Design and verification of distributed networks algorithms

Citation for published version (APA):
Stomp, F. A. (1989). Design and verification of distributed networks algorithms. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR328112

DOI:

10.6100/IR328112

Document status and date:

Published: 01/01/1989

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Design and Verification

 of
Distributed Network Algorithms:

 Foundations and Applications
PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof. ir. M. Tels, voor een commissie aangewezen door het College van Dekanen in het openbaar te verdedigen op vrijdag 15 december 1989 te 16.00 uur

door
Frank Alwin Stomp
geboren te Gorssel

Dit proefschrift is goedgekeurd door de promotoren prof. dr. Willem-P. de Roever en
prof. dr. Hehmut A. Partsch.

Het onderzock van Frank Stomp als beschreven in dit proefschrift is verricht aan de Katholieke Universiteit te Nijmegen.

To my parents

1. Overview 2
2. A correctness proof of a distributed minimum-weight spanming tree algorithm (extended abstract) 18
3. Designing distributed algorithms by means of formal sequentially phased reasoning 28
4. A detailed analysis of Gallager, Humblet, and Spira's distributed minimum-weight spaminus tree algorithan 66
5. The μ-calculus as an assertion-language for fairness arguments 126

ACKNOWLEDGEMENTS

Willem-Paul de Roever has introduced me into the field of concurrency. I express my gratitude for his support, gudance, and constructive criticism during my research in this feld. Mary thanks are due to Corinne de Roever. She and Willem-Paul were always there for me when I needed it.

I would like to thank Helmut Partsch for his stimulation and for providing me the opportunity to finish this thesis.

Thanks also to Ralph Back and John-Jules Meycr for their willingness to referee this thesis.
Rob Gerth is thanked for being a co-author of one of the articles included in this thesis, and for his help during the last stage of writing this thesis.

I thank my parents for their continuous support. I am very grateful to Marilyn and Carla for their help on many occasions. The interest in my work shown by my brothers has always been appreciated.

Finally, I thank Myrthia for her understanding and support.

CHAPTER 1

Overview

This thesis collects four articles:
(1) F.A. Stomp and W.P. de Roever,

A correctness proof of a distributed minimum-weight spanning tree olgorithm (extended abstract), which has been published in the proceedings of the 7 th International Conference on Distributed Computing Systems, Eds. R. Popetcu-Zeletim, G. Le Lamm, and K.H. Kinn. The full version of this artiche has appeared as technical report no. 87-4, University of Nijmegen, 1987.
(2) F.A. Stomp and W.P. de Roever,

Desigthing dintributed algorithms by meath of formal scifuentially phayed reasonitug. A version of this article has appeared as technical report no. 89-8, University of Nijmegen, 1989; An extended abstract has been published in the proceedings of the Frd International Workshop on Distributed Algorithms, LNCS 392, Eds. J.-C. Bermond and M. Raynal.
(3) F.A. Stomp and W.P. de Roever,

A detailed analysis of Gallager, Humblet, and Spira's distributed minimum- weight spanning tree algorithm - An cuample of sequentiolly phased reasoning -.
(4) F.A. Stomp, W.P. de Roever, and R.T. Gerth,

The μ-colcults as an ossertion-language for faimess arguments.
It has appeared in Information and Conoputation, Vol. 82, no. 3 (1989).
The central theme of the first three articles on distributed progrom design and verification is the identification, the techmical formulation, and an application of a primciple for designing, and verifying, (complex) distributed algorithms. This principle allows one to structure the design, or the verification, of algorithms from a certain class according to a particular pattern of reasoning-
This class consists of algorithms in which some group of nodes in a network performs a certain task which can be decomposed into a number of subtashs as if they are performed sequentially from a logical point of view. In reality, however, i.e., from an operotional point of view, the subtasks are performed concurrently. A typical example in which one can discern this kind of sequential decomposition is Segall's PIF-protocol [583]. The PIF-protocol, where "PIF" abbreviates Propagation of Infoxmation with Feedback, is a simple broadcasting protocol. All nodes in a finite, connected, and undirected network accomplish the following task Some value initially recorded by a certain node k is supplied to all nodes in the network and node k is informed that all nodes in the network have recorded this value. This task can be decomposed into two subtasks: the first one broadcasting the value, and the
second one reporting that the modes have rexsived and recorded this value.
The strategy proposed in the articles (1), (2), and (3) above to design (or verify) algorithms from the above-mentioned class is the following:
(a) First dewign algorithms which solve the subtaskes. (This can be accomplished, e.g., by techniques advocated lyy Back and Sere [BS89] or by Chandy and Misra [CM88].)
(b) Then combine the algorithms found in (a) into one which nolves the: whole task.

This particular kind of strategy has becn identifed in (1).
The design principle tormulated in (2), the second article of this thesis, describes bow one could Eormally characterise the combination mentioned in (b) above.

This primeiple is applied in (3) to the complicated minimum-wcight spanning tree algorithm of Gallager, Hurmblet, and Spira [GHS83].

The central theme of (4), the fourth article of this thesis, on fairness aryments is the formulation of an assertion expressing that a nondeterministic program terminates fairly. It is shown in (4) that this assertion can be formulated in Fitchcock and Fark's monotone μ-calculus [HP73]. This calculus is a formalism, based on Knaster and Tarski's fixed point theorem \{TE5], that can serve, as shown in (4), as an assertion-lamguage for reasoning about fair termination of mondeterministic programs in a sound and (relatively) complete manner.
Meyer [M86] has used fixed points, too, for constructing a calculns that describes how to merge fairly operations of nondeterministic processes. An excellent overview on fairness issues hás been given by Francer [F86].

Manna and Pnveli's Linear Time Temporal Logic [MP83], hereafter abbrcviated to LTL, runs both in its applications and in its foundations, through the research reflected in all four articles like a thread. The desigi, hence, verification principle, which is the subject in (1), (2), and (3), is directly formulated using LTL. In the fourth article the foundations of LTL are investigated.
The results described in (1), (2), (3), and (4) are briefly sketched below.
In (1) it is sketched how the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and Spira [GHS83] can be proved to be correct. It is argued that the proof can be structured by decomposing the reasoning about the program describing that algorithm into a number of loosely
connected or independent drguments conoctning distributed ports of that program as if they are performed one after another. (In the texminology used above, the nodes which execute such a distributed part perform a certain subtask. The whole task consists of all these subtasks as if they are performed sequentially.) These distributed parts are not syntactically contained in the whole program. They are combinations of scattered pieces of text of various prograns performed by the nodes, which scmantically constitute a meaningful whole. It is claimed in (1) that the principle applied generalizes Elrad and Frances principle of commatrication closed loyers [EF82]. From the technical formulation of the principle in (2), it follows that it is a broad semantic generalization of Elrad and Francez' principle in that it is not restricted by the syntax of a programming languge at all, whereas in Elrad and Francez' formulation the principle is restricted by the syntax.

Elrad and Francez' principle of communication closed layers [EF82] states the following:
Let $d \geq 1$ be some natural number. If for all $m, 1 \leq m \leq d$, the programs $S_{1, m}\|\cdots\| S_{r, m, n} \geq 1$, are: partially correct w.r.t. the preconditions p_{m-1} and the postconditions p_{m} and if no communication occurs betwen $S_{i, m}$ and $S_{j, m^{\prime}}$ for $1 \leq i, j \leq n, i \neq j, 1 \leq m, m n^{\prime} \leq d$, and $m \neq m^{\prime}$ then, the program $\left(S_{1,1} ; S_{1,23} ; \cdots ; S_{1, d}\right)\|\cdots\|\left(S_{n, i} ; S_{n, 2} ; \cdots ; S_{n, d}\right)$ is partially correct w.r.t. precondition p_{0} and postcondition p_{d}. (Here, as usual, program S is partially conrect w.r.t. precondition p and postcondition q if the following is satisfied: if S is executed in an initial state satisfying p, theri q holds if and when S terminates). The programs $S_{1, m}\|\cdots\| S_{7, m,} 1 \leq m \leq d$, are called layers in [EF82].

This principle can be illustrated by means of the picture below. For ease of exposition, we consider the case of two layers. Let $\{p\} S\{q\}$ denote the assertion that the program S is partially correct w.r.t. precondition p and postcondition q. Elrad and Francez' principle asserts that if

$$
\frac{\left\{p_{0}\right\}}{\frac{S_{n, 1}\|\cdots\| S_{i, 1}\|\cdots\| S_{j, 1}\|\cdots\| S_{n, t}}{\left\{p_{1}\right\}}}
$$

and

$$
\frac{\left\{p_{\mathrm{I}}\right\}}{\frac{S_{1,2}\|\cdots\| S_{i, 2}\|\cdots\| S_{j, 2}\|\cdots\| S_{n, 2}}{\left\{p_{2}\right\}}}
$$

both hold and if no communcation occurs between $S_{i, 1}$ and $S_{j, 2}$ for all i, j satisfying $1 \leq i, j \leq n$ and
$i \neq j$, then

is satisfied.

The principle which underlies the correctness proof ini our paper (1) and which generalizes the principle of communication closed layers is, however, not explicitly formulated nor justified in (1) itself. (The: proof nuggested there should therefore be considered incomplete.)

In (2) the principle underlying the reasoning in (1) is formulated using LTL. This principle is applied in (3) to the minimum-weight spanirig tree algorithn of Gallager, Humblet, and Spisa, which is a xepresentative of the class of algorithms we are interested in. In this algorithon following features occur:

- Tasks performed by proups of nodes in the rietwork can be split up into a number of subtasks as if they are performed one after another from a logical point of view, although from am operational point of view they are performed concurrently.

Example:

This feature can be illustrated by the program below which describes the PIF-protocol in case the underlying network constitutes a tree. (This restriction is imposed in order to keep the presentation as simple as possible.) Recall that the PIF-protocol solves the following task: All nodes in a finite, connected, and undirected network are provided with some value initially recorded by a certain node k, and node k is informed that all nodes in the network have recorded this value. Furthermore, recall that this task can be split up into two subtasks as if they are pexformed sequentially, the first one supplying all nodes in the network with the value to be propagated, and the second one reporting that all nodes have indecd received this value.

In the program below, boxes labeled A_{i}^{n} indicate which operations of node i are associated with the $n^{\text {th }}$ subtask ($n=1,2$). Observe that boxes do not necessarily correspond to the body of a "response". (In general, such boxes are the outcome of a scmantic analysis and not of a syntactic one.) Note that during the first subtask a directed tree is unwound. This tree is used by the
nodes during the second subtask in order to trace their path back to node k in order to inform k that they have recorded the value which has been propagated.

```
loap amecuted by modek (the ropt)
response to receipt of info(v)
begin
        valk:= v;
        fox all edgeseEE*
        do gend info(val4) on odge ec od
ond
```

lodp ayocuted by node $i \neq \lambda$ (a non-root.)
response to recoipt of ack(tu) on odge C
begin
response to mocoipt of info(t) on sdge d
begin
va $t_{i}:=v ;$ inbratheh $:=C, N_{i}(C):=$ true;
fox all odges e $\in E_{i} \wedge e \neq$ inbronch ${ }_{i}$
to send $i m f o\left(v a l_{i}\right)$ on edge c od;
if $\forall C \in E_{i}, N_{i}(C)$
then send ack(vali) on inbranch $_{i}$
fid
end
response to receipt of ack (v) on edge C
$N_{k}(C):=$ true;
if $\forall C \in E_{h} \cdot N_{h}(C)$
begin

In general, obviously, the nodes iand j will rot be supplied simultanecusly with the value being jropagated. There exist computation sequences of the program above for which the following is satislied:

Node i receives the value that is being propagated and records this valuc (node i executes the program afgnent labeled A_{i}^{1}).

Then node i enters the reporting phase (node i executes the program segroent labeled A_{i}^{2})
Thereafter, node j receives and records the message that is being propagated (node j executes the program segment labeled A_{j}^{1}).
This example illustrates that the program seement A_{j}^{1} is executed after node i has executed the segment A_{i}^{2}, i.e., node \bar{i} participates in the second subtask before node j participates in the first subtask.

Now, the principle formulated in (2) justifies that one can reasorn about the P'lF-protocol as if first all A^{1} programs are executed and thereafter only A^{2} programs.

The next feature occurring in the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and Spira is the following (a principle for reasoning about this feature is formulated int (3)):

- Expanding gronps of processes perform a certain task repeatedly, wherceas different groups of modes perform their task concurrently w.r.t. another.
E.g., the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and Spira can be described as follows:

First a certain collection of groups of nodes performs some task concurrently w.r.t. another. The task of each such group consists of determining the minimum-weight outgoing adjacent edge for any node in this group. Thereafter, a frogment, i.e, some subtree of the mimimmonweight spanning tree to be constructed, which has determined its minimum-weight outgoing edge, attempts to combine with the fragment at the other end of this edge. The task of accomplishing this combination is then performed by all nodes in these two fragments. Subsequently, the endarged fragment performs the task of determining its minimum-weight ontgoing edge. This process is repeated until the minimum-weight spanning tree of the network has been constructed.
'This feature is suggested in the following picture:

Notation used: For each $\ell=1, \cdots, r, P_{g}^{\prime}$ denotes a distributed program performeel by nodes in a collection G. The superscripts are used only in order to distinguish the tasks associated with such programs; r in the picture denotes some natural number, $y \geq 1$.
Initially, the collection consisting of $G_{1}, \cdots, \bar{G}_{m}$ for some $m \geq$ is a partitioning of the set of all nodes in the network.

- A task performed by one group of processes can be disturbed temporarily due to interference with the task of another group.

In the distributed minimum-weight spaming tree algorithm of Gallager, Humblet, and Spira a fragment will, in order to determinc its minimurn-weight outgoing edge, send messages to nodes outside this fragrent. This implies that a certain node in some group G of nodes performing some task can receive messages from nodes outside this group which are not associated with the task in which the node itself participates. Consequently, when a node in G receives a message not associated with the task in which its participates and it processes this message the task will be disturbed. After processing this message the node will continue its participation in the task-

Depicted in a picture, we have

Notntion used: P_{G} and P_{G} are dstributed programs performed by nodes in group G and Q^{\prime} respertively. These programs are executed concurrently; Each of them deseribes how to solve a certain task. The anrow indicates the transmission of a message.

A principle which copes with the latter feature is formulated in (3). In essence, interference freedom of specifications has to be proved in order to ensure that the reasoning about the two tasks according to the principle, described in (2), is not invalidated.

Now, suppose that two distributed programs have been designed that wolve two subtasks of a certain task as if they are performed sequentially. Assume that each of the subtasks and the tatik are described by means of a precondition and a postcondition. In ordex to design a program that solves the whole task it is rexpired to prove that for cach of the programs the following holds.

For each mode j that participates in the subtask, there exist for the program associated with this subtask when it is executed in an imitial state satisfying the subtask's precondition:

An invariant I_{j} which holds during execution of the program. These invariants have been incorporated in order to deal with the above-mentioned kind of interference. The invariant I_{j} can be thought of as the disjunction of all predicates assigned to control points of the program whem reasoning about this program in an Owicki-Gries-like proof system [OG76].

A termination condition $T_{j} T_{j}$ holds when and if node j has completed its participation in the program

In addition, it must be proved that upon termination of the prograth the subtask's postcondition associated with this program is established, provided that execution has been started in a statc satisfying the subtask's precondition.

A program which solves the whole task consists of all operations oceuring in ary of the programs solving the subtasks. This holds because a node participates in the whole task iff it participates in one of the subtasks. Furthermore, the following verificetion conditions must be shown to hold:

- A node con only participate in one subtask at a time.

If a node actually participates in both subtasks, then it participates in the first subtask before it participates in the second subtask.

The first verification condition above ensures that there does not occur any communication between program segments associated with distinct subtasks. It also states that two internal operations (, i.c., operations not involving any commonication), which can be performed by the same node and which are associated with distinct subtasks canot be enabled simultaneously. The latter requirement is not needed in case of Elrad and Francer' principle, since it follows from the syntactic structure of the whole program. In case of their principle, the second verification condition above also follows from their condition about conmunication and from the syntactic structure of the whole program.

As mentioned above, the principle formulated in (2) is a generalization of the principle of coumunication closed layers.

The principle formulated in (2) also generalizes each of the principles formulated by Chou and Gafni [CG88], by Fix and Francea [FF89] and by Back and Sere [BS89], since, amongst others, none of these is able to cope with the above-mentioned kind of interference.

The principle formulated in (2) is applicable to the spanning tree algorithm of Gallager, Humblet, and Spira. This is shown in (3). As a consequence of the strategy adopted there, a source of failure of the algorithm has been detected and corrected. Also, two kinds of slight optimigations w.r.t. the number of messages transmitted during execution of the algorithon have been found.

At this stage the question might be asked why we did not apply a conventional proof system, such as described in, e.g,, [AFR80, OG76] or [ZRE85], to prove the correctness of this algorithm. This question is answered below.
Apart from the algorithm reported in [GHS83], there existr a large number of algorithms [H83, MS79, 382, 883) of which the underlying structuring principle is inherently semantic. Despite the fact that the designers of such (complex) algorithms are able to give a clear and intuitive explanation about their correctress, it is believed that any correctness proof given in a conventional formalism can capture this intuition in an artificial way only. This implies that any such formal proof of a non-toy program will not contribute more to one's wderstanding of the desigaer's argument. The principle formulated in (2) is able to mimic the designer's argument in a straightforward manner, indeed.

In (4), the last article of this thesis, the foundations of LTL are investigated. This is done by studying the notion of strongly-fair termination of prograns. In order to define this notion, the notion of a strongly-fair computation sequence is introduced: a computation sequence of a program is strongly-
fair if every operation occurring in the program which is infinitely often enabled in this sequence is infinitely often chosen in that sequence. Now, a program that is executed in an initial state satisfying some precondition p terminates strongly-fair, if every strongly-fair computation sexpucuce started in a state for which p holds is finite.
E.g., Dijkstra's ramdorn mumber gencrator, see [D76], * $b \rightarrow x:=x \nmid 1 \square b \rightarrow b:-$ false] always terminates strongly fair. This holds because of the following:
-. The program immediately terminates wher exchated in ástate satisfying 7 . .
-- Any infinite computation secuence of the program started in a state satisfying b is not stronglyfair, since this implies that the operation " $b \rightarrow b ;-\int a l s c^{c}$ is infinitely often enabled and never Laken.

Strongly-fair termination of a program is an corample of an "eventually"-property when the above restrictions are imposed on computation sequences of the program. Mama and Frueli [MP83] have: presented a proof principle that allows one to establish such properties. They proprose the following shrategy to prove that for a program S, a state-property ψ eventually holds (a stateproperty is a property of progran states expressible without ary temporal operators):
(A) Arnongst the concurrmot processof executing S a distinction is made between those procestes whose execution brings t always nearer (in [MP83] such prowssces are called helpful processes), and those processes that do not, i.e., whose exemution does not brimg satisfaction of ψ any neaxer (such processes are called steady processes in Manna and Pnueli's terrninology).
(B) It must be shown that, for every computation sequence of the program S, if a helpful process is systematically awoided, then (B 1) or (B 2) below is satisfied.
(B1) The sequence is infinite and does mot satisfy the above fairness constrant, i.e., it is unfair.
(B2) Due to some choice of a steady process, satisfaction of ψ is brought nearer or even ψ is established.

In case (B1) the computation sequence is unfair, since infixitely often a helpful process is enabled but only finitely many times taken. In case (B2) whas become less far away from satisfaction.

Upon closer inspection, part (B) above requires application of the same strategy to a syntactically simpler program than S : remove all helpful processes from S, and prove that eventually one of the
following holds: (i) ψ, (ii) getting nearer to ψ, or (iii) a helpful process is enabled.
The technical formulation of Manna and Prueli's principle is shown below. There the following notions have been used, see [MP83];

Let $S \equiv S_{L}\|\cdots\| S_{n u}$ be some program, $n \geq$ l. Let ϕ and ϕ^{\prime} be state-formulac,

- S_{i} leads from ϕ to ϕ^{\prime} when every transition in S_{i} establishes ϕ^{\prime} provided ϕ is satisfied before $(t=1, \cdots, n)$.
S iecds from ϕ to ϕ^{\prime} when for all $i, 1 \leq i \leq n, S_{i}$ leads from ϕ to ϕ.
The technical formulation of the above-mentioned strategy is as follows:
Let $M=(A, \leq)$ be a well-founded structure Let $\phi(a)$ be a parametrized state-formula over A, where ${ }^{4}$ intuitively expresses how far away establishing ψ is Let $h: A \rightarrow\{1, \cdots, n\}$ be a helpfulness function identifying for each $a \in A$ the helpful process $S_{h(a)}$ for states satisfying $\phi(a)$.

$$
\begin{aligned}
& \vdash S \text { leads from } \phi(a) \text { to }[\psi \vee(\exists \beta \leq a . \phi(\beta))] \\
& \vdash S_{h(a)} \text { leads from } \phi(a) \text { to }[\psi \vee(\exists \beta<a \cdot \phi(\beta))] \\
& \vdash \phi(a)=\circ\left[\phi \vee(\exists \beta<a \cdot \phi(\beta)) \vee \operatorname{Eriabled}\left(S_{h(\alpha)}\right)\right] \\
& \vdash(\exists a, \phi(\alpha)) \Rightarrow \varnothing \psi
\end{aligned}
$$

The soundiness proof of this principle requites induction over well-founded sets. On the other hand, this principle is (semantically) complete, i.e., if $\circ \psi$ holds, then naive set theory can be used to establish its premises.

Marmá and Pnueli, however, do not give any formadism in which one can establish the premise of their principle. In order to supply such a formalism, in (4) a principle is considered for proving strongly-fair ternination of (sequential) nondetermimistic do-loops. In this principle the same kinds of auxiliary quantitics, i.e., the well-founded structure, a ranking predicate, ancl a helpfulness function can be discented as occurring in Manna and Pnueli's principle.

The principle investigated, which is called Orna's rule in (4), is due to Grumberg, Francez, Makowski, and de Roever [GFMR81] and is as follows ($[p] S \mid q]$ denotes that program S is totally correct w.r.t. precondition p and postcondition q, i.e., whenever S is executed in an initial state satisfying p, then S always terminates and cach final state satisfies q):

Let $\mathcal{M}=(A, \leq)$ be a woll-founded structure. Let $\pi: A \rightarrow($ States $\rightarrow\{$ true, fals $\})$ be a predicate. Let ψ le a state-predicate, and let for each $a \in A, a$ not minimal (as denoted by $a>0$), be given pairwise disjoint sets $S t_{a}$ and D_{a}, wich that $D_{a} \neq \emptyset$ and $D_{a} \cup S t_{a}=\{1, \cdots, n\}$:

$$
\begin{aligned}
& \vdash\left[\pi(a) \wedge a>0 \wedge b_{j}\right] S_{j}\left[\exists a^{S}<a . \pi\left(a^{\prime}\right)\right] \text { for ;all } j \in D_{a} \\
& \vdash\left[\pi(a) \wedge a>0 \wedge b_{j}\right] S_{j}\left[\exists a^{I} \leq a . \pi\left(u^{\prime}\right)\right] \text { for all } j \in S t_{a} \\
& \vdash[\pi(a) \wedge a>0] *\left[\cup_{i C S t}\left(b_{i} \wedge \wedge_{j E D_{s}} \neg b_{j}\right) \rightarrow S_{i}\right][\text { truc }] \\
& \vdash r \rightarrow \exists a . \pi(a) \\
& H(\pi(a) A a>0) \Rightarrow V_{i \cdot 1}^{n} b_{i} \\
& \vdash \pi(0) \Rightarrow\left(\left(\wedge_{i=1}^{n} \neg b_{i}\right) \wedge \psi\right) \\
& \bar{F}[r]+\left[H_{i}^{n}, b_{i} \rightarrow S_{i}\right][\psi]
\end{aligned}
$$

Note that $b_{i} \rightarrow S_{i}(i=1, \cdots, n)$ can be interpreted as state transitions. Also note that in this principhe the assignment $a-x\left(D_{a}, S t_{a}\right)$ for $a>0$ generaliases the retion of a lelpfulness function of Manna and Pnueli's principle. Consequenty, the same kind of auxiliary duantitics are required to apply the above two principles.

In (4) it is shown that Fitchoock and Park's monotone μ-calculus [HF73, P69], based on fixed points, augmented with constants for all recursive ordinals can serve as an assertion lariguage for reasoning' about strongly-fair terminition of do-loops. Soundness and completeness of the principle in [GFMRRI] are proved. In particular, the wealeest precondition for strongly-fair termination of a do-loop w-t.t. some postcondition is shown to be expressible in the μ-calculus.

The results shed an interesting light on LTL. Wolper [W81] has observed that not all regular expressions can be expressed in LTL (in fact, LTL can only express a proper subset of the regular expressions, of. [T8i]). Obviously the μ-calculus is far more expressive than the regular expressions. Consequently in (4) a more expressive formalism than LTL has been used in order to express the auxiliary quantities required to apply the principle above. Although it has not been proved that one actually needs an absertion language at least as expressive as the μ-calculus for reaboning about strongly-fair termination of do-loops -to my knowledge this is still an open problem- the results in (4) suggest strongly that one actually needs a formalism which is at least as expressive as LI'l in order to formulate and verify the premises of Manna and Pnueli's principle mentioned above. To put it bluntly: an "obvious" subformalism which Manne and Prueli use in [MPES] to cepress their proof rules is probably more powerful then the whole of the LTL superstructure erected on top of that subformalism.

References

[AFR80] Apt K.R., Frances N., and de Roever W.P., A proof system for communicating sequential processes, ACM TOPLAS, 2-3 (1980).
[BS89] Back R.J.R. and Sere K., Stepwise refinement of action systems, LNCS 375 (1989).
[CG88] Chou C.T. and Gafni E., Understanding and verifying distributed algorithms using stratified decomposition, Proc. of the ACM Symp. on Primciples of Distr. Comp. (1988).
[CM88] Chatrdy K.M. arid Misra J., Parallel program design: a foundation, Addison-Wesley Publishing Company, Inc. (1988).
[D76] Dijkstra E.W., A discipline of programming, Prentice-Hall, Englewood Cliffs, NJ (1976),
[EF82] Elrad T. and Francer N., Decomposition of distributed programs into communication closed layers, Science of Computer programming, 2 (1982).
[F86] Francez N., Fairness, Springer Verlag (1986).
[FF89] Fix L. and Francee N., Semartics-driven decompositions for the verification of distributed programs, manoscript (1989).
[GFMR81] Grümberg O., Francez N., Makowsky J.A., and de Roever W.P., A proof rule for fair termination of guarded commands, Proc. Symp. on Algorithmic Languages (1981).
[GHS83] Gallager R.T, Humblet P.A, and Spira P.M., A distributed algorithm for minimum-weight sparining trees, ACM TOPLAS, 5-1 (1983).
[HP73] Hitchcock P. and Park D., Induction nules and termination, Froc. ICALP T, North-Holland (1973).
[H83] Humblet P.A., A distributed algorithm for minimum-weight directed spanning trees, IEEE Trans. on Comme, 31-6 (1983).
[M86] Meyer $\mathrm{J}_{\mathrm{H}}-\mathrm{J}$, Oh., Merging regular processes by means of fixed point theory, TCS 45, (1986).
[MP83] Manna Z. and Pnueli A., Verification of concurrent programs: A temporal proof system, Foundations of computer science IV, part 2, MC-tracts 159 (1983).
[M579] Merlin P.M. and Scgall A., A failsafe distributed routing protocol, TEEE Traus. on Comm, 27-9 (1979).
(OG76] Owicki S,S. and Cries D., An axiomatic proof technique for parallel programs, Acta Informatica 6 (1976).
[P69] P'ark D., Fixed point induction and proofs of progran propertics, Machine Intelligesmes 5 (1969).
$|882| \quad$ Segall A., Decentralimed maximum-fow algotithms, Networksis 12 (1082).
[S8:3] Segall A., Distributed network protocols, IEEE Trans, on Inf. Theory T129-1 (1983).
[T55] Turski, A., A latice-theoretical fixed point theorem and its applications, Pacific J. Math. (5), (1055).
[T81] Thonas W., A combinatorial approach to the theory of ω-automata, Information and Control 48 (1981).
(W81] Wolper 12, Temporat logic can be more expressive, FCS (1981).
[ZIRE85] Twiers J., de Roever W.P., and van Emde Boas P., Compositionality and concurrme networks: soundness and completeness of a proof system, LNCS 194 (1985).
[ZS80] Zerbib F.B.M. and Segall A., A distributed shortest path prototol, Intorial Report EE395, Technion-Istael Institute of Technology, Haifa, Lsrael (1980).

CHAPTER 2

© 1987 IEEE.
Reprinted, with permission, from Proceedings of the 7th Intertational Conference on Distributed Computing Systems, Berlin, West Germany, September 21-25, 1987, pp. 440-447.

A corfectness proof of a distributed minimum-weight spanning tree atporithm (extended abstract)

F.A. Stomp*
University of Nijmegen

W.P. de Roevgr**

University of Eindhoven

Abstract

Abstrict We discass a stategy to reduce the complexity of cortecticss proofs for particular classes of distributed programs. As an example of this stracegy we sketch how a correctess proof of the disuributed minimum-weight spanning teee algorithm of Gallager, Humblet, and Spira L7, can be structured by lirst infroducing, and analyzing. simplifications in which errtain communications are ignored. Then these stmplitidations are justified for the genend cast by proving that these comthutications do not affect the original analysis which is based on those simplifications. This proof - a more elaborthed version of it can be found in the foll paper [2!] - illusirates the perions of commurication closed igyer of Elrad and Itrancez's [5] and of quiescence of, e.g., Chandy and Misra's [3].

1. Intrgatuction

In order to reason about distributed progthits, a nuinber of methods have been proposed (c.g., $[1,2,12,16,22]$). While this enubles an analyzer to verify that a program mects its specification, it tums out that these methods give, in geacral. rise to lengthy proofs for rathet "simple" programs. (Ste $\{20 \mid$ for an overview of sorme of these methods and an application of each of then to that god of protocol-verification, the altemuting bit protocel.) This suggests that correctness proofs of larger distributed programs are difficult to seize on. Consequently. the question arises, whether there exist strouegies wheh cart reduce ithe complexity of prooft for porriculur clatses of distibuted progromp

The leitmotiv of this paper is the deconposition of the reasoning abour a diswributed program into a number of towsely connecred or independent arguments concerning distribubd parts of that progran under simplifing asswmptions. Typically, these distributed parts are not syntactieally commaned in one process but are combinations of scattered pieces of the text of varipus processes which constitute together a semantically meaningful whole. Equally characterstic for our approach is that we first reasou in a simplified fashion about those distributed parts, disrcgarding interference due to cention communications from oustiot those parts, to argue later that in

[^0]case these communications are taken into sceount, our reasoning remaing valid, or can casily be adjusted to the "foul reality" of interaction.

The suggested technique is an analogon of some techniques already suggested in the literature, such as Lam and Shankar's method of projections, Martin's anulysis of the temmination behavior of a distributed program using quiescent states, Chandy and Misrats method of quesscence detection, Lumport's argument that Pealoning abour distribuced progroms need not involve the constituting parallel processes or entities to base one's proof upon bul should be based rather on propertics derived from global invariants, and Elrad and Francer's technique of conomurication clased deyers. These methods are briefly reviewed in the next section. The particular combinations of gechaigues used is illustrated by siketching 4 conrectress proof of the discributed trinimum-weight spanining tree al gorithon of Gallidger, Humbler, and Spira [7]. A more elatborated version of this proof can be found in $12 h$.

Lam and Sharkat [t t] have proposed a techuniguc of reducing the complexity of both safery and liveness propenics of protocols. Their key observation is that protocols are, in general l_{+}dexigned to perforth a number of distince functions. Eeg. in a communication protocoi to achieve full duplex data urusfer berweco two stations one can discern fwo distinguishable functions, each one concemed with one-way data transfer between the two stations. To reduce the complexity of proofs, Lim and Shankar's technique decomposes such a multi-function propeot inte at mimber of so-called imuge-protecols. Sinee thene unge-promesols: perform, in general, less functions thum Ule original spe, they are easier to analyze, \ln [14] it has been proved hat under certain conditions, safety and livenets properties verified for ant image-protocol, carry over to the originid one. To our knowledge, this method has been applied so far to communication protocols only (f g , in [19]) and it appeas that the applicability of the method to other classes of protocols remains open.

Martin presents in [15] a general cechnique to show temination of a distributed progam. This technique consists of first deriving a non-terrmating artalogous progrin, for whet it is proved that in reaches a state in which all intertal activity has ceased and all chamnels in the network are erapty, a so-called quiescers state. Next, a locat termination cordision from conditions satisfied in the quiescent state is derived which earties over to the original program. Although this technique meduees in some sense the complexiry of a termination-proof it does not reduce the complexity of proofs of other properties.

More recently, Chandy and Misra have proposed a technigue for the development of prograris (see (3)). In their view, a progtati consists of an initial condition and a set of aromic actions. One of the key features of their methociology is that concerns about the core problem to be solved are separited from the forms of concurrency available in the hardware (on which the program is to be executed) and from the language in
which the progerm is to be writert. Int [3] in hat been shom, that froxeling a program as a sen of shaments is atractive, since it ullows one to develon pieces of a prograti given ority one invariant, independent of the ohere picees of that progemin. This enables one to concentrote solely a one comern at at tilk.

In (3) a globed view of the systern under consideration is adopted. Abhough a number of authors have advocated compositional proofs (eg. i_{1} [16,22]), Larpery tay shawn that assertional methods (involving reasoning about the glowat. prograth states) are weil-nuited to reason about distribued prograins, since they are nof limited to the synactic decomposition of a progiam into parulle processes (as compositional methods are), but also apply co decompositions which do no follow the syntactic decomposition. Lamport hiss illustated this in [13].

Ineresting in the feld of progerm-veriticalion is also the motion of communication chosed layers as introduced by Fllak and Francez in [5], (Subsequently, this moibion las been decpened in [3], One of the main aspeces of communatuasm closed luyers is the simptifuation of the analysis of tisubuted prograns by, again, sugesting a detompositivn of it prograth conaisting of parallel processes which muns weross the syritactic bourdaries of parallel decomposition by identifying groups of syntactic lityers in the text of those processes which communicate exolusively which cach other. Using CSP ${ }^{(9)}$ io illustrate this notion, any process P_{i} in $P^{2}=\left|P_{1}\|\ldots,.\| P_{n}\right|$ is reprecented as a sequential composition $S_{i, 1} ; \ldots, S_{i, i}$ for sume (i) ($i=I, \ldots, n$); d can te chosen unifonity by allowing $S_{i, j}$ to be an
 $j^{\text {th }}$ layer of P. Layer L_{j} is said to be commantearion closed iff under no execurion of P, synchronization occurs between a communication command in some $S_{i, j}$ and a conmuntication command in some $S_{\text {s, }}$ with $j \neq j$, (la the terminology of $\|$ II, this is rephased as folliows: for any comarmunication command in layer L_{j} syntactically matching with a commurtication command in another layer, no semantical mateh witl ever ocent between them,) The decormposition of P into layers L_{p}, \ldots, L_{d} is
a process $\mathrm{P}^{\prime}=\mathrm{L}_{\mathrm{i}} ; \ldots, \mathrm{L}_{\mathrm{d}}$. Such a decomposition is called safe iff all the layers are communiçation closed. The delevance of such
 decomprsition of P into layess L_{1}, \ldots, L_{d}. Denoter by $\left\{p^{\prime}\left|S^{\prime}\right| q^{+}\right\}$the asscrion that S^{\prime} is partially correct wir, the precondition p^{\prime} and the posicondition $q^{\prime}, ~ i$, ., if S^{\prime} is executed in an initial scate satisfyidg p ' and S^{\prime} terminates, then the final state satisfies \mathbf{q}. Then

$$
\frac{\left\{p_{0}\right\} L_{1}\left\{p_{1}\right\} \ldots,\left\{P_{d 1} \mid L_{d}\left\{P_{d}\right\}\right.}{\left\{p_{0}\right\} P\left(p_{d}\right\}}
$$

is sound, and constitutes a derived proof rule in the system of [1]. Thus, under a suitable decomposition of P into lnyers, it suifices to verify the conectress of each layer first, and then establish the corecters of P by applying the above rule. th case corimunication is asynchronous, a safe decomposition is one in which sending and processing a messuge (contuined in a message quete) takes place in the same liyyr. Observe that if
$\left[S_{1, j}{ }^{\|}, ., \| S_{n, j}\right]$ is a layer of a process $\left[P_{1} \|\right.$... $\left.\| P_{n}\right]$, then $S_{i, j}$ is syntactically conamed in P_{j} for $\mathrm{i}=1, \ldots, n$. One of the main contributions of this paper is a semantical generalization of the notion of communieution closed layers.

In this papert the distributed minimum-weight spanning tied algorithon of Gailager Ilumbler, and Spira 7 I serves as an example to illustrite how a cortectness proof of a distibuted program can be simplified by first introducing an absuaction from operational reasoning that certain communicarions can be ignored (at dis sage of the prowf). To express syatacticaly that certain communications are ighored, we replace the send-actions bertesponding to those cormenuricarions by skip in the progratn text. To simplify the reasoning, also a numolow of boolean conditions will be replaced by a constam hoolean condition, i.e. cither by true or by false. As we can apply Martin's technigite 715 | to analyze the ternimation betavior of a program, is follows that our techoique also illustrates a enencralization of the ope presented in [15]. Secondly, this abstraction is used to decompose the program (whose execution is chus simplitied) into a number of communication closed layers, whose existertes would not have been justified without this abseration. Thirdly. the progetan thas simplified i verified. Fimalty, our abstraction from operational retsoning is justibicd by demunstating that the above assumptions can be eliminated, iadeed, without fovalidating eur earlier prowis. Since the notions of quitscence and of conumenication coosed leyer play a rather significart role in thes paper, it follows that we have put together a number of ingredients derived from some of the ruethods discussed in the previous section. Also, we have chosen to adopt Limport's global view of a $\$$ ysterna,

Next. we summarize the main ontributions of this paper.
(a) The notion of (communication closed) layers hats ben extended to the case of asynchronous communication.
(b) Application - to our knowicdge for the first time - of (communication closed) layers in the field of protocol verfication.
(c) The techinique described in [L5] has been generalized. Thus our technique does not only redtice the complexity of a termidation-proof; it also embles an anolyzer of such programs to reduce the complexity of other properies of them.
(d) Although no sa/e decompesition can be found for the program $\$$ mbrodying Gallager's algorithm, yet such a decomposition cun be obenined after applying a suitable abstraction of the kind discussed above.
(e) In spite of the clear informal description in [7), it is far from being obvious that the formal description of the alporithan. i.e., the program $\$$ captures indeed those informal ideas. More preciscly, the correcthess of S has nol beeri proved in (7). and there are a number of statements in S, such as conditionals, whose fole has not been explained at all in tha paper. E.g. consider the test whether a node should awaken, or whether a node should reject an edge in 171. In the full paper [21], we have proved S's correctress. Al5o, we have shown there that the statements as mentioned abov are of vital importance for its correctness. Moreover, we have given a formal justification of the (informal) reaconing in [7I and a slight optimization of that algorithm.
(d) and (c) above also moivates the choive of Gallager's algonithm to illustrate our verification technique.
The remainder of this papar is organized as follows. In choptet 2, we briefly review a number of propenies known from graph-theory, that are essencial to establish the correctness of Gallager's algorithm. In that chapler we also deseribe the sketeron of this algonithm, In chapter 3. we discuse the basio
teatures of Gallager's algorichm. In that chapter, we also outine how 's's correctness has been estublished in [21], and illustrate a decomposition of $\$$ to reduce the complexity of sur
a corectress prowf. (Here 5 denotes the propramerntaclying Gallager's algorithm.) This decomposition iliustrates a semandicad generadization of Elrad and Francez's notion of communication closed layer [5]; the proar ithustrates a generalization of Martin's sechnique [15]. Finally, chaper 4 contains the conelusion.

2. Preliminaries

We assume the reader to be familiar with the elementary definitions and properies of praphs, trees, paths, cycles, and so forth. which can be found in (6). In particular, for graptis (V^{\prime}, E) and (V, E), (V^{+}, E) is a subgraph of ($\left.V, F\right)$, denoted hy $\left(\mathrm{V}^{+}, \mathrm{E}^{+}\right) \cong(\mathrm{V}, \mathrm{E})$, iff V^{\prime} 표 V and E^{\prime} 르. If $\left(\mathrm{V}^{+}, \mathrm{E}^{\prime}\right) \subseteq(\mathrm{V}, \mathrm{E})$ holds and moreover ($V^{\prime}, \mathrm{E}^{\prime}$) is a tree, then (V ', E^{\prime}) is culled a subuee of (V, E). In the first section of this chapter, we witl formulate a number of properties - well known from graph theory - har are essentill to establish the conrectness of Gallager's algorithm. Bectuse of the space limitations their proofs have been onitted. Thereafter, the skedeton for Gallager's algonitho is introduced and the model of compulation is descrited.

Throughout this paper, (V, E) denotes a finite, unditected, and connected graph, where V is a set of nodes, and F is a set of edges, For $: \in V$, we denote the set of edges adjatent to i by E_{i}. Similarly, the set of edges adjacent 10 ije V is denoted by $F_{i, j}$, We assume cach edge ee E has some weight w(e) 30 associaned with in, such that difterent edges have different weights, The assumption that different edges have different weights implies that one can identify edges by their weights. Although one tould relas, this assumption somewhat, it is crecial for the correctress of Gallager's algorithm.

At the basis of Gallager's algorithur ate the existeace and che oniqueness of a minimum-weight spanning tree of any (V,E).

Theorem 2.1

Let wiE $\rightarrow \mathbb{R}^{+}$be a function assigning weighte to edges of (V,E), where \mathbb{R}^{+}denotes the sel of all real nuntbers grealys than 0. (w is atoo refered to as the weight-function of the eraph (V, E) A Asume that wis an injection. Then there exists a unique minimum-weight spanning tree of (V.E). (1

Given some (V,E) and an injective was above, theorem 2.1 ensures the existence of a unique minithum-weight spanning tree T. Throughout this paper, T a ways reters to this spunting tree of (V, E). A (naive) method to obtain this tree is the followitge gencrate sill wpanning recs of (V, E) and detennine the one with the minimum-weight among them. Ihis requires a stratrgy to generate the sparning tees of (V, E). Another approach is suggested by theorem 2.2 below. Before formulating this theorem, we first introduce the notion of a fragment of T, and the nocion of an outgoing edge of a fragment of T.

Definition 2.1

Given (V.E) and was above. Denote by T the minimum-weight spanning tree of (V,E).
(a) A fragment of T is any non-empty sublece of T,
(b)Let Tre(V'E') be a fragment of T. An edge ces E is said to be an outgoing edge of T iff one of the nodes adjucent to e is it V^{\prime} and the other one is nor. Consequently, edge e is un outgoing edge of T^{4} iff (
where i and j are nodes satisfying ee $E_{i, j}$ []

We thers have the following

Theorem 2.2

Let $T_{k}=\left(V_{k}, E_{k}\right), k=1,2$, be fragments of T,
(a) Assurtixe that ee E is the minimum-weight outgoing edge of T_{1} and that E is adjacent to T_{7} (i,, , adjacent to sorte node in
$\left.T_{2}\right)$. Then $\mathrm{T}_{3}=\left(\mathrm{V}_{1} \cup V_{2}, E_{1} \cup F_{2} \cup\left(\mathcal{C l}^{f}\right)\right.$ is a fragment of T, to.
(b) $\mathrm{I}^{\mathrm{r}} \mathrm{T}_{\mathrm{t}}$ iff there does nor exist an outgoing edge or T_{1}. II

A large number of algorithms (e.g., $\{4,7,23,11]$) have been suggested by theorcio 2.2. Using this principle, one starts with the trivial fragments of T consisping of one node and no edges. To enlarge frugments, one or more fragments find their thininuth-weight ousgoing edge, if any. When (and i!) such an edge bas been foutd, the fragments on both sides of this edge mey then be combined into one as described in theorem 2.2 . This strategy ensures that fragments are constructed indeed. It also de:cribes how fidgments are enlarged. If. on the other band, a fragment has no outgoing cdges, then theorem 2.2 ensures that the fragment is the minimum-weight spanning tee of the graph.

The algorithms mentionted above differ in fow and when fragments are entarged. E.g., the algorithm reponted in $|4,23|$ starts with a single node as a fragrment and gradualiy enlarges this fragment by appending the minimum-weighs outgoing edge and the node adjacent to this edge. antil the mimimm-weight spanting tree thas becr construted. As such, consuructing't' is restricted to a rather strong requirement, not taking intoaccount that many fragments could be combined into lutyer ones asynchronously from cach other. In fixt, this algorithm is inherently sequential. The algorithm reported in (1) F, howevir. starts with all fragmente consisting of one node atd no edges. and combines fragnents into larger ones if they have the same minimum-weight opmgoing edge. Thus, different fragments could be combined asynchuonously from each other. Yet, fragmenta combine only, if they have the same minimumweight outgoing edge.
Gallager's algorithn (7| sarts with al fragments consisting of one node and no edges. Combining fragments into targer ones depends on theit so-called levels. More precisely, fregments consisting of a sirgle node are detined to be at level 0 . Next, suppose that F is a fragment at level L with minimurn-weight outgoing edge e. Let F' denote the fragenent, sty at level L ', at the other end of e. If L aL' and e is F^{\prime} 's minimum-weight outgoing edge, too, then they are combined into a larger
 and F'are combined into one al level L'. Io all other cases. F has to wait until one of the two possibilities described above, oceura.

Above, we described the skeleton for Galliager's algorithm. It cath be shown that the delay introduced in the steteron (, hence in the algorithm.) does not lead to a deadlock, i.e., if a fragment waits for one of the conditions to combine with an other fragment into a lager one, then one of these conditions shall evemually cocur.
Thus, in Gallager's algorithm many fragmens carl be combined into larger ones asynchronously from each other. Moreover two frugments may combine into a lireger one regardless of whether they have identical minimum-weight outpoing cdgcs.
Therefore. compared with the other algorithms mentioned
before, a "faser" algorithn has been yielded. Gilliager's algorithon is a distributed one. Since there exist no gival cables, messages have of le sent over edges to Jetemine the minimurs-weight outgoing edge of a fragaters. Thas, if at some point duriag the atyorithon fragneme Γ has beon constructed, each node in Ψ should stars searching for ole
 Thereafter. cooperation must ake place betwern ull mudes it $\%$ to determine the mirimum-weight oulgoing sde of F ithelf. Observe that in onder to determine wheiher ati tofacent edpe e of wome node in F is actually an outgoing one of F if suffices to determine whether the node at the vther cnd of e belongs 10 E, two. Clearly, this is a difficult task, sitece the only way w Find ont whether wo rudes belong to the satue fraginent is hy means of sending messages. in Gallaber's algoridim, nodes send so-called Test-messages on edges wher searehing for the minumum-weight outgoing edges. Wethout additionst information, however, it is inporsibly to detemine whener two neighbors belong to the same fragment. Ithus, wherinodes: in a fragment start searching for their minimum-weight outgoing edge, they are all provided with a nitn of the fragment. This nurne coables adjacent nodes to detennite whether they beloog wibe same fragruent. Thus, when a node trinsmits a Teswmessage, this message also carmes the natue of is fragmem as an argument. The receiver of the niessage infonns the sender whether they have the sume names, If st, , the edge connects two rodes in the sinute fragment, otherwise the nodes adjacent to that edge belong to the differem fragments. Although this reavoning otighr suggert riurr it solves the problem of thesmining whether edyes are ounpoing. it does nor. The reason is that a node receivirg a Test-mbestage nigh have anomer natne than the sender of Ite messige, while both belong to the same fragment. This possibidity oceres, if the receiver of the Thsf-itessage has not yet received the new nance of its fragnent. In [7], euch Test-message carries an additional argument - the level of its sender's fragment - to avoid such undesired situations, i, e, situations in which an edge woutd have got the status of ourgoing, while it is not, Entroducing the levels has an other advantage, too, viz, it reduces the number of messages required to construct the minimum-waight spanning teve T (see 17]) , In the next chapter, we will describe Gallager's algorithm in some more detul.

In the remainder of this chapter we describe our motel of compuation. This is done rather intomally, The poist of departure is a compuler network (V, E), where V is a (fiaite) sel of computiog untis, also referced to as nodes, and where F is a (finie) Ster of undirected comnunication charmels, also referred to as edges. In the remuinder of this paper, we assume that the renvork has a fixed topology, (The reader interested in algonthme that cope with failures and udditions of edges or nodes, is referred to e-p. [17]). Additiontilly, we assume that the network is connected, and that cach channel in the network connects exactly two distinct nodes. The later assumption is important for the corecthess of Gallager's algorithm. Consequently, such a computer network can be viewed as a Finite, undirected, and contected graph.

The nodes in the network are assumod to possess a centin mempry- and computation capability, and to be able to communicate via mestages with theif neighbors. Note that eath nods is able to transthit and receive messages on any chamel adjacent to that node, since the channels are undirected. Messages transmitted by sonte node on a channel arrive withith a finite, (bur unpredictable) thore-duration, it seçuence, error-fice, and witheut duplication at the other coud of the channel.

The algorithm presented in the next chapter is distribulted in the sense that no central whes are required and that there in no
global knowledge of the topology, Each note "kisows" only its adjacent ghamels and their weights. Exch mode is responsible for uphating its own, i.e., lecal, tables and variables. "the algorithen is such that all nodes obey the sane lecal algorithm.
At emeh node $i \in V$, there exists a progerm $S_{;}$to porform is lewial algorithm. Variables octurring in S_{i} are assumed to be wubscripted by i. If no courusion can oceur, then we omit the se subsecripts.

Transritiong a meswge M on an edge c can be achieved by cxceuting a statement "serad M on edge e". Each node maintains a message-queue. Upon recejpt of a messages. if is stamped with an identifkation of the edge on which it has been received. Fach message-qucte is supposed to work on a liflo-busis, If a node's queue is non-enupty, then the froni nuessage may be removed from its queue and either processed, or, as we will sere, placed at the che of the quese, waiting for oither events to oceur. We assume that each çueue's chpacity is large enough io buffer all received revesoges. It is not difficult to derive a minimum size, such that each queuc is abtr to buffer all recejved messares. This is now the subjen of this paper, however.
In the secuut we we the notation quecie; to denote i's
nessage-queue ($\mathrm{i} \in \mathrm{V}$). Aloo, we adopt the convention to denore e's contents of messages incoming to i by contents ${ }_{i}(\mathrm{e})$ (ie V_{r} $\operatorname{ce} \mathrm{E}_{\mathrm{j}}$). Thus, for $\mathrm{i} \in \mathrm{V}$, $e \in \mathrm{E}_{\mathrm{i}}$, contents $\mathrm{i}_{\mathrm{i}}(\mathrm{e})$ denotes the sequerme of messrecs that has been trunsmilued by the other noder adjacent to e, which has not yer been received by i.

We fext fix some network (V,E) as described above. together with an injecrive weight-function w:Eー $\rightarrow \mathbb{R}^{+}$. One might wiew the weights w(e), $e \in E$, as the cost of tansmiting a message on edge e.

3. A sprcitication undinalgorithm

In chapter 2, we have diseussed the skeleton for Gallager's algonithm. In this chapher we are going to refine this skeleton sormewhat. The ultimate goal is, of course, to show that Gallager's algorithm meets is specification, Tharefore, we formulate a specinication for a (discributed) progrem 3 that embodies the dgorithm. In order to prove s s total corectress. i.e., if 5 is cxecuted in an initial state satisfying some pricondition, then S always rerminates and in the final state the minimuth-weighe spaning tree Tof (V, E) has been conssmoted, it suffices to show that each fragment finds its minimum-weigh outgoing edge indeed and that fragments combine as described in theorem 2.2. This is established by induction on the level of a fragment (sec \{21]).

Now, a cortcetness proof of any complex distributed program should somehow be structured. It is convenient to structure the proot's reflecting the considerations of the (algorithm-) design. This observation has lead to decompose the program S embodying Gallager's algorithm into layers, herehy enabling the proof strategy described in chapter 1 . One of the main adventages of this strategy is that proofs can be given, concentrating of orie patit of the programeat a time. As an example of this, we mention an atgorithm which is not identical to Gialdager's algonthm, but captures the mosil essential features of Gallager's algorithm.

In the previous chapter we hive discussed the skeleton for Gialiager's algorithm. There we have also outlined the neced for fragment's names. Wish this in mind, Gallager's algorithm can next be deseribed as follows:
(a) A fragment at level 0 , t, e, a fragment consisting of ont node only, finds its minimum-wetight outgoing edge uccorditg to its local information (f since any adjacent edge of such a node is an outgoing one). After finding this edge a Connect-message is ransmited on this edge. This messuge serves as a request of the fragment to combine with the frigment it the other end of that edge. This pan of the progran is performed by node i when executing $S_{i, 1}$ in program S l below-
(b) (i) If two fragments F and F^{\prime} hite found that they are at the same level L and that they have the same
minimum-weight outgoing edge, then they are combined into one at level L+I. Each node in this newly fonmed fragment is then provided with a name and with the new level of chis fragment. Node i participates in this part of the algorithm when executing $S_{i, 2}$ in the prograin $S 1$ below.
(ii) After receiving this name and level, the node stents searching for its minimum-weight outgoing adjacent edge. if any, If the noders have ended this seareh, they should ati cooperate te determife the edge with dit leas: weight amongst all outgoing ones, if any. If there are no outgoing edges, thern be afgoritatm teminanes, sime the tuinimum-weight spanning tree has becn constructed (see theorem 2.7)
Node i participates in this part of the algorithnt when execuiting $S_{i, 3}$ in $S 1$. Observe that $S_{i, 3}$ is not syanctically contained in the program executed by mode i, Yet, we have shown in [21| that the decomposition as ilfuspated in the program S 1 is semanticully meaningiul.
We have been able tọ prove that this decomposition unduces layers' which are communication elosed after a number of smplifying assumptions. In the discussion after the program $S 1$ below, we comment on these assumptions and their impact on the communication closedress of the layers.
(iii) if the minimum-weight ourgoing edge of the fragnent has betn found in (ii) above, then the node in the frasment adjacens to this edge will be informed to send some Connect-message on this edge. This messuge serves as a request to combine with the fredrentr at tre olter erd of this edge. Node i parcicipates in this part of the algorichm when executing $S_{i, 4}$ in 51 .
(c) If a fragment F at level L has found iss ninimum-wtight ourgoing edge and the fragrteme F ar the other end of this colye is as level L ' with L 'sL. then F is immediately absorbed by F^{\prime}. The new fragment is at tevel L.: This part of the algorithm las dof been incoorpored in $\$ 1$ below. In fact, these combinutions engure the progerss in the algorithm, i.e., they ensure that the algorithm it deadlock-free.
(d) If a fragment F has fourtd is minimum weight outgoing edge e and none of the possibilities above is applicable, then F has to wait for combining with the fragmens F at the oiner end of c . In fact, this can occur in Gallager's algorinhm only, if F and F are at the same level and the followitng holds: F has not found its minimum-weight catgoing edge yet. or F has a minimum-weight outgoing edge other than e.

With (Y, E) and an injective weight-function $w: E \rightarrow \mathbb{R}^{+}$is before, let T denote the graph's minimum-weight sparingg tree (exising by theorem 2.1).
To give a specification for S, the program embodying Giallager's algorithm, we note that each node maintains its own variables to perform its part of $\$$. One variable, $s n_{i}$, records the (node-)suavs of node i. Each node can be in one of the following states:

- sleeping, if it is not participating in the tlgorithm (yet),
-find, while it is participating in a frugmenc's search for
detemining the minimurn-weight outgoing edge of the fragrment.
- fourd, in all other cases.

Initially, each node in the network is in the steeping state, i, e, no node participates in the algorithm.

Each node of the network also records the status of its adjacent edges, marking an tuditicent edge as a

- brdich, if the node has detcrmined thas the edge is in T. - rejected, if the node has detemined that the edge is not in T, or
- basic, in all other cases, i.e., if the node has not yer determined whether that edge is in T.
Each node if V malntains a variable sef (e) to record the status
of edge e (ef E_{i}). We assume that initially each node has marked its adjacent edges as basic, i.e., we assume that initially $\forall i \in V$ vee E_{i}, se $(\mathrm{e})=$ basic holds. Consequently, initially no node participates in the algorithm. and each node is "unaware" whether an adjucent edge belorgs to T .

Recull that queue ${ }_{i}$ denotes i's message-queur, and that contents (c) denoles cts contents of messages incoming to i (ie V,ee B_{i}). The discussion above suggests that we must prove that the specificacion [$p|S| q \mid$ bolds, where
$\mathrm{p}=\mathrm{p}_{1} \wedge \mathrm{P}_{2}$ and $\mathrm{q}=\mathrm{q}_{1} \wedge \mathrm{q}_{2}$ are defined by

$\mathrm{G}_{2} \mathrm{PP}_{2}$, with S and T as defined above.
Here [p]slq] holds iff the following is satisfied: if execution of S is started in a state sausfying p, then S always temninates in it state satisfying 4 (total correctines.5), Consequendy. the difference between (p)S $\{q$) and $[p] S[q]$ is that the later specificaton implies that the program S always temninates when started it a state satisfying p.

Observe, however, that we can be more precise about the predieate of thes must hold upon tennination of S. Jotuitively, if $e \in \mathrm{E}_{\mathrm{i}, \mathrm{j}}$ - and $\mathrm{sc}_{\mathrm{i}}(\mathrm{e})=$ branch holds upon termination of S . then this implics that eis a edge of T (i.je V). Since T is in urfirected tree, seje)=branch mursi hold then, wo. Also, upon termination of 5 , each node should have determined, whether an adjacent edge is in T. Consequently, upor termination of $\$$, we require that $5 \mathrm{se}_{\mathrm{i}}(\mathrm{e})$ thasic holds for all $e \in \mathrm{E}_{\mathrm{i}}$ -

These observations lead to the spacification $\left[\mathrm{p}|\$|{ }_{\mathrm{q}} \mathrm{\prime}\right]$ with

$$
\left.A \forall i, j \in V \forall e \in E_{i_{2}}, s_{i}(e) \square \varepsilon_{j}(e)\right]
$$

where p, S, and q are as defined above.
Next, observe that S can be oblained rather easily if the network consists of one node only. Conseguenly, in the remainder of this paper we assume that IVE2 holds.

A node stars participating in the algorichm, when one of the following cocurs:

- it jesponds to some command from a higher level procedure to indiflate the atigorithon, or
it receives the first (atgorithm) message transtrited by some nowe in the graph.
A mode can respond onty to some comnund from a higher lewel procedure to intiate the algorithon, if it is in the sheeping shate Sinect the sumeture of such a procedure is of nhane interest bas the algorithm, we ignore such procedures Insatid, nodes in the graph oun initiate the algorithm, ecocording to their lrwal information, by "awakeninf spontaneosily". Note that mithy nodes can awaken spontancously and "initiate" the algorithm We dernand, however, that a node can awatken spontancously, only if in is in the slecping-sate.

In Ciallager's algorithm, one starts with fragnenes of the
 minimum-weight outgoing edge asynchronousty with regach io other fragments. When (and if) such an edge has teen found. the fragnent aterops to combine with the fraginert at the ouler tend of the cige The niles of cortbining have been deserited earljer. The purt of the algorithm associated with how a fragment fuds its minimam-weight oulgoing edge and how to ateropt combining with the fragment at de other end of that edge is called a phase of the fragutent, In whe remaroder of this chaper, we consider the phase of a fregment of the torm
($(i), Q)$, and the phase of a fragutent that has been formed from smaler ones at the same tevels with the same minimum-weight outgoing edge.

A fragment consisting of onte node only, stant its Dist phatice when the node of that fragment awakens spontamously, or when it receives the first algorithnt-messuge. When a mode awakens according to one of these possibilities, it detenuines its minimum-weight adjacent (hence, outgoing) edge (fromit: local table), marks this edge as a branch, and goes into the fourd-sate (sinte the minimunt-weightoutgoing edge of its [ragthent has bect detemined). The node then sends a Comect-message with ios level. i.c. 0 . on the edge matked as a branch. This message serves as a request to combine with the fragment at the other ents of that edge into a larger one. Sending Connect(0) by ie V also indicates the end of the first phase of a trivial fragment of the form ($\{1,0$) when a wakening. Hereafter, it simply waite for a response from the fragment at the other end of the cdge on which tie Connecrimessage has been sert. At the first 5 tage of the proof in [21], we hate ignored the actions taken by a node, or more precisely by a fragracht, when it receives such a response.

Next, we describe the actions pertormed by the nodes. when one (or possibly more of theri) awakens sponancously. and when rwo fragments are combined inte a larger fragoment. Node i performs its first phase when executing $S_{i, 1}$ in 51 below. Node i in a fragment formed by two smaller ones at the same level with identioul minimurn-weight outgoing edges participates in a phase when execuating $S_{i, 2} ; S_{i} ; S_{i, 4}$ in S l below. In the program to follow, sn denotes the rode-state, in denotes the level of the fragrment as far as "known" to that node, and se(c) records the stams of cedge e acfacent to that node. The initial values of the variables se(e) and snare basic and slefping, respectively; the initial values of the ohter variabtes are irrelevant For a complete description of Gallager's algonthm the reader is refermed to 17. .
program 51 (as exceuted by each riode ien V)

(2) procedure wake-up
begin
let ete the ucjucent edge of minimum-weight;
 send Commect(0) on edge e end
(3) responste to receipt of Connect(1) on edge e begin

If sn=slemping then execute procedure wake-up in
if $\ln =1$
then if se(e)=brach

for all ddes érer
do send Initiate (In.fn, mn) on edge e':
Findeount:-findcount +1
od;
else place received mestage on end of queue It
II
end
(4) response to receipt of Initiatetiri,s) on edge e bejin

for ath edges c'ғc
To send Initiate (\ln, fn, $5 n$) on e^{\prime};
findcount:=Findcount +1
od:
besi-edgeranil:best-wt:mancextute procedure test end
(5) procedure lest
if therce are adjacent edges in state basic:
then text-edge: = minimum-weight adjacert edge iri state basic;
send Test (ln,fn) on aest-edger
else test-edge:=riltexecute procedure report
fi
(6) respunse to receipt or Test $(1, t)$ on edpe e
begin
if sn=sleeping then execute procedure wake-up fi; if $\ln =1$
then place received message on and of queue
else if fnof
then send Aceept on edge e chas se(e):=rejected;
if test-edgete
then send Reject on e else ececute procedure test fi:
II
fi
end
(7) response to receipt of Accept uth edge e
b-діпп
tesf-cdge:=nil
if wie) -best-edge
then best-edge: = best-wt:=w(t)
elise execute procedure report
II
end
(8) response to receipt of Reject on edpe e hegin se(e):=rejected;execute procedure test end

(9) procedure report

if tindeoums=0 and test-edge $=$ nil
then sn:=foundisend Repon(best wi) on inbranch fi
(10) responise to receipt of Report(iw) on edge e
if inbranch\#te
then findcount:wfindcount-1; if webest-wt then best-wt:ww; best-wt:=e fi; execule procedure report
clse if sn=find
then place received message on end of queue else if $w=$ best:-w then halt ti
else if wisbest-wt then execute procedure chatige-fool II

it

fi
fi
(11) procedure change-root
if set (best-w $)=b r a m e h$
then send Change-Root on best-edge
else send Connect(ln) on best-edge: se(best-edge):=branch
fi
(12) response to receipt of Change-Risot exccute prowedure change-root

We have already given an intuitive explanation of the parts of Gallager's algorithm corresponding with the labeled parts in is as shown above. In 1211 we have established the correctness of the program S that embodies Gallager's algorithm from properties which we derived for the program \$1 above. "the proof of properties for S has been structured by firsi
concentrating on the layer $L_{[}=S_{1,1}$ th...IIS n_{n}, where n is the number of nodes in the nerwork under consideration. 'I'his's layer is concerned with zero-level fragments. At this siget on the proot, we have completely ighored onler communientints that could affect the cortmonication closeduess of layer L_{1}. Thereatier, we have shown that a fragment I^{2} combined front two fragneris F^{+}and F^{-1} ar the same level wich an idtensical minimum-weight outgoing edge finds its minimum-weight outgoing edge, if any, and that the program tenninates
otherwise, To do so, we proved propertics of the layers
(a) $L_{2}=S_{1,2}\left\|l_{1 . .}\right\| S_{n_{2} 2}$
(b) $L_{3}=S_{1,3}$ II...IIS $S_{n, 3}$ -
(c) $L_{4}=\$_{1,4} \|_{12}$ ul $S_{n, 4}$ (when executed in states satistying a well rehosen precondition which can be proved to be estabished for the "full reality" of communication) under simplifying assumptions. These assumptions are the followingi in (a), we ignore all comumications from nodes outside F. In (b), the assumptions in (a) have to be relaxed somewhat; otherwise verification does not make sense since in (b) nodes possibly send Test-messuges to nodes outside F and coutd therefore receive an Accept as a retponse to thut message. In (c) the simplifying assumptions are identienal to the one in (b). Uruder these simplificalions, we have been able to thow that the four rayers mentioned above are conthunication closed. Therefore.
the complexity of a proof that F finds its minimurn-weight outgoing edec, if any, and that the progidn terminater otherwise is reduced indeed. We should remark here that in case (b) aboue the complexity of proof can be teduced even roore by applying the method of projections (14], and Martin's ectraique [15]. '「o apply Marin's technique we obtain a simplified program by ieplacing the ests w=best-wt in "response to recelpt of Report(w) on edge e" by false. in case of termination of the original program, all nodes in the network
would have reached a quiescent state with best $w t_{i}=c o f o r ~ a l l$ nodes i , when executing this simplified program. From conditions satisfied in this state we we able to prove tertaination and a ternination condition for the original program.

Also we have shown that whenever some node k receives Connect(1) and checks if $1 n_{k}=1$ holds. then such a test is equivalent to $\neg\left(10 \mathrm{k} \mathrm{k}^{\mathrm{L}}\right)$).

Thereafter, we hive taken imo account all communations that have tecen ighored befote when reasuring in a simplified fashion about Gullager's algonhm. (A: that point the possibility that low-level fragments allidipt to combire with high-level fragments is incoporated in S1.) The program S as given in the appendix of [7] cen then be obianed after sonte urivial mansformations. It is interesting to wote that the communication closedness of the lityers as we derived earlime in destroyed when taking into accoum al/ commumicugions. The intuitive reaton is the following: any rote i rrusi be athe to proess a Condect(1) with $\mathrm{l}_{\mathrm{k}} \mathrm{ln}_{\mathrm{j}}$, no mauer what layer it execotes. Yet, all earlier derivod invariknes remain valid after the addiciot of all possible comenurications sime they have been chosen interference-ffee w,r,t, this uddition, or the enlier derived properties can be easily adjusted to be valid after this addition.

From the proof we also learned that two (slight) optimizations are possible (w.r.t. the program given in [7), The first one is already present in $\$ 1$ above. If ewo fragments at the eate leved with in identical mimithum-weight outgoing edene are combinced imo a larger otte that it is not necessary that the nowes adfucent to that edge first exchange an Initiate-message as in (7). Rather, the nodes adjacent to this cdye can itmonediately updute the relevane variabies as shown in $\$ 1$ above. The other
optimization is the fotlowing: if a nede ie V tansmis a '「est-message on sorme edge e, and it receives a Connect(l) with lalation this edge before is has actually received a response on that Test-message, then there is no need 10 wait for this response. In his case, i will always receive a Rejecr-message afterwards. Consequendy, it suffices for i, in this case to continue its search for the minimum-weight ourgoing edge without waiting for a response. The node j at the other end of c could then as well ignore the Test-messuge in such a situation, i, e., if it attempts to process a Test $(1,5)$ with $\mathrm{lel} \mathrm{m}_{\mathrm{i}}$, received on an edge in state branch.

4. Conclusion

We have sketched the correctness of the distributed minimum-weight spannigg tree afgonithm of Gallager, Humblet, and Spira ([7]). We have also shown that there exist strategies te reduce the complexity of such complex correctiness proofs. Basically, this reduction is achieved by introducing a certain abstraction from operstional reasoning, Eltad and Francez's communication closed layers, and Martin's and Chandy \& Misnt's quiescence into the proof. (llow the notion of quiescence can been used in the proof has not been
ithustrated in this paper. For this the interemed reater is retered to (21).) This allows us to reason about distribated pieces of programs under simplifying assumptons. At the fimal stige of the prowi the assungpions implied by our absurations must le eliminated. It then nerely pertains to show that properties derived during earlier stages of the prof ate not invalidnced (m cat easily be adjusted), when taking into aceount communications whose ocurface we onginaly ignored. Moreover, it is interesitig that this tecturicue carn be used in atoulyze other distributed programs, such as fuisofer rowity
 wileoriburs (of Terbib and Sceall (123) , and maximal fow athorithens in a network of Scgat ($[18 \mid \mathrm{y}$), too.
Future work will investegate whether this technique:, and the proof presented in this paper, an be extended to verify the correctess of directed minimum-weight spimning the此gorithms (see eg. [10]). Another research topic in thes Fift is to extend the minmmon-wight sparing tre atgorithon of Galleger, Furnblex, and Spira to networks in the presence of failures and additions of links and nories, i.e., to considet sonce failsafe version of this algonithm. We conjectare that out analysis can be also extended to the consrruction of other algoithms in this area.

Asthowledgermens; we thank H, Parseh for a number of remarks that haver led to a smopther presentation.

References

[1] Apu K.R., Frances N., de Roever W.P., A prool syitem for communicacing sequential processes, ACM TOFLAS, 2-3. (1980)
[2] Bochmann G.Y.. Iunite state description of commonicating protocols, Compotcr Networks, 2,(1978).
[3] Chady M., Misra J., An cxample of stepwise refinemem of distributed ingorithms: qุuieszence derecrion, ACM TOPLAS. 8-3. (1986).
[4] Dijkstru E., Two problems in connection with graphs. Numer Math, 1, (1959).
(5) Elrad T., Francer N, Decomposition of distributed programs into communication-closed layers. Science of Compuser Progranming. 2, (1982).
[6] Even 3 . Graph algorithms, Computer Science Press. Inc (USA), (1979)
[71 Galager R, G., Humblet P.A., Spira F.M., A distributcd algorithm for mininnorn-weight sparning (ross, ACM TOPLAS, 5-1, (1983).
(8) Gerth R,T, Shrira L., On proving comnturnicution closetness of dis ributed layers, the Proceedings of the 6th conference on Foumdations of Software Technology and Theoretical Computer Seience, New Dehli, India, (1986).
[9] Hoare C.A.R., Conmunticating Sequential Frocesses Comm. ACM, 21-8 (1978)
[10] Humble: P.A., A distributed algorithm for minimuni wejght dirceled spanning rees, LEEE Transactions on Communtications, 31-6, (1983).
[11] Kruskal J.B. On the shorest sparming subiree of a graph and the traveling sajesman problem, Proc. Am. Math. 5oc., 7, (1956).
[12] Lamport L. Specifying concurrent modules, ACM TOPLAS, 5-2, (1983).
[13] Lamport L. An assertional correctnes's proof of a discribured algorithm, Science of Computer Progranmang 2-3. (1982).
[14] I arm S.S, Shankur A.U., Protocel verification via Projections, IEEE THns, on Suftw. Eng., 10 4, (198.4).
[15] Marin A.J., A dismbured pathalgorizhm and ins correcress propf, Repor Philips Researeh I-it (1980 , revised 1984).
fl6 Misra J., Chandy K.M., Proote of iscwork of processes, IELE Trams on Soft Eng. 7, (198[)
1:71 Merlin P.M., Segall $\Lambda .$. . A falsafe distributed mouting proweol, IFFE Traris, on Contrin, 27.9, (1979).
1.8] Segall A., Decentratized maximum flow protwols, Internal Repon Tecthnion-Isrue! Fastitute of Technology, Haifa, Intuel (198(),
[191 Shankar A. U, Larn S.S., An HDLC' protocol specification and its veritication using image probocols, ACM Trans. On Conip. Syst., 1-4, (1983).
120| Storip F. A. Methods for the analysis of protocols. marineripo (1986)
[21] Stomp F.A., de Rocver W.P., A eorectats proof of a dixtributed mininum-weight epanning wee al gorithon (fyll paper), Internal Report 87-4, University of Nijmegen.
[2之| Zwiers J.. de Roever W. P.. van Emde Bous P., Compositionality and concurrent networks: :oundness and comple aness of a proof system. Froc. i2th iCALP. LNCS 194, Springer. Verlig, New York (1985).
[23] Zerbib F, B, M., Scgal! A, A distributed shoross path prowocol, Interial Report EE pub. no. 395, TechnionIsrael Institate of Techmology, Haifa, lsael (1980),

CHAPTER 3

An extended abstract of a version of this article has been published in the Proceedings of the $\$_{\mathrm{nd}}$ Internationtal Workshop on Distributed Algorithms (LNCS 392), Nice, France, September 26-28, 1989, pp. 242-253.

Designing distributed algorithms

by means of
 formal sequentially phased reasoning

F.A. Stomp* W.P. de Roever ${ }^{4}$

Abstract

Designers of network algorithns give elegant informal descriptions of the intuition behind thcir algorithms (see [GHS83, Hu83, MS79, Sc82, Se83, ZS80]). Usually, these descriptions are structured as if tasks or subtasks are performed sequentiolly. From an operational point of view, however, they are performed concurrentiy. Here, we present a design principle that formatly describes how to develop algorithms according to such sequentially phased explanations. The design principle is formulated using Manna and Pnueli's linear time temporal logic [MPS3]. This principle, together with Chandy and Misra's technique [CM88] or Back and Sere's technique [BS 89] for designing parallel algorithms, is applicable to large classes of algorithms, such as those for minimum-path, connectivity, network How, and minimum-weight spanning trees. In particular, the distributed minimumn-weight spanning tree algorithm of Gallager, Humblet, and Spira [GHS83] is structured according to our principle.

[^1]
1 Introduction

Designers of cormplex network algorithms, see, e.g, [GHS88, Hu83, MS79, Se82, Se83, ZS80], nisually deseribe their :lggrithms on the basis of task or wobtaks - sometimes referred to as phases and enophoses. Their (informal) descriptions are structured as if groups of nodes in the network perform thesc (sub)tasks seyurntially, although in reality (i.e., operationally speaking) they are perbormed conctaryendy. Current design methodologies (see, e-g, (GM88, BS89]) lack an appropriate principle for formally developing such seqnentially phased algorithns. In this paper we formulate a formal design prineiple that captures thas sequential structure in network algorithms. If closely resmbles the designers' intuitions as given by the informal descriptions and thus preserves the atural flavor of their original explanation. Furthermore, this principle can also be used to derign formally new algorithms.

The sequential dexmposition of a concurrently performed task into subtasks cam already be discerned in a simple broadcast protocol, viz., Segall's PIF-protocol [Se83] (cf. also [DS80] and [F80]). Here, the whole protocol performed by the nodes in some network can be decomposed into two subtasks: the first one broadcasting some information ard unwinding a directed tree, Fud the sucond onc reporting that the nodes have indeed received the information. Following this pattern of sequential reasoning the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and Spira [GHS63], hereafter referred to as Gallager's algorithm, can be described in essentially four subtasks, which from a logical point of view are performed sequertially (sece [SR87a, SR.s7b]). That algorithm displays, however, on additional feature: that of "inferference". Expanding groups of nodes perform a certain lask repeatedly, with different groups performing their tasks concurrently writ. another. Now a task performed by one group can be disturbed temporarily due to interference with the task of another group, Ovr design principhe is geared to tope naturolly with this kind of interference.

In order to design a distributed program that solves a cortain task which can be split up logically into subtasks as if they arc performed sequentially, we propose the following strategy: First develop distributed programs which solve the subtasks. Methodologies for doing so are described in [CM88] and [BS89]. Next, combine these programs to construct one which solves the whole task. Our design pringiple decseribes how to accomplish this combination. (In [CM88]
there has not been given any methodological advice how to accomplish this kind of combinationOur technique generalizes one transformation principle described in [BS89], because it is able to cope with repeatedly performed tasks and with temporary disturbances of the kind discussed above)

In essence, $i t$ is required to prove the verification conditions (A) and (B) below.
(A) Prove that for each distributed program $S_{\text {, solving a sublask, the following holds: There }}$ exists a specification for 5 consisting of, for each node j,
(1) a precondition p_{j} and a postcondition q_{j}, and
(2) a pair of state-assertions (I_{j}, T_{j}).
I_{j} is an invariant for the program executed by node j. Furthermore, I_{j} is ant invariant for program S; It has been incorporated in the specification in order to deal with the abovementioned kind of interference, which occurs in, e.g., Gallager's algorithin (cf. [SR87a, SR87b]j. T_{j} expresses that node j has completed its contribution to the subtask assocrated with program S.
(B) Prove that cech node can participate in at most one subtask at a time and that all nodes which participate in more subtasks, participate in these subtasks in the same order.

One is then entitled to conchude that the progran consisting of all (atomic) actions occurring in those programs associated with the subtasks solves the whole task as if the nodes perform the subtasks sequentially. Astonishingly, this simple design principle underlies the development of such complicated algorithms as Gallager's and those described in [$\mathrm{H}=83, \mathrm{MS} 79, \mathrm{Se} 82, \mathrm{Se8} 3$, Z 880].

How can one understand the inherently sequential intuition present in this design principle for concurrent computations?

Its semantic foundation lies in considering computation sequences in a specific form in which all operations associated with one subtask are performed consecutively. Although it might not be the case at all that each computation sequence of the program solving the whole task is in this specific form, reasoning about this program by means of computotion sequerces in this specific form is correct, since any computation sequence of the program turns out to be equivalent to one in that form. In order to define this notion of equivalence (see (L85) the notion of an event is needed: an event is an occurrence of the execution of some atomic açtion. Now each
computation sequence induces a partial ordering of its events. This partial order is a cansal relation in which all everts generated at a single node are ordered according to their temponal ocurtence in this sequence Additionaly, in an asynchronous model of computation the event of scinding a messuge precedes the event of recciving it: in a synchronous model these events are identical, Two computation sequences are equivalem if their first states are jdentical and if they define the sume partial order of evens. In essence, equivalent computation sequences difter only in the way events generated at different nodes are interleaved (w.r.t. the partial order defficed by these sequences). Moreover, if two finite computation sequences are equivalent, then their last states coincide. This argument justifics, eg. Elrad and Francer's safe decomposition principle [TF82] (cf. also [「a88]) as demonstrated by Gerth and Shrita [GS86]. This principle statess the following: if $S_{1, m}\|\cdots\| S_{n, m}$ is partially correct w.r.t. precondition $p_{m 1}$, and postondition $p_{m}(n \geq 1, m=1, \cdots, d$ for some natural number $d \geq 2)$ and if no communicalion occurs between $S_{i, m}$ and $S_{j, m^{\prime}}$ for $1 \leq i, j \leq n, i \neq j, 1 \leq m, m^{\prime}<d$, and $m \neq m^{r}$, then $\left(S_{1,1} ; S_{1,2 ;} \cdots ; S_{1, d}\right)\|\cdots\|\left(S_{1,1} ; S_{H, 2} ; \cdots, S_{n, d}\right)$ is partially correct w.rit. p_{0} and p_{d}.

To reas on formally about such arguments, Katz and Peled have promosed to use interieaving set temporal logic [KP87, KP88] as a formalism. Their logic allows one to reason about a program's behavior by considering only $\mathrm{I}^{\text {prticular representatives of the program's computation sequences, }}$ such as the: wery sequences in the specific form introduced above.

From the discussion abow: it tollows that if in some program, solving a certain task which cam be split up logically into two subtasks as if they are performed sequentially, sach node aways performs operations associated with one subtask before operations associated with the other, then the following holds: cach computation sequence of the program is equivalent to a computation sequence, in which all operations associated with the first subtask are performed before all operations associated with the second one. This is, e.g., the casc for the program in figure I below, which describes the PIF-protocol [5683] (cf. [DS80, F80]), where in order to illustrate our decomposition of a task into two subtasks in a few words, it, is assumed that the network constitutes a tree. ${ }^{1}$ The nodes perform the following task: some message info(v), for a certain argument v, initially in the message queue of node k (viewed as the root of the tree), has to be sent to all nodes in the network. Node k has to be informed that all nodes in the network

[^2]have received this mestage indeed and that the value v has been recorded by them. The two subtasks constituting this task have been described above and consist of a broadcasting phase followed by a reporting phase. In the program below (see figure 1), boxes labeled Artindicate which operations of node i are associated with the $n^{\text {th }}$ subtatsk ($n=1,2$). Note that the boxes do not necessarily correspond with the body of a "response" (since they are the outcome of a semantical andalysib). Now our primciple justifies that one can reason formally obout this protocol as if first $A^{\text { }}$ programs are crecuted by the noder, and thereafter only A^{2} programs. In appendix IV the specific assertions I_{j}, T_{j}, p_{j}, and q_{j} for all nodes j are defined in case of the PIF-protocol.

Our principle is a broad semantic generalivation of Eltad and Francea's suff decomposition principle [EFS2] (cf. also [GS86, Pa88]). Their decompositions, however, i.e., the programs (called loyers in [EF82]) describing the subtasks, art: restricted by the syntax of the whole programr; This is not true for our decompositions as has aiready been observed above. In contrast with their principle, and the one described in [FF89], our principle also applies to reasoning about repectedly performed tasks by expanded groups of nodes, such as in, eg., Gallager's algorithm. Methods for verifying Gallager's algorithm appear in [\$R87a, \$R87b, CG88, WLLs8] We [SR87a, SR87b] have reasoned about its correctness on the basis of (sub)tasks. In those papers, however, the underlying proof principles have not been formulated, Neither has a formalism for them been given. Welch, Lamport, and Lynch [WLLs8] give a correctncss proof in the context of I/O-automata, using a (partiallywordered) herarchy of algorithms. Chou and Gafni [CO88] consider a simplified version of Gallager's algorithm, a distributed version of Boruvka's algorithm [B26]. The problem of finding a simple proof principle for the sequentially phased reasoning of the full version of Gallager's algorithm clearly emerges in [CG88], since in the full version of that algorithm one has to cope with temporary disturbances of the kind discussed above. In order to reason about such disturbances aloug the lines of [CGB8], another principle would be required. In our case, due to the collection of assertions (I_{j}, T_{j}) for nodes j, merely an interference-freedom argument for I_{j} and T_{j} must be given.

The rest of this paper is organized as follows: in section 2, we introduce some notation and conventions, Our design principle is formulated in section 3. For ease of exposition we have restricted ourselves to synchronous ommunication. Section 4 contains some conclusions. Soundness of the design principle is proved in appendix I. In appendix II we discuss how to formulate
onr principle for the asymchronous case. Appendix III shows how to transform progrants represented by lists of responses (cf. the program above) into onr own notation for representing distributed algorithms. In Appendix IV contains a fully worked ont illustration of the principle applied to the PIF-protocol.
loop executed by node k (the root)
response ta regeipt of info(v)
bogin

val $l_{h}:-v ;$

for all adgasef $\in E_{k}$ do send info(volk $)$ on edge e od
and

```
responge to receipt of ack(v) an edga C
bogin
    Nf(C):- true;
    if }\forallC\inEEE\cdotN\mp@code{N
    thon done.e:=true
    fi
ond
```

```
loep executed by modo ift (a non-root)
    response to receipt of info(v) on edge \(C\)
    begin
```



```
    for all edges \(c \in E_{i} \wedge\) 人 \(\neq\) inbrarch \(_{i}\)
        do send info(vali) on edge \(c\) od;
    if \(\forall C \in E_{i}, N_{i}(C)\)
    then send ack \(\left(\right.\) wal \(h_{i}\) ) on imbranchi
    fi
and
xesponse to receipt of ack(v) on edge \(C\)
begin
    \(N_{i}(C):=t r i v ;\)
    if \(\forall C \in E_{i} \cdot N_{i}(C)\)
    then send ack(vali) on inbranch
    fi
ond
```

Notation used: E_{i} denotes the set of edges adjacent to node i. Variable vali is used to record the argument of the info-mensage reneived by node $i ; N_{i}(C)$ records whether any message has been received along edge $C, G \in E_{i}$. For node i different from k, variable inbranchi records the identification of the edge slong which the info-mesesge has been received. (These variables are used for unwinding the directed tree.) Variable done ${ }^{4}$ records whether the whole task has been compieted.
Initially, node k 's message queue contains one info-message and the message quenes of all other nodes are empty. Furthermore initially qlome $_{5}$ holds for node k, and $-N_{i}(C)$ for all nodes a and edgea $O \in E_{i}$. The initial values of the other variables are irrelevant.

Figure 1: Segall's PIF-protocol

2 Conventions and notations

A distributed algorithm is performed by nodes in a fixerl, finite, and undirected network (V, E), and consists of at least two nodes. The network is viewed as a graph. Two adjacent notes commumicate by means of messages. Since edges are undirected, each node can both send and receive messages along any of its adjacent edges. Except for delivering rnessages properly any edge can damage, lose, duplicate, and reorder messages in transit.

For ease of exposition it is assumed that communication is synchronous. (In appendix Ib we show how our results can be extended to an osynchronous model of communication.) In order to avoid bothering about the actual syntax of programs, distributed algorithms are represented by a triple $\left\langle V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, A>\right.$, (m appendix III we show how a program represented by lists of responses, as in e.g., section 1 , can be represented by such a triple.) The interpretation of the three components is the following: $V^{\prime \prime}$ is a subset of V containing all nodes that actually execute the algorithm. $\left\{p_{i} \mid i \in V^{\prime}\right\}$ is a collection of state assertions. For all $i \in V^{\prime}$, assertion F_{i} describes the initial values of node i 's variables. Finally, A is a collection of atomic actions which carl occur when the nodes in V^{\prime} execute the algorithm (see the definition below). Each action a has an enabling condition en(c) associated with it.

Given an algorithm represented by a triple as above, it is assumed that the collection A of actions can be partitioned into sets A_{j} of niode j 's internal actions and sets $A_{j, i}, i \neq j$, of actions involving a transinission of a mestage from node j to node $i\left(i, j \in V^{\prime}\right)$. The collection of all actions that can be performed by node j (possibly simultaneonsly with other nodes), i.e., the set $A_{j} \cup \bigcup_{i \in V^{\prime}} A_{j, i} \cup \bigcup_{i \in V^{\prime}} A_{i, j}$ wild be denoted by act $\left(A_{i} j\right)$. For action $a \in A_{j}$, en(a) refers to node j 's variables only. In this case, enf(a) will he denoted by $e n_{j}(a)$. If some action a involves a communication between the nodes i and j, then $e n(a)$ is the conjunction of boolean conditions $e n_{j}(a)$ and $e n_{i}(a)$ where for $\ell \in\{i, j\}$, en (a) refers to node ℓ 's variables only.

Definition

A computation sequence of an algorithm as above is a maximal sequence $s_{0} \xrightarrow{a_{9}} s_{1} \xrightarrow{a_{3}} s_{2} \ldots$ such that for all $n \geq 0$ the following is satisfied: s_{n} is some state, each $p_{i}\left(i \in V^{\prime}\right)$ holds in state s_{0}
 and s_{n+1} is the state resulting when a_{n} is executed in state s_{n}.

3 Our design principle

In this section we present a design principle that formalizes sequentially phased design of distributed algorithms. The principle itself is formulated in subsection 3.3. In subsection 3.2 correctness formulac and the verification conditions of the principle, i.e., conditions to be verified in order to apply the principle, are presented. Introducing the correctness formulae enables
a simple and convenient formulation of our principle. Subsection 3.1 describes some basic observations for solving tasks from the class considered here.

3.1 General observations

Assume that a colletion V^{\prime} of nodes performs a certain task specifed by meands of a pair of sets of static-atsestions $\left\{P_{i} \mid i \in V^{\prime}\right\}$ (the preconditions) and $\left\{q_{i} \mid i \in V^{\prime}\right\}$ (the postconditions). Consequently, in order to solve this task by some distributed algorithm \mathcal{A} we must find a collection of actions A such that.

- A is described by the triple $<V^{\prime},\left\{p_{i} \mid i \leq V^{\prime}\right\}, A>$ and
- every finite computation sequence of A ends in a state for which each of the postronditions q holds ($i \in V^{\prime}$).

We shall ansume that this task can be split up logically into two spobtasks as if they are performed sequentially. (The general case is a straghtforward extcosion as shown at the end of this section.) It is attractive to design A in two stages: In the first stage algorithmos B and \mathcal{C} arte designed that sofve the two sultatsks. Such a decomposition enables us to concertrate on one subject at a time. Methodologies for developing these algorithms are described in [CM88] and [B889]. In the second stage \mathcal{A} itself is designed by combining algorithms B and C. Our design principle descrilus how to atcomplish this combination.

Obvionsly, since the whole task can be split up logically into two subtasks, there exist intermediate assertions $r_{i}, i \in V^{r}$, such that the two subtasks are solved by distributed algorithms $B-<V^{\prime},\left\{p_{i} \mid\left\{\in V^{\prime}\right\}, B>\operatorname{and} C=<V^{\prime},\left\{r_{i} \mid \bar{i} \in V^{\prime}\right\}, C>\right.$ (for certain sets B and C of actions) (cf. [CM88, BS89]). Each tinite computation sequence of algorithm \mathcal{A} and algorithm B ends in. a state for which each of the assertions r_{i} and q_{i} respectively ($i \in V^{\prime}$) holds. The remainder of this section describes how to combine these algorithms in ordex to obtain \mathcal{A}.

3.2 Verification conditions

We now introduce correctness formulac and present conditions which are required for a sound application of our principle Some conditions that algorithms B and \mathcal{C} should satisfy in order to
design A with this principle are described by means of correctness formulac in subsection 3.2.1. Each of them can be verified by concentrating on one algorithmat a time. Conditions referring to both B and \mathcal{C} are formulated in subsection 3.2.2.

3.2.1 Conrectness formulae

Let $\mathcal{D}=\left\langle V^{\prime},\left\{p r e_{i} \mid i \in V^{\prime}\right\}, D>\right.$ be an algorithm which should satisfy the following: if \mathcal{D} is executed (in a state satisfying each of the preconditions pres, $i \in V^{\prime}$), then every finite computation sequence ends in a state for which certain state assertions posti, i $\in V^{\prime}$, (the postconditions) hold. Node j^{\prime} s computation can be characterized by means of an invariant $I_{j}^{P}\left(j \in V^{\prime}\right)$. Introducing such invariants is the standard technique to ensure that. our design principle (see subsection 3.3) can also be used for designing algorithms in which a (sub)task performed by some group of nodes can be disturbed temporarily (duc to interference of the kind discussed in section 1).
Except for the invariant $I_{j}^{\mathcal{D}}$, we can be more precise about node j 's behavior. If node j has completed its participation at a certain point in some computation sequence of \mathcal{D}, then the postcondition post t_{j} holds and f camot perform any action from that point onwards. The states in which node j cannot perform any action anymore are characterived by an assertion T_{j}^{p} $\left(j \in V^{\prime}\right)$.

We now introduce correctness formulae of the form
\mathcal{D} sat $\left\langle\left\{I_{j} \mid j \in V^{\prime}\right\},\left\{T_{j} \mid j \in V^{\prime}\right\},\left\{\right.\right.$ post $\left._{j} \mid j \in V^{\prime}\right\}>$
for an algorithm $\mathcal{D}=<V^{\prime},\left\{p c_{i} \mid i \in V^{\prime}\right\}, D>$ and for state assertions I_{j}, T_{j}, post ${ }_{j}\left(j \in V^{\prime}\right)$. Such a formula is valid iff the following holds for every computation sequence of \mathcal{D} :

- For all $j \in V^{J}, I_{j}$ holds in every state of the sequence,
- For all $j \in V^{\prime}, T_{j}$ holds iff node j will not execute any action in D anymore, and
- For all $j \in V^{\prime}$, post, holds when and if node j has completed its participation in \mathcal{D}.

A correctness Gormula as above can be characterized in linear time temporal logic [MP83]. Let $\mathcal{D}=\lessdot$ $V^{\prime},\left\{p r e_{i} \mid i \in V^{\prime}\right\}, D>\mathcal{D}$ sat $\left.<\left\{I_{\}}^{\mathcal{D}}\right\} j \in V^{\prime}\right\},\left\{T_{\}}^{\mathcal{D}} \mid j \in V^{\prime}\right\},\left\{p o s t_{j} \mid j \in V^{\prime}\right\}>$ is an abbrcviation of the conjunction of the conditions (a) through (i) below. (Some of these conditions are redundant; We have included them to formalize the intuition in a natural way.) The conditions below are interpreted over all computation sequences of algorithm D. (\square denotes the alwayswoperator.)
(a) $V_{j} \subset_{i} V^{\prime}\left(p r c j_{j} \rightarrow I_{j}\right)$.

Therefore, initially I_{j}^{P} holds for all nodes j in V^{\prime}.
(b) $\forall j \in V^{\prime} \cdot \square\left(\left(I_{j}^{\mathcal{D}} \wedge-T_{j}^{\mathcal{P}}\right) C\left(I_{i}^{P} \wedge T_{j}^{P}\right)\right.$, where U denotes the weak untideperator, i.e., for all nodes j in V^{f}, I_{j}^{D} is an invatiant and the following holds: "node j participates in the algorithm until it has completed its participation".
(c) $V_{j} \subset V^{\prime}, \forall d \in \operatorname{act}(D, j) \cdot \prime\left(\left(I_{j}^{D} \wedge T_{j}^{D}\right) \cdots c n_{j}(d)\right)$,
i.e., if a certain node has completed ita participation in the algorithm, then it camnot performany action. (Cf. section 2 for the definitions of ant (D, j) and of $e n_{2}(d)$.)
(d) $V j: V^{\prime}, ~ \wedge\left(\left(I_{j}^{P} \wedge T_{j}^{P}\right) \rightarrow \Gamma\left(I_{j}^{P} \wedge T_{j}^{\mathcal{D}}\right)\right)$,
i.e, once a node has conpleted its participation in the algoxithm, then it will never particpate in the algurithm anymore.
(e) $\forall j \in V^{\prime} \cdot \square\left(\left(\Gamma_{j}^{\mathcal{D}} \wedge-T_{j}^{D}\right) \rightarrow \exists d \in D,(e n(d))\right)$,
i.e, if in at certain state some node has not (yet) completed its participation in algorithm \mathcal{D}, then the whole algorithm cannot be completed.
(f) $\forall j \in V^{\prime} \cdot \square\left(\left(\Gamma_{j}^{\mathcal{P}} \wedge T_{j}^{\left.\mathcal{P}) \rightarrow p o s t_{j}\right) .}\right.\right.$
i.e., node's f postcondition post f_{j} is established when it las completed its participation in the algorithon.

3.2.2 Conditions for combining subtasks

Let $B=<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, B>$ and $\mathcal{C}=<V^{\prime},\left\{r_{i} \mid i \in V^{\prime}\right\}, C>$ be algorithmas which solve the two subtasks. Assume that
(1) B sat $<\left\{I_{j}^{B} \mid j \in V^{\prime}\right\},\left\{T_{j}^{B} \mid j \in V^{\prime}\right\},\left\{r_{j} \mid j \in V^{\prime}\right\}>\operatorname{and} d$
(2) C sat $<\left\{I_{j}^{C} \mid j \in V^{\prime}\right\},\left\{T_{j}^{C} \mid j \in V^{\prime}\right\},\left\{q_{j} \mid j \in V^{\prime}\right\}>$ are satisfied.

We first impose the following condition: Each programming variable occurring in any of the assertions $p_{j}, r_{j}, q_{j} X_{j}^{\mathcal{B}}, X_{j}^{C}, X_{j}^{\mathcal{B}}$, and T_{j}^{C} is node j 's own variable. The intuition behind this restriction is that a node's precondition (or its postcondition) can be described in terms of initial (or final) values of its own variables. Also, an invariant associated with some node j characterizes j 's computation and can therefore be expressed without any reference to variables of nodes different from j. Analogous, a termination condition expresses that a node has completed its participation in a certain algorithm and can be exprested in terims of its own variables.
(3) Each programmiag variable occurxing in any of the assertions $p_{j}, r_{j}, q_{j} I_{j}^{\mathcal{B}}, I_{j}^{\mathcal{C}}, T_{j}^{\mathcal{B}}$, and T_{j}^{C} is node j^{\prime} s own variable ($j \in V^{\prime}$).

In order to solve the whole task, we shall desiga an algorithm A with actions from B and C in which each node j in V^{\prime} first participates in B and then participates in \mathcal{C}, provided that j actually participates in both subtasks. As a consequence of this strategy, no node in $V^{\prime \prime}$ will participate in both subtasks at the sarne tirnc. Therefore, we require that if a certain node has not completed its participation in one subtask, then it cannot execute any action associated with the other subtask.

Dofine for some assertion P and for some set of ections $A C$ the predicate disabied $(P, A C)\left(\ell \in V^{\prime}\right)$ expressing that if rasertion P holds, then tor all sctions a in $A C$, ent (a) holds; Formally, disabled $(P, A C)$ holds : $\square(P \Rightarrow \forall a \in A C$. \sim eng $(a))$ is satisfied. It is required that the following conditions are satisied:
(4) $\forall j \in V^{\prime}$.disabledj $\left(I_{j}^{\mathcal{B}} \wedge-T_{j}^{\mathcal{B}}\right.$, act($\left.C, j\right)$) holds for all tomputation sequences of B. i.e., if a certain node has not completed its participation in algorithm \dot{B}, then it cannot participate in algorithan C_{1} and similarly
(5) $\forall j \in V^{\prime}$ disahed $j_{j}\left(I_{j}^{C} \wedge \neg T_{j}^{C}\right.$, act $\left.(B, j)\right)$ holds for all computation sequences of C.

Also, we require that if some node has completed its participation in the second subtask, i,e, the one solved by algorithm C, then no action associated with the first subtask which can be executed by that node is enabled. This condition ensures that every node in V^{\prime} that actually participates in both subtasks will participate in the first srubtask before it participates in the second one.
(6) $\forall j \in V^{\prime}$ disabled $\left(I_{j}^{C} \wedge T_{j}^{C}\right.$, wet $\left.(B, j)\right)$ holds tor all computation sequences of C, i.e., after completing its contribution to algorithm \mathcal{C}, no node can ever participate in algorithm B. (The assertion disabled, has been defined above.)

Note that no interference-freedom of specifications has to be proved: E.g., if at some point during a computation of algorithom $\mathcal{C}, \Gamma_{j}^{\mathcal{C}} \wedge-T_{j}^{\mathcal{C}}$ holds for some node j, then every action a associated with algorithin B which is performed by nodes different from j does not invalidate the assertion $\Gamma_{j}^{C} A \neg T_{j}^{C}$, because of condition (3) above.

3.3 The design principle

After solving the two subtasks by means of the algorithms $B=\varepsilon V^{\dagger},\left\{p_{i} \mid i \in V^{\prime}\right\}, B>$ and \mathcal{C} algorithm $\mathcal{A}=<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, A>$ solving the whole task is straightforward. Observe that a node is participating in the whole task iff it is participating in one of the subtasks. Therefore, We define the set of actions A as the union of the sets B and C.

Given algorithms B and \mathcal{C}. Prove that the verification conditions (1) through (6) abowe are satistien for B and C. Conclude that the algorithm $A=<V^{\prime},\left\{p_{i} \mid i \subset V^{\prime}\right\}, B \cup C>$ indeed solves the whole task. More procisely, we may conclude that \mathcal{A} sat $\in\left\{I_{j}^{B} \vee I_{j}^{C} \mid j \in V^{\prime}\right\},\left\{I_{j}^{C} \wedge T_{j}^{C} \mid\right.$ $\left.j \in V^{\prime}\right\}\left\{q_{j} \mid j \in V^{\prime}\right\}>$ holds.
Observ: that an a consequence of the requirement that for any node participating in a certain subtask all the mode's actions associated with the other subtask are disabled (ef. the conditions (4) and (5) above), it follows that the set of actions B and C ean be chowen disjoinh.

Note that wa have dealt above with partial correctness only. If it is required to design an always termuinating algonithm A, then one must additionally prowe a verification condition that both B and C adwas teminate (notation as above). This holds because the whole tank terminates iff both its subtasks trinninate. Formally formulating the condition that a certain algorithm terininate is straightorward and therefore omitted.

In order to establish the validity of the principle above we have shown that every finite computation sequence of \mathcal{A} is equivalent (in the sernse of section 1) to a finte one in which every action assochted with the first mubtask is performed before other actions associated with the second subtask. The proof is given in appendix I.

From the discussions above it follows that our principle can also be used for the designing algorithms hierarchically. That is, if the task solved by \mathcal{A} is a subtast of yet another task, the the same principle can be applied for solving the other task.

In case the whole task can be split up into more than two subtasks we proseed as follows:
First design algorithms \mathcal{D} solving the subtasks. Let the subtask solved by each \mathcal{D} be described by preconditions p_{j}^{D} and postconditions $q_{j}^{D}\left(j \in V^{\prime}\right)$. Frove that for each such D there exist assertions I_{j}^{D} and T_{j}^{P} for wach node j in V^{\prime} such that D sat $\left\{I_{j}^{D} \mid j \in V^{\prime}\right\},\left\{T_{j}^{D} \mid j \in\right.$ $\left.V^{\prime}\right\},\left\{q ; j \in V^{\prime}\right\}>$ holds. Show that an assertion associated with some novir j does not depend on program variables of any node different from j (cf. verification condition (3)). Then prove that each node can partacipate in one subtask at a time (cf. conditions (4) and (5) above). Thereafer prove that the nodes participate in the subtasks in some fixed order (cf. condition (6) above). Then conclude that the whole task is solved by an algorithm consisting of actions of all those algorithms that solve the subtasks.

4 Conclusion

We have presented a design principle which allows formal derivation of complex network algorithms by means of sequentially phased reasoning. This principle is applicable to a large class of algorithms (35 eg, , 2 in [GHS83, Hu83, MS79, S652, Se83, ZS80]) and allows structuring of their design according to logical (sub)tasks. We have decided to keep the formulation of the principle as simple as possibly. As a consequence, it is not immediately applicable for derivation of the PIF-protocol [Se 83] when the network does not constitute a tree. The reason is that a message atsociated with the first subtask can be received by a node, when that node is participating in the second subtask (cf. section 1). In this case an adjustment of the desigr principle would be required. (Verification conditions (4) aut (5) most be adjusted.) In essence, it has to be required that if a mode is participating in the second subtask or has completed its participation in that subtask, then the arrival of a message associated with the first subtask does not affect the respective assertions attached to that node.

As structured verification aud design of complex algorithms yields more insight in their correctness, we envisage that new language constructs will be designed in order to obtain better structured prograns. In particular, we believe that a better structuring of programs can be achieved by means of a construct for deccribing subtasks and another one for building programs solving some task from programs which solve the sultasks.
In the future we will investigate how our principle can be extended for applications to network algorithms when edges and nodes can fail.

Acknowledgement: We thank R Koymans and R. Gerth for valuable discussions, We also thank N. van Diepen and H. Partsch for their remarks concerning the presentation of our results.

References

[AFR80] Apt K.R., Francez N., and de Roever W.P., A proof system for communcating sequential processes, AOM TOPLAS, 2-3 (1980).
[B26] Toruvka O., O jistém problému mimimálnim, Práca Moravské Prírodovédecké Spoleřusti (1926) (in Czech.).
[B589] Back R.J.R. and Sere K., Stepwise refinement of action systems, Proc. of the international conference of mathematics and program construction (1989).
[CG88] Chon GT. and Gafni E, Understanding and verifying distributed algorithms using stratified clecomposition, Proc. of the ACM Symp. on Principles of Distr. Comp. (1988)
[CL85] Chandy F.M and Lamport L., Distributed snapshots: determining global states of distributed systems, ACM Trans. on Comp. Syst, 3-1 (1985).
[CME8] Chandy KM. and Misra J., 'Parallel progran design: a foundation, Addison-Wesley Publishing Company, Inc. (1988).
[DS80] Dijkstra E.W. and Scholten C.S. Termination detecting for diffosing computations, Tuformation Frocessing Letters 1-4 (1980).
[Ev79] Even S., Graph algorithms, Computer Science Press, Inc.(USA), (1979).
[EF82] Elrad T. and Frances N., Decomposition of distributed programs into communication closed layers, Science of Computer programming, 2 (1982).
[F80] France N., Distributed termination, ACM-TOPLAS, 2-1 (1980).
[FF89] Fix L. and Francex $N_{1,}$ Semantics-driven decompositions for the verification of distributed programs, mantustript (1989).
[GHS83] Gallager R.T., Humblet P.A., and Spira P.M., A distributed algorithm for minimumweight spanning trees, ACM TOPLAS, 5-1 (1983).
[GS86] Gerth R.T. and Shira L., On proving closedness of distributed layers, LNOS-241 (1086).
[Hu83] Humblet P.A., A dist.fibuted algorithm for minimurn-weight directed spanning trees, IEEE Trans. on Comm., 31-6 (1983).
[KP87] Kata S. and Peled D., Intexleaving set temporal logic, Proc. of the ACM Symp. ont Principles of Distr. Comp. (1987).
[KPs8] Katz S. and Peled D., An efficient verification method for parallel and distributed programs, Proc, of the REX workshop (1988).
[L85] Lamport L., Paradigms for distributed programs: computing global states. LNCS-190 (1985).
[MP83] Manna. Z. and Pnueli A., Verification of concurrent programs: A temporal proof system, Foundations of computer science IV, part 2, MC-tracts 159 (1983).
[MS79] Merlin P.M. and Segall A., A failsafe distributed routing protocol, IEEE Trans- on Comm., 27-9 (1979),
[Pas8] Pardya P.K., Compositional vetification of distributed prograns, Ph.D. thesis, Tata institute of fundamental research, Bombay, India (1988).
[Se82] Segall A., Decentralized macimura-Aow algorithtms, Networks 12 (1982).
[Se83] Segall A., Distributed network protocols, IEEE Trans. on Inf. Theory. IT29-1 (1983).
[SR87a] Stomp F.A. and de Ronver W.P., A correctness proof of a distributed minimum-weight, spanning tree algorithm (extended abstract), Proc. of the 7th ICDCS (1987).
[SR87b] Stomp F.A. and de Roever W.P., A fully worked out correctness proof of Gallager, Humblet, and Spira's minimum-weight spanning tree algorithm, Internat Report 87-4, Uriversity of Nijmegen (1987).
[SR88] Stomp F.A. and de Roever W.P., A formalization of sequentially phased intuition in network protocols, Internal Report 88-15, University of Nijneegen (1988).
[SS84] Schlichting R, D. and Schneider F. B. $_{\text {u }}$ Using message passing for distribnted progranming, Proof rules and disciplines, ACM TOPLAS 6-3 (1984),
[WLL88] Welch J.L., Lamport L., and Lynch N.A., A lattice-structured proof of a minimum spanning tree algorithm, Proc. of the ACM Symp. on Principles of Distr. Comp. (1968).
[2S80] Zerbib F.B.M. and Segall A., A distributed shortest path protocol, Internal Report EE-395, Technion-Israel Institute of Technology, Haifa, Israel (1980).

Appendix I

In this appondix soundress of the design principle formulated in section 3 is proved.
In the soundness proof of the principle we use the same notation as in section 3 .
Assume that the premise of the principle is satisfied. That is, assume that the conditions (1) through (6) formulated in section 3.2 .2 all hold. We have to show, in order to establish the soumincsis of our principle, that
A sat \& $\left\{I_{j}^{B} \vee I_{j}^{\mathcal{C}} \mid j \in V^{\prime}\right\},\left\{I_{j}^{C} \wedge T_{j}^{\mathcal{C}} \mid j \in V^{\prime}\right\},\left\{a_{j} \mid j \in V^{\prime}\right\}>$ holds. This anounts to proving that the conditions (a) through (f) formulated in section 3.2 .1 are all satisfied for algorithm \mathcal{A}.

Lemma I-1 (corresponding to condition (a) in section 3.2.1).
Under the assumption that the premise of the principle is satisfed, $\forall j \in V^{\prime} \cdot\left(p_{j} \neq\left(X_{j}^{B} \vee I_{j}^{C}\right)\right)$ holds in the first state of any computation sequence of A.

Proof

This trivially follows from verification condition (1) (cf. section 3.2.2). [

Note that if some propenty p depends on node j 's programming variables onty, then p holds int state w if p loclds in state $s \mid \operatorname{Var}(j)$, where $s \mid \operatorname{Var}(j)$ denotes the restriction of state s to the set $\operatorname{Var}(j)$ of all node j 's programming variables. In the remainder of this appendix this property is referred to as property (*).

Crucial in our somindess prowf is the following:

Lemima I-2

Suppose that the premise of the principle is satisfied. Assume that s is sorne state in any computation sequence of algorithm \mathbf{A}.
(a) If, for some node $j \in V^{t}$ and for some action $b \in a c t(B, j), \in n_{j}(b)$ hoids in state s, then there exists a certain state s^{\prime} occurring in some computation sequence of algorithm \mathcal{B} satisfying $s \downarrow \operatorname{Var}(j)=s^{\prime} \mid \operatorname{Var}(j)$.
(b) If, for somn: norde $j \in V^{\prime}$ and for some action $c \in a c t(C, j)$, $e n_{j}(c)$ holds in state s, then there exists a certain state s^{\prime} occurring in some computation sequence of algorithn \mathcal{C} satisfying $s \perp \operatorname{Var}(j)=s^{\prime} \perp \operatorname{Var}(j)$.

Proof

 state in this sequence. We use induction of the states $s_{x}, x \geq 0$, to prove the lemma. Clearly, the lemma is true if s_{x} is the initial state of some computation sequence of \mathcal{A}.

Now, assume that the lemma holds for all states $s=s_{y}$ for $0 \leq y<x$ (the induction hypothesis).
(a) If, for some node j in $V^{\prime}, m_{j}(b)$ holds in state s_{x} for a certain action b eact $(B$, j) then cither (a1) or (a2) below is true:
(a1) $\forall y<\pi, a_{y} \notin C$, i.e., in the computation sequence above state s_{x} has been reached by executions of actions from the set B only. In this case it is obvious that the lemras is satisfied.
(a2) $\exists y<x . a_{y} \in C$, i.e., in the computation sequence above, s_{y} has been reached by executions of actions from B and by execution of at least on action from the set C. Now, node j cannot be involved in the execution of any action $a_{z} \in C$ with $x<x$. This holds because of the following:

If such ari $a_{x} \in \operatorname{act}\left(Q, j^{\prime}\right)$ is the first C-action executed by node j^{\prime} in the sequence above then $I_{j}^{\prime} \wedge \neg T_{j^{\prime}}^{\mathcal{\prime}}$ is satisfied in state s_{r}. (Norde j^{\prime} has only executed B-actions when state s_{z} has been reached. By the induction hypothesia, the verification conditions (1), (2), (3), and (6), and property (*) above, it follows that $I_{\mathcal{F}^{\prime}}^{\mathcal{C}} \wedge \neg T_{j}^{\mathcal{C}}$ is satisfied in state s_{i}.) From the verification conditions (2), (3), (5), and (6), and property (*), $\forall b^{\prime} \subseteq \operatorname{act}\left(E, j^{\prime}\right) . \neg e n_{j^{\prime}}\left(b^{\prime}\right)$ holds in state s_{s+1}.

Analogous, it can be proved that if action $a_{7}, z<y$, is not the first C-action in the sequence above in which node j^{\prime} is irvolved, then $\forall b^{\prime} \in \operatorname{act}\left(B, j^{\prime}\right)-\neg e n_{j^{*}}\left(b^{\prime}\right)$ holds in state s_{x+1}. We conclude that if some action $b \in \operatorname{act}(B, j)$ is enabled in state s_{x} then it has not performed any C-actions. It is now obvious that the lemma is satisfied.
(b) This case can be proved by a similar kind of reasoning as in the proof of (a) above.

Observe that, as a consequence of property (*) and the verification conditions (1) and (2), for all states in any computation sequence of algorithm $\mathcal{A},\left(I_{j}^{\beta} \vee I_{j}^{\mathcal{C}}\right) \wedge \neg\left(I_{j}^{C} \wedge T_{j}^{\mathcal{C}}\right)$ implies $\left(I_{j}^{B} \wedge \neg T_{j}^{B}\right)$ $\vee\left(I_{j}^{\mathcal{C}} \wedge \neg T_{j}^{\mathcal{G}}\right), j \in V^{\prime}$. This property will be used in the following lemmata.

Lemane I-3 (corresponding to condition (b) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied,
$\forall j \in V^{\prime} 口\left(\left(\left(I_{j}^{B} \vee I_{j}^{\mathcal{C}}\right) \wedge \neg\left(I_{j}^{\mathcal{C}} \wedge \Upsilon_{j}^{\mathcal{C}}\right)\right) U\left(\left(I_{j}^{\mathcal{B}} \vee I_{j}^{\mathcal{C}}\right) \wedge\left(I_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}\right)\right)\right)$ holds for all computation sequence of A.

Proof

Consider an arbitrary computation sequence $s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \cdots$ of algorithra . A. Obviously, in order to establish the lemma it suffices to prove the following:

Claim :

If in a certain state s_{n} in the sequence above action a_{n} is executed and if $\left(I_{j}^{B} \vee I_{j}^{C}\right) \wedge \neg\left(I_{j}^{C} \wedge I_{j}^{C}\right)$ holds in state s_{m}, then $\left(I_{j}^{B} \vee I_{j}^{C}\right)$ holds in state $s_{n \mid 1}$ (for all j in $\left.\mathrm{V}^{\prime}\right)$.

Proof of the claina:
Assume that $\left(I_{j}^{\mathcal{B}} \vee I_{j}^{\mathcal{C}}\right) \wedge \neg\left(I_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}\right)$ holds in state s_{u}. According to the observation above, we distinguish two cases.

Case (i): $I_{j}^{B} \wedge \neg T_{j}^{\beta}$ holds in state s_{n}.
Now, if node j is involved in the execution of action a_{n}, then $a_{n} \in B$ holds (cf. lemma 1-3 and the verification condition (4) of the principle). From lemma I-3 and the verification condition (1) it. follows that $I_{j}^{B} \wedge \neg T_{j}^{\mathcal{B}}$ or $I_{j}^{B} \wedge T_{j}^{\mathcal{B}}$ holds inn state s_{n+1}. If, on the other hand, node j is not involved in the execution of action α_{7+1}, then $I_{j}^{B} \wedge \neg_{j}^{\beta}$ holds in state s_{n+1} (cf- verification condition (3)). We couclude that in this case the clam is satisfied.

Case (ii): $I_{j}^{\mathcal{C}} \wedge \neg T_{j}^{\mathcal{C}}$ holds in state s_{n}.
If node j is involved in the crecution of action a_{n}, then $a_{n} \in Q$ (cf. lemma I-3 and the verification condition (5)) and, either $I_{j}^{C} \wedge \neg T_{j}^{\mathcal{C}}$ or $I_{j}^{C} \wedge T_{j}^{\mathcal{C}}$ hold in state s_{n+1} (cf. verification condition (2)). The claim then follows from the fact that $P_{j}^{C} \wedge-T_{j}^{C}$ implies ($I_{j}^{B} \vee I_{j}^{C}$) and the fact that $I_{j}^{\mathcal{C}} \wedge T_{j}^{C}$ implies $\left(I_{j}^{\mathcal{B}} \vee I_{j}^{\mathcal{C}}\right)$.
If node j is not involved in the execution of action a_{n}, then the claim follows from the verification condition (3).

Lemma Ir4 (corresponding to condition (c) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied,
$\forall j \in V^{d}, \forall a \in \operatorname{act}\left(B \cup C_{i}, j\right) \square\left(\left(\left(I_{j}^{B} \vee I_{j}^{C}\right) \wedge\left(I_{j}^{C} \wedge I_{j}^{C}\right)\right) \Rightarrow \neg n_{j}(\alpha)\right)$ holds for all computation
sequences of A.
Proof
Assume that at some point in a computation sequence of $A A_{,}\left(I_{j}^{B} \vee I_{j}^{\mathcal{C}}\right) \wedge\left(I_{j}^{\mathcal{C}} \wedge X_{j}^{C}\right)$ holds. Then ($I_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}$) holds, too. If at that point in the sequence for all nodes $j^{\prime} \in V^{\prime}$ and for all actions a from the set $\operatorname{act}\left(B \cup C, j^{\prime}\right)$, $-e n_{j^{\prime}}(a)$, then we are done.

Otherwise, i.e., $\exists j^{\prime} \in V^{\prime} \cdot \exists a \in \operatorname{act}\left(B \cup C, j^{\prime}\right)$. $e n_{j^{\prime}}(a)$ holds. In this case, for all $a \in a c t(B \cup C, j)$, $\rightarrow e n_{j}(a)$ is satisfied as a consequence of lemma I-3, property (*), and the verification conditions (2) and (5),

Lemman I-5 (corresponding to condition (d) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied, $\forall j \in V^{\prime}, \cup\left(\left(\left(I_{j}^{B} \vee I_{j}^{C}\right) \wedge\left(I_{j}^{C} \wedge T_{j}^{C}\right)\right) \Rightarrow \square\left(\left(I_{j}^{B} \vee I_{j}^{C}\right) \wedge\left(I_{j}^{C} \wedge T_{j}^{\mathcal{C}}\right)\right)\right)$ holds for all computation sequence of A.

Proof
Assume that in some state during a computation of $\mathcal{A},\left(I_{j}^{B} \vee I_{j}^{C}\right) \wedge\left(I_{j}^{C} \wedge T_{j}^{C}\right)$ holds. Then ($I_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}$) holds, too. Node j camot execute any action inl such a state (cf. lemma I-3). The assertion ($I_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}$) is preserved under all actions from the set $B \cup C$ which can be performed by nodes different from j, cf. the verification condition (3). The lemma is, obviously, satisfied.

As a preparation for the proof that condition (e), formulated in section 3.2.1, holds for algorithm A, we first have the following lemma, concerning equivalent computation sequences of a certain algorithmi. (This notion of equivalence has been introduced in sertion 1.)

Lemme I-6

Suppose that $s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \cdots s_{x} \xrightarrow{a_{m}} s_{x+1} \xrightarrow{a_{x+1}} s_{x+2} \xrightarrow{a_{x+7}} s_{x+3} \ldots$ is a computation sequence of some algorithm. Assume that the executions of the actions a_{n} and a_{f+1} involve distinct nodesThen there exists some state $s_{\mathrm{x}+1}^{1}$, such that
$s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{A_{1}} s_{2} \cdots s_{x} \xrightarrow{a_{x}} s_{x+1} \xrightarrow{\Delta_{\mathrm{m}+1}} s_{x+2} \xrightarrow{a_{x+2}} s_{x+3} \ldots$ and
$s_{0} \xrightarrow{a_{p}} s_{1} \xrightarrow{a_{1}} s_{2} \cdots s_{t} \xrightarrow{a_{m+1}} s_{x+1}^{\prime} \xrightarrow{a_{n}} s_{x+2} \xrightarrow{a_{x+2}} s_{i x+3} \ldots$
are equivalent computation sequences of \mathcal{A}.

Proof

Let s_{x+1}^{\prime} be the state resulting from execution of action a_{x+1} in state s_{x}. Note that this action
does not affect variables of nodes different from the ones involved in the execution of that action. From the assumption that the execution of the actions a_{m} and $a_{\text {F } 11}$ involve distinct nodes, it then, obviously, follows that s_{x+2} is the state resulting when action a_{x} is cxecuted in state s_{x+2}^{\prime},

As a consequence of this lemma and of the proof of lemma l-2, we have:

Lemma I-7

 sequence of algorithm A. Assume that the premise of the principle is satisfien. Furthermore, assume that that $a_{z} \in C^{7}$ and $a_{x+x} \in B$ hold. Then there exists some state s_{x+1}^{\prime}, such that, $s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{L}} s_{2} \cdots s_{x} \xrightarrow{a_{x}}, s_{x+2} \xrightarrow{n_{m+1}} s_{x_{1} / 2} \xrightarrow{a_{n+2}} s_{x+1}, \ldots$ and $s_{0} \xrightarrow{a_{11}} s_{1} \xrightarrow{\underline{n}_{1}^{\prime} y_{n}} s_{2} \ldots s_{x} \xrightarrow{a_{n 1}} s_{x \mid 1}^{\prime} \xrightarrow{a_{x}} s_{x+2} \xrightarrow{a_{x+7}} s_{x+3} \ldots$ are equivalent computation sequences of A. \square

Lemma I-8 (corresponding to condition (e) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied, $\forall j \in V^{\prime} 口\left(\left(\left\{I_{j}^{B} \vee I_{j}^{C}\right) \wedge \neg\left(I_{j}^{\mathcal{C}} \wedge T_{j}^{C}\right)\right) \Rightarrow \exists a \in B \cup C .(c \pi(a))\right)$ holdis for all computation sequence of A,

Proof

Consider an arbituary computation sequence $\operatorname{seq} \equiv s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{2}} \ldots$ of algorithm \mathcal{A}. Assume, in order to obtain a contradiction, that in a certain state s_{n} of this sequence for some node $j \in V^{\prime}$, $\left(\left(I_{j}^{\mathcal{C}} \vee I_{j}^{\mathcal{C}}\right) \wedge\left(I_{j}^{B} \wedge-T_{j}^{\mathcal{C}}\right) \wedge \forall a \in \operatorname{ac}((B \cup C)-\backsim n(a))\right.$ holds. Then this state is a final state in the sepucnce. Hence, the sequence is fluite. We now repeatedly apply lemma I-7 in order to obtain an equivalent computation sequence of A in which all B-actions are performed before all O-actions. Let $\operatorname{seq}^{\prime} \equiv s_{0} \xrightarrow{a_{0}^{\prime}}, s_{1}^{\prime} \stackrel{\alpha_{n}^{\prime}}{\cdots,} \ldots s_{x}^{\prime} \xrightarrow{a_{4}^{\prime}} \cdots s_{n}$ be the resulting sequence, where action α_{x} is the first C-action taken in this sequence. (Observe that the sequence seq' tends in state s_{n}.) In state s_{r}, for all $j \in V^{\prime}, I_{j}^{B} \wedge T_{j}^{B}$ holds. (Otherwise, for some $j \in V^{\prime}, Y_{j}^{B} \wedge-T_{j}^{B}$ is satisfied, which implies that at least one B-action is enabled in state s_{s}, cf. verification condition (1). Each node which is involved in this action cannot perform any action from C, ef. verification condition (4). This implies, however, that the sequence seq' is not maximal; Contradiction.) It follows that the sequence $s_{x}^{\prime} \xrightarrow{a_{x}^{\prime}} \ldots s_{n}$ is a computation sequence of algorithm \mathcal{B}. From verification condition (2), we obtain that $I_{j^{\prime}}^{\mathcal{C}} \wedge T_{j^{\prime}}^{\mathcal{C}}$ holds, for all $j^{\prime} \in V^{\prime}$, in state s_{n}. This contradicts the assumption
that $I_{j}^{C} \wedge-T_{j}^{C}$ holds in this state.
Lemma 1-9 (corresponding to condition (f) in section 3.2.1).
Under the assumption that the premise of the principle is satisfied,
$\forall j \in V^{\prime} \cdot \square\left(\left(\left(I_{j}^{B} \vee \mathcal{F}_{j}^{\mathcal{C}}\right) \wedge\left(F_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}\right)\right) \Rightarrow q_{j}\right)$ holds for all conaputation sequence of \mathcal{A}.
Proof
This is a consequence of property (${ }^{*}$), lemman $X-3$, and the verification conditions (2) and (3).
The soundness of the principle now follows from the lemmata I-1, I-3, I-4, I-5, I-8, and I-9 above.

A.ppendix II

The design principle formulated in section 3.3 can straightforwardly be crtended to an asynchronous model of computation. This is shown below. For ease of exposition we assume, for this apperdix, that commmication is perfect.

Assume that communication is asynchronous. In order to design an algorithm which solves a certain task, described by preconditions p_{i} and postconditions $q_{i}\left(i \in V^{\prime}\right)$, we follow the same strategy as before:
(1) Find intermediate assertions r_{i} such that the two subtasks can be described by the collection of preconditions p_{i}, respectively \boldsymbol{r}_{i}, and postconditions \boldsymbol{r}_{i}, respectively q_{i}, for i in V^{\prime} (cf. section 3-1).
(2) Design algorithms $B=<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, B>$ and $C=<V^{\prime},\left\{r_{i} \mid i \in V^{\prime}\right\}, C>$ which solve the two subtasks (cf. [CM88, BS89]) ${ }^{2}$
(3) Prove that the verification conditions (1) through (6) below are all satisfied.
(4) Conclude that the algorithin $<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, A \cup B>$ solves the whole task (cf. section 3.3).

The verification conditions of the design principle are essentially the same as those formulated in section 3. Now, however, we have to incorporate that fact that communication is asynchronous. In order to formulate formally these verification conditions we use, as in [5584], the auriliary proof vuriables $\sigma_{j}(c)$ and $\rho_{j}(e)\left(j \in V^{\prime}, c \in E_{j}\right)$. They are used to reason about communication. $\sigma_{j}(e)$ records the sequence of messages tratismitted by node j along edge $e^{e} ; \rho_{j}(e)$ records the sequence of messages received by node j along edge e. For nodes j, k and $\operatorname{cdges} e G_{-} E_{j} \cap E_{k}$, the property $p_{j}(e) \leq \sigma_{k}(c)$ is preserved by any action, see [SS84]. I.e., if edge e connects the nodes j and k, then the sequence of all messages received by node j along e is a prefix of the sequente of all messages transmitted by node k along e. These variables are changed when a node transmits or receives a message; They are not changed during execution of an internad action.
(1) Find assertions I_{j}^{β} and T_{j}^{β}, for j in V^{\prime} and
(2) Find assertions $I_{j}^{\mathcal{C}}$ and T_{j}^{C}, for j in V^{\prime}, having the same interpretation ass in section 3.
${ }^{7}$ It is assumed that the set of all atomic actions for each node j can be partitioned into a set of j 's intecnal actions, a set of j 's actions which involve the transmission of a mesage, and a eet of j 's actions involving the receipt of some message.

Of courge, we have to reformulate the correctness formulae (see section 3) now incorporating an asynchrorous model of computation. Let $D=V^{\prime}\left\{p r e_{i}^{D} \mid i \subseteq V^{\prime}\right\}, D \geqslant$ be some algorithm.
D sat $<\left\{I_{j}^{P} \mid j \in V^{\prime}\right\},\left\{P_{j}^{D} \mid j \in V^{\prime}\right\},\left\{p o s t_{j} \mid j \in V^{\prime}\right\}>$ holds iff each of the following conditions (a) through (I) is satisfied:
(a) $\forall j \in V^{\prime},\left(p r c \mathcal{D} \Rightarrow I_{j}^{\mathcal{P}}\right) \wedge$
$\wedge V j, k \in V^{\prime}, V e \in E_{j} \cap E_{k}\left(p r e_{j}^{D} \Rightarrow p_{j}(e) \leq \sigma_{k}(e)\right)$ holds for all computation sequences of \mathcal{D}.
Thus, initially the assertion I_{j}^{P} holda. In addition, the sequence of adl messages received by any node along a certain edge is a pretar of the sequence of all meseages transmitted by the node at the other end of that edge holds initially. (From the discussion above, it follows that the latter property is an invarient for algorithm D.)
(b) This condition is the same as condition (b) formulated in section 3.2.1.

Let $I n t_{j}^{D} \subseteq D$ denote the set of node j 's internal aetions, let $R e c_{j}^{D}(e) \subseteq D$ denote the set of node j 's actions which involve the receipt of a message along edge e, and let $\mathcal{S e n}_{j}^{D}(e) S D$ denote the set of node j 's actions which involve the transmission of a message along edge e ($j \in V^{\prime}, e \in E_{j}$). Hereafter, $I \xi_{j}^{D}$ will denote the set $I n t_{j}^{\mathcal{P}} \bigcup_{t \in E_{j}} S e n p_{j}(e)$.
(c) $\forall j \in V^{\prime} \forall d \in I S_{j}^{\mathcal{D}} \square\left(\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right) \Rightarrow \neg n_{j}(d)\right) \wedge$
$\wedge \forall j, k \in V^{\prime} \cdot \forall E \in E_{j} \sqcap E_{k} \square \square\left(\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right) \Rightarrow p_{j}(e)=\sigma_{k}(e)\right)$ holds for all computation sequences of P,
i.c., if a certain node has completed its participation in the algorithm, then it cannot perform any internal action or any action which involves the transmission of a message (the first conjunct), and it cannot receive any message (the second conjunct).
(d) This condition is the same as condition (d) formulated in section 3.2.1.
(e) $\forall j \in V^{\prime} \cdot \square\left(I_{j}^{\mathcal{P}} \wedge \neg T_{j}^{\mathcal{P}}\right) \rightarrow\left(\exists k \in V^{\prime} \cdot \exists d \in I S_{h}^{D} \cdot \operatorname{en}(d)\right) \psi$

$$
\left.\vee\left(З k, m \in V^{d} \cdot \exists e \in E_{k} \cap E_{m}, \rho_{k}(e) \in \sigma_{m}(e)\right)\right) \text { holds for all }
$$

computation sequences of D. Here, for sequences t and $u, t<u$ denotes that t is a proper prefix of 4 .
This condition expresses the following: it a cettain node has not yet completed its participation in the algorithm, then at least one mode can perform some internal action or some attion which involves the transmission of a message, or at least one node has transmitted a message along one of its adjacent chanthels and this message has not yet been received by the node at the other end of that edge.
(5) This condition is the same us condition (f) formulated in section 3.2.1.

Then we reformulate the conditions (3) through (6) from section 3.2 .2 for an asynchronous model of computation.
(3) Each progamming variable occurring in any of the assertions $p_{j}, T_{j}, G_{j} I_{j}^{B}, I_{j}^{C}, T_{j}^{B}, T_{j}^{C}$ is node j 's own variable. In addition, if some proof variable pt(e) or ot (e) occurs in any of these assertions, then $\ell=j$ and $e \in E_{j}$ hold.
(4) $\forall j \in V^{\prime}$.disabled $\left(I_{j}^{B} \wedge \neg T_{j}^{B}, I S_{j}^{C}\right) \wedge$
$\wedge \forall j, k \in V^{r} \cdot \forall e \in E_{j} \cap E_{k} \cdot d i s a b l e d\left(I_{j}^{B} \wedge-T_{j}^{B}, \operatorname{sen}_{h}^{C}(e)\right)$ holds for all computation
sequences of B. Here, for assertions P and sets of actions $A C$, disabled $(P, A C$) holis iff in any state antisfying P all actions in the set $A C$ are disabled. (Its formal definition is atraightforward and therefore omitted.) Consequextly, this condition expresses the following; if a certain node hus
not completed its participation in algorithm B, then it can neither perform an internal action nor a send-action oceurring in C (the first conjunct), and it camot receive a message associated with the second subtask (the seoond conjunct). The latter holds, because if the node is participating in the first subtask, then mone of its neighbors can send such messages.

Analogously we have
(5) $\forall j=V^{\prime}$. Wisabled $\left.I_{j}^{C} \wedge-T_{j}^{C}, I S_{j}^{B}\right) \wedge$
 of C.
In order to ensure that a certain node can participate in the second subtask only after conppleting the first subtask (sec condition (6), section 3.2.2), we impose the following condition:
(5) $\forall j \because V^{j}$, disabled $\left(I_{j}^{C} \wedge T_{j}^{\mathcal{C}}, I S_{j}^{\mathcal{B}}\right) \wedge$
$\wedge \forall j, k \in V^{\prime}, \forall e \in E_{j} \Pi E_{k}, d i s a b l e d\left(I_{j}^{C} \wedge T_{j}^{C}, S e r_{k} B_{(e)}^{(}\right)$holds for all computation sequences of C.

Hemark: We have decided to keep the formatation of the design prineiple above as simple as possible. As a consequence we lave required that no node k can send some message to another node of wich is participating in a different subtask than k (ef. conditions (4) and (5) above). Although the above principle ts applicable to a large class of algoritims, one could have been less regtrichive: if nome node j is participating in some sublask and j has some message in its quele associated with another subtask (such a situation can be recognized by tagging messages), then processing this mesage is deluyed until j is participating, or starts to participate, in the subtask associated with that message-

Appendix III

We claim that any distributed program can be represented by a triple of the kind introduced in the paper. The validity of this claim is illustrated below by showing that any progrann described by a list of responses as in section 1, and as in [GHS83], can be represented by such et triple. As an example we show how the prograrn of section 1 can be represented by such a triple.

In order to keep the presentation reasonably short we assume that commurication is asynchronous and perfect.

Let S be a program described by a list of responses. Our objective is to represent S by a triple A of the kind mentioued above, such that for any computation sequence seq starting in an initial state satisfying some predescribed precondition the following holds: seg is a computation sequence of S iff seq is a computation sequence of A. It is obvious that the only difficulty in defining A is the defintion of its set of atorvic actions. In order to define this set we first assign labels to control points in S. (Such a control point is an eritry- or exit-point of some atomic action occurring in 5 .) Then we introduce for cach node j a fresh variable loc j. This variable is used to simulate node j 's program counter when S is executed. Each (atomic) action a which can be performed by j is then represented by the atomic action a;locj: $=l_{1}$ where l_{1} denotes the label assigned to $a^{\prime} s$ exit-point. The enabling condition of the action $a ; l o c_{j}:=l_{1}$, i.e., en $\left(a_{j} l c_{j}:=l_{1}\right)$, is given by $/ \operatorname{coc}_{j}=l_{2}$ where l_{2} denotes the the label assigned to a^{\prime} 's entry-point. Except for these actions, we also define for each node j two kinds of other actions: The fixst one corresponds to actions removing messages from adjacent edges and placing these received mestages at the end of node j 's message queue. These kind of actions do not refer to the variable locj and can occur at any tirnc in every comaputation sequence, provided that some message has arrived at node j (cf. (1) and (2) below). The second kind of actions corresponds to removing the first element from node j 's message queue, provided that it is non-empty, and setting the variable loc j to the label assigned to the "first" entry point of the respective response.
It is important that we have made explicit two tacit assumptions which are quite common when distributed algorithms are described by means of lists of responses:
(1) A message that has arrived at a node along one of its adjacent edges can be removed afterwards from that channel at ary point in the computation.
(2) After the receipt of a message a node can resume its execution at the point where the node has been interrupted by the arrival of that message.

Example:

When Labels have becn asisigned to the control pointif of the program of section 1 we obtain;

209p exeruted by node α

rasponso to rocoript of ack(v) on odge \oint
bogin
$l_{k, C, 4}: N_{k}(C):=$ true;
$I_{k, C, s}$: if $\overline{\nabla C} \in E_{k} \cdot N_{k}(C)$
then $l_{h, G, 6}$, domen;
fi
$l_{\text {t, }} \boldsymbol{C}$, r:
end

$l_{i, C, s}$ if VC $E_{i}, N_{i}(C)$
then $l_{i, G, 6}$: send ack $\left(v a l_{i}\right)$ on $i n b r a n c h_{i}$
fi
$l_{i, C, 7} ;$
- $\mathrm{n} \dot{\mathrm{a}}$
responge to receipt or ack(v) on edge C
bogir

$J_{i, C,}:$ if $\forall C \in E_{i} . N_{i}(C)$
then $l_{i, c, 1 n}$: send ack (vali,) on intransh,
fid
${ }_{i, C, 14} ;$
end

Figure 2: Segall's PIF-protorol after assigning labels to control points.

From now on, subscripts i and k are omitted when they are clear from the context. Below, except for the labels of control points assigned explicitly, we have additionally introduced a label ab-queue. Intuitively, node is is the control point labeled at-queus, when it tests whether its message queue is non-empty. Node i evaluates the boolean expression quew $\neq \lll$ for testing whether its queue is not enpry. If it is non-cmpty, then the type and the channel identification of the first element are determined ly cvaluating type(first(queue)) and chan(first(queue)), respectively. Thereafter the argument of the first message in the gueve is detirmined by evaluating \arg (first(queue)) and is recorded. Then the first element is removed from the queue by executing the assignment queue:=rest(queue), and node's i variable $l o c_{i}$ is set to the cntry point of the
respective response.
Appending an element M to the end of some quene q will be denoted by $q=q$ " M .

We next show node h 's actions when the program above is reprebented as a triple. (Below, O ranges over node k 's adjacent edges.)
$a_{k, 1}: v:=\arg \left(\right.$ first(queue)); queue: $=\mathrm{rest}($ queue $) ;$ loc: $=l_{k_{1,1}}$,
$\operatorname{ern}\left(a_{k, 1}\right): \operatorname{loc}=a t-q u e u e \wedge$ type(first(queque)) $=$ info.
$a_{k, 2}:$ val: $=\mathrm{v} ;$ locim $l_{k, 2}$
$\cos \left(a_{k, 2}\right): \operatorname{Ioc}=l_{\mathrm{k}, 1}$.
$a_{k, 3}$: for all edges $\varepsilon \in E_{k}$ do send info(val) on edge $\varepsilon \operatorname{cod}_{;}$loc:=ai-queue,
$\operatorname{en}\left(a_{k, 3}\right): \operatorname{loc}=I_{k, 2}$.
$a_{4,0,4}: v:=\arg \left(\right.$ first(queue)); queue:=rest:(queue); loc: $=l_{\mu, 0,4}$,
$\operatorname{ctu}\left(\alpha_{k, C, 4}\right): \operatorname{loc}=a t-q u c u e \wedge$ type(first(queue) $)=$ ack $\Lambda \operatorname{chan}($ first $(q u e t u e))=\mathrm{C}$.
$a_{k, C, 5}: N(\mathrm{C}):=$ true; loc: $=l_{k, 0,5}$,
$\operatorname{en}\left(a_{k, C, 0}\right): \operatorname{loc}=l_{k, C, 4}$.
$a_{h, C, B}$ if $\forall C \in E_{6} . N(C)$ then loc: $=l_{t, C, \pi}$ else loc:=at-queue f,
$e n\left(a_{k, O, k}\right) ; \operatorname{loc}=l_{k, C, 5}$
$a_{k, c, 7}$ done:=true; loc:=at-queue,
$\operatorname{en(}\left(a_{k, C, y}\right): \operatorname{loc}=l_{k, C, \beta}$.
and finally $a_{k_{i}, C, 8}:$ receive msg on edge $\mathrm{C} ; a_{k_{1}, C, 8}:$ queue: $=$ queue ${ }^{-}(\mathrm{msg}, \mathrm{C})$.
$a_{k, 1}, a_{k, 2}, a_{k, 3}$ are those actions of node k associated with the first subtask (cf. section l). The other actions of node k shown above are all associated with the second subtask.

The actions which tan be performed by nodes different fromn k tan be determined analogonsly and are therefore omitted.

Appendix IV

Below we show how our decomposition principle of appendix II can be applied to obtain the program of section 1 . In particular, the invariants I_{j}^{β}, I_{j}^{C} and the termination conditions T_{j}^{β}, $T_{j}^{\mathcal{C}}$, for j in V, are defined explicitly for this exarriple.

Communication is assumed to be asynehronous and perfect.
It is assumed that some designor has already solved both subtabici discerned in the PrF-protocol (see section 1). Consequently, it now suflices to (iefine the invariants and termination conditions in order to combine these programls. As a preparation for this we first have the following definition:

Definition

Let mode k, the initiator of the protocol, be given.
(a) Let for $i \in V$, dist (i, k) denote the distance between node i and node k, i.e, dist (i, k) denotes the minimum mumber of edges on any path betwetn the nodes i and k.
(b) For all $i \in V, C \in E_{i}, D_{i}(C)$ denotes the distance from node k to the node different from node i that is adjacent to edge C. Thus, $D_{i}(C)=n$ holds iff there exists some $j \neq i$ such that $C \in E_{i} \cap E_{j}^{\prime}$ and $(i x s t(j, k)=n$ are satisfied (for nodes $i \in V$ and natural numbers n),

In the proofs of the verification conditions of our transformation principle, the following propertics are used;

Lemmá

(a) For all $C \in E_{k}, D_{k}(C)=1$ holds.
(b) For all nodes $i \in V$ and for all edges $Q \in E_{i}$ the following holds: if dist $(i, k)=r$, , then $D_{i}(C)=n-1 \vee D_{i}(C)=n+1$ is satisfied.
(c) For all nodes $i, j \in V$ and for edges $C \in E_{i} \cap E_{j}$, if $d i s t(i, k)=n$ and $d i s t(j, k)=n+1$, then $D_{i}(C)=n+1$ and $D_{j}(C)-n$ holds.
(d) If the graph (V, E) constitutes a tree, then for all nodes $i \neq k, i \in V$, there exists exactly one edge $C \in E_{i}$ satisfying $D_{i}(C)=d i s t(i, k)-\mathrm{I}$.

The proof of the lemma above follows from clementary properties from graph-theory [Ev79] and is therefore omitted.

As has been argued in section 3 , it is attractive to design a program descriting the Pli-protocol in two stages. In the first stage the program solving the first subtusk, could have beer described by the progrann B consisting of those actions associated with the programs A_{i}^{1} of section 1 (cf. also appendix III). In the wecond stage program \mathcal{C}, consisting of all actions associated with the programs A_{i}^{2} of section 1 solving the second subtask, could have been developed.

Below, in the definitions of the respective assertions, we have used the auxiliary proof variabless $\sigma_{i}(C)$ and $\rho_{i}(C)(i \in V$ and $C \in V)$. These kinds of variables have been distussed in appendix II. Recall that $\sigma_{i}(C)$ records the sequence of messages sent by mode i along edge C and that $\rho_{i}(C)$ records the sequence of messages rectived by node i along edge C.

In the sequel $|q|$ denotes the length of queue q, i.e, $|q|$ denotes the number of elements in q; For queues $q, q[n]$ denotes the $n^{\text {th }}$ element in $q(1 \leq n \leq|q|)$.

The initial states of algorithm B are described by the assertions $p_{j}, j \in V$, defined below.
For node k, p_{k} is defined as the conjunction of

- $\operatorname{lor}_{k}=o t-q u e u e_{k}$ (cf, the discussion in appendix III),

- done $_{k}$ (node k has not been informed that the other nodes have reccived the infomestages),
$-\forall G \in E_{k, ~} \sim N_{k}(C)$ (node k has not recorded that it has received a message along any of its adjacent edges),
- $\forall C \in E_{k} \cdot\left(\rho_{k}(C)=<>\wedge \sigma_{k}(C)=\langle \rangle\right)$ (node k has neither sent and nor received messages along sny of its adjacent edges), and
- Tree $(V, E) \wedge|V| \geq 2$ (the graph (V, E) constitutes a tree and V consists of at least two nodes).

For nodes j different from k, p_{j} is defined as the conjunction of

- $i o c_{j}=a t-q u e u e_{j}$ (d. the discussion above),
.. queques $_{j}=\langle \rangle$ (node j 's queue is empty),
- $\forall C \Xi E_{j} \neg N_{j}(C)$ (node $;$ has not recorded that it hat received a message along ary of its adjacent edges),
$\forall C \in E_{j} \cdot\left(\mu_{j}(C)-<>\wedge \sigma_{j}(C)=<>\right)$ (rode j has neither sent aud nor received messages along any of its adjacent edges), and
$-\operatorname{Trec}(V, E) \wedge|V| \geq 2$ (sec above).
The final states of algoxithm B arc: characterived by assertions $q_{j}: q_{j} \equiv I_{j}^{B} \wedge T_{j}^{B}$ holds where I_{j}^{β} and $T_{j}^{B}(j \in V)$ are defined below.

For node k, the assertion I_{h}^{B} is defincel as the conjunction of
$\operatorname{Tree}(V, E) \wedge|V| \geq 2$,
$-\forall C \in E_{k}\left(p_{k}(O)=<>\right)$,
$-\forall C \in E_{k} \cdot N_{k}(C)$,
-- \neg done ${ }_{k}$, and

- the disjunction of
- $\left(\operatorname{loc}_{k}=a t-q u \epsilon u e_{k} \wedge q u e \omega_{k}=\left\langle i n f o(w)>\wedge \forall C \in E_{k} \cdot\left(\sigma_{k}(C)=\zeta>\right)\right)\right.$
(satisfied initially),
- $\left(l o c_{k}=l_{k_{1} 1} \wedge\right.$ quevee $\left.\left.=<\right\rangle \wedge \forall C \in E_{k}\left(\sigma_{k}(C)=\langle \rangle\right) \wedge v_{k}=w\right)$
(satisfied after node k has removed the info-message from its quene),
- ($\left.\left(t \kappa_{k}=l_{k, 2} \wedge q u e t e_{k}=<\right\rangle \wedge \forall C \in E_{k} \cdot\left(\sigma_{k}(C)=\langle \rangle\right) \wedge \forall \alpha l_{k}=w\right)$
(satisfied after mode k has recorded the argument of the info-message), and
- ($\left(\kappa_{k}=a t-q u \varepsilon u e_{k} \wedge q u e t e_{k}=<>\vee C \in E_{k} \cdot\left(\sigma_{k}(C)=<\inf \rho(w)>\right) \wedge v a l_{k}=w\right)$ (satisfied after node k has broadcasted the info-message).

The assertion T_{t}^{B} is defined to express that node k has broadcasted the infomessage. Formally, we defixe $T_{k}^{B} \equiv \forall C \in E_{k} . \sigma_{k}(C)=<$ info $\left.(w)>\right)$.

For nodes j different from node k, I_{j}^{β} is defined as the comiunction of
$-\operatorname{Trec}(V, E) \wedge|V| \geqslant 2$,
$-\forall C \in E_{j}\left(\left(D_{j}(C)=d i s t(j, k)-1 \Rightarrow \sigma_{j}(C)=C\right) \wedge\right.$

$$
\left.\wedge\left(D_{j}(C)=\operatorname{dist}(j, k)+1 \Rightarrow \rho_{j}(C)=\langle \rangle\right)\right)
$$

i.e., if the graph (V, E) is considered to be rooted at mode k, then j does not send any message uptree and it does not receive messages from nodes downtref,
$-\forall C \in E_{j} .\left(D_{j}(C)=\operatorname{dist}(j, k)+1 \Rightarrow \neg N_{j}(C)\right)$,
i.e., if the graph (V, E) is considered to be rooted at node k, then node j cannot record that a message has been received from nodes downtree, and

- the disjunction of
- $\left(\right.$ loc $_{j}=a t-q u e u e_{j} \wedge$ queue $_{j}=<>\wedge$
$\left.\left.\wedge \forall C \in E_{j} \neg N_{j}(C) \wedge \forall C \in E_{j}\left(\rho_{j}(C)=<>\wedge \sigma_{j}(C)=<\right\rangle\right)\right)$
(satisfied initially),
- ($\operatorname{loc}_{j}-a t-q u c u e_{j} A$
$\wedge \exists C \in E_{j}\left(q_{1} \operatorname{cucu}_{j}=<\operatorname{info}(w), G>\wedge D_{j}(C)=\operatorname{dist}(j, k)-1 \wedge p_{j}(C)=<\operatorname{info}(w)>1 \wedge\right.$
$\wedge \forall C \in E_{j} \neg N_{j}(C) \wedge \forall C \in E_{j}\left(D_{j}(C)=d i s t(j, k)+1 \Rightarrow \sigma_{j}(C)=\langle>)\right)$
(satisfied after node $;$ has received the informessage) ${ }_{+}$
- $\left(\exists \mathcal{C} \in E_{j}\left(l\left(l c_{j}=l_{j, C, 1} \wedge D_{j}(C)=\operatorname{dist}(j, k)-1 \wedge \quad p_{j}(C)=<\operatorname{info}(w)>\right) \wedge\right.\right.$
$\wedge \forall C \in E_{j} \neg N_{j}(C) \wedge \forall C \in E_{j}\left(D_{j}(C)=d i s t(j, k)+1 \Rightarrow \sigma_{j}(C)=\langle \rangle\right) \wedge$
\wedge queve $\left.\left._{j}=<\right\rangle \wedge v_{j}=w\right)$
(satisfied after node j hal removed the info-message from its queue),
- $\left(\exists C \in E_{j} \cdot\left(l o c_{j}=l_{j, C, 3} \wedge D_{j}(C)=d i s t(j, k)-1 \wedge \rho_{j}(C)=<i n f o(w)>\right) \wedge\right.$
$\wedge \forall C \in E_{j} \neg N_{j}(C) \wedge \forall C \in E_{j}\left(D_{j}(C)=\operatorname{dist}(j, k)+1 \Rightarrow \sigma_{j}(C)=<>\right) \wedge$
\wedge queue $_{j}=<>\wedge \operatorname{val}_{j}=w$)
(satisfied after node j has recorded the argument of the received info-message),
- $\left(\exists C \in E_{j} .\left(l o c_{j}=l_{j, C, 3} \wedge D_{j}(C)=\operatorname{dist}(j, k)-1 \wedge \rho_{j}(C)=<\operatorname{info}(w)>\wedge\right.\right.$ \wedge indranch $\left._{j}=C\right) \wedge$
$\wedge \neg N_{j}\left(i n b r a n c h_{j}\right) \wedge \forall C E E_{j} .\left(D_{j}(C)=\operatorname{dist}(j, k)+1 \Rightarrow \sigma_{j}(C)=<>\right) \wedge$
\wedge queve $\left._{j}=<>\wedge v a l_{j}=w\right)$
(satisfied after node j has recorded the identification of the edge along which the info-message has been received),
- $\left(\exists C \in E_{j} .\left(l c_{j}=l_{j} C_{, ~} \wedge D_{j}(C)=d i t t(j, k)-1 \wedge \rho_{j}(C)=\varepsilon i n f o(w)>\wedge\right.\right.$
\wedge indranch $\left._{j}=C\right) \wedge$
$\wedge N_{j}\left(\operatorname{inbranch} h_{j}\right) \wedge \forall C \in E_{j} .\left(D_{j}(C)=\operatorname{digt}(j, k)+1 \Rightarrow \sigma_{j}(C)=\langle>) \wedge\right.$
\wedge queue $\left._{j}=<>\wedge \operatorname{val}_{j}=w\right)$
(satisfied after node j has recorded that it has received a message along the edge
identificed by inbrane h_{j}), and

$$
\begin{aligned}
& \text { - }\left(A O \in H _ { j } \cdot \left(\operatorname{loc} j-I_{j, C, h} \wedge D_{j}(C)=d i s t(j, k)-1 \wedge p_{j}(C)=<\operatorname{in} f_{\rho}(w)>\wedge\right.\right. \\
& \left.\triangle \text { ithbrunu }^{\prime} h_{j}=C\right) \wedge \\
& \wedge N_{j}\left(i_{m b r a t c} A_{j}\right) \wedge \forall C \in E_{j}\left(D_{j}(C)=d i s t(j, N)+1 \rightarrow \sigma_{j}(C)-<i n f o(w)>\right) \wedge \\
& \left.\wedge \text { guene }_{j}-<>\wedge \mathrm{mal}_{j}-w\right)
\end{aligned}
$$

(satisfied after node j has broadcasted the informessage along all adjacent edges except the one identified by inbratef h_{j}).

For nodes j different from k, the assertion T_{j}^{B} is defined as:
$M_{j}^{\beta}=A C E E_{j} \cdot \operatorname{loc}_{j}=l_{j, C, h}$, which is satisfied atter node j hat broadcasted the infomessage along all adjacent edges excoph the one identified by inbratich ${ }_{j}$.

Verifying the conditions (a) through (f) of appendix II for protocol B is strajghtorward, i.c., orae can eatily establish that. B sat $<\left\{p_{j} \mid j \in V^{\prime}\right\},\left\{I_{j}^{B} \mid j \in V^{\prime}\right\},\left\{I_{j}^{B} \wedge T_{j}^{B} \mid j \in V^{\prime}\right\}>$ holds. This can, eg, be acconplished by techniques described in [MP83]. As ant example of how to prove these conditions, we shall show that condition (e) is satisfied. L.e, it must be shown that for all states in any computation sequence of β,
(*) $X_{j}^{B} \wedge \neg T_{j}^{B}$ (j in V) implies that at least one action in algonithon B is enabled.
Below it is asmmed that conditions (a) and (b) (see appendix II) have abready been proven.
Choose some node j in V.
By induction on dist (j, k) we shall now show that
$\left.{ }^{(* *}\right)$ if $I_{j}^{B}-\eta^{\prime} X_{j}^{\beta}$ holds, then there cxists some node j^{\prime} satisfying $\operatorname{dist}\left(j^{\prime}, k\right)<\operatorname{dist}(j, k)$ for which at kenst one of its own actions is cmabled.

This, obviously, implies property (*) above.
Basis of induction: dist $(j, k)=0$ holds. Thus, $j=k$ holds, too. Under the assumption that $I_{j}^{B} \wedge \neg T_{j}^{\beta}$ holds, it. follows that at least one of node k 's own actions is enabled. Obviously, (**) above is satified in this case.
Induction hypothesis: for all nodes j, if $I_{j}^{\beta} \wedge \neg T_{j}^{B}$ and $d i s t(j, k)=n \geq 0$ hold, then there exists some norle j^{\prime} satisfying $\operatorname{dists}\left(\left(j^{\prime}, k\right) \leq n\right.$ for which at least one of its own actions is enabled.
Induction step; assume that $d i s t(j, k)=n+1$ holds. This implies that $j \neq k$ holds, too. Note that. $J_{j}^{B} \wedge \neg T_{j}^{B}$ implies that $\neg 3 C \in E_{j} . \operatorname{loc}_{j}=l o c_{j, C, 5}$ is satisfied. Also, for all $C \in E_{j}, \rho_{j}(C)=c>$ holds, i.e, node j has not received any message. If node j can perform one of its actions, then
we are done, since (**) clearly holds. If node j carnot perform any of its own actions, then it follows that for node j 's adjacent edge C satistying $D_{j}(C)=d i s t(j, k)-1$, say adjacent to node $\ell, \sigma_{l}(C)=<>$ holds. From the invariant I_{ℓ}^{B}, we then obtain that $\cdot I_{i}^{\beta}$ is satisfied. (**) above now follows from the induction hypothesis and the fact that dist $(\ell, k)<d i s t(j, k)$ holds.

For algorithm C the preconditions are specified by the assertions $q_{j}(j \in V)$ defined above. The postconditions are characterized by assertions $r_{j}(j \in V)$ described by $r_{j}=I_{j}^{C} \wedge T_{j}^{C}$. The assertions I_{j}^{C} and T_{j}^{C} are defined below.

For node k, the assertion $I_{k}^{\mathcal{C}}$ is the conjunction of

```
\(\cdots \not-\quad .1 \leq n \leq\left|q u e u e_{k}\right| \Rightarrow\)
    \(\left.\Rightarrow \exists C \in E_{k}\left(q u \cos _{k}[n]=<\operatorname{ack}(w), C>\wedge p_{k}(C)=<a c k(w)>\wedge \wedge \neg N_{k}(C)\right)\right)\)
```

(any element in node k 's queue consists of a mesmage componcnt ack(w) and an edge component. The latter component records the identification C of the edge along which the ack-message has beeri received. Morcover, $\neg N_{k}(C)$ holds.),

(each element in the queue is different from any other clement in that quene),
$-v i_{k}=w \wedge T_{t e c}(V, E) \wedge|V| \geq 2$,
$\forall C \in E_{k} \cdot\left(p_{k}(C) \leq \in a c k(w)>\right)$
(node k can receive at most one ack-message along any of its adjaccit edges),
$-\forall C \in E_{k \cdot}\left(\sigma_{k}(C)=<i n f o(w)>\right)$
(node k has sent ant info-message along any of its adjacent edges),
$-\forall C \in E_{k} \cdot\left(N_{k}(C) \Rightarrow \rho_{k}(C)=c \operatorname{ack}(w)>\right)$
(if node k has recorded that it has received a message along a certain edge, then this message has been received along that edge), and
. the disjunction of

- (loc $_{k}=a t-q u e u e_{k} \wedge\left(\neg\right.$ done $\left.\left._{k} \Leftrightarrow \exists C \in E_{k} \neg N_{k}(C)\right)\right)$
(satisfied initially. It also holds whenever Iocen=at-queqek is satisfied),
- $\left(\exists C \in E_{k}\left(l_{\infty}=I_{k, C, 4} \wedge \neg N_{k}(C) \wedge \rho_{k}(C)=<a c k(w)>\wedge\right.\right.$

$$
\left.\wedge \forall n,\left(1 \leq n \leq\left|q u e u e_{k}\right| \Rightarrow q u e^{\prime} u e_{k}[n] \neq<\alpha c k(w), O>\right)\right)
$$

$A \neg$ done $_{k}$)
(satiffied after node k has removed an ack-mestage from its gucue),

- $\left(\exists C \in E_{k} \cdot\left(l o c_{k}-l_{k, C, 5} \wedge N_{k}(C) \wedge \rho_{k}(C)=<\operatorname{ack}(w)>\mid \wedge \neg\right.\right.$ done $\left._{k}\right)$
(satisfied after node k has recorded the identification of the edge along which the act-message has been received), and

(satisfied after node k bas passed the test $\forall C \in E_{k} \cdot N_{k}(C)$. Ohserve that, if this test, is not passed, then the disjunct above for which lock $_{k}=a t-q u e e_{k}$ holds is established.

The same disjunct is also established after node k has parformed the assigument done $e_{k}:=$ true.

Notice that the atsortion $I_{k}^{\mathcal{C}}$ is preserved whenever node k receives a message.
The assertion T_{k}^{C} is defined by $T_{k}^{C} \equiv d o n e_{k}$. It holds after node k has received the information that all other modes in the network have indeed reccived the info-message.

For nodes j different from node $k, X_{j}^{\mathcal{C}}$ is defined as the conjunction of

- Tree $(V, E) \wedge|V| \geq 2 \wedge$ val $_{j}=w_{1}$
$\exists C \in E_{j}\left(C-\operatorname{inbranch} h_{j} \wedge D_{j}(C)=\operatorname{dist}(j, k)-1\right)$
(the variable inbrarach has a defined value. The edge identified by inbronch; is the one on the shortest path from node j to node k),
-. N_{j} (induranch h_{j})
(node j has recorded that it has received a message along the edge identified by inbranch h_{j}), $\forall n .\left(1 \leq n \leq\left|q u e u e j_{j}\right| \Rightarrow \exists C \in E_{j} .\left(q u e v e_{j}[n]=<\alpha c k(w)_{s} C>\wedge \neg N_{j}(C) \wedge\right.\right.$

$$
\left.\left.\rho_{1}(C)=<\operatorname{ack}(w)>\right)\right)
$$

(cf. I_{k}^{B} above),
$\left.-\forall r, m \cdot\left(1 \leq n<m \leq\left|q u e u e_{j}\right| \Rightarrow q u e u e_{j}[n] \neq q u e u e_{j} \mid m\right]\right)$
(cf. I_{k}^{B} above),
$\cdots \forall \in E_{j}\left(C \neq i\right.$ indranch $\left._{j} \Rightarrow \sigma_{j}(C)=<i \pi f o(w)>\right)$
(node $;$ has transmitted an info-message along all its adjacent edges different from the edge identified by inbranch ${ }_{j}$),
. $\forall C \in \mathcal{E}_{j} .\left(O \neq \operatorname{inbranch}_{j} \Rightarrow p_{j}(C) \leq \operatorname{ack}(w)>\right)$
(node j can receive at most one ock-message along its adjacent edges different from the edge identified by inbratuch h_{j}),
$-\rho_{j}\left(i n b r a n c h_{j}\right)=\langle i n f o(w)\rangle$
(node j has received an info-message along the edge identified by inbranch ${ }_{j}$),
$-\sigma_{j}($ inbranuch $\left.) \leq<\operatorname{ack}(w)\right\rangle$
i.e., node j sends at most one ack-message along the edge identified by inbranch ${ }_{j}$,
$-\forall C \in E_{j}\left(\left(N_{j}(C) \wedge G \neq\right.\right.$ inbranch $\left.\left._{j}\right) \Rightarrow p_{j}(C)=<\operatorname{ach}(w)\right\rangle$
(for all edges O difierent from the edge identified by inbranch, the foliowing holds: if node j has recorded that it has indeed received a message along C, then j has received an toh-message along C, and

- the disjunction of
- $\exists G \in E_{j} .\left(\right.$ loc $\left._{j}=l_{j, G, 5} \wedge C=i n b r a n c h_{j}\right) \wedge \sigma_{j}\left(\right.$ inbranch $\left._{j}\right)=<\zeta \wedge$
$\wedge \forall C \in E_{j}\left(C \neq\right.$ inbranct $\left.h_{j} \Rightarrow-N_{j}(C)\right)$
(satisfied imitially),
- $\left(\exists C \in E_{j}\left(\operatorname{loch}_{j}=l_{j, C, \phi} \wedge C=i n b r a n c h_{j}\right) \wedge \sigma_{j}\left(i n b r a n c h_{j}\right)=\langle \rangle\right) \wedge$
$\wedge \forall C \in E_{j}\left(C=\right.$ inbranch $\left._{j}\right) \wedge$ queve $\left.\left._{j}=<\right\rangle\right)$
(satisfied after node j has passed the test $\forall C \in E_{j}-N_{j}(C)$),
- $\left(l \infty_{j}=a t-q u e u e_{j}\right)$
(satisfied after node j has tratismitted the ach-message along the edge identified by inbranch $_{j}$),
- $\left(\exists C \in E_{j} .\left(l \kappa_{j}=l_{j, k, C} \wedge D_{j}(C)=\operatorname{dist}(j, k)+1 \wedge \neg N_{j}(C) \wedge\right.\right.$

$$
\left.\left.\wedge \forall n \cdot\left(1 \leq n \leq\left|q_{u e u e}^{j}\right|-q u e u e_{j}[n] \neq<\alpha c k(w), C>\right)\right)\right)
$$

(satisfied after node j has removed an ack-message from its queue),

- $\left(\exists C \in E_{j}\left(l o c_{j}=I_{j, 9, C} \wedge D_{j}(C)=\operatorname{dist}(j, k)+1 \wedge N_{j}(C)\right)\right.$
(satisfied after node j has recorded that it has teceived a message along the edge identified by the edge component of the most recently removed message from the queue), and
$\cdot\left(\Xi C \in E_{j} \cdot\left(l o c_{j}=l_{j, 0, C} \wedge D_{j}(C)=\operatorname{dist}(j, k)+1 \wedge \forall C \in E_{j} . N_{j}(C)\right)\right)$
(satisfied after node j has passed the test $\forall C \in E_{j} . N_{j}(C)$. Observe that if this test
is not pashed or if an ack-message is tramsmitted by node j along the edge dentified by inbrume h_{j}, then the the assertion I_{j}^{C} is preserved. It is also preserved if node $;$ receives an ack-message.).

For $j \neq k$ wo define T_{j}^{C} as
$T_{j}^{C}=\sigma_{j}\left(i n b r a n c h_{j}\right)-<w_{i}(w)>N V C \in E_{j} \cdot N_{j}(C)$. It holds after nocte j has sent a message along the edge identified by inbranch .

It can be shown that \mathcal{C}^{C} sat $\left\{I_{j}^{B} \wedge T_{j}^{B} \mid j \in V^{\prime}\right\},\left\{I_{j}^{\mathcal{C}} \mid j \in V^{\prime}\right\},\left\{I_{j}^{C} \wedge T_{j}^{\mathcal{C}} \mid j \in V^{\prime}\right\}>$ holds (cf. apperndix II).

Establishing the verification conditions (3) through (6) formulated in appendix II is straightorward. Obvionsly, verification condition (3) is true. As an example of how one could establish the other conditions, we shall show how the first dispunct of condition (4) can be shown to hold for norle k, i.e., we shall show that diabled $\left(T_{k}^{B} \wedge \neg T_{k}^{B}, I S_{k}^{C}\right)$ holds.
In order to do so, nutice that if $I_{k}^{B} \wedge \neg T_{k}^{B}$ holds, then an action in the set $I S_{k}^{\mathcal{C}}$ can be emabled only if loesh-at-quete ${ }_{k}$ is satisfied. The latter implies that only actions by which an ack-message is renuwed from node k^{\prime} s message quene can be enabled. $I_{k}^{\mathcal{B}} \wedge \neg T_{k}^{\mathcal{B}}$ implies, however, that k^{\prime}, massage queue cannot contain any ach-messages.

CHAPTER 4

A detailed analysis of
Gallager, Humblet, and Spira's
distributed minimum-weight spanning tree algorithm
-An example of sequentially phased reasoning-
F.A. Stomp
University of Nijmegen, Department of Computer Science, Toernooiveld, 6525 ED Nijmegen, The Netherlands. Email address: frank@cs.kum.nl.
W.P. de Roever
Eindhoven University of Technology, Department of Mathematics and Computing Science, POB 513, 5600 MB Eindhoven, The Netherlands.
Email address; wsinwpr@eutre3.urc.tue.nl.

Abstract

Correctness of the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and Spiria [GHS83] is proved. Two kinds of (slight) optimizations w.r.t- the number of transmitted messages during execution of the algorithm are proposed. A source of failure of the algorithm is detected and corrected. The corrctanss proof exemplifies our principle for sequentially phased reatoning about concurrent programis [\$R89a, SR89b]. Our proof illustrates that correctaess proff of complex algorithms can be structured according to their designers' intuition.

1 Introduction

Ever since Floyd [F67] proposed his method for verifying (sequential) progranns, represented by means of How harts, valious proof methods have been presented in the literature [AFRB0, H69, L83, MC81, OG76, 7RE85, Z89], for reasoning about sequential and distributed programs.

Proof methods cam, in gencral, be chassified as compositional ones, such as those in [$\mathrm{FH} 69, \mathrm{LB3}, \mathrm{MC81}$, ZRES5] and in [Z89], in which the specification of a program is verified on the basis of specifications of its constitucut components without referring to the internal construction of those components [Z89], ancl as non-compositional ones, such as those in [AFR80, F67, OG76].
Examples of the applicabrility of the later mentioned verification methods illustrate, almost without exception, that the reasoning wbot a program takes phace after that program hos been constructed.

The techmique of transformational programming [BK83, CM8g, D76, P89] has also received a lot of attention. This tecbnique advocates deriving a program, starting from some formal specification, by successively applying correctness preserving transformation principles. The program, thus obtained, satisfies (by definition) the initial specification. As a consequence, the techuique of transformational programming can be viewed as a verification technique, where the program to be proved correct is derived, or constructed, during its verification phase. It enables one to develop a program atud its proof hand-in.hand, with the proof ideos leading the way [G81]

Recently, we have proposed in [SR89a, SR89b] a transformation principle for sequentially phased reasoning about concurrently performed (sub)tasks in network algorithus. That is, if a certain task to be performed by processes in some network can be split up, from a logical point of view, into several snbtasks as if they are performed sequentially, then our principle describes how one can combine the programs solving the subtasks in orcler to obtain one progiam which solves the whole task. (Viewed as a proof principle in some proof system, any such proof system is a non-compositionsl one, From an analyzer's or from a designer's point of vicw this kind of decomposition of a task into subtasks is quite attractive, since it allows him to concentrate on a single subject at a time.
A large mumber of complex network algorithms, such as those for minimum-path, connectivity, network How, and minimum-weight spanning trees described in [Hu83, MS79, Sc82, Se83, Z580], are structured according to our principle.

As shown in the present paper, the complicated distributed minimum-weight spanning tree algorithm
of Golloger Humblet, and Spira [GHS83] is also structured uconding to this principle.

Probably the simplest retwork algorithm in which one may decompose the design of a program, or the reasoning about it, into subprograms as if they are performed sequentially is Segall's PIF-protocol [Se83], also see [DS80] and [Fr80], which is a broadcasting protocol. In this algorithra, the whole task performed by the processes in a certain network can be described as follows; Sone value w, initially recorded by some process k is supplied to all other processes in the notwork, and k is informed that all nodes have recorded this value indeed. This task can be decomposed into two subtasks as if they are performed sequentially: the first stbtask broadcasting the value w, and the secord one reporting back that the processes in the network have received and recorded w.
The same kind of decomposition can also be discerned in the distributed minimum-weight spanning tree algorithm of Gallager, Eumblet, and Spira [GHS83], which will from now on be abbreviated to Gallager's algonithm. Herc one may decompose the whole task of constructing the minimumweight spaming tree of a network into five (sub)tasks. Apart from the fact that these five tasks are performed sequertially from a logical point of view, that algorithm displays other additional features (see section 6): expanding groups of nodes perform the five tasks repeatediy, with different groups of nodes performing these tasks concurrently w.r.t. another, and a certain task performed by one group of nodes can be disturbed temporarily due to interference with the task of mother group.
We define two other principles for coping with these additional features: One principle describes how to combine programs which are cxecuted completely independent of each other, i.c., when programs are executed concurrently w.r.t. another aud no communication oceurs between two distinct programs. The second principle describes how to deal with the above-mentioned kind of interference.

As argued in the sections 4, 5, and 6, the (distributed) program describing Gallager's algorithm, which will from now on be abbreviated to Gallager's program, can be derived from a sequential program which constructs the minimumi-weight spanning tree of a graph. That is, one can start with a sequential program that constructs the minimwn-weight spanning tree of a graph, then refine parts of this program until distributed programs are obtained (each such part corresponds to some description how a certain task can be solved), and finally combine by means of our principles the distributed programs found above into one program. The final (distributed) program, thus obtained, is Gallager's. This particular strategy bas allowed us to find two (slight) optimizations of the program in [GHS83] w.r.t. the number of message transmitted when executing Gallager's program. We have,
in adtition, as a consequence of our kind of reasoning, detected that the program in [GHS83] does not necessarily construct the minimum-waight spanning trees for arbitrary graphs. (The reason for this is explained in section 6.)

The first attempt to prove correctness of Gallager's algorithm appears in [SR87]. The proof there is based on the above-mentioned kind of decompowitions of tasks into subtasks. There the principle for sequential phased reasoning has been identified as an independent principle, but this principle has not becn tormulated nor justified. Consequently, the proof in [$\mathrm{\beta R}$ R7] should be considered incomplete. Welch, Lamport, azul Lyuch [WLL88a] have given a correctness proof of Gallager's algorithm using a partial hicrarchy of algorithms. Unfortunately, their complete proof is a very lengthy one, of [WLL88b]. Chou and Gafni [GG88] have analyzed a minimum-wcight spanning tree algorithrn of which they claim that it is a simplified version of Gallager's. They have, however, not verified Gallager's algorithn. (In fact, they have verified a far ranch simpler algorithm than Gallager"s, cf. section 4.)

The remainder of this paper is organized as follows: in section 2 we introduce some notation used in this paper. We describe our principle for sequentially phased reasonimg about concurrently performed (sub)taske in section 3. The basic features of Gallager's algorithm aurd of its correctnests proof are the subjects of section 4. In section 5 the formal specification is presented which Gallager's program should satisfy. In section 6 it is shown that this is the case indeed. Finally, section 7 contains some conclusions.

2 Preliminaries

In this section sorne notations and conventions, used throughout this paper, ate introduced.
The reader is assumed to be tamiliar with elementary notions from graph-theory, such as graphs, trecs, and cycles, and with their definitions and properties (cf. [E79]). Graphs are denoted by tuples (V, E) consisting of a set of nodes V and a set of edges E. For $;$ graphs $\left(V_{1}, E_{1}\right)$ and ($\left.V_{2}, E_{2}\right),\left(V_{1}\right.$, $\left.E_{1}\right)$ is called a subgraph of $\left(V_{2}, E_{2}\right)$, denoted by $\left(V_{1}, E_{1}\right) \subseteq\left(V_{2}, E_{2}\right)$, iff $V_{1} \subseteq V_{2}$ and $E_{1} \subseteq E_{2}$ are both satisfied. If (V_{1}, E_{1}) $\subseteq\left(V_{2}, E_{2}\right)$ holds and if $\left(V_{1}, E_{1}\right)$ constitutes a tree, then $\left(V_{1}, E_{1}\right)$ is called a subtree of $\left(V_{2}, E_{2}\right)$. The graphs $\left(V_{1}, E_{1}\right)$ and $\left(V_{2}, E_{2}\right)$ are distinct, denoted by $\left(V_{1}, E_{1}\right) \neq\left(V_{2}, E_{2}\right)$, iff $V_{1} \neq V_{2}$ or $E_{1} \neq E_{2}$ is satisfied. In the sequel i, j, and k, possibly primed or indexed, will denote
nodes; edges will be dencted by e and e^{\prime}. For a graph (V, E) and a node i in V, the set of all edges adjacent to node i will be denoted by E_{i}. Fereafter, $E_{i, j}$ will abbreviate the set $E_{i} \cap E_{j}$, i.e., $E_{i, j}$ denotes the set of all edges comecting the nodes i and $j(i, j \in V)$.

The distributed algorithms considered in this paper are performed by processes in a fixed, fuite, and undirected network which will be represented by a graph (V, E). Processes are identified with nodes in V; Communication channels are identifed with edges in E. Adjacent nodes communicate by means of messages. Since edges are undiretted, each node can both send and receive messages along any of its adjacent edges. Communication is asynchronous, i.e., messages transmitted by some node along one of its adjacent edges always arrive within a finite, but unpredictable, time frame at the other end of that edge. Communication is assumed to be perfect, i.e., messages transmitted by some node along one of its adjacent edges arrive in sequence, exror-fxee, without loss, and without duplication at the other end of that edge

3 Our proof principle for sequentially phased reasoning

We now present our proof principle which states that one can reason sequentially about concurrently performed (sub)tasks. For a fully worked out illustration, applied to Segall's PIF-protocol [Se83], the reader is referred to [GR89b].

3.1 Notation

We consider ${ }^{-}$distributed algorithms which are performed by nodes in a network (V, E). A distributed algorithm \mathcal{D} is represented by a triple $<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, A c t^{D}>V^{\prime} \subseteq V$ denotes the set of nodes containing all those nodes that actually execute the algorithm: This implies that if some node in the set V^{r} sends a message along one of its adjacent edges e when it executes algorithm \mathcal{D}, then the node at the other end of e is in V^{\prime}, too. p_{i} (node i 's precondition) is a state assertion characterizing the initial values of node t's variables and the initial contents of node i 's adjacent edges; $A_{c t}{ }^{\mathcal{D}}$ is a set of (atomiç) actious containing all those actions whidh can occur in any computation sequence of the algorithm (cf. defintion 3.1 below). Each action a in the set $A c{ }^{D}{ }^{D}$ has some enabling condition en(a) associated with it. Such a condition consists of a boolean expression or of a boolean expression combined with
a reccive-statement (cf. $[\mathrm{H} 78]$). (In the technical fomulation of our principle, see section 3.3, the boolean part of the enabling condition of action a will be denoted by brta).) Moreover, the set $A c t{ }^{\mathcal{D}}$ cass be partitioned into sets Act ${ }_{2}^{D}$ such that each $A c t_{i}^{D}$ consists of all actions which can be executed by node $i\left(i \in V^{\prime}\right)$.

Definition 3.1 Let $\mathcal{D}-<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, A c t^{\mathcal{P}}>$ be an algorithm. A computation sequence of D is a maximal sequence $s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{u_{2}} s_{2} \xrightarrow{a 2} \ldots$ such that for all $n \geqslant 0$ the following is satisfied: s_{n} is a state, each $p_{i}\left(i \in V^{\prime}\right)$ holds in state s_{0}, a_{n} occurs in the set $A C t^{\mathcal{D}}$, action a_{n} is cnabled in state s_{n}, i.e., a_{n} 's entabling condition holds in s_{n}, and s_{n+1} is the state resulting when action \dot{a}_{r} is executerd in state s_{77}. (As usual, a computation sequence is considered to be maximal if it is infinite, or if it is finite and no action in the net $A c t{ }^{\mathcal{D}}$ is cnabled in the last state of the sequence.)

The renson for allowing the first component V^{\prime} in the triple above to be a proper subset of V, i.e, the set of all nodus in the network, is that in Gallager's algorithm the taske which we analyae are not pertomed by a fixed gromp of nodes. More precisely, these tatks are performed by dymanically changing groups of nodes. As a consequence, we explicitly indichte in an algorithm which nodes maty actually be involved in the execution of an algorithm.

We conclude this subsection with the followng:

Definition 3.2 Lat j be some node in V^{\prime}. (V^{\prime} denotes the first component in algorithm D, see above). Let $:$ denote some edge adjacent to node j and to another node i in the set V^{\prime}.
(a) $I n t_{j}^{\mathcal{P}} \subseteq A c j_{j}^{\mathcal{D}}$ denotes the set of node j 's internal actions.
(b) Rec ${ }_{j}^{\mathcal{D}}(e) \subseteq A c t_{j}^{\mathcal{P}}$ denotes the set of node j 's actions which involve the reveipt of a message along edge $c \in E_{j}$,
(c) $\operatorname{Sen}_{j}^{D}(\varepsilon) \subseteq A c t{ }_{j}^{p}$ denotes the set of node j 's actions which involve the transmission of a message along edge ee E_{j}.
(d) Hereatter $J S_{j}^{\mathcal{P}}$ will denote the set of node j 's internal actions and those actions which involve the transmission of a message, i.e., $I S_{j}^{\mathcal{P}}=i n t_{j}^{\mathcal{P}} \cup \cup_{e \in E_{j}} S e n_{j}^{\mathcal{P}}(\mathrm{e})$.

It is assumed that for each algorithm \mathcal{D} as above the set $A c t_{j}^{\mathcal{D}}$ can be partitioned into the (possibly cmpty) sets $I n t_{j}^{\mathcal{D}}, \operatorname{Sen}_{j}^{\mathcal{P}}(e)$, and $\operatorname{Rec} \mathcal{D}_{j}(e)\left(j \in V^{\prime}, c \in E_{i, j}\right.$ for some node $\left.i \in V^{\prime}\right)$.

3.2 Gorrectness formulae

Let $\mathcal{D}=\left\langle V^{\prime},\left\{P_{i} \mid i \in V^{\prime}\right\}, A c t^{\mathcal{D}}>\right.$ be ant algorithon for which the the following should hold: Every finite computation sequence of \mathcal{D} ends in a state satistying some (given) state assertions $q_{i}\left(i \in V^{\prime}\right.$), I.e, algorithrn \mathcal{D} is supposed to solve a (sub)task described by the pair of state assertions $\left\{p_{i} \mid i<V^{\prime}\right\}$ (the preconditions) and $\left\{q_{i} \mid i \in V^{\prime}\right\}$ (the postconditions).

We now introduce correctress formulae of the form \dot{D} sat $<\left\{I_{j} \mid j \in V^{\prime}\right\},\left\{T_{j} \mid j \in V^{\prime}\right\},\left\{q_{j} \mid j \in V^{\prime}\right\}>$. Here I_{j}, T_{j}, and q_{j} are state assertions. A correctness formula ats above is valid if for every computation sequence of D the following hold;

- For all $j \in V^{\prime}, I_{j}$ holds in cach state of the sequence.
- For all $j \in V^{\prime}, T_{j}$ hoids iff node j will not execute any action in Act ${ }^{\mathcal{D}}$ anymore. T_{j} is called node j 's termination conditiont.
- For all $j \leq V^{\prime}, q_{j}$ holds when and if node j has completed its participation in D.

A corrextness formula as above can be characterized in linear tinne temporal logic [MP83]. This is the subject of definition 3.2 below. We have used there, as in [8584], auriliary proof variables $\sigma_{j}(e)$ and $\rho_{j}(e)$ (for nodes $j \in V^{\prime}$ and for edges $e \in E_{j}$). They are used for ressoning about communication. $\sigma_{j}(e)$ records the sequence of all messages transmitted by node j along edge e; $p_{j}(e)$ records the sequence of all mestages received by node j along edge e. For nodes i and j and for edges $e \in E_{i, j}$, the property $\rho_{j}(e) \leq \sigma_{i}(e)$ is preserved by any action, see [SS84]. That is, if edge e connects the nodes i and j, then the sequence of all messages received by node j along edge e is a prefix of all messages transmitted by node i along edge e. These auxiliary propf variables are changed when a node transmits or receives a message; they are not changed during the execution of an internal action. (An internal action does rogt involve any communication between rodes.)
For a certain node $j \in V^{\prime}$ and for a certain edge e adjacent to j, action $a \in R e c \neq j(e)$ is enabled (recall that Rec $P_{j}(e)$ has been introduced in definition 3.2) iff the following holds: the boolean part $b p(a)$ of action a 's enabling condition is true and the sequence of all messages received by node j along edge e is a proper prefix of the sequence of all messages transmitted by the node at the other end of edge e.

Formally, for such an action en(a) holds iff $b p(a) \wedge \rho_{j}(e)<\sigma_{k}(e)$ is satisfied where k is some node in V^{\prime} such that e $E E_{j, k}$
Of cousse, for any action $a \in I S_{j}^{C}$ the enabling condition $e n(a)$ of a is the same as the boolean part of this enabling condition, i.e., en $(a)=b p(a)$ is satisfied.

Definition 3.3 The correctucts formula \mathcal{D} sat $<\left\{I_{j} \mid j \in V^{\prime}\right\},\left\{T_{j} \mid j \in V^{\prime}\right\},\left\{q_{j} \mid j \in V^{\prime}\right\}$, of. above, is an abbreviation of the comjuction of the conditions (a) through (f) below. (Some of these conditions are redundant. They have been included in order to formalize the intuition behind such a correctaess formula in a natural way). The conditions are interpreted over all computation sequences of \mathcal{D}. (Below \square denotes the always-operator from temporal logic.)
(a) $\forall j \in V^{\prime} . \square\left(p r c_{j}^{C} \Rightarrow I_{j}^{C}\right) \wedge \forall j_{j} \in \in V^{\prime} . \forall \in \in E_{j, k} \square\left(p r e_{j}^{D} \Rightarrow p_{j}(e) \leq \sigma_{k}(e)\right)$)

That is, initially the assertion $I_{j}^{\mathcal{D}}$ holds for all nodes j in V^{\prime}. Furthermore, the sequence of all messages received by a certain node along any of its adjacent edges is a prefix of the sequence of all messages transmitted by the node at the other end of that edge is satistied initially, (From the discussion above it follows that the property $\forall j, k \in V^{\prime}, \forall \in \in E_{i, j} \cdot \rho_{j}(e) \leq \sigma_{k}(c)$ continuously holds during execution of algorithm D.)
(b) $\forall j \in V^{\prime} \square\left(\left(I_{j}^{\mathcal{P}} \wedge \neg T_{j}^{\mathcal{D}}\right) U\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right)\right)$. Here U denotes the weak-until operator, cf. [MP83]. We thus have that $I_{j}^{\mathcal{D}}$ is an invariant and for all computation sequences of \mathcal{D} unde j participates in the algorithm until it has completed its participation".
(c) $\forall j \in V^{\prime}, \forall a \in A c \mathcal{D}_{j}^{\mathcal{D}} \square\left(\left(I_{j}^{D} \wedge T_{j}^{\mathcal{D}}\right) \Rightarrow-\operatorname{ma}(a)\right)$.
(For actions a, en(a) has been defined above.) Lce, if a certain node has completerd its participation in algorithim \mathcal{D}, then it cannot perform any action associated with \mathcal{D} anymore.
(d) $\forall j \in V^{\prime} \cdot \square\left(\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right) \Rightarrow \square\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right)\right)$.

That is, once a node has completed its participation in. \mathcal{D}, then it will never participate in the algorithm anymore.
(c) $\forall j \in V^{\prime}, \square\left(\left(I_{j}^{D} \wedge \neg T_{j}^{D}\right) \Rightarrow\left(\exists a \in A_{c t} D_{\text {.en }(a))}\right)\right.$.

If a certain nods has not completed its participation in algorithm \mathcal{D}, then \mathcal{D} cannot be completed, i.e., at least one action in $A c t^{D}$ is enabled.
(f) $\forall j \in V^{\prime} \cdot \square\left(\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right) \Rightarrow p o s t_{j}^{\mathcal{D}}\right)$.
I.e., if node j has completed its participation in \mathcal{D}, then j 's postcondition holds.

3.3 Description of the proof principle

Let $A=<V^{\prime},\left\{p r e_{q}^{A} \mid i \in V^{\prime}\right\}, A c t^{\mathcal{A}}>$ and $B=<V^{\prime},\left\{p r c_{i}^{B} \mid i \in V^{\prime}\right\}, A c t^{B}>$ be two algorithms, Let A solve the subtask described by the pair of assertions $\left\{p r e j \mid i \in V_{j}^{\prime}\right\},\left\{p r e_{j}^{B} \mid i \in V^{\prime}\right\}$. Let B solve the subtask described by the pair of assertions $\left\{p r c_{j}^{\mathcal{B}} \mid i \in V^{\prime}\right\},\left\{p o s t \mathcal{F}_{j}^{\mathcal{B}} \mid i \in V^{r}\right\}$. Assume that we have shown that for certain state assertions $I_{j}^{A}, I_{j}^{B}, T_{j}^{A}$, and $T_{j}^{B}\left(j \in V^{\prime}\right)$
(1) \mathcal{A} sat $<\left\{I_{j}^{\mathcal{A}} \mid j \in V^{\prime}\right\},<\left\{T_{j}^{\mathcal{A}} \mid j \in V^{\prime}\right\},\left\{p c_{j}^{\mathcal{B}} \mid j \in V^{\prime}\right\}>$ and
(2) B sat $\left\langle\left\{Y_{j}^{B} \mid j \in V^{\prime}\right\},<\left\{T_{j}^{B} \mid j \in V^{\prime}\right\},\left\{p o s t j_{j}^{B} \mid j \in V^{\prime}\right\}>\right.$
both hold. If the verification conditions (3) through (6) below hold, too, then the algorithm consisting of all actions occurring in \mathcal{A} and B solves the task described by $\left\{p r e_{j}^{\mathcal{A}} \mid i \in V^{\prime}\right\}$ and $\left\{p o s t_{j}^{\mathcal{B}}\left\{i \in V^{\prime}\right\}\right.$. Moreover, for all j in $V^{\prime}, I_{j}^{A} \vee I_{j}^{\beta}$ is an invartant of this algorithun.
More precisely, if all the conditions (1) through (6) are satisfied, then for the algorithm $C=<V^{\prime}$, $\left\{p \varepsilon_{i}^{A} \mid i \in V^{\prime}\right\}, A c f^{A} \cup A c t^{B} \geqslant, \mathcal{C}$ sat $<\left\{I_{j}^{A} \vee I_{j}^{B} \mid j \in V^{\prime}\right\},<\left\{I_{j}^{B} \wedge T_{j}^{B} \mid j \in V^{\prime}\right\},\left\{p o s t_{j}^{B} \mid j \in V^{\prime}\right\}>$ holds.

As a preparation for the technical formulation of the verification conditions (3) throngh (6) below, we first introduce an auxiliary assertion.

Definition 3.4 Let P denote some state assertion. Let $A O$ be a certain set of actions.
Define the assertion disabled $(P, A C)$ by disabled $(P, A O) \equiv \square(P \Longrightarrow \forall a \leq A C-\operatorname{Cn}(a))$. Thus, disabled $(P, A C$) expresses that if assertion P holds, then all actions in $A C$ are disabled.

The following conditions are required for a sound application of our principle:
(3) Each of the programming variables occurring in $p r \epsilon_{j}^{A}, p r e_{j}^{B}, p o s t{ }_{j}^{B}, I_{j}^{A}, I_{j}^{B}, T_{j}^{A}$, and T_{j}^{B} is node j 's own variable. If the proof variables $\rho_{l}(e)$ or $\sigma_{l}(e)$ occur in any of these assertions, then $\ell=j$ and $e \in E_{j}$ are catisfed. (Variables ocurring in any of the above assertions can be changed only as a result of the execution of one of node j 's actions.)
(4) $\forall j \in V^{\prime} \cdot d i s a b l e d\left(I_{j}^{A} \wedge \neg T_{j}^{\mathcal{A}}, I S_{j}^{B}\right) \wedge \forall j, k \in V^{\prime} . \forall \varepsilon \in E_{j, k} \cdot d i s a b l e d\left(I_{j}^{A} \wedge \neg T_{j}^{\mathcal{A}}\right.$, Sen $\left._{k}^{B}(e)\right)$ holds for all computation sequences of \mathcal{A}.

This condition states that if a certain node has not completed its participation in algorithm \mathcal{A}, then it can perform meither an internal action nor a send-action occurring in algorithm B (the first conjunct, and it camot reteive a message associated with algorithme \mathcal{B} (the second conjunct). The latter is satisfied because if the node participates in algorithm A, then it is required that none of its neighbors can soml such messages. Consequently, this condition ensures that if a certain mode has not completed its participation in algorithm \mathcal{A}, then it cannot, perform ary of its actions associated with B.

Of cousse, we also require that no node can perform any action associated with algorithn A, if it is participating in algorithm B :
(5) $\forall j \in V^{\prime}, d i s a b l e d\left(I I_{j}^{B} \wedge \cdot T_{j}^{B}, I S_{j}^{A}\right) \wedge \forall j, k \in V^{\prime} \cdot \forall \in \in E_{j, k} \cdot d i s a b l e d\left(I_{j}^{B} \wedge \neg T_{j}^{B}, S_{e n k}^{A}(e)\right)$ holds for all computation sequences of \mathcal{B}.
(6) $V_{j} \in V^{\prime} \cdot$ disobled $\left(I_{j}^{B} \wedge T_{j}^{B}, I S_{j}^{A}\right) \wedge \forall j, k \in V^{\prime} . \forall e \in E_{j, k}$ disabled $\left(I_{j}^{B} \wedge T_{j}^{B}, S e n_{k}^{A}(e)\right)$ holds for all computation sequences of \mathcal{B}.

Therefore, each node which participates in both subtasks participates in the first subtask, i.e., the one solved by algorithm \mathcal{A}, before it participates in the second subtask, i.e, the one solved by algorithm B.

If, in addition, one wants to prove that the algorithm solving the whole task always terminates, then it suffices to prove that both the algorithms A and B always terminate. An algorithm $\mathcal{D} \in\{A, B\}$ as above terminates iff for all $j \in V^{\prime}, \rho\left(I_{j}^{\mathcal{D}} \wedge T_{j}^{\mathcal{D}}\right)$ holds for all computation sequences of \mathcal{D}. Here, \circ denotes the eventual-operator fromt temporal logic.

How to reason, according to this strategy, about an algorithm which solves a task that can be split up logically into more than two subtasks, as if they are performed sequentially, should be obvious. (This is a straightforward cxtension of the case treated above, cf. [SR89a, SR89b]; It can also be achieved by repeatedly applying the above principle.)

4 Basic features of Gallager's algorithm and of its correctness proof

Gallager's algorithm is a distributed algorithm for constructing the minimum-weight spanning tree of a finite, undirected, and connected graph (V, E) in which each edge in E has some strictly positive weight associated with it, such that distinct edges have distinct weights. In section 4.1 we present two theorems, well-known from graph-theory, upon which the correctness of Gallager's algorithm is based. The essentials of this algorithm are described in section 4.2. The structure of our correctness proof is presented in section 4.3. The discussion in this section shows that both structured verification and structured design of cormplex algorithms can be achieved by decomposing the reasoning and the design of such an algorithm according to its logical (sub) tayks.

4.1 Theorems underlying the correctness of Gallager's algorithm

Let (V, E) be a finite, undirected, and connected graph (V, E). Assume that $w E \rightarrow \mathbb{R}^{+}$is a function assigning weights to edges, where \mathbb{R}^{+}denotes the set of all real numbers greater than 0 . Furthermore, assume that w is an injective function, i.e, that distinct edges have distinct weights. From now on, such weighted graphs will be denoted by (V, E, w).

Correctness of Gallager's algorithm is based on the existence and the waiqueness of the minimmweight spanning tree of any such graph as above.

Theorem 4.1 Given any weighted graph (V, E, w). There exists a unique mininum-weight spanning tree of (V, E).
Proof: The existence of at least one minimum-weight spanning tree of the weighted graph should be clear. To show the uniqueness of the spanning tree, we assume, in order to obtain a contradiction, that there exist two spaning such spanning trees T_{1} and T_{2} satisfying $T_{1} \neq T_{2}$, Then, obviously, there exists an edge occurring in one, but not in both these trecs. Let e be the minimum-weight such edge. W.l.o.g. assume that edge e occurs in T_{1} and not in T_{2}. Now, consider the graph obtained by adding edge e to the tree T_{2}. This graph contains a cycle. It follows thatt at least one edge e^{t} on this cycle does not occur in the tree T_{1}, since T_{1} is free of cycles. Note that $e \neq e^{\prime}$ holds. Moreover, $\mathrm{w}\left(e^{\prime}\right)<v(e)$ holds, too. (Otherwise, removing edge e^{\prime} from the tree T_{3} and adding e to T_{2} would yield a spanning tree of the weighted graph (V, E, w) with less weight than T_{2}, contradicting that T_{2} is a
minimum-weight spanning tree of (V, E, w).) Removing edge e from the tree T_{1} and adding edge e^{\prime} to T_{1} then yields a spaning tree of the graph (V, E, w) with less weight than T_{1}. This contradict the assumption that T_{1} is a minimun-weight spaming tree of (V, E, w). We conclude that there exists exactly one minimum-weight spanning tree of (V, E, w).

Theorem 4.1 ensures the existence of a unique minimum-weight spanning tree of a weighted graph. How one conld actually constrnct this tree is suggested by theorem 4.2 below. As a preparation for this theorem we define two notions that will be used extensively in the remainder of this paper.

Definition 4.1 Given a weighted graph (W, E, w) as above. Denote by T the (unique) minimumweight spanning tree of that graph.
(a) A fragment of T is some non-empty subtree of T.
(b) Assume that $F=\left(V^{\prime}, E^{\prime}\right)$ is some fragment of T. An edge e $E E$ is an outgoting edge of F iff one of the nodes adjacent to e is in F and the other one is not. In other words, edge e is an outgoing Edge of F iff the following is satished: for nodes i and j satisfying $e \in E_{i, j},\left(i \in V^{\prime} \wedge j \notin V^{\prime}\right) \vee$ (if $V^{\prime} A j \in V^{\prime}$) holds. (Gf. section 2 for the interpretation of the sets $E_{i, j}$.)

We then have the following

Theorem 4.2 Let $F^{\prime \prime}=\left(V^{\prime}, E^{\prime}\right)$ and $F^{\prime \prime}=\left(V^{\prime \prime}+E^{\prime \prime}\right)$ be two disjoint fragments of the minimum-weight spathing tree T of a weighted graph ($V, E, w)$.
(a) If $\epsilon \in E$ is the minimum-weight outgoing edge of F^{H} and ϵ is adjacent to F^{H}, i.e., adjacent to some node in $F^{\prime \prime}$, then $F^{\prime \prime \prime}=\left(V^{\prime} \cup V^{\prime \prime}, E^{\prime} \cup E^{\prime \prime} \cup\{\in\}\right)$ is a fragment of T, too.
(b) $T=F^{\prime}$ iff no outgoing edge of $F^{\prime \prime}$ exists.

Proof:

(a) Suppose, in order to obtain a contradiction, that $F^{\prime \prime \prime}$ is not a fragment of T. Consequertly, edge e is not in the tree T. By an argument analogous to the one in theorem 4.t, this leads to a contradiction.
(b) Clearly, $T=F^{\prime}$ implies that there are no outgoing edges of F^{\prime}. In order to prove the other implication, assume that there exists no outgoing edge of F^{\prime}. Suppose, in order to obtain a contradiction, that $T \neq F^{\prime}$ is satisfied. It then follows that there exists an edge e occurring in T and not in F^{\prime}. As above, the existence of such an edge leads to a contradiction.

4.2 High-level description of Gallager's algorithata

From now on we assume some fixed weighted graph (V, E, w). The minimum-weight spanning tree of this graph will be denoted by T.

A large number of algorithms, both sequential and distributed ones, have been suggested by theorern 4.2 (see, e.g. [D59, GHS83, K56, ZS80]). All these algorithmas have in common that they start with trivial fragments of T, consisting of a single node (and, thus, without ary edges), and gradually enlarge these fragments as described in theorem 4.2 until T has been constructed. The algorithms differ in how and when fragments are entarged. E.g., the algorithme reported in [D59, Z580] start with orie particular trivial fragment and gradually crilarge this fragment with one node and one ecige at a time. The algorithm reported in [K56] starts with all trivisl fragments. Two fragments combine if they have the same minirnurn-weight outgoing edge and this edge has the least weight among all outgoing edges of the fragments constructed so far.

Gallager's algorithm also starts with all trivial fragments in the graph. Fragraents are combined into larger ones according to a more sophisticated strategy than those ones adopted in e.g., [D59, Z\$80], and [K 56$]$; the combinations of fragnents depend on socalled levels. The level of a frogment of T is (inductively) defined below.

Definition 4.2

(i) A fragment consisting of a single node, i.e, a trivial fragment, is defined to be at level 0 .

Next assume that fragnerit F is at level L. Let edge e be $F^{\prime \prime}$ minimum-weight outgoing edge. Denote by F^{\prime} the fragment, say at level L^{\prime} at the other end of e. When F and F^{\prime} are disjoint, then the following is satisfied:
(ii) If the fragments F and F^{\prime} are at the same level, i.e., $L=L^{\prime}$ holds, and if edge e is the minimumweight outgoing edge of F^{\prime}, then the fragment formed by combining F and F^{\prime} is defined to be at level $L+1\left(=L^{\prime}+1\right)$,
(iii) If $L<L^{\prime}$ is satisfied, then the fragment formed by combining F and $F \prime$ is defined to be at level L^{\prime}.

In Gallager's algorithm fragments only combine according to one of the possibilities (ii) and (iii) above. If neither of these possibilities apply, then, from an operational point of view, fragment F simply waits
until one of these i wo possibilities occurs. This delay does not lead to a deadlock, i.e, if a fragments waits for one of the two possibilitivs above to occur and the minimum-weight spauning tres has not. yst beem constructed, then one of the possibilities shall eventually occur. This is proved in theorem 6.1. A sequential description of Gallager's adgorithm is shown in figure I below. Under the assurnption that fain selections are made in this program, it indeed constructs the minimum-weight spanning tree.

```
while | \(F \mid \nmid=1\)
do seleet some \(F^{\prime}\) © \(\mathcal{F}_{i}\)
    let \(F^{\prime}-\cdots\left(V^{\prime}, E^{\prime}\right), L^{\prime} ;\)
    lot \(c^{\prime}\) minimum-weight outgoing edge of \(\left(V^{\prime}, E^{\prime}\right)\);
    let \(F^{\prime \prime} \ldots\left(V^{\prime \prime}, E^{\prime \prime}\right), L^{\prime \prime}\) ". F wuch that \(\left(V^{\prime \prime}, E^{\prime \prime}\right)\) is adjacent to \(e_{1}\left(V^{\prime \prime}, \boldsymbol{K}^{\prime \prime}\right) \neq\left(V^{\prime}, E^{\prime}\right)\);
    if \(L^{\prime}=\Gamma^{\prime \prime} \wedge c \cdot\) minimum-weight outgoing exge of ( \(V^{\prime \prime}, E^{\prime \prime}\) )
```



```
    \(\operatorname{clif} L^{\prime}<L^{\prime \prime}\)
        then \(\mathcal{F}: \because F\)
\(\mathbf{A}\)
    ud
```

Notation: \mathcal{F} is a collection of pairs containing a fragment $\left(V^{\prime}, E^{\prime}\right)$ of T^{\prime} as itsi first component and containirg' the level of (V^{\prime}, E^{\prime}) as its weond component. $|\mathcal{F}|$ denotes the cardinality of F. Intitally, \mathcal{F} consists of all trivial fragments having 0 as their level, ie., $\mathcal{F}=\{\subset(\{i\}, 0), 0>\mid i \in V\}$ holds.

Figure 1. A sergential version of Gallager's Algorithm.

In the algorithns reported in [D59] and [7880] essentially one fragricnt is enlarged by appending its minimum-weight outgoing edge aud one node adjacent to this edge, until T has leen comstructed. As such, contructing T is restricted to a rather strong requirement, not taking into account that many fragments could be combined into larger fragments independently of other suces. In Kruskal's algorithrn [K56], however, many fragrients could be combined into larger ones independenty from each other. Yet, fragments are combimed only if they have the same minimum-weight outgoing edge. (Although Chon amd Gafni 'CGB8) have clamed that they have proved the correctness of Gallager's algorithun, they have, in lact, verified a distributed version of Kruskal's algorithm.) In Gadager's Algorithm manay fragrenents can, as in a distributed version of Kruskal's algorithm, be combined into larger ones asyuchronously from each other. Morcover, as discussed above, two fragments may combine sometimes, too, even when their minimum-weight outgring edges do not coincide. Consequenty, in Gallager's algorithm far more nondeterminism, ie, more different interleavings, has been introduced than in those other algorithms.

The additional amount of nondeterminism, on the other hand, obviously complicates the reasoning about Gallager's algorithm, because of the vast number of generated computation sequences. Consequently, for any correctness proof of this algorithm some particular strategy must be adopted in order to obtain a transparent proof. Our strategy is the following one:
(A) First design, starting from the program in figure 1 , distributed algorithms which determine the minimum-weight outgoing edge of each of the fragments constrated so far. This part of the strategy corresponds to refining the stetement labeled (1) in the programin in figure 1. (How to accomplish such a refinement has been described by Back [B88] and by Chandy and Misra [CM88].)

Part (A) which deals with finding the minimum-weight outgoing edge of a fragment (V^{\prime}, E^{\prime}) can be split up into finding such an edge in case
(A1) $\left|V^{\prime}\right|=1$ holds, i.e, $\left(V^{\prime}, E^{\prime}\right)$ is a trivial fragruent, and
(A2) $\left|V^{\prime}\right| \geqslant 1$ holds, i.e., $\left(V^{\prime}, E^{\prime}\right)$ consists of at least two nodes.
Formally, this case-distinction can be achieved by a case-irttroduction [P89]. The intuition behind this case-distinction is the following: A fragment consisting of a single node can determine its minimum-weight outgoing edge by a simple table look-up when each node has a local table assigning weights to its adjacent edges; for fragments consisting of more than one node the nodes in this fragment must, in any distributed implementation, cooperate by means of messages in order to determine the fragment's minimum-weight outgoing edge.
(B) Then design distributed algorithms in order to combine two fragments into a larger one. This part of the strategy corresponds to refining the statement labeled (2) in the program in figure 1.

- Part (B) naturally splits up into two cases:
(B1) One for combining two fragrnents which are at the same level and which have an identical minimum-weight outgoing edge, and
(B2) one for combining a low-level fragments with a high-level one.
(C) Finally, combine the algorithms found in (A) and (B) above in order to obtain one algorithm which is the distributed version of the algorithm described in figure 1 . These combinations are accomplished by applying the principle discussed in section 3.3 a finite number of times-

The distributed version of Gallager's algorithm can now be described in tenms of logical tasks, as if they are performed sequentially, by refining $A 1, A 2$, and Bl even further. Task 1 describes the
refincmint of Bl when case A1 holds. The task 2, 3, 4, and 5 describe the refinement of B1 when case A2 holds. (How to incorporate possibility B 2 is discussed in section 6.7. Incorporating the latter possibility has the effect that the sequentially performed tasks may be disturbed ternporarily. As shown in section 6.7, these disturbances do not aflect the reasoning about these tatiss.)

Task 1: when a mode sarts participating in the algorithm it determines its minmum-weight outgoing edge (as described in A1 above) and sends a Connect-rncssage along this edge. This message serves as a request from the node to combine with the fragment at the other exd of this edge. (A node which receives this Conntectmessage also participates in the same task, of section 3) Node in V participates in this tatk when executing the program segment labeled A_{4} in figure 2.

Thereafter the following tasks are performed repeatedly:
Tayk $2:$ if two fragments have deterained that they are at the same level L and that they have the same minimmon-weight outgoing chlge, then they are combined, as described in theorem 4.2, into a larger one at level $L+1$. Node i in such a fragment participates in this task whon it executes the program segment labeled B_{i} in figure 2 .

Task 3 : the weight of the minimum-weight outgoing edge of the newly formed fragnent is determined. If no such edge exists, the algorithm terminates. Node i participates in this task when it executes the program segment labeled C_{i} in figure 2
Task 4; if the minimum weight outgoing edge of the newly formed fragnent exists, then the node in this fragment adjacent to this edge is notified. The reason for doing so is explained in Task 5 below. Node i participates in this task when it executes the prograrn segment labeled D_{i} in figure 2.

Task 5: the node that has been notified that it is adjacent to the minimum-weight outgoing edge (cf. Tosk \& above) sends a Comect-message along this edge. (As described above, this message serves as a request from the fragment to combine with the fragment at the other end of this edge-) Node i participates in this task when it executes the program segments labeled E_{i}^{1} or E_{f}^{2} in fgure 2 .

Note that their exist actions a in the program described in figure 2, which can be execnted by node i, that belong to program sesments labeled A_{i} and to program segments labeled by E_{i}^{2}. If node i belongs to a trivial fragment, then such actions a are considered to be part of the segment labeled $A_{i ;}$ otherwise, i.e., if node i belongs to a non-trivial fragment, then these actions a arc considexed to be part of the segment labeled E_{i}^{2}.

The program shown in figure 2 below will be explained and analyzed in the sections 6.1 through 6.7 . The labeled boxes correspond to the program segments referred to in the description of the tasks above. We have used Gallager, Humblet, and Spira's notation [GHS83]. In [GR89b] we have discussed how a progrann represented by a list of responses as below can be transformed into our own notation for representing algorithons.

4.3 Outline of the correctness proof

In section 5 we formally specify by means of preconditions p_{i} and postconditions g_{i} (ie V) what we mean by correctness of Gallager's algorithm. Then in section 6 we show that Gallager's program satisfies this specification. The proof is structured according to the above description of Gallager's algorithm in terms of tasks (cf. section 4.2).

We first analyze in the section 6.1 through 6.5, the programs associated with the tasks 1 through 5.
It is argued in section 6.6 that the programs above can be combined according to the proof pringiple described in section 3.3 becanse all its verification conditions are satisfied.

At the last stage of our correctness proof we incorporate the possibility that nodes in some fragment can be disturbed temporarily in the performance of their tasks by actions of nodes outside this fragment. (This includes the combinations of low-level fragments with high-level ones.) This is the subject of section 6.7. It is shown that the reasoning about the task described above is not invalidated, since interference-freedom of specifications can be shown. (For this reason the invariants and the termination conditions have been carried along in the specifications.)

Figure 2. The loop executed by rode $\frac{1}{(z E} V$ in a distributed version of Callager's algorithm only Thsk 1 when through 'rask 5 are taken into account. (All variables occurting in this loop are assumed to be subscipled by i.)

5 Formal specification

In this section we formally state the specification that Gallager's program should satisfy, This specification consists of a precondition and a postcondition. In the next section it is shown that Gallager's program indeed satisfies this specification.

Let (V, E, w) denote a weighted graph as in section 4 . Let T denote this graph's minimum-weight spanning tree. Iett S denote Gallager's program (cf. figure 3 in section 6). Since S is a distributed program, each node maintains its own variables to perform its part of S. Node i 's variables, for i in V, which play a role in the initial specification are the following $s n_{i}$ and $s e(e)$ for $e \in E$, Variable $s n_{i}$ denotes node i's rode-status; Variable $s e_{i}(e)$ denotes the edge-status of edge e from rode i's point of view. The values which these variables can take are next described and explained.
Variable $s n_{i}(i \in V)$ can take the values
-- sleeping, if it has not participated in the algorithm yet,

- find, if the node is participating in its own fragment's search for determining the minimumweight outgoing edge (in section 6.3, it will be made more precise what "participating" in this context means), and
- found, in all other cases.

Initially each node in V will be in the steeping-state, i.e., initially no node participates in the algorithm.
Variable $s e_{i}(e)\left(i \in V, e \in E_{i}\right)$ can take the values

- branch, if the node has determined that the edge occurs in T,
- rejected, if the node has detcrmined that the edge does not occur in T, or as
- besic, in all other cases, i.e., if the node has not yct determined whether the edge occurs in T.

Initially each node has marked all its adjacent edges as basic, of course, i.e., initially $\forall i \in V: \forall e \in E_{i}, s e_{i}(e)=b a s i c$ holds.

Each mode i in V maintains its own message queue, queue ${ }_{4}$. This queue is used to buffer received messages together with an identification of the edge along which these messages have been received, If a node's queue is non-empty, then its front element may be removed from its queue and either. processed or, as we will see, placed at the end of the queue, waiting for other events to occur. For each node, the queue's capacity is assumed to be large enough to buffer all the node's unprocested
messages. It is not dificult to derive a maximum size such that each queue is able to buffer these mussarges. This is not the subject of this paper, however. Initially, for all nodes in V, gueucis is empty. Denoting by $<>$ the empty queue, we thus require that, initially $\forall i \in$ Vqueue ${ }_{i}=\ll$ is satisfied.
Finally, we require that initially no edge comtiains any messages, i, e, $\forall i \in V, \forall \in \in E_{t}$, contentsi $\left.(\epsilon)=<\right\rangle$

Thus, we have the following precondition p_{i} for each node it

Upon completion of the algorithrn all messages queues and all channels must be empty, of course In addition, the minimum-weight spanning tree must have becn constructed. This implies that each node has actually participated in the algorithm and that it is not involved in any fragment's search for the minimum-weight outgoing edge, i.e., in the final state for all nodes $i, s n_{i}$-found holds. Consequently, we must prove that upon termination of the algorithm the following holds:

$$
\begin{aligned}
& \forall i \in V, q u e u e_{i}=\left\langle\wedge \forall i \in V . \forall \varepsilon \in F_{i} \text {.contemits } s_{i}(\epsilon)=\measuredangle\right\rangle \wedge \\
& \wedge \forall i \in V A r_{i}=\text { fonnul } \wedge\left(V, \bigcup_{i \in V}\left\{c \in E_{i} \mid s e_{i}(e) \text { mbranch }\right\}\right)=T \text {. }
\end{aligned}
$$

We can, however, be more detailed abont the postcondition. Observe that if ef $E_{i, j}$ and sede $(e)=b r a n c h$ hold, then this expresses that of an edge in T. Since T is an undivected tree, it follows that scj $(c)=$ branch must hold, too, i.e., if an edge is in T, then this edge is in the bronch-state from the viewpoint of both its adjacent nofles when the algorithm terminates. Alsn observe that in the final state each node should have determined whether an adjacent edge occurs in T. As a consequence, $s e_{i}(e) \neq b a s i c$ is required to hold upon completion of the algorithm for all nodes i and for all edges © E_{i}.

Altogether, the following posfcondition $¢$ is required:

$\wedge \forall i \in V . s n_{i}=$ found $\wedge\left(V, \bigcup_{i \in V}\left\{f \in E_{i} \mid x c_{i}(c)=\right.\right.$ branch $\left.\}\right)=T \wedge$
$A \forall i \in V, \forall i \in \in E_{i}, s e_{i}(e) \neq b a s i c \wedge \forall i, j \in V, \forall e \in E_{i, j} \cdot s e_{i}(e)=s e_{j}(e)$.
The discussion above leads to requiring that the program S should satisfy the following specification: $[p] S[q]$ holds, where p is the conjunction of all the nodes' preconditions p_{i} described above and where the postcondition q is as above. Here $[p] \xi \mid q]$ means: if S is executed in a state satisfying p, then S always terminates in a state satisfying q (total correctness), Observe that the above specification
can be easily satisfied when the network consists of one node only. Consequently, in the remainder of this paper we assume that $|V| \geq 2$ holds (the network consists of at least two nodes). In eddition, it is assumed that the network contains no self-loops, ice., for all node i in $V, E_{i, i}=0$. The reatom for imposing this restriction is that the program in [GHS83] describing Gallager's algorithm does not necessarily construct T when the network contains self-loops. (This is shown at the end of section 6 .)

6 Gallager's algorithm

In this section it is shown that Gallager's program (cf. figure 3 at the end of this section) meets its specification. This specification has been formulated in section 5. As argued in section 4 expanding groups of nodes will repeatedly perform a certain tasks. For a single node which forms a fragment of its own this task consists of finding its minimum-weight outgoing adjacent edge and sending a Connect-message along this edge (cf. section 4.3). In section 6.1 it is shown how this task can be solved. The task of combining two fragments, the task of determining the weight of the minimumweight outgoing edge, if any, the task of notifying the node in the enlarged fragment that it is adjacent to the fragment's minimum-weight outgoing edge, and the task of sending a Connect-message along such an edge performed by a collection of more than two nodes are analyzed in the subsections 6.2 throngh 6.5. The tasks are conbined by repeatedly applying our principle (see section 3.3). This is the subject of section 6.6. In section 6.7 the combination of low-level fragments and high-level ones ate aralyzed.

6.1 The start of execution

In this subsection we analyze the distributed program which solves task 1 (cf. section 4) of determining a node's minimurn-weight outgoing edge, when it forms a fragrnent of its own. A node starts participating in the algorithm when one of the following occurs:

- it responds to some command from a high-level procedure to initiate the algorithm (an "erternal trigger"), or
- it receives the first (algorithm-)message transmitted by some node in the graph (an "internal trigger").

A node can respond only to some command from a high-level procednes to initiate the alyorithm if it is in the sleeping state. Since the structure of such a procedure is of no interest for the algorithun, we ignore such procedures. Instead, a node in the graph can initiatc: the algorithm according to its local information, that is, if it is in the sleeping state, by "awabening spontaneously". Many nodes in the network can awaken spontanconsly, asynchronously from each other, and injtiate the algorithm. We require, however, that a node can awaken spontaneously only if it is in the slocping stanc.

When a mode starts participating in the algorithm acording to one of the two above-mentioned possibilitics it detcrmince its minimum-weight adjacent, hence outgoing, edge, marks this edge as a branch, and goes into the found state. Tt then transmits a Connect-rucssage along the edge marked as branch. The node (at the other ond of this edge) that receives this message will participate in this task, too. We consider here the program S_{y} defined bolow.

Definition 6.1 Program S_{1}, which wolves the task considerd here, is the paralel composition of consisting of the program segments labeled by A_{i} in figure 2 where i is an element of the smallest set of nodes V^{\prime} such thast
... at least one node has "awokenex spontaneously" is in this set, and
-- for all nodes j in this set, if j 's minimum-weight ontgoing edge is adjacent wode l, chen t is in this set, too (, because nosk \& will receive a Connectmessage from node j).

This concludes the desuription of the first task in which a urivial fragment will patiecipate.
In figure 2 node i 's actions associated with this task have becn labeiced by Λ_{i}. The variable shit denotes node i 's (node-) status; $l n_{i}$ detuotes the level of node i's fragment as far as "known" to i; sei (e) records the edge-status of edge eadjacent to node i. The initial walue of the variable $t r a_{i}$ is irrelevant. Note that ench node i also maintains a variable firudeount; This valiable, whose initial value is ircelevart, too, could have been omitted at this stage. Its significance will become clear when reasoning about another task (see section 6.3),

For the program S_{1} defined above (see definition 6.1) the following holds; (recall that V ' denotes the set of all nodes that participate in the task considered here)

Lemma 6.1 Assume that the precondition $p \equiv \Lambda_{i \in V} p_{i}$ holds,

section 5), I.e., for all nodes i in V and for all edges e in E_{i}, sni $=$ sleeping, $\operatorname{se}_{7}(e)=b a s i c$, and all message quenes and all edges are empty are satisfied initially. Let i be some node in the set V^{\prime}.
 holds as a precondition. As a postcondition for this procedure the following holds:
 node i is in the found state, its variable findcount t_{i} has been assigned the value 0 . In addition, except for one edge marked as branch all other edges adjacent to node $\dot{\text { i }}$ are marked as basic.
(b) For all nodes $i \operatorname{in} V^{\prime}$, ($\left.\vee e \in E_{i}, s e c_{i}(e)=b u s i c\right) \Rightarrow s n_{i}=s t e e p i n g$ is an invariant of the program above. Also, sn $n_{i} \neq$ slecpitug $=\left(l n_{i}=0\right.$ A findcount $\left.t_{i}=0\right)$ is an invariant.
(c) If sng \neq slceping holds at a certain point during execution, then it remains so afterwards. (This implics that the procedure wake-rp can be executed at most once.) If for a certain cedge $\epsilon \in E$, see $(\varepsilon)=$ branch holds at a certain point during execution then it remains so afterwards.
(d) For all $i \in V^{\prime},\left(s n_{i}=s l e m p i n g \vee s n_{i}=\right.$ found $) \wedge \forall c \in E_{i}\left(s e_{i}(e)=b o s i c \quad \vee s e_{i}(\epsilon)=b r a n c h\right)$ is an invariant.
(c) If there exists some adjacent edge e of node i marked as branch, then e. is the minimum weight outgoing edge of the fragment ($(i), 0$).
(f) Upon completion of the program S_{1} all edges connecting two nodes in V^{\prime} are empty and there exist exactly two neighboring nodes in $V^{\prime \prime}$ that have a message Connect(0) in their message queues. These messages have been received along their adjacent edges in the state branch
(g) A node i eventually completes its participation in the program above. This occurs when node i transmits the message Connect(0) elong its minimum-weight outgoing adjacent edge. (This is the termination condition T_{i} of node i for the program above.)

Proof

All these properties are verified straightforwardly. As an example, we show how property (c) can be established. That is, if $s e_{i}(e)=b$ ranch holds for a certain node during coccution of program S_{1}, then edge e is the minimum-wight outgoing edge of the fragment ($\{i\}$, (0).

Initially, all node i's adjacent edges axe in the basic state. An edge can be marked as branch, only if node i performs the assignment sei $(\epsilon):=b r a n c h$ when executing the procedure wake-up. Obviously,
prior to the actual execution of this assignment edge e has been selected to be the minimum-weight adjacent cdge of node i. Since the graph contains no self-loops, property (e) clearly holds. (In frct, we have imposed the restriction that the graph contains no self-loops in order to ensure property (e). As showi in section 6.8, Gallager's algorithm does not mecessary construct 7 when this restriction is not satisfied.)

Hereafter we will denote the minimum-weight outgoing edge of some subgraph G of (V, E) by minwedge (G). If the minimum-weight outgoing edge of Q does not exist, then minwedge $(G)=$ nil holds, where nil denotes some fictivious whe.

6.2 Combining fragments at the same level with the same minimum-weight outgoing edge

In this subsection we will eoncentrate on the program associated with task 2, see section 4.2 , which describes how two fragments F^{\prime} and $F^{\prime \prime \prime}$ at the same level L and with an identical minimum-weight. outgoing edge are combined into a fragment at level $I+1$.

Recall that a fragment of T has been defined as some non-empty subtree of T. This is a graphorienterl notion. Accordingly, a fragment is some static entity. Observe that fragments are enlarged when Gallager's program is executed. In order to reason formally about this program we need to define fragrinents (constructed su far) in terms of progrant-variables. This leads to the notion of a B-frogment of T (see definition 6.3 below), Intuitively, a B-fragment of T is some subgraph of (V, E) constituting a fragment of T such that tach edge in the B-fragment is marked as branch from the viewpoint of both its adjacent nodes. Notice that if for a critain node $i_{2} s e_{i}(\rho)=b r e n c h$ holds, then the mode j at the other end of edoes not necessarily belong to the same B-fragment as i. This is the case when $\operatorname{sef}_{j}(e) \neq b$ banch holds. This may ocrur, eg. g , in the program associated with the first task (see: section 6.1). There we could have that $e_{i}(e)=$ branch, when e is the minimum-weight adjacent edge of node $\hat{\varepsilon}$, while $s \epsilon_{j}(\epsilon)-b a s i c$ holds, if e is not the minimum-weight adjacent edge of node j. This means that the property $n e_{i}(e)=s c_{j}(e)$ is not an invariant for the program describing Gallager's algorithm $\left(i, j \in V, a \in E_{i, j}\right.$). This observation leads to the notion of a B-groph, defined next,

Definition 6.2 A subgraph $\left(V^{*}, E^{t}\right)$ of (V, E) is called a B-graph iff (i) and (ii) below are both satisfied:
(i) $\left(V^{\prime}, E^{\prime}\right)$ is conzected.
(ii) $\forall i, j \in V^{\prime}$. $\forall e \in E_{i, j} \cdot\left(e \in E^{\prime} \Leftrightarrow\left(s \varepsilon_{i}(e)=s e_{j}(e)=b r a n c h\right)\right)$, i.e., it is a graph in which all edges are in the branch-state from the viewpoint of both its adjacent nodes.

Lemma 6.2 Any connected subgraph of a B-graph is a E-graph itself.

Intuitively, if $e_{i}(c)=b r a n c h$ bolds for some $i \in V$ and $c \in E_{i}$, then e is an edge in T. This suggests defining fragments of T in terins of B -graphs. In order to do so first notice that B -graphs may be empty. This is an immediate consequence of definition 6.2. This implies that a B-graph which constitutes a subtree of T is not necessarily a fragonent of T. Consequently, to define fragments in terms of B-graphs we need to refine the latter notion. To do so, observe that the earkier high-level description (see section 4.2) implies that fragments are cmiarged. Therefore, if two nodes i and j are in the same B-graph at some point during execution of the algorithm, then they will remain remain in the same B-graph afterwards. Also, if a B-graph $\left(V^{\prime}, E^{\prime}\right) \subseteq T$ has been constructed, when performing the algorithm, then there is no need to consider any proper subgraph of (V^{t}, E^{\prime}), ef. lemma 6.2, int order to find its minimum-weight outgoing edge, since this edge has been found carlier. Consequently, it suffices to onsider maximal B-graphs in order to find their minimum-weight outgoing edges. This observation leads to the following definition:

Definition 6.3 A B-fragment of T is a maximal B-graph of (V, E) constituting a subtree of T.

By definition, a B-fragment of T is non-empty. It follows that any B-fraganent of T is a fragment of T. As T is the unique minimum-weight spanning tree of (V, E) we will use the term B-fragment as all abbetviation for the notion B-fragment of T. Also, the terms B -fragnent and fragment will from now on be used interchangeably-

It remains to define the level of a B-fragment in terms of program-variables. Since cach node iE V nraintains a wariable Ind to record the level of its own fragraent (as far as "known" to that node), it is convenient to define this notion in terms of the variables $\boldsymbol{I n}_{\boldsymbol{i}}$. Note that for a fragment of the form ($\{i\}, 0$), $l n_{i}$ may be undefined when $s n_{i}=$ sleeping holds. We simply define the level of such a fragment to be 0 . In all other cases the level of a fragment is the maximal value of the variables $l n_{i}$ for nodes a in that fragment.

Definition 6.4 A B-fragment (V^{\prime}, E^{\prime}) is defined to be at level 0 when for all nodes i $\in V^{\prime}$, sn $n_{i}=$ aleeping holds. In this case we refer to (V^{\prime}, D^{\prime}) as a sleeping fragment. Otherwise, the fragneent is called rortsleeping. The level of a non-sleeping B-fragment (V^{\prime}, E^{\prime}) is defined to be max $\left\{I x_{i} \mid i \in V^{\prime}\right\}$.

Remark:

(i) A sleeping B-fragroent is sulway of the form (\{i\},0), i.e., it consists of one node. This is true besanse it will follow from our correctness proof that any nocke not in the steeping state has executed the procedure wake-npe canctiy once and that for all nodes ie V, edges ec $E_{i}, n_{i}+$ theeping and $s_{1}(c)$-branch axe invariance properties (cf. the lemmata 6.1, 6.3, 6.6, 6.9, and 6.10).
(ii) We will show that if (V^{\prime}, E^{\prime}) is a nom-slefeping fragment then for all nodes $i \in V^{\prime},{ }^{\prime} n_{i}$ is defined and $\left[r_{4} \geq 0\right.$ is satisfied, of the lemmata 6.1, $6.3,6.4,6.7,6.9$, and 6.10 . This implies that the level of any fragment is welldefined,

After this preparation we now focus on how two fragrents F^{\prime} and $F^{\prime \prime}$ at the same level and with the same minimum-weight outgoing elge are combined into a larger fragment.

A fragment $F^{\prime \prime}$ at level L that has fouxd its minimum-weight outgoing edge, say e, informs the fragment at the other end of edge e about its levol and minimum-weight outgoing edge by sending a message Conatect (L) along c. Assume that the fragment $F^{\prime \prime}, F^{\prime} \neq F^{\prime \prime}$, is adjacent to edge e. If $F^{\prime \prime}$ is at level L, too, and if $F^{\prime \prime \prime}$ has informed the fragment F^{\prime} that it is at the same level and that is has the same minimum-weight outgoing edge, then F^{J} and $F^{\prime \prime}$ are combined into a fragment at level $L+1$. (If fragment $F^{\prime \prime}$ is at level L and has transmitted a Conmect-message along another edge than c, then the node of F^{\prime} that has received the Connect-message will delay this mescage, since no rule can be applied for combining F^{\prime} and $F^{\prime \prime}$ into a larger fragment (cf. section 6.7),

We: now assume that at some point during exegution of Callager's algorithn the following holds:

Assumption 1 :

$F^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and $F^{\prime \prime}=\left(V^{\prime \prime \prime}, E^{\prime \prime}\right)$ are two non-sleeping fragments, both at level L with the same minimum-weight outgoing edge e^{\prime}.

We also assume the following
Induction hypothesis (IH):
(a) If F is some fragment at level $L^{\prime} \leq L$ and F transmits a Connect-message along edge $e^{\text {, }}$, then this Connect-message carries argument L^{\prime} and $\varepsilon=$ minwedge (F) holds. Also, whencver the node of fragment F adjacent to edge e transmits the Connect-message along edge e, this edge is in the branch-state from the viewpoint of that node. In addition,
(b) Whencver a node in F transmits a Connect-message along one of its adjacent edges, $s_{i}=$ found holds for all nodes i in F.

The intuition behind $\mathrm{IH}(\mathrm{b})$ above is the following: when at fragment's minimum-weight outgoing edge has been found and when a Connect-message has been sent along this exge, then all nodes in the fragment have completed their contribution to the search for the minimum-weight outgoing edge of the fragment. It theri follows from the interpretation of the variables $s n_{i}, i \in V^{\prime \prime \prime}$, that $s n_{\mathrm{f}}=$ found holds at the start of the program associated with the task considered here.

Remark: As we have secn in section 6.1 a zero-level fragment transmits a message Connect(0) on its minimum-weight outgoing edge when awakening. Aiso, this edge has been marked as a branch and the node is in the found-state when such a tramsmission occurs. This establishes the basis of induction.

Recall that we consider the casce in which fragments F^{\prime} and $F^{\prime \prime}$ have been formed. Suppose that the nodes $i^{\prime} \in V^{\prime}$ and $i^{\prime \prime} \in V^{\prime \prime}$ have exchanged Connect-messages along edge e. By assurnption 1 and by the induction hypothesis (IH), see above, the Cannect-messages curry argument L and edge e is the same as minupedge (F^{\prime}) and as minuedge ($F^{\prime \prime}$). It follows that $\varepsilon=e^{\prime}$ holds. From (IH) we obtain that both nodes i^{\prime} and $i^{\prime \prime}$ have placed the edge e^{\prime} in the branch-state. It follows that at that tirnc a new fragment $F^{\prime \prime \prime}=\left(V^{\prime \prime \prime}, E^{\prime \prime}\right)=\left(V^{\prime} \cup V^{\prime \prime}+E^{\prime} \cup E^{\prime \prime} \cup\left\{e^{\prime}\right\}\right)$ has been formed. (Recull that, we have assumed that $F^{\prime \prime}=\left(V^{\prime}, E^{\prime}\right)$ and $F^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ hold $)$ The edge e^{\prime} is called the core of the fragment $F^{\prime \prime \prime}$. This notion plays an irmportant role in Gallager's algorithin (section 6.3). When the fragment $F^{\prime \prime \prime}$ has been formed a new task is being started by the nodes in $V^{\prime \prime \prime}$. This task consists of recording that fragrnent $F^{\prime \prime \prime}$ is at level $L+1$.

We assume that the fragments $F^{\prime \prime}$ and $F^{\prime \prime}$, just before combining into the fragment called $F^{\text {t" }}$ satisfy property 1 below, This property states that any edge in F^{*} or $F^{\prime \prime}$ has the same (edge-)status from the viewpoint of both its adjacent nodes. Moreover, if some node in one of the fragments F^{\prime} or $F^{\prime \prime}$ has placed an edge in the rejected state, then this edge connects two nodes in the sarne fragricnt. Formally, we assume

Property 1: For all nodes $i, j \in V$ and for all edges $e \in E_{i, j}$,
(a) $i, j \in V^{\prime} \Rightarrow s e_{i}(e) \neq 8 e_{j}(x)$ and
(b) $\operatorname{se} ;(e)=$ rejected $\Rightarrow j \in V^{\prime}$ hotd.

Similarly, we require that (a) and (b) hold with V^{\prime} and E^{\prime} replaced by $V^{\prime \prime}$ and $E^{\prime \prime}$ respectively.

Note that property 1 is satisfied if F^{\prime} and $F^{\prime \prime}$ are zero-lewel fragments which start participating in the task considered herce.

Wow can this task be accomplished? I.e., how can the newly formed fragment $F^{\prime \prime \prime}$ bo placed at level $L+1$? The answer is simple; the two nodes ; adjacent to the minimum-weight outgoing edge e' of the: fragments F^{\prime} and $F^{\prime \prime}$, from which fragment $F^{\prime \prime \prime}$ has been constructed, assign the value $L+1$ to their variables bas after hawing exchanged the message Contuent L) along edge e^{\prime}, This is achieved by the program so defined below.

Definition 6.5 Define the progranı S_{2} by $S_{2} \equiv \|_{i \in V^{\prime} \cup V^{\prime \prime}} E_{i}$ (cf, section 4.3). Recall that V^{\prime} and $V^{\prime \prime}$ denole the set of all nodes in the fragments F^{\prime} and $F^{\prime \prime}$ respectively.

Obscrve that in this program variables $f n_{i}, s n_{i}$, and $i n b r a n c h$ ocur. The role of the variables $f n_{i}$ and inbranchi will be explained in section 6.3; the reason for placing the variable $s n_{i}$ in the find-state, for nodes adjacent to edge e^{\prime} is explained in section 6.7. W.r.t. these variables the property formulated below holds.

Property 2: For the fragment $F^{\prime \prime \prime}$ and for all nodes i in $F^{\prime \prime \prime}$,
(a) if $\boldsymbol{l} \boldsymbol{r}_{\mathrm{i}}>0$ holds then $f n_{i}$ is defined. In particular, if $f n_{i}$ is defined, then its value is the weight of some edge in $F^{\prime \prime \prime}$, i.e., for a certan edge ϵ in $F^{\prime \prime \prime}$, $f f_{f}=W^{\prime}(e)$ bolds,
(b) the values recorded by the variables $s n_{;}$are different from stocping, i.e., $s n_{f}=$ find \vee foumd holds.

Note that if a node i, with $l r_{i}=0$, enters the task considered here for the first time, then property 2 holds.

Let i^{\prime} be the node in F^{\prime} that has tratsmitted the message Contect (L) along edge e^{\prime}. Similarly, let i^{4} be the node in $F^{\prime \prime}$ that has transmitted the message Conntect(L) along edge e^{\prime}. In order to reason about the program $S_{\text {g }}$ we assume that the following precondition for this prograti holds: all edges connecting nodes in the fragment $F^{\prime \prime \prime}$ are empty, the message queues of nodes in $F^{m \prime \prime}$ are ernpty, the nodes i^{\prime} and $i^{\prime \prime}$ are at the exit point of the statement "if $s t_{i}=s l e e p i n g$ then execute procedure wake-up $\mathrm{f}^{\prime \prime}$ in the segment labeled (3) in figure $2\left(i \in\left\{t^{t}, i^{\prime \prime}\right\}\right.$, and all nodes i in $V^{\prime \prime \prime}$ different from the nodes i^{\prime} and $i^{\prime \prime}$ are waiting for the receipt of some message. (Below, the last two requirements are denoted by loci=after "if $n_{i}=$ slepping then execute procedure wake-up $\mathrm{f}^{\prime \prime}$ for $i \in\left\{i^{\prime}, i^{\prime \prime}\right\}$ and by loc $=$ at "queue i^{\prime} for nodes $i \in V^{\prime \prime \prime}-\left\{7^{\prime}, i^{\prime \prime}\right\}$ respectively, where the variable loci denotes node t 's program counter.) Formally, we make the following

Assumption 2: When the program S_{2} is executed,
$\forall \varepsilon \in V^{\prime \prime \prime}, \forall e \in E^{w \prime}$ contents $(e)=\ll \wedge$
$A \forall i \in V^{\prime \prime \prime} \cdot q u e$ qu $_{i}=\langle\wedge$

$A \forall i \in V^{\prime \prime \prime}-\left\{i^{\prime}, i^{\prime \prime}\right\}-l o c_{i}=a t$ "queue $e_{i}^{\text {" }}$ holds in the initial state.

Note that assumption 2 holds when F^{\prime} and $F^{\prime \prime}$ are zero-level fragments which staxt, for the first time, participating in the task considered here.

Lemma 6.3 Assume that assumption 1, assumption 2, property 1, property 2, and the induction hypothesis (IH) all hold. Then the following holds for program S_{2} :
(a) The assertions formulated in property 1, property 2 (a), (b) hold during execution of the program, i.e., they are invariance properties. Moreover during execution of S_{7} oo variable se (e) is ever chariged ($i \in V^{r^{\prime \prime \prime}}, e \in E_{i}$).
(b) Upon completion of the program, the fragment $F^{\prime \prime \prime}$ is at level $L+1$. More precisely, we have that upon completion of the program $l n_{i^{\prime}}=l n_{i^{\prime \prime}}=L+1$, inbronch ${i^{\prime}}^{\prime}=$ inbranch $_{i^{\prime \prime}}=e^{\prime}$, aud $\forall i, j \in$ $V^{\prime \prime \prime}-\left\{i^{\prime}, i^{\prime \prime}\right\} \cdot n_{i} \leq L$ hold. (Recall that i^{\prime} and $i^{\prime \prime}$ denote the nodes in $V^{\prime \prime \prime}$ that have exchanged Connect-messages along the minimum-weight outgoing edge of F^{\prime} and $F^{\prime \prime}$, and that this edge is denoted by e^{\prime}.)
(c) Upon completion of the program $s n_{i^{\prime}}=s n_{i^{\prime \prime}}=f i n d$ and $f n_{i^{\prime}}=f n_{i^{\prime \prime}}=w\left(e^{\prime}\right)$ are satisfed. Moreover, all edges comecting the node $V^{\prime \prime \prime}$ as well as all messages queues of nodes are empty.

In addition, $\forall i<V^{\prime \prime \prime}-\left\{i^{\prime}, i^{\prime \prime}\right\} \cdot s n_{i}=$ found holds.
(d) A node i adjacent to edge e' completes its participation in this task iff sna fond i, e, if $l o c_{i}=$ after
 not acljacent to eche e' completes ius participation if fori-at "fuf"ut; holds. (These are the termination conditions.) In the latter case node i will not participate in S_{2} at all

6.3 Finding the minimmon-weight outgoing edge of the fragment just formed

We next analyae the program assogiated with task 3 (ef. section 4.2),
After the fragment $F^{\prime \prime \prime}$ has been formed and after it has been plemed at level $L \| 1$ the nowes in $F^{\prime \prime \prime}$ must deternine the fragment's minimun-waght ontgoing edge, if any. Any such edge e must be in The state basice from the viewpoint of the node in $F^{\prime \prime \prime}$ which is adjacent to c. This is true because for any edge c c $E_{i, j}, i \in V^{\prime \prime}, j \in V$, we bave that

$$
\begin{aligned}
& s e_{i}(e)=\text { bronch } \Rightarrow j G^{\prime \prime \prime} \text { and } \\
& s e_{i}(c)=\text { rejeted } \Rightarrow j \in V^{\prime \prime \prime} \text { hold. }
\end{aligned}
$$

This follows from property 1 , assumption 1, and the induction hypothesis (IH) above, Consequently, any outgring edge of the fragment $F^{\prime \prime \prime}$ must be in the state lasic.

- « lhan rat beson investigated before by i, i.e., i has not lested whether e is an outgong edge, or
... e has been investigated before by i and has been found to be an outgoing edge, but edge e has not been the minimum-weight outgoing edge of node i's fragrecrit (at that time).
fin order to deterroine its minimumweight outgoing adjacent edge, a node conld select its mimimamweight outyoing adiacent edge in the state basic and send a soncalled Testrmessage along this edge. The node at the other end of that edge should then determine whether this edge joins two nodes in the same fragmemt. The problem with this "solution" is that the decision whether an edge is an outgoing one has nou been shifted to the wesioer of the Test-message.

The desiguers of Gallager's algorithm have proposed a very elegant solution for determining the minimum-weight outgoing adjacent edge of some node in $F^{\prime \prime \prime}$, if such an edge exists. This is deseribed below. Any newly formed fragment carries a name. This nanne is supplied to cach node in
the fragment. The quastion arises, of course, how to assien nomes to fragments, since one has to ensure that distinct fragments have distinct names. In Gallager't algorithm the rame of any non-trivial fragment is the weight of its core (cf. section 6.2 where we have described the notion of a corc). The assumption that distinct edges have distinct weights will ensure that any non-trivial fragment has a unique name. Since e^{\prime} is the core of the fragment $F^{\prime \prime \prime}$, the weight $w\left(e^{\prime}\right)$ is the name of this fragment.

Now, after the fragment $F^{* \prime \prime}$ has been placed at level $L+1$ each node in the fragment is supplied with the fragment's name. In order to do so the two nodes i^{\prime} and $i^{\prime \prime}$ adjacent to the core start broadcasting an Initiate-message carrying the wright $w\left(e^{\prime}\right)$ as an argument to nodes on their "side" of the fragment $F^{\prime \prime \prime}$, i.e., node i^{\prime} and node $i^{\prime \prime \prime}$ start broadcasting an Initiate-mesage to nodes in $F^{\prime \prime}$ and to nodes in $F^{\prime \prime}$ respectively. Except the name, the Initiate-message also carries two other argumentis: the new level and the argument find. The significante of the level ass an sugment will be explained below; the significance of the argumerit fird will be explained in section 6.7. Upon receipt of an lnitiate-message node ? records the new name in its variable $f n_{i}$ (thus, $f n_{i}$ records the name of its fragment as far as "known" to node i) and the new level in its variable $l n_{i}$; Furthermore, the node is placed in the fordstate, ine, the variable $s n_{i}$ is assigned the velue find Then the edge atong which node bas received the Initiate-message is recorded in the variable inbramchi. The reason for doing so will be explained below. Thereafter the Initiate-message is sent by node i along all its adjacent edges in $F^{\prime \prime \prime}$ except the ore identified by its variable inbrament. As such this broadcasting is similar to the broadcasting of information in Segall's PIF-protocol [Ge80] when the graph constitutes a tree.

After a node in $F^{\prime \prime \prime}$ has sent the initiate message to all neighbors "downtree" in $F^{\prime \prime \prime}$ it starts searching for its minimum-weight outgoing adjacent edge. For this purpose, as argued above, it suffices for nodes to investigate edges in the state basic only. Now, if a node has no outgoing edges in the state basie, then it is done. (It has no outgoing edges.) Otherwise, it sends a Test-message on its minimam-weight adjacent edge in the state bosic. This message carries two arguments: the fragment's (new) name and the fragment's (new) level as it has been recorded by the sender of the message-

A node receiving the Test-mestage wath until its own lewel (recorded in the variable in) is grater than or equal to the one in the Test-message. (The reason for this delay is explained below.) If so, it checks whether the name of its own fragment equals the one in the Test-message. In case these names coincide, it sends a Reject-message back to the sender of the Test-message. This Reject-message serves for informing the node at the other end of the edge that the edge connects two nodes in the
same fragment. If, on the other hand, the same of the node receiving the Teat-message differs from the one in the Test-message, then the two nodes belong to different fragments. The receiver of the Tent-message will, in this cate, send an Accept-message beck to the sender of the Test-message in order to inform this node that the edge connects two nodes in different fragments. These conventions enable nodes to determine whether edges are outgoing gnes (see claim 1, claim 2, and assumption 3 below). The reason for a node receiving a Test-mensage to wait until its own kevel is greater then or equal to the one: in the Test-message is the following: if a node reccives a Test-message with a level greater thans its own level, then
it conld be in the same fragmenti as the sender of the Test-message, while it has not yet recejved the new name and the new level, or
-- it could be in another fragment than the sencler of the Test-message (thas, with another name, if axy).

Consequatity, if the level of the reaciver of the Test-message is too low, then it has no way of determining which of these cases sctually occurs. This problem is solved by inchuding the delay, In theorem 6.1 we show that this delay does not lead to a deadlock. (In the program describing Gallager's algorithm a. node delays some message from being processed by replacing it at the end of the node's message queue.)

A node that has received a Rejochmessage along one of its adjacent edges places that edge in the rejected-state, since the edge connects two nodes in the same fragment, and contimues its search for its minimum-weight outgoing adjacent edge by selecting the next possible one and sending a Test-message along this edge.
In some cases, a response to a Test-meseage is superfluous. The designer's of Gallager's algorithm have achieved some optimization w.r.t. the number of transmitted messages sent by nodes participating in the task considered here: if a node has transmitted a Test-message along, say, edge e and it receives a Test-message with the same name and level as its own, then it simply marks the edge as rejected, since the rodes adjacent to this edge have the same asme and, chus, belong to the same fragment, and continues its search for the minimum-weight ontgoing adjacent edge immediately, without sending a Reject-mestage along this edge.

If a thode has received an Accepl-message as a response to one of its Test-messages, then it has found its mininnum-weight outgoing adjacent, edge.

After finding the minimum-weight outgoing adjacent edges, the modes in $F^{\prime \prime \prime}$ must cooperate to determine the minimum-weight outgoing edge of $F^{\prime \prime \prime \prime}$. At this stage the significance of the variables inbranch $_{i}$, for nodes i in V, becomes clear. Due to the variables inbranch ${ }_{i}$, each node in $F^{\prime \prime \prime}$ is able to trace the path to the node odjacent to the core " 0 n its side of the fragment". This is true because each node in $F^{\prime \prime \prime}$ has recorded the edge along which the Initiote-message has been received and the Initiote-mescages have fown from each of the nodes adjacent to the cose "downtree on its side of the fragraent $F^{* t t r}$.

Before actually determining the minimum-weight ontgoing edge of $F^{\prime \prime \prime}$, the weight of this edge is determined. This part of the algorithm is very similar to the reporting phase, describing that the required information has been received indeed, in Segall's PIF-protocol; each leaf in the fragment $F^{\prime \prime \prime}$ sends a Report-message "uptree". This message carries the weight of its minimum-weight, outgoing adjacent edge. In case no such edge exists, this "weight" equad the fictitions weight ∞, An interior node waits until it has received all Report-messages from the nodes "downtree". Thereafter it sends a message Report(W) "uptrec", Wheing the minimum of all the values received in the Report-messages and the weight of its own minimum-weight outgoing adjacent edge. Then it goes into the found-state, since its own contribution to its search to the minimum-weight outgoing edge of the fragruent $F^{\prime \prime \prime}$ has been completed. This contribution of a node in $F^{\prime \prime \prime}$ to the task considered here thus consists of
n cooperating in supplying the nodes in $F^{\prime \prime \prime}$ with the new name and level of their fragment,

- finding its own minimum-weight outgoing adjacent edge, and
- reporting the minimum of the weights of the mininum-weight ontgoing adjacent edge, including its own, of nodes "down-trec".

Eventually the nodes i^{\prime} and $i^{\prime \prime}$ adjacent to the core will exchange the Report-messages. This enables these nodes to determine whether an outgoing edge of the curxent fatagment $F^{\prime \prime \prime}$ exists. If so, these nodes are able to determine the weight of this edge and, also, on which side of the fragment this edge lies. Otherwise, i, $e_{\text {, }}$ if no outgoing edge exists, the algorithm terminates and the fragment $F^{\prime \prime \prime}$ is the minimun-weight spanning tree T of the graph (V, E) (cf, theorem 4.2(b)). This discussion concludes our description of the task considered in this subsection.

The program associated with this task consists of, for each node in in $F^{\prime \prime \prime}$, the program segments labeled C_{i} in figure 2. The program $\|_{i \leq v^{\prime \prime}} C_{i}$ does not describe the task, however. (Recall that $V^{\prime \prime \prime}$ denotes the set of all nodes in the fragment $F^{\prime \prime \prime}$.) The reason is that nodes outside the fragment $F^{\prime \prime \prime}$ also
contribute to this task, because they may send Accept-messages (and not otherwise) to nodes in $F^{\prime \prime}$ when they repous to That-messages received from nodes in $F^{\prime \prime \prime}$. Consequently, we must alsas inchade the program segments of nodes outside $F^{\text {th }}$ that are activated to send Accept-messages.

Definition 6.6 Let, for nodes $\%$ ontside the fragment $F^{\text {e" }}$ which are connected by some edge with a certain node in $F^{\prime \prime \prime}$, the segments labeled (6) in i's loop in figure 2, viz, "response to receipt of Test $\left(\mathbf{1}, \Gamma\right.$) on edge $e^{\prime \prime}$ where a is adjacent to fragment $F^{\prime \prime \prime}$, together with their bodies be denoted by T_{i}. Tet $N\left(V^{\prime \prime \prime}\right)$ denote the set of all those nodes outside $V^{\prime \prime \prime}$ which are connected by some edge with a certain node in $V^{\prime \prime \prime}$. The program asociated with the task considered here is then described by $S_{y} \equiv\left\langle\|_{i \in V^{\prime \prime}} Q_{i}\right) \|\left(\|_{i \in N\left(V^{\prime \prime}\right)} T_{i}\right)$.

In the program S_{3} below, apart from variables already described, one can discern the following variables:
... testredge , to record the edge being tested by node i for outgoingness, best-wt ${ }^{\text {, }}$ to record the minimum-weight of all the weights received so far from nodes "downtree" ancl tle: weight of node i's own minimum-weight outgoing adjacent edge (determined so far). and

- best-edge , to record the endge that hat mupplied noden is with the value recorded hy the variable hest-wtin.

Note that the variables firdeotant; are usedt to determine whether all Report-mestages from node is neighbors "downtree" has been received (cf. lemma 6.4(f) below),

Lemmat 6.4 Assume that assumption 1, assimption 2, property 1, property 2, and the induction bypothesis (IHI) hold. Let program S_{2} 's postcondition (cf. lemma 6.3 above) be progam S_{3} 's precondition. Then the following holds for program Sy:
(a) $\forall i \in V^{m},\left(s n_{i}=f i n d \vee s n_{i}=\right.$ found $\left.d\right) \wedge$
$\wedge \forall i \in V^{\prime \prime \prime} . \forall e \in F_{f}\left(s e_{i}(e)=b a s i c \quad V \operatorname{se}(e)=r e j e c t e d V s e_{t}(e)=b r a n c h\right)$ is an invariant.
(b) For all $i \in V^{\prime \prime}, i \notin\left\{i^{\prime}, i^{\prime \prime}\right\}, i$ will receive the message Initiate $(L+1, w(e)$, find $)$ exactly once and no node outside $V^{\prime \prime \prime}$ will ever receive this message. (Recall that $i^{\prime} \in V^{\prime}$ and $i^{\prime \prime} \in V^{\prime \prime}$ are the two node adjacent to the core e^{\prime} of the fragrnent $F^{\prime \prime \prime}$.) Any such Initiate-message received by a
certain node in $V^{\prime \prime \prime}$ has been transmitted by its father node when the fragment $F^{\text {th }}$ is assumed to be consisting of two fragments rooted at the nodes i^{\prime} and $i^{\prime \prime}$. The edge along which the Initiate-message is received by node i is recorded by the variable inbranch h_{i}.

Eventually, the following is natisfied:
$\forall i \in V^{H \prime \prime} .\left(l n_{i}=L+1 \wedge f n_{i}=w\left(e^{t}\right) \wedge s n_{i}=f i n d\right)$, and taking into account the directions of edges as suggested by the variables inbranchi, i.e., if inbranch $=e$ then edge e is directed from node ito the node at the other end of e, we also have that
(V^{\prime} : $\left\{\right.$ inbraneft $\left.b_{i} \in E^{\prime} \mid i \in V^{r}\right\}$) forms a directed tree rooted at node i^{\prime} and ($V^{\prime \prime},\left\{\right.$ inbronch $\left.\mathcal{I}_{i} \in E^{\prime \prime} \mid i \in V^{\prime \prime}\right\}$) forms a directed tree rooted at node $i^{\prime \prime}$.

Furthermore, inbranch $i^{\prime \prime}=$ inbranch $_{\mathrm{i}^{\prime \prime}}=e^{\prime}$ is an invariant.
(c) For all nodes $i \in V^{\prime \prime \prime}, i \notin\left\{i^{\prime}, i^{\prime \prime}\right\}$, if node i has received the Initiate-message along edge c, then indranef $_{i}=e$ holds ats a postcondition for the body of "response to receipt of Initiate $(\mathbf{1}, \mathbf{f}$, s) on edge e" and it will remain so afterwards.
(d) For all $i \in V^{\prime \prime \prime}, l n_{i}$ is nom-decreasing.
(e) If node $i \in V^{\prime \prime \prime}$ transmits an Initiate-message along edge e, then $s e_{i}(e)=b r a n c h$ holds as a precondition for the corresponding action. It transraits such a message before it transmits any other messages associated with this task.

If node $i \in V^{\prime \prime \prime}$ reccives an Invitiate-message along edge c, then $s c_{;}(c)=b r a n c h$ holds as a precoridition for the corresponding action.
(f) For all $i \subseteq V^{\prime \prime \prime}$, at each point in any computation sequence if findcount $\boldsymbol{r}_{i}=n$ holds for some natural number n, then n equals the number of Initiate-messages (with third argument find) minus the number of Report-messages procested by node i that have boen reccived aloug edges different from the one identified by inbranch ${ }_{i}$.
(g) No node in $V^{\prime \prime \prime}$ will receive a Connect-message from any other node in $V^{\prime \prime}$.

The proof of the above lemma is straightforward.
The most diffecult part of the program S_{3}, and of Gallager's algorithm, is that part associated with the actual search of mintwedge ($F^{* \prime \prime}$) on which we shall now concentrate.
According to the description of the task considened in this subsection each note in $V^{\prime \prime \prime}$ will, at any
time, invetigate at most one edge when it is searching for its minimum-weight outgoing edge. This observation leads to the notion of an unanswered Test-message. Intuitively, a Test-message is unanswered if it haw been transmitted along some node's adjacent edge and the node has not yel determined whether that edge is an ontgoing one.

Definition 6.7

(a) A node i $G V^{\prime \prime \prime}$ has an urnanswered Test-message on edge $e \in E_{i}$ iff i has transmilted a Testmessage along enge e and the following holds: se: $(e) \neq$ frejected and i has not processed an Acowhmessage received along e atter it has transmitted thin Test-message.
(b) Node ic $V^{\prime \prime \prime}$ has an unonswored Test-message iff i has an mariswered Test-message on some edge $e \in E_{i}$.

Obviously, if a node receives a Reject-mesbage or an Accept-message along one of its adjacent edges, then the node has an manswered Test-message on this edge.

We clain that when a node in $F^{\prime \prime \prime}$ starts participating in the task described by the program S_{3} it has no unanswered Test-messages. This holds because of the following;

- When a node in $F^{m p}$ participates in the tasks described in the subsections 6.1 and 6.2 it does not send any Test-messages. During execution of the programs S_{4} and S_{5} which will be introduced in the nert two subsection no Test-messages will ever be sent by any node in $F^{\prime \prime \prime}$, (This is obvious from S_{4} 's and S_{5} 's program texts.)
- When a node starts participation in the task described in this subsection for the firit time, that is, after a fragment consisting of a single node has bem combined with another fragment as described in section 6.2 for the first time, it has no unanswered Test-messages.
- When a node has completed its participation in the task described in this subsection it hats no unanswered Test-mestages (cf. lemma b.8(a) below).

As a consequence, the following lemma is true:

Lemma 6.5 For all modes $i \Subset V^{\prime \prime \prime}$,
(a) At any time i has at most one unanswered Test-mebsage.
(b) If i has some unanswered Test-message on edge $e\left(e \in E_{i}\right)$, then test-edge $e_{i}=e$ holds.

Proof

Both (a) and (b) are proved by an inductive argument.
From the discussion above it follows that, in order to prove the lemma, it suffices to show that the properties (a) and (b) arc satisfied for the program Sy. From same discussion it follows that (a) and (b) hold in the initial state of the program S_{3} -

Now suppose that (a) and (b) hold up to a certain point in a computation of S_{3} (the induction hypothesis).
(a) If node i has some unanswered Test-message and transmits another Test-message thereafter, then node $:$
(i) differs from the nodes i^{t} and $i^{\prime \prime}$ and it responses to an Initiate-message, i.c., it executes the prograna segment labeled (5) in figure 2,
(ii) is cither i^{\prime} or $i^{\prime \prime}$ and it executes the program segment labeled (3) belonging to the part labeled C_{i} in figure 2,
(iii) responses to sonae Test-mestage received alory edge e where testeedgef=e holds, (cf. the program segment labeled (6) in figure 2), or it
(iv) responses to an Reject-message, i.e.,
it executes the program segment labeled (8) in figure 2.
Case (i) cannot occur, since this implies that a Test-mestage has been sent by node i before it has transmitted an Initiate-message, which contradicts lemma 6.4(e), or it implies that node ; receives more than two Initicte-mestages during execution of the propram S_{3}, which contradicts lemma 6.4(b).

Case (ii) cannot occur because of lemma 6.4(g).
If case (iii) occurs, then, by the induction hypothesis, node i's unanswered Test-message has been transmitted along edge e. This message, thus, becomes answered, i.e., not unanswered, when it processes the other Test-message. Therefore, when node i transmits the latter Testmessage it has no unanswered Test-messages. By the same argument it car be shown that the lemma remains true when case (iv) above occurs.
(b) The prows should now be obvious.

Using lemroa 6.5, it is straightforward to prove that the following holds when the program S_{s} is executed:

Lemmat 6.6 For all nodes $i \in V^{\prime \prime \prime}$ and edges $e \in E_{i}$ (thus, $e \neq$ rill holds),
(a) If i has in unanswered Test-message on edge f , then $s \pi_{i}=$ find holds.
(b) A Testmessage can be transmitted by i only after it has transmited an Intiate-message (with third argument find , and whenever i transmits a Test-message $4 n_{i}=$ find holds.

 precomolition.
(d) If itransmits a Test-mensuge along edge ce, then of is the minnoun-weight adjacont edge of i in the state bruik, and i will never receive two or more messages of the following type along this edge while performing the program S_{3} : An Accept-, a Reject, or a Test-nessage with its own mature ats an argument.
(e) Ouce of in the branch-state from mome i's point of view, then it remains so afterwards.

During execution of the program S_{3} no edge is placed in the branch-state.
Ouce e is in the rejected-state from node a's point of view, then it remains so afterwards.

Since the weight of the core is chosen as the name of any non-trivial fragment, we also have the following lemma, whose proof is obvious.

Lemmin 6.7 For all nodes $i \in V^{m}$,
(a) If i receives a massage Initiole (l, f, s), then $f n_{i} \neq f$ holds as a procondition. Here, we assume that if $f n_{i}$ does not have a defined value, then it differs from any defined valuc.
(b) The variable $f n_{i}$ (for wode i different from i^{\prime} and $i^{\prime \prime}$) can change only, possibly from an undefined value to a defined one) after node i has rectived an Ituitiate-message.
(c) If i receives a message Pritiatc (l, f, s), then $l n_{i}<l$ holds as a precondition.

It also follows that when two nodes are combined into a larger one always a rew name is chosern. This is an immediate consequence of the fact that when w(a) is chosen to be the name of a fragnemt, e is an edge of that fragment while before that moment e bas not been in that fragment. Consequently, it follows from lemma 6.7 that any name occurs at most at one level.

Next, consider the case that a certain node i in V^{m} has an unanswered Tent-message on edge e. This implies that i has transmitted a Test-message along edge e and that it has not processed an Accept, a Reject, or a Testmessage with its own name (hence, with its own level) received aloug edge e afterwards. From lemma 6.5(b), it follows that test-edge $=$ =e holds. Now, either (A), (B), (C), or (D) below occurs:
(A) i deadlocks. That is, the Twst-micsage remains unanswered. As a consequence, test-edgen $=$ e: continuousiy holds afterwards.
(B) i will receive an Accept-messede along edge e, say from node j -

Claim 1: $j \not \ddagger V^{\prime \prime \prime}$ holds.
Proof: The proof is by contradiction. Suppose that $j \in V^{\prime \prime \prime}$ holds. When node j transmits an Accept-noessage along edge ε, then $l r_{j} \geq l n_{i}-L+1$ and $f n_{j} \neq f n_{i}$ hold. Since $j \in V^{\prime \prime \prime}$, $m_{j} \leq L+1$ holds, too, when executing the program S_{3}. Whence, $m_{i}-m_{j}$ holds. Consequently, we obtain that $f n_{i}=f i_{j}$ is satisfied (, otherwise, node j, in the same fragment as node $i_{\text {, would }}$ have received the same level, but yet another name than j; contradiction). This contradicts the assumption that $f n_{i} \neq f n_{j}$ holds when node j has transmxitted the Accept-message to node i.
(C) i will receive a Reject-message along edge e, say from node j.

Claim 2: $j \in V^{\prime \prime \prime}$ holds.
Proof: When node j transmits the deject-message along edge $e_{,} l n_{j} \geq l n_{i}=L+1$ and $f n_{j}=f n_{i}$ hold. Since $\ln _{i}=l n_{j}$ holds at that time, to 0 , it follows that the nodes i and j belong to the same fragment. (Recall that no node outside the fragment $F^{\prime \prime \prime}$ will ever receive the name $w\left(e^{\prime}\right)$, cf. lemma 6.4).
(D) i will receive a Test-message along edge e, say from node j, carrying the same name and level as its owni.

In this case $j \in V^{-4 t}$ holds. The proof is similar to the one given in (C) above.
From these case-distinction and from S_{3} 's program text, we can now conclude that eventually onc of the following is satisfied for node $i \in V^{m}$:
(a) i deadlowk. I.e, from a sertain point in the computation of the program so test-cdge: $=$ e continuondy holds for a certain edge $e \in E_{i}$.
(b) test-dges $=$ nil and i has received an Accept-message along edge $e, e \in E_{i}$. This implies that edge e is mode i's minimum-weight outgoing adjacent edge.
 At this stage we canol prove that the first possibility, i.e., (a) alnove, will never occur. That is, we canmot conclude unw that eventually each node in V^{m} will eventually determine its minimumweight outgoing adjacent edge (, if any). In order to do so, wo have to incorporate that low-level fragments which attempt to combince with high-level ones are immediately "ahworted" by these highkevel lragnents. In theorem 6.1, we will show that Gallager's algorithin is deadlock free,

At this stage we make the following assumption:

Assuthption 3; Eventually, for all nodes $i \in V^{\prime \prime \prime}$, (ither (b) or (c) above will occur.

Observe that this askmption innplies that eventually node i will find its mirimum-wcight outgoing edge, provided that this edge existis.

Wodes in $V^{\text {th }}$ that have determined their minimmi-weight outgoing adjacent edge must cooprate to determine the weight of their fragment's minimum-weight ontgoing edge. This is the subject of the following lemma.

Lemma 6.8 For the program ξ_{3} the following is satisfied:
(a) Each node $i \in V^{\prime \prime \prime}$ will trammit exacly one Reportrmessage. When this occurs it has no unanswered Test-messages.
(b) A node $i \in V^{\text {(if }}$ transmits the Feport-message along the edge identified by its variable inbranch: Consequently, any Report-message is sent along an edge in the branch-state (cf. lemma 6.4(b,c) and lemama 6.6(c)).
(c) If node $i \in V^{\prime \prime \prime}$ transmits the: Report-message then it has received a Report-message along each of its adjacent adges in the branch-state except for the one identified by its variable inbratach. .

Observe that when a mode in $V^{\prime \prime \prime}-\left\{p^{\prime \prime}, i^{\prime \prime}\right\}$ transmits a Report-message along one of its adjacent edges, it has received an Initiate-message along that edge earlier. Due to this observation, to the property
formulated in (c) above, and to the fact that no variable irbranch h_{j} of nodes j "downtree" in $F^{F "}$ can change after node i has transmitted a Report-message we can consider directed subtrees of $\boldsymbol{F}^{d, i}$ and $F^{14,}$ at any point of S_{3}^{\prime} 's execution when node i in $V^{\prime \prime, i}$ and $V^{r, i}$, respectively, transmits a ReportmensageDefine for node $i \in V^{\prime}$ the directed tree $F^{\prime, i}$, rooted at i (taking into account directions suggested by the variables inbranche for node ℓ in V^{+}, cf. lemma $6.4(b)$), by $F^{i, i}=\left(V^{j, i}, E^{r, i}\right)$ where the following is satisfied:
$V^{\prime, k}=\left\{\begin{array}{l}\{i\}, \text { if } \cdots \ell \in V^{\prime} \ell \neq i \wedge \text { inbranche } \in E_{i}^{\prime} \\ \{i\} \cup \cup\left\{\ell \in V^{\prime} \mid \ell \neq i \wedge \text { inbranch } \in F_{i}^{\prime}\right\} \cup \bigcup\left\{j \in V^{\prime} \ell \mid \ell \neq i \wedge \text { inbranch } \in E_{i}^{\prime}\right\}, \text { otherwise }\end{array}\right.$ and
$E^{\prime, i}=\left\{\begin{array}{l}0, \text { if } \cdots \exists \ell \in V^{\prime} \ell \neq i \wedge \text { inbronch } \in E_{i}^{\prime} \\ \left\{\text { inbranch } \mid \ell \in V^{\prime, i} \wedge \exists j \in V^{\prime, i} \text { inbranch }_{j} \in E_{i, \ell}\right\}, \text { otherwise. }\end{array}\right.$
The directed tree $F^{\prime \prime, i}$ rooted at $i \in V^{\prime \prime}$ is definci in the same way, We then have the following property:
(d) For all nodes $i \in V^{\prime}$, if i transmits a Report-message with argument W then $s n_{i}=$ found continuously holds afterwards and W equals the minimum of all weights of edges esuch that e is ans outgoing edge of the fragment $F^{\prime \prime \prime}$ and e is adjacert to some node in the tree $F^{t, i}$. Here, $W=\infty$ iff no such edge exists. The same property holds, of course, alls for nodes i $\epsilon V^{\prime \prime}$ with $F^{r, i}$ repiaced by $F^{\prime \prime, i}$.
(e) Eventually, for all nodes $:$ in $V^{\prime \prime \prime}$, findcount ${ }_{i}=0$ continuously holds (again). findcount $t_{i}=0$ can only hold if $n_{i}-$ found is satisfied. Eventually, the nodes i^{\prime} and $i^{\prime \prime}$ will exchange a Report-message along the core c^{\prime}.
(f) During execution of the program S_{s}, the following property invariantly holds for all nodes $i \in V^{\prime \prime \prime}$; either best-wt has anl undefined value, or best-wt t_{j} has a defined value and
$\left(b e s t-w t_{i}=\infty \Rightarrow b e s t-e d g e_{i}=\right.$ nil $) \wedge$
$\wedge\left(b e s t-u t_{i}<\infty \Rightarrow \exists e \in E_{i}\left(b e s t-e d g c_{i}=e \wedge\left(s e_{i}(e)=b r a n c h \vee s e_{i}(e)=b a z i c\right)\right)\right)$.
(g) Evcntually, best-wt has a defined value and the value for the variable best-wt t_{f} has been supplied along the edge identified by the variable best-edge $\left(i \in V^{\prime \prime}\right)$.
(h) When node i transmits a Report-message, then this message carries best-wti as an argument.
(i) i^{\prime} and $i^{\prime \prime}$ are the only nodes \bar{i} in $V^{\prime \prime \prime}$ that will receive a Report-message along the edges identified by the variable indranch ${ }_{\text {i }}$.

If in the final statw of any execution of the program S_{3}, beat-wt $i^{\prime}=b e s t-w t_{i^{\prime \prime}}$ holds then this is equivalent to best-wt $t_{i^{\prime}}-$ best- $u t_{i^{\prime \prime}}-\infty$, since distinct edges have distinct weights, which implies that $F^{\text {th }}$ has no outgoing edges, see (d) and (h) above, which implies that $F^{\prime \prime \prime \prime}=T$ holds.
It follows that if the algorithm terminates, i.e., if the nodes adjacent to fragnent $F^{\text {rtt }}$ s core have executed the halt-statement, then the minimum-weight spaning tree T has been constructed. In that, case the postcondition iq formulated in section 5 then holds.
If the algorithm does not terninate, i.e, no halt-statement has been exempech, then kost-w t_{i}; \neq best--wt $i_{i "}$ hiohls.
(j) A node is in $V^{\prime \prime \prime}$, $\left\{\nexists\left\{i^{\prime \prime}, i^{\prime \prime}\right\}\right.$, completes its contribution to the program S_{3} when it transmits a Report-message. A node $i, i \in\left\{i^{\prime}, i^{\prime \prime}\right\}$, completes its contribution to the program S_{3} when it has looth sent and reccivel a Report-message along the edge e^{\prime}, and it has either executed the halt-statement or it las determined that the value of its variable bert-wif differs from the value received in the Report-message. (These are the termination conditions.)

It should be clear that during execution of the program S_{3}, property $2(a, b)$, see section 6.2 , invariantly holds. Also upon termination of S_{y}, property 1 and for all $i \in V^{\prime \prime \prime}$, snif found hold.

6.4 Notifying the node adjacent to the fragment's minimum weight outgoing edge

Suppose that the algorithm has not, constructed the minimum-weight spanning tree. Tn that case, in the final state of the program S_{3}, best-wt $t^{\prime} F^{\prime \prime}$ best-w $t_{i^{\prime \prime}}$ holds. The nodes in $V^{\prime \prime \prime}$ should accomplish the task of notifying the mode in $V^{\prime \prime \prime}$ that it is adjacent to fragrasnt $F^{w \prime \prime}{ }^{\prime}$ minimum-weight outgoing edge. Assume that best-wt $t_{i^{\prime}}<$ best-wt $_{i^{\prime \prime}}$ holds in program $S_{y^{\dagger}}{ }^{\text {s }}$ final state. (The other case is similar.) Clearly, best-wt $t_{i^{\prime}}$ is the weight of fragment $F^{\prime \prime \prime}$'s minimum-weight outgoing elge. Denote this edge by $e^{\prime \prime}$. Due to lemma $6.8(f)$ and (g), the path pt to the node ℓ in $V^{\prime \prime \prime}$ adjacent to this edge can be traced from node i^{\prime} by following the edges identified by best-edge' for nodes i along $p t$. A message Change-Rioot is sent along the edges constituting the path pt from until this message has arrived at node ℓ. It remains to describe how a node along the path pt "knows" whether it is adjacent to edge $e^{\prime \prime \prime}$. This is trivial, hepwever. If for a node i along $p t_{+} s c_{i}\left(b e s t-e d g e_{i}\right)=$ branch holds, then the edge identified by best-cdge is ans edge in $F^{\prime \prime \prime}$; otherwise, se $e_{i}\left(b e s t-e d g e_{i}\right.$) $=$ basic holds (cf. lemima 6.8(f)) and the ealge identified by best-edge; is an outgoing one.

The program S_{4} associated with the task considered here is defined below:

Definition 6.8 Define $S_{4} \equiv \|_{i \in V^{\prime \prime \prime}} D_{i}$ (cf. figure 2 in section 4.3).

Lemma 6.9 If the program S_{4} is executed in programin S_{3} 's final state for which best-wt $t^{\prime \prime} \neq$ best-wt ${ }_{2}{ }^{\prime \prime}$ holds, then
(a) no prograna variable is ever changed, and
(b) nodes i different from ℓ on the path from the node t^{\prime} when best-wt $t^{\prime}<$ best-wt $i^{\prime \prime}$ is satisfied, or from the node $i^{\prime \prime}$ when best-wt $t_{i \prime}<b e s t-w t_{i^{\prime}}$ is satisfied, to the node ℓ in $V^{\prime \prime \prime}$ adjacent to minwedge $\left(F^{\prime \prime \prime}\right)$ complete their participation in S_{4} after transwitting a message Change-Rooh. Other nodes in $V^{\prime \prime \prime}$ different from ℓ rever execute any statement in the program S_{4}. Node ℓ completes its participation in S_{4} after it has determined that se $\left(\right.$ best-edge $\left.e_{\ell}\right) \neq$ branch holds. (Cf. the program segment labeled (12) in figure 2.)

6.5 Sending a Connect-message on the minimum-weight outgoing edge

After the nodes in the fragment $F^{\prime \prime \prime}$ have determincel the weight of $F^{\prime \prime \prime}$'s minimum-weight cutgoing edge $e^{\prime \prime \prime}$ and after node $\mathbb{E}^{\text {in }} F^{\prime \prime \prime}$ adjacent to $e^{\prime \prime \prime}$ has been notifich about this, the fragment $F^{\prime \prime \prime}$ attempts to combine with the fragment, say $F^{\prime \prime \prime \prime}$, at the other end of $e^{\prime \prime \prime}$. In order to do so, node ℓ sends a Connect-message carrying $F^{\prime \prime \prime}$'s level, i.e., $L+1$, 35 its argument. Assume that $F^{\prime \prime \prime}=\left(V^{\prime \prime \prime}, E^{m \prime \prime}\right)$ holds and that node $k \in V^{\prime \prime \prime \prime}$ is adjacent to edge $e^{\prime \prime \prime}$. Also assume that the fragment $F^{\prime \prime \prime \prime}$ is at level $L+1$ and that k has transmitted a Conncet-message along edge $e^{\prime \prime \prime}$, too. Then the two fragments will be combined into a larger fragment $F^{\prime \prime \prime \prime \prime}$ as described in section 6.2. For $i \in V^{\prime \prime \prime} \cup V^{\prime \prime \prime \prime}$, node i participates in the task of combining these fragments (as described above), when it executes the program segments labeled E_{i}^{1} or E_{i}^{2} in the figure shown in figure 2.

Definition 6.9 Let $G_{;}$denote the program segment consisting of node i's program segracnts labeled E_{i}^{l} or $E_{i}^{?}$. Define $S_{5} \equiv \|_{i \in V^{\prime \prime \prime} \cup V^{\prime \prime \prime}} G_{i}$.

Lemms 6.10 Under the aforementioned assumptions, lemma 6.3 holds for the program S_{5} when in that lemma $F^{\prime \prime \prime}, L, \epsilon^{\prime}, i^{\prime}$, and $i^{\prime \prime}$ are replaced by $F^{\prime \prime \prime \prime \prime}, L+1, \epsilon^{\prime \prime \prime}, b_{1}$ and k respectively,

Observe that if nods ℓ in the fragment $F^{\prime \prime \prime}$ transmits a Connect-message along edge e, then this message carriss $F^{m \prime \prime}$'s level as an argument and mituwedge($F^{m \prime}$) holds. Also observe that the Connect-message is then transmitued along an edge masked as a branch. From the property formulated after lemma 6.8 and from lemma 6.9, it also follows that all nodes in the fragment $F^{\prime \prime \prime}$ are in the found-state when the Connect-message is sent. This establishes the induction step (cf. section 6.2, where the induction bypothesisis (IFI) has been formulated).

6.6 Combining the above specifications

Above we have associated a specification to each program describing one of the subtasks (cf. section 4.3). Each specification consists of, for cach node i participating in the respective progran, a precondition pret, a postcondition post ${ }_{i}$, an invariant I_{i}, and a termination condition T_{i}. These assertions have been formated in the lemmata 6.1 through 6.10 . We now apply the principle of section 3.3 in order to obtain one algorithm that describes that from a logical point of vicw the five tasks are performed sequentially and repeatedly. In ords to do so, otserve that the programs which have been analyzed above may involve distinct set of nodes. This can be seen, e.g, with the programs S_{2} and S_{3}. Progran 5_{2} describes how two fragments F^{\prime} and $F^{\prime \prime}$ are combined into a larger fragment $F^{\prime \prime \prime}$ (see section 6.2). In this program all modes of the fragment $F^{\prime \prime \prime}$ are considered. Whereas in program S_{3}, which describes how the minimum-weight outgoing edge of fragment $F^{\prime \prime \prime}$ is determined, apart from nodes in $F^{\prime \prime \prime}$ also neighboring nowles of $F^{\prime \prime \prime}$ are considered.

The principle below states how the set of nodes involved in a certain program can be aggnented while proserving all properties of the original program,
The intuition behind this principle is as follows:
Lat. $D=<V^{\prime},\left\{p_{i} \mid i \in V^{\prime}\right\}, A c t^{\mathcal{D}}>$ be some algorithm. By assumption (see section 2), no node outside V^{\prime} is actuaily involved in \mathcal{D}. Let $V^{\prime \prime}$ be some set of nodes satisfying $V^{\prime} \subseteq V^{\prime \prime}$. Nodes in $V^{\prime \prime}-V^{\prime}$ do not actually participate in \mathcal{D} (as has been observed above). Consequently, if p_{i} is an arbitrary state assertions of nodes $i \in V^{\prime \prime}-V^{\prime}$) cbaracterizing node i's precondition and if p_{i} does not refer to variables which can be changed by undes different from i, then p_{i} is an invariant and a termination condition for node $i\left\{i \in V^{\prime \prime}-V^{\prime}\right.$ when the algorithm $\mathcal{P}^{\prime}=<V^{\prime \prime},\left\{p_{i} \mid i \in V^{\prime}\right\} \cup\left\{p_{i} \mid i \in V^{\prime \prime}-V^{\prime}\right\}$, Act $\mathcal{P}>$ is executed. This idea leads to the following principle:
.- Let $D=<V^{\prime},\left\{p_{i} \mid i \in V^{r}\right\}, A c t{ }^{\mathcal{D}}>$ be some algorithm.

- Let $D_{\text {sat }}<\left\{I_{j} \mid j \in V^{\prime}\right\},\left\{T_{j} \mid j \in V^{\prime}\right\},\left\{q_{j} \mid j \in V^{\prime}\right\}>$ hold.
- Let $V^{\prime \prime}$ be a set satisfying $V^{\prime} \subseteq V^{\prime \prime} \subseteq V$.
- Let for $j \in V^{\prime \prime}-V^{\prime}$ state assertions p_{j} be given. Assume that nume of these assertions contain any programming variables which can be changed by actions of nodes different from j, and that. they do not contain proof variables $\rho_{\ell}(e)$ and $\sigma_{\ell}(e)$ for nodes $\ell \neq j$.
- Define for $j \in V^{\prime \prime}-V^{\prime}, I_{j} \equiv p_{j}, T_{j} \equiv p_{j}$, and $q_{j} \equiv p_{j}$.

Then the following is satisfied for algorithm $\mathcal{D}^{\prime}=<V^{\prime \prime},\left\{p_{i} \mid i \in V^{\prime} \cup V^{\prime \prime}\right\}$, Act $t^{\mathcal{D}}>$:
$-T^{\prime}$ sat $<\left\{I_{j} \mid j \in V^{\prime \prime}\right\},\left\{T_{j} \mid j \in V^{\prime \prime}\right\},\left\{q_{j} \mid j \in V^{\prime \prime}\right\}>$.

The soundress of this principle is obvious.
We now combine the prograns that have been analyzed in the sections 6.1 through 6.5. Each one descibes how some fragment solves a certain task. In order to do so, we may sssume, as described by the principle above, that, all programs involve the same set of nodes. The combination can thent be achieved by means of the principle for formal sequentially phased reasoning (ice section 3.3). It must therefore be shown that all verification conditions required for a sound application of the latter mentioned principle are satisfied. For each of the programs involved in the combination, we have derived invariants and termination conditions in the lemrnata 6.1 through 6.10. It is straightforward to verify all the other verification conditions (ef. also section 6.7 for the case in which a Connectmessage is received by a node too "early", i.e., if this message is received along an cdge not in the branch-state). The complete proofs are, however, quite lengthy and do not provide us with more insight in Gallager's algorithrn. Therefore, as an illustration that all verification conditions of the principle are satisfied, we concentrate on the requirement that each node can (actually) participate in one subtask at a time. We consider two cases:
(I) A node which participates in the program S_{2} cannot participate in the program S_{5}. (These programs have been defined in the sections 6.2 and 6.5.) This holds because of the following: If node i participates in program S_{2}, then $s n_{i}=$ sleeping $V / n_{i}=0$ holds. If node i participates in program S_{b}, theri $s r_{i}=$ found holds and it has received a message Chango-Root, which in turn implies that it has increased its level carlier, i.e., $l n_{i}>0$ holds. It is now obvious that node i
cannot participate in the programs S_{2} and S_{5} at the same time.
(II) A node cannot participate in the program $S_{2}=\|_{\text {se }} V^{\prime \prime \prime} B_{\text {i }}$ when it is part of a fragment ($V^{\prime \prime \prime}, E^{\text {rt }}$) at kevel $L+1$ (ef. section 6.2) while it is participating in the program $S_{2} \equiv \|_{i c} V^{\prime \prime \prime} H_{i}$ when it is part of a fragment ($V^{\prime \prime \prime}, E^{\prime \prime \prime}$) at level L. This follows from the following:

If node i participates in the program S_{2}, then it has received a Curnout-message with argument $L+1$ along an edge marked as a b monch. It follows that $n_{i}=L+1$ holds when it has received this Connect-message. If it would at the same time participate in the progrann S_{2}, then it stares participating in this program when $\ln _{\ell}<L$ bolds (cf. section 6.2); contradiction.

6.7 The full version of Gallager's algorithm

We now consider Gallager's program. In this program differcot gromp of nodes perform their tasks concurrently w.r.t anothor. Furthermors, a task performed by one group of nocles can be disturbed (temporarily) due to interference with the task of an other erroup.

At first, we describe how to combine two programs perfonmed by two dispoint gromps of nodes. Intuitively, these programs are cxeated completely independent of each other. A principle for combining sucle programs is straightforward;

Let $A=<\left\{V^{\prime},\left\{p_{i} \mid i \subset V^{\prime}\right\}, A, t^{\mathcal{A}}>\right.$ and $B \ll\left\{V^{\prime \prime},\left\{p_{i} \mid i \in V^{\prime \prime}\right\}, A c A^{B}>\right.$ be algorithrns.
-- Asmume that $V^{\prime} \cap V^{\prime \prime}=0$ holds (no node is involved in both algorithms).

- Assume that \mathcal{A} sat $<\left\{I_{j} \mid j \in V^{\prime}\right\},\left\{T_{j} \mid j \in V^{\prime}\right\},\left\{q_{j} \mid j \in V^{\prime}\right\}>$ and B sat $<\left\{I_{j} \mid j \in\right.$ $\left.V^{\prime \prime}\right\},\left\{T_{j} \mid j \in V^{\prime \prime}\right\},\left\{q_{j} \mid j \in V^{\prime \prime}\right\}>$ hold.
... Assumes that none of the assertions p_{j}, l_{j}, T_{j}, and $q_{j}, j \in V^{\prime} \cup V^{\prime \prime}$, contains any programming variables of nodes different from $;$ and that they do not refer top proof variables pe (e) and $\sigma_{R}(e)$ for $\ell+j$.
Ihen for algorithm $\mathcal{C}=<V \cup V^{\prime \prime},\left\{p_{i} \mid i \in V^{\prime} \cup V^{\prime \prime}\right\}, A c t^{\mathcal{D}}>$;
$-C$ sat $<\left\{I_{j} \mid j \in V^{\prime} \cup V^{\prime \prime \prime}\right\},\left\{T_{j} \mid j \in V^{\prime} \cup V^{\prime \prime \prime}\right\},\left\{a_{j} \mid j \in V^{\prime} \cup V^{\prime \prime}\right\}>$ holds.

We have described how programs which are executed completely independent from cach other can be combined into one algorithm. Next, we consider the possibility that nodes in a fragment F can be disturbed (temporarily) when they participate in one of the tasks disenssed above. Consecuently, we
ask ourselves the question what messages nodes in F can rexeive from nodes outside F when they perform a certain lask The answer of this question shows that some minor changes in the program of figure 2 have to be made and that some of the assertions derived in the previous mubsections have to be weakened.

A node in a fragment F can obviously receive Accept, Test, and Connect-messages (not otherwise) from nodes outside F,

An Accept-message can be send by some node $;$ outside F to a certain node i in F only, if it has received a Test-message from node i earlier, ine, if note i participates in the lask described in section 6.3. Since responding to Test-messages by means of Accept-messages is part of that task, node is not disturbed in the performance of its task.
Now suppose that node j outside the fragment F sends a Test-message to node i in F. Observe that this implies that we have to incorporate in the assertions of ruode i associated with the tasks discussed it the sectionts 0.1 through 0.5 that Test-messages can be received and that they are placed at the end of node i 's message queue. This is straightforward, however. Now, if node i is in the sleeping-state, then it be awakened by this message and it will start participating in the task described in section 6.1. Therefore assume that i is not in the skeping-state. Node i, when receiving the Test-message, will be disturbed in the performance of the task in which it participates. When the Test-message is removed from node i 's quene, it is cither places this message back at the end of its queue (if In $n_{7}{ }^{\prime}$ s value is less than the value of the level's angument in the Teat-message) or it sends an Accept-message back to the sender of the Test-message. In any case, node i will execute the program segment labeled (6) in figure 2. During this execution none of node i's program variables are changed. Consequently, the invariant associated with the task in which it participates remain valid when it executes this segment. In addition, since this execution will always leave the program segment labeled (6) it will resume its participation in the disturbed task. Note that if node i has not finished this participation when being disturbed, then this remains so afterwards during i's response to the receipt of the Test-message; otherwise, i.e., if it has completed its participation in the task when responding to the Test-message, then its participation in this task remains completed afterwards (cf. also verification condition (j) of the principle in section 3.3).
The most difficult case of interference occurs when node i receives a message Conneet(L) from some node outside its fragment F. Obviously, if i is in the sleeping state, then it will be awakened and start participating in the task described in section 6.1. We therefore assume that, when node it receives this
message, it is in the not in the sleeping-stitc. Assume that node j transmitted the Connect-message. At the moment of transmission $l n_{j}=L$ holds. Now,
-- either $L=0$ holds, or
$L>0$ holds and node j has received an Accept-message along edge e earier. When mode ; transmitted this Accept-message $l t_{j} \leq t t_{i}$ holds. Since levets are non-decreasing (cf. lemma 6.4(d)) and node j 's own level cannot increase after the receipt of the Accept-message and before the transmission of the Connent-message, it follows that $l n_{j} \leq l n_{4}$ holds when node j transmits the Convert-message.

From these two cases it follows that whenever nomic ireceives a message Connect(L) and checks whether $\ln _{i}=L$ holds, this test is cquivalent to checking whether $\neg\left(I_{n}<L\right)$ is satisfied. (In the final version of the program, see figure 3 below, this observation hat bed taken into account.)

Now, when node i receives the message Connect (L) along edge e, $L \leq l n_{i}$ (see above) and se $e_{i}(e)=$ basic $\vee s e_{i}(c)=b r a n c h(c f$ property 1 in section 6.2) both hold.

If $\ln _{i}=L_{L}$ and $\sec _{i}($ e $)=$ brunch hold, then node i proceeds as described in the sections 6.1 and 6.5 .
If $n_{i}=L$ and $s c_{i}(e)$-basic hold, then the Connect-message is delayed. (This case is similar to delaying a Test-message, see above).
If, on the other hand, $L<l n_{i}$ is satisfied, then it, follows from the induction hypothesis (IH), see section 6.2 , and from lemma $6.8(c)$ that for all nodes k in j 's fragment, tay $F^{\prime}, s_{k}=$ found \wedge findsount $h_{k}=0$ holds, when node j transmitted the Connex-message. It also follows from (IH) that edge e is fragment $F^{\prime \prime}$ s minimux-weight ontgoing edge Note that upon i 's receipt of the Connect-message along edge e,

- $f n_{i}$ is defined. This is true because $l n_{i}>0$ is satisfied (as a consequence of $0 \leq L<\ln n_{i}$) and property 2 (see section 6.2) holds.
- Ftagment $F^{\prime \prime}$ s level equals $L \cdots l n_{j}$, which follows from (IH).
- sef $(\mathrm{c})=$ busic holds (cf, property 1 , section 6.2).

From the description of Gallager's algorithm in section 4 it follows that the fragments F and F^{\prime} are immediately combined into a larger fragment. Therefore, upon receipt of the Connect-message node i marks edge e as a branch. (At that time a new fragment has been formed.) Thereafter, node i supplies the nodes in the fragment F^{t} with the name and level of its own fragment (as far as "known" to i).

Consequentiy, the variables $\ln _{s}, k \in V$, increase indeed. We now consider three cases which can hold when node a responses to the Connect-message:
(a) node i has not yet received fragment F 's new name, i.e., it has not yet received an Initiatemessage with third argument fird,
(b) node i has received fragnent F 's new name, but it has not yet transmitted a Report-message, i.e, it is participating in the task described in section 6.3, or
(c) node thas received fragment F 's new name and it has transmitted a Report-message.

In case (b) above, obviously, $s n_{i}=f i n d$ holds. It will immediately transmit the message Initiatel $l n_{i}$, $f n_{i,} \Delta n_{i}$) such that all nodes in $F^{\prime \prime}$ will participate in the enlarged fragrente's search for its minimumweight outgoing edge- The invariants denived in section 63 clearly remain valid. Also the termination conditions of the nodes are not changed, i.e., interference-freedom of specifications can be proved,

In case (c) there is no need for the nodes in F^{4} to participate in the (already completed) search for F 's minimum weight outgoing edge since the nodes in F^{\prime} will not contribute anything to this search. Thef reason is the following:
node i has transmitted a Reportmessage by assumption. Therefore node i has deternined its minimumweight outgoing adjacent, edge. Consequently, best-wt $\leq \mathrm{w}(\mathrm{c})$ then holds, since edge e is one of node i's outgoing edges.

Claim: best-wt i_{i} <w(e) holds, too.
Proof: The proof is by contradiction. Suppose that best-wt $t_{i}=\mathbf{w}(e)$ holds. This inplies that node i has received an Accept-message along edge e carlier, since e has provided the value for best-wt (cf. lemma 6.8). When node j transmitted this message $l n_{j} \geq l n_{i}$ holds. It follows that $l n_{i}$ has decreased afterwards; contradiction.

We obtain that, in this case, for all outgoing edges e_{1} of fragment $F^{\prime}, w\left(e_{1}\right) \geq w(e)>$ best-wt t_{i} bolds. Gonsequently, in the cases (a) and (c), contraty to case (b), the nodes in F^{\prime} should synchronize their search for the minimum-weight outgoing edge of the enlarged fragment with nodes in the fragment, F, i.e., they should wait for this search until they have received the name and level of the enlarged tragrnent. The cases (a) and (c) are distinguished from case (b) by the third argument in the Initiatemessage. If a node receives an Initiate-mestage, then it updates its variable an according to the third argument of the message. It starts searching for its minimum-weight outgoing adjacent edge only, if it is in the find-state (cf. section 6.3). (Initiate-messages with a third argument found propagate through
the fragment F^{\prime} in exactly the same way as the information in Segall's PIF-protocol is propagated. The invariants and termination conditions for this part of the algorithm are very similar to the ones defined in [3 R 89 g 3$].$) This observation has been incorporated in the program below. Note that the assertions, as before, cefined in the previous subsections have to be (slighty) weakened, since now nodes can receive Intiote-messages with third argument found, but that, again, interference-freedorn of specifications can be shown.

Note that whenever some morle k executes (an ocrurrence of) the assignment se k (e); rejected for a certain edge e e E_{k}, $\mathrm{k}_{k}(c)=$ basic holds as a precondition, cf. lemma 6.6. Consequently, we cant replace each such an assignnent by the conditional if $s e_{k}(e)=b e s i c$ then $\operatorname{sen}_{k}(e)=$ rejected f without affecting any of on earlicr ressults. This modification is, however, necessory in onder to avoid the following (unintended) situation:
node i scorls a Testmessage along edge c, before it receives along edge e a message Connect (L) with $L<l r_{i} ;$
node i receives a message Conmect (L) with $L<l n_{\mathrm{i}}$ along edge e :
 that sn_{i}-find holds);
node i receives a message Reject along e and places the edge e in the rejected-state.
Consecuently, e has been placed in the rejected state by node i. Edge e is, however, an edge in the spanning tree T, becanse the node different from i adjacent to e hat determined that e occurs in T.

Taking this modification and the two observations above into account, we arrive at the program in figure 3 below. This program describes (the full version of) Gallager's algorithm.

The program segments (1), (2), (5), (7), (9), \cdots, (12) are the same as the ones in figure 2 .
(3) reponse to receipt of Connect(I) on edge e
begin
if in -sleeping then execute procedure wake-up fi;
if $1<\ln$
then se(e)-branch; send Ynitiate(1 n, (m,sn) on edge c;
if sn-find then findcount :=findcount+t fi
else if se(e)= basic
then place received message on end of queuc
else fn :=w(e); lan : $-\ln +\cdots$; inbranch $:=e ;$ sn $:=$ find;
for all edges $e^{\prime} \neq e$ such that se(e $\left.e^{\prime}\right)=$ branch do send Initiate($\ln , \mathrm{fn}, \mathrm{sn})$ on e^{\prime}; findcount : $=$ findeount +1 od; best-edge :=nil; best-wt :=- $;$; execute procedure test

fil

fi
end
(4) reponse to receipt of Initiate($1, f$, s) on edge e
begin

for all $e^{\prime} \neq \varepsilon$ such that se($\left.e^{\prime}\right)=$ branch
do send Initiate $(\ln , \mathrm{fn}, \mathrm{sn})$ on $e^{\prime} ;$ if $\mathrm{sm}=$ find then findcount :-findicount +1 fif od;
best-edge : $=$ nil; best-wt $:=\infty$; if $\mathrm{sn}=\mathrm{fing}$ then execute procedure test fi

end

(6) reponse to receipt of Test $(1, f)$ on edge c
begin
if sislsleeping then execute procedure wake-up fi;
iflch
then place received message on end of queuc
clse if furf
then send Accept on edge e
else if se(e)=basic then se(c):= rejected fi,
if test-edgef e then send Reject on edge e else execute procedure test fi fi
fi
end
(8) reponse to receipt of Reject on edge e
begin if se(c)=basic then se(e) :-=rejected fi; execute procedture test end
Figure 3. The loop executed by oode $i(i \in V)$. (Variables occurring in this loop are assumed to be subscripted by i.) The program consisting of all these loops describes Gallager's algorithm.

A principls which underlies the above kind of reasoning w.r.t. the disturbances is next formulated. For ease of exposition, we consider the case that at most one node h can be disturbed in the performarme of its task.

Let. this tusk he solved by algorithum
(C1) $B=<V^{\prime},\left\{p_{i}^{\mathcal{B}} \mid i \in V^{\prime}\right\}, A c t^{\mathcal{B}} \geqslant$,
Since node k can be disturbed in the performance in B, k may rective messages from nodes outsinde V^{\prime}. Receiving and processing such mossages art actions associated with another algorithrm, may,
(C2) $C-<\left\{V^{\prime \prime}, P_{B}^{C} \mid i \in V^{\prime \prime}\right\}, A Q^{C}>$
From the assumption that k is the only node that may be disturbed (due to actions in C), it follows that we may assume that
(OS) $V^{\prime} \cap V^{\prime \prime}-\{A\}$ is satisfed,
Sirese B and C nolve distinct taskes, we may assume that
(C4) $A c t^{B} \cap A C^{C}=0$ (this is the case in Gallager's program indeed).
Next, suppose that.
(C5) \mathcal{B} sat $\subset\left\{I_{j}^{B} \mid j \in V^{\prime}\right\},\left\{T_{j}^{B} \mid j \in V^{\prime}\right\},\left\{q_{j}^{B} \mid j \in V^{\prime}\right\}>$ and ϱ sat $<\left\{I_{j}^{C} \mid j \in V^{\prime \prime}\right\},\left\{T_{j}^{\mathcal{C}} \mid j \in\right.$ $\left.V^{\prime \prime}\right\},\left\{q_{j}^{C} \mid j \in V^{\prime \prime}\right\}>$ have been proved.
(C6) Assume that no assertion subscripted by j can cyer be chenged by actions of nodes different from node k (cf. verification condition (3) in section 3).

Now at any time in B 's computation, node k must allow to be disturbed by actions occurring in $A c t$. This is the case if the invariant I_{l}^{B} holds whenever node k starts participating in algorithmi C. In particular, this is satisfied when $p_{k}^{C}=I_{R}^{B}$ is satisfied. When node k is participating in algorithon C, i.e, when it executes an action associated in $A d d^{C}$, the reasoning about algorithme E shonld remain valid.

Define, for assertions P and Q and for a set of actions $A C$, the assertion Int-free $(P, Q, A Q)$ express. ing that if some action a is executed in a state satisfying $P \wedge Q$, then P is not invalidated by a (interference-freedom).
We require that for all node $j \in V^{\prime}$ the following holds:

Of coutse, it must also be required that the reasoning abont algorithm C remains valid under actions of B :
(C8) Int-free $\left(I_{j}^{\mathcal{C}} \wedge \neg T_{j}^{\mathcal{C}}, I_{l}^{B} \wedge \neg T_{l}^{\mathcal{B}}, A c l_{\ell}^{\mathcal{B}}\right)$ and Irt-frec $\left(I_{j}^{\mathcal{C}} \wedge T_{j}^{\mathcal{C}}, I_{l}^{B} \wedge \neg T_{f}^{\mathcal{B}}, A c t_{l}^{B}\right)\left(j \in V^{\prime \prime \prime}, \ell \in V^{\prime}\right)$. Then kind of disturbances appearing in Gallager's progran can oceur only when a node participates in a certain task and it receives a message associated with another task. As remarked sbove, such a node must at any time be prepared to receive these kinds of messages. Internal actions and send actions of node k associated with differcrt tasks cannot be enabled simultancously, however. (This observation holds for Gallager's program.) We, thus, require that
(C9) for each action $a \in I S_{k}^{B}$, $\operatorname{disabled}\left(I_{k}^{B} \wedge \neg T_{k}^{\mathcal{B}} \wedge e n(a), I S_{k}^{\mathcal{C}}\right)$ holds for all computation sequences of B and similarly that
(ClO) for each action $a \in I S_{k}^{C}, d t s a b l e d\left(Y_{k}^{C} \wedge \sim T_{k}^{C} \wedge e n(a), L S_{k}^{B}\right)$ holds for all comphtation sequences of C (cf. section (3) for the definitions of the sets $I S_{k}^{B}$ and $I S_{k}^{C}$ and for the definition of the assertion disabled).

Finally, we require that actions associated with algorithrn c eannot enable nor disable actions associated with algorithm C and that actions associated with Ccannot enable nor disable actions associated with D :
(C1i) Int-free($\left.\neg e n(a), I_{k}^{B} \wedge \neg T_{k}^{B}, A c_{k}^{\beta}\right)$ for all $a \subseteq I S_{k}^{C}$,
Int-free (en $\left.(a), I_{k}^{B} \wedge \neg I_{k}^{B}, A c t_{k}^{B}\right)$ for all $a \in I S_{k}^{C}$,
Int-frec $\left(-\epsilon n(a), i_{k}^{C} \wedge \neg T_{k}^{C}, A c c_{k}^{C}\right)$ for all $a \in I S_{k}^{B}$,
Int-free $\left(e n(a), X_{k}^{C} \wedge \cdot T_{k}^{C}, A\left(H_{k}^{C}\right)\right.$ for all $a \in I S_{k}^{B}$.
If (C1), ..., (C11) are all satisfied, then we may then conclude that for the algorithm $D=<V^{\prime} \cup V^{\prime \prime},\left\{p_{i}^{\mathcal{B}} \mid\right.$ $\left.i \in V^{\prime \prime}\right\} \cup\left\{p_{i}^{\mathcal{C}} \mid i \in V^{\mu \prime}-\{k\}\right\}, A c t^{B} \cup A c t^{\mathcal{C}}>$ the following holds:

$$
\begin{aligned}
\mathcal{D} \text { sat }< & \left\{I_{j}^{B} \mid j \in V^{\prime}-\{k\}\right\} \cup\left\{I_{j}^{\mathcal{C}} \mid j \in V^{\prime \prime}-\{k\}\right\} \cup\left\{I_{k}^{B} \vee I_{k}^{\mathcal{C}}\right\}, \\
& \left\{I_{j}^{B} \wedge T_{j}^{B} \mid j \in V^{\prime}-\{k\}\right\} \cup\left\{I_{j}^{\mathcal{C}} \wedge T_{j}^{C} \mid j \in V^{\prime \prime}-\{k\}\right\} \cup\left\{I_{k}^{B} \wedge I_{k}^{C} \wedge T_{k}^{\mathcal{B}} \wedge T_{k}^{\mathcal{C}}\right\}, \\
& \left\{q_{j}^{B} \mid j \in V^{\prime}-\{k\}\right\} \cup\left\{q_{j}^{C} \mid j \in V^{\prime \prime}-\{k\}\right\} \cup\left\{q_{k}^{B} \wedge q_{k}^{C}\right\}>
\end{aligned}
$$

We have the following:

Theorem 6.1 The program S described in figure 3 above mects its specification (cf. section 5).

Proof: From the previous lermata and the above discussions it should be clear that the program S is partiglly correct w.r.t. precondition p and postcondition q, where p and q have been defined in section 5 . In order to prove that S always terminates when executed in an initial state satisfying p, it
suffices to prove that in any non-terminal state teached charing execution of S some (proper) progress can be mate. Consider some state which can be reached during such an execution. We may assume that in this state for all nodes $i \in V, s n_{k}$ fslecping holds, since otherwise at least one mode could "awake spontaneously" and, thus, progress could be made.

Let Frog be the wht of all fragments in the considered tate. Let L Frag \leq Frag be the set of all fragumats which have the lowest level anomget all fragments in Frag. Define $F \in L F r a g$ to be a fragment with the smallest minimum-weight outgoing edge among the fragrents in L Frag.
(a) Suppose that smme node in the fragrome F has transmited a Tostmessage. Because of the choice of \mathscr{F}, eventuaily this Test-mussage will become answered (either by an Acentht-message or by a Beject-message).
(b) Snppose that some node in the fragment F has transmitted a Coment-message along a certain edfe e $E F_{i}$. Then this node will, agrin by the choice of F, cither receive a Con-nect-massage along edge e, or it will receive an Initiate-message along edge e. Consegurnty, eventually the fragnemt's level will increase. Again, progress will be mathe.
(c) In all other cases it should be clear that progress is ensured.

6.8 Some notes on Gallager's algorithm

The correctress of Gallager's algorithm heavily depends on properties of the manderlying notwork. As we have scen in the sections 6.3 through 6.5 , the possibility of identifying elges by their weights is crucial for its conrectucss. Another, less ohvious, constraint which is essential to constract the minimutu-weight spaming tree using this algorithm is that the underlying network contains no selfloops, i.e., that there are no edges $e \in \Gamma_{i, i}$ for any node $;$. This property has actually becn used in lemma 6.1(e). In case the network does contain self-lopss it, is not ensured that Gallagen's algorithm indeed finds the minimum-weight spanning tree T of the network. As an example, assurne that there exists some edge e $\in E_{i, i}$ for a certain node i in V. Assume that e is the mimimurr-wcight adjacent edge of node i holds, too. When i awakens it will mark e as a bronch. Consequently, from node i's point of view e will always in the branch state afterwards. It follows that in such a case the algorithme cannot satisfy its specification. One can slightily relax the assumption that the graph must not contain any self-loops in order to construct T using Gallager's algorithrn: if a node's adjacent edge is a self-loop,
then it is not the node's minimum-weight adjacent edge. It can be proved that if this condition holds, then Galager's algorithm is correct.

Our program describing Gallager's algorithm is slightly more efficient than the program in [GHS83]. While we merely update program variables of nodes that have exchanged a Connect-message along some arljacent edge (see figure 3), in the program in [GHS83] the nodes i adjacent to this edge, say e, first exchange a message Imatiate ($n_{i}+1, w(e)$, find $)$, after having exchanged the message Oonnect $\left(n_{i}\right)$, and before they broadcast the Intiotemessage to the other nodes in their fragment. Obviously, we have saved some tratsmissions of messages when compared with the program in [$\mathbf{~ H} \mathbf{H} 83$]
Another (slight) optimization is possible: if a certain notie i $\in V$ transmits a Test-message alone some edge e and it receives a message Connect (L) with $L<I n_{i}$ along this edge before it has actually received a response to that Test-message, then there is no need to wait for this response. In this case, i would always tereive a Reject-message afterwards. Consequintly, node i can, in this case, contimue its search for the minimum-wcight outgoing adjacent edge without waiting for a response to the Test-message. The node j at the other end of conde then as well ignore the Test-message in such a situation, ine, if it attempts to process a message Test (l, f) with $l<l n_{i}$ received along an edge in the state branch.

7 Conclusion

Correctness of the distributed minimum-weight spanning tree algorithno of Gallager, Humblet, and Spira [GH583] has been proved. The strategy adopted in this paper in order to prove that the spanning tree algorithm mets its specification is to start with some sequential program which constructs the minimm-weight spanning tree, to refine, as described in [B88] and [CM88], parts of this program until distributed prograuns are obtained, and finally to combine these programs in order to obtain a distributed counterpart of the initial sequential program. The latter combinations have been accomplished by repeatedly applying the principle for sequentially phased tedsoning about concurrently performed (sub)tasks, cf. [SR89a, SR89b]. These applications have shown that one can obtain from programs solving certain subtasks another program which solves the whole task, as if the subtasks are performed sequentially, even when these subtasks are performed repeatedly and concurrently by expanding gromps of nodes. In addition, it bas been shown that our principle can cope with with the phenomenon that tasks performed by one group of modes are disturbed temporarily by interference
of another group of nodes. For this reason invariants play an important role for our principle, since they allow one to prove interference-freedom of specifications. A future paper will show that such invariants can be generated during the design phase of programs.

Feferences

[AFR80] Apt K.R., Francer N., and de Roever W.P., A proof system for communicating sequential processes, ACM TOPLAS, 2-8 (1980),
[B88] Back R.J.R., A calculus of refinements for program derivations, Acta Informatica 25 (1988).
[BK83] Back R.J.R. and Kurki-Suonio, Decentralization of process nets with centralized control, Proc. of the ACM Symp. on Principles of Distr. Comp. (1983).
[CG88] Chou G.T. and Gafni E., Understanding and verifying distributed algorithms using stratified decomposition, Proc. of the ACM Symp. on Principles of Distr. Comp. (1988).
[CM8s| Chandy K.M. and Misra J., Parallel program design: a foundation, Addison-Wesley Publishing Company, Inc. (1988).
[D59] Dijkstra E.W., Two problems in connections with graphs, Numer. Math, 1, (1959).
[D76] Dijkstra E.W., A discipline of programonge, Prentice-Hall (1975).
[DSS0] Dijkstra E.W. and Scholten C.S., Termination detecting for diffusing computations, Infermation Processing Letters 1-4 (1980).
[E79] Even S., Graph algorithms, Computer Science Press, Inc.(USA), (1979),
[F67] Floyd R.W., Assigning mearing to programs, Mathematical aspects of computer science, AMS (1967).
[Fr80] Frances N., Distributed termination, ACM-TOPLAS, 2-1 (1980).
[GB1] Gries D., The science of programming, Springer Verlag (1981).
[GHS83] Gallager R.T., Humblet P.A., and Spira P.M., A distributed algorithm for minimum-weight spanning trees, ACM TOPLAS, 5-1 (1983).
[H60] Hoare C.A.R., An axiomatic basis for computer programming, CACM, 12, (1969).
[H78] Hoare C.A.R., Communicating sequential processes, Comm. ACM, 21-8, (1978).
[Hu83] Humblet P.A., A distributed algorithan for minimum-weight directed spanning trees, IEEE Trans, on Comm., 3146 (1983).
[K50] Krusked J.B., On the shortect spaning subtree of a graph an the traveling salesman problem, Proc. Am. Math. Soc., 7, (1956),
[L8B] Lamport L., Specifying concurrent modules, AOM TOPLAS, 5-2 (1983),
[MC81] Mista. J. and Chandy K.M., Proofs of network of processes, IEEE. Trans ont Softw. Eng. 7 (1981)
[MP83 Manna Z. and Pnueli A., Verification of concurent programs: Λ temporal proof system, Foundations of computer science IV, part 2, MC-tracts 159 (1983).
[MS79] Merlin PM, aid Segall A, A failsafe distributed routing protocol, IEEE Trous on Comra, 27-9 (1979).
[OG76] Owick S.S. and Gries D., An axiomatic proof techmique for parallel programs, Actat Informatica 6 (1976).
[P89] Partsch H.A., Specification and transformation of prograns -A formal approach to software development-, Springet-Verlag (1989, to appear).
[Se82] Segall A., Decentralized maxinumb-flow algorithrns, Networks 12 (1982),
[Se83] Sergall A.s Distributed retwork protocols, YEEE Trans. on Inf. Theory I'T20-1 (1983).
[SRS7] Stomp F.A. and de Rosver W.P., A orrechess proof of a distributed minimum-weight spanuing tree algorithm (extended abstract), Proc, of the 7th ICDCS (1987).
[SR88] Stomp F.A. and de Roever W.P., A formalization of sequentially phased intuition in network protocols, Internal Report 88-15, University of Nijmegen (1988).
[SR89a] Stomp F.A. and de Roever W.P., Designing distributed algorithms by means of formal sequentially phased reasoning (extended abstract), To appear in the Proc. of the third Intarnational Confcrence on Distributed algorithms (1989).
[Sn89b] Stomp F.A. and de Roever W.P., Designing distributed abgorithms by means of formal sequentially phased reasoning, Internal Report 89-8, University of Nijmegen (1989).
[SS84] Schlichting R.D. and Schneider F.B., Using message passirig for distributed programuing, Proof rules and disciplines, ACM TOPLAS 6-3 (1984).
(WLL88a) Welch J.L., Lamport L., and Lynch N.A., A lattice-structured proof of a minimum spanning tree algorithm (extended abstract), Proc. of the ACM Symp. on Principles of Distr. Comp. (1988).
[WLL \&8b] Welch J.L., Lamport L., and Lynch N.A., A lattice-structured proof of a minimum spanning tree algorithm (full paper), Technical Report MTT (1988).
[ZS80] Zerthib F.B.M. and Segall A., A distributed shortest path protocol, Internal Report EF-395, Technion-Israel Institute of Technology, Faifa, Israel (1980).
[ZRESE] Zwiers J., de Roever W.P., and Emde Boas F., Compositionality and concurrent networks: soundnesh and completencss of a proof system, LNCS 194 (1985).
[Z89] Zwiers J., Compositionality, concurrency and partial correctness: proof theories for network of processes, and their connection, LNCS (1989).

CHAPTER 5

(6) 1989 Acadernic Press, inc.

Reprinted, with permission, from Information and Computation, Vol. 82, no. 3, 1989, pp. 278-322.

The μ-Calculus as an Assertion-Language for Fairness Arguments

F. A. STOMP
Unibersity of Nijmegen, Department of Computer Science, Toernooiveld I, 6525 ED Nijnegen, The Neiherlands
AND
W. P. oe Rofver and R. T. Gerth
Eindhoven Universiry of Technotogy, Deportment of Computer Scierce and Mathematics, POB 513, 5600 MB Eindhover, The Netherlands

Abstract

Various principles of proot have been proposed to reason about fairness. This paper addresses-for the first time-the question in what formalism such fairness arguments can be couched. To wit: we prove that Park's monotone first-order μ-calculus, augmented with constants for all recursive ordinals can serve as an assertion-language for proving fair termination of do-loops. In particular, the weakest precondition for fair termination of a loop w.r.t. some postcondition is definable in it. The relevanee of this result to proving eventualities in the temporal logic formalism of Manna and Pnuelis (in "Foundations of Computer Science IV, Patt 2," Math. Centre Tracts, Vol. 159, Math. Centrum, Amsterdam, 1983) is discussed. an 1989 Acaderic Prose, Inc.

1. Motivation

Fairness is the defining property of good schedulers. The very notion of fairness presumes some kind of (metaphorical) competition for some shared resource(s). This competition is settled by arbitration, resulting in synchronization of competitor and resource. One speaks of a fair scheduling mechanism when this arbitration meets certain standards. Roughly, a scheduling discipline for a set of processes is called fair, whenever, inside a process, one or more (constituent) agents are "sufficiently often" allowed to compete for some shared resource, one of these agents is eventually scheduled for synchronization with that resource. Different notions of fairness can be distingushed according to their specification of what "sufficiently often" means, of their identification of resources, and of sets of agents inside processes, and of when these agents are considered to compete.

The present paper concentrates on that notion of fairness, which prescribes that "an action which is infinitely often enabled is eventually taken." Here, sufficiently often is interpreted as inlinitely often; the set of agents are singleton sets; the actions are guarded statements of guarded commands; an action is enabled (allowed to compete) whenever its guard evaluates to true; and whenever in a guarded selection all guards evaluate to false this selection is considered to be waiting, i.e., repcated execution results in (re-)evaluation of its guards (and possibly, in execution of a command guarded by a true guard), and not in failure upon its first execution as in sequential programming (Manna and Pnueli, 1983).
This notion of fairness is linked with the interlcaving model of concurrency 10 remedy the following deficiency. Since the only requirement in the interleaving model is a syntactic one, namely, that actions from every process continue to be nondeterministically interleaved (sequentialized) as long as that process has not terminated, this requirement is also fulfilled for an interleaving which systematically selects re-cvaluation of the guards of a waiting guarded selection when these happen to be false and which never seicects execution of that selection when these guards have become true (due to some interleaved action of another process).

That is, in the interlcaving model for concurrency, guards may be systematically selected for evaluation at the wrong moments. Now this behaviour does not occur in case every process has its own active processor (which notices when guards evaluate to true). Thus, the nondeterministically interleaved sequential exccution of processes need not necessarily lead to the same result as the concurrent execution of those processes on separate processors. Yet we want to maintain the interleaving model of concurrency as our model for the concurrent execution of processes since this is the only model upon which successful verification theories have been built (other medels for reasoning about correctness properties of concurrent processes are always obtained from this model by introducing equivalence relations and congruences). In this we succeed by imposing as an extra requirement the faimess requirement above.

Next, nearing the focus of this paper, the interaction between fairness and the interleaving model must be examined.

How Does One Deduce Properties in the Resulting Model?

The properties of interest always contain eventualities which are enforced by the assumption of fairness. Pure invariances, i.e., properties which are invariant during execution, are not influcnced by postulating fairness as an extra requirement and can be derived using more traditional methods.

The state of art offers the following picture: Let ψ denote some state formula, i.e., ψ is a direct property of program states not requiring temporal
operators such as \rangle for its expression. To establish that for a concurrent program ψ eventually holds, the following strategy is taken:
(1) Amongst the concurrent processes a distinction is made between those processes-in Manna and Pnueli's (1983) terminology dubbed helpful processes-whose execution brings satisfaction of ψ always nearer, and those processes that do not do so, i.e., whose execution possibly does not bring satisfaction of ψ any nearer, called steady (or unhelpful) processes.
(2) It must be proved that systematically avoiding execution of any heipful process either leads to an interleaving of steady processes which does not satisfy fairness, i.e., is unfair, since infinitely often a helpful process is enabled but not taken, or, due to some nondeterministic choice of a steady process in the interleaving, docs bring satisfaction of ψ eventually nearer or even establishes ψ.

Essential here is that upon closer inspection part (2) above requires application of the same strategy to a syntactically simpler program: just remove the helpful processes from the original program and prove that eventually one of the following holds: ψ, getting nearer to ψ or, a helpful process is enabled.

As a preparation for a technical formulation of this strategy, we first introduce a number of auxiliary notions (Manna and Prueli, 1983). Let $P \equiv P_{1} \| \cdots P_{n}$ be some program with $n \geqslant 1$.
Assume that both ϕ and ϕ^{\prime} are state formuac.
-For i satisfying $1 \leqslant i \leqslant n$, we say that P_{i} leads from ϕ to ϕ^{\prime} when every state transition in P_{1} establishes ϕ^{\prime} provided ϕ is satisfied first.
-We say that P leads from ϕ to ϕ when for all $i, 1 \leqslant i \leqslant n_{2} P_{i}$ leads from ϕ to ϕ.

A technical formulation of the above-mentioned strategy requires the introduction of well-founded sets and looks as follows (Manna and Pnueli, 1983):

The Well-Founded Liveness Principle WELL. Let $\mathfrak{M}=(A, \xi)$ be a well-founded ordered structure. Let $\phi(\alpha)$ be a parametrized state formula over A, where α intuitively expresses how far establishing ψ is. Let $h ; A \rightarrow$ $\{1, \ldots, n\}$ be a helpfulness function identifying for each $\alpha \in A$ the helpful process $P_{b(\dot{x})}$ for states satisfying $\phi(\alpha)$.
(A) $\vdash P$ leads from $\phi(\alpha)$ to $[\psi \vee(\exists \beta \leqslant \alpha \cdot \phi(\beta))]$
(B) $\vdash P_{h(\alpha)}$ leads from $\phi(\alpha)$ to $[\psi \vee(\exists \beta<\alpha \cdot \phi(\beta))]$
(C) $1-\phi(\alpha) \supset \circ\left[\psi \vee(\exists \beta<\alpha \cdot \phi(\beta)) \vee \operatorname{Enabled}\left(P_{h(\alpha)}\right)\right]$
$\vdash(\exists \alpha \cdot \phi(\alpha))=\rho \psi$.

The soundness proof of this rule requires induction over well-founded sets.

Conversely, given the fact that $\phi \psi$ is valid, (naive) set theory is used to argue the existence of the required auxiliary quantities, i.e., the well-founded ordered structure Di, the ranking predicate $\phi(\alpha)$, and the helpfulness function h, which satisfy clauses $(A),(B),(C)$ so that for each such ψ, WELL can always be applied. This proves that WELL is semantically complete.

Manna and Pnueli (1983) even prove that, for certain classes of formulae, their temporal logic formalism is complete relative to the set of temporal formulae valid in the given domain interpretation. Typicaily, their proof shows that the reasoning about temporal assertions concerning the execution sequences of programs can be reduced to the reasoning about assertions concerning the states of programs, the so-called state properties.

Now we are ready to ask the one question this paper is about: How do these results help us if we are sure that $\odot \psi$ holds and want to apply the rule above to verify $\wp \psi$? The answer is: not much.

Questions such as:
--How does one obtain the appropriate well-founded ordered structure 9 m ?
-How does one express, and reason about, the helpfulness function h and the ranking predicate $\phi(\alpha)$?
-In general, which assertion-language should be used to establish hypotheses (A), (B), (C) of WELL?
are not answered by the above results, since the reasoning about state properties is not formalized in Manna and Pnueli (1983).

The present paper suggests a direction to answer these questions, by concentrating on these problems as they occur when proving termination of do-loops under the above fairness assumptions, i.e., fair termination of do-loops. That this docs not lead to oversimplification follows from the fact that the same auxiliary quantities, with comparable objectives, occur in the rule whose expression and use we shall investigate (Grümberg, Francez, Makowsky, and de Roever, 1981).

The Well-Founded Liveness Principle for Loopsm-Orna's Rule. Let $\mathscr{m}=(W, \leqslant)$ be a well-founded structure. Let $\pi: W \rightarrow$ (States \rightarrow \{true, false $\}$) be a predicate, and q be a state predicate. Let for $w \in W$, with w not minimal (denoted by $0 \leqslant w$), be given pairwise disjoint sets D_{w} and $S t_{w}$, such that $D_{w} \neq \varnothing$ and $D_{w} \cup S t_{w}=\{1, \ldots, n\}$:
(a) $\quad-\left[\pi(w) \wedge w>0 \wedge b_{j}\right] S_{j}[\exists v \leqslant w \cdot \pi(v)]$, for all $j \in D_{w}$
(b) $\vdash\left[\pi(w) \wedge w>0 \wedge b_{f}\right] S_{f}[\exists v \leqslant w \cdot \pi(v)]$, for all $j \in S I_{w}$
(c) $\vdash[\pi(w) \wedge w>0]^{*}\left[\square_{i \in S_{r}} b_{i} \wedge \wedge_{i \in D_{w}} \neg b_{j} \rightarrow S_{i}\right][$ true $]$
(d) $\vdash r \supset(\exists v, \pi(c))$
$\vdash(\pi(w) \wedge w>0)=\bigvee_{i-1}^{n} b_{1}$
$\vdash \pi(0) \Xi\left(\left(\wedge_{n-1}^{n} \neg b_{i}\right) \wedge q\right)$

$$
\vdash[r] *\left[\square_{i=1}^{n} b_{i}-S_{t}\right][q] .
$$

Note, when comparing Orna's rule with WELL, that the commands S_{i} act as state transitions. Since in Orna's rule the assignment $w \rightarrow\left(D_{w}, S t_{w}\right)$ for $w>0$ merely generalizes WELL's notion of helpfulness function, the same kind of auxiliary quantities are required to apply both rules.

This paper proves that to express and reason about $9 \mathrm{M}, \pi$, and the assignment $w \rightarrow\left(D_{w}, S t_{w}\right)$ for $w>0$ and $w \in W$, a slight extension is required of the formalism used to prove termination of recursive procedures, Park's μ-calculus (Hitchcock and Park, 1973; Park, 1969).

Finally we note that, historically, two rules have been formulated to prove fair termination of nondeterministic programs: Orna's rule (Grümberg et al., 1981) and the LPS-rule (Lehmann et al., 1981). Both these rules model, each in their own way, a specific intuition related to the notion of eventuality implied by fairness assumptions. For fairly terminating loops they have been proved to be equivalent (Grümberg et al, 1981), but the LPS-rule also applies to proving fair termination of concurrent processes.

This article is organized as follows: Section 1 contains the motivation for this paper; Section 2 specifies the programming language used in this paper. In this programming language, we restrict ourselves to sequences of assignments and to commands in which nested repetitions are not allowed. Section 3 discusses various semantics for this programming language. In Sections 4 and 5 the proof system and the assertion-language, i.e., the monotone μ-calculus, are dealt with. A term in the assertion-larguage, which expresses fair termination of a repetition is constructed in Section 6. Completeness and soundness of the proof system are proved in Sections 7 and 8. In Section 9 we drop the restriction that we imposed w.r.t. the nesting of repetitions and outline how to deal with the more general casc in which nested repetitions are allowed as commands. Finally Section 10 contains the conclusion.

2. The Language of Guarded Commands

In this section we describe the syntax of the programming language used throughout this paper. In the next section various semantics for this language are defined.

The syntax is specified below using the standard BNF-notation (braces
enclose a repeated item, that may occur zero or more times). We do not specify the structure of variables and (boolean) expressions. Expressions are assumed to be terms in an underlying signature containing constant, function, and predicate symbols. We shall only use simple variables in the remainder of this paper.

Definition 2.1 (Syntax of the programming language). Start with some signature. The language of guarded commands, LGC , is defined by:

```
〈command>::= <repetition>: <simple command>.
<simple command>::= (assignment>|
    <simple command>; <simple cornmand>.
\assignment> ::= <variable>:=\langleexpression>.
<repetition>::= *[{[-]<selection>}].
<selection>::=\langleguard> }->\mathrm{ <simple command>.
<guard>::="a quantifier-free (boolean) expression."
```

We identify * [] with the assigntment $x:=x$ (skip). In the remainder of this paper, we shall often abbreviate $\left.{ }^{*}\left[\square b_{1}-S_{1} \square \cdots\right] b_{\mu} \rightarrow S_{n}\right]$ to *[$\left.\square_{i=1}^{n}, b_{i} \rightarrow S_{i}\right]$.

The main differences between the language as described above and that of Dijkstra's are that, in our language, guarded selections are not allowed as commands and that in a repetition ${ }^{*}\left[\square_{i-1}^{u} b_{i} \rightarrow S_{i}\right]$, the S_{i} never contain repetitions ($i=1, \ldots, n$). In Section 9 , it is shown how to deal with fairness issues when the latter restriction is dropped.

In the sequel we also need the notion of a direction of a repetition ${ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$.

Definition 2.2 (Directions of repetition). Let $S \equiv$ * $\left[\square_{i=1}^{n}, b_{i} \rightarrow S_{i}\right]$ be a repetition with $n \geqslant 1$. For $i=1, \ldots, n, b_{i} ; S_{i}$ is called the i th direction of S.

3. Semantics

In this section we define four semantios for the language of Section 2. Two of them are defined without consideration of fairness constraints. The other ones are defined when such fairness constraints are imposed. The first semantics fitting for partial correctness is defined using relations, since nondeterminism is involved. To reason about (nondeterministic) termination, We introduce the notions of an cxccution sequence of a repetition and of nondeterministic divergence of a repetition. Then the partial correctness semantics is extended to fit for total correctness.

Thereafter, we discuss two important fairness constraints, viz., strong
fairness and unconditional fairness. These constraints lead to the notions of a strongly fair or unconditionally fair execution sequence of a repetition, of strongly fair or unconditionally fair divergence of a repetition from some state ξ, and of strongly fair or unconditionally fair termination of repetition.

The relation between nondeterministic termination, strongly fair termination, and unconditionally fair termination of a repetition is discussed. The third semantics in this section is defined taking strong fairness into account; the fourth one takes unconditional fairness into account.

3.1. Preliminaries

Before defining the various semantics for the language of Section 2, we hirst recapitulate a number of basic notions.

Definition 3.1.1 (First-order structure). A first-order structure 9 consists of
(a) a non-empty set, also referred to as a domain, denoted by ;M|,
(b) a set of n-ary function symbols and a set of n-ary predicate symbols ($n \geqslant 0$), such that for each n-ary function symbol (resp. predicate symbol) there corresponds a n-ary function (resp. predicate) over ($9 \mathrm{M} \mid$, and
(c) a set of constant symbols, corresponding to elements of ${ }^{(M)}$ |-

We assume the equality symbol " =" to be present as a binary predicate symbol, corresponding to the standard equality over \mathfrak{M}.

In the remainder of this section we assume that \mathfrak{P} is some first-order structure, which contains all symbols that may appear in a program $S \in \operatorname{LGC}$. We adopt the convention to denote LGC by LGC(9R) in such a case.

Definition 3.1 .2 (State, enabledness, disabledness, state variant).
(a) A state is a function from the collection of all program variables to the domain of interpretation. $\xi_{,} \xi_{i}, \xi^{\prime}$, etc. are used to denote states. The set of all states is denoted by States. The value of the expression e in state ξ is denoted by $\xi(e)$. (We assume that the $\xi(e)$ is aiways defined!)
(b) If a guard b evaluates to truc in state ξ, i.e., $\xi(b)$ holds, we say that b is enabled in state ξ; otherwise, b is disabled in ξ.
(c) For a state ξ, a variable x, and an expression e, the state variant $\xi\{e / x\}$ is defined as usual: $\xi\{e / x\}(x)=\xi(e)$, and $\xi\{e / x\}(y)=\xi(y)$ if $x \neq y$.

Next, we introduce the operator " o " denoting composition of relations.

Definition 3.1 .3 (Composition of relations). Let A_{1}, A_{2}, and A_{3} denote sets. Assume that $R_{1} \subseteq A_{1} \times A_{2}$ and $R_{2} \subseteq A_{2} \times A_{3}$ are binary relations. Then $R_{1} \circ R_{2} \subseteq A_{1} \times A_{3}$ is a binary relation, too. This relation satisfies: for all $a_{1} \in A_{1}, a_{3} \in A_{3},\left(R_{1} \circ R_{2}\right)\left(a_{1}, a_{3}\right)$ holds iff there exists some $a_{2} \in A_{2}$ with $R_{1}\left(a_{1}, a_{2}\right)$ and $R_{2}\left(a_{2}, a_{3}\right)$.

32. Parial Correctness

We now associate with each program S the (relational) semantics
 and mrogram S, there may be more than one ourput state or even infinitely r: : : ones. If S nowhere terminates when started in ξ (in the semantics under discussion) there will be no output state, i.e., the set of output states is empty.

Derinimon 3.2.1 (Partial conrectness semantics).
(a) $S \equiv x:=e: R_{s}^{\operatorname{pan}}=\{(\xi, \xi\{e / x\}) \mid \xi$ a state $\}$.
(b) $S \equiv S_{1} ; S_{2}$, for simple commands S_{1} and $S_{2}: R_{\psi}^{\text {part }}=R_{S_{1}}^{\text {part }} \circ R_{S_{2}}^{\text {part }}$.
(c) $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$, for $n \geqslant 1$ and simple command S_{i}, $i=1, \ldots, n$: Let $R_{B}=\{(\xi, \xi) \mid \xi$ a state satisfying $B\}$ for boolean expressions B and let b denote the formula $V_{i=1}^{n} b_{i}$. Define $R_{s}=\bigcup_{i=1}^{n}\left(R_{b_{r}} \circ R_{S}^{\mathrm{par}}\right)$. Then $R_{S}^{\mathrm{part}}=\left(\bigcup_{i m 0}^{\infty} R_{S}^{i}\right) \times R_{i \|}$, where R_{S}^{i} denotes the i-fold composition of the relation R_{s} with itself.

Observe that for repetitions $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right], R_{S}^{\text {part }}$ contains the pairs $(\vec{\pi}, \xi)$ for ξ satisiving $\xi \in \wedge_{-1}^{*} \neg b_{i}$. This means that S "immediately" terminates if S is executed in an initial state in which none of the guards is enabled.

Dffinition 3.2 .2 ($[p] S[q]_{\text {part }}$). Let p and q denote asscrtions in an assertion-language containing all program variables, terms, and boolean expressions over $\mathfrak{M i}$. act $S \in \operatorname{LGC}(\mathbb{M})$. Then we define $\mathbb{M} \models[p] S[q]_{\text {part }}$ iff $\boldsymbol{q} \vDash \forall \xi, \xi^{\prime}\left[\left(p(\xi) \wedge R_{\xi}^{\mathrm{prr}}\left(\xi_{;} \xi^{\prime}\right)\right)=q\left(\xi^{\prime}\right)\right]$ (partial correctness $)$. I.e., $\mathfrak{W f} k$ [$p] S[q]_{\text {part }}$ holds iff "for all input states ξ satisfying p the following holds: if S terminates when started in ξ, then the output state satisfies q."

3.3. Total Correcthess

Next, to reason about termination, we add to the set of states a special state \perp, standing for divergence. As usual, the state variant $\perp\{e / x\}$ is defined to be \perp. For an assertion $p, p(\perp)$ is defined to be false, i.e., p never holds in \perp. In the sequel we assume \perp to be present in States.

Definition 3.3.1 (Total correctness semantics, cxecution sequences of
repetitions, nondeterministic divergence of a repetition from a state). Define the relation R_{s}^{\prime}, for $S \in \mathrm{LGC}(\mathbb{M})$ as follows:
(a) $R_{s}^{t}=R_{s}^{\text {part }} \cup\{(\perp, \perp)\}$, if $S \equiv x:=e$.
(b) $R_{S}^{\prime}=\left(R_{S_{1}}^{\prime} \circ R_{S_{2}}^{\prime}\right)$, if $S \equiv S_{1} ; S_{2}$ and both S_{1} and S_{2} are simple. To define R_{S}^{\prime} for repetitions S, the notion of an execution sequence of S is introduced:
(c) an execution sequence of a repetition $S \equiv *\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right], n \geqslant 1$, is a maximal sequence of states $\xi_{0} \rightarrow{ }^{i 0} \xi_{1} \rightarrow i \xi_{2}, \ldots$ such that ($R_{b_{k}}{ }^{\circ} R_{s k}^{c}$) $\left(\xi_{j}, \xi_{j+1}\right)$ holds for all j, k satisfying $j \geqslant 0$ and $k=i_{j}$ with $1 \leqslant k \leqslant n$. The sequence is considered to be maximal if it cannot be extended, i.e., it is either infinite or ends with some state ξ_{k} satisfying $\bigwedge_{i=1}^{n} \sim b_{i}$.
(d) We say that a repetition S can diverge nondeterministically from ξ if there exists an infinite execution sequence of S starting in ξ.
(e) For $S \equiv{ }^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$ and simple commands $S_{\text {, }}$ $(i=1, \ldots, n)$, define $R_{s}^{t}=R_{S}^{\text {pasid }} \cup\{(\xi, L) \mid S$ can diverge nondeterministically from $\xi\} \cup\{(\perp, \perp)\}$.

Definition 3.3.2 (Nondeterministic termination, $[p] S[q]$). For $S \in \operatorname{LGC}(M)$ and assertions p, q as above:
(a) Termination of a (nondeterministic) program S is straightforwardly defined as $\forall \xi \neq \perp, \neg \boldsymbol{R}_{5}^{\Gamma}(\xi, \perp)$.
(b) $\quad \mathfrak{q} \vDash[p] S[q]$, if $9 \mathbb{D N} \vDash \forall \xi, \xi^{\prime}\left[\left(p(\xi) \wedge R_{S}^{\prime}\left(\xi, \xi^{\prime}\right)\right) \rightleftharpoons q\left(\xi^{\prime}\right)\right]$ (total correctness). I.e., $\mathfrak{M} \vDash[p] S[q]$, holds iff " S always terminates in a state satisfying q, provided execution of S started in a state satisfying p."

3.4. Strong Fairness and Unconditional Fairness

Termination of a program S has been defined as $\forall \xi \neq \perp . \neg R_{5}^{\prime}(\xi, \perp)$. This is, however, a rather strong requirement. Consider, e.g., Dijkstra's (1976) random namber generator: $S_{0} \equiv *[b \rightarrow x:=x+1 \square b \rightarrow b:=$ false $]$. S_{0} need not necessarily terminate if statted in a state ξ such that $\xi(b)$ holds, because its execution may be governed by an extremely one-sided scheduler that consistently refuses to exceute the second direction of S_{0}, i.e., $b ; b:=$ false, in any iteration.

Consequently, various constraints on schedulers have been proposed which prohibit schedulers to neglect the execution of directions under certain circumstances. Termination of a repetition is considered relative to a set of schedulers thus constrained.

Before presenting two important constraints or fairness assumptions on such schedulers, viz., strong fairness and unconditional fairness (Apt et ol., 1984; Lehman et al., 1981), we first introduce the notions of enabledness and disabledness of directions of a repetition.

Definition 3.4.1 (Enabledness and disabledness of directions). Let $S \equiv$ * $\left.\left[{ }^{\prime \prime \prime}\right]_{i-1}^{\prime \prime}, b_{i} \rightarrow S_{1}\right]$ be a repetition. Assume that $\xi_{0} \rightarrow{ }_{4} \xi_{1} \rightarrow{ }^{4} \cdots$ is an execution sequence of S. For state $\xi_{m}, m \geqslant 0$, oecurring in this sequence we say that the i th direction of S is enabled in ξ_{m} if $\xi_{m}\left(b_{i}\right)$ holds, where $1 \leqslant i \leqslant n$; otherwise the i th direction of S is disabled in ξ_{m}.

Definition 3,4,2 (Strongly fair execution sequences, strongly fair termination, strongly fair divergence of repetitions).
(a) An execution sequence of a repetition S is strongly fair, cither if it is finite or if it is infinite and every direction of S which is infinitely often enabled in this sequence is chosen infintely often along the sequence.
(b) A repetition terminates strongly fair if it admits no infinite strongly fair execution sequences.
(c) A repetition diverges strongly fair from state ξ if it admits an infinite strongly fair execution segucnce starting in ξ.

Observe that, while the above program, S_{0}, admits infinite computations, none of them is strongly fair; i.e., S_{0} terminates strongly fair.

In the sequel, we also need the notion of unconditional fairness, that does not take enabledness and disabledress of directions into account.

Definition 3.4 .3 (Unconditionally fair execution sequences, unconditionally fair termination, unconditionally fair divergence of a repetition).
(a) An execution sequence of a repetition is unconditionally fair, either if it is finite or if it is infinite and every direction is chosen infinitely often along the sequence.
(b) A repetition terminates unconditionally fair if it admits no infinite unconditionally fair execution sequences.
(c) A repetition diverges unconditionally fair from state ξ if it admits an intinite unconditionally fair execution sequence starting in ξ.

The program $S_{1} \equiv *[x=0 \rightarrow x:=1 \square x=1 \rightarrow x:=x]$ docs admit infinite strongly fair computations, but no unconditionally fair ones.

Other examples of unconditionally fair and strongly fair terminating programs can be found in Grümberg es al. (1983). We should remark here that some authors use a different terminology. In Lehmann et al. (1981) the names impartiality (resp. fait) are used instead of unconditionally fair (resp. strongly fair).

The relation between nondeterministic termination, strongly fair termination, and unconditionally fair termination of a repetition is given in the following:

Theorem 3.44 (Relation between unconditionally fair, strongly fair, and nondeterministic termination). For each repetition S,
(i) S terminates nondeterministically $\Rightarrow S$ terminates strongly fair.
(ii) S terminates strongly fair $\Rightarrow S$ terminutes unconditionally fair.

Proof. (i) and (ii) immediately follow from the definitions above. Observe that the examples above show that the implications are proper.

We now proceed to define other semantics, taking fairness assumptions into account. The meaning of a command S under the assumption of strong fairness is given by the relation R_{S}^{g}; under the assumption of unconditional lairness it is given by the relation $R_{S}^{\text {ur }}$.

Defintion 3.4 .5 (Semantics under fairness assumptions). For simple commands S, we simply define:

$$
R_{S}^{\mathrm{uf}}=R_{S}^{\mathrm{sf}}=R_{S}^{s}
$$

and for repetitions $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$ and simple S_{i}, $i=1, \ldots, n$;
$R_{s}^{\mathrm{uf}}=R_{s}^{\text {part }} \cup\{(\xi, \perp) \mid S$ can diverge unconditionally fair from $\xi\} \cup$ $\{(\perp, \perp)\}$ and
$R_{s}^{\text {sf }}=R_{s}^{\text {part }} \cup\{(\xi, \perp) \mid S$ can diverge strongly fair from $\xi\} \cup\{(\perp, \perp)\}$.
Next, termination of a program S under fairness assumptions and validity of $[p] S[q]_{s}$ for $s \in\{u f, s f\}$ are defined.

Definmon 3.4 .6 (Termination under fairness assumptions, $[p] S[q]_{s}$, and $[p] S[q]_{u r}$. (a) A program S terminates strongly fair, unconditionally fair, respectively, iff $\forall \xi \neq \perp \cdot \neg R_{S}^{\mathrm{sf}}(\xi, \perp), \forall \xi \neq \perp \cdot \neg R_{S}^{\mathrm{ur}}(\xi, \ldots)$, respectively, hold. (Cl. Definitions 3.4.2(b) and 3.4.3(b).)
(b) For $s \in\{u f$, sf $\}$, assertions p and q, as above, and program S, we define

$$
\mathbb{N} \vDash[p] S[q]_{s} \quad \text { iff } \quad \mathbb{M} \vDash \forall \xi, \xi^{\prime}\left[\left(p(\xi) \wedge R_{S}^{s}\left(\xi, \xi^{\prime}\right)\right) \supset q\left(\xi^{\prime}\right)\right] .
$$

In the sequel ξ denotes a state other than 1 , unless stated otherwise.

4. The Proof System

We use a Hoare-like proof system. The axioms and rules are as follows:
(1) assignment

$$
[p\{e / x\}] x:=e[p] ;
$$

(2) composition

$$
\begin{aligned}
& \quad \frac{[p] S_{1}[q],[q] S_{2}[r]}{[p] S_{1} ; S_{2}[r]} \text { for simple commands } S_{1}, S_{2} \text {; } \\
& \text { (3) consequence }
\end{aligned}
$$

$$
\frac{p \supset p_{1},\left[p_{1}\right] S\left[q_{1}\right], q_{1} \supset q}{[p] S[q]} ;
$$

(4) Orna's rule (see Section 1), for simple commands $S_{i}(i=1, \ldots, n)$.

Note that we only consider repetitions under the assumption of strong fairness. However, Orna's rule can also be applicd to ordinary terminating do-loops. In this case, one simply takes the sets $S t_{w}, w \in W$ to be empty. We then obtain Harcl's (1979) rule for terminating loops.

5. Tiee Assertion-Langivage L

Our assertion-language is based on the μ-calculus of Hitchoock and Park (1973; also Park, 1969), which is appropriate both to prove termination of recursive parameterless procedures (see de Bakker, 1980; Hitchcock and Park, 1973) and to express the auxiliary quantities associated with those proofis.

In this section, we first recapitulate the basic ideas on which the μ-calculus is based and introduce some fixed point definitions that are needed in Sections 6 and 7. In particular, we express the domain of wellfoundedness of a binary relation as a μ-term. The term expressing the non-existence of infinite strongly fair execution sequences of a loop, see Section 6, will be a more complicated variant of that μ-term.

After introducing the assertion-language L used throughout the remainder of this paper, we define validity of formulac in L. As is usual in completeness proofs, we shall need the ability to encode finite sequences. In this, we base ourselves on Moschovakis (1974).

As is argued in Apt and Plotkin (1985), Cairness arguments require the use of recursive ordinals. For this reason we introduce the notion of an ordinal acceptable structure (see Definition 5.5.3). Relative to such structures completeness will be shown in Section 7.

5.1. Preliminaries

The μ-calculus is based on Knaster and Tarski's theorem (Tarski, 1955).
Theorem 5.1.1 (Knaster-Tarski theorern). Let (A, ㄷ) be a complete lantice and $F: A \rightarrow A$ a monotonic function; in fact a cpo suffices. Then F has a least fixed point, denoted by $\mu a \cdot[F(a)]$, meaning that
(i) $F(\mu a \cdot[F(a)])=\mu a \cdot[F(a)]$, i.,$\mu a \cdot[F(a)]$ is a fixed point of F.
(ii) if there exists some $b \in A$ such that $P(b)=b$, then $\mu a \cdot[F(a)] \equiv b$, i.e., $\mu a \cdot[F(a)]$ is the least fixed point of F.

Using the notation as above, $\mu a \cdot[F(a)]$ is unique since the partial ordering \subseteq is anti-symmetrie Yn the sequel, we refer to property (i) formulated in Theorem 5.1.1 as the fixed point property.

Lemma 5.1 .2 (Characterizations of least fixed points). There are several ways to regard least fixed points. Using the notation as above, first,
(a) $\mu a \cdot[F(a)]=\Pi\{x \in A \mid F(x)=x\}=\Pi\{x \in A \mid F(x) \subseteq x\}$, where Π denotes the infimum. A proof of this can be found in de Bakker (1980).

Second, the least fixed point can be obtained by iterating F into the transfinite ordinals.
(b) Define for each ordinal λ :

$$
\begin{aligned}
& F^{0}(x)=x, \\
& F^{\lambda}(x)=F\left(\bigsqcup_{B \in \lambda} F^{\beta}(x)\right), \quad \text { if } \lambda \neq 0 .
\end{aligned}
$$

Here \downarrow denotes the supremum. Let \perp_{A} denote A 's least element, which cxists since A is a complete lattice. Then $\mu a \cdot[F(a)]=F^{\alpha}\left(\perp_{A}\right)$ for some ordinal α. For a proof, we refer the reader to Moshovakis (1974). Clearly, if $\mu a \cdot[F(a)]=F^{a}\left(\perp_{A}\right)$ holds, then for alt $\beta \geqslant a, \mu a \cdot[F(a)]=F^{\prime}\left(\perp_{A}\right)$ holds, too.

5.2. Fixed Point Definitions

Next, we introduce some fixed point definitions.
Definition $5.2 .1(R \rightarrow p, R \circ p)$. Let R be a binary relation over some set and let p be a predicate on the same set. Define
(i) $R \rightarrow p$ by $(R \rightarrow p)(x)$ iff $\forall x^{\prime} \cdot\left[R\left(x, x^{\prime}\right) \supset p\left(x^{\prime}\right)\right]$, and its dual
(ii) $R \otimes p$ by $\neg(R \rightarrow \neg p)$. So $(R \circ p)(x)$ holds iff $\exists x^{\prime}$. $\left[R\left(x, x^{\prime}\right) \wedge p\left(x^{\prime}\right)\right]$.

Since the collection of predicates ordered by $p \subseteq q$ iff $p \supset q$ forms a complete fattice with false as the least element, and $R \rightarrow p$, as well as $R \circ p$, is monotonic in $p, \mu p \cdot[R \rightarrow p]$ exists.

Theorem 5.2.2 (Domain of well-foundedness of a binary relation R, $\mu p \cdot[R \rightarrow p]) . \quad$ Let R be a binary relation over some set. Then $\mu p \cdot[R \rightarrow p]$ describes the domain of well-foundedness of R; i.e., for all x the following is
suliyficd: $\mu p \cdot[R \rightarrow p](x)$ holds iff there exists no infinite sequence x_{0}, x_{1}, x_{2}, \ldots with $x=x_{0}$ and $R\left(x_{i}, x_{1+1}\right)(i \geqslant 0)$.

Proof. (\Rightarrow) Define $T(p)=R \rightarrow p$. Observe that $\mu p \cdot[R \rightarrow p]=$ τ^{*} (false) holds for some ordinal α. Consequently, it suffices to show that for all x : if $t^{x}(f a l s e)(x)$ holds, then there cxists no infinite sequence x_{0}, x_{1}, x_{2}, \ldots with $x=x_{0}$ and $R\left(x_{i}, x_{i+1}\right)$ for $i \geqslant 0$.

Using induction on β, we prove that for all $\beta \leqslant \alpha$ the following holds: $\mathrm{t}^{\boldsymbol{\beta}}($ false $)(x)=$ there is no infinte sequence $x_{0}, x_{1}, x_{2}, \ldots$ with $x=x_{0}$ and $R\left(x_{i}, x_{i+1}\right)(i \geqslant 0)$ holds.

Induction basis. $\beta=0$: trivial.
Induction hypothesis. Suppose that the implication holds for all $\lambda<\beta$.
Induction step. For $\beta \neq 0$, we have

$$
\begin{aligned}
\tau^{\beta}(\text { false })(x) & =\left(R \rightarrow \bigsqcup_{\lambda<\beta} \tau^{\lambda}(\text { false })\right)(x) \\
& \propto \forall x^{\prime} \cdot\left[R\left(x, x^{\prime}\right)=\left(\bigsqcup_{A \in \beta} \tau^{\lambda}(\text { false })\right)\left(x^{\prime}\right)\right]
\end{aligned}
$$

So $\tau^{\beta}(f a l s e)(x)$ implies that for all x^{\prime} such that $R\left(x, x^{\prime}\right)$ no infinite "descending" sequence starting in x^{\prime} exists. This follows from the induction hypothesis, Then there is no infinite "descending" sequence starting in x.
(\leftarrow) To prove the other implication, assume that $\neg \mu p \cdot[R \rightarrow p](x)$ holds. By the fixed point property, $\neg(R \rightarrow \mu p \cdot[R \rightarrow p])(x)$ holds, too. So, there is an x_{1} such that $R\left(x, x_{1}\right)$ and $\neg \mu p \cdot[R \rightarrow p]\left(x_{1}\right)$. This process can be repeated ad infinitum, and we obtain an infinite "descending" sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that $x=x_{0}$ and $R\left(x_{1}, x_{1+1}\right)(i \geqslant 0)$.

If F is a monotonic operator mapping predicates to predicates, then its greatest fixed point, vp - $[F(p)]$, exists too. This is because the collection of predicates as defined above is a complete lattice. Moreover, the greatest fixed point is representable in terms of the μ-operator. This follows from the following lemma whose proof can be found in de Bakker (1980).

Lemma 5.2 .3 (Representability of the greatest fixed point in μ-terms).

$$
v_{p} \cdot[F(p)] \Leftrightarrow \neg \mu p \cdot \neg[F(p)\{\neg p / p\}]
$$

Since $R \circ p$ is monotonic in $p, v p \cdot[R \circ p]$ exists. Using Lemma 5.2.3, we obtain the equivalences $v p \cdot[R \circ p] \Rightarrow \neg \mu p \cdot[\neg(R \circ \neg p)] \Leftrightarrow \neg \mu p$. $[R \rightarrow p]$.

Recall that "o" denotes composition of relations. We adopt the convention that "9" has priority over "U." l.e., $R_{1} \odot R_{2} \cup R_{3}$ should be parsed as $\left(R_{1} \circ R_{2}\right) \cup R_{2}$.

Let R denote a binary relation over some set, and let I denote the identity relation over the same set. It is casily seen that $P(X)=R u X \cup I$ is monotonic in X, where X denotes a relation variable. So F 's least fixed point $\mu X \cdot[R \circ X \cup I]$ exists. In informal notation $\mu X \cdot[R \circ X \cup I]=$ $I \cup R \cup R^{2} \cup \cdots \cup R^{n} \cup \cdots$

Notation $5.2 .4\left(R^{*}, R^{+}\right)$.
(a) We abbreviate $\mu X \cdot[R=X \cup I]$ to R^{*}, the relation obtained by composing R, zero or more times with itself.
(b) In the sequel, we shall also use R^{+}, the relation obtained by composing R at least once with itself, as an abbreviation for $R u R^{*}$.

We then have
Fact 5.2.5. Let R denote a binary relation over some set and I the identity relation over the same set. The following holds:
(a) $I \subseteq R^{*}, R^{+} \subseteq R^{*}, R^{+}=R^{*} \circ R$.
(b) If T denotes a binary relation and $T \subseteq R$, then $T^{*} \equiv R^{*}$ and $R^{*} \circ T \subseteq R^{*}$.

53. The Asserion Language L

Let \mathfrak{P} be some first-order structure. The first-order logic over \mathfrak{M} is defined as usual. Now we extend this logic so as to be able to express fixed point definitions. For this an infinite set of n-ary predicate variables. p, X, Y, \ldots, is introduced for every $n \geqslant 0$. These predicate variables may appear in formulae, but may not be bound by quantifiers. These variables from the basis of the fixed point definitions. To ensure the existence of least (and greatest) fixed points, monotonicity has to be imposed. In fact, we introduce the notion of syntactic monotonicity of formulae, which implies their semantic monotonicity. In essence, this notion requires that each occurrence of the predicate variable p that is to be bound by the least fixed point operator μ is within the scope of an even number of $\neg^{-s i g n s . ~}$

Definition 5.3.1 (Syntactic monotonicity and syntactic antimonotonicity). We inductively define sets $\operatorname{sm}(p)$ (resp. sa(p)), denoting the class of formulae that are syntactically monotonic (resp. syntactically anti-monotonic) in a variable p :
(i) $\phi \in \operatorname{sm}(p)$, if p does not occur free in ϕ.
(ii) $\neg \phi \in \sin (p)$, if $\phi \in \operatorname{sa}(p)$.
(iii) $\phi_{1} \supset \phi_{2} \in \operatorname{sm}(p)$, if $\phi_{1} \in \operatorname{sa}(p)$ and $\phi_{2} \in \operatorname{sm}(p)$.
(iv) $\forall x \phi, \exists x \phi \in \operatorname{sm}(p)$, if $\phi \in \sin (p)$.
(v) $p \in \operatorname{sm}(p)$.
(vi) $\mu p_{1} \cdot\lceil\phi], v p_{\mathrm{t}} \cdot[\phi] \in \sin (p)$, if $\phi \mathrm{e} \operatorname{sm}(p) \cap \sin \left(p_{\mathrm{I}}\right)$.
(vii) (i)-(jv) with sm and sa interchanged.
(viii) $\mu p_{:} \cdot[\phi], v p_{:} \cdot[\phi] \in \operatorname{sa}(p)$, if $\phi \in \operatorname{sa}(p) \cap \operatorname{sm}(p$,$) .$

Under the usual ordering, $\phi_{1} \underline{w}_{2}$ iff $\phi_{1} \supset \phi_{2}$, it can be proved by induction on the structure, i.e., the complexity of the formulae that syntactic monotonicity implies semantie monotonicity.

Definition 5.3 .2 (Assertion-language). The assertionulanguage L (M) over some structure $M 2$, is the smallest class B such that
(i) $\phi, \mu p \cdot[\psi(p)], v p \cdot[\psi(p)]$ क B, where ϕ and ψ are first-order formulae over $9, \phi$ does not contain any free predicate variables and $\psi \in \operatorname{sm}(p)$.
(ii) if $\phi, \psi \in B$ then $\phi \wedge \psi, \phi \vee \psi, \phi \sqsupset \psi$, and $\neg \phi \in B$, too.

Remark. If in a formula $\mu p \cdot[\psi(p)]$ or $v p \cdot[\psi(p)], p$ does not occur free in ψ, then we will often write ψ instead. Note that formulae of the form $\mu p \cdot[\psi(p)]$, where ψ contains a μ-operator, are not allowed. However, we shall use such formulae, in which such a nesting of μ-operators occurs, since they are representable in $L(90)$, see Moschovakis (1974).

In the sequel we shall often abbreviate $L(\mathbb{W})$ to L, when the structure \mathscr{D} is elear from the context.

5.4. Valdity of L-Formulae

We next define validity of L-formulae. This definition is clear, except for the cases $\mu p \cdot[\psi(p)]$ and $v p \cdot[\psi(p)]$. Recall that $\mu p \cdot[\psi(p)]$ can be obtained by iteration. We now formalize this idea in the following construct by defining predicates I_{ψ}^{β} for $\beta \geqslant 0$ "by iterating $\psi \beta$ times from below."

Definition 5.4.1 (I_{ψ}^{*}). For first-order formulae ψ over 9 那, $\psi \in \operatorname{sm}(p)$, we define I_{ψ}^{β} for ordinals β by

$$
\begin{aligned}
& I_{\psi}^{0}=\lambda \bar{x} \cdot f a l s e, \\
& I_{\psi}^{\beta}=\lambda \bar{x} \cdot \psi\left(\bar{x}_{,} \bigsqcup_{\alpha=\beta} I_{\psi}^{\alpha}\right) \text { for } \beta \neq 0, \\
& I_{\psi}=\lambda \bar{x} \cdot \bigsqcup_{\pi z 0} I_{\psi}^{\alpha}(\bar{x}) .
\end{aligned}
$$

By the monotonicity of ψ the following holds (Moschovakis, 1974):
Lfmma 5.4 .2 (Properties of $I_{\psi \psi}^{H}$).
(i) $(\alpha \approx \beta) \Rightarrow\left(I_{\psi}^{\alpha}(\bar{x}) \Rightarrow l_{\psi}^{\beta}(\bar{x})\right)$;
(ii) for some ordinal κ; $I_{\psi}=T_{\psi}^{\kappa}=\bigsqcup_{\chi=\kappa} I_{\psi}^{\alpha}$:
(iii) I_{ψ} is the least predicate C satisfying $C(\bar{x}) \triangleq \psi(\bar{x}, C)$; i.e., $I_{\psi}(\bar{x}) \Leftrightarrow \psi\left(\bar{x}, I_{\psi}\right)$ and if C satisfies $C(\bar{x})=\psi(\bar{x}, C)$, then $I_{\psi}(\bar{x}) \Rightarrow C(\bar{x})$.

Observe that the clauses (i) and (ii) in Lemma 5.4 .2 ensure that I_{ψ}^{i} is monotonic in β and that there exists some ordinal κ for which the fixed point is reached. In fact, I_{ψ} as defined above is obtained after κ ittrations of ψ. Moreover, in this way the least fixed point is obtained indeed. This is an immediate consequence of Lemma 5.4.2(iii).

Definimon 5.4 .3 (Validity of $\mu p \cdot[\psi(p)]$ and of $v p \cdot[\psi(p)])$. Let ψ be a first-order formula over $\mathrm{T}, \psi \in \operatorname{sm}(p)$. We now define
(a) $: M \models \mu p \cdot[\psi(p)](\tilde{x})$ iff $\mathfrak{M} \models I_{\psi}(\bar{x})$,
(b) $\mathfrak{M} \vDash \mu p \cdot[\psi(p)]$ iff for all $\bar{x}, \mathfrak{M} \vDash \mu p \cdot[\psi(p)](\bar{x})$, and
(c) $\quad \mathbb{M} \vDash \nu_{p} \cdot[\psi(p)]$ iff $\mathfrak{M} \vDash \neg \mu p \cdot \neg[\psi(p)\{\neg p / p\}]$.

5.5. Acceptable Structures

As is usual in completeness proofs, we need the ability to encode finite sequences. In our case, this is necessary to define the well-founded set necessarily for applying Orna's rulc. For this, we introduce the notion of an acceptable structure (Moschovakis, 1974). ${ }^{1}$ First we introduce a number of notions needed for the definition of acceptable structures.

Defintion 5.5.1 (Coding scheme, decoding relations, and decoding functions).
(a) A coding scheme for a set A is a triple $\mathscr{C}=\left\langle N^{* *}, \leqslant^{*},\langle \rangle^{*}\right\rangle$ such that
(i) $N^{6} \subseteq A, \leqslant^{e}$ is an ordering on N^{*} and the structure $\left\langle N^{\boldsymbol{*}}, \leqslant^{\boldsymbol{Z}}\right\rangle$ is isomorphic to the integers with their usual ordering.
(ii) $\left\rangle^{\mathbb{E}}\right.$ is a one-one function, mapping the set $\mathrm{U}_{n \approx 0} A^{i}$ of all finite sequences over A to A. By convention, $A^{\circ}=\phi$; the empty sequence $\left\rangle^{6}\right.$ is the only sequence of length 0 .
(b) With each coding scheme $\mathscr{\mathscr { C }}$, we associate the following decoding relations and functions:
(i) $\operatorname{Seq}^{ष}(x) \Leftrightarrow$ there exist x_{1}, \ldots, x_{n} such that $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Here, $x=\langle \rangle^{x}$, the code of the empty sequence, is covered by the convention that $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ if $n=0$,
(ii) The length function $1 \mathrm{~h}^{*}$ for sequences maps A into $N^{* *}$, and

[^3]hence into the integers, because of the isomorphism of $\left\langle N^{s}, \leqslant^{\text {h }}\right\rangle$ with $\langle\mathbb{N}, \leqslant\rangle$:
\[

\operatorname{lh}^{c}(x)= $$
\begin{cases}0, & \text { if } \neg \operatorname{Seq}^{\theta^{\prime}}(x) \\ n^{\prime} & \text { if } \operatorname{Seq}^{*}(x) \wedge x=\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*} \text { for some } x_{1}, \ldots, x_{n} .\end{cases}
$$
\]

(iii) The projection ($x)_{t}^{1 /}$, as a function of x and i, is defined by

$$
(x)_{t}^{*^{\prime}}= \begin{cases}x_{11} & \text { if } x=\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*} \text { for some } x_{1}, \ldots, x_{n}, 1 \leqslant i \leqslant n \\ 0, & \text { otherwisc. }\end{cases}
$$

Derinimon 5.5 .2 (Elementary coding scheme).
(a) A function f is first-order definable on a structure $9 i$ iff its graph is first-order definable, i.c., iff $\{(\bar{x}, \bar{y}) \mid f(\bar{x})=\bar{y}\}$ is first-order definable on 9 .
(b) A coding scheme $\%$ is elementary on a structure mi if the relations and functions $N^{* \prime}, s^{\prime}$, Seq ${ }^{*}$, $\operatorname{lh}^{* \prime}()^{* \prime}$, are all elementary, i.e., firstorder definable on 9 W,

Note that the class of elementary relations on a structure is closed under conjunction and quantification. This is an immediate consequence of Definition 5.5.2. It follows that the functions p_{n}^{\prime} defined by $p_{n}^{* \prime}\left(x_{1}, \ldots, x_{n}\right)=$ $\left\langle x_{1}, \ldots, x_{n}\right\rangle^{*}$ are elementary, as $p_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)=u \Rightarrow\left(\operatorname{Seq}^{* \prime}(u) \wedge \mathrm{h}^{\prime}(u)=\right.$ $n \wedge \forall i \cdot\left[1 \leqslant i \leqslant n=\left((u)_{i}^{*}=x_{i}\right)\right]$). (In the sequel, we shall omit the superseripts 8.$)$

As argued before, we need the ability to encode linite sequences. Also fairness arguments require the use of recursive ordinals. In our case these requirements are necessary to define the well-founded set required to apply Orna's rule.

Dffinition 5.5 .3 (Acceptable and ordinal acceptable first-order structures).
(a) A first-order structure g m is acceptable if there cxists a coding scheme elementary on 9 P .

In the sequel, we consider acceptable structures such that for all recursive ordinals α, there exists a constant symbol $\bar{\alpha}$ tnterpreted as the ordinal α. We therefore introduce the notion of an ordinal acceptable structure:
(b) A first-order ordinal acceptable structure is a structure tol such that:
(i) 97 is an acceptable structure,
(ii) Mr's signature contains symbols c_{i} for all $i<\omega_{i}^{i k}$, and $\mathbf{c}_{\boldsymbol{i}}=i \in|\mathfrak{M}|$, where $\omega_{j}^{\text {ck }}$ is the first non-recursive ordinal, and \mathbf{c}_{i} denotes the interpretation of c_{r}.
(iii) the predicates Ord (Ord (a) holds iff $a \in|M| \cap\left(s_{1}^{* *}\right)$ and $\ll_{O r d}$, the usual ordering on $\omega_{1}^{\text {ch}}$, arc first-order definable in \mathfrak{M}^{\prime}, where DN^{\prime} is a reduct on M , obtained by removing all ordinal constants c_{i} from its signature,

Let 9 me an ordinal acceptable structure. For completeness, we need amongst others, representability of the guarded commands partial corrcctness simantics. First note that the I/O-rclation of a program S only constrains the valuation of its free variables (in the output state). We shall be somewhat more precise below. To do so, suppose that S is a program. Denote by F the set of free variables occurring in S. Let F^{6} denote the complement of F, i.e., F^{r} is the set of all variables not occurring free in S. If $R_{s}^{\text {part }}\left(\xi, \xi^{\prime}\right)$ holds, then $R_{s}^{\text {part }}\left(\tau, \tau^{\prime}\right)$ holds, too, provided $\xi|F=\tau| F$, $\xi^{\prime}\left|F=\tau^{\prime}\right| F$, and $\tau\left|F^{x}=\tau^{\prime}\right| F^{c}$, whete \mid denotes restriction. Using this observation, the semantics $R_{s}^{\text {part }}$, is easily seen to be representable: for example, if $S \equiv{ }^{*}\left[b \rightarrow S^{\prime}\right]$ then $R_{S}^{\text {parl }}\left(\xi, \xi^{\prime}\right) \Leftrightarrow \mathfrak{M} \models \mu X^{\prime} \cdot\left[\left(R_{b} \circ R^{\prime}\right) \circ X \cup \neg R_{b}\right](x, y)$, where x and y are the codes of $\xi \mid F\left(\xi^{\prime} \mid F\right.$ resp. $)$. Here R^{\prime} denotes the relation $R_{B^{\prime}}^{\text {bart }}$ associated with S^{\prime}, and F the set of free variables occurring in S. Observe that the codes x and y exist since \mathbb{M} is an ordinal acceptable structure.

We next construct an extension of 9 by adding for every guarded command S a relation symbol R_{S}, interpreted as the semantics $R_{S}^{\text {part }}$ of S. Since R_{S} is representable, we obtain a structure $\mathscr{W D}^{\prime}$ such that $\mathrm{Th}\left(\mathrm{CD}^{\prime}\right)=\mathrm{Th}(\mathcal{P})$, where $\operatorname{Th}(\mathbb{M})=\{p \in L \mid \mathfrak{M} \in p\}$. Le. $\operatorname{Th}(\mathfrak{M} \prime$) is conservative over $\operatorname{Th}(\mathfrak{M})$ and we do not obtain a more expressive language in this way.

We conclude this section by showing that a number of predicates extensively used in the sequel are representable in L.

ThEOREM 5.5.4 (Representability of a number of predicates). Assume that Wi is some ordinal acceptable structure. Let R_{1} and R_{2} denote binary relations on $|\mathfrak{M l}|$ elementary on 9Ω. The following constructs are representahle in $L: R_{1} \circ R_{2}, R_{1} \cup R_{2}, R_{1}^{*}$, and $\mu p \cdot\left[R_{1} \rightarrow p\right]$.

Proof- It should be clear how to represent $R_{1} \circ R_{2}$ and $R_{1} \cup R_{2}$ in $L R_{1}^{*}$ is representable by $\mu X \cdot\left[R_{1} \cup X \cup I\right]$, where I denotes the identity relation. Finally $\mu p \cdot\left[R_{1} \rightarrow p\right]$ can be represented as follows: define $\phi(x, p)=$ $\forall x^{\prime}\left[R_{1}\left(x, x^{\prime}\right) \supset p\left(x^{\prime}\right)\right]$. Then $\mu p \cdot[\phi(x, p)]$ represents $\mu p \cdot\left[R_{1} \rightarrow p\right](x)$.

In the remainder of this paper we shall also use the construct $r \times R$ for predicates r and binary relations on $|\mathrm{MM}|$, where $\mathbb{D R}$ is as above. Intuitively, $r \circ R$ is satisfied in x iff x is R-reachable from some y in which r holds.

Definition $5.5 .5(r: R)$. Using the notation as above, we define for predicates r and binary relations R on $|\varphi R|$ the predicate $r \circ R$ by $r \circ R(x)$
iff $\exists y[r(y) \wedge R(y, x)]$. Observe that $r \Omega R$ is trivially representable in L, if R is elementary in $9 R$.

In the remainder of this paper til always denotes some first-order ordinal acceptable structure.

6. Construction of a μ-Tfrm Exprfssing
 Strongly Falr Termination

In this section we show that the property " S is strongly fair terminating" is representable in L. More precisely, let ${ }^{*}\left[\square_{1-1}^{*} b_{i} \rightarrow S_{i}\right]$ and let in be some ordinal acceptable structure. We construct a formula $\operatorname{SFALR}\left(R_{1}, \ldots, R_{n}\right)$ such that $9 \mathrm{M}=-\operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)(\xi)$ holds iff " S terminates strongly fair when started in ξ." Here, R_{i} denotes the relation $R_{b_{1}} \circ R_{S,}^{\text {sf }}$ associated with $b_{i} ; S_{i}(i=1, \ldots, n)$.

For programs with two directions, a μ-term expressing strongly fair termination has been constructed in de Roever (1981). To give the reader some intuition, we first construct a term describing the existence of infinite strongly fair execution sequences of a program $S \equiv{ }^{*}\left[b_{1} \rightarrow S_{1} \square b_{2} \rightarrow S_{2}\right]$.

From Definition 3.4.2, we obtain that in an infinite strongly fair execution sequence of S, either
(1) both directions of S are infinitely often enabled in this sequence, and hence infinitely often taken in it, or
(2) the first direction becomes eventually continuously disabled and the second direction of S is continuously taken from some point onwards in the execution sequence, or
(3) the symmetrical case of (2), i.e., the second direction of S becomes eventually continuously disabled and the first direction is continuously taken from some point onwards in the exceution sequence.

The construction of the term describing the existence of an infinite strongly fair execution sequence of S naturally splits up into three cases, according to the three possibilities (1); (2), and (3) above. Let R_{1} (resp. R_{2}) denote the relations $R_{b_{1}} \circ R_{S_{1}}^{v!}$ (resp. $R_{b_{2}} \circ R_{S_{2}}^{*!}$) associated with $b_{1} ; S_{1}$ (resp. $b_{2} ; S_{2}$).

Case 1. We consider such a sequence as consisting of an infinite number of so-called unconditional fair parts, roughly being finite subsequences of the infinite sequence in which every direction is taken at least once. Such an unconditional part can be described as follows: $\left(R_{1}^{+} \circ R_{2} \cup R_{2}^{+} \circ R_{1}\right)$.

This characterization stems from Park (1980). Recall that truth of the
predicate $u p \cdot[R \circ p]$ in x_{0} expresses the existence of an infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that $R\left(x_{i}, x_{i+1}\right)$ holds for $i \geqslant 0$. As a consequence, the existence of an infinite strongly fair sequence, according to the first possibility above, is captured by the predicate vp $\left[\left(R_{1}^{+}, R_{2} \cup\right.\right.$ $\left.\left.R_{2}^{+} \circ R_{1}\right) \circ p\right]$. This term is called $\operatorname{UF}\left(R_{1}, R_{2}\right)$.

Case 2. We consider possibility (2) above. In this case, the existence of an infinite strongly fair execution sequence of S can be described by a term expressing that after some finite prefix, in which (possibly both) directions 1 and 2 are chosen, only the second direction is continuously taken, since the other one becomes eventually continuously disabled. In the intinite tail of the sequence each intermediate state satisfics $\neg b_{1}$. This term is captured by $\left(R_{1} \cup R_{2}\right)^{*} \circ v p \cdot\left[\left(\left(b_{2} \wedge \neg b_{1}\right) \circ R_{2}\right) \circ p\right]$. This term is called fair $\left(R_{2}\right\}$ $\operatorname{fin}\left(R_{1}\right)$.

Case 3. Symmetrically to case (2) the existence of such an execution sequence can be described by $\operatorname{fair}\left(R_{1}\right)$ In $\left(R_{2}\right)$,

Now define $\operatorname{SFAlR}\left(R_{1}, R_{2}\right)$ by $\operatorname{SFAIR}\left(R_{1}, R_{2}\right)=\operatorname{UF}\left(R_{1}, R_{2}\right) \vee \operatorname{fair}\left(R_{2}\right)$ fin $\left(R_{1}\right) \vee \operatorname{fair}\left(R_{1}\right) \operatorname{fin}\left(R_{2}\right)$. We then obtain that S admits an infinite strongly fair execution sequence iff $\operatorname{SFAIR}\left(R_{1}, R_{2}\right)$ holds.

The structure of Section 6 is as folfows: in Section 6.1 we describe the predicate $\operatorname{UF}\left(R_{1}, \ldots, R_{n}\right)$ for $n \geqslant 1$. This predicate is a generalization of $\mathrm{UF}\left(R_{1}, R_{2}\right)$ that we derived in case (1) above. In Section 6.2 we extend the reasoning of case (2), hence casc (3), when there are more than two directions in a repetition. Finally, in Section 6.3 we show that for every command S and command q, the weakest precondition for fair termination is delinable in L.

6.1. Unconditionally Fair Termination

At first, we consider execution sequences of programs * $\left[\square \square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$, in which each direction of S is chosen infinitely often. Any such sequence is strongly fair iff it is unconditionally fair. In the sequel, we assume that R_{1}, \ldots, R_{t} are the relations $R_{b_{n}} \circ R_{1}^{s f}, \ldots, R_{b_{n}}=R_{n}^{5 r}$ associated with the statements $b_{1} ; S_{1}, \ldots, b_{n} ; S_{n}$. Consequently, we first consider the problem of describing in L the existence of an infinite sequence of R_{i}-moves in which each of the R_{i} occurs infinitely often ($i=1, \ldots, n$).

Consider such an infinite sequence. Since each $R_{f}(i=1, \ldots, n)$ occurs an infinite number of times, this sequence may be viewed as consisting of an infinite number of finite sequences, the so-called U(nconditional)parts. Every Upart satisfies:
(i) each R, occurs in the Upart.
(ii) this Upart is the smatlest sequence satisfying (i); i.e., any initial fragment of Upart leaves some R_{i} out.

To define a relation Upart $\left(R_{1}, \ldots, R_{n}\right)$, which expresses for every pair of states $\left(\xi, \xi^{\prime}\right)$, whether ξ^{\prime} can be reached from ξ by executing an Upart (w.r.t. R_{1}, \ldots, R_{n}), it suffices to consider Uparts in which the first occurrences of the moves are in some predescribed order, so-called Usegments, since any Upart of R_{1}, \ldots, R_{n} is an Usegment of some permutation R_{i}, \ldots, R_{t}, More clearly, a Usegment of the ordered sequence of moves R_{1}, \ldots, R_{n} is a finite sequence in which for no i, j with $1 \leqslant i<j \leqslant n$ a R-move occurs before a R_{i}-move has occurred.

The relation Usegment $\left(R_{1}, \ldots, R_{n}\right)$ is defined inductively (w.r.i. n) as follows: The case $n=1$ is simple: define Usegment $\left(R_{1}\right)=R_{1}$.

Now, suppose that Usegment $\left(R_{1}, \ldots, R_{k}\right)$ has been definced. Then, $\operatorname{Usegment}\left(R_{1}, \ldots, R_{k+1}\right)$ looks like $R_{1}, \ldots, R_{1}, \ldots, R_{k}, \ldots, R_{k+1}$, where the first occurrences of $R_{1}, R_{i}, R_{k}, R_{k+1}$ are shown $(1<i<k)$. First, observe that R_{k+1} occurs only once; this is a consequence of requirement (ii) above. Second, obscrve that the prefix $R_{1}, \ldots, R_{6}, \ldots, R_{k}$ of the above sequence is a Usegment of R_{1}, \ldots, R_{k}. Hence, the sequence up to, but not including R_{k+1} is not necessarily a Upart of R_{1}, \ldots, R_{k}. However, it starts at least with a Usegment of R_{1}, \ldots, R_{k}. The remaining part may contain any (finite) number of R_{t}-occurrences (but no R_{k+1}). This motivates the following definitions.

Definition 6.1.1 (Usegment $\left(R_{1}, \ldots, R_{n}\right)$ for $n \geqslant 1$). Usegment $\left(R_{1}\right)=R_{1}$ and for $n \geqslant 1$:
$\operatorname{Uscgment}\left(R_{1}, \ldots, R_{n+1}\right)=\operatorname{Usegment}\left(R_{1}, \ldots, R_{n}\right) \circ\left(R_{1} \cup \cdots \cup R_{n}\right)^{*} R_{n+1}$.
Example. Usegment $\left(R_{1}, R_{3}, R_{3}\right)=R_{1} \circ R_{1}^{*} \circ R_{2} \circ\left(R_{1} \cup R_{2}\right)^{*}, R_{3}$.
Definition 6.1 .2 (Upart $\left(R_{1}, \ldots, R_{n}\right)$ for $n \geqslant 1$). For $n \geqslant 1: \operatorname{Upart}\left(R_{1}, \ldots, R_{n}\right)$ $=U_{t_{1} \ldots i_{n} \text { permor } 1 \ldots, n} \operatorname{Uscgment}\left(R_{i,}, \ldots, R_{i_{n}}\right)$. I.e., in Upart $\left(R_{1}, \ldots, R_{n}\right)$ the order of the $R_{i}(i=1, \ldots, n)$ is immaterial.

Remembering the example given above, the existence of an infinite sequence of Uparts, starting in a state ξ, is expressed by satisfaction of a predicate $\operatorname{UF}\left(R_{1}, \ldots, R_{n}\right)$ in ξ, defined as follows:

Defintion 6.1.3 ($\operatorname{UF}\left(R_{1}, \ldots, R_{n}\right)$ for $\left.n \geqslant 1\right)$. For $n \geqslant 1: \operatorname{UF}\left(R_{1}, \ldots, R_{n}\right)$ $=v p \cdot\left[\right.$ Upart $\left.\left(R_{1}, \ldots, R_{r}\right) \circ p\right]$. (Recall that R_{t} denote relations.)
An exccution sequence of a program $S \equiv{ }^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right]$ in which each direction is chosen infinitely often is strongly fair iff it is unconditionally fair, Consequently, the program $S \equiv{ }^{*}\left[\square_{1=1}^{n} b_{l} \rightarrow S_{i}\right](n \geqslant 1)$ admits an infinite unconditionally fair execution sequence starting in ξ iff $\operatorname{UF}\left(R_{1}, \ldots, R_{n}\right)$ holds in ξ. Recall that R_{i} denotes the relation $R_{b_{1}} \circ R_{S_{1}}^{\mathrm{sf}}$ associated with $b_{i} ; S_{i}(i=1, \ldots, n)$.

6.2. Strongly Fair Termination

Now, consider infinite sequences of a program $*\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ in which directions can become disabled. Suppose that the nth direction $b_{n} ; S_{n}$ becomes eventually never enabled any more. Then an infinite strongly fair sequence of R_{1}, \ldots, R_{n}-moves consists of some finite seguence of $R_{1}, \ldots, R_{r}-$ moves followed by an infinite strongly fair sequence of R_{1}, \ldots, R_{n-1}-mpves in which every intermediate state satisfies $\neg b_{n}$. In case no other direction of S becomes eventually continuously disabled, the existence of such a sequence is expressed by a predicate $\left(R_{1} \cup \cdots \cup R_{n}\right)^{*} \triangleleft \mathrm{UF}\left(\neg b_{n} \circ R_{1}, \ldots\right.$, $\neg b_{n} \circ R_{n-1}$). Observe that this predicate is equivalent to ($b_{1} \circ R_{1} \cup \cdots \cup$ $\left.b_{n} \circ R_{n}\right) * \circ \mathrm{UF}\left(\left(b_{1} \wedge \neg b_{n}\right) \otimes R_{1}, \ldots,\left(b_{n-1} \wedge \neg b_{n}\right) \stackrel{R_{n-1}}{ }\right)$, since the cnabling condition b_{i} is incorporated in $R_{i}(i=1, \ldots, n)$. The possibility that other moves may become disabled, too, leads to the following definition ${ }^{2}$:

Definition 6.2 .1 (fair $\left(b_{i_{h}} \circ R_{i l}, \ldots, b_{i_{k}} \circ R_{i k}\right)$ fin $\left(b_{t_{k+1}} \circ R_{i_{k}, 1}, \ldots, b_{i_{n}} \circ R_{i_{n}}\right)$ for $n \geqslant 2$ and $1 \leqslant k \leqslant n$). Let $n \geqslant 2$ and suppose that i_{1}, \ldots, i_{n} is some permutation of $1, \ldots, n$. For k, satisfying $1 \leqslant k<n$, define

$$
\begin{aligned}
& \operatorname{fair}\left(b_{i 1} \circ R_{i t}, \ldots, b_{i k} \circ R_{i k}\right) \operatorname{fin}\left(b_{i k+1} \circ R_{i k+1}, \ldots, b_{i 4} \circ R_{i k}\right) \\
& =\left(\bigcup_{i-1}^{n} b_{i} \circ R_{i}\right)^{*} \circ \mathrm{UF}\left(\left(b_{i 1} \wedge \bigwedge_{j=k+1}^{n} \neg b_{i j}\right) \cdot R_{i j}, \ldots,\right. \\
& \left.\quad\left(b_{t_{k}} \wedge \bigwedge_{j-k+1}^{n} \neg b_{i j}\right) \circ R_{i k}\right) .
\end{aligned}
$$

Remark. fair $\left(b_{i_{n}} \circ R_{i,}, \ldots, b_{i_{n}} \circ R_{i k}\right)$ fin $\left(b_{i_{k-1}} \circ R_{i_{8+1}}, \ldots, b_{i_{n}} \circ R_{i_{n}}\right)$ holds in state ξ iff there exists an infinite strongly fair sequence, starting in ξ, in which the directions $b_{i k+,} ; S_{i t, 1} \ldots, b_{l_{4}} ; S_{i n}$ are eventually never enabled any more.

Now, finally the predicate expressing the existence of infinite strongly fair sequences can be formulated.

Definition $6.2 .2\left(\operatorname{SFAIR}\left(b_{1} \circ R_{1}, \ldots, b_{n} \circ R_{n}\right)\right.$ for $\left.n \geqslant 1\right)$. $\operatorname{SFAIR}\left(b_{1} \circ R_{1}\right)$ $=\mathrm{UF}\left(b_{1} \circ R_{1}\right)$, and for $n \geqslant 2$;

$$
\begin{aligned}
& \operatorname{SFAIR}\left(b_{1} \circ R_{1}, \ldots, b_{n} \circ R_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\operatorname { H n }}\left(b_{i_{k}+1} \circ R_{i_{k+1}}, \ldots, b_{i_{n}} \circ R_{i_{n}}\right) .
\end{aligned}
$$

[^4]In the sequel we always assume that the relation b_{i} is incorporated in the relation R_{i}. Also, with R_{1} we always associate b_{i} as enabing condition. Thus, R_{i} will denote the relation $R_{b_{i}}=R_{s_{i}}^{s i}$.

We defined here, for every sequence of relations R_{1}, \ldots, R_{π} a different predicate. In other words, SFAIR is not a sccond order formula! For the proof of Theorem 6.3.4 we need the following technical lemma.

Lemma 6.2.3 (Characterization of $\left.\operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)\right)$.

$$
\begin{aligned}
& \text { inl }=\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rightarrow \neg \operatorname{UF}\left(\bigwedge_{j=k+1}^{n} \neg b_{i j} \circ R_{i 1}, \ldots, \bigwedge_{j-k+1}^{n} \neg b_{i j} \circ R_{i_{k}}\right)\right] .
\end{aligned}
$$

Proof. For $n=1$ this follows by Definition 6.2.2. So assume that $n \geqslant 2$. Then the lemma follows from Definition 6.2.2, Definition 6.2.1, and Lernma 5.1.3.

6.3. Weakest Precondition for Strongly Fair Termination

As a last preparation for the soundness and completeness proofs, we mention the notions of the weakest liberal precondition and of the weakest precondition for strongly fair termination.

Definition 6.3.1 (Weakest liberal precondition). An assertion $p=\operatorname{wlp}(S, q)$ is the weakest liberal precondition w.r.t. a command S and a condition q if $\mathfrak{M} \vDash[p] S[q]_{\text {part }}$ and for each $r, \mathbb{M} \models[r] S[q]_{\text {pam }}$ implies $9 R \vDash r コ p$.

In (de Bakker, 1980), it has been shown that for each command S and assertion q, wlp (S, q) is definable in L. It is useful to mention that for loops $\left.S \mathrm{wlp}(S, q)=\left(\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \circ \wedge_{i=1}^{n} \neg b_{i}\right) \rightarrow q\right)$.

Definition 6.3 .2 (Weakest precondition for strongly fair termination). An assertion p is the weakest precondition for strongly fair termination w.r.t. a command S and a condition q if $9 \in \vDash[p] S[q]_{\text {sr }}$ and for cach $r, \mathfrak{M}=[r] S[q]_{\text {sf }}$ implies $\mathbb{M} f r r \supset p$.

We next state the key result of this section, viz, the definability of the weakest precondition for strongly fair termination sfwp (S, G) for any command S and any condition 9 . In Theorem 6.3 .4 below, we prove that wpsi indeed defines the weakest precondition for strongly fair termination.

Definition 6.3 .3 (sfwp (S, q)). For each command S and condition is, $\operatorname{sfw}(S, q)$ is inductively defined by
(a) $\operatorname{siwp}(x:=\varepsilon, q)=q\{\varepsilon / x\}$,
(b) $\operatorname{sfwp}\left(S_{1} ; S_{2}, g\right)=\operatorname{sfwp}\left(S_{1}, \operatorname{sfwp}\left(S_{2}, g\right)\right)$, where S_{1} and S_{2} are simple commands, and
(c) $\operatorname{sfwp}\left(*\left[\square_{i=1}^{*} b_{i} \rightarrow S_{i}\right], q\right)=\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}\right.$ $\left.\circ \wedge_{i-1}^{\prime \prime} \neg b_{i}\right) \rightarrow q$, where S_{i} are assumed to be simple.

Theorem 6.3.4. For each command S and condition q, sfwp (S, q) is indeed the weakest precondition for strongly fair termination w.r.t. S and q.

Proof. The proof is standard except for the case that $S \equiv$ * $\left[\square_{i=1}^{n} b_{i}-S_{i}\right]$ with simple $S_{i}, i=1, \ldots, n$. Consequently, we prove that both
(a) $\ln =\left[\operatorname{siwp}\left({ }^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right], q\right)\right]^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right][q]_{\mathrm{sf}}$, and
 hold.

To do so, it suffices to prove that for every $\xi: 9 M \models[r]^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ $\left.[q](\xi) \Rightarrow \mathfrak{M} \vDash r=\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{r r}\right) \wedge\left(\left(\bigcup_{i, n!}^{\mu} R_{i}\right)^{*} \circ \wedge_{i-1}^{\prime \prime} \neg b_{i}\right) \rightarrow q\right)\right)$ (ξ), holds.
(\Rightarrow) Suppose that $\mathfrak{W} \mid=[r]^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]_{\text {si }}$ holds. Choose some state ξ such that $9 \mathbb{G Q} \models r(\xi)$ hoids. Assume, to obtain a contradiction, that $\mathfrak{P} \models \operatorname{SFAIR}\left(R_{1}, \ldots, R_{H}\right)(\xi)$. Then this leads immediately to a contradiction, since this implies the existence of an infinite strongly fair execution sequence, starting in ξ. So $\operatorname{M}=\neg \operatorname{SFAIR}\left(R_{t}, \ldots, R_{n}\right)(\xi)$ holds. It remains to prove that $\left.\mathfrak{W} \vDash\left(\left(\bigcup_{i=1}^{\pi} R_{i}\right)^{*} \circ \bigwedge_{i=1}^{\prime} \neg b_{i}\right) \rightarrow q\right)(\xi)$ bolds, too. To do this, choose some ξ^{\prime} satisfying $\mathrm{m}^{\prime \prime}=\left(\bigcup_{i=1}^{\prime \prime} R_{i}\right)^{*} \circ \wedge_{i=1}^{n} \neg b,\left(\xi, \xi^{\prime}\right)$. Clearly, then also $07 \mu R_{S}^{3}\left(\xi, \xi^{\prime}\right)$, where $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$, and so by the hypothesis $97 \% q\left(\xi^{\prime}\right)$.
$(\rightleftharpoons) \quad$ Suppose that $9 n \models r \sqsupset\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{r}\right) \wedge\left(\left(\bigcup_{i-1}^{n} R_{i}\right)^{*}\right.\right.$ $\left.\wedge_{i=1}^{n} \neg b_{i}\right) \rightarrow q$). Choose state ξ such that $9 \in(\xi)$. Since, by hypothesis $\mathfrak{M} \models \neg$ SFAIR $\left(R_{1}, \ldots, R_{n}\right)(\xi)$, the repetition atways terminates strongly fair. We have to prove that, in this case, cach final state satisfies q. Choose some ξ^{\prime} such that $\mathbb{W} \models R_{S}^{\mathrm{s}}\left(\xi^{\xi}, \xi^{\prime}\right)$, where $S \equiv{ }^{*}\left[\square_{i-1}^{n}, b_{i} \rightarrow S_{i}\right]$. Clearly, then also $\mathfrak{M}=\left(\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \circ \wedge_{i-1}^{n} \neg b_{i}\right)\left(\xi, \xi^{\prime}\right)$ and so, by the hypothesis, $\mathrm{m}=q\left(\xi^{\prime}\right)$ holds, which had to be shown.
 $\mathfrak{P} \models \neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{H}\right)(\xi)$.

This corollary states that strongly fair termination of a repetition is indeed expressible in the μ-calculus.

7. Completeness

In this section, we prove the completeness of our proof system, i.e, we will show that for any statement $S \in L G C(M)$, assertions $r, q \in L$,

$$
\begin{equation*}
\mathfrak{M} \vDash[r] S[q]_{\mathbb{A}} \Rightarrow \mathrm{Th}(\mathrm{M}) \vdash[r] S[q] \quad \text { holds } . \tag{*}
\end{equation*}
$$

Here 90 is by convention a first-order ordinal acceptable structure, and Th $(\mathbb{P})=\left\{p \in L \mid W_{f} \vDash p\right\}$, As is usual in such proofs, completeness is established by structural induction on the complexity of statements S. Observe that (*) is trivial in case S is not a repetition. Therefore to prove (*) it suffices to concentrate on the case where $S \equiv{ }^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$. In this case, we establish (*) by induction on n, the number of directions in S. Next observe that when $n=1$ the proof of ($*$) is straightforward Consequently, we proceed with loops with more than one direction, the induction hypothesis being

Induction Hypothesis (IH). (a) and (b) below both hold:
(a) for all simple commands $S, \mathrm{M} \vDash[r] S[q]_{s i} \Rightarrow \mathrm{Th}(\mathrm{M}) \vdash$ $[r] S[q]$.
(b) for all $k, 1 \leqslant k<n$, OD $F[r] *\left[\omega_{i=1}^{k} b_{i} \rightarrow S_{i}\right][q]_{\mathrm{sq}} \Longrightarrow \mathrm{Th}(\mathrm{WY})!$ $[r]{ }^{*}\left[\square_{i=1}^{k} b_{i} \rightarrow S_{i}\right][q]$.

From the discussion above it fotlows that we may assume that S is a repetition with at least two directions and that (IH) holds. Consequently, we are going to prove that given the fact that $90=[r]$ * $\left[\square_{t-1}^{*}, b_{i} \rightarrow S_{i}\right][q]_{3 f}$ holds for $n \geqslant 2$, we can define in L the auxiliary quantities, i.e, a well-founded set $(W,<)$, a ranking predicate π, and pairwise disjoint sets D_{w} and $\$ t_{w}$ for $w \in W, W>0$, such that the premisses (a), (b), (c), and (d) of Orna's rule as stated in Section 1 hold. The definitions of the auxiliary quantities are developed in Section 7.1. In Lemmata 7.2.1 through 7.2.4, validity of premisses (a) through (d) are proved, culminating in completeness theorem 7.2 .5 , whose proof is then standard.

7.1. The Auxiliary Quantities

Assume that $\mathfrak{M} \models[r]^{M}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]_{s!}$ holds. The main results of this section are that the auxiliary quantities necessary to apply Orna's rule are definable within L.

First we are going to define a well-founded set W and a predicate $\pi: W \rightarrow$ (States $\rightarrow\{$ true, false $\}$), ranking every state (reachable by S). To do so, we observe that the usual approach of counting moves does not work, because not every move brings the program closer to termination.
E.g., in case of Dijkstra's random number generator, see Section 3.4, move R_{1} will not help reach termination.

Now S terminates strongly fair and hence also unconditionally fair. This follows from Theorem 3.4.4. At any time, there is at least one decreasing move; otherwise there exists a state in which no move would bring the program closer to termination, resulting in the existence of an infinite strongly fair sequence, yiedding a contradiction, So, if in a successive sequence of iterations, "every enabled move has been executed at least once," then certainly the program has come closer to termination. This shows that viewing execution sequences as consisting of Uparts is a natural thing to do. Unfortunately, counting Uparts does not quite work, because we have to rank all states in order for Orna's rule to apply.

Consider such a Upart. It suffices that the states reached by executing this Upart, are ranked in such a way that it reflects the "progress" that is made w.r.t. executing this Upart itself. Now a move leads to "progress" if it is a new one that has not been made in the Upart as yet. This gives the intuition behind the definitions of W and π that we now develop. First, we consider the problem of ranking states related by Uparts in more detail. At this stage, we therefore disregard the internal progress within a Upart; such progress is incorporated afterwards.

Consider any reachable state ξ. Intuitively this state will be ranked by cotnting the number of Uparts necessary to reach a final state, i.e., ξ will be ranked by β if it takes the program at most β Uparts from ξ to reach termination. To define the rank β of ξ, we apply the techniques developed in Section 5 . Define $\tau(p)=\lambda \xi \cdot\left(\operatorname{Upart}\left(R_{1}, \ldots, R_{n}\right) \rightarrow p\right)(\xi)$. From Lemma 5.1 .2 it follows that the least fixed point of τ exists and that it can be obtained by iteration. Intuitively, $\tau^{\not \theta}($ false $)$ holds in ξ if in ξ we are at most β Uparts away from termination. It also follows from Lemma 5.1.2 that there exists some λ such that

$$
\begin{equation*}
\tau^{\lambda}(\text { faise })=\mu p \cdot\left[\text { Upart }\left(R_{1}, \ldots, R_{n}\right) \rightarrow p\right] \quad \text { holds. } \tag{A}
\end{equation*}
$$

Let $\bar{\alpha}$ be the least ordinal satisfying (A). $\bar{\alpha}$ is a recursive ordinal, cf. Apt and Plotkin (1985). Therefore, we have that for all $\beta \leqslant \bar{\alpha}, \beta$ is a recursive ordinal, too.

Of course, for this idea to work we need to show that $\tau^{\beta}(f a l s e)$ is representable by a formula in L.
7.1.1. Theorem (Definability of τ^{β} (false)) Let $\tau(p)=\lambda \xi \cdot\left(\mathrm{Upart}\left(R_{1}, \ldots, R_{n}\right)\right.$ $\rightarrow p)(\xi)$. There exists a formula ϕ in L such that for all ξ and all $\beta \leqslant \dot{\beta}$. $\tau^{\beta}($ false $)(\xi)$ holds iff $\mathbb{M} \vDash \phi(\beta)(\xi)$.

Proof Define $\phi(\beta)=\mu r \cdot\left[\exists \alpha \leqslant \beta \cdot\left(\operatorname{Upart}\left(R_{1}, \ldots, R_{\mu}\right) \rightarrow r(\alpha)\right)\right] . \quad$ By induction on $\beta \leqslant \bar{\alpha}$ we prove that for all $\bar{\beta} \leqslant \bar{\alpha}$ and all $\xi, \tau^{\beta}($ fatse $\left.\} \xi\right)$ holds iff $\mathrm{T} \mid=\phi(\beta)(\xi)$.

Induction basis, $\bar{\beta}=0$. Trivial, sinee for all $\xi, \tau^{0}(f a l s e)(\xi) \Longrightarrow$ false and $\mathrm{m} \vDash \phi(0)(\xi)=9 \mathrm{M}=f a l s e(\xi)=$ false.

Induction hypothesis $(1 \mathrm{H})$. For all $\lambda<\beta$ and all $\xi, \tau^{2}($ false $)(\xi)$ holds iff $M \vDash \phi(\lambda)(\xi)$.

Induction step. For $\beta=\overline{0}$, we have that

$$
\begin{aligned}
& \mathfrak{M} \models \phi(\beta)(\xi) \Leftrightarrow \mathfrak{W} \ell \models \mu r \cdot\left[\exists \alpha<\beta \cdot\left(\operatorname{Upart}\left(R_{1}, \ldots, R_{n}\right) \rightarrow r(\alpha)\right)\right](\xi) \\
& \text { (definition of } \phi \text {) } \\
& \Rightarrow \mathfrak{M} \vDash \exists \alpha<\beta \cdot\left(\operatorname{Upart}\left(R_{1}, \ldots, R_{n}\right) \rightarrow \phi(\alpha)\right)(\xi) \\
& \text { (fixed point property) } \\
& \Leftrightarrow \text { for some } \lambda \approx \beta, \mathfrak{M R} \vDash\left(\operatorname{Upart}\left(R_{1}, \ldots, R_{n}\right) \rightarrow \phi(\lambda)\right)(\xi) \\
& \Leftrightarrow \text { for some } \lambda<\hat{\beta} \text { and for all } \xi^{\prime} \text {, } \\
& \mathfrak{W} 1=\left[\mathrm{U}_{\mathrm{part}}\left(R_{1}, \ldots, R_{H}\right)\left(\xi, \xi^{\prime}\right) \supset \phi(\lambda)\left(\xi^{\prime}\right)\right] \\
& =\text { for some } \lambda \leftharpoonup \beta \text { and for all } \xi^{\prime} \text {, } \\
& \text { SIM }=\left[\operatorname{Upart}\left(R_{1}+\ldots, R_{n}\right)\left(\xi, \xi^{\prime}\right)\right] \Longrightarrow \tau^{\lambda}(\text { false })\left(\xi^{\prime}\right)(\mathrm{IH}) \\
& \Rightarrow \text { for aill } \xi^{\prime}, \mathfrak{M} \vDash \operatorname{Upart}\left(R_{1}, \ldots, R_{n}\right)\left(\xi^{\prime}, \xi^{\prime}\right) \Rightarrow\left(\exists \lambda<\bar{\beta} \cdot \tau^{\lambda}(\text { false })\left(\xi^{\prime}\right)\right) \\
& \Rightarrow \text { for all } \xi^{\prime}, \mathfrak{F M}=\mathrm{Upart}\left(R_{1}, \ldots, R_{n}\right)\left(\xi_{,} \xi^{\prime}\right)=\bigsqcup_{i=\beta} \tau^{\lambda}(\text { false })\left(\xi^{\prime}\right) \\
& \Leftrightarrow \tau^{\beta}(\text { false })(\xi) .
\end{aligned}
$$

Now, we defne the well-founded ordered set W : each $w \in W$, w not minimal, consists of two components. The first one counts Uparts, the second one records "progress" within the last (incomplete) Upart and is a sequence of length at most n, the number of directions within this Upart, which records the directions within this Upart, that have already been taken.

We next define the predicate $\operatorname{seq}_{n}(s)$ which holds iff s is sequence of length at most n, in which directions are recorded only and in which each direction is recorded at most once.

Definition $7.1 .2\left(\mathrm{seq}_{n}\right)$.

$$
\begin{gathered}
\operatorname{seq}_{m}(s)=\operatorname{Seq}(s) \wedge \operatorname{lh}(s) \leqslant n \wedge \forall i\left[(1 \leqslant i \leqslant \operatorname{lh}(s)) \supset\left(1 \leqslant(s)_{i} \leqslant n\right)\right] \\
\wedge \forall i, j\left[(1 \leqslant i, j \leqslant \operatorname{lh}(s) \wedge i \neq j) \supset(s)_{i} \neq(s)_{j}\right]
\end{gathered}
$$

(cf. Definition 5.5.1).
Next, we define the well-founded structure required to apply Orna's rule

Definirron 7.1.3 (The well-founded structure $W_{\alpha, n}$).
(a) $W_{s, n}=\left\{\left(\bar{\lambda}, s| | \overline{0} \leqslant \lambda \leqslant \bar{\alpha} \wedge \operatorname{seq}_{n}(s)\right\} \cup\{\overline{0}\}\right.$.
(b) The ordering $<$ defined on $W_{\dot{x}, n}$ is the following: $0<(\bar{\lambda}, s)$ for all $\left(\lambda_{3} s\right) \in W_{\dot{\bar{s}, n}}$, and $\left(\lambda_{1}, s_{1}\right)<\left(\lambda_{2}, s_{2}\right)$ iff $\left(\lambda_{1}<\lambda_{2}\right) \vee\left(\left(\lambda_{1}=\lambda_{2}\right) \wedge \operatorname{lh}\left(s_{2}\right)<\right.$ $\left.\operatorname{lh}\left(s_{1}\right) \wedge \forall\left[\left(1 \leqslant i \leqslant \operatorname{lh}\left(s_{2}\right)\right)=\left(s_{2}\right)_{1}=\left(s_{1}\right)_{t}\right]\right)$.

Next, we define the ranking predicate π.
Definition 7.1 .4 (The ranking predicate π). The predicate π : $W_{\text {d. }, 4} \rightarrow$ (States $\rightarrow\{$ true, false $\}$) is defined by:

$$
\begin{aligned}
& \pi\left(\lambda_{2}\langle \rangle\right)=\tau^{\Sigma}(\text { false }) \wedge r o\left(\bigcup_{i=1}^{n} R_{f}\right)^{*} \wedge \bigvee_{i=1}^{n} b_{i}, \\
& \pi\left(\lambda_{,}\left\langle i_{1}, \ldots, i_{k}\right\rangle\right)=t^{A^{\prime}}(\text { false }) \circ\left(\operatorname{Usegment}\left(R_{i 1}, \ldots, R_{t_{k}}\right) \circ\left(\bigcup_{t=1}^{k} R_{i}\right)^{*}\right) \\
& \wedge r \circ\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \wedge \bigvee_{i=1}^{n} b_{i} \quad(\text { for } 1 \leqslant k<n), \\
& \pi\left(\lambda,\left\langle i_{1}, \ldots, i_{n}\right\rangle\right)=\bigsqcup_{g \in \lambda} \tau^{\theta}(\text { false }) \wedge r o\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \wedge \bigvee_{i=1}^{n} b_{i}, \\
& \pi(0)=r \circ\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \wedge \wedge_{i=1}^{n} \neg b_{i} .
\end{aligned}
$$

Note that accessibility is demanded for $\pi(w), w \in W_{\dot{x}, n}$. If $1 \leqslant k<n$ and $\pi\left(\lambda_{,}\left\langle i_{1}, \ldots, i_{k}\right\rangle\right)(\xi)$ holds, then there exists a state ξ^{\prime} in which the program is at most λ Uparts away from termination. It takes a fragment, i.e., an initial part of a Usegment to reach ξ from ξ ', namely Usegment $\left(R_{i}, \ldots, R_{i k}\right)=\left(\bigcup_{j-1}^{k} R_{i}\right)^{*}$.

Defining $S t_{w}$ and D_{w} for $w>0, w \in W_{s, n}$, is simple now. If we are at the start of a Upart, i.e., $w=(\lambda,\langle \rangle)$ or $w=\left(\lambda,\left\langle i_{1}, \ldots, i_{n}\right\rangle\right)$ for some $\lambda \leqslant \bar{\alpha}$, then every move leads to eventual completion of this Upart. Otherwise, $w=\left(\lambda,\left\langle i_{1}, \ldots, i_{k}\right\rangle\right)$ for some $\lambda, 1 \leqslant k<n$, and only moves different from $R_{t_{1}}, \ldots, R_{t k}$ lead to eventual completion of this Upart.
7.1.5. Definition (The set of helpful and steady moves D_{w} and $\left.S t_{w}\right)$. Let $w \in W_{\alpha, n}, w>0$. Then $w=(\lambda, s)$ for some $\lambda \leqslant \bar{\alpha}$, and s with $\operatorname{seq}_{n}(s)$.

If $\operatorname{lh}(s)=0$ or if $\operatorname{lh}(s)=n$, then $D_{w}=\{1, \ldots, n\}$ and $S t_{w}=\varnothing$.
If $0<\operatorname{lh}(s)<n$, then $D_{w}=\left\{i \mid(1 \leqslant i \leqslant n) \wedge \forall j \cdot 1 \leqslant j \leqslant \operatorname{lh}(s)\left[(s)_{j} \neq i\right]\right\}$, $S t_{w}=\{1, \ldots, n\}-D_{w}$.
 $D_{w^{\prime}} \cup S t_{w}=\{1, \ldots, n\}$.

7.2. Completeness of Orna's Rule

Using the above definitions, we next prove that the four premises, (a)-(d) of Orna's rule are valid To be more precise, Lemmata 7.2.1-7.7.4.4 below show that these four premises are satisfied indeed. From the induction hypothesis, completencss of the rule and hence of our proof system then easily follows. Assume that $\left.97 \%[r] *[]_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]_{\mathrm{ci}}$ holds

By Definition 63.3 and Theorem 6.3 .4 we may assume that $\mathfrak{M} \models r=$ $\left.\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\left(\cup_{i m 1}^{\pi} R_{i}\right)^{*} \otimes \wedge_{i=1}^{n} \neg b_{i}\right) \rightarrow q\right)\right)$ holds, too.

Lemma 7.2.1 (Corresponding to premise (a) of Ornats rule). Let $w \in W_{\alpha, a}, j \in D_{w}$; i.e., K, is a decreasing move. Suppase that $\varphi \in \mathbb{F} \vDash r$ $\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \circ \wedge_{i \Delta 1}^{n} \neg b_{i}\right)-q$) holds. Then $\mathfrak{P} \models$ $\left[\pi(w) \wedge w^{2}>0 \wedge b_{j}\right] S_{j}\left[\exists_{v}<w \cdot \pi(n)\right]$ holds, too.

Proof. We have to prove that for all $\xi, \xi^{\prime} \in$ States such that $\operatorname{mo}=$
 ξ and ξ^{\prime} satisfying $9 \eta \models R_{i}\left(\xi, \xi^{\prime}\right)$ and suppose that $9 \mathbb{M} \models(\pi(w) \wedge w>0)(\xi)$ holds. To prove the lemma, we distinguish two cases:
(a) $\quad \mathfrak{T H} \vDash \wedge_{i=1}^{*} \neg h_{i}\left(\xi^{\prime}\right)$. In this case, $\mathfrak{M} \models \pi(0)\left(\xi^{\prime}\right)$, and we are done.
(b) $\mathfrak{D}=\bigvee_{i=1}^{n} b_{i}\left(\xi^{\prime}\right)$

$$
\begin{equation*}
\mathfrak{M} \vDash \exists \xi^{\prime \prime}\left[r\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i=1}^{R} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right] \quad \text { holds } \tag{ii}
\end{equation*}
$$

s a consequence of Fact 5.2.5, we obtain that $\left(U_{i=1}^{n} R_{i}\right)^{*}=R_{j}$ 드 $\left.\int_{i-1}^{n} R_{i}\right)^{*}$. Therefore, it follows from $\operatorname{lith} \vDash R_{j}\left(\xi, \zeta^{\prime}\right)$ and (ii) that $\mathfrak{M i} \vDash$ ${ }^{\prime \prime}\left[r\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i \mathrm{mI}}^{n} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi^{\prime}\right)\right]$ holds, too; ie.,

$$
\begin{equation*}
m=r \circ\left(\bigcup_{i=1}^{\pi} R_{i}\right)^{*}\left(\xi^{\prime}\right) \tag{iii}
\end{equation*}
$$

ixt, let $w=(\bar{\lambda}, s)$. We are going to prove that $97 \in \exists v<w \cdot \pi(v)\left(\xi^{\prime}\right)$ lds. To do so, we distinguish three cases:
(1) $\operatorname{lh}(s)=0$, i.e., $s=\langle \rangle$. Since $\mathfrak{M} \models \pi(w)(\xi), \underline{\mathbb{R}} \vDash \tau^{\mathcal{A}}($ false $)(\xi)$ 'ds. Consequently, it follows that $\mathbb{M} \vDash \exists \xi^{\prime \prime}\left[\tau^{\prime}(\right.$ false $\left.)\left(\xi^{\prime \prime}\right) \wedge R_{j}\left(\xi^{\prime \prime}, \xi^{\prime}\right)\right]$.

Remember that R_{j} is the relation $R_{h, *}$, $R_{s,}^{\prime}$ associated with $b_{i} ; S_{\text {, }}$.

Hence，together with $R_{j} \subseteq R_{j}^{+}$，which follows from Fact 5．2．5，we obtain that $9 R=\exists \xi^{\prime \prime}\left[\tau^{\lambda}(\right.$ false $\left.)\left(\xi^{\prime \prime}\right) \wedge R_{j}^{+}\left(\xi^{\prime \prime}, \xi^{\prime}\right)\right]$ ；i．e．， $91=\left(\tau^{i}(\right.$ false $\left.\left.) \circ R_{j}^{+}\right)\left(\xi^{\prime}\right)\right]$ ． Together with（i）and（iii）， $\mathbb{M} F \pi(\lambda,\langle j\rangle)\left(\xi^{\prime}\right)$ follows and hence $9 \Rightarrow \exists v<w \cdot \pi(v)\left(\xi^{\prime}\right)$ ．
（2） $1 \leqslant \operatorname{lh}(s)<n$ ，so $s=\left\langle i_{1}, \ldots, i_{k}\right\rangle$ for some i_{1}, \ldots, i_{k} with $\left\{i_{1}, \ldots, i_{k}\right\}$ $\subseteq\{1, \ldots, n\}$ and $\mid \& k<n$ ．From $\mathfrak{M} F \pi(w)(\xi)$ we derive $\mathfrak{M g}=\left(\tau^{x}(\right.$ false $)$ 。 Usegment $\left.\left(R_{i_{1}}, \ldots, R_{i_{k}}\right) \circ\left(\bigcup_{r=1}^{k} R_{i_{k}}\right)^{*}\right)(\xi)$ ．Since $\operatorname{Usegment}\left(R_{i_{1}}, \ldots, R_{i_{k}}\right)$ 。 $\left(\bigcup_{i=1}^{k} R_{i j}\right)^{*} \circ R_{j}=U \operatorname{segment}\left(R_{i}, \ldots, R_{i_{k}}, R_{j}\right) \subseteq$（Definition 6．1．1 and $j \neq i_{1}, \ldots, i_{k} \quad$ for $\left.\quad j \in D_{\omega}\right) \subseteq \operatorname{Usegment}\left(R_{i t}, \ldots, R_{i_{k}}, R_{j}\right) \circ\left(\bigcup_{i-1}^{k} R_{i} \cup R_{j}\right)^{*}$ （Fact 5.2 .5 ），together with the fact that $\mathbb{M N} \vDash R_{f}\left(\xi, \xi^{\prime}\right)$ bolds，it follows that $9 R \vDash \tau^{\lambda}(f a l s e)$ ）Usegment $\left(R_{h}, \ldots, R_{k}, R_{j}\right)\left(\xi^{\prime}\right)$ holds，too．It follows together with（i）and（iii）that $\mathfrak{M} F \pi\left(\lambda,\left\langle i_{1}, \ldots, i_{k}, j\right\rangle\right)\left(\xi^{\prime}\right)$ holds．Again， $\mathrm{IN}=3 v<w \cdot \pi(v)(\xi)$ follows．
（3） $\operatorname{lh}(s)=n$ ．From $\mathfrak{M} \models \pi(\lambda, s)(\xi)$ and Definition 7．1．3，the existence of a $\beta<\lambda$ such that $9 \mathbb{F}=\pi(\beta,\langle \rangle)(\xi)$ foliows．As in case（1）， $\mathbb{P}=\exists v<$ $(\beta,\langle \rangle) \cdot \pi(v)\left(\xi^{\prime}\right)$ ，and so $9 \mathbb{R} \vDash \exists v<(\lambda,\langle \rangle) \cdot \pi(v)\left(\xi^{\prime}\right)$ ．

Lemma 7.2 .2 （Corresponding to premise（b）of Orna＇s rule），Let $w \in W_{a, n}, j \in S t_{w}$ ；i．e．，R ，is a steady move．Suppose that $901=r=$ $\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\left(\bigcup_{i-1}^{n} R_{i}\right)^{*} \circ \wedge_{i-1}^{n} \neg b_{i}\right) \rightarrow q\right)$ holds．Then $\operatorname{TR} \vDash$ $\left[\pi(w) \wedge w \geqslant 0 \wedge b_{j}\right] S_{j}[\exists v \leqslant w \cdot \pi(v)]$ holds，too．

Proof．We have to show that for all states ξ, ξ^{\prime} such that 요 \vDash $\boldsymbol{R}_{j}\left(\xi_{,} \xi^{\prime}\right), \quad$ 负 $\vDash(\pi(w) \wedge w>0)(\xi) \Rightarrow \mathfrak{M} \vDash \exists v ふ w \cdot \pi(v)\left(\xi^{\prime}\right)$ ．To do so choose states $\xi_{,} \xi^{\prime}$ and suppose that $\$=(\pi(w) \wedge w>0)(\xi)$ holds．Let $w=(\lambda, s)$ ．As in Lemma 7．2．1 there are two cases：
（a） $\boldsymbol{T} \vDash \wedge_{i=1}^{n} \neg b_{i}\left(\xi^{\prime}\right)$ ．In this case the lemma is trivial．
（b）$\quad \mathbb{T} \vDash \vDash \bigvee_{i=1}^{n} b_{i}\left(\xi^{\prime}\right)$
We have to prove that $\mathfrak{M} \models \exists v \leqslant w \cdot \pi(v)\left(\varsigma^{\prime}\right)$ is satisfied．Note that $\ln (s) \neq 0$ and $\mathrm{h}(\mathrm{s}) \neq \mathrm{n}$ ，because $\mathrm{lh}(s)=0$ or $\mathrm{h}\left(\mathrm{s}(\mathrm{s})=n\right.$ implies that $S t_{w}=\varnothing$ ．So let $w=\left(\lambda,\left\langle i_{1}, \ldots, i_{k}\right\rangle\right), \quad 1 \Leftrightarrow k \leqslant n, \quad\left\{i_{1}, \ldots, i_{k}\right\} \doteq\{1, \ldots, n\}$ ．Since $j \in S t_{w}$ ， $j=i_{t}$ for some $t, 1 \leqslant t \leqslant k$ ．Now， $\mathbb{M} \models \pi(w)(\xi)$ ，so $\mathbb{T} \vDash \tau^{x}($ false $)$ 。 Usegment $\left(R_{i_{1}}, \ldots, R_{i t}\right) \circ\left\{\bigcup_{t=1}^{k} R_{t_{i}}\right)^{*}(\xi)$ ；i．e．，

$$
\begin{gather*}
\mathfrak{M} \equiv \exists \xi^{\prime \prime} \cdot\left[\tau^{\lambda}(\text { false })\left(\xi^{\prime \prime}\right) \wedge \text { Usegment }\left(R_{i_{i}}, \ldots, R_{i_{k}}\right)\right. \\
\left.0\left(\bigcup_{i-1}^{k} R_{i i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right] \tag{ii}
\end{gather*}
$$

Since $\left(\cup_{i-1}^{k} R_{i}\right)^{*} \cup R_{j} \subseteq\left(\bigcup_{i-1}^{k} R_{i,}\right)^{*}$, see Fact 5.2 .5 , we obtain that $\operatorname{Usegment}\left(R_{i}, \ldots, R_{i,}\right) \circ\left(\mathrm{U}_{i=1}^{k} R_{i,}\right)^{*} \measuredangle R_{j} \subseteq \mathrm{Usegment}\left(R_{i,}, \ldots, R_{i}\right) \circ\left(\mathrm{U}_{i-1}^{k}, R_{i,}\right)^{*}$. From (ii) and the fact that $9 \mathbb{M} \models R_{1}\left(\xi, \xi^{\prime}\right)$, it follows that $\mathfrak{M r}=$ $\exists \xi^{\prime}\left[\tau^{\prime}(\right.$ false $\left.)\left(\xi^{\prime \prime}\right) \wedge \operatorname{Usegment}\left(R_{i}, \ldots, R_{i k}\right) \circ\left(\bigcup_{t-1}^{k} R_{t,}\right)^{*}\left(\xi^{\prime \prime}, \xi^{\prime}\right)\right] ;$ i.e.,

$$
\begin{equation*}
\mathfrak{P} \vDash\left[\left(\tau^{x}(\text { false })=\operatorname{Usegment}\left(R_{i}, \ldots, R_{i_{k}}\right)<\left(\bigcup_{i=1}^{k} R_{i}\right)^{*}\right)\left(\xi^{\prime}\right)\right] . \tag{iii}
\end{equation*}
$$

Moreover, as in the proof of Lemma 7.2.1, we see that

$$
\begin{equation*}
\mathfrak{N} \vDash r \circ\left(\bigcup_{-1}^{n} R_{i}\right)^{*}\left(\xi^{\prime}\right) \quad \text { holds, too. } \tag{iv}
\end{equation*}
$$

Now, (i), (iii), and (iv) imply $\mathfrak{M} \vDash \pi\left(\lambda,\left\langle i_{1}, \ldots, i_{k}\right\rangle\right)\left(\xi^{\prime}\right)$, whence $\mathfrak{M} \models$ $\exists v \leqslant \omega \cdot \pi(v)\left(\xi^{\prime}\right)$.

The following lemma shows that clause (c) of Orna's rule is satisfied, too, under the assumption that $[r]$ " $\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]_{s r}$ holds.

Lemma 7.2 .3 (Corresponding to premise (c) of Orna's rule). Suppose that $\left.\mathrm{WR}_{\mathrm{R}} \vDash r \leadsto\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\left(\mathrm{U}_{i-1}^{\pi}, R_{i}\right)^{*} \circ \wedge_{i=1}^{n} \rightarrow b_{i}\right) \rightarrow q\right)\right)$ holds. Then $\mathfrak{M} \vDash[\pi(w) \wedge w \succ 0] *\left[\square_{i \in S_{t w}} b_{i} \wedge \wedge_{\in \in \boldsymbol{N}_{w}} \neg b_{j} \rightarrow S_{i}\right][$ true $]$ holds, too.

Proof. Observe that for ail $w \in W_{q, n}$ such that $w>0, D_{w} \neq \varnothing$. So $S t_{w} \subsetneq\{1, \ldots, n\}$. It follows that the program $S^{\prime} \equiv{ }^{*}\left[\square_{i \sigma} s_{w} b_{i} \wedge \wedge_{/ \sigma D_{w}} \neg b_{;}\right.$ $\left.\rightarrow S_{i}\right]$ contains less directions than the original program. Therefore, we may apply the induction hypothesis. If $S t_{w}=\varnothing$ then by convention $S^{\prime} \equiv \mathbf{s k i p}$, in which case the lemma is trivial. So assume $S_{t_{w \prime}} \neq \varnothing$.
After a possible renumbering, we may assume, too, that $S t_{w}=\{1, \ldots, k\}$, $1 \leqslant k<n$. So, $D_{w}=\{k+1, \ldots, n\}$. Let b^{\prime} denote $\wedge_{j, ~} D_{k} \neg b_{j}=\wedge_{j * k+1}^{*} \neg b_{j}$, and let $R_{i}^{\prime}=b^{\prime} \circ R_{i}$. By Theorem 6.3.4, and Corollary 6.3 .5 we obtain that $\mathfrak{M} \vDash(\pi(w) \wedge w \succ 0) \sqsupset \neg \operatorname{SFAIR}\left(R_{\mathrm{f}}^{\prime}, \ldots, R_{k}^{\prime}\right)$ implies $\mathfrak{P} \vDash[\pi(w) \wedge w \succ 0]$ * $\left[\square_{i-1}^{k} b_{1} \wedge \wedge_{j=k+1}^{n} \neg b_{j} \rightarrow S_{1}\right][$ true $]$ holds.

So, to prove the lemma, it suffices to show that $\mathfrak{R} \vDash(\pi(w) \wedge w \succ 0) \supset$ $\neg \operatorname{SFAIR}\left(R_{1}^{\prime}, \ldots, R_{k}^{\prime}\right)$. This follows from the next two claims.

Clam 1. Under the aforementioned assumptions, $\mathfrak{M} \vDash(\pi(w) \wedge w>0)$ $\supset \neg \mathrm{UF}\left(R_{1}^{\prime}, \ldots, R_{k}^{\prime}\right)$ holds.
Proof of Claim 1. Suppose that $\mathfrak{M} \vDash \pi(w)(\xi) \wedge w>0$ holds. Then $\mathfrak{M} \vDash r^{\circ}\left(\bigcup_{i-1}^{n} R_{i}\right)^{*}(\xi)$, i.e., $\mathfrak{M n} \vDash \exists \xi^{\prime \prime} \cdot\left[r\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i-1}^{\pi} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \zeta\right)\right]$ holds, too. As a consequence of our assumptions, we obtain that $9 \mathbb{M} \vDash$ $r \supset \neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)$ and so $\mathfrak{M} \vDash \exists \xi^{\prime \prime} \cdot\left[\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)\left(\xi^{\prime \prime}\right) \wedge\right.$ $\left.\left(\bigcup_{i, 1}^{*} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right]$. Thus, $\mathfrak{m} \vDash \exists \xi^{\prime \prime} \cdot\left[\left(\left(\cup_{i-1}^{n} R_{i}\right)^{*} \rightarrow \neg \mathrm{UF}\left(\left(\wedge_{i-k+1}^{n} \rightarrow b_{i}\right)\right.\right.\right.$
" $\left.\left.R_{1}, \ldots,\left(\wedge_{i-k+1}^{n} \neg h_{i}\right) " R_{k}\right)\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i=1}^{\prime \prime} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right]$ holds by Lemma 6.2.3. Consequently, $\operatorname{SDR}^{2}=\exists \xi^{\prime \prime},\left[\left(\left(\cup_{i-1}^{\prime} R_{i}\right)^{*} \rightarrow \neg \mathrm{UF}\left(R_{i}^{\prime}, \ldots, R_{k}^{\prime}\right)\right)\left(\epsilon^{\prime \prime}\right) \wedge\right.$ $\left.\left(\bigcup_{i=1}^{\prime \prime} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right]$, from which $\operatorname{Mg}^{\prime}=\neg \mathrm{UF}\left(R_{1}^{\prime}, \ldots, R_{k}^{\prime}\right)\left(\xi^{\prime}\right)$ follows by definition of $R \rightarrow p$. This proves Claim 1 .

Now, if $k=1$, the lemma follows immediately from Claim 1 and Defmition 6.2.2. So assume that $k \geqslant 2$.

Claim 2. Under the aforementioned assumptions,

$$
\begin{aligned}
& \text { fin }\left(R_{i, 1}^{\prime}, \ldots, R_{i j}^{\prime}\right) \text { holds. }
\end{aligned}
$$

Proof of Claim 2. Let $1 \leqslant / \leqslant k$. For simplicity, we shall prove that $\mathfrak{m} \vDash(\pi(w) \wedge w>0)=\neg \operatorname{air}\left(R_{1}^{\prime}, \ldots, R_{\ell}^{\prime}\right)$ fin $\left(R_{f+1}^{\prime}, \ldots, R_{k}^{\prime}\right)$, since any other permutation is treated in a similar way. By Definition 6.2.1, we must show that

$$
\begin{aligned}
\mathfrak{R} \vDash(\pi(w) \wedge w \succ 0) \supset(& \left(\bigcup_{i=1}^{k} R_{i}^{\prime}\right)^{*} \rightarrow \neg \mathrm{UF}\left(\left(\neg b^{\prime} \vee \bigwedge_{i \times i+i}^{k} \neg b_{i}\right)\right. \\
& \left.\left.\therefore R_{1}^{\prime}, \ldots,\left(\neg b^{\prime} \vee \bigwedge_{i=1+1}^{k} \neg b_{i}\right) \circ R_{i}^{\prime}\right)\right)
\end{aligned}
$$

holds. This is a consequence of the following chain of implications:

$$
\begin{aligned}
\mathfrak{M} & =(\pi(w) \wedge w>0)(\xi) \\
& \Rightarrow \mathfrak{N} \vDash r \cdot\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}(\xi) \quad \text { (Definition 7.1.4) } \\
& \Rightarrow \mathfrak{M}=\exists \xi^{*} \cdot\left[r\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right]
\end{aligned}
$$

(Definition 5.5.5)

$$
\Rightarrow \mathfrak{M}=\exists \xi^{\prime \prime} \cdot\left[\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i=1}^{\pi} R_{i}\right)^{*}\left(\xi^{\prime \prime \prime}, \xi\right)\right]
$$

(by assumptions)

$$
\begin{align*}
& \Rightarrow \mathfrak{M l} \vDash \exists \xi^{\prime \prime} \cdot\left[\left((\bigcup _ { i = 1 } ^ { n } R _ { i }) ^ { * } \rightarrow \neg \mathrm { UF } \left(\bigwedge_{j=+1}^{n} \neg b_{j} \circ R_{1}, \ldots,\right.\right.\right. \\
& \left.\left.\left.\bigwedge_{i, \ldots+1}^{n} \neg b_{i} \circ R_{i}\right)\right)\left(\xi^{\prime \prime}\right) \wedge\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}\left(\xi^{\prime \prime *}, \xi\right)\right] . \tag{w}
\end{align*}
$$

The latter implication follows from Lemma 6.2.3. Hence, for all $t=1, \ldots, t$,

$$
\begin{aligned}
& \left(\neg h^{\prime} \vee \widehat{i-i+1}_{\hat{k}}^{\left.\neg b_{i}\right)}\right) \cdot R_{i}^{\prime} \\
& =\left(\neg b^{\prime} \vee \widehat{i-1+1}_{k}^{b_{i}}\right) \wedge b^{\prime} \circ R_{1} \\
& =\left(b^{\prime} \wedge \wedge_{i-i+1}^{k} \neg b_{i}\right) \cdot R_{i} \\
& =\left(\widehat{i n}_{-k+1}^{n} \neg b_{i} \wedge \hat{i-1,1}_{k}^{-1} \neg b_{i}\right) \circ R_{i}
\end{aligned}
$$

So, (*) implies that $\quad 9 \vDash \exists \xi^{\prime \prime} \cdot\left[\left(\bigcup_{i, 1}^{n}, R_{1}\right)^{*} \rightarrow{ }^{\rightarrow} \mathrm{UF}\left(\left(\neg b^{\prime} \vee\right.\right.\right.$ $\left.\left.\left.\bigwedge_{i=1+1}^{k} \neg b_{j}\right) \circ R_{1, \ldots}^{\prime}, \ldots,\left(\neg b^{\prime} \vee \wedge_{i-1+1}^{k} \neg b_{i}\right) \vee R_{i}^{\prime}\right)\left(\xi^{\prime \prime}\right) \wedge\left(\cup_{i=1}^{n} R_{i}\right)^{*}\left(\xi^{\prime \prime}, \xi\right)\right]$, and finally $\mathfrak{m} \vDash\left(\left(\bigcup_{i+1}^{n} R_{i}^{\prime}\right)^{*} \rightarrow \neg \operatorname{UF}\left(\left(\neg b^{\prime} \vee \wedge_{(-1+1}^{k} \neg b_{i}\right) \circ R_{1}^{\prime}, \ldots\right.\right.$, $\left.\left(\neg h^{\prime} \vee \wedge_{i=l+1}^{k} \neg b_{i}\right) \circ R_{i}^{\prime}\right)(\xi)$ by using Fact 5.2.5. As an immediate consequence, we then obtain that $\mathfrak{M i} \vDash\left(\left(\bigcup_{i, 1}^{k} R_{i}^{\prime}\right)^{*} \rightarrow \neg \mathrm{UF}\left({ }^{\left(\cdots, b^{\prime} \vee\right.}\right.\right.$ $\left.\left.\Lambda_{i-1+1}^{k} \neg b_{i}\right) \circ R_{1}^{\prime}, \ldots,\left(\neg h^{\prime} \vee \Lambda_{i+1+1}^{*} \neg b_{i}\right) \circ R_{i}^{\prime}\right)(\xi)$ holds, too. This proves Claim 2 and hence the lemma.

It remains to show that clause (d) of Orna's rule is satisfied, too. This is established in the following

Lemma 7.2 .4 (Corresponding to clause (d) of Orna's rulc). Suppose that $\mathfrak{G N} \vDash r \sqsupset\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\left(\bigcup_{!-1}^{n} R_{i}\right)^{*} \therefore \wedge_{i-1}^{n} \neg h_{1}\right) \rightarrow q\right)$ holds. Then (a), (b), and (c) below hold, too.
(a) $\quad 9 \mu=r=(\exists v, \pi(v))$
(b) $\mathfrak{M} \vDash(\pi(w) \wedge w>0) כ \bigvee_{i-1}^{n} b_{i}$,
(c) $\mathfrak{M} \vDash \pi(0)=\left(\left(\wedge_{i-1}^{\pi}{ }^{m} b_{i}\right) \wedge q\right)$.

Proof. (a) Let $\xi \in$ States satisfy $\mathfrak{M} \vDash r(\xi)$. If $\mathfrak{M} \vDash \wedge_{i \omega 1}^{n} \neg b_{i}(\xi)$, then we are done, because $\mathfrak{T N}=\pi(0)(\xi)$ holds. Hence, let

$$
\begin{equation*}
\mathfrak{W R} \equiv \bigcup_{i=1}^{n} h_{i}(\xi) \tag{i}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\mathfrak{m} \models r \bullet\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}(\xi) \quad \text { holds. } \tag{ii}
\end{equation*}
$$

Since $\mathfrak{M}=r(\xi)$ holds, $\mathfrak{M} \vDash \neg \operatorname{SFAR}\left(R_{1}, \ldots, R_{n}\right)(\xi)$ holds, too, and consequently,

$$
\begin{equation*}
\mathfrak{M} \models \neg \mathrm{UF}\left(R_{1}, \ldots, R_{n}\right)(\xi) ; \quad \text { i.e. }, \quad \mathfrak{M} \models \tau^{\dot{\alpha}}(\text { false })(\xi) \text {. } \tag{iii}
\end{equation*}
$$

It follows from (i), (ii), (iii) that $\mathrm{M} \vDash \pi(\bar{\alpha},\langle \rangle)(\xi)$ holds.
(b) This immediately follows from Definition 7.1.4,
(c) From Definition 7.1.4 it follows that $\mathfrak{M O} \models \pi(0)=\widehat{N i=1}_{\prime \prime}^{i}-b_{i}$. Therefore, it remains to show that $\mathfrak{M N} \vDash \pi(0)=q$. To do so, choose some ξ with $\mathbb{T} \vDash \pi(0)(\xi)$. By Definition 7.1.4, there exists some ξ^{*} satisfying $\mathfrak{M} \vDash r\left(\xi^{\prime}\right) \wedge\left(\mathrm{U}_{i=1}^{n} R_{i}\right)^{*}\left(\xi^{\prime}, \xi^{\prime}\right)$. Since $\mathrm{m}_{\models}=r=\left(\left(\mathrm{U}_{i=-}^{n} R_{i}\right)^{*}{ }^{\circ}\right.$ $\left.\wedge_{i=1}^{n} \neg b_{i}\right) \rightarrow q$) holds by assumption, the implication to be proved now immediately follows.

Theorem 7.2 .5 (Completeness of our proof system), For all assertions r, q, commands $S, \mathfrak{M} \vDash[r] S[q]_{\mathrm{sI}}$ implies $\mathrm{Th}(\mathbb{D}) \vdash[r] S[q]$.

Proof. Clearly, the only non-trivial case is when $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ for $n \geqslant 2$. We have to show that for all assertions $r, q, \quad \mathcal{M} \models[r]$ * $\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]_{\mathrm{sf}} \rightarrow \mathrm{Th}(M) \vdash[r]{ }^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]$ holds. This is, however, an immediate consequence of the induction hypothesis, Theorem 6.3.4, Section 4, Definitions 7.1.3 through 7.1.5, and the Lemmata 7.2.1 through 7.2.4.

8. Soundness

In this section we prove the soundness of our proof system, i.e., for all assertions r, q and command $S, \mathrm{Th}(\mathbb{N})-[r] S[q] \Rightarrow \mathbb{W} \eta \vDash[r] S[q]_{s i}$.
It is obvious that the rules for assignment, consequence, and sequential composition are sound. Therefore it remains to prove the soundness of Orna's rule Let $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$. In casc $n=1$ Orna's rule reduces to Harel's rule for terminating loops proved sound in Harel (1979). Consequently, assume that $n \geqslant 2$ holds. We may assume, too, that the following induction hypothesis (1H) holds:
-For all simple commands S, Th($\mathcal{M}) \vdash[r] S[q] \Rightarrow \mathfrak{M} \vDash[r] S[q]_{p}$, and
--For all k with $1 \leqslant k<n, \mathrm{Th}(\mathrm{MR}) \vdash[r] *\left[\square_{i=1}^{*} b_{i} \rightarrow S_{i}\right][q] \Rightarrow \operatorname{PR} \vDash$ $[r] *\left[\square_{i-1}^{k} b_{i} \rightarrow S_{i}\right][q]_{s}$.
Next assume Th(9B) $\vdash[r] S[q]$. We have to prove that $\min \vDash[r] S[q]_{, t}$
 Definition 6.3.3 and Theorem 6.3 .4 amounts to proving

$$
9 \vDash r=\left(\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right) \wedge\left(\left(\left(\bigcup_{i=1}^{u} R_{i}\right)^{*} \because{\underset{i=1}{n}}_{\mathrm{M}}^{\mathrm{M}} b_{i}\right) \rightarrow q\right)\right) .
$$

By Lemma 6.2.3 907 $\neg \operatorname{SFAR}\left(R_{1}, \ldots, R_{n}\right) \Leftrightarrow 9 \mathbb{M} \vDash\left(\neg \mathrm{UF}\left(R_{1}, \ldots, R_{H}\right) \wedge\right.$
 $\left.\Lambda_{j+i k+1}^{\pi}-b_{i}{ }_{i} R_{i_{k}}\right)$). Consequently, we have to show that $\mathfrak{P V} \vDash r=$ $\neg \operatorname{UF}\left(R_{1}, \ldots, R_{n}\right)$,

$$
\begin{aligned}
& \rightarrow \neg \mathrm{U} \cdot \mathrm{~F}\left(\bigwedge_{j-k+1}^{\pi} \neg b_{i j} \circ R_{i_{1}}, \ldots, \bigwedge_{j-k+1}^{t} \rightarrow b_{i_{j}} \cdot R_{i k}\right) \text {, }
\end{aligned}
$$

and $M=r-\left(\left(\left(\cup_{i=1}^{n} R_{i}\right)^{*} \wedge_{i=1}^{n} \neg b_{i}\right) \rightarrow q\right)$ hold. These are established in Theorems 8.1,8.2, and 8.3 below.

Lemma 8.1. Assume that $\operatorname{Th}(\mathcal{P}) \vdash[r]^{*}\left[\square_{t=1}^{n} b_{i} \rightarrow S_{i}\right][q]$ holds, Then $\mathfrak{M} \vDash r=\neg \mathrm{UF}\left(R_{1}, \ldots, R_{H}\right)$ holds, too.

Proof. Let $9 \mathscr{F} \vDash r(\xi)$ and suppose, to obtain a conttadiction that, $\mathfrak{M} \vDash \operatorname{UF}\left(R_{1}, \ldots, R_{r}\right)(\xi)$ holds. Since $D_{w} \neq \emptyset$ for $w>0$, there exists an infinite decreasing sequence in W, starting in some we W such that W $\mathcal{I}=\pi(w)(\xi)$ holds. This contradicts the well-foundedness of W.

Next, as a preparation for Lemma 82 we first prove the following clam that captures the most diffeult part of that lemma.

Claim. Ansume that $\operatorname{Th}(9) \vdash[r] *\left[\square \square_{i-1}^{4} b_{i} \rightarrow S_{i}\right][q]$ holds, Let ξ be a state such that $\mathfrak{M} \vDash r(\xi)$ holds. For all ξ_{ξ} satisfying $\mathfrak{M} \vDash$ $\left(\bigcup_{i=1}^{\mu} R_{i}\right)^{*}\left(\xi, \xi^{\prime}\right), \quad \mathrm{m} \models \neg \mathrm{UF}\left(b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}\right)\left(\xi^{\prime}\right)$ holds, where $b^{\prime}=$ $\wedge_{-k+1}^{n} \neg b_{1}$.

Proof. Assume that the claim is false; ie., there exist states ξ and ξ^{\prime} such that $9 \mathbb{M}=\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}\left(\xi, \xi^{\prime}\right)$ and $\mathrm{MR} \vDash \mathrm{UF}\left(b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}\right)\left(\xi^{\prime}\right)$ hold. Both ξ and ξ^{\prime} are acecssible states; i.e, both $\mathfrak{m R} \vDash r \circ\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}(\xi)$ and $\mathscr{W l}^{\prime} \vDash \operatorname{ro}\left(\bigcup_{i=1}^{\prime \prime} R_{f}\right)^{*}\left(\xi^{\prime}\right)$ hold. From the assumption that $\mathfrak{P} \vDash$ $\mathrm{UF}\left(b^{\prime} \circ R_{1}, \ldots, h^{\prime} \circ R_{k}\right)\left(\xi^{\prime}\right)$ holds, we infer the existence of an infinite strongly fair sequence of moves $b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}$. As a consequence of the assumption that $\operatorname{Th}(9 \mu) \vdash[r]^{*}\left[\square_{i=1}^{H}, b_{i} \rightarrow S_{i}\right][q]$ holds, we conclude that Orna's rule has been applied. Consequently, related to the infinite strongly fair sequence of moves, whose existence we showed above, is an
 $i \geqslant 0 w_{i} \geqslant w_{i+1}$ hold. Since W is well founded we obtain that there exsts some $j \geqslant 0$ such that for all $i \geqslant j w_{i}=w_{1+1}$. This implies that eventu none of the moves taken in the infinite strongly fair sequence are decreas,nt moves. Furthermore, there exists a state $\varepsilon^{\prime \prime}$ such that
(a) $\mathfrak{D i}_{\mathcal{L}}=\left(\mathrm{U} p a r t\left(b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}\right)\right)^{*}\left(\xi^{\prime}, \xi^{\prime \prime}\right)$,
(b) $\mathrm{IDR}_{\mathrm{I}} \in \mathrm{UF}\left(b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}\right)\left(5^{\prime \prime}\right)$, and
(c) there exist a $w^{\prime \prime}, w^{\prime \prime}$ not minimal, satisfying $w^{\prime \prime} \leqslant w_{1}, \mathrm{MN}_{=}=$ $\pi\left(w^{\prime \prime}\right)\left(\xi^{\prime \prime}\right)$, and $\{1, \ldots, k\} \subseteq S I_{w^{\prime \prime}}$.

Let $S t_{w^{*}}=\left\{j_{1}, \ldots, j_{k+m}\right\}$ for some $m \geqslant 0$, where $j_{i}=1$, for $t=1, \ldots, k$. Note that this implies that $D_{\mathrm{re}^{\prime \prime}}=\left\{j_{k+m+1}, \ldots, j_{n}\right\}=\{1, \ldots, n\}-S t_{t_{k}}$ holds. Now, $w^{\prime \prime}>0$ and $T h(\mathbb{Q}) \vdash\left[\pi\left(w^{\prime \prime}\right) \wedge w^{\prime \prime}>0\right]^{*}\left[\square_{i \in S_{n}} b_{i} \wedge \wedge_{j \in b_{w}} \neg b_{j} \rightarrow S_{j}\right]$ [true] holds by the thitd clause of Orna's rule. Hence, as a consequenec of the induction hypothesis and the fact that $97 \models\left(\pi\left(w^{\prime \prime}\right) \wedge w^{\prime \prime}>0\right)\left(\xi^{\prime \prime}\right)$, we obtain that
i.e., there does not exist an infinite strongly fair sequence of steady moves in which no decreasing move is ever enabled To obtain a contradiction, we now distinguish two cases:
(A) $m=0$. Then (i) implies that $\mathfrak{M R} \vDash \neg \mathrm{UF}\left(b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}\right)\left(\xi^{\prime \prime}\right)$ as $j_{1}=t$ for $1 \leqslant t \leqslant k$. This follows from Defintion 6.2.3, and contradicts (b).
(B) $m \neq 0$. Note that for all $s, k+1 \leqslant s \leqslant k+m$, the actual cnablings-condition for $\wedge_{1=k-m, 1}^{n} \neg b_{i,} \phi R_{3}$ is $\Lambda_{1, n+m+1}^{n} \neg h_{i} \wedge b_{s}$. By (i)
 $\operatorname{fin}\left(\bigwedge_{1=k+m+1}^{n} \neg b_{k}=R_{k_{k+1}, \ldots,}, \bigwedge_{f=k+m+1}^{n} \neg b_{k}=R_{h, m}\right)\left(\epsilon^{\prime \prime}\right)$ holds. So by Definition 6.2.1, $\mathfrak{M} \vDash\left(\bigcup_{i=1}^{k+m}\left(\bigwedge_{i=k+m+1}^{n} \neg b_{t}\right) \circ R_{f}\right)^{*} \rightarrow \neg \mathrm{UF}\left(C \circ R_{1}, \ldots, C \circ R_{k}\right)$ ($\xi^{\prime \prime}$) holds, too, where $C=\wedge_{1-k+m+1}^{n} \neg b_{4} \wedge \wedge_{s-k+1}^{k+m} \neg\left(\wedge_{t=k+m+1}^{n} \neg b_{k}\right.$ $\wedge b_{j}$). Hence, we obtain $9 \mathbb{N} \vDash \neg \mathrm{UF}\left(C \circ R_{1}, \ldots, C \triangleleft R_{k}\right)\left(\xi^{\prime \prime}\right)$. As $9 \mathbb{C} \models C=$ $\Lambda_{1=k+1}^{n} \neg b_{i}$, this implies $\mathfrak{M} \vDash \neg \bigcup \mathcal{F}\left(\wedge_{1=k+1}^{\prime \prime} \neg b_{j} \circ R_{1}, \ldots, \Lambda_{t=k+1}^{n} \neg b_{j}{ }^{\circ}\right.$ $\left.R_{k}\right)\left(\zeta^{\prime \prime}\right)$, again contradicting (b),

This proves the claim.
Lemma 8.2. Assume that $\mathrm{Th}\left(\mathrm{DP}_{\mathrm{i}}\right) \vdash[\mathrm{r}]^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right][q]$ holds. Let k be given, $1 \leqslant k<n$, and assume furthermore that i_{1}, \ldots, i_{n} is some permutation of $1, \ldots, n$. Then $\mathfrak{M} \models r=\operatorname{Tair}\left(R_{i t}, \ldots, R_{i_{k}}\right)$ fin $\left(R_{i_{k+1}}, \ldots, R_{i_{n}}\right)$ holds, too.

Proof. Possibly, after a renumbering, let i_{1}, \ldots, i_{n} be the identity permutation of $1, \ldots, n$. Hence, we show that $\$ \mathbb{F} F \neg \operatorname{fair}\left(R_{1}, \ldots, R_{k}\right)$
fin $\left(R_{k}, 1, \ldots, R_{n}\right)(\xi)$ holds, where ξ satisfies r. According to Definition 6.2.1, it suffices to prove that for all ξ^{\prime} satisfying $D_{n} \models\left(\bigcup_{i=1}^{n} R_{i}\right)^{*}\left(\xi_{,} \xi^{\prime}\right)$, $\mathrm{DP}_{\mathrm{P}} \vDash \neg \mathrm{UF}\left(b^{\prime} \circ R_{1}, \ldots, b^{\prime} \circ R_{k}\right)\left(\bar{\zeta}^{\prime}\right)$ holds, where $b^{\prime}=\wedge_{1-k+1}^{n} \neg b_{1}$. This immediately follows from the claim above and cstablishes the theorem.
 $\mathfrak{M}=r=\left(\left(\bigcup_{i=1}^{\pi} R_{i}\right)^{*} \circ \wedge_{j-1}^{*} \neg b_{i} \rightarrow q\right)$ holds, too.

Proof. This lemma is trivial.
Finally, we arrive at the main theorem of this section, stating the soundness of our proof system. Its proof is straightforward now.

Theorem 8.3 (Soundness of the proof system). For all assertions r, q. commands $S, \mathrm{Th}(\mathfrak{W}) \vdash[r] S[q] \Rightarrow M \not \models[r] S[q]_{s \mathrm{r}}$ holds.

Proof. The only non-trivial case is when $S \equiv{ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ and $n \geqslant 2$. Consequently, we have to prove that $\mathbf{T h}(\mathscr{N}) \vdash[r]$ $*\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right][q] \Rightarrow M \in[r]^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right][q]_{s f}$ holds for $n \geqslant 2$. This follows from Lemmata 8.1, 8.2, 8.3, (IH), Definition 6.3.3, and Theorem 63.4.

9. How yo Deal with Nested Repetitions

In the previous sections we have considered a rather simple programming language. E.g., according to the syntax given in Section 2 repetitions never contained inner repetitions. In this section we shall drop this restriction and outline how to deal with the more general case. Basically, we proceed as before, adjusting the definitions and theorems to deal with a less restrictive programming language.

9.1. Basic Ideas

Until now, we have considered a very simple programming language, in which, in repetition $S \equiv{ }^{*}\left[\square_{i-1}^{n}, b_{i}+S_{i}\right], n \geqslant 1$, the S_{i} consisted of finite sequences of assignments ($i=1, \ldots, n$). According to the syntax given in Section 2, the program

$$
\begin{gathered}
S_{2}=+\left[b_{1} \rightarrow+\left[b_{2} \rightarrow x:=x+1\right.\right. \\
1 i b_{2} \rightarrow b_{3}:=\text { false } \\
\square b_{1} \rightarrow b_{1}:=\text { folse } \\
]
\end{gathered}
$$

is not allowed. The reason for disallowing nested repetitions is the
possibility of (strongly fair) divergence of inner loops, which slightly complicates the earlier theorems.

Intuitively speaking, the program S_{2} above should terminate strongly fair, when this notion is suitably refined: if execution of S_{2} starts in a state satisfying both b_{1} and b_{2}-the other cases are trivial and omitted- S_{2} terminates as soon as direction 2 , i.e., $b_{1} ; b_{1}:=$ false, is taken. Under the strong fairness, as defined below, this direction must be chosen eventually because the inner loop * $\left[h_{2} \rightarrow x:=x+1\right.$ L $h_{2} \rightarrow b_{2}:=$ folve $]$ terminates strongly fair. To gain a better understanding of this notion, consider the program below. It does not terminate strongly fair according to the definition of strongly fair termination (see Definition 9.4 below).

```
* \(\left[b_{1} \rightarrow b_{2}:=1 r_{u} e\right.\)
\(\square b_{1} \rightarrow{ }^{*}\left[b_{2}-b_{1}:=\right.\) false
        \(\square b_{2} \rightarrow b_{2}:=\) false
        ]
].
```

Starting in a state in which b_{1} holds, executing the first direction, i.e., $b_{1} ; b_{2}:=$ true, followed by executing the second direction, in which in the inner loop the second direction always is chosen, i.e., $b_{1} ;\left(b_{2} ; b_{2}:=\right.$ false $)$, constitutes a strongly fair computation (according to the definition below). Each of the loops is treated strongly fair whenever entered. However, strong fairncss does not constrain choices that are made in consecutive executions of the same loop. This program would terminate under yet another fairness assumption; viz., that of all-level (glebal) fairness (Apt et al., 1984).

In this section we briefly outline how to deal with a less restrictive language, $\mathrm{LGC}^{\prime}(\mathrm{M})$ in which nested repetitions are allowed. Again, we assume a given signature and a first-order structure ill as above. The syntax of the less restricted language is given by the following BNF. productions:

```
<command>::= <assignment>|<composition>|\langlerepetition>,
<assignment> := <variable>:= <expression>.
<composition>::= <command>; command>.
〈repetition>::=*[{\squareselection)].
<selection> :=\guard> - <command>.
<guard>::= "quantifier-free boolcan expression."
```

Again, ${ }^{*}[]$ is identified with skip and ${ }^{*}\left[\square_{i=1}^{*} b_{i} \rightarrow S_{i}\right]$ abbreviates * $\left[\square b_{1} \rightarrow S_{1} \cdots \square b_{n} \rightarrow S_{n}\right](n \geqslant 1)$.

As before, four semantics, yiz, $R_{s}^{\mathrm{pstr}}, R_{S}^{\prime}, R_{S}^{\mathrm{ur}}, R_{S}^{\mathrm{sf}}$, for $S \in \operatorname{LGC}^{\prime}(9 \mathrm{M})$ are defined. The case $R_{s}^{\text {part }}$ is essentially the same as in Section 3 and is there-
fore omitted. For the other cases the possibility of divergence within sorne branch will now have to be taken into aceount.

Let States denote the sel of states and let \perp denote the divergence state. In the sequel it is assumed that $\perp \in$ States and that for each relation $R \subseteq$ States ${ }^{2}, \forall \xi \cdot[R(\perp, \xi) \Rightarrow \xi=\perp]$ holds. For assertions $p, p(\perp)=$ false, i.c., p never holds in 1 .

The definitions of the various semantics, as well as the soundness and completeness proofs will usc induction on the level of statements:

Deminition 9.2 (Level of statements). The level of an assignment $x:=e$ is 0 . Let the levels of S_{1} be $k_{1}(i=1,2)$. Then $S_{1} ; S_{2}$ has level max $\left(k_{1}, k_{7}\right)$. Let $S \equiv{ }^{*}\left[\square_{i+1}^{i} b_{i} \rightarrow S_{i}\right]$, with $n \geqslant 1$. Then the level of S is $1+\max \left\{k_{i}\right\}$ $1 \leqslant i \leqslant n\}$, where S; has level k_{i} for $i=1, \ldots, n$.

Dffinitron 9.3 (R_{S}^{\prime}). For $S \in \operatorname{LGC}(\mathrm{MP})$, the relation R_{S}^{\prime} is defined as follows:

$$
\begin{array}{ll}
R_{s}^{\prime}=\kappa_{S}^{\text {palt }} v\left\{\left(1, L_{1}\right)\right\}, & \text { if } S \equiv x:=e \\
R_{s}^{\prime}=R_{S_{1}}^{\prime} \circ R_{S_{2},}^{\prime} & \text { if } S \equiv S_{1} ; S_{2}
\end{array}
$$

To define R_{S}^{\prime} for repotitions S, again the notion of an execution sequence of S is needed. Its defintion is similar to Delinition 3.2.1 and therefore omitted. S is said to diverge nondeterministically from ξ, if there exists an execution sequence of S starting in ξ that is cither infinite, or finite and ends in 1.

Finally, define for $S={ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$,

$$
\begin{aligned}
R_{s}^{s}= & R_{s}^{p a r t} \cup\{(\xi, 1) \mid S \text { can diverge nondeterministically from } \xi\} \\
& \cup\{(1, \perp)\} .
\end{aligned}
$$

Note that an execution sequence of a loop S ends in \perp when an inner loop of S is cxccuted which diverges nondeterministically.

We now proceed with defining strongly fair execution seguences for repetitions $S \equiv *\left[\bigcap_{i-1}^{n} b_{j} \rightarrow S_{i}\right]$ with $n \geqslant 1$. As the example of S_{2} above shows, strong-fairness does not consider the choices made at the top-level only, i.e., choices between the $b_{i}(i=1, \ldots, n)$, but also the choices made between the guards of inner loops of S.

Derinition 9.4 (Stronaly fair termination).
(i) Let ξ denote a state, $\xi \neq \perp$. An assignment always terminates strongly fair from $\xi . S_{1} ; S_{2}$ terminates strongly fair from ξ if S_{1} terminates
strongly fair from F_{5} and S_{z} terminates strongly fair for all possible output states produced by strongly fair computations of S_{1}. ${ }^{4}$

Now, let $S \equiv{ }^{*}\left[\square{ }_{i=1}^{n} b_{i} \rightarrow S_{t}\right]$, with $n \geqslant 1$. An execution sequence of S starting in ξ, is strongly fair, if either
(a) it is finite (say $\xi_{0}, \xi_{1}, \ldots, \xi_{m}$, where $\xi=\xi_{0}$) and either $\xi_{m} \neq 1$, or $\xi_{m}=\perp$ and there exists an $S_{i}(i=1, \ldots, n)$ which strongly fair diverges from ξ_{m-1}, or
(b) it is infinite and every direction in S, which is infinitely often enabled along the sequence is chosen infinitcly often. We say that S terminates strongly fair from ξ if it admits nether infinite strongly fair execution sequences nor finite ones ending in \perp that start in s.
(ii) A program terminates strongly fair if it terminates strongly fair from ξ, for every $\xi \neq \perp$.
(iii) A program is said to diverge strongly fair if it admits a strongly fair computation, starting in ξ that is either infinite, or finite and ends in \perp.

Defintion 9.5 (Unconditionally fair termination).
(i) Let ξ denote a state, $\xi \neq 1$. An assignment always terminates unconditionally fair from $\xi, S_{1} ; S_{2}$ terminates unconditionally fair from ξ, if S_{1} terminates unconditionally fair from ξ and S_{2} terminates unconditionally fair for all possible output states produced by unconditionally fair computations of S_{1}, ${ }^{3}$

Now, let $S \equiv{ }^{*}\left[{ }_{i=1}^{n}, b_{i} \rightarrow S_{i}\right]$, with $n \geqslant 1$, An execution sequence of S starting in ξ, is unconditionally fair, if either
(a) it is finite (say $\xi_{0}, \xi_{1}, \ldots, \xi_{m}$, where $\xi=\xi_{0}$) and either $\xi_{m} \neq 1$. or $\xi_{m}=\perp$ and there exists an $S_{i}(i=1, \ldots, n)$ which unconditionally fair diverges from ξ_{m-1}, or
(b) it is infinite and every direction in S is chosen infinitely often. We say that S terminates unconditionally fair from ξ if it admits neither infinite unconditionally fair execution sequences nor finite ones ending in \perp, that start in ξ.
(ii) A program terminates unconditionally fair if it terminates unconditionally fair from ξ, for every $\zeta \neq 1$.
(iii) A proeram is said to diverge unconditionally fair if it admits an unconditionally fair computation, starting in ξ that is either infinite, or finite and ends in 1 .

[^5]It can be shown that the relation between the fairness assumptions as formulated in Theorem 3.34 still holds.

Derinmon $9.6\left(R_{s}^{\mathrm{sf}}, R_{s}^{\mathrm{uf}}\right)$.

$$
\begin{array}{lll}
R_{s}^{\mathrm{ul}}=R_{s}^{\Delta!}=R_{s}^{l} & \text { for } & S \equiv x:=e \\
R_{s}^{\mathrm{ul}}=R_{S_{1}}^{\mathrm{ut}} \circ R_{S_{2}}^{\mathrm{ur}} \text { and } R_{s}^{\mathrm{sf}}=R_{S_{1}}^{\mathrm{st}} \circ R_{S_{2}}^{\mathrm{sf}} & \text { for } & S \equiv S_{1} ; S_{2}
\end{array}
$$

For $S \equiv *\left[[]_{i-1}^{n} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$, we define

$$
\begin{aligned}
R_{s}^{\mathrm{ui}}= & R_{s}^{\text {part }} \cup\{(\xi, \perp) \mid S \text { can diverge unconditionally fair from } \xi\} \\
& \cup\{(\perp, \perp)\} . \\
R_{s}^{\mathrm{sf}}= & R_{s}^{\text {purt }} \cup\{(\xi, \ldots) \mid S \text { can diverge strongly fair from } \xi\} \\
& \ddots\{(\perp, \perp)\} .
\end{aligned}
$$

As before, we define the notions of nondeterministic, unconditionally fair (resp. strongly farr), termination of a program S by $\forall \xi \neq \perp \cdot \neg R_{s}^{\prime}(\xi, \perp)$, $\forall \xi \neq \perp \cdot \neg R_{s}^{\mathrm{uf}}(\xi, \perp)\left(\right.$ resp, $\left.\forall \xi \neq \perp, \neg R_{S}^{\text {ji }}(\xi, \perp)\right)$.

Again, this gives us four notions of validity, $m \in[p] S[q]_{s}$, for $s \in\{$ part, $\mathrm{t}, \mathrm{uf}, \mathrm{sf}\}$ which are the same as formulated in Definitions 3.2.2, 3.3.2, and 3.4.6.

The proof system is similar to the one in Section 4, except that in the composition rule and in Orna's rule the restriction to simple commands is dropped.

We now proceed to dehine a formula $F\left(R_{s}\right)$ such that for any state ξ, $F\left(R_{S}\right)(\xi)$ holds iff S terminates strongly fair when execution of S is started in ξ. Clearly, if S is a loop, the formula \neg SFAIR does not suffice any more to describe the absence of infinite strongly fair execution sequences of S, since this formula only constrains choices made at the outermost tevel of the repetition. We now need a formula that also constrains the choices made in inner loops.

Definition 9.7. The formula $F(R)$ is inductively defined as

$$
\begin{array}{ll}
F\left(R_{S}^{\mathrm{sf}}\right)=\lambda \xi \cdot t r u e, & \text { if } S \equiv x:=e \\
F\left(R_{S}^{\mathrm{sf}}\right)=F\left(R_{S_{1}}^{\mathrm{ss}}\right) \wedge\left(R_{S_{1}}^{\mathrm{st}} \rightarrow F\left(R_{S_{2}}^{\mathrm{sf}}\right)\right), & \text { if } S=S_{1} ; S_{2}
\end{array}
$$

Finally, if $S \equiv{ }^{*}\left[\square_{i-1}^{n} b_{i} \rightarrow S_{i}\right](n \geqslant 1)$, then $F\left(R_{5}^{\mathrm{si}}\right)=\left(\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \rightarrow\right.$ $\wedge_{-1}^{*}\left(b_{i} \supset F\left(R_{S_{i}}^{\mathrm{sf}}\right)\right) \wedge \eta \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)$; i.e., whenever the i th direction is taken along an execution sequence of S, S terminates strongly eair and S does not admit infinite strongly fair execution sequences.

Observe that R is not a free variable of F. Ie., for every statement S, we define a different $F\left(R_{3}\right)$. Hence, the $F(R)$ are first-order formulat. From now on, we fix some first-order ordinal acceptable structure ill. As before we are able to deffe the weakest precondition for strongly fair termination $\operatorname{sfwp}(S, q)$ for commands S and conditions q. Of course, the only interesting case is when S is a repetition. This is the subject of the next theorem.

Theorem 9.8. Let $S \equiv *\left[\square_{i m}^{\prime \prime} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$. For every ξ the following holds:

$$
\begin{aligned}
& \mathfrak{M} \models \operatorname{sfwp}\left({ }_{i=1}^{*}\left[b_{i} \rightarrow S_{i}\right], q\right)\left(\xi^{*}\right) \\
& \text { iff } \mathfrak{M x}=\left(F\left(R_{5}^{\mathrm{sf}}\right) \wedge\left(\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \circ \stackrel{n}{A} \neg b_{i} \rightarrow q\right)\right)(\xi)
\end{aligned}
$$

Proof. A straightforward adaptation of the proof of Theorem 6.3.4.
Corollary 9.9. Let $S \equiv{ }^{*}\left[\square_{i=1} b_{i} \rightarrow S_{i}\right]$ ($n \geqslant 1$). For every $\xi:$

$$
\mathfrak{M} \models \operatorname{sfwp}\left({ }^{*}\left[\square_{i=1}^{n} b_{i} \rightarrow S_{i}\right], \text { true }\right)(\xi) \quad \text { iff } \mathfrak{D} f \vDash F\left(R_{s}^{w i}\right)(\xi) .
$$

Soundness and completeness is established by
THEOREM 9.10. $\mathfrak{N R} \vDash[r] S[q]_{\mathrm{s}} \mathrm{ff} \mathrm{Th}(\mathbb{N R}) \vdash[r] S[q]$.
Proof. Again, the only non-trivial case is when $S \equiv{ }^{*}\left[\square_{1-1}^{*} b_{i} \rightarrow S_{i}\right]$ with $n \geqslant 1$ holds. The equivalence is proved by induction on the level of S.

If S has level 1 , i,e, if S has no tnner loops, then the theorem follows from the results in Sections 7 and 8 . Now suppose that S has level $k+1$ ($k \geqslant 1$) and that the theorem holds for programs S with level l satisfying $l \approx k$. Assume that $\mathfrak{M l} \vDash[r] S[q]_{\mathrm{sr}}$ holds. Then $\mathfrak{W l} \vDash r=\left[F\left(R_{S}^{s}\right) \wedge\right.$ $\left.\left.\left(0 \cup_{i=1}^{n} R_{i}\right)^{*} \circ \wedge_{i=1}^{n} \neg b_{i} \rightarrow q\right)\right]$ holds, too. From the definition of $F\left(R_{S}^{v}\right)$, it follows that $\mathrm{T}_{\mathrm{T}} \vDash r>\left[\left(\bigcup_{i=1}^{n} R_{i}\right)^{*} \rightarrow \wedge_{i=1}^{n}\left(b_{1} \sqsupset F\left(R_{S_{i}}^{\mathrm{si}}\right)\right)\right]$, i.e., for every execution sequence of S starting in a state satisfying r, whenever b_{i} holds, S_{i} terminates strongly fair $(i=1, \ldots, n)$. For the same reason $901=r 3$ $\neg \operatorname{SFAIR}\left(R_{1}, \ldots, R_{n}\right)$ holds. So, we may proceed as in Section 7 and conclude that $\operatorname{Th}(90) \vdash[r] S[q]$.

The other implication, i.e., $\operatorname{Th}(\mathcal{M}) \vdash[r] S[q]$ imples $\mathbb{M} \mathcal{Z} \in r] S[q]_{\mathrm{yt}}$ should be obvious.

10. Conclusion

We have shown that the μ-calculus can be used as an assertion-language to prove fair termination of do-loops. The notion of fairness considered in this paper is that of strong fairness.

Various rules (Apt et al., 1984; Grümberg et al., 1981; Lehmann et al., 1981: Manna and Pnueli, 1983) for proving strongly fair termination of repetitions have been studied in the literature, All of them have been proved to be sound and complete. However, this was done using set theory as an assertion-language. One of these rules, Orna's rule (Grümberg et al., 1981), is considered in detail in this paper.

The key result of this paper is the fact that the weakest precondition expressing strongly fait termination is definable in the μ-calculus. This result is used in the completeness and soundness proof of the rule. The completeness proof required verifying that the weakest precondition for fair termination implies the premises of the rule. Here, the ordinals are used to define the auxiliary quantities required to apply this rule. We believe that these ordinals can be removed, but we have not done this yet. The soundness proof required to verify that the premises of Orna's rule imply the weakest precondition for fair termination. The LPS-rule (Lehmann et al., 1981), another rule to prove strongly fair termination of do-loops can be shown to be sound and complete in the same manner as Orna's rule.

Future work will be carried out to remove the ordinal constants used in the completeness proof. Furthermore, we will try to define a predicate in the μ-calculus which expresses whether a repetition terminates under the assumption of all-level, i.e., global fairness (Apt et al., 1984). Future research will also be carried out to extend these arguments to more complex forms of fairness and to concurrent programs.

ACKNOWLEDGMENTS

Abstract

The authors thank P. van Emde Boas, A. Ppucli, and the members of "het Landelijk Seminarium Concurrency." for clarifying remarks, and K. Apt for pointing out an error in an earlier version of this paper. Finally we thank an anynomous referef for his suggestions that led to many improvements, especially regarding the style and notation.

Received June 3. 1986; accepted December 21, 1987

References

[^6]be Bakker, J. W. (1980), "Mathematical Theory of Program Correctness," Prentice-Hall, Englewood Cliffs, NJ.
Dukstra, E, W. (1976), "A Discipline of Programming," Prentice Hall, Englewood Clifls, N1.
Grgmberg, O., Fhancez, N, Makowskx, 1, A., and be Roever, W. P. (1981), A proof rule for fair vermination of guarded commands, in "Procedings, Symposium on Algorithmic Languages," North-Holland, Amsterdam.
Hitcheock, $P \cdot$., and Park, D. (1973), Induction rules and termination, in "Proceedings, IC.ALP I," North-Holland, Amsterdam.
Lehmank, D. J., Prueli, A., and Stavi, J. (1981), Impartiality, justness and fairness: The ethics of concurrent termination, in "Procemings, ICALP VIf," Lecture Notes in Comput. Sci., Yol. 115, Springer-Verlag, New York/Bertin.
Manina, Z., and Pnuell, A. (1983), Verification on concurrent programs: A temporal proofsystem, in "Fourdations of Computer Science IV. Part 2." Mathomatical Centre Tracts, Vol. 159, Math. Centrum, Amstcrdam.
Mosempakis, X, N, (1974), "Elementary Induction on Abstract Structures," North-Holland, Amsterdam.
Park, D. (1981). A predicate transformer for weak fair iteration, in "Procecdings, fth IBM Symposium on Math, Found, of Computer Science, Hakone, Japan."
Park, D. (1980), On the semantics of fair parallelism, in "Proceedings, Copenhagen Winterschool on Abstract Soltware Specification, 1979," Lecture Notes in Comput. Sci, Vol. 86, Springer-Verlag, New York/Berling.
Park, D. (1969), Fixed point induction and proof of program propertics, Mach, Intell. $\mathbf{5}$.
De Roever. W, P. (1981), A formalism for reasoning about fair termination, in "Procedings, Workshop on Programming Logics," Lecture Notes in Comput. Sci., Vol, 131, SpringerVerlag, New York/Bcrijn.
Targki, A. (1955), A latiectheoretical fixed point theorem and its applications, Pacific J. Math 5.
Harel, 0. (1979), "First-Order Dynamic Logic" Lecture Notes in Comput. Sci., Vol. 68, Springer-Verlag, Berlin/Heidelberg/New York.

SAMENVATTING

Dit procfschift bestant uit een bundeling van een vicrtal artikelen.
De corsto dric artikelen beschrijven em principe voor het ontwerpen van gedistribueerde programuma's uit een bepaalde klasse volgens een bijzonder type van redeneren. Deze klasse bestaat uit programme's warinn een groep wan knopen in een netwerk een zekere takk uitvoeren die vanuit een logisch oogpund kan worden opgesplitst in een aantal subtaken alsof deze sequenticel worden uitgevoerd. Vanuit een operationeel oogpunt worden deze subtaken echter concurrent door de knopen uitgevoerd.

Het ontwerpprincipe wordt eerst geildentificeerd in het cerste artikel, "A correctress proof of a distributed minimum-woight spanning tree algorithm (extended abstract)". Dan wordt in het tweede artikel, "Designing distributed algorithuns by means of formal sequentially phased reasouing", ocn technische formulering van het ontwerpprincipe gegeven. Een toepassing van het principe wordt gegeven in het derde artikel, "A detailed amalysis of Gallager, Humblet, and Spira's minimum-weight spanning tree algorithn". In dit artikel worden bovendien twee andere principes geformuleerd: Het cerste beschrijft hoe twee onafhankelijk van elkaar uitgevoerde taken kunnen worden gecombineerd; Het tweede principe is van toepassing watmeer cen aantal groepen concurrent ten opzichte van elkaar een aantal taken uitvoeren terwijl een taak nitgevoerd door een groep tijdelijk kan worden verstoord als gevolg van interactie met knopen uit een andere grocp.
Het vicrde artikel, "The μ-calculus as an assertion-language for fairness arguments", handelt over faire terminatie van do-logps. Hierin wordt de μ-calculus voorgesteld als assertietaal voor het redencren over dit type vall teminatic. Soundness en volledigheid van een regel voor het bewijzen van faire terminatie worden bewezen. Bovendien wordt de awakste preconditie voor faire terminatie van een do-loop met betrekking tot een zekere postcouditie in de μ-calculus gedefinieerd.

Lineaire Teruporele Logica (LTL) loopt als een rode draad door de vier bovenstaande artikelen. Wordt het ontwerpprincipe direct geformuleerd met behulp van LTL, in het laatste artikel worden de grondslagen van LTL onderzocht. De resultaten daarvan suggereren (zonder bewijs) dat voor het verifièren dat een programma fair termineert, een eigenschap die op natuurlijke
wijze in LTL geformuleerd kan worden, een assertietaal nodig is die veel meer uitdrukkingskracht heeft dan LTL zelf.

CURRICULUM VITAE

De schrijuer van dit proefschrift werd op 22 juli 1957 te Gorssel geboren.
Van 1969 tot 1977 doorliep hij de Thorbecke Scholengemeenschap te Arnhem. Nedat hij het diploma Gymnasium b had behaald begon hij in 1977 met de studie wiskunde aan de Rijksuniversitcit te Utrecht. Zijn kandidaatsexamen wiskunde met bijwak informatica werd in 1981 behaeld. Het doctoraalexarnen wiskunde met bijvalk informatica legde hij in 1984 (cum laude) af.

Sinds 1984 is hij̣ werkzaam bij de afdeling informatica aan de Katholieke Universiteit te Nijmegen (KUN). Dasar werkte hij als wetcnschappelijk medewerker, eerst in dienst van de KUN, vervolgens in dienst van de Nederlandse Organisatic voor Zuiver-Wetenschappelijk Onderzoek (ZWO). Hij is nu universitair docent in tijdelijke dienst bij de KUN.

GURRENT ADDRESS:

University of Nijimegen,
Department of Computer Science,
Toernooiveld,
6525 ED Nijmegen,
The Netherlands.

Stellingen

behorend bij bet proefschrift

Design ancl apecification of distributed network algorithms:

foundations and applications
van

Fraak Storrp

1. Compositionele bewijssystemen, waarbij en specificatie vari cen programma wordt afgeleid ait
 van die constitucntern [789], zijn ongeschikt woor het formaliseren wau het soort argumenten dat getruikt wordt door ontwerpers van netwerk-atgoritmen in [GHS83,Hu83,MS79,5e82,Se83,7380]. Hiervoor kumen twer envoudige redenen worden gegeveni
(a) In [GHS83, $\mathrm{Hy} 93, \mathrm{MS79,Se82,S633,Z880]}$ worden algoritmen uitgelegd ann de hand van operationele argumenten, waribij het gebruik van plastjes ter illustratie niet geschuwd wordt, zonder enige verwijzing naar (de symtactikche structurn vatr) programma's div deze algoritmen beschrijven.
(b) Yeder compositioneel bewijssystem legt restricies op anan zijn gebruiker coor hem to varbieden gebruik te maken van de interne structurr van een programma, zelfs indien deze wel bekend is.
[GHS83] Gallager R.T., Humblel F.A., and Spira P.M., A distributed algorithon for minimum-woight spanning trees, ACM TOPLAS, $5-1$ (1983).
[Hu83] Humblet P.A., A distributed algorithm for mininum-weight clirected spanning trees, IEEE Trans. on Comm., $31-6$ (1983).
[MST9] Merlin P.M. aud Segall A., A failsofe distributed routitg protecol, IEEE Thans, on Comm., 27.9 (1979).
[Se82i] Sogall A., Decentraliged maximum-How algorithms, Networks 12 (1982).
[S083] Segall A., Distributed network protocols, IEEE Thans. on Inf. Theory. TT29-1 (1983).
$[Z 89]$ Zwiers J. Compositionality, coneurency, ant partial comectuess: Trow thengies for networks of
processes, and hemir manection, Ph, D. Thesis, Eindhoven Univeraty of Technology (1088). (Ook verwhenen ats T NCS 231 (1980)).
 Technom-Imad Ingritute of Techology, Haifa, Isracl (1980).
2. Enn principe voor het ontwerpen van failsafe algoritmon [389$]$ kan in deatife trant geformaleexd worden als hat principe voor het sequentieel rembuenen over mamurent uitgevorode subtaken (zie

 dremjustheicl, angeloond in [SH86], ven een van Finn's adgoritmen [F79],
 COM-27 (1979).
\{SH66|Snoway S.Th, wad Humhlat P.A., On distributed network protocols for changing topologien, Eechnical Repert LIDS-12-1564; MIT (1980).
[S89] Stmpp F.A., A principle for formally designing failsafe fagorithms, in voorbareiding
 Spira's algoritne [GHS83] Gallager's algoritue-bewemem hebben is onjuida.
 (onk te beschouwen alk sed gedistribuecrde implementatie van Kraskal's algoxitrme [K56]), warin twod gropern van knopex allen kinnen worden gecombinemd tot ben grotp als hum minimale uitgatunde kanten draclfde sijn.

In tegenstelling tol Gallager's algonitme, kmmon in bet algoritme dat in [CG88] geamalyseerd wordt goan combinaties van groepen platavinden indien han minimale uitganude kanten varschillom zijn. Juist dit type van combinaties is het karakteristieke van Gallager's algoritine en verosi een complexene anahys dan die in [GGB8].
|B26| Borovka O., O jistim problema minimánim. Prása Moraveke Pérodovederke Spolexnosti (1926) (in Czech.).
(CGBS Chon C.T. and Gafni F., Understumbing and vorifying distributed algorithme using stratified decomposition, Pror, wf the ACM Symp, on Principles of Distr, Comp. (198s),
(K5b| Kruskal J.H., On the shortest mamine subtree of a gayph and the iraveling sulesman problem, Pric. And Math Soc., 7 (1956).
(0H583): xic stelling, 1 .
4. Het pattern matching probleem vraagt naar het meest linker voorkomen van een patroon in een zekere tekst. Een eenvoudige oplossing hiervan bestant uit het stapsgewijs van links nasar rechts doorlopent var de tekst op zock naar het patroon.

Een ingenemaere methode wordt door Boyer en Moore in [BM77] gegeven Hierbij wordt gebraik gemaakt wan het feit dat het in het algemeen mogelijk is het patroon meer dat éen positie in de tekst naar rechts te verschuiven indien het patroon nog niet in de tekst herkend is. Een formele atteiding van Boyer en Moore's algoritme worde in [PS89al gegeven.
Het atantal poxitics, dat afharget van (een deel van) het patroon cn van cen karakter (xis: [BM77]), kan volgens Boyer en Moore in een tabel worden opgeslagen die berekend wordt voordat het eigenlijke algoritme: wordt uitgevoerd ("preprocessing"). Dese berekening is self cehter weer exn instantie van het pattern matching probleem.
 oplossing van dit probleem wordt in [KMPT7] gegeven, mear in [R 80] wordt angetoond dat het abgoritme in [KMP77] niet an de specificatie van [BMT7] voldoct.
Ooor middel vain een geschikte generalizatie van de afleiding in [PS8gal kan een voiledige en correcte operationcle ondowsing van het preprocessing probleem formel worden afgeleid, zie [P589b].
|BM77| Boyer R.S. and Moore J.S., A fast itring searching algorithm. Comm. ACM. 20-10 (1977).
[KMP77] Knuth D.E., Morris J.H., and Pratt V.B., Fast pattern matching in strings,
SIAM. J. Comput. 6 (1977).
[P589a] Patisch H.A. en Stomp F.A., A tast patitern matching algorithm derived by transformational and asertional reasoning, submitted for publication (1989).
[PS80b] Partarb MA. en Stomp F.A., Reusability through generalization, in worhereiding. [R80] Rytter W., A correct preprocessing algorithm for Boyer-Moore string searching, SLAM, J, Comput. 9 (1980).
5. Transformationed prograumeren is reer geschikt voor het analyscrean van netwerk-algoritmen zoals beschreven in |GHS83,Hu83,M579,5e82,Se83,Z580| omdat.

- reeds op cen non-implementectbaar nivean ven beschrijving dessentie van ene algoritme begrepen kan worden,
- de verlel uitstekende (informele) nitleg van de ontwerper dirext geformaliseerd kan worden en
- ensentiele beslissinger vád de ontworper geidentificerd, geverifieerd en kwalitatief geanalyseerd kunnen worder tijdens de ontwerpfase.
|GHS83], [Hu83], |MS79], [Se82], [Se83] en [Z580]; cie stelling 1.
 gramman wot bewijs van eigenschappen van de transibies van dat programman De suggestie dat woor het rodenemu over dergelijke transities Lineaire Temporele Logica, zoals genlefinienerd
 Limeaise Tomporele Togica, bijwoorbeed de μ-calculus, is hiervoor vercist, Zie hooflstuk 5 wan dit protischillt, ca ook (G84).
 Froe. 10th ACM Symposimm on the Theory of Computing (1084).
 Foundations of Computcr Scietoce IV, parl 2, Mathematisal Centre tracte 150 (1983).
 juist de gexongen of qesproken tekst in sterke mate het kanak ter van deqe muziek.

[^0]: * Deparment of Computer Sciente, Tominooiveld 1,6525 ED Nijmegen, The Netherlands. Etectronic mail address; mevaxtkunivy l!kunivw5!stomp. The work of the first author was supported by the Netherlands Organization for the Advancement of Pure Research (Z WO).
 ** Deparment of Compuler Science and Mathenatics. POB $513,5600 \mathrm{ME}$ Eindhoven, The Netheriands. Electronic mail address: mevax!eutec 3 !w sinwpr.

[^1]: "University of Nijmegen, Department of Computer Science, Toernooiveld, 6525 ED Nijrnegen, The Netherlands. E-mail address: frank\%es.kun.nl
 ${ }^{\dagger}$ Eindhover University of Technology, Department of Mathematics and Computing Science, POB 513, 5660 MB Eindhoven, The Netheriands. Email address: mevarleutreS!wsinwpr

[^2]: ${ }^{1}$ A decomposition is also possible in the case of an arbitrary connected network.

[^3]: ' Alternatively, we could have introduced the notion of an arithmetical structure (Harel, 1979).

[^4]: ${ }^{2}$ This definition is due to P. van Emde Boas.

[^5]: ${ }^{4}$ Although, we have not defined what output states produced by strongly fair computations are, this notion should be clear.
 ${ }^{5}$ Although, we have not defined what output states produced by unconditionally fair computations are, this notion should be clear.

[^6]: Apr, K. R., and Plotkin, G. D. (1986), "Countable Nondeterminism and Random Assignment," J. Assoc. Compht Mach 33, No. 4.
 Apt, K. R., Pnuexi, A., and Stavi, J. (1984), Fair termination revisited-With delay, Theoret. Соmput. Sci. $^{3} \mathbf{3 3}$.

