion of the F(f) curve corresponding to S = 

S* lies on a segment that points directly to (F = 0, f = 1).  Figure 9 shows an example, 

based on the data of Persoff et al. (1991) (Appendix A).  Such a case also gives two 

shocks and regions of uniform state between. More generally, foam may collapse over a 

narrow range of saturations, rather than at a single value S*.  This sort of behavior is 

shown in Fig. 10.  This behavior likewise gives two shocks and regions of uniform state 

between. 

Conclusions 

1. The model of Stone and Jenkins for gravity segregation during steady gas-

water co-injection into a homogeneous reservoir is clearly useful and widely 

applicable; but the theoretical justification given by Stone and Jenkins for 

their model is not strictly valid, or even self-consistent. 

2. In steady incompressible gas-water injection into a rectangular or cylindrical 

reservoir, at steady state there are three zones of uniform saturation, with 

sharp boundaries between them:  a mixed zone corresponding to the injected 
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fractional flow, an override zone at irreducible water saturation, and an 

underride zone with no gas present, as assumed by Stone and Jenkins.  This 

conclusion holds for any two-phase system for which the mobility of the first 

phase increases monotonically and the mobility of the second phase decreases 

monotonically as saturation of first phase increases. 

3. The distance to the point of complete gravity segregation predicted by theory 

agrees with that in Stone and Jenkins' model.  The three regions are separated 

by straight-line shock fronts in the (x,ψ) coordinate system.  In the 

conventional (x,z) coordinate system, the shock fronts are curved.   Although 

the lateral distance to the point of complete segregation in the reservoir, and 

the thickness of the override and underride zones some distance downstream 

of this point are as given by Stone and Jenkins, the curved shock fronts 

between the regions are still not determined rigorously. 
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Appendix A:  Model Parameters Based on Data of Persoff et al. (1991) 
 The gas and water relative-permeability data of Persoff et al. (1991) in the 

absence of foam can be fit by the functions 
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3.1)1( .940  Skrg −=   (A1) 

2.4 .20  Skrw =   . (A2) 

with Swr = Sgr = 0.2 (Eq. (4)).  We assume µw = 0.001 Pa s and µg = 2 x 10-5 Pa s, ρw = 

1000 kg/m3, ρg = 153 kg/m3., which corresponds roughly to N2 gas at 2000 psi and 300K. 

In Figs. 2 and 8 we assume that the injected water fractional flow fJ is 0.2.   

 The equations of Stone and Jenkins use two factors computed from these 

parameters:  Mgm is the ratio of the mobility of gas in the mixed zone to the mobility of 

gas in the override zone, and Mgw is ratio of the mobility of gas in the override zone to the 

mobility of water in the underrride zone.  The override zone is at Sw = Swr = 0.2; the 

underride zone is at Sw = 1 (S = 1), with krw = 1, since it is assumed gas has never entered 

there.  To calculate the mobilities in the mixed zone it is necessary to calculate Sw there 

from the injected fractional flow fw: 

fw = 0.2 =  

)(
)(

1

1

wrw

w

g

wrg

Sk
Sk µ

µ
+

 (A4) 

which leads to Sw = 0.777, Mgm = 69.24, and Mgw = 47. 

 Both gas relative permeability and viscosity are altered by foam, but for 

simplicity here we account for all effects for foam by altering the gas relative 

permeability (Rossen et al., 1999). The data of Persoff et al. in the presence of foam are 

fit by retaining the functions above for Sw < 0.37.  For Sw > 0.37, krg is reduced by a factor 

of 18,500 (Zhou and Rossen, 1995).  For Sw = 0.37, krg is not a unique function of Sw, but 

must be determined from fw.  For instance, for injected fw = 0.2, Sw = 0.37 and (cf. Eq. 

(A4)) 

fw = 0.2 =  

3

3

5 10
10

102
)(

1

1

−

−

−⋅
+ wrg Sk

 (A5) 

which gives krg = 8⋅10-5, Mgw = 47 and Mgm = 11750. 
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Appendix B:  Free-Boundary Problem 
 The curves separating the phases in the reservoir (in the original x,z coordinates) 

are determined by the solution of the stream-function equation (Eq. (16)) subject to Eqs. 

(20), (30) and (31) across the a priori-unknown phase boundaries.  This is a free-

boundary problem which we pose here for completeness. 

 We begin with a non-dimensionalization and some notation.  Setting 

x: = x/H, z = z/H and Lg* = Lg/H  , (B1) 

let 

Ω = {(x,z) : 0 < ∞, 0 < z < 1} (B2) 

denote the semi-infinite scaled reservoir in which we identify the regions of mixed flow 

(Ωm) and the gas override (Ωg) and water underride zones (Ωw) as in Fig. B1.  The 

corresponding phase boundaries are denoted by Cmg, Cmw and Cgw.  We assume that they 

have the horizontal parameterizations 

Cmg = {(x,z) : 0 ≤ x ≤ Lg*, z = hmg(x)}  , (B3) 

Cmw = {(x,z) : 0 ≤ x ≤ Lg*, z = hmw(x)}  , (B4) 

Cgw = {(x,z) : Lg* ≤ x ≤ ∞, z = hgw(x)}  . (B5) 

Next we set 

α : =fJ  (B6) 

γw : = 
gw

w

ρααρ
ρ

)1( −+
  ,   Kw : = w

t

m
t

λ
λ

 (B7) 

γg : = 
gw

g

ρααρ
ρ

)1( −+
  ,   Kg : = g

t

m
t

λ
λ

 (B7) 

and we nondimensionalize ψ and Q according to  
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(ψ,Q) = (ψ,Q) / H  km
tλ v (αρw + (1-α)ρg) g   . (B8) 

Then for ψ results the equation 

∇•(K T  ∇ψ + γ xe ) = 0  in Ω (B9) 

where  














=

h

v

k
kT 0
01

 (B10) 

and where  

K =                                      γ =  (B11) 








gg

ww

m

 in ΩK
 in ΩK

 in Ω1





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gg

ww

m

 in Ωγ
 in Ωγ

 in Ω1

The boundary conditions for ψ are  

(BC)    (B12) 




∞≤≤−=
∞≤≤==

xforzQz
xforxQx

0                 ),1(),0(
0       0)1,(     ,)0,(

ψ
ψψ

and the values along the phase boundaries 

ψ|Cmg
 = (1 - α) (γw - γg) x   for 0 ≤ x ≤ Lg* (B13) 

ψ|Cmw
 = Q - α (γw - γg) x   for 0 ≤ x ≤ Lg* (B14) 

ψ|Cgw
 = (1 - α) Q   for Lg* ≤ x < ∞ (B15) 

where 

Lg* = Q / (γw - γg)   . (B16) 
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 The free-boundary problem now reads:  Given 0 < α < 1, 0 < ρg < ρw (specifying 

γg and γw), Q > 0 and Kw, Kg > 0, find ψ: Ω! R satisfying 

)()()(2 ΩCΩLΩH loc ∩∩∈ ∞ψ  (B17) 

and find 

hmg, hmw : [0,Lg*] ! [0,1] (B18) 

hgw : [Lg*,∞) ! [0,1] (B18) 

satisfying 

hmw(x) < hmg(x)     for 0 ≤ x < Lg* (B19) 

and  

hmw(Lg*) = hmg(Lg*) = hgw(Lg*) (B20) 

such that  

i) Eq. (B9) is satisfied weakly in Ω (B21) 

ii) ψ satisfies boundary conditions (B12) (B22) 

iii) ψ satisfies Eqs. (B13) to (B15) along the phase boundaries   . (B23) 

 Note that the free-boundary conditions do not involve the parameters Kw and Kg;  

however, the location of the free boundaries will strongly depend on their values.  This is 

illustrated in Fig. 2, where Kw = 0.68, Kg = 0.014, and in Fig. 3, where Kw = 4⋅10-3, Kg = 

8.5⋅10-5. 
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List of Figures 
Figure 1.  Schematic of three uniform zones in model of Stone and Jenkins. 

Figure 2.  Predictions of model of Stone and Jenkins for gas-water flow without foam.  

Parameter values are based on data of Persoff et al. (1991) for N2-water flow in 

Boise sandstone (cf. Appendix A). 

Figure 3.  Example of three zones in reservoir predicted by model of Stone and Jenkins 

for foam injection using parameters based on data of Persoff et al. (1991); cf. 

Appendix A. 

Figure 4.  Example of gravity segregation in finite-difference simulation of continuous 

foam injection into rectangular reservoir, from Shan (2001).  Gray scale indicates 

water saturation:  white = override zone, gray = mixed (foam) zone, black = 

underride zone.  In this case complete gravity segregation occurs at Lg ≈ 0.5.  The 

foam model used here is not identical to that in Fig. 3. 

Figure 5.  Schematic of assumption of Stone (1982) that a moving vertical fluid element 

within reservoir maps segregation problem in horizontal flow on to segregation 

problem without horizontal flow. 

Figure 6.  Function F(S) that governs gravity segregation without horizontal flow 

(Siddiqui and Lake, 1992).  Parameters values are those for N2 and water from 

Persoff et al. (cf. Appendix A). If reservoir is initially at S = 0.8 (water saturation 

Sw = 0.68), there is a shock front moving from the bottom of the reservoir, which 

has saturation S = 1 (Sw = .8) (dotted line), but a spreading wave moving down 

from the top at S = 0 (Sw = 0.2). 

Figure 7.  Schematic of boundary conditions in terms of x and either z or ψ. 

Figure 8.  Function F( f~ ) = F(f) that governs gravity segregation in horizontal flow for 

N2 and water.  Parameters values are from Persoff et al. (1991) (Appendix A).  

Dotted lines indicate shock fronts between mixed zone (f = fJ = 0.2) and top of 

reservoir (f = 0) and bottom of reservoir (f = 1) for foam injected at fJ = 0.2. 
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Figure 9.  F(f) function for mobility functions of Persoff et al. (1991) (Appendix A), 

where gas mobility decreases abruptly for Sw > Sw* = 0.37 (S* = 0.283).  The 

portion of the curve for S < S* matches that in Fig. 9 (note change of scale). 

Figure 10.  Schematic of F(f) for more general foam behavior, where foam collapses over 

a small range of values of S near S*;  cf. Fig. 9.  Note points on curve for S near 

S* fall on fan of lines originating at (1,0). 

Figure B1.  Schematic of regions and boundaries between them in free-boundary 

problem. 
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Figure 1.  Schematic of three uniform zones in model of Stone and Jenkins. 
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Figure 2.  Predictions of model of Stone and Jenkins for gas-water flow without foam.  

Parameter values are based on data of Persoff et al. (1991) for N2-water 
flow in Boise sandstone (cf. Appendix A). 
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Figure 3.  Example of three zones in reservoir predicted by model of Stone and Jenkins 

for foam injection using parameters based on data of Persoff et al. (1991); 
cf. Appendix A. 
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foam injection into rectangular reservoir, from Shan (2001).  Gray scale 
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zone, black = underride zone.  In this case complete gravity segregation 
occurs at Lg ≈ 0.5.  The foam model used here is not identical to that in Fig. 
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Figure 5.  Schematic of assumption of Stone (1982) that a moving vertical fluid element 

within reservoir maps segregation problem in horizontal flow on to 
segregation problem without horizontal flow. 
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Figure 6.  Function F(S) that governs gravity segregation without horizontal flow 

(Siddiqui and Lake, 1992).  Parameters values are those for N2 and water 
from Persoff et al.(cf. Appendix A). If reservoir is initially at S = 0.8 (water 
saturation Sw = 0.68), there is a shock front moving from the bottom of the 
reservoir, which has saturation S = 1 (Sw = .8) (dotted line), but a spreading 
wave moving down from the top at S = 0 (Sw = 0.2). 

 

 31



S = 0, fw = 0, ψ = 0

S = 1, fW = 1, ψ = Q

f w
 =

 fJ

x0 L

0

H

z

Q

0

ψ

 
Figure 7.  Schematic of boundary conditions in terms of x and either z or ψ. 
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Figure 8.  Function F(f) that governs gravity segregation in horizontal flow for N2 and 

water.  Parameters values are from Persoff et al. (1991) (Appendix A).  
Dotted lines indicate shock fronts between mixed zone (f = fJ) and top of 
reservoir (f = 0) and bottom of reservoir (f = 1) for foam injected at fJ = 0.2. 
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Figure 9.  F(f) function for mobility functions of Persoff et al. (1991) (Appendix A), 

where gas mobility changes abruptly at Sw = Sw* = 0.37 (S* = 0.283).  The 
portion of the curve for S < S* matches that in Fig. 8 (note change of scale). 
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Figure 10.  Schematic of F(f) for more general foam behavior, where foam collapses over 

a small range of values of S near S*;  cf. Fig. 9.  Note points on curve for S 
near S* fall on fan of lines originating at (1,0). 
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Figure B1.  Schematic of regions and boundaries between them in free-boundary 

problem. 
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