EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Design and verification of distributed networks algorithms

Citation for published version (APA):

Stomp, F. A. (1989). Design and verification of distributed networks algorithms. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR328112

DOI:
10.6100/IR328112

Document status and date:
Published: 01/01/1989

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR328112
https://doi.org/10.6100/IR328112
https://research.tue.nl/en/publications/55286323-f33d-4d5a-9f77-68cd98166d4b

Design and Verification

of
Distributed Network Algorithms:

Foundations and Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Techniache Universiteit Bindhoven,
op gezag van de Rector Magnificus, prof. ir. M. Tels,
voor cen commissie aangewezen door het College van Dekanen
in het openbaar te verdedigen op

vrijdag 15 december 1989 te 16.00 uur

door
Frank Alwin Stomp

geboren te Gorssel

Dit proefschrift is goedgekeurd door
de promotoren

prof. dr. Willem-P. de Roever

en

prof. dr. Helmut A. Partsch.

Het onderzoek van Frank Stomp als beschreven in dit proefschrift

is verricht aan de Katholieke Universiteit te Nijmegen.

To my parents

CONTENTS

o

B T 2
. A correctness proof of a distributed minimum-weight spanning tree algorithm
(extended abstract) ... s e 18
. Designing distributed algorithms by means of formal sequentially phased reasoning 28
- A detailed analysis of Gallager, Humblat, and Spica’s distributed minimuem-weight
SpAnIINE tree AlgoritIIL o o e e e e 66
- The p-caloulus as an assertion-language for fairness arguments0o0ii e 126

ACKNOWLEDGEMENTS

Willem-Paul de Roever has introduced me into the field of concurrency. I express my gratitude
for his support, guidance, and constructive criticism during my research in this ficld. Many
thanks are due to Corinne de Roever. She and Willem-Paul were always there for me when 1

needed 1t.

I wouid like to thank Helmut Partsch for his stimulation and for providing me the opportunity

to finish this thesis.
Thanks also to Ralph Back and John-Jules Meyer for their willingness to referce this thesis.

Rob Gerth is thanked for being a co-author of one of the articles included in this thesis, and

for his help during the last stage of writing this thesis.

I thank my parents for their continuous support. I am very grateful to Marilyn and Carla for
their help on many occasions. The interest in my work shown by my brothers has always been

appreciated,

Finally, I thank Myrthia for her understanding and support.

CHAPTER 1

Overview

‘This thesis collacts four articles:
(1) F.A. Stomp and W.P. de Roever,

A correciness proof of o distributed mini -weight spanning tree algorithm (extended abstract),

which has been published in the proceedings of the Tth International Conference on Distributed
Cornputing Systems, Eds. R. Popes¢u-Zeletm, (. Le Lann, and K.H. Kim_ The fell version of

this article has appeared as technical report no. 87-4, University of Nijmegen, 1987,

—
=2

F.A. Stomp and W.P. de Roever,

Designing distributed algorithms by meons of formael sequentially phased reasoning.

A version of this article has appeared as technical report no. 89-8, University of Nijmegen, 198%
Ap extended abstract has been published in the proceedings of the 3rd International Workshop
on Distributed Alporithms, LNCS 392, Eds. J.-C. Bermond and M. Raynal.

(3) F.A. Stomp and W.P. d¢ Roever,

A detailed anelysis of Gallager, Humblet, gnd Spira’s distributed mini weight spanning tree

algorithm — An example of sequentiolly phased ressoning —

(4) F.A. Stomp, W.P. de Roever, and R.T. Gerth,
The p-calculus os an assertion-language for fuirness arguments

Tt has appeared in Information and Computation, Vol. 82, po. 3 (1989).

The central theme of the first three articles on distributed program design and verification is the
identification, the technical formulation, and an application of a principle for designing, and verifying,
{complex) distributed algorithms. This principle allows one to structure the design, or the verification,
of algorithms from a certain class according to a particular pattern of reasoning.

This class consists of algorithms in which some gronp of nodes in a network performs a certain task
which can be decomposed into a ouwmber of subiasks as if they are performed zequentially from a logical
point of view, In reality, however, e, from an operetional point of view, the subtasks are performed
concurrently. A typical example in which one can discern this kind of sequential decomposition is
Segall's PIF-protocol {383]. The PIF-protocol, where “PIF” abhreviates Propagation of Information
with Feedback, is a simple broadeasting protocol. All nodes in a finite, connected, and undirected
network accomplish the following tesk Some value initially recorded by a certain node k is supplied
to all nodes in the network and node % is informed that all nodes in the network have recorded this

value, This task can be decomposed into two subtasks: the first one broadcasting the value, and the

3

gecond one reporting that the nodes have received and reeorded this value,
The strategy proposed in the articles (1), (2), and (3) above to design {or verify) algorithms from the
above-mentioned class is the following:
(a) First design algorithms which solve the subtasks. (This can be aceomplished, e.g., by techniques
advocated by Back and Sere [BS89] or by Chandy and Misra [CM88].)

(b) Then ¢combine the algorithms found in (a,) into one whick solves the whole task.

This particnlar kind of strategy bas been identified in (1),

The design principle formulated in (2}, the second article of this thesis, describes how one could

formally characterize the combination mentioned in (b) above,

This principle is applied in (3) fo the complicated mintmum-weight spanning tree algorithin of Gallager,

Humblet, and Spira [GH383).

The central theme of (4), the fourth article of this thesis, on feirness erguments is the formulation
of an assertion expressing that a nondeterministic program terminates fairly. It is shown in (4) that
this assertion can be formulated in Hitchcock and Park’s monotone p-caleulus [HP73). This calculus
is a formalism, based on Knaster and Tarski's fixed point theorem [T55), that can serve, as shown in
(4), as an assertion-language for reasoning about fair termination of nondeterministic programs in a
sound and (relatively) complete manner.

Meyer (M86] has used fixed points, too, for copstructing a ¢alenlus that describes how to merge fairly
operations of nondeterministic processes, An excellent overview on fairness issues has been given by

Francez [F86].

Manna and Prueli's Linear Time Temporal Logic [MP83], hereafter abbreviated to LTL, runs both in
its applications and in its foundations, through the research reflected in all four articles like a thread.
The design, hence, verification principle, which is the subject in (1), (2), and (3), is directly formulated
using LTL. In the fourth article the foundations of LTL are investigated.
The results described in (1), {2), (3), and {4) are briefly sketched below.

In (1) it i5 sketched how the distributed minimum-weight spanning tree algorithm of Gallager, Hum-
blet, and Spira [GHS83] can be proved to be correct. It is argued that the proof can be structured

by decomposing the reasoning about the program describing that algorithm into a number of loosely

comnected or independent crouments concerning distributed perts of that program as if they are per-
formed one after another. (In the terminology used above, the nodes which execute such a distributed
part perform a certain subtask. The whole task consists of all these subtasls ay if they are performed
scquentially.) These digtributed parts are not syntectically contained in the whole program, They are
combinations of scattered pieces of text of various programs performed by the nodes, which semanti-
cally constitute a meamingful whole, It is claimed in (1) that the principle applied generalizes Elrad
and Francez' principle of communication closed layers [EF82). From the technical formulation of the
principle in (2}, it follows that it is a broad semantic generalization of Elrad and Frances' principle in
that it is not restricted by the syntax of a programming language at all, whereas in Elrad and Francez’

formulation the principle is restricted by the syntax.

Elrad and Francez’ principle of communication closed layers [EF82] states the following:

Let d = 1 be some natural number. ¥ for all m, 1 < m < d, the programs Sy m ||+ || Snm, » 2 1, aze
partially correct w.r.t. the preconditions p,,_; and the postconditions p., and if ne communication
oceurs between S and S for 1 €4, 7 < n, i # 5, 15 m,m’ £ d, and m # m’ then, the program
(811512 5904l 1(Sn135.2i i9n.) 18 partially correct w.r.t. precondition py and postcondition
24. (Here, as usual, program S is partially correct w.r.t. precondition p and postcondition g i the
following is satisfied: if 5 is execnted in an initial state satisfying p, then g hiolds if and when 5
terminates). The programs 81, || -+ || Snms 1 < m = d, arve called layers in [EF82).

This principle can be illustrated by means of the picture below, For ease of exposition, we consider
the case of two layers. Let {p}S{q} denote the assertion that the program S is partially correct w.r.t.

precondition p and posteondition g. Elrad and Francez' prineiple asserts that if
{po}

ENER NN
{m}

and

{p:}
Sl 0 Sz - W Sia |+ | Sng

{ps}

both hold and if no communication occuzs between S;) and 5;2 for all §, j satisfying 1 <4, < n and

i # §, then
{po} o
S S 8,13 St
51,2 Sia S S
{2}

is satisfied.

The principle which underlies the correctness proof in our paper {1) and which generalizes the principle
of communication closed layers is, however, not explicitly formulated nor justified in (1) itself. (The

proof suggested there should therelore be considered incomplete.)

Iu (2) the principle underlying the reasoning in (1) is formulated using LTL. This principle is applied
in (3) to the minimum-weight spanning tree algorithm of Gallager, Humblet, and Spita, which is a
representative of the class of algorithms we ave interested in. Iu this algorithm following features

acoars

o Tasks performed by groups of nodes in the network ¢an be split up into s number of subtasks as if
they are performed one after another from a logical point of view, although from an operational

point of view they are performed concurrently.

Example:

This feature can be illustrated by the program below which describes the PIF-protocol in case
the underlying network constitutes a tree. (This restriction is imposed in order to keep the
presentation as simple as possible.) Recall that the PIF.protocol solves the following task:
All nodes in a finite, connected, and undirected network are provided with some value initially
recorded by a certain node k, and node % is informed that all nodes in the network have recorded
this value. Furthermore, recall that this task can be split up into two subtasks as if they are
performed sequentialty, the first one supplying all nodes in the network with the value to be
propagated, and the second one reporting that all nodes have indeod received this value.

In the program below, boxes labeled AT indicate which operations of node { are associated with
the n'® subtask (71:1,2). Obgerve that boxes do not necessarily correspond to the hody of a
“responge™. (In general, such boxes are the outcome of a semantic analysis and not of a syntactic

one.} Note that during the first subtask a directed tree is unwound. This tree is used by the

nodes during the second subtask in order to trace their path back to node k in order to inform

k that they have recorded the value which has been propagated.

loop executed by node k (the root) loop sresnted by node i+ & (a non-reot)
response to weceipt of infofu) response to Toceipt of info(tr)on adge
begin begin
paly =1 Al ol =1 inbranch;:=C; N;{C):=true; at
for all edges ¢ ¢ By & for nll odges ¢ € B, A g 3 inbranch; *
do send info(valy) on edge ¢ od do send info(val;) on edge ¢ od;
ond i
if ¥C' ¢ B, N:i{(C)
then zend ack(val;} on inbranch;
£i
end
response to receipt of ack(y) on edge C rezponse to receipt of ack(u)on edge C'| 40
Begin bagin 1
N ()= true; : Ni(C):= true;
12 WG € By Ny (C) A 14 YE € B.N,(C)
then doneyi=true theon send ack{val;) on inbranch;
fi £i
and end

Notation used: E; denotes the set of edpes adjacent to node i. Variable val; is used to record the
argument of the info-message received by node ¢ Ni() records whether any message has been received
along edge C, € ¢ F;. For aode { different from k, variable inbranch; records the identification of the
edge along which the info-message has been received. (These variables are used for unwinding the directed
tree.) Variable done, records whether the whole task has been completed. Each node maintains itg own
message queuc for buffering received messages.

Initially, node k's message queue contains one info-message and the message queues of all other nodes
ate empty. Furthermore initially —done), holds for node , and ~N:(C) for all nodes i and edges €' € E;.
The initial values of the other vaxiables are irrelevant.

Segall's PIF-protocol

From a logical point of view it seems a5 if first A! programs are executed (solving the first
subtask) and thereafter only A% programs (solving the second subtask). Operationally, however,
this kind of sequentialization is not necessarily true. This is exemplified below. Consider the

following, tree:

In general, obwviously, the nodes 4 and § will not be supplied simultanecusly with the value heing
propagated. There exist computation sequences of the program above for which the following is
satisfied:

Node § receives the value that is being propagated and records this value (node 7 exeountes the
program segment labeled A!).

Then node i enters the reporting phase (node { executes the program segment labeled 43).
Thereafter, node j receives and records the message that is being propagated (node § cxecutes
the program segment labeled A})

This example illustrates that the program segment A} is executed after node { has executed the
segiment A?, i.e., node { participates in the second subtask before node j participates in the first

subtask.

Now, the principle formulated in (2) justifies that one ¢an reason about the P1F-protocol as if
first all A’ programs are executed and thereafter only A* programs.

The next feature occurring in the distributed minimum-weight spanning tree algorithm of Gal-
lager, Humblet, and Spira is the following (a principle for reasoning about this feature is formo-

lated n {3)):
Egpanding groups of processes perform a certain task repeatedly, whercas different fgroups of
nodes perform their task concurrently w.r.t. another.

E.g-, the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and Spira

can be described as follows:

First a certain collection of groups of nodes performs some task concurrently w.r.t. another.
The task of each such group consists of determining the minimum-weight outgoing adjacent
edpe for any node in this group. Thereafter, a frogment, ie., some subtree of the minimum-
welght spanning tree to be constructed, which has determined its minimum-weight outgoing cdge,
attempts to combine with the fragment at the other end of this edge. The task of accomplishing
this cornbination is then performed by all nodes in these two fragments. Subsequently, the
enlarged frapment performs the task of determining itz mininum-weight outgoing cdge. This

process is repeated until the minimum-weight spanning tree of the network has been constructed.

This feature is suggested in the following picture:

1 1 S ol
fe, ey H [Pé] H 7]
2 2
| PChUG:z | H ; PGauGa ‘ “

[P&LUG?U"'UGM

Notation used: Foreach {=1,-- -, P§ denotes a distributed program performed by nodes in a collection
. The superscripts are used only in order to distinguish the tssks associated with such programa; r in
the picture denotes sote natuxal number, » = 1,

Initially, the collection consisting of Gy, ---, Gy, for some m = I is a partitioning of the set of all nodes
in the network,

A task performmed by one group of processes can be disturbed temporarily doe to interference

with the task of another group,

In the distributed minimum-weight spanning tree algorithin of Gallager, Humblet, and $pira a
fragment will, in order to determine its minimurn-weight outgoing edge, send messages to nodes
outside this fragment, This implies that a certain node in some group & of nodes performing
some task can receive messages from nodes outside this group which are not associated with the
task in which the node itself participates. Consequently, when a node in &' receives a message
not associated with the task in which its participates and 1t processes this message the task will

be disturbed. After processing this message the node will continue its participation in the task.

Depicted in a picture, we have
1

Fe | ——|__F

Notation used: 7% and Py are distributed programs performed by nodes in group & and G' respec-
tively, These programs are executed concurrently; Bach of them deseribes how to soive s certain task.
The arvow indicates the tranzmission of a message.

A principle which copes with the latter feature is formulated in (3). Tn essence, interference
freedom of specifications has to be proved in order to ensure that the reasoning about the two

tasks according to the principle, described in (2), is not invalidated,

Now, suppose that two distributed programs have been designed that solve two subtasks of & certain
task as if they are performed sequentially, Assume that each of the subtasks and the task are deseribed
hy mesns of a precondition and a posteondition. In order to design a program that solves the whole
task it is required to prove that for cach of the programs the following holds.

For cach node j that participates in the subtask, there exist for the program associated with this

subtask when it is executed in an initial state satisfying the subtask’s precondition:

An inyarignt I; which holds during execution of the program. These invariants have been
incorporated in order to deal with the above-mentioned kind of interference. The invariant [;
can be thought of as the disjunction of all predicates assigned to control points of the program
when reasoning about this program in an Owicki-Gries-like proof system [QOGT6].

A termination condition T;. T; holds when and if node j has completed its participation in the

Program.

In addition, it must be proved that upon termination of the propram the subtask's postcondition
associated with thiz program is established, provided that execution has been started in a state

satisfying the subtask’s precondition.

A program which solves the whole task consists of all operations oceurring in any of the programs
solving the subtasks. This holds because a node participates in the whole task iff it participates in

one of the subtasks. Furthermore, the following verification conditions must be shown to hold:

- A node can only participate In one subtask at a time.
If a node actually participates in both subtasks, then it participates in the first subtask before

it participates in the second suhtask.

10

The first verification condition above ensures that there does not oceur any communication hetween
program segiments associated with distinct subtasks, It also states that two internal operations (, Lo,
aperations not involving any communication), which ¢an be performed by the same node and which
are associated with distinet subtasks cannot be enabled simultaneously. The latter requizement is not
needed in case of Elrad and Francez’ principle, since it follows from the syntactic sttueture of the
whole program. In case of their principle, the second verification condition above also follows from

their condition about communication and from the syntactic structure of the whole program.

As mentioned above, the principle formulated in (2) is & generalization of the principle of communi-
cation closed layers,

The principle formulated in (2) alse generalizes each of the principles formulated by Chou and Gafni
ICGA&S), by Fix and Francez [FF30] and by Back and Sere [BS89], since, amongst others, none of these

is able to cope with the above-mentioned kind of interference.

The principle formulated in (2) is applicable to the spanning tree algerithm of Gallager, Humblet, and
Spira. This is shown in (3). As a consequence of the strategy adopted there, a source of failure of the
algorithm has been detected and corrected. Also, two kinds of slight optimizations w.r.t. the number

of messages transmitted during execution of the algorithm have been found,

At this stage the question might be asked why we did not apply a conventional proof system, such
as desctibed in, e.g, [AFR80, OGT76] or (ZRESS|, to prove the correctness of this algorithm. This
question s answered below.

Apart from the algorithn reported in (GHS83], there exists a large number of algorithms [H83, MS79,
582, 583] of which the underlying structuring principle is inherently semantic. Despite the fact thas
the designers of such (complex) algorithms are able to give a ¢lear and intuitive explanation about their
correctness, it is believed that any correctness proof given in a conventional formalism can capture
this intuition in an artificial way only. This implies that any such formal proof of a non-toy program
will not contribute more to one’s understanding of the designer’s argument. The principle formulated

n (2) is able t¢ mimic the designer’s argument in a straightforward manner, indeed.

In (4), the last article of this thesis, the foundations of LTL are investigated, This is done by studying
the notion of sizongly-fair termination of programs. In order to define this notion, the notion of a

strongly-fair computation sequence is introduced: a computation sequence of a program is strongly-

11

fair if every operation ocourring in the program which is infinitely often ¢nabled in this sequence is
infinitely often chosen in that sequence. Now, a program that is executed in an initial state satisfying
some precondition p terminates strongly-fair, if every strongly-fair computation sequence started in a
state for which p holds i finite.

E.g., Dijkstra’s random number generator, see [D76]), #b — m= xt1 O b -+ b= false] always

terminates strongly-fair, This holds becanse of the following:

= 'The program immediately terminates when exeeuted in a state satisfying —b.
- Any infinite computation sequence of the program started in a state satisfying b is not strongly-
falr, since this implics that the operation “b — bi— false” ig infinitely often enabled and never

Lakeas,

Strongly-fair termination of a program is an cxample of an “eventually”-property when the above
restrictions are kmposed on computation sequences of the program. Manna and Prmeli [MP33] have
presented a proof principle that allows one to establish such properties. They propose the following
strategy to prove that for a program 5. a state-property « cventually holds (a state-property is a

property of program states cxpressible withont any temporal operators):

{A) Amaongst the concurrent processes exccuting S a distinetion is made between those processes
whose execution brings 1 always nearer (in [MP33] such processes are called helpful processes),
and those processes that do not, i.e., whose execution does not bring satisfaction of ¥ any nearer

(such processes are called steady processes in Manna and Poueli’s terminology).

(B} It must be shown that, for every computation sequence of the program 5, if a helptul process is
systematically avoided, then (Bl) or (B2) below is satisfied.
(B1) The sequence is infinite and does not satisfy the above fairness constraint, i.e., it is unfair.

(B2) Due to some choice of a steady process, satisfaction of ¥ is brought nearer or even i is

established.
In case (B1) the computalion sequence is unfair, since infinitely often a helpful process is enabled
but only finitely many times taken. In case (B2) v has become less far away from satisfaction.
Upon closer inspection, part (B) above reguires application of the same strategy to a syntactically

simpler program than 5: remove all helpful processes from §, and prove that eventually one of the

12

following holds: (i) v, (ii}) getting nearer to ¥, or (iii) a helpful process is enabled.
The technical formulation of Manna and Faueli's principle is shown below. There the following notions

have been nsed, see [MP83):
Let $= 5,1+ || §, be some program, n = 1. Let ¢ and ¢' be state-formulae,

- 5 leads from ¢ io §' when every transition in %; establishes ¢ provided ¢ is satisfied before
(f=1,1,m).
& leads from ¢ to ¢’ when for all 4, 1 = i < n, 5; leads from ¢ to ¢

The technical formulation of the above-mentioned strategy is as follows:

Let AM=(A,2) be a well-founded structure. Let ¢(a) be a parametrized state-formula over A, where
@ intuitively expresses how far away establishing 4 is. Let 4 —{1,...,n} be a helpfulness function

identifying for cack o € A the helpful process 5y, for states satisfying p(a)-

F & leads from ge) to [y v (38 < a. ¢(3)]]
F Sniay leads from @¢(a) to [V (38 < a. ¢{3))]

F@la) = O v (36 < a. #(8)) v Enabled(8x4)))
F (Suspla)) = Oy

The sourdness proof of this principle requires induection over well-founded sets. On the other hand,
this principle is (semantically) complete, i.e., if <+ holds, then naive set theory can be used to establish

its premises,

Manna and Pnueli, however, do not give any formalism in which one can establish the premise of their
principle. In order to supply such a formalism, in (4) a principle is considered for proving strongly-fair
termination of (sequential) nondeterministic do-loops. In this principle the same kinds of auxiliary
quantities, i.e., the well-founded structure, a ranking predicate, and a helpfulness function can be

discerned as occurring in Manna and Pnueli’s principle.

The principle investigated, which is called Orna's rule in (4), is due to Griimberg, Francez, Makowski,
and de Roever [GFMRS&1) and is as follows ([p|5[g] denotes that program & is totally correct w.r.t.
precondition p and postcondition g, i.e., whenever S is executed in an initial state satisfying p, then

5 always terminates and cach final state satisfies q):

13

Let M=(A4,2) be a well-founded structure. Let mA —(States— {true, false}) be a predicate. Let o
he a state-predicate, and let for each o € A, o not minimal (as denoted by a > 0), be given pairwise

disjoinl sets St, and [, such that 2, 3 0 and D, U St,={1, - n}k

Flrla) Aa =0 A 85]8;{30 < e wla’)] for all j & 2,
Flna) ne=0n 585030 S e n(a”)] for all j € St,
lmay A oa 00w [Dies, (b A Agep, =By} — 83 [true]
For— 3a. m(a)

B{m{a) Aa = 0) = V7, b

Br(0} = (AT ~be) A d)

Pl w (00 — 34 [3)]

Note that b; — 5; (f=1,---,n) can be interpreted as state transitions. Also note that n this principle
the assigniment a —:{(1,, 5t,) for a > (gencralizes the notion of a helpfulness function of Manns snd
Frneli’s principle. Consequently, the same kind of auxiliary quantitics are required to apply the above

two principles.

In {4) it is shown that Hitcheock and Park's monotone p-caleulus [HP 73, P6Y), based on fixed points,
augmented with constants for all recursive ordinals can serve ag an assertion language for reasoning
about strongly-fair termination of do-loops. Soundness and completencss of the principle in [GFMRA1)
are proved. In particular, the weakest precondition for strongly-fair termination of a do-loop war.t.
some posteondition is shown to be expressible in the y-caleulas.

The results shed an interesting light on LTL. Wolper [W81] has observed that not all regular expressions
can be expressed in LTL (in fact, LTL can only express a proper subset of the regular éxpressions, of.
[T81]). Obviously, the p-calculus is far more expressive than the regular expressions, Consequently, in
(4) a more expressive formalism than LTL has been used in order Lo express the auxiliary quantities
required to apply the principle above, Although it has not been proved that one actually needs an
assertion language at least as expressive a5 the p-caleulus for reasoning about strongly-fair termination
of do-loops —to my knowledge this Is still an open problem— the results in (4) suggest strongly that
one actually needs a formalism which is at least as expressive as LTL in order to formulate and verify
the premises of Manna and Pnueli’s principle mentioned above. To put it bluntly: an “cbvious”
subformabism which Manne and Prueli use in [MP83) to erpress their proof rules iv probably more

powerful than the whole of the LTL superstructure erected on top of that subformalism.

14

References

[AFRS0|

[BS89)

[CG3s]

Mg

[D76)

[EF82)

[F86]

[FF89]

IGFMRS1]

[GHS83)

[HP73]

[E83)

[M36]

[MP83)

Apt K.R., Francez N, and de Roaver W.P., A proof system for communicating sequential
processes, ACM TOPLAS, 2-3 (1980).

Back R.J.R. and Sere K,, Stepwise refinement of action systems, LNCS 375 (1989),

Chou C.T. and Gafni E., Understanding and verifying distributed algorithms using strat-
ified decompasition, Proc. of the ACM Symp. on Principles of Distr. Comp. (1058).

Chandy K.M. and Misra J., Parallel program design: a foundation, Addison-Wesley Pub-
lishing Company, Inc, (1988).

Dijkstra E.W., A discipline of programming, Prentice-Hall, Englewood Cliffs, NJ (1976),

Elrad T. and Francez N., Decomposition of distributed programs into communication

closed layers, Science of Computer programming, 2 (1882).
Franeez N., Fairness, Springer Verlag (1986).

Fix L. and Francez N., Semantics-driven decompositions for the verification of distributed

programs, manuscript (1989).

Griimberg O., Francez N., Makowsky J.A., and de Roever W.P.,, A proof rule for fair

termination of guarded commands, Proc. Symp. on Algorithmic Languages (1981).

Gallager R.T., Humblet P.A., and Spira P.M., A distributed alporithm for minimum-weight
spanning trees, ACM TOPLAS, 5-1 (1983).

Hitchcock P. and Park D., Induction mules and termination, Proc. ICALP 1, North-Hoelland
(1973).

Humblet P-A., A distributed algorithm for minimum-weight directed spanning trees, IEEE
Trans. on Comm., 31-6 (1933).

Meyer J.-J. Ch., Merging regular processes by means of fixed point theory, TCS 45, (1986).

Manna Z. and Pnueli A., Verification of eoncurrent programs: A temporal proof system,

Foundations of computer science IV, part 2, MC-tracts 159 (1983).

15

ME79]

(06 76)

[Peo|

(382
s8]

55k

[T51]

(Wa1]

[ZRFH]

{Z580]

Merlin P.M. and Segall A, A failsafe distributed routing protocol, IEEE Trans, on Comumn.,
27-9 (1979).

Owicki 8.5, and Gzies D)., An axiomatic proof technique for parallel programs, Acta In-

formatica 6 (1976) .

Park D, Fixed point induction and proofs of program properties, Machine Intelligence §

(1969),
Segall A, Decentralized maxizoum-flow algorithms, Networks 12 (1082).
Segall A, Distributed network protocols, IEEE Trans, on Inf. Theory. T729-1 (1983).

Tarski, A., A lattico-theoretical fixed point theorem and its applications, Pacific J. Math.

(5), (1955).

Thoemas W., A combinatorial approach to the theory of w-auntomata, Information and

Control 48 (1981),
Walper I, Temporat logie can be more expressive, FCS (1981).

Zwiers J., de Roever W.P., and van Ewmde Boas ., Compositionality and concurrent

networks: soundness and completeness of a proof system, LNCS 104 (1985).

Zerbib FL.B.M., and Segall A., A distributed shortest path protocol, Intemal Report EE-

395, Technion-Isracl Institute of Technology, Haifa, Tsrael (1980).
Y,

16

CHAPTER 2

® 1987 IEEE.
Reprinted, with permission, from Proceedings of the 7th International Conference on Distributed Com.-

puting Systems, Berlin, West Germmany, September 21-25, 1987, pp. 440-447.

A correctness proof of a distributed minimum-weight spanning tree algorithm
(extended abstract)

F.A. Stomp*

University of Nijmegen

Alstret

We discuss a strategy 10 reduce the complexity of conweiicss
proofs for panticular classes of distributed programs, As an
example of this steategy we sketch how a correciness proaf of
the distribtied minimum-weight spanning aee 2lgorithm of
Gallager, Humblet, and Spira |7} can be structured by first
introducing, ang amalyzing, simplifications in which certain
communications are ignered, Then these stmplifications are
Justified for the general case by proving that these
comunications do not affect the original analysis which is
based on those simplifications. This proof - a more elaboraed
version of it can be found in the full paper [24] - illustrates the
notions of communication closed layer of Elrad and Francez's
[5] and of quiescence of, e.g., Chandy and Misra's |3},

1, Iniry ion

In order to reason about distabuted programs, a nuinber of
methods have been proposed (¢.g., {1,2,12,16,22]), While
this enables an analyzer to verify that a program meets its
specification, it turns out that these methods give, in general,
7i5¢ 1o lengthy proofs for mther "sinaple” progeams, (See {20
for an overview of some of these methods and an application of
each of them to that ged of protocol-verification, the alternating
bit protocol.) This suggests that comectness proofy of lurger
distribued pro 5 are difficult to seize on. Conseguently,
the question anses, whether there exist stralegies which can
reduce the compléxity of proofs for particular classas of
distibuted prograrms,

The leitmotiv of this paper is the decomposition of the
reasoning about a distributed program inte & niumber of losely
connecred or independent arguments concerning distribued
paris of that pragram under simplifying asswaptions,
Typically, these diswibuted parts are not syntactically contained
in one process but are combinations of scantered pieces of the
text of various processes which constitute together a
semantically meaningful whole, Equally characteristic for our
approach is that we first reason in a simplified fashion about
those distributed parts, disregarding interference due 1o centnin
communications from owtside those parts, to argue later that in

* Department of Computer Stience, Toerncoiveld 1, 6525 ED
Mijmegen, The Netherlands, Elecnonic mail address:

mevax kunivv 1 tkunivv5istomp, The work of the first author
watt supported by the Netherlands Organization for the
Advancement of Pure Research (ZWO),

** Depariment of Computer Stience and Mathematies,

POB 513, 5600 MR Eindhoven, The Netherlands. Electronic
wail address: movaxleutre3iwsinwpr,

CH2439-L87/0000V0440301.00 & 1987 IEEE

19

W.P. de Roever**

University of Eindhoven

case these comnunicadons are @ken into account, our
reasoning remaing valid, or can cagily be adjusted to the "full
reality” of interaction.

The suggested r.mhniciuc is an analogon of some technigues
afready suggested in the literature, such as Lam and Shankr's
methad of projections, Martin's analysis of the tennination
behavior ot a distributed PrOgram using quicscent stales,
Chandy and Mism's method of quiescence detection,
Lamport's acgoostot thit reasoning abous &istributed programs
negd not involve the constituting parailel processes or entities to
buse one's proof upon but Should be based rather on propertics
derived from global Invarianzs, and Elrad angd Francez's
technique of comumunication clased layers. These methods are
briefly reviewed in the next section, The particular
combinations of technigues used is illustruted by skeiching »
correctness proof of the distributed minimum-weight spanning
tree algorithm of Galluger, Humbler, and Spira [71. A iore
elaborated version of this proof can be found in {21],

Lam and Shankar [14] have proposed a wchnique af
teducing the complexity of both safety and liveness propenies
of protocals. Their key observation is that protocols are, in
general, designed w pecform a number of distinet functions,

E g, in 2 communication protocol t0 achisve full-duplex dara
ransfer between two stations one can discern wo
disringuishable functions, cach one concemned with ene-way
data transfer between the twe stations. To reduce the
compleaity of proofs, Lam and Shankar's technique
decomposes such a muld-function proweot inig 3 munber of
so-called imuge-protocols. Since these 'mmg:-’ymlnco!s
perform, in general, less functions than the original one, they
are easier to analyze, In [14] it hus been proved that under
certan conditions, safety and liveness properties verified for an
image-protocol, carry over to the eriginal one. Ta our
knowledge, this method has been applicd 30 far 1o
communication protocols only (¢.g-, in [19]) and it appears that
the applicability of the method to other classes of protocols
remains open. .

Martin presents in [15] a general wehnique o show
tetmination of a diswibuted program. This technique consists of
first detiving 2 non-terminaung analogous progrum, for which
itis proved that it reaches a state in which all imermal acuvity
has ceased and all channels in the network are empty, 2
so-called quiescen state, Mext, a local termination condition
from conditions satisfied in the quiescent state is derived which
carries over to the original program. Although this technigue
reduces in some sense the complexity of a termination-proof it
does not reduce the complexity of proofs of other properties,

Maore recently, Chandy and Misrz have proposed a
technigue for the developmment of programs (see [3]). In their
view, 3 program consists of an indtial condition and a setof
aromic actions. One of the keéy features of their methodology is
that concerns about the core problem 10 be solved are separated
Erom the forms of concurrency available in the hardware (on
which the program is 1o be executed) and from the language in

which the program is to be written, Tn [3] it has been shown
that niexleling a PIOECATD d5 & 861 of statements 15 attractive,
since it allows one to develop pieces of a progriam glven anly
one invariant, independent of the other picees of that program,
“This enables one w congentrate solely at one coneern at u tine,

In 3] a globul view of the systerm under consideration is
adopted, Although a number of awhors have advocated
compositional proofs (.., in [16,22]), Lamport bay shown
that assertional methods (invelving meagoning about the global
progrinn states) are well-suited 10 repson about distribuied
programs, since they ure nof limited to the synractic
decomposition of a progeam into paratlel processes (a5
compositiona muthods are), but also apply © decompositions
which do no follow the syntuctic decomposition. Lampot bas
illustzated this in {13

Ioteresting in the field of program-verification is also the
notion of communication ehosed layers as introduged by Elei
and Francez in £5], (Subsequently, this notion las been
deepened in [8],) One of the main aspéers of communication
clased tuyers is the simplification of the amlysis of distributed
programs by, again, suggesing a devompasition of & program
consisting of paralle]l provesses which runs scross the gynede
boundaries of purallel decomposition by idemtifying groups of
gyntactc luyers in the text of those processes which
communicate exclusively whigh ¢ach other. Using CSP (9] 10

iustrate this notion, any process Py in P=(PP, is
represented ag a sequential composition 5; ;.
{i=1,..,n% d can be chosen uniformily by allowing SiJ to be an

i for some d

empty statement, For j=1,...d, LJ-EIS,JII.,.IIS“JJ is called the
M fayer of P. Layer L; is said to e communicarion elosed it0
uhder no execution of P, synchronization ocours betwgen
communi¢ation command in some siJ and a commenicarion
command in some 5y i with j2j". {In the terninology of [11,
this is r:phrascd a8 follows: for any comununication commind
in layer LJ syntactically matching with a communication
comimand in another layer, no semantical match with ever ocenr
between them,) The decomposition of P into layers Ly .. Ly is
a process P'= Ly iLy Such a decompasition is called safe if
ail the layers are communication elosed. The relevance of such
a decomposition of P is the following: let Fr=L;,..i1 be o safe
decomposivion of P into Jayers Ly, Ly Denote by

{p" S'{q’) the agsertion that §' i3 partially correct worr. the
precondition p' and the posicondition ¢, e, if §' is exccuted
in an initial state satisfying p’and 5' tereinates, then the final
state satisfies ¢ Then

Ipplty oy)ead Py g 1 Lgleg)

{p P,

is sound, and constiutes a derived proof rule in the system of
[1]. Fhus, under a suitable decomposition of P into tayers, it
suffices to verify the comectness of cach layer first, and then
establish the correctness of P by applying the above rule. In
case comMnUnication 13 Asynchronous, a safe decomposition is
one in which sending and processing a message (conuined in o
message quetie) tukes place in the same Liyer. Observe that if

18y .. M8y 51 is a tayer of u precess [PyHLUIP,], then 5; is
syntactically contained in P, for i=1,... n. One of the main

contibudons of this paper is a semantical generalization of the
nogon of communication closed layers,

In this paper, the distributed minimum-weight spanning e
algonthm of Guilager, Hurnbler, and Spira | 7] serves as &n
example o illustmate how a correetness proof of o distibuted
program can be simplified by first introducing an abswraction
from operationa] reasoning that certain communications cun be
ignored (at this siage of the proof). Ty express syntactically
that certain communications ar¢ ignored, we replace the
send-actions corresponding to those communicarions by skip
in the program text. To simmplify the reasoning, also a number
of hoolean conditions will be replaced by a constant boolean
condition, Le., cither hy true or by false. As we can apply
Martin's technigie [15] to analyze e wemingrion hehavior of 2
program, it follows that our techoique atso illustrates a
pencralization of the one pregented in [15). Secondly, this
abstraction is used 10 decompose the program {whose
execution 15 thug simplified) into a number of conumunication
closed layers, whose existience would not have been justified
without this absteagtion. Thirdly, the progran thug sunplified i
verified. Finglly, our abstraction {rom operational reasoning is
Justificd by demonstrating that the above assumptions can be
eliminated, indeed, withoyt invaliduting our earlier proofs,
Since the notions of uicseence and of conununication closed
layer play & rather significant role i thes paper, it follows that
we have put together & number of ingredients derived from
soime of the methods discpssed in the previous section. Also,
we have chosen to adopt Lamport's global view of a system,

Next, we summarize the main ¢ontribuotions of this paper.

(a) The notion of (communication closed) layers has been
extended to the case of agynchronous comumunication.

(b) Application - to our knowledge for the first time - of
(communication closed) layers in the field of protocol
verification.

() The technigue described in [15] has been generalized. Thus
our whnique does not only reduce the complexity of a
termination-proof; it also enables an analyzer of such
programs to reduce the complexity of other propertics of
them.

{d) Aithough no safe decomposition can be found for the
program § embodying Gallager's algorithm, yet such &
decomposition can be obtained after applying a switable
ahstraction of the kind discussed above

(e} In spite of the clear informal description in [7), it is far fron
being ohvious that the formal description of the algerithm,
i.e., the program § captures indeed these informal ideas,
More precisely, the correcingss of § has nat been proved in
{7], and there are a number of statements in 3, such as
conditionals, whose role has not been explained at allin tha
paper. E.g., consider the test whether a node should
awaken, or whether a node should reject an edge in (7], In
the full paper [21], we have proved 5's comrectness. Also,
we hive shown there that the statements as mentioned abov
are of vital importance for its comrectness. Morgover, we
have given a formal justificatdon of the {informal) Teasoning
in [7] and a slight optimization of that alporithm.

{d) and {c) above also motivaes the choice of Gallager's
algorithm to ilusmate our verification technique,

The remainder of vhis paper is organized as follows. In chapter
2, we briefly review a number of properties known from
graph-theory, that are £5sential to establish the correciness of
CGallager's algorithm. In that chapler we also deserite the
skeleron of this algorthm, Tn chapter 3, we distuss the basic
feawres of Gallager's algorithm. In that chapter, we ulso
outling how §'s correctness has been estublished in [21], and
illustrate a decomposition of 8 o reduce the complexity of suc

a correctness proof, (Herm § denotes the program embaodying
Gallager's algorithm.) This decomposition illustrates o
semantcal generalization of Elrad and Francez's notion of
communication closed layer [5]; the proof ilustrazes a
generalization of Martin's technique [15]. Finally, chaper 4
contains the conclusion.

2 Preliminaries

We assume the reader 1o be familiar with the elementary
definitions and properties of graphs, trees, paths, cycles, and
30 Forth, which ¢an be found in [6]. In particular, for graphs
(V',E) and {V.E). (V\E') is 2 subgraph of (V,E), dengted hy
(VENE (V.E) ff VEV and BB If (V' E) S (V.E)
holds and moreaver (V' E") is a tree, then (V' E") is called a
subtiee of (V,E). In the first section of this chapter, we will
formulats 1 number of properties - well-known from graph
theory - that are essential io establish the correctness of
Gallager's algorithm. Because of the space limitations Wheir
proofs have been omitted. Therealter, the skeleton for
Gallager's algorithm is introduced and the model of
computation is described.

Throughout this paper, (V E) denotes & finite, undiregted,
and connected graph, where V i3 a set of nodes, and E 15 a set

of edpes, Fori & V., we denote the set of edges adjacent o i by
E;. Simnilarly, the set of edges adjacent 1o ijs V is denoted by

E; ; We assume each edge ee E has some weight wig)=0
associated with ir, such that different cdges have different
weights, The agsumption that different edges have different
waights implies that one cun identify edpes by their weights.
Although one could relax this assumplion semewhat, it is
crucial for the eorecmess of Gallager's algorithm,

At the basis of Gallager's algorithin are the existence and the
unigueness of @ minimum-weight spanning tree of any (V.E).

Theorem 2.1
Let w;E—R™ be a funglion assigning weights to edges of

(V.E), where R* denotes the st of all real nunbers greaer
than 0. (w iz also ceferred 0 A% the weight-function of the
graph (V,B).) Assutne thag w is an injection. Then there exists
1 unigue minimuom-weight spanning tree of (v E). (1

Given some (V,E) and an injective w as above, theorsin 2.1
ensures the existence of A unigque mininum-weight spanning
tree T. Throughout this paper, T always refers to this spanning
tree of (V.E). A (naive) method 10 obtain this treg is the
following: gencrate all spanning oees of (V,E) and detenmine
the one with the minimum-weight among them. This reguires 2
SOaEEY to generate the spanning wees of (V,E). Another
approach is suggested by theoremn 2.2 below. Before
formuladng this theorem, we first introduce the notion of a
fragment of T, and the noucn of an cutgoing cdge of 2
fragment of T,

Definition 2.1

Given (V.E} and w a3 above, Denote by T the
minimum-weight spanning mee of (V,E).

(a) A fragment of T is any non-empty subtres of T,

(byLet T'=(V'E") be 2 fragment of T. An edge e E is said w
be an cutgeing edge of T'iff one of the nodes adjucent o € is
in V" and the other one is not, Consequently, edge e is an

outgoing edge of T iff (i V'aje Viviie Viaje V') holds,

where § and j are nodes satisfying ee By ;. (]

We then have the folipwing

Theorem 2.2
Let To=(V | Ep), k=1.2, be fragments of T,

(a) Assutiw that ee E is the minimum-weight outgoing edge of
Ty and that e i adjacent to Ty (i.#., adjacent to some node in

To). Then T]=(V|UV2,EluE2u{c}) ig a fragment of T, 1o,
(b) T=T iff there does not exist an outgoing edge of T, {1

A large number of alporithms (e g, [4,7.23,11]) have been
suggested by theorem 2.2, Using this principle, one starts with
the trivial fragments of T consisting of one node and no edges,
To enlarge fragnients, ong or more fragments find their
minimum-weight outpoing edpe, if any. When (and if) sueh on
edge has been found, the fragrients on both sides of this edge
may then be combined into one ag described in theotem 2.2
‘This strategy ensures that fragments are constructed indeed. I
alser describes how fiagments are enlarged. If. on the other
hand, a fragment has no outgoing cdges, then theorem 2.2
ensuras that the frgment is the minimum-weight spanning mee
of the graph.

The algorituns mentioned above differ in how and when
fragments arc enfarged, E.g., the algorithm reponed in |4,23|
starts with a single node as a fragment and gradually enlarges
this frag lzjy T ding the mini -weight outgoing edge
and the node adjacent to this edge, until the minimum-weight
spuniting tree T has been constructed. As such, eonstructing T
is restricted to u rather sirong requirement, not wking into
account that many fregments could be combined into lirger
ones asynchronously from ¢ach other. In fact, this algorithm is
inherently seyuential. The elgorithm reported in {11, however,
starts with all fragments consisting of one node and no edges,
and combines fragmients intg larger ones if they have the same
minimum-wtighl outgoing edpe. Thus, different fragmients
could be combined asynchwonously from each other. Yet,
fragmentg combine onaly, if they have the same minimum-
weight outguing edge.

Gallager's algonthin | 7] starts with alf fragments consisting of
one node and no edpes, Combining fragments into targer ones
depends on their so-called levels. More precisety, fragments
comsisting of & single node are detined to be at levet 0, Next,
suppose that F is a fragment at level L with minimine-weight
outgoing edge €. Let F' denote the fragment, say at level L', a
the other cng of e. If L=L' and & i5 F' 's minimum-weight
oulgaoing edpe, too, then they are cormbined into & lurger
fragment at fevel L+ l(sL'+1). If LeL', then the fragments F
and F' are combined into one at level L In all other cases, F
has o wait until oné of the Lwe possibilhi:ﬁ described above,
ocours.

Above, we described the skeleton for Gullager's algorithm.
It can be shown that the delay introduced in the skeleton
(, hence in the algorithm,) does not lead 10 a deadlock, i, if a
fragment waits for one of the conditions to combine with an
other fragment inte a larger one, then one of these conditions
shall eventuwally occur,

Thus, in Gallager's algorithm many fragments can be
combined into larger ones asynchronousty from each other.
Moreover tweo fnigments may combine into a larger one
tegardiess of whether they have identical minimum-weight
outgaing cdges,

Therefore, compared with the other algorithms mentioned

21

before, a "faster” algorithin has been yielded. Galiager's
algorithm 15 a distributed one. Since thene exist no global
tables, muessages have 10 be sent over edges o determi
minimum-weight outgoing edge of a fragment, Thug, ifa
some paint during the algorithm frgment T has been
constucted, each node in ¥ should start searching for the
minimn-weight qutgeing adigcent edge by seading s
Thercafter, cooperation must wke place between all nodes in F
to determine the minimuwm-weight outgoing vdue of Fiself.
Observe that in order to determmine whether an adjacent edpe &
of some node in F ig actually an outgoing one of F it seflices
Lo determine whether the nade at the vther ¢nd of e helongs o
F, oo, Clearly, this is a difficult 1k, since the only way o
find ot whether two nodes belong w the same fragiment is by
means of sending messages. Fn Gallagers algoridim, nodes
send go-called Test-messages on edges when searching for the
minimum-weight outgoing edpes. Without additionat
informarion, howeaver, it is impogsible o delermine whether
two neighbors belong 1w the same fragrnent. Thus, when nodes
in 4 fragment start searching for their minimum-weiglt
outgeing edge, they are all provided with a rere of the
fragment. This nume enabes adjacent nodes to determine
whetiier they belong (o the same fragment. Thus, when i node
transmits a Test-message, this message also carries the nauae of
ity fragment a3 an argument. The receiver of the messaye
infortns the sender whether they have the same nurme, 1f 50, 1he
edge connects two nodes 1o the same fragroent otherwise the
nodes adjacent to that edge belong w the different fragments.
Although this reasaning might suggest thar it solves the
problem of determining whether edges are ouigoing, i does

not, The reagon is that a node receivieg a Test-wessage might
have another natne than the sender of the message, while both
belong to the same fragment. This possibility oceurs, if the
weceiver of the Tes-message has not yet received the pew name
of its fragment. In [7], each Tes-message carries an additional
arpument - the level of its sender's fragment - to avoid such
undesired situdtions, 1.2, situations in which an edge would
have gor the situs of outgoing, while it is not Inroducing the
levels has an other advantage, o, wit,, it reduces the number
of messages required to construét the minimum-weight
spanning ree T (see 171, In the next chapter, we will describe
Gallager's algorithm in some more detail,

In the remainder of this chapter we describe our mode] of
compuiation. This is done rather informally, The point of
depaniure is a computer network (V,E), where V 15 a (finite) st
of computing units, also referred 10 25 nodes, and where Eisa
(finite) st of undirected communication channels, also referred
10 a8 edges. In the remainder of this paper, we assume that e
nerwork has a fixed topology. (The reader interested in
afgorithms that cope with failures and additions of cdges or
nodes, is referred to e.p., [17)), Additionally, we assume that
the network is connected, and that each channcl in the network
connects exactly twe distinet nodes. The later agsumption is
important for the comectness of Gallager's algorithm,
Consequently, such a computer network can be viewed a5 a
finite, undirected, and connected graph.

The nodes in the network are assumed to possess cerluin
memory- and computation capability, and to be able 10
communicate via messages with their neighbors. Note that each
node is able to wansinit and reccive messages on any channel
adjacent to that node, since the channels are undirected.
Messages transrutied bﬁ aotme node o0 4 channel armive within
a finite, (but unpredictable) time-duration, in sequence,
errof-free, and withom duplication at the other gnd of the
c¢hannel.

“The algorithm presented i the next chapter is distribuled in
the sense that no centra) [ables are required and that there is 0o

22

global knowledge of the opology, Baell nude "knows™ only (s
adjacent channels and their weights. Eseh made 1s responsible
for updating it5 own, i.e., local, tables and variubles, The
alporithm is such that all nodes obey the same local algorithm,
Areach nedde § eV, there exists a program 8; w perform is logal
afgorithm. Yariables oeeurdng in 5; ¢ assumcd (o be
subscripted by i If ho confugion can oceur, then we omit thess
sahseripts.

Transmitting a message M on an edge ¢ can he achieved by
cxceuting a stalement "send M on edge e, Bach node maintaing
a message-queue. Lipon receipt of a message. it is stamped
wilh an identification of the edge on which iz has been received,
Each message-queue is supposed to work on a FEFO-basis, [fa
node's gueue is non-empty, then the front message may be
removed from its queue and sither processed, or, as we will
see, placed at the ond of the quete, waiting for other events o
occur. We assume that each queue’s capacity i lacge enough 1o
buffer ail received messages. Tt is not difficule to dedve a
minimum size, such that each queus is able (o buffer all
recedved messitges. This 13 not the subjesn of this paper,
however.

In the sequel, we vse the notation quene; to denoe i's

messape-gueae (ie V. Also, we adept the convention to denote
¢'s contents of messages incoming to i by contents;(¢) (ig V,

ce B, Thus, for ie V, ee E;, contents;(e) denotes the sequenve

of messages that has been transmived by the other node
adfacent to ¢, which has not yet been received by i

We nex1 fix some network {V.E) as described above,
together with an injective weight-function wE—R*, One

might view the weights wis), ec E, a5 the cost of angmitting a
message on edpe e,

3, A specification and an alzodthm

In chapter 2, we have discussed the skeleon for Gallager's
algorithm. In this chapter we are going to refine this skeleton
somewhat, The ultimate goat is, of course, to show that
Gallager's algorithm meets its specification, Therefore, we
formulate a specification for a (disiributed) program 5 thit
embodies the algotithm, In order 10 prove §'s total cormectness,
ie., if § is exccuted in an inidal state satisfying some
precondition, then § always wrminates and in the final state the
minimun-wiight spanning tree T of (V,E) has been
congtructed, it suffices to show that each fragment finds its
minimum-weight outgoing edge indeed and that fragments
combine as described in theorem 2.2. This 18 ¢stablished by
induction cn the level of a fragment (sce {21]).

MNow, a corréetness proof of any complex distributed
program should somchow be structured. B is convenient to
structure the proofs reflecting the considerations of the
(algorithm- design. This observation has lead 1o decompose the
program 5 embodying Gallager's algorithm into layers,
therehy enabling the proof strategy described in chapter 1. One
of the main advantages of this siwategy is that proofs can be
given, concentrating, on one part of the program-at a time. As
an example of this, we mention an algorithm which is not
identical to Gallager's algonithm, but captures the most
essential features of Gallager's algorithm,

In the previous chapter we have discussed she skelewon for
Gallager's algorithm, There we have also outlined the need for
fragment's names, With this in mind, Gallage:'s algorithm can
next be described as follows:

{a) A fragment at level O, te., a fragmemt consisting of one
node only, finds its minimum-weight ouigoing edge nccording
to its local information (, since any adjacent edge of such a
node is an outgoing one). After finding this edge o
Connect-mesgage is ransmiued on this edge. This message
serves as a request of the fragment to combine with the
fragrent at the other end of that edge, This pan of the program
is performed by node i when executing 5,) in program 51

helow.
(b) (i) If two fragments, F and F' have found that they are at
the sarne fevel L and that they have the same
chinkmut-weight outgoing edge, then they are combined
inte one at level L+, Each node in this newly formed
fragment is then provided with a name and with the new
level of this fragment. Node | participates in this part of the
algorithm when sxecuting Si.:l in the program 51 balow,
(ii) After receiving this name and level, the node storts
searching for jis minimum-weiyht outgoing adjacent edge,
if any, If the nodes have ended this search, they should atl
cooperate tc determine the edge with the least weight
amongst all outpoing ones, if any. If there are no
outgoing edges, then the algorubm wermingies, since the
miniter-weight spanning tres has been constructed (see
theorem 2.2),
Node i participates in this part of the algorithni when
executing §; 4 in 51, Observe that 8, 4 is not
symactically comained in the program executed by node i,
Yet, we have shown in {211 that the dgcompusi(iun i3
ilfustrated in the program 81 is semanticully meaningful.
We have been abie to prove that this decompasition
induces Jayers which are communication closed after a
number of simplifying assumptions. In the discussion aftee
the prograe 51 below, we comument oo these assinptions
and their impact on the communication closedness of the
layers.
(ii1) If the minimum-weight ouigoing edge of the fragment
has besn found in ¢ii) above, then the node in the frugment
adjacent w this edge will be informed 10 send some
Connect-message on this nd%c. ‘This message serves s a
request to combine with the fragment at te oder end of
this edge. Node t participates in this part of the algoricthm
when executing 5; 4 in 51,
() If n fragment F at level L has found its minimum-weipht
outgoing edpe and the fragment F 21 the other end of this wlpe
i5 ar level L' with L'=L, then F is immediately absorbed by B
The new fragiant is at fevel L. This part of the algorithm has
aot been incoorpored in $1 balow. In fact, these combinutions
ensure the progress in the algorithm., i, they ensure that the
algorithm is deadlock-free.
() If a fragment F has found i sminimum- weight outgoing
edge © and none of the possibilities above Is applicable, then F
has 1o wait for combining with the fragment F ar the other end
of ¢. In fact, this can occur in Gallaget's algorithm only, if F
and P are at the same level and the following holds: F has not
found its minimum-weight cuigoing edge yet, or F'hasa
minimum-weight outgoing edge other than &.

With (V,E) and an injective weight-function wiE=R* as
before, let T denote the graph's minimum-weight spanning tree
(existing by thegremn 2.1).

To give a specification for 8, the program embodying
Ciallager's atgorithm, we note that each node maintaing itg own
variables to perform its pant of §. One vartable, sn;, records the
{node=)sttus of node i, Each node can be in one of the
following states:

- sleeping, if it is not participating in the algorithm (yet),

- find, while it is pamcipating in a fragrent's search for

23

determining the minimum-weight cutgoing edge of the
fragment,

- found, in all other cases,

Initially, ¢ach node in the network is in the sleeping state, i,
no node participates in the algorithm,

Each node of the network also records the status of its adjacent
edges, marking an adjicent edpe as a

- branch, if the node has determined that the edge is in T,

- rejected, if the bode has determined that the edge is notin T,
or

- basic, in all other cases, i.c., if the node hag not yer
determined whether that edge 15 in T.

Each node i € V maintains a variable 2,2 to record the status
of edge & (¢€ E;). We assume thar initially each node has
marked its adiacent ¢dges as basic, i.e., we assume that
initially Wie V Wee E,, s¢;(¢)=basic holds.

Comsequently, ':‘lniu'ally no node pasticipates in the algorithm,
um:lr ¢ach node is "unaware” whether an adiscent edge belongs
w .

Recull that queue; denotes i's message-queus, and that
contents;(e) denaies €3 contents of messages incoming o
(i€ V.o L), The discussion above suggests that we must
prave that the specification [plS[g] holds, where
p=p; A Py and q=4) A 4, are defined by
py=Yie V Veg E;. (sm=slecping A se(c)abasic),
p=Yie V Vee E;. (queue=< A contents;(e)=<>),
ETIEV. (sni-found ~ (V. fee Ejlse(e)=branch |)=T), and
qy=P3, With § and T as defmed above.

Here [p]51q] holds iff the following is satisfied: if execution of
8 is starjed in @ state sagsfying p, then § always tenninates in L
state satisfying g (total correctness), Consequently, the
difference berween {p)3{q} and |p]3[q] is thu te lauer
specificaton implies thac the program S always terrninatss when
started in a state satisfying p.

Observe, however, that we can be more precive about the
predicate g thit moust hold upon tenmination of §. Intuitively, if
3 E-,_,-. and s¢y(e)=branch holds upon termination of 3, then
this implics thar e is a edge of T (i,j& V). Since T is an
wndirected tree, ssi(e)=branch must hold then, 0o, Also, upon

termihation of 5, each node should have determined, whether
an adjacent edge is in T. Consequently, upon termingtion of 3,

we require thot sei{clbasic holds for all es E;.

These observations lead to the specification |p|5q'] with
qEgavie V Vee B, [(se;(e)mbasic)n

AV jEVY Ve Ei,j- Sei(c)HSCj(c)].
whete p, 8, and g are as defined above.

Next, observe that § can be obatned rather easily if the
network consists of one node only. Consequently, in the
remainder of this paper we assume that Y122 holds.

A node stants participating in the algorithm, when one of the
following cocurs: '
- it responds to some command from a higher level procedure
1o initate the atgorithm, or

- it receives the first (aigorithm) messape wangmitled by some
nude in the graph.
A node can respond only 1o some commuand from a higher level
procedure w initiate the algorithm, if it is in the »]u.pm;. state,
Jinee the structure of such a provedure is of minor fulerest lor
the algorithm, we ignore such procedures. Tnstead, nodes in
the graph can initiate the algorthi, scoording o their loeal
information, by “awakening 5.p0nmneuuxly Mot that many
nodes can awaken spontaneously and “initiate” the algorithin
We dernand, however, that 2 node can awaken spontaneously,
only if itis in e sleeping-sue.

In (iallager's algorithm, one starts with frugnl.'_'ms of {he

form ¢ {i] 523, i V. In the algorithm, cach fragment tinds Gy
minimum-weight outgoing edge asynchronously with regand 0
ather fragments. When {and if) such an edge has been found.
the fragment atempts o combine with the fragment wt the oter
end of the edge. The nules of combining have been deseribed
earlier. The purt of the algorithm associated with how a
fragment finds #3 minimum-weight outgeing edge and how to
atteropt combining, with the fragment at the other end of that
edpe is called & phase of the fragment, In the renminder of this
chapter, we consider the phase of 2 fragment of the fonn

([1],67), and the phase of a fragment that hag been formed
from smaller ones at the same tevels with the same
minimun-weight outgoing edge.

A fragment consisting of one node only, srares its first phuse
when the node of that frapment awakens spontancously, or
when it receives the first algorithm-messuge. When a necde
awakens according to one of these possibilities, it detennines
its minimum-weight adjacent (hence, outgeing) cd&,c {from its
local table), marks this cc[gc a5 branch, and goes into the
found-state (since the minimum-weight owigoing edge of it
[ragment has been determuned), The nade then sends a
Connect-message with its level, i.6., O, on the cdpe marked as
a branch. This message serves as reguest to combing with the
fragment at the other end of that edpe 1010 a larger one. Seoding

Connect(0} by ie V also indicates the end of the first phase of o

trivial fragment of the form (i} 2) when awakening,
Hereafier, it simply waits for a response from the tragment at
the other end of the edge on which the Connectmessage has
been sent. Al the first stage of the proof in [21], we hive
ignored the actions taken by a node, or more precisely by a
fragment, when it receives such a response.

MNext, we describe the actions performed by the nodes,
when one tor possibly more of them) awakens sporancously,
and when two fragments are combined into a larger fragment.
Node i performs its first phase when cxeeuting 5, | in 51
below. Node i in a fragment formed by twe smaller ones at the
same level with identical minimum-weight outpoing edges
participates in a phase when excouting 8, 3.5, 1.8, 4 in 51
below. In the program to follow, sn denotes the node-stae, In
denotes the level of the fragment as far as "known" to that
node, and se(¢) records the status of edge ¢ adjacent to that .
frode, The initizl values of the variables se(e) and snare basic
angd sleeping, respectively; the initial values of the other
variables are irelevant. For a complete description of
Gatlager's algorithm the reader s referred to |7,

program 51 (a3 exceured by each node i V)

St
1} response to spunianecus awakening

(can only occur at a node in the sleeping-state)

execute procedure wake-up

24

2y procedure wake-up
hegin
let ¢ b the adjucent edge of minimuive-weight;
findecount:={ksele): =branch;n: =t sn: =found;
send Cupnectil)) on edge «
end

1) response to receipt of Connect{l) on edpe ¢
her.,m

if sn= slccglng then execute procedure wake-up fi
5.

if In=1
then if ssted=brunch
then =ttt 1 fr=wie)go =Nind; inbrane b=,
Tor all odpes o=
do send [nitiate(In.fnsn) on edge e
findeount=findcount+1
od;
else pluce received message on end of gueus
fi
fi
vnd
(4) response to receipt of Initiatet),f,s) on edge ¢
begin
In:=Lifn:=f:sn:=s inbranch: «e;
for all edges ¢
do send Initiate(In,fn,5n) on e’
findeount: =findcounts

od;

best-edge:=~nil;best- wiw=exeeute procedure test

end

t5) procedure st

if there are adjacent edges in state basic

then test-cdge:= minintum-weight adjacent edge in
state basic;
gend Test(Infn) on 1et-edge

;z_lse test-edge =nil.execute procedure report

1

(&) response to receipt of Test(L,f) on edpe e
begi

4]
if sn=sleeping then execute procedure wake-up fi;
il ln=l
then place received message on end of queus
if fn=f
ihen send Accept on edge e
else se(e)=rejeqted,
if test-adgese
then send Rejecton e
else ececule procedure test
fi;

else

fi
ehd

7y response to receipt of Accept un edpe ¢
begin
test-edge=nil
if wie)cbesi-edge
then best-edge: =g bestowi:=wie)
o'zjse execute procedure report
1
end

(B) response (o receipt of Reject on edpe ¢
hegin se(e) =rejected;execute procedure test end

(9} procedure report
if findeoun=0 and test-edge=nil
Itr_hen sni=found;send Repon(best-wi) on inbranch
1

(10) response to receipt of Report(w) on edge ¢

if inbrancha
then findeount:sfindoount-1;
i webest.wi then best-wesw:best-we=e [i;
execule procedure report
else if sn=find
then place received message on end of queus
else if w=hest-wy
then hatt fi

else if wibest-wt
:_hzn execute procedure changs-root
1
fi
fi
fi

t) procedure change-root
if se(best-wi)=branch
then send Change-Root on best-edpe
else send Conneci(ln) on best-edge:
se(best-edgey:=branch

12) response to receipt of Change-Rout
vxccute provedure change-root

We have already given an intuitive explunation of the parts of
Gallager's algonthm corresponding with the labeled parts in 81
as shown above, In {211 we have established the correctness of
the program § that embaodies Gallager's alpgorithm from
properties which we derived for the program 51 above, The
prmf of properties for § has been stmuctured by firsy
concentrating on the layer L =8, IS, ;. where n is the
number of nodes in the network under constderation. This
layer is concerned with zero-leve] fragments. Avthis stuge of
the proot, we have completely ignored other communications
that could affect the communication closeduess of luyer L.
Thereafter, we have shown that a fragment FF combined from
two fragments F' and B ar the same Jevel with an idemicat
minimum-weight outgoing edge finds its minimum-weight
outgoing edpe, if any, and that the program terminaies
otherwise, To do 5o, we proved properties of the layers

() L=, .S, 5,
() Ly=S, 4ll. 18, 5.

(c) L4=$l 41118, 4 (when exgonted in states satisfying a
well-chosen precondition which can be proved to be estabizhed
for the "full reality” of communication) under simplifying
ptions, These ptigns are the following: in (a), we
ignore all communications from nodes ovtside F, In (b}, the
agsumptions in (a) have 1o be relaxed somewhat; otherwise
verification does not make sense sineg in (b) nodes possibly
send Test-messages 10 nodes outside Fand could therefore
receive an Accepl as a response to that message. In (c) the
sitnplifying assumptions are identical to the one in (b), Under
these simplifications, we kave been able 1o show that the fowr
{aqyers méntioned above are commmication closed. Therefore,

25

the complexity of a proof that F finds its minimum-weight
outgoing edge, if any, and that the program terminates
otherwise is reduced indeed, We should remiark bere that in
case (b) above the complexity of proof can be reduced even
more by applying the method of projections [14), and Martin's
technique [15]. To apply Martin's tectinicque we obtain 4
simplified program by replacing tha 1ests w=best-wt in
"tesponse 10 receipt of Report(w) on edge e by false. In case
of termination of the original program, all nodes in the netwark
would have rached a quicscent state with best-wi===for all
nades i, when executing this simplified program. From
conditions satisfied in thig state we are able to prove
terminaton and a termination condition for the original
PIOgram.

Also we have shown that whenever some node k receives
Connect(]) and checks if ln, =1 holds, then such a test is
equivalent to = (Iny<1).

Thereafier, we have taken ino account al! communications
that have been ighored before when reasoning in g simplified
fashion about Gullager's algocithm, (Al that paint the
possibility that low-Tevel fragments augrpt W combine with
high-level fmgments is incorporated in 51.) The program 5 as
given in the appendix of (7) can then be obiained after some
rivial ransformations, [tis interesting o note that the
communication closedness of the liyers as we derived earlier is
destroyed when teking inte account @ communications, The
intuitive reason is the following: any node i must be able w
process a Connect(]} with leln;, no mauer what layer it
executes. Yo, afl earlier derived invariants remain valid afier
the aldirion of al! possible comemunications since they have
been chosen interference-free w i, this addirtion, or the earljer
derived properties can be essily adjusted to be valid after this
addition.

Erom the proof we alae leamed that two (slight) optimizations
are possible (w.r.t. the program given in [7}]), The first one 1s
already present in $1 above. If ewo fragments at the same level
with an identical mimmume-weight outgoing edge are combingd
into a larger one thac it is not necessary that the nodes adiascent
to that edge first exchange an Tnitiate-message as in [7). Rather,
the nodes adjucent to this edge can immediaely updue the
yelevant vartables ag shown 1 51 above, The other

optimization is the following: if a nude te V ransmirs a
Test-inessage on some edpe e, and it receives a Connect(]) with
1<l on this edge before it has acwally received a response on
that Test-message, then there is no nesd 10 wait for this
teaponse, Lo this case, 1 will always receive a Rejecr-message
afterwards. Conscquendy, it suffices for i, in this case, to
continue its search for the minimum-weight outgeing cdge
without waiting for a response. The node j at the othier end of ¢
could then as well ignore the Tast-nwessage in such a situation,
i.6., if it attempts to process a Tesi(Lf) with l<ln;, received on
an edge in state branch.

A Conclusi

We have sketched the correctness of the distributed
minimum-weight spanning tree algorithm of Gallager,
Humblet, und Spira ([7]). We have also shown that there exist
strategies b reduce the complexity of such complex correciness
proofs, Basically, this reduction is achieved by introducing a
certgin absiraction from operztional reasoning, Elrad and
Francez's communication closed layers, and Martin's and
Chandy & Misra's quiescence into the proof. (How the notion
of quigscence can been used in the proof has not been

itlustrated i this paper. For this the interested reader is retennegd
te [21).) This allows us o reason about distributed pleces of
programs under simplifying assumptions. At the final stuge of
the proof the assumptions implied by our abstractions must e
eliminated. It then merely remuing to show that propectics
derived during earlier stages of the proof are noninvalidaled (or
can eastly be adjusted), when taking in account
communications whose occurrence we onginalty ignored.
Moreover, it is interesting that this technique can e used o
analyze other dismributed prograns, such as fuilsafe rowing
algorithms {of Merfin and Segall ([17D}, sunimum path
algorithms (of Zerbib and Segall (123]3), and maximal flow
algorithms in a network (of Sepall ((181)), wo,

Future work will investigate whether this teehnique, and the
proof presented in this paper, can be extended to venfy the
comrectness of directed munimurs-weight spianing Urec
glgonthms (see e, [LO]). Another research topic in thig gkl
15 to extend the minimum-weight spanning tree algorithm of
Galtager, Hurnblet, and Spira o networks in the presence of
failures and additions of links and nodes, Le., w consider
som.g failsafe version of this algorithm. We comjecturs that ovr
analysis can be also extended to the construction of other
algorithms in this area.

Agknowledgemeng: we thank H, Partsch far a nuwber of
remarks that have led to a smoother pr\:scntalinn.
References

[1}. Apt K.R,, Frances M, de Roever W.P, A proof system

for communicadng sequentia! processes, ACM TOFLAS,

2-3, (1980,

Bochmann G.V.. Finite state descripton of

communicating protecols, Compurer Netwarks, 2(1974).

Chandy M., Misra I, An ¢xample of stepwise refinement

of disributed alporithms: guiescence detection, ACM

TOPLAS, 8-3, (1986).

Dijkstra E,, Two prolilems in connection with graphs,

Numer. Math, 1, (195%),

Llrad T., Francez N, Decomposition of distributed

programs into communicarion-closed layers, Science of

Cormputer Propramming, 2, (1982).

Even 5., Graph algorithms, Compuoter Scicnee Press, Inc

(USA), (1979,

Gallager R.G., Humblet P.A., Spira P.M., A distributed

alénri(hm for minimum-weight spanning trecs, ACM

TOPLAS, 5-1, (1983).

Gerth R T, Shrira L., On proving communicution

closedness of distributed layers, the Proceedings of the

6ith conference on Foundations of Software Technology
and Theoretical Computer Seignce, Mew Dehli, India,

(1986).

[9] Hoare C.AR., Communicating Sequential Frocesses,
Comm. ACM, 21-8 (1978).

110} Humblet P.A., A distributed algorithm for
minimumn-weight direcled spanning wees, JEEE
Transactions on Communications, 31-6, (1983).

{11} Kruskal 1.B. , On the shortest spanning subtree of a graph
and the maveling salesman problem, Prog, Am. Muth.
Soc., 7, (1956). .

{ 12] Larnport L., Specifying conqurrenr modules, ACM
TOPLAS, 5.2, (1983).

[13] Lampert L., An assertional correctness proof of a
distbuted algorithm, Science of Couputer Progranning
2-3. (1982),

[14] Lam §.5, Shankar A U, Protocol verification via
projections, [EEE Teans, on Softw. Eng., 10 4, (1989,

t2]
(3

t4
(5)

[6]
71

(8}

26

[15] Manin AL, A distnbuied path algorithm g g
correciness proof, Report Philips Rescarch Lab. (1980,
revised 1984).

j16] Misra J., Chandy K. M., Proots of netwark of processes,
LEEE Trans. on Soft. Eng, 7, (1981).

117 Merin PM., Segalt A, A failsafe distributed routing
Qrmoca], 1ERR Trans, on Conwn, 279, (19749),

| 18] Segall A, Decentratizad maximum flow prowgols,
Internal Report Technton-lsraet Enstitute of Technology,
Haifa, [seael (1980,

[19] Shankiar AU Lam §.5., An HDLC protocol specificution
and irs veritication using image prowcols, ACM Trans.
On Comp. Syst., 1-4, (1943).

24 Srorp FoA., Methods for the analysis of pratocols,
manuseript (1986),

|21} Sworap F.A,, de Rocver WP, A correctness proof of a
distributed minimum-weight spanning ree al gori thmn (full
paper), Internal Report §7-4, University of Nijmegen.

|22] Zwiers J., de Roever W P, van Emde Boas P.,
CDlnpusi(iurlulily and concurrent networks: soundness and
comple:=uess of & proof system, Proc. 12th 1CALP,
LNCS 194, Springer-VYerlag, New York (1933).

[23] Zertab F.BM,, Segall A, A distributed shongst path
protocol, Internal Repaort EE pub. no. 385, Technion-
Ismael Insthate of Technology, Haifa, Tsragl (1980),

CHAPTER 3

An extended abstract of a version of this article has been published in the Proceedings of the Srd
International Workshep on Distributed Algorithms (LNCS 392), Nice, France, September 26-28, 1989,
pp. 242-253,

Designing distributed algorithms
by means of

formal sequentially phased reasoning

F.A. Stomp* W.P. de Roever!

Abstract: Designers of network algorithms give elegant informal desetiptions of the intuition
behind their algorithms (see (GHSS3, Hug3, MS73, S¢82, SeB3, Z380)). Usually, these descrip
tions are structured as if tasks or subtasks are performed sequentially. From an operational point
of view, however, they are performed concurrently. Here, we present a design principle that for-
mally describes how to develop algorithms according to such sequentially phased explanations.
The design principle is formulated using Manna and Pnueli's linear time temporal logic [MP83).
This principle, together with Chandy and Mista’s technique [CM88] or Back and Sere’s tech-
nique [B339] for designing parallel algorithms, is applicable to large classes of algorithms, such
as those for minimum-path, connectivity, network flow, and minimum-weight spanning trees, In
particulaz, the distributed minimum-weight spanning tree alporithm of Gallager, Humblet, and

3pira [GHS83] is structured according to our principle.

"University of Nijmegen, Department of Computer Science, Toernooiveld, 6525 ED Nijmegen, The Netherfands.

¥-mail address: frankdbes. kun.nl
TEindhoven Univéssity of Technology, Department of Mathematics and Computing Science, POB 513, 5600

MB Eindhoven, The Netherlands. Email address: mevaxleutred!wsinwpr

29

1 Introduction

Designers of complex network algorithms, see, e.g., [GHS83, Hud3, M379, Se82, 383, Z380],
usnally describe their algorithms on the basis of tesks or sublasks — sometimes veferred to as
phages and subphases. Their (Informal) descriptions are struetured as if groups of nodes in the
network performn these (sub)tasks sequendially, although in reality (i.e., operationally speaking)
they ace performed concurrently. Current design methodologies (see, e.g., [CM88, BS89]) lack
an appropriste principle for formally developing such sequentially phased algorithms, In this
paper we formulate o formal design principle that captures thix sequential struclwre in network
elgorithms. 1t clotely resembles the designers’ intuitions as given by the informal descriptions
and thus preserves the natural flavor of their original explanation. Furtheérmore, this principle

can also b used to design formally new algorithms,

The sequential decomposition of a concurrently performed task into subtasks can already be
discerned in a simple broadcast protocol, viz., Segall's PIF-protocel [Se83] (cf. also [DS80] and
|F80)}. Here, the whole protocol performed by the nodes in some network can be decomposed
into two subtasks: t:he first one broadeasting some information and unwinding a directed tree,
and the second o'n,r:‘;:(‘.l‘)()r(‘.ing that the nodes have indeed received the information. Following
this pattern of sequential reasoning the distributed minimum-weight spanning tree algorithm
of Gallager, Humblet, and Spira [GHS83], hereafter referred to as Gallager’s algorithm, can
be described in essentially four subtasks, which from a logical point of view are performed
sequentially (see [SR87a, SRATH]). That algorithm disploys, however, an edditional feature: that
af “interference ™. Expﬂnding groups of nodes perform a certain Lask repeatedly, with different
groups performing their tasks concurrently w.r.t. another. Now a task performed by ome group
can be disturbed temporanly due to interference with the task of another group. Our design

principle is geared to cope naturally with this kind of interference.

In order to design a distributed program that solves a certain task which can be split up logically
into subtasks as if they are performed sequentially, we propose the following strategy:

First develop distributed programs which solve the subtasks. Methodologies for doing so are
described in [CMB8] and [BS89]. Next, combing these programs to construct one which solves

the whole task. Qur design principle describes how to accomplish this combination. (In [CMB38)]

30

there has not been given any methodological advice how to accomplish this kind of combination.
Qur technique generalizes one transformation principle described in [BS89], because it is able to
cope with repeatedly performed tasks and with temporary disturbances of the kind discussed
above.)

In essence, it Is required to prove the verificetion condilions (A) and (B) below.

(A} Prove that for each distributed program S5, solving a subtask, the following holds: There

exigts a specification for 5 consisting of, for each node 7,

(1} & precondition i and a posteondition gj;, and

(2) = pair of state-assertions (I;,7;).
I; is an invariant for the program executed by node j. Farthermore, I; is an invariant for
program S; It has been incorporated in the specification in order to deal with the above-
mentioned kind of interference, which occurs in, e.g., Gallager’s algorithm (¢f. [SRB87a,
SRA7Th)). T; expresses that node j has completed its contribution to the subtask associated

with program 5.
(B

Prove that cach node can participate in at most one subtask at a time and that all nodes

which participate in more subtasks, participate in these subtasks in the same order.

One is then ¢ntitled to conclude that the program consisting of all (atomic) actions occurring
in those programs associated with the subtasks solves the whole task as if the nodes perform
the subtasks sequentially. Astonishingly, this simple design principle underlies the development
of such complicated alporithms as Gallager’s and those deseribed in [Hu83, MS79, Se82, SeR3,
ZS80].

How can one understand the inherently sequential intuition present in this design principle for
con¢urrent computations?

Its semantic foundation les in considering computation sequences in a specific form in which all
operations associated with one subtask are performed consecutively. Although it might not be
the case at all that each computation sequence of the program solving the whole task is in this
specific form, reasoning about this pregram by means of computation seguences in this specific
form, ia correct, since any computation sequence of the program turns out to be equivalent to
one in that form. In order to define this notion of equivalence (see [L85]} the notion of an

event is needed: an event iz an occurrence of the execution of some atomic action. Now each

31

computation seguence indnces a partial ordering of its events, This partial order is a causal
relation in which all events generated at a single node are ordered according to their temporal
oceurrence in this sequence, Additionally, in an asynchronous model of computation the event
of sending a message precedes the event of receiving ity in a synchronous model these events
are ldentical, Two computation sequenges are equivalent iff their first states are identical and
if they define the same partial order of events, In essence, equivalent comnputation seyuences
difter omly in the way events generated at different nodes are interleaved (wort, the partial
ovder defined by these sequences), Moreover, if two finite computation sequences are equivalent,
then their last states coincide. This argument justifics, ¢.g., Blrad and Francez's safe decom-
position principle [RF82] (cf. alko [[’aBR]) as demonstrated by Gerth and Shrira [(3386]. This
principle states the following: if 8y, || - || Se,m 15 partially correct wort, precondition pm
and posteondition g, (n 21, m=1....d for some natural muymber d >2) aund if no conununi-
cation ocours between 5., and S, for 1< 4,5 < n, § 7 §, 15 mom’ < d, and m £ m', then
(S Sz 8nat | 1 {8 Suat- - Sag) is partially correct w.rt. po and pg.

To reason formelly about such arpuments, Katz and Peled have proposed to use interleaving set
temporal logic [KP&7, KP88] as a formalism. Their logic allows one to reason about a program’s
lehavior by considering only particular representatives of the program’s cormputation sequences,

such as the very sequences In the specific form introduced above,

From the discussion above it follows that if in some program, solving a certain task which
van be split up logically into two subtasks as if they are performed sequentially, each node

always performs operations asse

iated with one subtask before operations associated with the
other, then the following holds: cach computation sequence of the program is equivalent to a
computation sequence, in which all operations associated with the first subtask are performed
belore all operations associated with the sccond one. This is, e.g., the case for the program
in figure 1 helow, which describes the PIF-protocol [Se33] (c¢f. [DS80, F80}), where in order to
llustrate our decomposition of a task into two subtasks in a few words, it is assumed that the
network constitutes a tree.! The nodes perform the following task: some message info(v), for a
certain argument o, initially in the message queue of node k (viewed as the root of the trec), has

to be zent to all nodes in the network, Node & has to he informed that all nodes in the network

‘A decamposition is also possible in the case of an arbitrary connected petwork.

32

have received this message indeed and that the value v has been recorded by them. The two
subtasks constituting this task have been described above and consist of a broadcasting phase
followed by a reporting pbase. In the program below (see figure 1), boxes labeled A indicate
which operations of node { are associated with the n®® subtask (r=12). Notc that the boxes
do not necessavily correspond with the body of 4 “response” (since they are the outcome of a
sernanticel analysis). Now our principle justifies that one con reason formally about this protocol
as if first A programs are ezeeuted by the nodes, and thereafler only A® programs. In appendix

IV the specific assertions I;, T}, p;, and g; for all nodes j are defined in case of the PIF-protocol.

Qur principle is a broad semantic generalization of Eltad and Frances's sofe decompoesition
principle [EF32] (¢f. also [GS86, Pa88]). Their decompositions, however, i.e., the programs
(called logers in [EF§2]} describing the subtasks, are restricted by the syntax of the whole
program; This is not true for our decompositions as has already been observed above. In contrast
with their principle, and the one described in [FF89], our principle also applies to reasoning
about repeatedly performed tasks by expanded groups of nodes, such as in, eg, Gallager's
algorithm. Methods for verifying Gallager’s algorithin appear in [R27a, SR87h, C(GG88, WLL38].
We [SR87a, SR87h| have reasoned about its correctness on the basis of (sub)tasks. In those
papers, however, the underlying proof principles have not been formulated. Neither has a
formalism for them been given. Welch, Lamport, and Lynch [WLL8S] give a correctness proof
in the context of [/O-automata, using a (partially-ordered) hierarchy of algorithms. Chou and
Gafni [CGB88] consider a simplified verston of Gallager’s algorithm, a distributed version of
Boruvka's algorithm [B26]. The problem of finding a simple proof principle for the sequentially
phased reasoning of the full version of Gallaper’s algorithm learly emerges i [CGS8], since
in the full version of that algorithm one has to cope with temporary disturbances of the kind
discussed above. In order to reason about such disturbances along the lines of [CGSE], another
principle would be required. In our case, due to the collection of assertions (I;, T;) for nodes j,

merely an interference-freedom argument for I; and T must be given,

The rest of this paper is organized as follows: in section 2, we introduce some notation and
conventions. Our design principle is formulated in section 3. For ease of exposition we have
restricted ourselves t0 synchronous communication. Section 4 contains some conclusions. Sound-

ness of the design principle is proved in appendix I. In appendix II we discuss how to formulate

33

our principle for the asynchronous cagse, Appendix I shows how to transform programs rep-
resented by lists of responses {cf. the program above) into our own nolation for representing
distributed algerithms, In Appendix TV containg a fully worked out illustration of the principle

applied to the PIT-protocol.

loap exscuted by node & (the root) loop executed by node { # & (glnan—root)
rasponsa to Ieceipt of infu(v) response to receipt of info(v)on edge O
bogin begin
valy:--v; Al waly=w inbranch ;= Oy N(C) -trus; Al
for all adge= ¢ & B, E for all edges v & B; A v ¥ inbranch; o
do zend infolvale) on edge ¢ od do zend info(val;) on edge ¢ od;
end » .
if WO BN
then send ack{val;) on inbranch,
i
and
response to receipt of ackiz)on edge O Tespanse to receipt of ack{v)on edge O | 4o
begin begin
Ny(C): = true; Ni(= true;
S YOS BN (O A} if YO £ BN (L)
then doneg:=true then send ack{val;) en inbranch;
fi f£i
end end

Notation used: E; denotes the set of edges adjacent to node 4. Variable wal; 1s used to record the
argument of the info-mensage received by node 4; N;(C) records whether any message has been received
along edge €, ¢ £ F.. For node i different from k, variable inbranch; records the identification of the
edge along which the info-message has been received. (These variables are used for unwinding the dicected
tree.) Varizble done, records whether the whole task has been completed.

Initiatly, node &'s message queus contains one info-message and the message queues of all other nodes
are empty. Furthenmore initially ~doney, holds for node k, and - N:{C') for all nodes i and edges C € K;.
The initial values of the other variables are irrelevant.

Figure 1 : Segall's PIF-protocol

2 Conventions and notations

A distributed algorithm is performed by nodes in a fixed, finite, and undirected

network {(V, E), and comsists of at least two nodes, The network is viewed as a graph., Two
adjacent nodes communicate by means of messages. Since edges are undirected, each node can
hoth send and receive messages along any of its adjacent edges. Except for delivering messages

properly any edge can damage, lose, duplicate, and reorder messages in transit.

34

For ease of exposition it is assumed that communication is synchronous. (In appendix IT we
show how our results can be extended to an esynehronous model of communication.) In order
to avoid bothering about the actual syntax of programs, distributed algorithms are represented
by a triple < V', {p: | { € V'}, A >. (In appendix III we show how a program represented by
lists of responses, as in e.g., section 1, can be represented by such a triple.) The interpretation
of the three components is the following: V' is a subset of V' containing all nedes that actually
execute the algorithm. {p, | i € V'} is a collection of state assertions. For all ¢ € V', assertion
pi describes the initial values of node ¢’y variables. Finally, A is a collection of atomic actions
which ¢an ocour when the nodes in V' execute the algorithm (see the definition below). Each

action ¢ has an enabling condition en{e) associated with it.

{ziven an algorithm represented by a triple as above, it iz assumed that the collection A of
actions can be partitioned into sets A; of node s internal actions and sets Aj;, i # 7, of actions
involving a transmission of a message from node 7 to node @ (4,7 € V'), The collection of all
actipns that can be performed by node j (possibly simultaneonsly with other nodes), i.e.,

the set AU U Aj0 U Asj, will be denoted by act(4, j)- For action a & A;, en(a) refers to
node j's va:i::chs c)nly.sél‘:; this case, en{a) will be denoted by en;(a). If some action a involves a

communication between the nodes ¢ and j, then zna) is the conjunction of boolean conditions

eni{a) and eny(a) where for £ = {4, 7}, ems(a) refers to node £'s variables only,

Definition

A computation sequence of an algorithm as above is a maximal sequence 39 %9 8 3B 5.0 such
that for all n > the following s satisfied: s, is some state, each p; (1 € V') holds in state s,
@y i3 an action occurring in the set 4, action ay, is enabled in state &y, i.e., en{as) holds in sy,

and $,4 is the state resulting when a,, is executed in state s3,.

3 Our design principle

In this section we present a design principle that formalizes sequentially phased design of dis-
tributed algorithms. The principle itself is formulated in subsection 3.3. In subsection 3.2
correctness formulac and the verification conditions of the prineiple, ie., conditions to be veri-

fied in order to apply the principle, are presented. Introducing the correctness formulae enables

35

a simple and convenient formulation of our principle. Subsection 3.1 describes some basic b~

servations for solving tasks from the class considered here.

3.1 General observations

Assume that a colleection V' oof nodes performs a certain task specitied by means of a pair of
sets of state-assertions {p; | i @ ¥’} (the preconditions) and {g: | i € V'} (the postconditions).
onsequently, i order to solve this task by some distributed algorithim A we must find a

collection of actions A such that
e Al described by the triple < V,{p; [{ € V'}, A = and

+ gvery finite computation sequence of 4 ends in a state for which each of the posteonditions

g holds (i 2 V'),

We shall assne that this task can be split up logically into two subtasks as if they are performed
sequentially. (The general case is a straightforward extension as shown at the end of this section.)
It is attractive to design A in two stages: In the first stage algorithmos B and ¢ are designed
that solve the two subtasks. Such a decomposition enables us to concentrate on one subject at
a time. Methodologics for developing these algorithms are described in [CMB88] and [B389). In
the second stage A itself is designed by combining algorithms B and €. Qur design principle

desceribies how (o accomplish this combination,

Obvignsly, since the whole task can be split up logicelly into two subtasks, there exist inter-
mediate asyertions r;, @ € VY. such that the two subtasks are solved by distributed algorithins
B V' {p i V'L, B >and C=< V' {r; |1 € V'},(> (for certain sets B and C of actions)
(ef. [CMB8E, BS89]). Each finite computation sequence of algorithm .4 and algotithm B ends in
a state for which each of the assertions r; and g; respectively (i € V') holds.

The remainder of this section describes how to combine these algorithms in order to obtain A

3.2 Verification conditions

We now introduce correctness formulae and present conditions which are required for a sound

application of our principle. Some conditions that algorithms B and € should satisfy in order to

36

design A with this principle are described by means of correctness formulae in subseetion 3.2.1,
Each of them can be verified by concentrating on one algorithr at a time, Conditions referring

to hoth B and ¢ are formulated in sybsection 3.2.2,

3.2.1 Correctness formulae

Let D=« V', {pre; | i € V'}, D > be an algorithm which should satisfy the following: if D
is executed {in a state satisfying each of the preconditions pre;, i € V'), then every finite
computation sequence ends in a state for which certain state assertions post;, ¢ € V', (the
posteonditions) hold. Node j's computation can be characterized by means of an invariant
I;D (j € V'). Introducing such invariants is the standard technique to ensure that our design
principle (see subsection 3.3) can also be used for designing algorithms in which a {sub)task
performed by some group of nodes can be disturbed temporarily (due to interference of the kind
discussed in section 1).
Except for the invariant I;D, we can be more precise about node j's bebavior. If node j has
completed its participation at a certain point in some computation sequence of 72, then the
posteondition pest; holds and j cannot perform any action from that point onwards, The states
in which nede j cannet perform any action anymore are characterized by an assertion TP
(fevh.
‘We now introduce correctness formulae of the form
Dsat < {I; | j € V'},{Ty | j € V'}, {post; | j € V'} »
for an algorithm D=< V' {pre; | i € W'}, D > and for state assertions Ty, Ty, post; (j € V'),
Such a formula is valid #f the following holds for every computation sequence of T

& For all j & V', I; holds in every state of the sequence,

e For all j € V', T; holds iff node 5 will not execute any action in D anymora, and

» For all j € V', post; holds when and if node j has completed its participation in .

A correctness formula as above can be characterized in linear time temporal logic [MP83|. Let D=-
Vi{pre: | i € V'Y, D » Dsat = {I;D] je V'},{TP | i€ V' {post; | j € V'} = is an abbreviation
of the conjunction of the conditions (a) through {f} below. (Some of these conditions are redundant; We
have included them to formalize the intuition in a natural way.) The conditions below ate interpreted
over all computation sequences of algorithm D. (O denotes the always-operator.)

37

{a) Vj G V'i{pre; = ID).
Therefore, initially I_:D holds for ail nodes 7 in V',

(b) ¥j e V’.G((l}p A --WTP)U(IP A Tgp)), where U denotes the weak until-operator,
i.e., for all nodea j in V7, Ij i2 an invariant and the following holds: “node § participates in the
algorithim pntil it has completed s participation”.
(¢) Vi ¢ VW ¢ aet(D,)0 ((FP ATEY 5 weny(a)),
L., If & cortain node has completed its participation in the algorithm, then it cannot perform any
action. (Cf. section 2 for the definitions of act(D, 7) and of eny (d).)
() vi o VA((IP ATP) = P A TP,
t.e., once a node has completed its participation in the algorithm, then il will never participate in
the algorithm anymore,
(¢) Vi & V.O((IP A -TP) = 3d & D.(en(d)),
L., if in a cértain state some node has not (yet) completed its participation in algonthm P, then
the whole algorithm cannot be completad.
w2 VLI ATRY -+ post;),
Le, wode’s 7 opostcondition pest; 15 established when 1t has completed s participation in the
algorithm.

(f

3.2.2 Conditions for combining subtasks

Let B=< V' {p; | i € V'},B > and C=< V', {r; | { € V'},C = be algorithms which solve the

two subtasks. Assume that

(1) Bsat < {1815 e v TB |5 e VL i€ V'Y 5 and
2 Csat < {IC 17V ITC 1 j e V'Y {g; [j € V'} > are satisfied.
p 7 5

We first impose the following condition: Each programming variable occurring in any of the
assertions pj, vy, g5 IF, If, TJB, and ‘I:,C iz node j's own variable. The intuition behind this
restriction is that & node’s precondition (or its postcondition) can be described in terms of
imitial (or final) values of its own variables. Also, an invariant associated with some node 7
characterizes j's computation and can therefore be expressed without any reference to variables
of nodes different from j. Analogous, a termination condition expresses that a node has com-
pleted its participation in a certain algorithm and can be expressed in terms of its own variables,

IC

(3) Each programming variable occwrring in any of the assertions pj, rj, q; I, 1€, TP, and 7€ is

TR
node §'s own vanable (j € V'),

38

In order to s0lve the whole task, we shall design an algorithm A with actions from B and €
in which each node j in V' first participates in B and then participates in C, provided that j
actually participates in both subtasks. As a consequence of this strategy, no node in V' will
patticipate in both subtasks at the same time. Therefore, we require that if a certain node has
not completed its participation in one subtask, then it cannot execute any action asscciated

with the other subtask,

Define for some assertion P and for some set of actions A€ the predicate disabled, (P, AC) ({ € V') ex-
pressing that if assertion P holds, then for all actions a in AC,enda) bolds: Formally, disabled, (P, AC)
holds iff O(P = Ya € AC.~eny(a)) is satisfied. It is required that the following conditions are satisfed:

4) vje V',diyabludj(f_? A --TJB,act(C',j)) holds for all computation sequences of B,
ie., if a certain node has not completed its participation in algorithm B, then it cannot participate
in algorithm C, and similarly

(8) Wi e V’.disabIEd‘;(l’Jc A HTF,acﬂ(E,j)) holds for all computation sequences of £
Alse, we require that if some node has completed its participation in the second subtask, ie.,
the one solved by algorithm , then no action associated with the first subtask which can be
executed by that node is enabled. This condition ensures that every aode In V' that actually
participates in both subtasks will participate in the first subtask before it participates in the
second one.
() ¥je V’.disabledi(lf A T]C,act(ﬂ',j)) holds for all computation sequences of C,
i.e., afier completing its contribution to algorithm C, no node can ever participate in algorithm B.
{The assertion disabledj hag been defined above.)
Note that no interference-freedom of specifications has to be proved: BE.g., if at some point
during a computation of algorithm C, If A HT‘F holds for some node j, then every action a
associated with algorithmn B which is performed by nodes different from j does not invalidate

the assertion If A —-I}c, becanse of condition (3} above.

3.3 The design principle

After solving the two subtasks by means of the algorithms B=< V', {p | { € V'},B > and
C22 V' {ry | + € V'},€ > as above, formulating the design principle in order to obtain an
algorithm A== V', {p; | { € V'}, A > solving the whole task is straightforward, Observe that a
node is participating in the whoele task iff it it participating in one of the subtasks. Therefore,

we define the set of actions A as the union of the sets B and C.

39

Given algorithms B and . Prove that the verification conditions (1) through (6) above are

satisfied for B and £ Conclude that the algorithm A=< V', {p;

1 C V'Y, BUC = indeed solves
the whole task. More precisely, we may conclude that A4 sat < {IF % FF |7e v, {IJ-C A 1_76 |
FEV Y {ai |7 e V') = holds,

Observe that as a consequence of the requirement that for any node participating in a certain
subtask all the node’s actions associated with the other subtask are disabled (of. the conditions
{4) and (5) above), it follows that the set of actions B and ¢ can be chosen disjoint.

Note that we have dealt above with partial correctness only. If it is required to design an always
terminating algorithimn A, then one must additionally prove a verification condition that both
B and ¢ always terminate (notation as above). This holds becanse the whole task terminates
iff both its subtasks terminate, Formally formulating the condition thal a certain algorithmn

terminates 15 straightforward and therefore omitted.

In order to establish the validity of the principle above we have shown that every finite compu-
tation sequence of 4 is equivalent (in the sense of section 1) to a finite one in which every action
associated with the first subtask is performed before other actions associated with the second

subtask. The proof 1s given in appendix L

From the discussions shove it follows that our principle can alse be uszed for the doesigning
algorithims hierarchically, That is, if the task solved by A is a subtask of yet another task, the

the same principle can be applied for solving the other task.

In case the whole task can be split up into more than two subtasks we proceed as follows:

First desipn algorithms 77 solving the subtasks. Let the subtask solved by each D be described
hy preconditions p}p and postconditions qJ-D (7 € V'). Prove that for each such D there cxist
assertions I;D and TJ-D for cach node j in V' such that T sat {IJ'D = V’},{TJD | 7 &
V'},J{q_;+D | 4 € V'} > holds. Show that an assertion associated with some node j does not
depend on program variables of any node different from § (ef. verification condition (3)). Then
prove that each node can participate in one subtask at a time (of. conditions (4) and {5) above)-
Thereafter prove that the nodes participate in the subtasks in some fixed order (of. condition
(6) above), Then conclude that the whole task is solved by an algorithm consisting of actions

of all those algorithms that solve the subtasks.

40

4 Conclusion

We have presented a design principle which allows formal derivation of complex network algo-
rithmns by means of sequentially phased reasoning. This principle is applicable to a large class of
algotithms (as e.g., as in [GHS83, Hu83, MS579, $¢82, 3083, Z580]) and allows structuring of their
design according to logical (sub)tasks. We have decided to keep the formulation of the principle
as simple as possibly. As a consequence, it 15 not immediately applicable for derivation of the
PIF-protocol [Se83] when the network does not constitute a tree. The reason is that a messape
associated with the first subtask can be received by a node, when that node is participating in
the second subtask (¢f. section 1). In this case an adjustment of the design principle would
be required. (Verification conditions (4) and {3} must be adjusted.) In essence, it has to be
required that if a node is participating in the second subtask or has completed it participation
in that subtask, then the arrival of a message associated with the first subtask does not affect
the tespective assertions attached to that node.

As structured verification and design of complex algorithms yields more insipht in ther cor-
rectness, we envisage that new language constructs will be designed in order to obtain better
structured programs. In particular, we believe that a better structuring of programs can be
achieved by means of a construct for describing subtasks and another one for building programs
solving some task from programs which solve the subtasks.

In the future we will investigate how our principle can be extended for applications to network

algorithms when edges and nodes can fail.

Acknowledpement: We thank R, Koymans and B. Gerth for valuable discussions, We also

thank N, van Diepen and H. Partsch for their remarks concerning the pregentation of our results.

41

References

[AFRE0] Apt K.R., Francez N., and de Roever W.P., A proof syster: for communicating se-

[B26]

(B589)

|Cass)

{135

[CMsg]

[DS30]

[Ev79]
(BF52}

[F&0]
IFT89]

(GHSs3|

[GSa0]

[Hu83]

K787

IKP8E]

quential processes, ACM TOPLAS, 2-3 (1980).

Toruvka O, O Hatém problému minimalnfin, Praca Moravské Piirodovédeckée
Spolefnosti (1926) (in Cazech.).

Back R.LR. and Sere K., Stepwise refincment of action systems, Proc. of the interna-
tional conference of mathematics and program construction (1989),

Chou C.T. and Gafni T., Understanding and verifying distributed algoritbms using
stratified decomposition, Proc. of the ACM Symp. on Principles of Distr, Comp.
(1988),

Chandy KM and Lamport L., Distributed snapshots: determining global states of
distributed systems, ACM Trans. on Comp. Syst. 3-1 (1985).

Chandy K.M. and Misra J., Parallel program design: a foundation, Addison-Wesley
Publishing Company, Tne. (1988).

Dijkstra E.W. and Scholten (.8, Termination detecting for diffusing computations,
Information Processing Letters 1-4 (1980).

Even 5., Graph algorithms, Computer Science Press, Inc.{(USA), (1979).

Elrad T. and Francez N., Decomposition of distributed programs into communication
closed layers, Science of Computer programming, 2 (1982).

Francez N., Distributed termination, ACM-TOPLAS, 2-1 (1980).

Fix L. and Francer N,, Semantics-driven decompositions for the verification of dis-
tributed programs, manuscript (1939},

Gallager R.T., Huublet LA, and Spira P.M., A distributed algorithm for minimum-
weight spanning trees, ACM TOPLAS, 5-1 {1083).

Gerth R.T. and Shrira L., On proving closedness of distributed layers, LNCS-241
(1986).

Humblet P.A., A distzibuted algorithm for minimum-weight directed spanning trees,
IEEE Trans. on Comun,, 31-6 (1983).

Katz 3. and Peled D., Interleaving set temporal logic, Proc. of the ACM Symp. on
Principles of Diste, Comp. (1987},

Katz $. and Peled D., An efficient verification method for parallel and distributed
programs, Proc. of the REX.workshop (1988).

12

L&5]
[MP83]
[MST79]
[Pasg]
(Ses?]
[$683)

[SR874]

[SR8H]

[SR88]

[5584]

[WLL88|

(2580}

Lamport L., Paradigms for distributed programs: computing global states. LNCS-190
{1985).

Manna 7, and Pnueli A., Verification of coneurrent programs: A temporal proof sys-
tem, Foundations of computer science IV, part 2, MC-tracts 159 (1983),

Merlin P.M. and Segall A_, A failsafe distributed routing protocol, IEEE Trans. on
Comn., 27-9 (1979),

Pandya P.K., Compositional verification of distributed programs, PhuD. thesis, Tata
institute of fundamental research, Bombay, India (1988).

Segall A,, Decentralized maximum-flow algorithms, Networks 12 (1982).

Segall A, Distributed network protocols, IEEE Trans. on Inf. Theory. IT20-1 {1983).
Stomp F.A. and de Roever W.P., A correctness proof of a distributed minimum-weight
spanning tree algorithm (extended abstract), Proc. of the 7th ICDCS (19587).

Stomp F.A. and de Roever W.P., A fully worked out correctness proof of Gallager,
Humblet, and Spira’s minimum-weight spanning tree algorithm, Internal Report §7-1,
University of Nijmegen (1087).

Stomp F.A. and de Roever W.P., A formalization of sequentially phased intuition in
network protocols, Internal Report 88-15, University of Nijmegen (1988).

Sehlichting R.D. and Schoeider F.B., Using message passing for distributed program-
ming, Proof rules and disciplines, ACM TOPLAS 6-3 (1984).

Welch J.L., Lamport L., and Lynch N.A., A lattice-struetured proof of a minimum
spanning tree algorithm, Proc. of the ACM Symp. on Principles of Distr. Comp. {1558).
Zerbib F.B.M. and Segall A., A distributed shortest path protocol, Internal Report
EE-395, Technion-Israel Institute of Technology, Haifa, Israel (1980).

43

Appendix I

In this appendix soundness of the design principle formulated in section 3 is proved.
In the soundness proof of the principle we use the same notation as in section 3.

Assume that the premise of the principle is satisfied. That is, assume that the conditions (1)
through (6) formulated in section 3.2.2 all hold. We have to show, in order to establish the
spundness of our principle, that

A sak < {IF \/IJC jje vy, {ch /\'T:,C |7 V'}, {g; | 7 € V'} = holds. This amounts to proving

that the conditions {a) through (f) formulated in section 3.2.1 are all satisfied for algorithm A.

Lemma I-1 (corresponding to condition (a) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied, ¥j € V'.(py +f(Jl"];B v I'f"))
holds in the first state of any computation sequernce of 4.

Proof

This trivially follows from verification condition (1) (¢f. section 3.2.2). O

Note that if some property p depends on node j's programming variables only, then p holds in
state ¢ iff p holds in state 9| Var(s), where] Var(j) denotes the restriction of state s Lo the set
Var{j) of all node j's programming variables. In the remainder of this appendix this property

is referred to as property (*)
Crucial in our soundness proof is the following:

Lemma I-2
Suppose that the premise of the principle is satisfied. Assume that s is some state in any
computation sequence of algorithm 4.
() If, for some node j € V' and for some action b €act(B, §), en;(b) holds in state 4, then
there exists a certain state ' occurring in some computation sequence of algorithm B

satisfying 8| Var(j)=s'{ Var(j).

{b) If, for some node § & V' and for some action ¢ €act(C, §), eny(c) holds in state a, then there
exists a certain state s’ occuiring in some computation sequence of algorithin € satisfying

s Var(j)=+'| Var ().

44

Proof

Consider an arbitrary computation sequence sg =3 5, 3 sg... of algorithm 4. Let s, be some

state in this sequence, 'We use induction of the states s;, x = 0, to prove the lemma, Clearly,

the lemma is true if s, is the initial state of some computation sequence of A,

Now, assume that the lemma holds for all states s=g, for 0 € y < r (the induetion hypothesis).

(a) If, for some node 7 in V', en;(b) holds In state s, for & certain action b cact{B, j) then

cither (al) or (a2) below is true:

(al)

(a2)

Yy < z.ay € C, i.e., in the computation sequence above state s, has been reached by
executions of actions from the set B only. In this case it is obvious that the lemma

is satisfied.

Jy < x.ay € ¢, ie, in the computation scquence above, s, has been reached by
executions of actions from B and by execution of at least on action from the set O,
Now, noda j cannot be involved in the execution of any action a; £ ¢ with z < z.
This holds because of the following:

If such an a; € ect(€,§') is the first C-action executed by node j* in the sequence
above then Ijq A —|T_,(,3 is satisfied in state s,. (Node j' has only executed B-actions
when state s, has been reached. By the induction hypothesis, the verification condi-
tions (1), (2), (3), and {6), and property (*) above, it follows that IEA—\TJQ is satisfied
in state s..) From the verification conditions (2), (3), (5), and (6), and property (*),
w5 ¢ act{B,;').—enp (¥) holds in state s,.,.

Analogous, it can be proved that if action a., =z < y, is not the first C-action in the
sequence above in which node j' is involved, then Vb £ act(R, j')-—en; (b') holds in
state g,11. We conclude that if some action b € act(B,) is enabled in state s, then

it hay not performed any C-actions. It is now obvious that the lemnma is satisfied.

(b) This case can be proved by a similar kind of reasoning as in the proof of (a) above. O

Obsetve that, as a consequence of property (*) and the verification conditions (1) and (2), for all

states in any computation sequence of algorithm A, (IjBVIf) A —|(IJC /\TF) implies (IJB /\—wTjB)

% (If A —va'), 4 € V', This property will be used in the following lemmata.

Lemuma I-3 (corresponding to condition (b} in section 3.2.1).

Under the assumption that the premise of the principle is satisfied,

45

Yi € V’.D(((I_TB % IJC) A ﬂ(If /\‘I}g))U((IF % I}:) A (IJC /\T}C))) holds for all computation
sequence of 4.

Proof

Consider an arbitrary computation sequence sy =5 s, =% sz of algorithm 4, Obviously, in

order to establish the Jemma it suffices to prove the following:

Claim :
If in & certain state s, in the sequence above agtion an, is executed and if
(IF v TF) A —‘(IF A :13(?) holds in state £, then (IF v If) holds in state £,,1 {for all j in
V).

FProof of the claim:

Assume that (I v I€) A <(I€ A TC) bolds in state s,. According to the ohservation

above, we distinguish two cases,

Case (i): IP A —|TJ5 holds in state s,.
Now, if node 7 is involved in the execution of action a,, then g, & B holds {cf.
lemma I-3 and the verification condition (4) of the prineiple). From lemma I-3 and
the verification condition (1) it follows that I F A —-TJ‘-B or IF /\TjB holds in state s, .
If, on the other hand, node j is not involved in the execution of action a,41, then
IJIB A —'TJ-B holds in state saq (of. verification condition (3)), We couclude that in
this case the claim is satisfied.

Case (ii): ch A —-TJC holds in state s5.
I node j is involved in the execution of action an, then a, € € (cf lemma -3 and
the verification condition (5)} and, either IJ(’1 A —|T]C or If A Tf hold in state s,
(ef. verification condition (2)). The claim then follows from the fact that I_‘,C A —~TJ-C
implies (IF v I;;) and the fact that I_.‘fC A T_,;C implies (I_,B % IJC)
If node 7 is not involved in the execution of action ap, then the (laim follows from

the verification condition (3). O

Lemma I-4 (corresponding to condition (c) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied,

Vi€ V'va € act(BU G, 1).0((IBVIE) A (IF ATE))= —ens(a)) holds for all computation

46

sequences of ..

Proof

Aszsume that at some point in a computation sequence of 4, (ijB VI;; YA (IJC AI‘}C) holds, Then
(If: A 1}0) holds, too, If at that point in the sequence for all nodes j' &€ V' and for all actions o
from the set act(B LI (7,5'), —eny(a), then we are done.

Ctiherwise, i.e., 3j' € V'.3a € act(BUC, j').enp{a) holds. In this case, for all e € act(BU C, j),
wenj(a) 1 satisfied as a consequence of lemma I-3, property (*), and the verification conditions
(2) and (5). O

Lemma I-5 (corresponding to condition (d) in section 3.2.1),

Undet the assumption that the premise of the principle is satisfied,

vi e Vio(((F v I8) A (€ ATE))= a((IF v IE) A (IF ATE))) holds for all computation
sequence of .4,

Proof

Assume that in some state during a computation of A, (IF v If) A (IJC A TJC) holds, Then
(IJC A Tf) holds, too. Node j catnot execute any aection in such a state (¢f. lemma I-3). The
assertion (IJC A 1-:;3) is preserved under all actions from the set B U €' which can be performed
by nodes different from j, ¢f. the verification ¢ondition (3). The lemma is, obviously, satisfied.
a

As a preparation for the proof that condition (e), formulated in section 3.2.1, holds for algorithm
A, we first have the following lemma, concerning equivalent computation sequences of a certain

algorithm. (This notion of equivalence has been introduced in section 1.)

Lemma 1-6
Suppose that 8p —2 51 =L 8-+ 8 2 5401 =5 8,19 =03 8543.. i5 & computation sequence of
some algorithm, Assume that the executions of the actions a, and az4; involve distinct nodes.
Then there exists some state s} ,;, such that
ag a1 . [y Batd
g — 8] —+ 88y —+ By —+ 8513 —+ Syy3.. and
ap a1 Gatl Qg Gt
S —* 8 R Bp — Bpy T Bprd 7 Butge
are equivalent computation sequences of A,

Froof

Let 5,4 be the state resulting from execution of action a,.y in state s,. Note that this action

47

does not affect variables of nodes different rom the ones involved in the execution of that action.
From the assumption that the execution of the actions a, and a5, involve distincl nodes, it

then, obviously, follows that sgo i the state resulting when action e, is executed in state L.

a

Ay a consequence of Lhis lemma and of the proof of lemma [-2, we have:

Lemma I-7

L] LN aa Cwal b 2 A - -
b B = Sy 8y —b Npi] ¥ o Hpps —F 8y3-. I8 a finite computation

Suppose Lhat s
sequence of algorithm 4. Assume that the prewmise of the principle is satisfied. Furthermore,
assime that that e ¢ ' and apy; € B hold, Then there exists some state &L, |, such that
1) e iy LD} tho p 2
By — 81— 8y dy — Hpap — $pq3 — 35 14... and
w il

af Q] . i, 'l a&x Lyt
Sy o FL T s Hy — BL g —F Spgn —F Spid.

are equivalent computation sequences of A, O

Lemma I-8 (corresponding to condition (e} in section 3.2.1).

Under the assumption that the premise of the prindiple is satistied,

vj€ V’.D(((IJB v If) A H(ff A TF))::— 30 € BUC.{en(a))) holds for all computation sequence
of A,

Proof

Consider an arbittary computation sequence seg = 8g —> 81 —... of algorithie A Assume, in
order 1o obtain a contradiction, that in a certain state s, of this sequence for some node j £ V',
(1§ v I€) A (IB A =TC) A Va € act{B U C).~en(a)) holds. Then this state is a final state in
the sequence. Hence, the sequence is finite. We now repeatedly apply lemma I-7 in order to

abtain an equivalent computation sequence of A in which all B-actions are performed before all

‘ . ;
] &y

C-actions, Let seq’ = s S, 4] e gl 25y .. 8, be the resulting sequence, where action o,
is the first C-action taken in this sequence. (Observe that the sequence seq’ ends in state sp.) In
state sz, for all j € V7, IP/\T}B holds, {Otherwise, for some j € V', I_,,-E /\-vCl}B is satisfied, which
implies that at least one B-action is enabled in state g, of. verification condition (1}. Each node
which is ittvolved in this action cannet perform any action from C, cf. verification condition (4).
This implies, however, that the sequence seq’ is not maximal; Contradiction.) It follows that the
sequence s L e 8y 18 a computation sequence of algorithm B. From verification condition

(2), we obtain that Ig A T_,,C holds, for all j' € V', in state s,. This contradicts the assumption

48

that IJC A -~TJ-C holds in this state.

Lemma I-# (corresponding to condition (f) in section 3.2.1).

Under the assumption that the premise of the principle is satisfied,

vj & V'.CI(((IF v I_F) A (I_F A 7}(.’))23, q_,-) holds for all computation sequence of 4.
Proof

This i5 a consequence of property (*), lemma I-3, and the verification conditions (2) and (3). O

The soundness of the principle now follows from the lemmata I-1, 1-3, 1-4, [-5, 1-8, and 1-9 above.

49

Appendix II

The design principle formulated m seetion 3.3 can straightforwardly be extended to an asyn-
chronous model of computation. This is shown below. For ease of exposition we assume, for

thiz appendix, that communication is purfect.

Assume that communication is asynchronous. In order to design an alporithin which solves a
certain task, described by preconditions p; and postconditions g; (i € V'), we follow the same
strategy as before:
(1) Find intermediate assertions r; such that the two subtasks can be described by the collee-
tion of preconditions p;, respectively vy, and postconditions vy, respectively g, for ¢ in V!
(ef. section 3.1).
(2) Design algorithms B=< V' {p; | i € V'}, B » and C=< V', {r; | { € V'},C" > which solve
the two subtasks (cf. [CM8S, BS89]).2
(%) Frove that the verification cenditions (1) through (6) below are all satisfied,
{4) Conclude that the algorithun < V', {p; | : € V'}, AU B > solves the whole task (cf. section
3.3).
The verification conditions of the design principle are essentially the same as those formulated in
section 3. Now, however, we have to incorporate that fact that communication is asynchronous.
In order to formulate formally these verification conditions we use, as in [5584], the auziliory
proof variables oj(e) and pi(e) (5 € V', ¢ € E;). They are used to reason about communication.
ai(e) records the sequence of messapes transmitted by node j along edge & pi(e) records the
sequence of messages received by node j along edge e. For nodes 5,k and cdges ¢ & E; M Ey, the
properly g;{¢) = oy (e) is preserved by any action, see [6584). Le., if edge e connects the nodes j
and k, then the sequence of all messages received by node 7 along e is a prefix of the sequence of
all messages transmitted by node k along e. These variables are changed when a node transmits

or receives a message; They are not changed during execution of an internal action.

(1) Find assertions 7P and TP, for j in V” and

(2} Find assertions [f and TJ-C, for j in V', having the same interpretation as in section 3.

"1t s assumed that the set of all atomic actions for sach node j can be pattitioned into & set of j’8 internal
actions, a set of j's actions which involve the transmission of a message, and a set of 'z actions involving the

receipt of some message.

50

Of course, we have to reformulate the correctness formulae (see section 3) now incorporating an asyn-
chronous model of computation. Let D= V7, {pﬂ'e? lig V'},D = be some algorithm.

T sat < {TJD i€V} {T;D | 7€ V' {post; | § € V'} > holds iff eack of the following conditions (a)
through (f) is satisfied:

{a) Vi & ViipreP = 1P 4

AV k& Ve g BN Ey.(preP = pile) € myfe}} holds for all computation sequences of D.
Thaus, initially the assertion I holds. In addition, the sequence of all messages received by any
node along a certain edge is a prefix of the sequence of all messages transmitted by the node at
the other end of that edge holds initially. (From the discussion above, it follows that the latter
property is an invarant for algorithm D.)

(b) This condition is the same as condition (b) formulated in section 3.2.1.

Let Int_,p & D denote the set of node j's internal actions, let Re.c?(e) C 7 denote the set of node j’s
actions which involve the receipt of a message along edge ¢, and let Sen;D(e) = I? denote the set of node
#'s actions which involve the transmiseion of & message along edge ¢ (7 € V', e € B;). Heveafter, IS;D
will dencte the set Int?u H; Sen?(e).

e E;

(e) Vi€ V'vd & ISP.O((IF A) = —eny(d))n

(d

AVi kg V' Veg E;n E;,‘D((IP A T,p) =p;(2) = 7w(e)) holds for all computation sequences

of P,

Le., if a certain node has completed ita participation in the algorithm, then i canngt perform any
internal action or any action which involves the transmission of a message (the first conjunct), and
it cannot receive any message (the second conjunct).

Thiz condition is the same as condition {d) formulated in section 3.2.1.

vi e v'.o((IP A -TP) = (3k € V'.3d & 18P .en(a))v

V(3k,m € V'.3e € B N Brn.pile) < 7m(e))) bolds for all
computation sequences of 0. Here, for sequences ¢ and u, t < u denotes that ¢ iz a proper prefix
of u.
This condition expresses the following: if a certain node has vot yet completed its participation
in the algorithm, then at least one node can pecform some internal action or some action which
involves the transmission of & message, or at least one node has transmitted a message along one
of it adjacent channgls and this message has not yet been received by the node at the other end
of that edge,

{f) This condition is the samé as condition (f) formulated in section 3.2.1.

Ther we reformulate the conditions (3) through (6) from section 3.2.2 for an asynchronous model
of computation.

(3) Each programming variable occurting in any of the assertions py, vy, g, I B i

{4

—

J i’TF' T_’F it node

7’s own variable. In addition, if some proof variable ps(e) or o4(e) oceurs in any of these assertions,
then (=7 and e € E; hold.

Vi € V" disabled(IP A ~TE 15C)n

AV keV Vee B Ek.disabled(.(_,-ﬁ A -T_,'-B, Senf(e)) holds for all computation

sequences of B. Here, for assertions P and sets of actions AC, digabled{ P, AC') holds iff in any
state satisfying P all actions in the set AC' are disabled. (Its formal definition is gtraightforward
and therefore omitted.) Consequently, this condition expresses the following: if 4 certain node has

51

not completed its participation in algorithm B, then it ¢an neither per{'orm an internal action nor
a send-action oceurring in C {the first conjunct), and it cannot receive & message associated with
the second subtask (the second conjunct). The latter holds, because if the node is participating in
the first anhtask, then none of its neighbors can send such messages.

Analogously we have
(5) vj e V. disablead(1€ A ~TE, 15B)A
AYHLREEV Ve E BN Ek-diwbled(Ij'; I -«TJC. Senﬁs(e)) holds for all computation sequences

of C,

I oeder 1o ensure that a certain node can participate in the second subtask only after completing the
first subtask (see condition (6), section 3.2.2), we impose the following condition:

(5) Wi V' disabled(IE A TE, 1583 n
ALK E VI Ve ¢ By O Eh,disablcd(ff A TJ-C, Sf.‘ﬂh'&(t’)) Lolds for all computation sequences
of C.

Remark: We have decided to keep the formaulation of the design prineiple above as asimple as possible.
As a cousequence we have required that no node k can send some inessage 10 another node j which
ig participating in a different subtask than £ (ef. conditiong (4) and (5) above). Although the above
prnciple 15 applicable to a large class of alporithms, one could bave been less restrictive: if some node
7 ig participating in some subtask and j has some message in it2 quene associated with another subtask
(such a situation can be recognized hy tagging messages), then processing this message is deluyed until

7115 participating, or starts to participate, in the subtask associated with thai message

52

Appendix III

We claim that any distributed program can be represented hy a triple of the kind introduced in
the paper. The validity of this claim is illustrated below by showing that any program described
by a list of responses as in section 1, and as in [GHS83), can be represented by such a triple. As
an example we show how the program of section 1 can be represented by such a triple.

In order to keep the presentation reasonably short we assume that communication is asyn-

thronous and perfect.

Let S be a program described by a list of responses. Our objective is to represent § by a triple
A of the kind mentioned above, such that for any computation sequence seg starting in an
initial state satisfying some predescribed precondition the following holds: sz¢ is a computation
sequence of F i seq i3 a computation sequence of A, It iz obvious that the only difficulty in
defining A is the definition of its set of atomic actions. In order to define this set we first assign
labels to control points in S. (Such a control point is an entry- or exit-point of some atomic
action occurring in 5.) Then we introduce for cach node j a fresh variable loc;. This variable is
used to simulate node §'s program counter when S is executed. Each (atomic) action a which can
be performed by j is then represented by the atomic action ailocy=!; where {; denotes the label
assigned to ¢'s exit-point. The enabling condition of the action ailoc;:=h, ie., en{aslocs;:i=h),
is given by ioc; = Iy where Iy denotes the the label assigned to a’s entry-point. Except for these
actions, we also define for each node 7 two kinds of other actions: The first one corresponds to
actions removing messages from adjacent edges and placing these received messages at the end
of node j's message queus. These kind of actions do not refer to the variable loc; and can occur
at any time in every computation sequence, provided that some message has arrived at node 7
(¢f. (1) and (2) below). The second kind of actions corresponds to removing the first element
from node j's message queue, provided that it is non-empty, and setting the vaziable logy to the
label assigned to the “first” entry point of the respective response.

It iz important that we have made explicit two tacit assumptions which are quite common when

distributed algorithms are deseribed by means of lists of responses:

(1) A message that has arrived at a mode along one of its adjacent edges can be removed

afterwards from that channel at any peint in the computation.

53

12) After the receipt of a messape a node can resume its execution at the point where the node

lias been interrupted by the arrival of that message.

Example:

When Iabels have been assigned to the control points of the program of section 1 we obtain:

loop executed by node & loop axecuntved by node { 7 K e
ragponse to ressipt ef fnfas) rozponge to receipt of infofv)on edge C
Bogin begin

Lo vali: » Loy vali-w
ey for all edgez ¢ & Iy Ai L, oar inbranchy:. C
de zend infolval,) en edge 2 od L oat N{Ch—-true;
Lo I; g for all edges e & Kine £ inbranch;
and do send infe(val;) on edge s od;

g if VE ¢ BLNA(C)

then [¢4 send ack(val;) on inbranch;

fi
Lo
and
rezponse to receipt of ack{yv) on edge C rosponse to roceipt of ackfv) on edge C
boegin bogin
Iyt Ni{Ch= true; Liogt No(C)i— true;
Lern: 12 90 € By Np{) A liopt i Y0 € B, N(C)
then I,oq: doney—true then [ein: send aoki{val;) on inbranch,
fi fi
-2 L
end end

PFigure 2. Segall’s PIF-protocol after assigning labels to control pointa,

From now on, subscripts + and & are omitted when they are clear from the context.

Below, except for the labels of control points assigned cxplicitly, we have additionally introduced
alabel af-queune. Intuitively, node { is at the control point labeled af-gueus, when it tests whether
its message queue is non-empty. Node 1 evaluates the boolean expression queue 7= <> for testing
whether its queue is not empty. If it is non-cipty, then the type and the channel identification of
the first element are determined by evaluating type(fivst(queue)) and chan(frst{queue)), respec-
tively, Thereafter the argament of the first message in the queve is determined by evaluating
arg(first(queue)) and is recorded. Then the first element is removed from the queue by executing

the assipnment gqueuer=rest(queue), and node’s ¢ variable log; is seb to the cntry point of the

respective response,

Appending an element M to the end of some queue ¢ will be denoted by g:=q " M.

We next show node ks actions when the program above is represented as a triple. (Below, C
ranges over node ks adjacent edges.)

gy vi=arg(first{quene)); quene:=rest(quene); loci= Iy,

en{ a1) loc=at-queueh type(first(queue))=info.

apz vali=y; locs Igg

enl apa)i loe= Iy 4.

apy: for all edges ¢ ¢ Ey do send info(val) on edge ¢ od; loci=gi-queus,
en{ aga) loe= lga

ap,c4t vi=arg(first(quene)); quever=rest(quene); loc= I; 0y,

en ag g 4)i loc=at-queuen type(frst(quene))=ack A chan(first(queue))=C.
a5 N(C)i=true; loci= I o,

en{ apes) loo= ca-

ap,cm if VO € By N(Q) then loci= Iy o0 else loci=at-gueue fi,

enl apcol loc= Iy s

oy o7 donei=true; loci=at-gueue,

en ancrl loe= g

and finally @ a0 receive msg on edge Ci a8t quenes=queue (msg,C).

@k 1, d4p3. Cks are those actions of node k associated with the first subtask (cf. section 1). The

other actions of node &k shown above are all associated with the second subtask.

The actions which ¢an be performed by nodes different from k can be determinegd analogonsly

and are therefore omitted.

Appendix IV

Below we show how our decomposition principle of appendix IT can be applied to obtain the
program of section 1, In pacticular, the invariants T J,B , IJC and the termination conditions ']_’:’45 ,

Tf’ for jin V, are defined explicitly for this example.

Communication is assumed to be asynchronous and perfect.

It is assumed that some designer has already solved both subtasks discerned in the PIF-protocol
{vee section 1). Clonsequently, it now suflices to define the invariants and termination conditions
in order to combine these programs. As a preparation for this we first have the following

definition:

Definition
Let node k, the initiator of the protocal, be given.
(a) Let for £ £ V, dist{i,k) denote the distance between node § and node k, ie., dist(ik)
denotes the minimum number of edges on any path between the nodes ¢ and k.
(h) Foralli e V, C ¢ E;, D;i(C) denotes the distance from node k to the node different from
node ¢ that is adjacent to edge C. Thus, D4(C') = n holds iff there exists some j £ 7 such
that ¢' € E; M E; and dist(f,k)=n are satisfied (for nodes ¢ € V' and natural numbers n},
=

In the proofs of the verification conditions of our transformation principle, the following prop-

ertics are used:

Lemima

{a) For all ¢ € By, 1,(C)=1 holds.

(b} For all nodes ¢ € V and for all edges ¢ € B; the following holds: if dist{i,k)=n, then
Di(C) = n-1 v D{C) = n+1 is satisfied.

(¢} For all nodes i,j € V and for edges (7 € E; N Iy, if dist{i,k)=n and dist(jk)=n+1, then
Di{(C) = u+1 and Dy{(C) = n holds,

{d) 1f the graph (V,E) constitutes a tree, then for all nodes § £ &, § € I, there exists exactly
one edge O & E; satisfying Dy(C) =dist(d,k)-1. O

56

The proof of the lemma above follows from clemnentary properties from graph-theory [Ev79] and

is therefore omitted.

As bas been argued in section 3, it is attractive to desipn a program describing the PIF-protocol
in two stages. In the first stage the program solving the first subtask, could have been described
by the program B consisting of those actions associated with the programs A! of section 1 (cf.
also appendix 1I1). In the second stage program €, consisting of all actions associated with the

programs A? of section 1 solving the second subtask, could have been developed.

Below, in the definitions of the respective assertions, we have used the auxiliary proof variables
i (C) and p{C) ({ € V and ¢ € V). These kinds of variables have been disenssed in appendix
I1. Recall that a;((7) records the sequence of messages sent by node ¢ along edge €' and that
pi{) records the sequence of messages received by node § along edge €.

In the sequel | ¢ | denotes the length of queue g, ie., | g | denotes the nnmber of elements in ¢;

For guenes g, g[n] denotes the n'® element ing (1 < n </ ¢).
The initial states of algorithm B are described by the assertions py, 7 & V, defined below,

For node k, p; 1s defined as the conjunction of

- lovy=at-gueuey, (cf. the discussion in appendix III),

- quenep=< info{w) > (node k's queue contains only the message info(w)),

- -done, (node & has not been informed that the other nodes have reccived the info-
messages),

- VO & By~ Ni(C) (node k has not recorded that it has received a message along any of its
adjacent edges),

- VO € B pr(C)=<> A ap(C)=<>) (node k has neither sent and nor received messages
along any of its adjacent edges), and

- Tree(V, E) A | V |22 (the graph (V,E) constitutes a tree and V consists of at least two

nodes).

For nodes 7 different from k, p; is defined as the conjunction of

- loc;=at-quene; (¢f the discussion above),

v quene;=<1» (node §'s queue is empty),

57

- YO G E;.-N;{C) (node j has not tecorded that it has teceived a message along any of its
adjacent edges),
VO € Ep(pj(Cl==> A 0;{C)=<>) (node j has neither sent and nor received messages
along any of its adjacent edges), and

- Tree(V, E) A | V | =2 (sce above).

The final states of algovithn B arc characterized by assertions q;0 ¢; = I 38 n TJB holds where
1_;8 and TJ‘B (7 € V) are defined helow.,

For node &, the assertion I,’? is defined as the conjunction of
Tree{V,E) A |V |22,

- V0 e Bl plC)==x),
- Y€ € By N (C),
- doney, and
- Lhe disjunction of
s (locy=at-queney A queney=< infolw) = A YO & By(x(C)=<>))
(satisfied initially),
o (looy=lp1 A quene= > A YO € Epl ap(C)=<z) A np = w)
(satisficd after node k has removed the info-message from its queue),
o {lomy=li g A queney=<> A VO € En{ on(C)=<2=) A valy = w)

(satisfied after node k has recorded the argument of the info-message), and
. (lo«k=at-queuek A guenep=<> A Y0 € Ep{ an{CV=< infolw) =) A valy = w)
(

satisfied after node k has broadeasted the info-message).

The assertion T,;B i defined to express that node & has broadcasted the info-message. Formally,

we define TkB = V0 € By ap(C)== info(w) »).

For nodes j different from node &, IJB is defined as the conjunction of
— Tree(V,E) A | V |22,

- YO € Ep{({(D;(C) =dist{y k)12 0;(C)=<>) A
ADy(C) =dist(jk)+1m pytC)=<>)),
i.e., if the graph (V, E) is considered to be rooted at node k, then ; does not send any

message uptree and it does not receive messages from nodes downtree,

58

- VO € B;.(Dy(C) =dist{j k) +1= - N, (),
te., if the graph (V, E) i5 considered to be rooted at node k, then node j cannot record
that a message has been received from nodes downtree, and

- the disjunction of

’ (Ioc,-=at-queuej A queuem<x A
AVC € BpmNi{C) AYC € Byl pj{Cl=<> A ay(Cl=x3))
(satisfied initially),
. (loc_,-wat-queuej A
A 3C € Epgqueune;=< info(w), C > A Dy C)=dist(;,k)-1 A p;(C)=< infolw) >)A
AYC € E;~Nj(€) AYC & By (D;{0) = dist(j k) +1= 0;(C)=<3))
(satisfied after node j has received the info-message),
* (3C € Bj.(loc; = e A Di{C)=dist(j k)-1 A pi(C)=< infolw) =)A
AV € By ~Ni{(C) A YO € By (Dy(C)=dist(j k) +1= o;(C)=<=)A
A queue; =<> A vy = w)

(satisfied after node j has removed the info-message from its gqueue),

*

(3C € Eslloc; = oz A D{C)=dist(jk)-1 A pi(C)=< infolw) >)A
AYC € Bj~Ni{(C) AVC € By (D (C)=dist(j k) +1= o;(C)=<)A
A gueue; =< A waly = w)
(satisfied after node j has recorded the argument of the received info-message),
+ (3¢ € Es(loc; = Lics A Dy{C)=dist(j k)1 A pi(C)=< info(w) > A
A inbranch; = C)A
A Nj(inbranch;) A YC € By (D;(C)=dist{f k) +1= a;(C)=<>)A
A queue; =< A valy = w)
(satisfied after node 7 has recorded the identification of the edge along which the

info-message has been received),

(3C & E;lloc; = Lica A Dyj(C)=dist(jk)-1 A pi(C)=< info(w) > A
A inbranch; = C)A

A Njlinbranch;y A VO € Ep.(Dy(C)=dist{j,k)+1= o5(0)=<3>)A

A queue; =<> A valy = w)

(satisfied after node 7 has recorded that it has received a message along the edge

5%

identified by *i,nbru,'n,(:h.j), And
- (:‘.‘i(]’ € Eillom; = Ligs A D{C)=diat(§.8)-1 A pi(C)== infolw) = A
Ninbraneh; = C')/\
A Nylinbranch;) A ¥C € B (D (C)=dist(j k) +173 o,(C)== infolw) =)A
A guene; —23 A val; — 'm)
(satisfied after node j has hroadcasted the info-message along all adjacent edges

except the one identified hy inbranch;).

Tor nodes 3 different from &, the assertion TJ‘;B ig defined as:
’1}‘-8 = A7 @ Ejloey = ey, which is satisfied after node 7 has broadeasted the info-message

along all adjacent edges excepl, the one identified by inbranch;,

Verifying the conditions (a) through (f) of appendix II for protocol B is straightforward, ic.,
ane can easily establish that B sat = {pj |7 V') {I}B FER'S {JJB A C[_]B | §& V') = holds.
This can, e.g., be accomplished by techniques described in [MPS82]. As an example of how to
prove these conditions, we shall show that condition (¢} & satisfied, Le, it must be shown that
for all states in any computation sequence of B,

(*) IJ-B A HT]!B (7 in V') implies that al least one action in algorithm B is enabled.

Below it is assumed that conditions (a) and (b) (sec appendix L) have already been proven.
Choose some node § in V,

By induction on n'*isz‘,(j}‘.) we shall now show that

(**) il IJ-B A ‘1TJ5 holds, then theee exists some node j' satisfying dist(;",k) < dist(7,k) for which
at least one of its own actions 15 enabled.

This, obviously, implies property (*) above,

Basis of induction: dist(j.k)=0 holds. Thus, j = k holds, too. Under the assumption that
I;-B A —wTjB holds, it follows that at least one of node &’s own actions is enabled. Obviously, (¥*)
above is satifled in this case.

Induction hypothesis for all nodey 7, if IF A —|T_,’-B and dist(j,k)=n =0 hold, then there exists
somne node 77 satisfying dist(j',k) = n for which at least one of its own actions is enabled.
Induction step: assume that d7st(7.k)=n+1 holds. This implies that j # k holds, to0. Note that
I_T-B A —-T:,E implies that —=3C € Ejloc; = locjos is satisfied, Also, for all € € By, p{C)=x>

holds, Lo, node § has not received any message. If node j can perform one of ity actions, then

60

we are done, since (**) clearly holds. If node 7 cannot perform any of its own actions, then it
follows that for node j's adjacent edge ' satisfying D;(C) = digt{j,k)-1, say adjacent to node
£, o;(C)=<> bholds. From the invariant IB, we then obtain that C).’[B is satistied. (**) above

now follows from the induction hypothesis and the fact that dist(£ k) < dest(7, k) holds.

For algorithm C the preconditions are specified by the assertions g; (j € V) defined above. The
posteonditions are characterized by assertions r; (j € V) described by v; = IJ(: A TJC The

assertions If" and Tf are defined helow,

For node k, the assertion IE is the conjunction of

Vn,(l = n %] queusey, [=
= A0 € Fp(quenegln] =< ack(w), € > A pp({C)=< ack{w) = A /\—-Nk(C')))
(any element in node k's queue consists of a message component ack{w) and an edge
component. The latter component records the identification € of the edge along which
the ack-message has been received, Moreover, =N (") holds.),
¥r,m.(1 £ n < m<| qgueusy, |= queueg[n] # queuer[m|)
(each element in the queune is different from any other element in that quene),
- valy = w A Tree(V.E)A |V |22,
VG € By ()5 < ack(w) »)
(node k can receive at most one ach-message along any of its adjacent edges),
- YC € By op(C)=< infolw) =)
(node k has sent an énfomessage along any of its adjacent edges),
- VO € Ep(Ne(O) = g {C)=< ack(w) >)
(if node k has recorded that it has recelved a message along a certain edge, then this
message has been received along that edge), and
- the disjunction of
. (lockmat-queuek A (~doney, = 3C € E,,.—‘Nk(C)))
{satisfied initially. It also holds whenever locy=at-queusy is satisfied),
o (3¢ € Buflock = g A =NelC) A a(C)=< ack(m) = A
ARl € n = queney [=> queusy[n] #< ack(w),C »))

61

I3 —'dcme.k)
(satisfied after node & has removed an ach-message from its quenc),

. (EIC' £ Ep{locy = luos A Ng(C) A pp(Cl== ack(w) =)A —-‘donrek)
(satisfied after node k has recorded the Kdentification of the edge along which the
ack-message has been received), and

» (EIC' [Ek.(l()crk - l;‘,,g‘ﬁ) A gueney =< A doneg A v & Ek,Nk(C))
{satisfied after node k has passed the test V' € By, Np(C). Observe that, if this test
18 not passed, then the digjunct above for which loc, =at-queuney holds is established.
The same disjunct is also established after node k& has performed the assignment
do'n.ek:mtrue.)

C

Iy

Notice that the asgertion iy preserved whenever node & receives o message,

The assestion TE is defined by T,f: = doney. It holds after node & has received the information

that all other nodes in the network have indeed received the dnfo-message,

For nodes j different from node k, If is defined as the conjunction of

- Tree(V.E) A |V |22 A valy=w,
3C & Fp. (0 = inbranch; A Dy(C) = dist(j, k)-1)
(the vartable inbranch; has a defined value, The edge identified by inbranch; is the one
on the shortest path from node J to node k),
- Nj{inbranch;)
(node j has recorded that it has received a message along the edge identified by inbranch;),
Vn.(] <n 5| quene; |= A0 € Ej.(queuej[n] =< ack(w),C = A 2N;(C') A
2{(C)=< ack(w) >))
(ef. I,‘CB above),
- Vn,ml £ n < m S| queue; |= queve;(n] # queue;(m])
(ef. l',‘g5 above),
- YO € Ej(C # inbranch; = 7;(0)=< info{w) =)
(node j has transmitted an info-message along all its adjacent edges different from the

edge identified by inbranch;),

62

- YO & E;.(C o inbranch; = p,(C)<< ack(w) »)

(node j can receive at most one eck-message along its adjacent edges different from the

edge identified by inbranch;),

- pilinbranch;) =< info(w) =

(node j has received an info-message along the edge identified by inbranch;),

- gj(inbranch;) %< ack(w) >

i.e., node j sends st most one ack-message along the edge identified by inbranch;,
- V0 € By{(N;(C) A G # inbranchy)= p;(C)=< ack(w) >
(for all edges C different from the edge identified by inbranch; the following holds: if

node 7 has recorded that it has indeed received a message along C, then j has received an

aek-message along), and

- the disjunction of

&

3C € Ey.(loc; = Lo A C = inbranch;) A ojlinbranch;) =<> A
AV € B0 # inbranch; = ~N;{C))
(satisfied initially),
(HC € By.(loe; = ljo6 A C = inbranch;) A o;(inbranch;) :‘()’)/\
AYC € Eq(C = inbranchy) A queue; =<>)
(satisfied after node j has passed the test VO € Ey.Ny(C)),
{loc; =at-queue;)
(satisfied after node j has transmitted the eckmessage along the edge identified by
inbranch;),
(EIC € E'_,-.(lacj =Lao A Dy{C) = dist(§,k)+1 A ~N;(C) A
A YRl £ n 5| queue; |= queve;[n] £< ack(w), C :))))
(satisfied after node j has removed an ack-message from its queue),
(EG € Ejfloc; =[50 A D(C) = dist(5, k)+1 A N;i{(C))
(satisfied after nmode j has recorded that it has received a message along the edge
identified by the edge component of the most recently removed message from the
queue), and
(3C € By.(loe; = ljoc A Di(C) = dist(3, k)+1 A VO € E;.N;(C)))
(satisfied after node j has passed the test VC' & E; N;(C'). Observe that if this test

63

ig not passed or if an ack-message is transmitted by node j along the edge wWentified
hy inbranch;, then the the assertion If 15 preserved. Tt is also preserved if node §

receives an ack-message.).

For j £ k we define TF as
TJ.C =ai{inbranch;) —< awch(w) = AVC & By Ny(C). It holds after node § has sent a message

along the edge identificd by inbranch;.

It can be shown that C sat {TJB /\TJB lie V'},{I;C | ieV'), {If: A T,C | § € ¥V} holds (cf.

appendix 1T).

Establishing the verification conditions (3) through (6) formulated in appendix 17 is straightfor-
wicd, Obvionsly, verification condition (3) is true. As an example of how one could establish
the other conditions, we shall show how the first disjunct of condition {4) can be shown to hold
for node k, i.e., we shall show that rlw‘,mbled(.(,s A —-T,fg, I,Sf) holds,

To order to do so, notice that if IA‘,B A —\TkB holds, then an action in the set T5€ can he enabled
only if loey—at-queus,, is satisfied, "Lhe latter implies that only actions by which an ack-message
13 remmoved from node k's message queue can be enabled. I,‘,B A *TE implies, however, that k's

ICESARE (UENE CAnnotl contain any ack-messages,

64

CHAPTER 4

A detailed analysis of
Gallager, Humblet, and Spira’s

distributed minimum-weight spanning tree algorithm

—An example of sequentially phased reasoning—

F.A. Stomp
University of Nijmegen, Department of Computer Science,
Toernooiveld, 6525 ED Nijmegen, The Netherlands.

Email address: frank@cs.kun.nl.

W.P. de Roever
Eindhoven University of Technology,
Department of Mathematics and Computing Science,
PQOB 513, 5600 MB Eindhoven, The Netherlands.

Email address; wsinwpr@eutre3.urc.tue.ni,

Abstract: Correctness of the distributed minimum-weight spanning tree algorithim of Gallager, Hum-
blet, and Spira {GHS83] is proved. Two kinds of (slight) optimizations w.r.t. the number of transmitted
messages during execution of the algorithm are proposed. A source of failure of the algorithm is de-
tected and corrected. The correctness proof exemplifies our principle for sequentially phased reasoning
abont concurrent programs [SR8%, SR80b]. Our proof illustrates that correctness proofs of complex

algorithms can be structured according to their designers’ intuition.

67

1 Introduction

Ever since Floyd [F67] proposed his method for verifying (sequential) programs, represented by means
of Howcharts, various proof methods have heen presented in the lterature [AFRSD, H6Y, L33, MC81,
OGT76, ZRESS, 289, for reasoning about sequential and distributed programs.

Proof methods can, in gencral, be classified as composgitional oucs, such as those in [HG9, L83, MCB1,
ZRES5| and in [Z89], in which the specification of a program is verified on the basis of specifications of
its constitucnt components withont referring to the internal construction of those components [Z89),
andd as non-compositional ones, such as those in [AFRS0, F67, QG76).

Examples of the applicability of the latter mentioned vertfication methods illustrate, almost without

exception, that ithe reasowing obout o program tekes place after that program has becn constructed,

The techuique of transformational programuming [BK83, CME8, D76, P89] has also received a lot of
attention. This technique advocates deriving a program, starting from some formal specification, by
successively applying correctness preserving transformation principles. The program, thus obtained,
satisfies (by definition) the initial specification. As a conzequence, the technigque of Lransformational
programming can be viewed as a verification technique, where the program to be prowved corvect is
derived, or constructed, during its verification phese. 1t enables one to develop a program and ils proof

hand-in-hand, with the proof ideas leading the way [G8L).

Recently, we have proposed in [SR&9a, SRE0H| a transformation principle for sequentially phased
reasoning atrout concurrently performed (sub)tasks in network algorithms. That is, if a certain task to
be performed by processes in some network can be split up, from a logical point of view, into several
subtasks as if they are performed sequentially, then our principle describes how one can combine the
programs solving the subtasks in order to obtain one program which solves the whole task, (Viewed
as a proof principle in some proof system, any such proof system is a non-compositionsl one.) From
an analyzer’s or from a designer’s point of view this kind of decomposition of a task into subtasks iz
quite attractive, since it allows him to concentrate on a single subject at a time.

A large munber of complex network algorithms, such as those for minimum-path, connectivity, network
How, and minimum-weight spanning trecs deseribed in [Hu83, MS79, Se82, Se83, Z330], are structured
accotding to our principle.

As shown in the present paper, the complicated distributed minimum-weight spanning tree algorithm

68

of Gallager Humblet, and Spira (GHS83] is also structured acenrding to this principle.

Probably the simplest network algorithm in which one may decompose the design of a program, or
the reasoning about it, into subprograms as if they are performed sequentially is Segall’s PIF-protocel
[Se83], also see [DSA0] and [Fra0], which is a broadcasting protocal. In this algorithm, the whole task
performed by the processes in a certain network can be described as follows: Some value w, initially
recorded by some process k is supplied to all other processes in the network, and k is informed that
all nodes have recorded this value indeed. This task can be decomposed into two subtasks as if they
are performed sequentially: the first subtask broadeasting the vahie w, and the second one reporting
back that the processes in the network have received and recorded w.

The same kind of decomposition can also be discerned in the distributed minimum-weight spanning
tree algorithm of Gallager, Humblet, and Spira [GHS83), which will from now on be abbreviated
to Gallager’s algorithtn, Here one may decompose the whole task of constructing the minimum-
weight spanning tree of a network into five (sub)tasks. Apart from the fact that these five tasks are
performed sequentially from a logical peint of view, that algorithm displays other additional features
(see section 6): expanding groups of nodes perform the five tasks repeatediy, with different groups of
nodes performing these tasks concurrently w.r.t. another, and a certain task performed by onc group
of nodes can be disturbed temporarily due to Interference with the task of another group.

We define two other principles for coping with these additional features: One principle describes how
to combine programs which are executed completely independent of each other, i, when programs
are executed coucnrrently w.r.t. another and no communication o¢eurs between two distinct programs.

The second principle describes how to deal with the above-mentioned kind of interference.

Ag argued in the sections 4, 5, and 6, the (distributed) program deseribing Gallager’s algorithm,
which will from now on be abbreviated to Gallager's program, can be detived from a sequential
program which ¢onstructs the minimum-weight spanning tree of a graph. That iz, one can start
with a sequential program that construcis the minimum-weight spanning tree of a graph, then refine
parts of this program until distributed programs are obtained (each such part corresponds to some
description how a certain task can be solved), and finally combine by means of our principles the
distributed programs found above into one program. The final (distributed) program, thus obtained,
is Gallager™s. This particular strategy has allowed us to find two (slight) optimizations of the program
in [GHS33] w.r.t. the number of message transmitted when executing Gallager’s program. We have,

69

in addition, as & consequence of our kind of reasoning, detected that the program in [GHSSS] does not
necessarily construct the minimum-weight spanning trees for arbitrary graphs. {The reason for this is

explained in gection 6.)

The first attenpt to prove correctness of Gallager’s algorithm appears in [SR&7], The proof there is
based on the ahove-mentioned kind of decompositions of tasks into subtasks. There the principle for
sequential phased reasoning has been identified a5 an independent principle, but this principle has
not been formulated nor justified. Consequently, the proof in [SRE87] should be considered incompiete,
Welch, Lamport, and Lynch [WLL8%a] have given a correctness proof of Gallager’s algorithm using
a partial hicrarchy of algorithms. Unfortunately, their complete proof is a very lengthy one, of
[WLLA8h]. Chou and Gafni [CG88] have analyzed a minimum-weight spanning tree algorithm of which
they claim that it is s simplificd version of Gallager’s. They have, however, not verified Gallager's

algorithm. (In fact, they have verified a far much simpler algorithm than Gallager’s, cf. section 4.)

The remainder of this paper is organized as follows: in section 2 we introduce some notation used in
this paper. We describe our pringiple for sequentially phased reasoning about concurrently performed
{sub)tasks in section 3. The basic features of Gallager's algorithm and of its correctness proof are
the subjects of section 4, In section 5 the formal specification is presented which Gallager's program
should satisfy. Tn section 6 it is shown that this is the case indeed. Finally, scction 7 contains some

conclusions.

2 Preliminaries

In this section some notations and conventions, used throughout this paper, are introduced.

The reader 15 assumed to be familiar with elementary notions from graph-theory, such as graphs, trees,
and cycles, and with their definitions and properties (cf. [ET9]). Graphs are denoted by tuples

{V, E) consisting of a set of nodes V' and a set of edges IF. For graphs (V3, By) and (Va, Eo), (W1,
E1) is called a subgraph of (Va, Es), denoted by (Wi, Ei) C (Va, Ey), iff Vi C Vo and By C F» are
both satisfied. If (Vi, E1) € (V4, Ey) holds and if V4, E1) constitutes & tree, then (¥, Ey) is called
a subtree of (Vy, Bo). The graphs (Vi, Ey) and (Vz, E3) are distinct, denoted hy (Vi, Ei)#(Va, Ez),

iff 1§ # Vi or Ey &£ Ey is satisfied. In the sequel 4, 7, and k, possibly primed or indexed, will denote

0

nodes; edges will be denoted by € and ¢'. For a graph (V, F) and a node 7 in ¥, the set of all edges
adjacent to node { will be denoted by E;. Hereafter, E;; will abbreviate the set E; N E;, ie., By

denotes the set of all edges connecting the nodes ¢ and j (7, j & V).

The distributed algorithins considered in this paper are performed by processes in a fixed, finite, and
undirected network which will be represented by a graph (V, E). Processes are identified with nodes
in V; Communicatior: channels are identified with edges in E. Adjacent nodes communicate by means
of messages, Since edges are undirected, each node can both send and receive messages along any of
its adjacent edges. Communication is asynchronous, i.e., messages transmitted by some node along
one of its adjacent edges always arrive within a finite, but unpredictable, time frame at the other end
of that edge. Communication is assumed to be perfect, i.e., messages transmitted by some node along
one of its adjacent edpes arrive in sequence, exzor-free, without loss, and without duplication at the

other end of that edge.

3 Our proof principle for sequentially phased reasoning

We now present. our proof principle which states that one can reason sequentially about concurrently
performed (sub)tasks. For g fully worked out illustration, applied to Segall's PIF-protocol [Se83], the
reader is referred to [SR29B].

3.1 Notation

We consider distributed algorithms which are performed by nodes in a network (V, E). A distributed
algorithm T is represented by a triple < V| {p; | i € V"], Act? =, ¥ C V denotes the set of nodes
containing all those nodes that actually execute the algorithm; This implies that if some node in the
set V' sends a message along one of its adjacent edges ¢ when it executes algorithm D, then the node at
the other end of ¢ is in V', too. pi (node #'s precondition) is a state assertion characterizing the initial
values of node #'s variables and the initial contents of node i's adjacent edges; ActD is a set of (atomic)
actions containing all those actions which can occur in any computation sequence of the algorithm
(cf. definition 3.1 below). Each action a in the set Act? has some enabling condition en(a) associated

with it. Such a condition consists of a boolean expression or of a boolean expression combined with

1

a teccive-statement {(ef. [H78])). (In the technical formulation of our principle, see section 3.2, the
boolean part of the enabling condition of action a will be denoted by bp{a).) Moreover, the set Act?
can be parlitioned into sets Act;.p such that each Act;-D comsisty of all actions which can be executed

by node ¢ (i € V')

Definition 3.1 Let D— < V', {p; |1 & V'), ActP = be an algorithm. A computation sequence of
T is & maximal Sequence s —vs, —2+ 9z ©2, . such that for all n 2 0 the following is satisfled: gy
is & state, each py (2 € V') holds in state s, a, ocours in the set AzrtD, action a, is conabled in state
S, Lo, ap's enabling condition holds in g, and s,y is the state resulting when action a, is executed
in state ;. {As usual, a computation sequence is considersd to be maximal if it is infindte, or if it is

finite and no action in the set AL is cnabled in the last state of the sequence,) W

The reason lor allowing the first component V' in the triple above to be a proper subset of V, te.,
the set of all nodes in the network, is that in Gallager’s algorithm the tasks which we analyze are
not performed by a fived group of nodes, More precisely, these tasks are performed by dynamically
changing groups of nodes, As a consequence, we explicitly indicate in an algorithim which nodes may

actually be involved in the execution of an alporithum,
We conclude this subsection with the following:
Definition 3.2 Lot j be some node in V', (V' denotes the first component in algorithm D, see above).
Let ¢ denote some edge adjacent to node 7 and 1o another node # in the set 17,
{a) I nt;p c Act? denotes the set of node j's internal actions.

(b) RecP(e) C Actl denotes the set of node f's actions which involve the receipt of a message along

edge e€ Ej,

{c) Sen;p(e) c Act:,p denotes the set of node 7' actions which involve the transmission of 2 message
along edge e€ E;.
{d) Hereafter 7 SP will denote the set of node j's internal actions and thase actions which involve

the transmission of a message, i.e., IS';D = fﬂﬂjp Ulee B, Seﬂ;‘p(t’-)- =

T2

It is assumed that for cach algorithm D as above the set Ac.t? can be partitioned into the (possibly

cinpty) sets Int;p, Sen;p(e), and Re.c;p(e) (€ V', e € E;; for some node ¢ € V').

3.2 Correctness formulae

Let D= < V', {ps |1 V'], Act? > be an algorithm for which the the following shouid hold: Every
finite computation sequence of T ends in a state satisfying some (given) state assertions g; (¢ € V'),
I.e., algorithm I is supposed to solve a (sub)task described by the pair of state assertions {p; ji ¢ V'}

{the preconditions) and {g; | i & V'} (the postconditions).

We now introduce correctness formulae of the form
Dsat < {I; [je V'L {T; i€V {gi | 7V} > Herel;, T;, and g; are state assertions. A

correctness formula as above is valid if for every computation sequence of T the following hold:

s For all j € V', I; holds in each state of the sequence.
s For all 7 € V', T; holds iff node § will not execute any action in Act? anymore, T; is called
node J's termination condition.

* For all j € V', ; holds when and if node § has completed its participation in D.

A ¢orrectness formula as above can be characterized in linear time temporal Jogic (MP83]. This is the
subject of definition 3.2 below. We have used there, as in [SS84], auziliory proof veriables o;(e) and
2;(e) (for nodes j& V' and for edges & € F;). They are uscd for reasoning about communication. oj(e}
records the sequence of all messages transmitted by node j along odge e pj{e) records the sequence
of all messages received by node j along edpe . For nodes 4 and J and for edges e E; ;, the property
pi(e)<ei(e) is preserved by any action, see [S584], That is, if edge e connects the nodes ¢ and j, then
the sequence of all messages received by node 7 along edge e is a prefix of all messages transmitted by
node { along edge ¢. These auxiliary proof variables are changed when a node transmits or receives
a message; they are not changed during the execution of an internal action. (An intérnal action does
not involve any cominunication between nodes.)

For a certain node j V' and for a certain edge € adjacent to j, action a € Re:c?(e) is enahled (recall
that Ré.'r:?(e) has heen introduced in definition 3.2) iff the following holds: the boolean part bp(a) of
action a's enabling condition is true and the sequence of all messages received by node 7 along edge ¢

is a proper prefix of the sequence of all messages transmitted by the node at the other end of edge e.

73

Formally, for such an action en(a) holds iff bp(a) A pj(e)<au(e) is satisfied where & i3 some node in

V' such that ¢ € E; .

Of course, for any action a € I SJ(-" the enabling condition en(a) of a is the same as the boolean part

of this enabling condition, i.e., en(a)=hp{e) is satisfied.

Definition 3.3 The correctnoss formula D sat < {I; | j & V'L {T3 | j € V'Y, {gy |7 € V'), of

above, 1 an abbreviation of the conjunction of the conditions (a) through (f) below. (Some of these

conditions are redundant. They have been included in order to formalize the intuition behind such a

correctness formula in o natural way). The conditions are interpreted over all computation sequences

of . (Below O denotes the always-operator from temporal logic.)

(a) Vi £ V'.O(pre§ = IE) A Vi € VVe € By OipreP = pi{e)< axle))-

(b

(¢

{3

)

—

That is, initially the asscrtion I;D holds for all nodes j in ¥'. Furthermore, the sequence of all
messages recelved by a certain node along any of its adjacent edges is & prefix of the sequence of
all messages transmitted by the node at the other end of that edge is satisfied initially. (From
the discussion above it follows that the property Vi, k € V'.Ve € B, ;.p;(e)= ar(c) continnously

holds during execution of algorithm I}

Yje V'.D((IF A ﬂl"_,p)[f(IF A TP)) . Here UV denotes the weak-until operator, of, [MP83].
We thus have that I;.D is an invariant and for all computation sequences of T “node j participates

in the algorithm until it has completed its participation®.

viEV'Vag A(:t?ﬂ((]? /\TJD) =» —emfa)).
(For actions g, en(a) has been defined above.) Le., if a certain node has completed its partici-

pation in algorithmu P, then it cannot perform any action associated with T? anymore.

vi e V.O((IP ATP) = o(IP A TP)) .
That is, once a node has completed its participation in P, then it will never participate in the

algorithm anymaore.

vi e V1.o((IP A ~TP) =(3a ¢ ActP.en(a))),
If a certain node has not completed its participation in algorithm T2, then T cannot be completed,

e, at Jeast one action in ActD i enabled.

T4

(t) 95 & V' O((IP ATP) = postP).

e, if node j has completed its participation in D, then j's postcondition holds. B

3.3 Description of the proof principle

Lot A=e V1, ‘[PT»B:4 [ie V', ActA 5 and B=< V', {pre? | ¢ & V'), ActB 5 be two algorithms. Let
A solve the subtask described by the pair of assertions {pr‘ejA lig V'), {-_1:rre_1‘%8 | i € V'), Let B solve
the subtask described by the pair of assertions {;m‘e? [ie V'), {pcmth | i € V'). Assume that we

have shown that for certain state assertions I;A, IJB, TJA, and TJ-B (jevh
(1) Asat < {TA e V'Y, < {TA 17 € V'), {pref | i€ V') » and

(2) Bsat < (P |7 v} < {Tf |je V'Y, {poatP |je v} >

both hotd. If the verification conditions (3) through (6) below hold, too, then the algorithm consisting
of all actions occurring in A and B solves the task described by {‘pﬂ”el';-“1 |t V'} and {postJB fig V')
Mareaver, for all j in V*, 1';4 Y If-s is an invartant of this algorithim.

More precisely, if all the conditions (1) through (6} are satisfied, ther for the algoribm C=< V',
{pref fie V'), ActtUAatD 5, Csat < {IAVIE |5 e V1), < (IBATF [e V'), (postf | je V') =
hotds.

As a preparation for the technical formulation of the verification conditions (3) throngh (6) below, we

first introduce an auxiliary assertion.

Definition 3.4 Let P denote some state assertion. Let AC' be a certain set of actions.
Define the assertion disebled(P, AC) by disabled(P, AC) = D(P = Ya & AC —en(a)).
Thus, disebled(P, AC) expresses that if assertion P holds, then all actions in AC are disabled. &

The following conditions are reguired for a sound application of our principle:

(3) Each of the programming variables occurring in preJ-A, preJ-B ' posth , IJ'-A', I JB . T;A, and TJ-B is
node j's own variable. If the proof variables pe(e) or o4(e) occur in any of these assertions, then
£=j and ¢ € E; are satisfied. (Variables occurring in any of the above assertions can be changed

only as a result of the execution of one of node ;s actions.)

75

(4) ¥j & V" disabled(IA A T, 158) A vjk € V' Ve € By disabled(I A T, SenB(e)) holds
for all computation sequences of .4,
This condition states that if a ecrtain node has not completed its participation in algorithm A,
then it can perform neither an internal action not a send-action occurring in algorithm B (the first
conjunct), and it canuot receive a message associated with algorithm B (the second conjunct).
The latter is satisfied because if the node participates in algorithm A, then it is required that
none of its neighbors can send snch messages. Consequently, this condition ensures that if a
certain nede has not completed its participation in algorithm A, then it cannot perform any of
its actions associated with B.
Gf course, we also require that no node can perform any action associated with algorithm A, if

it is participating in algorithm B:

(5) Vi € V'disabled(1B A TP, 15/ A Vi, k € V' Ve € By y.disabled(IF A ~TF, Sen(e}) hotds

for all computation sequences of 5.

(6) Vi & V'.disabled(JE A TB, 1SA) n V), k € V'.Ve € Ejydisabled(I8 A T8, Send(e)) holds for
all computation sequences of B,
Therefore, tach node which participates in both subtasks participates in the first subtask, i.e.,
the one solved by algorithm A, before it participates in the second subtask, Le., the one solved

by algorithm B.

if, in addition, one wants to prove that the algorithm solving the whole task always terminates, then
it suffices to prove that both the algorithms .4 and B always terminate. An algorithm De{d, B} as
above terminates iff for all § € V7, O(I;D A T}p) holds for all computation sequences of . Here, ©

denotes the eventual-operator from temporal logic.

How to reason, according to this strategy, about an algorithm which solves a task that can be split up
logically into more than two subtasks, as if they are performed sequentially, should be obvious. (This
is a straightforward cxtension of the case treated above, of. [SR89a, SR&9b); It can also be achieved

by repeatedly applying the above principle.)

76

4 Basic features of Gallager’s algorithm and of its correctness

proof

Gallager's algorithm is a distributed algorithm for constructing the minimum-weight spanning tree of
a finite, undirected, and connected graph (¥, E) in which each edge in F has some strictly positive
weight associated with it, such that distinct edges have distinct weights. In section 4.1 we present
two theorems, well-known from graph-theory, upen which the correctness of Gallager’s algorithm is
based. The essentials of this algorithm are described in section 4.2. The structure of our correctness
proof is presented in section 4.3. The discussion in this section shows that both structured verification
and structured design of complex algorithms can be achieved by decomposing the reasoning and the

design of such an algorithm according to its legical (sub)tasks.

4.1 Theorems underlying the correctness of Gallager's algorithm

Let (V, E) be a finite, undirected, and connected graph (V, E). Assume that wE— R* is a function
assigning weights to edges, where R* denotes the set of all real numbers greater than 0. Furthermore,
assume that w is an injective function, ie., that distinct edges have distinet weights. From now on,
such weighted graphs will be denoted by (V, E, w)-

Correctness of Gallager's algorithm is based on the epistence and the wrigueness of the minimum-

weight spanuing tree of any such graph as above.

Theorem 4.1 Given any weighted graph (V, E, w). There existz a unique minimum-weight spanning
tree of (V, E).

Proof: The existence of at least one minimum-weight spanning tree of the weighted graph should be
clear, To show the uniqueness of the spanning tree, we assume, in order to obtain a contradiction,
that there exist two spanning such spanning trees Ty and Tp satisfying T) # Tp. Then, obviously,
there exists an edge o¢curring in one, but not in both these trecs. Let ¢ be the minimurm-weight such
edge. W.Lo.g assume that edge ¢ occurs in 7y and not in Ty, Now, consider the graph obtained
by adding edge e to the tree Th. This graph contains a cycle. It follows that at least one edge e on
this cycle does not occur in the tree Ti, since Tt is free of cycles. Note that ¢ # ¢' holds, Moreover,
w(e' y<w(e) holds, too. (Otherwise, removing edge ¢ from the tree T3 and adding e to To would yield

a spanning tree of the weighted graph (V, F, w) with less weight than Tp, contradicting that 1% is a

T

minimunt-weight spanning tree of (V, E, w).) Removing edge ¢ from the tree 1) and adding edge &'
to T then yields a spanning tree of the graph (V, B, w) with less weight than 7y, This contradict the
assumption that 77 1% a minimum-weight spanning tree of (V, B, w). We conclude that there exists

exactly one minimum-weight spanning tree of (V, 7, w). B

Theorem 4.1 ensures the exictence of a unique minimum-weight spanning tree of a weighted graph,
How one could actually construct this tree is suggested by theorem 4.2 below. As a preparation for

this theorem we define two notions that will be used extensively in the remainder of this paper.

Definition 4.1 Given a weiphted graph (V, E, w) as above. Denote by T the (unigue) minimum-
weight spanning tree of that graph.
(a) A fragment of T is some non-empty subtree of T'.
() Assume that F=(V', E') is some fragment of T. An edge ¢cE is an outgoing edge of F iff onc
of the nodes adjacent to ¢ iz in F' and the other one is not. In other words, edpe ¢ is an outgoing
tdge of F iff the following is satisfied: for nodes i and j satisfying e€ Ey;, (i VIAjE V)V
(i€ V' A j € V') holds. (Cf. section 2 for the interpretation of the sets F;;.) W

We then have the following

Theorem 4.2 Let F'=(V', E') and F'=(V", E") be two disjoint fragments of the mininum-weight

spanning tree T of a weighted graph (V, E, w).

(a) If e€ K is the minimum-weight outgoing edge of /™' #nd & is adjacent to F", i.e., adjacent to some
node in F", then F"=(V'U V", E'U E"U{e}) is a fragmemt of T, too,
(b) T=F" il no cutgoing edge of F' exists,

Proof:

(a} Suppose, in order to obtain a contradiction, that F™ is not a fragment of T'. Consequently, edge
¢ is not in the tree T, By an argument analogous to the one in theorem 4.3, this leads to a

contradiction.

(b) Clearly, T=F' implies that there are mo outgoing cdges of F'. In order to prove the other
implication, assume that there exists no outpoing edge of F'. Suppose, in order to obtain a
contradiction, that T £ F' is satisfied. It then follows that there exists an edge e occurring in

T and not in F'. As above, the existence of such an edge leads to a contradiction. B

78

4.2 High-level description of Gallager's algorithim

From now on we assume some fixed weighted graph (V, E, w}. The minimum-weight spanning tree

of this graph will be denoted by T.

A large number of algorithms, both sequential and distributed ones, have been suggested by theorem
4.2 (see, e.g., (D59, GHS83, K56, £580]). All these algorithms have in common that they stare with
trivial fragments of T, consisting of a single node (and, thus, without any edges), and gradually enlarge
these fragments as described in theorem 4.2 until T has been constructed. The algorithms differ in
how and when fragments are enlarged. E.g., the alporithms reported in [D59, Z580) start with one
particular trivial fragment and gradually enlarge this fragment with one node and one edge at a time.
The algorithm reported in [K56] starts with all trivial fragments. Two fragments combine if they have
the same minimum-weight outgoing edge and this edge has the least weight among all outgoing cdges
of the fragments constructed so far.

Gallager’s algorithm also starts with all trivial fragments in the graph, Fragments are combined into
larger ones according to a more sophisticated strategy than those ones adopted in e.g., [D59, Z580),
and [K56]: the combinations of fragments depend on so-called levels. The Ievel of & fragment of T is
(inductively) defined below.

Definition 4.2

{i) A fragment consisting of a single node, Le., a trivial fragment, is defined to be at level 0,

Next assume that fragment F' is at level L. Let edge ¢ be F''s minimum-weight outgoing edge. Denote
by F' the fragment, say at level L' at the other end of e. When F and F' are disjoint, then the following

is satisfied:

(i} If the fragments F' and F' are at the same level, i.e., Z=L' holds, and if edge ¢ i5 the minimum-
weight outgoing edge of F', then the fragment formed by combining F' and F' is defined to be
at level L+1 {(=L'+1).

{iii) If L < I/ is satisfied, then the frapment formed by combining F' and F' is defined to be at level
L'm

In Gallager's algorithm fragments only combine according to one of the possibilities (ii) and (iii} above.

If neither of these possibilities apply, then, from an operational point of view, fragment F simply waits

79

until one of these two possibilities occurs. This delay does not lead to a deadlock, e, if a fragments
waits for one of the two possibilities above to occur and the minimum-weight spauning tree has not
yet been constructed, then one of the possibilities shall eventually oceur. This is proved in theorem
6.1, A sequential description of Gallaper™s algorithm is shown in figure 1 helow. Under the assumption

that fair seleciions are made In this program, it indeed constructs the minimum-weight spanning tree.

while | # |41
do select aome F' o F
lat £ o (W B LY s
let v minhmum-weighl vutgoing edge of (V' E'); {1}
let F L (WRTY, LY e F osuch that (WY B s adjacent to e, (V" BY) # (V' E')
if L= LA e minimunmn-weight outgoing edge of (V7 K7
then F oo F o FC P O (G (P OV ETDEY O e D11
elif L'« L (2}
then F o F {F P} u{« (WOUV", EuR el L =)
f

ad

Notation: F is a collection of pairs containing a fragment (V', E') of T as its first component
and containing the level of (V') B} as its second component, |#| denotes the cardinality of #,
Initially, F consists of all trivial fragments having 0 as their level, Le,, F={=({i}, #). 0| i € V}
holds.

Figure 1. A sequential version of Gallager’s algorithm.

In the algorithins reported in [D5Y] and [Z580] essentially one fragment is enlarged by appending its
minimum-weight outgoing edge and one node adjacent to this edge, until * has Leen constructed.
As such, constructing T is restricted to a rather strong requirement, not taking into account that
many fraguents could be combined inte larger fragments independently of other vues. In Kruskal's
algorithm K86}, however, many fragments could he combined inte larger ones independently from
cach other, Yet, fragments are combined only if they have the same minimum-weight outgoing edge.
{Although Chou and Gafni [CGBS8| have claimed that they have proved the correctness of Gallager's
algorithm, they have, in [act, verified a distributed version of Kruskals algorithm.) In Gallager's
algorithm wnary fragments can, as in a distributed version of Kruskal's algorithm, be combined into
larger ones asyuchronously from each other. Moreover, as diseussed above, two fragments may combine
sometimes, too, éven when their minimum-weight outgoing edges do not coincide. Consequently,
Gallager's algorithm far more nondeterminisim, ie., more different interleavings, has been introduced

than in those other algorithms.

B0

The additional amount of nondeterminism, on the other hand, obviously complicates the reasoning
about Gallager’s alporithm, because of the vast number of generated computation sequences. Conse-
quently, for any correctness proof of this algorithm some particular strategy must be adopted in order

to obtain a transparent proof. Our strategy is the following one:

{A) First design, starting from the program in figure 1, distributed algorithms which detérmine the
minimum-weight outgoing edge of each of the fragments constructed so far. This part of the
strategy corresponds to refining the statement labeled (1) in the program in figure 1. (How
to accomiplish such a refinement has been described by Back |B88] and by Chandy and Misra
[CM88).)

Part {A) which deals with finding the minimum-weight outgoing edge of a fragment (V7,
E') can be split up into finding such an edge in case

(A1} | V' |=1 holds, ie., (V', B') is a trivial fragment, and

(A2) | V' |1 holds, ie., (V', B') consists of at least two nodes.
Formally, thiz case-distinction can be achieved by a case-introduction [P89]. The intuition
behind this case-distinction is the following: A fragment consisting of a single node can
determine its minimum-weight outgoing edge by a simpie table look-up when each node has
a local table assigning weights to its adjacent edges; for fragments consisting of more than
ane node the nodes in this fragment must, in any distributed implementation, cooperate by

means of messages in order to determine the fragment's minimum-weight cutgoing edge.
(B} Then design distributed algorithms in order to combine two fragments into a larger one. This

part of the strategy corresponds to refining the statement labeled (2) in the program in figure 1.

— Part (B) naturally splits up into two cages:
(B1) One for combining two fragments which are at the same level and which have an
identical minimum-weight outpoing edpe, and
(B2) one for combining a low-level fragments with a high-level one.
(C) Finally, combine the algorithms found in (A} and (B) above in order to obtain one algorithm
which iy the distributed version of the algorithin deseribed in figure 1. These combinations are

accomplished by applying the principle discussed in section 3.3 a finite number of times.

The distributed version of Gallager’s algorithm can now be described in terms of logical tasks, as
if they are performed sequentially, by refining Al, A2, and B] even further. Task 1 describes the

81

refincment of Bl when case Al holds, The task 2, 3, 4, and 5 describe the refinement of Bl when
case A2 holds. (How to incorporate possibility B2 is discussed in section 6.7. Incorporating the latter
possibility has the effect that the sequentially performed tasks may be disturbed temporarily. As

shown in section 6.7, these disturbances do not affect the reasoning about these tasks.)

Task [: when a node starts participating in the algorithm it determines its minzmuom-weight outgoing
edge (as described in Al above) and sends a Copneci-message along this edge. This message serves
as o request from the node to combine with the fragment at the other end of this edge. (A node
which receives this Conrnectmessage also participates in the same task, cf section 3.) Node { in V

participates in this task when executing the program segment labeled 4, in figure 2,
Thereafter the following tasks are performed repeatedly:

Tusk 2 if two fragments have determined that they are at the same level L and that they have the
samne minimum-weight ontgoing edge, then they are combined, as described in theorem 4.2, into a
larger one at level L+L. Node 4 in such a fragment participates in this task when it executes the
program scgment labeled B; in figure 2.

Task 3 the weight of the minimum-weight outgoing edge of the newly formed fragment is determined.
If no such edge exists, the algorithm termninates. Node i participates in this task when it executes the
program segment labeled € in figure 2.

Task 4 if the minimum-weight outgoing edge of the newly formed fragment exists, then the node in
this fragment adjacent to this edge is notified. The reason for doing 50 is explained in Task § below.
Node i participates in this task when it executes the program sepment labeled I2; in figure 2.

Task 5: the node that has been notified that it is adjacent to the minimum-weight outgoing edge (cf.
Task { above) sends a Connect-message along this edge. (As described above, this message serves as
a request from the fragment to combine with the fragment at the other end of this edge.) Node ¢

participates in this task when it executes the program segments labeled E or E7 in figure 2.

Note that their exist actions a in the program described in figure 2, which can be executed by node
i, that belong to program segments labeled A; and to program segments labeled by £f. If node s
belongs to a trivial fragment, then such actions a are considered to be part of the segment labeled Ay
otherwise, Le., if node ¢ belongs to a non-trivial fragment, then these actions a are considered to be

part of the segment labeled EZ.

a2

The program shown in figure 2 below will be explained and analyzed in the sectioms 6.1 through 6.7,
The labeled boxes correspond to the program segments referred to in the description of the tasks
above. We have used Gallager, Humblet, and Spira’s notation [GHS83]. In [SR&9L] we have discussed
how a program represented by a list of responses as below can be transformed into our own notation

for representing algorithms.

4.3 Outhine of the correctness proof

In section 5 we formally specify by means of preconditions p; and posteonditions g; (i€ V) what we
mean by correctness of Gallager's algorithm. Then in section 6 we show that Gallager’s program
satisfies this specification. The proof is structured according to the above description of Gallager’s

algorithm in terms of tasks (cf. section 4.2).
We first analyze in the section 6.1 through 6.5, the programs associated with the tasks 1 through 5.

It is argred in section 6.6 that the programs above can be combined according to the proof pringiple

described in section 3.3 because all its verification conditions are satisfied.

At the last stage of our correctness proof we incorporate the possibility that nodes in some fragment can
be disturbed temporarily in the performance of their tasks by actions of nodes outside this fragment.
{This includes the combinations of low-level fragments with high-level ones.) This is the subject of
section 6.7. It I shown that the reasoning about the tasks described above is not invalidated, since
interference-freedom of specifications can be shown, (For this reason the invariants and the termination

conditions have been carried along in the specifications.)

83

[(1] réponas ta dpanbaiosus aeahening (coh 55iy accur W The noda 12 In [ha alaaping sTata]
axaauts prdbodurs wokoup
(3} peasedios wehooup
bngin
Ist ¢ be ndjarant adge of minimum-waight;
findzann 1= aele} imbranch; In tZii un (=R anidl Snancot{d) do odge © A
ond
13) roponso to roocipt of Clonnact(l) on sdgs o
Bagin g?
AF v —nlerpriig #Hos adovute precodure wake-up B;
T - .
than I asle) hinaeh B
thon f w(ch In i=in41; inbiranch L Rn o =Mad)
fur oll cdycs © 7 % Auch ERAL AA(a J=Rrangh
da wend Taitimin(l, fu. sn) oo o' findeount i—fAndeount+1 od;
bont-zdpr = nili Boat-wi (7o) SRASUES RroAsdars inat
nlye plave cezzived mennngn an nnd of Guana
a
n
ond
(4} ropunse to roceipt of Initista{l, £, a) an adge ¢
Bagin
W aml: fro o =fmn ioosg inbranch —e
£ar wll o e nush thet acte’)=branch
o nend [nitintefln, #n, an) on o' Hodaount (o Andasga 1 gd;
baktowdge c_nil! heat wi i—u; pAsvUle procodure toat
ona
(o} procedure tont
it thava ara adjmanny eilgne in U sbate bnaic
than tantemdyge . — o e weight adjneent sdge in statz basisg
wnnel Tade(ln, fa) Aol tnat nilge
Alih Leakoculge swnil; oxoouto provedure repert
"
B} roponua to racalpt of Twat{l, T} on ndgn -
Tmigioh
if sn—slocping thon vxoouta procodurs waka-up H;
il dawl
thaw plage eecivod eesnue o ond of queus o
LICLIELE T g
thah sowl Avecpl un odgs ©
Al an{r} imrejrctol;
if leztecdpe 7 ¢ thon scnd Regact on odgn « ales axecuts proosdura ter #
¢
n
and
(7 ropenee to recvipt of Accopt on sdga s
bagin
tactemdge 1o nily
i wie)u est-wi thon best-cdye 1= bant-wt (=w{x} A, sxacuts procadurs rapart
end
(2) repunes te roovipt of Fojoct on edge «
begin ne() Trojactad; sxaouts precadurs toa snd
(8} RrGAAANER Fojiuct
if fudeount =0 and tost-odge—nil then in :=found; tand Raport{bsat-wi} an inbranch #
{50) ropanss to racsipt of Hapoart(w) an adgs o
A 2labianan
than Hiudsgunt sl 1
AF welhent-wt than heabocidge (—c; bostwl tew I nxvoude proosedure roport
alan AT an_tind
than piazs racalvad makiags fn aind of gureon
ol if w—boat-wt
then hall
wlre 1f wobost-wi thon Pr d h [}
A
L
a
{1l1) respons to reaipt of Change-floot D,
¥ l '
(13) provedurs shange-root
if mo(bant-wt)=hrancn
thek send Ohange-Root on beat-odge
184 velborioodge) mbranch; scad Connect(in) on beat-sdga ’ I é,
A i

Figure 2. The loop executed by node 7 (i = V) in a distributed version of Gallager's algorithm only Task 1 when

through Task 3 are taken into account. [All variables occureing in this loop are assumed Lo be subscripted by 1)

84

5 Formal specification

In this section we formally state the speeification that Gallager’s program should satisfy, This speci-
fication consists of a precondition and a posteondition, In the next section it is shown that Gallager's

program indeed satisfies this specification.

Let (V, E, w) denote a weighted graph #s in scction 4. Let 1" denote this graph’s minimum.weight
spanning tree. Let § denote Gallager's program (ef. figure 3 in section 6). Since 5 is a distributed
program, each node maintains its own variables to perform its part of 5. Node i’s variahles, for 4 in
V', which play a role in the initial specification are the following: sn; and se{e) for ¢ £ Ey, Variable
&g denotes node '8 node-stetus; Variable sey(e) denotes the edge-status of edge ¢ from node &% point
of view, The values which these variables can take are next described and explained.
Variable sm; (i € V) can take the values
- gleeping, if it has not participated in the algorithm yet,
- find, if the node is participating in its own fragment’s search for determining the minicum-
weight outgoing edge (In section 6.3, it will be made more precise what “participating” in this
context means), and

— found, in all other cases.
Initially each node in V' will be in the sleeping-state, i.e., initially no node participates in the algorithm.

Variable se;(e) (2 € ¥, £ € E}) can take the values
- brench, if the node has determined that the edge ocours in T,
- rejected, if the node has determined that the edge does not occur in T, or as

- basic, in all other cases, i.a., if the node has not yet determined whether the edge oceurs in T

Tnitially each node has marked all its adjacent edges as basic, of course, ie.. initially

Vi € V.Ve € Eqsey(e)=basic holds.

Each node 7 in V maintains its own message queue, gueue;. This queue is nsed to buffer received
messages together with an identification of the edge along which these messages have been received.
If a node’s quene is non-empty, then its front clement may be removed from its queue and eithex'
processed or, as we will see, placed at the end of the queue, waiting for other events to occur. For

each node, the queue’s capacity is assumed to be large enough to buffer all the node’s unprocessed

85

messages, It is not difficult to derive a maximum size such that each queue iz able to buffer these
messages. This is not the subject of this paper, however, Initially, for all nodes 7 in V', gueue; is empty.
Denoting by < the empty quene, we thus require that initially Vi € Viqueue; =< > is satisfied.

Finally, we require that initially no edge contains any wmessapes, i.e., Vi € V.¥e € By.confents;(e)=< >

holds initially where eonterts; (¢) denotes e's contents of messages incoming on node @ (sgV, ¢€ By).

Thus, we have the following precondition p; for each node i

sn;=sleeping A Ve € Bysee)=basic A queuei=<> A Ve £ Ejcontentse)=< >,

Upon completion of the algorithun all messages queues and all channels must he empty, of course, In
addition, the minimwm-weight spanning tree must have been constructed, This implies that each node
has actually participated in the algorithm and that it is not involved in any fragmwent’s scarch for the
minimum-weight outgoing edge, i.e., in the final state for all nodes 4, an;— found holds. Consequently,
we must prove that upon tenmination of the algorithm the following holds:

Vi € Vigueue; =<> A Vi€ VVe ¢ Ficontents(e)==> A

A i & Vsng=found A (V,‘Uv{t:tf E; | sei(ey=branch})=T.

C

We can, however, be more detailed about the posteondition. Observe that if ec B ; and sey(e)}=branch
hold, then this expresses that ¢ iz an edge in 7. Since T is an undirccted Lree, it follows that
sejle)=branch must hold, too, ie, if an edge is in T, then this edpe iz in the branch-state from
the viewpoint of both its adjacent nodes when the algorithm terminates. Also observe that in the final
state ¢ach node should have determined whether an adjacent edge oceurs in T, As a comseguence,
se;(e) stbasie is required to hold upon completion of the algorithm for ali nodes ¢ and for all edges

o K

Altogether, the following postcondition ¢ 18 required:

Vi ¢ V.gueuwe; =< A Vi€ Ve € Epcontentaie)=<> A

AYiE Visni=found A (V, U {e€ E; | sey(e)=tranch})=T A

A Vi€ ViVe € Epse(e) #i;:svic AVi,j € VVe € B j.seie) = sg;(e).

The discussion above leads to requiring that the program § should satisfy the following specification:
[p]5]g] holds, where p is the conjunction of all the nodes’ preconditions p; described above and where
the postcondition ¢ is as above. Here [p]S[g] means: if § is executed in a state satisfying p, then

5 always terminates in a state satisfying g (total correctness), Observe that the above specification

28

can he easily satisfied when the network consists of one node only. Consequently, in the remainder
of this paper we assume that |V'|>2 holds (the network consists of at least two nodes). In addition,
it is assumed that the network contains no self-loops, Le., for all node ¢ in V, E;;=0. The reason
for imposing this restriction is that the program in [GHS83| describing Gallager’s algorithm does not

necessarily construct 7 when the network containg self-loops. (This is shown at the end of section 6.)

6 Gallager’s algorithm

In this section it iz shown that Gallager's program (cf. figure 3 at the end of this section) meets ite
specification. This specification has been formuolated in section 5. As argued in section 4 expanding
groups of nodes will repeatedly perform a certain tasks. For a single node which forms a fragment,
of its own this task consists of finding its minimum-weight outgeing adjacent edge and sending =
Connect-message along thiz edge (('.f. gection 4.3). In section 6.1 it is shown how this task can be
golved. The task of combining two fragments, the task of determining the weight of the minimum-
weight outgoing edge, if any, the task of nmifying the node in the enlarged frag'ment that it is adjacent
to the fragment’s minimum-weight outpoing edge, and the task of sending a Connect-message along
such an edge performed by a collection of more than two nodes are analyzed in the subsections 6.2
thromgh 6.5, The tasks are combined by repeatedly applying our principle (see section 3.3). This is
the subject of section 6.6. In section 6.7 the combination of low-level fragments and high-level ones

are analyzed,

6.1 The start of executiion

In this subsection we analyze the distributed program which solves task 1 (¢f. section 4) of deter-
mining & node's minimum-weight outgoing edge, when it forms a frapment of its own. A node starts

participating in the algorithm when one of the following occurs:

- it responds to some command from & high-level procedure t0 initiate the algorithm (an “external
trigger”), or
- it receives the first (algorithm-)message transmitted by some node in the graph (an “internal

trigger”).

87

A node can respond only to some coromand from a high-level procedure to initiate the alporithm if it
18 in the sleeping state. Since the structure of such a procedure is of no interest for the algorithm, we
ignore such procedures. Instead, a node in the graph can initiate the algorithm according to its local
information, that is, if it is in the sleeping state, by Sawakening sponcancously”. Many nodes in the
uctwork can awaken spontancously, asynchronously from each other, and initiate the algorithm. We

require, however, that a node can awaken spontaneously only if it is in the slecping state,

When a node starts participating in the algorithm according to one of the two above-mentioned
possibilities I determines its winimun-weight adjacent, hence outgoing, edge, marks this edge as a
branch, and goes into the found state. Tt then transmits a Connect-message along the edge marked
ag branch. Lhe node (at the other end of this edge) that receives this message will participate in this

task, too. We consider here the program 5 defined below.

Definition 6.1 Program 5, which solves the task considerd here, is the parallel composition of
consisting of the program segments labeled by A; in figure 2 where 1 is an element of the smallest set

of nodes V' such that

- at least one node hay “awakened spontaneously” is in this set, and
- for all nodes § in this set, if j's minioum-weight outgoing cdge is adjacent (o node £, then £ js

it thix set, too () becanse node # will reecive a Connectmessage from node 7). B

This conchudes the description of the first task in which a trivial fragment will participate.

In figure 2 node i's actions associated with this task have been labeled by A; The variable sny denotes
nade 17 (node-)status; Ing denotes the level of node i's fragment as far as “known” to 4; sei(e) records
the edge-status of edge ¢ adjacent to node 1. The initial value of the variable {a; is ireelevant, Note
that vach node i also maintains a vardable findeount;, This vaciable, whose initial value is irrelevant,
oo, could have been omitted ay this stage, Its significance will become clear when reasoning about

another task (see section 6.3),

For the program 3y defined above (see definition 6.1) the following holds: (recall that V' denotes the
set of all nodes that participate in the task considered here)
Lemma 8.1 Assume that the precondition p = Ao p; holds,

where p; = sny=sleeping A Ve € Epaegle)=basie N quene;—<> A Ve € Ei.contents;(g)—<> (scc

88

section 5), Le., for all nodes ¢ in V' and for all edges e in E;, sn;=sleeping, se;(e)=basic, and all

message queues and all edges are empty are satisfied initially. Let ¢ he some node in the set V'

(&)

=
=

fAy

(d)

=
Z

{g)

If node ¢ executes the procedure wake-up, then in particular sn;=sleeping A Ve € Ejsn;=basic
holds as a precondition. As a postcondition for this procedure the following holds:

sng=found A findeount;=0 A 3¢ £ E,;.(se;(e):bmnch AVe' € Bu(e #o = m.-,-(s,:’)=b¢az‘c)), L,
node i is in the found state, its variable findcount; has heen assigned the value 0. In addition,

except for one edge marked as braneh all other edges adjacent to node ¢ are marked as basic.

For all nodes i in V', (Ve € Ejsei(e)=husic) 5 sny=slecping is an invariant of the program

above. Also, sn; #sleeping = {In;=0 A findcount;=0) s an invariant.

1f sn; 7 sleeping holds at & certain peint during execution, then it remaims so afterwards, (This
implics that the procedure wake-irp can be executed at most once.) If for a certain edge ¢ € E;,

se;(e)=branch holds at a certain point during execution then it remains so afterwards,

For all 1€ V', (sm=sleeping vany=found) A Ye € E;{se;(e)=basic Vse;(e)=branch) is an invari-

ant.

If there exists some adjacent edge ¢ of node ¢ marked az branch, then « 15 the minimum-weight

outgoing edge of the fragment ({i}, #).

Upon completion of the program 51 all edges connecting two nodes in V' are empty and there
exist exactly two neighboring nodes in V' that have a message Connect(0) in their message

quenes, These messages have been received along their adjacent edges in the state branch.

A node 7 eventually completes ity participation in the propram above, This oecurs when node
i transmits the message Connect(0) along its minimum-weight outgoing adjacent edge. (This is

the termination condition T; of node ¢ for the program above.)

Froof

Al these properties are verified straiphtforwardly. As an example, we show how property {c) ¢an be

established. That is, if se;(e)=branch holds for a certain node during exceution of program 87, then

wdge € is the minimum-weight outgoing edge of the fragment ({i}, @).

Initially, all node i's adjacent edges are in the basic state. An edge can be marked as bramch, only

if node ¢ performs the assignment se;(e):=branch when executing the procedure wake-up. Obviously,

39

prior to the actual execution of this assignment edge ¢ has been selected to be the minimum-welght
adjacent edge of node 4. Since the graph contains no self-loops, property (e) clearly holds. (In fact,
we have imposed the restriction that the graph contains no self-loops in order to ensure property (¢).
Ax shown in section 6.8, Gallager’s alporithm does not necessary construct T when this restriction is

not satisfied.) m

Hereafter we will denote the minitoum-weight outgoing edge of some subgraph & of (V, E) by
minmedge(7), If the minimum-weight outgoing edge of (7 does not exist, then minwedge(G)=nil

holds, where nil denotes some fictitious edge.

6.2 Combining fragments at the same level with the same minimum-weight out-

poing edge

In this subsection we will concentrate on the program associated with task 2, see section 4.2, which
deseribes how two fragments F' and P at the same level L and with an identical minimum-weight

outgoing edge are combined into a fragment at level L+1.

Recall that a fragmment of T has been defined as some non-empty subtree of 7. This is a graph-
oriented notion. Accordingly, a fragiment is some static entity, Observe that fragments are enlarged
when Gallager’s program is executed. In order to reason formally about this program we need to
define fragments (constructed so far) in terms of program-variables. This leads to the notion of a
Bfragment of T (see definition 6.3 below). Intuitively, a B-fragment of T is some subgraph of (V,
FY constituting a fragment of T such that each cdge in the B-fragment is marked as branch from the
viewpoint of both its adjacent nodes. Notice that if for a certain node 1, se;(e)=branch holds, then the
newde § at the other end of ¢ does not necessarily belong to the same B-fragment as 5. This is the case
when sej(e)#branch holds, This may occur, ¢, in the program associated with the first task (see
section 6.1), There we could have that se;(e)=branch, when e is the minimum-weight adjacent edge of
node ¢, while ae;(€)=-basic holds, if e is not the minimum-weight adjacent edge of node j. This means
that the property se;(¢)=se;(e) is not an nvariant for the program describing Callager's algorithin

(4,7 &V, e € Ey). This observation leads to the notion of a B-graph, defingd next.

Definition 6.2 A subgraph (V', EY) of (V, E) is called a B-graph iff (i) and (i) below are both
satisfied:

90

(i) (V', B'} is connected.

(i) Vi,j € V' Ve € Byy.le c B m(sei(e)=asj(e)=bmnch)), i€, it is a graph in which all edges are

in the brench-state from the viewpoint of both its adjacent nodes. B
Lemma 6.2 Any connected subgraph of a B-graph is a B-graph itself. M

Intuitively, if se;{¢)=branch holds for some i€ V and ¢€ F;, then ¢ is an edge in 7. This suggests
defining fragments of T in terms of B-graphs. In order to do so first notice that B-graphs may
be empty. This is an immediate consequence of definition 6.2. This implies that a B-graph which
constitutes a subtree of T iz not necessarily a fragment of 7. Consequently, to define fragments in
terms of B-graphs we need to refine the latter notton. To do o0, observe that the earlier high-level
description (see section 4.2) implies that fragments are enlarged. Therefore, if two nodes i and j are
in the same B-graph at some point during execution of the algorithm, then they will remain rematn in
- the same B-graph afterwards, Also, if a B-graph (V', E')C T has been constructed, when performing
the algorithm, then there is no need to consider any proper subgraph of (V') F'), of. lemma 6.2, in
order to find its minimum-weight outgoing edge, since this edge has been found carlier. Consequently,
it suffices to consider mezimal B-graphs in order to find their minimum-weight outgoing edges. This

observation leads to the following definition:
Definition 6.3 A B-fragment of T is a maximal B-graph of (V, E) constituting a subtres of T. W

By definition, a B-fragment of T is non-empty. It follows that any B-fragment of T is a fragment of
T. As T is the unique minimum-weight spanning tree of (V, F) we will use the term B-fragment as
an abbreviation for the notion B-fragment of T Also, the terms B-fragment and fragment will from

now on be used interchangeably.

It remains to define the level of a B-fragment in terms of program-variables. Since ¢ach node i € V'
maintains a variable Iny to record the level of its own fragment (as far as “known” to that node), it
is convenient to define this notion in terms of the variables In;. Note that for a fragment of the form
{{i}, @), In; may be undefined when sn;=sleeping holds. We simply define the level of such a fragment
to be 0. In all other cases the level of a fragment is the maximal value of the variables In; for nodes d

in that fragment.

o1

Definition 6.4 A B-fragment (V', B') is defined to be at fevel 0 when for all nodes ¢ € V', an;=alseping
hobds. In this case we refer to (V', B') as a sleeping fragcnt. Otherwise, the fragment is called non-

sleeping, The level of a non-sleeping B-fragment (V') E'} is defined to be max{in; |i ¢ V'}. #

Remark:

(i) A sleeping B-fragment is always of the form ({i},0), i, it consists of one node, This is true
becanse it will follow from our correcthess proof that any node not in the sfeeping state hag exe-
cuted the procedure wake-up exectly once and that for all nodes ieV, edges e By, an; Faleeping

and se;(e)—branch are invariance properties (cf. the lemmata 8.1, 6.3, 6.6, 6.9, and 6.10).

(ii

We will show that if (V', F') is a non-sleeping fragment then for all nodes § € V', In; is defined
and In; 20 is satisfied, of the lemmata 6.1, 6.3, 6.4, 6.7, 6.9, and 6.10. 'This implies that the

level of any fragment is well.defined, m

After this preparation we now forus on how two fragments £ and F” at the same level and with the
same minimum-weight ontgoing edge are combined into a larger fragment.

A fragment £ ad level I that has found its minimum-weight outgoing edge, say ¢, informs the fragment
at the other end of edge ¢ about its level and minimum-weight outgoing edge by sending o message
Conneet(L) along e, Assume that the fragment 7, F' # K", is adjacent to edge e. If F" is at
level L, too, and if F" has informed the fragment F' that it iv at the same level and that is has the
same minimum-weight outgoing edge, then ' and £ are combined into a fragment at level L+1, (If
fragment K is at level L and has transmitted a Connect-message along another edge than ¢, then
the node of F' that has received the Counect-message will delay this message, since no rule can be

applied for combining F' and #" into a larger fragmoent (cf. section 6.7),

We now assume that at some point during exceution of Gallager's algorithm the following holds:

Aszzumption 1.

F'=(V', E') and F":(V”, E") are two non-sleeping fragments, both at level L with the same

minimum—w(‘.ight mitgoing eclge em
We also assume the following

Induction hypothesis (IH):

92

{a) If F is some fragment at level L' < L and F transmits & Connect-message along edge e, then
this Comnect-message carries argument L' and e=minwedge(F) holds. Also, whenever the node
of fragment F adjacent to edge e transmits the Connect-message along edge e, this edge is in

the dranch-state from the viewpoint of that node, In addition,

(b) Whenever 4 node in F' transmits & Connect-message along one of its adjacent edges, sn;=found

holds for all nodes i in . m

The intuition behind IH(b) above is the following: when a fragment’s minimum-weight outgoing edge
has been found and when a Connect-message has been sent alomg this edge, then all nodes in the
fragment have completed their contribution to the search for the minimum-weight outgoing edge of
the fragment. It then follows from the intérpretation of the variables sny, i € V', that sn;=found

holds at the start of the program associated with the task considered here.

Rernark: As we have scen in section 6.1 a zero-level fragment transmits a message Connect{0) on its
minimum-weight outgoing edge when awakening, Also, this edge has been marked as a branch and the

node 15 in the found-state when such a transmission occurs, This establishes the basis of induction, B

Recall that we consider the case in which fragments F' and F" have been formed. Suppose that the
nodes I’ € V' and {" € V" have exchanged Connect-messages along edge e, By assumption 1 and by
the induction hypothesis ([H), see above, the Connect-messages carry argument L and edge e is the
same as minwedge(F'} and as minwedge(F''). It follows that e=¢' holds. From {IH) we obtain that
both nodes £ and ¢" have placed the edge ¢ in the branch-state. It follows that at that time a new
frapment F"'=(V"", E™)=(V' U V", E'U E"U{¢'}) has been formed. (Recall that we have assumed
that ™=(V', E') and F'=(V", E") hold.) The edge ¢ is called the core of the fragment F'™. This
notion plays an important role in Gallager™s algorithm (section 6.3). When the fragment I has been
formed a new task is being started by the nodes in V'™, This task consists of recording that fragment

F™" is at level L+1.

We assume that the fragments F' and P, just before combining into the fragment called F™ satisfy
property 1 below. This property states that any edge in F’ or F” has the same {edge-)status from
the viewpoint of both its adjacent nodes. Maregver, if some node in one of the fragments F' or F"
has placed an edge in the rejected state, then this edge connects two nodes in the same fragment.

Formally, we assume

93

Property 1. For all nodes 4,7 € V and for all edges e € E; ;,
(a} 4, € V' = sei(e) = 2e;(e) and
(b) se;(e}=rejected =» j & V' hald.
Similarly, we require that (a) and (b) hold with V/ and E' replaced by ¥ and E" respectively. B

Note that property I is satisfied if F* and F" are zero-level fragments which start participating in the

task constdered here.

How can this task be accomplished? Ie., how can the newly formed fragment F' be placed at level
L+1? The answer is simple: the two nodes i adjacent to the minimum-weight outgoing edge &' of the
fragments F' and F", from which fragment F"" has been constructed, assign the value L+1 to their
variables [n; after having exchanged the message Connect(L) along edge . This is achieved hy the

program 5. defined below.

Definition 4.5 Define the program 83 by Sz =|licvuye B (cf. section 4.3). Recall that V' and V¥

denate the set of all nodes in the fragments F' and F" respectively. B

Observe that in this program variables fn,, sny, and inbranch: occur. The role of the varinbles fn;
and inbranch; will be explained in section 6.3; the reason for placing the variable sn; in the find-state,

for nodes adjacent to edge & is explained in section 6.7. W.r.t. these variables the property formulated

below holds,
Property 2: For the fragment 7' and for all nodes i in P,

{a) i In; >0 holds then fn; is defined, In particular, if fn; is defined, then its value is the weight

of some edge in F™, ie., for a certain edge ¢ in F", fn;=w(e) holds,

{b) the values recorded by the variables sn; are different from sleeping, ie., sn;=find V found holds.

Note that if & node 4, with In;=0, enters the task considered here for the first time, then property 2
holds,

04

Let i be the node in F' that has transmitted the message Connect(L) along cdpe &' Similarly, let
" be the node in F" that has transmitted the message Connect(L) along edge ¢'. In ordet to reason
about the program Sy we assume that the following precondition for this program holds: all edges
connecting nodes in the fragment F* are empty, the message queues of nodes in F™ are empty, the
nodes i’ and " are at the exit point of the statement “if sn;=sleeping then execute procedure
wake-up fi” in the segment labeled (3) in figure 2 (i £{#, :"}), and all nodes & in V™ different from
the nodes ' and " are waiting for the receipt of some message. (Below, the last two requirements
are denoted by loc;=after“if sn;=sesping then execute procedure wake-up fi” for ¢ €{i', i"} and
by locy=at“queue;” for nodes 1 € V™" —{#, {"} respectively, where the varizble loc; denotes node i's

program counter.) Formally, we make the following

Assumption 2: When the program Sy iz executed,

Vi@ V" Ve ¢ EY contents,(e) =<3 A

A Vie V" gueue; =<= A

AV efif| i) Jooy=afterif sn;=sleeping then execute procedure wake-up fi” A

AVE ¢ VP {i',{"} loc;=at"gqueue;” holds in the initial state. W

Note that assumption 2 holds when F' and F" are zero-level fragments which start, for che first time,

participating in the task considered here.

Lemma 6.3 Assume that agsumption 1, assumption 2, property 1, property 2, and the indnction

hypothesis (IH) all hold. Then the following holds for program S,
{a) The assertions formulated in property 1, property 2 (a), () hold during éxecntion of the program,
i.e., they are invariance properties, Moreover during execution of 53 no variable se; (e} is ever

changed (1 € V' e ¢ Ey).

{(b) Upon completion of the program, the fragment F™ is at level L+1. Morc precisely, we have
that upon completion of the program Ing=iny=L+1, inbranchy =inbranchy=e', and Vi, j €
V"—{i,i"}.In; < L hold. (Recall that i' and ¢" denote the nodes in V™ that have exchanged
(enrect-messages along the minimum-weight outgoing edge of F' and F”, and that this edge is

denoted by ¢'.)

{¢) Upon completion of the program sny=snp=find and fny=fnp=w(e’) are satisfied. Moreover,

all edges eonnecting the node V™ as well a5 all messages queues of nodes are empty.

95

In addition, ¥i ¢ V" —{¢', '}.eny=Ffound holds.

{d) A node 1 adjacent to edge ¢ completes its participation in this task iff an;=find L.e., if loc;=after

Uy c=find”, where the assipnment sn; =

nd occurs in the program segment B Node f
not adjacent to edge ¢ completes its participation if loc;—at %guene; holds. (These are the

teriination conditions.) Tn the latter case node ¢ will nat participate in Sy at all. =

6.3 Finding the minitnum-weight outgeoing edge of the fragment just formed

We pext analyze the program assoctated with task 3 (ef. section 4.2),

After the fragment 7 has been formed and after it has been placed at level Ly L the nodes in 7'
must determine the fragment’s minimum-weight outgoing edge, if any. Any such edge ¢ must be in
the state besie from the viewpolot of the node in F' which is adjacent to e, This is true becanse for
any edge ¢ € Eyy, ie VY, j e ¥, we have that

segle)=branch = § C V" and

sei{e)=rejected = § € V" hold,
This follows from property 1, assumption 1, and the induction hypothesis (TH) above, Consequently,

any outgoing edge of the fragment F™ must be in the state basic
Intuitively, sei{r)=>basic holds for some ¢ C V, ¢ < By, if

- ¢ has not been investigated before by 4, Le., § has not tested whether ¢ 1s an outgoing edge, or
- ¢ has been investigated before by ¢ and has been found to be an outgoing edge, but edge ¢ has

not been the minimun-weight outgoing edge of node ' fragment (at that time).

b order to determine its minimumeweight outgoing adjacent edge, a node conld select its manimam-
weight outyoing adjacent edge in the state basic and send a so-called Test-message along this edge.
The node at the other end of that edge should then determine whether this edge joins two nodes in the
same fragment. The problem with thiz “solution” is that the decision whether an edge i an oulgoing

one has now been shifted to the receiver of the Tesi-message.

The desiguers of Gallager's algorithm have proposed a very elegant solution for determining the
minioum-weight outgoing adjacent edge of some node in P if such an edge exists. This is de-

seribed below. Any newly formed fragment carries o name. This name is supplied to cach node in

6

the fragment. The question arises, of course, how to assign names to fragments, since one has to en-
sure that distinct fragments have distinet names. In Gallager's algorithm the neme of any non-trivial
fragment s the weight of ds core (cf. section 6.2 where we have described the notion of a core). The
assumption that distinct edges have distinct weights will ensure that any non-trivial fragment has a

unique name. Since &' is the core of the fragment F'", the weight w(e') is the name of this fragment.

Now, after the fragiment F™ has been placed at level L+1 each node in the fragment is supplied with
the fragment’s name. In order to do so the two nodes i and i adjacent to the core start hroadcasting
an Fnitiate-message carrying the weight wie') as an argument to nodes on their “side” of the fragment
F"_ i, node i’ and node 1 start broadcasting an Initiate-message to nodes in F' and to nodes in
F" respectively. Except the name, the Initiate-message also carries two other arguments: the new
level and the argument find, The significance of the level as an argument will be explained below; the
significance of the argument find will be explained in section 6.7. Upon receipt of an Initiate-message
node 7 records the new name in its variable fa; (thas, fn; records the name of its frapment as far as
“known” to node {) and the new level in its variable In;; Furthermore, the node is placed in the find-
state, Le., the variable an; 15 assigned the value find. Then the edge along which node 4 has received
the Initiate-message is recorded in the variable inbranch;. The reason for doing so will be explained
below. Thereafter the Initiate-message is sent by node i along all its adjacent edges in ™ except the
one identified by its variable inbranch;. As sach this broadcasting is similar to the broadcasting of

information in Segall's PIF-protocol [SeB3] when the graph constitutes a tree,

After a node in F™" has sent the initiate message to all neighbors “downtree” in F¥' it starts searching
for its minimum-weight outgoing adjacent edge, For this purpose, as argued above, it suffces for nodes
to inrvestipate edges in the state bosic only. Now, if a node has no outgoing edges in the state baste,
then it is done. (It has no outgoing edges.) Otherwise, it sends a Yest-message on its minimum-weight
adjacent edge in the state basic. This message carries two arguments: the fragment’s (new) name and
the fragment’s (new) level as it has been recorded by the sender of the message.

A node receiving the Test-message waits until its own level (recorded in the variable In) is greater
than or equal to the one in the Test-message. (The reason for this delay is explained below.) If so,
it checks whether the name of its own fragment equals the one in the Tesfmessage. In case these
names coincide, it sends a Rejectressage back to the sender of the Test-messape, This Reject-message

serves for informing the node at the other end of the edge that the edge connects two nodes in the

r

same fragment. If, on the other hand, the name of the node receiving the Tesi-message differs from
the one in the Tesi-message, then the two nodes belong to different fragments. The receiver of the
Test-message will, in this case, send an deeept-moessage back to the sender of the Test-message in order
to inform this node that the edge connects two nodes in different fragments. These conventions enable
nodes to determine whether edges are outgoing ones (see claim 1, claim 2, and assumption 3 below).
The reason for a node recelving a Test-message to wait until its own level is greater than or equal to
the one in the Tost-message is the following: if a node receives a Test-message with a level greater

than its own level, then

it conld be in the same fragment as the sender of the Test-maessage, while it has not yet received
the new name and the new level, ar
- it could be in another fragment than the sender of the Testmessage (thus, with another namne,

if any).

Consequently, if the level of the receiver of the Test-message 15 too low, then it has no way of determin-
ing which of these cases actually occurs, This problem is solved by inchiding the delay. In theorem 6.1
we show that this delay does not lead to a deadiock, (In the program describing Gallager's algorithm
a node delays some message from beinp processed by replacing it at the end of the node's message

queue,)

A node that has received a Rejecbamessage along one of its adjacent edges places that cdge in the
rejectedstate, since the edge connects two nodes in the same fragment, and continues its search for its
minimum-weight outgoing adjacent edge by selecting the next possible one and sending a Test-message
along this edge.

In some cases, a response to a Test-message is superfluous. The designer’s of Gallager's algorithm have
achieved some optimization w.rt. the number of transmitted messages sent by nodes participating in
the task considered here: if a node has transmitted a Test-message along, say, edge e and it receives
a Test-message with the same name and level ag its own, then it simply marks the edge as rejected,
since the nodes adjacent to this edge have the same name and, thus, belong to the same fragment, and
continues its search for the minimum-weight outpoing adjacent edge immediately, without sending a

Reject-messape along this edge.

I a node has received an decept-message as a response to one of its Test-messages, then it has found

its minimum-weight outgoing adjacent edge.

93

After finding the minimum-weight outgoing adjacent edges, the nodes in F" must cooperate to de-
termine the minimum-weight outgoing edge of F™. At this stage the significance of the variables
inbranch;, for nodes ¢ in V', becomes clear. Due to the variables inbranch;, each node in F' is able
to traee the path to the node adjacent to the core “om ity side of the fragment™ This is true becanse
each node in F™ has recorded the edge along which the nitfete-message has been received and the
Initiate-messages have fiown from each of the nodes adjacent to the core “downtree on its side of the
fragment F''".

Before actually determining the minimum-weight outgoing edge of F'”, the weight of this edge is
determined. This part of the algorithm is very similar to the reporting phase, describing that the
required information has been received indeed, in Sepall’s PIF-protocol: each leaf in the fragment £
sends a Report-message “uptree”. This message carries the weight of its minimum-weight ocutgoing
adjacent edge. In case no such edge exists, this “weight” equal the fctitious weight s, An interior
node waits until it has recetved afl Report-messages from the nodes “downtree”. Thercafter it zends a
méssage Report(W) “uptrce”, W being the minimum of all the values received in the Report-messages
and the weight of its own minimum-weight outgoing adjacent edge. Then it goes into the found-state,
since its own contribution to its search to the minimum-weight outgoing edge of the fragment F™ has

been completed. This contribution of 2 node in F to the task considered here thus consists of

~ cooperating in supplying the nodes in F"' with the new name and level of their fragment,
- finding its own minimum-weight outgoing adjacent edge, and
- reporting the minimum of the weights of the minimum-weight outgoing adjacent edge, including

its own, of nodes “down-tree”.

Eventually, the nodes i’ and i" adjacent to the core will exchange the Report-maessages. This enables
these nodes to determine whether an outgoing edge of the current fragment F'" existz, If so, these
nodes are able to determine the weight of this edge and, also, on which side of the fragment this edge
lies. Otherwise, ie., if no outgoing edge exists, the algorithm terminates and the fragment F"' is the
minimum-weight spaoning tree 7 of the graph (V, F) (cf. theorem 4.2(b)). This discussion concludes

our description of the task considered in this subsection.

The program associated with this task congists of, for each node ¢ in F'”, the program segments labeled
C; in figure 2. The program |lizy» C; does not describe the task, however. (Recall that V™" denotes
the set of all nodes in the &ragment F™.) The reason is that nodes cutside the fragment F™ also

99

contribute to this task, because they may send Accephmessages (and not otherwise) to nodes in F*"
when they respomd to Test-messages received from nodes in F". Consequently, we must alse include

the program segments of nodes outside F'" that are activated to send Accept-messages.

Definition 6.6 Let, for nodes 7 outside the fragment £ which are connected by some cdge with a
certain node in F, the segments labeled (6) in %5 loop in fguze 2, vis, “response to receipt of
Test{l, f) on edge «" where ¢ is adjacent to fragment F', together with their bodies be denoted
by Ti. Tet N(V™) denote the set of all those nodes outside V™ which are connected by some edge
with a certain node in V"', The program associated with the task considered here is then described

by Sy = ([licve Ci) | i wgyery Ti)-

In the program Sz below, apart from variables already described, one can discern the following vari-

ables:

- test-edge;, to record the edge being tested by node @ for outgoingness,
beat-wit;, to record the minimum-weight of all the weights received so far from nodes “downtree”
andd the weight of node ' own minimum-weight outgoing adjacent edge (r,let.e.rmim’d 5O f;-u'),
and

- best-edge;, to record the edge that has supplied node § with the value recorded by the variable

bezst-wid;.

Nate that the variables findeount; are used to determine whether all Reportmessages from node 4

neighbors “downtree” has been received {¢f. lemma 6.4(f) below).

Lemma 6.4 Assume that assumption 1, assumption 2, property 1, property 2, and the induction
hypothesis (IH) hold. Let program S3’s postcondition (cf. lemma 6.3 above) be program S3's precon-

dition. Then the following holds for program 5y:

(a) vie V”’.(sn,;:ﬁrzd V sng=found) A

AV e V" Ve € Fp{see)=basic V se;(e)=rejected V seg(e)=branch) is an invariant.

(b) For all i € V™, i &{i', i"}, i will receive the message Initiate(L+1, w(e), find) exactly once and
no node outside V' will ever recejve this message. (Recall that i’ € V' and #" € V" are the

two node adjacent to the core ¢f of the fragment F™.) Any such nitiate-message received by a

100

(g)

certain node in V™ has been transmitted by its father node when the fragment F"' is assumed
to be consisting of two fragments rooted at the nodes " and i, The edge along which the
Initiate-message is received hy node { is recorded by the variable inbranch;.

Eventually, the following is sativfied:

Vig VM .(l=L+1 A fry=w(e') A sn;=find), and taking into account the directions of edges as
suggested by the variables inbranchy, ie, if inbranchy=¢ then edge ¢ is directed from node ¢ to
the node at the other end of ¢, we also have that

(V' {tnbranch; € E' | i € V'}) forms a directed tree rooted at node ' and

(V" {inbranch; € E" | i € V'"}} forms a directed tree rooted at node ¢,

Furthermore, inbranchy = inbranch; = ¢' is an invariant.

For all nodes ¢ € V™, i #{i', i}, if node { has received the Initicte-message along edge ¢, then
rebranch; = ¢ holds as a posteondition for the bhady of “response to receipt of Initiate(!, f,

2) on edge e" and it will remain so afterwards,
For all &€ V™, In; is non-decreasing,

If node ¢ £ V" transmits an Inftiate-message along edge e, then se;(e}=branch holds as a pre-
condition for the corresponding action. Tt transmits such a message before it transmits any other
messages associated with this task.

If node 7 € V™ receives an Initicte-message along edge ¢, then sei{e)=branch holds as a precon-

dition for the corresponding action.

For all 1 € V", at ¢ach point in any computation sequence if findeount;=n holds for some
natural number n, then n equals the number of Initiate-messages (with third argument find)
minus the pumber of Report-messages processed by node i that have been reecived along edges

different from the one identificd by inbranch;.

No node in V" will receive a Connect-message from any other node in V", &

The proof of the above lemma is straightforward.

The most difficult part of the program S, and of Gaﬂagﬂr’ﬁ algorithm, is that part associated with

the actual search of minwedge{F") on which we shall now concentrate.

According to the description of the task considered in this subsection ¢ach node in V'™ will, at any

101

time, investigate at most one edge when it is searching for its minimum-weight outgoing edge. This
observation leads to the notion of an wnanswered Testmessage. Intuitively, a Test-message is unan-
swered 1f it has been transmitted along some node’s adjacent edge and the node has not yet determined

whether thal edge is an ontgoing one.

Definition 6.7

{a} A node 1 ¢ V" has an wnenswered Test-message on edge ¢ € Fy iff ¢ has transmitted o Test-
megsage along edge e and the following holds: se;(e)7#rejected and ¢ has not processed an Aceept-

message received along e after it has transmitted this Test-uessage.

{b) Node i ¢ V™ has an wnanswered Test-message iff ¢ has an nnanswered Test-message on some

edge e € ;. W

Obviously, if a node receives a Reject-message or an Aecepi-imessage along one of its adjacent edges,

then the node has an unanswered Test-message on this edge.

We ¢laim that when a node in 2™ starts participating in the task described by the program Ss it has

no unanswered Test-messages. This holds becanse of the following:

- When anode in F™ participates in the tasks described in the subsections 6.1 and 6.2 it does not
send any Test-messages. During execution of the programs 5y and 55 which will be introduced
in the next two subsection no Test-messages will ever be sent by any node ¢ in F", (This s
obvious from S4’s and Sy's program texts.}

- When a node starts participation in the task described in this subsection for the first time, that
is, after a fragment consisting of a single node has been combined with another fragment as
deseribed in section 6.2 for the first time, it has no unanswered Test-messages.

- When a node has completed its participation in the task described in this subsection it has no

unanswered Test-messages (cf. lemma 6.8(a) below).

As a consequence, the following lemma is true:

Lemma 8.5 For all nodes 7 ¢ V7,
(a) At any time 7 has at most one unanswered Test-message.

102

(b)Y If i has some unanswered Test-message on edge & (g € E;), then test-edge;—¢ holds.

Proof

Both (a) and {b) are proved by an inductive argument.

From the discussion above it follows that, in order to prove the lemma, it suffices to show that the
properties (a) and (b) are satisfied for the program Sy. From same discussion it follows that (a) and
{b) hold in the initial state of the program 5.

Now suppose that (a) and (b} hold up to a certain point in a computation of Jy (the induction

hypothesis).

{a) If node i has some unanswered Test-message and transmits another Test-rpessage thereafter,

then node 4

(i) differs from the nodes i’ and " and it responses to an Mniffate-message, Le.,

it executes the program segment labeled (5) in figure 2,

(if) is cither ' or " and it executes the program segment labeled (3) belonging to the part

labeled €} in figure 2,

{ili) responses to some Test-message received along edge ¢ where test-cdge;=¢ holds, (cf. the

program segment labeled (8) in figure 2), or it

(iv) responses to an HRejechmessape, Le,,

it executes the program segment labeled (8) in figure 2,

Case (i) cannot occur, since this implies that o Test-message has been sent by node ¢ before it
has transmitted an Initiate-message, which contradicts lemma 6.4(e), or it implies that node ¢
receives more than two Mitinte-messages during execution of the program 5, which contradicts
lemma 6.4(b).

Case (ii) cannot oeeur because of lemma 6.4(g).

If case (iil) occurs, then, by the induction hypothesis, node #'s unanywered Test-messape has been
transmitted along edge €. This mescage, thus, becomes answered, ie., not unanswered, when
it processes the other Test-message. Therefore, when node i transmits the latter Test-message
it has no unanswered Test-messages. By the same argument it can be shewn that the lemma

remains true when case (iv) above ocours.

103

(b} The proof should now be obvious, o

Using lemraa 6.5, it s straightforward to prove that the following holds when the program 8z is
execnted:
Lemnma 6.6 For all nodes i ¢ V* and edges ¢ £ I; (thuy, esnil holds),

{a) 14 has an unanswered Test-message on edge #, then sny=find holds,

(13) A Test-message can be transmitted by i only efter it has transmitted an Initiate-message (with

third argument find), and whenever ¢ transmits & Tast-message sngs=find holds,

—_
=

If i recoives an dccept-message on edge e, them sny=find A sej(e)=basic A test-edge;=c holds.
H ¢ executes (an ocenrrence of) the assigunent seg(e) s—rejected, then se,(e)=bagic holds as a

precondition.

=

If 7 tramsmits a Test-message along edge ¢, then e is the minimum-weight adjacent edge of ¢ in
the state besic, and § will never receive two or more messages of the tollowing type along this
edge while performing the program S3: an Aeeept-, & Refect, or a Testmessage with its own

BAIG a5 Al Arguinént.

L]

Qnee ¢ is in the branch-state from node 4% point of view, then it remains so afterwards.
During execution of the program Yy no edge 18 placed in the branchestate.

Oucee ¢ is in the rejecled-state from node #'s point of view, theu it remains so afterwards. ®

Since the weight of the core is chosen as the name of any non-trivial fragment, we also have the
following lemma, whose proof is obvious,
Lemma 6.7 For all nodes § € V',

(a) If i receives a messape fuitiole(l, £, s), then fny # f holds as a precondition, Here, we assume

that if #n; does not have a defined value, then it differs from any defined value.

{b) The variable fn; (for wode i different from ' and i) can change only, possibly from an undefined

value to A defined one) after node 1 has received an Initiole-message.
(¢) TF i receives a message Muitinte(l, £, 8), then In; < I holds as a precondition. B

104

It also follows that when two nodes are combined itto a larger one always 4 new name is ¢hosen. Thiy

is an immediate consequence of the fact that when w(e) is chosen to be the name of a fragment, & is

an cdge of that fragment while before that moment e has not heen in that fragment. Consequently, it

follows from lemnma 6.7 that any name ocours at most at one level.

Next, consider the case that a certain node 7 in V™ has an unanswered Test-message on edge o, This

implies that ¢ has transmitted a Test-message along edge e and that it has not processed an Aceept,

a Refect-, or a Testmessage with its own name (hence, with its own level) received along edge ¢

afterwards. From lemma 6.5(b), it follows that fest-edge;=e holds. Now, either (A), (B), (C), or (D)

below ocecurs:

(A) i deadlocks. That s, the Testmessage remaing unangwered. As a consequence, test-edge;=e

(B

)

continuously holds afterwards.

¢ will receive an Aeeept-message along edge e, say from node 7.

Claim 1: ;7 ¢ V" holds.

Proof: The proof is by contradiction. Suppose that j € V' holds, When node j transmits
an Azcept-message along edge €, then Ing 2 In; = I4+1 and fn; # fn: hold. Since j ¢ V™,
{n; = L+1 holds, too, when executing the program 53, Whence, Iir; — In; holds. Consequently,
we obtain that fr; = fry is satisfied (, otherwise, node j, in the same fragment as node ¢, would
have teceived the same level, but yet another oame than j; contradiction). This contradicts the

assumption that frn; # fn; holds when node j has transmitted the Accept-message to node 5.

i will receive a Reject-message along edge e, say from node 5,

Claim 2: § € V" holds.

Proof: When node j transmits the Reject-message along cdge e, In; = In; = L+1 and fn; = fn,
hold. Since In; = In; holds at that time, too, it follows that the nodes i and 7 helong to the
same fragment. (Recall that no node outside the fragment F"' will ever receive the name w{e'),

of. lemma 6.4).

i will receive a Test-message along edge e, say from node j, carrying the same name and level
as its owi,

In this case 7 € V" holds. The proof is similax to the one given in (C) above.

From these case-distinction and from S3's program text, we can now conclude that eventnally one of

the following is satisfed for node z € V:

{a) 7 deadlocks. Le., from a certain point in the computation of the program 5y test-edge;=c¢

continuosty holds for a certain edpe e & Iy,

() testeedge;=nil and ¢ has received an Accept-message along edpe ¢, ¢ € E;. This implies that edge

e i node s minimum-weight outgoing adjacent edge.

(¢) test-edge;=nil A Ye & Fiae(e) Lbesic holds, This implies that node #'s has no outgoing edges,
At this stage we cannot prove that the first possibility, e, (1) above, will never oceur, That is,
we cannot conclnde now that cventually cach nede in V™ will eventually determine its minimum-
weight outgoing adjacent edge (, if any). In order to do so, we have to incorporate that low-level
fragments which attempt to combine with high-level ones are immediately “absorbed” by these high-
level fragments, In theorem 6.1, we will show that Gallager’s algorithm is deadlock-free,

At this stage we make the following assumption:
Assumption 3 Eventually, for all nodes i £ V', vither (b) or (¢} above will occur. B

(Observe that this assumption mplics that eventually node ¢ will find its minimum-weight cutgoing

edge, provided that this edge exists.

Nodes in V™ that have determined thelr minimum-weight outgoing adjacent edge must coopurate Lo
deterinine the weight of their fragment’s minimum-weight outgoing edge. This is the subject of the

following lemma.

Lemma 6.8 For the program S; the following is satisfied:

(a) Each node 1 € V" will transmit exactly one Report-message. When this occurs ¢ has no unan-

swered Test-messages,

(b) A node { € V™ transmits the Report-messape along the edge identified by its variable inbranch.
Consequently, any Report-message is sent along an edge in the branch-state (¢f. lemma 6.4(1,c)

and lemma 6.6{c¢)).

(¢) If node { € V™ transmits the Keport-message then it has recejved a Report-message along each

of its adjacent cdges in the branch-state except for the one identified by its variable inbranch;.

Observe that when a node in V™ - {#', i"} transmits a Beport-message along one of its adjacent edges,

it has received an Initicte-message along that edge earlier. Due to this observation, to the property

106

formulated in (c) above, and to the fact that no variable inbranch; of nodes j “downtree” in F"' can
change after node ¢ has transmitted a Reportmessage we can consider directed subtrees of Ff and F™
at any point of S3’s execution when node in V'™ and V', respectively, transmits a Report-message.
Define for node ¢ £ V' the directed tree F', rooted at i (taking into account directions suggested by
the variables inbranchy for node £ in V', ¢f. lemma 6.4(b)), by

F=(V" E™) where the following is satisfied:

{i}, if =3¢ € V"4 # i ninbranchy € B!

|

{YUULL e V' | £ 4 i A dnbranchy € BV UU{G € V| £ 4 i ninbranche € EY), otherwise
and
i = 0, if =3 € V' 4 £ i Adnbranchy € E!

{inbranchy | £ € V' A 3j € VMiinbranch; € Ey g}, otherwise,
The directed tree F™ rooted at i & V" is defined in the same way, We then have the following

property:
{d) For all nodes ¢ £ V', if { transmits a Report-message with argument W then sni=found con-
tinuously holds afterwards and W equals the minimum of all weights of edges « such that ¢ is
an outgoing edge of the fragment F" and e is adjacent to some node in the tree F. Here,

W = oo iff no such edge éxists, The same property holds, of course, also for nodes i € V" with
B¢ paplaced by P

o
—

Eventually, for all nedes ¢ in V", findcount;=0 continuously holds {again). findeount;=0 can
only hold if gn;==found is satisfied. Eventually, the nodes i and ¢ will exchange a Report-message

along the core o',

—
]
—

During execution of the program Sy, the following property invariantly holds for all nodes ¢ € V"
either best-wt; has an undefined value, or best-wé; has a defined value and

(begt-wt;=o0 =-best-edge;=nil) A

/\(best-wti < oo =33 € Ep(best-edge=c A (se;(e}=branch V se;(e)=basic)))

—

(g} Eventually, best-wt; has a defined value and the value for the variable best-wi; has been supplied

along the edge identified by the variable best-edge; (i € V™).

(h

—

When node ¢ transmits a Report-message, then this message carries best-we; as an argument,

{i) i" and i" are the only nodes 7 in V™ that will receive a Report-moessage along the edpes identified

by the variable inbranch;.

107

If in the final state of any execution of the program Ss, best-wt, =best-wl;. holds then this is
equivalent to best-wty —best-wiy —oo, since distinct edges have distinet weights, which implies
that F™ has no outgoing edges, see (d) and (h) above, which imples that #” =T holds,

I, follows that if the algorithm terminates, Lo, if the nodes adjacent to fragment F™'s core have
executed the halt-statement, then the minimum-weight spanning tree 7 has been constructed,
In that case the posteondition g formulated in section 5 then holds,

If the algorithm does not terminate, i.e., no halt-statement has been executed, then best-wty #

best-witge holds,

{4

=

A node ©in V4 &Y, "}, completes itz contribution to the program 5p when it transmits
a Report-message. A node 2, 2 €4, "}, completes its contribution to the program 53 when it
has both sent and received a Report-message along the edge ¢, and it has either executed the
halt-statement or it bas determined that the value of its variable best-wi; differs from the value

received in the Reportmessage. (Th(‘.S(e are the termination conditions.) | |

It should be clear that during execution of the program 5s, property 2(a,b), sce section 6.2, invariantly

holds, Also upon termination of Sy, property 1 and for all i € V| sny=found hold.

6.4 Notifying the node adjacent to the fragment’s minimum-weight outgoing edge

Suppose that the algorithm has not constructed the minimum-weight spanning tree. In that case, in
the final state of the program Sy, best-wt, # best-wiy holds. The nodes in V' should accomplish the
task of notifying the node in V"' that it s adjacent to fragment F''s minimum-weight outgoing edge.
Assume that best-wdy < best-whe holds in program Sy's final state. (The other case is similar.)
Clearty, best-wty is the weight of fragment F"'s minimum-weight outgoing edge. Denote this edge
by €. Dhme to lemma 6.8(f) and (g), the path g to the node £ in V™ adjacent to this edge can be
traced from node ' by following the edges identified by best-edge; for nodes ¢ along pf, A message
Change-Noot 15 sent along the edges constituting the path pt from until this message has arrived at
node £. Tt remains to describe how & node along the path pt “knows™ whether it is adjacent to edge
e™. This i trivial, however. If for a node ¢ along pt, se;(best-edge;)=branch holds, then the edge
identified hy best-cdge; is an cdge in F™; otherwise, se;(best-edge;)=basic holds (cf. lemma §.8(F))

and the wdge identified by best-edge; is an outgoing one.

108

The program §y associated with the task considered here is defined below:
Definition 6.8 Define 5 =|/zerr Iy (of. figure 2 in section 4.3), &

Lemmna 6.9 If the program Sy is executed in program S3’s final state for which best-wt, # best-wi
holds, then

(a) no program. variable is ever changed, and

(b} nodes i different from £ om the path from the node ¢ when bast-wty < hest-wty is satisfied,
ot from the node 1" when best-wt;n < best-wty is satisfied, to the node £ in V" adjacent to
minwedge(F"') complete their participation in 5y after transmitting a message Change-Hool,
Other nodes in V'™ different from { never exccute any statement in the program Si. Node £
completes its participation in 54 after it has determined that sey(best-edge;) # branch holds. (Cf.

the program segment labeled (12) in figure 2.) m

6.5 Sending a Connect-rnessage on the minimum-weight cutgoing edpe

After the nodes in the fragment F* have determined the weight of F*’s minimum-weight cutgoing
edge ¢”' and after node ¢ in £ adjacent to e” has been notified about this, the fragment F"' attempts
to combine with the fragment, say 7', at the other end of ¢, In order to do so, node ¢ sends a
Connect-message carrying F™'s level, L.e., I+1, as its argument. Asswme that F'™=(V"" E™) holds
and that node k € V" is adjacent to edge «"'. Also assume that the fragment F™ is at level L+1
and that & has transmitted a Connect-message along edge €', too. Then the two fragments will be
combined into a larger fragment F"™" as described in section 6.2. For i € VYUV pode i participates
in the task of combining these fragments (as described above), when it executes the program segments

labeled E! or E} in the figute shown in figure 2.

Definition 6.9 Let (/; denote the program segment consisting of node s program segments labeled

E} or E}. Define 5 =|lizvwive Gp M

Lemms 6.10 Under the aforementioned assumptions, lemma 6.3 holds for the program S5 when in

that lemma F', L, ¢, ¥, and i" are replaced by ", L+1, ¢, £, and & respectively. ®

109

Olserve that if node £in the fragment F transmits a Connect-message along edge e, then this message
carrics B level as an argument and minwedge(F™) holds. Also observe that the Connect-message
is then transmitted along an edge marked as a branch, From the property formulated afier lemma 6.8
and from lemma 6.9, it also follows that all nodes in the fragment F" are in the found-state when
the Connecl-message is sent. Thig establishes the induction step (cf. section 6.2, where the induction

hypothesis (TH) has been formulated).

6.6 Cornbining the above specifications

Above we have associated a specification to each program describing one of the subtasks (ef. section
4.3). Dach specification consists of, for eack node § participating in the tespective program, a precon-
dition pre;, a postcondition post;, an invariant §;, and a termination comdition T;. These avsertions
have been formnlated in the lemmata 6.1 through 6.10. We now apply the principle of section 3.3
in order to obtain one algorithm that deseribes that from a logical peint of view the five tasks ate
performed sequentially ancd repeatedly. In order to do so, observe that the programs which have heen
analyzed above may involve distinet set of nodes, This can be seen, ez, with the programs 5; and
S5. Program p describes how twa fragments F and F' are combined into a larger fragment #™ (see
section 6.2), In this program all nodes of the fragment F* are considered. Whereas in program Sy,
which describes how the minimum-weight cutgoing edge of fragment £ is determined, apart from

nodes in £ also neighboring nodes of ' are considered.
2

The principle helow states how the set of nodes involved in a certain program can he angmentod while
preserving all properties of the original program.

The intuition behind this principle is as follows:

Let D= V' {p | 1 € V'}, Act? - be some algorithm. By assumption (see section 2}, no node outside
V' is actually involved in . Let V" be some set of nodes satisfying V' C V", Nodes in V7 — V' do
not actually participate in D (as has been observed above). Conscquently, if p; is an arbitrary state
assertions of nodes 1 € VY —V') characterizing node £'s precondition and if p; does not refer to variables
which ¢an be changed by nodes different from ¢, then p; is an invariant and a termination condition
for node i (i € V" — V' when the algorithm D'=< V" {p; |ic ViU {p i V" - I/’},Ar:t"DI]

executed. This idea leads to the following principle:

110

- Let D=z V' {p:i|i g V'},Ar:tﬂ > be some algorithm.

- LetDsat < {L | je VH{T; |7 e V'{g | 7€ V'] = hold

- Let V" be a set satisfying V' C V¥ C V.

- Let for 7 € V" — V' state assertions p; be given. Assume that none of these assertions contain
any programming variables which can be changed by actions of nodes different frem 7, and that

they do not comtain proof variables py(e) and o4(e) for nodes £ # ;.

Define for j e V¥ - V', I; = p;, T; = p;, and q; = p;.
Then the following is satisfied for algorithm /=< V" {p; i€ V' U V"), AetD >

- Psat < {L1je VAT eV g i€V} =

The soundness of this principle is obvious,

‘We now combine the programs that have been analyzed in the sections 6.1 through 6.5, Each one
descibes how some fragment solves a certain task. In order to do $0, we may assume, as described
by the principle above, that all programs involve the same set of nodes. The combination can then
be achieved by means of the prin¢iple for formal sequentially phased reasoning {sce section 3.3). It
mmst therefore be shown that all verification conditions required for a sound application of the latter
mentioned principle are satisfied. For each of the programs involved in the combination, we have
derived tnvariants and termination conditions in the lemmata 6.1 through 6.10. It is straightforward
to verify all the other verification conditions (cf. also section 8.7 for the case in which a Conneet-
message is received by a node too “early”, ie., if this message is received along an cdge not in the
branch-state). The complete proofs are, however, quite lengthy and do not provide us with more
insight in Gallager's algorithm, Therefore, as an illustration that all verification conditions of the
principle are satisfied, we concentrate on the requirement that each node can (actually) participate in

one subtask at a time. We consider two cases:

(T) A node which participates in the program S; cannot participate in the program Sy (These
programs have been defined in the sections 6.2 and 8.5.) This holds becanse of the following:
If node § participates in program Sy, then sn;=sleeping V Iny=0 holds. If node ¢ participates in
program Sy, then sn;=found holds and it has received a message Change-Root, which in turn

implies that it has increased its level earlier, ie., Iny =0 holds. It is now obvious that node :

111

caunot participate in the programs 5y and Ss at the same time.

(11

A node cannot participate in the program Jy =||;zv By when it is part of a fragment (V*, 2"
at level L4171 (of section 6.2) while it is participating o the program S5 ={f;evee 8 when it is
part of a fagument (V" B at level L, This follows from the following:

If node i participates in the program Sy, then it has received a Connccf-message with arpmunent
L+1 along an edge marked as a dranch. Tt follows that Inj=T+1 holds when it has received
this Cl’ow.nect—message. If it wouild at the same time participate in the program SL, then it starts

participating in this program when In; < L holds (¢f. section 4.2); contradiction.

6.7 The full version of Gallager’s algorithmn

We now consider Gallager’s program. 1o this program different group of nodes perform thelr tasks
coneurrently w.r.t. another. Furthermore, a task performed by one group of nodes can be disturbed

(temporarily) due to interference with the task of an other group.

At first, we describe how to combine two programs performed by two digjoint groups of nodes. Tmta-
itively, these programs are exccuted completely independent of each other, A principle for combining

such programs is straightforwards

- Let Ame (VA [16 V') At and B [V {p | i 2 V”},ActB = be algorithms.

- Asgune that ¥' 1 V" = ¢ holds (no node is involved in both algorithms).

- Assume that Asat < {I; [je VLT | je Vg |j eV} »and Beat = {I; |] €
VAT 176 V' hAg | 7€ V') = hokd.

- Assume that none of the assertions py, I;, Tj, and gz, § € V' U V", contains any progranming
varialiles of nodes different from j and that they do not refer to proof variables py(e) and o4{e)
for £ # ;.

"Then for algorithm C=< VUV {p; [1€ VIUT"}, AetD
- Caat < {I; | §e VOV {T; [je VI UV"){g; | j € V' UV"} > holds.

We have described how programs which are executed completely independent from each other can be
combined into one algorithm. Next, we consider the possibility that nodes in a frapment F can be

disturbed (temporarily} when they participate in one of the tasks discussed above. Conscquently, we

112

ask oursclves the question what messages nodes In F can receive from nodes outside F when they
perform a certain task The answer of this question shows that some minor changes in the program of
figure 2 have to be made and that some of the assertions derived in the previous subsections have to
be weakened,

A node in a fragment I can obviously receive Accept-, Test-, and Connect-messages (not otherwise)
from nodes outside £,

An Accept-message can he send by some node j outside F' to a certain node ¢ in 7 only, if it has
received a Testmessage from node @ earlier, Lo, if node ¢ participates in the task deseribed in section
6.3, Since responding to Test-messages by means of Aceepbmessages is part of that task, node § i3 not
disturbed in the performance of its task.

Now suppose that node j outside the [ragment F sends a Test-message to node 4 in F. Observe thai
this wmplies that we have to incorporate in the assertions of nede @ associaled with the tasks discussed
in the sections 6.1 through 6.8 that Test-messages can be received ond that they are placed at the end
of node i3 message queue. This is straightforward, however. Now, if node i is in the sieeping-state,
then it be awakened by this message and it will start participating in the task described in section
6.1. Therefore assume that { is not in the sleeping-state. Node 7, when receiving the Test-message,
will be disturbed in the performance of the task in which it participates. When the Tesi-message is
removed from node i's queue, it 15 cither places this message back at the end of its queue (if Iny's value
is less than the value of the level’s argument in the Teat-message) ot it sends an Accept-message back
to the sender of the Tesbmessage. In any case, node { will execute the program segment labeled (6}
in figure 2, During this execution none of node *s program variables are changed. Consequently, the
invariant associated with the task in which it participates remain valid when it executes this segment.
In addition, since this execution will always leave the program segment labeled (8) it will resume its
participation in the disturbed task. Note that if node ¢ has not finished this participation when being
disturbed, then this remains so afterwards during i's response to the receipt of the Test-message;
otherwise, i.e., if it has completed its participation in the task when responding to the Test-message,
then its participation in this task remains completed afterwards (cf. also verification condition () of
the principle in section 3.3}.

The most difficult case of interference occurs when node i receives a message Conneci(L) from some
node outside its fragment F'. Obviously, if 1 is in the sleeping state, then it will be awakened and start

patticipating in the task described in section 6.1, We therefore assume that, when node ¢ receives this

113

message, it is in the pot in the sleeping-state. Assume that node J trapsmitted the Connect-message.
At the moment of trausmission In;=L holds, Now,
- either L=0 holds, or
L >0 holds and node j has received an Accept-message along edge ¢ earlier. When node i
transmitted this Acceptumessage Ing < In; holds, Since levels are non-decreasing {cf. lemma
6.4(d)) and node j's own level cannot increase after the receipt of the Accept-message and before
Lhe transmission of the Connect-message, it follows that Iny < Iny holds when node j transmits

the Conneni-message.

From these two cases it follows that whenever node ¢ receives a message Connect(L) and checks whether
In;=L holds, this test is cquivalent to checking whether —{In; < L) ts satisfied. (In the final version

of the program, see figure 3 below, this observation has been taken into account.)

Now, when node { receives the message Connect{L) along edge e, L < In; (see above} and se;{e}=basic
V osei()=branch {¢f. property 1 in section 6.2) both hokd.

H Iny=1 and se;{e)=branch hold, then node { proceeds as described in the sections 6.1 and 6.5.

If In;=L and se;(£)—basic hold, then the Conneatmessape ic delayed. (This case is similar to delaying
a Test-message, see above).

If, on the other hand, L < Iny is satisfied, then it follows from the induction hypothesis (1H), see section
§.2, and from lemma 6.8(e) that for all nodes k in j's fragment, say F', sng=Ffound A Findcount,=(0
holds, when node j transmitted the Conncet-message. It also follows from (TH) that edge ¢ is fragment

F"s minimum-weight outgoing edge. Note that upon i's receipt of the Connect-message along edge ¢,

s fn; is defined. This is true becanse In; >0 is satisfied (as a consequence of 0= L < Irn;) and

property 2 (see section 6.2) holds.
» Fragment F''s level equals Lzln;, which follows from (IH).
& se;(e)=busic holds (cf. property 1, section 6.2).

From the description of Gallager’s algorithm in section 4 it follows that the fragments F and F' are
immediately combined into a larger fragment. Therefore, upon receipt of the Connect-message node {
marks edge ¢ as a branch. (At that time a new fragrent hag been formed.) Thereafter, node i supplies

the nodes in the fragment F' with the name and level of its own fragment (as far as “known” to).

114

Conzequentiy, the variables g, & € V, increase indeed. We now consider three cases which can hold

when node { responses to the Connect-message:

(a) mode ¢ has not yet received fragment F's new name, i.e., it has not yet received an Initiate-

message with third argument find,

(b) node 7 has received fragment F's new name, but it has not yet transmitted a Report-message,

Le., it 15 participating in the task deseribed in seetion 6.3, or
{c) node ¢ has received fragment F's new name and it has transmitted a Reporf-message.

In case (b) above, obviously, sn;=find halds. It will immediately transmit the message Fnitiafe(ln;,
fny, #ny) such that all nodes in F' will participate in the enlarged fragment’s search for its minimum-
weight outgoing edge. The invariants derived in section 6.3 clearly remain valid. Alse the termination
conditions of the nodes are not changed, i.e., interference-freedom of specifications can be proved.

In case {c) there is no need for the nodes in F' to participate in the {already completed) search for
Fs minimum-weight outgoing edge since the nodes in F will not contribute anything to this search.
The reason is the following:

node { has transmitted a Report-message by assumption. Therefore node ¢ has determined its minimum-
weight outgoing adjacent edge. Cmnsequentl_y, best-wd; f_:w(e) then holds, since edge ¢ is one of node
"8 outgoing edges,

Claim: besi-wt; <w(e) holds, too.

Proof: The proof is by contradiction. Suppose that best-wt;=w(e) holds. This implies that node s
has received an Accept-message along cdpe ¢ carlier, since ¢ has provided the value for best-wt; (cf.
lemuma 6.8). When node j transmitted this message In; > In; holds, It follows that In; has decreased
afterwards; contradiction. M

‘We obtain that, in this case, for all outgoing edges e; of fragment F', w{e1)zw(e)> best-wi; holds.
Consequently, in the cases (a) and (¢}, contrary to case (b), the nodes in P should synchronize their
gearch for the minimum-weight outgoing edge of the enlarged fragment with nodes in the fragment
F, i.e., they should wait for this search until they have received the name and level of the enlarged
fragment. The cases (a) and (c) are distinguished from case (b) by the third argument in the Tnitiate-
message. If a node receives an Initinte-message, then it updates its variable sn according to the third
argument of the message. It starts searching for its minimum-weight outgoing adjacent edge only, if it

is in the find-state (¢f. section 6.3). (Initiate-messages with a third argument found propagate through

115

the fragment £’ in exactly the same way as the information in Segall’s PIF-protocol is propagated.
The invariants and termination conditions for this part of the algorithm are very similar to the ones
defined in [SR89L).) This ohservation has been incorporated in the program below. Note that the
assertions, as hefore, defined in the previous subsections have to be (sligh(,ly) weakened, since now
nodes can vecelve Faltiote-messages with third argument found, but that, again, interference-freedom

of specifications can be shown.

Note that whenever some node & executes (an oconrrence of) the assipnment seg(e)i=rejected for a
certain edge ¢ € By, sep{e)=basic holds as o precondition, cf lemma 6.6. Consequently, we can
replace each such an assignment by the conditional if aek(e)mbr}..qic then H(:k((:):ZT'l_’jl_‘C!L’(i i without
affecting any of our carlier results, This modification is, however, necessery i order to aveid the
following (unintended) situation:

node i sends a Test-message along edge ¢, before it cecelves along edge e a message Connect(L) with
L = Iy

node { receives o message Connect(L) with L < In; along edge &

nodde 7 places edge ¢ in the branch-state and sends a message Miliate{ng, fn;, sny) along ¢ (observe
that sn;— find holds);

node ¢ Teceives u message Aefect along e and places the edge ¢ in the rejecied-state.

Consequently, ¢ has been placed in the refected state by node . Edge e is, however, an edge in the

spanning tree T, hecause the node different from 4 adjacent to ¢ has determined that e cccurs in T

Taking this modification and the two observations above into account, we arrive at the program in

figure 3 below. This program describes (the full version of) Gallager’s algorithm,

116

The program segments (1), (2), (8), (7). {8),---, {12) are the same as the ones in 'ﬁé'ure 2.
(3) reponse to receipt of Connect(l) on edge ¢
Begin
if sn=sleeping then exeeute procedure wake-up fi;
if 1<l
then se(e)=branch; send Initiate(ln,fn,gn) on edge «;
if sn—find then findcount :=findeonnt+1 &
else if se(e)=hasic
then place received message on end of queue
else fn :=w(e); In i=ln4-1; inbranch :=e; sn :=find;
for all edges e’ # e such that se{e’)=Dbranch
do send Initiate(ln, fn, sn) on ¢'; findcount :==findeount+1 ad;
best-adge :=nil; best-wt :=ov; exeeute procedure test

fi
end
{4) reponse to receipt of Initiate(l, f, 5) on edge ¢
begin
In :=l; fn :—f; sn :=s; inbranch :=e;
for all ¢’ + e such that se(e’)=branch
do send Initiate{ln, fn, sn) on &'; if su="fud then findcount :—findcount+1 fi od;
best-edge 1=nil; best-wt =00, if sn=find then execute procedure test fi
end
{6) reponse to receipt of Test(l, f) on edge ¢
begin

if sn=¢leeping then execute procedure wakeup fi;
if loln
then place received message on end of queuc
else if fn#f
then send Accept on edge ¢
else if se(e)=Dasic themn se(e) 1= rejected fi,
if test-edges e then send Reject on edge & else execute procedare test f
fi
fi
end
{8) reponse to receipt of Feject on edge ¢
begin if se{e)=basic then se(e) r=rejected fi; exeeute procedure test end

Figure 3. The loop executed by node { (1 € V). (Variables oceurring in this loop are assumed to be

subscripted by #.) The program consisting of all these loops describes Gallager's alporithm.

117

A principle which underlics the above kind of reasoning w.r.t. the disturbances is next formulated, For
sase of exposition, we consider the case that at wost one node & can be disturbed in the performance

of its task,

Let this task be solved hy alporithm

(CL) B=< v, pB lie V', 4P =,

Since node k can be disturbed in the performance in B, k may receive messages from nodes outside
V', Receiving and processing such messages are actions associated with another algorithm, say,

(02) Coa (v o€ |5 € Vi) Al 5,

From the assumption that & is the only node that may be disturbed (due to actions in €}, it follows
that we may assume that

(C3) VIO VI —{k] is satisfied.

Since B and C solve distinet tasks, we may assume thar

(C4) At AmE = 9 (this iy the case in Gallager’s program indeed).

Next, suppose that

(Co) Bsat < {18 | e V(TP | je v, (4B |ie V') > and Csat < {IC |je v {z€)¢
vy, {qf | § & V"} = have been proved.

{C6) Assume that no assertion subscripted by 7 can cver be changed by actions of nodes different from

node k (cf. verification condition () in section 3},

Now at any time in B’s computation, node & mmst allow to be disturbed by actions occurring in ActC.
This 15 the case If the invariant Ii? holds whenever node k starts participating in algorithm . In
particular, this is satished when pf = I,’? is satisfied. When node k 13 participating in algorithm C,
i.e, when it execytes an action assoclated in Ar:tc, the reasoning about algorithm B should remain
valid.

Define, for assertions P and ¢ and for a set of actions AC, the assertion Mnt-free(P, 2, AC) express.
ing that if some aclion a is executed in a state satisfying F A @), then P iz not invalidated by «
(interference-freedom).

We require that for all node j & V' the following holds:

(C7) Intefree(1B 7 ~TE, 1§ 1 ~TF, ActS) and Int-free(TE A TE IE 1 1€, Ackf) (£2 V7).

Of coutse, it must also be required that the reasoning about algorithm € remaing valid under actions

of B:

118

(C8) Int-free(IE A ~TF 1B A ~TF, ActP) and It free(t€ nTE 1B A ~TF, 4Py (G e v, 0 € V).
The kind of disturbances appearing in Gallager's program can occur only when a node participates in
a certain task and it reccives 4 message associated with another task. As remarked above, such a node
must at any time be prepared to receive these kinds of messages. Internal actions and send actions of
node & associated with different tasks cannot be enabled simultancously, however. (This observation
holds for Gallager's program.) We, thus, require that

(C9) for each action o € IS;’,B, da’sabled([,? A —-TP Aenfa), ISf) holds for all computation seguences
of B and similarly that

(C10) for each action a € 1 SE, disa.b[ed(f,g A ‘dw’l‘f Aen(a), I, S,? J holds for all compuntation sequences
of C [(cf. section (3) for the definitions of the sets I.S'E{ and ISE and for the definition of the assertion
digabled).

Finally, we require that actions associated with algorithm ¢ ¢annot enable nor disable actions associ-
ated with algorithm € and that actions associated with Ccannot enable nor disable actions associated
with 2%

(CL1) Int-fresl—~en{a), IP A =T, ActB) for all o € ISE,

Int-free(en{a), 1B A ~T, ActB) for all o € I5C,

It free(-en(a), 1€ A =TF, Actf) for all a € ISP,

Int-free(en(a),!f A -wTE,Actf) for all g & ISE.

I (C1),...,(C11} are all satisfied, then we may then conclude that for the algorithm D=< V'UV", {p? |
te V'lu {p!C [te V" — {k}},ActE U ActC > the following holds:

Dsat <{IF [je VI - (ko lIf [5e v — o B vy,
UBATE jev - (RIS ATE e v — iy {IP A IE ATE ATE),
(B lievi-{auid jie v — s u{efady>.

We have the following:

Theorem 6.1 The program § described in figure 3 above meets its specification (cf. section 5).

Proof: From the previous lemmata and the above discussions it should be clear that the program
5 is partislly correct w.r.t. precondition p and postcondition g, where p and g have been defined in

scetion 5. In order to prove that S5 always terminates when executed in an initial state satisfying p, it

119

suffices to prove that in any non-terminal state reached during execution of 5 some (proper) progress
can be made. Consider some state which can be reached during such an execution. We may assume
that in this state for all nodes i & V, amy Lsleeping holds, since otherwise at least one node could
Yawalke spontanecusly” and, thus, progress could be made.

Let Frag be the set of all fragments in the constdered state, Let LFPragl Frag be the set of all fragments
which have the lowest level minongst all fragments in Prag. Define F eLFrag to he a fragment with

the smallest minimum-weight ontgoing edge among the fragments in LFrag.

{(a) Suppose that some node in the fragment F has transmitted a Test-message, Becanse of the
choice of F, eventually this Test-moessage will become answered (either by an decepi-message or

by o Reject-message).

(b

Suppose that some node in the fragment F has transmitted o Conneet-message along a certain
edge ¢ € F;. Then this node will, again by the choiee of F, cither receive a Connect-message
along edge e, or it will receive an Indtiefe-message along edge e, Consequently, cventually the

fragment’s level will increase. Apain, progress will be made.

{¢) In all other cases it should he clear that progress is ensured. W

6.8 Some notes on Gallager’s algorithm

The correciness of Gallager's algorithm heavily depends on properties of the underlying network, As
we have seen in the sections 6.3 through 6.5, the possibility of identifying cdpes hy their weights
is crucial for its correctness, Another, less obvious, constraint which is essential to construct the
minfmumn-weight spanning trec wsing this algerithm is that the underlying network contains no self-
loops, i-e., that there ate no edges e € Iy for any node . This property has actually been used in
lemma 6.1(e). In case the network does contain self-loops it is not ensured that Gallager’s algorithm
indeed finds the minimum-weight spanning tree 7 of the network. As an example, assume that there
exists some adge ¢ & K ; for a certain node £ in V', Assume that ¢ is the minimum-weight adjacent edge
of node i holds, too, When 1 awakens it will mark ¢ as a brench. Consequently, from node ¢'s point of
view ¢ will always in the branch state afterwards. It follows that in such a case the algorithmn cannot
satisfy its specification. Oue can slightly relax the assumption that the graph must not contain any

self-Joops in order to construet T using Gallager’s algorithme if a node’s adjacent edye is a self-loop,

120

then it is not the node’s minimum-weight adjacent edge. It can be proved that if this condition holds,

then Gallager’s algorithm is correct.

Our program describing Gallager’s algorithm is slightly more efficient than the program in [GHS83).
While we merely update program variables of nodes that have exchanged a Connect-message along
some adjacent edge (see figure 3), in the program in [GHS83] the nodes i adjacent to this edge, say ¢,
first exchange a message Faitinte(In;+1, w(e), find), after having exchanged the message Connect(In,),
and before they broadeast the Initicle-riessage to the other nodes in their framment. Obviously, we
lrave saved some transmissions of messages when compared with the propram in [GHS83).

Another (slight) optimization is possible: if a certain vode ¢ € V transmits o Test-message along some
edge £ and it receives a message Connect(L) with I < In; along this edge before it has actually received
a respouse to that Test-message, then there is o need to wait for this response. In this case, ¢ would
always teceive a Reject-message afterwards. Consequently, node 7 can, in this case, continue its search
for the minimum-weight outgoing adjacent edge without waiting for a response to the Test-message.
The node § at the other end of & could then as well ignore the Test-message in such a situation, i,

if it attempts to process a message Test(l, f) with [< In; received along an edge in the state branch.

7 Conclusion

Correctness of the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and
Spira (GHS83] has been proved. The strategy adopted in this paper in order to prove that the span-
ning tree algorithm meets its specification is to start with some sequential program which constructs
the minimum-weight spanning tree, to refine, as described in [B88) and [CMBE], parts of this program
until distributed programs are obtained, and finally to combine these programs in order to obtain
a distributed counterpart of the initial sequential program. The latter combinations have been ac-
complished by repeatedly applying the principle for sequentially phased reasoning about concurrently
performed {sub)tasks, of. [SR89%, SREIb]. These applications have shown that one can obtain from
programs solving certain subtasks another program which solves the whole task, as if the subtasks
are performed sequentially, even when these subtasks are performed repeatedly and concurrently by
expanding groups of nodes. In addition, it bas been shown that our principle can cope with with the

phenomenon that tasks performed by one group of nodes are disturbed temporarily by interference

121

of another group of nodes. For this reason invariants play an important role for pur principle, since
they allow one to prove interference-freedom of specifications. A future paper will show that such

invariants can he generated during the design phase of programs.

122

References

[AFR30]

[Ba3]

(BK83]

[CGas|

[CM88)

(D59]
[D76]

(DS80]

[E79]

[F67|

[#ra0)
[G31)

[GHS83]

[B59]
[E78]

[Bug3]

Apt K.R., Francez N., and de Roever W.P., A proof system for communicating sequential
processes, ACM TQPLAS, 2-3 (1980),

Back R.J.R., A caleulus of refinements for program derivations, Acta Informatica 25 (1988),

Back R.J.R. and Kurki-Suonio, Decentralization of process nets with centralized control,

Proc. of the ACM Symp. on Principles of Distr. Comp. (1983).

Chou C.T. and Gafni E., Understanding and verifying distributed algorithms using strati-
fied decomposition, Proc. of the ACM Symp. on Principles of Digtr. Comp. {19588),

Chandy K.M. and Mista J., Parallel program design: a foundation, Addison-Wesley Pub-
lishing Company, Inc. (1988).

Dijkstra E.W., Two problems in connections with graphs, Numer. Math. 1, (1959).
Dijkstra E.-W., A discipline of programming, Prentice-Hall (1975).

Dijkstra E.W. and Scholter C.8., Termination detecting for diffusing computations, Infor-

mation Processing Letters 1-4 (1980).
Even 5., Graph algorithms, Computer Seience Press, Inc.{USA), (1978).

Fioyd R.W.., Assigning meaning to programs, Mathematical aspects of computer science,

AMS (1967).
Frances N., Distributed termination, ACM-TOPLAS, 2-1 (1980).
Gries D., The science of programming, Springer Verlag (1981).

Galiager R.T., Humblet P.A., and Spita P.M., A digtributed algorithm for minimum-weight
spanning trees, ACM TOPLAS, 5-1 (1983).

Hoare C.A.R., An axiomatic basis for computer programming, CACM, 12, (1969).
Hoare C.A R., Communicating sequential processes, Comm. ACM, 21-8, (1878}

Humblet P.A., A distributed algorithm for minimum-weight ditected spanning trees, IEEE
Trans. on Comm., 31-6 (1983).

123

(K56

[L&3]

[MC81]

{MP33]

[MS79)

(OGT8]

[&9]

|5e82
[Be83}

[$R&7]

[SR&8)

[SRA0a)

[SREDL]

[5584]

Kruskal L.B., On the chortest spanuning subtree of a graph an the traveling salesman prob-

lem, Proc. Am, Math, Sec., 7, (1056).
Lamport L., Specifving concurrent modules, ACM TOPLAS, 5-2 {1983).

Misra J. and Chandy K. M., Proofs of network of processes, [EEE, Trans. on Softw. Eng. 7
{1981).

Manna Z. and Pnueli A., Verification of concurrent proprams: A temporal proof system,

Fouirlations of computer science IV, part 2, MC-tracts 159 (1983).

Meslin P.M. and Segall A, A failsafe distributed routing protocel, IEEE Trans, on Comm.,
27-9 (1979).

Owicki 5.5. and Gries I)., An axiomatic proof technique for parallel programs, Acta Infor-

matica 6 (1976).

Partsch HoA,, Specification and transformation of programs -A formal approach to software

development-, Springer-Verlag (1989, to appear).
Segall A., Decentralized maxinmm-flow algorithms, Networks 12 (1982),
Sepall A, Distributed network protacols, IEEE Trans. on Inf. Theory. IT29-1 (1983},

Stomp F.A. and de Roever W1, A correctness proof of s distributed minimum-weight

spanning tree algorithm {(extended abstract), Proc, of the Tth ICDCS (1987).

Stemp F.A. and de Roever W.F,, A formalization of scquentially phased intuition in network

protocols, Internal Report: 83-15, University of Nijmegen (1938),

Stomp FLA, and de Roever W.P., Designing distributed algorithms by means of formal
sequentially phased reasoning (extended abstract), To appear in the Proc. of the third

International Conference on Distributed algorithms (1989).

Stomp F.A. and de Roever W.F., Designing distributed algorithms by means of formal

sequentially phased reasoning, Internal Report 89-8, University of Nijmegen (1939).

Schlichiting R.D. and Schneider F.B., Using message passing for distributed programming,

Proof rules and disciplines, ACM TOPLAS 6-3 (1984).

124

[WLLA&8a] Welch I.L., Lamport L., and Lynch N A, A lattice-structured proof of a minimum spanning
tree algorithmn (extended abstract), Proc. of the ACM Symp. on Principles of Distr. Comp.
(1988),

[WLL#8h] Welch J.L., Lamport L., and Lynch N.A., A lattice-structured proof of a minimum spanning
tree algorithm (full paper), Technical Report MIT (1988).

[2380] Zerhib F.B.M. and Segall A,, A distributed shortest path protocol, Internal Report EE-3935,
Technion-Israel Institute of Technology, Haifa, Istael (1980).

[ZRESS] Zwiers J., de Roever W.P., and Emde Boas F., Compositionality and concurrent networks:

soundness and completeness of a proof system, LNCS 104 (1985).

(Z89) Zwiers J., Compositionality, concurrency and partial correctness: proof theories for network

of processes, and their connection, LNCS (1989).

125

CHAPTER 5

(©) 1989 Academic Press, Inc

Reprinted, with permission, from fnformation and Computation, Vol. 82, no. 3, 1989, pp. 278-322.

The u-Calculus as an Assertion-Language
for Fairness Arguments

F. A. STOMP

University of Nijmegen, Department of Computer Science,
Toernooiveld 1, 8525 ED Niymegen, The Netherlands

AND
W. P. 0E Rogver AND R, T. GerTH

Eindhoven University of Technology,
Department of Computer Science and Mathematics,
FOR 513, 5600 MB Eindhoven, The Netherlands

Various principles of proof have been proposed to reason about fairness, This
paper addresses—for the first time—the question in what formalism such fairness
arguments can be couched. To wit: we prove that Park’s monotons first-prder
p-caloulus, augmented with constants for all recursive ordinals can serve as an
assertion-language for proving fair termination of do-loops. In particular, the
weakest preconditign for fair termination of a logp wrt some postcondition s
definable in it. The relevance of this result to proving eventuslities in the temporal
logic formalism of Manna and Pnuelis {(in “Foundations of Computer Science 1V,
Part 27 Math. Centre Tracts, Vok 159, Math. Centrum, Amsterdam, 1983) is
discussed. &% 1989 Academic Prose, Inc.

[. MOTIVATION

Fairness is the defining property of good schedulers. The very notion of
fairness presumes some kind of (metaphorical) competition for some
shared resource(s). This competition is settled by arbitration, resulting in
synchronization of competitor and resource. One speaks of a fair schedul-
ing mechanism when this arbitration meets certain standards, Roughly, a
scheduling discipline for a set of processes is called fair, whenever, inside a
process, one or more (constituent) agents are “sufficiently often™ allowed to
compete for some shared resource, one of these agents is eventually
scheduled for synchromization with that resource. Different notions of
fairness can be distinguished according to their specification of what
“sufficiently often™ means, of their identification of resources, and of sets
of agents ingide processes, and of when these agents are considered to
compete.

0890-5401/89 $3.00

Copyright @ 1989 by Academis Press, Ine.
All nghis of reproduction in any form coservid.

127

H-CALUCULUS FOR FATRNESS ARGUMENTS

The present paper concentrates on that notion of fairness, which
prescribes that “an action which is infinitely often enabled is eventually
tuken”” Here, sufficientdy ofien is interpreted as infinitely often; the set of
agents are singleton sets; the actions are puarded statements of guarded
commuinds; an action is enabled (allowed to competc) whenever its guard
evaluates to true; and whenever in & guarded selection all guards evaluate
to false this selection is considered to be waiting, ie., repeated execulion
resulis in {re-)evaluation of its guards {and possibly, in execution of 2 com-
mand guarded by a true guard), and not in failure upon its first execution
as in scquential programming (Manna and Prueli, 1983).

This notion of f{airness is linked with the interlcaving model of con-
currency 1o remedy the following deficiency. Since the only requirement in
the interleaving model is a syntactic one, namely, that actions from every
process continue to be nondeterministically interleaved (sequentialized) as
leng as that process has not lerminated, this requirement is also fulfilled for
an interleaving which systematically selects re-cvaluation of the guards of
a waiting guarded sefection when these happen to be false and which never
selects execution of that selection when these guards have become true (due
to some interleaved action of another progess).

That is, in the intcrleaving model for concurrency, guards may be
systemaltically selected for evaluation at the wrong moments. Now this
behaviour does not occur in case every process has its own active processor
(which notices when guards evaluate to true). Thus, the nondeterministi-
cally interleaved sequential exccution of processes need not necessarily lead
to the same result as the concurrent execution of those processes on
separate processors. Yel we want to maintain the interleaving model of
concurrency as our model for the concurrent execution of processes since
this is the only model upon which successful verification theories have been
built (other models for reasoning about correctness properties of con-
current processes are always obtained from this model by introducing
equivalence relations and congruences). In this we succeed by imposing as
an extra requirement the fairness requirement above.

Next, nearing the focus of this paper, the interaction between fairness
and the interleaving model must be examined.

How Does One Deduce Properiies in the Resulting Model?

The properties of interest always contain eventualities which are enforced
by the assumption of fairness. Pure invariances, i.e., properties which are
invariant during execution, are not influcnced by postulating fairness as an
extra requirement and can be derived using more traditional mcthods.

The state of art offers the following picture: Let i denote some state for-
mula, ic, ¥ is a direct property of program states not requiring temporal

128

STOMF, DE ROEVER, AND GERTH

operators such as < for its expression. To establish that for a concurrent
program i eventually holds, the following stratcgy is taken:

(1) Amongst the concurrent processes a distinetion s made between
those processes—in Manna and Prueli’s (1983) terminology dubbed helpful
processes—whose execution brings satisfaction of always nearer, and
those processes that do not do so, L.e, whose execution possibly does not
bring satisfaction of ¢ any nearer, called steady {or unhelpful) processes.

{2) It must be proved that systematically avoiding ¢xecution of any
heipful process either leads to an interleaving of steady processes which
does not satisfy fairness, i.e., is unfair, since infinitely often a helpful process
is enabled but not taken, or, due to some nondeterministic choice of a
steady process in the interleaving, docs bring satisfaction of § eventually
nearer or even establishes v,

Essential here is that upon closer inspection part (2) above requires
application of the same strategy to a syntactically simpler program: just
remove the helpful processes from the original program and prove that
eventually one of the following holds: i, getting nearer to y or, a helpfui
process is enabled.

As a preparation for a technical formulation of this strategy, we first
introduce a number of auxiliary notions (Manna and Poueli, 1983). Let
P=P,||-| P, be some program with n> 1.

Assume that both ¢ and ¢’ are state formulac.

—For i satisfying | £ i<n, we say that P, leads from ¢ to ¢’ when
every state transition in P, establishes ¢ provided ¢ is satisfied first.

—We say that P leads from ¢ 1o ¢ when for all §, 1<ign, P, leads
from ¢ to ¢".

A technical formulation of the above-mentioned strategy requires the
introduction of well-founded sets and looks as follows (Manpa and Pnueli,
1983):

Tue WELL-Founpep Liveness PRINCIPLE WELL. Let M={A, <) be a
well-founded ordered structure. Let ¢{«x) be a parametrized state formula
over A, where « intuitively expresses how far establishing ¢ is. Let A; 4 —
{1,.,n} be a helpfulness function identifying for each xe 4 the helpful
process P, for states satisfying ¢(«).

(A) P leads from Hla) to [Y v (Af=a-(BN)]
(B} Py leads from d(a) to [y v (If <. 4(4))]
(C) bkdla)= OLY v (3B <« #(B)) v Enabled(F,)]

F(Ea - gla)) = i

129

M-CALCULUS FOR FAIRNESS ARGUMENTS

The soundness proof of this rule requires induction over well-founded
sets.

Conversely, given the fact that <y is valid, (naive) set theory is used to
argue the existence of the required auxiliary quantities, ie., the well-foun-
ded ordered structurc W, the ranking predicate ¢(a), and the helpfulness
function A, which satisfy clauses (A), (B), (C), so that for each such ¢,
WELL can always be applied. This proves that WELL is semantically
complete.

Manna and Pnueli (1983) even prove that, for certain classes of for-
mulae, their temporal logic formalism 1s complete relative to the set of tem-
poral formulae valid in the given domain interpretation. Typicaily, their
proof shows that the reasoning about temporal assertions concerning the
execution sequences of programs can be reduced to the reasoning about
assertions concerning the states of programs, the so-called state properties.

Now we are ready to ask the one question this paper is about: How do
these results help us if we are sure that <y holds and want to apply the
rule above to verify <¢y? The answer is: not much.

Questions such as:

-—How does one obtain the appropriate well-founded ordered
structure W17

—How does one cxpress, and reason about, the helpfulness function #
and the ranking predicate ¢(x)?

—In general, which assertion-language should be used to establish
hypotheses (A), (B), (C) of WELL?

arc not answered by the above results, sinee the reasoning about state
properties is not formalized in Manna and Pnueli (1983).

The present paper suggests a direction to answer these questions, by con-
cenirating on these problems as they occur when proving termination of
do-loops under the above fairness assumptions, ie., fair termination of
do-loops. That this docs not lead te oversimplification follows from the fact
that the same auxiliary quantities, with comparable objectives, occur in the
rule whose expression and use we shall investigate (Griimberg, Francez,
Makowsky, and de Roever, 1981).

THe WeLL-FounDeD LivENESS PRINCIPLE FOR LOOPS—ORNA’S
RuLe. Let Mi=(W, <€) be a well-founded structure. Let 7 W —
(States — {rrue, false}) be a predicate, and ¢ be a state predicate. Let for
we W, with w not minimal (denoted by () < w), be given pairwise disjoint
sets D, and Sr,, such that D # & and D, w St ={1,.., 0}

(a) Flnw)Aaw=0nab]S,[Fvcw. n(v)], for afl je D,
(b) Flmw)Aw=0nab]S5[Iegw n(e)], for all je St,

130

STOMP, DE ROEVER, AND GERTH

e) FLaw) A w01* (O s.bi A Njep, 10— 5,1 [true]
(d) br={(3v, n{c))

- (m(w) A W:"O):’ij_l b,

Fa0)3 (AL, b) A g)

H0r1* [0, b, = S0g).

Note, when comparing Orna’s rule with WELL, that the commands S,
act as state transitions. Since in Qrna’s rule the assignment w— (D, St,)
for w >0 merely generalizes WELL's notion of helpfulness function, the
same kind of auxiliary gquantities are required to apply both rules.

This paper proves that to express and reason about W, n, and the
assipnment w— (D, St,) for w>0 and we W, a slight extension is
required of the formalism used to prove termination of recursive proce-
dures, Parlk’s p-calculus (Hitchcock and Park, 1973; Park, 1969).

Finally we note that, historically, two rules have been formulated to
prove fair termination of nondeterministic programs: Orna’s ruie (Griim-
berg er al., 1981) and the LPS-rule (Lehmann er al., 1981), Both these rules
model, each in their own way, a specific intuition related to the notion of
eventuality implied by fairness assumptions. For fairly terminating loops
they have been proved to be equivalent (Griimberg ef al, 1981), but the
LPS-rule also applies to proving fair termination of concurrent processes.

This article is organized as follows: Section | contains the motivation for
this paper; Section 2 specifies the programming language used in this
paper. In this programming language, we restrict ourselves to sequences of
assignments and to commands in which nested repetitions are not allowed.
Section 3 discusses various semantics for this programming language. In
Sections 4 and 5 the proof system and the assertion-languapge, ie., the
monotone p-calculug, are dealt with. A term in the assertion-language,
which expresses fair termination of a repetition is constructed in Section 6.
Completeness and soundness of the proof system are proved in Sections 7
and 8. In Section9 we drop the restriction that we imposed w.rtl the
nesting of repetitions and outline how to deal with the more general casc
in which nested tepetitions are allowed as commands. Finally Section 10
contains the conclusion,

2. Tue LANGUAGE OF GUARDED COMMANDS

In this section we describe the syntax of the programming language used
throughout this paper. In the next section various semantics for this
lanpuage are defined.

The syntax is specified below using the standard BNF-notation (braces

131

H-CALCUHLUS FOR FAIRNESS ARGUMENTS

enclose a repeated item, that may occur zero or more times). We do not
specify the structure of variables and (boolean) expressions. Expressions
arc assumed to be terms in an underlying signature containing constant,
function, and predicate symbols. We shall only use simple variables in the
remainder of this paper.

BEFNITION 2.1 (Syntax of the programming language). Start with some
signature. The language of guarded commands, LGC, is defined by:

(command > 1= {repetition » | simple command .
¢simplec command » = {assignmeni > |
«simple command »; {simple command .
Cassignment » 1= {variable » 1= {expression).
{repetition y o= *{{ I {selection) | .
{selectiony n= {guard > — {simple command .
¢guard) :="a quantifier-free (boolean) expression.”

We identify *[] with the assignment x ‘= x (skip). In the remainder of
this paper, we shall often abbreviate *[T6, - 5,0..- 06, — 5,1 W0
MO b= 8]

The main differences between the language as described above and that
of Dijkstra’s are that, in our language, guarded selections are not allowed
as commands and that in a repetition *[OF_, &4, — §;], the 5. never
contain repetitions (=1, ., n). ln Section 9, it is shown how to deal with
fairness tssues when the latter restriction is dropped.

In the sequel we also need the notion of a direction of a repetition
O, b —-5]withnzl.

Dermiimion 2.2 {Directions of repetition). Let S=*[07_, b, - 8] bea
repetition with nzz | For iz 1, ., n, b,; 5, is called the /th direction of 5.

3. SBEMANTICS

In this section we define four semantics for the language of Section 2.
Twao of them are defined without consideration of fairness constraints. The
other ones are defined when such fairness constraints are imposed. The first
semantics fitting for partial correctness is defined using relations, since non-
determinism is involved. To reason about (nondeterministic) termination,
we introduce the notions of an cxecution sequence of a repetition and of
nondeterministic divergence of a repetition. Then the partial correctiness
semantics is extended to fit for total correctness.

Thereafter, we discuss two important fairness constraints, viz., strong

L3

STOMP, DE ROEVER, AND GERTH

fairness and unconditional fairness. These constraints lead to the notions of
a strongly fair or unconditionally fair execution sequence of a repetition, of
strongly fair or unconditionally fair divergence of a repetition from some
state £, and of strongly fair or unconditionally fair termination of
repetition.

The relation between nondeterministic termination, strongly fair ter-
mination, and unconditionally fair termination of a repetition is discussed.
The third semantics in this section is defined taking strong fairness into
account; the fourth one takes unconditional fairness into account.

3.1, Preliminaries

Before defining the various semantics for the language of Section 2, we
first recapitulate a number of basic notions,

DEFINITION 311 (First-order structure). A first-order structure IR
consists of

(a) a non-empty set, also referred to as a domain, denoted by {9R|,

{b) a set of n-ary function symbols and a set of r-ary predicate sym-
bols {#20), such that for each m-ary function symbol (resp. predicate
symbol) there corresponds a #-ary function (resp. predicate) over {¥7], and

(¢} a set of constant symbols, corresponding 1o elements of |9R|.

We assume the equality symbol “=" to bc present as a bipary predicate
symbol, corresponding to the standard equality over I,

In the remainder of this section we assume that M is some first-order
structure, which contains all symbols that may appear in a program
5e LGC. We adopt the convention to denote LGC by LGC{M) in such a
case.

DEFINITION 3.1.2 (State, enabledness, disabledness, state variant).

(a) A state is a function from the collection of all program variables
to the domain of interpretation. &, &;, &, ete. are used to denote states. The
set of all states is denoted by States. The value of the expression e in state
£ is denoted by £(e). (We assume that the &(e) is always defined!)

(b) If a guard & evaluates to truc in state &, ie, £(b) holds, we say
that & is enabled in state &; otherwise, b is disabled in £.

(cy For astate £, a variable x, 2and an expression e, the state variant
E{e/x} is defincd as usual: £{e/x}(x) =£(e), and &{e/x}H{y)=E(y}ifx £ p

w a3

Next, we introduce the operator “-” denoting composition of relations.

133

H-CALCULUS FOR FATRNESS ARGUMENTS

DEeFMITION 3.1.3 (Composition of relations). Let 4,, 4,, and 4, denote
sets. Assume that 8, S 4, % 4, and R, S 4, x A, are binary relations. Then
R :R,= A4, % A; is a binary relation, too. This relation satisfies: for all
a,eA,, aygA;, {R,R,){a,, a;) holds iff there exists some ay€ 4, wilh
Ryla,, a.) and R,(a,, a4).

32, Partiad Correciness

We now associate with cach program § the (relational) semantics
R < States x States. Note that, duc to nondeterminism, for input state £
and program 5, there may be more than one output state or gven infinitely
r o+ 7 ones. I § nowhere terminates when started in £ (in the semantics
under discussion) there will be no output state, 1.e., the set of output states
1% empty,

Dermirion 3.2.1 (Partial correctness semantics).
(8) S=sx:=e:RP"={(& Ee/x})|E astatel
(b) §=85,; 5, for simple commands §, and §;: R = RE™ - RE",
¢y S=*[07.,h—-8] for n21 and simple command 5,
i=1,.,m Let Rgp={{& &)|¢ a state satisfying B} for boolean expressions
B and let & denote the formula /!, b,. Define Reg= 7. (R, » RP™). Then

fal

R = ()% Rf,!)vR o Where Rg. denotes the ifold composition of the

im0
relation R with itseif,

Observe that for repetitions S=*[{17. , b, — 51 R contains the
pairs (&, &) for ¢ satislving &= A7, 7b,. This means that §
“immediately” terminates if S is executed in an initial state in which none
of the guards is enabled.

Dernvimion 3.2.2 ([] $[¢])uan). Let p and g denote assertions in an
assertion-language containing all program variables, terms, and boolean
expressions over M Lot Se LGC(M). Then we define N = [p] S[q],,. i
M= VE, ETp(E) A RYE™(E E)) 2 ¢(&)] (partial correctness). Le, W =
[£] 5{g]pac holds iff “for all input states { satisfying p the following holds:
il § terminates when started in £, then the output state satisfies ¢.”

3.3. Toral Correctness

Next, to reason aboul termination, we add to the set of states a special
state |, standing for diverpence. As usual, the state variant i {e/x} is
defined to be L. For an assertion p, p{ L) is defined to be false, i.e, p never
holds in L. In the sequel we assume L to be present in States.

Dermimion 3.3.1 {Total correciness semantics, execution scquences of

134

STOMP, DE ROEVER, AND GERTH

repetitions, nondetermministic divergence of a repetition from a
state). Define the relation RY, for §¢& LGC{YRN) as follows:

(a) Re=RT"w{(l, L)} ifS=x=¢

(b) RL=(R§ R, if §=5,; 8, and both §, and 5, are simple. To
define RY for repetitions S, the notion of an execution sequence of § i
introduced:

(c) an execution sequence of a repetition S=*[L37_ b= 5] n21,
is a maximal sequence of states §o—%&, =" &,, .. such that (R, =R%)
{&;. &+,) holds for all j, k satisfying j20 and k=1 with | $k<n The
sequence is considered to be maximal if it cannot be extended, ie, it is
either infinite or ends with some state £, satisfying A7, —1b,.

(d) We say that a repetition § can diverge nondeterministically frorm
£ if there exists an infinite execution sequence of § starting in ¢,

() For S=*[07_, b —S5,] with nz1 and simple commands S,
(i=1, ., n), define Ry =RP* 0 {(& L)|S can diverge nondeterministically
from £} w {{L, L)}

DeriviTion 3.3.2 (Nondeterministic termination, [p] 5{g],). For
Se LGC(M) and assertions p, ¢ as above:

{2) Termination of a {nondeterministic) program S is straight-
forwardly defined as V&= L - 1 RY(E, L)

(b) M= [p]SLel, iff M= VE, SL(p(E) A RUE &)= q(L')] (total
correctness). Le., M = [p] S[q]. holds if “S always terminates in a state
satisfying ¢, provided execution of § started in a state satisfying p.”

3.4, Strong Fairness and Unconditional Fairness

Termination of a program § has been defined as VE# L. =T R(£, L)
This is, howevet, a rather strong requirement. Consider, e.g, Dijkstra’s
(1976) random number generator; So=*[b—x :=x+1 0 b - b:=julse].
8, need not necessarily terminate if started in a state & such that £(b)
holds, because its execution may be governed by an extremely one-sided
scheduler that consistently refuses to ¢xecute the second direction of Sy,
i.e., b; b= false, in any iteration,

Consequently, various constraints on schedulers have been proposed
which prohibit schedulers to neglect the execution of directions under
certain circumstances. Termination of a repetition is considered relative to
a set of schedulers thus constrained.

Before presenting two important constraints ot fairness assumptions on
such schedulers, viz., strong fairness and unconditional fairness (Apt et al,
1984; Lehman eral, 1981), we first introduce the notions of enabledness
and disabledness of directions of a repetition,

135

H-CALUULUS FOR FAIRNESS ARGUMENTS

DermiTION 3.4.1 (Enabledness and disabledness of directions). Let §=
*[[10., b, — 8,1 be a repetition. Assume that £, -+% ¢, =" is an execu-
tion sequence of &5 For state &, m 20, occurring in this sequence we say
that the /th direction of 5 is enabled tn &, if £,,(h)) holds, where 1 5isn;
otherwise the ith direction of § is disabled in £

DepNmion 342 (Strongly fair execution sequences, strongly fair
termination, strongly fair divergence of repetitions).

{a) An execution sequence of a repetition S is strongly fair, cither if
it is finite or if it iz infinitc and every direction of .5 which is infinitely often
enabled in this sequence is chosen infinitely often along the sequence.

{b) A repetition terminates strongly fair if it admits no infinite
strongly fair execution sequences.

(c) A repetition diverges strongly fair from state £ if it admits an
infinite strongly fair execution sequence starting in £,

Observe that, while the above program, 5,, admits infinite computa-
tions, none of them 1 strongly fair; ie, S, terminates strongly fair.

In the scquel, we also need the notion of unconditionai fairness, that
does not take enabledness and disabledness of directions into account,

DeFiniTion 3,43 (Unconditionally fair execution sequences, uncondi-
tionally fair termination, unconditionally fair divergence of a repetition).

{a) An execution sequence of a repetition is unconditionally fair,
either 11 it s finite or if it is infinite and every direction is chosen infinitely
often along the sequence.

(b) A repetition termtnates unconditionally fair if it admits no
infinite unconditionally fair execution sequences.

{c) A repetition diverges unconditionally fair from state £ if it admits
an infinite unconditionally fair execution sequence starting in &.

The program S, =*[x=0-x:=10x=1-x:=x] docs admi
infinite strongly fair computations, but no unconditionally fair ones.

Other examples of unconditionally fair and strongly fair terminating
programs can be found in Griimberg e al, (1983). We should remark here
that some authors use a different terminology. In Lehmann et al. (1981) the
names impartiality (resp. fair) are used instead of unconditionally fair
{resp. strongly fair).

The relation between nondetermimistic termination, strongly fair ter-
mination, and unconditionally fair termination of a repetition is given in
the following:

136

STOMP, DE ROEVER, AND GERTH

TrHeorEM 3.4.4 (Relation between unconditionally fair, strongly fair, and
nondeterministic termination). For each repetition S,
(1} 8 terminates nondeterministically = X terminates strongly fair.
(1) & terminates strongly fair = 8 terminates unconditionally fair,

Proof. (1) and {ii) immediately follow from the definitions above.
Observe that the examples above show that the implications are proper.

We now proceed to define other semantics, taking fairness assumptions
inte account. The meaning of a command 5 under the assumption of
strong fairness is piven by the relation R%; under the assumption of
unconditional fairness it is given by the rclation RY

DerintTiON 3.4.5 (Semantics under fairness assumptions). For simple
commands 5, we simply define;

RY=R%=Rj,
and for repetitions S=*[O;_ b, — 5] with nz1 and simple 5,
i=1,..,nm

RY=Re (£, L)|§ can diverge unconditionally fair frem &}u
f(L, L}} and

R¥=Rw U {(& L) 5 can diverge strongly fair from £} L {(1, L)}

Next, termination of a program S5 under fairness assumptions and

validity of [p] S(q], for se {uf, sf} are defined.

Dermition 3.4.6 (Termination under fairness assumptions, [p] STql,.
and [p] S{g34). () A program S terminates strongly fair, uncondi-
tionally fair, respectively, iff ¥&z L - RHE L), VE# L RY(E L)
respectively, hold, (Cf, Definitions 3.4.2(b) and 3.4.3(b).)

(b} For se {uf, sf}, assertions p and ¢, as above, and program S, we
define

M= [pI1S[g), T MEVEELPE) A RYHE ED = aléD].

In the sequel ¢ denotes a state other than L, unless stated otherwise.

4. THE PROOF SY5TEM

We use a Hoare-like proof system. The axioms and rules are as follows:
(1) assignment

[p{e/x}1x:=elp);

137

H-CALCULLS FOR FAIRMESS ARGUMENTS

(2) composition
[r]5:0q] Eql S,(r]
Lrl S Si[r] '

(3) consequence

for simple commands §,, 8;;

IEF BRI T IELS
[r]50q] ’

(4) Orna'’s rule (see Section 1), for simple commands 5, (i=1, .., n)

Note that we only consider repetitions under the assumption of strong fair-
ness. However, Orna’s rule can also be applicd to ordinary terminating
do-toops. In this case, one simply takes the sets 5, we W 1o be empty.
We then obtain Harcl's (1979) rule for terminating loops.

5. THE ASSERTION-LANGUAGE L

Qur assertion-language is based on the p-calculus of Hitcheock and Park
(1973; also Park, 1969), which is appropriate both to prove termination of
recursive parameterless procedures (see de Bakker, 1980; Hitchcock and
Park, 1973) and to express the auxiliary quantities associated with those
proofs.

In this section, we first recapitulate the basic ideas on which the
p-calculus is based and introduce some fixed point definitions that are
needed in Sections 6 and 7. In particular, we express the domain of well-
foundedness of a binary relation as a p-term. The term expressing the
non-existence of infinite strongly fair execution sequences of a loop, see
Section 6, will be a more complicated variant of that p-term.

After introducing the assertion-language L used throughout the remain-
der of this paper, we define validity of formulac in L. As is usual in com-
pleteness proofs, we shall need the ability to encode finite sequences. In
this, we base ourselves on Moschovakis (1974).

As is argued in Apt and Plotkin (1985), fairness arguments require the
use of recursive ordinals. For this reason we introduce the notion of an
ordinal acceptable structure (see Definition 5.5.3). Relative to such strue-
tures completeness will be shown in Section 7.

3.1, Preliminaries

The p-calculus is based on Knaster and Tarski's theorem (Tarski, 1955).

THeorReM 5.1.1 (Knaster-Tarski thcorem). Let (A4, ©) be a complere
lattice and Fi 4 — A a monetonic function; in fact a cpo suffices. Then F has
a least fixed point, denoted by pa-[Fla)), meaning that

138

STOMP, DE ROEVER, AND GERTH

(1) Flpa [Fla)1)=pa [Ka)), ie, pa-[Fla)) is a fixed point of F.
(11} If there exists some be A such that F(bY=>5, then pa-[Fla)] = A,

ie, ua-[Fla)] is the least fixed point of F.
Using the notation as above, ua-[F(a)] is unigue since the partial

ordering = is anti-symmetric. Tn the scquel, we refer to property (i)
formulated in Theorem 5.1.1 as the fixed point property.

LemMa 5.1.2 (Characterizations of least fixed points). There are several
ways to regard least fixed points. Using the notation as above, first,

(@) pa-[Fa)Yl=MN{xed|Fix)=x}=[{xed|F(x} C x}, where []
denotes the infimum. A proof of this can be found in de Bakker (1980).

Second, the least fixed point can be ohiained by iterating F inio the irans-
finite ordinals.

(b) Define for each ardinal A:
FYx)=x,

F"(x)=F(il F'“(x)), if A#0
¥

Here | | denotes the supremum. Let L , denote A4's least element, which
cxists since 4 15 a complete lattice, Then pa-[Fla)]=F%L,) for some
ordinal &. For a proof, we refer the reader to Moshovakis (1974). Clearly,
if pa-[Fa)]=F*L,) holds, then for all fza, pa-[Fla)]=F"1,)
holds, too.

5.2. Fixed Point Definitions
Next, we introduce some fixed point definitions.

DEFINITION 5.2.1 (R~ p, R=p). Let R be a binary relation over some
set and let p be a predicate on the same set. Define

(i) R—pby (R- p)x)iff ¥x'. [R{x, x")> p(x")], and its dual
(iiy R=p by —(R-—"p) S0 (R-p)x) holds iff 3x" .
[R(x, x') A p(x')].
Since the collection of predicates ordered by p = g iff p 5 ¢ forms a com-

plete fattice with fa/se as the least element, and R — p, as well as Ko p, is
monotonic in p, gp - [R — p] exists.

Tueorem 5.2.2 (Domain of weli-foundedness of a binary relation R,

up-TR— p]). Let R be a binary relation over some set. Then pyp - [R— p]
describes the domain of well-foundedness of R; ie., for all x 1he following is

139

HU-CALOULUS FOR FAIRNESRS ARGUMENTS

satisfied: pp - [R— p)x) holds iff there exists no infinite sequence X, x|,
Xyy o With X =xy and Rix,, x,,,) (i z0)

Proof. (=) Define t(p)=R-=p Observe that up-[R—pl=
o false) holds for some ordinal e Consequently, it suffices to show that
for all x:if v*(false)(x) holds, then there cxists no infinite sequence x;, x,,
Xz, with x =g and R{x;, x;) for iz 0

Using induction on fi, we prove that for all f <o the following holds:
t#(false)(x) = there is no infinite sequence x,, x,, X3, ... with x= x; and
Rix,. x,,) (:20) holds.

Induction basis, [f = 0: trivial.

Induction hypothesis. Suppose that the implication holds for all 4= g

Induction step. For f1#£0, we have

(false Y x) = (R — u T"(fa[.sw)) (x)

A<

%V_x’-[R(x, x') =:-(|| z"(fa!se)) (x’)“.
A .

Y

So 1#(false){x) implies that for all x* such that R(x,x) no infinite
“descending” sequence starting in x” exists. This follows from the induction
hypothesis, Then there is no infinite “descending” sequence starting in x.

(=} To prove the other implication, assume that Dpp-[R— pl(x)
holds. By the fixed point property, (R — pp- [R = p])ix) holds, too. So,
there is an &, such that R(x, x,) and —up. [R— pl{x,). This process can
be repeated ad infinitum, and we obtain an infinite “descending” sequence
Xq. Xy, X3, ... such that x=x, and Rix, x, .} (iz0). 1

If Fis a monolonic operator mapping predicates to predicates, then its
greatest fixed point, vp - [F(p}], exists too. This is because the collection of
predicates as defined above is a complete lattice. Moreover, the greatest
fixed point is representable in terms of the p-operator. This follows from
the following lemma whose proof can be found in de Bakker (1980)

LemMa 3.2.3 (Representability of the greatest fixed point in u-terms).
vp - [F(p)]= —up- = [F(p){—p/p}].

Since Reo p s monotonic in g, vp - [Re p] exists, Using Lemma 52,3, we
obtain the equivalences wvp [Rep]= "pp [D(R=p)]="up-
[R—+p]

Recall that “=” denotes composition of relations. We adopt the conven-
tion that “+” has priority over “u.” le, R,;¢ R;w R; should be parsed as
(R| @ Rz}\J Rg.

140

STOMP, DE ROEVER, AND) GERTH

Let R denote a binary reiation over some set, and let f denote the iden-
tity relation over the same set. It is casily seen that F(X)=RoXu [l is
nienotonic in X, where X" denotes a relation variable. So F's least fixed
point pX.[ReXuw/] exists, In informal notation pX [ReXul]=
TOUROUR* - OUR" -

Notation 524 (R*, R™),

(a) We abbreviate pyX-[R-Xu /] to R* the rclation obtained by
composing R, zerc or more times with itsell,

(t) In the sequel, we shall also use R™, the relation obtained by
composing R at least once with itself, as an abbreviation for 8. R*.

We then have

Facr 5.2.5. Let R denote a binary relation over some set and / the
identity relation over the same set. The following holds:

(a) I=R* R"=R* R*=R*:R.
(b) If T denotes a binary relation and T= R, then T* = R* and
R*-T= R*,

5.3. The Assertion Language L

Let M be some first-order structure. The first-order logic over M is
defined as usual. Now we extend this logic so as to be able to express fixed
point definitions. For this an infinite set of n-ary predicate variables,
2. X, Y, ., is introduced for every n=0. Thesc predicate variables may
appear in formulae, but may not be bound by quantifiers. These variables
from the basis of the fixed point definitions. To ensure the existence of least
{and greatest) fixed points, monotonicity has to be imposed. In fact, we
introduce the notion of syntactic monotonicity of formulae, which implies
their semantic menotonicity. In essence, this notion requires that each
occurrence of the predicate variable p that is to be bound by the least fixed
point operator ¢ is within the scope of an even number of —-signs.

DermviTion 5.3.1 {Syntactic monotonicity and syatactic anti-
monotonicity). We inductively define sets sm(p) (resp. sa(p)), denoting
the class of formulae that are syntactically monotonic (resp. syntactically
anti-monotonic) in a variable p:

(i) ¢esmip), if p does not occur free in ¢,

() =1gesm(p), if gesalp)
iil) ¢, =>¢,esm(p), if ¢ esa(p) and $;esm(p).
(iv) Vxd, Ixdesm(p), if g esm(p).

141

H-CALCULLUS FOR FAIRNESS ARGUMENTS

(v) pesm(p)
(vi) up,-[é] vp,-[d)esmip), if pesm(p)msmip)
{(vil} (i)-(iv) with sm and sa interchanged.
(viii} up, [¢). v, - [élesa(p), if desa(p)nsmip,).
Under the usual ordering, ¢ = ¢, iff @, = @5, it can be proved by induc-

tion on the structure, 1.€, the complexity of the lformulae that syntactic
monotonicity implies semantic monotonicity.

DeFminimion 3.3.2 (Assertion-language). The assertion-language L{IN)
over some structure 9, is the smallest class £ such that
(1) &, pp-[P(m], vp-[wip)]e B, where ¢ and o are first-order
formulae over M, ¢ does not contain any free predicate variables and
Y e sm{p).
(1) W, ¢re Bthen ¢ A, ¢ v b, p2if, and ¢ € B, 100
Remark. 1f in a formula pp.{y¥(p)] or vp-[¥(p)], p does not occur
free in i, then we will often write ¢ instead. Note that formulae of the form
up - [y p}], where s containg a p-operator, are not allowed. However, we
shall use such formulae, in which such a nesting of p-operators occurs,
since they are representable in L(¥R), see Moschovakis (1974).

In the sequel we shall often abbreviate L(Wi) to [, when the structure I
is clear from the context.

34, Validity of L-Formulae

We next define validity of L-formulae. This definition is clear, except for
the cases wp-[¥(p)] and vp-[W(p)]. Recail that pgp. [{p)] can be
obtained by iteration. We now formalize this idea in the following con-
struet by defining predicates Iﬁ for f20 “by iterating f times from
below.”

DEFINITION 5.4.1 (F£). For first-order formulae ¢ over M, yr e sm(p), we
define I for ordinals § by

13 = 1% - false,
1= 3% (&, cp I2) for B0,
Iy =4% | Jano LX)
By the monotonicity of y the following holds {Moschovakis, 1974):
Lemma 54.2 (Properties of I5).
(i) (e P =(1(x) =1z

(ii) for some ordinal w: I, =T, =|1...I}.

142

STOMP, DE ROEVER, AND GERTH

(iit) I, is the least predicate C satisfving C(Xy= (%, CY, fe.,
I,(8) = (% 1,) and if C satisfies C(5) = (5, C), then 1,(£)=C(2). 1

Observe that the clauses (i) and (11) in Lemma 5.4.2 ensure that If,’, 1%
monotonic in f§ and that there exists some ordinal x for which the fixed
point is reached. In fact, J,, as defined above is obtained after « iterations
of ¢ Moreover, in this way the least fixed point 1 obtuined indeed. This
is an immediate consequence of Lemma 5.4.2(iii).

DermITioN 5.4.3 (Validity of up - [¥(p)] and of vp - [¥(2)]). Let ¥ be
a first-order formula over M, y esm{p). We now define

(@) M= pp-[Y(p)UX) iff | = 1,(X),
(b) M= pp-[k(p)]iff for all x, M k= pp- [¢(p)](%), and
(c) MEvp-[Y(p)]iff M —up-2[¥(p){plet] 1

3.5, Accepiable Structures

As is usual in eompleteness proofs, we need the ability to encode finite
sequences. In our case, this is necessary to define the well-founded set
necessarily for applying Oma’s rule. For this, we introduce the notion of an
acceptable structure {Moschovakis, 1974)." First we introduce a number of
notions needed for the definition of acceptable structures,

DerisITION 5,51 (Coding scheme, decoding reiations, and decoding
functions).
(a) A coding scheme for a set A is a triple ¥ = (N*, €%, ¢ >%>
such that
(i) N¥ =4, <% is an ordering on N® and the structure
¢N¥, =¥% is isomorphic to the integers with their usual
ordering.
(i) ¢ >*is a one-one function, mapping the set |J, . 4 of all
finite sequences over 4 to 4. By convention, A%=¢: the
empty sequence { ¥ is the only sequence of length 0.

{(b) With each coding scheme %, we associate the following decoding
relations and functions:

(i) Seq®(x)<-there exist x,,.. X, such that x={x,, .., x.0%
Here, x = ¢ 5%, the code of the empty sequence, is covered by
the convention that x=<¢x, ., x, ¢ if n =0,

{(i1) The length function 1h* for sequences maps 4 into N, and

! Alternatively, we could have introduced the notion of an arithmetical structure (Harel,
1979),

143

H-CALCULUS FOR FAIRNESE ARGUMENTS

hence into the imtegers, because of the isomorphism of
CNY =% with (N, £ 5

0, if —1%eq®(x)
n, if Seq®(x) A x= (x|, .., %,>" for some x,, .., x,.

mf-f(x):{

(i) The projection (x)¥, as a function of x and i, is defined by

. o Lo I . :
(x)¥ = x, M x=(x,. ., x> forsomex, ., x,, 15isn
0, otherwise.

Dermrrion 552 {Elementary coding scheme).

(a) A function f is first-order definable on a structure T iff its graph
is first-order definable, ic, iff [(% F)I (%)= F} is first-order definable
on M.

(b) A coding scheme & is elementary on a structure M if the rela-
tions and functions N*, </, Seq®, 1h¥()% are ail elementary, ie, first-
order definable on Wi,

Note that the class of elementary relations on a structure is closed under
conjuaction and quantification. This is an unmediate consequence of
Definition 5.5.2, Tt follows that the functions p!, defined by p¥(x,, .., x,) =
(Xyy oy X 0¥ are elementary, as p¥(x,, ., x,)=u==(Seq®(u) A Ih'(y) =
AV -[1<isns((w)] =x,)]) (In the sequel, we shall omit the super-
seripts %)

As argued before, we need the ability to encode finite sequences. Also
fairness arguments require the use of recursive ordinals. In our case these
requirernents are necessary to define the well-founded set required 1o apply
Orna’s rule.

DrFmITION 5.5.3 (Acceptable and ordinal acceptable first-order structures).

(a) A first-order structure 9% is acceptable if there cxists a coding
scheme elementary on 8.

In the sequel, we consider acceptable structures such that for all recur-
sive ordinals @, there ¢xists a constant symbol & interpreted as the ordinal
«. We therefore introduce the notion of an ordinal acceptable structure:

(b) A firsi-order ordinal acceptable structure is a structure U such
that:
(i} 9R is an acceptable structure,

(ii) 9s signature contains symbols ¢, for all i< w, and
¢; =ic|M|, where wit is the first non-recursive ordinal, and ¢
denotes the interpretation of .

144

STOMP, DE ROEVER, AND GURTH

(iti) the predicates Ord (Ord(a) holds iff a1 ~ () and < 4,
the usval ordering on w, arc first-order definable in W,
where I’ is a reduct on YR, obtained by removing al] ¢rdinal
constants ¢, from its signature,

Lot 9 be an ordinal acceptable structure. For compieteness, we need
amongst others, representability of the guarded commands partial correct-
ness semantics. First note that the 1/0-relation of a program S only con-
strains the valuation of its free variables (in the output state). We shail be
somewhat motre precise below. To do so, suppose that § is a program.
Denotc by F the set of free variables occurring in S. Let F¢ denote the com-
plement of F, ie, F* is the set of all variables not occurring free in S. If
RZM(E,E') holds, then REP(r,t') holds, too, provided &|F=<z|F,
E|F=1'|F, and t| F*=1'| F*, where | denotes restriction. Using this obser-
vation, the semantics RE", is easily seen to be representable: for example,
if S=*[b=5] then RPE V=M E uX-[(Ry=R')eXw R](x, p),
whete x and y arc the codes of £| F (&'| F resp.). Here R’ denotes the rela-
tion RE™ associated with §, and F the set of free variables occurring n $.
Observe that the codes x and yp exist since M is an ordinal acceptable
structure.

We next construct an extengion of R by adding for every guarded com-
mand & a relation symbol Rg, interpreted as the semantics RFY of 5. Since
R is representable, we obtain a structure ' such that Th{Ik') = Th(M),
where Th(M)={pe LM = p}. Le, Th(M') is conservative over Th{IR}
and we do not obtain a more expressive language in this way.

We conclude this section by showing that 2 number of predicates exten-
stvely used in the sequel are representable in L.

TueoreM 5.54 (Representability of a number of predicates). Assume
that W is some ordinal accepiable structure. Let R and R, denote binary
relations on |M| elementary on . The following constructs are representable
in L Ry =Ry, Ry Ry, R, and pp - [R, — p.

Proof. It should be clear how to represent R = Ry and R, v Ry in L R}
is representable by pX . [R, X wTI], where I denotes the identity relation.
Finalty pup-[R, - p] can be represented as follows: define ¢(x, p)=
Vx'[Ry{x, x') 2 p(x')]. Then up - [$(x, p)] represents pup - [R, — p](x}). |

In the remainder of this paper we shall also use the construct re R for
predicates r and binary relations on |98, where Wi is as above. Intuitively,
r« R is satisfied in x il x is R-reachable from some y in which » holds.

DeriniTION 555 (re R). Using the notation as above, we define for
predicates r and binary relations R on |4R| the predicate ro R by ro R(x)

145

H-CALCULUS FOR FAIRNESS ARGUMENTS

uf dy(r(y) ~ R(y, x)]- Observe that rs R is trivially representable in L, if
R 15 clementary in ¥,

In the remainder of this paper YR always denotes some first-order ordinal
acceptable structure,

6. CONSTRUCTION OF A p-TRRM EXPRESSING
STRONGLY FAIR TERMINATION

In this section we show that the property “S is strongly fair terminating™
is representable in L. More precisely, let *[0O;_, 5,2 5,] and let
M be some ordinal acceptable structure. We construct a formula
SFAIR(R|, .., R,) such that M = <8FAIR(R,, .., R,) holds if “§
terminates strongly fair when started in £ Here, R, denotes the relation
R, » RY associated with A §, (i=1, _, n).

For programs with two directions, a p-term expressing strongly fair ter-
mination has been constructed in de Roever (1981). To give the reader
some mtuition, we first construct a term describing the existence of infinite
strongly fair execution sequences of a program S=*[4, - 5, 0O b, — 5,1

From Definition 3.4.2, we obtain that in an infinite strongly fair execu-
tion sequence of S, either

(1) both directions of § are infinitely often ¢nabled in this seguence,
and hence infinitely often taken in it, or

(2) the first direction becomes cventually continuously disabled and
the second direction of § is continuously taken from some point onwards
in the execution sequence, or

(3) the symmetrical case of (2), i.e, the second direction of §
becomes eventually continuously disabled and the first direction is con-
tinucusty taken from some point onwards in the excoution scquence,

The construction of the term describing the existence of an iafinite
strongly fair execution sequence of 5 naturally splits up into three cascs,
according to the three possibilities (1); (2), and (3) above. Let R, (resp. R;)
denote the relations R, s RY (resp. R,,zoR‘lJfZ) associated with &,; 5, (resp.
by; 57)

Case 1. We consider such a sequence as consisting of an infinite
number of so-called unconditional fair parts, roughly being finitc sub-
sequences of the infinite sequence in which every direction is taken at least
once. Such an unconditional part can be described as follows:
(R eRyw R =R))

This characterization stems from Park (1980). Recall that truth of the

146

STOMP, DE ROEVER, AN GHERTEH

predicate vp-[R=p] in x, expresses the existence of an infinile sequence
Xgp X1, X3, .o such that Rix,, x;,) holds for iz 0. As a consequence, the
existence of an infinite strongly fair sequence, according 10 the first
possibility above, is captured by the predicate vp . [(R}FoR,w
Ry «R|)op] This term is called UF(R|, R,).

Case 2. We congider possibility (2) above, In this case, the existence of
an infinite strongly fair execution sequence of § can be described by a term
expressing that after some finite prefix, in which (possibly both) directions
1 and 2 are chosen, only the second direction is continuously taken, since
the other one becomes eventually continuously disabled. In the infinite tail
of the sequence each intermediate state satisfies —h,. This term is captured
by (RiyUR)*evp - [({(bs A 1b)2 Ry)ep]. This term is called fair(R,)
fin(R,).

Case 3. Symmetrically to case (2) the existence of such an execution
sequence can be described by fair(R,) fin(R;).

Now define SFAIR{R,, R,) by SFAIR(R,, R,;)=UF(R,, R;} v fair{R;)
fin(R,) v fair(R,) in{ R;). We then obtain that 5 admits an infinite strongly
fair execution sequence iff SFAIR(R,, R,) holds.

The structure of Section 6 is as follows: in Section 6.1 we describe the
predicate UF(R,, .., R,) for n= 1. This predicate is a peneralization of
UF{R,, R;) that we derived in case (1) above. Tn Scction 6.2 we extend the
reasoning of case (2), henee case (3), when there are more than twe direc-
tions in a repetition. Finally, in Section 6.3 we show that for every com-
mand 5 and command ¢, the weakest precondition for fair termination is
definable in L.

6.1. Uncondiiionaily Fair Termination

At first, we consider execution sequeénces of programs *[O7_ &, —+ 5,],
in which each direction of § is chosen infinitely often. Any such sequence
1s strongly fair iff it is unconditionally fair. In the sequel, we asgume that
Ry, . R, are the relations R, -R7Y, ., R, R associated with the
statements &,; 8, .., &,; §,. Consequently, we first consider the problem of
describing in L the existence of an infinitc sequence of R-moves im which
each of the R, accurs infinitely often (i=1, ... n).

Consider such an infinite sequence. Since each R, (i=1, .., n) occurs an
infinite number of times, this sequence may be viewed as consisting of an
infinite number of finite sequences, the so-called U(nconditional)paris.
Every Upart satisfics:

(i) each R, occurs in the Upart.
(i) this Upart is the smallest sequence satisfying (i); i.e,, any initial
fragment of Upart leaves some R, out.

147

H-CALCULUS FOR FATRNESS ARGUMENTS

To define a relation Upart(R,, .., R,), which expresses for every pair of
states (&, &), whether ¢ can be reached from ¢ by executing an Upart
(w.r.t. Ry, .., R,), it suffices to consider Uparts i which the first occurren-
ces of the moves are in some predescribed order, so-called Usegments, since
any Upart of R, ., R, is an Usegment of some permutation R, .. R,
More ciearly, a Usegment of the ordered sequence of moves R, ., R, isa
finite sequence in which for no 4, j with 1€i<j<n a R-move occurs
before 2 R;-move has occurred.

The relation Usegment(R,,... R,) i defined inductively (wri n) as
follows: The case n=1 is simple: define Usegment(R,)= K,.

Now, suppose that Usegment(R,, .., K,) has been defincd. Then,
Usegment(R,, .., R, ,,) looks like R,,.., R,, ., Ry, ., Ry, where the
first occurrences of R,, R;, R, R, ., are shown (1 << k). First, observe
that R, ., occurs only once; this is a consequence of requirement (i)
above, Second, obscrve that the prefix R,,.., R, .. R, of the above
sequence is a tsegment of R, ., R,. Hence, the sequence up to, but not
including K, ., is not necessarily 4 Upart of R, .., R,. However, it starts
at least with a Usegment of R, .., R,. The remaining part may contain
any (finite) number of R-occurrences (but no K, .). This motivates the
following definitions.

Derinerion 6.1.1 (Usegment(R, ., R, for nz1). Usegment{R,)= R,
and lor n=1:

Usegment(R,, .., R, ,)=Usegment{R,, ... R,)e(Ryu - R ¥R, .
ExampLE. Usegment(R,, Ry, R\) =R, =R} Ryo (R) W Ry3)* v R,.

Dernimion 6.1.2 (Upart(R,,...,R,) forrz1). Fornzl: Upart{R,,... R,)
= Ull_..., hpermofl . o» Uscgmc:nl(R,-‘, - Rl,.)' I.E., in Upaﬂ'(Rh ey Rr:) the
order of the R, (i=1, .., n) is immaterial.

Remembering the example given above, the existence of an infinite
sequence of Uparts, starting in a state &, is expressed by satisfaction of a
predicate UF(R,, ..., R,) in £, defined as follows:

DEFINITION 6,13 (UF(R,, .. R,) for r=1). For nx1: UF(R,, .., R,)
=vp-[Upart(R,, .., R,)= p]. {(Recall that R, denote relations.)

An exccution scquence of @ program S=*[0O/_, 5,— 5,] in which each
direction is chosen infinitely often is strongly fair iff it is unconditionally
fair, Consequently, the program S=*[0O}_, &~ 8,1 (n>1) admits an
infinite unconditionally fair execution sequence starting in & iff
UF(&,, ... R,) holds in & Recall that R, denotes the relation R, R
associated with b,; 5, (i=1, ..., n).

148

STOMP, DE ROEVER, AND GERIi

6.2. Strongly Fair Termination

Now, consider infinite sequences of a program *[[17_, b, — 5] in which
directions can become disabled. Suppose that the ath direction b,; 5,
becomes evestually never enabled any more. Then an infinite strongly fair
sequence of R, .., R,-moves consists of some finite sequence of R, ., &,-
moves followed by an infinite strongly fair sequence of R, ..., R, ,-moves
in which every intermediate state satisfies =14,. In case no other direction
of § becomes eventually continuously disabled, the existence of such a
sequence is expressed by a predicate (Ryw -+ W R Y« UF(—b,cR,, ...
—tb,o R, _). Observe that this predicate is equivalent to (b, o R v v v
boe R) oUF((b, A b,)e Ry, .., (b,_, A Tb,)= R, _), since the cnabling
condition b, is incorporated in R, (i=1, .., 7). The possibility that other
moves may become disabled, too, leads to the following definition®:

DeFiviTioN 62,1 (fair(d, = R, , o b0 R) fin(b, =R, |, b, 2R,) for
nz2and 1 £k <n). Let nz2 and suppose that iy, .., I, is some permuta-
tion of 1, .., »n. For k, satisfying 1 € k < n, define

fair(b;,o Ry o by Ri) by, o Ry, bo R,)

Q
it

=(U b,uR,) eUF((b‘.IA A —;b,l)ng___,
Tl

J=k+1i

(b,k A /\ _115,-‘)"» R,-k)_
f=k

Remark. fair(b, = R,, .. b,=R,)fin(b, »R, ,, ., b R holds in
state ¢ iff there exists an infinite strongly fair sequence, starting in £, in
which the directions b, .} § - b,; 5, are eventually never enabled any

Tkt X
maore.

Now, finally the predicate expressing the existence of infinite strongly fair
sequences can be formulated.

Dermrtion 6.2.2 (SFAIR(b,= R, .., b,= R} for nz1). SFAIR(b,-R))
=UF(b,=R,), and for n > 2;
SFAIR(b, <R, .., b,=R,)

=UF(b,= Ry, . bps RV V fait(b, R, . b,oR,)

il fapermol b, . 8
lEkchn

ﬁ"(bi*,‘IDR bR

ikt
! This definition is duc to P. van Emde Boas.

149

H#-CALCULUS FOR FAIRNESS ARGUMENTS

In the sequcl we always assume that the relation b, is incorporated in the
relation R,. Also, with R, we always associate b, as enabiing condition.
Thus, R; will denote the relation R, = R,

We defined here, for every sequence of relations R,, .., R, a differemt
predicate. In other words, SFAIR is not 4 sccond order formula! For the
proof of Theorem 6.3.4 we need the following technical lemma.

Lemma 6.2.3 (Charactenization of SFAIR(R,, .., R,)).

M = 2 SFAIR(R,, ... R,)

g[sm E UF(R,, ... R,) A A (U R.)‘

Nempippermaol 1,00 e
1k wn
n n -
—p‘lUF(A R, A _lb,JUR,”)J.
i+ J=ky 1

Proof. For n=1 this {ollows by Definition 6.2.2. S0 assume that n= 2.
Then the lemma follows from Definition 6.2.2, Definition 6.2.1, and
Lemma 5.1.3.

6.3, Weakest Precondition for Strongly Fair Termination

As a last preparation for the soundness and completcness proofs, we
mention the notions of the weakest liberal precondition and of the weakest
precondition for strengly fair termination.

Derinrrion 6,31 (Weakest liberal precondition). An assertion
p=wIp(5, g} is the weakest liberal precondition wrt, 4 command 5 and a
condition g if M = [p] S[¢]pan and for each v, M = [#] S[¢] e, implies
M= rop.

In (de Bakker, 1980), it has been shown that for each command & and
assertion g, wip(S, g} is definable in L. It is useful to mention that for toops
8 wip(8, g)= (U7, R)* = AJL, 18 =)

DepmviTion 632 (Weakest precondition for strongly fair termina-
tion). An assertion p is the weakest precondition for strongly fair termina-
tion w.r.t. a command & and a condition g if 0t = [p] S[q]. and for cach
r, M= [r] 8[q].; implies M |= r > p.

We next statc the key result of this section, viz., the definability of the
weikest precondition for strongly [air termination sfwp(S, ¢) for any com-
mand § and any condition 4. In Theorem 6.3.4 below, we prove that wpsf
indeed defines the weakest precondition for sirongly fair termination.

150

STOMP, DE RORVER, AND GHRTH

Dermimion 6.3.3 (sfwp(S, ¢)). For each command S and condition ,
sfwp(S, ¢) is inductively defined by

(3) sfwplx:=e g)=gle/x},

(b) sfwp(S,;5,, ¢)=stwp(S,, sfwp(S;,4)), where S, and 5, arc
simple commands, and

(c) sfwp(*[O7_ b, 5;].q) = SFAIR(R,, .., R} A (((U}, R)*
s AY_, 1b;) = q), where 5, are assumed to be simple.

THEOREM 6.3.4. For each command 5 and condition gq, sfwp(S, q) is
indeed ihe weakest precondition for strongly fair termination wri. § and g.

Progf. The proof is standard except for the case that §=
*[O4., b, =~ §;] with simple 5, i=1, .., n Consequently, we prove that
both

(a) gjz h [wap('[D‘;-] ba - Si]: q)]* [DT- 1 bi_' Si][q]sh a'ﬂd

" ld(b) Tl A1 IO b~ 85][g]e= M rosfwp(*[O7., 5,~51,9)
old,

To do so. it suffices to prove that for every &M |= [F]*[L7_, b, —~ 5]
[qME) =M r=(SFAIR(R,, ., R A (U, RY =AML b)) = 4D
(&), holds.

(==) Suppose that M |= [r] *[O;_, b,— 3,1[g]. holds. Choose some
state ¢ such that M }= r(&) holds. Assume, 10 obtain a contradiction, that
M = SFAIR(R,, .., R,)(£). Then this leads immediately to 4 contradiction,
since this implies the existence of an infinite strongly fair execution
sequence, starting in £ So M = 8FAIR(R,, .., &,)(&) holds. It remains
to prove that M= (((U7L, RY*=Al_, b)) - g) &) holds, too. To do
this, choose some & satisfying = (U7, R¥* o A7, b XE, &), Clearly,
then also M ke RU(E, &), where S=*[17_, b, =~ 5], and so by the
hypothesis I = (&)

(=) Suppose that M = r=(SFAIR(R,, ., R,) A (U7, R)*=
Ai-1 1) = g). Choose state £ such that M &= r(&). Since, by hypothesis
W = ~SFAIR(R,, .., R,)¢), the repetition always terminates strongly
fair. We have to prove that, in this cage, cach final state satisfies ¢. Choose
some &' such that M |= RY(E, &), where S=*[O!_, ,— 5,]). Clearly, then
also M= (Ui, R)*a AT, B NE &) and so, by the hypothesis,
M = g(£') holds, which had to be shown. §

CoroLLARY 6.3.5. For every &M |= sfwp(*[O]_, b, — 8.}, true)(&) =
M = SFAIR(R,, ., RNE).

This corollary states that strongly fair termination of a repetition is
indeed expressible in the y-calculus,

15l

J=CALCULUS FOR FAIRNESS ARGUMENTS
7. COMPLETENESS

In this section, we prove the completeness of our proof system, ie, we
will show that for any stutement Se LGC(WM), assertions r,ge L,

M= [r]15Tgla=Th{I) |- [r]S[q] holds. ()

Here M is by convention a first-order ordinal acceptable structure, and
Th{M)={pe L|Wi = p}. As is usual in such proofs, completeness is
established by structural induction on the complexity of statements §
Observe that () is trivial in case 5§ is not a repetition. Therefore to prove
(+), it suffices to concentrate on the case where S=*[07_, b, — ;] with
n 1. In this case, we establish () by induction on n, the number of direc-
tions in §. Next observe that when n =1 the proof of (+) is straightforward.
Consequently, we proceed with loops with more than one direction, the
induction hypothesis being

InpucTion Hyrotuisis (TH), (a) and (b) below both hold:

(a) for all simple commands S, ME [r]S[gl.=Th(M) |-
[r]150q].

(o) for all k, 1 <k <n, M= [r] *[LI%_,
{r1=[0F. b~ 5,104]

From the discussion above it follows that we may assume that 5 is a
repetition with at least two directions and that (TH) holds. Consequently,
we are going to prove that given the fact that M= (r]
*Os_, b, = 5109+ holds for nz2, we can define in L the auxiliary
quantities, i.e, a well-founded set (W, <), a ranking predicate #, and
pairwise disjoint sets D, and 51, for we W, w0, such that the premisses
(a), (b), (c), and (d) of Orna’s rule as stated in Section] hold. The
definitions of the auxiliary quantitics are developed in Section 7.1. In
Lemmatay 7.2.1 through 7.2.4, validity of premisses (a) through (d) are
proved, culminating in completeness theorem 7.2.5, whose proof is then
standard.

bi— 8] q)= Th(R) -

7.1, The Auxiliary Quantities

Assume that MM = [r1*[(0O7_, b, — 5,1[¢], holds. The main results of
this section are that the auxiliary quantities necessary to apply Orna’s rule
are definable within L.

First we are going to define a well-founded set W and a predicate
7 W — (States — {1rue, false}), ranking every state (reachable by §). To
do so, we observe that the usual approach of counting moves does not
work, because not every move brings the program closer to termination.

152

STOMP, DE ROEVER, AND GERTH

B.g., in case of Dijkstra’s random number generator, see Section 3.4, move
R, will not help reach termination.

Now S terminates strongly fair and henee also unconditionally fair. This
follows from Theorem 3.4.4. At any time, there is at least one decreasing
move; otherwise there exists a state in which no move would bring the
program closer to termination, resulting in the existence of an infinite
strongly fair sequence, yielding a contradiction, So, if in a successive
sequence of iterations, “gvery enabled move has been executed at least
once,” then certainly the program has come closer to termination. This
shows that viewing execution sequences as consisting of Uparts is a natural
thing to do. Unfortunately, counting Uparts does not quite work, because
we have to rank all states in order for Orna’s rule to apply.

Consider such a Upart. It suffices that the states reached by executing
this Upart, are ranked in such a way that it reflects the “progress” that is
made w.r.t. executing this Upart itsell. Now a move leads to “progress™ if
it is a new one that has not been made in the Upart as yet. This gives the
intuition behind the definitions of W and n that we now develop. First, we
consider the problem of ranking states related by Uparts in more detail. At
this stage, we therefore disregard the internal progress within a Upart; such
progress is incorporated afterwards.

Consider any reachable state ¢. Intuitively this state will be ranked by
counting the number of Uparts necessary to reach a final state, ie, &
will be ranked by f# if it takes the program at most f Uparts from &
to reach termination. To define the rank ff of &, we apply the techmiques
developed in Section 5. Define t(p) = A¢ - (Upart(R,, ..., R,)— #)(). From
Lemma 5.1.2 it follows that the least fixed point of 7 exists and that it can
be obtained by iteration. Intuitively, =#(faise) holds in & if in & we are at
most f Uparts away [rem termination. It also follows from Lemma 5.1.2
that there exists some 1 such that

' false) = pp - TUpart(R,, ... R,) = p] holds. (A)
Let & be the least ordinal satisfying {A). & is a recursive ordinal, cf. Apt and
Plotkin (1985). Therefore, we have that for all f=d f is a recursive
ordinal, too.

Of course, for this idea to work we need to show that tf(false) is
representable by a formula in L.

7.1.1. Turorem (Definability of z#(false)). Lert(p)=2&. (Upart{R,, ., R,)
— p)(&). There exists a formula ¢ in L such that for oll € and all f<4d.
A false)(£) holds iff M k= ¢(B)E).

Progf. Define ¢(f) = ur - [3a < f - (Upart(R,, .., R,) -~ r(x))]. By
induction on f <4 we prove that for all f<a and all &, t#(fulse){£) holds

iff M = SANE).

153

H=CALCULUS FOR FAIRMNESS ARGUMENTS

Induction basis, f=0. Trivial, since for all &, t%(false)(§) = false and
M= G0)(E) =M = false(E) = false.

Induction hypothesis (1H). For all £ < f and all &, «¥{ fulse &) holds iff
M SANE).

Induction step. For fi=0, we have that

M = $AUE) Wi = wr- [Ja< f-(Upart(R,, .., R,) = r(a) (&)
{definition of ¢)
<=M = Jo < f- (Upart(R,, ... R,) = $a)}E)
(fixed point property)
= for some 1< f, M | (Upart(R,, .., R,) = #(IN(E)
<= for same 1 < ff and for all &,
M |= [Upart(Ry, oy RIE &)= ANEND]
< for some A« f and for all &',
M = [UparR,, .., R)ME, £)] = o*(false)(€') (TH)
e for all &', M |= Upart(R,, .. R)(E, &) = (34 < fi - o4 false)(£')
e for all &, I |= Upart(R,, ... R)(E, &)=>1[_|ﬁ o (false)(&')
<18 false)(£). |

MNow, we define the well-founded ordered set B each we W, w not mini-
mal, consists of two components. The first one counts Uparts, the second
one records “progress” within the last (incomplete) Upant and is a
sequence of length at most n, the number of directions within this Upart,
which records the directions within this Upart, that have already been
taken.

We next define the predicate seq,(s) which holds i s is sequence of
length at most n, in which directions are recorded only and in which each
direction is recorded at most ance.

DeFrimon 7.1.2 (seq,,).
seq,{s)=3eq(s) A lh(s)=n A Vi{(} i 1hi(s))= {1 € (5); 2 nr)]
A I j=Th(s) A i 7)1 (s),#(5),]
(cf. Definition 5.5.1).

Next, we define the well-founded structure required to apply Orna’s rule.

154

STOMP, DE ROEVER, ANI) GERTH

DeriTioN 7.1.3 (The well-founded structure W,).

(@) W.,={(Ls0<i<anseq.(s)}w {0}

{(b) The ordering < defined on W, , is the following: 0 = (1, 5) for ail
(I syeW,,, and (i, s,)= (4, 5) f (I, <dy) v (1, =12 A lh(sy) <
This,) A Vi[(1 igih(s;)) = (s5),=(5,)])

Next, we define the ranking predicate =

Dermirrion 7.14 (The ranking predicate #). The predicate =: W, , —
(States — {true, false}) is defined by:

¢ =eitgatse) nro(U &) w Vb
i=1 (=1
k *
all, <iyy o ik>)=t‘(false)o(Usegment(R,-l,..., R,”}o(U R,-J))
Iy

L] * n
Arn(U R,) A\ b, (orlgk<n),
f=1 jm

i 1

ki) = L atse) aro) R) 2

A< ial

ﬂ(0)=“(£’}1 R,-)* A ;\ —b,.

im=1

Note that accessibility is demanded for n(w), we W, . If 1€k<n
and n{i, {iy, .., &> }&) holds, then there exists a state &' in which the
program is at most 4 Uparts away from termination. It takes a fragiment,
ie, an initial part of a Usegment to reach ¢ from &', namely
Usegment{R, R,)=(UJ5_, R)*

Defining St,, and D, for w>—b, we W ,, is simple now. If we are at the
start of a Upart, te, w=(L ¢ ») or w= (4, {i,, ., i,>) for some 154,
then every move leads to eventual completion of this Upart. Otherwise,
w= (1 iy, i) Tor some A, 1<k<n, and only moves different from
R, ... R, lead to eventual completion of this Upart.

7.1.5. DerniTioN (The set of helpful and steady moves D, and
51,). Let we W,,, w>0. Then w=(Ls) for some I<d, and 5 with

seq,(s)
If Ihis)=0 or if In{s)=n, then D_={1,.., n} and St = (7.

If 0<lh(s)<n, then D,={i{(1€ign) A ¥j 1<j<Ih(s)[(s),#i1},
Sip={l,.mnl—D,.

155

H-CALCULLS FOR FAIRNESS ARGUMENTS

Note that for all weW,,, w=0D A8, =, D% and
DS, ={1,.,n}

1.2, Completeness of Orna’s Rule

Using the above definitions, we next prove that the four premises,
(a)-(d) of Orna’s rule are valid. Yo be more precise, Lemmata 7.2,1-7.2.4
below show that these four premises are satisfied indeed. From the induc-
tion hypothesis, compieteness of the rule and hence of our proof system
then easily follows. Assume that 9 = [»] *[{37., 6, — 5,1{ g1, holds.

By Definition 6.3.3 and Theorem 6.3.4 we may assume that M | ro
(ASFAIR(R,, .., B} A (U7, R)* < A%, =1b,) = g}) holds, too.

Lemma 7.2.1 (Corresponding to premise (a) of Orna’s rule) Let
we W, ,, jeD,; ie, R, is a decreasing move. Suppose that Wl r=
(TSFAIR(R,, ., B) A ((UT-, R)* < A%, DB,y = q) holds. Then M =
[rlnw) A w0 bS8 [30=w a(u)] holds, too.

Prooft We have to prove that for all &, £ e5States such that M =
RAL) ME (mlw) A wx0)E) =M = o< w. n(v)(£').) Choose states
g and £ satisfying 90 k= R, (£, &) and suppose that M = (x(w) A wi=0)(&)
holds. To prove the lemma, we distinguish two cases:

(a) W= AT, A&, In this case, M = n(0)(E'), and we are done.

(b) Mg \/ bi(& (1)

fm b

ince Wt = m(w)(&} holds, M = r={({J]_, R,)* () holds, too. Le,
m e 3 [r(rf") A (U R,)’ (& 5)] holds. (i)

S

s a consequence of Fact32.5, we obtain that (7., R)*-R;=
7.1 R)* Therefore, it follows from Wi = R, (£, ¢') and (ii) that M |
TLAET) A (UTay RO™ (67, €] holds, too; e,

o r(U R,)‘) i)

wt, let w= (1, 8). We are going Lo prove that M = Jo < w-n(v)(£")
lds. To do so, we distinguish three cases;

(1} Ih(s)=0, ie, s=¢ > Since M m(w)&), M= ¥ false)(£)
'ds. Consequently, it follows that IR = 3¢ [t*(false)(E") A Ry (& E].

Remember that R, is the relation R« R;." associated with 4, 5.

156

STOMP, DE ROEVER, ANIY GERTH

Hence, together with RJER;', which follows from Fact 5.2.5, we obtain
that W = 3¢7[c4(false)(E) A RF(E", E)]; it M = (X false) s R)(ED).
Together with (i) and (iii), M =(d, {j>)(&) follows and hence
M= Jv<w-r(o)E)

2y 1=lhis)=n so s="<i, .., i for some i, .., with {f, .., 0}
c{l,..n}and } £k <n From M = n(w)(¢) we derive M |= (t7(false) e
Usegment(R;, .., R,) = (Uf_, B)*NE) Since Usegment(R,, ., R,) ¢
{ f_l R.}* - R, = Usegment(R,, .., R;, R;) < (Definition 6.1.1 and
JE i, e iy for jeD,)<= Usegment(R,, ., R,, R}« (Uf_, R,V R)*
(Fact 5.2.5), together with the fact that W k= R,({, ') holds, it follows
that M = r‘(_false)nUsegment(R,,, wo Ry R))(E') holds, too. Tt follows
together with (i) and (iii) that M |= (4, {J), - i />)ET) holds. Again,
M b= Fo<w-n(p)(&) follows.

(3) lh(s)=n From M = =(1, 5)(¢) and Definition 7.1.3, the existence
of a f <4 such that M = n(f, <)(&) foliows. As in case (1), M &= o<
(F, ¢) m(o)(&), and so M = < (4, ¢ >)-r(o}d). 1

Lemma 7.22 (Corresponding to premise (b) of Ornas rule) Let
weW,,, jeSt,; le, R, is a steady move. Suppose that Mi=ro
(SFAIR(R,, ... Ry A (U, R)*= Al b)) = g) hoids. Then TR =
fr{w) A w04 b1 8530w n(r)] holds, 100,

Proof. We have to show that for all states {, & such that M E
R(LE) ME (x(w) Aw=0)E) =M ={w-a(v)(¢). To do so
choose states &, & and suppose that M = (n(w) A w=0)(&) holds. Let
w=(4, 5). As in Lemma 7.2.1 there are two cases:

(a) WM E= A7_, mE (&) In this case the lemma is trivial.
(b) M= \/ 5,2, (i)
(=1

We have to prove that I | Jo = w . n(p)(&') is satisfied. Note that 1h{s)£0
and lh(s)#n, because Ihi(s)=0 or lhis)=n mmplics that 5:, = So
let w=(4 <, igd), Vgk<n {i, . i}={l, ., n} Since jeSt,
j=i, for some r, 1£tgk Now, ME= n(w)(E), so M ti(faise)o
Usegment(K,, .., R,‘}o{Uf_, R,)y* (&) 1e,

m = 35"v[t"(false)(vf") » Usegment{R,, ... R;)

(Lk) RJ,)* (& é)J- {ii)

=1

167

H-CALCULLUS FOR FAIRNESS ARGUMENTS

Stnce (U%_, R)*e R, (U R)* see Fact525 we obtain that
Usegment(R,, ... R,)= ()%, R)¥« R, = Usegment{ R, .. R,)= (U5_, R, }*.
From (ii) and the fact that ME R,(L &), it follows that M

3¢ [(false) &) A Usegment(R,,, ... R,)o(Uko R)* (&, EN]; i,

ME [(r*(_[atﬁela Usegment(R,,, ..., R,-,‘)a(0 R,,)‘) (_zf’)]. (iti)

=1

Moreover, as in the proof of Lemma 7.2.1, we see that
n L
W = ,O(U R'.) (¢} holds, too. (iv)
=]

Now, (i), (iii), and (iv) imply M | =(J, {1y, ... 7, >)(&'), whence M =
Jo=Lw-n(vks). 1

The following lemma shows that clause (¢) of Orna’s rule is satisfied,
too, under the assumption that [*[O7_, b, = 5,1(q], holds.

Lemma 7.2.3 (Corresponding to premise (¢) of Orna's rule). Suppose
that M |= r 2 (MSFAIR(R,, ., R,) A (UL, R)*e AL, —1b,)— q)) holds.

Then M [nlw) A w=0]1*[0 s, bi A Ajep, b — 8 true] halds,
100,

Proof. Observe that for all we W,, such that w0, D, + & So
St g {1,..,n} Itfollows that the program 8" = *[(o 5, b, A Ao n, b,
—+8;] contains less directions than the original program. Therefore,
we may apply the induction hypothesis. If St, = then by convention
5" = skip, in which case the lemma is trivial. 50 assume Si, # &,

After a possible renumbering, we may assume, too, that St = {1, . k},
I1<k<n So, D,={k+1,.,n} Let &' denote A ,.p, T18,=Ajup,, 0
and let R; =4+ R, By Theorem 6.3.4, and Corollary 6.3.5 we obtain that
M = (n(w) A wi=0)> SFAIR(R), .., R,) implies M = [x(w) A wi=0]
*[Of, b, A Aar o1 180> 8, 1(true] holds.

S0, to prove the lemma, it suffices to show that M | (a(w) A w=0)>
—1SFAIR(R,, .., R;). This follows from the next two claims.

CLAM 1. Under the aforementioned assumptions, M = (n(w) A w>0)
> VUF(R}, . RY) holds,

Proof of Claim 1. Suppose that M | =(w)({) A w0 holds. Then
M= ro(Uiny RI* (&) te, M= 3E7- [H(E7) A (U7Z RD* (5%, 6)] holds,
lco. As a consequence of our assumptions, we obtain that R |
r= 1SFAIR(R,, ., R} and so W= 3¢ - [SFAIR(R,, .., R (&) A
(U7, RY*(£7,)1 Thus, 0t = 38" (UL, R)* = TUF((AZ. ., b))

158

STOMP, NE ROEVER, AND GURTH

SR AT B RET) A (UFL RD* (S, 8)] holds by Lemma
623 Consequently, M= 35" [((U7., R)* = UF(R,, ., RIDE") A
(Uro RYF (2, &)], from which Y= TUF(RY, ., RiNE) follows by
definition of R —+ p. This proves Claim 1.

Now, if k=1, the lemma follows immediately from Claim | and Defni-
tion 6.2.2. So assume that k=2

CraiM 2. Under the aforementioned assumprions,

M= (x(w) A w>0)= A “fair(R;,, .\ R})
L P iﬂoc:‘;nle‘!,.‘.,k
N

fin(R;,, . .., R) holds,
Proof of Claim 2. Let | i<k For simplicity, we shall prove that
M= (n(w) A wi=0)= fair(RY, ., R} fin(R}, |, .., R;). since any other

permutation is treated in a similar way. By Definition 6.2.1, we must show
that

W= (2(w) A w>0) o ((U 7)== Ur (e v A)

Fei+ |l

k
a R, ...,("‘1[7’ voA ﬂb,)nR;))
fmid b}

holds. This is a consequence of the following chain of implications:

M= (n(w) A w=0)(¢)
— ro(U R,)* (¢) (Definition 7.1.4)

i=)

n *
—M = 36”-[r{<§”) A (U R,-) (é”,é)]
i=]
{Definition 5.5.5)
=M= H(f"-[“'lSFAlR(Rl, RE) (U R) (&, f):'

{by assumptions)

:wu:ac"-[((o R,.)*_.—‘UF(/\ b Ry,
TR

J=isl

'3 » W
A ﬁb,nR,)) (grf)A(U R,.) (& 5)} (*)

Pvitl

JCALCULUS FOR FAIRNESS ARGUMENTS

The latter implication follows from Lemma ¢.2.3. Hence, for all =1, ..., /,

r
(—|h’ v A _lb,-)UR:

ENEN!

&
=(—1b’ v oA —le) ab'oR,

i+l

']
=(b’/\ AN ﬂb‘)oR,

im0 .
" k
_(/\ b, A /\ ﬂb,)mR,
. f=tnl

= A\ bR, (sincel+ 1< k=<n).
fala 1

S0, (*) mplies that WM k= 3&7 - [V, R)* — —1IUF((Qd v
A orar T000 Ry (A ALy, B0 RONETY A (UL RI* (67, 5)],
and finally WR = (U7, R))* = UF((-d' v Al Ob) = R, .
(TF v AL . B ROME) by using Fact 5.2.5. As an immediate
consequence, we then obtain that W (U5, R))* = 2 UF((=b' v
AN b)Y Ry (00 v AL B2 RDYE) holds, too. This proves
Claim 2 and hence the lemma. |

[t remains to show that clause (d) of Orna’s rule is satisfied, too. This is
established in the following

LemMMa 7.2.4 (Corresponding to clause (d) of Orna’s rule). Suppose that
M = r = (SFAIR(R,, . B A (U5 R)* e AL Db = g) holds. Then
(a), (b), and (c) balow hold, oo,

(3} M r=Fe n(v))
(b) M (rlw) ~ w012V, b,
(e} MEn0)=((A7., Mb) A g)

Proof. (a) Let &eStates satisfy M = HE) HIN E A%, 1h(E), then

we are done, because M p= #(0) ¢} holds. Henee, let

W \/ bAE). 6
iw]
Clearly,
n *®
m e ,U(U R,) (&) holds. (i)
F |

160

STOMP, DE ROEVER, AND GERTH

Since M = r(&) holds, M = ASFAIR(R, .., R,) &) holds, too, and conse-
quently,

ME UF(R, ., RO, Le, M w7 false)(E). (iii)

it follows from (1), {11}, (ili) that M = =&, ¢ ») &) holds.

(b) This immediately follows from Definition 7.1.4,

(¢} From Definition 7.1.4 it follows that M= m(B)=2 AL, Db,
Therefore, it remains to show that Mk n(0)=¢. To do so, choose
some £ with T = #(0)(&). By Definition 7.1.4, there exists some &
satisfying M r(&) A (72, RO* (£, E). Sinee M= r=(((U7., B)*~
AZ_, k) — g} holds by assumption, the implication to be proved now
immediately follows. ||

THEOREM 7.2.5 (Completeness of our proof system). For all assertions r,
g, commands 8, M |= [r] S[q].; implies Th(IRY - [r] S[e].

Proof. Clearly, the only non-trivial case is when §=*[0%_, 5, — 5]
for n=2. We have to show that for all assertions r,g, M= [r]
OV b~ 8]1[g]w==Th(IM) |- [»] *[O7_, b;— 5,][g] holds. This is,
however, an immediate consequence of the induction hypothesis,
Theorem 6.3.4, Section4, Definitions 7.1.3 through 7.1.5, and the Lem-
mata 7.2.1 through 7.2.4. |

2. SounDNESS

In this section we prove the soundness of our proof system, i.e., for all
assertions r, ¢ and command S, Th{IR) - (+] S[¢l1=M &= [r] S[¢]..

It ts obvious that the rules for assignment, consequence, and sequential
composition are sound. Therefore it remains to prove the soundness of
Orna’s rule. Let S=*[0O7_, b;— 8.]. In case n=1 Orna’s rule reduces to
Harel's rule for terminating loops proved sound in Harel (1979), Conse-
quently, assume that # 3 2 holds. We may agsume, too, that the following
induction hypothesis (IH) holds:

—For all simple commands 5, Th(M) |- [r] S[g] =M = [r] Slqla
and

—-For all k with 1 £k <n, Th(IR) - [] *[C1%_, b, —~ §,3[¢] =M =
[r1*[Ok, b= $00e)s

Mext assume Th(M) |- [r] S[¢]. We have to prove that T = {r] STq],

161

H-CATCULLS FOR FAIRNESS ARGUMENTS

holds. To do so, it suffices to show that M = r o wpsf(S, ¢) which by
Definition 6.3.3 and Theorem 6.3.4 amounts to proving

m = rm(‘lSFAIR(R,, R A (((U R,-)*n A —.b,.)-.q)).

irml fm]

By Lemma 6.2.3 N f» 1 SFAIR(R,, .. R,)<=ME= (UF(R,,... R,) »
/\rl‘.,1,,permn()...,n;l-;:k-:n(:’x:] R’J)"l -+ -&‘UF(/\';-k-pl _—lblr " Ri|7 R

Toser 1By R Consequently, we have to show that Mi=rs
S UF{R,, ... R,).

e A (0s)

fiypdppermol b ow N =)
L5k o
” "
—-—|UF< A bRy A —11;,,,1:“),
p=k+l f=k+]

and M k= ro (U7, RY*9AJZ, 78, —g) hold, These are established in
Theorems 8.1, 8.2, and 8.3 below.

LemMa 8.1, Assume that Th(O) - [r]1*[070, b, — §,10¢ 1 holds. Then
MM = r o> UF(R,, .., R,) holids, too.

Proof. Let M E A(E) and suppose, to oblain a contradiction that,
M e UF(R,, .., R)E) holds. Smece D A£G for w=0, there exists
an infinite decreasing sequence in W, starling in some we W osuch that
M = w(w)(&Y holds. This contradicts the well-foundedness of W,]

Next, as & preparation for Lemma 8.2 we first prove the following claim
that captures the most difficult part of that lemma.

Cram. Assume that Th(IM) B [(P]¥[(O7, 5, — 5191 holds. Let
E he a state such that "M = r(&) holds. For all ' satisfying M =
(U RI*(EE), ME UFW R, ., 0w RNE') holds, where b'=
AV T

Proof. Assume that the claim is false; ie., there exist states ¢ and &'
such that M = (U7, R)* (&, &Y and M E UF(d'= R, ..., &'« R,)E') hold,
Both £ and & are accessible states; ie, both M= ra (Y7, R)* (£) and
MEro (U, RY* (&)Y hold, From the assumption that "M E
UF(b =R, ... P o R &) holds, we infer the existence of an infinite
strongly fair sequence of moves 8« R\, ., "¢ R, As a consequence of the
assumption that Th(MM) - [r]1*[(0O7., b;— S;1[g] holds, we conclude
that Orna’s ruie has been applied. Consequently, related to the infinite
strongly fair sequence of moves, whose existence we showed above, is an

162

ATOMP, DE ROEVER, AN GERTH

infinite sequence wy, wy, wy, .. in W such that ¥R = n(w)& and for all
iz=0 w, 2w, hold. Since W is well founded we obtain that there exi«ts
some jz 0 such that for all iz w,=w,,,. This impiies that eventu ...
none of the moves taken in the infinite strongly fair sequence are decreas.ny
moves, Furthermore, there exists a state & such that

(a) b (Upart(b's Ry, ., be R)* (£, £7),

(b) MEUF(AaR,, ., boR)(E), and

{c) there exist a w”, w” not minimal, satisfying w”sw,, Mk
m{w" &), and {1, .. k} 81,

Let St ={ /s Je 4o} fOT S0ma m 2 G, where j, =1, for r=1, ., k. Note
that this implies that D .= {j,, .1y 0 L) =11, o, 0} — 51, holds. Now,
w'>0 and Th(MR) - [(w") A w" > 01* [Dreg. b; A Ajep, b, = 8]
[true] holds by the third clause of Orna’s rule. Henee, as a consequence of
the induction hypothesis and the fact that M = (n(w"} A w” = 0)E"), we
obtain that

n n

EUH:‘)SFAIR(A bR A "Wb,erR,*_m)(f"), i)

ikt 1 r=k+m+!

ie., there does not exist an infinite strongly fair sequence of steady moves
in which no decreasing move 15 ever enabled. To obtain a contradiction, we
now distinguish two cases:

{A} m=0. Then (1) implies that M E UFb' = R, .., &' s RUE")
as jo=t for 1 vk This follows from Definition 6.2.3, and contradicts
(b). ‘

{B) mw#0, Note that for all s & +l £y<k+m, the actual
cnablings-condition for AJ ., ..., Db e RS AT o met Th, A B, By (1)
and Deﬁmtlon6225mi= —|fan(/\ ek tml *—1!: ‘»Rl,...,/\r_“m,, —1b; 2 Ry)
(Al ek imar 18,0 R, o Niakomes T DRJA }ET) holds. So by Del"-
nition 6.2.1, M (UA ™AL, e b) o R)* = TUF(Co R,y Co Ry)
{£”) holds, too, where C=A"_, ., _'b/, AN AN ke T8,
A b,). Hence, we obtain M | UF(C=R,, .., C- RIE"). As M= C=
Almr 1 710, this implies W = AUF(ATL, | 700 Rey oo AlLg 4y Tbye
R,)E™), again contradicting (b).

This proves the claim. |

Lemma B2 Assume that Th(IR) - [r1*[O7, 6, — 5, 1[g) holds. Let k
be given, 1 £ k < n, and assume furthermom that iy, ..., i, is some permutation
of 1, ., n. Then M = r > fair(R,, . R, fin(R, R,,) holds, too.

Proof. Possibly, after a renumbering, let i,, .., i, be the identity

n

permutation of 1, .., n Hence, we show that M —fair(R,. .. R)

feyn? o2

163

H-CALCULLUS FOR FAIRMESS ARGUMENTS

fin{ Ry, 1y o RoEY holds, where & satisfies r. According to Definition 6.2.1,
it suffices to prove that for all &' satisfying W = (U;_, R)* (£ &),
W= UF(h R, ., 6o R)E) holds, where b'=A".,., —b,. This
immediately follows from the claim above and cstablishes the theorem. |

Lemma 8.3, Assume that TROIR) = [r] *F 07 b, 5,1[g]1 holds. Then
M= ro(Ur,, R)*s AL, b, — q) holds, too.

Proof. This lemma is trivial

Finally, we arrive at the main theorem of this section, stating the sound-
ness of our proof systermn. {ts proof is straightforward now.

THeEOREM 8.3 (Soundness of the proof system). For all assertions r,q,
commands 5, Th() [r]) S[g] =M = [r] S{q3x holds.

Proof. The only non-trivial case is when S=*[17_ b, —+ 5] and
az2 Consequeatly, we have to prove that Th(M)}[r]
[(O7., b~ S1[q] =M = [F3[00., b~ S1[q), holds for nz2.
This follows from Lemmata$.1, 82, 83, (TH), Definition 6.3.3, and
Theorem 6.34.)

9. How 70 DEAL WITH NESTED REPETITIONS

In the previous sections we have considered a rather simple program-
ming language. E.g., according to the syntax given in Section 2 repetitions
never contained inner repetitions. In this section we shall drop this restric-
tion and outline how to deal with the more gencral case. Basically, we
procced as before, adjusting the definitions and theorems to deal with a less
restnictive programming language,

9.1. Basic Ideas

Until now, we have considered a very simple programming language, in
which, in tepetition S=*[O"_, b,— 5], #n=1, the 5, consisted of finite
sequences of assignments (i=1, .., n). According to the syntax given in
Section 2, the program

S;=*[h = [y x=x+1
Ulhy — by 2= false

Ob, — b, 1= flse
]

is not allowed. The reason for disallowing nested repetitions is the

164

STOMP, DE ROEVER, AND GERTH

possibility of {strongly fair} divergenece of inner loops, which slightly com-
plicates the earlier theorems.

Intuitively speaking, the program S, above should terminate strongly
fair, when this notion is suitably refincd: if execution of §, starts in a state
satisfying both &, and b,—the other cases are trivial and omiued—5%,
terminates as soon as direction 2, ie., &,; b, = fulse, is taken. Under the
strong fairness, as defined below, this direction must be chosen eventually
because the inmer loop *[b, —x:=x+ 1 L1h, = b, = false] terminates
strongly fair. To gain a better understanding of this notion, consider the
program below. It does not terminate strongly fair according to the defini-
tion of strongly fair termination (see Definition 9.4 below).

by~ byi=true
Ob, — *[by— b, := false
Oby — b, 1= false

Starting in a state in which &, holds, executing the first direction, ie.,
b, by :=true, followed by executing the second direction, in which in the
inner loop the second direction always is chosen, 1.¢., &,; (by; by 1= Jalse),
constitutes a strongly fair computation (according to the definition below),
Each of the loops is treated strongly fair whenever entered. However, strong
fairncss does not constrain choices that are made in consecutive executions
of the same loop. This program would terminate under yet another faifness
assumption; viz., that of all-level (global) fairngss (Apt et al, 1984),

In this section we briefly outline how to deal with a lgss restrictive
language, LGC’{"M) in which nested rcpetitions are allowed. Again, we
assume a given signature and a first-order structure YR as above. The
syntax of the less restricted language is given by the following BNF-
productions:

{command » ;= {assignment > | {composition > | {repetition .

{assignment) = {variable) ;= {expression .

{composition) 1= {command >; {command >.

{repetition) = *[{ Oselection }].

<selection » = (guard » — {command).

{guard) ::= “quantifier-free boolcan expression.”
Again, *[] is identified with skip and *[0O7_, 5, 5,] abbreviates
[Oby =50, = 8,1 inzl)

As before, four semantics, viz, &%", RL, RY, RY, for 5 LGC'(M) are
defined. The case R5™ is essentially the same as in Section 3 and is there-

165

H-CALCULUS FOR FAIRNESS ARGUMENTS

fore omitted. For the other cases the possibility of divergence within some
branch will now have te be taken into account.

Let States denote the set of states and let L denote the divergence state.
In the sequel it is assumed that L e States and that for each relation R<
States®, V& [R{L, &)= ¢ = L] holds. For assertions p, pt L) = false, ic, p
ncver holds in L.

The definitions of the various semantics, as wcll as the soundness and
completeness proofs will use induction on the level of statements:

Durinimion 9.2 (Level of statements). The level of an assignment x :=¢
is 0. Let the levels of S, be k, {{=1,2). Then §,; 5, has level max(k,, &;).
Let S=*[07., b= 5], with nz1. Then the level of §is | +max{k,}
lsizn, where S, has level &, for =1, ., n

DrrmiTion 9.3 (Ry). For e LGC'(WR), the relatton Ry 1s defined as
follows:

Riy=rP0 (L, L)), if S=x:i=e
R&=R3\UR;§2’ if SESl;S;_-

To define RY for repetitions 5, again the notion of an execution sequence
of § is needed. Its definition s similar to Definition 3.2.1 and therefore
omitted, 5 is said to diverge nondeterministically from &, if there exists an
execution sequence of & starting in & that is either infinite, or finite and
ends in .

Finally, define for S=*[Q]., b, =+ 5.} withnz I,

R o= R {(E, L)) can diverge nondeterministicatly from &}
wi(L L))
Note that an execution sequence of a loop § ends in L when an inner loop
of § is exceuted which diverges nondeterministically,

We now proceed with defining strongly fair execution seguences for
repetitions S=*[[17,, 5, —+5,] with nz 1. As the example of 5, above
shows, strong-fairness does not consider the choices made at the top-level
only, ie, choices batween the b; (i=1, .., #), but also the choices made
between the guards of inner loops of §.

DeriTton 9.4 (Strongly fair termination).

(i) Let & denote a state, &# L. An assignment always terminates
strongly fair from &. 8, 5, terminates strongly fair from &, if 8| terminates

166

STOMP, DE ROEVER, AN} GERTH

strongly fair from ¢ and §, terminates strongly fair for all possible output
states produced by strongly fair computations of §,.°
Now, let S=*[0],, #,— 5], with nz1. An execution sequence of §
starting in £, is strongly fair, if either
(a) it is finite (say &oy &1y o &y Where &= ¢} and cither £, % 1,
or {,=1 and there exists an 8, (i=1, .., n) which strongly
fair diverges from &, _,, or
(b) it is infinite and every direction in §, which is infinitely often
enabled along the sequence is chosen infinitcly often. We say
that § terminates strongly fair from ¢ if it admits neither
infinite strongly fair execution sequences nor finite ones ending
in L that start in ¢,

(ii) A program terminates strongly fair if it terminates strongly fair
from &, for every £+ L,

(i) A program is said to diverge strongly fair if it admits a strongly
fair computation, starting in ¢ that is either infinite, or finile and ends in L.

DerinNITION 9.5 (Unconditionally fair termination),

(1) Let { denote a state, £ # L. An assignment always terminates
uncenditionally fair from £, §,; §, terminates unconditionally fair from &,
if §, terminates unconditionally fair from ¢ and §, terminates uncondi-
tionally fair for all possible output states produced by unconditionally fair
computations of §, °

Now, let S=*[117_, b, =~ §,), with n =1, An execution sequence of §
starting in £, is unconditionaily fair, if either
(&) it is finite (say £, &y, . &, where E=§,) and either &, % L,
or &,,=1 and there exists an &, (i=1, .., #} which uncondi-
tionally fair diverges from &, _,, or
(b) it is infinite and every direction in $ is chosen infinitely often.
We say that & terminates unconditionally fair from & if it
admits neither infinite unconditionally fair execution sequences
nor finite ones ending in L, that start in &

(ii) A program terminates unconditionally fair # it terminates
unconditionally fair from &, for every &+ L.

(1) A program is said to diverge unconditionally fair if it admits an
unconditionally fair computation, starting in ¢ that is either infinite, or
finite and ends in 1.

* Although, we have not defined whal cuiput states produced by strongly fair computations
are, this notion should be clear.

¥ Although, we have not defined what output states produced by unconditionally fair
computations are, this notion should be clear.

167

H-CALCULUS FOR FAIRMESS ARGUMENTS

It can be shown that the relation between the fairness assumptions as
formulated in Theorem 3.3.4 still holds.

DerNrTion 9.6 (RY, RY).
Ry =R{=R} for S=x:=e,

RY=RY-REand RE=RY «RY for $=8,; 5.

For §=*[07_, b,— 8] with nz 1, we define

RY = R L {(£, L)| S can diverge unconditionally fair from &}
UL 1))

Rf = R L {(&, L)| 5 can diverge strongly fair from &)
w{(L, D))

As before, we define the notions of nondeterministic, unconditionaily fair
(resp. strongly fair), termination of a program § by V& 1. RUE, L),
VE# L RY(E L) (resp. vE# L. RYE, L))

Again, this gives us four notions of validity, M = [p] 5[q],, for
se {part, t,uf, sf} which are the same as formulated in Definitions 3.2.2,
332, and 34.6.

The proof system is similar to the one in Section 4, except that in the
composition rule and in Orna's rule the restriction to simple commands is
dropped.

We now proceed to define a formula F{Rg) such that for any state ¢,
F{R)(&) holds iff § terminates strongly fair when execution of & is started
in & Clearly, if 5 is a loop, the formula 7 5FAIR does not suffice any more
to describe the absence of infinite strongly fair execution sequences of S,
since this formula only constrains choices made at the outermost tevel of
the repetition. We now neced a formula that also constrains the choices
made in inner loops.

Derivimion 9.7, The formula F(R) is inductively defined as
F(RY) =A% - true, if S=x:=e.
FIRD=FRI) A (R = FIRY)), il §=5,;8,.

Fipally, if S=*{0/ b ~5] (#21), then F(RT)=(U7_ R)*—

Q=
7B, 2 F(RYN) A mSFATR(R,, -, R,); Le, whenever the ith direction
is taken along an execution sequence of 5, 5, terminates strongly fair and

5 does not admit infinite strongly fair execution sequences.

LG8

STOMP, DE ROEVER, AND GERTH

Observe that R 15 not a {ree variable of F. Le, for every statement S, we
define a different F(R,). Hence, the F(R) are first-order formulac. From
now on, we fix some first-order ordinal accepiable structure M. As before
we are able to define the weakest precondition for strongly fair termination
sfwp(S, ¢) for commands § and conditions g, Of course, the only interest-
ing case is when 5 1s a repetition. This is the subject of the next theorem.

THEOREM 9.8. Ler §=*[07, b~ S]] with nz 1. For every & the
Jollowing holds:

e spr(*[lil by — Sr} fl) (&)

(=1

i M (F(Rs;) A ((U RJ)*O /\ ms,-.q)) ().

i fu |

Pregf. A straightforward adaptation of the proof of Theorem 6.3.4.

CoroLLARY 9.9. Ler S=*[7_ b, = 5] (nz1). For every &

ial

M |= sfwp (*[[i b, - S;], lrue) (&) i ME FROHE.

i=1

Soundness and completeness is established by

TueorREM 9.10. M = [r] S[ql, i Th{M) - [r] S[41

Proof. Again, the only non-trivigl case is when S=*[0O7_, b,— 5]
with 72 1 holds. The equivaience is proved by induction on the level of §.

If § has level I, ie, il § bas no inner loops, then the theorem follows
from the resuhts in Sections 7 and 8. Now suppose that 8 has level k + 1
{kz1) and that the theorem holds for programs & with level / satisiying
Ik, Assume that M = [r]S[g), holds. Then M |= r= [F(RY) A
({7 R)* < A, =b;—¢)] holds, too. From the definition of F(R¥), it
follows that MM = r=[(U7., R)* = Al (b, = F(RY))], ie., for every
execution sequence of § starting in a state satisfying r, whenever b; holds,
S5, terminates strongly fair (i=1, .., n). For the same rcason M= ro
—SFAIR(R,, .., R,) hoids. So, we may proceed as in Section7 and
conclude that Th(IM) - [r] S{q].

The other implication, i.e., Th(M) |- [} Sfq] implies M = [r] 5[q).
should be obvious.

169

H-CALCULUS FOR FAIRNESS ARGUMENTS
10. ConNCLUSION

We have shown that the p-calculus can be used as an assertion-language
to prove fair termination of do-loops. The notion of fairness considered in
this paper is that of strong fairness.

Various rules (Apt er al, 1984; Grimberg er af.,, 1981; Lehmann ef ai,,
1981: Manna and Pnueli, 1983) for proving strongly fair termination of
repetitions have been studied in the literaturc. All of them have been
proved to be sound and complete. However, this was done using set theory
as an assertion-language. One of these rules, Orna’s rule (Grimberg e1 al.,
1981), 1s considered in detail in this paper.

The key result of this paper is the fact that the weakest precondition
expressing strongly fair termination is definable in the g-calculus, This
result is uscd in the completeness and soundness proof of the rule. The
completeness proof required verifying that the weakest precondition for fair
termination implies Lhe premises of the rule. Here, the ordinals are used to
define the auxiliary guantities required to apply this rule. We beheve that
these ordinals can be removed, but we have not done this yet. The sound-
ness proof required to verify that the premises of Orna’s rule imply the
weakest precondition for fair termination. The LPS-rule (Lehmann et al,
1981), another rule to prove strongly fair termination of do-loops can be
shown to be sound and complete in the same manner as Orna’s rule.

Future work will be carried out to remove the ordinal constants used in
the completeness proof. Furthermore, we will try to define a predicate in
the p-calculus which expresses whether a repetition terminates under the
assumption of all-level, e, global fairness (Apt er o/, 1984} Futurc
research will also be carried out to extend these arguments to more
complex forms of fairnegs and to concurrent programs.

ACKNOWLEDGMENTS

The authors thunk P. van Emde Boas, A. Ppueli, and the members of “het Landelijk Semi-
narivm Concutrency,” for clarifying remacks, and K. Apt for pointing out an error in an
curlier version of this paper. Finally we thank an anynomous referse for his suggestions that
led to many improvements, especially regarding the style and notation,

BECEIVED June 3, 1986; accerTED December 21, 1987

REFERENCES

Arr, K. R., aNp PLoTkIN, G. D. (1986), “Countable Mondeterminism and Random Assign-
ment,” S dssoe. Compur. Mack, 33, No. 4.

ArT, K. R, PuUELL, A., AMD STavi, J. (1984), Fair termination revisited—With delay,
Theoret. Comput. S¢i 33

170

STOMP, DE ROEVER, AN GERTH

oE Bakxer, J. W. (1980), “Mathematical Theory of Program Correctness,” Prentice Hall,
Englewood Clifls, NJ.

Dugstra, E. W, (1976), “A Discipline of Programming,” Prentice Hall, Englewood Cliffs, MJ.

GriMBerG, O., Francez, N, Makowsky, 1. A., axp ne Roever, W. P. (1981), A proof rule
for fair termination of guarded commands, i “Proceedings, Symposivm on Algorithmic
Languages,” Morth-Holland, Amsterdam.

HitecHeock, P., aMp Parx, D. (1973), Induction rules and termination, i “Proceedings,
ICALP 1" North-Holland, Amsterdam,

LexmMann, D T, PrueLr, A, aND Stavi, J. (1981), Impartiality, justness and fairness: The
athics of concurrent termination, in “Proceedings, ICALP VIL" Lecture Notes in Comput,
Sci., Vol. 113, Springer-Verlag, New York/Berlin.

Matna, Z., aND Puuer, A (1983), Verification on concurrent programs: A temporal proof-
system, in “Foundations of Computer Science IV, Part 2,” Muthematical Cenire Tracts,
Vol. 159, Math. Centrum, Amsterdam,

MoscHOvak)s, Y, N, (1974), “Elementary Induction on Abstract Structures,” North-Holland,
Amsterdam.

Park, D, (1981), A predicate transformer for weak fair iteration, in “Proceedings, 6th 1BM
Symposium on Math. Found, of Computer Science, Hakone, Japan.”

Park, D. (1980), On the semantics of fair parzllelism, in “Proceedings, Copenhagen
Winterschool on Absiract Software Specification, 1979, Lecture MNotes in Comput. Sci.,
Vol. 86, Springer-Verlag, Mew York/Berlin.

PaRrK, D. (1969), Fized point induction and proof of program propertics, Mach, Inrell. 8.

£ ROEVER, W, P. (1981), A formalism for reasoning about [2ir rermination, i “Procesdings,
Workshop on Programming Logics,” Lecture Motes in Comput, Sct,. Vol, 131, Springer-
Verlag, Mew York/Berlin,

Tarskl, A. (1953), A latice-theoretical fixed point theorem and its applications, Pacific J.
Math. 5.

Harer, . (1979), “Firgt-Order Dynamic Logic™ Lecture Motes in Comput. 8Sci, Vol. 68,
Springer-Verlag, Berlin/Heidelberg/Mew York.

171

SAMENVATTING

Dit proefschrift hestaat uit een bundeling van een viertal artikelen,

De cerste drie artikelen beschrijven een prncipe voor het ontwerpen van gedistribueerde pro-
gramuna's uit een bepaalde klasse volgens een bijzonder type van redeneren. Deze klasse hestaat
uit programma’s waarin een groep van knopen in een netwerk een wekere taak uitvoeren die
vanuit een loglsch oogpunt kan worden opgesplitst in een aantal subtaken alsof deze sequenticel
worden uitgevoerd, Vanuit een operationeel cogpunt worden deze subtaken echter concurrent
door de knopen uitgevoerd.

Het ontwerpprincipe wordt cerst geidentificeerd in het cerste artikel, “A correctness proof of
a distributed minimum-weight spanning tree algorithan (extended abstract)”. Dan wordt in
het tweede artikel, “Designing distributed algorithms by means of formal sequentially phased
reasoning”, ecn technische formulering van het ontwerpprincipe gegeven. Een toepassing van
het principe wordt gegeven in het derde artikel, “A detailed analysis of Gallager, Humblet,
and Spira’s minimum-weight spanning tree algonthm®. In dit artikel worden bovendien twee
andere principes geformmuleerd: Het cerste beschrijft hoe twee onafhankelijk van elkaar uitge-
voerde taken kunnen worden gecombineerd; Het tweede principe is van toepassing wannegr ¢cn
aantal proepen concurrent ten opzichte van clkaar een aantal taken uitvoeren terwiil een taak
nitgevoerd door een groep tijdelijk kan worden verstoord als gevolg van interactie met knopen
uit een andere groep.

Het, vierde artikel, “The p-calculus as an assertion-language for fairness arguments”, handelt
over faire terminatie van do-loops. Hierin wordt de u-caleulus voorgesteld als assertictaal voor
het redencren over dit type van terminatic. Soundness en volledigheid van een regel voor het
bewijzen van faire terminatic worden bewezen. Bovendien wordt de zwakste preconditie voor
faire terminatie van een do-loop met betrekking tot een zekere postcomditie in de p-caleulus

gedefinieerd.

Lineaire Temporele Logica (LTL) loopt als een rode draad deor de vier bovenstaande artikelen.
Wordt het outwerpprincipe direct geformuleerd met behulp van LTL, in het laatste artikel
worden de grondslagen van LTL onderzocht. De resultaten daarvan suggereren (zonder bewijs)

dat voor het verifitzen dat een programma fair termineert, een eigenschap die op natuurlijke

wijge in LTL geformuleerd kan worden, een assertictaal nodig is die veel meer uitdrukkingskracht

heeft dan LTL zelf.

CURRICULUM VITAE

De schrijver van dit proefschrift werd op 22 juli 1957 te Gorssel geboren.

Van 1969 tot 1977 doorliep hij de Thorbecks Scholengemeenschap te Arnhem. Nadat hij het diploma
Gymnasinm b had behaald begon hij in 1977 met de studie wiskunde aan de Rijksuniversiteit te
Utrecht. Zijh kandidaatsexamen wiskunde met bijvak informatica werd in 1981 behaald. Het docto-

raalexamen wiskunde met bijvak informatica legde hij in 1984 (cum laude) af.

Sinds 1984 is hij werkzaam bij de afdeling informatica aan de Katholieke Universiteit te Nijmegen
{KUN). Daar werkte hij als wetenschappelijk medewerker, serst in dienst van de KUN, vervolgens
in dienst van de Nederlandse Qrganisatic voor Zuiver-Wetenschappelijk Onderzoek (ZWQ). Hij is nu
universitair docent in tijdelijke dienst bij de KUN.

CURRENT ADDRESS:

University of Nijmegen,
Department of Computer Science,
Toernooiveld,

6525 ED Nijmegen,

The Netherlands,

Stellingen
behorend bij het proefschrift

Design and specification of distributed network algorithms:

foundations and applications

vah

Frank Stomp

1. Compositionele hewijssystemen, waarbij een specificatie van een programma wordt afgeleid uit.
specificatios van #ijn conatitucrende programina’s zouder te refereren aan de interne structuur
van die constituenten [789), zijn ongeschikt voor het formaliseren van Liet soort argumenten dat
gebruikt wordt door ontwerpirs van netwerkealgoritimen in [GHS83,Hu83,MS579,5e82,5083, 2580}

Hiervoor kunnen twee cenvoudige redenen worden gegeven:

{a) In [GHS83,Hu83,M579,5¢82,5083,2580) warden algoritmen nitgelegd aan de hand van ope-
rationele argumenten, waarbij het gebruik van plastjes ter illustratie niet geschuwd wordt,
zonder enige verwijzing naar (de syntactische structuur van} programma’s dic deze algorit-
men beschrijven.

{b} leder compositioneel bewijssysteem legt restricties op aan zijn gebruiker door hem te ver-
bieden gebruik te maken van de interne structunr van een programms, zelfs indicen deze wel

hekend is.

[GHS83| Gallager R.T., Humblet P.A,, and Spira P.M., A distribnted algorithin for minimum-weight
spanning trees, ACM TOPLAS, 5-1 (1983).

[Hud3] Humblet P.A., A distributed algorithm for miniinum-waight directed spanning trecs, IEEE Trans.
on Comm., 31-6 (1083).

[MST79) Merlin P.M. and Jegall A, A failsafe distributed routing protocol, IEEE Trans, on Comm., 27.9
(1078).

15088 Segall A, Dacentralived maximum-flow algorithms, Networks 12 (1982,

[Se83| Segall A, Distributed natwork protocols, IEEE Ivans. on Inf. Theory. IT29-1 (1983).

[789] Zwicrs J., Compositionality, concurrency, and partial correctness: Proof theories for networks of

processes, and theie connection, Th, . Thesis, Eindhoven University of Technology {1988). (Ook ver-
schenen aly LNCS 231 (1989)).
[4580] Zerbibh F.B.M. and Segall A, A distributed shortest path protocol, Tnternal Report KE-305,

Tachnion-Isracl Ingtitute of Technology, Haifa, Isracl (1980).

. Een principe voor het ontwerpen van failsafe algoritmen [$89] kan in deaclfde trant geformuleerd

worden als het principe voor het sequentiee] redencren over concurrent uitgevoerde subtaken (zie
hoofdsiuk 3 van dit proefschrift). Een dergelijk principe bieds de mogelijkheid na te gaan of de
algoritinen in [SHA6| inderdaad correct zijn. Bovendien kan het tot een beter ingicht leiden in
de onjuistheid, aangetoond in [STIAG], van een van Finn's algoritmen [E79],

{P79] Fint .G, Resynch proeedures und & [ailsafe network protocel, IEEE Trans. on Comm., Vol
COM-27 (1879).

{SHAS| Saloway &.R. aud Humblet P.A,, On distributed network protocols for changing tupologies, ‘Fech-
uical Report LTDS-P-1564, MIT (1986).

1389] Stomp F.A. A principle for formally designing failsafe algorithms, in voorberelding,

. De bewering van Chou en Gafod dat 7ij in [CG88] de correctheld van Gallager, Humblet en

Spira’s algoritme [GHS83) Gallager’s algoritme- bewenen hebhen is onjuist,

Chou en Gafni beschouwen een gedistribueerde implementatic van Boruvka's algoritme [B26)
(ouk te heschouwen als sen gediseribueerde Implementatie van Kruvkal’s algoritme [K56)), waarin
twee groepen van knopen alleen kunnen worden gecombinecrd tot &én groep als hun minimale
witgaande kanten dezelfde =ijn.

In tegenstelling tot Gallager™s algoritme, kunnen in het algoritme dat in [(OG88] granalyseerd
wordt geen combinatics van groepen plaatsvinden indien hun minimale witgaande kanten ver-
schillend zijn. Juist dit type van combinaties is het karakteristieke van Gallager's algoritme en

vereist een complexere analyse dan die in [CG88)|

[B26| Borovka ., O jistém problémm minimalnim. Prdea Moravské P¥irodoviidecks Spolunosti (1926)
{in Crech.).

[€688] Chow C.T. and Cafui E., Understanding and verifying distributed slgorithins using stratificd
decompesition, Prov, of the ACM Symyp. on Principles of Distr, Conp. (1288),

[K56| Kruskal J.B., On the shortest spanning subtree of 4 graph and the traveling salesman problem,
Proc, Am. Math, Soc, 7 (19563,

[GHS83): aie stelling .

4, Het pattern matching probleem vraagt naar het meest linker voorkomen van een patroon in een
zekere tekst. Een eenvoudige uplossing hiervan bestaat uit het stapsgewijs van links naar rechts
doortopen van de tekst op zock naar het patroon.

Een ingenieuzere methode wordt doot Boyer en Moore in [BM77] gegeven, Hierbij wordt gebruik
gemaakt van het feit dat het in het algemeen mogelijk is het patroon meer dat één positie in de
tekst naar rechts te verschuiven indien het patroon nog niet in de tekst herkend is. Een formele
afleiding van Boyer en Moore's alporitme wordt in [P589a] gegeven.

Het aantal posities, dat afbangt van (een deel van) het patroon en van cen karakter (zie [BM77]),
kan volgens Boyer en Moore in een tabel worden opgeslagen die berekend wordt voordat het ei-
penlijke alporitime wordt uitgevoerd (“preproecssing™). Dexe berekening is welf echter weer cen
instantie van het pattern matching probleem.

Dit laatste wordt in [BM77] gespecificeerd maar niet algoritmisch opgelost. Fen algoritmische
oplossing van dit probleem wordt in [KMP77] gegeven, maar in [R30] wordt aangetoond dat het
algoritme in [KMP77] niet aan de specificatie van [BM77] voldoct.

Door middel van een peschikte generalizatie van de afleiding in [PS80a| kan een volledige en cor-
recte operationele oplossing van het preprocessing probleem formeel worden afgeleid, aie [PSSQh].
|BMTT| Boyer R.5. and Moore J.5., A fast string searching algorithm. Comm. ACM. 20-10 (1977).
[KMP77] Knuth D.E., Morris J.II, and Pratt V.B., Fest pattern matching in strings,

SIAM. J. Comput. 6 (1977),

[P58%a] Partsch H.A. én Stomp F.A., A fast pattern malehing algorithm derived by transformational and
afsertional reasoning, snbmitted for publication (1984).

[E589h] Partsch 1A, en Stomp FLA., Reusability through generalization, in voorbereiding.

[R80] Rytter W., A correct preprocessing algorithm for Boyer-Maore string searching,

SIAM., I, Comput, 9 (1880),

5. Transtormationeel programmercn is eecr geschikt voor het analyscren van netwerk-algoritmen
zoals beschreven in [GHS383,Hu83,M579,5e82,5e83,2550] omdat
s reeds op cen non-implomenteerbaar nivean van beschripving de essentie van gen algoriime

begrepen kan worden,
& de veelal nitstekende (Informele) uitleg van de ontwerper direct geformaliseerd kan worden

en
o ossentitle heslissingen van de ontworper geidentificeerd, geverififerd en kwalitatief geanaly-

seerd kunnen worden tijdens de ontwerpfase,

|GHS83), [Hubd], [MST9], [Se82], [Se83] en |Z380]: wie stelling 1.

6. Manna en Touell reduceren in |[MPH3] een bewijs van cen temporele eigenschap van ecen pro-
gramma Lot een bewijs van eigenschappen van de transitics van dat programina. De sugyestie
dat voor het redeneren over dergelijke transitics Lineaire Temporele Logica, zoals gedefiniterd

in MTE3], een voldoende eepre

eve taal is, ig onjuist. Ben formaliste dat krachtiger is dan
Lineaiee Temporele Togica, hijvoorheckd de g-calenlus, is hiervoor vereist. Zie hoofdstuk 5 van
dit proefsehrift, en ook [G84].

[GHg) Gerth BT Transition Logie: How to prove temporal properties in & compositional way,

Proe. t6th ACM Sywposium on the Theory of Computing (1984).

IMPAS| Manna Z. awd Poucli A, Verification of concurrent programs: A temporal proof systom,

Fouwdations of Computer Seience IV, parl 2, Mathematical Contre tracts 158 (1983).

7. Hoewel het typische ritme van reggac-muzick de lefhebber in vervorring kan brengen, hepaalt

juist de pezongen of gesproken tekst insterke mate het karakter van deze muziek.

	Voorblad

	Contents

	Acknowledgements

	Chapter 1

	Chapter 2

	Chapter 3

	Appendix 1

	Appendix 2

	Appendix 3

	Appendix 4

	Chapter 4

	Chapter 5

	samenvatting

	Cv

	Stellingen

