

Design and verification of distributed networks algorithms

Citation for published version (APA):
Stomp, F. A. (1989). Design and verification of distributed networks algorithms. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR328112

DOI:
10.6100/IR328112

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR328112
https://doi.org/10.6100/IR328112
https://research.tue.nl/en/publications/55286323-f33d-4d5a-9f77-68cd98166d4b

Design and Verification

of

Distributed Network Algorithms:

Foundations and Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. ir. M. Tels,

vOOr een commissie aangewezen door het College van Dekanen

in het openbaar te verdedigen op

vrijdag 15 december 1989 te 16.00 uur

door

Frank Alwin Stomp

geboren te Gorssel

Dit proefschrift is goedgekeurd door

de prornotorcn

prof. dr. Willcm-P. de Roever

en

prof. dr. Helmut A. Partsch.

Het onderzoek van Frank Stomp als beschreven in dit proefschrift

is verricht aan de Kat.holieke U niversiteit te Nijmegen.

To my parents

CONTENTS

1. Overview .. 2

2. A correctness proof of a distributed minimum-weight spanning tree algorithm

(extended abstract) _ ... _ .. .

3. Designing distrihnt.t"d algorit.hms hy means of formal seq\lent.ially phased reasoning _____ 28

4_ A dl't.a.ikd ",nalysls of Ga,llagcf, Humblel" and Spita's dist6bu~ed minlmtun-w('igM

spaUUl\)f{ tre(' algorithm ... -........ G6

5- The ,l-til](-ulus a~ an asserti()n-language for fairnes~ arguments 126

ACKNOWLEDGEMENTS

Willem-Paul de Roever has introduced me into the field of concurrency, I expre&S my)!;ratitude

fOf his suppo,t, guidance, and COllstfuctive c~iti(isw d\ltillg lily research in this fideL Ma,IIy

tha,nks a,re due to Corinne de Roev.;r. She a,nd Wilkm-Pa,ul w("r(, alway$ there for me when I

needed it.

I would like to thank Helmut Partsch for his stimulation and for providing me the opportunity

to finish this thesis.

1'hnnlls also to Ralph Back nod John-Jules Mcyc~ tOi their wUHngn("ss to referee thi$ thesis.

Rob Gerth i$ thanked for being a \.o-author of onc of the artkks ind\lded in this thesis, and

for his help during the last stage of writing this thesis.

I thank my parents for their continuous support, I am very grateful to Marilyn and Carla for

their help on many occasions, The interest in my work shown by my brothers has alway~ been

appreciated,

Finally, I thllnk Myrthia. for her understanding and support.

CHAPTER 1

Overview

This thesis coiled. four articles:

(1) F.A. Stomp and W.P. de Ro~ver,

A correctness proof of a distributed minimum-weight spa.nning tree algorithm (e;xtended abstra.ct),

which has been published in the proceedings of the 7th International Conference on Distributed

Compoting SyW;IIls, Eds. R. POPC;$(\I-Zc;ktin, G. L~ L<UIII, <md K.B:. Kim. The f\lll v~rsiOIl of

this axticle has appeared as technical report no. 87-4, University of Nijmegen, 1987.

(2) FA Stomp aJ:)d W.P. d<:' Roever,

De.igning distributed algorithms by mean. of formal 'I:lju"ntiully pha.s"d reasoning.

A version of this article has appeared as technical report no. 89-8, Universit.y of Nijmegen, 1989;

An extended abstra.<:t has been published in the proceedings of the 3rd International Worbhop

on Distributed Algorithms, LNOS 392, Eds. J.-C. Bermond and M. Raynal.

(3) F.A. StiJmp and W.P. de Roever,

A detaikd (l.n(l.lysis of G(LlIag~:r, H,-,mblet, and Spira. '8 distributed minimumr weZght spanning tT(:e

algorithm - An corampie oj sequentially phased reasoning -.

(4) },'.A. Stomp, W.P. de Roever, and R..T. Gerth,

The /I"calculu$ a$ an aS$ertion-language for jairness arguments.

It has appea~ed in lnfonnatio)) and Computation, Vol. 82, nO· 3 (1989).

The central theme of the first three articles on distributed program design and verification is the

identincation, the technical formulation, and an application of a principle for designing, and verifying,

(complex) distributed algorithms. This pdndple allows one to structure the design, or the vedfk"tion,

of algorithms from a certain class according to a particular pattern of reasoning.

'This dass cOIlsists of algorithms in which some group of nodes in a I.ctwork performs a certain task

which can be decomposed into a number of slIbtasks as if they are performed gequenti(l.I1y frOID a logical

point of view. In reality, however, i.e., from an operational point of view, the subtasks are performed

concurrently. A typical example in which one can discern this kind of sequential decomposition is

Segall's PIF'protocol [S83]. The PIF'protocol, where "PIF" abbreviates Propagation of Information

with Feedback, is a simple broadc3!;ting protocol. All nodes in " finite, connected, and undire<:ted

netwotk accompllsh the follOWing task; Some value initially recorded by a certain node k is supplied

to all nodes in the network and node k is informed that all nodes in the network have ~ecorded this

value. This task can be decomposed into two subtasks: the first one broadcasting the value, and the

3

lu:r::orul (]n~: n~portiIlg t.hat th(,~ w'Hh~!i hav.::: n~n~iv(:d aILd rcconkd this value.

The Kt.r"-t'·:gy pr<)pos~eI in t.h~ a.rtid~s (1), (2), ""ei (3) ",how: to desigIl (or verify) algorithm. froIn the

above"mentioned class is the following;

(a) First, Msign • .Ig0Tithm$ whkh ~olv'~ th" suhtasks. (ThiS Can he atcomplished, e.g., by techniques

a(.\vocat.,'d hy Bark ",,,I g"rc [BSS?] Or by eha.ntly and Misra lCM88J.)

(b) 1'h~n (".lmbiue th€ (l,lgoTithrn> found in ((l,) int,,) Olle whkh s,)lv.'~ t.h.: whole task.

"l'hi~ partieul; ... kilLel of :;t.rill,(:gy h;.s he!:1L identified ill (1).

The design pl'inciple formulated in (2), the second article of this thesis, describes how Qn~ CQuld

fOl'I!Lally [haxact(:riz.::: tJu: (OIllhiIla.t.iOIl Ill(O:IltioIlCd ill (b) above,

This prindpk iK "-ppli<:eI in (3) to U", c:omplkat,.:eI rninirrllllIl"wt:ight ."aru.inl,(tree algorithm of Gallager,

Hnmblet, ".nd Spira IGHS83].

The U·nt.r;.1 t.heme I,f (4), t.h(: h)urth artitle of t,his th~sis, on fairn.eu arguments is the formulation

of an assertion expl'essing that a nOlld€terministic program terminates faidy. It i~ ~h(lWIl in (4) t.hat

I,hio a8sert,ion call be forrnulateel in Hit,(:hwck a.nd Park's lIl(motoll'~ I'"calculus [HP73j. This ea.lmius

iK a. formali,m, ha,~d 'lII KIIa.~kr ""d Ti'lrski's nxcd point theorem !T55J, tha.t can serve, as shown ill

(4), ,,$ an assertioll-la.r,gu"ge fOI' re"soning about fair termination of nOlldetl:'rmini,ti(; programs ill a

sound and (relatively) <:omplete manner.

Meyer [M86J has used fixed points, too, for cODstruding (l, c.k.Iill$ t.h .. t, dl':SCrihe~ how to merge fairly

operations of nondeterministic processes. An ex~ell€nt overview on faim.,. ibsueS h~ hoe" giveI' by

Fran(:<:z IF8f>].

Manna and Pnueli's Linear Time Tempora.l Logic [MP83), hereafter abbreviated to LTL, runs both in

it~ (l,pplication~ and in its f<J\lIld"tions, t.hrough thl': research reftected in all four articles like a thread.

The design, hence, verification principle, which is the subject in (1), (2), <>nd (3), is directly formulated

using LTL. In the fourth article the foundations of LTL aJ:e investig"t(:d.

The results descrihed in (1), (2), (3), and (4) ar~ bri~fly sketched below.

In (1) it i5 sketched how the distrilmted minimum-weight spanning tree a.lgorithm of Galll:\~r, 8UIIl"

blet, and Spira lGHS83] can be proved to he correct. It is (l,Tgu~d t.hat, the proof can be structured

by de~omposing the reasoning about the program describing that algorithm into a number of loosely

4

connected O!' independent a~.9umeni$ toncerninq distributed part$ of that program as if they are peT­

formed one after another _ (In the terminology u~ed above, the nod~S which ~x<Yutc such a distributed

part perform a certain subtask, The whole task ~on5ists of all these wbtl'!!;k~ o.~ if th~y an' p,-rf6rIIlI,d

scqu¢nt.iaIly.) Thei;e distributed patti; ate not $yntadically contained in the whole program. They are

combinations of scattered pieces of text of various programs perfoTm~d by th" n(,d.,;;, which sr:mlmti­

~a!ly mnstitute a. meaningful whole. It is claimed in (1) that the principle applied generalizes Elrad

ou.d Fhnccz' principle of communication dosed layers [EF82]. From the technical formulation of the

principle in (2), it follows that it is a broad semantic generalization of Elrad and France7.' prindpl': in

that it is not restricted by the syntax of a programming language at all, Wn€re«$ in Elrao <lnO f'ra,,~~z'

fOrmulatiOn th(priI.6ple i$ r%trict.ed hy th~ Syntax_

Elrad and Francez' principle of communication closed layers iEF82j states the following:

Let d 2: 1 be some natural number, Iffor all m, 1 :S m :S d, the programs S1,,,, II ... II Sn,m, n 2 1, OUI:

partially correct w,r.t. the preconditions p,-,,_! and the postconditions p." and if no COl)1mlmkation

o('('ur~ bet.W<)en Si,m and Sj,m' fM 1 ::£ i,j::£ n, i t- j, 1::£ TTl, TTl' ::; d, and tTl t- m' then, the program

(SI,I;81,2;' , ,;SI,~)11 ' , , II (S",1;S .. ,2;" ,;S""J) is partially correct w.r.t. precondition p() and postcondition

Pd' (Here, as usual, program S is partially correct w,r,t, precondition p and postcondition q if t.h~

following is ~atisfied: if S is exe~utlld in <In initial $tate satisfying p, theIl q holds if and wheIl 8

terminates). The programs SI,m II '" II S",m, 1 :S m :S d, are called layers in [EF82],

This principle can be illustrated by means of the pictme below, For e!l-5e of exposition, we ~<)n~ider

th" taose of two la.yers. Let {p}S{q} denote the assertioI' that the program S is partially correct w_r_t ..

pre~onoition P (>nO pO$konOit.ion q_ Elrao and Franc(>z' prindpl~ a.sS~rts that if

and

1 81,1 [I .. - II 5;,1 II ... II 5j,1 II ." - II 5",) 1

{PI}

151,2 II··· II S;,2 II ... II 5),2 II ... II S",21
{P2}

both hold and if no communication occurs between S;,1 and Sj,2 for all i,j satisfying 1 :S i,j :S n and

5

i i= j, then

is satisfied.

The prin6ple wIdth I,mderlies the correctness proof i,l Our paper (1) and which generalizes the principle

of communication dosed la.y~r$ i~, however, not explicitly forIllulat.ed 110,' jllBtifled ill (J) it,~,~lf. (Th!'

proof ~Ilgg",t"d I,here, should therefore be considered in,'ompl",t~.)

III (2) ti", prindple underlying the reasoning in (1) i~ formulated using LTL, This principle is applied

in (3) 1.0 the minimum-weight spallning t[(-:~ <tIgorithro of Gallager, Humblet, and Spita, which is a

representative of the da," of algorithms we are interested in. hI this alg,}rit.hm f()lIowing f"a\I"""

• Ta,h p<?rformed by groups of nodes in the ndwork (lUI b~ "plit up inl,o a number of subtasks as if

they axe perfi>nned one after allother from a logiCal POillt of view, alt.hough fr.-lIlI an op,:rat,ion<ti

point of view they are performed (:onq"rent!y.

Example:

This feature can be illustrated by the prOgram bdow wh;':h <:h'~~ribe8 the f'lF-protocol in Cffi€

the underlYing network constit.ut.~" il. tn"'. (This restrktion is imposed ill order to keep the

presentation as "iIIlpl~ "'~ possible.) Recall that the PIF -protocol solves the following task:

All nodes in a finite, connected, and ul.direttcd Ild,work iiI" provided with some value initi<tily

recorded by a (crtain node k, and node k is informed that all nodes in the network have recorded

this value. FtlIthcrmore, r,'<.:all that this task can be split up into two sub tasks as if they are

performed sequentially, the first on,:, supplying <tIl nodes in th~ netwi)r).: with the value to be

propa!;ated, and the second Olle reporting that all Ilodes hav<.~ ill deed r,:ceived this v<llu~.

III the prOb'Tam below, boxes labeled Ai indicate which operations of node i axe associated with

the n'h subtask (n==1,2). Obs':'rvc that b,-,x,'i; do m)t ne<.:e~,arily ';orrespond to the body of a

"re8ponse". ({n general, such boxes are the outcome of a gcmantic analysis arid Hot. of a Ryntadic

one.) Note t.hat. cl\lriIlg the first 5ubtask a directed tree is unwound. This tree is used by the

6

1I0de~ d"ring the s(O~Qnd st1btask in Qrder tIl. trace their path back to node k in order tIl. infQrm

k that they have recorded the val"", whkh ha.$!)(o('n prIl.pagated.

--------------_._-_ ... __ .. _._ ..
100 ~,,~~uted by node k (th~ root)

r"5pon~ .. to ,,",o.il't o~ in/o(.)
begin

val/r:=v;

fo. 0.11 edge. e E Ek
do send info(va!~) on edge e QeI

.. ,,<;I

response to r-8(;eipt of ack(tJ) on ed.g~ 0
begin

Al •

Nk(O):= truei
if 'Ie E E~.N~(C) A~
then dDn.e~:=true
fi

",,<;I

lo0r.._~~.~?uted by node i :;f:. k (a non-root)

... spon." to n~ .. ;'pt of intQ(v) on "dg' 0
b~gin

11<1/;0=11; i'lw"nch,,=O: N;(O)'=tru~: Ai
fo:.; .. 11 .. dg .. ~ e E E, II e i= inhr(lnch,

do s~nd info(va!;) on edge cod;

if ve ~ E,.N,(e)
then send ack(val,) on inbrunch i

f:\
"nd

r~.pons~ to rec~;,pt of ack(.) on edg .. e A1
b"Si"

N,(O)o= true:
it '<10 E E1.N,(O)
th.", .""d "'-k("al;) on inbranch;
h

end

Notation used: E; denotes the set of edges adjacent to node i. V".,.i • .ble .a!; i. used to record the
argument o(the info-m~~"age received by node ii Ni(e) records whether any message has been received
along edge e, e C' E,. For node i different from k, varia.ble inln-anch, record. the identification of tbe
edge !lIong which the info-message has been received. (These variables are used for unwinding the directed
tree.) Variable dl'J'Ytek records whether the whole task has been completed. Eacb node maintains its own
me.s .. ge queue fOr buffering received messages.
lnitially, node k'. me g. queue contains ane lilJa-message and the meS'(l.se queue. of all other nod ••
ate empty. Fur\hermOr€ initially ~done. holds for node k, and ~N;(e) for ail nodes i and edges 0 E E;.
The initii!.l values of tile other variables are irrelevant.

Segall's PIF -protocol

FrQm a IQgical PQint Il.f view it seemS as if first A I programs .are executed (solving the first

,,,btask) and thereafter only A2 prIl.grams (sQlving the secIl.nd 5ubtMk). Operationally, however,

this lrind of sequentializatiIl.n is not neCeS$iUily tme. This is exemplified below. Consider the

fQllIl.wing tree:

7

/A
/ c ~

/

In I\eneral, obviously, th" !lo,h" i and j will !lot. he ~1lpplkrl Hirn1l1tan""'.1~ly with I.h€ va.hle bdng

prol"'gat . .,d. There e)(ist computation sequences of the program above for which the following is

satislkd;

Node i receives the value that is being propagated and records this valuc (node i cXI~rllks I.he

prob'Ta.rn ~~gment labeled A~).

1'1\,\11 lIode i <;nt.'T~ the report.ing pha6~' (node i e)(e~ut.e, I.he progra.m ~egment labeled An·
Thereafter, node j receives and rccol'ds the message that is being propagat.ed (node j executes

the program segment labeled A}).

This example illustrates that the program segment Aj is e)(ecuted after node i has executed the

segment At, i.e., node i participates in the second sUbtask before node j participates in the first

subtask.

Now, t.he principle formulated in (2) justifies that OIle can rcason a.ho"t. the Plf'-prot.otol as if

first all AJ programs are eX"~I1ted and thereafter only A~ programs.

The next feature orrurring in the distributed minimum· weight spanning tree algorithm of Gal­

lager, Humblet, and Spira is the following (a prindple for re;u;oning about thig featun' is fiJmlll-

• Ex.p{J.'nding gT{)llPS (,f pT-c.}(.:~~n~S p~rf()nn a ((~rt~n ta.hk repeatedly" wh~r~a.s differ~Ilt 1jTOupS Of

nodes perform their task concurrently w.r.t. another.

E.g., the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and SpiT':>

taIl b~ lk$cribed ;u; follow5:

8

First a certain collection of groups of nodes performs some task coIlcurrcIItiy w.r.t .. a!loth"r.

The task of each such group mnsists of determining the minimum-weight outgoing adjacent

edge for illW Ilode i,l this group. Thereafter, a fragment, i.",., SOI"O subtre" of th., miniIIIUIn­

weight spanning tree to be constructed, which has determined its minimum-weight outgoiIlg cUll":'

attempt, to combine with the fragment at t,he ot,her end of t,his edge. The task of accomplishing

this co,I.bi,latio,t is thel! pCrfOrIllNI by alJ. Ilod<'5 i,l th~$e two frilgIII\'nt$. Sub,equently, the

enlarged fragment performs the task of determining its minimum-weight o!ltgoiIlg e<lge. This

process is repeated until the minimum-weight spanning tree of the network has been constructed.

This feature is suggested in the following picture;

~110JII

p&,UG, J II L--....:
P8

:..:.:.'UG.::..::...·. ----,III II [.. ~~~._.I~?~ ... J

Notatioo "sed: For each £=1,.· ',r, Ff, denotes a ciistributed program performed by nodes in a collection
G. The superscripts are used only in order to distinguish thB tasks associated with such progra.mR; r in
tbe picture denotes some nMu,aj number, r 2: 1,
lnitially, the collect,ion con.i.ting of 0" .. " Om for .orne m 2: I i~ " partitioning of the set of all nodes
iIl the network,

• A ta~k pcrforrlled by Ol,e group of processes ca., be disturbed telilporarily dllc to inkrf"r<ncc

with the task of anothor b'1:ouP.

In thc rliHtriblltt:d minimum-weight spa.Jlning tree algorithm of Gallag"r, HllIIlblet, and Spira a

fragment will, in ordt:r to dc-tenIlille its IIliIliInUI!l-wcight outgoiIlg .:::dg..:':? !i-(~nd mf:!l:)sage~ toO n'c')des

outside thi~ fraglt,,,,,,t. This ilnplies that a certain node i,l some group G of'llodes perforIIling

some task can receive messages from nodes outside this group which are not associated with the

task in which the node itself participates. Consequently, when a node in G receives a message

not w;sociated with the ta$k in which its participates IUId it p~o('eSSe9 this message the task will

be disturhed. After proccssing thj$ Il.essage the Mde will continue it, participation in the tw;k.

9

Depicted iII a pictllre, we ha'l'e

Pc ---++-11 ~,- I _ _~==.J
Notation u.,,<.\; Pu and Pc,' ate distributed programs performed hy node. in group C and C' re.pec­

tively. The" pr<lgram. are ex.""t.d (;oncurrently; Eaeh of thelIl describes how to solve a ~.rt.(l.in t~k.

The arrow illdicate; tile ttMsmissio,\ or a message.

A principle which copes with the latter feature is formulated in (3). In e'ij'mu', int"rfereltce

freedom of specifications has to be proved in o~de~ to e[)~1)r€ t.h«t I.h,·, r(;a;;olling abollt the two

tasks ""~c(>rding to th" printipk, described ill (2), is not inl'alidated.

Now, suppose that two distributed programs have been designed that ij<)lv(; two sllbtasks of a certain

t"sk "s if they ~Lr(' perf(lrIIled ,;cljut'lltially. Ass1I1ne that each of the 5ubtasks <\[)d th<!- ta.Hk iui; ,!.-,Stribcd

by means of a p~econditio!l and a postc·ondition. In on",. to design" program that soll'es the whol~

t~"k it is H'quir~d to pr()v(; th~t fOr .~"th of the programs the following holds.

for l'lIth Il()d~ j th,,!, pa.rticip"!'es in the sub task, there exist fo~ the program ai;wtiated with this

subtask when it is executed in an initial state sati~fyi!lg the ~1)i:>ta!;k'B pr~roIlditioIl;

All invariant I j whkh holds during execution of the program. The,e invaria.ut/; h"vc be"r)

incorporated in order to deal with the above-mentioned kind of interference. The invariant Ij

tall be thou(!;ht of as th.:o disjll1lction of all p~edicates assigned t.o <:ontrol l)oi1lts of the progrrull

Wh"11 H""(miII~ "bout this prOr;ra.!l1 ill all Owicki·Gries-like proof system [OG761.

A t".minl1ti(JT> "onllition Tj . Tj holds when and if node j has completed it.s partidpatioll ill the

program.

In additiOIl, it must be pro'l'ed that upon term;n"tion of the program the suhtask's postco[)dition

associated with this progfrull is estahlished, provid(;d that execution has been staIt~d ill " $t.,,!,(;

satisfying the sub task's precondition.

A program which solve, the whole task cOllsists of all operations occllning in any of the programs

~"lving I,h" sui:>ta;;h" ;1'his holds because a. node participateij in th" whole task iff it participates in

one of the subtasks. FurtherlllNe, the folll,wing vorifioation conditions must be shown to hold;

- A \lode ('an only part.icipate in 011<'; subtask at a time.

If .. nodi, a.ttllally l'arl.icipates in both subtasks, then it p(lJ"tidp"t~s in the first subtask before

it participates ill the second subtask.

10

The fir~t v~rifkatioll wnditiOI) above ensures that there doe~ not OCCur any commWlication between

program segments associated with di~tin¢t ~lIbtasks. It also states that two internal operations (, i.e.,

"peratiolls not involving any communication), whkh ¢<m b~ perfonned by the same node and which

ar~ associated with distinct subtasks cannot bt: enahkd simultaneously. The latter requiremeDt is not

needed in case of Elr"d and F'ra.nCCZ' principle, since it follows frOID the syt.tactic structure of the

whole program. III case of their principle, the second verilkation c(mditi()I1 above also follows froID

their c,)n(!ition a.bout wmmWlication and from the synta.ctk structure of the whole program.

As mentioned above, the principl~ formulated in (2) is a generalization of the prindpl<': of toulffiuni­

,'atinn dn,~d lay,:r •.

The principle formulat.ed in (2) dlso gcner<l.l..izes each of the principles f()rmulated by Chou and Gruni

ICG88J, by Fix and Francez [FFS9j <md by Back illId Sere IBS89J, since, amongst others, non~ of these

i, able to cope with the above-mentioned kind of interf~renC".

The principle formulated in (2) i5 applicable t.o the spanning tree algorithm of Gallager, Hl,mblct, illid

Spira. This is shown in (3). As a. wnsequence of the strategy adopted thtre, a source of fallure of the

algorit.hm has been detected and corrected- Al$Q, two kinds of slight optimizations w.r.t. the number

of Illcssa.ges transmitted during execution of the a.lgotithm have been found.

At this stage the question might b" asked why we did not apply a conventional proof system, such

as described in, e.g" IAFR80, OG76] or !ZB.E85j, to prove the correctness of thi5 algorit.hm_ TILis

questioll is answered below.

Apart from th" algorithm reported in [GHS83j, the;re e"ist.~ a large nuu.ber of algorithms [H83, MS79,

SSZ, S83) of whkh the und.,rlying structuring principle is inherently semantic. Oespite the fact that

t.he deijigners of sllch (complex) algoritluns are able to give a d~(u and intuitive explanation about their

torr~CtIleSS, it is believed that any correctness proof given in a. conventional formalism <:an capture

this intuition in an artificial way only_ This implies that any such forma.! proof of a non-toy program

will not contribute more to one's Wlderstanding of the designer's argument.. Th~ principle fo~mulated

in (2) i~ able to mimi(: th~ designer's argument in a straightforward manner, ;'Ideed.

In (4), the last article of this thesis, the foundations of LTL are investiga.ted. This is done by studying

the notion of 5twngly-fair termination of programs. In order to deJ1.ne this notion, the notion of a

strongly-fair computation sequence is introduced, a computation sequence of a progr~ i$ strongly-

11

frlir if "v'''y op"ratioll (X<'IIrring in the program which iB infinitdy uftl''' <:""bkd ill tId, ,cquellCe is

infinitely often chosen in that sequence. Now, a program that is executed in an initial state 5atisfying

"OIn,' pr .. ,·onclit.i'm p tumin,ak$ strongly-fair, if every strongly-fair "()mp\ltation ""Ill""'''' st.i1.rtr!! in a

~t,;lk ror whirh [I hoM, ;$ fin;k.

E.g., Dijbtra'8 rflndom !mIll""r g,,,,,~rat()r, H'''' [D76], .[I! .-. x:= :J, 11 0 /) _." b,.,- false] always

terminates strongly·fair. This holds because of the following:

Th~ pn)grriJ.Il iIIlIH(':(ii.rlt.dy t,{·TIIlillatt.~ Whl~Il cxN:ut,r.d ill a. f;tat.~ satisfying ,b.

Any infinite computation sequence of the program started in a state oati5fying b i, not ,tn)ngly­

fait, sillce lhis implies that th,~ operMioll "0 --> b:- fal;e" is infinitely oft.en enabled (\nd npV!'r

L.;Lkt~I1.

Stn)Ilgly-f .. 'tir tcnninatioIl of a pTogr;;un is ~Il (~x.runpk· ()f an "cvcIltuall'y?1-ptoperty when the a.bove

restriclions Me imposed on complLtalion seq\1ellCeS of the program. Manna and pr\\leli [MP83] h"v('

presented a proof prindple that allows one to establish such propertieo. Th,'Y propOo" til" following

,t.ral.q,;y t.() pr()v(, H,«j. fI)r (\ progr(\nt S, a >;tat.I'-prOpert.y 4) event.ually holds (a state-property is a

property of pmgram i;t.a.t,c~ cxp!es~ihlc withont. a.ny temporal operators);

(A) AIIIOIlgH tJ,,~ tOIlturrrIlt. prOcc~"c~ execut.ing S a distinction is made between tho~~ pro!;!.'""""

whose execl1tion brings 1/' always nearer (in [MP83] oUI,h prou,,,,," 'll'~ called helpful processes),

and those processes that do not, i.e., wh()se exe"ution do". IIot bring satisfaction of 1P any nelUef

(such processes are called .ieady processes in Manna and Pnueh's t.erminology).

(El 11. lIlU~t. lw ~hOwIl thill., for every computation sequence of the program S, if a h~lpful prot.c"~ is

systematically avoided, then (Bl) or (B2) below is oatjofi~d.

(Ull Th", sequence h infjnjt~ and do<:> not. >(It.idy the flbove fairness constraint, I.e., it. io unf"ir.

(B2) Due to some cllOice of a steady process, satisfaction of .;, is brought neater or even'" is

established.

In u.s" (Bl) the cOlnputaJioll sequence is unfair, since infinitely often" helpful l)rOCeSS is enabled

but only !:init~ly many times taken. In ,~""~~ (B2) .p has become less far away from sati.fa(.l.iOn.

Upon closer inspection, part (B) above requires application of th(~ ~anle strategy to a syntactically

simpler program than S: remove all helpful proc€oseo from $, arlll prove that eventually one of th~

12

following hold" (i) 1/1, (ii) getting nearer to V), Or (iii) a helpful process is en"bl~{L

The technical formulation of M<mn", and PIlueli's principle is shown below. There the following notion~

have been u,ed, s,"~ [MP83];

Let S ~ Sl 11 ... 11 S" be some prograIIl, TO ;:: 1. Let ¢ and ¢' be 5tat,,-fwIIllll~"'.

- Si leads from 1> to 11' when every transition in Si establishes ¢' provided ¢ h ,atigned before

(i=1,·· ',n).

S ["ad. from <p to 1>' when for all i, 1 :::; i :s: 11, S, leads from ¢ t.<.> (1/.

The technical formulation of the above-rn~nti(}n(:d strateg.y is as follows:

Let M=(A,S) h., it wdl-founded structme. l,et. ¢(l) b,' "1'ill:ametriMd state-formula ovcr A, where

(l intuitively expresses how far a.way establishing >I' is. Let h:A -->{l, ... ,n} be a helpfulne" fUllttioll

identifying for I'ad, a E A the helpful pTQ(~ljS 5/.(") for states satisfying ¢(a).

I- S leads from 1>(,') to [1/, v (3/3 :s: a. ¢(!3)))

I- S1>.(.) leads from ¢(a) to 1>1> V (313 < a· 1>(/3))]

~. 1>(") => O[I/! V (313 < a. 1>((3)) V E'labled(SM"))]

I- (3,,,,.I>(a)) ';'0>1>

The SOUl1dn~,;; proof of this principle r(!qllire~],Iduction oller well-founded ~"t;;. Oil the other h,md,

this principle is (s~II1a.Iltically) complete, i.e., if 0,/] holds, then naive set theory ~<m be used to establish

its premises.

MarIlla and Pnueli, ho~vcr, do not give any formalism in which olle ca.n. establish the pr~misc of their

principle_ In ord!>r to supply such a formali~m, in (4) a principle is cOl1sid~r~d for proving stwl1gly-fair

termillatioll of (sequential) l1ondet,crministic do-loops. In this prindpk the same kinds of auxilia:ry

qU\\1lt.iti!>s, i.e., the well-found~d structure, a ranking predkat~, and a helpfulness function ta.Il be

discerned as occurring in Manna and Pnueli's p~indpl~.

The principle inve,tiga.ted, which is called O~nl:\'~ n.ll~ in (4), is due to Grumberg, Frantcz, Makowski,

and de Roever [GFMR81] and i~ as follows (iPISlq] denotes that prograrn S is totally correct w.r.t.

precondition p arId postcondition q, 1.1>., whenever S is executed in an initial state satisfying p, then

S always terminates <md each final state satisfies q)'

13

Let M",(A,:S;) he f' wdl-founcl.,d ~trudure. Let 1l":A -->(States-->{true, falu)) be ;,. pl''''li(;,.t~, Ld .;,

h<: " ,t"t,"-preclkate, and let for each a E A, a not minimal (as ,knotcd by ,. ;> 0), b'~ giv~)1 pairwis€

disjoint sets 81 .• ",will., H1lch th"t no f 0 and V, u St.={l,.· ·,n}:

I-]i\"(a) A a > 0 f\ bj]Sj[:la' < ". 71"(1/)1 for all j E:: D.

I- 11f(a) f\ a > 0 f\ bj]Sj[3a' ::; '", lI(U')] for all JESt.

1'],,((1) II (I > OI-IU,csdb, II !\j.;D, ~bj) --> Silltrue]

I- r....,. 3a. 11"(a)

1"(71"(11.) II(/.> 0) =} Vi' II:>,

1- 11"(0) =} ({A:'=l ~b,) II ,-/1)

F~T;]r:l:';I;;~"~;ili1;1

Notl: th"t bi --I 8; (i=1,.· ·,n) ('.an be interpreted as state transitions, Also 1I0te th;,.t ill this principle

the assi)!;nment Ii ·->(D", St,,) for" > (l g<"l('raliz,,~ th~ not.il,>n l)f a hdpf\lln,,~~ fund-il)n of Manna lUld

Pnueli'~ principle. Consequentl'y. the ~a'llC kind of allxilif1TY 'lualltitil'" '''': r/:quir<:d to itpply t.JH-: "hovl.:

1Il (4) it. is shown t.h"t rlit,:h,'o(:k "no p"rk'~ monl)tone t.-cakulus [HP73, 1"691, based on fixed points,

a\lgmented with constants for all recursi ve oidhlalS can sene ;,.s an ;,.ssertioIl lilliguagc fur reasoning

about strofl.gly-fa.ir tenl~illdtioll of do-loops. SOulldnNib: and (~oInph:~tcIl{~i->S (}f the pdw:.:iple in [CFMIUH 1

at€' proved. In p<=Lrtitular, t.1H~ w(~a.kt~st pn~n'mditic)Il fo()r !-it,ron~dv-fair tennination of a do-loop W_Lf..

~O[ll~ posi(:onditloIL i!-i ~h{)wn to h~~ expn;':!;i~ihle in the t(-(:~k1)hl~-

The r€sults shed an interesting light on LTL, Wolper]W81] has observed that not all regular expressions

C<ul b,~ (!xJlr(!~"ed in LTL (in faCt., LTL UUI only express iI prOper ubet. of th., regular expr~$~il)n$, d.

IT81j). Obviously, the I"-calculus is fax mote expressive tha.n th~ regulill' expressions, Consequently, in

(4) a more expressive formalism thilll LTL has been used in order to express the auxiliary quantities

required to apply the principle above. Although it has not been proved that one actually needs an

\I.l;s(lTt.i'.)[I lilng\l"g~ "I, le':l';t. M exp~es~ive ~ the tl.-~alc\llus fl)r T<""~l)ning "b')\lt strongly-fair termiIla.ti,.IIl

of do-loops -to my knowledge this is still an open problem- the results in (4) suggest strongly that

OIle a.ctually Iu~cd~ a fOrlI.I.<ili!;IIl which is a.t ICdst as expri.'ssivc as LTL itl order to fOnllula.tc a.J.'ld verify

I,he premises of MlUlna and Pnueli's principle mentioned above. 1'0 put it bl1.l);ltly: O,1l "obvioU8"

slJ.bformal-ism 'Which Manna "nd P"'udi U.3C in [MP8.9j to C:r.PI'CSS their proof rules is probabl:v m01'C

powerful than the whole of the LTL superstructure erected on top of that aubjormalism.

14

References

[AFIt80] Apt, K.R-, Franee~ N., and de Roever W,P" A proof system for communicating sequential

processes, ACM TOPLAS, 2-3 (1980).

[B$89] Back R-J.R- and Sere K., Stepwise refinement of action systems, LNCS 375 (1989).

[CGSS] Chou C.T. a.nd Gafni E., Unde<st,anding and verifying distributed algorithms using strat­

ified decomposition, Proc. of the ACM Syrnp. OIl Prilldples of DiBtr. Compo (HI88).

[CM88]

[D76]

[EF82]

[FS6]

[FF89]

ChMdy K.M. and MiSra. J., ParalM program design, a foundation, Addison-Wesley Pub­

lishing Company, Inc, (1988),

Dijkstra E,W" A discipline of programming, Prentice-Hall, Englewood Cliffs, NJ (1976),

Elrad T, and Francez N., Decomposition of distributed programs into communkat,ion

dosed layers, Science of Computer programming, 2 (l!l82).

Frarlccz N., Fairness, Springer Verlag (1986).

Fix 1. and Francez N., SemaIltics-dtiverl d(,,"ornpOSit.i(\IlM for the verification of distributed

program" manusc.ript (1989).

[GFMR81] Griimberg 0., F'rancez N" Makowsky J,A., and de Roevet W,P., A proof rule for fair

termination of guarded commands, Proc. Symp. on Algorithmic Larlguages (1981).

[GHS83] Gallager RT., Humblet P.A., and Spira P,M., A distributed algorithm fot minimum-weight

spaIlniIlg trees, ACM TOPLAS, 5-1 (1983).

[HP73] Hitchcock P. and Park D., Induction rules and termination, Froc. !CALF I, North-Holland

(1973).

[H83] 8umbl~t P.A., A diotributed algorithm for minimum-weight directed spanning trees, IEEE

'Tra.I1s. on COIrlIrl., 31-6 (1983).

[M86]

[MP83]

Meyer J.-J, Ch" Merging regular processes by means of fixed point theory, TCS 45, (1986).

Manna Z. and Pnueli A" Verification of concurrent programs: A temporal ptoof system,

Foundation~ of computer scien~e lV, part 2, MC-tract~ 159 (1983),

15

[M~79]

[0(;76]

[POOl

Merlin P,M. fl.Ild Sq,,,Il A., A failsafe di~tributed routing protocol, IEEE 'rr;Ill~, (Jll O(""HL,

27-9 (1979),

Owicki S,S, illld Grief, D., An axiomatic proof te(,hnique for pMallel progtillllS, Adfl. lll­

f<,)[Jnat,k~ 6 (1\)76),

(1969),

IS821 Segall A., nt'CE'lltr"H ... "d llulximulll-f!ow algorithms, Networks 12 (1982).

IStnl Sq;aIl A., Dbtribut.ed network protocols, lEgE 'hlLllS, Oil lnf. Tht"lry 11'29-1 (1983).

['1'55] Tll.r,ki, A., A btti(,~-th<'OrNiu,1 fixed point t.l"")"'·Ill all(] ito applk('ltiom, Padfk J. Math.

(fi), (If)fiS),

['1'81] Tholllas W., A (Olllbiufl.tt'>riai 'Ll'pn)ach to t]", thw)TY c}f w-aut,on)(!.ta, lnfoIlnat.iOD. and

COlltrc)l18 (1981),

[W811

[Zll FC85]

[ZS80]

Wolptr 1'., T('rnp(lr~l logk ('M b€ more expressive, FeS (1981).

?:w~er!;i J- 1 de- Roever W ,p, t and vall Elude Boa~ 1\1 COInpn~itic"Il}]J.ity H,Ild (:OIU~llrIt~Ilt.

networks; soundness illHI coIllpkt.t!l(~~" of a proof "y~t.(,m, LNCS 194 (1985).

>leJ'hib F.B.M. and Segall A., A JistriIHlt.~d short.est path pr()tot()l, Illttrn,Ll R('I'(Jrt EE-

39[;, Technion-Israel I""titllt.,, of T~(,hn(l]ogy, Haifa, r~r<lR1 (1980).

16

CHAPTER 2

@ 1987 IEEE.

Reprinted, with permission, frOIn Proceeding$ of the 7th International COlljerence on Di31ributed Com­

p'I;t.ing SYBtem$, Berlin, West Germany, September :H-25, 1987, pp. 440-447.

A correClness proof of a distributed mi'limum.weig"l spannin~ Ir." algurithm
(e>tel.ded abstract)

FA Stomp'

University or Nijmegen

We discu" ~ strategy to n:dlICC lhe cOlllplcXity of CO(I~Ct"C',<
prOOfs fot pantcular classes of distributed programs. As at)
example of this strategy we ~ketch how a correcmess proof "f
rhe d.js.m.butf"..d mlntrnum-w~,ght sp:Jnr.ing trC"e ::Igorilhnl of
Gallager, Humblel, and Spira [7j call be stmctured by rir~t
introducipg, .and arra~yring. simplification5 in whicb certaIn
commumcallons oro IgnOOld. Then the.e s'mpl'ficatior1! are
justified f"r the genetal case by pt<lvi~g !h~1 those
COrtlmuuications do not affect tile oriSiool analy,is whkh i,
b.~ on tl1o.o simplificatiun>, This proof - a more etab,mHW
version ofit ean be fou~(I in Ihe (ull paper i Z n -;Hu,lIate, the
f.lO(~Qf!S of cotrtmUJ1.icatioft do,sed layer of Elrad and Fr;'IJI.r,,;~z's
[5J an(! of quie,Icence of, e,g., Chandy and Mi!ra'! [31,

I Introductiqn

In order to [O",on about distributcd progranlS. " nlllllb,r of
m~thods h~ve bt,en prop<)!ed (e.g" [1,2,12, 16,22J), While
(hjs ~"abl?$ ~ Malyzer to verify that a progr:un mws its
speCificatlon, It tum~ out that the5t:. mC1hods give, ill gc:ncral.
flse to lengt~y proOf; for ruthet "simple" prograI'lls, (Sec [2UI
for an overView of lOme of these methods and an applicotion ,,/
each of them to thll gcd of prOtoool-verific.tion. the altematillg
bit protocol,) 11,is suggesl~ Ihat corrcctne" proof~ of larger
di!ll'ib~led pro~s are difficult to .eize On. Con,e4Uen(iy,
Ihe question an"" .. whether Ihere <AiSI srr<llegi(s lviii,'" ,'an
reduce Ihe compltAily of proojs for parlic~/,]r cl~.I"',1 ~f
diStibwed programs,

"I'he leitmotiv of this p~pt;:r is th~ deeof!:~!,ooitior\ Qf ~he
reasoning abo.llt a d.is~fbl,.ited progrt!tn into a number I.{ !ooxeiy
comllxred or Indepen£1ent arguments c:olltl1rm',.,& dJslribwed
pWI.< oflhat program under simplifying asswnl'riOlIS,
Typically, these disltibllted J?art! are not syntactically «"'tailled
in one process but are combination, of scattered pieces of Ihe
text of ~ariou, p.-o<;e,"e. which Colnstitule together a
!emanuca1ly meamngful whole, Equally ch~racleristic ror our
approach i> that we fits! I'taso~ in a simpIifio:l fashion .bout
those distributed pans, disregarding interie",n"e due to eonni n
commWlicatiolns from oUlside those pans. to orgue I.ter that in

• DepartmentoCCompute, Science, Toemooiveld l. 6525 l>D
N;jmel!en, The Netherlands. Electronic mail adOress:
mcvax.kuni""llkuniw5!stomp. The work of the first author
waS suppul'1ed by the Netherlands Organization for the
Advancement of Pur<: Research (ZWO).
++ D~part:rnr:nt of Computer SCiMU .and Mathematk~~
POB 513, 5600 MB Ei~dhoven, The Netherlands. £Ioctronic
mail ad(lrcss: mcvax!eutrc3!wsir'lwpr.

CH:2439·f!l87100001(}440$OI.OO'~ 1<;I~7IHE

19

W.P. de Roev~r"

UnivefSity of Eindhovel~

case these conunUl1i~alions an: laken into atOcount our
rCalO"!.ng ~mains valid, or can easily be adju'ted'to the "{ull
reality or Interaction.

The ~u.s.&e~1.ai ~hn~q~c:: is an analogon of some tOGhniques
al~ady sUS,Ec::sted In the hteratu~. such as Lam and ShJ.nkilr's
methnd ojprojct.:tlont. MartinIs anulysiti of the t.en'r~inalinn
behavior ot a J;~lribulc::d pro~rillTl using qw.c ... c.~/11 .~tllle~.
Chandy and Misrd's method of qu.le$(;gll("~ detect,on,
l...drnport'~ a.~glll'r'Jtllt ch~u J'~aJ~nltlg abr>Ul dJ',flTibule(ipI'Qgram..~
need not mvolvi: the constuuung pSJi!llel proc.:~ses or entitie!\: tf ..
bllM: one'. proof upOn but slwuld be based ratlier on prop.,ti,S
deri""dj'om globallnv~ri(JriI.I, llftd Elmd and F .. ~cois
~chniqu~ or co»tm.ut1ica.n"on. closed layers. lhes.e methods :JTe

briefly ",viewed in the ne"l section, The p<lJ'ticlllar
cOlllbinations of Icchniqu:s ~sed is illu~tratetl by ~k"tch"'S a
co~ctne~s proof of th~ dlstnbuc-ed 1Yl1I"ml"~um·w-elghc :s.palll1ing
tree algorithm of Gallaget, Humblcl, and Spi"l [7l. A mo",
elaborated version of this prouf can be found i,l 1211,

Lam ~d Shankar !l41 have pmpo'o:I a tC'h,'i<l~e of
reduCtng the cOlliplellllY of bot" ,sof~ty and livc,'css propelliC!
of protocols. 11letr key obsClVatlon 's that prutocols are. in
general+ d~l'i-igned (0 pe~fOM"l a numbcrof d~still(:(flH)C!ioll~,
E.g., in u rumn\Ullicatiun protocol to achieve full·duplex dam
transfer between two station:!j one can diS(.:ern tWO
diSftngllishable functions. ~ach onc::: concerned wi{b one-way
data trun>fer bt,[weon the two Stations. 10 reduce the
oomple~ily Qf proofs, Lam ~d Shank",'. teohnique
(iccompo!Ves such a. multi-function pml(l-(:ot il1.IO .. 1~;lmhl::r of
so-caJled ~m.l..lge-pmtocob. Sin~c; these tlnag.:-rrohx.:ols
perfo~. In g~neri.l.l. te~:;. functions thiUl the ongLn+al ~"H'e. th~y
are e~sler to .~lalyze, In [141 it ha~ ~!1 proved Ih\it tind~r
cert&J~ '()ndJhul~S:, saf~ty arid livenMs. prupertle!i edfi~d for em
imBge-protoco). carry over to the original one. To our
knowkd~e, ~h,s melho(! has bee" applied so f<lf [0

COtlll'(lum<;atl?n protocoll only (e.g., in [19J) and i[wpcars [""t
the a~phcablhty of tile method to othor cia"" of prOl<lCol<
rc:.mamS open"

Mattin present! in [IS] a generallechnique 10 show
lermUlallOn of a di~tribured progr;un. This toehniqu" tonsi,t, of
flr!1 denvll\g a non'lenninating MalOgouS ptogrdm, for which
illS proved mall! reaches a stale in wllich all internal activity
has ce.1sed and all channels in tl)e networK are empty, a
lO·called qUJes~e", state, No<l, 3 l'X'al terminatiun co"d;tiu~
from couditions satisfied in the quiescent state is derived which
carries 0:ver to the original program. Although this technique
reduces Ui some sense the complexity of a terminatiun'proof it
does not reduce the complexity ot proofs of other properties,

M?rc recently. ChB!ldy WId Misra have pro)lO'ed •
leohmqu" for the develolpmem of Prog,dlr'l$ (S"e PI). I" their
view, a prog,oIIll consisls olf all inilial condilion and a SCI of
atomic action,. One of the key features of their methodolOGY is
that concern. about the core problem to be solvo:l are !eP~aled
from the fotms of coucurrency available in the hardware (o~
whi~h lhe pro811'm ;s tQ be execute(l) and £Tom the lang\1~ge in

which ~hc p.~Ogfl:l,tn i~ to be wrlw.::r1. lrl I~! [IIHIS hcen :-.1I0\~1\
lhtt~ JlI(')(,klirlg a prl1gnl111.jj~ i.\ :".c::, of stalC:1llCnt:-; l:i :J.tlr.ldi\'/!,
;c;il"lcc it u.!lows. one 10 dcvclop pie(;e~ uf a pTOl);r:UTI giV":;T\ OIdr
one invariant. inclt::pe,\dcnt of the oth~t pieces of" lh;lt {"Irngr;ll\l.
Thl!i enilbles One to ('Oiwelltmte sulely at Qnt,': COIK(':rn:lt ~L tinl<.:.

ln l31 a. global view ~)f the. ~y~te:rH ~Ind(:r l.:c)Il!-;i,kralioll i:-;
adop!ed, AJ!hough a number uf ~u\hors have .dv""'Hed
compositional proof~ (~,g'l ill [1 6.22)). Li.l.mp~n·l h:!~ !-;hl)WIl
that as.:sertlonal TI\t.thods (involving re"'~I\iJlg ahout the glub;d
pr(lgriD'O st.a~(':s) &rc wc::ll·:;uitcd 10 r'C;,1:!i.c,n t100ut di~!l'ibutcd
programs, "inee tht:y ure liN lin"litcd to the sylHactlC
decomposition of " ~.n(!gj'';Ut\ into' parilllel pn)(,:c:'isc:i C.I:i
L'omposition.:Ll Im:jhr..xlS .'lre), hut .alwnpply Iodt.·CUlllP~I!'iitLI~II:';'
whIch do no~ follow the !iynta.;,;tic rJeCOl'npo:iltlo[]. Lampu!! Ii;,-:
illustrated 'hi' in 1 I:\J.

II''tcr-c''ting in the Held of ptQgnm1·vcrit'lci.l.Liun i..; ;~b;lllll~
T\onon of communication ~Ioscd lay~rs. a~ intrudu(':cd by [I(ad
f\r1d Franr.:ez. in f5J, (Sl,lb~eCjuently, Lhitl. rlOliL)rl ha:;. b<:c~\
deepened in 18],) One ofthe main ~sp{:('.:rs of.::m1UHullk;~dntl
clo!i~d layers ~s th~ simpiifu.;atlon of lhe 3:n~tl)'~.d:i of dblnhutl,.'d
prognlIns. by, 3~ain. sUgbesliHg a dCl.!ompo!;.iti:lIJ of [t ~rl,.lgl'Lilll
c:onslsti[\!; of parallel prut:e~S~~ which runs al:ro~:i tlu:; 'S),!)[i\c!ic

bo<,,\d~rie. of pllrallel decompo,ition by identifying gmllr' <>/
synt9.ctic layers in tho toxt of those proo:e$SCS which
commlJrlicate ex.c1us.ively whi~b ~ach other. Ul:iing CSP l Y 110
1110Slfat< this nOlk",. any p,ne.« Pi in P=IPIII. .. IIPol i>

ttpr(:~ented as 1\ sequential composlth:JTl Sj,I;",:Si,d f,1r ~;"1I11r.~ d

(i=l, ... ,n); d C~n ~ chosen unifonnly by allowing SiJ II.,) bc an

empty 't.!erne~!. For.i=I, ... ,d. Lj"ISIJ'!",IIS'IjJ is clikd Ihc
jtl1/ayer (If P. Lnyer Lj is Mid 10 1).:: commum'cmii)tt doxed iff
undcr no exectl'tion of P, syndwJniz;).tion occurs b~1wt.(':ll.\l,
communi(:;,l,~j(ln command in some SiJ and a cO[1Jm~ll\i(.:l.Tiol"l

command in l:iome Sk,f with j~r· (In the tem\iT'l.Ology of 111.
(ili" i~ n::phrastd as. follows: for any c:oliu'1lunicatlon (:Ol)lrl)jlrl(l
in layer L

J
synta~tically maKhiJ'g with a comrnUTlieation

co~mYl.and in another layer, no sc:rnantk:~J T'I13:1ch will t:v~r ocellI'
h<:tween them,) The docompos;!;on of P intu layer$ L" Ld i,

t! prOCtSS p';;: L1: ... ;Ld, Sl)ch a d~composit,ol"l i!;. called .~a.fc irf
aU the lay¢rg 3J"e comruUl1iC3[iQtl cl()~d. The ttlevJnc~ of such

ade(:ornpO!i:ition of? is the following: Itt P'~Lt;, .. :L(I be.u stlfe:
decornpQsition of Pinto };'I;rt:f$ LI,···.Ld. DeT1~lle by
(p'IS'(<{I. Ih. ~ssertion !ha! S' is'p,artial.l~ curroc!, w,r,[.the
proc:onJI1101) p and the p0s,condlUon q I I.e" If S l!i: e~c(tlt(d
in an lnili:d state satlsfyl!'lg p' and S' tenninatc:s. then the fil~\\1
.tate salis/ie., q'. Then

is sound. and CMSliIU!CS a derived proof rul" in !hc ,y<tOlll of
[\ I. Thus. umkr a suit9.blc decomposition of Pinto loyor." i!
s.lJfTices to verify the correctneSS Of each laytt firs.tl and thcn
est9.blish th" COrTcctne" uf f' by applying !l\e above rulc. Itl
Cllse -co@'rIut"lication is Mynchronous, a safe decoJIlp<J:.IiliQn is
one: ;n whkh sending and processing ;! meSs.~ge (Cr.)IHaincd In u
mc::ssagc ql,l~ue) takes. plilce in the s.ame lilyl!r. Ob~crve thm ir

[Sljll",IISoj! isa layer of a proo:ess [P,IL.IIP"J, !he,\ SiJ i.
synta(:tica.U), conHti1H~d in p~ for i=C ... ,n. One oflhe Ulaill

contributions of this paper is a s.emantk:al geltcrali1::lli()!1 of' the
notion of ~OI\1mlJnic!ltlon closed lay~rS.,

20

'1"1 ~hj5 pape:~, 1he: clistributt.:u 111.,llin\!)ln·wcight :ipanning I!'C!'":
algorithnl ~)r (i:.allager, 11~,l[IlbIC[l and Spira \ 71 :-.crv~8 M, an
~}\<'mplc:: to iIIus,tr •. ue how a .::orre.ctne.c;s pruuf I)f ~ distributed
program "~n be simplifleo by fir~1 introducing an 3hw,cuon
frum opr.::ri1tiumll i'e~51)ning ilia' (;trt;"in -..:OlnmuHh.::uioLl'!i t'~111 be
is limed (a! !his ~t,'g~ of tho p'u0f), Tu .,pre<' ,yntac!ic,lly
that c.::el'l\lin commtlnications are igl\ored. we replace. the
~end·a(;(lun~ (:ol'l'csponding to tho:l.e r;()TT1lTll!l~ic.2[i(Jn~ hy skip
in the program tcxt. To simplify fh~ r~~SQning. al~o tl number
of 'OOolcan conditiuns will Ix rcplac:e.d by n conS-W.nl boolean
condition. i.e .. cilhcr hy true or by false, As we can apply
MartIn's: t~c.::hl\iq\lC f 1 51 to analyze 1he H~l'1nini~~ion behavior uf il
prugT~ln, i[i"o(')(lows that our tel;:hoi(l~le atso illll:<;;trat~s 11
g~,~¢raliz!Jtion of t~1e O~\C pn:::semoo in [lSI. S-econdly, thiS
abstrlJ.i.,;tion is us.cd 10 d~c()mpos~ the prOQ,(;).I'I1 (whost
execution is flw~ simphl1~) into a nUTTlber of' caml'r\L.II\icatlon
(:Ius.w l.a)'~r~. whose el',;ISleJ)¢t w0uld not have been justHied
without this ".b.slr'~~c:ti(Jll. Thirdly. the pTOgr'J,r.rH !lHl.~ Silr'lpli:ric::d i.:i
verifIed, rir'l,:}1ty. our abstractiQIl r roll\ operution.al re:.!!;.oning is
Justincd by oemoll'tr.!;,tg lila! ll1e above ""u"'p!io", can be
t'!lirnil1aLc::d, ~.ldced. witlil)lJt t[walid::l.ting utii earlier proof~,
Sincc the DotlUPS ()(q~liI;:~enc:e Hnd of t:ommuilieation ch.)~c::d
layer ph.lY iI r;,i:lh<;r !;igniflcanuolc jn thj$ p~p~r, it follows that
wt)L"' !l; put together it mJIt~ber of ingr~di~nts deri",~d frOrn
some of the methoos discl,.I~~~d in the p(~"lous: s(::ction. Also.
we hj,\vt;: chos~n to adopt Wnlpo:rt'!i global view of '" :sys1el~1.

Next, w(; surnm~ril':: the main con1ributioll:} of this I1<JPCL

(.) Tilt ~o!i()" of (communicalio~ cl(''''d) layer< ha, been
el';.le[lded to the c:J...'\e of a::SYI'chmnou!\: communicatiuTI.

(b) Application - to oW" kno,,",lcdge r<>r!he Ii'"'t time - of
(communi"ation closed) layers in !lie field of protocol
vcrificDLion.

(epne !ccluliql'c de~cribc:d in [lSI 1m been genernli,cd. Thus,
our I<chniqu< doc, no! only rW\ICC <he complexi,} of a
1ttr'l'l!i!larton.~roof: it alw en.~blC's ~n anill)'7£T of ~uch
program., !o reduce !he compJe.ity of O<her properties of
them.

(d) Ahhougn nO safe dcOOmIX"i!ion Car be fOUlld for !h<
progran' S ~mbo<Jyinl;\ Gallager's 3Igo~;\hm, yel such 1
dCl:ompo,ition can be obtai~ed after applying a sllirllbM
abJlTactinn of !lie k;~d (ii,cuss<d above.

(0) In spi!c of !he cl~ar infonmJ dCSCfip!ion in 171. il is for fron
being obvious !ha! !he f()rmal d<,crip'i"" of Ihe nl~orilhm.
i.c .• the progr-ilfr, 5 captures indeed those informal ideas,
More pftCi~c1y, !ne eOt(CC!lless or 8 h3< "'" ~M proved in
P,II and there are a \'lumber of ~tatemenl~ 11'1. 5, s.uch as
co"dilionws, wliose fole h~s /WI boon o.plaincd 3! all in !na
p.per. E.g .• consider the te,t whothc, a llode should
.w,lken. or whelhor a nodo ,hould rej""! an edge in 171. I"
!he full paper 121J. we havo I'roved S's COlTec!ne,;. Al>o.
we have shown there !hal !n. S!1temcnts a., mentioned ~bov
are of vi!al impol1ance for it. correCtness, Moreover. wt
have givon a formal jus!ificadon of!M (informal) TOl!Soni~g
in 17] and B slight op!imi.,a.!I[>n of dlat .Igori,hm.

(d) alld (e) above also motivates !be ,nuice of Gallager',
algorithm to iIIus!ru!e out verification technique,

Tho rom.indor of !his p~pcr i. organized as follow" In ch:lp!el
2. we briefl)' cc;view a number of properties Imow~ (((l1TI
gr'a.ph-theory. th.:u are eSSeo[ial to ~stablish the .c:urre<.:tness of
Gallager's algorithm. In that ~hilPlet' we ",lso descdbe 1h~
, .. 101011 of this algori!hm, In chap!er 3_ wo diSC"" !lIe basic

fe3!uftS of Gallager's algorithm. In tha' chap'or. we ,\Iso
ou!line how S', correct no", h., boen es!ablished inl~ll. and
illustrate a d«:Dmpo,ilion of S to reduce: the eomple~ity of 'ue

a C(H'f~'t"ess prOOf, (H,,~ S d~nOles Ihe p'Ogi."" ",,,b<,,lyi"g
Call'ger·s algorithm.) Thi. tlecompo,ition illustrate, i\
s-emantical. generoHt.ation of Elrad and Franc~z's notion of
communication clo,o:Il.yer [5J; the proof illumates a
generalization of Mnrtin's technique [lSJ, Finally, chapler 4
contains. the conclusion.

7 preliminaries

We assume the reader 10 be f~miliar with the elemelltary
definitions and properties of l1aphs, trees. path,. cycle •. allJ
so fonh, wl'lich can be found In 16J, hI pachculilr, fOi gr"phs
(V',E') and (V.E). (V',E') [s ~ s~b8"'l'h of (V,S). denoted hy
(V'.E')<;;; (V,E), iff V',", V and E'~E_ If (y',E')", (V,E)
hold. and moreover (V',E') i •• tree, then (Y',E') is called i\
subtree of (V,E)_ In the first section 01 this chapter, we will
ro",,"I.te " number Of properties - weU-known r",m Graph
theory - ~:,u ~ es:s.~ntiaJ to establish ,h~ correctnesS of
Gallager's algorithm_ Ilecauf>< of the SpaCe limil"liO'\s Iheil'
proofs h..ilve been olTIlued_ Th~reafler. the ~kd~t011 for
(lallaser'. algorithm is inttOduced and th. model of
compu~tiOt'l is described.

Throughout this paper, (V,E) denoteS a finil~, u"d;,~cleu,
and conneCted graph, whete V is a set of nodes, and I; is ~ ScI

of edges, for i E V, we denote tile >;<:t of edge; "oj;cel!! W i by

Ei- Similarly, the set of edges adjacent to ij" V i'ooll(}led hy

E;J' We ",sume each edge eo: E has SOme weigh{ w(e)~()
associated ... ith i{, such th.t different edges have different
w.ights, The assumption that different edS"' have differenl
weights implks that one can identify edges by their weights.
Although one could rela.. thiS as!Unlptio" S(lmewhat, it i.
L-rudal f()J' tile ,orr~tnos, of Galla!;",'. algorithm,

At the bas" of Gallager's algorithm arc 'he e<i,lenee and rltc
uniqueness of a minimum-weight spl!Jlning lree of any I V ,E)_

Th~Otem 1.1
~t w;E"""""~· be a. fl.m¢~iQl\ &~.~igniIlS weights to edgl!s of

(V,!!), wnere lAo denote.lh" set or all re.1 number< !:""Io'
tMn 0, (-.I is also referred to as the weight-fun,'lion "I' Ihe
gr.ph (V,e).) AISUtn~ that w is an injeclioll. 'Inen there exiSl'
a uniq~e minimum-weight sponning tree of (Y,B). II

Given some (V,E) ond an injective w as .bow, theorem 2.1
ens~s the -existeliee of i.\ unique rt'liniltlum-wr:ight sp~lnlling
tree T. Throughout this paper, T always refcrl to litis W""'';Ilg
tree of (V,E). A (naive) \l1cthod to obtain til is tree i~ Ihe
following: geo(!~te ~ll sp:UlllinS tI«~ of (V,E) ""d <felon"in"
the G>r1:~ Wlth th~ minimum-weight among them. ThiS reqllir~s tl:

!trn"SY (0 g~ne"'te the spanning trees of (V,Il), AI10thcr
approach is SUll$csted by theorem 2.2 below, Before
formula tins: this theorem, we first ina-oduce Iho IlOlion 0'- a
fragment of T. and the notion of an oUlgoing edge or a
fragment of T,

Definition 2,1

(liven (V,E) and w as aoove, Denote by T the
minimum-weigh! spanninll tree of (V,E)_
(a) Ajragmellr ofT is any non-empty subtree (1fT,

(b)LotT~V'.l>') ~~ r",gmentofT_ An edge e<;E is said!o
b<: an Q~lg"i"8 <d$B of T iff On~ of the nodes .djacent to e is
in V' and th~ othef one is nOt, Consequently, edge e is ton

outgoing edge ofT iff (Ie V'Aj'" V')v(iE V'"jE V') holds,

21

We. theft h.av~ th~ following

Theorem 2.2'
Lei Tk=(Vk,Ek), k=1.2, be fragments ofT,

(a) Ags~t'le that e<: E i. the n)inimum-wdght outgoing edge of
T I and Ihal e is 3(lj~ce~t to T2 (i,e" adjacem to sO'I'e node in

T2), Then TJ~(VIUV2,EtvI'2vrel) ig a f",gmolll ofT, roo,

(b) "1"='t ifflhere docs not e"i!l an outgoing eclge ofTI' [I

A large number ofillgorilnm. (e.g., [4,7.23,111) h.ve heen
sugso~ted by theorem 2.2, Using this principle, one ,tarts with
the trivial fr"smene, of T consisting of one nnde nnd nO edges,
To elll~~gc fJ<lgmcms, One Or more frogment> fin~ Iheir
mininlum-weigh(ourgoi"g edge, if ':my. When (~!lld if) .~LlC.'h :In
edge has been foutld, the rt~gll\ent> on bolh sides of this edge
In:J.y then be combitlcd inlet on-€: as described jn lh(:o~rn 2.2.
This strategy enSureS tlmt fra.gments are constructed indeed. II
~ho de""fibe~ how fl"l;m~tlt~ are enlarged, If. On the olher
hand, a fragment has no outs-oing edg.es., lhen [h(:t)n:;:m 2.Z
ensureS that the frdgment is th~ minimum-w~ight spanning rret
of the graph,

The algoridtm. mentioned above differ in how and when
fragment> are enlarged, E,g" the algorithm leponed iIl14,2~1
~tarts with a single node as.a fragrncn~ and gnl<hmlly c:nlarge-s
this frasment by app<:::rl.(Hrlg the minimLtln-wc:i,gIH outgoing ~dge
and the node nc.ljat.-ent to ,his ed&e. until the mirl1!H,lnHNf,;ight
spanning ~ l' has been cO!l~tru{;led.. A~ .!i:1,.l~hl ~(.mSlruCtlf1g T
is restrict~d to!:l. mUle! !Jtrong reqUlrt~llt, not mklng into
account thaI Jl!any f",gment. could bo oombined intO laj'~<,r
one!=; asynchronously fl'Om c3.ch other. In nlCl f this lllgorilhm is
inherently so4uenlial. 111e alj;orichm reported in (III, however,
statCS wilh all f"'gmenc, con.isting of One node and nO edges,
and combit~.es. fragule!.11tS ir~~O lfi!g~r ones if ~hC'y h,,"v(: tJ~e: !;a.mc
minimum-wd~hr omgoing edge. Thtl8, djrr~rt::m fr:!gmems:
eould be combmed "synchronously from each other, Yet,
fra~ment."t ~Qmbinc only, if they have the ~an'l:e mjnilnum­
woelShl outgoing edge.
Gallaserf

!;; lll~urithlil 171 ~tarlS wi,h illt fraJj.IlI~llts (;uflsislin.!i of
olle lIod~ and Illl- e!.d~~s, C.JllIbinillg fmsmcJlts inlo tilI"g~r ones
JepenJ~ M their so-called I"vel~_ More precisely, fragmont>
consistitlS of. single node Me dotined to be at level 0, No'l,
Suppo~e that F i$ a fragment at level L with (fljniTrll,:!r'I"!·WE:igh~
"utgoing edge e. L<:t F'denote the fragment, soy al level L', "
the:: other end of c. lf L<2L' and e is F' 's minimum·welgh~
outgoing edge, Coo, then chey ace combined inco a larger
fragment at level L+ I("L'. I). If L<L', then the fragments F
"nd F' are combined inco One at level L', In all olher cases, F
has lQ W,ul (ltltil Q"~ of th~ two po~~jbjUti" d¢scribcd abo~,
occurs.

Abo..." we described Ihe "ke'.:orr for Gallager'. algorithm.
It can bo shown that the dday introduced in the skeleton
(, hence in the algorithm,) does not lead to a de~dlock, i.e" if a
rrasment wait~ ror one of the conditions to comb;n~ wirh :m
other fragment into a hrrglef on~, Ih~[J one of th~Se conditions
shall ~V~tltu:~ly occur,
Thus, in ()allagcr's algorithm many fr:!gmenrs can be
c;ombined inlo larger ones &synchronousJy from e:.Jch mher.
Mottovet two frdgment::l may {;ombinc inlo a I-Ltfger om::
I'¢gardless of whether they have identical minimum-weighc
outgoing ~8~S,
Then:fon:. comparc:::d with the:: other als:oritbms rru::mioned

~flJrc::. i1 "faster" ~lguritll!T~ hU::i been yitIJ~t1. '-'HIIl.lgt'r's
algurithm is 3 cJhtriUlJtcU UII~. Since there (xi:..t nv gh.1i);d
mbh::s. r[JI'::5:s.ag~::i ht\'\Ic 10 oc ~t::r1t uver edges to JelC'I,),ill'\.: til("
minimum-weight Q~ltgoing e.Jge of a ffi.\g!~\Cni. Th\I~, ir \\1
.senne pi-Jlnt during the j\I!;;I.)rilhm fra,S.11H:rH r h;l~ IX'I.:II
con5tI'Uctcd, e.!lch mx1e in F !-ihnuld :\1~1li. 5t:"~ln:hlllg fur lhe;
tnln.i.mwt1-weight Ou.t~ml1g adjacent e::dKc by :\I.:IIlJing Tlll.:~"'il!!l:~
Thcreafter. coopcr.::l.tion must ukc: place between ull P(II,.It.:~ ill F
to determin.e the miru-"~II.LI1I-weIRht m4fgobl!? J.:dgc' Il F ir"il'lj:
Obse:tve (hal in ordli:r tu detr:n:nine: wh~[hcr 3H 3djatellt edg~ t:
of $l)IT't(: node ill F is ~C[I,.I~lly an oUlgoing one of F. it ~ufri(.:n
to determine whether the node &\t the IJth~1' (:111.,1 of C' tx:!nn,g" 10

P r too. Clearly. lhls h. ~I dlffi .. :LllIw.sk, Siltc~ the only way I{)

find (J~n wh~lhc~' ~wc) TIIxte.s r.clong 10 the 5<1I1l~ fri.lgllH.'111 i~ hy
m~an~ of ~[lding me::;Silg~S. fn Gi~II;~f;C:I"S. alg\)rilhm, nodc!-':
~c-nd SD-Ca.lIed TCSl-mr.:sS.1gcs. on edge~ WhC:II S~.\LI't~hln& f{,r 111...-:­
minimum-weight outgoing edge~. WiIhout adJilion;~!
informal ion, how~v~r. it is imposs.ibl~ to (iclcnninc whr.:lh'l:.'"r
two neighbors belung 11) lhi: :;;ame fragment. lhu:s.. when l1Udc:.,.
in Ii m.gment start searchillg for their minimunl-wr:igllt
Dut~Dillg O<lge, they rue all proVided Wlth d "Ill"" of tho
frar;ment. This nillTlt: enables adjacent mxj(!s to detenllillt"
wnet;ler they belong Ic,., ~he ~amc fr<!gment. Thus, wht:1l ~~ node
transmits a Test-mes.,s::lge, this me~sage a.bu (:il..ITtef'i rht, Ili.ILiI~ uf
its frugment as an [lfgI,In1ent. -I be ret.;eiver uf the I'Ilt:ssilge
infonns I.he sender whcther they have the ~i.Ulle I1i.UI~e, If Sc,.\ 111(0;
edge connects two nod~s in lh~ s..1.mt fl'agn)(:I\I; ()~herwi~c: tl~e
nod~s 3dj3C~rLt to that edge belong to the diffcrr.m f"r~lgl1.lt:l1t!i.
AltJlfluSh thi.'f rcm.(ming might sugge,"it thilr it .~f,lvc:.~ the
problem of dell3r'mining wiJ£.ther edge.'i a.,.~ out;wifl!:, ~t dod
not, 11\e reasol~ is that a node rt(e1villg ~ Tt-$,t-II\(:SS.\lg<- mighl
have another Dame than th~ s-c:;ndeJ:' of .hl!; ['I1(:ss.;,lg~, while;: NIh
belong to the same:: fr;)gI"l1I!:nt- Thi~ pO!isibllity occurs, if the
~c~~vt .. of ~h¢ TC;:St-n~£";e;:!iage has nlJt yt::t rt;'.(:"(:~voo th~ T~~W p(IIllC

of it!i fragment_ In [7]. eiJcn Te~u-rnes..sase carrie!i an ad<litiona.1
argument - the level of i(s scnd~r'~ fragm~llt - to avoid such
undesired situations. Le,. situations in which an ~dgl' wuuld
have gQ~ tht;: s~ml,1s. of Ol)tgoing, while:: it is [~Qt. hHrudu("IBg lhc
h::v~l~ hBS an other advBnl:B~eT lOO, 'vi~"l it redll(.:e~ the f'lumrx:r
of messages require.d to comtruC1 th(minimum-weight
'pRoning!Ro T (see !71l, In dl< "ext chapter, we will de.<criix;
Gallager's algorithm in some more detaiL

In the remainder of thls chapter we describe o~r modol of
compuul1ion. Thi, is dono rather infonLlally, The p<>ill! of
departure IS a computer netwurk (V,E}, wher.:: V is a (fll1h~) SC"I
of compulh~g lIitilS, also referred to as nod~::.:, alld whCfl~ F.: is [l

(finite) stt of undirected communication ch.j);I\IH,,:l~, also reft'rreJ
to as edge-s_ In the remain.der of this paper, we as.sumc Ihat lilt
M!Work has a fixed lopology, (The fe~oef i"torosted in
alsorilhnLS Ihal cope with failuro, aDd ildditiun! of edges or
nodes, is referrod to e.~., [17]), AddiliOnally, W~ assumc 11",t
the nelwor~ is connected, and mat each channel in the netwOI k
conneCtS exactly two di.tillct nodes, The lauer assumpti<>" is
important for the C(lIT~u>es~ of Gallager's algorithlll,
C()n~equclltly, such a computer !>Ctw()rk c~n be viewed as a
fmite, undirected, and cOrlllected grnph.

The nodes ill tile llelwork arc assumed t(l p""e.s a ceriLlin
meowf)'- and COmputatiol1 eapabilitY,l\Il(I (<> be ublc 10
communicate ,ia messages wirn Iheif neighbors. NOle th:Lt """h
flod~ is able to ttar'1smir and rccctve messages on any chmlllel
aojacent to that node, since the ch:mnels are ulldllecteu.
M~ssagf:s trtu'I'S!"r'Uued by ;!i.On~ node Of) a channel anlVe wi~biH
II fiTIlt~, (bl,l~ unpl"(:dk:table) tl~1I"..:-durat.on. in ~~~~ucn~~T
e['tor-me, and wiwOUI (luplicatio!) at the OIher c"d of the
channel.

The: algorithm p~~nled in ttl!: ne,.;t ~hi.lptt:r i~ L1i!itribvl~·d ilT

the sense {h.al no centra.! !.!ibks are ft':qUIJ't-d and Ulat lhl!:i"~ I.~ 1\0

22

glnhal knuwledg(; of lll{: 1~')p01og)', n.:1:Ch [h.xle "kl~c)w!-':" only il;;
ildjacenl {;haT'II'ld~ al1d their wei,ght.~_ E!!ch ll<.xJo(!; l~ rc::sponslble
for ul.l(:huj,1g il~ own, i.e., loca.l. table::.: and variub!es. The
:,lgo(ilhm i~ SllLh thai ull nooe.s u~y the ~ame loco.l ~lg0rithll' .
AI 1;':\~t:h llC)d~ i E V, ther~ e)l;i~t~ ~I Pr'0gt~lH!}j lu pc,.~ffonn ils ktt.:al

.1~l}rithm. Yari.blcl (",cuning in S, ~r, a<~~mcd Ie> be
::iIJb::':l,.;ripted by i. If t'lO ct)I'IfI)Si(u\ can occur, th~n we omit th~se
s,lb~r;pl<.

Tnmsrnitting 1:1. IYIt:s:;age M on an edge e can he achie'¥'t'd hy
c~CCutjllg a. SliHC[lItIlt "send M on edg~ ~". c.at:h node rni.l.if11.jj,in:-1
a m~ssag~-que:u~_ Upon receipt uf it me~~agt, ir is s[ampcd
with an idtmtWci.ltlufl uf th~ eds..;: Oil whi(.'h i: ha:i been rt!<.:eived.
13'.3ch m'::SS3g.c:-qu..;:uc: is ;Ci,upposed to work on iI FlrO-bu~is, If;~
node's queue is TlUrI-empty. Ihcn Ihe from meS:i:::Jgc may be:
removed from its queue and eltflt:I' pl"OCe!=;.~(:.d, (lr'l ;,1S we. will
Sl~~f plactd ;1t Ihe (':fl.d of the queue, waitil1g for otil!!r events IQ
occur. We a~sume tlll1t each queuels (:~\p~.;i~y i$ I.a(ge t.11('u,.Igh 10
buffer all received me~~ages, It i, "ot oiffLrult to denv, ~
minimum ,i<o, Su(;h tI,at ea(;h queue is al:>l" to bulf,r all
rcct!l'¥'cd Illt:~:mge~. This is uullhe 5l.lbjCl,:t of 1hL,~ p;~p..::r,
however_
In the :!iequd. wt:: u::l-~ ~he fll'lliUioll q\i~lleI1o denOIe i's

m« .. se-queue (iE V). Aho, we adopt ~hc convention to d~110l~

e's COIltCrltS of rncs~ases incoming to i by (;ontentSi(~) (ie- V f

CE 6), Thus, for ie V. ee E i , cont~nts;(e) d~llote;s th~ Scquem.:t
<:>f mess'ge~ thaI h .. been transllliueo by tI'e o~her node
.djacont to e, which has nO! ye~ been r~co;vt-d by i.

We tle,,1 fi~ some nClw(lrk (V,E) as de,cribed ~bo"e,

lOgether wi~h an injec~ive weight-function w:E---+IA+. O,'e
mjgh~ 'View the wdgh~ w(~). ee 8.1 as the {;ost of traftStnining .:l.

ml:ssage on edse c_

1 A !lw;ficatiQn ~t!.'!l

In ch'plor 2, we have di,;cussed the skelelon for aanaSer',
a.Jgorithm_ In this chapter we arc:: ,G.oing to [('fine this skdl!'tl'ln
somewhat Th('; ultimate goat IS f (If (;our::.:e. to ::.:huw tha~
Gallagers alGorithm meets ils specifiealion, TherefOr<, we
fonnulatc "sp<Cd~caliol\ for a (d;sLribllled) prosr"'" S llHl~
~mhfrlies tht. ~"gori~hr"l1, In order to pr!)'V(,:: S's t<.)tul (:0rn::(':m~ss.
i.e_I if S is ex.ecuted in an initial st3te s.!l.tisfying some
p,·cconditiun. tllen S i.dways termlntHes. alld jl~ the final stale th~
minim~,"-"'eigh' spanl\ins tree T,-,f (V ,E) has been
(;O"Structed, it suffic", to ,how th.t each fragment finds it,
minimum-weight outgoing edge indeed and that fragmentl;
(;o,nbine as describe<! in theorem 22. ThiS is established hy
inductiOll 00 Ihe level of. fragment (see \21 J).

Now, a corrCc(ness proor Df any complex distribu~ed
program should somehow be sttuctured. It is convc:nient to
structure the proofs reflecting the c(lnsidera(i(lns of the
(al~"rithm-)desigll. This (lbllCfVati(ln has lead to decompo"" the
program S embu.:iyillg Gallage/s algorilhm into lay'''''
~heret>y enabling tho proof Sltalllgy dt~ribcd in chapter I. One
of the main advuntages of this sttategy is Ihat proofs can be
giv~n, ['.Onc~ntratiIlg 01\ or'le pat'l of 1he program·at a time_ As
an ~x.al1lple of (his. w(; rncntion an algorithm which IS not
identical to Gallager's 'algorithm, but coptures the most
«sential features of (lallager'< algorithm.

In the previo~s chapter we have discussed Ihe skeleton f"r
G~lIaser's algorithm, There we havo al.o outlined Iht ,.~¢(\ fo'­
fragment" nallles, Witn this in mind, Oallagds aig(lrilhm ClUl
ne .. be de",ri"",J as follows'

(a) A fl1.gl11enl ~ll~v~l 0, i,~" a fiagmem COnSisting of ""e
node only. find, il~ minim~m-w~ig~l OUlg();ng edlle ""corditlg
to its local information (, since any adjacenl odge of such a
node is an oUlgoing one)_ Aft« findinll this edge a
Conneci-message is transmilted on this c:d~e. This mess.~e
• <lveS as a reque.1 of the mgmenllO combine with Ihe
fI1lgmenl al the olher end of thai edge, This pan of tile progrllln
is performod by node i when exetutirtg S'.I in progrnm S I
below_
(b) (i) II two ("'gments F and F have found that they are al

th", same levd L Bod thai thq have the same
minimWi'l'weighl oUlgoil1g edge, then they :u>: comb,<ltJ
into one al level L+ I. Each node in this newly fOlmed
fragmem is then providod with. name and wilh Ihe new
level of this fragment Node i ptuticip'les in this part of the
algorithm when OKecuting S;,2 in Ihe program S I below,
(li) After receivinglhis name and level, the node <I.rt<
se~hing for irs minimum-w"igh, "u'g"i"1; tuljacellt MM'.
if any. [(the nocies have ended this search, they should all
coo(.<:rale Ie deterrrur.e the ffigc with ti,e lea,: weig!'1
amonpl all oUlgoing one., if any. If thero are n?
outgomg edge:s~ {hen the a!gQrL~htn {CnnJI~lm;:~1 :!j;lnce the
mirti~'(\urn,weight .!)~ning I::ru has Ix:en constructed (s~e
tneOTem 2_2).
Nod~ i participates in this pun of the aJgorithn~ when
e~ecUling Si,3 in S I, O!)serve th~t S'.3 is n()1
synlllclically CQntaioed in the progmm e<ecut<d hy 1l,,<I~ i,
Yet. we have shown in PII that the d.e~Qmposi(iull :..IS

tUus,t:rated in the program Sl is ~mantk;aIly meaningful.
We have be~n able tQ prove that this deuomp.ositiun
inclur.e. layerS whi~h are c=UnltatiO" closed ant, a
number of s~rnpHfyilig ass.umptions, h~ Ihe di$cUF.~kH~ Mrt:r
th~ program S I below, we oornmeni 011 the:se: assulilplions
and their impact on !he communicalion dosedness of Ihe
layers_
(iii) II Ihe min~um-.,.<ighl Outgoing edge of the lrusmenl
has boen fOYnd in (ii) ~bove, th,n the node ;n Ihe fragmenl
adjacenllo this edge will be informed to ",,"d .ame
ConnC(:.~mcss3.~~ on this edge. This. message serves Y:i 1I

req~esllo combme with the frdgnlelll m tile o~ller end of
thls edge_ Node i participales in this part or tho algori[hm
when exe<:uling Si 4 in S I.

(e) If a IT-dgrnent F '11~~d L haS futl~d ;IS ",inimum-wd~IU
ou(going edg(: ru~d t.h¢ fr.agIB("~~ F' 2,[the:: other eml ot' this I..'dt;,l'

is .. level L' with L'>L. then F is immedialely abwrt.e<l by 1"_
The neW fragmenl is ~t level L'. This p~rt of Ih~ .lgorllhll1lm.
~ol been in~oorpored in S 1 below_ In facl. thes. cOllibinlLriuHs
ens\lfe the I'T1;>Ue;5 in Ihe algorithm. Le_, Ihey enSure Ihallhe
~lgorithm i$ deadlock-free.
(d) If a fragment I' has found ilS minimum· weight oulgoinG
~S~ e and none of Ihe possibilities above is applica!)lc, Ihell F
h~s \Q willt for combining wilh Ihc fragmem 1" allhe Olher elld
of e- In fatt, this can occur in Gallager's algorilhm only. if F
and F are al the same level and the following holds' F' h3> 1101
ro~ ils minimum-weighl outgoing edge yet. or F' has a
minimwn-weighl oulgoing edge olher than e.

With (V,E) and !Ill inj~live weighl-functiun w:E..,lR t as
before, leI T denole the: graph's minimum· weight Sp:lJl~illg tree
(e~is1ing by Iheorem 2_1)_
To give ~ sp<cificalion for S, the prognrn embodying
Gallager'. algorithm, we nOIe that tAch node mainlains it< own
vanables 10 pufonn its part of S_ One Variable. 5ni' records the
(nod,,·)SlaIUS of nod~ i. E;\ch node CM be in one of the
following slates:
• sleeping, ir il i. nol participatin, in lhe algorilhm (yet).
- filld, while i! is panicipatin, in a ft.lgmcnl's search Cor

23

determining the minimum-woil;ht oulgoing edge of the
fragme.\1,
- foulld, in all olher cases,
Inilially. each node jI1 the nelwork is in the steeping st..:J.tc, i,e"
no node panicipales in the algorithm .

Each nodo of the nelwork also records Ihe ,1"lu, of ii' .<;lj~~ent
edge., marking all adj"celll edge as a
- branch, if the node has de1ennillcd Ih~1 lhe edge is in T,
- rej.~red. if Ihe "odo ha, determined th.llhe edge i. nOI ill T,
or
- iJu.5ic, in all olher ca", •• Le_. if the node ha~ nOI yet
determined whether thai edge i. in T.

Each node i <i V rnaI~tains • vari~ble se;(e) to record Ihe SlaluS

of ellge e (e~ ci). We ... ume l~at i~ilially each node has
marked it. adjacent ~gcs as basic. Lo_. we assume that

inilially 't'ie V \teE Ei. se;(e)"basic holds,
Consequently, initiolly no node particip.le, ,n the .Igorilhm,
and each nOde is "unaware" whether an adjacent edge !)dongs
toT.

RecaU thai queuei denOics i's message-queue, and .hal

cont.en1$j(e) .cknOlCS e's COnt~nlS (If m~,!i;$age~ incomiog (0 i

(i.:: Y,e':: Il,). The discussion al;>ove suggest' that we must
prove that the 'pc:cification [plSlql hold •. where

P-Pl " P2 and q"'-l," q2 are do fined by

PI"'\;,iE V 'o'eQ E;_ (sni=sleeping " "'i(e)~ba,ic).

h=\;Ii" V \leeEi- (queue;".:>" conlenl'i(e)=,,»,

qr;;;\li .. V. {'"i9(ound" (V,le" Eil"'i(o).branchj)=T). and

Q2E]J2' wilh S and T as defiaed abovo_
Here [pJ$[q] holds iff lite following is satisfied: if «<culioll of
S i, ,tarted in a Slate satisfying p, Inen S alway, terminate, in U

~Ial~ sali'fying q (Iolld co=tne,~), CQnse<luell~y. Ihe
diCC.rOnee belween IplSI~1 and IpJS[q] is th~llhe I.IIcr
specificalOll implies Ihallhe program S a1way< term;n.les when
started ill a ,I.tc •• Iisfying p.

ObM:rvt:~ h~'wcvt:rl that WI;:: i.'=an be more ~-I"c'::i~c ah<.)ut the
predi<':~I~ q thaI TI1~sl hold upon lenllinalJun uf S. Ilituiliveiy. if

eo lOij' and sci(e)=br'.I.lCh hold. upon lormin.liun of S.lhen

Iilis implies that e i, a edge ofT (i.j~ V)_ Since T is an
"I1fJirtc,,,d tree, se/e)=branch mUSI hold .h~n, 100, Also, "pOll

1~ffi1ination of S, each node should have dotormincd, whelher
an adjacent edge is in T. Consequently. upOn termination of $,

we req~irc th.t sei(e)"basic holds for all e" E;_

These obser'V.liolls lead 10 Ihe spl'Cifi<ation IpISlq'] wilh

q'wqA'O'i", V 'o'e", Ei, I(se;<e);<basich

,,\tij" V \tee EiJ' sei(e)m,ej(e)).
where p, S, and q are .s defIned above_

Nexl, observe thai S can be obtained rather easily if the
network con..sist~ of one node only. ConsequemlYI i., ,he
remainder of Ihis poper wo ... ume Iha11Yl2:2 hold5_

A node slans participating in the algorithm, W~t~ Me of the
rollowinG OCC~ffl:
- il respond, to some COTlUI1l!JId from a higher level proeedun:
10 inidale III<: algorithm, 0.-

it rt:CI::LVeS the first (algorithm) messa,ge tt';)I~$mjtltJ by ~Ulll~
nooe if I the. graph.
A n·I.:~e can respond uilly to :IDmt! comrn.and t'ronl ~ highl::'r ICI,lt:!
p~ed\.lre w il~itiaie the algorithm. if It is in th~ ~h:cpil1g :-;t:lIL·.
Sinc~ ~he ~'!,r\l~tI.lfc of SlJdl a pn_'Io(,·(!dure Is o(fuill~lr iIlIC[... ·Si ['~)I'
the algorithm. we igl1Qrt; Sl)ch proced~,I'~':; rn~[e:ld. nodes. ill
the graph c!lfllnitiale: the algprilhm, l.I('cOfuing to their I~'\(.·:ll
infonJl<.Hion, by "awakening ~r()nraneously". Nnr~ rh:H 1l11lny
nooe:i (;an awak~n $pont.!lncQusly ami "initi[lIe" the al,gorililin
We dernand, however. rhat a nud(: can awi.t.kel~ :-;p\JntiHIe:Oll~ly,
only if h is in th('. s.lcepillg-::ml1~.

In (~allaser'~ algorithm. one start. .. with fr:lgn1c[lI~ Of the::

form (I i) ,0), i~ V. hl1hc algorilhrn, each fragmellt I illlh it.,
minitl"lllm-wcighr outgoin,g edgc 3!=.)inchml1ou~!'y willi Iq~.lId in

other t'ragment::i. When (.and if) such an euge ha~ ocen fLHlIld.

the fnlgmt':rn atl(':mp~s: to combhle witll Ih(': fl'il,g1l1enl itlttu.: other
end of tho/; ~dge. TI1C n,lh;:s of CO~t~bil1i:nS have 1x~·.11 tkS~I'ib("d
ear!i~r. The part of tlt~ algorithm a.ssoc:iated with how a
fr.:lgment fIndS it;€; IIllnimum-weight uUlgoing -edge a.nu how to
atten)pl combil~i(121 with !he fr.:r.glll~'lt <\(u~e ()Ih'~r ~nd of tll:·,t
tJgt is c.allt.d a. pJllue of the fwgll~t(L" In Ihe rull1i.llndcr of this
chapLer~ we C()IH~d('r (h~ P:I",St of 3 fr&gmcllt t)f Ihe fOl'ln
([i 1.0), and lh~ phase or" fr~g",ent Ihal h~s ""err rOrn'od
from smaller one~ at th~ same levels with the sam~
m.inimum-we:ight outgoing edge.

A. fragmr::flr co"sis~iJ~g of 0,\(, ncde only! swn~ il~ fj(:',(ph"s!'"
when the node of Ih.1.t fr"~tl"lellt awakcns ~pont;ll1("ou~ly! Or'
when it rcc~ive~ the fLr!;t algorithm-message. Wllen;1 I~(')dt:
awa.k.~ns according to one of these pOisibiHtie::;. it cll::tcnnillc:';
it"; mtnimum-wdght adjacent lhen<.,:r: .. outgoing) cd~..: {frolll it~
local toble). milIb this edge a, a branch, and goes Into ttlo
(ou[ld·state (since the minimum-weight ol,tgoi!1g edge of its
f,~g1)\cnt h~~ ix:cn ootemrin<d). n.e n(>(le thcn ~c"ds "
ConI1CCHnC:S!l.3ge with its level, i,e .. 0, on the edgt n)MkCd as
a branch. ThIS mes!j.aye ~erves 3~ a. re~ue::it to comhine with the
fr:J.gment il~ tJle oiher end of that edge into", larger one. St"lldilig

Conne<:t(O) by i" V al • ., indicates !he end of !he first ph"« of u

trivial f,(.gnler\t of the (Orm «(i) .0) ",he" ~w'l.kening.
Hereafter. it simply waits. for a response from the fragment ~I
the othe, e,ld of the edge on which the COflnc('t"llle~sage h~>
been ,enl. At the fi!1;t $t~gc of tl,e proof in lZ I L we h'l>e
ignomJ tl.e aClions t~kcn by a node, or mO'e pr(;cisely by "
fragt1~(:nt, wlH;n it Tecc::ive~ !o:uch 3. I"('sponse.

NeKt. we describe the .j\'.;llons performed by the nod~:;.
when one (or possibly mOre o(them) awaker\~ Spo"lu~eou\ly.
and whto (wO rngfncn~s ~ combined into a larger fragl'l:1cnt.
Node i performs its lirst ph."" when e.cculln£ So.1 in S I
below. Node i in B frngJ'Tlent formed. by two smallt"r OIlt:S i.lt lht
~f-I.rne levd with identical minimum-weight out~,C.}illg eJgc~
participate:. in a phase when e.""utinS Si 2;Sj JSi 4 in S I
below. In tho p,op1lm to follow. >n denote, tl',e nOde· state, I"
denotes the levd o(the fragm~nt a~ far as fjknown" to that
node, and sc(c) re~ords the Sll1tYS of edge e adjacent to that
r'tooe, The initi:;tl value!;i Qf th!; v(lli~blc::~ ~(~) and ~n are bask
;J,nd s.Ieeplns. r~~rectivc::ly; the initia.l valuc::.s of the other
variables ~ i~le ... ant. four a compl-c!:te de:;..t,TipIIUJ] or
Gallager'. algorithm tl,~ rtad,,~ is referred to 171.

p['()gram Sl (as executed by each r'OOt i€ V)

I) (o'Spon5<' tospontaneuus aw~k.nin~
(can otlly occ:::ur itt a node En [he !i-Ie~plng-stat~)
eKKut€ procedure wake,"p

24

2) pr'Xotdure wake-up
bogin

let e be the oojacent edge IJC minimum-wcishl;
find"u"rll;=O;;~(e):=I",,,,ch·,lrr:=();,,.:d'ourrd;
'~rrd (\"lne<:1(» un edge e

end

'1) re!;pons~ to r.c~ipl l)rCl)nnect(l) l)n edge e
he~ll1

[.........,.,..." Jr ::in.::::s:keping the-n €xecu.£ procedur.;.- wak~-u~

- S~.2
irlll~1
then if ,o(e)=b","ch

Ii
elld

lh(!,u !r~:=hl.+ 2 ;ffj;=w{tJ,$j~:=finj.Linbr~ul(::h,'=-I..'i

fOl" ~II cdgoes: e!;et:
rJo ~end Initiate(ln,l'n.Hn) on C'dge e';

fjf1dC;:.I,)unt;;.;;fi[ld(:0~"l1+ I
od'

else place rttdved message on end of queue
Ii

(4) resllon"" to receipl or Iniliale(l,f,s) on edge e
b£g;n

In: =1; fn: =f;sn :o:..s:inbnmch::.w:e;

ror .11 edges c'",

du ,end Ini(iate(ln,fn,~n) on C';
find{:ount:=findcounN I

od-
-----.. - -... ----. -- ._._----_ .. _--_._----$ i •. \

be~t-edge: .. ~nil;bc:st-wt:IJ.o.~;(!xC'cule procedure 1eSf
end

(5) procedure test
ir there arc adjacent edges irl Sl~le hi"i"
then lC;!\t-edge:= minimum-weight aOj.J(:e.nt -t:dgr:: hl

state bade;
s.~d Test(I",frl) On l"St·o<lg~

else t~st-edg~:=nil~exe.Cute- pr,ocedure rc:rort
Ii

(6) response to receipt of Tcst(I,f) on cd~c.
begin .

if sn=s!eeping then execut'i!' prQf;edure wake-\lp fi;
ir In=1
thtn plt'tce tec~iyed m~Ss.age on ~nd or queU\~

el~e if fno!f

fi
"lid

th~n ",nd AGC~pt on rog~ e
d •• ~~(o):=l'ejO<;to;<j;

Ii

if test·edge..e
then send Reject 011 e
else ecemle procedul't' te"
11;

7) response 10 receipt of Accept 0,. edge e
begin

lesl-edge:="il
if w(<)<:best -«Ige
Ib~n ""sl-tdgt,=<:~t..Sl·"'l:=W(.)
ei~ execute procedure r~port
r.

end

(8) response to receipt of Reject on ed~e.
\legin se(e):=rejected;execllte proct<lure te.t end

(~) pn.JCwpre repo.t
if findcoum=O ~nd test,edge=nil
tllel1 sn:=[ound;scnd Repon(ocst-wt) On inbr.mch
fi

(10) r"pon"" to receipt of Repo.t(w) on edge e
ir inbranch~
then fl11dcount:~findcount-l;

ir ","'best-wt then be,t-wt:"w;be,t-wt:=e Ii;
execl,Ite p'Q<;.dt"e ~eport

else if s.n=find

Ii

theM plil(;~ ~ce.ived messag~ on ~nd of queu~
else if w=best'Wt

fi

tlten Ita I! fi

else if w>be,t-wt

fi

thn ~xe<;:ute proc~dur~ cha"g~-roo(
Ii

II) procedutechilnge-l'OOt
if se(ocst-wt)=bra"ch
ilten selld Ch:Ylge-Rool on besr-edge
.IS<! sond Connecr(ln) on best-odge:

se(be,l-eelge):",brilnch
Ii

12) respouse to receipt 01 ('Itonge-Rlx,!
't'xc'!u.le procedure cnange-W¢t

We ha.ve already giv~n an intultivc= expil:lJ13tion of tne parl~ or
Gallager', algorithm corre'ponding with me labeled p"m in S I
as shown aoove. In 1211 we have established {lIe COrrectn.S< "r
the program S \h~t clnOOdies Gallager's ~Igoritlltl' from
propeni~ which we derived [01' the program S I ~oove. The
proof of pfO~rti« for S h~s bee~ s(n.lcturcd by firSI

concentrating on the layer L~-=S~ ~1l ... IlS" I' where 11 i~ 'h"
number of nod~s in th~ n~~"'''rk. u'nder consi~er:l!io.)]l. Thi~
layer is concerned. with u:m-l~Yc:1 fmgmc.nl!=;. At Ihis i'.lilgt ~)f
the: proof. we: ha\(e cornp'c:tely i,snon:d. oiher COrll.IlHlnic.';lIil)ll!-:

that could affeCt the COnllnul1iCation do~edlle~s uf layer L I_
The~aftc:r, w(: have: shown that a frnsn~nt P combined from
IwO fragrt:'leI\IS F' and F" a[the: :same. I=vel with a.n irlt;:rnical
minimum-weight outgoing edge nnds its min.imum-weight
outgoing edge, if l\lIY, lUlO that \he progr~m te.,nin~le~
otherwise. To 00 SQ, we proved propertic~ of the I~yer~

(u) ~..sI,2Il- .. IlS",2'

(b) L3"s1,311 .. _IlS •. 3-

(0) L.oo$l,4I1 ... IISn .• (when ex~Uted in stale. ""Iisfyi,,& a
wcU""hosen precondition which can be proved to be esmbi;hcd
fOT tile "[ull reality" of communic~tion' unOe\" simpli[yi<lg
assl,lmptions. The~ 3s.~l,Implions are the fQIlQwin.s:: in (,:1), we
ignore all communications from node, outside f. In (0), the
assumptions in (a' hav~ 10 b<; rclax~ ~omewh~t; otherwi~e
v-erification does not mak~ scm~ since in (b) !lod.~-" possibly
!;end Test-messages \0 no<ios outsi(!e F and could !herdore
rceeive lUl Aoeepl as. respons<: to tlutt message. In (c) the
simplifying ""sumptions an: idenlical to the one in (b). UrlC/er
IlI£s. simplificGtlonS, we /!4ve been (lb/I! to .how lhi1IIMfcW'
layers tMntioned clb<>ve &e C/)rI1/IiIOIiclllto. dosed. Therefore,

25

lhe compicxity of a proof th~t f' find, iI, minimum-wdght
outgoing eelse. if any, and th~t the progrum temUn~les
olherwi,e is reducod inde<;<;!. We should remark here thal in
case (b) above the compkxity of proof can be rtJuced even
!tlore by applying the method of projections (14). ilnd Martin's
technique [ISJ. To apply M'arun's technique we Obtain a
simplified progr"'" by TeplllCing the lesls w=beSI-wl in
"response to receipt of Report(w) on edge e" by fals~. In cose
of te""ination of Ihe original program, ~II ~odcs itllhe network

would have re.u.ched a quiescent stah!:: wilh ~S[.Wli=.:.ofor all
nodes i. when c~ec"ling this simplified prosram. From
conditions S3ustic:d in this stat(" we i\Te able to prov~
tCnnirlation and a terminal ion condilion for Ihe ofigioal
program.

Aloo we n;:P/e shown that whenever so,'nt:: 'lOOt k ~ceiv~:;.
Conn<ct(l) and ohcck~ if Ink=1 holds, lhen such a te,l is

equivalenllo ., (Ity").
lhereafu:·r. w~ have taken imo accoum al! (OrnIllUT11c.ltLom;

Ihill h.v< I,"~n igllored befo/e ",hell rea>unillil in a 'impillkd
ra.lliQn about G~II~g~r's ~Igorill!.n. (AI Inat poiOl U,e
possibility lhallow-Ievel fl'3gm~nlS $HCmpIIO combino wilh
high-level fragmenls i. incorporoteo in S I.) TI,e program S a,
give,' il'< u\e appendil< of (7 J Cilll then be ob\:uncd afle, SOn\e
[fivi~1 tn\osform~tions:, It is. interesting IO nOIe th~u the
communication closedn~s.s. of the layers a~ we derived ea..riic;:r i)\
dt5U'oyed when ta:k.lilg Into account cIli c('t!ll'nUn((,:U~~OllS. 1noe:
iruuit.ivc: rt:a.. .. UIl is the foUowing.: aflY node i mu:-;t Ix able: tt~
process a Conneel(1) with kin;. no mauer what layer il
exeCutes. Yet. aU earIler .derived ir~a.rial\ts r.::ma.i.n valid MleI'
the addhion of ~I! pO::l-sible comrnunkatlurl~ SinCe they ha\,,(
been chosen int~rference·fr(:e W,'t,(, lhi!i. addition, Of ~l-'r.e ei.lJ"li~r
Oeriv¢d properties can be e .. ily adjusled!I} be valid .fler !hi,
lI.ddition.

From th~ proof we also I~amod that two (slight) optimizalions
arc PO~!iib1c (w.r.t. the program given in l7l), The fin:;t one is
already pre",nt in S I above. If twO fragmenIS'1 the ~a'"t level
with an ldt::ntkal minimum· weight outgoing edge an:: comhil\¢d
imo a larger ow~ {h~[~t js. no\ necessary that the n.odt:"~ a..!jal.:enl
to that edge fir>t exchange~" Initiate·message as illl7J. Rather.
the nooes ~dj:",ell(to til is cdge can immediately lOrd"te the
t¢t~vat"1~ variaole!> :l!;!. ~hown ill S 1 {t;bov~. The l)(h~r

optimlzution i:; the following: if 3 node te V tr.:,illsmiI:o'..3.
'fe$Hn~s.silgt Ori OOn]~ -edge e, and ir r~eil,lcs a COllnect(l) illl
1<llli on thi., e~ge before it has actually received a response 0"
that Tes~-rnes:sag~, then there i!;> no n~ed 10 wail for !hi.~
rt-spoftSE!. l~ thiS '=-iliie, I wi1l always ~~i\le a RejecI-messase
aft~rwards. Consequent.ly, it suffices fot i, in this r..:u.:Se l 10
continue its seUIt;n for the; minimum-weight outgoing edge
wi~hout ",ailirlg for a resl"",se. The node j at the olh~r ~lId ()f e
could then as well ignore the Test-message in ,uch •• iluation.
i.e., if it attempts to process a Tcst(l,f) ",ith 1<:ln;, receiv~d on
an ed se in ~tat~ branch.

We hove s"elchod the correctne", of \he di.tJibul¢d
minimum-weighl ,pllIlning tr<:<: algorithm of Oallager,
Humblet. IlIld Spira «(7)). We have aho .hown !h~t there exist
strategies to reduce the complexity of such ~omplex correclness
proofs. Basically, this reduction is achieved by introducins a
certain al;<;traction from Ol"'l3tionaJ re3SQning, t;:lrad and
Frnnce:z'S communiCatiOn closed lB~rsT and Martin'!';; and
Chilndy & Misra's quiescMCo illto tho proof. ([low Ihe notion
of quiesce~ce can be~n used in the proof ha, ON bun

i!lu~tnHc.d jn lhj~ paper. Elor this ;he ir1tl:TC~H..'d r·t:l.!.1C:f is 1'~:t"·II~·d
to 121).) This allow. 1I; to rc"oon aoo"t lIi;t,il,\"c(1 picc~., "f
programs under simplifying lls:-;umpLiurls. At tb'/'" filHl.1 swg<.:. 1,.11
the proof the assumpliom: hnplied by UI",\" ab:;lrtK·tilm~ IIlliSI 1"'1:
elimimued. It then nll:rcly I'l,':ltl:..!ill~ to ~huw Ihut prlJve[li("~
Jt'riv~ during t:arlier !\.tagt!'!=; of the pr"(loI)f .'ue I\()I il~v~\lidiH(d (I)I'

(:ar~ tas~ly bI: . .tl.Jjustt'ci},whC'11. ttki'l8; ifllo U('Cl~Unr
COffi.l"'lIniCaliol~s wh(1;:o;t OC(~ltrc:tH:e we nriginally ignortd.
Mnn:Qver, U is int(:rcs~itln: Ihal this technique (;ilrl be Ulio/..'tI In
UOll.!yz.e olher db:ttibuted programs, sw .. 'h asju.iisaje mwirlX
algorilJims '(of Mer!in and Seg<JH ([t 11)), rnmiml.4m fh:Jt'l
algori'hms (of7,.etMl and Segall (123))). and maxima/flo",
aiKorj,hnu in. n<tworK (e'(Segt.11 (II SIl), to".
f'I.lIUr-e work. wiH ifives-ligate wheth~r this technique, and the
proof pre-sented in I:h15 p.j,~per, o;,;an be ~xte:lujcd tlJ verlfy ,h~
correctness of dire.ct~d IIlil\irnUlIl·weight ~p.:Lnfl[llg It'('C

illgorithm' (see e.g., 110]). A"olber research lupic in lili~ 1I,'ld
l~ (0 ex.tend (he m.inimulll,wcigtu s.pannillg (r.ee algorilhlll (If
Gill~lger. Humblel, and Spira to netwurks in the Pr(:scm'e (If
railll"" .nd additions of links and ntxJe •. I.e .. to consider
son . .c faa~~fe ve~ion of this algorithm. W~ (onjcC1tlrt:: that Ollf

.ilf1a1y~i~ can be a1!lO extended to the cQn.'itru.ction of Othl~r
algorithm~ in this area.

~.s:~rJQwlede(,:r'nerH: we Ihnnk: H. P~I'UCh for ~ number of
remarl(s that have- led to f.I. smoothr;r p~~cntatlon.

~

[II. Apt K,R., France" N" de R(lCvcr W.P .. A pro,,[.ystem
for communicating ,oquential prClC." •• , ACM TOPLAS,
2-3. (1980).

[21 llochmilIln G.Y .. "'inite ,tnle deseripG()" of
cornmunicati~g protocols, COI\1P"l~' Network,. 2,(I'I7H).

131 Ch~f1d1 M., Misra 1., An exampic of stepwi,e refinement
of (ii,trlhuted algorithms: ~ule""ence dCtC~tiO'" ACM
TOPLAS_ 8-3, (1986).

[41 Dljbtru E" Two vro~le,"s in ,on,,<ot;on with J;roph'.
Numer. Math. l, (1959),

[SI Elrad T .. Fr~"cez N" !)e~ompQ,ition of dbtributed
prugrurn£ illTQ C<)mmuni~~t;on-clo<ed laye.,.. Science of
Con'pIlte! ProgromminJ;. 2. (1982). .

[61 Evon S .• Graph algorithm •• C<>lllputcr SClcnce Prc". Inc.
(USA). (1979).

[71 Gallager R,O., Humhlel P.A., ~pir" I-'.M" A dbtril'utcd
algorithm for minimum-weight spiwni"g ll'(··(:$1 ACM
TO?LAS, S- I, (1983).

(8) G~rth R,T" Shrira L., On proving <.:ommunkuliorl
closron'" of distributed layers, the Proece(lingi of the
6th conference on I'oulldations of Soflwarc Technology
and 1beoretk.l Comp,'!er Soience, New Oohli. Indi.,
(1986).

[91 I-Ioare C.A.R., COrIlm",'ic~tin& sequential Processes,
C<lmm. ACM, 21-8 (l97RJ.

[101 Humblet P.A., A disttibutt:d .l~orithm lor
minimunlweighT directoo ,punning trees, IEEE
Transaclions <)n Communications, 31-6, (19~3).

[Ill Kfl,s~al J.B., On the ,honest spal\n;'lg SII!)tr«of ag"'ph
and Ihe TTJv<ling .illesman problem, Proc, Am. Math.
Soc., 7, (1956). '

[121 Lmlport L._ Sp"cilyillg COflCtl!1'l;1Il m(ldules. ACM
TO?LAS. 5-2, (1983).

[131 LalIlpon L" An asscr(ion~1 correctness p"",f ur a
distributed "lgQrithm, S.cj~flC~ of Cumputer Prug(~lr~~11111),g
}-3_ (1982),

1141 l"am S.S, Shankar A.U .. Protocol verification vi"
projections, IEEE Tl'1II)i. on Sultw. Eng .. 10 4, (In·!).

26

l j 51 Manin AJ., A di$mblllc:d ptllh il.lglJl i~hm tilUJ i1:>:
corn:cmc:~~ pfOl.;)f, Repor~ Philips RCSC.\In;h L\lb. {!980,
revised 1%4).

116J Mi~ra J., Chandy K.M., Proot~ of II~iwt.1rk of procc~se",
IE(;1; 'fran,. "n Sofr. En~. 7, (I ~~ [).

1171 Merlil~ ?M .. Segall A.. A faibafe di,trihutcd routing
Rf(mx!<."JI, lEEr.: Tf:lI'IS. Oil Cl1U~I~~" 27 ·9. (1971).

Il8] SC,il.uU A" De<..:cntr:llizcd maximum flow pl'0111t:C)I~,
Jntt'Trll1l Report Tt.c:hnton-Israe! Im;tilute ofTC:l.:hnology,
Haifa, [.rad (19RO).

1191 Sb""~,, A,li"Livn S.S., Ao HDLe prolocol speoifkation
and il .. verificalion using im3g~ prolQ('OIS, ACM Trans.
On Compo Sy,r.. 1-4. (1983).

12()1 StOIl~P EA" M~thuds for the iu".ly,i. of protocols,
'''30"iCfilll (I '1H6) ..

121 I Stomp F.A., de Roever W.P., A "orr~(llleS\ proof ora
di,tribuled minimum-weight 'p""ning tree .1 golithm (full
puper). Inlernal Repun 87-4. UnIversity of Nijmcgcn.

[221 Zwiers J .. de KO<:ver Wf>._ von Lmde \loa,!' ..
Compositlonality and l;OD{,:urrent nc:two:-ks: ;;{)IJJldflCSS a.nd
comrle::"e" or. pr;x,f ,y<lem. !'roc. dlh iCALI' .
LNCS 194, Sprioger·Yerhlg, New Yor~ (198S).

11.31 Zerbib I'.B.M" Sog~1I A" A diwibutCd ShO'ICSl p:'lh
protocol. Internal Repon EE pub. no. 395. Technion­
!sraellllStitute ofTe~h"ology, Hair", ls'aet (1980).

CHAPTER 3

An extended ah~tra.<;t of a version of this mticle has been published in the Proceeding, "I tht Srd

Interni1.tior'i1.1 Workshop on Distributed AlgQritkm~ (LNCS 392), Nice, France, September 26.28, 1989,

pp. 242-253.

Designing distributed algorithms

by means of

formal sequentially phased reasoning

F.A. Stomp· W.P. de Roever'

Abstract; Designers of n~twork algodthms give elegant informal descriptions of th~ intuition

behind their algorithms (see [GHS83, Hu83, MS79, Sc82, Se83, ZS80J). Usually, these descrip.

tjon~ Me structured as if tasks Or subtasks are performed sequentially. From an operational point

of view, however, th",y ar~ performed concurrently. Here, we present a design principle that for­

mally d,,~crib(!$ how to develop algorithms according to such sequentially ph""",d ",:(pl:mations.

The design principle is formula.ted USing Manna and Pnueli's linear time temporal logic [MP83J­

This principle, together with Chandy and Misra's tedlIliqu~ [CM88) ox Back and Sere's tech·

nique [BS89] for designing pMallel algorithms, is applicable to large cwses of algorit.hms, such

as those for minimum-path, connectivit.y, network flow, and minimum-weight spanni.'g tre<'OS. 11l

particular, the distributed minimum-weight spanning tree algorithm of Gallager, Humbld, and

Spira [GHS83) is structured according to Our principle_

·U.ivo"ity of Nijmcgon. Department of Compute, Science, TaetLlooiveld, 6~25 ED Nijrn"sen, The N.lh.d""d._

:€-mail a.ddress: frank@cs,knn.nl

tEindhClovE!-n tJilivtr;sity of Te<:hnolog,y\ Department of Mathematics and Computing Science1 POB 513, .,600

MB Bindhoven, Th-e Netherlands. Email address: mc:\"a::r:fel1treS!wSllnwpr

29

1 Introduction

Dcsiglltl'S of complex net.wol'k algorithms, see, e.g., iGHS83, Hu83, MS79, Se82, Se83, ZS80i,

ll"",lly <I,,,,,ri1,,, t.hdr ;clgorit.hIIls OIl ti,,, hasis ()f tll,b Or .ubtl1k - somHimes referred to as

pl/.ll.,,,"" "-1111 81i.bjJha~es. Th~ir (informal) deo(:ript,ions are ,t.m(:t.llred as if groups of nodes in the

network perl,mIl t,I",",. (wh)t.a'k' ''''lu."n.!i(1liy, a.ithougb in reality (Le., operationally speaking)

Ih,\y ate ped(lrllled r:<i,.r',u·1'rmUy. Current design methodologies (see, e.g., iCM88, I3SS9]) l,,(:k

an appropriate prineiple for formally developing such sequentially ph abed "lg<)rit.hms. I" thi.,

paper \(If form.1liate (l formal de8ign p'/'if!dpl~ that C'lptll~" thi, ":lfU.""i.i"l $/rw:iu;'e in network

(l.lg()"·~lh;m.~_ It, d()!idy reH(~Inbh~s the- dc~igIl~n~il illtuitions as given by the infonnal descriptionli

and thu> p~~~~rv~~ the natmal flavor of thdr origin"l ","planati')Il. I"urtho.'rmore, this principle

tan al~o b.~ lls<,d to desig:1l formall.y new algorithms.

Th" ",qu,,"tial ,kCOI[l]""it.iOIl of a cOllcurrently performed task into sub tasks can already b.;

dh(:ernw\ in a simple broad(:a~t prot,ocol, vi •. , S<,:gall\ PIP-protocol [Se83i (cr. also [DS801 and

jF8llJ). Here, the whole protocol performed by the nodes in some n",t,w()rk CiU. hi, dewmposed

into t,wo subtasks: the first one broad(lsting bOll1e information and unwinding a directed tree,

"'HI th" .H",onti on" rejlnrt.illg t.hat the nodes have indeed received the inforrn!'tion. F<)llowing

this pat.tel'1l of seqllent.ial l'casoning the distributed minimum-weight J;piULIlillg tree a.igorilhm

of G"ll"g~'r, I-h"nhkt, "nd Spir" [GHS8J], h",,:a.tkr rdcrred to as Gallager's algodthm, ,;an

be described in essentially four subt!'sks, whkh from " logical point of view al:e performed

""llLentially (OO'" [SUSh, SflB7!>]). 1'haJ aI9()~dhm display;, however, an additional t~atU7"': that

of "interfe~'nce ". E>:panding gn)l)pb <)f rl()dl'~ p~rf<>rIIl a t",·t;u,~ task repeatedly, with different

g:wups performing their tasks concurrently w.r.t. another. Now 3 task p~rf<)rIIl¢d hy 0,\" group

can be disturbed temporarily due to interf<1ren~e with the task of another group, Our de~i9n

p~inci)llr> is g"Me,t to cope natumlly with this kind of interferenc/;.

In order to design a distrihuted program th"t ~<)lv~" a ~ert;un task which can be split up logk31ly

into ~uhtitbkS n.S if they are performed sequentially, we propose the follow;,'g strat.cgy:

first develop distributed programs which solve the subtask5. Methodologies for doing so axe

described in iCM88i and [DSS9j. Next, tOlIIhiIl~ thl:SC programs to construct one which ~olve$

the whole task. Our d"'$ign prindpl(: d¢Strib<':s how to accomplish this combination. (lIl ICM8S]

30

there has not been given any methodologiUl.1 advice how t.o il<;COrnpli,h tJIi~ ldnd of combination.

Our technique generalizes one transformation principle described jn [BS8!)], b<'cau£<, it, i~ ;,.IM t(,

cope with repe~tedly p£lrform.od t~k$ and with temporary di~turbiUl(es of the kind dis(ussed

ahov,'.)

In ~>;~~nce, it is required to prove the verification condition,; (A) and (B) below,

(A) Prove that for each distributed progranl S, solving a subtask, the following holds: There

exists a specifi(ation for S consisting of, for each node j,

(1) a. precondition Pj and a postcondition qj' ""d

(2) a pair of state-assertions (lj,Tj)'

Ij i5 an invariiUlt for the prograDl executed by node j, Furthermore, Ij is "', invari"'lt for

program S; It has been incorporA.h:d in the opeciti(:ation in order to deal with the above­

mentioned kind of interference, which ocems in, e.g., Gallager's algorith,1) (d, [SR87a,

SR87b]), Tj expresses that node j has completed its contributioIl to th~ ~uhtask ~so<:iated

with program. S.

(B) Prove that each [lOde can participat", in at m05t one ollbta5k at a time and that, all node5

which participate in more snbtasks, participate in these subtasks ill t,he: same order.

OIlt': is then (:ntitl¢d to ((>ndude that the p~0!7am consisting of all (atomic) actions occuning

in those programs associated with the subtasks solves the whole task as if the nodes perform

the 5ubta.sks sequentially. Astonishingly, this simple design principle underlies the development

of such com.plicated algorithrl)s as Gallag<'r's and tlu>s,> deStrih"d in [HIl83, MS79, S.·,82, S,>83,

ZS80],

How can one understand the inherently sequential intuition present in this design principle for

COncnrrent (,omputations'!

Its semantic fOWldation lies in considering computation sequences in a specific form in which all

operations associated with OIle $\\bta-sk al"e perfonned consecutively, Although it might not he

the case at all that each com.putation sequence of the program solviIlg th" whole task is i,l this

specific form, reasoning awut this program by means of computation sequences in this specific

form. ;8 cornet, since any computation sequence of the prOgl"am turn5 Ollt to he equivalent to

one in that form. In order to define this notion of equivalence (see IL85]) the notion of an

event is needed: an event is an occurrence of the execution of some atomic ""tion, Now each

31

computation sequence Jndnc'~~ " p"rtio..l or,l<:riug of its events. This partial ord~T i~ it C;'"S;"\

rd"t,ioll ill which ,Ill ~vCllL~ gCl1er~ted at a single node ar.., or,krcd actordiII'; to their t~mporal

,'('·('llrT<'""" i" this ""'lIll:I[(":, A,l<lition;,.\ly, in an asynchronous mod..,l of ",Imputation the event

of sending a mess<lge pl:'~('.~d~j tl", "V"Ilt "f !('""iving it; in ~ sync.hronous model thes" "'V(:Ill~

'\r~ id~llliG\!. Two computation .5equenC'~5 ar,: <:q"""<L/<:nt if their first states are ident,kal "-lld

if they define t.h" ,,1.1"': Firt.i,,] onkr (,f cv"nts. In essenc.€, equJv"knt ,:ompntatiolt sequences

dilkr (lilly ilt I,h" Wily "v('nt,~ gCIlerated al different nodes "re int.,,,]"av(',l (w !. t.he partial

(mIt'r dd[11NI hy the~e ~NllH'Il('es). Moreover, if two jinitl: wml'"tatioIl sequences are equiv,,)ent.,

t.h"n their last. states ~()illcid€. This argument. jlli;t.ifi<'l;, e,g., Elrad and Francez's safe d,com­

position prindpl" iGF821 (d. "I", Il'a88]) as demonstrated by Ge~th ~J1d Shriril. [eSS(II. This

]'riIl<:iph' ,tat,·, lli,' r()UOwirlf(; if Sl,,,, II ... II Sn,m io partially mrred w.r,t, precondition pm ,

lind poot,(·(lTldit.ion pm (n ;::1, m",1,"', d fOr some natural numb€T d 2:2) alId if n() (:orumuni­

cillioll occurs I)et,ween S.,m «TId $j,m' for is:: i, j s:: n, i f j, 1:<: m, m' <: d, «nd m -J. m', t.h(:1l

(81•1; 8l.2;"'; SI,d) II ". II (S",I; S",,;"': S,.,d) is partially correct w,r,(.. Pu and Pd'

To re«' OIl fc>nll«lly ahout ollch ;LrglllIH~IltS, Katz and Pel~d h3V~ pml"""d to use interleaving set

temporal logic [KP87, KP88] as a f<mn3li5m. Th!!ir logic allows one to reason "bO\.I, a program's

behavior lJy wn~idering only Pilr!."'U]ax represelltatives of the progr3m\ (:()rnpnt.at.io.1 sequences,

Wdl '" t.h" v('ry S"qll~rICes iII the specific form intr<Jdll(:<:d ahove.

From the db<'moioll ahov" it follows that if in some prog)""m, 50lving a certain task whkh

<:iLl' 1)(: split. up logically into two subt.tI';ko ao if t.hey axe performed sequenti:,Jly, ,,,.,,11 node

alw"y~ perf,.>rm, "p<:mt.ioll' "",,,',,,ifltcd with one subta.~l< hefor" ojH'ral.i(JIl'; aMociated with the

other, then the following holdo: "",,11 computilUoll sequence of j,h~ pH.>gril.,m i~ Nluivruellt to a

"ompI.!.a!.ion "'"I"~''''''' in which ;,.\1 operations a5soda.!."d with the first subtask are pe~formed

bdore all operation~ lJ,!;sod~.t~d with th" ~i:COrld one. This is, e.g., tht, c",c for the program

in figure I below, whith describes the PIF·protocol [S~831 (d. [DS80, F80)) , where in order tn

illustrate our dec.omposition of " ta.,k illto two sub tasks in a few word" it, i, flssUIlled that the

n~twork const.itllte5 a \,r(,,,l The nodes perform the following task; some message info(v), f,)r"

cert",,, ""gUIll/:Ilt. ''', iIlilially ill the message quel'''' of Ilodc k (viewed as the root, of the t.n:e), h

to be sent to all nodeo in tIll' ndwork. Node k has to be informed that all nodes in the network

1 A decomposition is .ttlso DO~l;ih!(~ ill t,h~ (~a~t': of a.n arbitrary connc,;:ted lldwQ:rk.

32

have received thi~ 1r:tt)~Sa,g.:. indeed and that the value l' ha~ been recorded by them. The two

subtasks constituting this task have been described above and wnsist of a broadcasting phase

followed by a reporting phase. In the program below (see figure 1), boxes labeled A:' i,)dicat"

which operations of node i ate associated with the "th 'Ilbt"sk ("",,1,2)_ Not~ that the boxes

do not necessarily correspond with the body of a "r<'$p(.m,~," (~in('e they lU'€ the outcome of a

;emanlital a.lalysis). Nmll O"T principle j1,l,~tifie~ that one can reason formally a~out this protocol

as if first A I programs are e",ecut,~d by th,~ ,wdl:." and th';7'f:"fier only A2 progTams_ In appendix

IV the specific assertions Ii' Ti , Pi' and qj for all nodes j are ddi')NI in case oftlw PIF-pr()t')('oL

Ollr p,inciple is a broad semantic generalization of Elrad a.ld Fra,ncez', "t1fr~ ririr:oml'"sition

principle [EF82J (d. a1~0 [GSB6, Pa8BIl- Their decompositions, however, Le., the programs

(called layets in [EF$2]) describing the suhta.~ks, ar(' r<:strict .. d by th~ :;yntl;l,)(of the whole

program; Thi, is not t.rue for our decompositions as has already been observed above. In contrast

with their principle, and the one described in [FF89], our pri1lciple also applies to reasol,il't;

about repeatedly perfofmed tasb by "xpa.ld;,d groups of nod,,,, ~1H:h a.<; in, "'-!S-, GallageT\

algorithm, Methods for vt'ri(ying Oall"b~r';; algorithm appcar in rSR..87a, SRS7b, CGSB, WLLSBl­

We [SR87a, SR87b] have reasoned about its correctness on the basis of (sub) tasks. In those

paperS, howev~r, the underlying proof principles have not been formulated. Neither has 11

formalism for them been given. Welch, Lamport, a.ld LynCh rWLLS8] giVt' a correttncs, proM

in the context of I/O.automata, using a (partially-ordered) hierarchy of algorithms. Chou a.ld

Gallti [CG88J Wn$ider a :;implified version of Gallager's algorithm, a distributed version of

Boruvka's algorithm [B26]. The problem of finding a simple proof principle fOf the seq,uentially

phased reasoning of the full version of Gallager's algorit.hm clc«rly ~IIlerges irt [CGBB], since

in the full version of that algorithm one has to cope with temporary disturbances of t.he kind

discussed above, In order to reason about such disturba.lces along the lines of [CGBBJ, a.lother

printipl~ wOllld be reqllired_ In OIl, c~e, due to the collection of !I'l5e~tioIl~ (J;, Tj) fo~ node~ j,

merely an interference-freedom argument for Ij and Tj must be given,

The rest of this paper is organized as follows: in section 2, we introduce some notation and

~onventions, Our design principle is formulated in section 3. For ease of exposition we have

rc~tri,ted Our$.dv;'s to syn(.hronOU$ communication. Section 4 cOntain5 ijOme condUion_ Sound­

ness of the design principle is proved in appendix I. In appendix II we discuss how to formulate

33

our printi!,l" f(>r the .. syn(:hro,~oLls case, Appendix III shows how to tran~form programs rep­

resented by lists of responses (ef. (,he program "b",v~) int,(, (mr ow,> I>otation fot representin~

distributed algorithms, In Appendix IV ~on(."ins a hIlly w(>rhrl cmt. illust.ration of the principle

appli",d to HI!' PlF-jlrM"l<:nL

l~.o.f> .. "x"outed by node k (the ro_o!:) __ .. __

response to recel~t

bog,n
vall.!: -VI

of ",Jutu) l
A'

::!;Ol;" all edges ~ E h'Jr k

do semI mfu(un!.) on ~~gc ~ od
"nd -----------------_ .. - ..

response to receipt of ack{v} on edgo C
begin
N,(C),~ true;
if 'iC E £ •. N.(C) At
t);l.Q;J;1. d()nek:=t~ue

fi
"nd

loop ex.<u1;Q~ by po~~ .. i_.t_~ ___ .~.":. »on-root)
,-•• pon •• to uceipt of in/at" I on odge C
begin

04/ 1 :=V; 1nbra.nc.h;~::..:.C; Ni(C): __ true; A;
for all t'dgoe-s ~ E El f\ ~ t- 'i-nbT o'fl.I.''',

do .end ;nJo(I1 .. I,) on edgo " od;

if 'iC E E,.N;(C)
then send o .. ck("(Iali) t:;m inh"(,ndl.,:
fi

.nd

;I;-=--=-po:n=oe to :t'"e<::;.e.ipt of. fLck(t!} OIL t&dge- C A~
b,,=gin

N,(C),= t"ue;
;'f 'fC E E,.N,(C')
then s~nd ack(,,0,1,) Q" inbl'anch,
fi

""d
Notation used; Ei deIlut"" the set of edges a(~acenl to node i. VB-dabl<, ""I, i. u.ed to reCOtd the
;fI.l.'gUI"l".u;!nt. of thf;l inf.o-meli!l.agf! If!(:eiv(~d by node it Ni(C) records whether a.ny me!i:~8.ge ha.~ b~~en n:ccivcd
alollg edg~ C, C E E •. 1'0" node i different from k, variable i"branch, records I\le ident.ifir.~tion of the
edgf': along which tht.: iIlfo-II1c~:!i~~g~ has been rec::e;vt:':d. (The~e variables are used fOI" unwinding the dife~ted
t.re~.) Var;"hle done. records wh.thor th~ WklOle task 11M \jeel\ co~,ple\e(i.

l~)itia.tlYl l"Lode J,:-ls me;CI!';;CJ.goP. ((UP-tit! contains one info-mc::isage antI the m.es~~ge q~le'le5 of all other nodc~
<lrc empty. Furtherlllote i~i\;ally ~,j""e.. holds for node k, and -,N,(C) for all !lodes i anel .<lge' C E E •.
The i"ilial values of Ihe 0lhe~ vMi~ble~ ~re irrelevant.

Figure l , Segall'~ PIF-protocol

2 ,Conventions and notations

A dist.ributed algorithm is performed by nod~r; in a fixed, finite, and undirected

network (V, E), and consist,!; of at k .. st. two nodes_ The network is view<)d as it gtaph_ Two

a.dja<'ent n,>dc~ COulIllllIlir .. te by means of messages. Sin~e edg\,r; axe undirected, each node can

bnth send and receive messages along any of its adjlL(ent edges. Except for delivering lncssagcs

properly <>ny ~dg<.' Can damage, lose, duplicate, and reorder m",~r;agc$ in t.rarlsit.

34

For ease of e>:position it is assumed that ComIll\lIl1catiOll i~ ~y,,~hT'QTl.Q"~' (In appendi>: H we

show how om remits can. be extended to an asynchronous model of communication.) In Otder

to avoid botheriIlg about the actual Synt.ax of programs, di~t.rib'It.~d aIgQrit.hm~ <ITe represent.ed

by "t.riple < V', {pi liE V'}, A >. (In appendix III we show how a program represented by

Hsts of responses, as in e.g., section 1, can. be represented by such II triple.) The interpretation

of the three components is the following: V' is a subset of V containing all nodes that actually

exeC\lte the algorithm. {p, liE V'} is II collection of state assertions. For all i E V', assertion

p; (kscrib,,~ the initial values of Mde i's variables. Finally, A is a ~ollection of atomic actions

which Call o(Wr when the nodes in V' tXet\lte the algorithm (see the definition below). Each

action a has an enabling condition en(a) associated with it.

Given an algorithm represented by a triple as above, it is assumed that the collection A of

actions can be partitioIled "Ito Mts Aj of I1od,:, j's internal actions and SdS Aj", i t- j, of acti(ms

involviIlg a ttanSIIlission of a m<'ssage from node j to node i (i,j E V'). Th" collection <Jf all

ao,i(>ns t.h"t ~«n be performed by node j (p06sibly simult!l.1)eo~l~ly wilh other node~), i.e.,

th~ set AjU U Aj,;U U Ai,], will be denoted by act (A, j). For action a E Aj, en(a) refer~ to
iE v' ~EV'

node j's variables only. In this case, m(a) will be denoted by enj{a). If some «(tion a involves a

communication between the nodes i and j, then en(a.) is the conjunction of boolean conditions

mj(a) and en,(a) where for e E {i,j}, ent(a) refers to node l's variables only.

Definition

A computation sequence of an algorithm as a.bove is a maximal sequence So ~ S1 ~ 82 ••• such

that for all 11 ~ 0 the follOwing is sa.tisfied: ~n is soroe state, each Pi (i E V') holds in state '0,

an is an action occurring in the set A, action an is enabled in state 8", Le_, e1l(a,,) holds in 8.,

and ;,,+1 is the state resulting when a" is executed in state Sn-

3 Our design principle

III this section we present a design principle that formali2es sequentially phased design of dis­

tributed algorithms. The principle itself is formulated in subsection 3.3. In subsectiM 3.2

correctness formllia.t and the verification <ondition. of the principle, i.e., conditions to be veri­

fied iII order to apply the principle, are presented. Introducing the correctness formulae enables

35

.;=t !;>irrlplp and cOllveuknt. fonIluhlt.i.(~Il of OUl" ptifldple. Subsectjon 3.1 dm;(:rih<:~ soule basic ob ...

servatiolls for solving tasks from the class ('.onsid~r<:d her.,.

3,1 General observations

A "Il!tl" that" mll",.bon V' of nodes petforms a certain task ,pedfied by means of a pair of

,(0(., of ,t"t.,-aw,rti'm' {/Ii liE V'} (the preconditions) and {q, liE V') (the postconditions).

Consequently, in order to solve this task by ,ome dbtrilmk<! algorithm A we m\lS\. find"

collection of actions A ~\ldl th~t .

• A is described by the triple < V', {Pi liE V'}, A > aTld

• ,'very fillit. emnp"t"l.ion "''1""n''" of A ends in a state fm' whkh eac.h of th" po,t<:ollditions

q. holds (i E: V').

We sho.ll ","Illa" I,hltt this task can be split up logically into two ,,,ht,,,h a>; if they al'e performed

sequentially, (The general ease is a stnUght.f(lrward exteI1Sio!1 as shown at the end of this H'tl.ion.)

It is attra,'tive \,0 de~ign A in tw • .> stag(~$' In the nrst sta.ge algorithms Band C an: designed

t.hat ",Iv" th" two sul!uL,b. Sud. a decomposition enables u, to C;')IlO',ntratc 011 one subject at

"tinu~. Met.llOdologies for developing these algorithms tu:e deS(ribed ill ICM88i and IBS891· In

the second stage A it,df is d~,igl,,'d by combining algol"ithms B and C. Our dc~ig:[1 Jlrinciple

,h:s'~rib .. ," how j,O accoillplish this combination,

Ohvi<m~ly, ,ill,,,, 1,11 .. , wllrM 1.a~k Un. bf split up logically into t,wo oubtasb, there exist inter­

m~diate «~.~erti()Il' 1'i, i E V', ""d, that the two sUbtasks are solved by di,tribllt.c.l algorithms

B~<:: V', {p, liE V'}, B > and C=< V', {ri I ; E V'}, C > (fot certain sets Band C ,)f attio",)

(d. ICM88, 13389]), &Lcll !lnite computation sequence of algorithm A ",ud algorithm B ends in

a statt' fo" which each of the assertions Ti and qj resp~ctiv¢ly (i C V') holds,

The remainder of this section d""fril),', how to combine these algorithms in order to obtain A,

3_2 Verification conditions

We now introduce ('.orrectne,$ fOnnulae iUld present conditions which are required for a sound

applkation (If our principle. Some conditions that algorithms Band C should satisfy in order to

36

design A with this principle axe deseribed by means of correctness forIllula.~ in \lb~~ti<)Il 3.2. L

Ea"h of them can be verified by cOilcentrating 'm <.In<t <tIgorithm at a time, Conditions referring

to both 8 and C ax" fonnulat.ed in ~ub~ection 3,2,2,

3_2_1 Correctness formulae

Let 'D=< V', {pr"i I ; E V'}, D > be an algorithm which should ~at,i$fy the Following' if V

is executed (in a state sat.i~fying each of the preconditions prei, i E V'), then every nnit,e

(omputation sequence ends i,l a. state for which certain state assertions posti, ; E V', (the

p(>stMlndition5) hold, Node j's computa.tion tan he (,har(l('te[i~ed by means of an invariarlt

if (j E V'). Introdudng such invariants is the starldaxd technique to ensure that our design

prindple (see subsection 3.3) can als(> be used for designing algorithIlls in whith a (,uh)t,,,",,k

peI'formed hy SOme grwp of nodes can be disturbed temporarily (du<t t.o int.erference of the kind

diG<:ussed in section 1).

Except fo~ the invariant if, we can be mOre precise about node j's behavior. If node j has

completed its participation at a. certain point in ~ome computation sequence of 'D, thell the

p<>st.(.(>ndition postJ holds and j cannot perform aIly a.ttiOIl from that point onwards, The states

in whieh node j cannot p~rforrn any action anymore are characteri"ed by an a,;S<!:rti(m TP
(j E V').

We now introduce correctness formulae of the form

D sat < {Ij I j E V'}, m I j E V'}, {postj I j E V'} >
for <>II «-Igorithm 1)=< V', {prei liE v'J,n > aIld fOr .tat.e 3Q~ertions Tj, Tj, postj (j E V').

Such a formula is valid iff the following holds fo~ every computation sequence of V:

• For all j E V', I j hold~ in ~very ~tate of the sequence,

• FI)r <til j E V', Tj holds iff node j will not execute any action in D anyrnor"" <IIld

• For all j E V', postj holds when and if node j has completed its partidpation in V.

A correctne •• formula as above can be characterized ill linear time temporal logic [MP83i. L~t D=<
V', {pre, liE V'},D:;., V ... t <: {IPI j E V'},rrl' I j E V'}, {po.l j I j E V'} > is an abbreviation
of the conjunction of the conditions (a) through (f) below, (Some of th".e conditions arE redundant; W.
hav~ included them 10 formalize the intuition in a natura! way.) The conditions below are i'lterpreted
()Yer all computation ~quenoEs of algorithm D. (D denotes the a/way."operator,)

37

(aJ Vj (V',(prci ., lp).
Thcrcfurc\ initially if hold!> for all nodes j in V r

(b) 'rIj E V'.O((/f II --,TPW(IP II TP)), where U deIlOtes the weak u~~U·ope(atot,
L~., for A.ll norit2'1i. ,i in VI, iF i~ ;:"'k"l jnv~ri~1H, ~nd the following hold?;: Linod~ j part.idpateF. in t.h€
il.lgl1rithln nnt.i1 it. hh~ (,OJ"rlplf!',!7'(l jl.~ p.(irtidp.(itil)f'l".

(e) Vj c. V',Vd ("ct(D,j).1'1 ((IF II TPl , 'cn,(d)),
i.e'l if a certain node h.ali. completed its participation in the algorithm, then it canIiut perfurm allY

"'·I.ion. (ef. ~.o.tion 21(>1' the definitions of o,d(D,j) ~nd of ~nj(d).)

(d) Vj (V',I I((IF II Tt) ~, I-I(IP II TP)),
i.e., once a "ode has eowpleled il. participation in the aJ~od\hm, Ihen it will neve" parlic.ipal.e in
the aJ(!;orithm anymore.

(e) Vj E V'.D((J,V /I -,rF) -, :ld E D,(en(,I))),
i.e.! if in a (;(~rtain state SOIW! node has not (yet) completed it~ particip~tion i{) .:..lgorjthm VI the,)
th(~ whole algorithm cannot h~ rompleted.

(f) Vj '= V'.U((/f /I Tt) .,. po,ti)'
j.~.\ uode'::s j postcondition po~tj is ~~ta.bli$heJ when it hM co,mpl-eted its pal'tici))ati()ll in t.h~

ale:orithul.

3.2.2 Conditions for combining subtasks

Let B=< V', {Pi liE V'}, B > and C",,< V', {ri liE V'}, C > be algorithm" which solve the

two ,ubl,a,h. Assume that

(1) 13 sat < {If I j E v'), {TJ
B I j E v'}, h I j E V'} > :u,d

(2) C sat < {If I j E V'}, {T}C I j E V'}, {qj I j E V'} > Me satisfied.

We first impose the follOWing condition: Each programming varia-bI., o(,,,"rring in any of the

assertions Pi' rj' qj IF, if, T}', and TP is node j'g own variable. The intuition b.,hind th"

restrktion is that a node's precondition (or its p'-'~konditi<)Il) e:Ul he described in terms of

initial (or Ilnal) values of its own variables. Also, an invariant associated with ~ome nQd~ j

charact.erizes j's computation and can therefore be expressed without any refeTen('", to variables

of nodes different from j, Analogous, a termination conditiol1 ell;pre'$t. t.hat a Iwdc has com­

pleted its participation in a certaJn algorithm and (an bt> ;>xpTe,seu ill tenns of its own variables.

(3) Each ptogtamming vatiable occurring ill any of ~he !l$~ertion. PI' rj, qj [p, If, TP, and Tf is
"ode j's Own va.ciable (j E V'j,

38

In order to solve the whole task, we shall design an algorithm A with actions from B and C

in which each node j iII V' first participates in S and th~n partidpatt'~ in C, provided that j

actually participates in both subtasks. As a consequence of this strategy. no node in V' will

participate ill both suht.ash at t.It" SarIlC time. Ther~f"r<?, we require that if a certain node has

not compl"t.ed it.~ partidpation in one sub task, then it cannot execute any action associated

with the other subtask.

Dofine for some assertion P and for 80me set of actions AD tho, pr~di~ato, di~(l.M~d,(P, AU) ((E V') e.­
pres.ing that if a~~er\ion p holds, \he~ for «II a~\io~s a in AC,en/(a) holds; Formally. di.abled!(P, AC)
holds iff D(1' => Va E AC . ..,en!!a)) is satisfied. It is required that the following conditions are ."li,ned:

(4) Vj E V'.di.abledj(I? 1\ --T,B.act(C,j)) holds for all computation sequences of B,
Le,! if a. certain node has not completed its participation in ,ftlgorithm $, then it (~~lnot p:,:l,.rt~dp.ate
;'1 algorithm C, and similarly

(5) Vj E V'di,ahledi(IJ 1\ ~Tf, t;1ct(B,j)) hQld~ for (til compl,tation seqllences of C.

Also, w~ require that if some node has completed its participation in the second subtask, i.e.,

the one solved by al!";orithm C, then no actiOIl associated with the first suhtask whith can be

executed by that node is enabled, This condition ensures that every node ill Vi that actually

participates in both subtasks will participate in the first subtask before it partkipat.e$ in the

~",,,ond one.

(~) '<ij E V'.di$(J,b!ed;Vf 1\ TP,<tct(B,j)) lIo1ds (or all computation sequellces of C,
1,1.:" after 4;:omplctin.g its contribution to algoritbm Cl no node can ever participate in algorithm B.
(The "" •• rtion disahl,di h"" been defined above.)

Note that no interferellce·freedolll of specifications has to be ptoved; E.g .• if a.t some point

during a. computation of algorithm C, If 1\ ~Tf holds for some node j, then every action a

associated with algOrithm S which is performed by n"d..,~ diff~r..,nt. from j do.~ nl't, invalidat~

tile a.ss~rt.ion If 1\ ~Tp, hel'a.use of condition (3) above_

3.3 The design principle

After solving the two subta.sks by means of the algorithms B=< V', {Pi liE V'}, B > and

C",< V', {r; liE V'}, C > as above, formulating the design principle in order to obtain an

algorithm A=< V', {Pi liE V'}, A> solving the whole ta.sk is straightforward. Observe that a

Ilod", is partitipating in the whole ta."k iff it. i$ pa.rtidpating in on~ of t.h~ $\lbt<l$kS. Th",r<;f(lr~,

we define the set of actions A as the union of the sets B and C.

39

Given algorithms B and C. PH.lV(· t,hat t,h~ Y<'tincation conditions (1) t,hwllgh (6) "bnv(, iLr~

sat.isfi"d !'or B ,md C. C(mdudC that the algorit,hm A= <. V', {,,; lie V'}, B u C :> indeed solws

t.he whole task. More pr!!dsdy, w" may conclude that A $a\ < uf v rJ I j E: V'}, {if 1\ 1'f I
j C V'}, {'1j I j (V"} :> holds.

Ok","v" t.hat. as " ,X"'n('qU(,uce of the requirement that, for any "'Hit, piLrticipa\.ing in a certain

sub task all the Hode's <l.ct.)()TIs a~".".,iat"d wit.h t.he other subt.ask are di:;abl~d (d'. th" (,(lIlditioIl;

(1) <l.n(1 (5) ahov,:), it. h.lll.w' t.ll:.\. \.h,' s"r, of actions Band C ~'O-I' b" dw""u <Ii;jt)illl.

Not" tha.t w" hfLv" dtfLl\. fLlwve with partial corredn,':;:; oIlly. If it i~ INtuited \.0 design an alway:;

t<'rllliIl"t.iIlg ;l.IgoIit.hIll A, then one must addit.ionally prove f. vcrincation condition that hoth

Band C always termin<l.te (not,~t,ic.m an fLhov~). This holds because the whok tank t.t:rmim.t.es

iff bot,h it., mbt,anks t,"rmiIlfLt.e. Formally formulating t-1w (',,"<lit.iou that a cott.ain algorithm

teI'Itlinat(·~ is straightforward and th~"doT<-' omiUe,t.

In order to establish the v~.lirlit.y of t.h" principle above we have ~howTl th"l. every finite compu­

t.at.ion ""qutuer of A is e(juivalent (in the 5€no€ of "",t.i()ll 1) to a finite one in whicb ev,:,ry adi""

as~od~ted with tl,,·, fimt fmht.a;k is performed before otb",r a<.,t.ioll~ a,~()ciat(Od with the second

'llbta.;k. Th" proo!' i, giy(On i" appendix 1.

FInn, the discussions above it follow5 that O\lT principlo C;Ul also be used for Uw ,k"ig"iug

algorithms hierarchically. Th"t 10, if th" t.a;k solved by A is a subta>;k of y\,t, ;rn(.th~r task, the

the same prin('ip'" can he applied for solving the other ta-<k.

Iu case the whole task call be 5plit 1'1' into m(lT" tll;),]' two subtasks we pr""Hd "" follows;

First desigl' algorithms P solving the Hubt.a"ks. Lt'l. the subtask solved by ""eh D he described

by prewIldit.imls 1;P and pOHconditions qJ' (j E V'). Prove that for each such D t.h"", "xist

assertions IF and TF for ""dl node j in V' such that D sat {IP I j c: V'},{TP I j E

V'}, {qf I j C V'} > holds. Show that an 3Q6€rtioll associated with some nod" j do,,; not

dqwnd OIl progra.m vatia.bles of any node differ\"lt. fWIIl j (d. verincation ('onditi,lIl (3)). Then

provt~ thaL each node call partIcipate in onl, $llbtask at a time (cf. condition. (4) "lid (5) above).

Ther~.utN prove that the nodes partidpatc ill the sub tasks in ~ome lix€'d Order (d. condition

(6) above). Then com'lllde th"t. t.h .. whole task is solved by an alg(lrit.hm consisting of actions

of all tho." alg<>rit.hlll$ that solve the subtasks.

10

4 Conclusion

We have presented a design principl~ which alh)w~ f(>rmal d~Tivat,ion of complex network algo­

rithms hy m~(U1S of sequent,jally phased reasoning. Thi~ priIldpk iH applkable to a large class of

algorithms (as e,g" as in [GHS83, Hu83, MS79, S,~82, Se83, ZS80J) and allows structuring of th"'r

design accordirlg to logkal (sub)tasks. We have dedded to keep the fornu.dation of the principle

as simple as possibly. As a conseqll"nt~, it h not immediately applicable for dcrivat.i<'m of t.h"

PIF -protocol [Se83] when the network doco not COn$titut,e a tree. The reason is that a mes~ilge

<u;$oclat,ed with the first subtask can be received hy a no(J(:, when (,hat node is participating in

the secQnd sllht.ask (d. ij€ct.ion 1). In this case an adjustment of the ,l¢$ign pTinciple would

he required, (Verification conditioI~s (4) il.nd (5) rlll)~t h~ acljl1s(,ed.) In essence, it has to be

f<'quir<,d thil.t if a ru)de i, partidpll.j,ing in the second subtask or has completed it, participation

in that slll:>t(>l;k, th~n the ru:rival of a message associated with the first, Hllbta.8k does not affect

the respective assertions attached to thal node.

As structured veriJi.eatioII and design <)f complex algorithms yields more insight in their <:<\f­

red"",", we envi5age that new language constructs will be designed in ord\'r t(l obt,aiIl hetter

structured prOI7<un$. In particular, we believe that a better structuti"g of prOI7<uns can be

achieved by means of a. COIl~trnct. for dC$cribiug 51lbt(>l;ks and another one for building programs

solving some task from programs which solve the suhtaHh.

In t.h~ f1.It1.Ire we will investigate how our principle Gall be e"te[~ded for applkatit>no to network

algorithms when edges and r~odcs tar. fa,i!.

Acknowl",dger'Il"'rlt; We thank R.. Koyrnam; and It. Gerth for valuable discussions, We also

tha.r~k N. villI Dicpen and H. Part.sth f(>r t.heir remarks concerning the presentation of Out results,

41

References

[AFR80] Apt K.R., Francez N., illld de Roever W.P., A pI-oof ~y~tNIt f(n- COIllIllIlltiuotiIlg Se­

qll<'lttial PIOU-""" ACM TOPLAS, 2-3 (1980).

[B26]

[DS89]

nOTuvka 0., 0 jistem problemu minimilnhn, Pdca Motavsk~ PritodovMecH

Spnlt'rn"sti (1926) (in C~€~h.).

Back R.J.R. and SrI'c K, St~pwi~~ rdiIH;IIl~"t of "1:I.i(>,, "y~kIIl" Fr,)\,. Of t.h~ iIlt,,'rn«­

(,!(>TIa) confereme of mathematics and program construction (l\J8!J).

[CGSS] Cho" C.T. ,Ulci G~f!li E., Uncierstal)ciing and verifying distributed algorithms using

stratified decompositioII, I'rOc. of tit" ACM SYIIlp. On Principles of Di~tr. COII'p.

(H188),

[eLS:;] Ch>lndy K.M and Lamport L., Distributed snapshots; determining global states of

distributed systems, ACM Trans. on Compo Syst. 3·1 (1985),

[CM88] Chandy K.M. and Misra J., Pill·alle! prOgrill:u ,lc~ign; a foundation, AddisoII-Wesley

I'nhlinhing Company, Inc. (1988).

[DS80] D~ikstra E.W. aIld Scholt<'II C.S., 'lhmini\tiOIt dd<'ding fOr diffll~iIlg U)(llplltMion8,

Information Processing Letters 1·4 (1980).

[Ev7!l]

[E'P82]

[F80]

[FF89]

EV~Il S., er<oph «lgori(.hn1S, Computer Sciem'e Press, Inc.(USA), (t979).

Eltad T. a.:nd Ft'illKelo N., D"COIllposit,ioIl of distributNl prOgrillltS itlto commUllicatioIl.

do,,·d lay,;ro. Sd~n('~ of Computer p~ogramming, 2 (1982).

F'rancez N., Distributed terIllination, ACM· 'TOPLAS, 2-1 (l!J80).

'Ph; (I. and Fl.'ance~ N" Semantics· driven decompositions for the vedlkation of dis­

tributed programs, lUaJll1saipt (1989),

[GHS83] Gallagcl' R.:r., HUlI,bld, P.A., ami Spira P.M .• A dist.rihut.cd algorithm for millimum­

weight spanning tree~, ACM TOPLAS, 5-1 (1083).

[GS86] Gerth RT. «I,d Shrir" L., On proving c1osedneso of distribllt.,d lay.:r', LNCS-241

(198(')).

[Hu83] Humblet P.A., A distributed algorithm for minimum-weight directed spaJllling trees,

IEEE Trans. on Comm., 31-6 (1983).

[KP87] K,,(,7. S. "nci peted D., Interleaving set temporal logk, Proc .. of th~, ACM Symp. on

Principles of DisLr. COtltp. (1987),

[KP88] K",h S. and Pd~d D .• An effident verifkation md-hod for paralld iUld distributed

prograllls, Proc, of the REX· workshop (1988).

12

[L85[Li!mport L., Paradigm~ for di~tributed program8: (:omputing global states. LNCS-190

(19B5).

[MP83] Manna Z. and Pnueli A., Verification of concurrent programs; A temporal proof sys­

tem, Foundations of computer science IV, part 2, MC-tracts 159 (1983).

[MS79] M~din p.M. and Segall A., A failsafe distributed routing protocol, IEEE 'Dans. on

Comm" 27-9 (1979),

[Pa88] Parldya P.K., Compositiol,al verifica.tion of distribut~d progr".m~, Ph.D. thtsis, Tata

institute of fundamental research, Bombay, India. (1988).

[Se82] Segall A., Decentralized maximum-flow algorithms, Networks 12 (1982).

[SeS3] Segall A., Distributed network protocols, IEEE Trans. on Inf. Theory. IT29-1 (1983).

[SR87a] Stomp F.A. and de Roever W.P., A c')rret.t.ne~s proof of a distributed minimum-weight

spanning tree algorithm (extended abstract), Proc. of the 7th rcncs (1987).

[SR87b] Stomp F.A. and de Roever W.P., A fully worked out correctness proof of Gallager,

Humblet, and Spira's minimum-weight spanning tree algorithm, Internal Report 87-1,

UniverSity of Nijmegen (1987).

[SRBB] Stomp F.A. and de Roever W.P., A formalization of sequentially phased iutuition in

network protocols, Internal R.eport 88·15, University of Nijmegen (1988).

[SS84] Schli,hting B..D. ar,d Schn<':idt'r F.B" Using mt'ssa.geo pa.(;sing for distriblltd progra"n­

ming, Proof rules and disciplines, ACM TOPLAS 6·3 (1984).

[Wtt88] Welch J.t., tamport t., and Lynch N.A., A lattice-structured proof of a minimum

spanning tree algorithm, Proc. of the ACM Symp. on Principles of Distr. Compo (1988).

iZS80j Zerbib F.B.M. and Segall A., A distributed shortest path protocol, Internal R.cport

EE-39r;, Technion-Israel Institute of Technology, Haifa, Israel (1980).

43

Appendix I

In thi~ Ilpp'~II(Ii" ~"undTle8S of the design prillcipk fOnrlulllt<,d in ~"di(lll 3 h pr<)v~d.

In the soundne~~ proof of tJw IJI:inciple we use the same notation lIS in section 3.

A"llTTl~' that the premis" of t.he prindl'l« i, ,,,thfied. That is, assume that the conditions (1)

t.hrough (6) formulated in section :1.2.2 all hOld. W~ h<>v~ t<) ~how, in Qrder to e.ltablish the

SOillHln(:~S of <)IIT prindple, that

A sat < {If V If I) c V'}, {If II rf I j E V'}, {% I j E' V'} > holds. This a.mounts to proving

th;\l. t.lIt: t(m[liti[.m~ (<» through (f) formulated in sect.i(>Il 3.2.1 iII" all Hatisfi(:d for o,lgorithm A.

LeIllIllR 1-1 (conesponding to condiH..,n (...) in ",,:timI 3.2.1.).

T.hJd",r t.he assumption t.hllt. t.h" 1>rI",Ii"" of the principle is satisfied, Iii E V'.(PJ -c'-c(lf V If))

holds hi the firH HI."t" of ""y computation sequence of A.

Proof

'l'hi~ trivia.lly follows from verificat.ioll corlilit.iOll (1) (cL s.:t:ti,)rL 3.2.2). 0

Not,~ th"I. if nome property p depends on node j's programming villiables only, t1U'" l' holds in

state .'1 iff P llOlclH iII ~tate ~.l.va\'(j), where s1 Var(j) denotes the restriction of state Ii to the s~t

Var(J) of all node j's jlI'ogra.ruUliu!; variableo. In (,he remainder of this appendix this property

is rd"Heel to as pTope~t.y (").

Crucial in Ollr ~OllIldn{"f>~ proof is t,hf' followiJ'Jg~

LCIrlIIlH 1-2

Suppose that the premise of the prill~iplc is satisned. Assume that ~ is SOllIe state in any

computation sequence of algorithm A.

(a) H, for some node j f Vi and fot some action b Clu:t(B, j), ':'!j{l)) holds in Hatc s, t.hcn

there exists a certain state .• ' occutring in some coml'ul.atiOII sequente of algorithm B

<;<>thfyin~ 51 Var(j)=5' 1 Var(j).

(h) If, for ''''n<o n"d~ J f:: Vi "nd for some a..;tion C Eact(C,j), enj(c) holds in state 8, then there

exists a certain state 8' occutrillg ill SOllIe computation sequellce of algorithm C satisfying

$1 Var(j)=.'l ViII(j).

44

Pr-oof

Consider an Mbitrary computation sequence 80 .~!l "1 ~ "2'" of algorithm A, Let 5. be some

state in this sequence. We US"" ind\l~tion of the states 5", x ~ 0, to ptove the leillma. CI.:a:rly,

the lemma is true if s. is the iIlitia.! S\at¢ of ~ome computation sequence of A.

Now, aSSunle that the lemma holds for all states 5=8, for 0 S y < x (the inductioll hyp<>t.h"HiH).

(al If, for some node j in V', enj(b) holds ill state 8, for a certain action b Eact(B,j) then

dt.h~r (al) or (a2) below is true:

(al) liy < x.au 1. C, Le., in the computation s~qu~ncc ahov~ stat~ 8~ has been reached by

exen'tions of actions from the set B only. In tlth; CaSe it. iH C)bviC)u~ that the lemma

is satisfied.

(a2) 3y < x,au E C, Le., in the COltlputatioll "~'quen~" above, 8. has been reached by

e"ecutiolls of a"tionH fre,m n and by eJ(€cution of at least on action froIlt the set C.

N{,w, n,)d~ j ('(I111;10t be involved in the ell:ecution of arly actio" <lz E C with z < x.

This holds because of the following:

If such il.I. <1, E /let(e, j') is the first C-action executed by node j' in the ~e,!"cnce

above then If 1\ ..,TP is satisfied III state Sz. (Nod~ j' h<U:i only eJ(e~uted B-actions

when state s, has been reached, By the induction hypothcBis. t.he v~rificatiC)n wndi­

lions (1), (2). (3). il.Ild (6), and prope~ty ("') above, it follows that If, I\-{I'ji is satisned

in state sz.) From the verificatioll conditions (2), (3), (5), and (6), and property (~),

lib' E act(B,j').~enj'(b') holds in state 5.+1'

Analogous, it can be proved that if action "" Z < y, is not thl? first C-action in the

sequence above in which node j' is involved, then 'rib' E act(E, j').~enj,(ll) holds in

state 9.+1' We conclude tha.t if some action b E act(E,j) is enabled in state s. then

it h<l'; not pedol'ooed any C-adions. It is now obvious tha.t the knuna is Satisfied.

(b) This c~e Carl be proved by a similar kind of reasoning as in the prOOf of (al "bove. 0

Qbs"rve that, as a cOIlseq\IeIlCe of property (*) and the verification conditions (1) and (2), for all

states in any computation sequence of algorithm A, (If V If) 1\ ~(f) 1\T'f) implies (If 1\ ..,Tr)

V (If 1\ ..,Tf\ j E v'. This property will be used in t.he fol1owi1:1g lemmata.

Lemma 1·3 (corresponding to condition (b) in section 3.2.1).

UIlder the assumption that the premise of the principle is satisfied,

45

V) E V',O((vf' v If) II. ~(lJ A rf))U((If V If) II. (If II.TF))) holds for all <()mp1)tation

Proof

C(m,ider an arbitrar.r coml'"l,at.iOTI sequence 50 ~ SI ~ "2'" of algorithm A. Obviously, in

order to estahlish the lemma it suffices to prOve the following:

Cla.im;

If in a ccrta.in ~tate s" in the seqlIeI.C£l ahovl: "dion a" is executed and if

(If V If) II. ,(If A '1~C) h(,lds in ~t"te ,~, then (If V lJ) holds ill fitate 5n l1 (for all j in

V').

Proof (,f th" dalm:

A~51)me that (If v If) A ~(If 1\ :rf) holds in state s'" According to I,h", <:>hservation

above, we diBting1.1;';h two cases,

Calie (i): If i\ ,T/3 holds ill stak "n0

Now, if lH)dc j is involved in the execution of ~tion (tn, tll",n a,. <= D holds (cr,

lemma 1-3 and the wrilk"tiol) condition (4) of the pri1lciple), From ltmma I-3 and

the verification condition (1) it follows that If II. ~Tf3 or If II. T]S holds in stat.' 8 n +l­

If, On the other hand, node j is not involved in the ",,,,:,,'ut;on of action a,,+I, then

If i\ ~1']3 holdB in stat.: 8,,+1 (ef- ve~;ficatioll condition (3)). We toll dude that in

this case the daim is s"tisfied_

Cu • ., (ii): If i\ ~rf holds in state s".

U I)ode j is involved in the '~xecllti.)n 'If ~~ti(ln [:I", then an E G (cf, lemma 1-3 <.IJ.ld

the verifk"tion l'ondition (5)) and, either If II. ,'If Or If 1\ Tf h,)ld in r;tate 8~!1

(d. verification ~oIlditiOn (2)). 'l'he claim then follows from the fact that Ii 1\ -'Tf
implies (If V If) and the fact that If II. Tf implies (If V If)·
If node j is not involved in the e:xeCl.lt[oil of a,ctiOll an, t,hen the daim folluw5 from

th~ v~rifk(ition (ondition (3), 0

L"nunB 1·4 (corresponding to condition (c) ill secti()n 3.2.1)_

Under the assumptioil that the premir;", of the principle is satisfied,

Vj E V'.Va E (lct(B U C, j).O{((IjB V If) i\ (If 1\ 'If))=> ,enj(a)) holds fOr all C(lmpl1tation

sequences of A.

Proof

Assume that at some point in a computation sequence of A, (IP V If) II (If ,,'If) holds. Th~Il

(IJ 1\ Tf) holds, too. If at that point in the sequence for all nodes / E Vi and for all actions a

from the set act(B U C,j'), ~en1'(a), t,hen 'm1 are done.

Otherwise, Le., 3j' E V ' .3a E act(B U C,j').enj'(a) holds. In this case, for all a E act(B U C,j),

'",""j(a) is sati$lkd (l,$« ~(mSeqllen~¢ of l(,mm" 1-3, prope,ty (0), <md the vedlkatiop- (ollditions

(2) and (5). 0

Lemma 1-5 (corresponding to condition (d) in section 3.2,1).

Under the assumption that the premise of the prindple is s«ti81kd,

Vj E v'.O(((lf V If) 1\ (If 1\ 'If))=} O((l? V IJ) 1\ (IJ 1\ If))) holds for all computation

sequence of A.

Proof

Assume that in some state during a computation of A, (If V IJ) 1\ (If 1\ If) holds. Then

(If 1\ If) holds, too. Node i cannot execute any action in such a 8tat<~ (d. lemma 1-3). The

assertion (If 1\ Tf) is preserved under all actions from the set B U C which can he performed

hy nod~s diff~"nt from j, ~f. the verill¢«tion ~Onditio);l (3). The lemma j~, obviously, ~atisfied.

o

As a preparation for the proof that condition (e), formulated in section 3.2.1, holds for algorithm

A, we first have the following lemma, concerning equivalent computation sequences of a certain

algorithm. (This notion of equivalence has been intr"d\lc~d in "edion 1.)

Lemma 1-6

Suppose that 80 ~ 81 ~ 82'" 8~ ~ S~+l ~ S~+2 ~ 8;:;+3'" is a computation sequence of

some algorithm. Assum.e th"t the ,,:Jce~1,1tion~ of ~ht a.cti(lI;l$ a. «TId aHJ involve di,tin(t);lodeS.

Then there exists some state s~+I' such that

So ~ $1 ~ 82 .. . s;,; ~ Sz+l ~ S.z+2 ~ S2l+s", and
"'I,} a1 .:i_+l I a", GII+2

S() ---'-' SI ----> S~ • , • S~ ----> Sz+! ----> s~+~ ----> 9.+3'"

are equivalent computation sequences of A.

Proof

Let 8~+! be the state resulting from execution of action a.+l in state s •. Note tha.t this action

47

does not ~(,ct v"-riables of nodes diffetCtll: fr(,m n", (>FI",:; involved in the eXeCtltioll of l.h«l. «dion-

From the assUrllption tll"t the execution of the actio!li; (', 'Ultl '" I I involve distinct nodes, it.

tl"'ll, ohviomly, follows that "'-1-2 i, I.he :;tate resulting when action tL. i, "x~wted in st.ate s~+['

o

A_, a wnsequellc.e of Lhii. j{'llllll"- alld of the proof of lemma 1-2, we hav,,:

LeIrlIIla 1-7

Suppose that. ,Iii) ~,~ ... ~1 ~ s;.!··· S;r. ~ ~;!;+l (/.IIl'IJ ~Q'i-2 ~ 8~ ~ ~ _, h a finite COrllputatiou

''''1llf'''"" of alp;orithIll A. A'Hum" th«1: the premise of the principle i. Hali.tied_ Ftlrthermore,

assume th,-.t t.I",t (', '= C and a,I_) f' B hold. 'l'Iw" t.llt,." ~'xiHto some state s~+[, such tll:1t

RO ~ $1 ~ ,j~-"S~ ~-.) '''~+1 ~ ·~;r.t2 ~ 8~fS·.· a.nd
arl III «.., I 1 / U:r I.I.",+~

$0 ----j' '~l ... " ,) Ji2 ••• I-Iol) ----+ R'!i: I I ----t S:l:':.~ ~ ----t ·'iI","+3·"

ate e'llliva.knt wmput.ation sequences of A. 0

I.emma I-I::! (corresponding tt' wlldition (e) in section 3.2.1).

Dnder th" aHsumption that the premise of Ill.:, prindpk i1; ~«ti~tifd,

IIj E V'.o(((1}3 v If) A ~(lf II Tf))=} 3a EO BuC.("n(,,))) holds for ijll c;omputat.ion sequence

of A

Proof

Consider an. arbitrat,Y (:ornpllta.tivIl ~~quence 13eq == so ~ oSl ~, .. of algorithul A. ASSlIIIH: 1 in

ordel' 10 obt:J.in !1 contradktion, that in a certain state s" of this sequeIlce for ."m~ nod., j Eo V',

((If V If) A (If 1\ ~rf) II va E act(B u C) . .,,,,.(a)) holds. Th"" this .tatf' is a final state in

the H<"I"('n('~_ TT~nce, the sequence is finite. We n(,w r('p""'i.e<lly ",pply l~mma l-7 in order to

obtahl illl cquiv.-.,kIlt. wmputation ,equence of A in which all B-actiorlS are prrfon!l(~<1 hdor" ijll
fl~ ,~; ,tJ

i
.. • •

C-actions, Let seq' == So ----> "1 "., ••• H. -----> ••. ~" be th'" resulting sequence, where action a~

is t.hl;: fir,t C-action taken in this sequence. (Obsetve that th" ~'-'qll'-'Il(.'-' seq' end, in state 8"_) In

~I",t." Hz, ft,r «II j E V', If IITf3 holds. (Otherwise, (or some j E V', If II .,1jB i~ ~atii;fkd, whkh

implies Ihal at ic;,;;l. o"t B-action j:; enabled in state s., cf, verification condition (1). E~h lloile

which is illvolvNI in thi$ «dion ,'annot perform any action from C, cf. verification condition (4).

Thi, impUes, however, that the sequence .eq' is not maximal; Contra.diction_) It follows that the

sequence s~ .s... ... s" is a comp"tati(ln ~equ€n{'€ of algorithm B_ hom verification condition

(2), wt obtain that If, II r5 holds, for all j' E V', in state .>". This contradkt~ the a~,;umpti(>n

48

that if /I -,TP holds in thi~ stat~.

Lemma 1-9 (corresponding to condition (f) in section 3.2.1).

Under the assumption that the premise of the principle is satisfied,

Vj E V'.O(((lf V if) 1\ (.if 1\ TF))~ %) holds for all computatioll sequence of A.

Proof

Thi$ i$ " «>nS(!quence of pwperty (0), lemma 1-3, and the verification conditio:ns (2) and (3). 0

The soundness of the prillciplC lIOW follow$ frOll. the lemmata 1-1, 1-3,1-4, 1-5, 1-8, and 1-9 above.

49

Appendix II

The design principle formillated in section 3.3 tan straight.f,)rwaxdly hI, ('xt~n(k<l to an i\.!;yn­

chronous model of computation. This is shown below. For ease of exposition we assume, for

this appendix, tha.t tOulIIHlIlitatinn 1:.; p~~rf(~('t_

Assume that communication is <1:iynchrono".. In ol-der to design an a.lgol-ithm which wives a.

<:ertain l,a~k, de~cdbed by preconditions Pi and postconditions qi (i E V'), we follow the same

strategy as before:

(1.) Find intermediate assertions r i such that the two sub tasks can be described by the collec-

(d- section 3-1).

(2) Design algorithms 13-;:,< V', {Pi liE V'},B > and C:::< V',{ri liE V'},C > which solve

th,:, tWI) ~\Ibta~k& (.f. [CM88, BS89])-2

(3) Prove that the verification conditions (1) through (6) below are all satisfied.

(4) Conclude that the algoriLhm < V', {Pi liE V'}.AuB > solves the whole task (d. section

3-3)-

The verification conditions of the design principle are essentially the same as those formulated in

se(:til)n 3_ Now, h"w,",ver, w,:, have to incorporate t.hat f<ttt that con"'"1I1ication is asynChronous.

In order to formulate formally these verification conditions we use, as in [SS84], the c.1,:z;ilic.ry

proof 'ua,·iablc. <Ti(c) ill.d Pi(") (j E V', <' E Ej)' They are used to reason about communication_

<Ti(") n',~ords tho' S<,qU~Il(<' of In(ossagc'ls transmitted by node j aIOI'g edge e; Pi(e) records the

8equen~e of me&~ages received hy node j along edge E~- For lIod<:S j, k ill,d <,clg'-'t; " (E j n E k , the

prOpetLy pj(e) :::; <Tk(e) is preserved by arty action, see [88841. i.e., if edge e connect~ the nodes j

and k, then the sequence of all messages received hy node i along e i, a prdix of tlll' f;equCnt<' of

all messages tnmsmitted by node k along e- These variables Me changed when a node transmits

or receives a. lll<"Sagei They arc llOt changed during execution of an internal action.

(1) Find (Illsf-rt,io"s If and TP, for j in V' and

(2) Find assedions If and TP, for j in V', having the same interpretation w; in ,,,ction 3.

:2lt h:l ~~mmcd th~;t'-ih~--;;;t--:f ;:..li .a.t(l1;l1il;-~tll)n$ fOr ~;\(;h nod~ i .cau. be pfLttitioned into. a. set of fa int~rnRi

actions, Q act of j's nctiom3 whkh involve the h""n$mis,$i(Jn of a rntS,$iLge, lEWd .&. Bi!t. .of JIB actions involving the

r~.:::ejpt or som.e me!ls.agc,

50

Of course, we have to reformulate the correctness formulae (see section 3) now incorporating an asyn­

chr(Jlt()u. n)odel of computation. Let 'D",,< V', {prep liE V'}. D > be ~(>me algorithm.

'D 8at < tip I j E V'}. {TF I j E V'}, {po,!, I j E V'} > holds iff each of the following cOIlditioIls (a)
through (e) is satisfied;

(a) "Ij E V'.(wcp =:- IP) f,

1\ Vj, k oc V' .Ve E E j n E,.(pre'D .;. Pj (e) S >1".{e)) holds for all compu~a\ion sequen~es of 'D.

Thus, initially the ass.rtion ;p holds. In addition, the sequence of all messages received by allY
node along a certain edge is a preDx of the seque.-.ce of all Inessages transmitted by the nod" M

the other end or that edge holds illitially. (FrOIl) the discussion "bove, it follow. thlLt the l"tlcr
prOperty is an inv.<riant for al1;orithm 'D.)

(b) Thi. condition io the same IlB condition (h) formulaled in seclion 3.2.1.

Let Intp S; D denote the Bet of node j'G internal actions, let Recp(e) <;; J) denote tbe set of node j's

8.ctiOD' which involve the receipt of a message along edge e, and let Sen;' (e) <;; D denote Ille set of node

p, actions which involve the tran"miggion of a message along edge e (j E V', e E E,). He~eafler, [Sp

will denote the set Intpu U Senf(e).
t.~E;

(c) Vj E V'Vd E dP.D((if A TP) "*' ~en!(d))A
f, Vj, k E V'.Ve E E j n E,.D((fF II TP) "*'Pj (e) = ".(e)) holds fOr 1111 ~omp\ltMioll seq\len~es
OIP,

i.e., if a c~rtain node has completed its participation in the ,,!gorithm, then it caronot perform any
internal action or any action which involves Ihe I~ansmiss,ol"\ of a message (the nrst conjUI\ct), aud
it cannot re~eive allY message (the second conjunct).

(d) 'rll,s condition is the same as condition (d) formulated in .edion 3.2.1.

(e) '1j E V'.D((IP f, ~TP) ,*(3k E V'.3d E lSp.en(d))V
v(3k, mE V'.3e E E. n Em.p.(t) < <'met))) holds for all

computation sequences of V. Here, for sequences t and u, t < " denot .. th .. t t is a proper prefix
of u.
Thi. condition expresses Ihe following, if a Cetl<\ill Ilode has IIot yet cOlnpleted its pMticipation
in the algorithm, then at least OM node cau perform sOme internal Mtion or Some action which
involves the t[,,,,slnis.ioIl of a me.sage, Or at lea..t one nod. ha.s traD.mitt.d a me •• age along one
Qf ilS Mjac~!)\ cbau,lels and this messa.ge bOIS not yet bten received by the Dode ILt the other end
of tbat edge.

(f) This condition is the ,rune as condition (f) formulated in section 3.2.1.

'l'hIID we reformulate the conditions (3) through (6) from section 3.2.2 for an asynchronous model
of computation.

(3) Each programming VlI-riable occurring in any of the assertiOnS Pj, rio qj, If, If, T;B, Tf i. node
po own variable. In addition, if some proof v{tl'iable Pl(e) or "l(e) occurs tn any of these asserttons,
then i=j and e E Ej hold.

(4) Vj E V'.dl~(l.bled(If II~TP,Isf}iI
A Vj. k E V'.lIe E Sj (1 S •. disahledVf f, ~Tri, Sen~(e)) holds for all cOIllputatioIl

SequenceS of B. Here, for a.ssertiono P and set. of actionB AG, di~abled(P, AC) hold. iff in any
stat. satisfying P all actions in the Bet AD arB disabled. (It. (<;lrmal definition is 6tr~glr.tf<;lrw~
and thetefore omitted.) Consequently, this condition expresses the following; if /I certain node has

51

not complf!ti2'd its p;;trtkipfiHon in .a1gorith.1' 5, then it -c.an n€ith~r perform an interna.l action nor
a send"acl;on occul"I'iIlg in C (the first conjund), amI it caIlnot receive a message associaled wilh
the ."cond .ubtaak (th •• e""nd conjnn<:t). Th. latter hold., be,au •• if the node i. participating in
the fir.t .nht ... k, t,hen l>Qn~ of its l\~jghbo'''s can s~1\d sU(.h mMsages.

AIlalu,!!;ollsly WE~ have

(5) Vj E V'.di."",led(I;; II ~TF, rH~)1I
II 'ij, ~ E V'.Ve E E j 1"', Ek.di.abled(lf II -'Tf, Sen¥(e)) holds lor all comp\\\al;on seqvences

ofC.

In Ql'dN '0 e~'Sm·t.: thnt a tcrtail.L Il(JU~ ti1Il purtidp.ate iIi the :iOecoI.Lu subtask only after cou~pLet'i~~& th~
fir.t .ubtask (."<: condition (6), .. "don 3.2.2), we imp"se th .. following condidon:

(5) Vj r,.· V',d""blcd(If II Tf,ISf) !\

II Vj, k ~ V' ,Ve" E, n E k , dioabl,d(If II Tf, Se,,¥(<)) holds fur all computation sequences

()f C.

As a cOnse(juence we have required th"t nO node k Can send some lnessage 10 a,lol])e, !lode j which

is part.ic.ipating in a different subt!<Sk than 1, (d. ~.ondition. (4) and (5) above). Although the "bove

principle.: is applkablc to a large das~ of algorithms, une could lJave been less J'e$~ricl,jve: if :;lome node

j is par\i~ipa\i"g i" so,,)e $l\b~as~ 3,'d j has some me~sage in i\S q"e\le M~odated with another subt",k

("uch a situIl!,ioll c.an he recogni.e<l hy tagging me g ••), then processing this meas,,!;e i. del"yed until

j is participating, Or starts tt> participate, in the $ubtask asso(;ated wilh th~ I mess(l.ge.

52

Appendix III

w~ rl;Lim that any distributed progriUn can be represented by a triple of the kind introduced in

the paper. The validity of this claim is iIlII$\ral.ed below by shoWing t.hat any pI:ognun described

by a list of reSVOn$~$ as in section 1, and as in [GHS83], can be represented b.y such a triph" A~

an example we show how the program of !;eetion 1 call be repr~s,:,nt"d by such a triple.

In order to keep the presentation reasonably short. WI? «!;&mne that communicatioll is asy"­

~hron"U!; and perfect.

Let S be a progriUn described by a list of reSpOnM$. Our objective is to repr€Se.,t S by a triple

A of the kind mentioned above, ~uch that for any c.omputation "eq\lence Jeq starting in an

initial state satisfying $Orne predescribed preconditiOIl the following holds: seq is a computation

S('qI1Imce of S iff seq is a computation "equence of A. It is obviouS that the only difficulty in

defining A is the definition of its set of atomic att.iOns. In order to define this set we flr,t ~,ign

la.b~ls to control points in S. (Such a control point is an entry- <,. ~>;jt-point of some atomic

actioll occurring in S.) Then we introduce for cath node j a. fresh variable IOcj' This variahle i~

used to simulate node j's prOgriUIl counter when S is e)(ecuted. Each (a.t.Qmk) action a which can

be performed by j ;8 then represented by the atomk <><:tion a:locJ:=11 where II denotes the lahel

assigned to a's exit-point. 'rhe enabling condition of the act';on a;loc!:=/" i.e., en(a;/oc,;;=IJ),

is given by locj = I~ where 12 denotes the the label ~signed to a's entry-point. Ex(~pt. fo~ these

«('tions, we also define for "aeh node j two kinds of other actions; The lhst one corresponds to

actiOns ""moving messages from adjacent edg<'" il.Ild pla.dng these received messages at th" end

of node 1's message queue. 'fhese kind of a~tions do not refer to the variable locj and can occur

at any time in ~v",ry computation sequence, provided th"t some message has arrived at nod" j

(d. (1) and (2) below). The second kind of a<:tions corresponds to removing the first element

from nod" j'$ me~,age queue, provided tha.t it is non-empty, and setting the variable ll'x:j to I.he

label assigned to the "fir, I" entry point of the respective resp()n$~.

It is important that we hav" ma.rle e>;plkit two tacit assumptions which are quite common when

distributed algorithms are describ«d by means of lists of responses;

(~) A message that has ij.trivl:d at a node along one of its adja<:cnt edges can be removed

afterwards from that chanllel at any point in the computation.

53

(2) After ~he l'~ceip~ of a In,,,ssag~ a node can reSUIne its execlltion at the point where the node

has b~en interrupted by the arrival of that messae;e.

Example:

~?'>l'---.!x~<ut"d 1:>y nod. k

"""pon." to ".oeipt o~ '''fo(lI)
b6gin

IM,I; val,.,; v;
1',2; fo" all .. dg.s, <= E.

do •• nd i11,f,,(,,0.1.) .n

re!lpo:J;lse to ;l;'t;I~t;lipt 9:;f ()..("k(lJ) on edge C
1:>0gin

I.,C,{: N.(C):~ tru.;
1.,,),r,O if <lC ~ FJ,.N,(C)

I\,c:r:
end

th(ln h~(~,,,; dO'/'l.('h; ·-truC3

fi

............. _ __ ._----_._._----'

loop .. xe<u~~d 1:>y nod .. i t k

'''lOP"'''. to ".oeil't of info(,,; on edge C
begin

L,C,I; va!;;-- v;
ii,C,2; inbranch,; .. Ci A~
ii,C,,: N,(C)'-true;
li,C,4: :lor all. oE!dg~! ~ E EJ\e I- inbranch i

<:10 .end in! o(1!(,.I;j on .de" " od;

~=~===,- .. _ .. _ _
I"c,,: if VC { E"N,(e)

then li.C.t.~ sendack(ua1d 'On inbran('h i

fi

1,,{O,,;
end

"."p"'" to rOMil't of a<k(v} on edge C A;
l:>~gin

I.,C,8: N,(C);-- tru~;

I"c .• : if 'iC EO E"N,(C)
than /,,(/,10: ~e1'l.d ad!!{ 1)(l/l') on inm-aflr:h i

h

1'.C.l\;
.nd

Fig\1T~ 2: S~g<lll\ PIF -protoq,l after agsigning label8 to control points.

From now on, subscripts i and k are omitted when they <tr~, "I"ar f«lm the COnt(>xl ..

Below, e)(\,ept for the I<lbd~ of ,:oIltr<)1 poiIlts assigned explicitly, we have additionally introdu~ed

a label at-queue. Intuitively, node i is at the control point labeled at-q"""", wheIl it tests whether

its message queue is non-empty. Node i €yalu<lte~ t.he b,),)k;ul "xprc~siol' qu(,Uc #<> for testing

whether its queue is not empty. Ifit, is IIon-empty, then I:he I.ype and the channel identification of

t,h~ fir,t ~Iernent. ar", Mt.~rmiIl~<1 hy cv:.Jllating twe(first(queue)) and chau(first(qu€ue)), re~pec­

tively. Thereafter the argument of the first message in the qU€\1€ is ckt,I'rInined hy ev:.Jllating

aTY(fiT~t(queue)) <Iud is reconkd. TheIl I.he first. element is removed from the queue by e)(e~uting

the 1IS8ignlllcnt queue;=rest(queue), and node's i variable lOCi i5 set. 1.\, t.h" CIltTy poi,.t of the

54

respective response.

Appending an element M to the end of some queue q will he delloted by q:='l • M.

We next ,hOw uode k's actions wh.m the program ahov~ is repreSellt.~(! ~ ;,. tripk (Bdo"lw, C

rallges over node k's adjaccIlt edges.)

ak.l: v:=arg(first(queue)); queue: __ rest(queue); loe:_ 110,1,

en((lk,d: IO(:=(lt-q~~el)ei\ type(fir$t(ql.eue))=iIlfo.

a.,2: val:--v; loe:;; 1.,2

e,.(" •. 2):]OC= 1.,1'

ak,:r for all edges e E Ek do send info(val) on edge ~ od; lo(""'at-quel)e,

en(a.,3): loc= ,",2'

ak,G,~: v:=arg(first(queue)); queue:""rest(queue); loe:"" Ik,G,4,

~n(ak,C,.): lot="t-queue/\ type(fust(queue))=atk !\ ehan(first(queue))=C.

ak,C,,: N(C):=true; loc:= Ik,C",

en((Ikp,d: loe= 1,.0,4'

ah,C,e: if \Ie E E •. N(C) then loe:= h,c,o else loc:=at-queue ft,

en(ak,c,~): loc= 1.,0,,·

ak.C.7: done:=true; !oe:",at-queue,

en(ak,c,1): 10(;'" lk,e,6'

and finally ak,C,a: receive msg on edge C; ak,C,a: quene:;;;;qnene' (msg,C).

a.,l, ".,2, "k,3 are those actions of node k associated with the first sub task (d. section 1). The

other actions of node k shown above are all assodated with the second 5ubtask.

'I'h¢ a(ti<)n$ whkh can be pt:r!()IIIi~d by nOd¢$ diff¢r~nt frOm k ca.n bt dtt¢rmin~d analogOIl;;ly

and are therefore omitted.

55

Appendix IV

Below w" ,how how OUl' d~toIllp(,~ition principle of appendix II can be applied to obtai" til,'

program of >,~<:t,io[l 1, In parli(lllar, th~ invariants If, If awl l.lw krminatioll cOllditioll~ IP,
Tf, for j in V, ate ddiIll:d ~xplidtly for this eXilJnpl,,_

CommllIlitatioll h a~sumed to be asyn.-hronous and pel'feet.

It is ;u;,ullwd that SOlll€ desig",,. ha, already solved bOLh suht",h ,lio,:erned in the PIF -protocol

(,~~ "edion 1), Consequently, it now sulliccs /,() define the invariants and t~rminati,," (onditiom

itl order I,l) mmbine these pI'ogrilJn,_ A~ a preparation for this we firot have t.he following

definition;

Defh,ition

Let- n<'Hle k, the initiator of /J,,: protocol, be given.

(a) fA for; E v, dist(i,k) denok the <li,tane,,," between node i ~uHl nO,['· k, L,:" di~l(i,k)

d",'\otes the minilllIlIll nlImlwr of edges on any path hctw¢{:n the node~ i and k.

(h) Fo~ all if' V, C C Ei, Di(C) denotes the distance from nod€ k 1,0 the node different fro,"

node -i t.hat. i, adjacent to edge C, Tlmo, Di(e) = n holds iff there exiH~ Will" j '" i wch

that C E Ei n E j and di~t(j,k)=n are satisfied (fl)r llodt:o i to V and natural numbers nJ.

D

In the proofs of tI", verification conditions of Our trand<.>rrn3tion principle, the following prop­

ertk~ are used:

Lemmil

(a) For all C E E k , DdC)=1 holds.

(h) for all nodes i E V and for all edges C E Ei the following holds: if di$t{i,k)=,~, tl"'ll

Di(e) = n-l V Di(e) = n+l is satisfied.

(c) For "-II n<.>des i, j E V and for ~dgcs C E Ei n EJj, if dist(i,k)=n and di,;/(j,k)=n J-l, th'~ll

Di(O) = ,,+1 and Dj(e) = n holds.

(d) If tin: gr<,-ph (V,E) constitutes a trce, I,hen for all n<.>des i # k, i E V, there exists exa.cfly

one edge C E Ei sat.isfying DI(C) =di,;t(i,k)-l. D

56

The proof of the lemma above follows from elementary properties from "mph-theory [Ev7()1 and

is therefore omit ted,

A~ has been argued in sedion 3, it is al,tractive to design a program de,~ribing the Pll"-ptotocol

ill two stages- lXl (,he fir~I, ,I,age thc, prop'am solving the first 5ubta><k, ("JIll<! havt heen described

by the pmgra.m B eOllsisting of those adion~ ""o('ial,ed with the programs Al of seetion 1 (d_

also appendix lIll- In th~, ~,,(:oncl stage program C, consisting of ,,11 ,,~tion~ a~wciated with the

progr<>m_" At of section 1 solving the second ;;ubtask, collid have been developed-

Below, ill th~ ,IdiIliHoIlS of the respective assertions, we have uScd the auxiliary proof vaJ:iable~

(7i(e) illld PilC) (i E V <I-\1cl C E V), l'hese kinds of variables h"ve been dis(:"sscd in appendix

II, Recall th"t (Ti(C) records the sequence of me55l1g!:', ~~nt hy node i along edge C and that

Pi(C) records the sequence of me~~ag~$ r"t~ivNI by l~ode i along edge C_

h, the sequel I q [denote8 the length of queue q, i.e" I q I denotes th~ nnmher of dements in q;

For queues '1, q[nl deIlot~s the nIh element in q (1 :0; 11. :0;['I [)-

The initial states of algorithm $ are described by the assertions Pj, j Eo V, defined below,

For node k, Ph is d~fi'1ed as the conjunct,ion (,f

- !ock=at·queu6k (cr, the djsw~sioll it, appendix III),

- '1\'~\'~k""'';:; ;nfo(w) > (node k's queue c.ontain, only th" message inJo(w)),

- ~donek (node k h<>s not been informed that the other uode$ have £c,ccived the info-

m"$$ag~S),

- VC E E/.;, ~Nkl C) (nod" k has not recorded that it has received a message along ~Uly of its

adjacent edges),

- ve E Ed pdC)=<> /\ O"k(C)=<» (node k has neither se);)t <>nd n()r r~tCivcd messages

along any of its adjace,lt edges), and

Th,,~(V, E) A [V [:2':2 (the graph (V,E) COnstitutes a tree and V consists of at lea,t two

'lodes).

1''01' nodes j different fwm k, Pi is defined as the conjunction of

- locj=at.'1ueu~j (d_ I,h. discussion above),

q1,e1"'j=<> (node j's queue is empty),

57

- 'VC E Ej.~Nj(C) (node .j ha.~ not recorded that it ha~ r~teived a message along <lny of its

adjacent. .~dges),

'Ve E: Ej .(l)j(C)~<:> II O")(C)=<» (nod~ j has neither sent ami nor received messages

along any of it.s adjacent edges), a.Jld

- Ttce(V, E) II 1 V I:::: 2 (see ah(>VI.-').

The Jillal st.""t..~ of algorithn\ B an: characterized by assert.io". qr rlJ '" If fI 1J3 holrls where

If and rp (j f' V) are d.fined helow.

For node k, th.:: a,'ertion If! is defined as tht conjunction of

Tree(V, E) i\ 1 V 122,

- vC Eo Ed Ph(O)=<»,

- 110 E Ek· 'N~(C),

.... ~donek' a.Jld

- Lhe .Iil;junction of

• (lock="t-qv.fuek II quellCk==< info(lO) > i\ lie E Eh.(O"k(C)=<»)

(""thfied initiall.Y),

• (IOCk=lk.l fI 'tU""".=<> II 'f0 E Ek'(O"k(C)=<» /I Vk = 10)
(satisfied aft.er !lode k has removed the info-message from its 41H'1I<'),

• (l<x'k=lk.2 i\ queuek=<> fI 'IC E Ed O"k(e)=<» II valk = w)
(satisfied after nod", ~, has recorded the atguIl.cnt. of the info-message), and

• (lo"k=at-queltek II qt&eltek=<> /\ 'VC E Ek'(O"~(O)=< info(w) » /\ 11"lk = 10)
(,atisfied after node k has hro"dcasted the info-message).

The assertion T"B i~ defined to express that uode k has hroadcasted the info-message. f'orrnally,

we define TI! == IIC E Ek · o"k(C)=< info(w) ».

For n(>d~o j different from llod~ k, If' i, defi!led as the conjunction of

- Trec(V,E) /I 1 V 1:::;2,

- 110 E; Ej.((Dj{C) =di$t(j,k)-l~ o"j(C) = < >) A

t\(Dj(C) ""dist(j,k)+1'* PjlC)=<»),

I.e., if Ihe graph (V, E) is considered to be rooted at nod •. 1" then j does not send any

message uptree and iL docs not r~~eive messages from nodes d()w[ltr~f'.

58

- VC E Ej.(Dj(C) =di8t(j,k)+1=>- ~Nj(C)),

i.e., if the gra.ph (V, E) i~ ~On$idered to be rooted at node k, then node j canllot rewrd

that a message has beclI rcc",ivtd from nodes downtree, and

- the disjunction of

• (locj=at-queueJ A queuej"" < > fI
A vC E EV..,Nj(C) 11 vC E Ed Pj(C)=<> /\ o"j(C)=<»)

(satisfkd iIliti<t\ly),

• (Iocj""at-queuej /\

/\ 3C E Edq,u:uej=< info(w), C > A Dj(C)=distU,k)-l /I Pj(C)=c< in/o(w) »/\
A VC E Ei.~Nj(C) A VC E Ej.(Dj(C) "" dist(j,k)+J=>- /Tj(C)=<»)

(s"ti~Bed after node j has received the info-message).

• (3C E Ej.(locj = i),C,l A Dj(C)=disl(j,k)-l 11 (Jj(C)",,< infO(IQ) »/\

fI vC E Ej.~Nj(C) A '(fC E Ej.(Dj(C)=dist(j,k)+l;} O"j(C)=<»"

A queue) =<> A Vj '" w)
(satisfied after Ilodt i has removed the info-message from its queue),

• (3C E Ej.(locj = Ij.C.2 /\ Dj(C)=dist(j,k)-1 A Pj(C)=< info(w) »A

/I vC E Ej.~Nj(C) A VC E Ej.(Dj(C)=dist(j,k)+l-=? <>"/(0)=<»/\

1\ qlleUej =<> /\ valj = w)
(satisfied after node j has rccor,kd th€ argument of the received info-message),

• (3C E Ej.(locj = /j,C,3 /\ Dj(C)=dist(j,k)-l 1\ Pj(C)=< infQ(wJ > 1\

A i'TIbranchj = C)A

/\ ...,Nj(inbranchj) 1\ vC E E;-(Dj(C)=dist(j,k)+l=>- (Tj(C)=<»A

A queuej =<> A valj = w)
(satisfied ;tit"'r Ilodo: j halO re~(l~ded the identification of the edge along which the

info-message has been received).

• (3C", Ej.(locj = Ij,c,. II Dj(C)=di#(j,k)-lll Pj(C)",< info(w) > /\

1\ inbranchj = C)A

/\ Nj(inbronchj) A VC E Ej.(Dj(C)=dist(j,k)+l=* /Tj(C)=<»A

A queue) =<> A valj "" w)
(8atisfi~d aIter nOde j h~ re~orded that it has received a message along the edge

59

1\ N.;(it//),·an<:hj) 1\ '"IC C EJ"(Dj (C)-=disl(j,k)+l7 O'J(C)~< info(,.D) »A

1\ (J1M,"IWj -< .. :-~ i\ u(1,i} - 'Ill)

(satisfied after node j has broadcasted the mfo-message along "ll ",lj""""t ,,<1gl:"

cxecpt the one idcntiflcd hy 'iub!'unehi)'

For nodes J rlilfer~nt from k, the "ssertion TiB is defined as:

:rt = JO C Ej.l{)(·j '-' IjP.il, whi"h i, s"'-ti,hed ;,fter no,le j ha~ bto;,dCil.Sted the info-lllessage

along all ;,dj~ent ("lg,,~ .;,,,,,,,,,1. the one idenl.ified by inbratlcil j ,

Verifying the conditions (a) through (f) of appendix II for proto(:Ol B i, straighU<lrward, i.e.,

on" <:elll "",ily "st"hlisll t.ll"t. 8 sat <; {Pj I j ~ V'}, {If I j E V'}, {if f\ 'ljB I j (- V'} > holds.

This can, e.g., be accolllplished by tedlniques des<Tibed in IMP83]. A, an <::xamJlI<: of how to

jlH>V<: th,,,,, COIl,lit.ioIls, we shnll ,h,)w t,hat c(nulit.i<'>n {I:} i,; ~a!,i~fiNl. I.e., it must he shown that

for ",ll .tat,," ill ally <':oHlpntat,ioll sequen,:e of [J,

(') If f\ ~yP (j in V) implies that at least one action in algorithm B is enabled.

l3..,low it is nOSllm..,<l t.h"t, ""n,lit.'o,,); (a) and (b) (0"" a.ppc",lix H) ha.ve already been proven.

Choose some node j in V.

By inf.b.l~·tioJ1 (Hl di~t(j .).1) W~~ shall lU,)W !;ihow t.ha.t

(**) if if f\"TP holds, thell there exists SOlll€ node j' satisfying dist(J',k) 'S dist(j.k) for whkh

at. l(~ru;t OlW of itH own rU:t.iOIlH iH i.~Tlahh~(1.

'fhis, obviously, implies property (*) ahove.

JJasis of indu(tion: di,'t(j,k)=O holds. Th\l~. j = k h,)ldh, tno. Under the assumption that

If f\ -,yp holds, it follows that. at. least one of node k's own actions is enabled. Obvio\l~ly, (**)

above is satified in this ca.~e.

Induction hypothuis: for ~n n<.'d~, j, if If II ~TP a.Ild <iist(j,k)=" ~O hold, then there exists

~{HI1e Iu.){h~ / sat.isfying d'i.'ft(/lk) ::; n for which a.t least one of its own actions is enabled.

Induction step; assume that dist(j,k)=n+l hold,. Thi~ irnplie$ th,,!. j 'I' k holds, too. Note that

If II ~TJB impli~~ t.ha.t. ~JC E b'j./m:j = !()(:j.c,s is satisfied. Also, for all C E E j , Pj(C)=<>

holds, i.('., [\0<1<, j has nol. received any lllessage. If node j can perform one of it, actions, th~Il

GO

we are done, since (H) clearly holds. If node j ""'lnot p<:rform '>ny of its own actions, then it

follows that for node j's adjacent edge C satisfyil.g Dj(C) = (li8t(j,kJ-"l, ~ay ,>djacent to node

C, (T/iC)=<> holds- From the invariant If, we then obtain that/lp i~ ~M,i~!ied_ (U) above

IlQW follow~ from the induction hypothesis and the fact that dist(f, k) < d'i8t(j, ~,) hold~_

For algorithlll C the pr<,cOII[litio[l$;).II; $p~dfi<:d by the '>SsertiollS qj (j E V) defined above. The

post(:[}IIdition~ 3T~ ~h3l:<V.;teri~ed by assertions rj (j E V) described by I'j "" If II If _ Th"

assertions t; and Tf are defined below.

For node k, the assertion If is the conjunction of

Ifn,(l 5 1l 51 queuek 1=0-

=:.- ::IC E Ed'l~,;~,e~[nl =< (-'('k(w) , C > II Pk(G)=< ack(w) > /\ II~Nh(C)))

(any element in node Ie's queue consists of a messag" mmp')[l(ent, ack(w) and an edge

c.omponent_ The latter component records the identification C of the "'d~ alOllg which

the u.c/o-messag<, has beell re(~ivcd, Moreover, ~NdC) hQld~_),

\/n, m_(l ::; n < m::;1 queue~ 1=0- queuedn] f- queuedml)

(each element in the queue is different from any other clemeilt in that 'lllelI~),

- valk '" Iu II Ttee(V, E) II 1 V 1 ~ 2,

\/e E Ed pdC)::;< ack(w) »
(node It can receive at most Olle ack-message alOIlg any of its adjat/,nt ~dg('s),

- 170 E Ed crdG)=< info(w) »

(if node k has recorded t,hat it has received a mes~age along a cert,ain edge, thep this

message h'>S been received along that edge), and

the diijjl.lndion of

• (loq",at-queuek II (,donek ::IC E Ek.,Nk(Cj))

($at.i$lied initially. It a.I;;o holds wh"""ver lock<=at-q'lj.e~~k i~ ~"ti,fied),

• (OlC E E..(IQq = 1.,G,4 /\ ..,NdC) 1\ P.(C)",,< ack(w) > /\

1\ 1711,(1 :5: Ii :5:1 queU€k 1-> queuek[lI] #< ack(w),G »)

61

A -,danek)

(8atiofied after node k ha.!; removed an ad~mcs~ag" fWnl it.s '1,1(,,,o),

• (3C E Edlock = Ik,c.5 A Nk(C) A pk(C)=< ack(w) »A ,Jonek)

(~at.isfkd aft.er node k ha.!; re"'-)T(kd t.h,: i<iCIlt.incat.ioll of the edge along which the

ac/rmessage has been received), illld

• (:10,,= Ek-(l(>('k - 11:,a.~) 1\ q')E"',ek =<> 1\ --.do'fl,q 1\ 'Ie E Ek.Nk(C))

(5atisfied aft~r node k ha~ passed t,he test VC E Ek,Nk(C)- Ohoerve that, if this te,t.

is nol. passt~d, then the disjunct above for which lOCk =at-qU€t,el; holds is establhhed­

The same disjunct is also established after node /., I"," I'"rf,;rm;:d t.1t" ",,,igIlmcIlt

dOfl<?k' =t~lle_)

The assertion Tf is deJilled by T[== dOf,ek' It holds after nod~ k has received the iDJormati<.",

t.h'Lt. all ot.her !lod", ill t.h" ,,,;t.wurk hav" i",ked rcccived the ;nfo--message.

- Thee(V, E) A 1 V 1~2 1\ valj-w,

:JC,,= Ej_(C - inllCQ"ch j A Dj(C) "-' d;"t(j,k}-l)

(tile vatiable ;nbnLnd'j ha, a defined value. The edge identified by inbranchj is I,he (m('

on the shortest path from node j to node k),

Nj(inb,·tmd'j}

(node j has recorded that it has received a message along the edg<i id""tifkd ~ly in/m",chj)'

IIn_(l S n sl queuej I=i- =iC E Ej_(queuej[n] =< <u:k('w),C > 1\ -,Nj(C) 1\

Pj(C)=< (lck(w) »)
(d_ rr ab/)v<i),

- vtI,m.(l:<:; n < m:<:;1 queuej I=:>- queuej[n] i' queuej[m])

(d- rr above),

\lC E Ej.(C i- in/JrlLTu:hj =; "j(C)=< irtfo(w) »
(nocl~ j has tran~mit.t.ecl an info-message along all its adjacent edges different frOlll the

edge identified by inbranch,),

62

.. VC E' Ej.(C;f inbranchj "'I- pj(e):=;< ack(w) »
(node j C(UI receiy~ at rrlost Oli", (1Ck-111~SS(!.g" al011g its a.dja.~':'lIt "'dg~s differcllt fr0111 th,:,

edge identified hy inbranchj),

- pj(inbrat~chj) =< info(w) >
(node j has received an info-message along the edge identified by inbranchj),

- <Tj(inbT!1.T!chj)S,< ock(w) >
i.e., node j sends at most one ack-me55ag", along th", edge identifl¢d by inbranchj,

- VC E Ej.((Nj(C) II C f inbranchj)* p}(C)=< rlck(w) >
(for all edges C different from the edge identified by inbranch) the follOWing holds, If

node j has recorded that it lias indeed received a message along C, then j has received an

uck-message along CJ, and

- the disjunction of

• :lC E Ej.(locj = Ij,c,6 II C = inbranchj) II o'j(inbranchj) ""<> II

II vC E Ej.(C 1- irrbranchj =:- ...,Nj(C))

(satisfied initially),

• (:lC E Ej.(Iocj = Ijp,!) II C = inbranchj) II I7j(inbranchj} =<»11

1\ vC E Ej.(C "" inbranchj) II queue.j =<»

(satisfied after node j has passed the lest VC E Ej.Nj(C)),

• (lOC) =at-queuej)

(satisfied aiter node i has transmitted the uc~message along the edge identified by

·inbranchi),

• (:lC E EAlocj '" IJ•8.0 II Dj{C) '" dist(j,k)+l II ...,Nj(C) II

II \In.(1 S n:::;1 queuej I~ queu<"j[n] 1-< uck{w),C »))
(satisfied after node j has removed an ac/t·message from its queue),

• (3C E Ej.{locj = Ij,9,c 1\ Di(C) = dist(j, k)+l II NI(e))

(satisfied after node j has recorded that it has received a message along the edge

id'''Dti6."d by the edge component of the most recently removed message from the

queue), and

* (:lC E Ej.(loCj '" lj,lo.c 1\ Dj(e) "" dist(j, k)+l II '<IC E Ej.Nj(C)))

(satisfied after node j has passed the test VC € Ej.Nj(C). Observe that if this test

63

is not """""d or if an aek-message is tra.n~mitt",l by nod~ j along the edge identifi,,,l

by inbr,m(.'h j , th"n the the assertion If is pr~!(:rv"d. It b also preserv€'d if nod.- j

r~(',e~ves an a(k-nl(~~~agc.).

For .i ;t ~, we define Tf as

Tf =<7j(inbranchj) -< "d:(w) ;-.- AVe E T;;j.NJ(C). It holds after '10,1<-: j has sent a message

"-long th .. edge ide11liflctl by ;n/Jrand!j.

It (:an be shown t.hat C 5at {rf 1\ T}' I j f V'}, {If liE V'}, {If 1\ Tf I J f V'} > holds (d.

appe'HHx TT).

E"tahIiQhinv, the verification c",,,liti(l"~ (3) through (6) formulated in a.Jlpendix II is straightfor­

watt!. Obvi(J,,,]y, verification (OIl(litioIl (3) h trut:. As an example of how orw ("mid e~tab!ish

the other (olldi(io"" w(" "hall ,how how the lilst disjuIlct of COIl<liti')rl (4) can be ShOWll\O hold

for noM ~', i.e., we shnll 8how t.hat (U~('ble.d(If 1\ ~TF, ISf) hold~,

T\1 order to do ~(), 'Wt",,, that if Iff 1\ ~TI! hold~, t.h~n "n actio" in (,he ~et fsf Call be cIlabkcl

onl'y if /O<:h-nt-qll.e1t'k is satisfied. ·l'h" lat.t"r impli~s ,hat, only actions by which au !u:k-rn.:SHas"

is rCIlwv"d from node k's message qul",e (a.r, b~ enabl~d. If! ;\ ~Tk6 implies, however, t.lla.!' k',

CliAPTER 4

A detailed analysis of

Gallager, Humblet, and Spira's

distributed minimum-weight spanning tree algorithm

-An example of sequentially phased reasoning-

F.A. Stomp

University of Nijmegen, Department of Computer Scienc.e,

Toernooiveld, 6525 ED Nijrnegen, The Netherlands.

Email address:frank@cs.kun.nl.

W.P. de Roever

Eindhoven Unive~8ity of Technology,

Department of Mathema.tics and Computing Science,

POE 513, 5600 MB Eindhoven, The Netherlands.

Email address;wsinwpr@eutrcS.urc.tuc.nl.

Abstract: Correctness of th" di~tdbuted minimum-weight. spanning tree algorithm of Gallager, Hum­

blel, ill:J.d Spira [GHS83] is proved. Two kinds of (slight) optimizations W_Lt_ the number of transmitt<:d

messages during execution of the algorithm are proposed. A source of failure of the algorithm is de­

tected and corrected. The COrrt)ttne~s proof exemplifies our principle for sequentially phas~d rea.<;(ming

about concurrent programs [SR89a, SR89bj. Our proof illustrates that correctness proofS of complex

algorithms can be structured according to their designers' jntuitioIL

67

1 Introduction

Ever ~in("~ Floyd [F'f)7il'roposcd his method fOI verifying (s"quential) programs, repr(:Htnt/:d by means

of fi,)wdli1rt" variolls proof methods have)"'t:Il presented in the litera\.\m: [AFIum, H50, L83, Me81,

OG76, ZRE8!), Z8\l], li.r rCi1~Ollillg about sequential aUlI dish'ibuted prOgl'ams-

Proof n;let.h<-,d~ <'all, in t;''''''T<,I, L~ d<~ssified as compositio""Z OIles, such as tho,e in itI69, L83, MC81,

ZRE85j £Iud in [Z89), in whkh I.ll(' spN-ihti1l.ion of a program i, verifi<:d On t.he basis of sp~dft.('at.i<)Ils of

its constitu"nt. WmpOne,lts without ,ef~rring to t.ht· illternm construct,ion of t.ho,,, Wlnponents IZ89],

and as non-compositional on~s, su(:h <I, t.hose ill [AFR80, F67, 0(;76]-

Examples of the «pplkiihilit,y of t.he laHer mentioned verifit:ati(lIl IIlNhods illustrate, al",ost. wit.hout

exq:pti()n, th"t th" """.o,ling about a progrom t,LA:f.R 1'1i1<:'~ afler that program 11.(18 /",,,,, "6,,~.tr'ucted.

Th" tedlIliqnt of transformational pu)gr;;;lIllIlin!! [B1{83, CM88, D76, PSIl] h"s also l'eceived a 10\. of

attelltion. This technique adv()<:at.ts deriving a program, otartin!; frOlll SOlne formal specificati.-.,., b'y

sucC(~~sivdy applying conec.tness pr~;!i.F.rvlng tranSfOl"lllalion p:dn('.i:pl~~. The pn)gI"dIll\ thus ohta.inf:rl,

,,,t.i,ft.,,, (hy ,khnitioll) the initial ~pecifi(:ation_ As a tonsequen(€, t,h~ t.~dlltiqllc of transformatioual

prOgJ:<Ul)ming ,'(,-n I,,' viewed a..~ a verificatlol) tee_hniq"", wi""", Ihe program to be 1J1't"",d correct is

derived. or construded, il1,rill.g it., 'vo,-i/ication phase_ It en('-bks Olt<) to develop a progTiLm (1nil it. proof

hand.in-hand, 'With til.<,' pr'w! idc<lS leading the way [G81]_

R~('~Tltly, wt: haw: proposed in [SR89a, SR8\)!>] a transformation p)'indpk for sequentially ph(L~,d

n:""olli,,!! about concurrently performl:iI (,"b)tasks in network algorithIll~_ Tha.t is, if a certain ta;;k to

be performed by prou:~~c~ in some network can be split up, from a logical point of view, into several

$l1bt.askl; as if they are perfo~m"d o~q"""t.ially, then our principle descrihes how one can combine t.he

programs solving tl", ,,,hl.asks ill order to obtain one pr()sr;yn which solves the whok task. (Viewed

as i1 proof principle in som~ proof 'ystem, any such proof ~yotcm is i1 nOll.compositional o[lc.) From

an 'l."alyzer's or from a desigJ1er's point. "f view this kind of dee,omp,,"it.ioll of a task into wbt",sks is

quite attractive, ~in",· it. al](lW~ him to concentrate on it Si[lgle subject at a tim!?_

A iarg¢ numher of complex network algorithms, such as those for minimum-path, connectivity, ndwork

How, ;yul minimum-weight spanning t,rc~s described in [Hu83, MS7\), 8c82, Se83, Z880), ;U¢ st.ructured

according to our principk

As shown in the pre8ent 1"1[","', th" complicated distTi~lIte(1 minimum-weight spanning t1'<'<' algorithm

68

Of GlJ.lIlJ.ger Humblet, and Spiro [GHS83] i~ al80 Btructured a~cnrding to this principle_

Probably the simplest network algorithm in whkh one may dC~C)IT\poS€ the design of a program, or

the r~<lJloning about it, into ~ubprograms as if they are performed ~equentia11y is Segall's PIF-protocol

[Se83], al~o 5ee [DS80] and [Fr80], which is a broadc~ting protocol. III this algorithm, the whole task

perfonued by the pro~esses in a certain network can be described as follows; SOlll~ value w, initially

recorded by 80me process k is sllpplled to all other prO~esses in tile network, and k is inforIIlt,d that

all nodes have recorded thi$ value indeed. 'This task ~I\ll be decc)Jnl'osed into two subtasb ~ if they

ar~ performed sequ~Iltii!.lly' the first sub/ask ht"Oad~asting the value ,~, and the second "n~ reporting

back that t.he processes in the n~twork have received and recorded ow.

The sanle kind of decomposition can a.Iso he discerned in the diotributed minimum-weigh •. spanning

tree algorithm of Gallager, Humblet, and Spira. [GHS83], whid. will fwm now 011 he abbreviated

to Gallager's algorithm. Hcre one may decomposc the whole task of mnotructing the minim urn­

weight sp lIIing tree of a network into five (sub}tasks. Apart. from the fact thM. the~e five tasks are

performed sequentially from a logical point of view, that algorithm dir;plays othel' additiimal features

(see section 6), e:l;plJ.nding groups of nodes perform the fiv<:, tasks repeatedly, with different groups of

n,)der; performing these ta.>kr; concurrently w.r.t. Another, and a cert";n t;u;k performed by On" group

of nodes can be disturbed tempomriiy due to illt"rf~rence with tile task of another grOllp.

We define two other prindples for coping with these additional f"atur~,r;, One principle descrih~r; how

to cOI~lbin~ programs which are cxc,;uted completely i"dcp<:nd<:'nt of each other, 1.,,_, when programs

are executed concnrrently w.r.t. another :tI,(! no communication o('curs between two distill(.t programs.

The second prilltipl<) describes how to deal with the above-l11ention,,(! kind of interfereIlc,,_

A~ argued in the sections 4, 5, and 6, the (distributed) program describing Gallager's algorithm,

which will from now on be abbreviated to Gallager's program, can be deriv<'d frOm. a sequential

program whith con~tructs the minimum-weight spanning tree of a graph. That is, On" can start

with a. seqw:,gtial program that ton~tructs the minimwn-wdght spanning tree of a gr3ph, then refine

parts of this program lmtil distributed programs are obtained (eadl Such PaJ:t corresponds to wm~

descriptioll how a ~e~tain task can be solved), and finally COmbine by means of Our l'rinc;iples the

distributed programs found above into one program_ The final (distribut~d) pl'Ogram, thus obtained,

is Gallager's- This particular strattgy has allowed us to find two (slight) optimizatiOnS of the program

in [GHSS3] W_Lt_ the Dumber of message tr<Ul$mitted when t'Ox('cuting Gallager's program_ We have,

69

in 'ilillition, as a consequem'e of ()llr kind of reasoning, detect~d t.hil.t the program in [GRSS3] does not

IH'''''li,aril,Y constru(,t the minimum-wI~ight spanning tree~ for ;uhitrat,Y graphs, (The r~ .. '<)n fot this is

cxplained in se('ti(>Tl 6-)

The l';r,t .. t.t.I."npt t.o prove correctne~, .,f Gallager's algorithm app"""' in [SR87]. The proof there is

based on the ahove-mentioned kind of de(ompI)Kitions of tasks into S\lbl,ash_ There the principle for

licqucntial phl\-~ed re~(ming It,\,!; be~l) identified as an Ind<:pcndent principle, but. t.hi' principle has

not, I",en formulated no~ jU5tif)~(L C(mf,Njucntly, the proof In ISR87] should be considered iutomplete.

Wekh, Lamport" "",,[Lynch [WLL88a) have giv(", a COl'rectness proof ()f Gallager's algorithro 1)$ing

a part.ial hierarchy of algorithm,_ Unfortllnately, their compld,' proof is a very lengthy one, cr.
iWLL88hi. Chou and Gaf]]) [CGSS] have ;\llalyzed a minimum-weighl spanning t~~~ alg()rithm of which

th,',Y dil.hn that it is a ~implilkd VCl'SiOIl of Gallager_ They hat-e, however, not vetified Gallager">

al~orithm- (In ratl., the,Y have verified a f .. r "'"th simpler algo~ithm I.h;m Gallager's, d. sectiOn 4.)

Th.: r(,,,,i!.i,lder of this paper i~ org,,"i~ed as follows: in .<'(:th)1I 2 we introdu(~ som" not.ation used in

thi~ paper. We describe our prindpk for sequentially phased rea,()llillg about concurrently p<:rformed

(,uh)t",h ill .eclion 3. The ha;;k features of Gallage~'s alg<)rithm alld of its correctneos proof are

the subje<'ts of ,(,niOIl 4. II) section 5 th", formal specilication is p"",,"kd which Gallager's program

silould satisfy- In oedi,," r. it i, shown that thi, i, the case indeed, filially, ~cctiol) 7 contains SO"",
conclusions_

2 Preliminaries

hi this section ,m'", notations and conventkm$, u~(ld throughout thi. papct, are introduced_

The \'eader is as,umed tIl he familiar with elementary notions from graph-tl",ory, such as graph5, t.reeH,

and c:yd"., and with their definition. and propertie$ (of. [E79J). Graph$ are den<>tcd by tuples

(V, E) (,on,i!;ting of a set of nodes V "-,,,1 a set of edges E- For graphs (VI> E,) and (V2, Ed. (V"

E,) b (~;:ulcd a subgraph of (V2, E2), denoted by (Vi, El) <;;; (V2• Et). iff V, <;;; V2 and El <; E2 are

hnth satisfied. If (V1, Etl <;;; (V2. E 2) holds <IDd if (Vl, £1) constitute6 it trce, then (Vl. Ell i$ called

a subtree of (Vl' E2)- The graphs (Vi, Ed (l.IId (V2 , £2) are distiIld, denoted by (Vj, El)~(V2' Ed,

iff V1 f- V. QT E I ~ E2 is satisfied. In the sequel i, j, and k, P06$ibl'y primed or inde"",d, will denote

70

nodes; edges will be denoted by e and e'. For a graph (V, E) a.nd a node i in V, the set of all edges

adjacent to node i will b~ do>noted by E,. lIereafter, EiJ will abbreviate the set E; n E j , Le., Ei,j

denotes the set of all edges connecting the IIodes i and j (i, j E V).

The distributed algorithms consid~t",d in this paper w:e performed by processes in a fixed, finite, and

undirected network which will be represented by a graph (V, E). Pro"c,,~~:~ are identified with nodes

in V; Communication channels are identilled with edgeij in E. Adjacent nodes communicate by means

of messages. Since edges are undirected, each node can both send and receive mc"sag','" along <lIlY of

its adjacent edg"s. COmmunication is asynchronous, i.e., messages ttansmitted by ijome nod!;' along

one of its adjacent edges always arrive within a finite, but unpredictable, time frame at the othet end

of that edge. Communkation i. a.o~umed to be perfect, i.e., messages tra.nsnlittcd by SOme node along

one of its adjacent edges a.rtive in $eql.lC,lce, enor-free, without loss, and without duplicatiOll at. the

other end of that edge.

3 Our proof principle for sequentially phased reasoning

w. now pr",~ent our proof principle which states that one can teason sequentially about concuTTently

performed (~ub)t<l"il<;s- For a fully worked out illustration, applied to Segall'a PIF-pr(ltocoi [Se83], the

reader is referred to [SR89bJ.

3.1 Notation

We consider-distributed aJgOtithms which axe pedormed by nodes in a network (V, E). A distributed

algorithm 1) is represented by a triple < V', {Pi liE V'}, ActD >. V'S:;; V denotes the set of nodes

containing aU tnose nodes that actually execute the algorithm; This implies thaI if some node in the

set V' sends a message alollg one of its adjacent edges ~ when it ",xecutes algorithm 1), then the node at

the othet end of ~ is in V', too. Pi (node j'$ precondition) is a state assertion characterizing the initia.i

values of node i's variables and the initial contents of nod" i's adjac~nt edg~s; Act1) is a set Of (atomk)

actions containing ail those actions which can OCCUI in any wmputation sequence of the algorithm

(ef. definition 3.1 below). Each action (t in the set Act1) has some enabling condition en(a) associated

with it. Such a condition consists of a boolean e~pression OJ: of a boolean e;xpre$sion ~ornbined with

71

a r('t~iv(,-st,akmcnt (c[[H78]). (Tn th~ t~dlllit;,.I fOtlnulation of our priIlciple, see section 3.3, th"

h<)okiUI l'iU·t of th'" enabling condition of adi'>II (1 will be denoted by bl'((I).) Moreover, the set ActD

(~iUl be pMlitioned into set~ A~tP ~llth that each Act? con5i~t" <i ;,.II actions which can b~ ~:wtllted

by node i (i E V').

Definition 3.1 Let P- < V', {Pi Ii", V'}, AdD> be an algorithm. A Nmlp,ltation sequen"" of

V i.1i .rl rnaxiIHHl sequence So ~Sl ~3:.! ~ , • ~uth that for all n ~~ 0 th(:~ following is satis:6ed~ "11

is ,,\. sta.te, e~dll)i (i E: VI) hc .. ld~ ill state SUI a1~ O('C,Ufj in tlu~ ~N. AdD, action Q'.n iii (:I1H.hl(:d in state

..;-in? Le_ , (,'/'r~':;: c.~lldbliI).g condition. hold8 in 8)11 azul .'In+l is the state res1.dt,ing Wh('~Il a,(tiotJ. an is exe(~utt-1"d

ill state s". (As u5ual, a ,:(,rnpllt.atioII 8equence is considen,d t(J be maximal if it 15 infillit,(" OI if it is

finite and no action in th", 'd At:t;'D is cnabled in the la5t ,tat~ of the 8equence,) •

Th~ r~aWIl for allowing the first ('omp(lIl~'nt V' ill the triple abov~ to 1,,~ a proper subset of V, i.".,

the set of all nod,,, ill t.h~ 1I~t:work, is that in Gall"g~r'" ;,.Igorithm the tash which we ailaly~e are

.,ot performed by a fixed gTOUl' of nodes. More pred~ely, I,h,·", ta~b ate performed by dYIliUlIltally

dI'\.llgill~ groups of nodes. As a (:()[lH<:<jlU"lt'~, we explicitly indkat~ in au algorithm whkh nod~, Ill,'y

a<'tnally lI" iuvolved in the ex€(:ution of ;<II algorithm.

We condvd", thh snb,,,.-tirHl with the following:

Definition 3.2 Let j be some node in V', (V' d~n(Jtc~ the first component, iII ;,.Igorithm P, see above).

Loot • .' <1"llot~ ~ome edge adja<:ent to nod(, j and to another node i ill tit" ~"t V',

(a) Intp C; Actp denote, \hl.' ,d, ()(Ilode j's internal a(,tiolls.

(1:» Recp(e) <; Actp d,,"(,tC' the set of node j's !'(:U(llIH which hlvolve the re.,,,,ipt <",fa Inessage along

edge eE Ej .

(c) SenF(e) C; Act? dellot,," thc set of node j's !'ction$ which involve the tr!'nomis~ioll of a message

along edg,' ~:E E j ,

(d) Hereafter IS? will <icnote the set of node j\ internal actions and those actions which involvt,

the triUISmis~ion of a message, Le., IS? = 1r~tp U U.~E, SenJ'(e) .•

72

It is assumed th,u f,)r <.'«~h algorithm 1) as ab(>v<~ t.h~ :;~t ActP can be partitioned into the (possibly

empty) :;ets Intp, Senp(e), a.nd R€cp(e) (j E V', <' E E;,j fOJ; some node i E V').

3,2 Correctness fOl'inulae

Let V= < V', {pi liE V'}, ActD > b" an ;;.Igodthm for which th(: th,·: following should ho\d; Ewry

finit~ computation sequen(~ (,r V ~nd:; in a state satisfying mme (given) state ass~rti(Jn, qi (i E V').

I.e., algoI·ithm D i:; oupposed to solve a (suh)ta.'k described by the pair of ,t«te assertions {Pi liE V'}

(the preconditions) and {'Ii liE V'} (the postconditiOIls).

We now introduce correctness f(JrI!lul;w of the form

TJ sat < {rj I j E V'}, {Tj I j E V'}, {'Ij I j E V'} >. Here l i , Tj , and qj Me state MSCrtioIli;' A

correctness COlIlluia a.~ «bove is valid if for eveq cOlIlputation sequence of D th~ following hold;

• For aU j E V', I j holds i,l <'a.(:h $t,4e of the sequence.

• For ;;.II j E V', Tj holds iff I,od~ j will not e;l(ecute any action in ActV anymore. Tj is call"d

node 1'5 termination "Muliti(lfI..

• FOr all j Eo V', 'Ij holds when and if nock j ha~ ('ompleted its par-tidp"ti"n in V.

A t(.rr~(tn"'ss formula as above ta.ll Iw characterized in linear tinl" t~mporallogic [MP83j. This i~ t.h~:

subject of ddinit;(Jn 3.2 below. We have llscd th~re, i\J; in [88841, au:!:;I;,,"y proof variables "'j(e) and

pj(e) (for nodes jE V' and for edges e E Ej). They arc ll~cd for reasoning about cOIllnlllIlka.tioII. (Tj(e)

",cord, the sequence of all I1'<l~sag!:ij transmitted by node j along edge €; pj{e) records the sl:'l1l<:n(C{:

of all rnessagc. n:(,,,,ived by node j along edge Ii. F'or node~ i lind j and for edges "E Ei,j, the property

pj(e)SCI'i(e) is preserwd hy <my action, see [8S841. That is, if edge e connects the [\Qdc~ i <md j, then

the ~\:q\len.~e of all messages received by node j along edge e is a prefix of all me~!;ages transmitted by

node i along edge e. These auxiliary pr()(>f variables are changed when a node transmits Or rcCCiv(,>

a message; they arc not ~ha.nged during the execution of an internal action. (All internal M,tion does

not involve any communication between n(Jdes.)

For a certain node jE V' and fot a cert:lln edge e adjacent to j, action a E RI:cp(e) is enabled (recall

that R;,,(:P (f) h<l$ been introduced in definition 3.2) iff the following holds; the boOle:m part bpi a) of

action a '8 ena.bling condition is true and the sequence or all me~sages received by nOlk j ;;.long edge e

is a prop"r profix ,,f I.he 5equence of all messages trar'>Irlitted by the node at the ath;:r end of edge e,

73

Fonn«lly, for sll~h an action ental hold~ iff bp(a) 1\ pj(e)<(Tk(e) is satisfied wh~re k is some node in

V' Hllell that e f Ejk

Of course, for a.ny ad.iOn <i E I Sf the en(l.bliIlg condition en(a) of " is the same ao; th" boolean part,

of thh "Il"hliIl!; condition, i.e., en((l)= IJp(<i) is satisfied.

Definition 3-3 'Th€ ,'()rr<>t/.Ili'"S formula 'D sat < {ij I j f V'}, {Tj I j E V'}, {qj I j E V'}, d.

abov,~, i, an abbreviation of th~ ('oIljunction of the condit.ions (aJ through (f) below. (Some ,)f these

conditions are reduIId"nt. The'y have been hld\l(led in order to formalizl" the intuition hehind such a

corre(.tn,'~~ form1l!;' ill a natural way). 1'h(' cOllditions are interpreted over all ('ollll'"tation seqnen(:",

of D. (Bdow 0 denotes the a.!ways-opcrator from temporal lOgic.)

(a) Vj E V'.O(prcr "". If) 1\ Vj,;', E V'.'1e E EjkO(pr/P '* pJ(eJ-s q.,(f)).

That ls, initially t.h" "",,crhon IP holds for all llodes j in V'. Fllrthcrmore, the H~'l"Cn(e of all

ITI""'''r;('s rc~eived by a certain node along any of it.H adjacent edges is a prefix of the seqn;onu, of

all messag~, t.ril.Ils"litted by the nod", at the other end of I.hat. edge is satisfi",d initially. (From

the di5(.\IH~i{)n abM" it follows that th" property 'Vj, k E V'.V. E E,,j.pj(e.)5 O"k(") contin\lonsly

holds during execnti')ll (,f algorithm P.)

(b) 'Vj E V'.O((IT i\ -,rp)U(Ip 1\ TP)) . Here U denote8 t.he weak-until operator, cr. [MP83].

W" t.llll~ h;lVe lhat I p is an invariant and for a.!l computation seq\lenc;~. of D "node j p<\.It.icirates

ill thr algorithm until it hil.~ completed it., p<U"ticipation".

(e) '1j E V'.Va '= A(,tp.O((IP 1\ TTl =,>- ··":Tl(a)).

(For actions a, ental ha;; b~""l defined above.} I.c., if a certain node has compJet~d its partici­

pation in algorit.ilIlI D, then it ('(l1lnot perform any a(!t.io,\ associated with D anymore.

(<I) "t/j '" V'.o(Up i\ TP) :::::. O(IP i\ TFl) .
That is, once a nod" ha" completed it,5 p<U"t.icipation in D, t.h"n it will never pa.rticipate in t.h"

algorithm anymore.

(e) Vj E V'.o(UP i\ -,TP) -=,;>(30 E ActV.cn(a))).

If a certaip node has not completed it.s participation in fIlgorithm V, then 1) cannot be completed,

i.e., at le<l!;t. "lie action in ActD is enabled.

74

(f) 'Vj E V'_O((IP A 'TF) =} postp).

I.e., if node j has completed it.s paxticipation in V, then j's postcondition holds .•

3.3 Description of the proof principle

Let A",,< V', {prert liE V'}, ActA> and B_< V', {prep liE V'}, A~tB > h~' l.wo algorithms. Let

A solve th", subtask d~suih~d hy the pair of assertions {pref liE V'}, {pre? liE V'}. Let 13 solv!O

1.1 .. , ;;l~ht<l!;k described by the pair of assertions {pre? liE V'}, {pORt? liE V'}_ Assume that we

have shown that for Cert.ain $t.at¢ a.'s"rtion~ If, Jp, 'TjA, and 'TjB (j E V')

(1) A sat < {If I j E V'}, < {T/ I j E V'}, {pre? I j E V'} > a.nd

(2) B sat < {If I j E V'}, < {TP I j E v'}, {po8tf I j E V'} >

both hold. If th", verificatioli cOnditio"s (3) t.hr01.lgh (6) h"low hold, too, then the algorithm consisting

of all act.ion$ o~cu~rjng in A and B solves the task described by {pref liE V'} and {po.tf liE V'}.

Moreowr, for all j in V', If V If is an invariant of this algorith .. ".

More precisely, if all the conditiolls (I) through (6) axe fiati$fied, then fo~ the algorithm C=< V',

{pr"rt liE V'}, ActAUActB >, C sat < {If V If I j E V'}, < {If ATf' I j E V'}, {post? I j E V'} >
holds.

As a preparation for the technical formulation of the '1ermcatiOll conditiollS (3) thtollgh (6) I.>~low, w~

first introduce an auxiliary assertion.

Definition 3.4 Let P denote some state assertion. Let AO be a certain set of actions.

Denne th" assert.iOn ai'(lbl~a(p, AC) by ai'(1./!l~fl(P, AC) ~ o(p =} '</(l'::: AC-~e~((l))-

ThllS, dis(lbled(P, AC) expresses that if l\lIse~tioll P holds, then all actions in AO are disabled .•

The following conditions are required for a sound application of OUI principle,

(3) Each of the programming variables occurring in pre-/" pre~, post~, If, If, TjA, and TjB is

node j\ own vadable- If the proof variables n(e) or (Ti(e) occur in any of these assertions, then

l=j and e E Ej axe satisfied_ (Vaxiabl¢s occurring in any of the above $.Ssertions can he changed

ol;lly <I!; a ~e5ult of the execution of one 01 nod", j's actions.)

75

(4) lij E V'disabled(I/' 1\ -'TjA, ISf) II 'ii, k E V'Vf- E EJ,k·di8ablf-d(rf II ~Tf, Sen~(e)) holds

for all computiition sequences of A.

This condition states t.hat if a "ert<;l.in n(>de h"" not completed its participation in algorithm A,

therl it can perforoolleither au internal action nor a se'ld-attion occurring in algorithm B (th.: first.

wnjunct), and it Cilllllot r~~ .. :iv;· ""w"iige ",~,o"h,(,,,d with algorithm. B (the second conjunct).

Th" l"tter i~ satisfied because if lhe node participates in algorit.hm A, th~n it iH rl'q\lirl'd that.

none of its neighbors call send 1m,,!! rn€H~ag~s. Consequently, this condition ensures that if a

cert,!!ill ,,,,d,, has not completed its participation i,l a1gotith,1l A, t.lt,," it CilllIlot. perfOTIll illlY <)(

its actions asso6at<,d with 8.

Of ,'ourse, we also rNluire I.hat 'w llode "III perform iiny ii,-,tion iio80dated with algorithm A, if

it. is piirtidpating in algorithm (3,

(5) 'ij E' V'.diSal)led{l}, II ',TP, [81') II 'ij,k E V/.'ie. E Ej,k.di8able.d(lf II ~T)B, Se.n~(e)) holds

fOr all <.COmputation seqnenees of (3,

(6) Vi Eo V'.di8abled(lf 1\ TP, IS/) II 'rtj,k E V'.'Q'e E Ej,k.di."bkdU}' II TP, 8enf(e)) h()ld~ for

all computation sequencM of B.

Th~r~(orc, "ad, n()d~ whi('h participates in both sub tasks participates in the first sub task, i.e.,

th~ one solved by algorithm A, before it, pArt.icipat,cs in t.he Second sllbt.ask, i.c., the one solv~d

hy algorithm B.

If, i,l ad(li/.ion, (me wiints to prove that the algorithm solving the whole task always terminates, then

it suffices to prove tha.t. bot.h t.h~ algorithms A and B always tel"minak An algorithm :DE{A, B} M

ahov.,: t.erminates iff for all j E V', O(ip II TP) holds for all comput.a.tion sequences of :D. Her",O

denotes the eventua.i-op"'raU}r frelIT! temporallogk.

How to reasoIl, according t,) thi~ ~tr"tegy, ahout an algorithm which solves a tMk that CaJJ. be split up

logica.ily int.o more t,h"n two subtMks, as if they are performed sequentially, should be obvious. (This

is a straightforward ext.ension of t,be case treated above, cr. [SR89a, SR89b]; It can also be achieved

by repeatedly applying th~ ",hove principle.)

76

4 Basic features of Gallager's algorithm and of its correctness

proof

Gallager's algorithm is a distributed algorithm for constructing the minimum-weight spanning tree of

a finite, undirected, and connected graph (V, E) in which each edge in E has some strictly positive

weight associated with it, such that distinct edges have distinct weighh. In scction 4.1 we present

two theorems, well-known from graph-theory, upon which the conectness of Gallager's algorithm i~

based. The essential. of this algorithm are described in sectiO);) 4.2. The struaure of' our correctness

proof i~ presented in section 4.3. The di~cussion ill this section shows that both structured verifi(-<).tioIl

and structured desi!91 of cOffiplelC algorithms can be achieved by decomposing the reasoning and the

design of such an <).lgorithm according to its logical (sub)tauks.

4.1 Theorems undetlyjng the correctness of Gallager's algorithm.

Let (V, E) be a fillite. \mdirect<,d, alld connected graph (V, E). Assume that 1.1I:E-->I!t" is a function

assigning weights to edges, where IR+ de!lotes the set of all real numbers greater than O. Furthermore,

assume that 111 i$ an illjective function, i.e., th""t distinct edges have distinct weights. horn !lOW on,

such weighted graphs will be denoted by (V, E, w).

Correctness of GaJ4ger's algorithm is bl\!3ed OIl th", ~rr;i~t~n~" and the uniqueness of the minimum­

weight ~pa.IlIling tree of any such graph a;; above.

Th"or",m 4.1 Given any weighted graph (V, E, w). There el(ists a \lniq",." miniffium-weight spanning

tree of (V, E).

Proof; The existence of at le.;wt one ffiinimum-weight spannillg tree of the weighted graph should be

clear. To show the uniqueness of the spanning tree, we assume, in order to obtaill a contradidion,

that there e;xist two spanning such spanning trees Tl and Tz satisfying Tl f. T~. Then, obviously,

there eJdsts an edge OCCl.lrring i..o one, but not in both these trtts. Let e be the minimum-weight s1.1~h

edge. W.l.o.g. assume that edge e OCCurS i..o Tl and not in T2. Now, consider the graph obtained

by <).(lding edge e to the tree Tz. This graph contains a cyde. It follows th"t at least one edge 13' on

this cycle does not occur in the tree T1 , since Tl is free of cycles. Note that e 1= 13' holds. Moreover,

w(e')<w(e) holds, too. (Otherwise, removi!lg edge (:' froIn the tree T2 and adding e to T2 would yield

a spanning tree of the weighted graph (V, E, w) with less weight tha.n T2 , contradicting that n i$ a.

77

lllillimlllll-w",ight spannhlg tree of (V, E, tv).) Removing edge e from I.ht tree '1'1 and adding edge e'

to Tl then yields a sprumilltl; tree of the tl;raph (V, ,e, w) with It$" weight than TI . This contradict the

""ILIIl»!.i(", t.h.,t ::rl ii; ,', u,iniul1llll-weight spanllillg tree of (V, E, w). We (ond\I,k that. there exists

exactly one minimum-weight Spannilltl; tree of (V, E, w) .•

Theorem 4.1 .. nsures the existence of a unique minimum-weight ijpanning tree of a weighted graph.

How on(' ,,(mid "(:\1),,lIy (on,t.TIl(:t. t.hi, t.rc,' is suggested by theorem 4.2 below. As a pr~parat,iml for

this theorem we define two notiollS that will be used extensively in th.., rernait.der of this paper.

Definition 4.1 Cliv(,ll a w<'ight.ed graph (V, E, tv) as above. Denote by T th.., (IIni'lI1(:) minimum­

weight SPallllillg tree of that graph.

(a) A fra.qment of T is some non-empty subtree of T

(b) As~ume that f'=(V' , E') is some fragm~'nt of T. All ~dge ~EE is an outgoing dge of F iff on"

of the nodes adjacent to e is in F and the othe~ ooe is not. In ot.her words, edge e is an outgoing

(:d~(, of F iff the following is satisfied; for nodes i and j satisfying "E Ei,j' (iC V' 1\ j 1 V') V

(i1 V' 1\ j E V') holds. (Cf. sedion 2 f(,r t.he iuterpretation of the sets JJJ;,J') •

We then have the following

TheorEIn 4.2 Let F'=(V' , E') and F"=(V", E") be two disjoint fragm"nts of the minimum-weight

spanning tree T of a weighted graph (V, E, w).

(a) If fEE is the minimum-weight outgoing edge of Ji" and~, is Mljacenl to F", i.e., adjacent to 80m;:

node in F", then F'II=(V' u V", E' U E"u{e}l is a fragment of T, too,

(b) T=P' iIT no outgoing edge of F' exists.

(a) Suppose, in order to ohtain a.: (:ontradicti(m, that F'm is 110t a fragment of T. C<.m"'''l'u:ntly> edge

e is not in the tree T. By an argument analogous to the olle in theorem 4.l, thi, lead~ t.o "­

contmdktion.

(b) Clearly, T""F' implies that there are no (1)tgoing edges of F'. In order to prove the other

implication, assume that th",re exists no outgOing edge of F'. S1)ppOS~, ill ordet to obtain a

contradiction, that T f- P' is $i).t.i,fied. It then follows that there e;x;isM an edge c occurring in

T and not in F'. As aboY<!., tilt cxisteuce of such an edge lead5 to i). (mtradictioII .•

78

4.2 lHgh-Ievel descl"iption of Gallager's algorithm

From now on we assume some fixed weighted gra,ph (V, E, w). The minimum-weight spanning !.rcC

of this graph will be denoted by T.

A large nl)mb/;r of algorithms, both seque:ntial <U1d distributed olles, ha'le been suggested by thcor~rn

4.2 (see, e.g., iD59, GHS83, K56, ZS80j). All these algorithms h"ve in cmnmon that they start with

trivial fragments oCT, (OII$istiug of a single node (and, thu8, without any edges), and gradually enlaTg~

these fragments as described jn t.h~Or"nl 4.2 \.Intil T has been constructed. The algorithms differ in

how and when fra,gments are enlarged. E.g., th", algorithms reported in iD59, ZS80] staTt with one

pa,rt.itlliar trivial fragment and gradually cnlatge this fragment with one node <>nd onl: edge at a time.

The algorithm reported iII [:K561 starts with all trivial fr"gments. Two fragments combine if they hav"

the same minimum-weight outgOing edge and thi~ ",dgl' has the least weight among all outgoing <,dges

of the fragments constructed 00 far.

Gall",g",r\ algoritlun also starts with all trivial fragments in the graph. Fragment~ a,re combined into

larger ones according to a more sophisticated strategy th"" th<)~~ Olles adopted in e.g., iD59, ZS801,

""d [K56J; the combinations of fra9rn~nt. depend on sQ·ealled levels. Th", le~d Of a fragment of Tis

(inductively) d~fill~d below.

Definition 4.2

(il A fragment consisting of a, single node, i.e., a trivial fragment, is defined to be at level O.

Next assume that fragInent F is at level L. Let edge ~ be F"s Ininimum.weight outgoing edge. De1l0te

by F' the fragment, say at level L' at the other end of e. When F and F' 3I~ di_joint, then the following

is satisfied:

(ii) If the fra.gments F and F' ate at the same level, i.e., L=L' holds, and if edge e is the roinim\lm­

weight outgoi1l\\ edge of 11', th<;n the fragme1lt formed by combining F and F' is defined to be

at level L+l (=L'+1).

(iii) If t < L' is satisfied, then the fragment formed by combining F a,nd P' is defined to be at level

L' .•

In Gallager's algorithm fragments only oombine according to one oCthe possibilities (ii) and (iii) above.

If neither of these possibilities apply, then, from an operational point of view, fra.gment F simply waits

79

lIIltil ')n(' of th~se two 1'0,"ihi1iti~s OCCIIf'. Thi, ddoy does not lead to a. d""'<.lI()(k, i.e., if a fragment.~

waits for ... mi~ of the two pOA:.;ihilit.h,!;> ('J,bov~ to OCCur and thl',~ rninimurn-weight spillluing tn~i~ 110.5 not

y<:t heen consttll('!.,'d, th~T(one of the pM,ihilit.ies shall eventually ()teur. 1'hi. is prov('d ill theorem

6.1. A ""]I1""ti(11 descriptio" of GaU«ger's <1..I1(otitllm ib ,howll in figme 1 below. U"du t,I"'. ~."l1rnption

whlk I:F III
dQ :;(:kd ;:.;nm~ FI (Fi

lot F' .-.; (V',E'),L'
ll)t~· Illininmlll-w~i~hl ul.ltguing ed.u:~~ of (V~, fiJ');
h,t F" .. (V", f;"),J.." >(:F ,"<:h th,u. (V", E") is aJj«nmt to c,(V", fJ") l' (V', E');
if L/ ~:: I,ll II t..' • minimum-weight out~uiHg edgE-' of (VII, ~.;II) I
!h~,,:F: :F .. {V',F"} U « (v' UV",E'11 W'U{e}),L' I I>)
elif L' <' 1./'

th~":F ,. T (r,p"}II{.·.· (V'UV",E'uE"lJ {ej),L" >}
II

(I)

(2)

NotatioI:t; J: i~ a ('ol1l;'(:t,;on. of pairs cont.:-uning a. fragnl.ent (V'I E') ()f T a!; itli firf;it (:()mpouent

I\.nd "olllal,liltg th" Iev('! of (V', E') ns ib; s<!(:oIld (omponent. IFI (I;!ll<)t,,~" th" {Cardinality of ;F.

hliUally, F (Olt,i,(., of all trivial fragmc11t., having 0 I\.S their level, i.t., .F={<.({i}, Il), 0>1 i E V}
1,,)ld~.

Figure L A "''1\I~:Tltil\.l version of Gallag(!t'~ a1llorithrn.

In the algori!.h",s reported in [DSf)] "-'HI iZS80] e~s€ntially one frag""~nt is ~:nll\.rged by appending it~

miIdmurn-weight out.going (,(Ig~ <md one node ndjaC(:Ilt 1.(> this edge, until T h;,~ he"l1 mnstn)(:ted.

A. ~"dl, (:')T\~tlucting T is t(!"t.rid~d to a rather strong tequiH'IIl('nt, not taking into account, Ulat

m(\.ny fragment. could bl: combined into lar{;"r fragm'mts independently of ot!t(:r "",:s. In l(ruska.!'s

nlgc>rithm IK56], howevO",-, "J,(,ny fragments could be combiued iut" larg~r ones independently frol11

"""h othel'. Yet, frngllll'Ilt,s aT,' (:omhined only if th~y haY<: th~ same minimum··weight outgoiIlg <:dge.

(Although Chou imd Cafn' [CGSS] have clailI1Cd that. t,hey have proved the correctness of Callag~T'~

alg<)I"itillll, t,hey have, in bct., vl'rifkd a distributed version of kru~kal'H algvrithm.) In Gallager'~

algorithm ""'ny fragrrlents can, as in a di~tribuh,d ver~jon of Kruskal's algorithm, hI' cOmhined into

huger ones aSYlltilronvusly fl0m each Oth~L M(""(lv~r, ", discussed above, two fragment$ lIlay wmbiTlt

",-,metimes, too, ev(", wit"" j,heir minimum-weight olltgoillg edgeH do not coincide. Conseqw'lltly, in

Gallag~r's algorithm far more nondeterminism, i.e., ,IIOre dilh'H~nt intedeavings, has been introduc<:d

than in those othet alg<},-ithIJl5.

so

Th" ;,.dditiOn,,1 amount of nondetermillism, on t,he other hand, obviously cOll'plicate$ the reasoning

about Gallager's algorithIIl, bp,cause of the vast nU1lIber of g'·.nerakd computation sequences. Con~l'­

quelltly, for any correctness proof of this algorithm ~ome particular strategy must he adopted in order

to obtaiII a tr<'llsp",~nt proof. Our strategy is the f"Uowing one:

(A) First de8ign, .taxling from the program in figure 1, .listrihuted aJgorithms which det"rmin(, t.h~

minimum-weight outgoing edge of eath of the fragments COIISttutt~d so far. 'rhls part of the

strategy corresponds to refinhlg the .t"t~ment labeled (1) in the progrflIl:l ill flgme 1. (How

to acco1llplish stH,h " 1dinement has been descrilled by B""k [E88] and by Chandy arid Misra

[CM88]_)

Part (Al which deals with finding I.h(, minimum-weight outgoing edge of a fragment (V',

E') carl be splil. ,11' int,o finding such an edge in case

(AI) [V' [",J holds, Le., (V', E') is a trivial fragm~nt, <Uld

(A2) I V' 1>1 hold" L,,_, (V', E') consists of at least two node"_

Formally, this case-distinction can be achieved by a casc-int!'Od'lu:tion [P89]- The intuition

h,:hind thIS case-distinction is the following: A fragment consisting of a single IIOd" tan

determine its minimum-weight outgoing edge by a simpl", table look-up wh~n eac-h node has

a local tablt' assigning weights to its adjace1lt .odS"'; for fT<lgment~ consisting of more than

one node the 1IOd",s in thi$ fragment must, in any distributed implementation, cooperate by

1n~a.rIS (If me~sages in order to determine the fragmcnt's minimum-weight outgoing edge.

(B) Theil design dist,ributed algorithms in order to comlline t.w(l fragments into a larger one. This

part of the strategy o.mesponds to refining the statement labeled (2) in the program in figure 1.

- Part (B) naturally split. up into two cases:

(Bl) One for combining two fragments which are at the same le'l'el and which hav" an

idcnticaJ minimum-weight outgoing edge, and

(B2) one for combining" low-level fragments with a high-level one.

(C) Finally, combine the algorithms f01lI1d in (A) and (8) above in order to obtain oile algOrithm

whkh i~ the distributed version of the algorithm descrihed in figure 1. These combinations are

accomplished hy a.pplying the principle discussed in section 3.3 a fillite number of times-

The distri!)uted version of Gallager's algorithm can now lle d~scribed in terms of logical tasks, as

jf I.hey are performed sequentially, by refining Al, A2, a.nd B~ even further- Task 1 describes the

81

TdinClIlcllt of Bl when ('(l!;~ Al holds. The task 2, 3, 4, and 5 d~,cribe the refinement. of Bl when

c;,.se A2 holds. (H"w t.o incorporate po~~ihility B2 is discu8stJ in section 6.7. IIlcorpor;,.ting the lauer

p()ssii>ility has the effed that, t.he sequentially p",rformed tasks may be disturbed kmpomrily. As

,hOWll ill section 6.7, th",e disturbances do uot. affect the re(lJ;<)IliIlg about these t.aI;ks,)

Task 1: when "- node starts partkipat.iIlg in the algorithm it. determines its miIl;mUm-weil\"ht out.going

edge (as d,,;;crihed in Al aboy,·:) ,llLd sends ;,. Conne~trrncssage along (,hi, edge, This message serves

as a request fr(,m t,he node to comhin,,: wit.h the fragment at the other end of this edge. (A "'Ide

which receives this Conn~Gfrmcssage also partkipates in the sam,: task, cf sectio!l 3.) Node i in V

p;"I'Ucipates in this ta,k when exe(:ut,ing the 1}1'ogram segwent labeled A, in figme 2,

Thereafter th,: following tasks axe jH"f(mlled repeatedly:

T,,,,k 2; if two fragtn~:llt," have determined that. they are at, th" "ar,'e level L and that they have th.,

same miniIIllllll-Wo"ight ontgoing edge, then they are combined, as de~tribed in theor~))1 4.2, into a

la.rgcr one at level L+ L Node i in such a fragment partidp .. t.es in this t(lJ;k WhCll it exe~ut"'~ the

program '(:gmtnt labeled Ei in figure 2.

Task S: the weight of t.l,,~ 111inimum-weight. outgOing edge of t,he newly formed fragment is d~termilled.

Jf no ouch edge exists, the algorithm terminate,. Node i participate~ ill this task Wh<'-:ll it executes the

program segment labde'l Ci in figure 2.

Task 4: if th,: millimum.weight outgoing edge of the ll(:wly formed fragment exists, then the node in

thi, fraglllent adjacent to this edge is notified. The l'eason for doing so is explained i1\ Task 5 hdow.

Node i paxtidpat\:s ill this task when it executes the prograrll segment labekd Vi in figure 2.

Task 5; the node that, h",. been notified th"t it is adjacent to tht minimum-weight. outgoing edg~ (cr.

Task 4 above) ,<'lIds a Connect.-m.,HHa.ge along this edg'~. (As described above, this IDe~Si).gc serves as

a request from th~ fragmellt to comhin..: with the fragment at the other end of this edge-) Node i

paTticipa.tes in this task when it executes th", program segment!; labeled El or EI hI figure 2.

Note that their exi$!. actions a in the program descrihed in figure 2, wbkh can be exe~~lttd by node

i, that belong \'(' program segmenM labeled AI and to program segments labeled by Sr. If node i

belongs to a tTiyial fra.gment, then S\leh actions a are COll~idered to he part of the ~eg);Il~nt labeled A;;

otherwise, i.e., if node i hek,"g~ t.o a non-trivial fragment, then these actions (l arc considered to b",

part of th~ ~'-'gment labeled Er.

82

Th~ prOgraIIl shown in figure 2 bd0w will h" explained ann analyzed in the sections (>.1 through i),7.

The labeled boxes correspond to the program segments referred to in the description of the tasks

above. We have used Gallager, HUlllblet, and Spira's notation [GHSS3j, In iSR89bl we have discussed

how a program represented by a list of responses as below can be transformed into om own notation

for repteSenti,lg algotithllls,

4.3 Outline of the correctness proof

In sectioIl 5 we formally specify by ["taIlS of preCondit.iolls 1'; and postconditions qi (iE V) what we

mean by correctness of Gallager's algorithm, Then in section 6 we show that Gallager's program

>ati$fi,,~ this $pcdfkation. Th", proof is st,r1,l(t1,lred ateording t,o th" "hove description of Gallager's

algorithm in terms of tasks (cf, section 4,2).

We first aIlaJy'c ill the SectiOn 6.1 through i),5, the programs associated with the tasks 1 through 5,

It is argued in section 6.6 that the programs above can be combined according to the prOof prindpl~

described in section 3.3 because all its verification conditions are satisfied.

At the last stage of our correctness proof we incorporate the possibility that nodes in some fragment (:an

be disturbed telllpora.ily i,l the performance of their tasks by actions of nodes outside this fragment.

(This includes the combinations of low-level fragments with high-level on('~.) Thili is the subject of

ijection 6.7. It iii ShOwn th"t. t.he r~a.;oning about t.h~ ta.;h described above is not invalidated, since

interference-freedom of speCifications can be shown, (For this reason the invariants and the termination

conditions have been carded along in the spedlkation~.)

83

• ••••••••• "-•• , •••• ,, •• w.h.;~. 1'~;;;~'-;;oo';;<u"",,,"'1 '><h< ""-'.o:;;;;d.-;-;-.. 001. ",h;;-;o .;;;;, •• ;;;o;p";;;-' ;;;".:r; .. ,r--------,-------------
.... :IC,I.t~ :p:..,., r" ...,.",1..",_,

(l) ro o:r .. .:1,,. Io..,.UI'

i)O:Oj.i!1

l,=~ '=' be ILdja.<:ilnt ccil[-Il ~t minIM~lnl-w ... j~M.

rLlloJ,=OUII~ :-0.); lere) :-brro.nch: Ln :=11. ~n :=,. \1-11 ." ... ,1 () ... ,\, o:~t<O) "''' .,(111<" '=

13) rl!lpo:!lUI:I fa E'Dlloipt at Connofll:lt(l} n I;IQ;" ~

b-"'-iI:L~

If" ftl_ftlr"I~;'\.1iI ,b.., .. Q":'",,,ut,, pr...,.",,,,cI .. ro wAke.up 1'1; } ,,~
;----"'Lrl.",-="·-,,··,·,,···,·· ------------------'-------+---------1

th. ... :rlo If ~-I\(r) ..:1)."",:-)\

•• d

~Inloll (I. ~-w(r.); In '0::1"+1; 1nllrlllli:h. ':':' .. ; .. 1\ '..::1'10')1;11

C';r ~ll .r.d-';'~-;-7-';'''·; ~l\r:h IhlLt u{,,')"·hroll.n.;11

d ~" d 10'1;<'''10:'(1'1, rll. ur) 1.'11 /; rLllI.lcol.lllt :-!llld-C<lI"U:lL+1 od,

b,=.I-,,:,d~,=, :-l1il, beAt-wt ~::-,-.:r: .Z."..:lloll. ... por,c"II:IuU. 1".1.

'l'b~ 1~1 ~c rc,=",lv.r,-c! m':NAP'lp':" <III MIn ~f ..:ja",u"

(1) r"p'"'''' to roeoipt at Kniti.t .. (I, r, .) ... '" .. .0;1."1 ~

;b .. ~ln

1,\ ._1: r .. ,_r .• " ,.; L"I~r" .. ~h -"';

-r ... " .. ~I 'C'i.,L r ~~I~h \hl\~ :IIoc(ri)-bra.:n-::h

do IIcnd [nlh"'t<>(ln, in, Mn),.,,, ~r, tl."<1",·,,,,,,t L_t'o"'~II·"·I\""1·1 .0;..0;1:

h .. Kt· S ... _,'U ~ I>'C' .. ~ wi :_ ; 'PJL"l".l\,'H:~ vl'o".,dul'~ t'C:ot

\[,) prD<:'Pdut"o t('.li

it th.,..~ .. roo, k,IJ ... ".,{J\ ~dB"'. ;" '1,,:, ~~~~':' 1~'I'I:oi~

th.l1 t"Rl • ."rlg" -,>';'~;'r''.Irll.wo:ijl;h~ ,"1.I.j!\~ocFlI oc.Jl/;<: ill Il-II.t<: I::r-ll.li<:,
~lInr1 T"'~t(ll~1 r,,) .-... ,,,.t ~rl~ ..

~I"'''' ~.o:'~llIio:' : ... "il, .,,,,.,outo pro"oduro rcp-:-rt

H

\IJ) ropenl .. to. " .. I",t r T t(l. r) """ .. ~

.if ",-110"'0''''''' th" ",ocuta prou..,dur. wAk ... ,,1' H;

.if h ·1
tl\"' 1.1 ... ~o:' ~o:'l· ... ;~<:~1 Ir!o:'''~'''lIo:' '-'!I ':'IIU, ... ! '1.'1':' ... 1:1

... 1 ir f,l"!

•• d

i.1\", ... '''''11 A,"''''''~ '-'" ."il'r'" <:

",II", .,,(..) '-'i",~~.,.j,

fi

17) • .,po;,o.nll· tv l''Pollipt at AgC'op~ on .d,. ~

t .. d'''''t: .. ,_"III

if"Vlc)':I~'CIt-wt th L-.o:lt·ccLp;.o: :-c, b.-.ll·wl :W{IC):A, ."'.ililt. pl'.:u.dur. r~ro rt

•• d

(II) p:r h1n ",).,0:"

i.r n'L.j~",u"I-i'.J d Iglt_gdMC-niL than In :I'cund; IlInd n",porl{h ... t_wl) <:In lnbr ... ""h H
(1.<,)) U·pl:loT:L." '1.1:1 'I'.c.l.p'l. I:Ir H."~ATt'W) ..,,..tI, <:

(ill

I'"

th ... 1lo tll~/I,\"" .. \I ._'I.IL' ',," .. I

lr W-l':I\ ... ~t·wt tt. ... ,.. h",oL\.",.Ir:", _<:, 1,,".~."'1 :_".. n: .,x .. "u1." prv dur epori

.. I 1r ~1_t\ ... (1

tk.n pl"'~11 r .. ~."'I""'.r,l :m."'I~Io.~'" 1 ,o,111:! "r .:. 1 • .,

-!:II ... it w-b~lt-wt
, ... ",\ b«H
,;,l~·;; .. _:_{'·~·-:~{;~·;b:_;;i,""TIi .. n .. ", .. "ut .. proeodurll .:h""J;I~-rool H

B

r"lIpa:nIl" -to rllollipt -!:It Ch .. n" .. -it.a,c.'I.

.... '11:"' ... ut ... P')lI}/).,o!1l;o.)I"l' ~ILl,,,IJ..,.r •• ·" ... ~

IH'ojo ... "dur.., ..,h n.ll: ... _rou1o

it IO(billi.wl)=tl-rAnCh

~I, .. h .",,,...1 Ch"nlio:·Ro",i on b"'ll_odp;c --_._ .. _ _ .. __ .
oIo~." .. ",(I.o",.i.OU:K"') : ... bt .. nd.; I<:"d Connocl(ln) on b..,.t-..,d:p:"

•

84

B,

D,

5 Formal specification

In this section we fo{mally 5t"t~ th~ 8pcciJir.ation that Gallager's program should satisfy, This sped­

lkation ~onit$ of a pr~(onditio11 illid a postcondition. In the next section it is shown that Gall"g~r'$

program indeed satisfies this sp~cil\cation-

Let (V, E, w) denote a weighted graph as in S~O.ion 4. Let '1' denote this graph's minimum· weight

spanning tr~e- J,,:,t S denote Gallager's program (d. figure 3 in section 6). Since S is a distributed

program, ¢ath node maintains its own variables to perform its part of S- Nod~ i'~ v<ITi"bl<>s, for i i,l

V, which playa role in the initia.! $p,-,dfitatioII are the following; 811; and se(e) for e E E,. Variable

~ni (ieIlotes node i's node-status; Variable sei(e) denotes the edge-8/(1/,-,Q of ~dgc ~, f"lll, 110d<, i's poilU

of view. The values which thes" variables can take are next described and explained.

Variahl,-, "ni (i E V) can take the values

-- 8ieeping, if it has not participated in the ~orithm yet,

- find, if the node is partidpating in it.s own fragment's search for determining the minimuITI-

weight outgoill!!: edge (in section 6_3, it will be made more precise what "participating" in this

conte>:t means), and

- found, in all ot.her cases.

Initially each node in V will be in the .lteping-state, i.e., initially no node participates in the algo,ithm_

Variable 8e,(e) U E V, ~ E E;) can take the values

- b,-anch, if the node has determined that th~ ~,dg;: OCnIrs in T,

- rejected, if th,:, node has determined that the edge does not occur in T, or as

- ba.sic, in all other cases, i_eo, if th" node has IIOt yet determined whether the edge occurs in T-

Initially "<1(:h node has marked all its adjacent edges as basic, of course, i.e .. initially

Vi E V.lfe E Ei.sei(e)=basic holds_

Each node i in V maintains its own message queue, queue,. This queue is ~15;:<:l t.O i)\lff<,r received

messages toget.her with an identification of the edge along which these m<)Ssitgt')S have been received,

If a node's queue is non-empty, then its fTont (,i('mcnt may be removed from its queue and eithel.

processed or, as we will see, placed at the end of the queue, waiting for other events to O('CUt- For

each node, the queue's capacity is assumed to be large enough to buffer all the node's unprocessed

85

IIIMsages, 11. is not diffic.ult to derive a maximum size "11<:h t.hat oath queue is able to buffer these

",,,""as,,s. This hi lIot, t.ht suhjett of t.his paper, however. Initially, for all no,ks i ill V, 'J'''':lL<:i is empty,

Denoting by <> the empty queue, we thus Teqllire tha.t, illit.iillly Vi " V,queue, -=<> is satisfied.

Finally, we require that initially nQ ~:nge r,mt,aill' any 1IIe~sages, i.e" 'Vi '" V.lfe E E"content8i(d'-"<>

h,)ld, initially wh,:rl' <:ont" .. t"i(") de1lot.es ,,'s contents of messa/l;es Im'oming ,)Il nod,' i (iCV, <'E E;).

Upon wTnpletion of I,h,·: a1gorit.hm all IIlessages queues and all channels rnl.l~t h,: <:IllPt.y, e,t ~OIHS"'. 111

additio1l, the minimum-weight spanning tree must. hav" hccn constructed. This implies that ",adl nod"

has ad.\lally part,icil'at,,,d ill t.h" 'Ilgorithm illld that it is not involved in any fragm"nt.', ii(:>l.rdl fot the

minimum· weight outgoing edge, i.e., in the final ,t.at." f()r all nodes i, sni~ found holds. Comequ~Ilt.ly,

w,~ ulllH prOve t.hat I1pOll t.erminatioll of the algorithm the following hold;:

I;fi '" V,queue; =<> A \Ii E V,Ve. I:; FJi.cont~nt8i(")=<> II

II Vi E v'.mi==f"!/,'lIl II (V, U {<:c Ei I sf;(e)""branch})=T.
leV

We call, however, be more det.ailed ~bO\It. I,he po~t.'''mrlit.ioll. Ob,crvc that if eE E"j aud seJ(e)=07'()nc:h

h"lrl, t.ht'll t,hi, <,xpr<'Si;<'S that. r' is .:111 edge in T. Since T i~ all ,-,,,<1,,,'<:<:Ic<1 tree, it follows th(l.t,

scAc)=branch must hold, too, i.e., if an edge i~ in T, I,hell t.his edge is in the brancnrsl,at.€ frolll

the viewpoint of both. it, adj"l:cIlt. ,l(),\(!, when the algorithm terminates. Al~o (lj,S(:rv(: that ill the final

,t.at,i· ";Lch Ilodo should have determined whether an adj<>-c"n!, "dge occurs ill T. As a con~eq\wn,:",

sei(e) fbasic is required to hold Ilpon cmn"lct.iou of the algorithm for all noneij i and fi,r iIlI edges

"c 1::;.

Altogether, the f,}llowing po.,!(:(mditi,m q is required:

Vi C V.qlL<?UCi :::<> A Ifi '" V.lfe E Ej.content8i(e)""<> fI

A Ifi E V.sn,=jo1i.nd A (V, U {"E Ei I il<:'i(c)=branch})=T fI
i~V

fI Vi E V-'>'" C Ei,,'f;(e) tOUSie II vi,j E V.lfe E E"j.aei(e) = aO::JH,

The discussion above leads to requirin/l; that th", prOgram S should satisfy the following ~pedf1cation;

lPISlql holds, where P is the conjundion of all the Ilodes' preconditions Pi described ab(lv~ illId where

til", po,tcondilion q is as above. Here iPlSlq] meilll$' if S i~ <,xeeuted in a state satisfying 1), then

S always terminates in a ~ta.t" $1l.ti,fying q (total correctness). Obserw I,hat, t,h" above specification

86

('<'11 be e(l$ily ~"tia1ied when the netwl):{k c(lnSi,t, of one node only. Consequently, in the remainder

of this paper we assume that 1V12:2 holds (the network consists of at least two nodes). 1n addition,

it is assumed that the network contains no self-loops, Le., for all Ilode i ill V, E",=0. Th(, n:as,,"

for imposing this restriction is that the program in [GHS83] describing Gallager's algorithm does not

ne(:e~,<U"ily {on,truct l' wben the n~tw(lrk contain> ,df-Joop~. (Thi, is shown at the end of section 6.)

6 Gallager's algorithm

In this section it is shown that Gallager's program (d, figure 3 at the end of this section) meets its

specification. This specification has been formulated in section 5. As argued in sectiOll 4 expandillg

groups of nodes will repeat.edly perform" certain task5. For a single node which forms a fragment

of its own this task consists of finding its minimum-weight outgoing adjacent edge and sending a

COll11.f-ct-mes5ag<1 ::u<:mg this I'dg.: ({f. secti,)n 4.3). III $'wlion 6.1 it is ~bown how this t,.,;k can b.:

solved. The task of combining two fragments, the task of determining the weight of the minimum­

weight <)1)tgoing ~dg~, if <'ny, th~ task o(noti(yillg the Il(ld~ in I.he cIllarg",d (r;'b"IIl~llt that it is adjac<'I1t

to the b:agment's minimum-weight outgoing edge, and the task of sending a Connect-message along

such an edge performed by a collection of more than two nodes are analyzed in the subsections 6.2

throngh (i.5. The tasks are coIlIbined by repeatedly applyhlg ont ptinciple (see section 3.3). This is

the subject of section 6,6. In section 6,7 the combination of low-level fragments and high-level ones

are iUlalyz(:d.

6.l 'l'h<:\ start (If <:\xecution

In this subsection we analyze the distdbuted program which solves task 1 (d. 5ectkm 4) of deter­

mining a node's miniIm1m-we±ght (l1)t,going edge, when it f<)rms a fr;,gmcllt of its own. A node starts

participa.ting in the algorithm when one of the following occurs;

- it responds to some command from a high-level pr(lced1)re to initiate the algorithm ((Ill "external

trigger") .. Or

- it receives the first (algorithm-)message transmitted by some node in the graph (an "internal

trigger").

87

A node can l'espol\(1 only to some command from a high-I~nl pro,:<·,dnr<, t.o i"it.iat'~ 1.),(, al~otithm if it

is in t.he .1""IJi""g "t.at". Since t.he st.mcture of slIch a procedure is of no int~r",t for t.h" il.lgnrithm, w(,

ignore sU('h procedure~. Inst€ad, a nod" in th~ gr~.ph ,·iU. initiat.c the algorithm according to its]Ol'al

informat,joll, that is, if it 15 in the sleeping otat", hy "<lwakening spontaneously". MallY nodes in the

network Um awab,n sp">nt.aneollsly, <lsy'ltilrOilOllsly from each other, and inltiat.e t)"" "Ig()rit.lun. W .. ,

require, however, lhal. a node em awaken spontaneously ,,,.Iy if it, i~ in t.1t .. , sk"1i'ing stat.c.

When a nod~, starts participating in t.he algorithm "",'ording t.o on'" "f t.h(, two above-mentioned

pO:'lsibititi(:f il. det,(!"lI.Lill(:~ it:'i IJJ.iniIIluIll-weight adjacent, hen<:t! ol.ltgoing~ edgl" Hlarkl-i t,hi~ I~(lg~\' .j-L.'i: ~.L

branch, and goes into the found st.at.e. Jt, then tr"n~",it" il. CI!1I.'fI."drlLwssagc alonA the edge marked

as bmnch. The "ode (~t the oth"r elld of this edge) that re(,eive, t.hi, """"""Il(' will pllIticiplLte iII this

t,(\.Ok, t"H). We ,'oll.,lder Iwre the prQgr~IIl SI ddi'w<l hdow.

Definition 6.1 Progmm $1, whid, wive" t,he task considerd here, is t.he parallel ('omp(}sit.i(}n of

(OIISistiltg of th,' progt"'ltl ~tglllCIlts labeled by A, in figure 2 where i 15 ~T' "klll"nt (}f the smalltst stt.

of node., V' such t.hat

at, h~a!it. OIU: node ha.!i \\awH.kc:I,H~(l ~IH.JIltaI1l.,:ousJ'y'l is in this set, fIJ.1d

.- for all nodes j in this set., if j's minimum-weight ()utgoinll <:<lIl" i" "dj"tt1lt to 1Iode e, then (is

in t.hh; f.;(~t, t~,)o (, lW·{";tlllS{· n{){h~ f will n~r{~iv0. a Connect.lnessage fronl nod,e j) .•

This c:m.dll!i<" !.la, <k'''ript.ion of til!' firHt t.ask in which a trivia.! fraAmenl. will p"TI,kip"t~.

In figure 2 node i's ac.tions associated with this t"sk havf' 1""", lahd",d by Ai' The variable snj deI)ot.,~

n(Hlc i't=; (U(Hh"-)i'i.tat,lli;; lni d(·uot('·s t.ht. l~vd of Ilode ils fl'aglnent as far a.~ ""kn{)wn" t.o i; R~:li:) rccm'ds

the edge-status of edge e adjacent t.o node i. The init."l vahl" of I,he v;1riabl..., I'l, is irrelevant. Note

t,hat. ~,a<:), I1I"k i also m"'n!,"'n, a vari"hk findcoullt i . This vadable, whos~ initi~1 V"hl" i" ir .. -Ievant,

too, could hav~ been omitted at this stage. Its significance will hHC(IIII/: d<~;1J" when r~asoninf\ abollt

another task (see section 6 3),

For the progr"'" S1 defined "bove (~ee definition 6.1) Ule following holds: (recall that. V' (kn"t.(:'~ t.ht

s~t of ;Ill Il(.ldc~ t.11«1. pilIl.idpa.t.t in t.he I,ask considered here)

L",lTIma 6.1 A~surne t,hat the pr~""ndit.i(m p;: f\i~VPi holds,

where Pi == 8ni~8leeping A Y" Eo E"'''i('')=/''l8i" A Irueuei~<> 1\ Ve E E,.content8.(d-<> (set

88

",,(:tion 5). I.e., for all nodes i in V and for All €dges e in E i , 'T!i='8/feping, s€i(e)=basir., «no !Ill

message qul'"e" iUlO !Ill ~dges are empt.y ar~ satisfied initially. Let i. h~ some node ill t.h" set. V'.

(a) If node i ~xecutes th\: pro(:edure wake-up, th(:n in particular sr.;=.ifeping i\ 'Ie E E;.sTI.;=bll3ic

holrl~ as a precondition. A~ a postcondition for this p,ocedure the fc)llowing holds:

8n;=/""",,(1 i\ findcounti=O J\ 3€ E Ei' (se/(e)occ bmnch 1\ V~:' E E,.(e' fe "* ""ik')=W8ic)), i.e.,

node i is ill the found state, itl; v(lIzabk /indcount i has b(:\:n as~igned the val"l: O. In "ddition,

except for on" <'<lg(' m<+.rked as bmnch all othH edges adjacent to nwle i are marked a" b,,,ic.

(h) For all nodl~s i ill V', (lfe E E i .sfi(e)=/Ji1sid =9 sn,=s/etping io an invariant of HI" progr«m

abovt:. Also, sni isletpin9 => (1",=0 i\ findcotmti=O) i, an invariant.

(:.) If sn, is/toping h<llo~ ~t a certain point duriIlg ~xecution, then it I<,,,,aln$ ~o afterwards. (This

implies that the procedure wake-up ('an he executed at mo,t (mte.) If for a Cettain erlge e E Ei ,

se,(e)=bronch hold~ at a (:eJ:(,ain pohlt during cxemtion then it relnain~ '" 4t.erwards.

(tI) For all iE V', (sni=.I''''l'inG V8ni=found) 1\ 'r/,' E E,.(8ei(e)=basic vS':i(e)",-branch) is an invilli-

((:) If there exists some adja.r:ent. edge e of node i ll1a.rk~cI a.'l branch, tbe,l c i. t.h. minimum-weight

outgoing edge' (.f (,lIe f,agment ({i}, @).

(f) Upon completion of the progran1 S1 all edg':' (:onnl?cting two nodcl; in V' are empty and tbcre

exist "",,(:/'Iy t.wo neighborirl'; IIO(i.% in V' that have a mess~ge Connect(O) in th,:ir ITlf?$,age

queues. These m"%~ges have been received illong their adjacellt edge. in t.he state bmneh.

(g) A Ilod~ i eventually compk:t,:. its participation in the prob'T~ ~bove, This OccurS wh"n node

; tn.nsmits tbe I~lessag" Connect(O) along its minimum-weight outgoing adjac~nt edge. (This is

the termination conditio" Ti of node i for the program above.)

Froof

All these prOp~rt,ie~ are verified straightforw(lIdly. As an exa.mple, we !>how how property (e) OlIl he

established. That i., if se;(e)=branch holds (Or a ,:eI:tain node dutiIlg <:",<:<:ution ofprogran1 Sl> th.::n

,:oge e is the minimunl-wtlght Qutgoing edge of the fragment ({ i}, 0).

11litially, all node i's adjacent edges are in the basic state. An ~dge can be marked as bl'l2T1.ch, only

if llOde i performs the assignmerlt Q(;i(e):=bronch when executing the procedure wake-up. (lhviQ\I$ly,

89

prior to (.he ~.chl~l ~:x ... nll.ion M this assignm~nt ,.:dgc c has been sele,·j.<>d t.o be the minimum-weight

a.djo."'·:III. (:<lg'c of Llode i. Since th,: gml'lI contains no self-Ioop~, property (e) (,,",axly holds. (In flU:/',

w,' haY<' imposed the rest.rktioll th,,/' the graph cont.i;liIlH no self-loops in onkr t.o ensure property (e).

A, "hOWl1 i,l sectioll 6.8, Go.lh'S(·T's algorithm doe, I1!)t. necessary constnl(:t, 'J"' when this restrkt.i(m is

nol satisfied.) •

Hereafter we will <knot.: Ule minimum-w",ight outgoing edge of Home subgraph G "I" (V, E) by

mi,1),'II}"d'l,,(G). If the lllinhmnn-wdght, ou(,going edg~ of G docs not exist, /,ht:nm'inwedge(G)=nil

hold~J WhE;'TP Ilil (leIlote~ sorne fictitious t~dg(~.

6.2 Combining fragIl:~"'nt~ at the sam,:, "weI with the ",am'" minimum-weight out­

going edge

I,l this subsection w;: will WnteIlt.i·ate on tlw pn)B'T<1I11 associat~d with t,ask 2, see sed.i"" 4.2, which

describe, h<-,w t.wo fragIlIents F' and 1'''' at the same lev",1 L and with an identka1 mi,limum-w€;ght.

olltgo;"fl edge arc combined int ... "fmgment at level /,+1.

Recall that 0. frallIIlr.llt of ThaI bl'l'n defined as some non-em»t.y subtree of T. This is a graph­

orl\'nl.<'<l notion. Accordingly, ,l. fr"flmcnt is some ,to.tk (,,,tity. Observ~ that fragments are ,miarged

when Gallo.gl'r'H progr<1In is executed. In ordeI' to reason fC.'fmally about thi, j)n)gr<1In we lleed tp

<let;"" fr,tgIlloIllS (co.mtnl('t.<I.-I HO j""f) ill terms of prograIll-variables. TIIis leads to the nptkm l)f a

D-jN.I,gment of T (see definition 6.3 below). Intuitively, " B-fraglllent of T is some sub graph of (V,

E) constit\lting 0. f",~m"llt of T such t,hat. ,,,,,til edge in the B-fr"g'IlIent is lUark~<1 a~ b"anch from the

viewpoint oflJOl.il its adjacent nod",. Notice that iffoT 0. "'~ftai11 node i, 8~;(,,)=bronch holds, th"" the

lIl),[r j at the other end of e does 110t. neces~adly hdollg to the sal)]" B-ftaglllent as i. Thi~ is the case

when 3f"j(dfbmneh holds. This may o"mf, c.g., in the progTam associated with the first task (Sf<'

",,!.ion 6.1). There w~ (·'.>I1M haV(' thai se;(e)=bron<:h, when e is the l',inimulIl-weight adjiJ, 'nt edge of

node i, while Bej(e)~b"N'i" holds, if e is not the minimum-weight "djacent edge of fH)dr j. This lllean~

that th~ proPNty 'i!;(i!)=.qoj(e) is not !I.II invariant for the program describing Gallager's algorithm

(i, j E V,,, E E;.i)' This observation I"ads to the notion of a B-groph, de!in~'d next.

Definition 6.2 A subgraph (V', E') of (V, E) j~ ~"ll"d a B-graph iff (i) and (ii) below iU",' both

satisfied:

90

0) (V', E') is conI~"'tti.'d.

(ii) 'tii,j E V'Ve E Ej,j.{e E E' ~(ee,(~)=~ej(e)=b-ranch)), i.e., it is a gra.ph in which all edges are

in the branch-state from th~ viewpoint of both its adjacp.nt nodes .•

Lemma 6.2 Any connected sub graph of a B-graph is a B-graph itself .•

Intuitively, if se,(e)=b7'(11!ch holds for some iE V and .:E E" then e is an edge in T. This sugg\'$t~

deflning fragments of T in teIIIIS of B-graphs. In order to do so flrst notice that B-graphs may

be empty. This is an immediate consequent", of ddini\.ion 6.2. This implies that a B-graph which

col.stitut,(:$ a subtree of T is not necessarily a fmgment of T. Consequently, to d<lfine fragments in

terms of B-graphs we need to rdin~ th", latter notion, To do so, observe that the earlier high-level

description (see section 4.2) implies that fragments are enlarged. Therefore, if two nodes i and j arc

in th,~ ~am~ B-g.-aph at some point during execution of the algorithm, then they will r"'maln remain in

the S3II1'" B-gr«ph afterwards. Also, if a B-graph (V', E')~ l' has been constructed, wheI~ pcrformiIlg

the algorithm, then there is 110 need to ~onsider any proper subgr«ph of (V', E'), d. lemma 6.2, in

order to find its minimum· weight outgoing edge, ~jnce this edge has beell found carli<lr. Con~equently,

it suffi~c~ to ''')TI~ider maximal B-graphs in order 1.0 find their minimum-weight outgoiIlg cdg~ •. Thi~

oh~ervation leads to the following deflnition:

Definition 6.3 A B-fl'fLgment of T is a maxim<t-\ B-graph of (V, E) constitutillg a suhtr€<! of T .•

B.Y dcfillition, a B-fragment of T is non-empty. It follows that, any B-fragment of T is a fragment of

T. As T is the unique minimum-weight spanning tree of (V, E) we will use the term B-fr«gment as

all ahhrevia.tion for the notion B-fragment of T. Also, the terms B.fragment and fragment will from

now on be used il1\Crchangeably_

It remains to define the level of a B-fragment in terms of program-variables. Sil1~e e<LCh I\ode i E V

IIla.int<tin~ a variable In, to record the level of its own fragment (as far as "known" to that I~odt'), it

is conv"ni~nt to define this notion in terms of the Ilatiabks In,. Note that for a fragment of the form

({i},0), In, may b", IlIldt'fined when ~n-,=~ieeping holds. We simply define the level of such a fragment

to be O. In all other cases the level of a fragment is the maximal value of the variables In; [Or nodes i

in that fragment.

91

Definition (S A fi-fragm''''t (V', E') i. ,[diIlCd to be at level 0 when f<.,r all nod,';; i E V', Imi"'~leeping

holds, In this case we refer to (V', E') as a slfoeping fr"gIll'~IlL Otherwise, the fragment i~ (·all .. d T"'TI~

$le,~ping, The level of a Ilofl-,k~ping 1:I-fra.gIIH~nt (V" E') is defined to be max{ln, I i (V'}, •

n .. rnark:

(i) A Bleeping JJ-fragrn~Tlt i~ alway" of Hw form ({i},0), Le" it fon,hh vf ')II<' Hode, This is true

1",,,,,,,,,· it will roll()w from Oul' COlTectness proof that ally n",k not in the .Ieeping state has ~X,,­

('uted the PT<},'<;dl1re Wilb,-llj> "cmet/y (mtC <"Uta that for all nodes iEV, "clg"" "C b'i, ",Ii fs!eeping

aud "'i(<,)~branch ru:e invadan"e PH)l":"ti,,, (d, the ["',lunata 6.1, 6.3, 6.6, 6.9, a.I1d (j.l0),

(ii) W(' will ~how that if (V', E') is a no,,-~I~'~ping fra.gmcHt therl for all nodes i E V', lrli iJ; d<'finetl

aud /n{ ~O h s,ltisfi"d, d. the [~mmata 6,1, 6.3, 6.1, 6.7, 6.9, aIllI 6.10, This implies that the

kvd of ,LIlY h·;lgIll.~rlt is well· defined, •

Aftel' thi. pI'cparatioll we now focu~ on h,)w two fragments F' and FH at the sam~ level a.ml with t.he

same minimum-weight O\ltg,.>ing <:,I{;<' 'lr~ tOrnbirled into a larger fragment ..

A fr<lglIWltt. F' at. level L that has foum\ it, minhnl1m-weight. (mLgoirlg edge, say e, inform, t,h" f"'glll~nt.

<"1t t.he other end of edge e about. it,H [evd <lnd lIlinimum-weil?;ht outgoing t'dg., 1,y ~"rldi[lg a messal?;e

(.'onn"<:I.(L) a1or,g ,', Assume that t.l1;\ fragrnrmt F", F' ;1= F", is adjacent to edge c. If F" is at

lev~l T" j,,, •. >, ,l.Ilrl if J-'" h<"1~ illfor'lllea the frar<;ment F' that it iH ;,1, th..., ~ame level and that is h",; the

same minimum"weil?;ht out.going ,)dg~, tJ",,, F' and pH are combined into a. hag,,,,,n!. ... 1. [evd L+1. (If

fragmcnt F" is at. level L and has t,ransrojt,ted a C')IlIw<:t-rnessage along another edg~ than", then

the node of F' that has re('€lv~,d tI", COllll",c!.-message will delay thh m~'$~ag(!, sincr no rule can be

applied for (:l)rnl)ining F' <lnd P" into a larger fra~ellt, (d. ~«tt.ion 6,7),

WI: nOw a,%llml~ that at some pohlt, dming I'X(,(:\rtion or Gallagel"s algorithm th~ foll<,willg holds;

Assumption 1,

F'=(V', F;') and F"=(V", E") are two non-sleeping fragm"nts, bot.h aL level L with tile 8iUIlC

I;nininl~lIn-weight 01ltgOil~g -edge e l
, •

We also assume the follOWing

lnduction hypothesis (HI):

92

(a) If F is some fragmeI,t at lcvd L' .:::; L and F tranomit,s a Connect-message along edge e, then

this Connec/cmessage carries argument L' and e"'minwedge(F) holds. Alw, wh~u~vI~r th~ 'H>(ie

of fragment F adjacent to edge e transmits the C""''':drI!l~,~agli along lidge e, this edge i5 in

the brunch-state from the viewpoint of that Ilode. ht additiou,

(b) Wh~n¢v~r a n(>d~ iu F tran,mit~ a Connecirmessage along one of its adjacent edges, mi=/""",d

holds for all nodes i in F .•

The intuition behind !H(b) above is the followiug: wh~n a frl:lgm~nt'5 mioimum-weight outgoing edge

has been fouod and when a Connect-message has been sellt ;"!Ollg this 6<1(;1', t.h"n all n<,dll" in th~

fragment have completed their contribution to th" S"illth for th<' lIlinilIl,'m-w~ight o1Jtgoing edge of

the fra.gment. lL then follows frOI[1 th,' int.~rpr"t"-tion (,f the vwiables 811;, i E V'", that sni=jound

holds at. t.h\l st.wt. of the progJ:!ID.1 associated with the ta5k considered here.

Remllrk: As we have secu iu S<:tt.iOn 6.1 a ~erl)-level fragment transmits a message Connect(O) on its

minimum-weight outgoing: edge when awakening. Also, this edge has been IIlillked af; a b"(Ln~h ami th\,

nod_ i$ in t.h~ fQ1L"d-,tate whlin ouch a transmission occurs, This establishes the basis of inductiollo •

R.et;"!1 that we consider t.he case in which fr".gIIl~nt.$ F' and F'" have been formed. Suppose that the

nodes i ' E V' aud i" E V" have e:<:changed Connect-messages along edge e. By assumptiou 1 alld by

the induction hypothesis (lH), see above, the CO'm~<:t,-IIIC$Sag«s (:wry wg1Jm~nt L and edge e. is the

~wne l:l5 minwedge(F') and as m.inwedge.(F"). It follows that 6=6' holds. From (IH) we obtain that

both nodes i ' and i" have placed the edge e' in the bt-anth-state. It follows that at that tiIllc a n(,w

fragment F"'=(V"', E"')=(V' u V", E' U E'''U{e'}) ha.~ bCCIl form«d_ (R..<,all thl:lt. we h"ve l:l5o"med

that F'=(V', E') and F"=(V", E") hold-) The edge e' is called the core of the fragment Fill. This

llotion plays an importarlt rok in Gallager's algorithm ($ection 6.3). When the fragment F'" has been

formed a new task is being started by the nodes in V"'. This task consists of rewr(\ing t.h"t fragment.

Fill is at level L+ 1.

We a.$sume that the fragments P' and P", just before tonllliIliIlg into the fragment called FlU 5atiJ;fy

property 1 below. This property states that any edge in F' or F" has the sarne (cdgc-)status froIll

the viewpoint of both its adjac~nt node~. M<)reov~!, if ~ome node in one of the fragments F' Or F"

has pla.ced a.n edge in the rejected state, then this edge connects two nodcs i" the sar,,,~ frag:<Ilcllt.

Formally, we assume

93

Property 1, For Illl node~ i,j eo; V and f<lr all edges e E Ei.j,

(a) i, j E V' =} sei(el =-'- se-j(d and

(b) _'e'i(e)=rejected '* j eo; V' hold.

Similarly, we require that (a) and (b) hold with V' and E' replil.ttd by V" and E" respe(,tivdy .•

Note that property 1 is satisfied if F' and F" are ~er(l-kvd fragments which start p&tkip«t.ing in th ..

task {:(msid(~rcd herc.

How can thi5 tas~ be a(,(,omplished'! 1.,'., lu)w ,:an the llewly formed fragment Ii"" b" placed at level

L+ 1? The answer is simpk the two nodes i adja~enl, t.o I,he minimum-weight outgoing edge 6 ' of t.h"

fragIllI:llt.S P' amI F"', hom which h'agment F"' has been cons\Tuded, a,!;igH the value L+1 to their

variables In; aiter havlrlg exchanged the roe5,age Conn<:r:t(L) alOllg edge e'. This is ,Khiev~d hy t.he

program 8; ddined below.

Definition 6.5 DdiIH~ t.h" program 82 by 8 2 =lli~V'UV" B, (eL section 4.3), Recall that Vi and V"

denOle the set of a.1l nodes in the fragooent,5 'p' and F" r,,'pcttivcly, •

Observe that ill t.hi~ program variables In" snj, and inQTanch; O(,H. Th" role of the v&iabk~ I",
and inbra chi will he explain"d in seclioIl 6.3; the reason for placing the v(ll'i .. hll: '''i i,l the find-state,

fot, nodes adjacent to edge e' is expla.ined in sedi()ll 6,7. W,r,t, these variables the property formulated

below holds,

Pr-operty 2: For the fragment F'" and fo~ all nodes ., in P''',

(a) if In; >0 holds then hI; is defined. In particular, if 111; is defilled, then its value is the wdght.

of some edge in F//I, i.e., for ,,~.erta.in odg" c ill P"', In;W'w(e) holds,

(b) til.., valut's re~orded by the variables sni are different from aleeping, i.e., sn,=find V jov.nrl holds,

•
Note that if a node i, wit,h lni=O, enters the task considered here for the first time, then propHty 2

holds,

94

L"t i' be the node in F' that ha.~ t.ran'rnitt.ed the message Connect(1) along cdg~ P.'. Similarly, let

i" be the node in F" that ha<; t.ransmitted the message C()"n~Gt(L) along edge e'. In order to reaSOll

ahout the prognlIu S~ we assume that t.he following precondition for this prograIlI hold" all edges

connecting nod~s in the fragment Fill are empty, the m~,~age queues of nodes ill F'" aI'''' empty, the

nodes i' and i" art' at. \h~ exit point of the statement "if w.;=Hleepin[J then execute procedlJre

wal<;",-up fi" in the segment labekd (3) in figure 2 (i E{i', i"}), and allllod.', i ill V'" different from

t.he nodes i' and i" are waiting for the reC€ipt. of some message. (Below, the la~t t.W(' "'quirements

are denoted by /o(';=after"if 3n,=sleeping then execute pro~edure wake-up fl" for i E{i', i"} and

by loq=at"queue;" fot nodes i E V"'-{i', i"} respectively, where th" variahle lrX::i d<:,not~s node i's

program counter.) Fonllally, WI' m<'ke the following

ASSUIIIption 2: When t.he program S~ is executed,

'rfi E V"'V,; E E"1.contents,{e) =c<> A

II Vi E VIII.queue, =<> A

AVi E{i', j"}.loci-after"if sn;=sl"tping then exec:ute pJ."oeedure wake-up fi" A

A'rfi E V'" -{i', i"}./oCj=at"queue;" holds in the initial Hat.e .•

Note that a.\$llmption 2 holds when F' and F" are zero-lev~l fragIn~nt> wbkh start, for the first time,

participating ill the task considered h",r<;,.

Lemma. 6.3 AssuIlle that. iJ.$$llmption 1, assumption 2, property 1, property 2, and t.he induction

hypothc~i, (IH) all hold. Then th~ following holds for ptogra.m S2:

(a) The assertions formulated in property 1, property :1 (a), (b) hold during exetnti,)n ofth.., progrrun,

i.e., they are invariance properties. Moreover d,uing eJ[enltion of S~ no variable se,(e) is evet

eh::mged (i E V"', e EE,).

(bl UpOIl completion of the program, the fragment Fill is at level 1+1. More pred~ely, ~ have

that upon completion Of the prOgl"<ml In"""lni,,=L+l, inbranchi,=inbl'anchi,,=e', and 'rfi,j E

V'" -{ii, i"}.ln; ::; L hold. (Recall that i' and i" ,lenNI' th", nodes in V'" that have exchanged

C(>nnect-me~sages along the minimum-weight outgoing edge of F' and F", and that t.his edge is

delloted bye'.)

(el Upon completion of the program sn;,=sni,,=ji.nd and fn;,=fn;,,=w(e') Me atifi",d. Mor~over,

all edges connecting th<;, node V'" M well as all messages queues of nodes ate empty.

95

III ,lddit,ion, \;Ii C V"'-{i', i''}.~ni=fou.nd holds.

(,I) A Il(,(k i adjacellt. to edge ,,' C()111pltt.,,, it.H 1)1l.rtidpation in this !.ask iff 81"!,=find Le., if loceafter

l~8nz : =.:.ji:rul' 1 where the assjgnlnent ,';iHz: :=find {)((\Ir~ ill t,}u,~ pn)gr~HI ~{~gI.H:':lJt Bi.- Node i

not ':Hlj';'lC"{'nt t.o l~dgf;" e' C'Olllpieles it:'! paltitipat.ioIl if [O(:i.....:..at. \\qU~"jM'A hold~. (The~~ arp: th~

tcrmiIl;ll.iol1 c()l1,liboTlH.) Tn t.he latt~l' case node i wilt 110t. parl.icip;,t.,' ill S2 ,It. ~Ilt .•

6.3 Finding tho miniullun-weight outgoing edge of the fragment just formed

W(' next anal.F" I.h(, pwgraIn "'''H'iat"d with task 3 (ef. section 4.2).

AfI(: .. ti,,, f""SIIl,,"t P'" ha~ het'll formed and afh'I it. has b""" pla.fl·d "I. kvd £·1 1 I.h,· "O,kH ill F'"

I1l11St. d"t."nr'\)I(' t.he fragmenl.'s IHilliIllIl111-W<:ighl. <l\ltgoi)l!,; edg~', if ""!y. Any such edg-e e must be in

tlH~ ;,t,A./:t: ')a,~ic frorn t.llf\ vl€wpoint or the IiOd~~ ill pm whidl i~ a.(ljcu~('nt to (~. 'Thif-i i~ tnw l)(~caus{' for

any ~dgr " C i':',j, -; Eo V"', j Eo V, w(' have that

M~(e)~bmn(:h =:- j c: V'" 'LlId

H<';(")'-""jlxtd '-9 j f VIII hold.

This follows ft(Hn PI('f""-t.y j, a-'WIllp1,ioTl 1., and (,he induction hypothesis (IH) above. Consequently,

i111..y ()lltgoing erlgi~ {)f t,h{~ f)."'af~Inent. Fill rlltlst be in lhe s(..at(~ ~nL:ii,:.

Int.llil.iv(·ly, R~;(p)=b<l;i<' holds fOl" >Ome i c: V,,, c: E i , if

(.' ha~ not lH-~(~T1 ll"lveljtigated before by i\ i.e.~ i has llot t.~sloNl wh~thc-l· to' i.s arl out.going .. ~dg~\ Or­

e has beell iIlve~t.ig"t.",1 bdor" by i ",,\d))"'5 been found to be an outgoing edge, but edge e has

IH,I\ htt!"\ the minimum-w€ight outgoing edgc of "<>Ik ;', fr"-gIll""t. (at. ('h",t ti""~).

III o[(l(or to ,kt~nnine its minimum-weight outgoing adjaccIlt rdge, a IlOck could ~et(,t1. it, """",i""n'm­

wei,qht ontgoing il'{i'"'~"'.t rtigl' i11- the state basic and send a so·ca.lled Test-message along this edge.

Th~ node "t the other end of t.h'lt "dgc !;Iumld du,n det.trmim: whet.h,,[thb "dg" joint; two nodef; in the

sa.me frag11l,:nt.. Tht: problem with this "solution" i; that lhf decision whether an edgei.l an o'utgoing

one has now been Shifted to til" T''''''';'!!;>T of th~ Tf.~t-meHa9f..

The dcsigIHor, of G",tlil.ger'~ il.lg-orithm have proposed a very elegant solution for determining the

minimum-weight outgoing "di""""!. "dg" of ~ome node in F"', if weh "'I) edge e)Clots. Thi~ if; (k­

'trih"el hd()w. Any newly formed fragment carries a no.·me. This name is supplied to each node in

96

the fral,'!ncnt. Th" qu",t.ion arises, of course, how to assign names to fragIncIlt~, ~iIltc One ha..~ to ~n­

~ure that. distinct fragments have distinct II;,Jnes. hI GalI(l.g~r'~ algorithm the "arne of any non-trivial

fragment i. the ",~i!Jht of it.~ core (cf section 6.2 where we have described the notion of a. tore). The

assumption that distinct edges have dist.inct wejght~ will ensure that any non-trivial fragment has a

1mique name. Since e' is the core of the fragment FlU, th~ w<)ight wk') i~ tile name of this fraj1;Il'lenL

Now, after the fragment Fill has been placed at level L+1 ",,,ch nud~ in the fragment is 5upplied with

th" fragment.', name. In urder tu do so the two nodes i' and i" adjacent to the tOre st.il.rt hroadc:ast.ing

an Initiate-message carryiIlg the wdght. wk') i;IJ; an argument to nodes on their "side" of the fragment

F"', L<:., node i' <md node i" start broadcasting an Initiate"message to nodes in F' and to node. in

F" ""pe(,j,ively. Except the name, the Initiate-message a.Iso carri"s t.wo oth/" il.rglImcnt~' t.he new

level and the argument find. Th~ sigllificaIlct of t.1t" level ;<.<; an Iilgllment. will be explained below; the

significance of th" axgmMIlt find will l.>~ txpla.iIwd in Se(,tion 6.7. Upon recdpt of an Initiate-message

node i records the new name in its variable fn; (thus, In; records the name of it.s fragment, as fax ;<.~

"known" to node i) and the new level in its variable In;; Furthermore, the node is placed in the find-­

state, i."., the vil.riabk 811; i<; assigned the value find. Then the edge along which node i has received

the Initiate-message is r"corded in the variabl~ inbT(lnchi' The reason for doing so will be explained

below. Thereafter the Initiate-message is sent by node i along all its adjacent edges in F'" except the

aIle identified I>y its vMiabll, in/,rr1n(:h i . As ,'.I,h t.hi, bI:!)adcasting h ,imHar to the bI:oacicasting !,f

information in Segall's Plf-proto~ol [Se83j when the graph constitutes a tree.

Aft .. " node in F '" has sent the initiate message to all neighbors "downtree" in Fill it starts sea.rching

for its minimum-weight outgoing adjacent edge. For this purpose, as axgued above, it suffices for Ilodes

to investigate edges in the $tat.e ba8i~ only. NOW, if a node ha$ no o'It.gOing edg"'$ in th;: St.at,' ba8ic,

then it is done. (It has no outgoing edges.) Otherwise, it sends a Test-message on its minimum-weight

adjacent edge in the state basic. This message carries two arguments: the fragment's (new) name and

the {ragment'~ (new) level as it has been retorded by the sender of the message.

A nodi, recdving the Te8l-me$~agt waits until il.$ own level (re(ordtd in the variable In) is b'Tt:ater

than or equal to the one in the Test-message. (The reason for this delay is explained below.) If so,

it chetks whether the name of its own fragment equals the one in the Tesf,-message. In case these

names coincide, it sends a. Reject-message back to the sender of the Te8t-message. This Rejecf,-message

ServeS fOr informing the ~lode at the other end of the edge that t.he edge (Onnect.$ two Md<'$ i,l the

97

same fra!(ment. Jr, VII thl, othet hand, the nanl~ ()f the node receiving I,hr n,st-message difkrs from

the OTl!' in th(, 7",!it-message, then th" I,wo nodes belong to difr"n~nt fragments. Th., recciver of the

T",'irIlleSsage will, in thi~ (".0-,", ,,~nd an Accept-me~sO-gf hark to the sender of til(, 1bt-message in order

to inform this node that th~ ~,dg" connects two nodes in diffcrent fragments. The,c convention, "nahle

nodes to determint whH,hCr edges are outgoing I)nes (see claim 1, claim 2, ~1l1(1 assumption 3 helow).

The reMon for " Hode receiving a Testrnl""','g(, to wait until it" I)wn level is J1;reater th(1,1l or equal t,o

thf "n" in the T.l.t-message i, th" following' if a node f~ceiv,'s i1 Te$t-mes5a.g~' with i1 level gr€"l.t'r

than H.s own l(·'vei, th~Il

it. """ld be in the same fragm"nt, as t.lH' sender of the Tes/rIlLes.age, while it ha, not. yet received

the new niUm, "m! the new lev~l, or

.- it could be in anoth", hagmellt than the s~"d,:,r of I.he Test-mes5ag~, (thus, with another nallle,

if any).

G()n~"qll"nt.ly, if the level of th~' r""e;ver (-,f the Te;t-message is 1.00 low, th~n it, ha~ nO way of determin­

ing which of these case5 adually occurs, This problem i, solved by inchl(lillg t.he delay, In th~<)r~m 6.1

we show that thi$ dcby does not lead t(l (1 dcadlock. (In the program describing Gallaget's algorithm

a node ddays ~ollle message from IWing processed by repla~ing it at the end of t.he node's message

queue,)

A node that has f€<:eived ,. Rejeci--message along (me of its adjacent "dgc~ places thaI. lOdge in the

1<:jec/c,t-state, since th" edge «"".eets two node., ill til!: same fragment, (ind continues its ,eaxch for its

miniml.11n-wdght outgoing adjacent. edg" hy ~electing the next pOSSible one and ~endil1g a Test-message

alOllg this edge.

In some ca~('~, "r~~ponse to a Testrme~s3gc is superfluous. 'rh~ designer's of GaJlagcr)~ algorithm have

achieved ,OUlC optimizatlon w.r.t. th" IlHIlIher of transmitt~d messages sent by n(lde~ participating ill

t.h.· ta.~k considered her~: if a llode has transmitted a Tht-message along, say, edge e and it receives

a Te$t-m€~sage wit,h the same 11ame and l"v<:1 as its own, then it simply marks the edge as rejected,

Sln('e t.he !lodes adjacent to thj,; ,,(lg(: have the same name aIld, thus, belong t,1) the same fragment, d

continues its search for the minimum-weight o\.tgoiIlg adjacent edge ill.mediately, wit,hont sending a

Reject-uH'ssage along this edge.

If a !lode has receivfd "" Accept-message as a rc,;pO •• se to one of it~ n,.t-messages, (,hen it has found

its minimum-weigbt outgoing adjacent ~~dgc.

98

After finding t,h!: minimum-weight outgoing adjacent edges, the node~ in Fill mu$t tOOpcra-t~ to d~­

termine the minimum-weight outgoing edge of F"'. At this stage the significance of the vari"ble,

inbranchi , for nOd<:$ i i,l V, b~comes clear. Due to the tlariable8 inbranchi, f.ilch nod" in Fill ia able

to trace the path to the node adjacent to the CQre He"! its sid.- of tlte fmgment". This is true because

each node in Fill has recorded the edge along which the Initiate-message has been received and t.h~

lnitiate-nu~%ag~$ haY;: flowII ftom each of the nodes adjacent to the core "dowILtrr.i: OIl its side of the

fragment Fill l' .

Before actually determining the minimum-weight. QlltgoiIlg ;,dge of F"', the weight of this edge)5

determined- This part of the algorithm is very similar to the reporting phase, desuibiIlg tha-t the

required information has been r<'!ceived in(k~d, ill Segall's PIF -protocol; each leaf in the fr"gment F'"

sends a Report-message "uptree"_ Th;!; m<l~"a.g" carries the weight of its minimum-weight. (1)tgoing

adj::u;ent edg~_ In t<'L~<' [10 such edge e)Cists, this "weight" equal the fktitiolls weight 00. An interior

node waits until it has re~e\v",cl all -R~por/'-messa.ges from the nodes "downtree" _ Thereafter it seuds a

message Report(W) "llptrCc", W being the minimum of all the value!; T",~eiv~d in the Report-messages

and th", Wl:ight of its own minimum-weight outgoing adjacent. edge_ Then it goes into the found-state,

siuce its own contribution to it!; $~«<ch to the miuimum"weight outgoing edge of the fragment F m has

been completed. This contribution of a node in Fill to the task considered here th\[~ consists of

" cooperating in supplying the nodes in Fill with the new lLa.lne a,nd level of their fragment,

- finding it~ own minimum-weight outgoing "dj,,~~nt ~dg;:, and

- reporting the minimum of the weights of the minimum-weight (1)t,g<)ing adja.cent edge, including

its own, of nodes "'down-trccn •

EVClltuaJly, the nodes i' and i" adjacent to t.he ccte will e)Cchange the RepQrt-me,!;ages- This ena-bles

these nodes to deterrnille wh~ther an outgoing edge of the current fragment F'" exists. If so, these

nodes are able to determine the weight of this edge and, also, on which side of the fragment this edge

lie~_ Ot.h~rwise, Le., if no outgoing edge exjljt~, the algorithm terminates and the fragme);)t f'''' i$ the

minimwn-weight spanning tree T of the graph (V, E) (cf. theorem 4_2(b))_ This discussion concludes

our description of the task considered in this subsection-

The PI'OgrlUIl a..ssocia-ted with this task consist~ of, fOr ~ach nod" i i,l pm, the program segments labdOld

Cj in figure 2_ The program II;EV'" Cj does not describe the ta»k, how<:ver. (llecall that V'" deno\e8

the s;,t of all nodes in the fragml:nt F"'.) The reason is that nodes outside th~ fragment F'" also

99

~On!,ribllt(' 1.(> I,h" task, bec.ause they may send Accept-messages (and not otherwise) to nodes in Fill

when. the'y r(~:!ipol1(l to 11~:Ht'-InCSH-ag+~~ re(:eiv~.'~d frorn nodes in PI". Cons-equent,lYl we rl:lU!:if, ahiO irlC;lud*~

tlll' program oegments of nodes outside F m thaI are activaled to send Accept-messages.

Definition 1.1_1.1 Let, for nodes i olll.side the fragment 1"'" which fire counected by some edge with a

(:~rtah\ nod~ In F"', the segments labdNl (6) in ,'s loop in Jiglll:e 2, viz., "response to receipt of

'l'est(l, f) on edge ,." when' ,. h adja~:ent to f~agment Fit', togel.he~ wit,h their bodie~ be denoj,ed

by Ti . l"d N(VIII) denote the set of all I.hose nodes outside V'" which ate connected by some edge

wH.h .a (erlaill node ill V"'. The prograrrl a~~odat.E~rl with th<~ t.ask <:oIL!;id.i.:n~d IH~re ib: t.ht:ll (k~t'rihcd

by 8~ "" (lli',v'" C,) II (11"'N(v"') Td·.

IIi t.he program S~ below, apart from variables already described, one can discern the following vari­

ables;

test-edge" to record lhe edgc heing tested hy node i for outgoingncss,

best-wt;, (,0 record the minimUltl"weigllt of all the weights ,'eceived so far from nodes "downtree"

dud the wdght of nod~~ i\ t}wn rrIinjrnUDl-wejght out,goh),g a.dja(~~nt ~dg~ (d~t.~TIninpd };O far),

and

- best-edgei, to rCeo«1 t,h" ,.:dg~ t,h,,-!. h"" Kupl'li~d node i with tI", valu~ r.,,:orckd hy the variable

lX:Ht-wtl"

Note Lhat t.h~ va.ri.<"tbl(·~ f iTul(~01J,nt i an~ lllip.d to· rlett-~nIline whdlu~[" all R(.·l)()7't-IIle~sa.g{~~ fruIIl node i

neighbors "downtree" has been rec.~ivcd (d. lemma 6.4(f) belOW).

Lemma 6.4 Assume that assuntptioII I, fI/;~uIIlpti()l, 2, property 1, propetty 2, aIld the induction

hypothesis (UI) hold. Let program 8 2 's postcondition (cf. lemma 6.3 above) be program 8/s precon­

dit.io11. Then the following holds for program 83:

(a) 'Vi i= V"'.(~Hi=fi~d V . .";=!o,,,ul) II

II 'ii Eo V"'-'it; E Rds€J(e)=basic V s€,(e)=1'€j€cted V 8ei(e)=b",,"'~h) i~ (Ul invariant.

(b) For all i E VIII, i 1{i', i"}.i will receive the message Initiate(L+l, w(e), find) exactly Oll(:e and

nO IHHk <)uhid~' v'" will ever receive this Illeosage. (Re(:all that i' E V' and i" E V" HIe the

two nod~ adjacent to tilt' ~Or~ ,.' of th~ fragIlteIlt Fm.) Alty su~h Initiate-message \'eceived by a

100

('e,tain node in VIII h~ been transIDitt"d by it5 father node when the fragment Fill is assumed

to be consistiIlg of two fragments rooted at the nodes i' and iH, The edge along whkh thf'

Initiate-message is received by node i is recorded by the variable illbrallch;,

Evenh,ally, t,h~ following i, ""t.i~fipd'

\Ii E V III ,(lni=L+1 A Jni=w(e') II srticc}ind), and taking into account the dire(t.ioII~ ofcdgc~ a~

suggested by the variables inbranch" i.e" if inbranch/=e then edge e is directed from node i to

the node at the other end of e, we also have that

(V', (i"bru",:hi E E' liE V'}) fOrms a directed tre,", root,cd at node i' ami

(V", {i nbranchi E E" liE V"}) forms a directed tree rooted at node i",

f'utthetmOI'e, inbranch,' = inb1'allch i" = e' is an invariant.

(c) For all nodes i E V"', i i{i', i"}, if node i has received the Initiate-message along edge c, then

inbr(1,'Tld~,i. = f! holds ii$ a po~t(:olldit.i()Il for the body ()f ~'re5{Jonse to receipt of Initiate(l~ f~

s) on edge e" and it will remain so afterwards,

(e) If node i E VIII transmits an Initiate-message along edge e, then se,(e)=branch holds as a pre­

condition for the corresponding action. It transmits such a message before it transmits any other

messages associated with this task,

If nodc i E V'" rcceives an Initiate-messag.:: alaI!g edge <', then lic;(c)=brunch holds as a precon­

dition for the (onesponoing "d,iqn,

(fl FOr all i E V"', at. ,~ath pOil!t in aJ.!y collljlutation sequcnce if findL'ou"ti='1 holds for some

natural number n, then n equals the number of Initiate-messages (with third argument find)

mi!)\l~ til", !luIDbe, of R~port,m~$sages prO~~~S~d by Ilode i that. have bl:en rec(!ive(\ alOElg edges

dUfnent [rom the OIle identified by iT<br(ln~hi'

(g) No node in VII! will receive a Connecf"message from any other node in V''', •

The proof ot the above lemma is straightforward.

The most difficult P3It of th", progr3II1 $3, and M Gallag<;r'o Q.!g'"ithm, i, t.hat. part a;;sotiatcd with

the actual search of minwedge(F''') on which we shall now COllcentrate-

According to the description of the task COn.idered in this subse(t.ion each node i,l V'" will, at any

101

t.im~, i"v~~tigat,~ at nlost one edge when it is searching for it" minirrl1,ml-w~ight outgoing edge, This

observation leads to the notion of an nnan8W€Ted T€8t"m~"~agc. Illtllitive1y, a Test-message j~ U,lo.n­

"W,,, .. <I if it h«" bee" t,rfLnsmit,teti along some node's adjacent edge and the I1o(k h,,1; not, yet determined

whet,ber thai, Ntg.., i~ au olltgoing Oll~.

D .. finit.ion 6.7

(il) A n(),I~ .; (: v'" ha~ an '"'r),,,n,;lllered Test-message on edge e f= 1'), ifl" .; ha~ t,l'ansmilt.ed a Te3t·

rrle~,o.ge o.long ~r.lge e ~nd t,l", following hollis; ""i(,')#'td,lcted and i has not. pro"""H,,,1 il" A<:r:<:i)/­

message received along (: (\fter it h(\., t.ran>mit.t.~d thi, T".t-message,

(L) Nodei (V'" has all unanswered Test-message iff i haH an Im""O;w(:l'(:J 'fest-message on some

edge f E lSi· •

ObViously, if 11 node receives a Reject-meo~a/!,,, or an A(:r'''1ddlles~age along one of its adjacent ~dg~~,

then the node ha, an \lnan,w"r~d '1':8trlllCssage on this edge,

WI) do.im tho.t. wh<-n a I1("lt in pm starts participat.ing in the task d€o{:rilwd hy t.he prf>f:(ram 8 3 it has

no unanswered Tfstcn~es"ager;, Thi, holcb b"tau~e of the following;

- When ~ node in F m part,idp,,-t,," in tlu: t,asks described in the 8uhse(:t.ionR 6.1 and 6.2 it, docs not

send any Te$t-messages. During eX,'('\lti(m of t.he progra.ms S1 and Sr, which will be int.rodll(~cd

in t.h(: next. t.wo sllbscnion 110 Te$t-messages will ever h",: "!Out hy ally llOde i in Fill, (Thb h

obvious from S1'S (I.lld S5'S progro.In t,ext,".)

- When a node staAts partidpati(1Il iIi the t.ask described in this subse(:tion for \,hl: first. tillie, t.hat

i" «ft.er « fr«gmciit. (ollsist.i[lg of a single node has been wmhi"cd with another fragment as

described ill section 6,2 for the first time, it ha, no 1l1lfl.II~wer(:(1 Test-messages.

- When a node has complet,ed it, partidpo.tiou ill t.he task described in this suboectkm it has Ill}

(lnil.I1oW,,,,:cj TC8tr[[\{Oi;sages (cr. lemma 6,8(a) below}.

As a consequence. the following lemma. i~ t.rue:

Lemma 6.5 For all !1od(:~ i C V"',

(a) At, (lIlY t.im/> ; has at, most one unanswered Te8t-m~S$o.g(:,

102

(b) If i bas some unanswered Test-message on edge e (e E E;), the'l tf:!.t-edgf!i=<: holds.

Proof

130th (a) and (b) Me proved by an inductive argument..

From the discussion abov(it l-'-'llow~ that, ill order to prove the lemma, it suffices to show I.hat the

properties (a) and (b) aI(: sat.isfied for the program S~. From same discussion it follows that (a) and

(b) hold i,l the initial state of the program 53'

Now suppose that (a) and (h) hold up to a certain point in a computation of 5" (the indUdion

hypothesis) .

(il) If node i has some ullanswered Test-message and tmnsmits <'Ilother 2bt-IIl"ssage thereafter,

then node i

(i) differs from the llodes ;' and i" and it ~esponses to an 11l.iti,*cIllt'$$agc, i.e.,

it executes the program segment lab,Md (5) in figure 2,

(ii) is either i' or i" and it executes the progIall1 ,egrn~nt. l",h"I<'<1 (3) belonging to the part

labeled C, in figu~e 2,

(iii) responses to sOme Te$t-m,:s$agc rC(Cived along edge ~ where test-edge.,=e holds, (d. t.h€

program segment labeled (6) in figtlre 2), ,IT it

(iv) responses to an Reject-message, i.e.,

it executes che program ~~grn~nt labeled (8) ill figure 2.

Case (i) cannot occur, since this implies that a Te$t-m"'$S<'Lgc has be~II sent b,Y node i before it

has transmitted an Initiate-message, which wnt.radict.s lemma 6.4(e), or it implies that node i

receives more than two Initi(lte-lIlO~$$<'Lg($ dl1ring execution of the program 53, which contradicts

lemma 5.4(b).

Ca.se (ii) ~annot o((ur because of lemma 6.4(g).

If (,as.: (iii) occurS, then, by the induction hypothesis, node i'r; un<U1sw;'r<,<1 1'est-rnessage has been

transmitted along edge e. This rncssa.g~, thus, becomes answered, I.e" not unanswer~d, wh.:n

it processes the other Test-message. Therefore, whcn node i transmits the latter Test-message

it. has no unanswered Test-messages. By the same argument. it can bl: ShOWII that the lemma

remains true when case (iv) above occurs.

103

(Il) TIl(' p1'Ool" M1lOulcl nOw he ohvious, •

Using lemma 6,5, it. is 5t.raif!;htJorwo,rd t.o pmv" t,hat. the following holds when th(, PH.>gTiUll ."h "

<.':<<."'l1t,'d,

(b) A Test-message can be t,ran~mit,t.,~d by i only 'Lftl:1' it. hru; t.nl..IlSmil,led an Trlit'ial.,"-rn"'~~O-!T (wit.h

third ~1[~UIIl('·llt. j'ind)\ [tl~d wh~n€ver i. t.r~n5mit,5 i't T<-!at,-nH::;'HH.g:C '''''''i:-:find holds,

(e) If i ["e(cive~ <l.J.I Acc<:pt"message on edge e, t,nen ~n,~jintll\ ",'i(,,)=IJlLSil: 1\ tcst·cdge,,=c holc!.>.

If i exe('ut.e, (,,"II O(:cmn'II"" of) til(' ',"ignmelli. ,~ei(e) ;-rejected, the)' .~f,(·:)-'-II(],Bi" hol,l, as a

l>n:(':(mrlitiou.

(d) If i (.H'Jl~~llit.~ 0- n:~t-m"so"g(' "kHl~ ed~c ", (,hen e is the minimum-weight, ,,-,Ij,,-"""t. ed~e of'i ill

t,he :!-itat.e b{LJii(:l a.ud i will !lever l'ece-ive two OJ:' r:no:re m~~~i;'Igps of th(~ f()ll()wiI~g type along this

edge while performing t.h" progr"-'" S,1' rul A ''''':1' {-, 11 Reject", or a Test-me%!lg.' wit,h i!.i, ('Wll

(€) O!)(~ f is ill t.h~ Q1'(Lnchrst,at", from nod" ,,'s point. of view, then it remains 50 a.ft.<erwitIdn.

During ex~~ut.ion of t.h~ pr<,'gr/lm S~ no ,,,IS" is plat:.:d in the orunell-stat,e.

OH({~ f~ i~ ill th(' .. t~jedvd-state fronl node Cs point of vkw, th~~lI it. l"CIlW..illS so aft~rward~- -

Since the weight. of t.he ('or,' i~ du)~('n a, t,he ,1<l.J.ne of allY non-trivial fr!lf!;Jn''''t, w(, ,\l~() have the

followiTlg l~Il'lTna, whl..'J.~ ... : pr(H')f is t)bviOu£;,

L.,rnrnn 6.7 for all nodesi E V'II,

(a) If; H"'elW" a IIH'~,a~~ fr!'ilia/a(l, f, 8), then in. '" i holds a.s a pr"wrl<lit.i()n, Here, we as~ume

that if in, does not. h~ve a dpfined value, t,hen it. diffea fl'om any defined valll"-

(b) Tit., variahl" In; (for nod,: i different Crom i' and i") can c.h"ngl' only, possibly from an undefined

value to a defined one) after node i hao received a.rl hi/,il1te-message,

(c) If i r~cdv~$ it Ill~~~:..ge h),iliatf(l, f, s), then lni < I hold~ M it precondition, •

101

It also follows that when two nodes arc combined into a larger olle always a n(:1I! ",UlIe: is Cl!OijCIl. Thi~

is an immediate consequence of the fa;;t that when w(<') is chosen to be the na:me of a fragillel.t, <> is

<'Ill ed~I' <if thaI, fr"grnent while b~for~ th"t nWIU,,"nl, e b"'-'5 not been in that fragment. Comequently, it

follows from l"rnrna 6.7 tha.t any name occurs at most at one level.

Next\ COllsider the (Me that a. t.erta.in node i. ill VTII he).."'; dJl UB~111~Wen~d T(~.'lt'-II.u.~!':i~a.g{~ (}Il edge (~. Thil->

irnpli~, t.hat i h""" j,ransmitted a J:'estrmfssage along edge e and that it has not processed an Accept·,

a Reject", or a Test-message with its own name (hence, with its own level) received alOllg edp;~ e

afterwards. From kllLma 6.5(b), it. follows th"t tp.st-edyp.;=e hold,. Now, eith~r (A), (B), (C), or (D)

below occurs:

(A) i deadlock:>;. That. is, t.he ::n~.lj't'-IIlf:SSa.g(! n:ln':umi llIlaIl!:iW(:n~d. A~ a. ~~<.ms¢ql,u::-n~:~~, tF.tit,-rat9":~=f,'

continuously holds afterwards.

(B) i will rc(tivc "n Ac~eplrmC~$<l-g<: a.k)ng ~,dg~ e, ~ay fTOro node j.

ClaiIIl 1: j rI. V'" iLoi<l~.

Proof; The proof is by contradiction. Suppose that j E V'" holds. When node j transmits

an Accept-m~,~ag~ along cdg~' e, th~'n In; ~ 111; -'-' £+t and fn; I- fn; bold. Since j E; V"',

In) ::; L+l holds, too, when executing the program S3' Whence, tn, ~ tn) holds. Consequently,

we obta;n tilat h,; '" f nj is satisfied (, otherwise, llode j, ill tile sallie fragmellt as 1I0de i, would

hav(, Ictc1v(:d til,: ~<'Ilne level, but yet allother [1<'llnC than j; co[Ltradktion), This contradict.s the

assumption that fni f fn; holds when node j has transmitted the Acaptcmessage 1,0 node i.

(e) i will n:teive a Rej"c/-message along edge e, say from node j.

Claim 2: j E VIII holds.

Proof: Wh",n nod~ j tran~mit,~ tht; flej~drm\'~$ag~ along "dgc e, !n; ;:>: In; "" L+l and fnj = fn;

hole!. Sin¢e tn; '" Inj iL"ld. at that, tinl~, too, it follow. that. tiL<, nOe!~S ; and i h.,long to tile

same fragment, (Recall. that no node outside the fragment F'" will ever receive the name w(e'),

d. lemma 6.4).

(D) i will receive a Teslrmes,age along edge e, say from node j, ~aJTyjng the same name and lev. I

as its OWl!.

In this case j E V'" holds. The proof is similar to the O1J.e given in (C) above.

From the,." case-distiILctioIL and from S3'S program text, we can now conclude that eventually OIlC of

the following)$ ~ati$fled for ILode i E VIII,

105

(a) i (kadlo<:b. 1.<:., from a (:trtain point in the compntation of th~ pn.>gr;un .)"3 t"st-CdY"i="

u)I.t.iIlllCm~ly holds for a cerc.lln edge e E E,.

(b) te.li--edge;=nil and i has r~c~iv€d an Acceplrrn,;%ag~ alClI'g NIgr ~, " E E i • This implies that edge

e. is nod~~ ';1':0. H1.1nirmnn-wdght ont.g()ing fldjaceIll edge.

(e) tG8t-rdgei=llil II V" " E; ..• ,·:(,,) 1-1"",<: hol<b. This implies that node i's h':l~ no ()\ltgoillg "dg(:s.

AI, t.hi" sl,af',e we eaunol prove t.hat the fir5t pos~ibiUty, i.e., (;.) ah'}VI', will nt'vet occur. That is,

Wf'~ fa.nnot ~:Olldllde '!lOW th':-l.t ~:VCIltlla.ny each !lode in VW ""HI eVoE;"lt\J.tllly dd,PrIIliuc its IIliI'liII"lUln­

weight. outgoing adjacent edge (, if any). In or<l<:r to do w, we have to incorporat.e that low-l"vl,I

fr(tgment., which att."IllI't. t.o cornhin" wit.h high-level ones are immediat,ely "ah""Th,,,I" hy t.hesc high­

kvel fragments. In theorem 6.1, we will show that Gallag~r's alg(,ritluIl is deadlock· free.

At thi~ sl,agr we make t.he following assumption:

Assumption 3, Eventually, for all nodI', ; E V"', ,·it.htr (1)) Or (e) above will occm .•

Observe I.hat thi, ","llI"l't.io" iIIll'lie~ t.h"l eventually node i will find it.s mininmrn-weight outgOitlg

edge, provided thaI, I.hi, cd);" "xi,,!.,.

Nodes in VIII that. have d~t.",rmiIl(,d t,ftdr Illi"iIllllIll-W~ight outgoing adjacent edge m"st. (:e",p,,,,,t.:: to

tld"rllli",~ t.he weight of tileir fragment's minim\Im-wdght (mt.g(}iug 'ldge. This is the subjed. of th"

following lemma.

Lemma 6.8 For the progr~ul 8, t,he following is satisfied:

(a) Each node i Eo V'" will traui;lIlit exactly one Report-message. Wh"" thi~ occurs i has no lman­

~wl.·Tr.(l rpe.,lft-I:r:U:~ssa.ges.

(b) A node i E V'" transmi\,~ thl' R"P",·trnllossage ruong the edge identified hy its variable inbrallch/.

COllsequently, any Rf.P"rtrme,~age is SImI, "Ioug au edg,e ill the brancllr8t.(tte (,·f. h'IllIIla 6.4(b,c)

and Iemm" 6.0(")).

(c) If node i E VIII t,Tansmit, H", U"l'"d-Inessage then it has received a R"llOri-message along each

of its adjae,,"t ,~dgei; ill the branch-state except for the (me id~Ilt.ifi~d by its variable inbr(,,,,:hi •

Observe that when a node in V"'·- {i', in} transmits a Report-mesoagl' alOllg one of its a~a.cent edg.;"

it has received an Jnitiate-m,~~,a.gr along that edge earlier. Due to t.hi, (,h~ .. tvaUon. to the property

100

formulated in (c) above, and to the fact that no variable iT<lir<1ncil j of nodes j "downtree" in P'" ('an

change after nod~ i ha5 tran~mitt.<'d "- .R"l"'T/-Il\c~s"-ge we can consider directed subtrees of F"; a:nll f"'.i

at any point of 83 's execution when node i in V',; and V"i, r~sl'<'~tiv(oly, transmits a Report.message_

Define for node i E V' the directed tree P';, rooted at i (takiIlg into account directions suggested by

th", variable~ in"T(lnclll fOr n<)d~ e i,t V', ~f. lcm,ua 6,4(h)), by

F"'=(V"" E"i) where the following is satisfied,

i {{i}, if .. ,3f E V',f '" i fI-ir!b-ta{.ch l E El
V', = {i} u U{t E V' I e f i A inbranchl E Ej} U U{j E V'/II '" i 1\ inbranchl E En, otheTW""

and {0' if ",3f E V'.f =f. .j fI jnbranchl E El
e','=

{inbranchl leE V',; A 3j E V"i.inQT(lnchj E Ei,d, otherwise.

The directed tree F",i rooted at i E V" i. ddiIl<,d in the same way. We then hav~ l.h. fl,ll,)wing

(el) For a.llnodes i E V', if i transmits a Report-me~sag" wit.h argument W then sn;=fo'1;na. Nn­

tinuously holds afterw"",ds and W eq,uals the minimum of aU weight!; of edg"~ " such that e is

a.Il outgoing edge of the fragment Fill IUId e io a.dja.cent to some node in the tree F"i. H.~r",

W = 00 iff nO ~lIc.h edg<~ exist.s, The sa.me property holds, of (ourS€, <>IF) f'.1< nodes i E V" with

F"I replaced by F,,·i.

(e) Eventually, for all nodes i ill V"', fin(i(.(>IJ.nt;=O continuously holds (again)- fin(i(.mmti=O l~arl

only hold if 8"i"" fc;mnd is satisfied. Eventually, the nodes i' a.nd i" will exchange a Report-message

alOIlg t.he: COre c/.

(f) During executiorl of the pn)grartl 53, the following property invariantly holds f<,r a.I.l nodes i E V"':

either best-wt; hAA a.n undefined value, or Qest-wtl has a defttl!'d value and

(b~,'t-W/i=OO =;.best-edgei""nil) II

A(best-wt, < 00 *3e E E;,(best-cdgei=e A (~ei(e)=branch V se.,(e)",b".ic))).

(g) EVCIlt.Ua.l.ly> best-wt; has a defined value and the vallIe for the variable best-wt, has been supplied

along the edge identifi\!d by the variable best-edge, (i E V"').

(h) When node i transmits a Report-messa.ge, then this message carries best-wti AA "'" argument,

(i) i' and i" are the only nocl~~ ; in V'" that will receive a Report-messag~ along the edges identified

by the variable inbranch;.

107

If in H", final Ht.at.,·, of allY ",x"":llt,io" of H", progrH"" Ss, IX?st-wti' =best-wti" holds then this b

eqlli'lalent to bes·t"wt;,-o.'!'/-wt;",,-oo, since distinct edges have distind weightf', whkh implie~

that F'" has no outgoing edges, see (d) and (h) above, whkh impli~h tha.t. F"'=1' holds.

It follow, that if the algorithm terminat.eH, i."., if til<, nod", adjatent to ftHgment F,II,s core have

excf'uted the halt"statement, then the minimum-weight spanning tree T h"H 1w"n wuBt.ruttcil,

1Il that m~e the posl.cowlitioll q forIllulated in section 5 then holds.

If the algorithm does not terminate, i.e" no halt-statement hat< h,!,,,,, ex"qlt"c1, t.hen {",st-wl;, f.

(j) A norte i in V"I, i 1{i', i"}, completes its contribution t.o the program S'~ wI",", it I.ransmits

a lI"l'"l't-IlH·ssag(,. A nod" i, ; E {·i'. ·i"), (')]II"lde~ il.~ cOlltl'ibntion to the program 53 when it

has hOI.h scnt and rcceived a n"pori-mcssage along the edl{e e', and it. has eithl'T ~)(~,·,]t.~d t.h~

halt-statement OJ" it hM determined that the value I)f its vari~hl., but-wt; cliflh. fr(,m I.he vah,e

rc'c"iv"cl III til<' lIr'l")7'ic",,,""agt. (TIl<'s(, are I.he t.erminat.ion conditions.) •

Jt, should be d'jar th<lt d\lring e)(e~"ti<>n CJf (.11" progr"m S~, prop,·ert.y 2(",1», s"e se1:t.ioll 6.2, invru'iantly

hold". Als,} upOlI tel"lnillatioll of S3, property 1 and for all i E' VIII, snj=found hold.

6.4 Notifying the node adjacent to the ftagmeIlt's minimum-weight outgoing edge

8\]1'1")'" t.hat. t.h,> aIgoril.hm ha~ nOt. tOnst.IIIdNI the minimum-weight spanning tree. In that. (:ase, ill

the final state of the proj\ram S~, best-wi" f. bc.'st"wt,,, holds. The node, in V In shOulcl aU(}[llp1ish the

tMk of notifying t.he 'lOde in V'" that it is adja(:ell\ to fragIll""t. F"'"s ,uinimum-weight outgoing edge.

A$ollln(: I.hat. /":'/-'111/'i' < /),'.t-wt,,, holds i,l program 33 's final state. (The other ~Me is .imil;).!".)

ClertL'l.Y, best-wti, is the weight of fragment Fill's roinim\lrn-wdght 'Jllt.going <'(Ige. Denote this edge

hy ~"'. D,,,, to l"IIlIIla 6.8(£) "",I (g), til<, pat.h iTt to the node f. in V'" adjacent \0 this edge can be

traced from node i' hy following th" erlg\," idelLt.ifi"rl hy b, .. t-"rlil"; fOr noues i along pi, A message

Ch(HI'9"-H",,t i~ ~eIlI. along the edges constituting the path pt from until this mess<lg" h"", aniv~d al.

node e, It remains to d<:'s(Tib~' how a noilc along I.he path pt "kIlt)Ws" whether it is adjacent to edge

e'" Thh i$ trivial, hc/w~ver. 1f for;,. llod" i along pt, sei(best-edgei)=branch holds, then the edge

identified hy /I(:.t-""ile; is lU, "dge in F"'; otherWise, sei(best-edge,)=ba3ic holds (cf. lemm~ 6.8(f))

"nd tIn: ",Ige id"lLt.ifi,>,l hy be.t-,·dil'·' is illl outgoing one.

108

The program 5. a.ssociated with the task considered here ,~ d~fl.Il~d hdow:

Definition 6.8 DdiIl~ 5. ~lliEV'" D j (d. figure 2 in section 4.3) .•

Lemma 6.9 If the program 8. is eJ(ec1,l\.ed in I'rOgrillIl S3', final state for which best-wt,' "'" best-IVt,"

holds, t.hen

(b) nodes i different. from e on the path from the node i' wheu be,t-1)'(i' < b<,.t-wt,,, is satisfied,

or from the node i" when best-IVt;" < I",.t-'Wt" is satisfied, to the node £ in V'" adj<l-(-ent t.o

minwedge(Fill) ~omplete t.hcir participation in S4 after transmitting 0- meS$ligc Chil7lye-Root.

Other nodes in V'" different from (n'-'VI" ,',wcute illly statement in the program 84- Nmk (

completes its participation iu 54 after it has determined that se/(best-edge/) I'/:>mn(:h holds. (Cf.

the program ~egm1'nt labeled (12) in figure 2.) •

6.6 Sending a Connect-messa.ge on the minimum-weight outgoing edge

After the nodes in the fra!!;Illent F'" have del~rllli"cd the W<'oight of F""s minimum-weight outg(>in{l

edge e'" alld "n"r node tin F m adjacent to em h~ been notifkd ab(mt this, the fragment Fill attempt~

10 ,:oIIlbin~ with the fragment, say F"", at tile other end of e'''. III order to do ~o, node f .""ds a

Connect-me~~",g<, tartying Fill's level, i.e., L+1, ~ it.s argnm~nt" Assume that F""=(V"", E"") holdo

and t.hat node k E V'''' is adjaceut to edg~ ~"'. Also assume that the fragment F"" is at level L+ 1

ar,d that k has transmitted", C01i.7ltd.-message along edge elll
, too, Theu th~ two fragments will be

combined into a l(ltgGt fragment Fill" as described in section 6.2_ For i E VIII U V"", node i partitipaks

in the task of combining these fragxnent~ (az described above), when it executes the prOgram segments

labeled El Qr E; in the figure shown in figure 2-

Definition 6.9 Let Gi denote the program segment consisting of node i's W0gl'arn S('gnt"nts labeled

E1 or E'f, Define So ~11.Q'v"'uv"" Gi • •

Lemma 6.10 Under the aforement.ioned a.s$\lIIlptioIIS, lemma 6.3 holds for the pJ:Ogram 5s when in

that lemma F m , L, e' , i', and i" are replaced by F"II/, L+l, e''', e, and k respectively .•

L09

Observe lllut if nod~ f. ill th" frag"""'!' F'" t,ransmits a Connect-message along edge <', lhell this IIle~sag~

(:H.rrio(~~ F'ml~]~voel as an arguluent and m..in·llJf(lfl(~(FTIJ) h()ld~. AIs() {")b!-i(.~rv(~ that t.hf;' C{mn~d-n,1f:'!:'!:l::\gE;'

is then lrullsmitted a]ong <U' ('dg~ m!\Iked as a branch. From the property formulated ailer lemma 6.8

and from lemma 6.(), it il.lso follows th,,!. "ll lIodes in the fragment Fill are in the joun,/.state when

the CO""'~d-l1"~'oag" i. "':11/,. This establlshes the induction step (cf. section 6.2, where the induction

hypoU,,:>b (TIT) has been formulated).

fL(i Combining the above specifications

Above we have: aSH<>(:iat"d <' "pw:ification t,o each program describing one of the ~lIbtilsh (d. settioll

4.3). Each specification COl\~isu, of, lor .'a("h I,,)(k i p<,rt-kip<,/,iIlg in t,he rCijp('~tiw program, a precon­

ditil'm l'r(~i, ~ P{)!jt,condihon postl! an invariant iIi and a LetlllillatiolL f.oIldit.ioIL '1~. Tht~s~~ a."-iH~rt.iOll!:i

have Le'~!l 1'!l"Ilmlat.,·:d in the lemmata 6.1 through 6.10. We now apply the ptil~cipl~ of s<:ctioll 3.3

ill ord~r to obtain one algorithln that descl"ib~:b thcl.t frOIlI ~.1. lugiutl poiILt of view the fiv(,: ta~kf> nIP

performed sequentiillly and r<:p<:at,'dly. III (>r<kr t() de) >;0, ohserve t.hat tlw pH)gram, whkh hf<ve been

a..nill'yz~d abo¥!' "'"y involve distind, s"t of nodes. This can be seen, e.g., with the prop;rams S~ aud

8~. Progr<u!! 52 describes how two fragments F' and F" are combined into a Iill'ge,' ftagmerlL F'" (see

section 6.2). hI this prOr;ralll i-lll !lode, (>f thf: fragment Fill are wn,idered. Whereas in program 5"

which eh':5crihf:5 how the mininllull"weight outgoing edge of fragment Fill is determined, apart from

nodes in pm also neighboring [lo~k!i of Fill a:n~ i,:<'lIl~ider~d.

The principle below 8tate~ how tht' ~<:t of m)d",; iIlvolv~d iII " n·r/.aln progr<Ull ':<Ul)", allgm,,,,/',,d while

pH'~~rving "II properties of the original program.

The intuitjoll bdrilLd t,hi. I'riIl(:ipk i, a~ follow~:

Let.:D=< V', {PI liE V'}, ActD > be some algorithm. By assumption (see sectioll 2), no Ilode olltside

V' is actually involved i,l D. Ld V" be ")1[1<: ,<:t of nodes ,atisfyil~g V' C;; V". Nod<:~ iII V" - V' do

not actually participate in D (a.., hilS been observed abOve). ConsllquO!ltly, if Pi is an arbitrary st",!",

a~$'~rt.i')Tl~ of n()d<:,~ i E V"- V') characterizing node i's precondition and if Pi does not refer to variables

wllich (all be (hill.g.-:d by ll"d~o different, from i, then Pi i~ an invari"nt and a t;:rminatiull tondition

for node i (i E V" - V' when the illgorithm D'=< V", {Jl; liE V'} U {Pi 1 i E v" - V'}, Act!' > is

executed. This idea leads t.o th~ fOllowing prha:iple:

110

Let D=< V', {Pi liE V'}, Act'D > be some algorithm.

- Let V 5at < {Ij I j E V'}, {Tj I j E V'}, {<;(j I j E V'} > holel-

- Let V" be a set sati5fying V' ~ V" c; V-

- Let for j E: V" - V' state assertio);\~ Pj be given. Assume that nUIll: of these assertio)J~ (~mt.ain

any programming varjahl~H which can be chaJJg~d by "diMS of nodes differ€nt. from j, and that

they do nut '~(mta.in pl'oof variahles pc(,,) a.nd CTl(e) for nod€.5 e f j_

- Define for j E V" - V', Ij ~ Pj' Tj == Pj, and % == Pj'

Then the following is satisfied fOr <ilgorithm 'D'=< V", {Pi liE V' U V"}, ActV y

- 'D' sat < {Ij I j EVil}. {Tj I j E V"}, {qj I j EVil} >,

The 5<nmdness of this principle iH obvious.

We nuw combine the prog:l'!\Plo t.hat have been analped in the sections 6_1 through 6.5. Each on~

descibes how som" fragment solves a certain task, In order to do ~o, we may assume, as described

hy till: prillciple above, that <ill programs involve tM saule set of nodes- The ~olnbination can then

be achieved by means of the prindple for formal sequenH<illy phased reasoniJ:1g (~c~ section 3.3)_ II,

nlust therefore be shown that all verilkMi<)rl cOl.ditions required fOr a sound application of the latter

mentioned ptiIlciple are sat.iofitd, For each of th~ programs involved in t.h" tolilbinatioll, w~ have

derived invariants :l.ud termination \:ouditions in the lemmat.a 6.1 through 6_10_ It is Htaightforward

to verify all the othe~ verification conditions (d_ <ilm section 6.7 for th~ (aSC in which a C(lnn"ci­

message is received by a node too "early", i.e., if this me5sage is received along an edge not in the

branchrstate). The complete proofs are, however, quite lengthy and do nOt, prOVide us with more

insight in Gallager's algorithm. Therefore, <1.$;).II illustration that all verification condit.i,)ns of the

principle are sati~fied, we concentrat~ on the requirement th",t ;:ach llode can (a>:\llally) participate in

one $llbtask at a time_ We collsider two cases:

(1) A node which participM,t$ in the program S2 cannot participate in the program S,- (These

programs h",ve been defined in the sections 6.2 and 6-5-) This holds be~au~c of the following:

If lLode i partieipates in program S~, then sn,=a/eeping V Inj=O holds. If node i participates in

program S~, then ani'" found holds and it has received a message Change-Root, which in tmn

implies that it h~ increased its level earlier, i.e., In, >0 lIold$. It is now obvious that node i

111

(IT) A node CatlllOt !\,u·tieipa!,e in t.h,. pn)gr"", .':12 =II,,;vw D. when it is part, of a fragment (V'", EIII)

Ht. lev'" L+ 1 (d. section 6.2) while it is participating in til(' pmgr"'n S; =lli[V"" 13, wh(:n it, is

Pm'1 of <I frilg"l(:nt (V"", E"") o.t, level L. This follows from the following;

If Il(Hh· i. pnrtidpatf;".3 in the progl'alll S'i.l th€h it. hAo:'! receiv(:d H, (:unn(:ct-ILl{~S~mg<.: with arg:llI!H~Ilt,

T+l (->..long rut edge ulUrk<:d a, >I lim,,,:h. H follows that, lni=r+l hotd, when it ha~ received

t,hl~ Con1H~ct-nlessage, If it would at th.{: ~a.rIH~ tiIIl~~ prlrtitipat(' in t,'l-w progr.:un S;, tlH'Jt it ~t,~.Tt.,:,

pal'ti(ipMiIlg in thi, prograIIl when Ini < L holds (d. section 6.2); contradiction.

n.7 ,(,h", full version of Gallager's algorit,hIIl

WI' [lOW nm,ider Gallager's program. Iu thi~ pmgram ,Hff",""t grollp of I1ode~ perform their tasks

('on('llrrently W.Ll. iI"othtr. Furth.,.II",r", a t,ask performed by one group of nodes Cat) be Jisttitbed

(ttmp()rarily) due to interference with the task of an other grOllJl.

At first., W(! de~(:ribe how to combine two progrilJ.HS performed hy t.W<J disjoint gTOlIpS of nod,'s. Intll­

itively, these program, ,m.: "x,:qlt~d (:ornpl~t,ely independent of each other. A prindplE' fo1' combining

slId, program, is st,raightforwa.rcl;

Let A=< {V',{p, l'i C V'},ActA > a,,,1 B'--< {V",{p, I i EO V"}, ActB > he algorithms .

... A"Slllm: t,!,at V' n V" = 0 holds (no node is involved in both iltgorithIllH).

Assume that. A sat <. {lj 1 j E V'},{Tj 1 j f V'},{qj I j E V'} > and B sat < {Ii 1 j E

V"}, {Tj I j f V"}, {qj I j E V"} > 1",ld.

A.'lllm: that none of the assertions Pi' If' TJ , and qt, j E V' U V", conta.ins any pwgrllJHming

v",riahles of nodes different from j aIld that th,:y do Il(}t r"f<:r tq pr<)"f v~i(!.hks I'/(~) and (T/(f)

for e f j.

"l'htIl I<)r algorit,hm C = < V U Vir, {Pi 1 i f' Vi U V"}, ActD >;

C ~at < {Ij 1 j E v' u V"}, {1j 1 j E v' U V"}, {qj I j E v' U V"} > holds.

W" hH.Ye de5(orihed how programs which ate ~"eeuted complttely indrptndent. frnm tadl nt,her call ht:

tnmhin",d int,Q one algorithm. Next, we consider the possibility that Iwrles in a fragment F can he

dist\lrbed (t,ernporarily) when they participate in one of t,he tilsb di~cIl8s{:d ",1.H.wc. C(>Il~cqllrntly, we

ll2

a~k our"dv(:~ the qu".t.i<l11 what. me$~ag"" n"de$ i" F <:"", r(,,,dv(: fnlIIl ""d(:$ out~idc F whe" th,~y

perform a certain task The answer of this question shows that some millor changes in the program of

figm~ 2 h"ve t.Q he m"de "nd t.hat. ~ome of t.he assert.i(>os derived in t.he previ()1.ls .uh,e~.t.i"n" hav..: t.n

be weakened.

A n,,<;Ie in " fragment. F (ao obviously re('eive Accept-, Teet-. aDd CO'l'leclrmeJ;J;"g~:~ (not <">I.h(:rwi!;(:)

from nodes outside P.

An Accept-message can be seod by some oode j outside F t.o a certaio nod€ i in F only, if it h",

rcceived a Tcs/.-mes.agc from node; taxli('r, i.('., if node i paxticipates i,l the task desCl'ibed ill section

6.3. Since responding to Te.t-messages by means of Accept-messages is part of t.hat tMk, node i is not

diHurh..,d in th" p"rf<lrm"",ce (>f it, t.",k.

Now suppose that node j outside the fragment F sends a Test.message to node i in F. Observe that

thi$ im.plie8 tilM '!/I~ have to i'lCOTpoTIJte in the Q.8$~:Ttil!n" of ,,(}(1,~ i a.sociated with the tasks di.cussed

iT, the .edirms 6.1 through 6.5 that Te.t-messages can be received and that they are placed at the end

of 'lode i's message queue. This is strroghtforwro:d, howev~r. Now, if node i h in t.h(: .l"~piny-stat~,

then it be awakened by this message and it will start partidpatin?; in the task des(ribed in se(:ti()n

6.1. Therefore assume th"t i i5 not. in th.., .1<:"1)iny-st.at,c. Node i, wh'~Il receiving the Test-message,

will be disturbed in the performance of the tMk in which it pro:ticipates. When the Test-message is

r~moved from nOd~' i'l; <jU,',l,"" it. is cith.::r pia.ces this message back at the end of its queue (if Inj's value

is less than the value of the level's argument in the Test-messag,,) or it ,end, <Ul Aocept-message back

t.e) th~ sender of the Teat-message. In any case, node i will execute the program segment labeled (6)

in figure 2. During this execution none of node i's program variables are "hanged. Cons,~queIltly, the

invariant M~odat.ed with the t~k in whith it paxtidpates remain valid when it executes this segment.

In a.dditioIl, since this execution will always leave the program segment labeled (6) it will r~$\lmc it.s

participation in the disturbed tMk. Note that if node i h~ /lot fini~h~d t.his paxticipati01l when being

dist.urbed, th"n this remains so afterwards during i's response to the receipt of the T~~t.me~J;",g,",;

otherwise, Le., if it has completed its partidpat.ion in the task when responding to the Test-message,

thel~ its participation in this task remains completed afterwards (d. also verification tondition (j) of

th~ pd/ldpl~ in ~edi(\n 3.3).

Tlu: most difficult case of interference occurs when node i receives a message Connect(L) frOm SOme

node outside its fragment F. Obviously, if i i, in the $/eeping !ltat~, thtn it will be awakened and start

participating in the task described in section 6.1. We therefore Msume that, when nod~ i receives this

113

message, it is in the not in th~ 8Ieeping-~I."I.c. A~~LlIne that node j transmitt~d thc Connect-message.

At th~ "'o",,,"I. of trallsmission Inj"" L holds. Now,

-- either L=O h<.>hh, I.>r

L >0 holds alld Ilode j has received an Accept-rn~,~alS{' alo[lg <,>dge .. earlier. Wh~n IlO,\(' ;

transmit.ted this A""eptrm<>'H>'H<> Inj ::; Ini holds. Since lev~15 an, [loll-decreasing (cC. lemma

GA(d)) aud I10d~ j's own level cannot, increa,e aft. .. U,/, receillt of the A ccept-)l1('osage ;Ind before

Lhe trD.nsmission <.>f t.he C(>"11~drm"'5sag", it. follows thD.t Inj :S In, hold, whl~ll node j transmits

the Con1M:(:t'-IIH~!-i~agc.

hom these two cases it follows th<lt wheIl~v.,," Ilod.., -i receives a message COll1!ect(L) "nd t\1<'>cks whether

In,=L hr>ldo, thb \.<',1. i, "'I',ival<'nt to dleckhlg whether ~(In; < L) is satislied. (In the final v~r,il)n

of tho. program, see figure 3 below, this ob~erv"-ti(111]',,$ h.-.ell taken into ac.c.ount.)

Now, when node i receives the meso"!,:,, Con""r:t(L) along edge e, L S In, ('~I' aIH)vc) aIld sei(e);=basic

V "r:i(e)=!J'NLl1.d, (d. property 1 in se(,tion 6.2) hot.h h'lld.

Jf 11l,=L "nd "",(r.·)=I"",""oll hold, then node i proceeds a.s d",,:ribed in the sections 6." and 6-5.

If ITli=L aIld .,ei(e)-basic hold, then th'" C(ln1l.~dr"ICssage is delayed. (This ca~e iij ~imilat to delaying

a Te~t-m~sliagf~! !-if,,:~: ah()vt:).

If, on the other hand, L < Ill, is satbfied, t.hen it. follows from the indu(:tion hyp<lthesis (lH), see section

6.2, <lnd fr<)m Imnma fi.8(o.) that fol' all nodes kin j's fTagm<,nt., ~ay F', ilttk=follnd A lirui<:(mntk=O

holds, when node j tran5mitt~d th;: C011'f",:<:t-message. It also follows from (IH) that edge e is fragmtnt.

F"s minimum-weight olltgoing edge. Note that upon i's receipt of tlw Connect-message along ",diSC (',

• Ini is ddiued. This is true because In, >0 if; ,atisn.ed (as a consequenc.e <If 0::; L <: lni) and

property 2 (s.~ ,.d.iou fi.2) holds .

• Fragment F"s level eqllals '''''-/TI'j, which follows from (IH).

F'tom the description of G<llIag~r'H algorithm in section 4 it follow, th",t. the fragments F and }r" axe

immedJatdy ~omhi[led into a larger fragment. Therefore, "POll receipt of the C07171~ct-message node i

maTh edge e "s a. branch. (At that time a new tragnlel1t has been formed.) ThereaItet, node i supplies

th~ nodes ill the fra.gment F' with the name i\.nd level of its own fragment (a~ fax as "known" to i).

114

Consequently, the variables Ink, k E V. increase indeed. We now consider three cases which caJ! hold

wh~n nc:>d~ i r~~pc:>n~~~ to th~ Connec~m~s5ag",:

(a) node i has not yet received fragInent F'g new name, i.e., it has not yet received an Initiate­

I[lessage with third argUIll(:Ilt {iTid,

(b) node i has r~"eived fragInent F's new name, but it has not yet transmitted a Repor~mes5age,

i.e., it i~ participatiIl~ in the task descrihed ill sedioll 6.3, or

(c) node i has received fragment F's new name and it has transmitted a Report-message.

In cas" (b) above, obviously, en;=find holds. It will immediat~Jy transmit the message Initiate(ln;,

In;, sni) such that all nodes in pI will participate i,l the ""llarged fragIlleIlt's s",arch fot its rniIlimUIn­

weight olJtgoing edge. The invariants derived in section 6.3 clearly remaiJ:l valid. Also th", t",rmination

conditions of the nodes are not changed, i.e., interference-freedom of specifications can be proved.

In CMe (c) there is no need for the nodes in F' to part.icipate in the (already completed) Sean,h fOr

F's minimum· weight outgoing edge since the nodes in F' will not contribute anything to this search.

Th", r~1ll;"n i. th", fC)llC)wing:

node i has transmitted a Report-message by assumption. Therefore node i has determined its mln,imlJlll­

weight (>\It.going «dja(tmt ~dg('. Cons"'queIltly, b~st-wli :::;; w(c) th"'n holds, SiIl~~ ~dg .. C is OI.e of node

,'s outgoing edges.

Clahn: best-wt; <wi e) hold., too.

f'~oo(; The proof is by contradiction. Suppose that beet-wt,=w(e) holds. This implies that node i

ha.s re~eived an A.ccep~me$$ag" along "dge ¢ ':;(>;rlicr, $in~t': " has provided the valu'" for best"wt, (d.

l",mma 6.8). When node j transmitted this message In) ~ In, holds, It follows that In, has decreased

afterwards; contradiction .•

We obtain that, in this case, for all outgoing edges 61 of fragment F', w(e1}2:w(e» best-wt. holds.

Cons<'!qlJtmtly, in the cases (a) and (c), contrary to case (b), the nodes in F' should synchronize their

search for the minimum-weight outgoing edge of the enlarged fragInent with node~ in the fragment

F, I.e., they should wait for this search until they have received th'" name a.nd level of the enlarged

fra.gment. The cases (a) and (c) are distinguished from case (b) by the third argument in the Initiate­

message. If a node receives an Initiate-message, then it updates its variahle S7l according to the third

arglJment of th", m~$$<tge. It starts seMching for its minimum-weight outgOing adjacent edge only, if it

is in the find-~tate (d. sectioIl 0.3). (lniti{J.t<!-mes~agcs with a third argument found propagate through

115

the fragment F' ill exactly Ule sallie way as the information in Segall's PlP-proto(ol h PTlIl'''S''j.",!.

The invaria.nt.=-: H.nd t(~rrl'lin.a.Hon c:()l1.cBt'ion:-; for thh part of Un: algOritlUIl are very sinlilat to the ones

defined in iSR89h].) This ohservation has been incorporated in the pn'gram hd.-,w. N.-,t(! that t,he

"-",'rl.io,,0, ,," hef,)rt,'. ddined in the previ')\I~ ~\lb~~"t.iOIl" havf' to he (Slightly) weakened, since now

node! can receive Initialf-messages with third argument found, but that, agair" jIlt~rf,~ren('\,-fTt",d<lm

(~f lilH~~jfiUl.tioI1s can b~: !:ihOWIl.

Nott: t.hat. Wh':IWV(:r I:H)Ira: IliHh~ k. (,:X(:(:'lt(~~ (~Tl ~)(:nlrr(':llC(~ of) the rlSsigllIllent sek(e);-:;rejected for a

certain edge ,~ E Eh , "'~k(e)","ba.ic holds a.s a precondition, d, lemma 6.6. Gon~~q\'ent.ly, w,: "'''''

n:I'I",,~ e~dl ,\Ich all Msignmel)t, by th~ conditional if $~kk)=b(1"';C then ""k(");=1'l'jedM fi without

affecting any ()f Om (!aJ'lier result,s, This modification is, however, necessary in order t<) avoid (,he

following (unintended) situation,

1I0de i ~Clld~ a T"sldncssagc a.\(JIlg edge ", hcfotc it receives along edge e a message Connect(L) with

L <. htt~

node i receives a message Connect(L) with L < In; along edge e:
n(,,1to i 1'1"<:<:0 e<1ge " in t.ll!' 1"';11.d'rot.;,/.<: ;111<1 o<:nd. " mei;S;,gc lrliliale(lni, fn;, sn;l alo~lg € (ObS<'TV<'

that sni""7find hOlds);

noM i re(,,:,iv(;,s ~ message Reject along ~ and pla(€o the €dS<:' f in the ,'ejected-state,

Consequently, e l1as been placed in the rejected 51,ate by node i. Edge ~ i<, h()w<:v(:r, aJI eLlge in the

~p,mning t,r~<;, T', b~('a\l~e the node dHfer~nt from i ,,(\jo.,:(:r,t. t.() " ha. <1ct"'nnilled that e occurs in T.

Taking this modification and the two observations above into account, we arriv,; «t the prOglillll i,l

figure 3 below. This program describes (the full version of) Gall«g"r', algorit.hLIl.

n6

The program segment. (1), (2), (5), 6'i:'''(9),-··, (12) are the same." the one~ in fig~r. 2.
(3) repo,,$e to r.,ceipt of Connect(I) on edge e

begi ..

if bn,;-":oleeping then exe-cut~ p;("l)(:edur~ wa.kt!-up fl.;
ifl<ln
the" se(o)--:bra."ch; send Initi~t.e(IIlJ~,SI\) on edge C;

ifsll-find then nndcount. :=finclcou,>t,+1 Ii
cis .. if se(e) = b~"i<

Ii
end

then place received message on end of queue
.,1.., (" ,=w(e); hi ,---,1111·1; inbranch :=': sn :=find,

for all cdS88 e' #- e ',loh that, se(e')=llmnch

1\

do send Inijia;e(ln, (1\, sn) on e'i nl •• lcoullt ,'''nndcollnt+l od:

be!=lt-edge :=nHi best-wt ;""':":"OOi -execute procedure test

(4) reponse to receipt of In'tintc(l, f, sJ on edge"

besin

In ;=li fII ;-fi Sn :'::::!i; inbraneh :=ce::;

for all e' ,. e "urh that se(e')=bt&och
do ,end Initiate(ln, fn, sn) on e': if slI=fhld then findcounl ,_findcollnt+l fi od:

best-cdr;c ::::.nil; best-wt :=00; if~n=fjl1,d then eXr:::l;ute procedure test fi

end
(Il) repon.e to ,e<:eipt of Test(l, f) on edge c

begin

if sn=.sh:eping then execute prQcedu1'"~ wa.ke~up iij
ifl·(ln
then place received I"Il€:ssa.ge 0.) eud of queue
",Ise iffIlif

Ii
end

then send Arcept on edge e
else ifse(t)=basic then sere) '''' rejected fi:

,rtest-edge;f. t th~n send Reject on edge. else execute proeed u,,, test Ii

Ii

(8) rcpons" to receipt of Reject on eds<> "-

begin if St(c) = baSic then ~e(e) :~rejected 6.; execute prl)~ed.l,J,:J;'"e test end

Figur", 3. The loop execl,lted bY--;;~d~ ''{((E V). (Variables occurring in this loop are asSl,lmed to'-be

subscripted by i.) The program consisting of all tbese loops describes Gallager's algorithm.

117

A principl<: which 1Lnderlies t,lIC ai..loye kind of reasoning w.r.t. t,he <:li~hITb"Il{""" if; IlI'xl, f'H"IIlUlated, FOI'

ease of exposition, we G(lnoid~T t.h" ""H" t.hat. at mo~t o,le ,lOde k Catl be disturbed in t,h~' p~Tform""c,,

of its task.

l,et t,hh t,,,-,k be ""llVf'd hy algorit.hm

(el) B=< V', (pr I i f V'}, AdB >.

Since node k mn b~ disturbed in the pedo>:!)l(\n(:e in (~, k Illay receive messages from node, oubid,-,

V'. Re(:eiving and pf()ce,~ing <1,,:h rn,,,"a!l'" are adiom associated with another algodthrn, Hay,

(C2) C-< {V",PY I 'l E: V"},AdC >,
From tile assumption that k is the only no<:l~ t,h~.t m"y 1)(' di,turbe,l (due to :tctions in C), it follow"

th~1.t. WI'~ may ':l!i~llIne t.hat

(C3) V' n V"-{k} is satisfied.

Sinu~ 8 and C liolve dh,t.illd. t.;~l-;khl w(~ HJ.rl.'y aSSl1flle t.hat

(C4.) ActB n ActC = 0 (thi, h the ('~He in C"llag"r', prograIIl indeed),

N(:xt 1 i-l-npp()ii:'-~ that.

(CD) B sat. < {rp I j Eo V'}, {Tf3 I j E V'), {<If I j E V'} :> and C gat < {If I j Eo V"}, {If I j E

V"}, {'If l:i EVil} > hav~ i..I~ell proved,

(C6) Assume that no assertion sub~c[)pt,ed by j \:"n <.:v,.:r he <:h;\IlgC<.l by actions of nodes different. fWIll

Ilock k (cf. v(-"rifkatioll c(m<iitiol1 (3) ill sec-tion 3).

Now at, aIly Umc in B's computation, node k n~1"t. "U.)W to he .li~t,l1rbed by :tctions oc.curring in Acl.

This is t.h~ case if th,,: lIlv"r;"ILt If hold~ whenever node k st(\rts p"rticip"tiIlg iIL "lgo1"it,1I111 C, In

piirticul; •• , thii; i~ ~atidied wlle11 pf "" If! is satisfied. When nock h: li; pH1"lidpating in algorithm C,

Le" when it e;(ecutes (1;(' adi,,,, ">~od"t,,,d iIL AdC , the reasoning about algorithm B Hhould rClllain

yali,l.

Define, for assertions P "wj Q ",,"I fOr a H:t of actions AG, the assertion Jnt-fr'f'{P, Q, AC) express·

iILg t,hat. if SOme action a is executed in a stat,e satisfying P 1\ Q, thel' P is not invaJidated by (l

(interferen(e-freedom) .

We n>.quiTt' that for illl noile j t: V' the following holds:

((;7) IT<irfr""Uf 1\ ·,TjB, If 1\ ~TP, Actr) and Int-free(Jp 1\ TJB,ff fI,TP, Actf) (t E V").

or course, it lIlust also be required that the reaH<)IIiIlg alwl1t illgodthm C femmm valid UIII.kr ",:t.io,IS

of 13;

lIS

(C8) lnt-/r<:e(!f 1\ ~Tf, if 1\ ~TCB, Act?) and Int-jt<'c(!f (I Tf, If A ~T/;J, ActP) (j E V", f E V').

Th" kind of disturbances appearing in Gallager'~ program can occur only wlleIl a node participates in

a certain task and it reccivl's i). rne,,~age assodated with another task. A~ remarked above, such a llod;,

ll\".t at any time be prepared to receive these kinds of messages. Internal actions and send actions of

node k associated with differCIl!. !.asb cannot be enabled simtiltan~ollsly, howev!"f. (This observation

holds for Gallager's program.) We, thus, requir<, t.hat.

(C9) for each action a E ISP, disabled(Ip A ~T!! A ental, n;f) holds for all computation sequences

of.6 and similarly that

(CIO) fOr each action a E; 1sf, disabled(lf 1I~·,1f A fTl(a),lSp) holds for all computat.iOn o~q\l€nce5

of C (d. section (3) for the definitions of the sets 1Sr arId [Sf and for the definition of the assert.iOll

di.Nbkd).

Finally, wi' req'.lire that actions associated with algorit.hm C (:ann(lt enable nor disable action~ associ­

at.ed with algorithm C and that actions aswciated with Ccannot enable nOr disable adic",s ~,odated

with '0;

(ell) Intrfree(~en(a),1f A ~TF,ActP) lot alIa E 1St,

[nt,-jree(en(a),rp II ,1,[,ActP) fOr all a E Isf,
r"t-jt~(;(~",n(a), If A ~Tf, Actf) for all a E [Sr,

lnt.jree(en(a), If II ·,Tf, Actf) fOr all a E Isf

If (C1), ... ,(C11) are all satisfied, then we lIlily !.hen (:on(·lude that for the algorithm D=< V'UV", {pf5 I
i E V"} u {pf I ; E V" - {k}}, ActB U ActC > the followiIlg holds;

V gat <{If I j E Vi - {k}} ~J {If I j E V" - {k}} U uP V if},
{If II TP I j E v' - {k}} U {If A Tf I j E V" - {k}) U {Ip 1\ If A Tf! A Tf},
{qf I j E V' - {k}} U {qy I j E V" - {k}} U {qf A£} >.

We have th" follOWing'

'rheol'em 6.1 Tile program S described in figure 3 above meets it,s specification (d. section 5).

Proof: From the previous lemma!.iI aIld the above discussions it should be clear t.hilt. the program

S is partially co~rect w.r.t. precondition p and postcoIldition q. where p and q have been defined in

.<'<'tion 5. tn order to prove that S always terminates when executed in an initial state satisfying p, it

119

suflices to pl'oV~ th(tt, in any Il()Il-I,,,rlllillal st,(tte T!'(t(:h"d ciminI; execution of S ,()Ine (proper) pmg"'"

om he, IILade. Consider som€ ~t<lt,,, which can be readled duriIlg ,uell an execut,i')n, WI' Illay assume

that in t,hi, ,t.at." for "ll llOdes i E V, ,'1'/,; f .l<:Q,in1 holds, since oth"rwise at least 01",' ''',Hie, could

""wak,' spolltan('ously" and, th\l:" progress could he ma(l".

Let, Frog i)" til<, ,do "I' ,,11 fragments ill the ('(msi<kre,l st,ate. Let. LF1'ag~:;'I<'riJ'!I he the set of all hn.grnel1t.g

which h,w(, t.ll<' lowest, lev~llllr""'g't, all fragments in Jilr(J.g. Ddiw' F f'LFrog to h" " fragment with

t,he smallest. minhnum-w.,ight. ,mt.g<)i[lg ed~e among til<, fragments in LFmg.

(a) Suppose that, ""IlI~ node ill (,he fraRm<;Ilt F h,'<.'; ttansmitted a 7'<:.frmessage. Be('~'u,(' "I' thl,

cI,oi"" of P, eventnally thio r""frIll"'iiil.gc will be('om~ an,wered (either by a" A(":"Idrllll~ss<tge or

b.y l\ Reject-m~~><\g")'

(h) Suppose t.hitt some nod" in the fr,l,gmcllt F ha~ tr~.n'mitt:ed a Conncct-lll<;o'"W' "[OI1g it certain

edg~ ~: E: E i · '1'[",,[this node will, ag"in I>y the choice of P, dtt[er receive a GonneGtrIne,s;'gl'

along edge e, or it. will ['"""iv~ il.ll lnitjate-m(""'g<" ,110111'; edge e, C:0I1~"'lu"Iltly, eventll<llly t.lll'

fr.a.gnH~Ilt'~ level will il)(:n~~lSt~. AgaiLl! pl'og-ress wjl1 lw Ina(it..

(t) In all other t~"" it ,huultl he den)' thH.t pmgn's~ is ensured, •

6.8 Some notes (I •• OaUagel"'S algorithm

The conedIl~" of Galla((<'r's algorithm h(",vil,y depends on proptrti,'s or the underlying udwot'k. As

we h"vl' sec" i,l the sect,ioft> 6.3 thrnllgh 6,5, (,he [H"sihility of ident,ifying edges by their weight,

is crucial for it~ Wrr(:ttuess. Another, k~' ollviolls, constrrunt whid[i. essential ti.l ("""tr",:t the

minimum-weight spanning I,r"" "iiiIlg this algorit,hm i, tha.t the underlying uNwO!'k contains no ,,,If­

loops, j,e., th"I, t.here are no ~dges e E E •.• fe\[;'"Y node i. T.his prop~[t,'y has act.ually hc'"'' u~t'(l ill

lemma (I.I(e). In case th<; ,,,,t.work does contain ,df-[<),)p~ it. is not ell5uTt'd t.hat. Gallager's al"oTit.hm

indeed finds the rninimlllll-weight spanning t,r~~ T of the network, A~ illl example, lI"ume t,hat there

exist, ,0nW ~llg~ ,~ E E i " for a ~eT\,ain node i in V. Ag5um~ t.h",t. " i~ the minim11rn-wdghl. ,.djacent edgt'

of ll()d~ i holds, too, Whe" i awakens it will r"ark ',: a~ a branch, COnStllUently, from node i\ point. of

view e will alway> in Ull' bm"ch state afterwards. It follows Ihlll, in '1"'h a case th~, algorithm (illlIlOt

satisfy its spedfkat,i(>Il. One can slightly rdilx the assumption I,hat the graph mu~t n(>t, contain any

self-loops in ortier 1.0 construct. T u~ing Gallager's algorithm: if a node's adjacent ~'dg<, is .1 selHoop,

120

th(,n it iJ; not, the node's minimum-weight adjacent edge. It (:a.Tl hI' p,oved that if this condition hold~,

(h~n Gallager's algorilhm is correct.

Our program desc.ribing Gallager's algorit.hlll is slightly mi.r,' dfkknt (,han the progra.m ill IGHS83].

WhM w<' rnerdy upda(,e program variables of nodes that have cx(,hanged a Connect-mess':'!\e alOIlg

some adjacent edg" (s"" figure 3), in the program in [GHS83] the 110d<'s ; ,tdj,l<\,nt to thh edg~, ,aye,

first exchange.:. m"ssag~ 1'Ii,til1/,(I",+I, wid, find), after having exchanged the message Con",eot(ln,),

and Q"j(JIT they broadcast the Initiate-message t() (,h.., ()th(or node, in their fragment. ObviollS1y, we

have saved some t,rrulslIli.,i,luS of me~,age, when compared with the prograIll ill [GHSS3].

AIl()ther (slight) optimization is possible; if a certain Hode i (V trrtn,mit, ~\ Test-message along SOllIe

edge e a.nd it rec~iv<"s a message C(}nnl:d(L) with L < Ini along thi~ edge before it has <l(tually r(;(:dv"cl

a respouse to that. T".,t,me~'':I.ge, then there is no need to wait for this T<~S(l()n.,,,. In this ,'a.SP., i would

':I.lway, receive a Reject-message .:tftel'w.:ttds. COllsc'l"c,ntly, llf,1d~ i can, in this ease, continue its search

for th~ millim1ll11-w(,ight [lIltg(ling adja~·@t edge without waiting for a l'espmlse to (,he Tf.~t,me~~age.

The node j at the other end of" wllid th(", a, well ignore the Test-message in such a sitllat.i()ll, i.".,

if it ,,\.tempts t,o process a message Test(I, f) with I < In; rNeived a.l(lng an edge in the state branch.

7 Conclusion

Correduess of HIe clistrn",I . .,d nrluiIll\lln-w,-,ight ,panning tree algorithm of Gallager, HUlllbJ..t, and

Spira [GHS83] has been proved. The strateg.y Moptcd iu thi$ paper in <)Td~r to prove that the span­

ning tree algorithm meets its spetinration is tn ,tart with some sequential program which consttucts

the lllilliIlllllll-weigitt, ,panning tree, t,(l r<,fin<', as described in [B88] and lCM88], parts of this program

until distI'ibuted pr0!ir;Un$ arc Obtil.iIlCd, a.nd finally to combine these programs in ordel' to ()htaill

a di5tributed counterpart of the initial sequential progrrun. The latMr ('omhlnatiol1s hav<, been ac­

compliHhcd by r('pI,«kdly applying the prindple for sequentially phased reasoIliug "h,lllt (~o"':\lrT('ntly

performed (sub)tasks. cr. [SE8Da, SE8!)b], Thesi' a.pplka(,ion, h«ve 5hown that one can obtain from

prOgram5 50lving ~<'rtain sub tasks another program which solves the whok tuk, as if the ~uhtasks

are performed sequentially, even when these subtasks are performed repeatedly a.nd U)Il("rrent1y by

"'-"pandiIlg group$ ()f llO<l%. In addi1.i(ln, it bas been shown that our principle can cope with with I,he

phenom",non that tasks performed by one group ()f node" are dhtmbed temporarily by interference

121

of another group of nodes. For thio r~a~<)[L invaria.nts play an important role for 0\1r priIldple, since

t,l",y all<)w 0,"" t,D prove iIlt.erfNenct'-freedom of specific.ations. A future paper will show that such

illv,uiallt,; call be gel.et;).led J(lring the design phas(' of progTilmH.

122

References

[AI"R81)] Apt K.R., Francez N., <md de Roever W.P., A proof $yBt\'m for ('ommunicating sequential

processes, ACM l'QPLAS, 2-3 (1980).

[B8SI

[BK83J

[CG88j

[CM881

[D591

ID761

[DSSO]

[E7!)]

[F67]

Back RJ.R., A calculus ofrdinements for program derivations, Act.a Informatica 25 (1988).

Ba('k R.J.R. alld Kurki-Suonio, Dr.tcnt.ralhation of process nets with C",,~tralizl'd ()nt.rol,

Proc. of the ACM Syrnp. on Principles of Distr. Compo (1983).

ChQ1) G.T. and Gaini £., Understanding and verifying distributed algorithm~ \l~ing strati­

fied decomposition, Proc. of the ACM Symp. on Principles of Distr. Compo (1988).

Chandy K.M. a.nd Mi,ra J., Parallel progr~ design; '" (ounnation, Addhon-Wesley Pub­

li~hing Company, Inc. (1988).

Dijkstra E.W" Two problems in connections with b'Ta.ph$, Numer. Math. 1, (1959).

Dijkstra E.W" A distil'lill~ ()(programming, Prentice-HaJJ (1975).

Dijk$(.ra E.W. and Scholten C,S., Termination detecting for diffusing computations, lIlf(lr­

Illation Processing Letters 1-4 (1980).

Even S., Graph algorithms, Computer StieIlt~ Pr~~~, JlIc.(USA), (1979),

Floyd RW .. , Assigning meaning to programs, Mathematical aspects of con~puter sci<,n"~,

AMS (1967).

[Fr80] France~ N., Distributed t~rmination, ACM.TOPLAS, 2-1 (1980),

[G81] Gries D., The science of programming, Spring~r Verlag (1981).

iGHS83] Ga.liager R.T., Humblet P.A., and Spira P,M., A dist,ibuted algorithm for minimum-weight

spanning trees, ACM TQPLA.S, 5-1 (1983).

[H69] Hoare C.A,R" An axioma.tic basis for computer progranJming, CACM, 12, (19(19),

[H78] Uoare a.A.R, Communicating sequential prOt~sses, Comm. ACM, 21-8, (1978).

[Bu83] Humblet P,A" A distributed algorithm for minimum-weight direct"d spanning tre~" IEEE

Trans. on Comm., 31·6 (1983),

123

[K56] Krnska] ,loB., On t.h,· S]lOrt,<,~t. spa.nning subtree of a graph an t.he tra.veling ,ale.matl pl'ob­

l~m, Proe. Am. Math, Soc., 7, (Hl56),

[L831

[MC811

[MP83i

IMS7V]

iOG76j

Lamport L., Spedfying concurrent modul~8, ACM TOPLAS, (;-2 (1983),

Misra J. and Chandy K.M., Proof" of network ,>I' proce~se~, IEEE. Trans. on Softw. Ene;. 7

(1981).

Malln~" Z. and Pnueli A., Verification of <'OlnlI",,"t program;: A temporal proof oy"t~rn,

Foundations of comput.er science IV, part 2, MC-tr"d, 1:59 (1983).

Merlin P,M, <uld S,'gJlI A" A failsafe dist"ihut~d rO\lting prot.owl, IEEE Tnuls, Oil Comm.,

27-9 (1979).

Owkki S.s. and Gries D., An ax)mnat.k proof kchnique for parallel program", A,·t;;. Infor­

mat,ka 6 (Hl76).

[P8\.l] 1':"1't.;dl B.A" SpN'ificalion and transformation of programs -A formal "I'proa.ch t.o software

developll1~nt-, Sprinw'r-Y"rl"g (1989, to H.PI'<'il.T).

[Se82]

[Se83]

[SR87i

iSR88j

ISR89a]

Segall A" Decentralized maximum-lJow (l,lgorit,hms, N"tw()rb 12 (1!l82).

S"I;",,11 A., Di,t .• i1ml.<-<1 nN,wOrk p.ot.ocols, IEEE Trans. on Inf. TlII,ory. lT29-1 (1983).

Stomp I'.A. ;('lId ,I<-, no"v,,,. W.P., A torrCClneSS proof of a distdl)llt,,,d minimum-weight

~p;(.nn)ng t.r~~ a.lgorithm (ext"nd"d "h'trM~t.), P.ot. of lhe 7th ICOCS (1987).

Stomp F.A, and de Roever W.P" A fonn(l,liza.ti')11 ohcquentially ph;;tSed intu)(,i<));l in nd,wMk

proto('ols, Internal Report, 88-15, Ur,iv~'$it.y of Nijmegen (1988),

Stomp f',A, illld de R.o~vel' W,P., Designing distributed alg(lrithIII; by means of fo~mal

sequentially pba.~ed reasoning (ext,~nd<?d "'b"tr""~t), 1'0 appilhl in the Pro". of t,he third

Intu,,;;.t,illIlil.l Confertnce On Distributed algorithms (1989).

[SH-89b] StoIlIP F.A. and de Roever W.P" Designing djstrlbut~d algorit.hms by means of formal

sequentially phased reasoning, Intern,,1 Rep(lrt 89-8, !]"iversity of Nijmegell (J989).

[SS84] Schlicht.ing R..D. and Schneider F,B., Using me~sage pa.$SiIlg fM dist.ributed programming,

Proof rules and disciplines, ACM TOPLAS 6-3 (1984),

124

[WLL88a] Welch J,L" Lamport L., and LYDch N.A., A l"ttk~-~t[\lct.,.u(,d prMf of ;11Ilini,IIUIII Spillllling

tree algorithm (extended abstract), Proc, of the ACM Symp, on Pdndples of Oiotr. C<,nnp.

(1988),

[WLL88bj Welch J ,L., Lamport L., and Lynch N .A., A lattic.,-~trut.t.urcd proof of a minimum spanning

tree i'lgorithm (fl,lll paper), rr"dlIlicai RepoI't MIT (1988),

[ZS80j Z~Thib F.B,M. and Segall A" A distributed shortest path protocol, Internal Report EE-J95,

Technion·Israel Institute of Technology, Naifa, l~rael (1980).

rZRE85] Zwier • .I" de Roever W,P" and Emde Boas P., Composition(l..lit.y ",,<1 concurrent netwDrk,;

soundn"s. and tOmpietcIlcSS of a proof system, LNCS 194 (1985).

[Z89] Zwier~ J., Cornp<)sit.ionaiity, tOnturreI1Cy illld partial correctness; proof theories for netw<)rk

of processes, and their connection, LNCS (1989).

125

CHAPTER 5

© 1989 Academic PI~SS, Inc.

Reprinted, with permission, from Info1'1nat£on and Computation, Vol. 82, no. 3, 1989, pp. 278-322.

The II-Calculus as an Assertion~Language
for Fairness Arguments

F. A. STOMP

Unil)~"'.5ity ~r Nijmegefi. D~parlment .oJ Computer Sder1('c\
To,mooiveld I, 6525 ED Nijmegtn, Tn.: Nelherlands

AND

W. P. DE RO"V~R AND R. T. GERTH

t',"dlr"v," UnivcrsilY of ncir"O/oIlY,
D~p(lrtmfnt ~f Computer Science and Malilemalic .• ,

POB 513,5600 MB E;jndhown, The Netherland.

Variou~ principles of proof bave been proposed In reason about fairness. This
paper addresses-for the fi~1 time-tho que.tiM in what formalism such fairness
arg\lmcnt~ can be couched. To wit: we prove that Park's monotone fir~t-order

I'-calculus, augmented with constants for all recursive ordin~b Cl'P serve a$ an
.ssertion-Ianguage for proving fair termination of do-loops. In particular, the
weakc::;it pr~ondition for fair t~rmlnation of a loop W.Lf. !;iQm~ p-o!;otcondHh;m tS

ddinsble in it. The relevsnce of this result tn proving eventualities in the temporal
logic rormalism of Manna a.nd Pnudis (in uFounda.tions of Compul~r SGi~nce IV~
Part 2," Math. Centre Tracts, Vol. 159, Math. Centrum, Amsterdam, 1983) is
dis:cuued. ~~]989 AGlI.d.~mic f"n::s!:. Inc.

1. MOTIVATION

Fairness is the defining property of good schedulers. The very notion of
fairness presumes some kind of (metaphorical) competition for some
shared rcsource(s). This competition is settled by arbitration, resulting in
synchronization of competitor and resource. One speaks of a fair schedul~
ing mechanism when this arbitration meets certain standards. Roughly, a
scheduling discipline for a set of processes is called fair, whenever, inside a
process, one or more (constituent) agents are "sufficiently often" allowed to
compete for some shared resource, one of these agents is eventually
scheduled for synchronization with that resource. Different notions of
fairness can be distingUished according to their specification of what
"sufficiently often" means, of their identification of resources, and of sets
of agt;nts inside processes, and of when these agents are considered to
compele.

0890-5401/89 $3.00
CC'Pyri8ht ~ 19'&9 by AC8dc:mi~ P"r~~$. h~c.
All n.sM$. r;,f ~pf'()dlldiCln in any rorm ~I'.,td.

127

/1-< 'AU 'IIUIS HlR FAIRNESS AROUMI:N I'S

The prescnt papcr concentrates on that notion of fairne~~, which
prescribes that "an <~CtiOIl which is infinitely often enabled is eventually
tahn." Hcre, sufficiently often is interpreted ,lS infinitely often; the set of
agents are singleton set5; the ac(i()n~ are guarded statement.s of guarded
command$; an action is enahled (allowed to compete) whenever its guard
evaluates to true; and whem:ver in <l- guarded ~election all guards evaluate
(0 false this ~electi()n is considered to be waiting, i.e., repeated execution
results in (re-)evaluation of its guards (and possibly, in execution of a com­
mand guarded by a true guard), and not in failure upon its first execution
as in sequential programming (Manna and Pnueti, 1983).

This notion of fairness is linked with the interleaving model of con­
currency to remedy the following deficiency, Since the only requirement in
the interleaving model is a syntactic one, namely, that actions from every
process continue to be nondeterministically interleaved (sequentialized) as
long <IS th<lt p(Qce~s has not terminated, this requirement is also fulfilled for
an interleaving which systematically selects re-cvaluatiQn of the guards of
a waiting guarded selection whcn thc~e happen to be false and which nevtr
sdcGts execution of that selection when these guards have become true (due
to wme interleaved action of another proctss).

That is, in the intGrleaving model for concurrency, guards may be
systematically selected for evaluation at the wrong moments. Now this
behaviour does not occur in cas~ eve~y proce~s has its own active proctsso~
(which notices when guards evaluate to true), Thus, the nondeterministi­
cally interleaved s.:quentia\ c)(CGuti(ln of processes need not necessa61y lead
to the same result as the concurrent extcution of those processes on
separate processors. Yet we want to maintain the int.:rleaving model of
concurrency as Our model for the concurrent execution of processes since
this is the only model upon which successful verification theories have been
built (other models for reasoning about correctness properties of con­
current processes are always obtained from this model by introducing
equivalence relations and congruenG':s). In this we succeed by imposing as
an extra requirement the fuirness requirement above.

Next, nearing the focus of this paper, the interaction between fairness
and the interleaving model must be examined.

How Does Olle Deduce Properties in the .Resulting Model?

The properties of interest always contain eventualities which are enforced
by the assumption of fairness. Pure invariances, i,e" p.operties which are
invariant during execution, are not inOucnced by postulating fairness as an
extra requirement and Can be derived lIsing more traditional methods.

Tht ,tate of art offers the following picture: Let t/I denote some state for­
mula, i.c., 1/1 is a direct property of program states not requiring temporal

128

STOMP, r>F. ROf,VllR, ANI) GERTH

operators such as 0 for its expression. To establish that for a concurrent
program 1/1 eventually holds, thc following stratcgy is taken;

(1) Amongst the concurrCnt processes a distinction is made between
those processes-in Manna and Pnueli's (1983) terminology dubbed helpful
processes-whose execution brings satisfaction of 1/1 always ncar<:r, and
those processes that do not do so, i.e., whose execution possibly does not
bring satisfaction of 1/1 any nearer, called steady (or unhelpful) processes.

(2) It must be proved that systematically avoiding execution of any
helpful process either leads to an interleaving of steady processes which
does not satisfy fairness, I.e., is unfair, since infinitely often a helpful process
is enabled but not takcn, or, due to some nondeterministic choice of a
steady process in the int<:rkaving, docs bring satisfaction of 1/1 eventually
nearer or even establishes tjI.

Essential here is that upon closer inspection part (2) above requires
application of the same strategy to a syntactically simpler program; just
remove the helpful processes from the original program and prove that
eventually one 01' the following holds: 1/1, getting nean:r to Ijt or, a helpful
process is enabled.

As a preparation for a technical formulation of this strategy, wC first
introduce a number of auxiliary notions (Manna and Pnlleli, 1983). Let
p"" PIli·· ·11 P" he some program with '1;" I.

Assume that both 1 and 1// are statc formulae.

-For i satisfying I" i" II, we say that PI kads from ,p to ,p' when
every state transition in P, establishes 1// provided ¢ is satisfied first.

-We say that P leads from ¢ to ¢' when for all I, I ... i ~ n, P, leads
from ¢ to ¢'.

A technical formulation of the above-mentioned strategy requires the
introduction of well-founded sets and looks as follows (Manna and Pnueli,
1983);

THE WELL-FOUNDED LIVENESS PRINCIPLE WBLL Let £m = (A, ...) be a
well-founded ordered structure. Let ¢(o:) be a parametrized state formula
over A, where 0: intuitjvely expresses how far establishing 1/1 is. Let /J; A ...
{ I n} be a helpfulness function identifying for each 0: E A the helpful
process PbIO) for states satisfying ¢(o:).

(A) f-P leads from ,p(a) to [1/1 v (3P"';0:·¢(P»)]

(8) f-Ph(o) leads from ¢(Il) to [1/1 v (3/1<0: .¢(Ji))]

(C) f--¢(o:):::> 0 [1/1 v (3/1 < 0:' ,p(P») v Enabled(Ph(.)]

H3a.¢(o:));;oOI/i.

WCALCULUS FOR FAIRNESS ARGUMENTS

The wundness proof of this rule requires induction over well-founded
sets.

Conversely, given the fact that 01/1 is valid, (naive) set theory is used to
argue the existence of the required auxiliary quantities, i.e., the well-foun­
ded ordered structun; 9)1, the ranking predicate "'(0:), and the helpfulness
function h, which satisfy clauses (A), (8), (e), so that for each such 1/1,
WELL can always be applied. This proves that WELL is semantically
complete.

Manna and Pnueli (1983) even prove that for certain classes of for­
mulae, their temporal logic formalism is complete relative to the set of tem­
pora.l formulae valid in the given domain interpretation. Typically, tneir
proof shows that the reasoning about temporal assertions concerning the
execution sequcnces of programs can be reduced to the reasoning about
assertions concerning the states of programs, the so-called state properties.

Now we are ready to ask the one question this paper is about: How do
these results help us if we are sure that Otjl holds and want to apply the
rule above to verify Olj;? The answer is: not much.

Questions such as:

--- How does one obtain the appropriate well-founded ordered
structure IDl?

-How does onc cx:pn:ss, and reason about, the helpfulness function h
and the ranking predicate ¢(a)1

-In general, which assertion-language should be used to establish
hypotheses (A), (In (C) of WELL?

arc not answered by the above results, since the reasoning about state
properties is not formali<!:cd in Manna and Pnueli (1983).

The present paper suggests a direction to answer these questions, by con­
centrating on these problems as they occur when proving termination of
do-loops under the above fairness assumptions, Le_, fair termination of
do-loops. That this docs not lea.d to oversimplification follows from the fact
that the same au~iliary quantities, with comparable objectives, occur in the
rule whose expression and use we shall investigate (GrUmberg, France2,
Makowsky, and de Roever, 1981).

THE WELL-FOUNDED L1VENESS PRINCIPLIl fOR LooPS·"-QRNI\.'S

RULE. Let Wi: = (W, ;;;) be a well-founded structure. Let 11: W
(States t true, false}) be a predicate, and q be a state predicate. Let for
wE' W, with w not minimal (denoted by 0 < w), be given pairwise disjoint
sets Dw and Sf,., such that Dw 'F 0 and Dw v Sf", = {I, ... , n}:

(3) f-[1t(W) 1\ w> 01\ bJ Sj[3v < W· rr(v)], for all j iii; Dw

(b) f-[rr(w) A w>O 1\ bJ] SJ[3v";;W-J1:(v)), for alljESI ..

130

STOMP, DE ROEVER, AN!) Gt:R,TI-\

(c) f-[lt(W) 1\ w> 0]* [0 i. St,. hi A I\i. f>w ,br "" S;] [true)

(d) f-r => (3v, n(c))
Hn(w) 1\ W > 0) => V;'_ I b,
f-ll(O) => «1\;'_ I ,h,) 1\ q)

Hr]" [07_ I b,- S,](q].

Note, when comparing Orna's rule with WELL, that the commands S;
act as state transitions. Since in Orna's rule the assignment w --->- (D"" St . .,)
for w;> 0 merely generalizes WELL's notion of helpfulness function, the
same kind of aUlliliary quantities are required to apply both ruks.

This paper proves that to express and reason about 00l, It, and the
assignment w-(D""Stw) for w>O and we W, a slight extension is
required of the formalism used to prove termination of recursive proce­
dures, Park's /l-calculus (Hitchcock and Park, 1973; Park, 1969).

Finally we note that, historically, two ruks have been formulated to
prove fair termination of nondeterministic programs: Orna's rule (Grtim­
berg et a/., 1981) and the LPS-rule (Lehmann et al., 1981). Both these rules
model, each in their own way, a specific intuition rdated to the notion of
eventuality implied by fairness assumptions. For fairly terminating loops
they have been proved to be equivalent (Griimberg eta/., 1981), but the
LPS-rule also applies to proving fair termination of COncurrent processes.

This article is organized as follows: Section I contains the motivation for
this paper; Section 2 specifies the programming language used in this
paper. In this programming language, we restrict oursdves to sequences of
assignments and to commands in which nested repetitions are not allowed.
Section 3 discusses various semantics for this programming hll1guage. In
Sections 4 and 5 the proof system and the assertion-language, Le.. the
monotone ~-calculu$, are dealt with. A term in the assenion-language,
which expresses fair termination of a repetition is constructed in Section 6.
Completeness and soundness of the proof system are proved in Sections 7
and 8. In Section 9 we drop the restriction that we imposed w.r.L the
nesting of repetitions and outline how to deal with the more general case
in which nested repetitions are allowed as commands. Finally Section 10
contains the conclusion.

2. THE LANGUAGE OF GUARDED COMMANDS

In this section we describe the syntax of the programming language used
throughout this paper. In the next section various semantics for this
language are defined.

The syntall is specified below using the standard BNF-notation (braces

131

)HAI.C\lLUS FOR FAIRNESS AIt(;lJMl'NTS

enclm;c a repeated item, that may occur zero or more times). We do not
specify the structure of variables and (boolean) expressions. Expressions
arc assumed to be terms in an underlying signature containing constant,
function, anJ pn:Jicate symbols. We shall only usc simple variables in the
remainder of this paper.

DEFINITION 2.1 (Syntax of the programming language). Start with some
signature. The language of guarded commatlds, LGC, is defined by:

<command) ::= <repetition) I <simple command).
<simple command> :: '" (assignrnent > I

(simple command); (simple command).
(assignment) ::= <variable):= <expression>.
(repetition) ::= *[{U<~elcction)}].
(selection> ::= (guard> --> (simple command).
(guard> ::= "a quantifier-free (boolean) expression."

We identify '4< [] with the assignment x := x (skip). In the remainder of
this paper, we shall oflen abbreviate ·[Db, S,D .. ·Ub,,-S,,] 10

~[U ;'= 1 h, --> Sil
The main differences between the language as described above and that

of Oijkstra's are that. in our language, guarded sdections are not allowed
as commands and that in a repetition '" [0 ;'_ , b i --> S,], the S, never
contain repetitions (i = I, ... , n). In Section 9, it is shown how to deal with
fairness issues when the latter restriction is dropped.

In the sequel we also need the notion of a direction of a repetition
*[0;'_, bi,. S,] with n;;' 1.

DEFINITION 2.2 (Directions of repetition). Let S", ,.. [0 :'_ I b, --> S,] be a
repetition with n;': I. For i = I, ... , fI, hi; S, is called the fth direction of S.

3. SEMANllCS

In this section we define four semantics for the language of Section 2.
Two of them are defined without consideration of fairness constraints. The
other ones are defined when such fairness constraints are imposed. The first
semantics fitting for partial correctness is defined using relations, since non­
determinism is involved. To reason about (nondeterministic) termination,
we introduce the notions of an execution sequence of a repetition and of
nondeterministic divergence of a repetition. Then the partial correctness
semantics is extended to fit for total correctness.

Thereafter, we discuss two important fairness constraints, viz., strong

STOMP, DE ROEVF.R, AND GERTH

fairness and unconditional fairness. These constraints lead to the notions of
a strongly fair or unconditionally fair execution sequence of a repetition, of
strongly fair or unconditionally fair divergence of a repetition from some
state ~, and of strongly fair or unconditionally fair termination of
ro:po:tition.

The relation between nondeterministic termination, strongly fair ter­
mination, and unconditionally fair termination of II repctition is discusso:d.
The third semantics in this section is defined taking strong fairness into
account; the fourth one takes unconditional fairness into account.

3.1. Preliminaries

Before defining the various semantics for the language of Section 2, we
first recapitulate a number of basic notions.

DEFINITION 3. LI (First-order structure). A first-order structure 911
consists of

(a) a non-empty set, also referred to as a domain, denoted by Ifill,
(b) a set of n-ary function symbols and a set of n-ary predicate sym­

bols (n ~ 0), such that for each n-ary function symbol (resp. predicate
symbol) there corresponds a n-ary function (resp. predicate) over Ifill, and

(c) a set of constant symbols, corresponding to elements of 1M I·

We assume the equality symbol" =" to be present as a binary predicate
symbol, corresponding to the standard equality over WI,

In the remainder of this section we assume that Wl is some first-order
structure, which contains all symbols that may appear in a program
SE LOC. We adopt the convention to denote LGC by LGC(fil) in such a
ca$C.

DEFINITION 3. L2 (State, enabled ness, disabled ness, slate variant),

(a) A state is a function from the collection of all program variables
to the domain of interpretation. e. ~i' C etc. are used to denote states. The
set of all states is denoted by States. The value of the expression e in state
~ is denoted by ~(e). (We assume that the {(e) is always defined!)

(b) If a guard b evaluates to true in state ¢, i.e" ~(b) holds, we say
that b is enabled in state ¢; otherwise, b is disabled in e.

(c) For a state e, a variable x, and an expression e, the state variant
e{ ... /x} is defined as usual: {{ e/x }(x) = ~(e). and {f e/x }(y) = ely} if x ~ Y-

Next, we introduce the operator "0" denoting composition of relations.

133

Ii-CALCULUS I'OR FAIRNESS AR{J\JMI:r-n~

OFFINITION 3.1.3 (Compn~ilion (If relations), Let A I! A 2' und A J dcnote
sets. Assume that R, ,;; A,)(A 2 and 1<2';; A 2 X A.l arc binary relations. Then
RIo R, ,;; A, x A.l is a binary relation, (00. This relation satisfies: [or all
a,EA" a)EA], (R 1"R 2)((/,,(/1) holds iff there exists some a2EAl with
RI(al, a~) and R 2(a2, all.

3.2, Partial Correctness

We now associate with each program S the (relational) ~cmantics
R~·rl S States x States. Note that, due to nondeterrnillism, for input state ,;
artd nrogram S, there may be more than one output state or even infinitely

I oncs. If S nowhen: terminates when started in ¢ (in the semantics
under dis(;ussion) there will be no output state, i,e,. the set of output states
is empty,

DICFlNlnON 3,2, I (Partial correctncss scmantics).

(a) S~x :=e: R~"" = {ie, e{ejx})l¢ a state),

(b) S=S,; S2' for simple commands SI and S2: R~"n =Rr,:,"'oR1~'"

(c) S"""'[[)7~,hi-->Si], for n~l and simple command S"
i = 1, "" n: Let Rs = {(e, 0 I ¢ a state satisfying B) for boolean expressions
B and let b denote the formula v;'~ , b,. Define R.~ = U7~ 1 (Rb," R~.~"). Then
R~,'" "" (U;~ 0 R~~)" R ,b' where R~ denotes the i-fold composition of the
relation K~ with itself.

Observe that for repetitions S = *[n;,~ I h, --.. S,], R~a,' contains the
pairs (~, 0 for c; satisfying C; F 1\;'_ j ,b,. This means that S
"immediately" tcrminatc~ if S is executed in an initial state in which none
of the guards is enabled,

DI:fINITION 3.2.2 ([pJ S[q]"a,,)' Let p and q denote u~scrtions in an
assertion-language containing all program v<iriable~, terms, and booie"n
expressions over 9R Let SIS LGC(ffil). Then we define 9Jl F [pJ S[q]p"" iIT
'lll F 'r/~, ('[(p(O 1\ R~m(C;, ()) => q(~')] (partial correctness). I.e., WI F
[p] S[qJ p." holds iff "foT all input states < satisfying p the following holds:
if S terminates when started in ~, then the output state ~ati~fie~ lj."

3,3. Total Correctness

Next, to rcason about termination, we add to the set of states a special
.tatl; .L, standing for divergence, As usual, the state variant ~ {e/x} is
d~fined to be 1. For <in assertion p, p(l.) is defined to be false, I.e., p never
holds in L In the sequel we assume ~ to be present in States.

DEFINITION 3.3.1 (Total correctness semantics. execution sequences of

134

STOMP, DE ROliVEII, AND ()ERTH

repetitions, nondeterministic divergence of a repetltlotl from a
state). Define the relation R~, for S e LGC(Wl) as follows:

(a) R~ .. R~·tlv{(l,J.)},ifS~)::=e

(b) R~ = (R~, 0 R s,), if S;; S,; S2 and both S, and Sl are simple. To
define R~ for repetitions S, the notion of an execution sequence of S is
introduced:

(c) an execution sequence of a repetition S == "[D;'= l bi ---> S;], n) 1,

is a maximal sequence of states ~O--->io~,--->i]~2'''' such that (Rb.oR~.)
(e j , ~j+ d holds for all j, k satisfying j ~ 0 and k = if with I". k ". n. The
sequence is considered to be maximal if it cannot be extended, i.e., it is
either infinite or ends with some state ~k satisfying 1\7~ lib,.

(d) We say that a repetition S can diverge nondeterministically from
~ if there exists an infinite execution sequence of S starting in ~.

(e) For S;;;;·[07_1b' Sj] with n;:<;1 and simple commands S,
Ii = I, ... , n), define R~ = R~'" v {(e, 1..) I S can diverge nondeterministically
from 0 v {(l.., 1..»).

DEFINITION 3.3.2 (Nondeterministic termination, [p] S[q],). For
S E LGC(\m) and assertions p, q as above:

(a) Termination of a (nondeterministic) program S is straight­
fo.wardly defined as It~ # 1.. . I Rs(e, 1.. J.

(b) 9JI F [p] Seq). iff WI F V{, {'[(p(~) /\ Rs(~, t))~q(~')] (total
correctness). I.e., 9JI F [p] Seq], holds iff "s always terminatc~ in a state
satisfying q, provided execution of S started in a state satisfying p"

3.4. Strong F'airness and Unconditional Fairness

Termination of a program S has been defined as V~"".L. --, R~(~, 1.).
This is, however, a rather strong requirement. Consider, e.g., Dijkstra's
(1976) random number generator: SO"" *[b --> x:""): + 1 0 h --> h := false].
So need not necessarily terminate if started in a state ~ such that ~(b)

holds, because its execution may be governed by an extremely one-sided
scheduler that consistently refuses to Cl(ccutc the second direction of So,
I.e., b; b := false, in any iteration.

Consequently, various constraints on schedulers have been proposed
which prohibit schedulers to neglect the execution of directions under
certain circumstances. Termination of a repetition is considered relative to
a set of schedulers thus constrained.

Before presenting two important constraints or fairness assumptions on
such schedulers, viz., strong fairness and unconditional fairness (Apt el al.,
1984; Lehman eta!., 1981), we first introduce (hc notions of enabled ness
and disabledness of directions of a repetition.

13/j

II-CAI,ClII.US f'(m fAIRNESS AROliMENTS

DEFINITION 3.4, I (Enabledness and disabledness of dirCl;tions), Let 5 ~
*[11;'_1 h, --> 5/] be a repetition. Assume that ~o ,,+'" S, --;.il." is an execu­
tion sequence of S, For ,tate ~"" In;;' 0, occurring in this sequence we say
that the ith direction of 5 is enabled in ~'" if ~",(h,) holds, where I,::;; i';;: 1'1;
otherwise the ith direction of Sis disabkd in ~m

DEfiNITION 3,4,2 (Strongly fair execution $equenccs, strongly fair
tcrmination, strongly bir divergcnl;c of repetitions).

(a) An exccution sequence of a repdition 5 is strongly fair, either if
it is finite or if it is infinite and every direction of S which is infinitely often
enabled in this sequence is cho,cn infinitely often along the ~equence,

(b) A repetition terminates strongly fair if it admits no infinite
strongly fair execution sequcnccs_

(e) A repetition diverges strongly fair from state ¢ if it admih an
infinite strongly fair execution scqucnr.:e starting in ¢.

Observe that, while the ahove program, 50' admits infinite computa­
tions, none of them i~ strongly fair; i_e_, 50 terminates strongly fair.

In the scquel, we also need the notion of uncondition:\1 hirrtess, that
does nO! take enabledness and disablcdne$$ of directions into account.

DEFINITION 3,4,3 (Unconditionally fair ex.ecution sequences, uncondi­
tionally fair termination, unconditionally fair divergence of a r~pClition)_

(<1) An execution sequence of a repetition is unconditionally fair,
either if it i~ finite or if it i$ infinite <1nd every dir~ction is chosen intinitely
often along the s~qllence_

(b) A repetition terminates unconditionally fair if it admits no
infinite unconditionally fair execution ~equences.

(c) A repetition diverges unconditionally fair from 5tal~ e if it admits
an infinite unconditionally fair execution sequence starting in e.

The program SI == *[x=O--->x:= 10 x= I---->x :="'] docs admit
infinite strongly fair e{)mputati~)ns, but nO unconditio[lally fair ones.

Other examples of unconditionally fair and strongly fair terminating
programs can be found in Grtimberg el ai. (1983)_ We should remark here
that some authors use a different terminology. In Lehmann el al_ (1981) the
names impartiality (resp. fair) are used instead of unconditionally fair
(resp. strongly fair).

The rdation betwecn nondeterministic termination, strongly fair ter­
mination, and unconditionally fair termination of a repetition is given in
the following:

136

Sl"OMP, 010 ROeVER, AND GERTH

THEOREM 3.4.4 (Relation between unconditionally fair, strongly fair, and
nondeterministic termination). For each repetilion S,

(i) S terminates nondeterminislically =;> 51 terminates strongly fair.

(ii) S terminates strongly fair =0> 51 terminates uncondilionally fair.

Proof (i) and (ii) immediately follow from the definitions above.
Observe that the examples above show that the implications are proper.

We now proceed to define other semantics, taking fairness assumptions
into account. The meaning of a command S under the assumption of
strong fairness is given by the relation R'J; under the assumption of
unconditional fairness it is given by the rdation R'ff.

DEFINITION 3.4.:5 (Semantics under fairness assumptions). For simple
commands S, we simply define:

R~r = R~ = R:~,
and for repetitions S ~ *[D 7_ 1 bi -+ Sa with II;;' I and simple S"
;= I, .'" n:

R~r = R~",l V {(~, 1) I S can diverge unconditionally fair from ~} u
{ (1, 1)} and

R~ = R~A'I V {«(, .1) I S can diverge strongly fair from (} u {(.1, .1)).

Next, termination of a program S under fairness assumptions and
validity of (p] Seq]. for sE {uf, sf} are defined.

DEFINITION 3.4.6 (Termination under fairness assumptions, [pJ S[q].f,
and (p] S[q]uf)' (a) A program S terminates strongly fair, uncondi­
tionally fair, respectively, iff ¥¢ # 1 ',R~(¢, 1), ¥~"# 1 . --, R~f(~, l),
respectively, hold. (Cf. Definitions 3.4.2(b) and 3.4.3(b).)

(b) For SE {uf, sf}, assertions p and q, as above, and program S, we
define

~ F [p] SEq], iff IDI f= 'Ie, n(p(o A R~(~, ';'):::;J q({')).

In the sequel .; denotes a state other than 1, unless stated otherwise.

4. THE PROOf SYSTEM

We use a Hoare-like proof system. The axioms and rules are as follows:

(1) assignment

(p{e/x}Jx :=e(p];

137

!1-CAI.ClJUJS FOR FAIRNESS ARGUMENTS

(2) composilion

~pJ SI[q], [q] ~l[r]
[pJ ,')'1; Sl[r)

(3) consequence

p~p..!..' [PI] S[ql]' ql ~q,
[p] Seq)

(4) Oma's rule (see Section I). for simple commands SI (i = I, ... , n).

Note lha.t we only consider repetition~ under the assumption of ~lrong fair­
ness. However, Orna's rule can also be applied to ordinary terminating
do-lOOps. In this case, one simply takes the sets SIR" WI; W to be empty.
We then obtain Hard's (1979) rule for terminating loops.

5. THE ASSf,RTIQN-LANCiUAGE L

Our assertion-language is based on the tl-calculus of Hitchcock and Park
(1973; also Park, 1969), which is appropriate both to prove termination of
recursive parameterless procedures (see de Bakker, 1980; Hitchcock and
Park, 1973) and to express the auxiliary quantities associated with those
ptoofs_

In thi~ section, we first recapitulate the basic ideas on which the
~-calculus is based and introduce some fixed point definitions that are
needed in Sections 6 and 7. In particular, we express the domain of well­
foundedness of a binary relation as a iL-term. The term expressing the
non-existence of infinite strongly fair execution sequences of a loop, see
Section 6, will be a more complicated variant of that Jl-term.

After introdUcing the assertion-language L used throughout the remain­
der of this paper, we define validity of formulae in L As is usual in com­
pleteness proofs, we shall need the ability to encode finite sequences. In
this, we base ourselves on Moschovakis (1974).
A~ is argued in Apt and Plotkin (1985), fairness arguments require the

use of recunivl;: ordinals_ For this reason we introduce the notion of an
Qrdinal acceptable strueture (see Definition 5.5.3). Relative to such struc·
tures completeness will be shown in Section 7.

5.1. Preliminaries

The J1-ealculus is based on Knaster and Tarski's theorem (Tarski, 1955).

THEOREM 5. 1.1 (Knaster~Tarski theoreml. Let (A, 1;;) be a complere
lartite and F: A - A a monotonic June/ion; in Jad a cpo suffices. Then F has
a Mast fixed point, denoled by ~a· [F(a)). meaning that

138

STOMP, DE ROEVER, AND GERTH

(i) F(Jia· [F(a)]);= Jia· [F(a)], i.e., JiCl· [F(,))] is a fixed point of F.

(ii) if there exists some bE A such that F(b) =' b, then fJ.a· [F(a)) I;;;; b,
i.e., Ita· [F(a)] is Ihe least fixed point 0/ F.

Using the notation as above, fJ.a· [F(a)] is unique since the partial
ordering I;;;; is anti-symmetric. Tn the sequel, we refer to property (il
formulated in Theorem 5.1.1 as the fixed point property.

LEMMA 5.1.2 (Characte6:j:ations of least fixed points). There ate seoeral
ways to regard least fixed poinls. Using Ihe nolalion as above, first,

(a) fla· [F(a)] = nrxe A I F(x)=x} = n{XE A I F(x) I;;; x}, where n
denotes the infimum. A proof of this can be found in de 8akk~r (1980).

Second, Ihe leas/ fixed point can be obtained by iterating F into the Irans­
finite ordinals.

(b) Define Jor each ordinal A:

FO(x) = x,

FA(X)=F(U FP(X)).
t<:A

if A ,.,to.

Here U denotes the supremum. Let .1 A denote A's least element, which
cxists since A is a complete lattice. l'hen fla· (F(a)] = F'(1_",) for some
ordinal 0:. For a proof, we refer the reader to Moshovakis (1974). Clearly,
if Ilo· [F(a)] = F"(1..~) holds, then for all (J ~ 0:, Jia· [F(a)] = FP(J.. A)
holds, [00.

5.2. Fixed Point Definitions

Next, we introduce some fixed point definitions.

DEFINITION 5.2.1 (R -> p, Ro pl. Let R be a binary relation over some
set and let p be a predicate on the same set. Define

(i) R -4 p by (R -4 P)(x) iff \Ix' . [R(x, x') ~ pix')], and its dual

(ii) Ro p by -,(R ... -,p). So (R 0 p)(x) holds iff 3x'·
[R(x, x') /\ pix')].

Since the collection of predicates ordered by p (;;; q iff p :::0 q forms a com­
plete lattice with falSI! as the least element, and R -4 p, as well as R 0 p, is
monotonic in p> pp . [R -4 p] exists.

THEOREM 5.2.2 (Domain of well-roundedness or a binary relation R.
lip· [R -+ p]). LeI R be a binary relation oller some set. Then IJ.P' [R -4 p]
describes the domain of well1Qundedness of R; i.e., for all x the following is

139

ii-CAI.CULUS rOR FAIRNbS AltGI.1MFNTS

Wi is/led: liP' [R --> pJ(x) hillds ill there exists flO iI/finite sequence XO,."I"I'

x~, ... Ivitll x=x" ami R(Xi' X,+ I) (i;:'0).

Proof (=) Define r(p) = R p. Observe that lIP' [R --> p] =
,'(false) holds for ,Qme <.)[(Jin~1 (1.. Consequently, it sufilccs to show that
for all x: if ,'(j(llse)(xj holds, then there exists no infinite sequence ':(0) XI,

Xl'''' with .'I:=.~o and R(xi,xi+ll for i;o(),
Using induction on fl, we prove that for all ~ '" (1. the following holds:

Tli(/a/sl!)(x) = there i, no infinite sequence Xn, X I, X" ... wilh x = '\'0 and
R(x" x, + tl (i)o 0) holds.

Induction basis. ii == 0: trivial.
Induction hypothesis. Suppose that the implication holds for all ,\ < fl.
Inuut;lion .tep. For (J ,.. 0, we have

yll(fall{')(x) -= (R --> U ,[A(falsd) (x)
"<: Ii

= 'rIX"[R(x, x') =;. C~Jl ,A(faISe)) ex')].

So ,I\.!alse)(x) implies that for all x' such that .R(x> x') no infinite
"descending" sequence ,tarting in x' exists. This follows from the induction
hypothesis. Th~1l there is no infinite "descending" sequ~nce st,nting in .'1:.

(-<=) 'fo prove the other implication, assume that 'liP' [R --> p 1(..1')
holds. By the fixed point property, ,(R --> IlP' [R --> p])(x) holds, too. So,
there is an x 1 such that R(x. x I) and '!J.P' [R --> P](x d· This process can
be repeated ad infinitum, and we obtain an infinite "descending" sequence
x~, XI, x 2 > .. • ~uch that .'I:=Xo and R(x" x, ,.1) (i~O). I

If F is a mon()(onic operator mapping predicates to predicates, then its
greatest fixed point, vp· [F(p)], exists too. This is because the collection of
predicate~ a~ defined <Ibovc is a complete lattice. Moreover, the greatest
fixed point is representable in terms of the Il-operator. This follows from
the following lemma whose proof can be found in de Bakker (1980),

LEMMA 5,2.3 (Representability of the greatest fixed point in Il-terms).

vp· [F(p)] -= 'IlP" [F(p){,plp} l

Since R 0 P is monotonic in P, vp· [R 0 p] exists. Using Lemma 5.2.3, we
obtain the equivalences vp·[Rop]-'ftP [,(Ro,plJ-'llP'
[R'->pl

Recall that "0" denotes composition or relations. We adopt the conven·
tion that ",," has priority over "v." I.e., R I" R2 V R J should be parsed 3S

(RloRdvR).

140

STOMP, DE ROEVER, AND CFltTH

Let R denote a binary relation over some set, and let I denote the iden­
tity relation over the same set. It is easily seen that F(X) = R " Xu / is
monotonic in X, where X denotes a relation variable. So F's least fixed
point I1X·[RoXuI] exists, In informal nota!iM I1X,[RoXv{]=
Iu Ru R2 u ... u R"u . ".

Not(1tion 5.2,4 (R*, R+),

(a) We abbreviate p.X· [R 0 Xu 1] to R*, the rdation obtained by
composing R, zero or more times with itsdf.

(b) In the sequel, we shall also use R +, the relation obtained by
composing R at least once with itself, as an abbreviation for R" R*.

We then have

FACT 5.2.5, Let R denote a binary relation over some set and I the
identity rdation over the same set. The following holds:

(a) I'=.R'*, R+ s;;R*, R+ ==-R*oR.

(b) If T denotes a binary rdation and T<;;;, R, then T" s;: R* and
R*oT,;;:R*.

5,3. The Assenion Language L

Let 9:n be some first-order structurc. The first-order logic over M is
defined as usual. Now we extend this logic so as to be able to express fixed
point defmitions. For this an infinite set of n-ary predicate variables.
p. X, Y, ... , is introduced for every n pO. These predicate variables may
appear in formulae, but may not be bound by quantifiers. These variabks
from the ba~is of the lixed point definitions. To ensure the e~istence of least
(and greatest) fixed points, mono tonicity has to be imposed. In fact, we
introduce the notion of syntactic monotonicity of formulae, which implies
their semantic monotonicity. In essence, this notion requires that each
occurrence of the predicate vadable p that is to be bound by the least fixed
point operator p. is within the scope of an even number of ,·signs,

DEFINITION 5.3.1 (Syntactic monotonicity and syntactic anti-
rnonotonicity). We inductively define sets sm(p) (resp. sa(p)), denoting
the class of formulae that are syntactically monotonic (resp. syntactically
anti-monotonic) in a variable p:

(i) I/> E sm(p), if p does not occur free in 1/>.

(ii) ,l/>esrIi(p), if I/> 10 sa(p).

(iii) ¢I ::::o1/>2Esm(p), if 1/>1 ESa(p) and ¢lEsm(p).

(iv) 'ix!/>, 3x!/>Esm(p), if ¢;;;sm(p).

141

,1-CAl.CULUS FOR FAIRNESS ARUUMI,NI'S

(v) pE~m(p).

(vi) lip, fqlJ, vPI' [¢) Esm(p), if .p€~m(p)(1sm(pd·

(vii) (i)··(iv) with sm and sa interchanged.

(viii)].J.P,· [¢>]. vp, [¢>]Esa(p), if ¢esa(p)nsm(PJ)'

Under the usual ordering, ¢ I \;;; rp2 iff ¢; I ::;) ¢~, it can be proved by induc­
tion on the structure, i.e., the complexity of the formulae that syntactic
monOl(micity implic~ semantic mono\onicity.

DEFINITION S.3,2 (Assertion-Ianguagl;: J. The assertion-language I.(lm)
Over some struetU{l; I)JI, is the smallest class B such that

(i) .p, IlP' [JP(P)], vp' [Jj;(p)] € B, where rj; and J/! are first-order
formulae over WI, <p does not contain any free predicate variables and
1/1 Esm(p).

(ii) if rj;, Jj;e B then rj; A J/!, rj; v Jj;, rj;=>Jj;, and ,.peB, too,

Remark. If in a formula IlP' [!,V(p)] or vp· [!,V(p)]. p does not occur
free in if, then we will often write f instead, Note that formulae of the form
JiP' [if/(p)], where ljJ conlain$ a ll.operatDr, are not allowed, However, we
shall lise slich formulae, in which such a nesting of Il.operators OCCUrs,
since they are representable in £(9Jl), see Moschovakis (1974),

In the sequel we shall often abbreviate L(':UI) to L, when the structure lm
is clear from the context.

5.4. Validity of L-Fol'mulae

We next define validity of L·formulae. This definition is clear, except for
the case~].J.P' [if(p)1 and vp·[t/I(p)]. Recall that flP'[f(p)] can be
obtained by iteration. We now formali~c this idea in the following con­
struct by defining predicates l~ for {I ~ 0 "by iterating f (i times from
below,"

DEFINITION 5.4.1 (I!). Fo(li(st·ordcr formulae >/I over WI, J/I e sm(p), we
define I! for ordinals f1 by

I~ "" Ax false,

I~ = 1.,;: . !,V (x, U''''Jl/~) for II ';'0,

I .. =dx, U ... o l~(x),

By the monotonicity of '" the following holds (Moschovakis, 1974):

LI:'MM'" 5.4.2 (Properties of I~).

(i) (~";#)=(I~(x)=I~(X));

(ii) for some ordinal K; I .. =1; = UHK I~;

I 12

STOMP, Df: flOliVI;R, ANO ()~RTH

(iii) I", is Ihe lea ... 1 predicate C sali!;fVing C(x).,.". "'C'(, e); i.e.,
1~(.q*",C~, If) and ife sati4/es ('(x) ",(x, e), thell /",(X) = C(.q. I

Observ~ that the clauses (1) and (ii) in Lemma 5.4.2 ensure that I! is
monotonic in p and that there exists some ordinal K for which the fixed
point is reached. In fact. 1", as defin~d above is obtained after K iterations
of 1/1. Moreovt(, in this way the least fixed point is obtained indeed. This
is an immediate consequence of L~mma 5.4.2(iii).

DEFINIiION 5.4.3 (Validity of /l.P· [\II(p)] and of vp· [ljt(p)]). Let l/! be
a first-order formula Over WI, \II E sm(p). We now define

(a) IDI f.- f.l.P' [!/I(p)](x) iff IDI F I",(i),
(b) 9Jl F f.l.P' ["'(p)] itT for all x, 9Jl F!1P' ["'(p)](i), and

(c) IDI F vp.[l/!(p)] ilT\ffif.-'/.-Ip"[l/!(p){---,p/p}]. I

5.5. Acceptable Structures

As is usual in completeness proofs, we need the ability to encode finite
sequences. In our case, this is necessary to define the well-founded sel
necessarily for applying Orna's rule. For this, we introduce Ihe notion of an
acceptable structure (Mo~chovakis, 1974). 1 First we introduce a number of
notions needed for the definition of acceptable structures.

DEFINITION 5.5.1 (Coding scheme, decoding relations, and decoding
functions).

(a) A coding scheme for a sct A is a triple '(j= ur, ,,;:;", ()"')
such that

(i) tr E A, ,;; "" is an ordering On tr :\nd the structure
< N"', ,;; "') is isomorphic to the integers with their usual
ordering.

(ii) < > 'C is a one~one function, mapping the set U" .. 0 A i of all
finite sequences over A to A. By convention, AO = ¢; the
empty sequence <) '{j' is the only $cqu~nce of length O.

(b) With each coding scheme 't', we associate the following decoding
relations and functions:

(i) Seq""(x)=there ex.Ist x1' ... ,x. such that x=<Xj,,,.,x,,)"'.
Bere, x'"' <) "', the code of the empty sequence, is covered by
the convention that x = (xl> X. > '>' if n '"' O.

(ii) The length function Ih'" for sequences maps A into /IfG, and

, Alternatively, we could have introduced the notiotl of an arithmetical .truclure (Hard,
1979).

143

II-CAI.CULUS FOR FAIRNESS ARGUMENTS

hence into the integers, because of the isomorphism of
(N°', ",;'. > with <N, ,,:;):

Ih'''() == {a, if ,Seq'''(.>;)
x n, if Seq"(.>;-) 1\ x "" <XI' .'" x")" for some XI, __ ., x".

(iii) The projcr.tion (xl;', as a function of x and i, is defined by

~' {x" (x), = 0,
if X = <xl"",xlI)'lfforsomexl, __ ·,''"'" I ,,:;i":;fI
otherwl~e.

DEF1NITlON 5.5.2 (Elementary coding scheme).

(a) A function I is first-order definablc on a structure 'ID iff its graph
is first-order definahle, i.c, ilf {(x, yl I I(x) =V} is first-order definable
On WI.

(b) A coding ~chemc <t is elementary on a structure m if the rela­
tions and functions yo, ",; I, Seq'G, Ih"'()"", are all elementary, i.e., first­
order definable On WI.

Note that the class of elementary relations on a structure is closed under
conjunction and quantification. This is an immediatc conseq uence of
Definition 5,5,2. It follows that the functions p~ defined by p=(x l' ... , x.l =

<x" '''1 Xn >.., are elementary, as p:(x t, ... , x.) == u -= (Seq'o"(u) A Ih'(u) =
n A 'ii, [10;; iO;; n=> ((u)7 =x;l]l. (In the sequel, we shall omit the super­
scripts <to l

As argued beforc, we need the ability to encode finite sequences. Also
fairness arguments require the use of recursive ordinals. In Our case these
requirements afe necessary to define the well-founded set required to apply
Orna's rule.

DF.FINITION 5.5.3 (Acceptable and ordinal acceptable first-order structures).

(a) A first-order ~tru<;ture 9:n is acceptable if there exists a coding
scheme elementary on WI.

In the sequel, we consider acccptable structures such that for all recur­
sive ordinals a, there exists a constant symbol ri interpreted as the ordinal
Ct, We therefore introduce the notion of an ordinal acceptable structure;

(b) A first-order ordinal acceptahle structure is a structure WI such
that:

(i l WI is an acceptable structure,

(ii 1 WI's signature contains syrnhol~ (.'1 fOr all i < tv't, and
c, = iE 1:011, where w~' is the first non-recursive ordinal, and CI

denotes the interprctation of c,.

114

STOMP, m: 1I.01Ntm. i\NO GliRTU

(iii) the predicates Ord (Ord(a) holds ifT a E 19R1 (', (l)'t) and -< 0,",

the usual ordl;ring on (I)';', arc flrst-Nder definable in 911',
where wr is a reduct on ~1JI, obtained by removing all ordinal
constants c; from its signature.

Let ffil be an ordinal acceptable structure. For completeness, we need
amongst others, representability of the guarded commands partial correct­
ness ~cmantics. First note that the I/O-relation of a program S only con­
strains the valuation of its free variables (in the oulput stale). We shall be
somewhat more precise below. To do so, suppose that S is a program.
Denote by F the set of free variables occurring in S. tet F' denote the com­
plement of F, I.e., F' is the set of all variables not occurring free in S. If
R~·"(~, n holds, then R~"'(" r') holds, too, provided ~IF=,IF,
~'I F= t' I F, and" I F" = -r' I Ft

, where I denotes restriction. Using this obser­
vation, the semantics R~"" is easily seen to be representable: for example,
if S == * [b 8'] then R~a,,(~, n = ffil F /-IX· [(Rb 0 R') 0 X V oRb]():. y),
whert~ x and yare the codeS of elF (t I F resp.). Here R' denotes the rela­
tion R~~" associated with S', and F the set of free variables occurring in S
Observe that the codes x and y exist since WI is an ordinal acceptabk
structure.

We next construct an extension of M by adding for every guarded com­
mand S a relation symbol Rs , interpreted as the semantics R~'" of S. Since
Rs is repn;sentable, we obtain a structure ~t' such that Th(Wl') = Th(M),
where Th(M)= (pELIWI F pl. I.e., Th(9J1') is conservativf: over Th(ill/)
and we do not obtain a more expressive language in this way.

We conclude this section by showing that a number of predicates exten­
sively used in the sequel are reprcst:ntable in L

THEOREM 5.5.4 (Representability of a number of predicates l. Assume
that WI is some ordinal acceplUble Structure. Let R j Clnd Rl denole binary
re/alion'; On IMI elementary on WI. The following constructs are representable
in L:R1oR", R,vR" R{, andf-1.p·(R j ---->-p)'

Proof (t should be clear how to represent R j 0 R" and R j v R2 in L Rt
is representable by I1X, [Rj 0 X v IJ, where 1 denotes the identity relation.
Finally flP' [R j ----> p] can be represented as follows: define rP(x, p) ""
Vx'[Rj(x, x') => pix')]. Then flP' [¢(x, p)] represents f-1.p' [R j --> p](x). I

In the remainder of this paper we shall also use the construct foR for
predicates r and binary relations on 19111, where WI is as above. Intuitively.
r 0 R is satisfied in x iIT x is R-reachable from some y in which r holds.

DEFINITION 5.5.5 (f 0 R). Using the notation as above, we define for
predicates r and binary relations R on linl the predicate ro R by r o R(x)

145

il-(:AI.(:UU)~ nw fAIRNESS ARGUMENTS

iff :lyerly) A R(y, X)]. Observe that r" R is trivially representable in L, if
R is elementary in WI.

In the remainder of thiN paper illl always denotes some first-order ordinal
acceptable structure.

6. CONSTRUCTION OF A p.-TERM EXPRESSING

STRONGLY FAIR TERMINATION

In this section we show that the property "S is strongly fair terminating"
is representable in L. More precisely, let +[O;'_lh,--->S,J and let
Wl be some ordinal acceptable structure. We construct a formula
SFAlR(RI> ... , Rn) such that \VI F -;SFAIR(R j •••• , R,,)(O holds ilT "S
terminates strongly fail' when started in ~." Here, R, denotes the relation
Rb,oR~!. associated with h,; S, (i= 1 •... ,11).

For programs with two directions, a II-term expr<lssing strongly fair ter­
mination has been constructed in de ~ocvu (1981). To give the reader
some intuition, we first construct a term describing the exist<lncc of infinite
strongly fair <ll'ecution sequences of a program S= '"[hI --> SID hi -, S~].

From Definition 3.4.2, we obtain that in an infinite strongly fair execu­
tion sequence of S, either

(l) both directions of S are infinitely often enabled in this sequence,
and hence infinitely often taken in it, or

(2) the first direction becomes eventually continuously disabled and
the second direction of S is continuously taken from some point onwards
in the execution sequence, or

(3) the symmetrical casc of (2), i.e., the second direction of S
becomes eventually continuously disabled and the first direction is con"
tinuously taken from some point onwards in the execution sequcnce.

The construction of the term describing the existence of an infinite
strongly fair execution sequence of S naturally splits up into three cases,
according to the three possibilities {1): (2), and (3) above. Let RI (resp. R 2)

denote the relations Rb ,oR1, (resp. Rb,oR1,) associated with hl;S, (resp.
b2 ; S2)'

Case I. We cOI1::>idcr such a ~cqucncc as COnltmg of an infinite
number of so-called unconditional fair parts. roughly being Ilnite sub­
sequences of the infinite sequence in which every direction is taken at least
once. Such an unconditional part can be described as follows:
(Rt o R 2 vRt o R 1).

This characterization stems from Park (I 980). Recall that truth of the

146

predicate vp· [R 0 p J in '"(0 cxrrcsses the c~istenee nf an infinite sequence
'\'0,."(I, -"2, ... such that R(xi' Xi+ I) holds for i", O. As a consequence, the
existence of an infinite strongly fair sequence, according to the first
possibility above, i~ cartured by the prcdic"tt vp· [(R t "R 2 U

R 2+ 0 R tl" p J. This term is called UF(R I' Rl)'

Case 2. We consider possibility (2) above. In this case, the existence of
an infinite strongly fair execution sequence of S can be described by a term
expressing that after some finite prefix, in which (possibly both) directions
1 and 2 are chosen, only the second direction is continuously taken, since
the other one becomes eventually continuously disabled. In the infinite tail
of the sequence each intermediate state satisfies -, hi' This term is captured
by (R I uR 2)·ovp [((bll\ -'btloR2)op). This term is called fair(R 2)

fin(Rd.

Case 3. Symmetrically to case (2) the existence of such an execution
sequence can be described by fair(R I) fin(R l),

Now define SFAIR(R I , R2) by SFAIR(R I , R l) "" UF(R I , R2) v fair(R 2)

fin(R,) v fair(R,) fin(R 2), We then obtain that S admits an infinite strongly
fair execution sequence iff SFAIR(R I, RJ holds.

The structure of Section 6 is as follows: in Section 6,1 we describe the
predicate UF(R" '''' R~) for n;;' I. This predicate is a generalization of
UF(RI' Rz) that we derived in CaSe: (I) "bove. In Section 6.2 wc extend the
re"soning of case (2), hence case (3), when there are more than two direc­
tions in a repetition, Finally, in Section 6,3 we show that for every com­
mand S and command q, the weakest precondition for fair termination is
definable in L.

6.1. Unconditionally Fair Tltrmination

At first, we consider execution sequences of programs *[0;'_ I bi S,),
in which each direction of S is chosen infinitely often, Any such sequence
is strongly fair iff it is unconditionally fair. In the sequel, we assume that
RI , ... , Rn are the relations Rh, ' R~f, "" Roo 0 R;,r associated with the
statements b l ; SI' ... , bn ; So. Consequently, we first consider the problem of
describing in L the existence of an infinite sequence of R,-movcs in which
each of the R, occurs infinitely often (i = I, "" n).

Con~ider such an infinite sequence, Since each R, (i "= 1, ... , n) occurs an
infinite number of times, this sequence may be viewed as consisting of an
infinite number of finite sequences, the so-called U(nconditional)parts.
Every Upart satisfies:

(i) each R, occurs in the Upart.

(ii) this Upart is the smallest sequence satisfying (i); I.e., any initial
fragment of Upart leaves some Ri out.

147

Ij-('ALCULUS I',()I(FAIRNESS ARGUMENTS

To define it relation Upart(R" ___ , R,,), which expresses for evcry pair of
stales (~, ~'), whether C can be rea.;:h~d from { by executing all Upart
(w_r.1. R I' ... , R,,), it ~unicc, to c{)nsider Uparts in whi.;:h the first occurren­
ce, of the moves are in some predescribed order, so-called Usegmen/S, since
any Upart of R I, ___ , R" is an Usegment of som~ permutation R;" .. ,' R",
More dearly. a Usegmcnt of the Ordered sequence of moves R-" ___ , R" is a
finite sequence in which for no i, j with I ~ i < j"'n a R,-move occurs
before a R;-move has occurred,

The relation Usegmenl(R" ... , R,,) is defined inductively (w_LL n) as
follows: The case n = 1 is simple: define Usegmenl(R I) = R , .

Now, suppose that Usegmenl(R I, ___ , Rd has been defined_ Then,
Usegmcnt(R I, ---, Rk + I) looks like R " ... , R i , w, R., ___ , Rk +" where thc
first occurrences of R- I, R" Rk> Rk + I are shown (I < i < kl- First, observe
that Rk+ I occurs only once; this is a consequence of requirement (ii)
above. Second, obscrvc that the prefix R I' ... , Ri , .. " R. of the above
sequence is a Usegment of R I' ... , Rk • Hencc, the sequence up to, bul not
including Rk + I is not necessarily a Orart of R I' ... , Rk. However, it starts
at least with a Uscgmcnt of R I' ___ , Rk • The remaining part may contain
any (finite) number of R,-occurfcnccs (hut no nH I)' This motivale~ the
following definitions_

DEflNrrlON 6.1.1 (Usegmenl(R" ... , R,,) for II?;:< 1). Usegment(R-d = R,
and for n p l:

DEFINITION 6.1.2 (Upart(R" ... ,R,.) for n?;:<I). Forn;;'l: Upart(RI,_·_, R.l
=U'I._.I.p"m~{l._."Uscgment(R", ___ ,R,J- Le_. in Upart(RI •. ".R"j the
order of the R; (i = l, ___ , II) is immaterial.

Remembering the example given above, the existence of an infinite
se-quence of Uparls, starting in a state e. is expressed by satisfaction of a
predicate UF(R, , R,,) in ~, defined as follows:

DEFINITION 6.1.3 (UF(R-I' ___ , R.l for n~ I). For n';::-I: UF(R, , R,,)
= vp - [Upart(R 1 •• ". R,,) 0 p]. (Recall that Ri denote relations.)

An execution sequence of a program S", * [0 :'_ I bi .---> 5,] in which each
direction is chosen infinitely often is strongly fair iff it is unconditionally
fair. Consequently, the program S ~ * [0 ;'_ I b l SI] (II;;:' l) admits an
infinite unconditionally fair execution sequence starting in ~ iff
UF(R" ___ , R.l holds in e. Recall that Ri denotes (he relation Rb,oR~,
associated with bi; S((i= 1, .--,11)-

148

SlOMP, DE ROEVER, AND GERIII

6.2. Strongly Fair Termination

Now, consider infinite sequences of a program * [n 7= , fl, --> S,] in which
directions can become disabled. Suppose thaI the nth direction bn ; S"
becomes eventually never enabled any more. Then an infinite strongly fair
sequence of R" ... , R,,-moves cOnsists of some finite sequence of R I' ... , R.­
moves followed by an infinite strongly fair sequence of R I, ... , R" __ ,"moves
in which every intermediate state satisfies 'I b". In case no other direction
of S becomes eventually continuously disabled, the existence of such a
sequence is expressed by a predicate (R1u -" uR.)*oUF(,b"oR"" ..
,b"oR._,). Observe that this predicate is equivalent to (b,oR,u ". U

b"o R,,)* 0 UF((b, /I. ,b.). R" ... , (b,,_, /I. ,b.)" Rn_ I)' since the enabling
condition bl is incorporated in Ri (i"" 1, "., n). The possibility that other
moves may become disabled, too, leads to the following definition 2

:

DEFINITION 6.2.1 (fair(b"oRil,,,.,b,,"Ri.jfin(bl •• ,oR, •• ,, ".,b"oR,) for
n ~ 2 and 1 .(k < n). Let n ~ 2 and suppose that iI, .'" i" is some permuta­
tion of I, ... , n. For k, satisfying 1 ~ k < n, define

fair(bi, • R ,l , ... , b,. 0 Ri,) fin(b
"

" 0 R i •• " ... , b"o R,)

(bl,A A Ib il)·) R i,).

J-Ji. t 1

Remark, fair(b" 0 R 1, • • ,,' b" c RI,l fin(b i •• , 0 RiHl , ... , b.,o R,) holds 10

state': ilT there exists an infinite strongly fair sequence, starting in ~. in
which the directions hi .. ,; S". " .. ., b,,; S,. are eventually never enabled any
more.

Now, finally the predicate expressing the existence of infinite strongly fair
sequences can be formulated.

DEFINITION 6.2.2 (SFAIR(b1oR., ... ,b.oRn) for n);I). SFAIR(b,oRd
=UF(b,oR1l, and for n);2;

SFAIR(b, oR1, ... , bnoR.)

v
il. '.', ;ilp<:rm of t • .. ,11

l';;:k"':n

! This definition is due to P. van Emde Boa •.

149

fair(b" 0 R", ___ , hi, 0 R"l

,U-CAI.CUl.US FOR FAIRNESS ARGUMENTS

In thc sequel WI: always aSSllrne that the relation b, is incorporated in the
relation R I • Also. with R, wc always associate h, as enabling condition.
Thus, Ri will denote the relation Ro,e R~,.

Wc defined here. for every sequence of relations R I, Rn a dif.lerent
predicate.]n other words, SFAIR is not a sccond order formula! For the
proof of Theorem 6.3A we need the following technical lemma.

LEMMA 6.2.3 (Charaet~rization ofSFAIR(R
"

.. " R,,)).

rol F ,SFA[R(R" --., Rn)

-=-[!m F -;UF(R" .'" R,,) 1\ 11 I"JJ.Ofl .. " C~, R1r
I r:.;: k .: II

Proof For n = 1 this follows by Definition 6.2.2. So assume that n ~ 2.
Then the lemma follows from Definition 6,2.2, Definition 6.2.1, and
Lemma 5.1.3. I

6,3, Weakest Precondition for Strongly Fair Termination

As a last preparation for the soundness and completeness proofs, we
mention the notions of the weakest liberal precondition and of the weakest
precondition for strongly fair termination.

DEFINITION 6,3.1 (Weakest liberal precondition). An assertion
p = wlp(S. q) is the weakest Uberal precondition w,r.t, a comm<lnd S and a
condition q if!m F [p] S[q]""" and for each r.!m F [r] S[q]~." implies
un F r:::) p.

In (de Bakkcr, 1980). it has been shown that for each command Sand
assertion q, wlp(S. q) is definable in L It is useful 10 mention lhat fOT loops
S wlp(S, q) "" (((U; N' R,)* e 1\;'_ 1 ,b.l- q).

DfflNITION 6.3.2 (Weakest precondition for strongly fair termina­
tion). An <lssertion p is the weakest precondition for strongly fair termina­
tion w.r.l. a command S and a condition q if 9111= [p] S['1],(and for each
r, WI F [r] S[q],f implies 'm 1= r:::) p.

We next stale Ih~ key result of this section, viz., the definability of the
we<lkest precondition for strongly fllir termination sfwp(S, q) for any com­
mand S and any condition q. In Theorem 6.3.4 below, we prove lhat wpsf
indeed defines the weakest precondition for strongly fair termination.

150

STOMP, DF ROEVER, ANI) GI!RTI!

DEFINITION 6.3.3 (sfwp(S, q}). For each command Sand 1;ondi(i(lO !.
sfwp(S, q) is inductively defined by

(a) sfwp(x;- e, q) -- q {e/x},
(b) SfWP(SI;Sl' q)""sfwp(S"sfwp(S.,q)), where SI and S1 are

simple commands, and

(e) sfwp(*[o;'_t hi Sa, q) = ,SFAIR(R I , ... , R,,) 1\ (((U;'_I R,)*
01\;'_. ,bi) ---> q), where S, are assumed to be simple.

THEOREM 6.3.4. For each command S and condition q, sfwp(S, q) is
indeed the weakest precondition for strongly fair terminlltion W.f.l. Sand q.

Proof The proof is standard except for the case that S,=­
• [0 ;'_ I b i Sa with simple Si' i", I, ... , n. Consequently, we prove that
both

(a) 9JI F [sfwp(*"[0 7- I b, ---> S,], q)J* [07_ I b i ---> S,] [q],r, and

(h) 9R F [r)*[O;'_1 b,--+S,] [q],r= WI 1= r~ sfwp("[O;'_1 b,--->S,],q)
hold.

To do so, it suffices to prove that for every ~: 9J1 F [r] ... [(j;'~ I hi S,]
[q]W =-- 9)/ F r;;:> (, SFAJR(R" ... , R,,) A (((U;'," I R,)· 0 /\;'_ I ,b,) --+ q))
((), holds.

("..) Suppose thilt WI 1= [r] • [0 ;'_ I bi --+ S,] [q lr holds. Choose some
state { such that \ill F riO holds. Assume, to obtain a contradiction, that
\ill F SFAIR(R1, n., R,,)(o, Then this leads immediately to a contradiction,
since this implies the existence of an infinite strongly fair execution
$cquence, starting in e. So 9R F ,SFAIR(R" ... , R")(~) holds. It remains
to prove that WI F (((U7ml R,)*o/\;'_I ,b,)--->q)(O holds, too To do
this. choose some r satisfying ':mF ((U:'_ I RJl<, /\;'''-1 ,b/)((, n. Clearly,
then also 9). p .R1«(, ('), where S .. * [,] 7 ~ I b, -- S,], and so by the
hypothesis 9Jl F q(O·

(~) Suppose that IDl F r=>(,SFAIR(R" ... , R~) 1\ «U7-1 R')*.
/\~_I ,h,) --+ q). Choose state { such that \ill F r(0- Since, by hypothesis
IDl F ., SFAIR(R1, ... , R,,)(o, the repetition always terminates strongly
fair. We have to prove that, in this ease, each final state satisfies q. Choose
some {' such that 9Jl F R1(~, t), where S,=- .(0 ;'_ , hi --+ S,]. Clearly, then
also 9:n~((U7~IRI)*o/\7_I,bl)(('O and so, by the hypothesis,
\lJ1 f= q(n holds, which had to be shown. I

COROLLARY 6.3.5. For every~: 9R F- sfwp(*[O;'_1 b, ---> S;],lrue)(e)=
9Jl F ,SFAIR(RJ> ... , Rn)(o.

This corollary states that strongly fair termination of a repetition is
indeed expressible in the i-Incalculu$.

15.t

11-C:ALCIJLIJS ~OJl. FAIRNESS /lRGUMENTS

7. COMPLETENESS

In this section, we prove the completene8s of our proof system, i.e., we
will show that for any ~tatement S E LGC(9J!), assertions r, q E L,

9Jl f= [r] S[q],r =0- Th(M) r- [r] S[q] holds.

Here ID? is by convention a first·order ordinal acceptable structure, and
Th(9J1) = {pELIWl F= p}. As is usual in such proofs, completeness is
establi~hed hy structural induction on thr;: complexity of statements S.
Ohserve that (*) is trivial in case S is not a repetition. Thereforr;: to pr()ve
(*), it suffices to concr;:ntratc On the case where Sc;;;. *[0;'_1 h,-I> S,] with
n ~ 1. In this caSe, we establish (*) by induction on tI, the number of direc­
tions in S. Next observe that when n = I the proof of (.) is straightr~)rward,
Consequently, we proceed with loops with more than one direction, the
induction hypothesis br;:ing

INDUCTION HYPOTHESIS OH). (a) and (b) he/ow both hold:

(a) for all simp/c «(Jmmantis S, ID? f= [r J S[q],(=0- Th(M) r­
[r] Seq].

(b) for allk, 1 ~k<n, ill! f= [r] *[[J~ftl h;--> S,][qJ.f,*Th(':UiH~
(r] "(U~~ 1 hi-->S,][q].

From the discussion above it follows that we may assume that S is a
repetition with at least two directions and that (IH) holds_ Consequently,
we are going to prove that given the fact that Wi F (r]
"'[07_ I b i ---> S,] [q],f holds for n;<: 2, we can define in L the auxiliary
quantities, I.e" a well-founded set (W, -<), a ranking predicate "It, and
pairwise disjoint sel~ Ow and Slw for wE W, wrO, such that the premisses
(a), (b), (cl, and (d) of Oma's rule as stated in Section 1 hold_ The
definitions of the auxiliary quanti tics are developed in Section 7.1. In
Lemmata 7_2_1 through T2,4, validity of premisses (a) through (d) are
proved, culminating in completeness theorem 7.2.5, whose proof is then
standard,

1.1. The A uxiliary Quantities

Assume that 9Jl f= [r] • [0;' _ I b i ---> Sa [q] ,r holds. The main results of
this section are that the auxiliary quantities necessary to apply Orna's rule
are definable within L

First we are going to dr;:finc a well-founded set Wand a predicate
It: W - (States -I> {true, false}), ranking every state (reachable by S)_ To
do so, we observe (hat the usual approach of counting moves does not
work, because not every move brings the program closer to termination,

152

STOMP, DE ROEVER, AND GERTH

E.g., in case of Dijkstra's random number generator, see Section 3.4, move
R I will not help reach termination.

Now S terminates strongly fair and hence also unconditionally faiL This
follows from Theorem 3.4.4. At any time, there is at least one decreasing
move; otherwise there exists a state in which no move would bring the
program closer to termination, resulting in the existence of an infinite
strongly fair sequence, yielding a contradiction. So, if in a successive
sequence of iterations, "every enabled move has been executed at least
once," then certainly the program has come closer to termination. This
shows that viewing execution sequences as consisting of Uparts is a natural
thing to do. Unfortunately, counting Uparts does not quite work, because
we have to rank all states in order for Orna'g rule to apply.

Consider such a Upart. It suffices that the states reached by executing
this Upart, are ranked in such a way that it reflects the "progress" that is
made w.r.t. executing this Upart itself. Now a move leads to "progress" if
it is a new one that has not been made in the Upart as yet. This gives the
intuition behind the definitions of Wand 7t that we now develop. First, we
consider the problem of ranking states related by Uparts in more detail. At
this stage, we therefore disregard the internal progress within a Upart; such
progress is incorporated afterwards.

Consider any reachable state (. Intuitively this state will be ranked by
counting the number of Dparts necessary to reach a final stale, i.e., ~
will be ranked by f3 if it takes the program at most f/ UpaftS from ~

to reach termination. To define the rank P of ~, we apply thc techniques
developed in Section 5. Define ,(pI =..t~ -(Upart(R" ... , R.) ----> p)(~). From
Lemma 5.1.2 it follows that the least fixed point of, exists and that it can
be obtained by iteration. Intuitively, '/:P(fa/se) holds in ~ if in I; we are at
most P Uparts away from termination_ It also follows from Lemma 5.1.2
that there exists some A such that

holds. (AI

Let cl be the least ordinal satisfying (A). IX is a recursive ordinal, d. Apt and
Plotkin (1985)_ Therefore, we have that for all P<ii, P is a recursive
ordinal, too.

Of course, for this idea to work we need to show that rP(false) is
representable by a formula in L.

7.1.1. THEOREM (Definability of,t(false))_ Lel-r(p);; 1~. (Upart(R I, ___ , R.)
----t p)(~)_ There o:ists a formula tP in L slich that for all ~ and all P ~ Cl •
,P(faise)(O holds if/WI ~ q,(P)(n

Proof Define ,p(P) = j.J.f' [3a < fJ - (Upart(R" ... ,R,,)-,r(C())]. By
induction on fl ~ IX we prove that for all flo;;, ii and all ~, TP(jlllse){ e) holds
iff Wl F= ,p(/J)(0.

153

Ii-CALCULUS FOR fAIRNF.'iS ARGliMENTS

Induction basis, p'=' O. Trivial, since for all ~, rOC(alse)(O <=> false and
~ll= ¢>(O)(O=M F jalse(O-=false_

Induction hypothesis (IH). For all X < If and all e, T«fldse)(~) holds iff
9R 1= ¢U)(~).

Induction step. For fJ = 0, we have that

ID1 F ¢(P)(O <=> WI F W' [3ct < p. (Upaft(R!, ... , R,,) ----> rCa))](~)

(definition of ¢»

- im F 30: < p. (Upart(Rb"" R,,) ----> ¢>(tt))(O

(fixed point property)

-for somd<p, WI F= (Upart(R!, .. " Ro) ¢(..\))(~)

=- for some ..\ < P and for all C

WI F= [Upart(R! , R")(~, r):;;>¢>(..\)(t)J

=- for some J.. < p and for all C

WI F [Upart(R]> ... , R.)(~, r)J ~T<(false)(~') (IH)

-= for all ~', 9Jl F Upart(Rb ___ , R")(~,- ~'):::> (3'\ < p. T<(falseHe'))

-=- for all ~', WI F Upart(R I, .--, R.)(e, ~'):::> U 'CJ.(fal$e)(~')
-1"'~

Now, we define the well"foundcd ordered set W: each WE W, w not mini­
mal, consists of two components. The first one counts Uparts, the second
one records "progress" within the last (incomplete) Upart and is a
sequence of length at most n, the number of directions within this Dpart,
which records the directions within this Upart. that have already been
taken.

We nellt define the predicate seq,,(s) which holds iff s is sequence of
length at most n, in which directions are recorded only and in which each
direction is rccorded at most once.

DEFINITION 7.1.2 (seq,,).

seq,,(s)=Seq(s) r-Ih(s)o>;n 1\ Vi[(1 o>;io>;lh(.I'))=>(I,:;;(s)i';;:nj]

1\ Vi,j[(I";i,j.;;:lh(s) r- i:;tj)=> (s);:;t(s)j]

(ef. Definition 5.5.1).

Next, we define the well-founded structure required to apply Oma's rule_

154

STOMP, DE ROEVER, AND GERTH

DllflNlnON 7.1.3 (The well-founded structure W"n)­

(a) W.,,,=- {(A.slID""A",,&: A seq.(s)) v {OJ.
(b) The ordering --< defined on W~ n is the following: 0 -< (l s) for all

(A,slEW"., and U"S,)-<02,S2) iff (A 1 <A2)v«(,1:,=X2)Alh{s2)<
Ih(sJ! A V'i[(1 0 ~ Ih(s.))::. (S2), = (S,),]).

Next, we define the ranking predicate 11:.

DEfiNITION 7,1.4 (The ranking predicate 1l). The predicate n: W" .• -
(States ----> {true, false}) is defined by:

niX, < » = ,1(false) A r {~, RI)* A :'1, hi.

11(,1:, (i1> " .• ik» = tl(false) ° (Usegment(R", .'" R,,)o(~l RiJ) *)
Aro(U RI)· AV b,

J-1 ,"" 1

(for 1 ""k<n),

1I(X, (i" ---, in» = U fP(false) A TO (0 R,)* A V hi,
P<), ,.:::IlL I i-I

1I(O)=r o (Q, Ri)'" A l\ ,b,.
Note that accessibility is demanded for n(w), WE W" •. If I ~ k < n

and nil (il> .'" ik»(~) holds, then then.~ exists Ii state ~' in which the
program is at most 1 Uparts away from termination_ It takes a fragment,
i.e" an initial part of a Usegment to reach ~ from ~', namely
Usegment(R", ___ • R i.) 0 (U~_, R/.)*.

Defining Slw and Dw for w>-t, WE W~., is simple now_]fwe are at the
start of a Upart, i.e., W = (1, < » or w'= (1, OJ> "" i,,») for some 1 "" a,
then every move leads to eventual completion of this Upart. Otherwise,
w'" (X, (i , . ,_" ik » for some .t, I '" k < 11, and only moves different from
R 1I , "., R/, lead to eventual completion of this Uparl,

7, I S DEFINITION (The set of helpful and steady moves D", and
SI",). Let WEW<i,,,. w>-o. Then w",(I,s) for some .t,,:;a, and s with
seqn(s),

If lh(s) = 0 or if Ih{s) = n, then D", = p, "., n} and St","" 0-
If O<lh(s)<I1. then D",= {i1(1 ~i",n) A 'Vj' I ""j,,;lh(s)[(s),#-i]},

St,,= {l,,,,,n}-D,,,,

1(;5

/1-CALClJI..[)S FOR FAIRNESS ARGUMENTS

Note (hat for all w EO Wo '" 111 >- 0: D". n Sr", = 0, D", to- 0 and
D".vSr .. ", {I, ... , n}. .

7.2. Completeness of Omu's Rule

Using the above definitions, we next prove that the four premises,
(a)--(d) of Oma's rule are valid. To be more prcci~c, Lcmmllta 7.;:>,1···7,2.4
below show that these four premises are satisfied indeed. From the induc­
tion hypothesis, completeness of the rule and hence of our proof system
(hen easily follows. Assume that 911 f=. [r] ·[l]7~1 bl--S,][qL holds,

By Definition 6.3.3 and Theorem 6.3.4 we may assume that 911 f=. r::::l
(--.SFAIR(R" .. "Ro)A (((U7~1 Ri)"Q/\7~1 --.b,)-->q)) holds, too.

LEMMA 7.2.1 (Corresponding to premise (a) of Orna's rule). Let
w;;; W •. ,,, j., Dw; i.e., R) is a decreasing mODI'. Suppose rhal WI F r::::l
(--.SFAIR(R" ... ,Ro)A((U7_IRi)+"1\7~I--'b,)-q) holds. Then 91If=.
[n(w) /\ w ':>-0 A hj] 8j [3v -< IV' n(v)] holds, 100.

Proof We have 10 prove that rOr all ~,~' E States such that ffil I­
Rj(~, fl, WI F (1I:(w) /\ w>-O)(O=;.WI f=. 3u..;; w 'n(v)(fl,J Choose states
I! and e' satisfying WI f=. Rj(~' t) and suppose that 911 f=. (n(w) 1\ w>-O)(O
holds. To prove the \emma, we distinguish two cases:

(a) ~I f=. 1\:'_1 --,hi(~')' 'n this case, 911 f=. n(O)({'), and we are done.

(b) WI F V b,(O (i)
I-I

ince rot F n(w)({) holds, 9R F r o (U7_1 R/)" (0 holds, too, I,e"

holds. (ii)

5 a consequence of Fact 5.2.5, we obtain that (U7_IR,)·oRjs,
)7-1 R,)*. Therefore, it follows from WI F Rj(~' nand (ii) that 911 F
:"(tW') 1\ (U7~ 1 R,)* W', {')] holds, too; i.e.,

(iii)

:xt, let w = 0:, s). We are going to prove that 911 F 3v -< IV' I«V)(~')
Ids. To do so, we distinguish three cases:

(1) Ih(s)=O, i.e" s= < >. Since 911 f=. n(w)(~), ~I F ,J:Ualse)(O
'ds. Consequently, it follow~ that 9JI F 3¢,,[,1(false)(';") 1\ Rj(C, tll
Relnembcr that R, is the relalion Rbi 0 "1, associated with hi; fir

S1'OMP, DE ROEV~\I., ANI) GERTH

Hence, together with Rj ~ R/. which follows from Fact 5.2.5. we obtain
that WI F 3~"[TJ(false)(~") " R/ w. n]; Le., 9:11 F (t"Ualsej 0 R/)(~')].
Together with (i) and (iii). WI F n:0. (j))(,;') follows and hence
m F 3v--< IV ·1t(v)(~').

(2) I ~ Ih(s) < n, so s = (i[•...• ik) for some ii, ... , ik with {i, •... , ik }

~ {I • ...• n} and I..;,k<n. From 1})1 F n:(w)(~) we derive ml F Cr'(false)o
Usegment(Ri, , R i.) Q (U~_I R,)*)(o. Since Usegrnent(R", .. , R,.) 0

(U~_I R,)· 0 Rj = Usegment(R", ... , R." R) ~ (Definition 6.L1 and
j #- i[, ik for j IS Dwl <;; Usegment(Ri" ... , R •• , R) 0 (U; _ [R" v RJ)*
(Fact 5.2.5). together with the fact that '!Ul F- RJ(~' n holds, it follows
that I})l f= T"(false) 0 Usegment(RII' R I,. RJ)(~') holds, too. It follows
together with (i) and (iii) that WI F itO:, (it. ,.., ibj»)(t) holds. Again,
\Ill F 3v -< w . n(v)(~') follows.

(3) Ih(s) = n. From I})l F x(l s)«) and Definition 7.1.3, [he existence
of a P < J. such that WI F n(p, < »)(0 follows. As in case (I), '!Ul F- 3v-<
(/1,(»).n(v)(n, and soIDlf= 3v-«J., (»)·n(v)(O I

L£MMA 7.2.2 (Corresponding to premise (b) of Orna's rule). Let
w€ W~ .• , JESt .. ; i.e., Rj is a steady move. Suppose Ihat I})l F'~

(""SFAIR(Rlo ... ,R.)/I, ((U7_IR,)·°!\7_1 ,bi)--q) holds. Then '!Ull=
[n(w) /I, w>-O" bj] Sj[3v:(w'lI(v)] holds, 100.

Proof. We have to show that for all stat~s ~,~' such that WI F
Rj(~, n, WI F (n(w) /I, W >- O)(~) '* IDl F 3v~ w .n(v)(O To do so
choose states ~,~' and suppose that WI F (n(w) " w >- O)(~) holds. Let
w = (1, $). As in Lemma 7.2.1 there are two cases:

(a) \Ill f= 1\7-1 .,bi(e'). In this case the lemma is trivial.

"
(b) IDI F V bl(~'). (i)

I-I

We have to prove that \ffi f= 3v",\ W 'lI(v)(n is satisfied. Note that Ih(s)-#O
and lh(s);t. n. because Ih(s) = 0 Or lh(s) = n implies that Stw = 0. So
let w=(,!, (il, ... ,i~»). I..;,k<n, {i" ... ,ids{I ,n}. Since jeSt •. ,
j=il for some I, I..;t";k. Now, IDIf=1l:(w)(o. so IDIF,J(fa/se)o
Usegment(R/, • ... , RI.} 0 (U~ _ I RI,J* (~); i.e.,

IDI F =W· [T~uaISe)(~") /I, Usegment(R
"

, R,,)

o(~1 R,,)'" (c, ~)J (ii)

157

fj-CA!..C!.JUJS FOR FAIRNESS ARGUMENTS

Since (U7_,R,J""RjC;:;(U;_,RJ)*' see FactS.2.5, we obtain that
Usegment(R J " R,,l 0 (U7w 1 Rd"" RJ >;; Usegment(R i " ... , R,,)o (U7- , R.)*,
From. (ii) and the fact that 9.n f= RJ(~' n. it follows that ffi/ f=
3n,'(fal.\'e)(~") A Usegment(R i " .. " Ri,)Q(U;_l R,,l* «(', ~')]; i.e.,

!m F [(T'(fal.~e) ,', Usegment(RI" ... , Ri.)~ (QI RIJ'') (')]. (iii)

Moreover, as in the proof of Lemma 7.2.1, we see that

WI F r{Ql Ri)* (¢') holds, too. (iv)

Now, (i), (iii), and (iv) imply \IJl F 1t(.t (il> ... , i k))('), whence Wl F
3v ~ W ·1t(I))(O I

The following lemma shows that clause (c) of Orna's rule is satisfied,
too, under the assumption Ih",t [r) "[0 7_1 b, -. S,](q],r holds.

LEMMA 7.23 (Corresponding to premise (c) of Orna's rule). Suppose
that '{Jj F= r:;;;> (', SFAIR(R I, ... , Rn) A (((U7- , R i)· 0 A:'~ 1 """l hi) --> q)) holds.
Then 'ill F [rr(W) A W>- 0) ,.. [0 i < St. b i A I\J E". -, bj --> S,) [true] hold~,
wo.

Proof Observe that for all W E W~,n such that W >- 0, Dw -:f- 0. So
Slw ¥ {I, .. " n}. It follows that the program S' :;0 • [0 Ie St. b i A I\J. D,, bi
--> S,) contains less directions than the original program. Therefore,

we may apply the induction hypothesis. If Srw = 0 then by convention
S';;;; skip, in which case the lemma is trivial. So assume Slw ¢ 0.

After a possible renumbering, we may assume, too. that Slw = {I. __ ., k},
I ~ k < n. So, D = {k + I, .,., n}. Let b' denote Aje D. ,bJ = Ajd + 1 -,bj'
and let R; -- b', R i . By Theorem 6.3.4, and Corollary 6.3.5 we obtain that
un F (n(w) A w>- 0):;;;> -,SFAIR(R;. "., Ri,) implies 9Jl F [n(w) 1\ w>- 0]
·[07_ l b,AAjmk+"bj S,][true] holds.

So, to prove the lemma, it suffices to show that 9Jl F (n(w) /\ w >-- 0):;;;>
,SFAIR(R'" __ ., R~}. This follows from the nel't two claims.

CLAIM 1. Under the aforementioned a.'iSumplions, un F (1l(W) A W >-- 0)
:::;> -, UF(R'I' .'" R~) holds.

Proof of Claim I. Suppose that jill F n(w)(O /\ w>-O holM Then
jill F rQ(U;'_ I R,)* (~), i.e., Wl F ::1(". [r(~") A (U7-1 R,)* (C, OJ holds,
100. As a consequence of our assumptions, we obtain that ffil F
r:::;> -,SFAIR(R" ... , Rnl and so \IJl F 3~"· [,SFAIR(R j , ... , Rn)(~") A

(U~ . l Ri)· (C, ~)], Thus, WI F 3¢" . [((U7_ I R,)'" --> ,UF«A7_ k + 1 ,b,)

158

STOMP, DE R()IW/,R, ANi) GliRTH

. R[, "., (1\7_k+, ,hili) RdHt') {\ (U;'~ [R,)* {e, OJ holds by Lemma
6.2.3. Consequently, WI F 3¢". ({{U;'-, Ri)* ---> -,UF(R'" .'" R~))(C) {\
(U:'_IR,)"'(C,elJ, from which WIF-,UF(R'".",R~)(e) follows hy
ddinition of R --> p. This proves Claim I.

Now, if k "" I, the lemma follows immediately fn)m Claim I and Defini­
tion 6.2.2. So assume that k ;<; 2.

CLA!M 2. Under the aforemenlion"d assumptions,

WI F (7!(w) (\ W >- O):;;l !\ ,fair(R:" "" R;,)
ii, .. " i~.: P(:i'ffi of !, .". k

I ~I" k

fin(R;" , ' ... , R:,) hold~,

Prool of Claim 2. Let 1 ~ I < k. For simplicity, we shall prove that
\IJI F (1l(w) i\ W>- 0) :::J ,fair(Rj , ...• R;) fin(R; + I> "" R;J, since any other
permutation is treated in a similar way. By Definition 6,2,1, we must show
that

WI F (tr(w) /I w>-O);;;>((U R;)* ,UF((,b' v . A Ih i)

J-l rw 1+ t

holds. This is a consequence of the following chain of implications:

WI F (n(w) 1\ 11'>-6)(~)

= III F r o (U RI)* (0
,~ I

(Definition 7.1.4)

=>-\IJI F W .[rw) 1\ C~I Rir (Co t;)]

(Definition 5.5,5)

=>-WI F 3t' ,[-,SFAIR(R1, "'. Rn)(C) 1\ (~l R}" (C, el]

(by assumptions)

=>-W[F3~"'[((U Ri)* --+IUF(A -'OjoR 1,,,,,

I"!)-'+ I

. A 'hi"R')) W) 1\ (u R;)'" ((", oJ. ("')
I ··1+ I 1_ I

159

Ii-CALCULUS fOR fAIRNf·.sS ARGUMENTS

The latter illlplication follows from Lemma 6.2.3. Hence, for all I = I, I.

=(,//y A 'bi)f'.b'''R,
i-r- f+ 1

=(h'f'..A ,hl)"R,
1-' t I

= 1\ ,bioR,
I ...) I I

(since 1+ l."k<n).

So, (.) implies that 'Ill p 3C . [((U;'.>I R,)" --> -,UF((,h' y
1\731+ I ,hi)" R;, ... , (,h' V 1\~_III'lbi)"R;))(¢") f'. (U;'~ I R,)* (C, ~)],
and finally WI F ((U7-1 R;)''' --> ,UF((-,b' v 1\1_1+, ,bi) " R;,
(,h' v 1\:_1+ J ,b,)o Ri))(O by using Fact 5.2.5. As an immediate
consequence, we then obtain that WII=((U7~IR;)"-->,UF(('-lb'v
I\~_I' I ,b;)oR;, ... , (,h' v /I.~~I+I ,hi)oR;))(~) holds, too. This proves
Claim 2 and hence thc lemma. I

It remains to show that clause (d) of Oma's rule is satisfied, too. This is
established in the following

LEMMA 7.2.4 (Corresponding to clause (d) of Orna's rule). Suppose rhat
9.11 F ro:>(,$FAIR(R 1 , ••• , R,,) 1\ ((U;'_J R,)·,I\:'_I ,h,)-->q) holds. Then
(a), (h), and (c) hdow hold, too.

(a) WI F r ~ (3D' n(v)).

(b) 'JJ"If= (n(w)A w;.-.O)=>V7_ l h,.

(e) WI f= 7«0) Cj «!\7-, -,b,) /\ q}.

Proof (a) Let ~ E States satisfy WI f= riO. If 9Jl 1= 1\7 ~ I ,bM), then
we are done, because WI ~ 7t(6)(~) holds. Hencc, let

lUI F V h,(~). (i)

Clcilrly,

holds. (ii)

160

STOMP, DE ROFVER, AND (;HtTII

Since WI P f(O holds, IlJl F -,SFAIR(RI' --, R,,)(O holds, too, and conse­
quently,

9Jl j= -,Uf'(R 1 , ___ , R,,)(O; i.e., 9R F r''(false)(n

It follows from (i), (ii), (iii) that \Ul F II (a, < »)(0 holds.

(b) This immediately follows from Definition 7.1.4.

(iii)

(c) From Definition7_L4 it follows that \UlFn(O)~I\;'~I-,h,
Therefore, it remains to show that 9.» F n(O) =>q. To do so, choose
some ~ with 9Jl F- n(O)(~). 8y Definition 7,1.4, there exists SOme ¢'
satisfying IlJl F r(O 1\ (U7= I R,)" (~', 0 Since IDI F r => (((U7~ I R;l'" <>

1\7= I rh,) ----> q) holds by assumption, the implication to be proved now
immediately follows. I

THEOREM 7.2.5 (Completeness of our proof system), For aft aSSl,'r(ions r,
q, commands S, IDI F [r] Seq],! implies Th(\IJl) f- [rJ Seq).

Proof. Clearly, the only non-trivial case is when S;;;;*[07_ 1 b,----.S,)
for n ~ 2_ We have to show that for all assertions r, q, 9Jl F [r]
"[0 ;'_ I hi ----> S;] [q],r = Th(9Jl) f- [t] *[0 ;'_ I hi ----> S,] [q] holds, This is,
however, an immediate consequence of the induction hypotht:sis,
Theorem 6,14, Section 4, Definitions 7, L3 through 7.1.5, and the Lem"
mata 7_2_1 through 7.2.4. I

8. SOUNDNESS

In this section we prove the soundness of our proof system, i,e" for all
assertions r, q and command S, Th(\1JO I--- [r) Seq 1 =0- WI F [r] S[q],r,

It is obvious that the rules for assignment, consequence, and sequential
composition are sound_ Therefore it remains to prove the soundness of
Orna's rule, Let s;;;; *[07= I hi ----> S,l In case n = lOrna's rule reduces (0

Harel's rule for terminating loops proved sound in Harel (1979), Conse.
quently, assume that n ;;. 2 holds, We may assume, too, that the following
induction hypothesis (m) holds:

-For all simple commands S, Th(\lll) f- [r] Seq] =9Jl F [r] S[q).r.
and

---For all k with 1:;;; k < n, Th(1lJ1) I--- [r] *[I::l~. I h,---> S,][q] ~W1 F
[r] >l<[D~_1 hi-->Si][qL,

Nt:~t assume Th(Wl) f--- [r] Seq]. We have (0 prove that m F [t] S[q],r

161

holds. To do so, it suffices Lo show that WI "'- r => wpsf(S, (/) which by
Ddlnition 6.:1,3 and Theorem n.J.4 amounts to proving

WI F r~(,SFAIR(R1, ... , R,,) t\ (((~I Ri)*",I:, Ih} ... q)}
By Lemma6.2.3 ~mF,SFAIR(R" ... ,R")=9JIF('UF(R".,R,,jA
/\(l,.'[dPel'"mo(I •..• n;I~:k.:,.J(U;'11:1 RJ)~ -+ --IUF(!\'j ... k+1 -l}\ " Rill ---1

A} ,"+1 -lhi,,,Ri,). Consequently, we have to show that 9JII= r=>
,UF(R 1, ... , R"j,

..... ...,LJF(A ,hij"R", ... , A ...,hi/,R,,).
J'" k + 1 J'" k + 1

and WI F r::>(((U;'''1 Ri)~"'/\;'_, ...,bi) q) hold, These are established in
Theorcrn~ ~. t, 82, and 83 below.

LEMMA 8.1. Assume that Th(9J1) f- rr] *[0;'_1 b/ S,][q] holds. Then
9n 1= r ~..., UF(R" ... , R,,) hoids, wo.

Prot!! Let I)Jl 1= r(~) and ,uppoSc, to obtain a contradiction that,
WI F UF(R 1, ... , R,,)(~) holds, Since D".1-0 for w>O, there exists
an infinite decreasing ~cqucn.-,;c in W, starling in SOme wE W such that
\Ul F :rr(w)(O holds. This contradicts the well-founded ness of W. I

Next, as a preparatior\ for Lemma 8,2 we fir'st prove the following claim
that captures the m()~t difficult part of that lemma.

CLAIM. Assume that Th(9J/)f-[rJ*[O;' .. ,b, SJ[q] holds'. LeI
~ he a state such that ~1 1= r(O holds. For all ~' salis/ying 9Jl F
(U;'_I R,)' (~, n, illl F """JUF(h'oR 1 , ... , h'"Rd(e') holds, where b'""

A7rTk+ I .hl "

Proof Assume that the claim is false; i,e" there exist states ~ and ~'

such that ':UI F (U;'_ I R,l* (~, nand ':UII= UF(b' 0 R 1 , ... , b' 0 R.J(~') hold.
Both ~ and r art; accessiblc states; i.e., both IJJl f. r o (U7~ 1 R,)'" (~) and
':Ull= ro (U;' .. I R,j" (';') hold, From the assumption that Wll=
U F(b' 0 R" h'" Rd(,;') holds, we infer the existence of an infinite
strongly fair sequence of moves b' 0 R I, ... , b' " Rk . As a consequence of the
assumption that Th(WI) f- [r] *[0;'_, hi S;][q] holds, we conclude
that Orna's rule has been applied. Consequently, related to the infinite
strongly fair sequence of moves, whose existence we showed above, is an

162

STOMP, DE ROEVER, AND (;ERTfI

inlinite sequence W" \\1 2 , W), ... in W such that \1JI F 71:(W,)(~') and for all
i;;" 0 W, ;>W,+ I hold. Since W is wdl fDunded we obtain that there e~ 'IS

some j;. 0 such that for all i): j W,:::: W, I ,. This implies that eventu
nOne of the move~ taken in the infinite strongly fair seq uenee are deema'" 11to

moves, Furthermore, there exists a state (" sueh that

(a) IlJI F (Upar!(b'QR" ... , b'oRk))* (e n,
(b) WI F UF(b' 0 R" ... , b'o R.)((,'), and

(c) there exist a w", w" not minimal, satisfying "." ~ 11'" 1))1 F
n(w")(C), and {I, ... , k},;; SI,,".

Let St .. " "" {j" ... ,.ik +m} for some m;:' 0, wherej, = I, for I = I, ... , k. Note
that this implies that D"" '" Uk + '" + " ... , j,,} '" jl, ... , II}- 5'1" .. holds. Now,
11''' > 0 and Th(9.R) f- [1\"(w") /\ w" > 0]* [0 IE ,\",' bi /\ I\i' 0" ,hi --> S,]
[Irlle] holds by the third clause of Orna's rule. Hence, a5 a c<)nwqucncc of
the induction hypothesis and the fact that WI F (n(w") 1\ 1\''' > O)(e"), we
obtain that

9.R F ,SFATR (A ,hi,,·RIl , .. " A,b,," R, .. m) Wi, (ij
l k+m+1 ,=I.;+I7I+!

i.e., there docs not exist an intlnite strongly fair sequence of steady moves
in which no decreasing move is ever enabled. To obtuin a contradiction, w~
now distinguish two cases:

(A) m=O. Then (i) implies that W1F rUF(b'"R" .. "b'oRdW)
as jt '" I for I,;;; I ~ k. This follows from Definition 6,2.3, and contradicts
(b).

(B) m;¢'O. Note that for all $, k+ I ~.I"~k+m, the actual
cnablings-condition for I\;'_k.,,,,,, ,bi,,,,R, is 1\;"".,.",+1 -,hi, 1\ h,. By (I)
and OefInition 6.2.2 Wl F -, fail'(/\;'.k.,.",." ,h;, " R I, ... , /\~_.' ,," , -, bi, 0 Rd
fin(/\;'d +m+ I -,bj, 0 R"", ... , I\~=h +m+, -, bJ. 0 RJi , ..)(~") holds. So by Defi­
nition 6.2.1, 9.RF (U1:."'(/\;'_Hn, + , -,b f,)

0 Rj ,)* -,UF(CoR, , CoR.)
(e") hold$, too, wh!m~ C=1\7~'+m+1 -,bj , 1\ /\;::;'+1 r(/\;'_k+m+"bj ,

II bj) Hence, we obtain 9R F -'UF(CoR,. ... , CoR.)(e"), As 9JI F C=
1\;~k+1,b" this implies 9.R F ""UF(I\:'~k+1 -,bjoR" ... , 1\;'.kT I ,bj

o
R.)(C), again contradicting (b),

This proves the claim. I

LEMMA 8.2. Assume Ihal Th(WI) r- [r] *[0;'., b, S,][q] holds, LeI k
be given, 1 ,,;; k < n. and assume furthermore that i) , .. " in i,v some permutation
of 1, .. " rI. Then!ln 1= r~ ,fair(R." ... "R i,) fin(R i,,,, ... , R I,,) holds, ((iO.

Proof Possibly, after a renumbering, let ii, ... , i" be the identity
permutation of I, ... , n. Hence, we show that WI F= ,fair(R" .. ., Rk)

163

p-CAI.ClJUJS FOR FAIRNESS AROlJMENTS

tln(R A , I, '''' R,,)(O holds, where ~ satisfies r. According 10 Definition 6.2.1,
it suffices to prove th.H for <ill {' satisfying WI F (U;'- I Ri)* (~, n,
WI F ,UF(b' 0 R I, ... , b'·, R.)(e') holds, where b' = I\;'-H 1 ,hi' This
immediately follows from the claim above and c~tablishc$ the theorem. I

tllMMA 8,3, Asstlme that Th(ffil) f- [r] *[0;'_1 bI-S,][q] holds. Then
ffil F r:;)((U7~1 R,)*"I\:'_, ,bi--+q) holds, 100,

Pro4 This lemma is trivial. I
Finally, we arrive at the main theorem of this section, stating the sound­

ness of our proof system. Its proof is straightforward nOw.

THEOREM 8.3 (Soundness of the proof system). F'or all asserlionf r, q,
commands S, Th(WI)f- [r] Seq] =~ F [r] S[q],[h(lldv.

PrO(i(. The only non-trivial case is when s=-*[n7~lbi-->S,] and
n ~ 2. Consequently, we have to prove that Th(WI) f- [r]
>1<[07.1 b, -~ S,J[q] =WI F [rJ *[O:'~ I b,-> SI][qJ." holds for n;;,2.
This follows from Lemmata 8.1, 8.2, 8.3, (IH), Definition 6.3.3, and
Theorem 6.3.4. I

9. How TO DEAL WITH NESTED REPETITIONS

In the previous sections we have considered a rather simpk program­
ming language. E.g., according to the syntax given in Section 2 repetitions
never contained inner repetitions. In this section we shall drop tllis restric­
tion and outline how to deal with the more general case. Basically, we
proceed as before, adjusting the definitions and theorems to deal with a less
restrictive programming language,

9.1. Basic Ideas

Until now, we have considered a very simple programming language, in
which, in repetition S;;;, 0; [0 ~ _ 1 b, S, J, n?:- I, the S, consisted of finite
sequences of assignment~ (i = I, ... , n). According to the syntax given in
Section 2, the program

S,,,,-[b, -[I>, x:=;.:+ I
Ilh; ~ b l :=lalse
]

Ob, b, :=fl1lse
]

is not allowed. The reason for di~allowing nested repetitionS is the

164

STOMP, DE ROEvrR, ANn CFRlll

possibility of (strongly fair) divergence of inner loops, which slightly com­
pli1;ates the earlier theorems.

Intuitively speaking, the program S2 above should terminate strongly
fair, when this notion is suitably refined: if execution of 8 2 starts in a state
satisfying both b l and b2-the other cases are trivial and omitted-S1

terminates as soon as direction 2, Le., b[;b[:=/alse, is taken. Under the
strong fairness, as defined below, this direction must be chosen eventually
because the inner loop *[b 2 -->x:=x+ILJb 2 -->b1 :=/alse] terminates
strongly fair. To gain a better understanding of this notion, consider tk
program below. It does not terminate strongly fair according to the defini­
tion of strongly faif tr;:rmination (see Definition 9.4 below).

·[b,~b;;=mje

Db, ·[bi-b, ;=/alu
Db1 ~ b, ; = /alse
]

].

Starting in a state in which b, holds, executing the first dirr;:ction, i.e.,
b l ; b 2 := true, followed by executing the second direction, in which in thc
inner loop the second direction always is chosen, i.e" b,; (b l ; b l := fa/se),
constitutes a strongly fair computation (according to the definition below),
Each of the loops is treated strongly fair wheneuer entered. However, 5trong
fairness does not constrain choices thut are made in consecutive executions
of the same loop. This program would terminate undCf yet another fairness
assumption; viz., that of all·level (global) fairness (Apt et 1.11., 1984),

In this section we bdefly outline how to deal with a less r~strjctjve
language, LGC'(!m) in which nested repetitions are allowed. Again, we
assume a given signature and a first-order structure 911 as above. The
syntax of the less restricted language is given by the following BNF·
productions:

<command> ::;;;;; (assignment) I (composition) I (repetition),

(assignment) ::= (variable) := (expression).

(composition) ::= (command); (command).

(repetition) ::= * [{ o selection n
(selection) ;;= (guard) (command).

(guard) ::== "quantifier-free boolean el(pression,"

Again, ... [] is identified with skip and "'[D,/~ I hi -+ S,] abbreviates
"'[Ob j S[... Db" S,,} (n;;. I J.

As before, four semantics, viz" R~"", R~, R~r, R~r for SE LGC'(roll are
defined. Thr;: case R~'" is essentially the same as in Section 3 and is there-

ll-('ALCULUS I'OK l"AIKNhS~ ARGuMfN'CS

fore omitted. For Ihc (lther cases the possibility of divergence within some
branch will now have to be taken into <lcc\)unl.

Let States denote the Sd of states and let ~ denote the divergence state.
In [he sequel it is assumed that ~ E States and that for each relation R s;;:

States 2
, IJ~ . LR(1. 0 = ¢ = ~] holds_ For assertions p, p(~) = falw, i.e., [i

never holds in ~_
The definitions of the various semantics, as well as the soundness and

completeness proofs will usc induction on the level of statements:

DEFINITION 9.2 (Level of statements). The level of an assignment x := e
is 0_ Ld the leveb of S, be k, (i '" 1,2)_ Then Sl ;.'>1 has level max(k I' k I)'

Let S"'*[O;'~lb,---+S.J, with n~l. Then the level ofS is I+max{k,l
1 ,;:; i <s n}, where Si has level Ai for i = I, ___ , n_

DEFINITION 9_3 (W~). For SE LGC'(WI), the relation R~ is defined as
follows:

R~= J<~a"v {(..L, J.), if S,.,x :=e.

To define R~ for repetitiOns S, <lgain the notion of an execution sequence
of S is needed_ Its definition is similar to Definition 3_2.1 <lnd therefore
omitted. S is said to diverge nondeterministically from (, if there exists an
execution sequence of S starting in ~ that is either infinite, or finite and
ends in L

Finally, define for S"", "[0;'_1 bi---+S,J with n?-I,

i?', "" P'I~"" U {(~, ~) I S can diverge nondeterministically from <:-}

v I(L ~ll.

Note that an execution sequence of a loop S ends in ~ when an inner loop
of S is executed which diverges nondeterministically.

We now proceed with defining strongly fair execution sequences for
repetitions S=. *[n;'_1 h,---->S,J with n~ L As the example of S2 above
shows, strong-fairness d,)es not consider the choices made at the top-level
only, i.e., choices between the hi (1= I, ... , n), but also the choices made
between the guards of inner loops of S.

DI;FINmON 9.4 (Strongly fair t~rmin<tti(ln)_

(i) Let ~ denote a state, ~ ",.t. An assignment always terminates
strongly fair from (. S I; Sl terminates strongly f<lir from ~, if S I terminates

166

STOMP, Dli ROliVER, ANI) GERTH

strongly fair from ~ and S2 terminates strongly fair for all possible output
~tates produced by ~trongly fair computations of 51"

Now, let S;;; *[[] 7~ I b/--> 5 ,J, with II;;" I. An execution sequence of S
starting in ~, is strongly fair, if either

(a) it is finite (say ~Q' ~" ... , ~"" where (= (ol and eith<:r ~'" -,t. ~,
or ~'" = ~ and there exist~ an 5, (i = 1, ... , n) which strongly
fair diverges from ~m _ I' or

(b) it is infinite and every direction in 5, which is infinitely often
enabled along the sequence is chosen infinitely ohen. We say
that S terminates strongly fair from 0; if it admits neither
infinite strongly fair execution sequences nor finite ones ending
in .1 that start in ~.

(ii) A program terminates strongly fair if it terminates strongly fair
from (, for every ('f- 1.,

(iii) A program is said to diverge strongly fair if it admits a strongly
fair computation, starting in (that is either infinite, or finite and ends in .1.

DEFINiTION 9-5 (Unconditionally fair termination).

(i) Let ~ denote a state, (#.1. An assignment always terminates
unconditionally fair from e. SI; S2 terminates unconditionally fair from (,
if Sl terminates unconditionally fair from 0; and S2 terminates uncondi·
tionally fair for all possible output states produced by unconditionally fair
computations of S I . ~

Now, let S~>Io[D7_lb,-.StJ, with n;:<:l. An execution sequence of S
starting in ~, is unconditionally fair, if either

(a) it is finite (say eo, {I' ... , (m' where {= {oj and either ~m -,t. 1..
or (m =.1 and there exists an S, (i = 1, ... , n) which uncondi­
tionally fair diverges from ~m _ I, or

(b) it is infinite and every direction in S is chosen infinitely often.
We say that S terminates unconditionally fair from { if it
admits neither infinite unconditionally fair execution sequences
nor finite ones ending in 1., that start in (.

(ii) A program terminates unconditionally fair if it terminates
unconditionally fair from ~, for every (# .1.

(iii) A program is said to diverge unconditionally fair if it admits an
unconditionally fair computation, starting in ~ thllt is either infinite, or
finite and ends in L

4 Although. we ha •• not defined whal Qulpul ~1'les produced by strongly rair computations
are, this nolion should be clear.

'Although, we have not defined whal outpu1 S1ales produced by unconditionally rair
CompulationS ar~. Ihi. nolion should be d.ar.

167

Il-CAI.ClH.l)S FOR FAIRNESS ARGUMENTS

It can be shown that the relation between the fairness ussumptiQn~ as
formulated in Theorem 3.3.4 still holds.

R~'=R~=R'~ for S=x :=I!,

R':f = R~~ 0 R~~ and R~ = R~,,, R~,

For s= *[L:l7_ I b, --> S,J with n ~ I, we define

R':j = R~,I'" l,) {(~, ~) I s can diverge unconditionally fair fr~)lI'l e)

l,) ((1., 1.)}.

R': = R~:'" u {(~, .1.) I S can diverge strongly fair from 0
u{(1.,l.)}.

As before, wc define the notions of nondeterministic, unconditionally fair
(resp. strongly fair), termination of a program S by 'r/~;i:..i . ---, R~(~. 1.),
II~ 'i' .i·'R~f(~, .i) (resp. V~ ",1.. "'iR1(~, .i)).

Again, this gives us four notions of validity, 9Jl f= [p] S[ql" for
S E {part, t, uf, sf} whir.:h are the same us formulated in Dcfiniti()l\s 3.2.2,
3.3-2, and 3.4.6.

The proof system is similar to the one in Section 4, except that in the
composition rule and in Orna's rule the restriction to simpk commands is
dropped.

We now proceed to dd'ine a formula F(R.d such that for any stute {,
F(R s)(<!) holds itT S terminates strongly fair when e1'ecution of S is started
in ~. Clearly, if S is a loop, the formula ,SFAIR does not s.uffice any more
to describe the absence of infinite strongly fair execution ~equences of S,
since this formula only constrains choices made at the outermost level of
the repetition. We now need a formula that also constrains the choices
made in inner loops.

DEFINITION 9.7. The formula F(R) is inductively defined as

F(R~) =).~ . true,

F(R1) = F(R~,) A (li~, --> F(R~,)),

if S=x:=e.

if S~SI;S~,

FilJ~Hy. if S=·[O;·_lb, S,] (n;:'I), then F(R~)=((U7_IRi)*
t\;'_,(b,::;) F(R~))) A ...,SFATR(R" __ ., R,,); i.e., whenever the ith direction
i~ taken along an execution ~c4uence of S, S, terminates strongly fair and
S docs not admit infinite strongly fair execution sequences.

lOS

STOMP, DE ROEVER, AND GERTH

Observe that R is not a free variable of F. I.e., for every statement S, we
define a different F(Rsl. Hence, the F(Rl are first-order formulae. From
now on, we fix some first-order ordinal acceptable Structure ':l.ll. As before
we are able to define the weakest precondition for strongly fair termination
sfwp(S, q) for commands S and conditions q. or course, the only interest­
ing case is when S is a repetition. This is the subject of the next theorem.

THEOREM 9.8. L~t S","[D;'~,bi--->SI] with n~L Fot every ~ the
following holds:

WI F sfwp CI~I b/-> s.]. q) (el

iff 9)1 F (F(R~f) A ((9, Ri) ~ Q l't -,b, q)) (n

Proof. A straightforward adaptation of the proof of Theorem 6.3.4.

9Jl F sfwp (Ti~ hi sJ true) (~)
Soundness and completeness is established by

THEOREM 9.10. 9Jl F [r] S[q].r iff Th(WI) f--"- [rJ Seq].

Proof Again, the only non-trivial case is when S =: .. [07. I bi S,]
with n ~ 1 holds. The equivalence is proved by induction on the level of S.

If S has levell, i.e., if S has no inner loops, then the theorem follows
from the results in Sections 7 and 8. Now suppose that S has level k + I
(k ~ I) and that the theorem holds for programs S with level I satisfying
l~k_ Assume that Wlp[r]5[q].r holds. Then Wll-r;;>[F(R1ll\
«V7., R/l* 0/\7.1 Ih, --> q)] holds, too. From the definition of F(R1), it
follows that WlFr::;.[(U7.IR')*--+1\7_I(bl::;.F(R~t»)), i.e., for every
execution sequence of S sta(ting in a state satisfying r, whenever b i holds,
5, terminates strongly fair (i = I, ._., n)_ For the same r~ason IDl F r::::>

-,SFAIR(R
"

... , Rnl holds. So, we may proceed as in Section 7 and
conclude that Th(WI) I- [rJ S[ql

The other implication, i.e., Th(ffill r- [r) Seq] implies WI F [rJ S[q).r,
should be obvious.

169

10. CONCLUSION

We have shown that the It-calculus can be used as an assertion-I~ngu~ge
to prove fair termin~tion of do-loops. The notion of fairness considered in
this paper is that of strong fairness.

V~rious rule~ (Apt el aI., 1984; Griimberg et al., 1981; Lehmann el al.,
1981; Manna and Pnueli, 1983) for proving strongly fair termination of
repetitions have been studied in the literature. All of them have been
proved to be ~Qund and complete. However, this was done using set theory
as an assertion-language. One of these rules, Orna's rule (Grilmbcrg eI af .•

1981 j, is considered in detaH in this paper.
The key result of this paper is the fact that the weakest precondition

expressing strongly fair termination is definable in the It-calculus. This
result is used in the completeness and soundness proof of the rule. The
completeness proof required verifying that the weakest precondition for fair
termination implies the premises of the rule. Here, the ordinals are used to
define the auxiliary quantities required to apply this rule. We believe that
these ordinals can be removed, but we have not done this yet. The sound­
ness proof required to ve,ify that the premises of Orna's rule imply the
weakest precondition for fair termination. The LPS-rule (Lehmann el al.,
1981), another rule to prove strongly fair termination of do-loops can be
shown to be sound and complete ill the same manner as Orna's rule.

Future work will be carried out to remove the ordinal constants used in
the comple\ene$~ proof. Furthermore, we will try to define a predicate in
the II-calculus which expresses whether a repetition terminate:,; under the
assumption of all-level, i.e., global fairness (Apt el al., 1984). Future
research will aloo be carried out to extend these arguments to more
complex forms of f~irness ~nd to concurrent programs.

ACKNOWLEDGMENTS

The authors thank 1'. van Emdo Boa$, A. Ppuell, and tho memb<;r$ of "hel tandclij~ Scmi­
parium Concurrency," fOr clarifying remarks, and K. Apt fOr pointing out an error in an
earlier version of this paper. Finally we thank an anynomolls rereree fot his suggestions that
~td t() Many improvemenls. especially regarding lh~ !;ityl~ and nota~ion,

RECEIVED June 3, 1986; ACCEPTED December 21, 1987

REFERENCF~

Api', K. R., AND PWTKIN. G. D. (1986), "Countable Nondelerminism and Random Assign.
meM." J. Assoc. C(Jmp~t. Madl. 33, No.4.

APT, K. R., ?N V'€LI , A., ANL> STAVI, J. (1984), Fair termin~llon revIsltcd-Wilh delay,
Til'''''I. Comp"l. Sd. 33.

170

STOMP, DE ROEVER, ANI) Gf;f\'fH

j)~ BAKKER, J. W. (1980), "Mathematical Theory of Program CorrcctnCS5," Prcnticc··H~II,

Englewood Cliffs. NJ,
DIJKSTR,... E, W, (1976). "A Discipline of Programming," Prentice Hall, Enl!lowDod CIiIT~, NJ.
GK()M~~.G, 0., FKwGtz, N" MAKOwSn, J, A" ANt> ,)[ROEVER, W. P. (1981), A proof rule

for f.ir termin~tion of 8\l~rded <;omman(i$. in "proceedings, Symposium on Algorithmi(
Lailguage,," North-Holland, Amsterdam.

HtTCHCOCK. P" AND P,..RK, D, (1973), Induction rules and tCrnlination, in "Proe<:edins-<,
ICALP I," Nonh-Holland, AI1\~terd~m,

LEHMANN, D.]., PNUEli, A" AND STAV" 1. (198t), Impartiality, justness and fairness: The
ethics of concurrent termination, in "Proce.dings, [CALP VIf," Lecture Notes in Comput.
$cL, Vol. II~, Springer-Verlag, New York/Berlin.

MANNA, Z., AND PNUELI. A. (1983), Verification On concurrent programs: A temporal proof­
system, in "Foundations of Computer Science IV, Part 2:' Malh~matical Ccmrc Tr$~ts,
Vol, 159. Math, Centrum, Amsterdam,

MO$(:>jOVAKj$, y, N, (1974). "€Iementary Induction on Ab.lract Structure.," North-Holland,
Amsterdam.

PARK, D. (1981), A predicate transFormer for weak Fair iteration, ill "Proce<:dinS" 6th IBM
Symposium on Math, FO\lnd, of Computer Science, Hakom:, Japan."

PARK, D. (1980), On the semantic. of fair parallelism, in "Proceedings, Copenhagen
Winterschool on Abstract Software Specification, 1979," Leclure Notes in Compti!. Sci"
Vol. 86, Spring.r-V.rlas, New York/Berlin.

P"RK, D, (1969), Fixed point induction and proof of program properties, Mach, IlIle/!, S.
DE ROEVER, W. P. (1981), A formalism for reasoning about lair termination, in "Proccedillg<,

Workshop on Programming Logics," Lecture Notes ill Comput, Sd" Vol. 131, $pringcr­
Verl~g, New York/Berlin,

TARSKI, A, (1955), A Ian ice-theoretical fixed point theorem and its "pplication~, Pacific 1.
Malh,5,

HAnL. D. (1979), "First-Order Dynamic Logic," Lecture Notes in Comput. Sci., Vol. 68,
~;pringer-Verlag, Berlin/Heidelberg/New YOrk.

171

SAMlSNVATTING

Dit pfodschl'ift bcstMt nit een bundeling van eel) viertal artikelen,

Dc eel'st" ririe artikelen beschrijven een priucipe voor het ontwerpen va\) gedistrihlleerde pr<..>­

!l;ramma's uit ~en hepaalrle klasse volgens een bijzollder type van redenereu, Deze klasse bestaat

uit programma's waarin een groep van knopen ill een n~twerk eeu zekere taak llitvoeren die

vanuit een logisch oogpunt bn worden opgesplitst in een aanta,l sllbtaken alsof deze seqllentieel

worrlen llitgevoerd, Vauuit cell operationeel oogpunt worden dcze sllbtaken echter concurrent

door de knopen uitgevoerd.

Het ontwerppri1l6pc worM. eerst gei'dentiflceerd in het ccrste artikel, "A cOrrectness proof of

a di~tril.JUted minimum-weight spanning tree algorithm (extended ab;;tract)". Dan wordt in

het tweede ill"tikcl, "Designing distributed algorithms by means of fOrIlla,! sequentially phased

reasoning", CCIl tedmische formulering van het olltwerpprincipe gegeven. Een t.oepassing van

het principc wordt gegeven in het derde artikel, "A detailed analysis of Gallager, Humblet,

and Spira';; minimum-weight spanning tree algorithm". In dit artikel worden bovcndien twee

andere principes geformuleerd: Hct ecrste beschrijft hoe twee on;tfhankelijk van elkaa~ llit.ge.

voerdc (,aken kunnen worden gecombineerd; He! tweede principe is v;tn t.oepassing wanlleer cen

aantal grocpen concurrent ten opzichte van clkaar een aantal take.) \litvoeren terwijl eeJl taak

uit.gevoerd rlOOT een groep tijdelijk 1<:.,').11 worden verstoonl als gevolg van interactie met knopen

uit een andere grOCJI.

Het vicrde art.ikel, "The /l-cakulus as a.n assertion-language for fairness arguments", handelt

over faire terminatie van do-loops. Hierin wordt de /l-calculus voorgesteld als absertieta.a.l voor

het l"edenCl'cn over dit type vall tennioatie. Soundness en vollcdigheid van een regel voor het

hewijzen van faire tenninatic worden bewezen, Bovcndien wordt de zwakstc preconditie voor

Caire t.t'rminatie van een do-loop met betrekking tot een 2;ekere postconditie in de p-calculus

gedefinieerd.

Lineaire Tempo,ele Logka (LTL) loopt als een rode draad door de vier bovenstaande adikelen.

Wordt bel, olltwerpprincipe direct gefOrm\lleerd met behulp va.11 LTL, in het laalste artikel

wOrden dc gl'Ondslagen van LTL o!ldet~ocht. De resultaten d",,').rvan suggereren (zonder hewijs)

dat "\1001' het verifier en dat een progra.mma [air tenninecrt, een eigenschap die op natuurlijke

wijze In LTL gefonnuleerd kan worden, een assertktaal nodig is die veelmeer uitdrukkingskracht

heeft dan LTL zelf.

CURRICULUM VITAE

De >(:hrijver vall dit proefschrift werd 01' 22 juli 1957 t~ Gorssel g~boren.

Van 1969 tot 1077 doorliep hij de Thorbeck~ Seholellgcmeenschap ti' Amhem. Nadat hij het diploma

Gymlla.>hlIll b had behaald begon hij ill 1977 met de st,l,ldie wiskunde aan de R.ijksuniversitdt te

Utrecht. Zijn kandidaatsexamen wiskunde. met bijvak informatica werd in 1981 behaald. Het. docto-­

raalexarn~n wiskunde met b~jvak informatica kgde hij in 1984 (cum Ja\.de) ai.

Sinds 1984 is hij werkzaa:m hij de afdeling informatica aan de Katholieke U niversiteit te Nijmegen

(KUN). Daar werkt,:, hij rus wetcnschappelijk medewerker, eerst in dienst. van de KUN, vervolgells

in dienst van d.., Nederlaudse Organisatii' voor Zuivcr-Wetenschappelijk Ond<:rzoek (ZWO). Hij is nu

universitair docent in tijdelijke dien,t bij de KUN.

CURRENT ADDRESS:

University of Nijmegen,

Department of COIllpl,lter Scienc",

Toernooivcld,

6525 ED Nijmegen,

The Nethetlands.

Stelling-en

behorend bij !let proefschl'ift

D€sigIl !Ulcj "l"'c:ifkatlon of disll'ilmt..,d !1~twol'k a\~orithm~'

fOUlldatior" and applicMiollS

van

Frank St.omp

I. Cmnpositionelc \)(,wij$sy,temen, waarbij een ~p(,dfkati€ van ,,(,n programma w(\rclt, afy,eleid ait,

sp(:cin<:atic:-1 van '1!ijn coustit,lU~reIhk prQgr.:\.lllH1.,j),'S zt'mder t{~ refererell <-tan (h~ lntern(:- :'itnu:tuur

van die constituen!..", [7,891. 7.ijn ollgcschikt Yo()r het formali""(,,, V(lJ,l lid WMt. "rgumenlrIl dat.

gel!!llikt wordt, door onlw~rp(", ViHl Iletwel'k.atgoril".uH'n ill [GHS83,HuH3,MS70,Se82,S"S3,ZS80i_

Hiervoor ktmncll t.wh' (ulvQudige l'ecienCll wor(!,:'ll gegeY~n,

(a) 1n [CHSS3,H\,83,MS70,SeS2,Sc83,ZS80i worden algorit.m('11 uitgclegcl "a" de hand ViLl' "PB­

r"t.ionde argum~l\!t'Il, w"-<I-rhij het gebl'uik va" pl~.~.t.jes t~r illllot.ratie niet gesc!luwr! wordt,

?'ondel' enlg~ v(~rwijzing IlMt' (de sYllt.adi:-;(:h-e Stl'Uf,t.Uu[v~m) pTQgralnlllu's di~~ dt:~;iie <tlgoriL­

n)er) besc-hrijven_

(b) Ieder tc)llll""itiQneel bewijssyst,c,,,,, kgt r€stric\i<~s 01' ""II zijn gebrnikt'T door hem to Y'''­

hil~dcn gehndk te lllakC!.l VH..Il de interne structullr van €en progri-l.II'1.rl'1c.h ~elfs itl.dj(~n dr,7le wel

bekclld is.

[GHS83[Gallager R,T .. Humblf\ ?A" ""d Spira P.M., A di,tribnted algorithm for minitllllln-wci!;ht

'I",nnillg tre~~, "eM TOPLAS, 5-1 (1983).

[HuS31 Humbl,,\ P_A_, A distributed algol'lthnl foc "li"illlum-weigbt ditect .. d "panning t,·~cs, IEEE '!'rallS.

on Cmmn., 31-6 (1083)_

[M579j Mulin P.M. Md Scgrul A., A failsafe <iistrii>ut"d rO\Hi"g prot<>col, lEW,; "Ihens, 011 Conllll., 27-9

(1979).

IS(,.~821 Scg.all A., De(,~lItI-ali;!.wd maXhlltllll-llow ''l.l~lldthmo~ Netwm'k~ L2 (1982)_

[S,,83[Segall A., Distributer! netwo,k P"0t,)col., IEE£: '[hn~_ "" Illf. Thoo,y_ rT29-1 (1983).

[:1.891 Zwi('l"~ J" C,\,")Il1p(1~jr,i("J.I);\litYf (on<.'urrf'nry, ,f\II(,.l pnrtlal (~Ol'r~ct,llf:.':;~: Proof theorif!~ fll~· H<.'tworks or

prO('{'fi5('St and tlL-eil' ('.onllf:c:tioIl, Ph, D- Thf!si?, EiIldhl)v~.\ UnivE=':rsity of Te('hnology (U}88). ()ok vu­

""hem'I1 ".h LNCS 231 (1~8il)).

1t:~R()1 Z"rbil, F.B.M. ,nd S"S,,1l A., 1\ (iistrihllt"d "h ... ,.te.~t p"-th protocul, Jotcl'nal ReV",.1 ~;1C-:105,

TedlIliolI-],raoJ h,stituto of T"dmojogy, Haifa, lor",,1 (1980).

2. E(:rl pdUC'i[H' voor hN ontw€l'pen vaIl f,lil,a[e algo,ij,rnc" [SS91 kan iII dezdfJe tl'm't, gdormuleerd

worrlml ~lls het prindp!'~ vo~)r lH't, :,;;equentie,e] n~rh:Il(!tel) over <;onCllrrellt uHgev{'t('nl(~ ~llbtakeTl (zie

hoofdstuk 3 van <lit ptocfschrln). ~2"" <Iel'gelljk prlIltip~ biedt de mogdi.ikheid n" k g;",'U) of d~

lligmitm,," in [SH861 ilHkul;,ad eorre(,t. "ijIl. Bovenqien b)Il he! tot, ,"·,n lJ"tCI' inzkht kicIcll in

,I<. Olljui~thl'id, aangdoond in 1~1J8()1, v;'11 cen van FiIln's rugodt.IIl(,n [/,,7(lj,

[F79! Fi!lll S.C., Re!-iYHd~ pl'()~r~dllr·c:; ~1ncl a Iftil~,q,tR. network Pl'0toc:ol 1 IEEE 'J\r3u.c:_ 011 Comm., Vol.

COM-u (1979).

iSH86i Soloway s_n .. ,.llId }j",,,hiet. P.A., Oil dist,rihutd nutwo,-k prol.o,,<>I, fot ~IHLllging tovulur,ie'. '£<:<,h­

IIk.l Rcpurl I.JDS-I'-15G4, MIT (19M).

lSS9] SU)rHp F.A'l A pl'in(,jplf! for formally designkng f~~ih:i.t\fe ~.IB()rithml::i\ in VO()t"hf!Ieiding,

3_ n" hcwcl'inl\ vau Ch()u rll Gldni d"t. >ij in [CGSS[,1(, (orrect.hd<l V"" G<\ll~W'r, HUIllblet fm

Spira\ "l11<>rit,llIe iGHSS3] Gall;,r;er\ <\lgorit,lIIC'- bewe"'~n hehllell is (}lIjlli~1..

Ch()ll en Gafni h,,"chollwen ~~ll ll",hstribueer(k implement"t;" vnn Boruvka', "lsodtm~ [1326[

(ol.lk I,· beschonwen nh "<:11 gedi5\,ribll"erde implem,,"t;,.tie van KrllHkal's alr;orit.rru, [K56]), waarin

tw(:(: p;l'ot;'p~n vml knopen fl.l1~(~Il kl.l(I.n.en w()r(h~Il g€coln'bhu"(~l'(l tot een gTO'/"~p ~\ls hUll Iniuiulale

uit'Ra;""k kant,'j) d'·1.dfde ~i.in.

In I.egenst.dlillg 1.01- Gallag"", "Igoritme, kHllIlrl1 in h .. t, nlg()l'itme d~.t, ill [CGBB) g<:;u",lyseerd

wordt, gc~~I1. cOlnhhl~\t.ie; vi1I'1. gro-ep~T1 pla.."1t..svind(~T1 buiiell hun tniniIlI.a.le uHgHn.ndt. l("''\nt.€l1 vcr-

5(:hjllclld zijn_ JlIi~l, dit, type vol! (olnbinatk, is het karakt.(r-istil'ke van ()allager's alw.>rit,llle en

v~~r{~is(. ('t;'n ('r.}1npl(\'xt~re- :"1JH:dyH~: d~Ul die tn. [CCRgI,

[H2ul Ho[()vb 0., 0 ji'tem 1><0"1611111 minimal,,;,». P,a"a Mun\Vskf Ptiwc\ovMeck;, Sp<>h:b,u.l,i (1926)

(in Cz"ch.).

[CGRSj Churl C.T. and CiJ..fni E., Undul::itiJ..w..lirl.g ,q,nd v()rifJ'ir~g rlL'.l,.triblltcd .fIlg()rlthm~ u8iI)g ;e..tratifh;u

(h'compc'I:o:;ition, Pl'or. 1>1' I.hp. ACM Symp. (m PriIli:.:iplc~ (Ii' lhstr, COB)})_ (1988),

~ K,I).fll Krll~k~~l J. H. \ 0Ik tht, sho~'tf!?t i-ipaBuing ;o5llhtn:c uf ~t &.I',fiph and thoe t,rA.v~lin~ ::ItI.}oE'$!II,q,n pluhlcw \

Proc, An,. Math. 50(:,,7 (1956).

[GHS831: '''' ,t<:llil\l\ I.

4, Bet pattern matching probleem VrM!1;t. nMr het meest linker voorkomen va.n een patroon in een

zekere tekst. Een eenvoudige oplo~,i!)g hi(-rv",n b~~t"''''t \Iit h~t ~t",p~gewijs VM link~ 1l1\.Q.r rechts

clo"riopen viIJ' ck ttk~t, of' <otk claM !let patrooll,

Eell illgclli<,u<<,n' IIlt'thode wMdt door Boyer en Moore in IBMHI gegev€ll. Hi~tbij wordt gthruik

lekst llt'l-f\r rechts te verochuiven indi~1l b~t patroon nog 1ljet in De t~bt herkelld is, Een formele

,l1kidill/; v"n BO'yer Cll Moores algoritrlL€ wordt ill [1'88%] gegevcll,

Hd lLitlltall'"sit;"s, ch,t ,-..!l'il.Ilgt vall (c'~ll d,~d vall) het patroon til Vall (,tn k.--u-,.kttr (zit: [BM77]),

kall volgens Boyer en Moore in een tabel worden opgeslagen die berekend wordt voordat het ei·

genlijke algoritllH~ wordt uitgevoerd Clpreproces8ing"). De:.::e berekf'"Illng l~ :.::df ccht,('r weer (~('~1I

illStantie van het pa.ttern matching prob!eem.

Dit l""j"j,~, wWclt in IEM771 ge$p<:(ifi(:,,,;rcl milar ni~t "lgc>rij.mi$dl opgfk\,~.. Een <,-lgoritn~i,che

oplossillg vall dil ptobleem wordt in IKMP771 gegeven, m,wr in IR80j wordt aangetoQ[ld dat, I.e!.

algorit.ll\€ in IKMP17j nkt. <,-<,-n de ~pedfic<'-tie van IDM77j voldoct.

Dool' middel van een geschikte generali~atie van de ail.eiding in IPS8%] k.'Ul een volledig<' <'Ii C,)r-

r(~(·t(... opc--T.;-lticHIC'ie ()plmising- vall hef. l)n·l)n){·e~5iIlb l}n)bl{,f,~lIl forrn{~E;'1 wornpn afgf~kid, 7.it;~ [PS89hJ-

[BM77[BOY'r RS. and MO<lrr. J.5., A fa.t .tring sear"hing algorithm. Comm. ACM. 20-10 (1977).

[KMP77j Knllth D.E., Morris J.Il., and Pratt V.B., Fa.t pattern mat<hing in .trings,

SIAM. J, Comput. 5 (1977),

[rSS%i r:<,.tsth H.A- ~" 5tol\,p F.A., A fast pal I.e',' ,"~tchi!,g "lgor;t"", cler;y"d by tra"~fOn""tiu",,l ""d

1i!=:~f':rtj(1I'l;\1 r~a!i:Onl11gf :::lIhmittfrct for pnhlir.Ation (19B9).

[pS89bj Part."h n.A. en St()mp F.A., R.eu,ability through generali.ation, in voorh~reicting.

[RaO] Rytter W., A {'orred preproc(,s5iIl~ a.lgorithm for Boyer-Moore strin~ fif'arcning,

SIAM. J. Com]>ut. 9 (1980).

zoals beschreven in IGHS83,Hu83,MS79,Se82,Se83,ZS801 omclat

hegrepen ka.1l worden,

• ,k v""'"lnit.s!."k,,"<l,, (i"fmIll"''') nit.kg v<,-n (I<' '-l!lj,w("'p~r dir~(·t g(~forInali>eerd kru) wOlden

ell

• C~seIltiNc hesli~sil~gCIl Vall tIc Ollt.W'l~l"ptr g(~ld{~ntifif(~(~rd, gC'v(~rifi(\'rd ~'n kwQ..lh.;;tt,ioE;'f gffJ.na1y-

(i, Manna ~~1. Pll\Idi redu("(~r(~Il iu IMPt53] een bew~is van (~(:n t~:IJlIH)rc:l(: eigensdu\p V(m {'e?l pro­

grrUrll'l'Irt tot. t~(~n h(:wjjs vnn. dgen.t)('h~\.PI)(,.'!D VQ,lI (I(- tr<=LlH:;itics van dat progTd.UllU';'l.. De :'illgg(~S.tj(·

d~tt. vOOt hd·. rodew:w(~n nver dt~rgdijkt~ traLl.~iti(:s Ljnehir(~ Ti.~~npor~~k Logira l ~oals ge(lefiHH~cnl

til lMr8~~L (~{~n vold(H'IHle ('xpn~:-;t-iil~VI.~ ta.aJ is, is onjuist. E(~Il fonl.l~·~li$.LUC d.\v kr~.l'htigTr i:'i daB

Liu(I.I\i((1 T(\mpt')r~'h~ Logic:-~., bijvoortwdd lie" jt-calculus, is hkrvooT Y1~rci~L Zi~ hoofd.1t,\1k 5 van

<lit prod,chl'ifi.. ~j) ()O~. IGMI.

1(;1:14: Gnt.h H.T., TnUl!1it,i(jil Lo~i(~: How to pnrYt~ tt~mpO"~~l pt()p~rtir.~ in a. {:olllpl ~iti()p~11 wa,Y,

Pnlf:. lOth ACM Symposium on the Theory of CO~lIpllt,in8 (1~)84).

1MPS31 Mann~1 Z. alLd Puudi A., Verification (,I' (:()II~\1l'l'~l'l.t progr;:~m:-i-: A tl..:mpllI'i1.1 I)NI(')1' ~yst.{:m,

\-i'('llllldatimlS of ComplIt.('l" SdnH·l' IV, pa.I"(. 2) :vJat,hem.atri{~al CCHt,n~ t.r~\.q~ !~9 (1~)f):3).

7. i'I""wd h,'l I ypi~d)(' rltn>" Villi Tq;J;''''-IIlILZi0k d~ lieflwbb"r tTl v"rv()erin~ kun br(mR,'n, ''''paidl.

jnj~t. {k w~;.:onH{~I! of !:!.·'/":.'-iprOk~~ll t.('!k:"lt jn .sh'rk(,]nat(~ hpt kcLraJ.'lt.et V.N~ (h~z(~ rnllr.kk.

	Voorblad

	Contents

	Acknowledgements

	Chapter 1

	Chapter 2

	Chapter 3

	Appendix 1

	Appendix 2

	Appendix 3

	Appendix 4

	Chapter 4

	Chapter 5

	samenvatting

	Cv

	Stellingen

