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CHAPTER 1 

Overview 



This thesis coiled. four articles: 

(1) F.A. Stomp and W.P. de Ro~ver, 

A correctness proof of a distributed minimum-weight spa.nning tree algorithm (e;xtended abstra.ct), 

which has been published in the proceedings of the 7th International Conference on Distributed 

Compoting SyW;IIls, Eds. R. POPC;$(\I-Zc;ktin, G. L~ L<UIII, <md K.B:. Kim. The f\lll v~rsiOIl of 

this axticle has appeared as technical report no. 87-4, University of Nijmegen, 1987. 

(2) FA Stomp aJ:)d W.P. d<:' Roever, 

De.igning distributed algorithms by mean. of formal 'I:lju"ntiully pha.s"d reasoning. 

A version of this article has appeared as technical report no. 89-8, Universit.y of Nijmegen, 1989; 

An extended abstra.<:t has been published in the proceedings of the 3rd International Worbhop 

on Distributed Algorithms, LNOS 392, Eds. J.-C. Bermond and M. Raynal. 

(3) F.A. StiJmp and W.P. de Roever, 

A detaikd (l.n(l.lysis of G(LlIag~:r, H,-,mblet, and Spira. '8 distributed minimumr weZght spanning tT(:e 

algorithm - An corampie oj sequentially phased reasoning -. 

(4) },'.A. Stomp, W.P. de Roever, and R..T. Gerth, 

The /I"calculu$ a$ an aS$ertion-language for jairness arguments. 

It has appea~ed in lnfonnatio)) and Computation, Vol. 82, nO· 3 (1989). 

The central theme of the first three articles on distributed program design and verification is the 

identincation, the technical formulation, and an application of a principle for designing, and verifying, 

(complex) distributed algorithms. This pdndple allows one to structure the design, or the vedfk"tion, 

of algorithms from a certain class according to a particular pattern of reasoning. 

'This dass cOIlsists of algorithms in which some group of nodes in a I.ctwork performs a certain task 

which can be decomposed into a number of slIbtasks as if they are performed gequenti(l.I1y frOID a logical 

point of view. In reality, however, i.e., from an operational point of view, the subtasks are performed 

concurrently. A typical example in which one can discern this kind of sequential decomposition is 

Segall's PIF'protocol [S83]. The PIF'protocol, where "PIF" abbreviates Propagation of Information 

with Feedback, is a simple broadc3!;ting protocol. All nodes in " finite, connected, and undire<:ted 

netwotk accompllsh the follOWing task; Some value initially recorded by a certain node k is supplied 

to all nodes in the network and node k is informed that all nodes in the network have ~ecorded this 

value. This task can be decomposed into two subtasks: the first one broadcasting the value, and the 
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lu:r::orul (]n~: n~portiIlg t.hat th(,~ w'Hh~!i hav.::: n~n~iv(:d aILd rcconkd this value. 

The Kt.r"-t'·:gy pr<)pos~eI in t.h~ a.rtid~s (1), (2), ""ei (3) ",how: to desigIl (or verify) algorithm. froIn the 

above"mentioned class is the following; 

(a) First, Msign • .Ig0Tithm$ whkh ~olv'~ th" suhtasks. (ThiS Can he atcomplished, e.g., by techniques 

a(.\vocat.,'d hy Bark ",,,I g"rc [BSS?] Or by eha.ntly and Misra lCM88J.) 

(b) 1'h~n (".lmbiue th€ (l,lgoTithrn> found in ((l,) int,,) Olle whkh s,)lv.'~ t.h.: whole task. 

"l'hi~ partieul; ... kilLel of :;t.rill,(:gy h;.s he!:1L identified ill (1). 

The design pl'inciple formulated in (2), the second article of this thesis, describes how Qn~ CQuld 

fOl'I!Lally [haxact(:riz.::: tJu: (OIllhiIla.t.iOIl Ill(O:IltioIlCd ill (b) above, 

This prindpk iK "-ppli<:eI in (3) to U", c:omplkat,.:eI rninirrllllIl"wt:ight ."aru.inl,( tree algorithm of Gallager, 

Hnmblet, ".nd Spira IGHS83]. 

The U·nt.r;.1 t.heme I,f (4), t.h(: h)urth artitle of t,his th~sis, on fairn.eu arguments is the formulation 

of an assertion expl'essing that a nOlld€terministic program terminates faidy. It i~ ~h(lWIl in (4) t.hat 

I,hio a8sert,ion call be forrnulateel in Hit,(:hwck a.nd Park's lIl(motoll'~ I'"calculus [HP73j. This ea.lmius 

iK a. formali,m, ha,~d 'lII KIIa.~kr ""d Ti'lrski's nxcd point theorem !T55J, tha.t can serve, as shown ill 

(4), ,,$ an assertioll-la.r,gu"ge fOI' re"soning about fair termination of nOlldetl:'rmini,ti(; programs ill a 

sound and (relatively) <:omplete manner. 

Meyer [M86J has used fixed points, too, for cODstruding (l, c.k.Iill$ t.h .. t, dl':SCrihe~ how to merge fairly 

operations of nondeterministic processes. An ex~ell€nt overview on faim.,. ibsueS h~ hoe" giveI' by 

Fran(:<:z IF8f>]. 

Manna and Pnueli's Linear Time Tempora.l Logic [MP83), hereafter abbreviated to LTL, runs both in 

it~ (l,pplication~ and in its f<J\lIld"tions, t.hrough thl': research reftected in all four articles like a thread. 

The design, hence, verification principle, which is the subject in (1), (2), <>nd (3), is directly formulated 

using LTL. In the fourth article the foundations of LTL aJ:e investig"t(:d. 

The results descrihed in (1), (2), (3), and (4) ar~ bri~fly sketched below. 

In (1) it i5 sketched how the distrilmted minimum-weight spanning tree a.lgorithm of Galll:\~r, 8UIIl" 

blet, and Spira lGHS83] can be proved to he correct. It is (l,Tgu~d t.hat, the proof can be structured 

by de~omposing the reasoning about the program describing that algorithm into a number of loosely 
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connected O!' independent a~.9umeni$ toncerninq distributed part$ of that program as if they are peT­

formed one after another _ (In the terminology u~ed above, the nod~S which ~x<Yutc such a distributed 

part perform a certain subtask, The whole task ~on5ists of all these wbtl'!!;k~ o.~ if th~y an' p,-rf6rIIlI,d 

scqu¢nt.iaIly.) Thei;e distributed patti; ate not $yntadically contained in the whole program. They are 

combinations of scattered pieces of text of various programs perfoTm~d by th" n(,d.,;;, which sr:mlmti­

~a!ly mnstitute a. meaningful whole. It is claimed in (1) that the principle applied generalizes Elrad 

ou.d Fhnccz' principle of communication dosed layers [EF82]. From the technical formulation of the 

principle in (2), it follows that it is a broad semantic generalization of Elrad and France7.' prindpl': in 

that it is not restricted by the syntax of a programming language at all, Wn€re«$ in Elrao <lnO f'ra,,~~z' 

fOrmulatiOn th( priI.6ple i$ r%trict.ed hy th~ Syntax_ 

Elrad and Francez' principle of communication closed layers iEF82j states the following: 

Let d 2: 1 be some natural number, Iffor all m, 1 :S m :S d, the programs S1,,,, II ... II Sn,m, n 2 1, OUI: 

partially correct w,r.t. the preconditions p,-,,_! and the postconditions p." and if no COl)1mlmkation 

o('('ur~ bet.W<)en Si,m and Sj,m' fM 1 ::£ i,j::£ n, i t- j, 1::£ TTl, TTl' ::; d, and tTl t- m' then, the program 

(SI,I;81,2;' , ,;SI,~)11 ' , , II (S",1;S .. ,2;" ,;S""J) is partially correct w.r.t. precondition p() and postcondition 

Pd' (Here, as usual, program S is partially correct w,r,t, precondition p and postcondition q if t.h~ 

following is ~atisfied: if S is exe~utlld in <In initial $tate satisfying p, theIl q holds if and wheIl 8 

terminates). The programs SI,m II '" II S",m, 1 :S m :S d, are called layers in [EF82], 

This principle can be illustrated by means of the pictme below, For e!l-5e of exposition, we ~<)n~ider 

th" taose of two la.yers. Let {p}S{q} denote the assertioI' that the program S is partially correct w_r_t .. 

pre~onoition P (>nO pO$konOit.ion q_ Elrao and Franc(>z' prindpl~ a.sS~rts that if 

and 

1 81,1 [I .. - II 5;,1 II ... II 5j,1 II ." - II 5",) 1 

{PI} 

151,2 II··· II S;,2 II ... II 5),2 II ... II S",21 
{P2} 

both hold and if no communication occurs between S;,1 and Sj,2 for all i,j satisfying 1 :S i,j :S n and 
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i i= j, then 

is satisfied. 

The prin6ple wIdth I,mderlies the correctness proof i,l Our paper (1) and which generalizes the principle 

of communication dosed la.y~r$ i~, however, not explicitly forIllulat.ed 110,' jllBtifled ill (J) it,~,~lf. (Th!' 

proof ~Ilgg",t"d I,here, should therefore be considered in,'ompl",t~.) 

III (2) ti", prindple underlying the reasoning in (1) i~ formulated using LTL, This principle is applied 

in (3) 1.0 the minimum-weight spallning t[(-:~ <tIgorithro of Gallager, Humblet, and Spita, which is a 

representative of the da," of algorithms we are interested in. hI this alg,}rit.hm f()lIowing f"a\I""" 

• Ta,h p<?rformed by groups of nodes in the ndwork (lUI b~ "plit up inl,o a number of subtasks as if 

they axe perfi>nned one after allother from a logiCal POillt of view, alt.hough fr.-lIlI an op,:rat,ion<ti 

point of view they are performed (:onq"rent!y. 

Example: 

This feature can be illustrated by the prOgram bdow wh;':h <:h'~~ribe8 the f'lF-protocol in Cffi€ 

the underlYing network constit.ut.~" il. tn"'. (This restrktion is imposed ill order to keep the 

presentation as "iIIlpl~ "'~ possible.) Recall that the PIF -protocol solves the following task: 

All nodes in a finite, connected, and ul.direttcd Ild,work iiI" provided with some value initi<tily 

recorded by a (crtain node k, and node k is informed that all nodes in the network have recorded 

this value. FtlIthcrmore, r,'<.:all that this task can be split up into two sub tasks as if they are 

performed sequentially, the first on,:, supplying <tIl nodes in th~ netwi)r).: with the value to be 

propa!;ated, and the second Olle reporting that all Ilodes hav<.~ ill deed r,:ceived this v<llu~. 

III the prOb'Tam below, boxes labeled Ai indicate which operations of node i axe associated with 

the n'h subtask (n==1,2). Obs':'rvc that b,-,x,'i; do m)t ne<.:e~,arily ';orrespond to the body of a 

"re8ponse". ({n general, such boxes are the outcome of a gcmantic analysis arid Hot. of a Ryntadic 

one.) Note t.hat. cl\lriIlg the first 5ubtask a directed tree is unwound. This tree is used by the 
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1I0de~ d"ring the s(O~Qnd st1btask in Qrder tIl. trace their path back to node k in order tIl. infQrm 

k that they have recorded the val"", whkh ha.$ !)(o('n prIl.pagated. 

--------------_._-_ ... __ .. _._ .. 
100 ~,,~~uted by node k (th~ root) 

r"5pon~ .. to ,,",o.il't o~ in/o(.) 
begin 

val/r:=v; 

fo. 0.11 edge. e E Ek 
do send info( va!~) on edge e QeI 

.. ,,<;I 

response to r-8(;eipt of ack(tJ) on ed.g~ 0 
begin 

Al • 

Nk(O):= truei 
if 'Ie E E~.N~(C) A~ 
then dDn.e~:=true 
fi 

",,<;I 

lo0r.._~~.~?uted by node i :;f:. k (a non-root) 

... spon." to n~ .. ;'pt of intQ(v) on "dg' 0 
b~gin 

11<1/;0=11; i'lw"nch,,=O: N;(O)'=tru~: Ai 
fo:.; .. 11 .. dg .. ~ e E E, II e i= inhr(lnch, 

do s~nd info(va!;) on edge cod; 

if ve ~ E,.N,(e) 
then send ack( val,) on inbrunch i 

f:\ 
"nd 

r~.pons~ to rec~;,pt of ack(.) on edg .. e A1 
b"Si" 

N,(O)o= true: 
it '<10 E E1.N,(O) 
th.", .""d "'-k( "al;) on inbranch; 
h 

end 

Notation used: E; denotes the set of edges adjacent to node i. V".,.i • .ble .a!; i. used to record the 
argument o( the info-m~~"age received by node ii Ni(e) records whether any message has been received 
along edge e, e C' E,. For node i different from k, varia.ble inln-anch, record. the identification of tbe 
edge !lIong which the info-message has been received. (These variables are used for unwinding the directed 
tree.) Variable dl'J'Ytek records whether the whole task has been completed. Eacb node maintains its own 
me.s .. ge queue fOr buffering received messages. 
lnitially, node k'. me .... g. queue contains ane lilJa-message and the meS'(l.se queue. of all other nod •• 
ate empty. Fur\hermOr€ initially ~done. holds for node k, and ~N;( e) for ail nodes i and edges 0 E E;. 
The initii!.l values of tile other variables are irrelevant. 

Segall's PIF -protocol 

FrQm a IQgical PQint Il.f view it seemS as if first A I programs .are executed (solving the first 

,,,btask) and thereafter only A2 prIl.grams (sQlving the secIl.nd 5ubtMk). Operationally, however, 

this lrind of sequentializatiIl.n is not neCeS$iUily tme. This is exemplified below. Consider the 

fQllIl.wing tree: 
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/A 
/ c ~ 

/ ....... 

In I\eneral, obviously, th" !lo,h" i and j will !lot. he ~1lpplkrl Hirn1l1tan""'.1~ly with I.h€ va.hle bdng 

prol"'gat . .,d. There e)(ist computation sequences of the program above for which the following is 

satislkd; 

Node i receives the value that is being propagated and records this valuc (node i cXI~rllks I.he 

prob'Ta.rn ~~gment labeled A~). 

1'1\,\11 lIode i <;nt.'T~ the report.ing pha6~' (node i e)(e~ut.e, I.he progra.m ~egment labeled An· 
Thereafter, node j receives and rccol'ds the message that is being propagat.ed (node j executes 

the program segment labeled A}). 

This example illustrates that the program segment Aj is e)(ecuted after node i has executed the 

segment At, i.e., node i participates in the second sUbtask before node j participates in the first 

subtask. 

Now, t.he principle formulated in (2) justifies that OIle can rcason a.ho"t. the Plf'-prot.otol as if 

first all AJ programs are eX"~I1ted and thereafter only A~ programs. 

The next feature orrurring in the distributed minimum· weight spanning tree algorithm of Gal­

lager, Humblet, and Spira is the following (a prindple for re;u;oning about thig featun' is fiJmlll-

• Ex.p{J.'nding gT{)llPS (,f pT-c.}(.:~~n~S p~rf()nn a ((~rt~n ta.hk repeatedly" wh~r~a.s differ~Ilt 1jTOupS Of 

nodes perform their task concurrently w.r.t. another. 

E.g., the distributed minimum-weight spanning tree algorithm of Gallager, Humblet, and SpiT':> 

taIl b~ lk$cribed ;u; follow5: 
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First a certain collection of groups of nodes performs some task coIlcurrcIItiy w.r.t .. a!loth"r. 

The task of each such group mnsists of determining the minimum-weight outgoing adjacent 

edge for illW Ilode i,l this group. Thereafter, a fragment, i.",., SOI"O subtre" of th., miniIIIUIn­

weight spanning tree to be constructed, which has determined its minimum-weight outgoiIlg cUll":' 

attempt, to combine with the fragment at t,he ot,her end of t,his edge. The task of accomplishing 

this co,I.bi,latio,t is thel! pCrfOrIllNI by alJ. Ilod<'5 i,l th~$e two frilgIII\'nt$. Sub,equently, the 

enlarged fragment performs the task of determining its minimum-weight o!ltgoiIlg e<lge. This 

process is repeated until the minimum-weight spanning tree of the network has been constructed. 

This feature is suggested in the following picture; 

~110JII 

p&,UG, J II L--....:
P8

:..:.:.'UG.::..::...·. ----,III II [ .. ~~~._.I~?~ ... J 

Notatioo "sed: For each £=1,.· ',r, Ff, denotes a ciistributed program performed by nodes in a collection 
G. The superscripts are used only in order to distinguish thB tasks associated with such progra.mR; r in 
tbe picture denotes some nMu,aj number, r 2: 1, 
lnitially, the collect,ion con.i.ting of 0" .. " Om for .orne m 2: I i~ " partitioning of the set of all nodes 
iIl the network, 

• A ta~k pcrforrlled by Ol,e group of processes ca., be disturbed telilporarily dllc to inkrf"r<ncc 

with the task of anothor b'1:ouP. 

In thc rliHtriblltt:d minimum-weight spa.Jlning tree algorithm of Gallag"r, HllIIlblet, and Spira a 

fragment will, in ordt:r to dc-tenIlille its IIliIliInUI!l-wcight outgoiIlg .:::dg..:':? !i-(~nd mf:!l:)sage~ toO n'c')des 

outside thi~ fraglt,,,,,,t. This ilnplies that a certain node i,l some group G of'llodes perforIIling 

some task can receive messages from nodes outside this group which are not associated with the 

task in which the node itself participates. Consequently, when a node in G receives a message 

not w;sociated with the ta$k in which its participates IUId it p~o('eSSe9 this message the task will 

be disturhed. After proccssing thj$ Il.essage the Mde will continue it, participation in the tw;k. 
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Depicted iII a pictllre, we ha'l'e 

Pc ---++-11 ~,- I .... _ .... _~==.J 
Notation u.,,<.\; Pu and Pc,' ate distributed programs performed hy node. in group C and C' re.pec­

tively. The" pr<lgram. are ex.""t.d (;oncurrently; Eaeh of thelIl describes how to solve a ~.rt.(l.in t~k. 

The arrow illdicate; tile ttMsmissio,\ or a message. 

A principle which copes with the latter feature is formulated in (3). In e'ij'mu', int"rfereltce 

freedom of specifications has to be proved in o~de~ to e[)~1)r€ t.h«t I.h,·, r(;a;;olling abollt the two 

tasks ""~c(>rding to th" printipk, described ill (2), is not inl'alidated. 

Now, suppose that two distributed programs have been designed that ij<)lv(; two sllbtasks of a certain 

t"sk "s if they ~Lr(' perf(lrIIled ,;cljut'lltially. Ass1I1ne that each of the 5ubtasks <\[)d th<!- ta.Hk iui; ,!.-,Stribcd 

by means of a p~econditio!l and a postc·ondition. In on",. to design" program that soll'es the whol~ 

t~"k it is H'quir~d to pr()v(; th~t fOr .~"th of the programs the following holds. 

for l'lIth Il()d~ j th,,!, pa.rticip"!'es in the sub task, there exist fo~ the program ai;wtiated with this 

subtask when it is executed in an initial state sati~fyi!lg the ~1)i:>ta!;k'B pr~roIlditioIl; 

All invariant I j whkh holds during execution of the program. The,e invaria.ut/; h"vc be"r) 

incorporated in order to deal with the above-mentioned kind of interference. The invariant Ij 

tall be thou(!;ht of as th.:o disjll1lction of all p~edicates assigned t.o <:ontrol l)oi1lts of the progrrull 

Wh"11 H""(miII~ "bout this prOr;ra.!l1 ill all Owicki·Gries-like proof system [OG761. 

A t".minl1ti(JT> "onllition Tj . Tj holds when and if node j has completed it.s partidpatioll ill the 

program. 

In additiOIl, it must be pro'l'ed that upon term;n"tion of the program the suhtask's postco[)dition 

associated with this progfrull is estahlished, provid(;d that execution has been staIt~d ill " $t.,,!,(; 

satisfying the sub task's precondition. 

A program which solve, the whole task cOllsists of all operations occllning in any of the programs 

~"lving I,h" sui:>ta;;h" ;1'his holds because a. node participateij in th" whole task iff it participates in 

one of the subtasks. FurtherlllNe, the folll,wing vorifioation conditions must be shown to hold; 

- A \lode ('an only part.icipate in 011<'; subtask at a time. 

If .. nodi, a.ttllally l'arl.icipates in both subtasks, then it p(lJ"tidp"t~s in the first subtask before 

it participates ill the second subtask. 
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The fir~t v~rifkatioll wnditiOI) above ensures that there doe~ not OCCur any commWlication between 

program segments associated with di~tin¢t ~lIbtasks. It also states that two internal operations (, i.e., 

"peratiolls not involving any communication), whkh ¢<m b~ perfonned by the same node and which 

ar~ associated with distinct subtasks cannot bt: enahkd simultaneously. The latter requiremeDt is not 

needed in case of Elr"d and F'ra.nCCZ' principle, since it follows frOID the syt.tactic structure of the 

whole program. III case of their principle, the second verilkation c(mditi()I1 above also follows froID 

their c,)n(!ition a.bout wmmWlication and from the synta.ctk structure of the whole program. 

As mentioned above, the principl~ formulated in (2) is a generalization of the prindpl<': of toulffiuni­

,'atinn dn,~d lay,:r •. 

The principle formulat.ed in (2) dlso gcner<l.l..izes each of the principles f()rmulated by Chou and Gruni 

ICG88J, by Fix and Francez [FFS9j <md by Back illId Sere IBS89J, since, amongst others, non~ of these 

i, able to cope with the above-mentioned kind of interf~renC". 

The principle formulated in (2) i5 applicable t.o the spanning tree algorithm of Gallager, Hl,mblct, illid 

Spira. This is shown in (3). As a. wnsequence of the strategy adopted thtre, a source of fallure of the 

algorit.hm has been detected and corrected- Al$Q, two kinds of slight optimizations w.r.t. the number 

of Illcssa.ges transmitted during execution of the a.lgotithm have been found. 

At this stage the question might b" asked why we did not apply a conventional proof system, such 

as described in, e.g" IAFR80, OG76] or !ZB.E85j, to prove the correctness of thi5 algorit.hm_ TILis 

questioll is answered below. 

Apart from th" algorithm reported in [GHS83j, the;re e"ist.~ a large nuu.ber of algorithms [H83, MS79, 

SSZ, S83) of whkh the und.,rlying structuring principle is inherently semantic. Oespite the fact that 

t.he deijigners of sllch (complex) algoritluns are able to give a d~(u and intuitive explanation about their 

torr~CtIleSS, it is believed that any correctness proof given in a. conventional formalism <:an capture 

this intuition in an artificial way only_ This implies that any such forma.! proof of a non-toy program 

will not contribute more to one's Wlderstanding of the designer's argument.. Th~ principle fo~mulated 

in (2) i~ able to mimi(: th~ designer's argument in a straightforward manner, ;'Ideed. 

In (4), the last article of this thesis, the foundations of LTL are investiga.ted. This is done by studying 

the notion of 5twngly-fair termination of programs. In order to deJ1.ne this notion, the notion of a 

strongly-fair computation sequence is introduced, a computation sequence of a progr~ i$ strongly-
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frlir if "v'''y op"ratioll (X<'IIrring in the program which iB infinitdy uftl''' <:""bkd ill tId, ,cquellCe is 

infinitely often chosen in that sequence. Now, a program that is executed in an initial state 5atisfying 

"OIn,' pr .. ,·onclit.i'm p tumin,ak$ strongly-fair, if every strongly-fair "()mp\ltation ""Ill""'''' st.i1.rtr!! in a 

~t,;lk ror whirh [I hoM, ;$ fin;k. 

E.g., Dijbtra'8 rflndom !mIll""r g,,,,,~rat()r, H'''' [D76], .[I! .-. x:= :J, 11 0 /) _." b,.,- false] always 

terminates strongly·fair. This holds because of the following: 

Th~ pn)grriJ.Il iIIlIH(':(ii.rlt.dy t,{·TIIlillatt.~ Whl~Il cxN:ut,r.d ill a. f;tat.~ satisfying ,b. 

Any infinite computation sequence of the program started in a state oati5fying b i, not ,tn)ngly­

fait, sillce lhis implies that th,~ operMioll "0 --> b:- fal;e" is infinitely oft.en enabled (\nd npV!'r 

L.;Lkt~I1. 

Stn)Ilgly-f .. 'tir tcnninatioIl of a pTogr;;un is ~Il (~x.runpk· ()f an "cvcIltuall'y?1-ptoperty when the a.bove 

restriclions Me imposed on complLtalion seq\1ellCeS of the program. Manna and pr\\leli [MP83] h"v(' 

presented a proof prindple that allows one to establish such propertieo. Th,'Y propOo" til" following 

,t.ral.q,;y t.() pr()v(, H,«j. fI)r (\ progr(\nt S, a >;tat.I'-prOpert.y 4) event.ually holds (a state-property is a 

property of pmgram i;t.a.t,c~ cxp!es~ihlc withont. a.ny temporal operators); 

(A) AIIIOIlgH tJ,,~ tOIlturrrIlt. prOcc~"c~ execut.ing S a distinction is made between tho~~ pro!;!.'"""" 

whose execl1tion brings 1/' always nearer (in [MP83] oUI,h prou,,,,," 'll'~ called helpful processes), 

and those processes that do not, i.e., wh()se exe"ution do". IIot bring satisfaction of 1P any nelUef 

(such processes are called .ieady processes in Manna and Pnueh's t.erminology). 

(El 11. lIlU~t. lw ~hOwIl thill., for every computation sequence of the program S, if a h~lpful prot.c"~ is 

systematically avoided, then (Bl) or (B2) below is oatjofi~d. 

(Ull Th", sequence h infjnjt~ and do<:> not. >(It.idy the flbove fairness constraint, I.e., it. io unf"ir. 

(B2) Due to some cllOice of a steady process, satisfaction of .;, is brought neater or even'" is 

established. 

In u.s" (Bl) the cOlnputaJioll sequence is unfair, since infinitely often" helpful l)rOCeSS is enabled 

but only !:init~ly many times taken. In ,~""~~ (B2) .p has become less far away from sati.fa(.l.iOn. 

Upon closer inspection, part (B) above requires application of th(~ ~anle strategy to a syntactically 

simpler program than S: remove all helpful proc€oseo from $, arlll prove that eventually one of th~ 
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following hold" (i) 1/1, (ii) getting nearer to V), Or (iii) a helpful process is en"bl~{L 

The technical formulation of M<mn", and PIlueli's principle is shown below. There the following notion~ 

have been u,ed, s,"~ [MP83]; 

Let S ~ Sl 11 ... 11 S" be some prograIIl, TO ;:: 1. Let ¢ and ¢' be 5tat,,-fwIIllll~"'. 

- Si leads from 1> to 11' when every transition in Si establishes ¢' provided ¢ h ,atigned before 

(i=1,·· ',n). 

S ["ad. from <p to 1>' when for all i, 1 :::; i :s: 11, S, leads from ¢ t.<.> (1/. 

The technical formulation of the above-rn~nti(}n(:d strateg.y is as follows: 

Let M=(A,S) h., it wdl-founded structme. l,et. ¢(l) b,' "1'ill:ametriMd state-formula ovcr A, where 

(l intuitively expresses how far a.way establishing >I' is. Let h:A -->{l, ... ,n} be a helpfulne" fUllttioll 

identifying for I'ad, a E A the helpful pTQ(~ljS 5/.(") for states satisfying ¢(a). 

I- S leads from 1>(,') to [1/, v (3/3 :s: a. ¢(!3))) 

I- S1>.(.) leads from ¢(a) to 1>1> V (313 < a· 1>(/3))] 

~. 1>(") => O[I/! V (313 < a. 1>((3)) V E'labled(SM"))] 

I- (3,,,,.I>(a)) ';'0>1> 

The SOUl1dn~,;; proof of this principle r(!qllire~ ],Iduction oller well-founded ~"t;;. Oil the other h,md, 

this principle is (s~II1a.Iltically) complete, i.e., if 0,/] holds, then naive set theory ~<m be used to establish 

its premises. 

MarIlla and Pnueli, ho~vcr, do not give any formalism in which olle ca.n. establish the pr~misc of their 

principle_ In ord!>r to supply such a formali~m, in (4) a principle is cOl1sid~r~d for proving stwl1gly-fair 

termillatioll of (sequential) l1ondet,crministic do-loops. In this prindpk the same kinds of auxilia:ry 

qU\\1lt.iti!>s, i.e., the well-found~d structure, a ranking predkat~, and a helpfulness function ta.Il be 

discerned as occurring in Manna and Pnueli's p~indpl~. 

The principle inve,tiga.ted, which is called O~nl:\'~ n.ll~ in (4), is due to Grumberg, Frantcz, Makowski, 

and de Roever [GFMR81] and i~ as follows (iPISlq] denotes that prograrn S is totally correct w.r.t. 

precondition p arId postcondition q, 1.1>., whenever S is executed in an initial state satisfying p, then 

S always terminates <md each final state satisfies q)' 
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Let M",(A,:S;) he f' wdl-founcl.,d ~trudure. Let 1l":A -->(States-->{true, falu)) be ;,. pl''''li(;,.t~, Ld .;, 

h<: " ,t"t,"-preclkate, and let for each a E A, a not minimal (as ,knotcd by ,. ;> 0), b'~ giv~)1 pairwis€ 

disjoint sets 81 .• ",will., H1lch th"t no f 0 and V, u St.={l,.· ·,n}: 

I- ]i\"(a) A a > 0 f\ bj]Sj[:la' < ". 71"(1/)1 for all j E:: D. 

I- 11f(a) f\ a > 0 f\ bj]Sj[3a' ::; '", lI(U')] for all JESt. 

1'],,((1) II (I > OI-IU,csdb, II !\j.;D, ~bj) --> Silltrue] 

I- r....,. 3a. 11"(a) 

1"(71"(11.) II(/.> 0) =} Vi' II:>, 

1- 11"(0) =} ({A:'=l ~b,) II ,-/1) 

F~T;]r:l:';I;;~"~;ili1;1 

Notl: th"t bi --I 8; (i=1,.· ·,n) ('.an be interpreted as state transitions, Also 1I0te th;,.t ill this principle 

the assi)!;nment Ii ·->(D", St,,) for" > (l g<"l('raliz,,~ th~ not.il,>n l)f a hdpf\lln,,~~ fund-il)n of Manna lUld 

Pnueli'~ principle. Consequentl'y. the ~a'llC kind of allxilif1TY 'lualltitil'" '''': r/:quir<:d to itpply t.JH-: "hovl.: 

1Il (4) it. is shown t.h"t rlit,:h,'o(:k "no p"rk'~ monl)tone t.-cakulus [HP73, 1"691, based on fixed points, 

a\lgmented with constants for all recursi ve oidhlalS can sene ;,.s an ;,.ssertioIl lilliguagc fur reasoning 

about strofl.gly-fa.ir tenl~illdtioll of do-loops. SOulldnNib: and (~oInph:~tcIl{~i->S (}f the pdw:.:iple in [CFMIUH 1 

at€' proved. In p<=Lrtitular, t.1H~ w(~a.kt~st pn~n'mditic)Il fo()r !-it,ron~dv-fair tennination of a do-loop W_Lf.. 

~O[ll~ posi(:onditloIL i!-i ~h{)wn to h~~ expn;':!;i~ihle in the t(-(:~k1)hl~-

The r€sults shed an interesting light on LTL, Wolper ]W81] has observed that not all regular expressions 

C<ul b,~ (!xJlr(!~"ed in LTL (in faCt., LTL UUI only express iI prOper $ub$et. of th., regular expr~$~il)n$, d. 

IT81j). Obviously, the I"-calculus is fax mote expressive tha.n th~ regulill' expressions, Consequently, in 

(4) a more expressive formalism thilll LTL has been used in order to express the auxiliary quantities 

required to apply the principle above. Although it has not been proved that one actually needs an 

\I.l;s(lTt.i'.)[I lilng\l"g~ "I, le':l';t. M exp~es~ive ~ the tl.-~alc\llus fl)r T<""~l)ning "b')\lt strongly-fair termiIla.ti,.IIl 

of do-loops -to my knowledge this is still an open problem- the results in (4) suggest strongly that 

OIle a.ctually Iu~cd~ a fOrlI.I.<ili!;IIl which is a.t ICdst as expri.'ssivc as LTL itl order to fOnllula.tc a.J.'ld verify 

I,he premises of MlUlna and Pnueli's principle mentioned above. 1'0 put it bl1.l);ltly: O,1l "obvioU8" 

slJ.bformal-ism 'Which Manna "nd P"'udi U.3C in [MP8.9j to C:r.PI'CSS their proof rules is probabl:v m01'C 

powerful than the whole of the LTL superstructure erected on top of that aubjormalism. 
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A correClness proof of a distributed mi'limum.weig"l spannin~ Ir." algurithm 
(e>tel.ded abstract) 

FA Stomp' 

University or Nijmegen 

We discu" ~ strategy to n:dlICC lhe cOlllplcXity of CO(I~Ct"C',< 
prOOfs fot pantcular classes of distributed programs. As at) 
example of this strategy we ~ketch how a correcmess proof "f 
rhe d.js.m.butf"..d mlntrnum-w~,ght sp:Jnr.ing trC"e ::Igorilhnl of 
Gallager, Humblel, and Spira [7j call be stmctured by rir~t 
introducipg, .and arra~yring. simplification5 in whicb certaIn 
commumcallons oro IgnOOld. Then the.e s'mpl'ficatior1! are 
justified f"r the genetal case by pt<lvi~g !h~1 those 
COrtlmuuications do not affect tile oriSiool analy,is whkh i, 
b.~ on tl1o.o simplificatiun>, This proof - a more etab,mHW 
version ofit ean be fou~(I in Ihe (ull paper i Z n -;Hu,lIate, the 
f.lO(~Qf!S of cotrtmUJ1.icatioft do,sed layer of Elrad and Fr;'IJI.r,,;~z's 
[5J an(! of quie,Icence of, e,g., Chandy and Mi!ra'! [31, 

I Introductiqn 

In order to [O",on about distributcd progranlS. " nlllllb,r of 
m~thods h~ve bt,en prop<)!ed (e.g" [1,2,12, 16,22J), While 
(hjs ~"abl?$ ~ Malyzer to verify that a progr:un mws its 
speCificatlon, It tum~ out that the5t:. mC1hods give, ill gc:ncral. 
flse to lengt~y proOf; for ruthet "simple" prograI'lls, (Sec [2UI 
for an overView of lOme of these methods and an applicotion ,,/ 
each of them to thll gcd of prOtoool-verific.tion. the altematillg 
bit protocol,) 11,is suggesl~ Ihat corrcctne" proof~ of larger 
di!ll'ib~led pro~s are difficult to .eize On. Con,e4Uen(iy, 
Ihe question an"" .. whether Ihere <AiSI srr<llegi(s lviii,'" ,'an 
reduce Ihe compltAily of proojs for parlic~/,]r cl~.I"',1 ~f 
diStibwed programs, 

"I'he leitmotiv of this p~pt;:r is th~ deeof!:~!,ooitior\ Qf ~he 
reasoning abo.llt a d.is~fbl,.ited progrt!tn into a number I.{ !ooxeiy 
comllxred or Indepen£1ent arguments c:olltl1rm',.,& dJslribwed 
pWI.< oflhat program under simplifying asswnl'riOlIS, 
Typically, these disltibllted J?art! are not syntactically «"'tailled 
in one process but are combination, of scattered pieces of Ihe 
text of ~ariou, p.-o<;e,"e. which Colnstitule together a 
!emanuca1ly meamngful whole, Equally ch~racleristic ror our 
approach i> that we fits! I'taso~ in a simpIifio:l fashion .bout 
those distributed pans, disregarding interie",n"e due to eonni n 
commWlicatiolns from oUlside those pans. to orgue I.ter that in 
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W.P. de Roev~r" 

UnivefSity of Eindhovel~ 

case these conunUl1i~alions an: laken into atOcount our 
rCalO"!.ng ~mains valid, or can easily be adju'ted'to the "{ull 
reality or Interaction. 

The ~u.s.&e~1.ai ~hn~q~c:: is an analogon of some tOGhniques 
al~ady sUS,Ec::sted In the hteratu~. such as Lam and ShJ.nkilr's 
methnd ojprojct.:tlont. MartinIs anulysiti of the t.en'r~inalinn 
behavior ot a J;~lribulc::d pro~rillTl using qw.c ... c.~/11 .~tllle~. 
Chandy and Misrd's method of qu.le$(;gll("~ detect,on, 
l...drnport'~ a.~glll'r'Jtllt ch~u J'~aJ~nltlg abr>Ul dJ',flTibule(ipI'Qgram..~ 
need not mvolvi: the constuuung pSJi!llel proc.:~ses or entitie!\: tf .. 
bllM: one'. proof upOn but slwuld be based ratlier on prop.,ti,S 
deri""dj'om globallnv~ri(JriI.I, llftd Elmd and F .. ~cois 
~chniqu~ or co»tm.ut1ica.n"on. closed layers. lhes.e methods :JTe 

briefly ",viewed in the ne"l section, The p<lJ'ticlllar 
cOlllbinations of Icchniqu:s ~sed is illu~tratetl by ~k"tch"'S a 
co~ctne~s proof of th~ dlstnbuc-ed 1Yl1I"ml"~um·w-elghc :s.palll1ing 
tree algorithm of Gallaget, Humblcl, and Spi"l [7l. A mo", 
elaborated version of this prouf can be found i,l 1211, 

Lam ~d Shankar !l41 have pmpo'o:I a tC'h,'i<l~e of 
reduCtng the cOlliplellllY of bot" ,sof~ty and livc,'css propelliC! 
of protocols. 11letr key obsClVatlon 's that prutocols are. in 
general+ d~l'i-igned (0 pe~fOM"l a numbcrof d~still(:( flH)C!ioll~, 
E.g., in u rumn\Ullicatiun protocol to achieve full·duplex dam 
transfer between two station:!j one can diS(.:ern tWO 
diSftngllishable functions. ~ach onc::: concerned wi{b one-way 
data trun>fer bt,[weon the two Stations. 10 reduce the 
oomple~ily Qf proofs, Lam ~d Shank",'. teohnique 
(iccompo!Ves such a. multi-function pml(l-(:ot il1.IO .. 1~;lmhl::r of 
so-caJled ~m.l..lge-pmtocob. Sin~c; these tlnag.:-rrohx.:ols 
perfo~. In g~neri.l.l. te~:;. functions thiUl the ongLn+al ~"H'e. th~y 
are e~sler to .~lalyze, In [141 it ha~ ~!1 proved Ih\it tind~r 
cert&J~ '()ndJhul~S:, saf~ty arid livenMs. prupertle!i .... edfi~d for em 
imBge-protoco). carry over to the original one. To our 
knowkd~e, ~h,s melho(! has bee" applied so f<lf [0 

COtlll'(lum<;atl?n protocoll only (e.g., in [19J) and i[ wpcars [""t 
the a~phcablhty of tile method to othor cia"" of prOl<lCol< 
rc:.mamS open" 

Mattin present! in [IS] a generallechnique 10 show 
lermUlallOn of a di~tribured progr;un. This toehniqu" tonsi,t, of 
flr!1 denvll\g a non'lenninating MalOgouS ptogrdm, for which 
illS proved mall! reaches a stale in wllich all internal activity 
has ce.1sed and all channels in tl)e networK are empty, a 
lO·called qUJes~e", state, No<l, 3 l'X'al terminatiun co"d;tiu~ 
from couditions satisfied in the quiescent state is derived which 
carries 0:ver to the original program. Although this technique 
reduces Ui some sense the complexity of a terminatiun'proof it 
does not reduce the complexity ot proofs of other properties, 

M?rc recently. ChB!ldy WId Misra have pro)lO'ed • 
leohmqu" for the develolpmem of Prog,dlr'l$ (S"e PI). I" their 
view, a prog,oIIll consisls olf all inilial condilion and a SCI of 
atomic action,. One of the key features of their methodolOGY is 
that concern. about the core problem to be solvo:l are !eP~aled 
from the fotms of coucurrency available in the hardware (o~ 
whi~h lhe pro811'm ;s tQ be execute(l) and £Tom the lang\1~ge in 



which ~hc p.~Ogfl:l,tn i~ to be wrlw.::r1. lrl I~! [IIHIS hcen :-.1I0\~1\ 
lhtt~ JlI(')(,klirlg a prl1gnl111.jj~ i.\ :".c::, of stalC:1llCnt:-; l:i :J.tlr.ldi\'/!, 
;c;il"lcc it u.!lows. one 10 dcvclop pie(;e~ uf a pTOl);r:UTI giV":;T\ OIdr 
one invariant. inclt::pe,\dcnt of the oth~t pieces of" lh;lt {"Irngr;ll\l. 
Thl!i enilbles One to ('Oiwelltmte sulely at Qnt,': COIK(':rn:lt ~L tinl<.:. 

ln l31 a. global view ~)f the. ~y~te:rH ~Ind(:r l.:c)Il!-;i,kralioll i:-; 
adop!ed, AJ!hough a number uf ~u\hors have .dv""'Hed 
compositional proof~ (~,g'l ill [1 6.22)). Li.l.mp~n·l h:!~ !-;hl)WIl 
that as.:sertlonal TI\t.thods (involving re"'~I\iJlg ahout the glub;d 
pr(lgriD'O st.a~(':s) &rc wc::ll·:;uitcd 10 r'C;,1:!i.c,n t100ut di~!l'ibutcd 
programs, "inee tht:y ure liN lin"litcd to the sylHactlC 
decomposition of " ~.n(!gj'';Ut\ into' parilllel pn)(,:c:'isc:i C.I:i 
L'omposition.:Ll Im:jhr..xlS .'lre), hut .alwnpply Iodt.·CUlllP~I!'iitLI~II:';' 
whIch do no~ follow the !iynta.;,;tic rJeCOl'npo:iltlo[]. Lampu!! Ii;,-: 
illustrated 'hi' in 1 I:\J. 

II''tcr-c''ting in the Held of ptQgnm1·vcrit'lci.l.Liun i..; ;~b;lllll~ 
T\onon of communication ~Ioscd lay~rs. a~ intrudu(':cd by [I(ad 
f\r1d Franr.:ez. in f5J, (Sl,lb~eCjuently, Lhitl. rlOliL)rl ha:;. b<:c~\ 
deepened in 18],) One ofthe main ~sp{:('.:rs of.::m1UHullk;~dntl 
clo!i~d layers ~s th~ simpiifu.;atlon of lhe 3:n~tl)'~.d:i of dblnhutl,.'d 
prognlIns. by, 3~ain. sUgbesliHg a dCl.!ompo!;.iti:lIJ of [t ~rl,.lgl'Lilll 
c:onslsti[\!; of parallel prut:e~S~~ which runs al:ro~:i tlu:; 'S),!)[i\c!ic 

bo<,,\d~rie. of pllrallel decompo,ition by identifying gmllr' <>/ 
synt9.ctic layers in tho toxt of those proo:e$SCS which 
commlJrlicate ex.c1us.ively whi~b ~ach other. Ul:iing CSP l Y 110 
1110Slfat< this nOlk",. any p,ne.« Pi in P=IPIII. .. IIPol i> 

ttpr(:~ented as 1\ sequential composlth:JTl Sj,I;",:Si,d f,1r ~;"1I11r.~ d 

(i=l, ... ,n); d C~n ~ chosen unifonnly by allowing SiJ II.,) bc an 

empty 't.!erne~!. For.i=I, ... ,d. Lj"ISIJ'!",IIS'IjJ is clikd Ihc 
jtl1/ayer (If P. Lnyer Lj is Mid 10 1).:: commum'cmii)tt doxed iff 
undcr no exectl'tion of P, syndwJniz;).tion occurs b~1wt.(':ll.\l, 
communi(:;,l,~j(ln command in some SiJ and a cO[1Jm~ll\i(.:l.Tiol"l 

command in l:iome Sk,f with j~r· (In the tem\iT'l.Ology of 111. 
(ili" i~ n::phrastd as. follows: for any c:oliu'1lunicatlon (:Ol)lrl)jlrl(l 
in layer L

J 
synta~tically maKhiJ'g with a comrnUTlieation 

co~mYl.and in another layer, no sc:rnantk:~J T'I13:1ch will t:v~r ocellI' 
h<:tween them,) The docompos;!;on of P intu layer$ L" .... Ld i, 

t! prOCtSS p';;: L1: ... ;Ld, Sl)ch a d~composit,ol"l i!;. called .~a.fc irf 
aU the lay¢rg 3J"e comruUl1iC3[iQtl cl()~d. The ttlevJnc~ of such 

ade(:ornpO!i:ition of? is the following: Itt P'~Lt;, .. :L(I be.u stlfe: 
decornpQsition of Pinto };'I;rt:f$ LI,···.Ld. DeT1~lle by 
(p'IS'(<{I. Ih. ~ssertion !ha! S' is'p,artial.l~ curroc!, w,r,[.the 
proc:onJI1101) p and the p0s,condlUon q I I.e" If S l!i: e~c(tlt(d 
in an lnili:d state satlsfyl!'lg p' and S' tenninatc:s. then the fil~\\1 
.tate salis/ie., q'. Then 

is sound. and CMSliIU!CS a derived proof rul" in !hc ,y<tOlll of 
[\ I. Thus. umkr a suit9.blc decomposition of Pinto loyor." i! 
s.lJfTices to verify the correctneSS Of each laytt firs.tl and thcn 
est9.blish th" COrTcctne" uf f' by applying !l\e above rulc. Itl 
Cllse -co@'rIut"lication is Mynchronous, a safe decoJIlp<J:.IiliQn is 
one: ;n whkh sending and processing ;! meSs.~ge (Cr.)IHaincd In u 
mc::ssagc ql,l~ue) takes. plilce in the s.ame lilyl!r. Ob~crve thm ir 

[Sljll",IISoj! isa layer of a proo:ess [P,IL.IIP"J, !he,\ SiJ i. 
synta(:tica.U), conHti1H~d in p~ for i=C ... ,n. One oflhe Ulaill 

contributions of this paper is a s.emantk:al geltcrali1::lli()!1 of' the 
notion of ~OI\1mlJnic!ltlon closed lay~rS., 
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'1"1 ~hj5 pape:~, 1he: clistributt.:u 111.,llin\!)ln·wcight :ipanning I!'C!'": 
algorithnl ~)r (i:.allager, 11~,l[IlbIC[l and Spira \ 71 :-.crv~8 M, an 
~}\<'mplc:: to iIIus,tr •. ue how a .::orre.ctne.c;s pruuf I)f ~ distributed 
program "~n be simplifleo by fir~1 introducing an 3hw,cuon 
frum opr.::ri1tiumll i'e~51)ning ilia' (;trt;"in -..:OlnmuHh.::uioLl'!i t'~111 be 
is limed (a! !his ~t,'g~ of tho p'u0f), Tu .,pre<' ,yntac!ic,lly 
that c.::el'l\lin commtlnications are igl\ored. we replace. the 
~end·a(;(lun~ (:ol'l'csponding to tho:l.e r;()TT1lTll!l~ic.2[i(Jn~ hy skip 
in the program tcxt. To simplify fh~ r~~SQning. al~o tl number 
of 'OOolcan conditiuns will Ix rcplac:e.d by n conS-W.nl boolean 
condition. i.e .. cilhcr hy true or by false, As we can apply 
MartIn's: t~c.::hl\iq\lC f 1 51 to analyze 1he H~l'1nini~~ion behavior uf il 
prugT~ln, i[ i"o(')(lows that our tel;:hoi(l~le atso illll:<;;trat~s 11 
g~,~¢raliz!Jtion of t~1e O~\C pn:::semoo in [lSI. S-econdly, thiS 
abstrlJ.i.,;tion is us.cd 10 d~c()mpos~ the prOQ,(;).I'I1 (whost 
execution is flw~ simphl1~) into a nUTTlber of' caml'r\L.II\icatlon 
(:Ius.w l.a)'~r~. whose el',;ISleJ)¢t w0uld not have been justHied 
without this ".b.slr'~~c:ti(Jll. Thirdly. the pTOgr'J,r.rH !lHl.~ Silr'lpli:ric::d i.:i 
verifIed, rir'l,:}1ty. our abstractiQIl r roll\ operution.al re:.!!;.oning is 
Justincd by oemoll'tr.!;,tg lila! ll1e above ""u"'p!io", can be 
t'!lirnil1aLc::d, ~.ldced. witlil)lJt t[walid::l.ting utii earlier proof~, 
Sincc the DotlUPS ()( q~liI;:~enc:e Hnd of t:ommuilieation ch.)~c::d 
layer ph.lY iI r;,i:lh<;r !;igniflcanuolc jn thj$ p~p~r, it follows that 
wt )L"' .... !l; put together it mJIt~ber of ingr~di~nts deri",~d frOrn 
some of the methoos discl,.I~~~d in the p(~"lous: s(::ction. Also. 
we hj,\vt;: chos~n to adopt Wnlpo:rt'!i global view of '" :sys1el~1. 

Next, w(; surnm~ril':: the main con1ributioll:} of this I1<JPCL 

(.) Tilt ~o!i()" of (communicalio~ cl(''''d) layer< ha, been 
el';.le[lded to the c:J...'\e of a::SYI'chmnou!\: communicatiuTI. 

(b) Application - to oW" kno,,",lcdge r<>r!he Ii'"'t time - of 
(communi"ation closed) layers in !lie field of protocol 
vcrificDLion. 

(epne !ccluliql'c de~cribc:d in [lSI 1m been genernli,cd. Thus, 
our I<chniqu< doc, no! only rW\ICC <he complexi,} of a 
1ttr'l'l!i!larton.~roof: it alw en.~blC's ~n anill)'7£T of ~uch 
program., !o reduce !he compJe.ity of O<her properties of 
them. 

(d) Ahhougn nO safe dcOOmIX"i!ion Car be fOUlld for !h< 
progran' S ~mbo<Jyinl;\ Gallager's 3Igo~;\hm, yel such 1 
dCl:ompo,ition can be obtai~ed after applying a sllirllbM 
abJlTactinn of !lie k;~d (ii,cuss<d above. 

(0) In spi!c of !he cl~ar infonmJ dCSCfip!ion in 171. il is for fron 
being obvious !ha! !he f()rmal d<,crip'i"" of Ihe nl~orilhm. 
i.c .• the progr-ilfr, 5 captures indeed those informal ideas, 
More pftCi~c1y, !ne eOt(CC!lless or 8 h3< "'" ~M proved in 
P,II and there are a \'lumber of ~tatemenl~ 11'1. 5, s.uch as 
co"dilionws, wliose fole h~s /WI boon o.plaincd 3! all in !na 
p.per. E.g .• consider the te,t whothc, a llode should 
.w,lken. or whelhor a nodo ,hould rej""! an edge in 171. I" 
!he full paper 121J. we havo I'roved S's COlTec!ne,;. Al>o. 
we have shown there !hal !n. S!1temcnts a., mentioned ~bov 
are of vi!al impol1ance for it. correCtness, Moreover. wt 
have givon a formal jus!ificadon of!M (informal) TOl!Soni~g 
in 17] and B slight op!imi.,a.!I[>n of dlat .Igori,hm. 

(d) alld (e) above also motivates !be ,nuice of Gallager', 
algorithm to iIIus!ru!e out verification technique, 

Tho rom.indor of !his p~pcr i. organized as follow" In ch:lp!el 
2. we briefl)' cc;view a number of properties Imow~ (((l1TI 
gr'a.ph-theory. th.:u are eSSeo[ial to ~stablish the .c:urre<.:tness of 
Gallager's algorithm. In that ~hilPlet' we ",lso descdbe 1h~ 
, .. 101011 of this algori!hm, In chap!er 3_ wo diSC"" !lIe basic 

fe3!uftS of Gallager's algorithm. In tha' chap'or. we ,\Iso 
ou!line how S', correct no", h., boen es!ablished inl~ll. and 
illustrate a d«:Dmpo,ilion of S to reduce: the eomple~ity of 'ue 



a C(H'f~'t"ess prOOf, (H,,~ S d~nOles Ihe p'Ogi."" ",,,b<,,lyi"g 
Call'ger·s algorithm.) Thi. tlecompo,ition illustrate, i\ 
s-emantical. generoHt.ation of Elrad and Franc~z's notion of 
communication clo,o:Il.yer [5J; the proof illumates a 
generalization of Mnrtin's technique [lSJ, Finally, chapler 4 
contains. the conclusion. 

7 preliminaries 

We assume the reader 10 be f~miliar with the elemelltary 
definitions and properties of l1aphs, trees. path,. cycle •. allJ 
so fonh, wl'lich can be found In 16J, hI pachculilr, fOi gr"phs 
(V',E') and (V.E). (V',E') [s ~ s~b8"'l'h of (V,S). denoted hy 
(V'.E')<;;; (V,E), iff V',", V and E'~E_ If (y',E')", (V,E) 
hold. and moreover (V',E') i •• tree, then (Y',E') is called i\ 
subtree of (V,E)_ In the first section 01 this chapter, we will 
ro",,"I.te " number Of properties - weU-known r",m Graph 
theory - ~:,u ~ es:s.~ntiaJ to establish ,h~ correctnesS of 
Gallager's algorithm_ Ilecauf>< of the SpaCe limil"liO'\s Iheil' 
proofs h..ilve been olTIlued_ Th~reafler. the ~kd~t011 for 
(lallaser'. algorithm is inttOduced and th. model of 
compu~tiOt'l is described. 

Throughout this paper, (V,E) denoteS a finil~, u"d;,~cleu, 
and conneCted graph, whete V is a set of nodes, and I; is ~ ScI 

of edges, for i E V, we denote tile >;<:t of edge; "oj;cel!! W i by 

Ei- Similarly, the set of edges adjacent to ij" V i'ooll(}led hy 

E;J' We ",sume each edge eo: E has SOme weigh{ w(e)~() 
associated ... ith i{, such th.t different edges have different 
w.ights, The assumption that different edS"' have differenl 
weights implks that one can identify edges by their weights. 
Although one could rela.. thiS as!Unlptio" S(lmewhat, it i. 
L-rudal f()J' tile ,orr~tnos, of Galla!;",'. algorithm, 

At the bas" of Gallager's algorithm arc 'he e<i,lenee and rltc 
uniqueness of a minimum-weight spl!Jlning lree of any I V ,E)_ 

Th~Otem 1.1 
~t w;E"""""~· be a. fl.m¢~iQl\ &~.~igniIlS weights to edgl!s of 

(V,!!), wnere lAo denote.lh" set or all re.1 number< !:""Io' 
tMn 0, (-.I is also referred to as the weight-fun,'lion "I' Ihe 
gr.ph (V,e).) AISUtn~ that w is an injeclioll. 'Inen there exiSl' 
a uniq~e minimum-weight sponning tree of (Y,B). II 

Given some (V,E) ond an injective w as .bow, theorem 2.1 
ens~s the -existeliee of i.\ unique rt'liniltlum-wr:ight sp~lnlling 
tree T. Throughout this paper, T always refcrl to litis W""'';Ilg 
tree of (V,E). A (naive) \l1cthod to obtain til is tree i~ Ihe 
following: geo(!~te ~ll sp:UlllinS tI«~ of (V,E) ""d <felon"in" 
the G>r1:~ Wlth th~ minimum-weight among them. ThiS reqllir~s tl: 

!trn"SY (0 g~ne"'te the spanning trees of (V,Il), AI10thcr 
approach is SUll$csted by theorem 2.2 below, Before 
formula tins: this theorem, we first ina-oduce Iho IlOlion 0'- a 
fragment of T. and the notion of an oUlgoing edge or a 
fragment of T, 

Definition 2,1 

(liven (V,E) and w as aoove, Denote by T the 
minimum-weigh! spanninll tree of (V,E)_ 
(a) Ajragmellr ofT is any non-empty subtree (1fT, 

(b)LotT~V'.l>') ~~ r",gmentofT_ An edge e<;E is said!o 
b<: an Q~lg"i"8 <d$B of T iff On~ of the nodes .djacent to e is 
in V' and th~ othef one is nOt, Consequently, edge e is ton 

outgoing edge ofT iff (Ie V'Aj'" V')v(iE V'"jE V') holds, 
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We. theft h.av~ th~ following 

Theorem 2.2' 
Lei Tk=(Vk,Ek), k=1.2, be fragments ofT, 

(a) Ags~t'le that e<: E i. the n)inimum-wdght outgoing edge of 
T I and Ihal e is 3(lj~ce~t to T2 (i,e" adjacem to sO'I'e node in 

T2), Then TJ~(VIUV2,EtvI'2vrel) ig a f",gmolll ofT, roo, 

(b) "1"='t ifflhere docs not e"i!l an outgoing eclge ofTI' [I 

A large number ofillgorilnm. (e.g., [4,7.23,111) h.ve heen 
sugso~ted by theorem 2.2, Using this principle, one ,tarts with 
the trivial fr"smene, of T consisting of one nnde nnd nO edges, 
To elll~~gc fJ<lgmcms, One Or more frogment> fin~ Iheir 
mininlum-weigh( ourgoi"g edge, if ':my. When (~!lld if) .~LlC.'h :In 
edge has been foutld, the rt~gll\ent> on bolh sides of this edge 
In:J.y then be combitlcd inlet on-€: as described jn lh(:o~rn 2.2. 
This strategy enSureS tlmt fra.gments are constructed indeed. II 
~ho de""fibe~ how fl"l;m~tlt~ are enlarged, If. On the olher 
hand, a fragment has no outs-oing edg.es., lhen [h(:t)n:;:m 2.Z 
ensureS that the frdgment is th~ minimum-w~ight spanning rret 
of the graph, 

The algoridtm. mentioned above differ in how and when 
fragment> are enlarged, E,g" the algorithm leponed iIl14,2~1 
~tarts with a single node as.a fragrncn~ and gnl<hmlly c:nlarge-s 
this frasment by app<:::rl.(Hrlg the minimLtln-wc:i,gIH outgoing ~dge 
and the node nc.ljat.-ent to ,his ed&e. until the mirl1!H,lnHNf,;ight 
spanning ~ l' has been cO!l~tru{;led.. A~ .!i:1,.l~hl ~(.mSlruCtlf1g T 
is restrict~d to!:l. mUle! !Jtrong reqUlrt~llt, not mklng into 
account thaI Jl!any f",gment. could bo oombined intO laj'~<,r 
one!=; asynchronously fl'Om c3.ch other. In nlCl f this lllgorilhm is 
inherently so4uenlial. 111e alj;orichm reported in (III, however, 
statCS wilh all f"'gmenc, con.isting of One node and nO edges, 
and combit~.es. fragule!.11tS ir~~O lfi!g~r ones if ~hC'y h,,"v(: tJ~e: !;a.mc 
minimum-wd~hr omgoing edge. Thtl8, djrr~rt::m fr:!gmems: 
eould be combmed "synchronously from each other, Yet, 
fra~ment."t ~Qmbinc only, if they have the ~an'l:e mjnilnum­
woelShl outgoing edge. 
Gallaserf

!;; lll~urithlil 171 ~tarlS wi,h illt fraJj.IlI~llts (;uflsislin.!i of 
olle lIod~ and Illl- e!.d~~s, C.JllIbinillg fmsmcJlts inlo tilI"g~r ones 
JepenJ~ M their so-called I"vel~_ More precisely, fragmont> 
consistitlS of. single node Me dotined to be at level 0, No'l, 
Suppo~e that F i$ a fragment at level L with (fljniTrll,:!r'I"!·WE:igh~ 
"utgoing edge e. L<:t F'denote the fragment, soy al level L', " 
the:: other end of c. lf L<2L' and e is F' 's minimum·welgh~ 
outgoing edge, Coo, then chey ace combined inco a larger 
fragment at level L+ I("L'. I). If L<L', then the fragments F 
"nd F' are combined inco One at level L', In all olher cases, F 
has lQ W,ul (ltltil Q"~ of th~ two po~~jbjUti" d¢scribcd abo~, 
occurs. 

Abo..." we described Ihe "ke'.:orr for Gallager'. algorithm. 
It can bo shown that the dday introduced in the skeleton 
(, hence in the algorithm,) does not lead to a de~dlock, i.e" if a 
rrasment wait~ ror one of the conditions to comb;n~ wirh :m 
other fragment into a hrrglef on~, Ih~[J one of th~Se conditions 
shall ~V~tltu:~ly occur, 
Thus, in ()allagcr's algorithm many fr:!gmenrs can be 
c;ombined inlo larger ones &synchronousJy from e:.Jch mher. 
Mottovet two frdgment::l may {;ombinc inlo a I-Ltfger om:: 
I'¢gardless of whether they have identical minimum-weighc 
outgoing ~8~S, 
Then:fon:. comparc:::d with the:: other als:oritbms rru::mioned 



~flJrc::. i1 "faster" ~lguritll!T~ hU::i been yitIJ~t1. '-'HIIl.lgt'r's 
algurithm is 3 cJhtriUlJtcU UII~. Since there (xi:..t nv gh.1i);d 
mbh::s. r[JI'::5:s.ag~::i ht\'\Ic 10 oc ~t::r1t uver edges to JelC'I,),ill'\.: til(" 
minimum-weight Q~ltgoing e.Jge of a ffi.\g!~\Cni. Th\I~, ir \\1 
.senne pi-Jlnt during the j\I!;;I.)rilhm fra,S.11H:rH r h;l~ IX'I.:II 
con5tI'Uctcd, e.!lch mx1e in F !-ihnuld :\1~1li. 5t:"~ln:hlllg fur lhe; 
tnln.i.mwt1-weight Ou.t~ml1g adjacent e::dKc by :\I.:IIlJing Tlll.:~"'il!!l:~ 
Thcreafter. coopcr.::l.tion must ukc: place between ull P(II,.It.:~ ill F 
to determin.e the miru-"~II.LI1I-weIRht m4fgobl!? J.:dgc' Il F ir"il'lj: 
Obse:tve (hal in ordli:r tu detr:n:nine: wh~[hcr 3H 3djatellt edg~ t: 
of $l)IT't(: node ill F is ~C[I,.I~lly an oUlgoing one of F. it ~ufri(.:n 
to determine whether the node &\t the IJth~1' (:111.,1 of C' tx:!nn,g" 10 

P r too. Clearly. lhls h. ~I dlffi .. :LllIw.sk, Siltc~ the only way I{) 

find (J~n wh~lhc~' ~wc) TIIxte.s r.clong 10 the 5<1I1l~ fri.lgllH.'111 i~ hy 
m~an~ of ~[lding me::;Silg~S. fn Gi~II;~f;C:I"S. alg\)rilhm, nodc!-': 
~c-nd SD-Ca.lIed TCSl-mr.:sS.1gcs. on edge~ WhC:II S~.\LI't~hln& f{,r 111...-:­
minimum-weight outgoing edge~. WiIhout adJilion;~! 
informal ion, how~v~r. it is imposs.ibl~ to (iclcnninc whr.:lh'l:.'"r 
two neighbors belung 11) lhi: :;;ame fragment. lhu:s.. when l1Udc:.,. 
in Ii m.gment start searchillg for their minimunl-wr:igllt 
Dut~Dillg O<lge, they rue all proVided Wlth d "Ill"" of tho 
frar;ment. This nillTlt: enables adjacent mxj(!s to detenllillt" 
wnet;ler they belong Ic,., ~he ~amc fr<!gment. Thus, wht:1l ~~ node 
transmits a Test-mes.,s::lge, this me~sage a.bu (:il..ITtef'i rht, Ili.ILiI~ uf 
its frugment as an [lfgI,In1ent. -I be ret.;eiver uf the I'Ilt:ssilge 
infonns I.he sender whcther they have the ~i.Ulle I1i.UI~e, If Sc,.\ 111(0; 
edge connects two nod~s in lh~ s..1.mt fl'agn)(:I\I; ()~herwi~c: tl~e 
nod~s 3dj3C~rLt to that edge belong to the diffcrr.m f"r~lgl1.lt:l1t!i. 
AltJlfluSh thi.'f rcm.(ming might sugge,"it thilr it .~f,lvc:.~ the 
problem of dell3r'mining wiJ£.ther edge.'i a.,.~ out;wifl!:, ~t dod 
not, 11\e reasol~ is that a node rt(e1villg ~ Tt-$,t-II\(:SS.\lg<- mighl 
have another Dame than th~ s-c:;ndeJ:' of .hl!; ['I1(:ss.;,lg~, while;: NIh 
belong to the same:: fr;)gI"l1I!:nt- Thi~ pO!isibllity occurs, if the 
~c~~vt .. of ~h¢ TC;:St-n~£";e;:!iage has nlJt yt::t rt;'.(:"(:~voo th~ T~~W p(IIllC 

of it!i fragment_ In [7]. eiJcn Te~u-rnes..sase carrie!i an ad<litiona.1 
argument - the level of i(s scnd~r'~ fragm~llt - to avoid such 
undesired situations. Le,. situations in which an ~dgl' wuuld 
have gQ~ tht;: s~ml,1s. of Ol)tgoing, while:: it is [~Qt. hHrudu("IBg lhc 
h::v~l~ hBS an other advBnl:B~eT lOO, 'vi~"l it redll(.:e~ the f'lumrx:r 
of messages require.d to comtruC1 th( minimum-weight 
'pRoning!Ro T (see !71l, In dl< "ext chapter, we will de.<criix; 
Gallager's algorithm in some more detaiL 

In the remainder of thls chapter we describe o~r modol of 
compuul1ion. Thi, is dono rather infonLlally, The p<>ill! of 
departure IS a computer netwurk (V,E}, wher.:: V is a (fll1h~) SC"I 
of compulh~g lIitilS, also referred to as nod~::.:, alld whCfl~ F.: is [l 

(finite) stt of undirected communication ch.j);I\IH,,:l~, also reft'rreJ 
to as edge-s_ In the remain.der of this paper, we as.sumc Ihat lilt 
M!Work has a fixed lopology, (The fe~oef i"torosted in 
alsorilhnLS Ihal cope with failuro, aDd ildditiun! of edges or 
nodes, is referrod to e.~., [17]), AddiliOnally, W~ assumc 11",t 
the nelwor~ is connected, and mat each channel in the netwOI k 
conneCtS exactly two di.tillct nodes, The lauer assumpti<>" is 
important for the C(lIT~u>es~ of Gallager's algorithlll, 
C()n~equclltly, such a computer !>Ctw()rk c~n be viewed as a 
fmite, undirected, and cOrlllected grnph. 

The nodes ill tile llelwork arc assumed t(l p""e.s a ceriLlin 
meowf)'- and COmputatiol1 eapabilitY,l\Il(I (<> be ublc 10 
communicate ,ia messages wirn Iheif neighbors. NOle th:Lt """h 
flod~ is able to ttar'1smir and rccctve messages on any chmlllel 
aojacent to that node, since the ch:mnels are ulldllecteu. 
M~ssagf:s trtu'I'S!"r'Uued by ;!i.On~ node Of) a channel anlVe wi~biH 
II fiTIlt~, (bl,l~ unpl"(:dk:table) tl~1I"..:-durat.on. in ~~~~ucn~~T 
e['tor-me, and wiwOUI (luplicatio!) at the OIher c"d of the 
channel. 

The: algorithm p~~nled in ttl!: ne,.;t ~hi.lptt:r i~ L1i!itribvl~·d ilT 

the sense {h.al no centra.! !.!ibks are ft':qUIJ't-d and Ulat lhl!:i"~ I.~ 1\0 
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glnhal knuwledg(; of lll{: 1~')p01og)', n.:1:Ch [h.xle "kl~c)w!-':" only il;; 
ildjacenl {;haT'II'ld~ al1d their wei,ght.~_ E!!ch ll<.xJo(!; l~ rc::sponslble 
for ul.l(:huj,1g il~ own, i.e., loca.l. table::.: and variub!es. The 
:,lgo(ilhm i~ SllLh thai ull nooe.s u~y the ~ame loco.l ~lg0rithll' . 
AI 1;':\~t:h llC)d~ i E V, ther~ e)l;i~t~ ~I Pr'0gt~lH!}j lu pc,.~ffonn ils ktt.:al 

.1~l}rithm. Yari.blcl (",cuning in S, ~r, a<~~mcd Ie> be 
::iIJb::':l,.;ripted by i. If t'lO ct)I'IfI)Si(u\ can occur, th~n we omit th~se 
s,lb~r;pl<. 

Tnmsrnitting 1:1. IYIt:s:;age M on an edge e can he achie'¥'t'd hy 
c~CCutjllg a. SliHC[lItIlt "send M on edg~ ~". c.at:h node rni.l.if11.jj,in:-1 
a m~ssag~-que:u~_ Upon receipt uf it me~~agt, ir is s[ampcd 
with an idtmtWci.ltlufl uf th~ eds..;: Oil whi(.'h i: ha:i been rt!<.:eived. 
13'.3ch m'::SS3g.c:-qu..;:uc: is ;Ci,upposed to work on iI FlrO-bu~is, If;~ 
node's queue is TlUrI-empty. Ihcn Ihe from meS:i:::Jgc may be: 
removed from its queue and eltflt:I' pl"OCe!=;.~(:.d, (lr'l ;,1S we. will 
Sl~~f plactd ;1t Ihe (':fl.d of the queue, waitil1g for otil!!r events IQ 
occur. We a~sume tlll1t each queuels (:~\p~.;i~y i$ I.a(ge t.11('u,.Igh 10 
buffer all received me~~ages, It i, "ot oiffLrult to denv, ~ 
minimum ,i<o, Su(;h tI,at ea(;h queue is al:>l" to bulf,r all 
rcct!l'¥'cd Illt:~:mge~. This is uullhe 5l.lbjCl,:t of 1hL,~ p;~p..::r, 
however_ 
In the :!iequd. wt:: u::l-~ ~he fll'lliUioll q\i~lleI1o denOIe i's 

m« .. se-queue (iE V). Aho, we adopt ~hc convention to d~110l~ 

e's COIltCrltS of rncs~ases incoming to i by (;ontentSi(~) (ie- V f 

CE 6), Thus, for ie V. ee E i , cont~nts;(e) d~llote;s th~ Scquem.:t 
<:>f mess'ge~ thaI h .. been transllliueo by tI'e o~her node 
.djacont to e, which has nO! ye~ been r~co;vt-d by i. 

We tle,,1 fi~ some nClw(lrk (V,E) as de,cribed ~bo"e, 

lOgether wi~h an injec~ive weight-function w:E---+IA+. O,'e 
mjgh~ 'View the wdgh~ w(~). ee 8.1 as the {;ost of traftStnining .:l. 

ml:ssage on edse c_ 

1 A !lw;ficatiQn ~t!.'!l 

In ch'plor 2, we have di,;cussed the skelelon for aanaSer', 
a.Jgorithm_ In this chapter we arc:: ,G.oing to [('fine this skdl!'tl'ln 
somewhat Th('; ultimate goat IS f (If (;our::.:e. to ::.:huw tha~ 
Gallagers alGorithm meets ils specifiealion, TherefOr<, we 
fonnulatc "sp<Cd~caliol\ for a (d;sLribllled) prosr"'" S llHl~ 
~mhfrlies tht. ~"gori~hr"l1, In order to pr!)'V(,:: S's t<.)tul (:0rn::(':m~ss. 
i.e_I if S is ex.ecuted in an initial st3te s.!l.tisfying some 
p,·cconditiun. tllen S i.dways termlntHes. alld jl~ the final stale th~ 
minim~,"-"'eigh' spanl\ins tree T,-,f (V ,E) has been 
(;O"Structed, it suffic", to ,how th.t each fragment finds it, 
minimum-weight outgoing edge indeed and that fragmentl; 
(;o,nbine as describe<! in theorem 22. ThiS is established hy 
inductiOll 00 Ihe level of. fragment (see \21 J). 

Now, a corrCc(ness proor Df any complex distribu~ed 
program should somehow be sttuctured. It is convc:nient to 
structure the proofs reflecting the c(lnsidera(i(lns of the 
(al~"rithm- )desigll. This (lbllCfVati(ln has lead to decompo"" the 
program S embu.:iyillg Gallage/s algorilhm into lay''''' 
~heret>y enabling tho proof Sltalllgy dt~ribcd in chapter I. One 
of the main advuntages of this sttategy is Ihat proofs can be 
giv~n, ['.Onc~ntratiIlg 01\ or'le pat'l of 1he program·at a time_ As 
an ~x.al1lple of (his. w(; rncntion an algorithm which IS not 
identical to Gallager's 'algorithm, but coptures the most 
«sential features of (lallager'< algorithm. 

In the previo~s chapter we have discussed Ihe skeleton f"r 
G~lIaser's algorithm, There we havo al.o outlined Iht ,.~¢(\ fo'­
fragment" nallles, Witn this in mind, Oallagds aig(lrilhm ClUl 
ne .. be de",ri"",J as follows' 



(a) A fl1.gl11enl ~ll~v~l 0, i,~" a fiagmem COnSisting of ""e 
node only. find, il~ minim~m-w~ig~l OUlg();ng edlle ""corditlg 
to its local information (, since any adjacenl odge of such a 
node is an oUlgoing one)_ Aft« findinll this edge a 
Conneci-message is transmilted on this c:d~e. This mess.~e 
• <lveS as a reque.1 of the mgmenllO combine with Ihe 
fI1lgmenl al the olher end of thai edge, This pan of tile progrllln 
is performod by node i when exetutirtg S'.I in progrnm S I 
below_ 
(b) (i) II two ("'gments F and F have found that they are al 

th", same levd L Bod thai thq have the same 
minimWi'l'weighl oUlgoil1g edge, then they :u>: comb,<ltJ 
into one al level L+ I. Each node in this newly fOlmed 
fragmem is then providod with. name and wilh Ihe new 
level of this fragment Node i ptuticip'les in this part of the 
algorithm when OKecuting S;,2 in Ihe program S I below, 
(li) After receivinglhis name and level, the node <I.rt< 
se~hing for irs minimum-w"igh, "u'g"i"1; tuljacellt MM'. 
if any. [(the nocies have ended this search, they should all 
coo(.<:rale Ie deterrrur.e the ffigc with ti,e lea,: weig!'1 
amonpl all oUlgoing one., if any. If thero are n? 
outgomg edge:s~ {hen the a!gQrL~htn {CnnJI~lm;:~1 :!j;lnce the 
mirti~'(\urn,weight .!)~ning I::ru has Ix:en constructed (s~e 
tneOTem 2_2). 
Nod~ i participates in this pun of the aJgorithn~ when 
e~ecUling Si,3 in S I, O!)serve th~t S'.3 is n()1 
synlllclically CQntaioed in the progmm e<ecut<d hy 1l,,<I~ i, 
Yet. we have shown in PII that the d.e~Qmposi(iull :..IS 

tUus,t:rated in the program Sl is ~mantk;aIly meaningful. 
We have be~n able tQ prove that this deuomp.ositiun 
inclur.e. layerS whi~h are c=UnltatiO" closed ant, a 
number of s~rnpHfyilig ass.umptions, h~ Ihe di$cUF.~kH~ Mrt:r 
th~ program S I below, we oornmeni 011 the:se: assulilplions 
and their impact on !he communicalion dosedness of Ihe 
layers_ 
(iii) II Ihe min~um-.,.<ighl Outgoing edge of the lrusmenl 
has boen fOYnd in (ii) ~bove, th,n the node ;n Ihe fragmenl 
adjacenllo this edge will be informed to ",,"d .ame 
ConnC(:.~mcss3.~~ on this edge. This. message serves Y:i 1I 

req~esllo combme with the frdgnlelll m tile o~ller end of 
thls edge_ Node i participales in this part or tho algori[hm 
when exe<:uling Si 4 in S I. 

(e) If a IT-dgrnent F '11~~d L haS futl~d ;IS ",inimum-wd~IU 
ou(going edg(: ru~d t.h¢ fr.agIB("~~ F' 2,[ the:: other eml ot' this I..'dt;,l' 

is .. level L' with L'>L. then F is immedialely abwrt.e<l by 1"_ 
The neW fragmenl is ~t level L'. This p~rt of Ih~ .lgorllhll1lm. 
~ol been in~oorpored in S 1 below_ In facl. thes. cOllibinlLriuHs 
ens\lfe the I'T1;>Ue;5 in Ihe algorithm. Le_, Ihey enSure Ihallhe 
~lgorithm i$ deadlock-free. 
(d) If a fragment I' has found ilS minimum· weight oulgoinG 
~S~ e and none of Ihe possibilities above is applica!)lc, Ihell F 
h~s \Q willt for combining wilh Ihc fragmem 1" allhe Olher elld 
of e- In fatt, this can occur in Gallager's algorilhm only. if F 
and F are al the same level and the following holds' F' h3> 1101 
ro~ ils minimum-weighl outgoing edge yet. or F' has a 
minimwn-weighl oulgoing edge olher than e. 

With (V,E) and !Ill inj~live weighl-functiun w:E..,lR t as 
before, leI T denole the: graph's minimum· weight Sp:lJl~illg tree 
(e~is1ing by Iheorem 2_1)_ 
To give ~ sp<cificalion for S, the prognrn embodying 
Gallager'. algorithm, we nOIe that tAch node mainlains it< own 
vanables 10 pufonn its part of S_ One Variable. 5ni' records the 
(nod,,· )SlaIUS of nod~ i. E;\ch node CM be in one of the 
following slates: 
• sleeping, ir il i. nol participatin, in lhe algorilhm (yet). 
- filld, while i! is panicipatin, in a ft.lgmcnl's search Cor 
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determining the minimum-woil;ht oulgoing edge of the 
fragme.\1, 
- foulld, in all olher cases, 
Inilially. each node jI1 the nelwork is in the steeping st..:J.tc, i,e" 
no node panicipales in the algorithm . 

Each nodo of the nelwork also records Ihe ,1"lu, of ii' .<;lj~~ent 
edge., marking all adj"celll edge as a 
- branch, if the node has de1ennillcd Ih~1 lhe edge is in T, 
- rej.~red. if Ihe "odo ha, determined th.llhe edge i. nOI ill T, 
or 
- iJu.5ic, in all olher ca", •• Le_. if the node ha~ nOI yet 
determined whether thai edge i. in T. 

Each node i <i V rnaI~tains • vari~ble se;(e) to record Ihe SlaluS 

of ellge e (e~ ci ). We ... ume l~at i~ilially each node has 
marked it. adjacent ~gcs as basic. Lo_. we assume that 

inilially 't'ie V \teE Ei. se;(e)"basic holds, 
Consequently, initiolly no node particip.le, ,n the .Igorilhm, 
and each nOde is "unaware" whether an adjacent edge !)dongs 
toT. 

RecaU thai queuei denOics i's message-queue, and .hal 

cont.en1$j(e) .cknOlCS e's COnt~nlS (If m~,!i;$age~ incomiog (0 i 

(i.:: Y,e':: Il,). The discussion al;>ove suggest' that we must 
prove that the 'pc:cification [plSlql hold •. where 

P-Pl " P2 and q"'-l," q2 are do fined by 

PI"'\;,iE V 'o'eQ E;_ (sni=sleeping " "'i(e)~ba,ic). 

h=\;Ii" V \leeEi- (queue;".:>" conlenl'i(e)=,,», 

qr;;;\li .. V. {'"i9(ound" (V,le" Eil"'i(o).branchj)=T). and 

Q2E]J2' wilh S and T as defiaed abovo_ 
Here [pJ$[q] holds iff lite following is satisfied: if «<culioll of 
S i, ,tarted in a Slate satisfying p, Inen S alway, terminate, in U 

~Ial~ sali'fying q (Iolld co=tne,~), CQnse<luell~y. Ihe 
diCC.rOnee belween IplSI~1 and IpJS[q] is th~llhe I.IIcr 
specificalOll implies Ihallhe program S a1way< term;n.les when 
started ill a ,I.tc •• Iisfying p. 

ObM:rvt:~ h~'wcvt:rl that WI;:: i.'=an be more ~-I"c'::i~c ah<.)ut the 
predi<':~I~ q thaI TI1~sl hold upon lenllinalJun uf S. Ilituiliveiy. if 

eo lOij' and sci(e)=br'.I.lCh hold. upon lormin.liun of S.lhen 

Iilis implies that e i, a edge ofT (i.j~ V)_ Since T is an 
"I1fJirtc,,,d tree, se/e)=branch mUSI hold .h~n, 100, Also, "pOll 

1~ffi1ination of S, each node should have dotormincd, whelher 
an adjacent edge is in T. Consequently. upOn termination of $, 

we req~irc th.t sei(e)"basic holds for all e" E;_ 

These obser'V.liolls lead 10 Ihe spl'Cifi<ation IpISlq'] wilh 

q'wqA'O'i", V 'o'e", Ei, I(se;<e);<basich 

,,\tij" V \tee EiJ' sei(e)m,ej(e)). 
where p, S, and q are .s defIned above_ 

Nexl, observe thai S can be obtained rather easily if the 
network con..sist~ of one node only. ConsequemlYI i., ,he 
remainder of Ihis poper wo ... ume Iha11Yl2:2 hold5_ 

A node slans participating in the algorithm, W~t~ Me of the 
rollowinG OCC~ffl: 
- il respond, to some COTlUI1l!JId from a higher level proeedun: 
10 inidale III<: algorithm, 0.-



it rt:CI::LVeS the first (algorithm) messa,ge tt';)I~$mjtltJ by ~Ulll~ 
nooe if I the. graph. 
A n·I.:~e can respond uilly to :IDmt! comrn.and t'ronl ~ highl::'r ICI,lt:! 
p~ed\.lre w il~itiaie the algorithm. if It is in th~ ~h:cpil1g :-;t:lIL·. 
Sinc~ ~he ~'!,r\l~tI.lfc of SlJdl a pn_'Io(,·(!dure Is o( fuill~lr iIlIC[ ... ·Si ['~)I' 
the algorithm. we igl1Qrt; Sl)ch proced~,I'~':; rn~[e:ld. nodes. ill 
the graph c!lfllnitiale: the algprilhm, l.I('cOfuing to their I~'\(.·:ll 
infonJl<.Hion, by "awakening ~r()nraneously". Nnr~ rh:H 1l11lny 
nooe:i (;an awak~n $pont.!lncQusly ami "initi[lIe" the al,gorililin 
We dernand, however. rhat a nud(: can awi.t.kel~ :-;p\JntiHIe:Oll~ly, 
only if h is in th('. s.lcepillg-::ml1~. 

In (~allaser'~ algorithm. one start. .. with fr:lgn1c[lI~ Of the:: 

form (I i) ,0), i~ V. hl1hc algorilhrn, each fragmellt I illlh it., 
minitl"lllm-wcighr outgoin,g edgc 3!=.)inchml1ou~!'y willi Iq~.lId in 

other t'ragment::i. When (.and if) such an euge ha~ ocen fLHlIld. 

the fnlgmt':rn atl(':mp~s: to combhle witll Ih(': fl'il,g1l1enl itlttu.: other 
end of tho/; ~dge. TI1C n,lh;:s of CO~t~bil1i:nS have 1x~·.11 tkS~I'ib("d 
ear!i~r. The part of tlt~ algorithm a.ssoc:iated with how a 
fr.:lgment fIndS it;€; IIllnimum-weight uUlgoing -edge a.nu how to 
atten)pl combil~i(121 with !he fr.:r.glll~'lt <\( u~e ()Ih'~r ~nd of tll:·,t 
tJgt is c.allt.d a. pJllue of the fwgll~t(L" In Ihe rull1i.llndcr of this 
chapLer~ we C()IH~d('r (h~ P:I",St of 3 fr&gmcllt t)f Ihe fOl'ln 
([ i 1.0), and lh~ phase or" fr~g",ent Ihal h~s ""err rOrn'od 
from smaller one~ at th~ same levels with the sam~ 
m.inimum-we:ight outgoing edge. 

A. fragmr::flr co"sis~iJ~g of 0,\(, ncde only! swn~ il~ fj(:',( ph"s!'" 
when the node of Ih.1.t fr"~tl"lellt awakcns ~pont;ll1("ou~ly! Or' 
when it rcc~ive~ the fLr!;t algorithm-message. Wllen;1 I~(')dt: 
awa.k.~ns according to one of these pOisibiHtie::;. it cll::tcnnillc:'; 
it"; mtnimum-wdght adjacent lhen<.,:r: .. outgoing) cd~..: {frolll it~ 
local toble). milIb this edge a, a branch, and goes Into ttlo 
(ou[ld·state (since the minimum-weight ol,tgoi!1g edge of its 
f,~g1)\cnt h~~ ix:cn ootemrin<d). n.e n(>(le thcn ~c"ds " 
ConI1CCHnC:S!l.3ge with its level, i,e .. 0, on the edgt n)MkCd as 
a branch. ThIS mes!j.aye ~erves 3~ a. re~ue::it to comhine with the 
fr:J.gment il~ tJle oiher end of that edge into", larger one. St"lldilig 

Conne<:t(O) by i" V al • ., indicates !he end of !he first ph"« of u 

trivial f,(.gnler\t of the (Orm «( i) .0) ",he" ~w'l.kening. 
Hereafter. it simply waits. for a response from the fragment ~I 
the othe, e,ld of the edge on which the COflnc('t"llle~sage h~> 
been ,enl. At the fi!1;t $t~gc of tl,e proof in lZ I L we h'l>e 
ignomJ tl.e aClions t~kcn by a node, or mO'e pr(;cisely by " 
fragt1~(:nt, wlH;n it Tecc::ive~ !o:uch 3. I"('sponse. 

NeKt. we describe the .j\'.;llons performed by the nod~:;. 
when one (or possibly mOre o( them) awaker\~ Spo"lu~eou\ly. 
and whto (wO rngfncn~s ~ combined into a larger fragl'l:1cnt. 
Node i performs its lirst ph."" when e.cculln£ So.1 in S I 
below. Node i in B frngJ'Tlent formed. by two smallt"r OIlt:S i.lt lht 
~f-I.rne levd with identical minimum-weight out~,C.}illg eJgc~ 
participate:. in a phase when e.""utinS Si 2;Sj JSi 4 in S I 
below. In tho p,op1lm to follow. >n denote, tl',e nOde· state, I" 
denotes the levd o( the fragm~nt a~ far as fjknown" to that 
node, and sc(c) re~ords the Sll1tYS of edge e adjacent to that 
r'tooe, The initi:;tl value!;i Qf th!; v(lli~blc::~ ~(~) and ~n are bask 
;J,nd s.Ieeplns. r~~rectivc::ly; the initia.l valuc::.s of the other 
variables ~ i~le ... ant. four a compl-c!:te de:;..t,TipIIUJ] or 
Gallager'. algorithm tl,~ rtad,,~ is referred to 171. 

p['()gram Sl (as executed by each r'OOt i€ V) 

I) (o'Spon5<' tospontaneuus aw~k.nin~ 
(can otlly occ:::ur itt a node En [he !i-Ie~plng-stat~) 
eKKut€ procedure wake,"p 
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2) pr'Xotdure wake-up 
bogin 

let e be the oojacent edge IJC minimum-wcishl; 
find"u"rll;=O;;~(e):=I",,,,ch·,lrr:=();,,.:d'ourrd; 
'~rrd (\"lne<:1(» un edge e 

end 

'1) re!;pons~ to r.c~ipl l)rCl)nnect(l) l)n edge e 
he~ll1 

[.........,.,..." ..... Jr ::in.::::s:keping the-n €xecu.£ procedur.;.- wak~-u~ 

- S~.2 
irlll~1 
then if ,o(e)=b","ch 

Ii 
elld 

lh(!,u !r~:=hl.+ 2 ;ffj;=w{tJ,$j~:=finj.Linbr~ul(::h,'=-I..'i 

fOl" ~II cdgoes: e!;et: 
rJo ~end Initiate(ln,l'n.Hn) on C'dge e'; 

fjf1dC;:.I,)unt;;.;;fi[ld(:0~"l1+ I 
od' 

else place rttdved message on end of queue 
Ii 

(4) resllon"" to receipl or Iniliale(l,f,s) on edge e 
b£g;n 

In: =1; fn: =f;sn :o:..s:inbnmch::.w:e; 

ror .11 edges c'", 

du ,end Ini(iate(ln,fn,~n) on C'; 
find{:ount:=findcounN I 

od-
-----.. - ..... -... ----. -- ._._----_ .. _--_._----$ i •. \ 

be~t-edge: .. ~nil;bc:st-wt:IJ.o.~;(!xC'cule procedure 1eSf 
end 

(5) procedure test 
ir there arc adjacent edges irl Sl~le hi"i" 
then lC;!\t-edge:= minimum-weight aOj.J(:e.nt -t:dgr:: hl 

state bade; 
s.~d Test(I",frl) On l"St·o<lg~ 

else t~st-edg~:=nil~exe.Cute- pr,ocedure rc:rort 
Ii 

(6) response to receipt of Tcst(I,f) on cd~c. 
begin . 

if sn=s!eeping then execut'i!' prQf;edure wake-\lp fi; 
ir In=1 
thtn plt'tce tec~iyed m~Ss.age on ~nd or queU\~ 

el~e if fno!f 

fi 
"lid 

th~n ",nd AGC~pt on rog~ e 
d •• ~~(o):=l'ejO<;to;<j; 

Ii 

if test·edge..e 
then send Reject 011 e 
else ecemle procedul't' te" 
11; 

7) response 10 receipt of Accept 0,. edge e 
begin 

lesl-edge:="il 
if w( < )<:best -«Ige 
Ib~n ""sl-tdgt,=<:~t..Sl·"'l:=W(.) 
ei~ execute procedure r~port 
r. 

end 



(8) response to receipt of Reject on ed~e. 
\legin se(e):=rejected;execllte proct<lure te.t end 

(~) pn.JCwpre repo.t 
if findcoum=O ~nd test,edge=nil 
tllel1 sn:=[ound;scnd Repon(ocst-wt) On inbr.mch 
fi 

(10) r"pon"" to receipt of Repo.t(w) on edge e 
ir inbranch~ 
then fl11dcount:~findcount-l; 

ir ","'best-wt then be,t-wt:"w;be,t-wt:=e Ii; 
execl,Ite p'Q<;.dt"e ~eport 

else if s.n=find 

Ii 

theM plil(;~ ~ce.ived messag~ on ~nd of queu~ 
else if w=best'Wt 

fi 

tlten Ita I! fi 

else if w>be,t-wt 

fi 

thn ~xe<;:ute proc~dur~ cha"g~-roo( 
Ii 

II) procedutechilnge-l'OOt 
if se(ocst-wt)=bra"ch 
ilten selld Ch:Ylge-Rool on besr-edge 
.IS<! sond Connecr(ln) on best-odge: 

se(be,l-eelge):",brilnch 
Ii 

12) respouse to receipt 01 ('Itonge-Rlx,! 
't'xc'!u.le procedure cnange-W¢t 

We ha.ve already giv~n an intultivc= expil:lJ13tion of tne parl~ or 
Gallager', algorithm corre'ponding with me labeled p"m in S I 
as shown aoove. In 1211 we have established {lIe COrrectn.S< "r 
the program S \h~t clnOOdies Gallager's ~Igoritlltl' from 
propeni~ which we derived [01' the program S I ~oove. The 
proof of pfO~rti« for S h~s bee~ s(n.lcturcd by firSI 

concentrating on the layer L~-=S~ ~1l ... IlS" I' where 11 i~ 'h" 
number of nod~s in th~ n~~"'''rk. u'nder consi~er:l!io.)]l. Thi~ 
layer is concerned. with u:m-l~Yc:1 fmgmc.nl!=;. At Ihis i'.lilgt ~)f 
the: proof. we: ha\(e cornp'c:tely i,snon:d. oiher COrll.IlHlnic.';lIil)ll!-: 

that could affeCt the COnllnul1iCation do~edlle~s uf layer L I_ 
The~aftc:r, w(: have: shown that a frnsn~nt P combined from 
IwO fragrt:'leI\IS F' and F" a[ the: :same. I=vel with a.n irlt;:rnical 
minimum-weight outgoing edge nnds its min.imum-weight 
outgoing edge, if l\lIY, lUlO that \he progr~m te.,nin~le~ 
otherwise. To 00 SQ, we proved propertic~ of the I~yer~ 

(u) ~..sI,2Il- .. IlS",2' 

(b) L3"s1,311 .. _IlS •. 3-

(0) L.oo$l,4I1 ... IISn .• (when ex~Uted in stale. ""Iisfyi,,& a 
wcU""hosen precondition which can be proved to be esmbi;hcd 
fOT tile "[ull reality" of communic~tion' unOe\" simpli[yi<lg 
assl,lmptions. The~ 3s.~l,Implions are the fQIlQwin.s:: in (,:1), we 
ignore all communications from node, outside f. In (0), the 
assumptions in (a' hav~ 10 b<; rclax~ ~omewh~t; otherwi~e 
v-erification does not mak~ scm~ since in (b) !lod.~-" possibly 
!;end Test-messages \0 no<ios outsi(!e F and could !herdore 
rceeive lUl Aoeepl as. respons<: to tlutt message. In (c) the 
simplifying ""sumptions an: idenlical to the one in (b). UrlC/er 
IlI£s. simplificGtlonS, we /!4ve been (lb/I! to .how lhi1IIMfcW' 
layers tMntioned clb<>ve &e C/)rI1/IiIOIiclllto. dosed. Therefore, 
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lhe compicxity of a proof th~t f' find, iI, minimum-wdght 
outgoing eelse. if any, and th~t the progrum temUn~les 
olherwi,e is reducod inde<;<;!. We should remark here thal in 
case (b) above the compkxity of proof can be rtJuced even 
!tlore by applying the method of projections (14). ilnd Martin's 
technique [ISJ. To apply M'arun's technique we Obtain a 
simplified progr"'" by TeplllCing the lesls w=beSI-wl in 
"response to receipt of Report(w) on edge e" by fals~. In cose 
of te""ination of Ihe original program, ~II ~odcs itllhe network 

would have re.u.ched a quiescent stah!:: wilh ~S[.Wli=.:.ofor all 
nodes i. when c~ec"ling this simplified prosram. From 
conditions S3ustic:d in this stat(" we i\Te able to prov~ 
tCnnirlation and a terminal ion condilion for Ihe ofigioal 
program. 

Aloo we n;:P/e shown that whenever so,'nt:: 'lOOt k ~ceiv~:;. 
Conn<ct(l) and ohcck~ if Ink=1 holds, lhen such a te,l is 

equivalenllo ., (Ity"). 
lhereafu:·r. w~ have taken imo accoum al! (OrnIllUT11c.ltLom; 

Ihill h.v< I,"~n igllored befo/e ",hell rea>unillil in a 'impillkd 
ra.lliQn about G~II~g~r's ~Igorill!.n. (AI Inat poiOl U,e 
possibility lhallow-Ievel fl'3gm~nlS $HCmpIIO combino wilh 
high-level fragmenls i. incorporoteo in S I.) TI,e program S a, 
give,' il'< u\e appendil< of (7 J Cilll then be ob\:uncd afle, SOn\e 
[fivi~1 tn\osform~tions:, It is. interesting IO nOIe th~u the 
communication closedn~s.s. of the layers a~ we derived ea..riic;:r i)\ 
dt5U'oyed when ta:k.lilg Into account cIli c('t!ll'nUn((,:U~~OllS. 1noe: 
iruuit.ivc: rt:a.. .. UIl is the foUowing.: aflY node i mu:-;t Ix able: tt~ 
process a Conneel(1) with kin;. no mauer what layer il 
exeCutes. Yet. aU earIler .derived ir~ ... .a.rial\ts r.::ma.i.n valid MleI' 
the addhion of ~I! pO::l-sible comrnunkatlurl~ SinCe they ha\,,( 
been chosen int~rference·fr(:e W,'t,(, lhi!i. addition, Of ~l-'r.e ei.lJ"li~r 
Oeriv¢d properties can be e .. ily adjusled!I} be valid .fler !hi, 
lI.ddition. 

From th~ proof we also I~amod that two (slight) optimizalions 
arc PO~!iib1c (w.r.t. the program given in l7l), The fin:;t one is 
already pre",nt in S I above. If twO fragmenIS'1 the ~a'"t level 
with an ldt::ntkal minimum· weight outgoing edge an:: comhil\¢d 
imo a larger ow~ {h~[ ~t js. no\ necessary that the n.odt:"~ a..!jal.:enl 
to that edge fir>t exchange~" Initiate·message as illl7J. Rather. 
the nooes ~dj:",ell( to til is cdge can immediately lOrd"te the 
t¢t~vat"1~ variaole!> :l!;!. ~hown ill S 1 {t;bov~. The l)(h~r 

optimlzution i:; the following: if 3 node te V tr.:,illsmiI:o'..3. 
'fe$Hn~s.silgt Ori OOn]~ -edge e, and ir r~eil,lcs a COllnect(l) .... illl 
1<llli on thi., e~ge before it has actually received a response 0" 
that Tes~-rnes:sag~, then there i!;> no n~ed 10 wail for !hi.~ 
rt-spoftSE!. l~ thiS '=-iliie, I wi1l always ~~i\le a RejecI-messase 
aft~rwards. Consequent.ly, it suffices fot i, in this r..:u.:Se l 10 
continue its seUIt;n for the; minimum-weight outgoing edge 
wi~hout ",ailirlg for a resl"",se. The node j at the olh~r ~lId ()f e 
could then as well ignore the Test-message in ,uch •• iluation. 
i.e., if it attempts to process a Tcst(l,f) ",ith 1<:ln;, receiv~d on 
an ed se in ~tat~ branch. 

We hove s"elchod the correctne", of \he di.tJibul¢d 
minimum-weighl ,pllIlning tr<:<: algorithm of Oallager, 
Humblet. IlIld Spira «(7)). We have aho .hown !h~t there exist 
strategies to reduce the complexity of such ~omplex correclness 
proofs. Basically, this reduction is achieved by introducins a 
certain al;<;traction from Ol"'l3tionaJ re3SQning, t;:lrad and 
Frnnce:z'S communiCatiOn closed lB~rsT and Martin'!';; and 
Chilndy & Misra's quiescMCo illto tho proof. ([low Ihe notion 
of quiesce~ce can be~n used in the proof ha, ON bun 



i!lu~tnHc.d jn lhj~ paper. Elor this ;he ir1tl:TC~H..'d r·t:l.!.1C:f is 1'~:t"·II~·d 
to 121).) This allow. 1I; to rc"oon aoo"t lIi;t,il,\"c(1 picc~., "f 
programs under simplifying lls:-;umpLiurls. At tb'/'" filHl.1 swg<.:. 1,.11 
the proof the assumpliom: hnplied by UI",\" ab:;lrtK·tilm~ IIlliSI 1"'1: 
elimimued. It then nll:rcly I'l,':ltl:..!ill~ to ~huw Ihut prlJve[li("~ 
Jt'riv~ during t:arlier !\.tagt!'!=; of the pr"(loI)f .'ue I\()I il~v~\lidiH(d (I)I' 

(:ar~ tas~ly bI: . .tl.Jjustt'ci},whC'11. ttki'l8; ifllo U('Cl~Unr 
COffi.l"'lIniCaliol~s wh(1;:o;t OC(~ltrc:tH:e we nriginally ignortd. 
Mnn:Qver, U is int(:rcs~itln: Ihal this technique (;ilrl be Ulio/..'tI In 
UOll.!yz.e olher db:ttibuted programs, sw .. 'h asju.iisaje mwirlX 
algorilJims '(of Mer!in and Seg<JH ([ t 11)), rnmiml.4m fh:Jt'l 
algori'hms (of7,.etMl and Segall (123))). and maxima/flo", 
aiKorj,hnu in. n<tworK (e'( Segt.11 (II SIl), to". 
f'I.lIUr-e work. wiH ifives-ligate wheth~r this technique, and the 
proof pre-sented in I:h15 p.j,~per, o;,;an be ~xte:lujcd tlJ verlfy ,h~ 
correctness of dire.ct~d IIlil\irnUlIl·weight ~p.:Lnfl[llg It'('C 

illgorithm' (see e.g., 110]). A"olber research lupic in lili~ 1I,'ld 
l~ (0 ex.tend (he m.inimulll,wcigtu s.pannillg (r.ee algorilhlll (If 
Gill~lger. Humblel, and Spira to netwurks in the Pr(:scm'e (If 
railll"" .nd additions of links and ntxJe •. I.e .. to consider 
son . .c faa~~fe ve~ion of this algorithm. W~ (onjcC1tlrt:: that Ollf 

.ilf1a1y~i~ can be a1!lO extended to the cQn.'itru.ction of Othl~r 
algorithm~ in this area. 

~.s:~rJQwlede(,:r'nerH: we Ihnnk: H. P~I'UCh for ~ number of 
remarl(s that have- led to f.I. smoothr;r p~~cntatlon. 
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Designing distributed algorithms 

by means of 

formal sequentially phased reasoning 

F.A. Stomp· W.P. de Roever' 

Abstract; Designers of n~twork algodthms give elegant informal descriptions of th~ intuition 

behind their algorithms (see [GHS83, Hu83, MS79, Sc82, Se83, ZS80J). Usually, these descrip. 

tjon~ Me structured as if tasks Or subtasks are performed sequentially. From an operational point 

of view, however, th",y ar~ performed concurrently. Here, we present a design principle that for­

mally d,,~crib(!$ how to develop algorithms according to such sequentially ph""",d ",:(pl:mations. 

The design principle is formula.ted USing Manna and Pnueli's linear time temporal logic [MP83J­

This principle, together with Chandy and Misra's tedlIliqu~ [CM88) ox Back and Sere's tech· 

nique [BS89] for designing pMallel algorithms, is applicable to large cwses of algorit.hms, such 

as those for minimum-path, connectivit.y, network flow, and minimum-weight spanni.'g tre<'OS. 11l 

particular, the distributed minimum-weight spanning tree algorithm of Gallager, Humbld, and 

Spira [GHS83) is structured according to Our principle_ 

·U.ivo"ity of Nijmcgon. Department of Compute, Science, TaetLlooiveld, 6~25 ED Nijrn"sen, The N.lh.d""d._ 

:€-mail a.ddress: frank@cs,knn.nl 

tEindhClovE!-n tJilivtr;sity of Te<:hnolog,y\ Department of Mathematics and Computing Science1 POB 513, .,600 

MB Bindhoven, Th-e Netherlands. Email address: mc:\"a::r:fel1treS!wSllnwpr 

29 



1 Introduction 

Dcsiglltl'S of complex net.wol'k algorithms, see, e.g., iGHS83, Hu83, MS79, Se82, Se83, ZS80i, 

ll"",lly <I,,,,,ri1,,, t.hdr ;clgorit.hIIls OIl ti,,, hasis ()f tll,b Or .ubtl1$k$ - somHimes referred to as 

pl/.ll.,,,"" "-1111 81i.bjJha~es. Th~ir (informal) deo(:ript,ions are ,t.m(:t.llred as if groups of nodes in the 

network perl,mIl t,I",",. (wh)t.a'k' ''''lu."n.!i(1liy, a.ithougb in reality (Le., operationally speaking) 

Ih,\y ate ped(lrllled r:<i,.r',u·1'rmUy. Current design methodologies (see, e.g., iCM88, I3SS9]) l,,(:k 

an appropriate prineiple for formally developing such sequentially ph abed "lg<)rit.hms. I" thi., 

paper \(If form.1liate (l formal de8ign p'/'if!dpl~ that C'lptll~" thi, ":lfU.""i.i"l $/rw:iu;'e in network 

(l.lg()"·~lh;m.~_ It, d()!idy reH(~Inbh~s the- dc~igIl~n~il illtuitions as given by the infonnal descriptionli 

and thu> p~~~~rv~~ the natmal flavor of thdr origin"l ","planati')Il. I"urtho.'rmore, this principle 

tan al~o b.~ lls<,d to desig:1l formall.y new algorithms. 

Th" ",qu,,"tial ,kCOI[l]""it.iOIl of a cOllcurrently performed task into sub tasks can already b.; 

dh(:ernw\ in a simple broad(:a~t prot,ocol, vi •. , S<,:gall\ PIP-protocol [Se83i (cr. also [DS801 and 

jF8llJ). Here, the whole protocol performed by the nodes in some n",t,w()rk CiU. hi, dewmposed 

into t,wo subtasks: the first one broad(lsting bOll1e information and unwinding a directed tree, 

"'HI th" .H",onti on" rejlnrt.illg t.hat the nodes have indeed received the inforrn!'tion. F<)llowing 

this pat.tel'1l of seqllent.ial l'casoning the distributed minimum-weight J;piULIlillg tree a.igorilhm 

of G"ll"g~'r, I-h"nhkt, "nd Spir" [GHS8J], h",,:a.tkr rdcrred to as Gallager's algodthm, ,;an 

be described in essentially four subt!'sks, whkh from " logical point of view al:e performed 

""llLentially (OO'" [SUSh, SflB7!>]). 1'haJ aI9()~dhm display;, however, an additional t~atU7"': that 

of "interfe~'nce ". E>:panding gn)l)pb <)f rl()dl'~ p~rf<>rIIl a t",·t;u,~ task repeatedly, with different 

g:wups performing their tasks concurrently w.r.t. another. Now 3 task p~rf<)rIIl¢d hy 0,\" group 

can be disturbed temporarily due to interf<1ren~e with the task of another group, Our de~i9n 

p~inci)llr> is g"Me,t to cope natumlly with this kind of interferenc/;. 

In order to design a distrihuted program th"t ~<)lv~" a ~ert;un task which can be split up logk31ly 

into ~uhtitbkS n.S if they are performed sequentially, we propose the follow;,'g strat.cgy: 

first develop distributed programs which solve the subtask5. Methodologies for doing so axe 

described in iCM88i and [DSS9j. Next, tOlIIhiIl~ thl:SC programs to construct one which ~olve$ 

the whole task. Our d"'$ign prindpl(: d¢Strib<':s how to accomplish this combination. (lIl ICM8S] 
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there has not been given any methodologiUl.1 advice how t.o il<;COrnpli,h tJIi~ ldnd of combination. 

Our technique generalizes one transformation principle described jn [BS8!)], b<'cau£<, it, i~ ;,.IM t(, 

cope with repe~tedly p£lrform.od t~k$ and with temporary di~turbiUl(es of the kind dis(ussed 

ahov,'.) 

In ~>;~~nce, it is required to prove the verification condition,; (A) and (B) below, 

(A) Prove that for each distributed progranl S, solving a subtask, the following holds: There 

exists a specifi(ation for S consisting of, for each node j, 

(1) a. precondition Pj and a postcondition qj' ""d 

(2) a pair of state-assertions (lj,Tj)' 

Ij i5 an invariiUlt for the prograDl executed by node j, Furthermore, Ij is "', invari"'lt for 

program S; It has been incorporA.h:d in the opeciti(:ation in order to deal with the above­

mentioned kind of interference, which ocems in, e.g., Gallager's algorith,1) (d, [SR87a, 

SR87b]), Tj expresses that node j has completed its contributioIl to th~ ~uhtask ~so<:iated 

with program. S. 

(B) Prove that each [lOde can participat", in at m05t one ollbta5k at a time and that, all node5 

which participate in more snbtasks, participate in these subtasks ill t,he: same order. 

OIlt': is then (:ntitl¢d to ((>ndude that the p~0!7am consisting of all (atomic) actions occuning 

in those programs associated with the subtasks solves the whole task as if the nodes perform 

the 5ubta.sks sequentially. Astonishingly, this simple design principle underlies the development 

of such com.plicated algorithrl)s as Gallag<'r's and tlu>s,> deStrih"d in [HIl83, MS79, S.·,82, S,>83, 

ZS80], 

How can one understand the inherently sequential intuition present in this design principle for 

COncnrrent (,omputations'! 

Its semantic fOWldation lies in considering computation sequences in a specific form in which all 

operations associated with OIle $\\bta-sk al"e perfonned consecutively, Although it might not he 

the case at all that each com.putation sequence of the program solviIlg th" whole task is i,l this 

specific form, reasoning awut this program by means of computation sequences in this specific 

form. ;8 cornet, since any computation sequence of the prOgl"am turn5 Ollt to he equivalent to 

one in that form. In order to define this notion of equivalence (see IL85]) the notion of an 

event is needed: an event is an occurrence of the execution of some atomic ""tion, Now each 
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computation sequence Jndnc'~~ " p"rtio..l or,l<:riug of its events. This partial ord~T i~ it C;'"S;"\ 

rd"t,ioll ill which ,Ill ~vCllL~ gCl1er~ted at a single node ar.., or,krcd actordiII'; to their t~mporal 

,'('·('llrT<'""" i" this ""'lIll:I[(":, A,l<lition;,.\ly, in an asynchronous mod..,l of ",Imputation the event 

of sending a mess<lge pl:'~('.~d~j tl", "V"Ilt "f !('""iving it; in ~ sync.hronous model thes" "'V(:Ill~ 

'\r~ id~llliG\!. Two computation .5equenC'~5 ar,: <:q"""<L/<:nt if their first states are ident,kal "-lld 

if they define t.h" ,,1.1"': Firt.i,,] onkr (,f cv"nts. In essenc.€, equJv"knt ,:ompntatiolt sequences 

dilkr (lilly ilt I,h" Wily "v('nt,~ gCIlerated al different nodes "re int.,,,]"av(',l (w .... !. t.he partial 

(mIt'r dd[11NI hy the~e ~NllH'Il('es). Moreover, if two jinitl: wml'"tatioIl sequences are equiv,,)ent., 

t.h"n their last. states ~()illcid€. This argument. jlli;t.ifi<'l;, e,g., Elrad and Francez's safe d,com­

position prindpl" iGF821 (d. "I", Il'a88]) as demonstrated by Ge~th ~J1d Shriril. [eSS(II. This 

]'riIl<:iph' ,tat,·, lli,' r()UOwirlf(; if Sl,,,, II ... II Sn,m io partially mrred w.r,t, precondition pm , 

lind poot,(·(lTldit.ion pm (n ;::1, m",1,"', d fOr some natural numb€T d 2:2) alId if n() (:orumuni­

cillioll occurs I)et,ween S.,m «TId $j,m' for is:: i, j s:: n, i f j, 1:<: m, m' <: d, «nd m -J. m', t.h(:1l 

(81•1; 8l.2;"'; SI,d) II ". II (S",I; S",,;"': S,.,d) is partially correct w,r,(.. Pu and Pd' 

To re«' OIl fc>nll«lly ahout ollch ;LrglllIH~IltS, Katz and Pel~d h3V~ pml"""d to use interleaving set 

temporal logic [KP87, KP88] as a f<mn3li5m. Th!!ir logic allows one to reason "bO\.I, a program's 

behavior lJy wn~idering only Pilr!."'U]ax represelltatives of the progr3m\ (:()rnpnt.at.io.1 sequences, 

Wdl '" t.h" v('ry S"qll~rICes iII the specific form intr<Jdll(:<:d ahove. 

From the db<'moioll ahov" it follows that if in some prog)""m, 50lving a certain task whkh 

<:iLl' 1)(: split. up logically into two subt.tI';ko ao if t.hey axe performed sequenti:,Jly, ,,,.,,11 node 

alw"y~ perf,.>rm, "p<:mt.ioll' "",,,',,,ifltcd with one subta.~l< hefor" ojH'ral.i(JIl'; aMociated with the 

other, then the following holdo: "",,11 computilUoll sequence of j,h~ pH.>gril.,m i~ Nluivruellt to a 

"ompI.!.a!.ion "'"I"~''''''' in which ;,.\1 operations a5soda.!."d with the first subtask are pe~formed 

bdore all operation~ lJ,!;sod~.t~d with th" ~i:COrld one. This is, e.g., tht, c",c for the program 

in figure I below, whith describes the PIF·protocol [S~831 (d. [DS80, F80)) , where in order tn 

illustrate our dec.omposition of " ta.,k illto two sub tasks in a few word" it, i, flssUIlled that the 

n~twork const.itllte5 a \,r(,,,l The nodes perform the following task; some message info(v), f,)r" 

cert",,, ""gUIll/:Ilt. ''', iIlilially ill the message quel'''' of Ilodc k (viewed as the root, of the t.n:e), h .... 

to be sent to all nodeo in tIll' ndwork. Node k has to be informed that all nodes in the network 

1 A decomposition is .ttlso DO~l;ih!(~ ill t,h~ (~a~t': of a.n arbitrary connc,;:ted lldwQ:rk. 
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have received thi~ 1r:tt)~Sa,g.:. indeed and that the value l' ha~ been recorded by them. The two 

subtasks constituting this task have been described above and wnsist of a broadcasting phase 

followed by a reporting phase. In the program below (see figure 1), boxes labeled A:' i,)dicat" 

which operations of node i ate associated with the "th 'Ilbt"sk ("",,1,2)_ Not~ that the boxes 

do not necessarily correspond with the body of a "r<'$p(.m,~," (~in('e they lU'€ the outcome of a 

;emanlital a.lalysis). Nmll O"T principle j1,l,~tifie~ that one can reason formally a~out this protocol 

as if first A I programs are e",ecut,~d by th,~ ,wdl:." and th';7'f:"fier only A2 progTams_ In appendix 

IV the specific assertions Ii' Ti , Pi' and qj for all nodes j are ddi')NI in case oftlw PIF-pr()t')('oL 

Ollr p,inciple is a broad semantic generalization of Elrad a.ld Fra,ncez', "t1fr~ ririr:oml'"sition 

principle [EF82J (d. a1~0 [GSB6, Pa8BIl- Their decompositions, however, Le., the programs 

(called layets in [EF$2]) describing the suhta.~ks, ar(' r<:strict .. d by th~ :;yntl;l,)( of the whole 

program; Thi, is not t.rue for our decompositions as has already been observed above. In contrast 

with their principle, and the one described in [FF89], our pri1lciple also applies to reasol,il't; 

about repeatedly perfofmed tasb by "xpa.ld;,d groups of nod,,,, ~1H:h a.<; in, "'-!S-, GallageT\ 

algorithm, Methods for vt'ri(ying Oall"b~r';; algorithm appcar in rSR..87a, SRS7b, CGSB, WLLSBl­

We [SR87a, SR87b] have reasoned about its correctness on the basis of (sub) tasks. In those 

paperS, howev~r, the underlying proof principles have not been formulated. Neither has 11 

formalism for them been given. Welch, Lamport, a.ld LynCh rWLLS8] giVt' a correttncs, proM 

in the context of I/O.automata, using a (partially-ordered) hierarchy of algorithms. Chou a.ld 

Gallti [CG88J Wn$ider a :;implified version of Gallager's algorithm, a distributed version of 

Boruvka's algorithm [B26]. The problem of finding a simple proof principle fOf the seq,uentially 

phased reasoning of the full version of Gallager's algorit.hm clc«rly ~IIlerges irt [CGBB], since 

in the full version of that algorithm one has to cope with temporary disturbances of t.he kind 

discussed above, In order to reason about such disturba.lces along the lines of [CGBBJ, a.lother 

printipl~ wOllld be reqllired_ In OIl, c~e, due to the collection of !I'l5e~tioIl~ (J;, Tj) fo~ node~ j, 

merely an interference-freedom argument for Ij and Tj must be given, 

The rest of this paper is organized as follows: in section 2, we introduce some notation and 

~onventions, Our design principle is formulated in section 3. For ease of exposition we have 

rc~tri,ted Our$.dv;'s to syn(.hronOU$ communication. Section 4 cOntain5 ijOme condU$ion$_ Sound­

ness of the design principle is proved in appendix I. In appendix II we discuss how to formulate 
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our printi!,l" f(>r the .. syn(:hro,~oLls case, Appendix III shows how to tran~form programs rep­

resented by lists of responses (ef. (,he program "b",v~) int,(, (mr ow,> I>otation fot representin~ 

distributed algorithms, In Appendix IV ~on(."ins a hIlly w(>rhrl cmt. illust.ration of the principle 

appli",d to HI!' PlF-jlrM"l<:nL 

l~.o.f> .. "x"outed by node k (the ro_o!:) __ .. __ 

response to recel~t 

bog,n 
vall.!: -VI 

of ",Jutu) l 
A' 

::!;Ol;" all edges ~ E h'Jr k 

do semI mfu( un!.) on ~~gc ~ od 
"nd -----------------_ .. - .. 

response to receipt of ack{v} on edgo C 
begin 
N,(C),~ true; 
if 'iC E £ •. N.(C) At 
t);l.Q;J;1. d()nek:=t~ue 

fi 
"nd 

loop ex.<u1;Q~ by po~~ .. i_.t_~ ___ .~.":. »on-root) 
,-•• pon •• to uceipt of in/at" I on odge C 
begin 

04/ 1 :=V; 1nbra.nc.h;~::..:.C; Ni(C): __ true; A; 
for all t'dgoe-s ~ E El f\ ~ t- 'i-nbT o'fl.I.''', 

do .end ;nJo(I1 .. I,) on edgo " od; 

if 'iC E E,.N;(C) 
then send o .. ck( "(Iali) t:;m inh"(,ndl.,: 
fi 

.nd 

;I;-=--=-po:n=oe to :t'"e<::;.e.ipt of. fLck(t!} OIL t&dge- C A~ 
b,,=gin 

N,(C),= t"ue; 
;'f 'fC E E,.N,(C') 
then s~nd ack( ,,0,1,) Q" inbl'anch, 
fi 

""d 
Notation used; Ei deIlut"" the set of edges a(~acenl to node i. VB-dabl<, ""I, i. u.ed to reCOtd the 
;fI.l.'gUI"l".u;!nt. of thf;l inf.o-meli!l.agf! If!(:eiv(~d by node it Ni(C) records whether a.ny me!i:~8.ge ha.~ b~~en n:ccivcd 
alollg edg~ C, C E E •. 1'0" node i different from k, variable i"branch, records I\le ident.ifir.~tion of the 
edgf': along which tht.: iIlfo-II1c~:!i~~g~ has been rec::e;vt:':d. (The~e variables are used fOI" unwinding the dife~ted 
t.re~.) Var;"hle done. records wh.thor th~ WklOle task 11M \jeel\ co~,ple\e(i. 

l~)itia.tlYl l"Lode J,:-ls me;CI!';;CJ.goP. ((UP-tit! contains one info-mc::isage antI the m.es~~ge q~le'le5 of all other nodc~ 
<lrc empty. Furtherlllote i~i\;ally ~,j""e.. holds for node k, and -,N,(C) for all !lodes i anel .<lge' C E E •. 
The i"ilial values of Ihe 0lhe~ vMi~ble~ ~re irrelevant. 

Figure l , Segall'~ PIF-protocol 

2 ,Conventions and notations 

A dist.ributed algorithm is performed by nod~r; in a fixed, finite, and undirected 

network (V, E), and consist,!; of at k .. st. two nodes_ The network is view<)d as it gtaph_ Two 

a.dja<'ent n,>dc~ COulIllllIlir .. te by means of messages. Sin~e edg\,r; axe undirected, each node can 

bnth send and receive messages along any of its adjlL(ent edges. Except for delivering lncssagcs 

properly <>ny ~dg<.' Can damage, lose, duplicate, and reorder m",~r;agc$ in t.rarlsit. 
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For ease of e>:position it is assumed that ComIll\lIl1catiOll i~ ~y,,~hT'QTl.Q"~' (In appendi>: H we 

show how om remits can. be extended to an asynchronous model of communication.) In Otder 

to avoid botheriIlg about the actual Synt.ax of programs, di~t.rib'It.~d aIgQrit.hm~ <ITe represent.ed 

by "t.riple < V', {pi liE V'}, A >. (In appendix III we show how a program represented by 

Hsts of responses, as in e.g., section 1, can. be represented by such II triple.) The interpretation 

of the three components is the following: V' is a subset of V containing all nodes that actually 

exeC\lte the algorithm. {p, liE V'} is II collection of state assertions. For all i E V', assertion 

p; (kscrib,,~ the initial values of Mde i's variables. Finally, A is a ~ollection of atomic actions 

which Call o(Wr when the nodes in V' tXet\lte the algorithm (see the definition below). Each 

action a has an enabling condition en( a) associated with it. 

Given an algorithm represented by a triple as above, it is assumed that the collection A of 

actions can be partitioIled "Ito Mts Aj of I1od,:, j's internal actions and SdS Aj", i t- j, of acti(ms 

involviIlg a ttanSIIlission of a m<'ssage from node j to node i (i,j E V'). Th" collection <Jf all 

ao,i(>ns t.h"t ~«n be performed by node j (p06sibly simult!l.1)eo~l~ly wilh other node~), i.e., 

th~ set AjU U Aj,;U U Ai,], will be denoted by act (A, j). For action a E Aj, en(a) refer~ to 
iE v' ~EV' 

node j's variables only. In this case, m(a) will be denoted by enj{a). If some «(tion a involves a 

communication between the nodes i and j, then en( a.) is the conjunction of boolean conditions 

mj(a) and en,(a) where for e E {i,j}, ent(a) refers to node l's variables only. 

Definition 

A computation sequence of an algorithm as a.bove is a maximal sequence So ~ S1 ~ 82 ••• such 

that for all 11 ~ 0 the follOwing is sa.tisfied: ~n is soroe state, each Pi (i E V') holds in state '0, 

an is an action occurring in the set A, action an is enabled in state 8", Le_, e1l(a,,) holds in 8., 

and ;,,+1 is the state resulting when a" is executed in state Sn-

3 Our design principle 

III this section we present a design principle that formali2es sequentially phased design of dis­

tributed algorithms. The principle itself is formulated in subsection 3.3. In subsectiM 3.2 

correctness formllia.t and the verification <ondition. of the principle, i.e., conditions to be veri­

fied iII order to apply the principle, are presented. Introducing the correctness formulae enables 
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.;=t !;>irrlplp and cOllveuknt. fonIluhlt.i.(~Il of OUl" ptifldple. Subsectjon 3.1 dm;(:rih<:~ soule basic ob ... 

servatiolls for solving tasks from the class ('.onsid~r<:d her.,. 

3,1 General observations 

A "Il!tl" that" mll",.bon V' of nodes petforms a certain task ,pedfied by means of a pair of 

,(0(., of ,t"t.,-aw,rti'm' {/Ii liE V'} (the preconditions) and {q, liE V') (the postconditions). 

Consequently, in order to solve this task by ,ome dbtrilmk<! algorithm A we m\lS\. find" 

collection of actions A ~\ldl th~t . 

• A is described by the triple < V', {Pi liE V'}, A > aTld 

• ,'very fillit. emnp"t"l.ion "''1""n''" of A ends in a state fm' whkh eac.h of th" po,t<:ollditions 

q. holds (i E: V'). 

We sho.ll ","Illa" I,hltt this task can be split up logically into two ,,,ht,,,h a>; if they al'e performed 

sequentially, (The general ease is a stnUght.f(lrward exteI1Sio!1 as shown at the end of this H'tl.ion.) 

It is attra,'tive \,0 de~ign A in tw • .> stag(~$' In the nrst sta.ge algorithms Band C an: designed 

t.hat ",Iv" th" two sul!uL,b. Sud. a decomposition enables u, to C;')IlO',ntratc 011 one subject at 

"tinu~. Met.llOdologies for developing these algorithms tu:e deS(ribed ill ICM88i and IBS891· In 

the second stage A it,df is d~,igl,,'d by combining algol"ithms B and C. Our dc~ig:[1 Jlrinciple 

,h:s'~rib .. ," how j,O accoillplish this combination, 

Ohvi<m~ly, ,ill,,,, 1,11 .. , wllrM 1.a~k Un. bf split up logically into t,wo oubtasb, there exist inter­

m~diate «~.~erti()Il' 1'i, i E V', ""d, that the two sUbtasks are solved by di,tribllt.c.l algorithms 

B~<:: V', {p, liE V'}, B > and C=< V', {ri I ; E V'}, C > (fot certain sets Band C ,)f attio",) 

(d. ICM88, 13389]), &Lcll !lnite computation sequence of algorithm A ",ud algorithm B ends in 

a statt' fo" which each of the assertions Ti and qj resp~ctiv¢ly (i C V') holds, 

The remainder of this section d""fril),', how to combine these algorithms in order to obtain A, 

3_2 Verification conditions 

We now introduce ('.orrectne,$ fOnnulae iUld present conditions which are required for a sound 

applkation (If our principle. Some conditions that algorithms Band C should satisfy in order to 
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design A with this principle axe deseribed by means of correctness forIllula.~ in $\lb$~~ti<)Il 3.2. L 

Ea"h of them can be verified by cOilcentrating 'm <.In<t <tIgorithm at a time, Conditions referring 

to both 8 and C ax" fonnulat.ed in ~ub~ection 3,2,2, 

3_2_1 Correctness formulae 

Let 'D=< V', {pr"i I ; E V'}, D > be an algorithm which should ~at,i$fy the Following' if V 

is executed (in a state sat.i~fying each of the preconditions prei, i E V'), then every nnit,e 

(omputation sequence ends i,l a. state for which certain state assertions posti, ; E V', (the 

p(>stMlndition5) hold, Node j's computa.tion tan he (,har(l('te[i~ed by means of an invariarlt 

if (j E V'). Introdudng such invariants is the starldaxd technique to ensure that our design 

prindple (see subsection 3.3) can als(> be used for designing algorithIlls in whith a (,uh)t,,,",,k 

peI'formed hy SOme grwp of nodes can be disturbed temporarily (du<t t.o int.erference of the kind 

diG<:ussed in section 1). 

Except fo~ the invariant if, we can be mOre precise about node j's behavior. If node j has 

completed its participation at a. certain point in ~ome computation sequence of 'D, thell the 

p<>st.(.(>ndition postJ holds and j cannot perform aIly a.ttiOIl from that point onwards, The states 

in whieh node j cannot p~rforrn any action anymore are characteri"ed by an a,;S<!:rti(m TP 
(j E V'). 

We now introduce correctness formulae of the form 

D sat < {Ij I j E V'}, m I j E V'}, {postj I j E V'} > 
for <>II «-Igorithm 1)=< V', {prei liE v'J,n > aIld fOr .tat.e 3Q~ertions Tj, Tj, postj (j E V'). 

Such a formula is valid iff the following holds fo~ every computation sequence of V: 

• For all j E V', I j hold~ in ~very ~tate of the sequence, 

• FI)r <til j E V', Tj holds iff node j will not execute any action in D anyrnor"" <IIld 

• For all j E V', postj holds when and if node j has completed its partidpation in V. 

A correctne •• formula as above can be characterized ill linear time temporal logic [MP83i. L~t D=< 
V', {pre, liE V'},D:;., V ... t <: {IPI j E V'},rrl' I j E V'}, {po.l j I j E V'} > is an abbreviation 
of the conjunction of the conditions (a) through (f) below, (Some of th".e conditions arE redundant; W. 
hav~ included them 10 formalize the intuition in a natura! way.) The conditions below are i'lterpreted 
()Yer all computation ~quenoEs of algorithm D. (D denotes the a/way."operator,) 
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(aJ Vj ( V',(prci ., lp). 
Thcrcfurc\ initially if hold!> for all nodes j in V r 

(b) 'rIj E V'.O((/f II --,TPW(IP II TP)), where U deIlOtes the weak u~~U·ope(atot, 
L~., for A.ll norit2'1i. ,i in VI, iF i~ ;:"'k"l jnv~ri~1H, ~nd the following hold?;: Linod~ j part.idpateF. in t.h€ 
il.lgl1rithln nnt.i1 it. hh~ (,OJ"rlplf!',!7'(l jl.~ p.(irtidp.(itil)f'l". 

(e) Vj c. V',Vd ( "ct(D,j).1'1 ((IF II TPl , 'cn,(d)), 
i.e'l if a certain node h.ali. completed its participation in the algorithm, then it canIiut perfurm allY 

"'·I.ion. (ef. ~.o.tion 21(>1' the definitions of o,d(D,j) ~nd of ~nj(d).) 

(d) Vj ( V',I I((IF II Tt) ~, I-I(IP II TP)), 
i.e., once a "ode has eowpleled il. participation in the aJ~od\hm, Ihen it will neve" parlic.ipal.e in 
the aJ(!;orithm anymore. 

(e) Vj E V'.D((J,V /I -,rF) -, :ld E D,(en(,I))), 
i.e.! if in a (;(~rtain state SOIW! node has not (yet) completed it~ particip~tion i{) .:..lgorjthm VI the,) 
th(~ whole algorithm cannot h~ rompleted. 

(f) Vj '= V'.U((/f /I Tt) .,. po,ti)' 
j.~.\ uode'::s j postcondition po~tj is ~~ta.bli$heJ when it hM co,mpl-eted its pal'tici))ati()ll in t.h~ 

ale:orithul. 

3.2.2 Conditions for combining subtasks 

Let B=< V', {Pi liE V'}, B > and C",,< V', {ri liE V'}, C > be algorithm" which solve the 

two ,ubl,a,h. Assume that 

(1) 13 sat < {If I j E v'), {TJ
B I j E v'}, h I j E V'} > :u,d 

(2) C sat < {If I j E V'}, {T}C I j E V'}, {qj I j E V'} > Me satisfied. 

We first impose the follOWing condition: Each programming varia-bI., o(,,,"rring in any of the 

assertions Pi' rj' qj IF, if, T}', and TP is node j'g own variable. The intuition b.,hind th" 

restrktion is that a node's precondition (or its p'-'~konditi<)Il) e:Ul he described in terms of 

initial (or Ilnal) values of its own variables. Also, an invariant associated with ~ome nQd~ j 

charact.erizes j's computation and can therefore be expressed without any refeTen('", to variables 

of nodes different from j, Analogous, a termination conditiol1 ell;pre'$t. t.hat a Iwdc has com­

pleted its participation in a certaJn algorithm and (an bt> ;>xpTe,seu ill tenns of its own variables. 

(3) Each ptogtamming vatiable occurring ill any of ~he !l$~ertion. PI' rj, qj [p, If, TP, and Tf is 
"ode j's Own va.ciable (j E V'j, 
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In order to solve the whole task, we shall design an algorithm A with actions from B and C 

in which each node j iII V' first participates in S and th~n partidpatt'~ in C, provided that j 

actually participates in both subtasks. As a consequence of this strategy. no node in V' will 

participate ill both suht.ash at t.It" SarIlC time. Ther~f"r<?, we require that if a certain node has 

not compl"t.ed it.~ partidpation in one sub task, then it cannot execute any action associated 

with the other subtask. 

Dofine for some assertion P and for 80me set of actions AD tho, pr~di~ato, di~(l.M~d,(P, AU) (( E V') e.­
pres.ing that if a~~er\ion p holds, \he~ for «II a~\io~s a in AC,en/(a) holds; Formally. di.abled!(P, AC) 
holds iff D(1' => Va E AC . ..,en!!a)) is satisfied. It is required that the following conditions are ."li,ned: 

(4) Vj E V'.di.abledj(I? 1\ --T,B.act(C,j)) holds for all computation sequences of B, 
Le,! if a. certain node has not completed its participation in ,ftlgorithm $, then it (~~lnot p:,:l,.rt~dp.ate 
;'1 algorithm C, and similarly 

(5) Vj E V'di,ahledi(IJ 1\ ~Tf, t;1ct(B,j)) hQld~ for (til compl,tation seqllences of C. 

Also, w~ require that if some node has completed its participation in the second subtask, i.e., 

the one solved by al!";orithm C, then no actiOIl associated with the first suhtask whith can be 

executed by that node is enabled, This condition ensures that every node ill Vi that actually 

participates in both subtasks will participate in the first subtask before it partkipat.e$ in the 

~",,,ond one. 

(~) '<ij E V'.di$(J,b!ed;Vf 1\ TP,<tct(B,j)) lIo1ds (or all computation sequellces of C, 
1,1.:" after 4;:omplctin.g its contribution to algoritbm Cl no node can ever participate in algorithm B. 
(The "" •• rtion disahl,di h"" been defined above.) 

Note that no interferellce·freedolll of specifications has to be ptoved; E.g .• if a.t some point 

during a. computation of algorithm C, If 1\ ~Tf holds for some node j, then every action a 

associated with algOrithm S which is performed by n"d..,~ diff~r..,nt. from j do.~ nl't, invalidat~ 

tile a.ss~rt.ion If 1\ ~Tp, hel'a.use of condition (3) above_ 

3.3 The design principle 

After solving the two subta.sks by means of the algorithms B=< V', {Pi liE V'}, B > and 

C",< V', {r; liE V'}, C > as above, formulating the design principle in order to obtain an 

algorithm A=< V', {Pi liE V'}, A> solving the whole ta.sk is straightforward. Observe that a 

Ilod", is partitipating in the whole ta."k iff it. i$ pa.rtidpating in on~ of t.h~ $\lbt<l$kS. Th",r<;f(lr~, 

we define the set of actions A as the union of the sets B and C. 
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Given algorithms B and C. PH.lV(· t,hat t,h~ Y<'tincation conditions (1) t,hwllgh (6) "bnv(, iLr~ 

sat.isfi"d !'or B ,md C. C(mdudC that the algorit,hm A= <. V', {,,; lie V'}, B u C :> indeed solws 

t.he whole task. More pr!!dsdy, w" may conclude that A $a\ < uf v rJ I j E: V'}, {if 1\ 1'f I 
j C V'}, {'1j I j ( V"} :> holds. 

Ok","v" t.hat. as " ,X"'n('qU(,uce of the requirement that, for any "'Hit, piLrticipa\.ing in a certain 

sub task all the Hode's <l.ct.)()TIs a~".".,iat"d wit.h t.he other subt.ask are di:;abl~d (d'. th" (,(lIlditioIl; 

(1) <l.n(1 (5) ahov,:), it. h.lll.w' t.ll:.\. \.h,' s"r, of actions Band C ~'O-I' b" dw""u <Ii;jt)illl. 

Not" tha.t w" hfLv" dtfLl\. fLlwve with partial corredn,':;:; oIlly. If it i~ INtuited \.0 design an alway:; 

t<'rllliIl"t.iIlg ;l.IgoIit.hIll A, then one must addit.ionally prove f. vcrincation condition that hoth 

Band C always termin<l.te (not,~t,ic.m an fLhov~). This holds because the whok tank t.t:rmim.t.es 

iff bot,h it., mbt,anks t,"rmiIlfLt.e. Formally formulating t-1w (',,"<lit.iou that a cott.ain algorithm 

teI'Itlinat(·~ is straightforward and th~"doT<-' omiUe,t. 

In order to establish the v~.lirlit.y of t.h" principle above we have ~howTl th"l. every finite compu­

t.at.ion ""qutuer of A is e(juivalent (in the 5€no€ of "",t.i()ll 1) to a finite one in whicb ev,:,ry adi"" 

as~od~ted with tl,,·, fimt fmht.a;k is performed before otb",r a<.,t.ioll~ a,~()ciat(Od with the second 

'llbta.;k. Th" proo!' i, giy(On i" appendix 1. 

FInn, the discussions above it follow5 that O\lT principlo C;Ul also be used for Uw ,k"ig"iug 

algorithms hierarchically. Th"t 10, if th" t.a;k solved by A is a subta>;k of y\,t, ;rn(.th~r task, the 

the same prin('ip'" can he applied for solving the other ta-<k. 

Iu case the whole task call be 5plit 1'1' into m(lT" tll;),]' two subtasks we pr""Hd "" follows; 

First desigl' algorithms P solving the Hubt.a"ks. Lt'l. the subtask solved by ""eh D he described 

by prewIldit.imls 1;P and pOHconditions qJ' (j E V'). Prove that for each such D t.h"", "xist 

assertions IF and TF for ""dl node j in V' such that D sat {IP I j c: V'},{TP I j E 

V'}, {qf I j C V'} > holds. Show that an 3Q6€rtioll associated with some nod" j do,,; not 

dqwnd OIl progra.m vatia.bles of any node differ\"lt. fWIIl j (d. verincation ('onditi,lIl (3)). Then 

provt~ thaL each node call partIcipate in onl, $llbtask at a time (cf. condition. (4) "lid (5) above). 

Ther~.utN prove that the nodes partidpatc ill the sub tasks in ~ome lix€'d Order (d. condition 

(6) above). Then com'lllde th"t. t.h .. whole task is solved by an alg(lrit.hm consisting of actions 

of all tho." alg<>rit.hlll$ that solve the subtasks. 

10 



4 Conclusion 

We have presented a design principl~ which alh)w~ f(>rmal d~Tivat,ion of complex network algo­

rithms hy m~(U1S of sequent,jally phased reasoning. Thi~ priIldpk iH applkable to a large class of 

algorithms (as e,g" as in [GHS83, Hu83, MS79, S,~82, Se83, ZS80J) and allows structuring of th"'r 

design accordirlg to logkal (sub)tasks. We have dedded to keep the fornu.dation of the principle 

as simple as possibly. As a conseqll"nt~, it h not immediately applicable for dcrivat.i<'m of t.h" 

PIF -protocol [Se83] when the network doco not COn$titut,e a tree. The reason is that a mes~ilge 

<u;$oclat,ed with the first subtask can be received hy a no(J(:, when (,hat node is participating in 

the secQnd sllht.ask (d. ij€ct.ion 1). In this case an adjustment of the ,l¢$ign pTinciple would 

he required, (Verification conditioI~s (4) il.nd (5) rlll)~t h~ acljl1s(,ed.) In essence, it has to be 

f<'quir<,d thil.t if a ru)de i, partidpll.j,ing in the second subtask or has completed it, participation 

in that slll:>t(>l;k, th~n the ru:rival of a message associated with the first, Hllbta.8k does not affect 

the respective assertions attached to thal node. 

As structured veriJi.eatioII and design <)f complex algorithms yields more insight in their <:<\f­

red"",", we envi5age that new language constructs will be designed in ord\'r t(l obt,aiIl hetter 

structured prOI7<un$. In particular, we believe that a better structuti"g of prOI7<uns can be 

achieved by means of a. COIl~trnct. for dC$cribiug 51lbt(>l;ks and another one for building programs 

solving some task from programs which solve the suhtaHh. 

In t.h~ f1.It1.Ire we will investigate how our principle Gall be e"te[~ded for applkatit>no to network 

algorithms when edges and r~odcs tar. fa,i!. 

Acknowl",dger'Il"'rlt; We thank R.. Koyrnam; and It. Gerth for valuable discussions, We also 

tha.r~k N. villI Dicpen and H. Part.sth f(>r t.heir remarks concerning the presentation of Out results, 
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Appendix I 

In thi~ Ilpp'~II(Ii" ~"undTle8S of the design prillcipk fOnrlulllt<,d in ~"di(lll 3 h pr<)v~d. 

In the soundne~~ proof of tJw IJI:inciple we use the same notation lIS in section 3. 

A"llTTl~' that the premis" of t.he prindl'l« i, ,,,thfied. That is, assume that the conditions (1) 

t.hrough (6) formulated in section :1.2.2 all hOld. W~ h<>v~ t<) ~how, in Qrder to e.ltablish the 

SOillHln(:~S of <)IIT prindple, that 

A sat < {If V If I) c V'}, {If II rf I j E V'}, {% I j E' V'} > holds. This a.mounts to proving 

th;\l. t.lIt: t(m[liti[.m~ (<» through (f) formulated in sect.i(>Il 3.2.1 iII" all Hatisfi(:d for o,lgorithm A. 

LeIllIllR 1-1 (conesponding to condiH..,n ( ... ) in ",,:timI 3.2.1.). 

T.hJd",r t.he assumption t.hllt. t.h" 1>rI",Ii"" of the principle is satisfied, Iii E V'.(PJ -c'-c(lf V If)) 

holds hi the firH HI."t" of ""y computation sequence of A. 

Proof 

'l'hi~ trivia.lly follows from verificat.ioll corlilit.iOll (1) (cL s.:t:ti,)rL 3.2.2). 0 

Not,~ th"I. if nome property p depends on node j's programming villiables only, t1U'" l' holds in 

state .'1 iff P llOlclH iII ~tate ~.l.va\'(j), where s1 Var(j) denotes the restriction of state Ii to the s~t 

Var(J) of all node j's jlI'ogra.ruUliu!; variableo. In (,he remainder of this appendix this property 

is rd"Heel to as pTope~t.y ("). 

Crucial in Ollr ~OllIldn{"f>~ proof is t,hf' followiJ'Jg~ 

LCIrlIIlH 1-2 

Suppose that the premise of the prill~iplc is satisned. Assume that ~ is SOllIe state in any 

computation sequence of algorithm A. 

(a) H, for some node j f Vi and fot some action b Clu:t(B, j), ':'!j{l)) holds in Hatc s, t.hcn 

there exists a certain state .• ' occutring in some coml'ul.atiOII sequente of algorithm B 

<;<>thfyin~ 51 Var(j)=5' 1 Var(j). 

(h) If, for ''''n<o n"d~ J f:: Vi "nd for some a..;tion C Eact(C,j), enj(c) holds in state 8, then there 

exists a certain state 8' occutrillg ill SOllIe computation sequellce of algorithm C satisfying 

$1 Var(j)=.'l ViII(j). 
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Pr-oof 

Consider an Mbitrary computation sequence 80 .~!l "1 ~ "2'" of algorithm A, Let 5. be some 

state in this sequence. We US"" ind\l~tion of the states 5", x ~ 0, to ptove the leillma. CI.:a:rly, 

the lemma is true if s. is the iIlitia.! S\at¢ of ~ome computation sequence of A. 

Now, aSSunle that the lemma holds for all states 5=8, for 0 S y < x (the inductioll hyp<>t.h"HiH). 

(al If, for some node j in V', enj(b) holds ill state 8, for a certain action b Eact(B,j) then 

dt.h~r (al) or (a2) below is true: 

(al) liy < x.au 1. C, Le., in the computation s~qu~ncc ahov~ stat~ 8~ has been reached by 

exen'tions of actions from the set B only. In tlth; CaSe it. iH C)bviC)u~ that the lemma 

is satisfied. 

(a2) 3y < x,au E C, Le., in the COltlputatioll "~'quen~" above, 8. has been reached by 

e"ecutiolls of a"tionH fre,m n and by eJ(€cution of at least on action froIlt the set C. 

N{,w, n,)d~ j ('(I111;10t be involved in the ell:ecution of arly actio" <lz E C with z < x. 

This holds because of the following: 

If such il.I. <1, E /let(e, j') is the first C-action executed by node j' in the ~e,!"cnce 

above then If 1\ ..,TP is satisfied III state Sz. (Nod~ j' h<U:i only eJ(e~uted B-actions 

when state s, has been reached, By the induction hypothcBis. t.he v~rificatiC)n wndi­

lions (1), (2). (3). il.Ild (6), and prope~ty ("') above, it follows that If, I\-{I'ji is satisned 

in state sz.) From the verificatioll conditions (2), (3), (5), and (6), and property (~), 

lib' E act(B,j').~enj'(b') holds in state 5.+1' 

Analogous, it can be proved that if action "" Z < y, is not thl? first C-action in the 

sequence above in which node j' is involved, then 'rib' E act(E, j').~enj,(ll) holds in 

state 9.+1' We conclude tha.t if some action b E act(E,j) is enabled in state s. then 

it h<l'; not pedol'ooed any C-adions. It is now obvious tha.t the knuna is Satisfied. 

(b) This c~e Carl be proved by a similar kind of reasoning as in the prOOf of (al "bove. 0 

Qbs"rve that, as a cOIlseq\IeIlCe of property (*) and the verification conditions (1) and (2), for all 

states in any computation sequence of algorithm A, (If V If) 1\ ~(f) 1\T'f) implies (If 1\ ..,Tr) 

V (If 1\ ..,Tf\ j E v'. This property will be used in t.he fol1owi1:1g lemmata. 

Lemma 1·3 (corresponding to condition (b) in section 3.2.1). 

UIlder the assumption that the premise of the principle is satisfied, 
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V) E V',O((vf' v If) II. ~(lJ A rf))U((If V If) II. (If II.TF))) holds for all <()mp1)tation 

Proof 

C(m,ider an arbitrar.r coml'"l,at.iOTI sequence 50 ~ SI ~ "2'" of algorithm A. Obviously, in 

order to estahlish the lemma it suffices to prOve the following: 

Cla.im; 

If in a ccrta.in ~tate s" in the seqlIeI.C£l ahovl: "dion a" is executed and if 

(If V If) II. ,(If A '1~C) h(,lds in ~t"te ,~, then (If V lJ) holds ill fitate 5n l1 (for all j in 

V'). 

Proof (,f th" dalm: 

A~51)me that (If v If) A ~(If 1\ :rf) holds in state s'" According to I,h", <:>hservation 

above, we diBting1.1;';h two cases, 

Calie (i): If i\ ,T/3 holds ill stak "n0 

Now, if lH)dc j is involved in the execution of ~tion (tn, tll",n a,. <= D holds (cr, 

lemma 1-3 and the wrilk"tiol) condition (4) of the pri1lciple), From ltmma I-3 and 

the verification condition (1) it follows that If II. ~Tf3 or If II. T]S holds in stat.' 8 n +l­

If, On the other hand, node j is not involved in the ",,,,:,,'ut;on of action a,,+I, then 

If i\ ~1']3 holdB in stat.: 8,,+1 (ef- ve~;ficatioll condition (3)). We toll dude that in 

this case the daim is s"tisfied_ 

Cu • ., (ii): If i\ ~rf holds in state s". 

U I)ode j is involved in the '~xecllti.)n 'If ~~ti(ln [:I", then an E G (cf, lemma 1-3 <.IJ.ld 

the verifk"tion l'ondition (5)) and, either If II. ,'If Or If 1\ Tf h,)ld in r;tate 8~!1 

(d. verification ~oIlditiOn (2)). 'l'he claim then follows from the fact that Ii 1\ -'Tf 
implies (If V If) and the fact that If II. Tf implies (If V If)· 
If node j is not involved in the e:xeCl.lt[oil of a,ctiOll an, t,hen the daim folluw5 from 

th~ v~rifk(ition (ondition (3), 0 

L"nunB 1·4 (corresponding to condition (c) ill secti()n 3.2.1)_ 

Under the assumptioil that the premir;", of the principle is satisfied, 

Vj E V'.Va E (lct(B U C, j).O{((IjB V If) i\ (If 1\ 'If))=> ,enj(a)) holds fOr all C(lmpl1tation 



sequences of A. 

Proof 

Assume that at some point in a computation sequence of A, (IP V If) II (If ,,'If) holds. Th~Il 

(IJ 1\ Tf) holds, too. If at that point in the sequence for all nodes / E Vi and for all actions a 

from the set act(B U C,j'), ~en1'(a), t,hen 'm1 are done. 

Otherwise, Le., 3j' E V ' .3a E act(B U C,j').enj'(a) holds. In this case, for all a E act(B U C,j), 

'",""j(a) is sati$lkd (l,$« ~(mSeqllen~¢ of l(,mm" 1-3, prope,ty (0), <md the vedlkatiop- (ollditions 

(2) and (5). 0 

Lemma 1-5 (corresponding to condition (d) in section 3.2,1). 

Under the assumption that the premise of the prindple is s«ti81kd, 

Vj E v'.O(((lf V If) 1\ (If 1\ 'If))=} O((l? V IJ) 1\ (IJ 1\ If))) holds for all computation 

sequence of A. 

Proof 

Assume that in some state during a computation of A, (If V IJ) 1\ (If 1\ If) holds. Then 

(If 1\ If) holds, too. Node i cannot execute any action in such a 8tat<~ (d. lemma 1-3). The 

assertion (If 1\ Tf) is preserved under all actions from the set B U C which can he performed 

hy nod~s diff~"nt from j, ~f. the verill¢«tion ~Onditio);l (3). The lemma j~, obviously, ~atisfied. 

o 

As a preparation for the proof that condition (e), formulated in section 3.2.1, holds for algorithm 

A, we first have the following lemma, concerning equivalent computation sequences of a certain 

algorithm. (This notion of equivalence has been intr"d\lc~d in "edion 1.) 

Lemma 1-6 

Suppose that 80 ~ 81 ~ 82'" 8~ ~ S~+l ~ S~+2 ~ 8;:;+3'" is a computation sequence of 

some algorithm. Assum.e th"t the ,,:Jce~1,1tion~ of ~ht a.cti(lI;l$ a. «TId aHJ involve di,tin(t );lodeS. 

Then there exists some state s~+I' such that 

So ~ $1 ~ 82 .. . s;,; ~ Sz+l ~ S.z+2 ~ S2l+s", and 
"'I,} a1 .:i_+l I a", GII+2 

S() ---'-' SI ----> S~ • , • S~ ----> Sz+! ----> s~+~ ----> 9.+3'" 

are equivalent computation sequences of A. 

Proof 

Let 8~+! be the state resulting from execution of action a.+l in state s •. Note tha.t this action 
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does not ~(,ct v"-riables of nodes diffetCtll: fr(,m n", (>FI",:; involved in the eXeCtltioll of l.h«l. «dion-

From the assUrllption tll"t the execution of the actio!li; (', 'Ultl '" I I involve distinct nodes, it. 

tl"'ll, ohviomly, follows that "'-1-2 i, I.he :;tate resulting when action tL. i, "x~wted in st.ate s~+[' 

o 

A_, a wnsequellc.e of Lhii. j{'llllll"- alld of the proof of lemma 1-2, we hav,,: 

LeIrlIIla 1-7 

Suppose that. ,Iii) ~,~ ... ~1 ~ s;.!··· S;r. ~ ~;!;+l (/.IIl'IJ ~Q'i-2 ~ 8~ ~ ~ _, h a finite COrllputatiou 

''''1llf'''"" of alp;orithIll A. A'Hum" th«1: the premise of the principle i. Hali.tied_ Ftlrthermore, 

assume th,-.t t.I",t (', '= C and a,I_) f' B hold. 'l'Iw" t.llt,." ~'xiHto some state s~+[, such tll:1t 

RO ~ $1 ~ ,j~-"S~ ~-.) '''~+1 ~ ·~;r.t2 ~ 8~fS·.· a.nd 
arl III «.., I 1 / U:r I.I.",+~ 

$0 ----j' '~l ... " ,) Ji2 ••• I-Iol) ----+ R'!i: I I ----t S:l:':.~ ~ ----t ·'iI","+3·" 

ate e'llliva.knt wmput.ation sequences of A. 0 

I.emma I-I::! (corresponding tt' wlldition (e) in section 3.2.1). 

Dnder th" aHsumption that the premise of Ill.:, prindpk i1; ~«ti~tifd, 

IIj E V'.o(((1}3 v If) A ~(lf II Tf))=} 3a EO BuC.("n(,,))) holds for ijll c;omputat.ion sequence 

of A 

Proof 

Consider an. arbitrat,Y (:ornpllta.tivIl ~~quence 13eq == so ~ oSl ~, .. of algorithul A. ASSlIIIH: 1 in 

ordel' 10 obt:J.in !1 contradktion, that in a certain state s" of this sequeIlce for ."m~ nod., j Eo V', 

((If V If) A (If 1\ ~rf) II va E act(B u C) . .,,,,.(a)) holds. Th"" this .tatf' is a final state in 

the H<"I"('n('~_ TT~nce, the sequence is finite. We n(,w r('p""'i.e<lly ",pply l~mma l-7 in order to 

obtahl illl cquiv.-.,kIlt. wmputation ,equence of A in which all B-actiorlS are prrfon!l(~<1 hdor" ijll 
fl~ ,~; ,tJ

i
.. • • 

C-actions, Let seq' == So ----> "1 "., ••• H. -----> ••. ~" be th'" resulting sequence, where action a~ 

is t.hl;: fir,t C-action taken in this sequence. (Obsetve that th" ~'-'qll'-'Il(.'-' seq' end, in state 8"_) In 

~I",t." Hz, ft,r «II j E V', If IITf3 holds. (Otherwise, (or some j E V', If II .,1jB i~ ~atii;fkd, whkh 

implies Ihal at ic;,;;l. o"t B-action j:; enabled in state s., cf, verification condition (1). E~h lloile 

which is illvolvNI in thi$ «dion ,'annot perform any action from C, cf. verification condition (4). 

Thi, impUes, however, that the sequence .eq' is not maximal; Contra.diction_) It follows that the 

sequence s~ .s... ... s" is a comp"tati(ln ~equ€n{'€ of algorithm B_ hom verification condition 

(2), wt obtain that If, II r5 holds, for all j' E V', in state .>". This contradkt~ the a~,;umpti(>n 

48 



that if /I -,TP holds in thi~ stat~. 

Lemma 1-9 (corresponding to condition (f) in section 3.2.1). 

Under the assumption that the premise of the principle is satisfied, 

Vj E V'.O(((lf V if) 1\ (.if 1\ TF))~ %) holds for all computatioll sequence of A. 

Proof 

Thi$ i$ " «>nS(!quence of pwperty (0), lemma 1-3, and the verification conditio:ns (2) and (3). 0 

The soundness of the prillciplC lIOW follow$ frOll. the lemmata 1-1, 1-3,1-4, 1-5, 1-8, and 1-9 above. 
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Appendix II 

The design principle formillated in section 3.3 tan straight.f,)rwaxdly hI, ('xt~n(k<l to an i\.!;yn­

chronous model of computation. This is shown below. For ease of exposition we assume, for 

this appendix, tha.t tOulIIHlIlitatinn 1:.; p~~rf(~('t_ 

Assume that communication is <1:iynchrono".. In ol-der to design an a.lgol-ithm which wives a. 

<:ertain l,a~k, de~cdbed by preconditions Pi and postconditions qi (i E V'), we follow the same 

strategy as before: 

(1.) Find intermediate assertions r i such that the two sub tasks can be described by the collec-

(d- section 3-1). 

(2) Design algorithms 13-;:,< V', {Pi liE V'},B > and C:::< V',{ri liE V'},C > which solve 

th,:, tWI) ~\Ibta~k& (.f. [CM88, BS89])-2 

(3) Prove that the verification conditions (1) through (6) below are all satisfied. 

(4) Conclude that the algoriLhm < V', {Pi liE V'}.AuB > solves the whole task (d. section 

3-3)-

The verification conditions of the design principle are essentially the same as those formulated in 

se(:til)n 3_ Now, h"w,",ver, w,:, have to incorporate t.hat f<ttt that con"'"1I1ication is asynChronous. 

In order to formulate formally these verification conditions we use, as in [SS84], the c.1,:z;ilic.ry 

proof 'ua,·iablc. <Ti(c) ill.d Pi(") (j E V', <' E Ej)' They are used to reason about communication_ 

<Ti(") n',~ords tho' S<,qU~Il(<' of In(ossagc'ls transmitted by node j aIOI'g edge e; Pi(e) records the 

8equen~e of me&~ages received hy node j along edge E~- For lIod<:S j, k ill,d <,clg'-'t; " ( E j n E k , the 

prOpetLy pj(e) :::; <Tk(e) is preserved by arty action, see [88841. i.e., if edge e connect~ the nodes j 

and k, then the sequence of all messages received hy node i along e i, a prdix of tlll' f;equCnt<' of 

all messages tnmsmitted by node k along e- These variables Me changed when a node transmits 

or receives a. lll<"Sagei They arc llOt changed during execution of an internal action. 

(1) Find (Illsf-rt,io"s If and TP, for j in V' and 

(2) Find assedions If and TP, for j in V', having the same interpretation w; in ,,,ction 3. 

:2lt h:l ~~mmcd th~;t'-ih~--;;;t--:f ;:..li .a.t(l1;l1il;-~tll)n$ fOr ~;\(;h nod~ i .cau. be pfLttitioned into. a. set of fa int~rnRi 

actions, Q act of j's nctiom3 whkh involve the h""n$mis,$i(Jn of a rntS,$iLge, lEWd .&. Bi!t. .of JIB actions involving the 

r~.:::ejpt or som.e me!ls.agc, 
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Of course, we have to reformulate the correctness formulae (see section 3) now incorporating an asyn­

chr(Jlt()u. n)odel of computation. Let 'D",,< V', {prep liE V'}. D > be ~(>me algorithm. 

'D 8at < tip I j E V'}. {TF I j E V'}, {po,!, I j E V'} > holds iff each of the following cOIlditioIls (a) 
through (e) is satisfied; 

(a) "Ij E V'.(wcp =:- IP) f, 

1\ Vj, k oc V' .Ve E E j n E,.(pre'D .;. Pj (e) S >1".{e)) holds for all compu~a\ion sequen~es of 'D. 

Thus, initially the ass.rtion ;p holds. In addition, the sequence of all messages received by allY 
node along a certain edge is a preDx of the seque.-.ce of all Inessages transmitted by the nod" M 

the other end or that edge holds illitially. (FrOIl) the discussion "bove, it follow. thlLt the l"tlcr 
prOperty is an inv.<riant for al1;orithm 'D.) 

(b) Thi. condition io the same IlB condition (h) formulaled in seclion 3.2.1. 

Let Intp S; D denote the Bet of node j'G internal actions, let Recp(e) <;; J) denote tbe set of node j's 

8.ctiOD' which involve the receipt of a message along edge e, and let Sen;' (e) <;; D denote Ille set of node 

p, actions which involve the tran"miggion of a message along edge e (j E V', e E E,). He~eafler, [Sp 

will denote the set Intpu U Senf(e). 
t.~E; 

(c) Vj E V'Vd E dP.D((if A TP) "*' ~en!(d))A 
f, Vj, k E V'.Ve E E j n E,.D((fF II TP) "*'Pj (e) = ".(e)) holds fOr 1111 ~omp\ltMioll seq\len~es 
OIP, 

i.e., if a c~rtain node has completed its participation in the ,,!gorithm, then it caronot perform any 
internal action or any action which involves Ihe I~ansmiss,ol"\ of a message (the nrst conjUI\ct), aud 
it cannot re~eive allY message (the second conjunct). 

(d) 'rll,s condition is the same as condition (d) formulated in .edion 3.2.1. 

(e) '1j E V'.D((IP f, ~TP) ,*(3k E V'.3d E lSp.en(d))V 
v(3k, mE V'.3e E E. n Em.p.(t) < <'met))) holds for all 

computation sequences of V. Here, for sequences t and u, t < " denot .. th .. t t is a proper prefix 
of u. 
Thi. condition expresses Ihe following, if a Cetl<\ill Ilode has IIot yet cOlnpleted its pMticipation 
in the algorithm, then at least OM node cau perform sOme internal Mtion or Some action which 
involves the t[,,,,slnis.ioIl of a me.sage, Or at lea..t one nod. ha.s traD.mitt.d a me •• age along one 
Qf ilS Mjac~!)\ cbau,lels and this messa.ge bOIS not yet bten received by the Dode ILt the other end 
of tbat edge. 

(f) This condition is the ,rune as condition (f) formulated in section 3.2.1. 

'l'hIID we reformulate the conditions (3) through (6) from section 3.2.2 for an asynchronous model 
of computation. 

(3) Each programming VlI-riable occurring in any of the assertiOnS Pj, rio qj, If, If, T;B, Tf i. node 
po own variable. In addition, if some proof v{tl'iable Pl(e) or "l(e) occurs tn any of these asserttons, 
then i=j and e E Ej hold. 

(4) Vj E V'.dl~(l.bled(If II~TP,Isf}iI 
A Vj. k E V'.lIe E Sj (1 S •. disahledVf f, ~Tri, Sen~(e)) holds for all cOIllputatioIl 

SequenceS of B. Here, for a.ssertiono P and set. of actionB AG, di~abled(P, AC) hold. iff in any 
stat. satisfying P all actions in the Bet AD arB disabled. (It. (<;lrmal definition is 6tr~glr.tf<;lrw~ 
and thetefore omitted.) Consequently, this condition expresses the following; if /I certain node has 
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not complf!ti2'd its p;;trtkipfiHon in .a1gorith.1' 5, then it -c.an n€ith~r perform an interna.l action nor 
a send"acl;on occul"I'iIlg in C (the first conjund), amI it caIlnot receive a message associaled wilh 
the ."cond .ubtaak (th •• e""nd conjnn<:t). Th. latter hold., be,au •• if the node i. participating in 
the fir.t .nht ... k, t,hen l>Qn~ of its l\~jghbo'''s can s~1\d sU(.h mMsages. 

AIlalu,!!;ollsly WE~ have 

(5) Vj E V'.di."",led(I;; II ~TF, rH~)1I 
II 'ij, ~ E V'.Ve E E j 1"', Ek.di.abled(lf II -'Tf, Sen¥(e)) holds lor all comp\\\al;on seqvences 

ofC. 

In Ql'dN '0 e~'Sm·t.: thnt a tcrtail.L Il(JU~ ti1Il purtidp.ate iIi the :iOecoI.Lu subtask only after cou~pLet'i~~& th~ 
fir.t .ubtask (."<: condition (6), .. "don 3.2.2), we imp"se th .. following condidon: 

(5) Vj r,.· V',d""blcd(If II Tf,ISf) !\ 

II Vj, k ~ V' ,Ve" E, n E k , dioabl,d(If II Tf, Se,,¥( <)) holds fur all computation sequences 

()f C. 

As a cOnse(juence we have required th"t nO node k Can send some lnessage 10 a,lol])e, !lode j which 

is part.ic.ipating in a different subt!<Sk than 1, (d. ~.ondition. (4) and (5) above). Although the "bove 

principle.: is applkablc to a large das~ of algorithms, une could lJave been less J'e$~ricl,jve: if :;lome node 

j is par\i~ipa\i"g i" so,,)e $l\b~as~ 3,'d j has some me~sage in i\S q"e\le M~odated with another subt",k 

("uch a situIl!,ioll c.an he recogni.e<l hy tagging me .... g •• ), then processing this meas,,!;e i. del"yed until 

j is participating, Or starts tt> participate, in the $ubtask asso(;ated wilh th~ I mess(l.ge. 
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Appendix III 

w~ rl;Lim that any distributed progriUn can be represented by a triple of the kind introduced in 

the paper. The validity of this claim is iIlII$\ral.ed below by shoWing t.hat any pI:ognun described 

by a list of reSVOn$~$ as in section 1, and as in [GHS83], can be represented b.y such a triph" A~ 

an example we show how the program of !;eetion 1 call be repr~s,:,nt"d by such a triple. 

In order to keep the presentation reasonably short. WI? «!;&mne that communicatioll is asy"­

~hron"U!; and perfect. 

Let S be a progriUn described by a list of reSpOnM$. Our objective is to repr€Se.,t S by a triple 

A of the kind mentioned above, ~uch that for any c.omputation "eq\lence Jeq starting in an 

initial state satisfying $Orne predescribed preconditiOIl the following holds: seq is a computation 

S('qI1Imce of S iff seq is a computation "equence of A. It is obviouS that the only difficulty in 

defining A is the definition of its set of atomic att.iOns. In order to define this set we flr,t ~,ign 

la.b~ls to control points in S. (Such a control point is an entry- <,. ~>;jt-point of some atomic 

actioll occurring in S.) Then we introduce for cath node j a. fresh variable IOcj' This variahle i~ 

used to simulate node j's prOgriUIl counter when S is e)(ecuted. Each (a.t.Qmk) action a which can 

be performed by j ;8 then represented by the atomk <><:tion a:locJ:=11 where II denotes the lahel 

assigned to a's exit-point. 'rhe enabling condition of the act';on a;loc!:=/" i.e., en(a;/oc,;;=IJ), 

is given by locj = I~ where 12 denotes the the label ~signed to a's entry-point. Ex(~pt. fo~ these 

«('tions, we also define for "aeh node j two kinds of other actions; The lhst one corresponds to 

actiOns ""moving messages from adjacent edg<'" il.Ild pla.dng these received messages at th" end 

of node 1's message queue. 'fhese kind of a~tions do not refer to the variable locj and can occur 

at any time in ~v",ry computation sequence, provided th"t some message has arrived at nod" j 

(d. (1) and (2) below). The second kind of a<:tions corresponds to removing the first element 

from nod" j'$ me~,age queue, provided tha.t it is non-empty, and setting the variable ll'x:j to I.he 

label assigned to the "fir, I" entry point of the respective resp()n$~. 

It is important that we hav" ma.rle e>;plkit two tacit assumptions which are quite common when 

distributed algorithms are describ«d by means of lists of responses; 

(~) A message that has ij.trivl:d at a node along one of its adja<:cnt edges can be removed 

afterwards from that chanllel at any point in the computation. 
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(2) After ~he l'~ceip~ of a In,,,ssag~ a node can reSUIne its execlltion at the point where the node 

has b~en interrupted by the arrival of that messae;e. 

Example: 

~?'>l'---.!x~<ut"d 1:>y nod. k 

"""pon." to ".oeipt o~ '''fo(lI) 
b6gin 

IM,I; val,.,; v; 
1',2; fo" all .. dg.s, <= E. 

do •• nd i11,f,,( ,,0.1.) .n 

re!lpo:J;lse to ;l;'t;I~t;lipt 9:;f ()..("k(lJ) on edge C 
1:>0gin 

I.,C,{: N.(C):~ tru.; 
1.,,),r,O if <lC ~ FJ,.N,(C) 

I\,c:r: 
end 

th(ln h~(~,,,; dO'/'l.('h; ·-truC3 

fi 

............. _ ...... __ ._----_._._----' 

loop .. xe<u~~d 1:>y nod .. i t k 

'''lOP"'''. to ".oeil't of info(,,; on edge C 
begin 

L,C,I; va!;;-- v; 
ii,C,2; inbranch,; .. Ci A~ 
ii,C,,: N,(C)'-true; 
li,C,4: :lor all. oE!dg~! ~ E EJ\e I- inbranch i 

<:10 .end in! o( 1!(,.I;j on .de" " od; 

~=~===,- .. _ .. _ .... _ ........... . 
I"c,,: if VC { E"N,(e) 

then li.C.t.~ sendack(ua1d 'On inbran('h i 

fi 

1,,{O,,; 
end 

"."p"'" to rOMil't of a<k(v} on edge C A; 
l:>~gin 

I.,C,8: N,(C);-- tru~; 

I"c .• : if 'iC EO E"N,(C) 
than /,,(/,10: ~e1'l.d ad!!{ 1)(l/l') on inm-aflr:h i 

h 

1'.C.l\; 
.nd 

Fig\1T~ 2: S~g<lll\ PIF -protoq,l after agsigning label8 to control points. 

From now on, subscripts i and k are omitted when they <tr~, "I"ar f«lm the COnt(>xl .. 

Below, e)(\,ept for the I<lbd~ of ,:oIltr<)1 poiIlts assigned explicitly, we have additionally introdu~ed 

a label at-queue. Intuitively, node i is at the control point labeled at-q"""", wheIl it tests whether 

its message queue is non-empty. Node i €yalu<lte~ t.he b,),)k;ul "xprc~siol' qu(,Uc #<> for testing 

whether its queue is not empty. Ifit, is IIon-empty, then I:he I.ype and the channel identification of 

t,h~ fir,t ~Iernent. ar", Mt.~rmiIl~<1 hy cv:.Jllating twe(first(queue)) and chau(first(qu€ue)), re~pec­

tively. Thereafter the argument of the first message in the qU€\1€ is ckt,I'rInined hy ev:.Jllating 

aTY( fiT~t( queue)) <Iud is reconkd. TheIl I.he first. element is removed from the queue by e)(e~uting 

the 1IS8ignlllcnt queue;=rest(queue), and node's i variable lOCi i5 set. 1.\, t.h" CIltTy poi,.t of the 
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respective response. 

Appending an element M to the end of some queue q will he delloted by q:='l • M. 

We next ,hOw uode k's actions wh.m the program ahov~ is repreSellt.~(! ~ ;,. tripk (Bdo"lw, C 

rallges over node k's adjaccIlt edges.) 

ak.l: v:=arg(first( queue)); queue: __ rest( queue); loe:_ 110,1, 

en( (lk,d: IO(:=(lt-q~~el)ei\ type(fir$t(ql.eue))=iIlfo. 

a.,2: val:--v; loe:;; 1.,2 

e,.( " •. 2): ]OC= 1.,1' 

ak,:r for all edges e E Ek do send info(val) on edge ~ od; lo(""'at-quel)e, 

en( a.,3): loc= ,",2' 

ak,G,~: v:=arg(first(queue)); queue:""rest(queue); loe:"" Ik,G,4, 

~n( ak,C,.): lot="t-queue/\ type(fust(queue))=atk !\ ehan(first(queue))=C. 

ak,C,,: N(C):=true; loc:= Ik,C", 

en( (Ikp,d: loe= 1,.0,4' 

ah,C,e: if \Ie E E •. N(C) then loe:= h,c,o else loc:=at-queue ft, 

en( ak,c,~): loc= 1.,0,,· 

ak.C.7: done:=true; !oe:",at-queue, 

en( ak,c,1): 10(;'" lk,e,6' 

and finally ak,C,a: receive msg on edge C; ak,C,a: quene:;;;;qnene' (msg,C). 

a.,l, ".,2, "k,3 are those actions of node k associated with the first sub task (d. section 1). The 

other actions of node k shown above are all assodated with the second 5ubtask. 

'I'h¢ a(ti<)n$ whkh can be pt:r!()IIIi~d by nOd¢$ diff¢r~nt frOm k ca.n bt dtt¢rmin~d analogOIl;;ly 

and are therefore omitted. 
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Appendix IV 

Below w" ,how how OUl' d~toIllp(,~ition principle of appendix II can be applied to obtai" til,' 

program of >,~<:t,io[l 1, In parli(lllar, th~ invariants If, If awl l.lw krminatioll cOllditioll~ IP, 
Tf, for j in V, ate ddiIll:d ~xplidtly for this eXilJnpl,,_ 

CommllIlitatioll h a~sumed to be asyn.-hronous and pel'feet. 

It is ;u;,ullwd that SOlll€ desig",,. ha, already solved bOLh suht",h ,lio,:erned in the PIF -protocol 

(,~~ "edion 1), Consequently, it now sulliccs /,() define the invariants and t~rminati,," (onditiom 

itl order I,l) mmbine these pI'ogrilJn,_ A~ a preparation for this we firot have t.he following 

definition; 

Defh,ition 

Let- n<'Hle k, the initiator of /J,,: protocol, be given. 

(a) fA for; E v, dist(i,k) denok the <li,tane,,," between node i ~uHl nO,['· k, L,:" di~l(i,k) 

d",'\otes the minilllIlIll nlImlwr of edges on any path hctw¢{:n the node~ i and k. 

(h) Fo~ all if' V, C C Ei, Di(C) denotes the distance from nod€ k 1,0 the node different fro," 

node -i t.hat. i, adjacent to edge C, Tlmo, Di(e) = n holds iff there exiH~ Will" j '" i wch 

that C E Ei n E j and di~t(j,k)=n are satisfied (fl)r llodt:o i to V and natural numbers nJ. 

D 

In the proofs of tI", verification conditions of Our trand<.>rrn3tion principle, the following prop­

ertk~ are used: 

Lemmil 

(a) For all C E E k , DdC)=1 holds. 

(h) for all nodes i E V and for all edges C E Ei the following holds: if di$t{i,k)=,~, tl"'ll 

Di(e) = n-l V Di(e) = n+l is satisfied. 

(c) For "-II n<.>des i, j E V and for ~dgcs C E Ei n EJj, if dist(i,k)=n and di,;/(j,k)=n J-l, th'~ll 

Di(O) = ,,+1 and Dj(e) = n holds. 

(d) If tin: gr<,-ph (V,E) constitutes a trce, I,hen for all n<.>des i # k, i E V, there exists exa.cfly 

one edge C E Ei sat.isfying DI(C) =di,;t(i,k)-l. D 
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The proof of the lemma above follows from elementary properties from "mph-theory [Ev7()1 and 

is therefore omit ted, 

A~ has been argued in sedion 3, it is al,tractive to design a program de,~ribing the Pll"-ptotocol 

ill two stages- lXl (,he fir~I, ,I,age thc, prop'am solving the first 5ubta><k, ("JIll<! havt heen described 

by the pmgra.m B eOllsisting of those adion~ ""o('ial,ed with the programs Al of seetion 1 (d_ 

also appendix lIll- In th~, ~,,(:oncl stage program C, consisting of ,,11 ,,~tion~ a~wciated with the 

progr<>m_" At of section 1 solving the second ;;ubtask, collid have been developed-

Below, ill th~ ,IdiIliHoIlS of the respective assertions, we have uScd the auxiliary proof vaJ:iable~ 

(7i(e) illld PilC) (i E V <I-\1cl C E V), l'hese kinds of variables h"ve been dis(:"sscd in appendix 

II, Recall th"t (Ti(C) records the sequence of me55l1g!:', ~~nt hy node i along edge C and that 

Pi(C) records the sequence of me~~ag~$ r"t~ivNI by l~ode i along edge C_ 

h, the sequel I q [ denote8 the length of queue q, i.e" I q I denotes th~ nnmher of dements in q; 

For queues '1, q[nl deIlot~s the nIh element in q (1 :0; 11. :0;[ 'I [)-

The initial states of algorithm $ are described by the assertions Pj, j Eo V, defined below, 

For node k, Ph is d~fi'1ed as the conjunct,ion (,f 

- !ock=at·queu6k (cr, the djsw~sioll it, appendix III), 

- '1\'~\'~k""'';:; ;nfo(w) > (node k's queue c.ontain, only th" message inJo(w)), 

- ~donek (node k h<>s not been informed that the other uode$ have £c,ccived the info-

m"$$ag~S), 

- VC E E/.;, ~Nkl C) (nod" k has not recorded that it has received a message along ~Uly of its 

adjacent edges), 

- ve E Ed pdC)=<> /\ O"k(C)=<» (node k has neither se);)t <>nd n()r r~tCivcd messages 

along any of its adjace,lt edges), and 

Th,,~(V, E) A [ V [:2':2 (the graph (V,E) COnstitutes a tree and V consists of at lea,t two 

'lodes). 

1''01' nodes j different fwm k, Pi is defined as the conjunction of 

- locj=at.'1ueu~j (d_ I,h. discussion above), 

q1,e1"'j=<> (node j's queue is empty), 
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- 'VC E Ej.~Nj(C) (node .j ha.~ not recorded that it ha~ r~teived a message along <lny of its 

adjacent. .~dges), 

'Ve E: Ej .( l)j(C)~<:> II O")(C)=<» (nod~ j has neither sent ami nor received messages 

along any of it.s adjacent edges), a.Jld 

- Ttce(V, E) II 1 V I:::: 2 (see ah(>VI.-'). 

The Jillal st.""t..~ of algorithn\ B an: characterized by assert.io". qr rlJ '" If fI 1J3 holrls where 

If and rp (j f' V) are d.fined helow. 

For node k, th.:: a,'ertion If! is defined as tht conjunction of 

Tree(V, E) i\ 1 V 122, 

- vC Eo Ed Ph(O)=<», 

- 110 E Ek· 'N~(C), 

.... ~donek' a.Jld 

- Lhe .Iil;junction of 

• (lock="t-qv.fuek II quellCk==< info(lO) > i\ lie E Eh.( O"k(C)=<») 

(""thfied initiall.Y), 

• (IOCk=lk.l fI 'tU""".=<> II 'f0 E Ek'( O"k(C)=<» /I Vk = 10) 
(satisfied aft.er !lode k has removed the info-message from its 41H'1I<'), 

• (l<x'k=lk.2 i\ queuek=<> fI 'IC E Ed O"k(e)=<» II valk = w) 
(satisfied after nod", ~, has recorded the atguIl.cnt. of the info-message), and 

• (lo"k=at-queltek II qt&eltek=<> /\ 'VC E Ek'( O"~(O)=< info(w) » /\ 11"lk = 10) 
(,atisfied after node k has hro"dcasted the info-message). 

The assertion T"B i~ defined to express that uode k has hroadcasted the info-message. f'orrnally, 

we define TI! == IIC E Ek · o"k(C)=< info(w) ». 

For n(>d~o j different from llod~ k, If' i, defi!led as the conjunction of 

- Trec(V,E) /I 1 V 1:::;2, 

- 110 E; Ej.((Dj{C) =di$t(j,k)-l~ o"j(C) = < > ) A 

t\(Dj(C) ""dist(j,k)+1'* PjlC)=<»), 

I.e., if Ihe graph (V, E) is considered to be rooted at nod •. 1" then j does not send any 

message uptree and iL docs not r~~eive messages from nodes d()w[ltr~f'. 
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- VC E Ej.(Dj(C) =di8t(j,k)+1=>- ~Nj(C)), 

i.e., if the gra.ph (V, E) i~ ~On$idered to be rooted at node k, then node j canllot rewrd 

that a message has beclI rcc",ivtd from nodes downtree, and 

- the disjunction of 

• (locj=at-queueJ A queuej"" < > fI 
A vC E EV..,Nj(C) 11 vC E Ed Pj(C)=<> /\ o"j(C)=<») 

(satisfkd iIliti<t\ly), 

• (Iocj""at-queuej /\ 

/\ 3C E Edq,u:uej=< info(w), C > A Dj(C)=distU,k)-l /I Pj(C)=c< in/o(w) »/\ 
A VC E Ei.~Nj(C) A VC E Ej.(Dj(C) "" dist(j,k)+J=>- /Tj(C)=<») 

(s"ti~Bed after node j has received the info-message). 

• (3C E Ej.(locj = i),C,l A Dj(C)=disl(j,k)-l 11 (Jj(C)",,< infO(IQ) »/\ 

fI vC E Ej.~Nj(C) A '(fC E Ej.(Dj(C)=dist(j,k)+l;} O"j(C)=<»" 

A queue) =<> A Vj '" w) 
(satisfied after Ilodt i has removed the info-message from its queue), 

• (3C E Ej.(locj = Ij.C.2 /\ Dj(C)=dist(j,k)-1 A Pj(C)=< info(w) »A 

/I vC E Ej.~Nj(C) A VC E Ej.(Dj(C)=dist(j,k)+l-=? <>"/(0)=<»/\ 

1\ qlleUej =<> /\ valj = w) 
(satisfied after node j has rccor,kd th€ argument of the received info-message), 

• (3C E Ej.(locj = /j,C,3 /\ Dj(C)=dist(j,k)-l 1\ Pj(C)=< infQ(wJ > 1\ 

A i'TIbranchj = C)A 

/\ ...,Nj(inbranchj) 1\ vC E E;-(Dj(C)=dist(j,k)+l=>- (Tj(C)=<»A 

A queuej =<> A valj = w) 
(satisfied ;tit"'r Ilodo: j halO re~(l~ded the identification of the edge along which the 

info-message has been received). 

• (3C", Ej.(locj = Ij,c,. II Dj(C)=di#(j,k)-lll Pj(C)",< info(w) > /\ 

1\ inbranchj = C)A 

/\ Nj(inbronchj) A VC E Ej.(Dj(C)=dist(j,k)+l=* /Tj(C)=<»A 

A queue) =<> A valj "" w) 
(8atisfi~d aIter nOde j h~ re~orded that it has received a message along the edge 
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1\ N.;(it//),·an<:hj ) 1\ '"IC C EJ"(Dj (C)-=disl(j,k)+l7 O'J(C)~< info(,.D) »A 

1\ (J1M,"IWj -< .. :-~ i\ u(1,i} - 'Ill) 

(satisfied after node j has broadcasted the mfo-message along "ll ",lj""""t ,,<1gl:" 

cxecpt the one idcntiflcd hy 'iub!'unehi)' 

For nodes J rlilfer~nt from k, the "ssertion TiB is defined as: 

:rt = JO C Ej.l{)(·j '-' IjP.il, whi"h i, s"'-ti,hed ;,fter no,le j ha~ bto;,dCil.Sted the info-lllessage 

along all ;,dj~ent ("lg,,~ .;,,,,,,,,,1. the one idenl.ified by inbratlcil j , 

Verifying the conditions (a) through (f) of appendix II for proto(:Ol B i, straighU<lrward, i.e., 

on" <:elll "",ily "st"hlisll t.ll"t. 8 sat <; {Pj I j ~ V'}, {If I j E V'}, {if f\ 'ljB I j (- V'} > holds. 

This can, e.g., be accolllplished by tedlniques des<Tibed in IMP83]. A, an <::xamJlI<: of how to 

jlH>V<: th,,,,, COIl,lit.ioIls, we shnll ,h,)w t,hat c(nulit.i<'>n {I:} i,; ~a!,i~fiNl. I.e., it must he shown that 

for ",ll .tat,," ill ally <':oHlpntat,ioll sequen,:e of [J, 

(') If f\ ~yP (j in V) implies that at least one action in algorithm B is enabled. 

l3..,low it is nOSllm..,<l t.h"t, ""n,lit.'o,,); (a) and (b) (0"" a.ppc",lix H) ha.ve already been proven. 

Choose some node j in V. 

By inf.b.l~·tioJ1 (Hl di~t(j .).1) W~~ shall lU,)W !;ihow t.ha.t 

(**) if if f\"TP holds, thell there exists SOlll€ node j' satisfying dist(J',k) 'S dist(j.k) for whkh 

at. l(~ru;t OlW of itH own rU:t.iOIlH iH i.~Tlahh~(1. 

'fhis, obviously, implies property (*) ahove. 

JJasis of indu(tion: di,'t(j,k)=O holds. Th\l~. j = k h,)ldh, tno. Under the assumption that 

If f\ -,yp holds, it follows that. at. least one of node k's own actions is enabled. Obvio\l~ly, (**) 

above is satified in this ca.~e. 

Induction hypothuis: for ~n n<.'d~, j, if If II ~TP a.Ild <iist(j,k)=" ~O hold, then there exists 

~{HI1e Iu.){h~ / sat.isfying d'i.'ft(/lk) ::; n for which a.t least one of its own actions is enabled. 

Induction step; assume that dist(j,k)=n+l hold,. Thi~ irnplie$ th,,!. j 'I' k holds, too. Note that 

If II ~TJB impli~~ t.ha.t. ~JC E b'j./m:j = !()(:j.c,s is satisfied. Also, for all C E E j , Pj(C)=<> 

holds, i.('., [\0<1<, j has nol. received any lllessage. If node j can perform one of it, actions, th~Il 
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we are done, since (H) clearly holds. If node j ""'lnot p<:rform '>ny of its own actions, then it 

follows that for node j's adjacent edge C satisfyil.g Dj(C) = (li8t(j,kJ-"l, ~ay ,>djacent to node 

C, (T/iC)=<> holds- From the invariant If, we then obtain that/lp i~ ~M,i~!ied_ (U) above 

IlQW follow~ from the induction hypothesis and the fact that dist(f, k) < d'i8t(j, ~,) hold~_ 

For algorithlll C the pr<,cOII[litio[l$ ;).II; $p~dfi<:d by the '>SsertiollS qj (j E V) defined above. The 

post(:[}IIdition~ 3T~ ~h3l:<V.;teri~ed by assertions rj (j E V) described by I'j "" If II If _ Th" 

assertions t; and Tf are defined below. 

For node k, the assertion If is the conjunction of 

Ifn,(l 5 1l 51 queuek 1=0-

=:.- ::IC E Ed'l~,;~,e~[nl =< (-'('k(w) , C > II Pk(G)=< ack(w) > /\ II~Nh(C))) 

(any element in node Ie's queue consists of a messag" mmp')[l(ent, ack(w) and an edge 

c.omponent_ The latter component records the identification C of the "'d~ alOllg which 

the u.c/o-messag<, has beell re(~ivcd, Moreover, ~NdC) hQld~_), 

\/n, m_(l ::; n < m::;1 queue~ 1=0- queuedn] f- queuedml) 

(each element in the queue is different from any other clemeilt in that 'lllelI~), 

- valk '" Iu II Ttee(V, E) II 1 V 1 ~ 2, 

\/e E Ed pdC)::;< ack(w) » 
(node It can receive at most Olle ack-message alOIlg any of its adjat/,nt ~dg('s), 

- 170 E Ed crdG)=< info(w) » 

(if node k has recorded t,hat it has received a mes~age along a cert,ain edge, thep this 

message h'>S been received along that edge), and 

the diijjl.lndion of 

• (loq",at-queuek II (,donek .... ::IC E Ek.,Nk(Cj)) 

($at.i$lied initially. It a.I;;o holds wh"""ver lock<=at-q'lj.e~~k i~ ~"ti,fied), 

• (OlC E E..(IQq = 1.,G,4 /\ ..,NdC) 1\ P.(C)",,< ack(w) > /\ 

1\ 1711,(1 :5: Ii :5:1 queU€k 1-> queuek[lI] #< ack(w),G ») 
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A -,danek) 

(8atiofied after node k ha.!; removed an ad~mcs~ag" fWnl it.s '1,1(,,,o), 

• (3C E Edlock = Ik,c.5 A Nk(C) A pk(C)=< ack(w) »A ,Jonek) 

(~at.isfkd aft.er node k ha.!; re"'-)T(kd t.h,: i<iCIlt.incat.ioll of the edge along which the 

ac/rmessage has been received), illld 

• (:10,,= Ek-(l(>('k - 11:,a.~) 1\ q')E"',ek =<> 1\ --.do'fl,q 1\ 'Ie E Ek.Nk(C)) 

(5atisfied aft~r node k ha~ passed t,he test VC E Ek,Nk(C)- Ohoerve that, if this te,t. 

is nol. passt~d, then the disjunct above for which lOCk =at-qU€t,el; holds is establhhed­

The same disjunct is also established after node /., I"," I'"rf,;rm;:d t.1t" ",,,igIlmcIlt 

dOfl<?k' =t~lle_) 

The assertion Tf is deJilled by T[ == dOf,ek' It holds after nod~ k has received the iDJormati<.", 

t.h'Lt. all ot.her !lod", ill t.h" ,,,;t.wurk hav" i",ked rcccived the ;nfo--message. 

- Thee(V, E) A 1 V 1~2 1\ valj-w, 

:JC,,= Ej_(C - inllCQ"ch j A Dj(C) "-' d;"t(j,k}-l) 

(tile vatiable ;nbnLnd'j ha, a defined value. The edge identified by inbranchj is I,he (m(' 

on the shortest path from node j to node k), 

Nj(inb,·tmd'j} 

(node j has recorded that it has received a message along the edg<i id""tifkd ~ly in/m",chj)' 

IIn_(l S n sl queuej I=i- =iC E Ej_(queuej[n] =< <u:k('w),C > 1\ -,Nj(C) 1\ 

Pj(C)=< (lck(w) ») 
(d_ rr ab/)v<i), 

- vtI,m.(l:<:; n < m:<:;1 queuej I=:>- queuej[n] i' queuej[m]) 

(d- rr above), 

\lC E Ej.(C i- in/JrlLTu:hj =; "j(C)=< irtfo(w) » 
(nocl~ j has tran~mit.t.ecl an info-message along all its adjacent edges different frOlll the 

edge identified by inbranch,), 
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.. VC E' Ej.(C;f inbranchj "'I- pj(e):=;< ack(w) » 
(node j C(UI receiy~ at rrlost Oli", (1Ck-111~SS(!.g" al011g its a.dja.~':'lIt "'dg~s differcllt fr0111 th,:, 

edge identified hy inbranchj ), 

- pj(inbrat~chj) =< info(w) > 
(node j has received an info-message along the edge identified by inbranchj), 

- <Tj(inbT!1.T!chj )S,< ock(w) > 
i.e., node j sends at most one ack-me55ag", along th", edge identifl¢d by inbranchj, 

- VC E Ej.((Nj(C) II C f inbranchj)* p}(C)=< rlck(w) > 
(for all edges C different from the edge identified by inbranch) the follOWing holds, If 

node j has recorded that it lias indeed received a message along C, then j has received an 

uck-message along CJ, and 

- the disjunction of 

• :lC E Ej.(locj = Ij,c,6 II C = inbranchj) II o'j(inbranchj) ""<> II 

II vC E Ej.(C 1- irrbranchj =:- ...,Nj(C)) 

(satisfied initially), 

• (:lC E Ej.(Iocj = Ijp,!) II C = inbranchj) II I7j(inbranchj} =<»11 

1\ vC E Ej.(C "" inbranchj) II queue.j =<» 

(satisfied after node j has passed the lest VC E Ej.Nj(C)), 

• (lOC) =at-queuej) 

(satisfied aiter node i has transmitted the uc~message along the edge identified by 

·inbranchi ), 

• (:lC E EAlocj '" IJ•8.0 II Dj{C) '" dist(j,k)+l II ...,Nj(C) II 

II \In.(1 S n:::;1 queuej I~ queu<"j[n] 1-< uck{w),C »)) 
(satisfied after node j has removed an ac/t·message from its queue), 

• (3C E Ej.{locj = Ij,9,c 1\ Di(C) = dist(j, k)+l II NI(e)) 

(satisfied after node j has recorded that it has received a message along the edge 

id'''Dti6."d by the edge component of the most recently removed message from the 

queue), and 

* (:lC E Ej.(loCj '" lj,lo.c 1\ Dj(e) "" dist(j, k)+l II '<IC E Ej.Nj(C))) 

(satisfied after node j has passed the test VC € Ej.Nj(C). Observe that if this test 
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is not """""d or if an aek-message is tra.n~mitt",l by nod~ j along the edge identifi,,,l 

by inbr,m(.'h j , th"n the the assertion If is pr~!(:rv"d. It b also preserv€'d if nod.- j 

r~(',e~ves an a(k-nl(~~~agc.). 

For .i ;t ~, we define Tf as 

Tf =<7j(inbranchj ) -< "d:(w) ;-.- AVe E T;;j.NJ(C). It holds after '10,1<-: j has sent a message 

"-long th .. edge ide11liflctl by ;n/Jrand!j. 

It (:an be shown t.hat C 5at {rf 1\ T}' I j f V'}, {If liE V'}, {If 1\ Tf I J f V'} > holds (d. 

appe'HHx TT). 

E"tahIiQhinv, the verification c",,,liti(l"~ (3) through (6) formulated in a.Jlpendix II is straightfor­

watt!. Obvi(J,,,]y, verification (OIl(litioIl (3) h trut:. As an example of how orw ("mid e~tab!ish 

the other (olldi(io"" w(" "hall ,how how the lilst disjuIlct of COIl<liti')rl (4) can be ShOWll\O hold 

for noM ~', i.e., we shnll 8how t.hat (U~('ble.d(If 1\ ~TF, ISf) hold~, 

T\1 order to do ~(), 'Wt",,, that if Iff 1\ ~TI! hold~, t.h~n "n actio" in (,he ~et fsf Call be cIlabkcl 

onl'y if /O<:h-nt-qll.e1t'k is satisfied. ·l'h" lat.t"r impli~s ,hat, only actions by which au !u:k-rn.:SHas" 

is rCIlwv"d from node k's message qul",e (a.r, b~ enabl~d. If! ;\ ~Tk6 implies, however, t.lla.!' k', 
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Abstract: Correctness of th" di~tdbuted minimum-weight. spanning tree algorithm of Gallager, Hum­

blel, ill:J.d Spira [GHS83] is proved. Two kinds of (slight) optimizations W_Lt_ the number of transmitt<:d 

messages during execution of the algorithm are proposed. A source of failure of the algorithm is de­

tected and corrected. The COrrt)ttne~s proof exemplifies our principle for sequentially phas~d rea.<;(ming 

about concurrent programs [SR89a, SR89bj. Our proof illustrates that correctness proofS of complex 

algorithms can be structured according to their designers' jntuitioIL 
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1 Introduction 

Ever ~in("~ Floyd [F'f)7il'roposcd his method fOI verifying (s"quential) programs, repr(:Htnt/:d by means 

of fi,)wdli1rt" variolls proof methods have )"'t:Il presented in the litera\.\m: [AFIum, H50, L83, Me81, 

OG76, ZRE8!), Z8\l], li.r rCi1~Ollillg about sequential aUlI dish'ibuted prOgl'ams-

Proof n;let.h<-,d~ <'all, in t;''''''T<,I, L~ d<~ssified as compositio""Z OIles, such as tho,e in itI69, L83, MC81, 

ZRE85j £Iud in [Z89), in whkh I.ll(' spN-ihti1l.ion of a program i, verifi<:d On t.he basis of sp~dft.('at.i<)Ils of 

its constitu"nt. WmpOne,lts without ,ef~rring to t.ht· illternm construct,ion of t.ho,,, Wlnponents IZ89], 

and as non-compositional on~s, su(:h <I, t.hose ill [AFR80, F67, 0(;76]-

Examples of the «pplkiihilit,y of t.he laHer mentioned verifit:ati(lIl IIlNhods illustrate, al",ost. wit.hout 

exq:pti()n, th"t th" """.o,ling about a progrom t,LA:f.R 1'1i1<:'~ afler that program 11.(18 /",,,,, "6,,~.tr'ucted. 

Th" tedlIliqnt of transformational pu)gr;;;lIllIlin!! [B1{83, CM88, D76, PSIl] h"s also l'eceived a 10\. of 

attelltion. This technique adv()<:at.ts deriving a program, otartin!; frOlll SOlne formal specificati.-.,., b'y 

sucC(~~sivdy applying conec.tness pr~;!i.F.rvlng tranSfOl"lllalion p:dn('.i:pl~~. The pn)gI"dIll\ thus ohta.inf:rl, 

,,,t.i,ft.,,, (hy ,khnitioll) the initial ~pecifi(:ation_ As a tonsequen(€, t,h~ t.~dlltiqllc of transformatioual 

prOgJ:<Ul)ming ,'(,-n I,,' viewed a..~ a verificatlol) tee_hniq"", wi""", Ihe program to be 1J1't"",d correct is 

derived. or construded, il1,rill.g it., 'vo,-i/ication phase_ It en('-bks Olt<) to develop a progTiLm (1nil it. proof 

hand.in-hand, 'With til.<,' pr'w! idc<lS leading the way [G81]_ 

R~('~Tltly, wt: haw: proposed in [SR89a, SR8\)!>] a transformation p)'indpk for sequentially ph(L~,d 

n:""olli,,!! about concurrently performl:iI (,"b)tasks in network algorithIll~_ Tha.t is, if a certain ta;;k to 

be performed by prou:~~c~ in some network can be split up, from a logical point of view, into several 

$l1bt.askl; as if they are perfo~m"d o~q"""t.ially, then our principle descrihes how one can combine t.he 

programs solving tl", ,,,hl.asks ill order to obtain one pr()sr;yn which solves the whok task. (Viewed 

as i1 proof principle in som~ proof 'ystem, any such proof ~yotcm is i1 nOll.compositional o[lc.) From 

an 'l."alyzer's or from a desigJ1er's point. "f view this kind of dee,omp,,"it.ioll of a task into wbt",sks is 

quite attractive, ~in",· it. al](lW~ him to concentrate on it Si[lgle subject at a tim!?_ 

A iarg¢ numher of complex network algorithms, such as those for minimum-path, connectivity, ndwork 

How, ;yul minimum-weight spanning t,rc~s described in [Hu83, MS7\), 8c82, Se83, Z880), ;U¢ st.ructured 

according to our principk 

As shown in the pre8ent 1"1[","', th" complicated distTi~lIte(1 minimum-weight spanning t1'<'<' algorithm 
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Of GlJ.lIlJ.ger Humblet, and Spiro [GHS83] i~ al80 Btructured a~cnrding to this principle_ 

Probably the simplest network algorithm in whkh one may dC~C)IT\poS€ the design of a program, or 

the r~<lJloning about it, into ~ubprograms as if they are performed ~equentia11y is Segall's PIF-protocol 

[Se83], al~o 5ee [DS80] and [Fr80], which is a broadc~ting protocol. III this algorithm, the whole task 

perfonued by the pro~esses in a certain network can be described as follows; SOlll~ value w, initially 

recorded by 80me process k is sllpplled to all other prO~esses in tile network, and k is inforIIlt,d that 

all nodes have recorded thi$ value indeed. 'This task ~I\ll be decc)Jnl'osed into two subtasb ~ if they 

ar~ performed sequ~Iltii!.lly' the first sub/ask ht"Oad~asting the value ,~, and the second "n~ reporting 

back that t.he processes in the n~twork have received and recorded ow. 

The sanle kind of decomposition can a.Iso he discerned in the diotributed minimum-weigh •. spanning 

tree algorithm of Gallager, Humblet, and Spira. [GHS83], whid. will fwm now 011 he abbreviated 

to Gallager's algorithm. Hcre one may decomposc the whole task of mnotructing the minim urn­

weight sp .... lIIing tree of a network into five (sub}tasks. Apart. from the fact thM. the~e five tasks are 

performed sequentially from a logical point of view, that algorithm dir;plays othel' additiimal features 

(see section 6), e:l;plJ.nding groups of nodes perform the fiv<:, tasks repeatedly, with different groups of 

n,)der; performing these ta.>kr; concurrently w.r.t. Another, and a cert";n t;u;k performed by On" group 

of nodes can be disturbed tempomriiy due to illt"rf~rence with tile task of another grOllp. 

We define two other prindples for coping with these additional f"atur~,r;, One principle descrih~r; how 

to cOI~lbin~ programs which are cxc,;uted completely i"dcp<:nd<:'nt of each other, 1.,,_, when programs 

are executed concnrrently w.r.t. another :tI,(! no communication o('curs between two distill(.t programs. 

The second prilltipl<) describes how to deal with the above-l11ention,,(! kind of interfereIlc,,_ 

A~ argued in the sections 4, 5, and 6, the (distributed) program describing Gallager's algorithm, 

which will from now on be abbreviated to Gallager's program, can be deriv<'d frOm. a sequential 

program whith con~tructs the minimum-weight spanning tree of a graph. That is, On" can start 

with a. seqw:,gtial program that ton~tructs the minimwn-wdght spanning tree of a gr3ph, then refine 

parts of this program lmtil distributed programs are obtained (eadl Such PaJ:t corresponds to wm~ 

descriptioll how a ~e~tain task can be solved), and finally COmbine by means of Our l'rinc;iples the 

distributed programs found above into one program_ The final (distribut~d) pl'Ogram, thus obtained, 

is Gallager's- This particular strattgy has allowed us to find two (slight) optimizatiOnS of the program 

in [GHSS3] W_Lt_ the Dumber of message tr<Ul$mitted when t'Ox('cuting Gallager's program_ We have, 
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in 'ilillition, as a consequem'e of ()llr kind of reasoning, detect~d t.hil.t the program in [GRSS3] does not 

IH'''''li,aril,Y constru(,t the minimum-wI~ight spanning tree~ for ;uhitrat,Y graphs, (The r~ .. '<)n fot this is 

cxplained in se('ti(>Tl 6-) 

The l';r,t .. t.t.I."npt t.o prove correctne~, .,f Gallager's algorithm app"""' in [SR87]. The proof there is 

based on the ahove-mentioned kind of de(ompI)Kitions of tasks into S\lbl,ash_ There the principle for 

licqucntial phl\-~ed re~(ming It,\,!; be~l) identified as an Ind<:pcndent principle, but. t.hi' principle has 

not, I",en formulated no~ jU5tif)~(L C(mf,Njucntly, the proof In ISR87] should be considered iutomplete. 

Wekh, Lamport" "",,[ Lynch [WLL88a) have giv(", a COl'rectness proof ()f Gallager's algorithro 1)$ing 

a part.ial hierarchy of algorithm,_ Unfortllnately, their compld,' proof is a very lengthy one, cr. 
iWLL88hi. Chou and Gaf]]) [CGSS] have ;\llalyzed a minimum-weighl spanning t~~~ alg()rithm of which 

th,',Y dil.hn that it is a ~implilkd VCl'SiOIl of Gallager\_ They hat-e, however, not vetified Gallager"> 

al~orithm- (In ratl., the,Y have verified a f .. r "'"th simpler algo~ithm I.h;m Gallager's, d. sectiOn 4.) 

Th.: r(,,,,i!.i,lder of this paper i~ org,,"i~ed as follows: in .<'(:th)1I 2 we introdu(~ som" not.ation used in 

thi~ paper. We describe our prindpk for sequentially phased rea,()llillg about concurrently p<:rformed 

(,uh)t",h ill .eclion 3. The ha;;k features of Gallage~'s alg<)rithm alld of its correctneos proof are 

the subje<'ts of ,(,niOIl 4. II) section 5 th", formal specilication is p"",,"kd which Gallager's program 

silould satisfy- In oedi,," r. it i, shown that thi, i, the case indeed, filially, ~cctiol) 7 contains SO"", 
conclusions_ 

2 Preliminaries 

hi this section ,m'", notations and conventkm$, u~(ld throughout thi. papct, are introduced_ 

The \'eader is as,umed tIl he familiar with elementary notions from graph-tl",ory, such as graph5, t.reeH, 

and c:yd"., and with their definition. and propertie$ (of. [E79J). Graph$ are den<>tcd by tuples 

(V, E) (,on,i!;ting of a set of nodes V "-,,,1 a set of edges E- For graphs (VI> E,) and (V2, Ed. (V" 

E,) b (~;:ulcd a subgraph of (V2, E2 ), denoted by (Vi, El) <;;; (V2• Et). iff V, <;;; V2 and El <; E2 are 

hnth satisfied. If (V1, Etl <;;; (V2. E 2 ) holds <IDd if (Vl, £1) constitute6 it trce, then (Vl. Ell i$ called 

a subtree of (Vl' E2)- The graphs (Vi, Ed (l.IId (V2 , £2) are distiIld, denoted by (Vj, El)~(V2' Ed, 

iff V1 f- V. QT E I ~ E2 is satisfied. In the sequel i, j, and k, P06$ibl'y primed or inde"",d, will denote 
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nodes; edges will be denoted by e and e'. For a graph (V, E) a.nd a node i in V, the set of all edges 

adjacent to node i will b~ do>noted by E,. lIereafter, EiJ will abbreviate the set E; n E j , Le., Ei,j 

denotes the set of all edges connecting the IIodes i and j (i, j E V). 

The distributed algorithms consid~t",d in this paper w:e performed by processes in a fixed, finite, and 

undirected network which will be represented by a graph (V, E). Pro"c,,~~:~ are identified with nodes 

in V; Communication channels are identilled with edgeij in E. Adjacent nodes communicate by means 

of messages. Since edges are undirected, each node can both send and receive mc"sag','" along <lIlY of 

its adjacent edg"s. COmmunication is asynchronous, i.e., messages ttansmitted by ijome nod!;' along 

one of its adjacent edges always arrive within a finite, but unpredictable, time frame at the othet end 

of that edge. Communkation i. a.o~umed to be perfect, i.e., messages tra.nsnlittcd by SOme node along 

one of its adjacent edges a.rtive in $eql.lC,lce, enor-free, without loss, and without duplicatiOll at. the 

other end of that edge. 

3 Our proof principle for sequentially phased reasoning 

w. now pr",~ent our proof principle which states that one can teason sequentially about concuTTently 

performed (~ub)t<l"il<;s- For a fully worked out illustration, applied to Segall'a PIF-pr(ltocoi [Se83], the 

reader is referred to [SR89bJ. 

3.1 Notation 

We consider-distributed aJgOtithms which axe pedormed by nodes in a network (V, E). A distributed 

algorithm 1) is represented by a triple < V', {Pi liE V'}, ActD >. V'S:;; V denotes the set of nodes 

containing aU tnose nodes that actually execute the algorithm; This implies thaI if some node in the 

set V' sends a message alollg one of its adjacent edges ~ when it ",xecutes algorithm 1), then the node at 

the othet end of ~ is in V', too. Pi (node j'$ precondition) is a state assertion characterizing the initia.i 

values of node i's variables and the initial contents of nod" i's adjac~nt edg~s; Act1) is a set Of (atomk) 

actions containing ail those actions which can OCCUI in any wmputation sequence of the algorithm 

(ef. definition 3.1 below). Each action (t in the set Act1) has some enabling condition en(a) associated 

with it. Such a condition consists of a boolean e~pression OJ: of a boolean e;xpre$sion ~ornbined with 
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a r('t~iv(,-st,akmcnt (c[ [H78]). (Tn th~ t~dlllit;,.I fOtlnulation of our priIlciple, see section 3.3, th" 

h<)okiUI l'iU·t of th'" enabling condition of adi'>II (1 will be denoted by bl'((I).) Moreover, the set ActD 

(~iUl be pMlitioned into set~ A~tP ~llth that each Act? con5i~t" <i ;,.II actions which can b~ ~:wtllted 

by node i (i E V'). 

Definition 3.1 Let P- < V', {Pi Ii", V'}, AdD> be an algorithm. A Nmlp,ltation sequen"" of 

V i.1i .rl rnaxiIHHl sequence So ~Sl ~3:.! ~ , • ~uth that for all n ~~ 0 th(:~ following is satis:6ed~ "11 

is ,,\. sta.te, e~dll)i (i E: VI) hc .. ld~ ill state SUI a1~ O('C,Ufj in tlu~ ~N. AdD, action Q'.n iii (:I1H.hl(:d in state 

..;-in? Le_ , (,'/'r~':;: c.~lldbliI).g condition. hold8 in 8)11 azul .'In+l is the state res1.dt,ing Wh('~Il a,(tiotJ. an is exe(~utt-1"d 

ill state s". (As u5ual, a ,:(,rnpllt.atioII 8equence is considen,d t(J be maximal if it 15 infillit,(" OI if it is 

finite and no action in th", 'd At:t;'D is cnabled in the la5t ,tat~ of the 8equence,) • 

Th~ r~aWIl for allowing the first ('omp(lIl~'nt V' ill the triple abov~ to 1,,~ a proper subset of V, i."., 

the set of all nod,,, ill t.h~ 1I~t:work, is that in Gall"g~r'" ;,.Igorithm the tash which we ailaly~e are 

.,ot performed by a fixed gTOUl' of nodes. More pred~ely, I,h,·", ta~b ate performed by dYIliUlIltally 

dI'\.llgill~ groups of nodes. As a (:()[lH<:<jlU"lt'~, we explicitly indkat~ in au algorithm whkh nod~, Ill,'y 

a<'tnally lI" iuvolved in the ex€(:ution of ;<II algorithm. 

We condvd", thh snb,,,.-tirHl with the following: 

Definition 3.2 Let j be some node in V', (V' d~n(Jtc~ the first component, iII ;,.Igorithm P, see above). 

Loot • .' <1"llot~ ~ome edge adja<:ent to nod(, j and to another node i ill tit" ~"t V', 

(a) Intp C; Actp denote, \hl.' ,d, ()( Ilode j's internal a(,tiolls. 

(1:» Recp(e) <; Actp d,,"(,tC' the set of node j's !'(:U(llIH which hlvolve the re.,,,,ipt <",fa Inessage along 

edge eE Ej . 

(c) SenF(e) C; Act? dellot,," thc set of node j's !'ction$ which involve the tr!'nomis~ioll of a message 

along edg,' ~:E E j , 

(d) Hereafter IS? will <icnote the set of node j\ internal actions and those actions which involvt, 

the triUISmis~ion of a message, Le., IS? = 1r~tp U U.~E, SenJ'(e) .• 
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It is assumed th,u f,)r <.'«~h algorithm 1) as ab(>v<~ t.h~ :;~t ActP can be partitioned into the (possibly 

empty) :;ets Intp, Senp(e), a.nd R€cp(e) (j E V', <' E E;,j fOJ; some node i E V'). 

3,2 Correctness fOl'inulae 

Let V= < V', {pi liE V'}, ActD > b" an ;;.Igodthm for which th(: th,·: following should ho\d; Ewry 

finit~ computation sequen(~ (,r V ~nd:; in a state satisfying mme (given) state ass~rti(Jn, qi (i E V'). 

I.e., algoI·ithm D i:; oupposed to solve a (suh)ta.'k described by the pair of ,t«te assertions {Pi liE V'} 

(the preconditions) and {'Ii liE V'} (the postconditiOIls). 

We now introduce correctness f(JrI!lul;w of the form 

TJ sat < {rj I j E V'}, {Tj I j E V'}, {'Ij I j E V'} >. Here l i , Tj , and qj Me state MSCrtioIli;' A 

correctness COlIlluia a.~ «bove is valid if for eveq cOlIlputation sequence of D th~ following hold; 

• For aU j E V', I j holds i,l <'a.(:h $t,4e of the sequence. 

• For ;;.II j E V', Tj holds iff I,od~ j will not e;l(ecute any action in ActV anymore. Tj is call"d 

node 1'5 termination "Muliti(lfI.. 

• FOr all j Eo V', 'Ij holds when and if nock j ha~ ('ompleted its par-tidp"ti"n in V. 

A t(.rr~(tn"'ss formula as above ta.ll Iw characterized in linear tinl" t~mporallogic [MP83j. This i~ t.h~: 

subject of ddinit;(Jn 3.2 below. We have llscd th~re, i\J; in [88841, au:!:;I;,,"y proof variables "'j(e) and 

pj(e) (for nodes jE V' and for edges e E Ej). They arc ll~cd for reasoning about cOIllnlllIlka.tioII. (Tj(e) 

",cord, the sequence of all I1'<l~sag!:ij transmitted by node j along edge €; pj{e) records the sl:'l1l<:n(C{: 

of all rnessagc. n:(,,,,ived by node j along edge Ii. F'or node~ i lind j and for edges "E Ei,j, the property 

pj(e)SCI'i(e) is preserwd hy <my action, see [8S841. That is, if edge e connects the [\Qdc~ i <md j, then 

the ~\:q\len.~e of all messages received by node j along edge e is a prefix of all me~!;ages transmitted by 

node i along edge e. These auxiliary pr()(>f variables are changed when a node transmits Or rcCCiv(,> 

a message; they arc not ~ha.nged during the execution of an internal action. (All internal M,tion does 

not involve any communication between n(Jdes.) 

For a certain node jE V' and fot a cert:lln edge e adjacent to j, action a E RI:cp(e) is enabled (recall 

that R;,,(:P (f) h<l$ been introduced in definition 3.2) iff the following holds; the boOle:m part bpi a) of 

action a '8 ena.bling condition is true and the sequence or all me~sages received by nOlk j ;;.long edge e 

is a prop"r profix ,,f I.he 5equence of all messages trar'>Irlitted by the node at the ath;:r end of edge e, 
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Fonn«lly, for sll~h an action ental hold~ iff bp(a) 1\ pj(e)<(Tk(e) is satisfied wh~re k is some node in 

V' Hllell that e f Ejk 

Of course, for a.ny ad.iOn <i E I Sf the en(l.bliIlg condition en( a) of " is the same ao; th" boolean part, 

of thh "Il"hliIl!; condition, i.e., en( (l)= IJp( <i) is satisfied. 

Definition 3-3 'Th€ ,'()rr<>t/.Ili'"S formula 'D sat < {ij I j f V'}, {Tj I j E V'}, {qj I j E V'}, d. 

abov,~, i, an abbreviation of th~ ('oIljunction of the condit.ions (aJ through (f) below. (Some ,)f these 

conditions are reduIId"nt. The'y have been hld\l(led in order to formalizl" the intuition hehind such a 

corre(.tn,'~~ form1l!;' ill a natural way). 1'h(' cOllditions are interpreted over all ('ollll'"tation seqnen(:", 

of D. (Bdow 0 denotes the a.!ways-opcrator from temporal lOgic.) 

(a) Vj E V'.O(prcr "". If) 1\ Vj,;', E V'.'1e E EjkO(pr/P '* pJ(eJ-s q.,(f)). 

That ls, initially t.h" "",,crhon IP holds for all llodes j in V'. Fllrthcrmore, the H~'l"Cn(e of all 

ITI""'''r;('s rc~eived by a certain node along any of it.H adjacent edges is a prefix of the seqn;onu, of 

all messag~, t.ril.Ils"litted by the nod", at the other end of I.hat. edge is satisfi",d initially. (From 

the di5(.\IH~i{)n abM" it follows that th" property 'Vj, k E V'.V. E E,,j.pj(e.)5 O"k(") contin\lonsly 

holds during execnti')ll (,f algorithm P.) 

(b) 'Vj E V'.O((IT i\ -,rp)U(Ip 1\ TP)) . Here U denote8 t.he weak-until operator, cr. [MP83]. 

W" t.llll~ h;lVe lhat I p is an invariant and for a.!l computation seq\lenc;~. of D "node j p<\.It.icirates 

ill thr algorithm until it hil.~ completed it., p<U"ticipation". 

(e) '1j E V'.Va '= A(,tp.O((IP 1\ TTl =,>- ··":Tl(a)). 

(For actions a, ental ha;; b~""l defined above.} I.c., if a certain node has compJet~d its partici­

pation in algorit.ilIlI D, then it ('(l1lnot perform any a(!t.io,\ associated with D anymore. 

(<I) "t/j '" V'.o(Up i\ TP) :::::. O(IP i\ TFl) . 
That is, once a nod" ha" completed it,5 p<U"t.icipation in D, t.h"n it will never pa.rticipate in t.h" 

algorithm anymore. 

(e) Vj E V'.o(UP i\ -,TP) -=,;>(30 E ActV.cn(a))). 

If a certaip node has not completed it.s participation in fIlgorithm V, then 1) cannot be completed, 

i.e., at le<l!;t. "lie action in ActD is enabled. 
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(f) 'Vj E V'_O((IP A 'TF) =} postp). 

I.e., if node j has completed it.s paxticipation in V, then j's postcondition holds .• 

3.3 Description of the proof principle 

Let A",,< V', {prert liE V'}, ActA> and B_< V', {prep liE V'}, A~tB > h~' l.wo algorithms. Let 

A solve th", subtask d~suih~d hy the pair of assertions {pref liE V'}, {pre? liE V'}. Let 13 solv!O 

1.1 .. , ;;l~ht<l!;k described by the pair of assertions {pre? liE V'}, {pORt? liE V'}_ Assume that we 

have shown that for Cert.ain $t.at¢ a.'s"rtion~ If, Jp, 'TjA, and 'TjB (j E V') 

(1) A sat < {If I j E V'}, < {T/ I j E V'}, {pre? I j E V'} > a.nd 

(2) B sat < {If I j E V'}, < {TP I j E v'}, {po8tf I j E V'} > 

both hold. If th", verificatioli cOnditio"s (3) t.hr01.lgh (6) h"low hold, too, then the algorithm consisting 

of all act.ion$ o~cu~rjng in A and B solves the task described by {pref liE V'} and {po.tf liE V'}. 

Moreowr, for all j in V', If V If is an invariant of this algorith .. ". 

More precisely, if all the conditiolls (I) through (6) axe fiati$fied, then fo~ the algorithm C=< V', 

{pr"rt liE V'}, ActAUActB >, C sat < {If V If I j E V'}, < {If ATf' I j E V'}, {post? I j E V'} > 
holds. 

As a preparation for the technical formulation of the '1ermcatiOll conditiollS (3) thtollgh (6) I.>~low, w~ 

first introduce an auxiliary assertion. 

Definition 3.4 Let P denote some state assertion. Let AO be a certain set of actions. 

Denne th" assert.iOn ai'(lbl~a(p, AC) by ai'(1./!l~fl(P, AC) ~ o(p =} '</(l'::: AC-~e~((l))-

ThllS, dis(lbled(P, AC) expresses that if l\lIse~tioll P holds, then all actions in AO are disabled .• 

The following conditions are required for a sound application of OUI principle, 

(3) Each of the programming variables occurring in pre-/" pre~, post~, If, If, TjA, and TjB is 

node j\ own vadable- If the proof variables n(e) or (Ti(e) occur in any of these assertions, then 

l=j and e E Ej axe satisfied_ (Vaxiabl¢s occurring in any of the above $.Ssertions can he changed 

ol;lly <I!; a ~e5ult of the execution of one 01 nod", j's actions.) 
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(4) lij E V'disabled(I/' 1\ -'TjA, ISf) II 'ii, k E V'Vf- E EJ,k·di8ablf-d( rf II ~Tf, Sen~(e)) holds 

for all computiition sequences of A. 

This condition states t.hat if a "ert<;l.in n(>de h"" not completed its participation in algorithm A, 

therl it can perforoolleither au internal action nor a se'ld-attion occurring in algorithm B (th.: first. 

wnjunct), and it Cilllllot r~~ .. :iv;· ""w"iige ",~,o"h,(,,,d with algorithm. B (the second conjunct). 

Th" l"tter i~ satisfied because if lhe node participates in algorit.hm A, th~n it iH rl'q\lirl'd that. 

none of its neighbors call send 1m,,!! rn€H~ag~s. Consequently, this condition ensures that if a 

cert,!!ill ,,,,d,, has not completed its participation i,l a1gotith,1l A, t.lt,," it CilllIlot. perfOTIll illlY <)( 

its actions asso6at<,d with 8. 

Of ,'ourse, we also rNluire I.hat 'w llode "III perform iiny ii,-,tion iio80dated with algorithm A, if 

it. is piirtidpating in algorithm (3, 

(5) 'ij E' V'.diSal)led{l}, II ',TP, [81') II 'ij,k E V/.'ie. E Ej,k.di8able.d(lf II ~T)B, Se.n~(e)) holds 

fOr all <.COmputation seqnenees of (3, 

(6) Vi Eo V'.di8abled(lf 1\ TP, IS/) II 'rtj,k E V'.'Q'e E Ej,k.di."bkdU}' II TP, 8enf(e)) h()ld~ for 

all computation sequencM of B. 

Th~r~(orc, "ad, n()d~ whi('h participates in both sub tasks participates in the first sub task, i.e., 

th~ one solved by algorithm A, before it, pArt.icipat,cs in t.he Second sllbt.ask, i.c., the one solv~d 

hy algorithm B. 

If, i,l ad(li/.ion, (me wiints to prove that the algorithm solving the whole task always terminates, then 

it suffices to prove tha.t. bot.h t.h~ algorithms A and B always tel"minak An algorithm :DE{A, B} M 

ahov.,: t.erminates iff for all j E V', O(ip II TP) holds for all comput.a.tion sequences of :D. Her",O 

denotes the eventua.i-op"'raU}r frelIT! temporallogk. 

How to reasoIl, according t,) thi~ ~tr"tegy, ahout an algorithm which solves a tMk that CaJJ. be split up 

logica.ily int.o more t,h"n two subtMks, as if they are performed sequentially, should be obvious. (This 

is a straightforward ext.ension of t,be case treated above, cr. [SR89a, SR89b]; It can also be achieved 

by repeatedly applying th~ ",hove principle.) 
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4 Basic features of Gallager's algorithm and of its correctness 

proof 

Gallager's algorithm is a distributed algorithm for constructing the minimum-weight spanning tree of 

a finite, undirected, and connected graph (V, E) in which each edge in E has some strictly positive 

weight associated with it, such that distinct edges have distinct weighh. In scction 4.1 we present 

two theorems, well-known from graph-theory, upon which the conectness of Gallager's algorithm i~ 

based. The essential. of this algorithm are described in sectiO);) 4.2. The struaure of' our correctness 

proof i~ presented in section 4.3. The di~cussion ill this section shows that both structured verifi(-<).tioIl 

and structured desi!91 of cOffiplelC algorithms can be achieved by decomposing the reasoning and the 

design of such an <).lgorithm according to its logical (sub)tauks. 

4.1 Theorems undetlyjng the correctness of Gallager's algorithm. 

Let (V, E) be a fillite. \mdirect<,d, alld connected graph (V, E). Assume that 1.1I:E-->I!t" is a function 

assigning weights to edges, where IR+ de!lotes the set of all real numbers greater than O. Furthermore, 

assume that 111 i$ an illjective function, i.e., th""t distinct edges have distinct weights. horn !lOW on, 

such weighted graphs will be denoted by (V, E, w). 

Correctness of GaJ4ger's algorithm is bl\!3ed OIl th", ~rr;i~t~n~" and the uniqueness of the minimum­

weight ~pa.IlIling tree of any such graph a;; above. 

Th"or",m 4.1 Given any weighted graph (V, E, w). There el(ists a \lniq",." miniffium-weight spanning 

tree of (V, E). 

Proof; The existence of at le.;wt one ffiinimum-weight spannillg tree of the weighted graph should be 

clear. To show the uniqueness of the spanning tree, we assume, in order to obtaill a contradidion, 

that there e;xist two spanning such spanning trees Tl and Tz satisfying Tl f. T~. Then, obviously, 

there eJdsts an edge OCCl.lrring i..o one, but not in both these trtts. Let e be the minimum-weight s1.1~h 

edge. W.l.o.g. assume that edge e OCCurS i..o Tl and not in T2. Now, consider the graph obtained 

by <).(lding edge e to the tree Tz. This graph contains a cyde. It follows th"t at least one edge 13' on 

this cycle does not occur in the tree T1 , since Tl is free of cycles. Note that e 1= 13' holds. Moreover, 

w(e')<w(e) holds, too. (Otherwise, removi!lg edge (:' froIn the tree T2 and adding e to T2 would yield 

a spanning tree of the weighted graph (V, E, w) with less weight tha.n T2 , contradicting that n i$ a. 
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lllillimlllll-w",ight spannhlg tree of (V, E, tv).) Removing edge e from I.ht tree '1'1 and adding edge e' 

to Tl then yields a sprumilltl; tree of the tl;raph (V, ,e, w) with It$" weight than TI . This contradict the 

""ILIIl»!.i(", t.h.,t ::rl ii; ,', u,iniul1llll-weight spanllillg tree of (V, E, w). We (ond\I,k that. there exists 

exactly one minimum-weight Spannilltl; tree of (V, E, w) .• 

Theorem 4.1 .. nsures the existence of a unique minimum-weight ijpanning tree of a weighted graph. 

How on(' ,,(mid "(:\1),,lIy (on,t.TIl(:t. t.hi, t.rc,' is suggested by theorem 4.2 below. As a pr~parat,iml for 

this theorem we define two notiollS that will be used extensively in th.., rernait.der of this paper. 

Definition 4.1 Cliv(,ll a w<'ight.ed graph (V, E, tv) as above. Denote by T th.., (IIni'lI1(:) minimum­

weight SPallllillg tree of that graph. 

(a) A fra.qment of T is some non-empty subtree of T 

(b) As~ume that f'=(V' , E') is some fragm~'nt of T. All ~dge ~EE is an outgoing dge of F iff on" 

of the nodes adjacent to e is in F and the othe~ ooe is not. In ot.her words, edge e is an outgoing 

(:d~(, of F iff the following is satisfied; for nodes i and j satisfying "E Ei,j' (iC V' 1\ j 1 V') V 

(i1 V' 1\ j E V') holds. (Cf. sedion 2 f(,r t.he iuterpretation of the sets JJJ;,J') • 

We then have the following 

TheorEIn 4.2 Let F'=(V' , E') and F"=(V", E") be two disjoint fragm"nts of the minimum-weight 

spanning tree T of a weighted graph (V, E, w). 

(a) If fEE is the minimum-weight outgoing edge of Ji" and~, is Mljacenl to F", i.e., adjacent to 80m;: 

node in F", then F'II=(V' u V", E' U E"u{e}l is a fragment of T, too, 

(b) T=P' iIT no outgoing edge of F' exists. 

(a) Suppose, in order to ohtain a.: (:ontradicti(m, that F'm is 110t a fragment of T. C<.m"'''l'u:ntly> edge 

e is not in the tree T. By an argument analogous to the olle in theorem 4.l, thi, lead~ t.o "­

contmdktion. 

(b) Clearly, T""F' implies that there are no (1)tgoing edges of F'. In order to prove the other 

implication, assume that th",re exists no outgOing edge of F'. S1)ppOS~, ill ordet to obtain a 

contradiction, that T f- P' is $i).t.i,fied. It then follows that there e;x;isM an edge c occurring in 

T and not in F'. As aboY<!., tilt cxisteuce of such an edge lead5 to i). (mtradictioII .• 
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4.2 lHgh-Ievel descl"iption of Gallager's algorithm 

From now on we assume some fixed weighted gra,ph (V, E, w). The minimum-weight spanning !.rcC 

of this graph will be denoted by T. 

A large nl)mb/;r of algorithms, both seque:ntial <U1d distributed olles, ha'le been suggested by thcor~rn 

4.2 (see, e.g., iD59, GHS83, K56, ZS80j). All these algorithms h"ve in cmnmon that they start with 

trivial fragments oCT, (OII$istiug of a single node (and, thu8, without any edges), and gradually enlaTg~ 

these fragments as described jn t.h~Or"nl 4.2 \.Intil T has been constructed. The algorithms differ in 

how and when fra,gments are enlarged. E.g., th", algorithms reported in iD59, ZS80] staTt with one 

pa,rt.itlliar trivial fragment and gradually cnlatge this fragment with one node <>nd onl: edge at a time. 

The algorithm reported iII [:K561 starts with all trivial fr"gments. Two fragments combine if they hav" 

the same minimum-weight outgOing edge and thi~ ",dgl' has the least weight among all outgoing <,dges 

of the fragments constructed 00 far. 

Gall",g",r\ algoritlun also starts with all trivial fragments in the graph. Fragment~ a,re combined into 

larger ones according to a more sophisticated strategy th"" th<)~~ Olles adopted in e.g., iD59, ZS801, 

""d [K56J; the combinations of fra9rn~nt. depend on sQ·ealled levels. Th", le~d Of a fragment of Tis 

(inductively) d~fill~d below. 

Definition 4.2 

(il A fragment consisting of a, single node, i.e., a trivial fragment, is defined to be at level O. 

Next assume that fragInent F is at level L. Let edge ~ be F"s Ininimum.weight outgoing edge. De1l0te 

by F' the fragment, say at level L' at the other end of e. When F and F' 3I~ di_joint, then the following 

is satisfied: 

(ii) If the fra.gments F and F' ate at the same level, i.e., L=L' holds, and if edge e is the roinim\lm­

weight outgoi1l\\ edge of 11', th<;n the fragme1lt formed by combining F and F' is defined to be 

at level L+l (=L'+1). 

(iii) If t < L' is satisfied, then the fragment formed by combining F a,nd P' is defined to be at level 

L' .• 

In Gallager's algorithm fragments only oombine according to one oCthe possibilities (ii) and (iii) above. 

If neither of these possibilities apply, then, from an operational point of view, fra.gment F simply waits 
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lIIltil ')n(' of th~se two 1'0,"ihi1iti~s OCCIIf'. Thi, ddoy does not lead to a. d""'<.lI()(k, i.e., if a fragment.~ 

waits for ... mi~ of the two pOA:.;ihilit.h,!;> ('J,bov~ to OCCur and thl',~ rninimurn-weight spillluing tn~i~ 110.5 not 

y<:t heen consttll('!.,'d, th~T( one of the pM,ihilit.ies shall eventually ()teur. 1'hi. is prov('d ill theorem 

6.1. A ""]I1""ti(11 descriptio" of GaU«ger's <1..I1(otitllm ib ,howll in figme 1 below. U"du t,I"'. ~."l1rnption 

whlk I:F III 
dQ :;(:kd ;:.;nm~ FI ( Fi 

lot F' .-.; (V',E'),L' 
ll)t~· Illininmlll-w~i~hl ul.ltguing ed.u:~~ of (V~, fiJ'); 
h,t F" .. (V", f;"),J.." >( :F ,"<:h th,u. (V", E") is aJj«nmt to c,(V", fJ") l' (V', E'); 
if L/ ~:: I,ll II t..' • minimum-weight out~uiHg edgE-' of (VII, ~.;II) I 
!h~,,:F: :F .. {V',F"} U « (v' UV",E'11 W'U{e}),L' I I>) 
elif L' <' 1./' 

th~":F ,. T (r,p"}II{.·.· (V'UV",E'uE"lJ {ej),L" >} 
II 

(I) 

(2) 

NotatioI:t; J: i~ a ('ol1l;'(:t,;on. of pairs cont.:-uning a. fragnl.ent (V'I E') ()f T a!; itli firf;it (:()mpouent 

I\.nd "olllal,liltg th" Iev('! of (V', E') ns ib; s<!(:oIld (omponent. IFI (I;!ll<)t,,~" th" {Cardinality of ;F. 

hliUally, F (Olt,i,(., of all trivial fragmc11t., having 0 I\.S their level, i.t., .F={<.({i}, Il), 0>1 i E V} 
1,,)ld~. 

Figure L A "''1\I~:Tltil\.l version of Gallag(!t'~ a1llorithrn. 

In the algori!.h",s reported in [DSf)] "-'HI iZS80] e~s€ntially one frag""~nt is ~:nll\.rged by appending it~ 

miIdmurn-weight out.going (,(Ig~ <md one node ndjaC(:Ilt 1.(> this edge, until T h;,~ he"l1 mnstn)(:ted. 

A. ~"dl, (:')T\~tlucting T is t(!"t.rid~d to a rather strong tequiH'IIl('nt, not taking into account, Ulat 

m(\.ny fragment. could bl: combined into lar{;"r fragm'mts independently of ot!t(:r "",:s. In l(ruska.!'s 

nlgc>rithm IK56], howevO",-, "J,(,ny fragments could be combiued iut" larg~r ones independently frol11 

"""h othel'. Yet, frngllll'Ilt,s aT,' (:omhined only if th~y haY<: th~ same minimum··weight outgoiIlg <:dge. 

(Although Chou imd Cafn' [CGSS] have clailI1Cd that. t,hey have proved the correctness of Callag~T'~ 

alg<)I"itillll, t,hey have, in bct., vl'rifkd a distributed version of kru~kal'H algvrithm.) In Gallager'~ 

algorithm ""'ny fragrrlents can, as in a di~tribuh,d ver~jon of Kruskal's algorithm, hI' cOmhined into 

huger ones aSYlltilronvusly fl0m each Oth~L M(""(lv~r, ", discussed above, two fragment$ lIlay wmbiTlt 

",-,metimes, too, ev(", wit"" j,heir minimum-weight olltgoillg edgeH do not coincide. Conseqw'lltly, in 

Gallag~r's algorithm far more nondeterminism, i.e., ,IIOre dilh'H~nt intedeavings, has been introduc<:d 

than in those othet alg<},-ithIJl5. 
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Th" ;,.dditiOn,,1 amount of nondetermillism, on t,he other hand, obviously cOll'plicate$ the reasoning 

about Gallager's algorithIIl, bp,cause of the vast nU1lIber of g'·.nerakd computation sequences. Con~l'­

quelltly, for any correctness proof of this algorithm ~ome particular strategy must he adopted in order 

to obtaiII a tr<'llsp",~nt proof. Our strategy is the f"Uowing one: 

(A) First de8ign, .taxling from the program in figure 1, .listrihuted aJgorithms which det"rmin(, t.h~ 

minimum-weight outgoing edge of eath of the fragments COIISttutt~d so far. 'rhls part of the 

strategy corresponds to refinhlg the .t"t~ment labeled (1) in the progrflIl:l ill flgme 1. (How 

to acco1llplish stH,h " 1dinement has been descrilled by B""k [E88] and by Chandy arid Misra 

[CM88]_) 

Part (Al which deals with finding I.h(, minimum-weight outgoing edge of a fragment (V', 

E') carl be splil. ,11' int,o finding such an edge in case 

(AI) [V' [",J holds, Le., (V', E') is a trivial fragm~nt, <Uld 

(A2) I V' 1>1 hold" L,,_, (V', E') consists of at least two node"_ 

Formally, this case-distinction can be achieved by a casc-int!'Od'lu:tion [P89]- The intuition 

h,:hind thIS case-distinction is the following: A fragment consisting of a single IIOd" tan 

determine its minimum-weight outgoing edge by a simpl", table look-up wh~n eac-h node has 

a local tablt' assigning weights to its adjace1lt .odS"'; for fT<lgment~ consisting of more than 

one node the 1IOd",s in thi$ fragment must, in any distributed implementation, cooperate by 

1n~a.rIS (If me~sages in order to determine the fragmcnt's minimum-weight outgoing edge. 

(B) Theil design dist,ributed algorithms in order to comlline t.w(l fragments into a larger one. This 

part of the strategy o.mesponds to refining the statement labeled (2) in the program in figure 1. 

- Part (B) naturally split. up into two cases: 

(Bl) One for combining two fragments which are at the same le'l'el and which hav" an 

idcnticaJ minimum-weight outgoing edge, and 

(B2) one for combining" low-level fragments with a high-level one. 

(C) Finally, combine the algorithms f01lI1d in (A) and (8) above in order to obtain oile algOrithm 

whkh i~ the distributed version of the algorithm descrihed in figure 1. These combinations are 

accomplished hy a.pplying the principle discussed in section 3.3 a fillite number of times-

The distri!)uted version of Gallager's algorithm can now lle d~scribed in terms of logical tasks, as 

jf I.hey are performed sequentially, by refining Al, A2, a.nd B~ even further- Task 1 describes the 
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TdinClIlcllt of Bl when ('(l!;~ Al holds. The task 2, 3, 4, and 5 d~,cribe the refinement. of Bl when 

c;,.se A2 holds. (H"w t.o incorporate po~~ihility B2 is discu8stJ in section 6.7. IIlcorpor;,.ting the lauer 

p()ssii>ility has the effed that, t.he sequentially p",rformed tasks may be disturbed kmpomrily. As 

,hOWll ill section 6.7, th",e disturbances do uot. affect the re(lJ;<)IliIlg about these t.aI;ks,) 

Task 1: when "- node starts partkipat.iIlg in the algorithm it. determines its miIl;mUm-weil\"ht out.going 

edge (as d,,;;crihed in Al aboy,·:) ,llLd sends ;,. Conne~trrncssage along (,hi, edge, This message serves 

as a request fr(,m t,he node to comhin,,: wit.h the fragment at the other end of this edge. (A "'Ide 

which receives this Conn~Gfrmcssage also partkipates in the sam,: task, cf sectio!l 3.) Node i in V 

p;"I'Ucipates in this ta,k when exe(:ut,ing the 1}1'ogram segwent labeled A, in figme 2, 

Thereafter th,: following tasks axe jH"f(mlled repeatedly: 

T,,,,k 2; if two fragtn~:llt," have determined that. they are at, th" "ar,'e level L and that they have th., 

same miniIIllllll-Wo"ight ontgoing edge, then they are combined, as de~tribed in theor~))1 4.2, into a 

la.rgcr one at level L+ L Node i in such a fragment partidp .. t.es in this t(lJ;k WhCll it exe~ut"'~ the 

program '(:gmtnt labeled Ei in figure 2. 

Task S: the weight of t.l,,~ 111inimum-weight. outgOing edge of t,he newly formed fragment is d~termilled. 

Jf no ouch edge exists, the algorithm terminate,. Node i participate~ ill this task Wh<'-:ll it executes the 

program segment labde'l Ci in figure 2. 

Task 4: if th,: millimum.weight outgoing edge of the ll(:wly formed fragment exists, then the node in 

thi, fraglllent adjacent to this edge is notified. The l'eason for doing so is explained i1\ Task 5 hdow. 

Node i paxtidpat\:s ill this task when it executes the prograrll segment labekd Vi in figure 2. 

Task 5; the node that, h",. been notified th"t it is adjacent to tht minimum-weight. outgoing edg~ (cr. 

Task 4 above) ,<'lIds a Connect.-m.,HHa.ge along this edg'~. (As described above, this IDe~Si).gc serves as 

a request from th~ fragmellt to comhin..: with the fragment at the other end of this edge-) Node i 

paTticipa.tes in this task when it executes th", program segment!; labeled El or EI hI figure 2. 

Note that their exi$!. actions a in the program descrihed in figure 2, wbkh can be exe~~lttd by node 

i, that belong \'(' program segmenM labeled AI and to program segments labeled by Sr. If node i 

belongs to a tTiyial fra.gment, then S\leh actions a are COll~idered to he part of the ~eg);Il~nt labeled A;; 

otherwise, i.e., if node i hek,"g~ t.o a non-trivial fragment, then these actions (l arc considered to b", 

part of th~ ~'-'gment labeled Er. 
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Th~ prOgraIIl shown in figure 2 bd0w will h" explained ann analyzed in the sections (>.1 through i),7. 

The labeled boxes correspond to the program segments referred to in the description of the tasks 

above. We have used Gallager, HUlllblet, and Spira's notation [GHSS3j, In iSR89bl we have discussed 

how a program represented by a list of responses as below can be transformed into om own notation 

for repteSenti,lg algotithllls, 

4.3 Outline of the correctness proof 

In sectioIl 5 we formally specify by ["taIlS of preCondit.iolls 1'; and postconditions qi (iE V) what we 

mean by correctness of Gallager's algorithm, Then in section 6 we show that Gallager's program 

>ati$fi,,~ this $pcdfkation. Th", proof is st,r1,l(t1,lred ateording t,o th" "hove description of Gallager's 

algorithm in terms of tasks (cf, section 4,2). 

We first aIlaJy'c ill the SectiOn 6.1 through i),5, the programs associated with the tasks 1 through 5, 

It is argued in section 6.6 that the programs above can be combined according to the prOof prindpl~ 

described in section 3.3 because all its verification conditions are satisfied. 

At the last stage of our correctness proof we incorporate the possibility that nodes in some fragment (:an 

be disturbed telllpora.ily i,l the performance of their tasks by actions of nodes outside this fragment. 

(This includes the combinations of low-level fragments with high-level on('~.) Thili is the subject of 

ijection 6.7. It iii ShOwn th"t. t.he r~a.;oning about t.h~ ta.;h described above is not invalidated, since 

interference-freedom of speCifications can be shown, (For this reason the invariants and the termination 

conditions have been carded along in the spedlkation~.) 
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5 Formal specification 

In this section we fo{mally 5t"t~ th~ 8pcciJir.ation that Gallager's program should satisfy, This sped­

lkation ~on$i$t$ of a pr~(onditio11 illid a postcondition. In the next section it is shown that Gall"g~r'$ 

program indeed satisfies this sp~cil\cation-

Let (V, E, w) denote a weighted graph as in S~O.ion 4. Let '1' denote this graph's minimum· weight 

spanning tr~e- J,,:,t S denote Gallager's program (d. figure 3 in section 6). Since S is a distributed 

program, ¢ath node maintains its own variables to perform its part of S- Nod~ i'~ v<ITi"bl<>s, for i i,l 

V, which playa role in the initia.! $p,-,dfitatioII are the following; 811; and se(e) for e E E,. Variable 

~ni (ieIlotes node i's node-status; Variable sei(e) denotes the edge-8/(1/,-,Q of ~dgc ~, f"lll, 110d<, i's poilU 

of view. The values which thes" variables can take are next described and explained. 

Variahl,-, "ni (i E V) can take the values 

-- 8ieeping, if it has not participated in the ~orithm yet, 

- find, if the node is partidpating in it.s own fragment's search for determining the minimuITI-

weight outgoill!!: edge (in section 6_3, it will be made more precise what "participating" in this 

conte>:t means), and 

- found, in all ot.her cases. 

Initially each node in V will be in the .lteping-state, i.e., initially no node participates in the algo,ithm_ 

Variable 8e,( e) U E V, ~ E E;) can take the values 

- b,-anch, if the node has determined that th~ ~,dg;: OCnIrs in T, 

- rejected, if th,:, node has determined that the edge does not occur in T, or as 

- ba.sic, in all other cases, i_eo, if th" node has IIOt yet determined whether the edge occurs in T-

Initially "<1(:h node has marked all its adjacent edges as basic, of course, i.e .. initially 

Vi E V.lfe E Ei.sei(e)=basic holds_ 

Each node i in V maintains its own message queue, queue,. This queue is ~15;:<:l t.O i)\lff<,r received 

messages toget.her with an identification of the edge along which these m<)Ssitgt')S have been received, 

If a node's queue is non-empty, then its fTont (,i('mcnt may be removed from its queue and eithel. 

processed or, as we will see, placed at the end of the queue, waiting for other events to O('CUt- For 

each node, the queue's capacity is assumed to be large enough to buffer all the node's unprocessed 
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IIIMsages, 11. is not diffic.ult to derive a maximum size "11<:h t.hat oath queue is able to buffer these 

",,,""as,,s. This hi lIot, t.ht suhjett of t.his paper, however. Initially, for all no,ks i ill V, 'J'''':lL<:i is empty, 

Denoting by <> the empty queue, we thus Teqllire tha.t, illit.iillly Vi " V,queue, -=<> is satisfied. 

Finally, we require that initially nQ ~:nge r,mt,aill' any 1IIe~sages, i.e" 'Vi '" V.lfe E E"content8i(d'-"<> 

h,)ld, initially wh,:rl' <:ont" .. t"i(") de1lot.es ,,'s contents of messa/l;es Im'oming ,)Il nod,' i (iCV, <'E E;). 

Upon wTnpletion of I,h,·: a1gorit.hm all IIlessages queues and all channels rnl.l~t h,: <:IllPt.y, e,t ~OIHS"'. 111 

additio1l, the minimum-weight spanning tree must. hav" hccn constructed. This implies that ",adl nod" 

has ad.\lally part,icil'at,,,d ill t.h" 'Ilgorithm illld that it is not involved in any fragm"nt.', ii(:>l.rdl fot the 

minimum· weight outgoing edge, i.e., in the final ,t.at." f()r all nodes i, sni~ found holds. Comequ~Ilt.ly, 

w,~ ulllH prOve t.hat I1pOll t.erminatioll of the algorithm the following hold;: 

I;fi '" V,queue; =<> A \Ii E V,Ve. I:; FJi.cont~nt8i(")=<> II 

II Vi E v'.mi==f"!/,'lIl II (V, U {<:c Ei I sf;(e)""branch})=T. 
leV 

We call, however, be more det.ailed ~bO\It. I,he po~t.'''mrlit.ioll. Ob,crvc that if eE E"j aud seJ(e)=07'()nc:h 

h"lrl, t.ht'll t,hi, <,xpr<'Si;<'S that. r' is .:111 edge in T. Since T i~ all ,-,,,<1,,,'<:<:Ic<1 tree, it follows th(l.t, 

scAc)=branch must hold, too, i.e., if an edge i~ in T, I,hell t.his edge is in the brancnrsl,at.€ frolll 

the viewpoint of both. it, adj"l:cIlt. ,l(),\(!, when the algorithm terminates. Al~o (lj,S(:rv(: that ill the final 

,t.at,i· ";Lch Ilodo should have determined whether an adj<>-c"n!, "dge occurs ill T. As a con~eq\wn,:", 

sei(e) fbasic is required to hold Ilpon cmn"lct.iou of the algorithm for all noneij i and fi,r iIlI edges 

"c 1::;. 

Altogether, the f,}llowing po.,!(:(mditi,m q is required: 

Vi C V.qlL<?UCi :::<> A Ifi '" V.lfe E Ej.content8i(e)""<> fI 

A Ifi E V.sn,=jo1i.nd A (V, U {"E Ei I il<:'i(c)=branch} )=T fI 
i~V 

fI Vi E V-'>'" C Ei,,'f;(e) tOUSie II vi,j E V.lfe E E"j.aei(e) = aO::JH, 

The discussion above leads to requirin/l; that th", prOgram S should satisfy the following ~pedf1cation; 

lPISlql holds, where P is the conjundion of all the Ilodes' preconditions Pi described ab(lv~ illId where 

til", po,tcondilion q is as above. Here iPlSlq] meilll$' if S i~ <,xeeuted in a state satisfying 1), then 

S always terminates in a ~ta.t" $1l.ti,fying q (total correctness). Obserw I,hat, t,h" above specification 
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('<'11 be e(l$ily ~"tia1ied when the netwl):{k c(lnSi,t, of one node only. Consequently, in the remainder 

of this paper we assume that 1V12:2 holds (the network consists of at least two nodes). 1n addition, 

it is assumed that the network contains no self-loops, Le., for all Ilode i ill V, E",=0. Th(, n:as,," 

for imposing this restriction is that the program in [GHS83] describing Gallager's algorithm does not 

ne(:e~,<U"ily {on,truct l' wben the n~tw(lrk contain> ,df-Joop~. (Thi, is shown at the end of section 6.) 

6 Gallager's algorithm 

In this section it is shown that Gallager's program (d, figure 3 at the end of this section) meets its 

specification. This specification has been formulated in section 5. As argued in sectiOll 4 expandillg 

groups of nodes will repeat.edly perform" certain task5. For a single node which forms a fragment 

of its own this task consists of finding its minimum-weight outgoing adjacent edge and sending a 

COll11.f-ct-mes5ag<1 ::u<:mg this I'dg.: ({f. secti,)n 4.3). III $'wlion 6.1 it is ~bown how this t,.,;k can b.: 

solved. The task of combining two fragments, the task of determining the weight of the minimum­

weight <)1)tgoing ~dg~, if <'ny, th~ task o( noti(yillg the Il(ld~ in I.he cIllarg",d (r;'b"IIl~llt that it is adjac<'I1t 

to the b:agment's minimum-weight outgoing edge, and the task of sending a Connect-message along 

such an edge performed by a collection of more than two nodes are analyzed in the subsections 6.2 

throngh (i.5. The tasks are coIlIbined by repeatedly applyhlg ont ptinciple (see section 3.3). This is 

the subject of section 6,6. In section 6,7 the combination of low-level fragments and high-level ones 

are iUlalyz(:d. 

6.l 'l'h<:\ start (If <:\xecution 

In this subsection we analyze the distdbuted program which solves task 1 (d. 5ectkm 4) of deter­

mining a node's miniIm1m-we±ght (l1)t,going edge, when it f<)rms a fr;,gmcllt of its own. A node starts 

participa.ting in the algorithm when one of the following occurs; 

- it responds to some command from a high-level pr(lced1)re to initiate the algorithm ((Ill "external 

trigger") .. Or 

- it receives the first (algorithm- )message transmitted by some node in the graph (an "internal 

trigger"). 
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A node can l'espol\(1 only to some command from a high-I~nl pro,:<·,dnr<, t.o i"it.iat'~ 1.),(, al~otithm if it 

is in t.he .1""IJi""g "t.at". Since t.he st.mcture of slIch a procedure is of no int~r",t for t.h" il.lgnrithm, w(, 

ignore sU('h procedure~. Inst€ad, a nod" in th~ gr~.ph ,·iU. initiat.c the algorithm according to its ]Ol'al 

informat,joll, that is, if it 15 in the sleeping otat", hy "<lwakening spontaneously". MallY nodes in the 

network Um awab,n sp">nt.aneollsly, <lsy'ltilrOilOllsly from each other, and inltiat.e t)"" "Ig()rit.lun. W .. , 

require, however, lhal. a node em awaken spontaneously ,,,.Iy if it, i~ in t.1t .. , sk"1i'ing stat.c. 

When a nod~, starts participating in t.he algorithm "",'ording t.o on'" "f t.h(, two above-mentioned 

pO:'lsibititi(:f il. det,(!"lI.Lill(:~ it:'i IJJ.iniIIluIll-weight adjacent, hen<:t! ol.ltgoing~ edgl" Hlarkl-i t,hi~ I~(lg~\' .j-L.'i: ~.L 

branch, and goes into the found st.at.e. Jt, then tr"n~",it" il. CI!1I.'fI."drlLwssagc alonA the edge marked 

as bmnch. The "ode (~t the oth"r elld of this edge) that re(,eive, t.hi, """"""Il(' will pllIticiplLte iII this 

t,(\.Ok, t"H). We ,'oll.,lder Iwre the prQgr~IIl SI ddi'w<l hdow. 

Definition 6.1 Progmm $1, whid, wive" t,he task considerd here, is t.he parallel ('omp(}sit.i(}n of 

(OIISistiltg of th,' progt"'ltl ~tglllCIlts labeled by A, in figure 2 where i 15 ~T' "klll"nt (}f the smalltst stt. 

of node., V' such t.hat 

at, h~a!it. OIU: node ha.!i \\awH.kc:I,H~(l ~IH.JIltaI1l.,:ousJ'y'l is in this set, fIJ.1d 

.- for all nodes j in this set., if j's minimum-weight ()utgoinll <:<lIl" i" "dj"tt1lt to 1Iode e, then ( is 

in t.hh; f.;(~t, t~,)o (, lW·{";tlllS{· n{){h~ f will n~r{~iv0. a Connect.lnessage fronl nod,e j) .• 

This c:m.dll!i<" !.la, <k'''ript.ion of til!' firHt t.ask in which a trivia.! fraAmenl. will p"TI,kip"t~. 

In figure 2 node i's ac.tions associated with this t"sk havf' 1""", lahd",d by Ai' The variable snj deI)ot.,~ 

n(Hlc i't=; (U(Hh"- )i'i.tat,lli;; lni d(·uot('·s t.ht. l~vd of Ilode ils fl'aglnent as far a.~ ""kn{)wn" t.o i; R~:li:) rccm'ds 

the edge-status of edge e adjacent t.o node i. The init."l vahl" of I,he v;1riabl..., I'l, is irrelevant. Note 

t,hat. ~,a<:), I1I"k i also m"'n!,"'n, a vari"hk findcoullt i . This vadable, whos~ initi~1 V"hl" i" ir .. -Ievant, 

too, could hav~ been omitted at this stage. Its significance will hHC(IIII/: d<~;1J" when r~asoninf\ abollt 

another task (see section 6 3), 

For the progr"'" S1 defined "bove (~ee definition 6.1) Ule following holds: (recall that. V' (kn"t.(:'~ t.ht 

s~t of ;Ill Il(.ldc~ t.11«1. pilIl.idpa.t.t in t.he I,ask considered here) 

L",lTIma 6.1 A~surne t,hat the pr~""ndit.i(m p;: f\i~VPi holds, 

where Pi == 8ni~8leeping A Y" Eo E"'''i('')=/''l8i" A Irueuei~<> 1\ Ve E E,.content8.(d-<> (set 
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",,(:tion 5). I.e., for all nodes i in V and for All €dges e in E i , 'T!i='8/feping, s€i(e)=basir., «no !Ill 

message qul'"e" iUlO !Ill ~dges are empt.y ar~ satisfied initially. Let i. h~ some node ill t.h" set. V'. 

(a) If node i ~xecutes th\: pro(:edure wake-up, th(:n in particular sr.;=.ifeping i\ 'Ie E E;.sTI.;=bll3ic 

holrl~ as a precondition. A~ a postcondition for this p,ocedure the fc)llowing holds: 

8n;=/""",,(1 i\ findcounti=O J\ 3€ E Ei' (se/(e)occ bmnch 1\ V~:' E E,.(e' fe "* ""ik')=W8ic)), i.e., 

node i is ill the found state, itl; v(lIzabk /indcount i has b(:\:n as~igned the val"l: O. In "ddition, 

except for on" <'<lg(' m<+.rked as bmnch all othH edges adjacent to nwle i are marked a" b,,,ic. 

(h) For all nodl~s i ill V', (lfe E E i .sfi(e)=/Ji1sid =9 sn,=s/etping io an invariant of HI" progr«m 

abovt:. Also, sni isletpin9 => (1",=0 i\ findcotmti=O) i, an invariant. 

(:.) If sn, is/toping h<llo~ ~t a certain point duriIlg ~xecution, then it I<,,,,aln$ ~o afterwards. (This 

implies that the procedure wake-up ('an he executed at mo,t (mte.) If for a Cettain erlge e E Ei , 

se,(e)=bronch hold~ at a (:eJ:(,ain pohlt during cxemtion then it relnain~ '" 4t.erwards. 

(tI) For all iE V', (sni=.I''''l'inG V8ni=found) 1\ 'r/,' E E,.(8ei(e)=basic vS':i(e)",-branch) is an invilli-

((:) If there exists some adja.r:ent. edge e of node i ll1a.rk~cI a.'l branch, tbe,l c i. t.h. minimum-weight 

outgoing edge' (.f (,lIe f,agment ({i}, @). 

(f) Upon completion of the progran1 S1 all edg':' (:onnl?cting two nodcl; in V' are empty and tbcre 

exist "",,(:/'Iy t.wo neighborirl'; IIO(i.% in V' that have a mess~ge Connect(O) in th,:ir ITlf?$,age 

queues. These m"%~ges have been received illong their adjacellt edge. in t.he state bmneh. 

(g) A Ilod~ i eventually compk:t,:. its participation in the prob'T~ ~bove, This OccurS wh"n node 

; tn.nsmits tbe I~lessag" Connect(O) along its minimum-weight outgoing adjac~nt edge. (This is 

the termination conditio" Ti of node i for the program above.) 

Froof 

All these prOp~rt,ie~ are verified straightforw(lIdly. As an exa.mple, we !>how how property (e) OlIl he 

established. That i., if se;(e)=branch holds (Or a ,:eI:tain node dutiIlg <:",<:<:ution ofprogran1 Sl> th.::n 

,:oge e is the minimunl-wtlght Qutgoing edge of the fragment ({ i}, 0). 

11litially, all node i's adjacent edges are in the basic state. An ~dge can be marked as bl'l2T1.ch, only 

if llOde i performs the assignmerlt Q(;i(e):=bronch when executing the procedure wake-up. (lhviQ\I$ly, 
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prior to (.he ~.chl~l ~:x ... nll.ion M this assignm~nt ,.:dgc c has been sele,·j.<>d t.o be the minimum-weight 

a.djo."'·:III. (:<lg'c of Llode i. Since th,: gml'lI contains no self-Ioop~, property (e) (,,",axly holds. (In flU:/', 

w,' haY<' imposed the rest.rktioll th,,/' the graph cont.i;liIlH no self-loops in onkr t.o ensure property (e). 

A, "hOWl1 i,l sectioll 6.8, Go.lh'S(·T's algorithm doe, I1!)t. necessary constnl(:t, 'J"' when this restrkt.i(m is 

nol satisfied.) • 

Hereafter we will <knot.: Ule minimum-w",ight outgoing edge of Home subgraph G "I" (V, E) by 

mi,1),'II}"d'l,,(G). If the lllinhmnn-wdght, ou(,going edg~ of G docs not exist, /,ht:nm'inwedge(G)=nil 

hold~J WhE;'TP Ilil (leIlote~ sorne fictitious t~dg(~. 

6.2 Combining fragIl:~"'nt~ at the sam,:, "weI with the ",am'" minimum-weight out­

going edge 

I,l this subsection w;: will WnteIlt.i·ate on tlw pn)B'T<1I11 associat~d with t,ask 2, see sed.i"" 4.2, which 

describe, h<-,w t.wo fragIlIents F' and 1'''' at the same lev",1 L and with an identka1 mi,limum-w€;ght. 

olltgo;"fl edge arc combined int ... "fmgment at level /,+1. 

Recall that 0. frallIIlr.llt of ThaI bl'l'n defined as some non-em»t.y subtree of T. This is a graph­

orl\'nl.<'<l notion. Accordingly, ,l. fr"flmcnt is some ,to.tk (,,,tity. Observ~ that fragments are ,miarged 

when Gallo.gl'r'H progr<1In is executed. In ordeI' to reason fC.'fmally about thi, j)n)gr<1In we lleed tp 

<let;"" fr,tgIlloIllS (co.mtnl('t.<I.-I HO j""f) ill terms of prograIll-variables. TIIis leads to the nptkm l)f a 

D-jN.I,gment of T (see definition 6.3 below). Intuitively, " B-fraglllent of T is some sub graph of (V, 

E) constit\lting 0. f",~m"llt of T such t,hat. ,,,,,til edge in the B-fr"g'IlIent is lUark~<1 a~ b"anch from the 

viewpoint oflJOl.il its adjacent nod",. Notice that iffoT 0. "'~ftai11 node i, 8~;(,,)=bronch holds, th"" the 

lIl),[r j at the other end of e does 110t. neces~adly hdollg to the sal)]" B-ftaglllent as i. Thi~ is the case 

when 3f"j(dfbmneh holds. This may o"mf, c.g., in the progTam associated with the first task (Sf<' 

",,!.ion 6.1). There w~ (·'.>I1M haV(' thai se;(e)=bron<:h, when e is the l',inimulIl-weight adjiJ, .... 'nt edge of 

node i, while Bej(e)~b"N'i" holds, if e is not the minimum-weight "djacent edge of fH)dr j. This lllean~ 

that th~ proPNty 'i!;(i!)=.qoj(e) is not !I.II invariant for the program describing Gallager's algorithm 

(i, j E V,,, E E;.i)' This observation I"ads to the notion of a B-groph, de!in~'d next. 

Definition 6.2 A subgraph (V', E') of (V, E) j~ ~"ll"d a B-graph iff (i) and (ii) below iU",' both 

satisfied: 
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0) (V', E') is conI~"'tti.'d. 

(ii) 'tii,j E V'Ve E Ej,j.{e E E' ~(ee,(~)=~ej(e)=b-ranch)), i.e., it is a gra.ph in which all edges are 

in the branch-state from th~ viewpoint of both its adjacp.nt nodes .• 

Lemma 6.2 Any connected sub graph of a B-graph is a B-graph itself .• 

Intuitively, if se,(e)=b7'(11!ch holds for some iE V and .:E E" then e is an edge in T. This sugg\'$t~ 

deflning fragments of T in teIIIIS of B-graphs. In order to do so flrst notice that B-graphs may 

be empty. This is an immediate consequent", of ddini\.ion 6.2. This implies that a B-graph which 

col.stitut,(:$ a subtree of T is not necessarily a fmgment of T. Consequently, to d<lfine fragments in 

terms of B-graphs we need to rdin~ th", latter notion, To do so, observe that the earlier high-level 

description (see section 4.2) implies that fragments are enlarged. Therefore, if two nodes i and j arc 

in th,~ ~am~ B-g.-aph at some point during execution of the algorithm, then they will r"'maln remain in 

the S3II1'" B-gr«ph afterwards. Also, if a B-graph (V', E')~ l' has been constructed, wheI~ pcrformiIlg 

the algorithm, then there is 110 need to ~onsider any proper subgr«ph of (V', E'), d. lemma 6.2, in 

order to find its minimum· weight outgoing edge, ~jnce this edge has beell found carli<lr. Con~equently, 

it suffi~c~ to ''')TI~ider maximal B-graphs in order 1.0 find their minimum-weight outgoiIlg cdg~ •. Thi~ 

oh~ervation leads to the following deflnition: 

Definition 6.3 A B-fl'fLgment of T is a maxim<t-\ B-graph of (V, E) constitutillg a suhtr€<! of T .• 

B.Y dcfillition, a B-fragment of T is non-empty. It follows that, any B-fragment of T is a fragment of 

T. As T is the unique minimum-weight spanning tree of (V, E) we will use the term B-fr«gment as 

all ahhrevia.tion for the notion B-fragment of T. Also, the terms B.fragment and fragment will from 

now on be used il1\Crchangeably_ 

It remains to define the level of a B-fragment in terms of program-variables. Sil1~e e<LCh I\ode i E V 

IIla.int<tin~ a variable In, to record the level of its own fragment (as far as "known" to that I~odt'), it 

is conv"ni~nt to define this notion in terms of the Ilatiabks In,. Note that for a fragment of the form 

({i},0), In, may b", IlIldt'fined when ~n-,=~ieeping holds. We simply define the level of such a fragment 

to be O. In all other cases the level of a fragment is the maximal value of the variables In; [Or nodes i 

in that fragment. 
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Definition (S .... A fi-fragm''''t (V', E') i. ,[diIlCd to be at level 0 when f<.,r all nod,';; i E V', Imi"'~leeping 

holds, In this case we refer to (V', E') as a slfoeping fr"gIll'~IlL Otherwise, the fragment i~ (·all .. d T"'TI~ 

$le,~ping, The level of a Ilofl-,k~ping 1:I-fra.gIIH~nt (V" E') is defined to be max{ln, I i ( V'}, • 

n .. rnark: 

(i) A Bleeping JJ-fragrn~Tlt i~ alway" of Hw form ({i},0), Le" it fon,hh vf ')II<' Hode, This is true 

1",,,,,,,,,· it will roll()w from Oul' COlTectness proof that ally n",k not in the .Ieeping state has ~X,,­

('uted the PT<},'<;dl1re Wilb,-llj> "cmet/y (mtC <"Uta that for all nodes iEV, "clg"" "C b'i, ",Ii fs!eeping 

aud "'i(<,)~branch ru:e invadan"e PH)l":"ti,,, (d, the ["',lunata 6.1, 6.3, 6.6, 6.9, a.I1d (j.l0), 

(ii) W(' will ~how that if (V', E') is a no,,-~I~'~ping fra.gmcHt therl for all nodes i E V', lrli iJ; d<'finetl 

aud /n{ ~O h s,ltisfi"d, d. the [~mmata 6,1, 6.3, 6.1, 6.7, 6.9, aIllI 6.10, This implies that the 

kvd of ,LIlY h·;lgIll.~rlt is well· defined, • 

Aftel' thi. pI'cparatioll we now focu~ on h,)w two fragments F' and FH at the sam~ level a.ml with t.he 

same minimum-weight O\ltg,.>ing <:,I{;<' 'lr~ tOrnbirled into a larger fragment .. 

A fr<lglIWltt. F' at. level L that has foum\ it, minhnl1m-weight. (mLgoirlg edge, say e, inform, t,h" f"'glll~nt. 

<"1t t.he other end of edge e about. it,H [evd <lnd lIlinimum-weil?;ht outgoing t'dg., 1,y ~"rldi[lg a messal?;e 

(.'onn"<:I.(L) a1or,g ,', Assume that t.l1;\ fragrnrmt F", F' ;1= F", is adjacent to edge c. If F" is at 

lev~l T" j,,, •. >, ,l.Ilrl if J-'" h<"1~ illfor'lllea the frar<;ment F' that it iH ;,1, th..., ~ame level and that is h",; the 

same minimum"weil?;ht out.going ,)dg~, tJ",,, F' and pH are combined into a. hag,,,,,n!. ... 1. [evd L+1. (If 

fragmcnt F" is at. level L and has t,ransrojt,ted a C')IlIw<:t-rnessage along another edg~ than", then 

the node of F' that has re('€lv~,d tI", COllll",c!.-message will delay thh m~'$~ag(!, sincr no rule can be 

applied for (:l)rnl)ining F' <lnd P" into a larger fra~ellt, (d. ~«tt.ion 6,7), 

WI: nOw a,%llml~ that at some pohlt, dming I'X(,(:\rtion or Gallagel"s algorithm th~ foll<,willg holds; 

Assumption 1, 

F'=(V', F;') and F"=(V", E") are two non-sleeping fragm"nts, bot.h aL level L with tile 8iUIlC 

I;nininl~lIn-weight 01ltgOil~g -edge e l
, • 

We also assume the follOWing 

lnduction hypothesis (HI): 
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(a) If F is some fragmeI,t at lcvd L' .:::; L and F tranomit,s a Connect-message along edge e, then 

this Connec/cmessage carries argument L' and e"'minwedge(F) holds. Alw, wh~u~vI~r th~ 'H>(ie 

of fragment F adjacent to edge e transmits the C""''':drI!l~,~agli along lidge e, this edge i5 in 

the brunch-state from the viewpoint of that Ilode. ht additiou, 

(b) Wh~n¢v~r a n(>d~ iu F tran,mit~ a Connecirmessage along one of its adjacent edges, mi=/""",d 

holds for all nodes i in F .• 

The intuition behind !H(b) above is the followiug: wh~n a frl:lgm~nt'5 mioimum-weight outgoing edge 

has been fouod and when a Connect-message has been sellt ;"!Ollg this 6<1(;1', t.h"n all n<,dll" in th~ 

fragment have completed their contribution to th" S"illth for th<' lIlinilIl,'m-w~ight o1Jtgoing edge of 

the fra.gment. lL then follows frOI[1 th,' int.~rpr"t"-tion (,f the vwiables 811;, i E V'", that sni=jound 

holds at. t.h\l st.wt. of the progJ:!ID.1 associated with the ta5k considered here. 

Remllrk: As we have secu iu S<:tt.iOn 6.1 a ~erl)-level fragment transmits a message Connect(O) on its 

minimum-weight outgoing: edge when awakening. Also, this edge has been IIlillked af; a b"(Ln~h ami th\, 

nod_ i$ in t.h~ fQ1L"d-,tate whlin ouch a transmission occurs, This establishes the basis of inductiollo • 

R.et;"!1 that we consider t.he case in which fr".gIIl~nt.$ F' and F'" have been formed. Suppose that the 

nodes i ' E V' aud i" E V" have e:<:changed Connect-messages along edge e. By assumptiou 1 alld by 

the induction hypothesis (lH), see above, the CO'm~<:t,-IIIC$Sag«s (:wry wg1Jm~nt L and edge e. is the 

~wne l:l5 minwedge(F') and as m.inwedge.(F"). It follows that 6=6' holds. From (IH) we obtain that 

both nodes i ' and i" have placed the edge e' in the bt-anth-state. It follows that at that tiIllc a n(,w 

fragment F"'=(V"', E"')=(V' u V", E' U E'''U{e'}) ha.~ bCCIl form«d_ (R..<,all thl:lt. we h"ve l:l5o"med 

that F'=(V', E') and F"=(V", E") hold-) The edge e' is called the core of the fragment Fill. This 

llotion plays an importarlt rok in Gallager's algorithm ($ection 6.3). When the fragment F'" has been 

formed a new task is being started by the nodes in V"'. This task consists of rewr(\ing t.h"t fragment. 

Fill is at level L+ 1. 

We a.$sume that the fragments P' and P", just before tonllliIliIlg into the fragment called FlU 5atiJ;fy 

property 1 below. This property states that any edge in F' or F" has the sarne (cdgc-)status froIll 

the viewpoint of both its adjac~nt node~. M<)reov~!, if ~ome node in one of the fragments F' Or F" 

has pla.ced a.n edge in the rejected state, then this edge connects two nodcs i" the sar,,,~ frag:<Ilcllt. 

Formally, we assume 
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Property 1, For Illl node~ i,j eo; V and f<lr all edges e E Ei.j, 

(a) i, j E V' =} sei(el =-'- se-j(d and 

(b) _'e'i(e)=rejected '* j eo; V' hold. 

Similarly, we require that (a) and (b) hold with V' and E' replil.ttd by V" and E" respe(,tivdy .• 

Note that property 1 is satisfied if F' and F" are ~er(l-kvd fragments which start p&tkip«t.ing in th .. 

task {:(msid(~rcd herc. 

How can thi5 tas~ be a(,(,omplished'! 1.,'., lu)w ,:an the llewly formed fragment Ii"" b" placed at level 

L+ 1? The answer is simpk the two nodes i adja~enl, t.o I,he minimum-weight outgoing edge 6 ' of t.h" 

fragIllI:llt.S P' amI F"', hom which h'agment F"' has been cons\Tuded, a,!;igH the value L+1 to their 

variables In; aiter havlrlg exchanged the roe5,age Conn<:r:t( L) alOllg edge e'. This is ,Khiev~d hy t.he 

program 8; ddined below. 

Definition 6.5 DdiIH~ t.h" program 82 by 8 2 =lli~V'UV" B, (eL section 4.3), Recall that Vi and V" 

denOle the set of a.1l nodes in the fragooent,5 'p' and F" r,,'pcttivcly, • 

Observe that ill t.hi~ program variables In" snj, and inQTanch; O(,H. Th" role of the v&iabk~ I", 
and inbra .... chi will he explain"d in seclioIl 6.3; the reason for placing the v(ll'i .. hll: '''i i,l the find-state, 

fot, nodes adjacent to edge e' is expla.ined in sedi()ll 6,7. W,r,t, these variables the property formulated 

below holds, 

Pr-operty 2: For the fragment F'" and fo~ all nodes ., in P''', 

(a) if In; >0 holds then hI; is defined. In particular, if 111; is defilled, then its value is the wdght. 

of some edge in F//I, i.e., for ,,~.erta.in odg" c ill P"', In;W'w(e) holds, 

(b) til.., valut's re~orded by the variables sni are different from aleeping, i.e., sn,=find V jov.nrl holds, 

• 
Note that if a node i, wit,h lni=O, enters the task considered here for the first time, then propHty 2 

holds, 
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L"t i' be the node in F' that ha.~ t.ran'rnitt.ed the message Connect(1) along cdg~ P.'. Similarly, let 

i" be the node in F" that ha<; t.ransmitted the message C()"n~Gt( L) along edge e'. In order to reaSOll 

ahout the prognlIu S~ we assume that t.he following precondition for this prograIlI hold" all edges 

connecting nod~s in the fragment Fill are empty, the m~,~age queues of nodes ill F'" aI'''' empty, the 

nodes i' and i" art' at. \h~ exit point of the statement "if w.;=Hleepin[J then execute procedlJre 

wal<;",-up fi" in the segment labekd (3) in figure 2 (i E{i', i"}), and allllod.', i ill V'" different from 

t.he nodes i' and i" are waiting for the reC€ipt. of some message. (Below, the la~t t.W(' "'quirements 

are denoted by /o(';=after"if 3n,=sleeping then execute pro~edure wake-up fl" for i E{i', i"} and 

by loq=at"queue;" fot nodes i E V"'-{i', i"} respectively, where th" variahle lrX::i d<:,not~s node i's 

program counter.) Fonllally, WI' m<'ke the following 

ASSUIIIption 2: When t.he program S~ is executed, 

'rfi E V"'V,; E E"1.contents,{e) =c<> A 

II Vi E VIII.queue, =<> A 

AVi E{i', j"}.loci-after"if sn;=sl"tping then exec:ute pJ."oeedure wake-up fi" A 

A'rfi E V'" -{i', i"}./oCj=at"queue;" holds in the initial Hat.e .• 

Note that a.\$llmption 2 holds when F' and F" are zero-lev~l fragIn~nt> wbkh start, for the first time, 

participating ill the task considered h",r<;,. 

Lemma. 6.3 AssuIlle that. iJ.$$llmption 1, assumption 2, property 1, property 2, and t.he induction 

hypothc~i, (IH) all hold. Then th~ following holds for ptogra.m S2: 

(a) The assertions formulated in property 1, property :1 (a), (b) hold during exetnti,)n ofth.., progrrun, 

i.e., they are invariance properties. Moreover d,uing eJ[enltion of S~ no variable se,(e) is evet 

eh::mged (i E V"', e EE,). 

(bl UpOIl completion of the program, the fragment Fill is at level 1+1. More pred~ely, ~ have 

that upon completion Of the prOgl"<ml In"""lni,,=L+l, inbranchi,=inbl'anchi,,=e', and 'rfi,j E 

V'" -{ii, i"}.ln; ::; L hold. (Recall that i' and i" ,lenNI' th", nodes in V'" that have exchanged 

C(>nnect-me~sages along the minimum-weight outgoing edge of F' and F", and that t.his edge is 

delloted bye'.) 

(el Upon completion of the program sn;,=sni,,=ji.nd and fn;,=fn;,,=w(e') Me $ati$fi",d. Mor~over, 

all edges connecting th<;, node V'" M well as all messages queues of nodes ate empty. 
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III ,lddit,ion, \;Ii C V"'-{i', i''}.~ni=fou.nd holds. 

(,I) A Il(,(k i adjacellt. to edge ,,' C()111pltt.,,, it.H 1)1l.rtidpation in this !.ask iff 81"!,=find Le., if loceafter 

l~8nz : =.:.ji:rul' 1 where the assjgnlnent ,';iHz: :=find {)((\Ir~ ill t,}u,~ pn)gr~HI ~{~gI.H:':lJt Bi.- Node i 

not ':Hlj';'lC"{'nt t.o l~dgf;" e' C'Olllpieles it:'! paltitipat.ioIl if [O(:i.....:..at. \\qU~"jM'A hold~. (The~~ arp: th~ 

tcrmiIl;ll.iol1 c()l1,liboTlH.) Tn t.he latt~l' case node i wilt 110t. parl.icip;,t.,' ill S2 ,It. ~Ilt .• 

6.3 Finding tho miniullun-weight outgoing edge of the fragment just formed 

W(' next anal.F" I.h(, pwgraIn "'''H'iat"d with task 3 (ef. section 4.2). 

AfI(: .. ti,,, f""SIIl,,"t P'" ha~ het'll formed and afh'I it. has b""" pla.fl·d "I. kvd £·1 1 I.h,· "O,kH ill F'" 

I1l11St. d"t."nr'\)I(' t.he fragmenl.'s IHilliIllIl111-W<:ighl. <l\ltgoi)l!,; edg~', if ""!y. Any such edg-e e must be in 

tlH~ ;,t,A./:t: ')a,~ic frorn t.llf\ vl€wpoint or the IiOd~~ ill pm whidl i~ a.(ljcu~('nt to (~. 'Thif-i i~ tnw l)(~caus{' for 

any ~dgr " C i':',j, -; Eo V"', j Eo V, w(' have that 

M~(e)~bmn(:h =:- j c: V'" 'LlId 

H<';(")'-""jlxtd '-9 j f VIII hold. 

This follows ft(Hn PI('f""-t.y j, a-'WIllp1,ioTl 1., and (,he induction hypothesis (IH) above. Consequently, 

i111..y ()lltgoing erlgi~ {)f t,h{~ f)."'af~Inent. Fill rlltlst be in lhe s(..at(~ ~nL:ii,:. 

Int.llil.iv(·ly, R~;(p)=b<l;i<' holds fOl" >Ome i c: V,,, c: E i , if 

(.' ha~ not lH-~(~T1 ll"lveljtigated before by i\ i.e.~ i has llot t.~sloNl wh~thc-l· to' i.s arl out.going .. ~dg~\ Or­

e has beell iIlve~t.ig"t.",1 bdor" by i ",,\d ))"'5 been found to be an outgoing edge, but edge e has 

IH,I\ htt!"\ the minimum-w€ight outgoing edgc of "<>Ik ;', fr"-gIll""t. (at. ('h",t ti""~). 

III o[(l(or to ,kt~nnine its minimum-weight outgoing adjaccIlt rdge, a IlOck could ~et(,t1. it, """",i""n'm­

wei,qht ontgoing il'{i'"'~"'.t rtigl' i11- the state basic and send a so·ca.lled Test-message along this edge. 

Th~ node "t the other end of t.h'lt "dgc !;Iumld du,n det.trmim: whet.h,,[ thb "dg" joint; two nodef; in the 

sa.me frag11l,:nt.. Tht: problem with this "solution" i; that lhf decision whether an edgei.l an o'utgoing 

one has now been Shifted to til" T''''''';'!!;>T of th~ Tf.~t-meHa9f.. 

The dcsigIHor, of G",tlil.ger'~ il.lg-orithm have proposed a very elegant solution for determining the 

minimum-weight outgoing "di""""!. "dg" of ~ome node in F"', if weh "'I) edge e)Clots. Thi~ if; (k­

'trih"el hd()w. Any newly formed fragment carries a no.·me. This name is supplied to each node in 
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the fral,'!ncnt. Th" qu",t.ion arises, of course, how to assign names to fragIncIlt~, ~iIltc One ha..~ to ~n­

~ure that. distinct fragments have distinct II;,Jnes. hI GalI(l.g~r'~ algorithm the "arne of any non-trivial 

fragment i. the ",~i!Jht of it.~ core (cf section 6.2 where we have described the notion of a. tore). The 

assumption that distinct edges have dist.inct wejght~ will ensure that any non-trivial fragment has a 

1mique name. Since e' is the core of the fragment FlU, th~ w<)ight wk') i~ tile name of this fraj1;Il'lenL 

Now, after the fragment Fill has been placed at level L+1 ",,,ch nud~ in the fragment is 5upplied with 

th" fragment.', name. In urder tu do so the two nodes i' and i" adjacent to the tOre st.il.rt hroadc:ast.ing 

an Initiate-message carryiIlg the wdght. wk') i;IJ; an argument to nodes on their "side" of the fragment 

F"', L<:., node i' <md node i" start broadcasting an Initiate"message to nodes in F' and to node. in 

F" ""pe(,j,ively. Except the name, the Initiate-message a.Iso carri"s t.wo oth/" il.rglImcnt~' t.he new 

level and the argument find. Th~ sigllificaIlct of t.1t" level ;<.<; an Iilgllment. will be explained below; the 

significance of th" axgmMIlt find will l.>~ txpla.iIwd in Se(,tion 6.7. Upon recdpt of an Initiate-message 

node i records the new name in its variable fn; (thus, In; records the name of it.s fragment, as fax ;<.~ 

"known" to node i) and the new level in its variable In;; Furthermore, the node is placed in the find-­

state, i."., the vil.riabk 811; i<; assigned the value find. Then the edge along which node i has received 

the Initiate-message is r"corded in the variabl~ inbT(lnchi' The reason for doing so will be explained 

below. Thereafter the Initiate-message is sent by node i along all its adjacent edges in F'" except the 

aIle identified I>y its vMiabll, in/,rr1n(:h i . As ,'.I,h t.hi, bI:!)adcasting h ,imHar to the bI:oacicasting !,f 

information in Segall's Plf-proto~ol [Se83j when the graph constitutes a tree. 

Aft .. " node in F '" has sent the initiate message to all neighbors "downtree" in Fill it starts sea.rching 

for its minimum-weight outgoing adjacent edge. For this purpose, as axgued above, it suffices for Ilodes 

to investigate edges in the $tat.e ba8i~ only. NOW, if a node ha$ no o'It.gOing edg"'$ in th;: St.at,' ba8ic, 

then it is done. (It has no outgoing edges.) Otherwise, it sends a Test-message on its minimum-weight 

adjacent edge in the state basic. This message carries two arguments: the fragment's (new) name and 

the {ragment'~ (new) level as it has been retorded by the sender of the message. 

A nodi, recdving the Te8l-me$~agt waits until il.$ own level (re(ordtd in the variable In) is b'Tt:ater 

than or equal to the one in the Test-message. (The reason for this delay is explained below.) If so, 

it chetks whether the name of its own fragment equals the one in the Tesf,-message. In case these 

names coincide, it sends a. Reject-message back to the sender of the Te8t-message. This Rejecf,-message 

ServeS fOr informing the ~lode at the other end of the edge that t.he edge (Onnect.$ two Md<'$ i,l the 
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same fra!(ment. Jr, VII thl, othet hand, the nanl~ ()f the node receiving I,hr n,st-message difkrs from 

the OTl!' in th(, 7",!it-message, then th" I,wo nodes belong to difr"n~nt fragments. Th., recciver of the 

T",'irIlleSsage will, in thi~ (".0-,", ,,~nd an Accept-me~sO-gf hark to the sender of til(, 1bt-message in order 

to inform this node that th~ ~,dg" connects two nodes in diffcrent fragments. The,c convention, "nahle 

nodes to determint whH,hCr edges are outgoing I)nes (see claim 1, claim 2, ~1l1(1 assumption 3 helow). 

The reMon for " Hode receiving a Testrnl""','g(, to wait until it" I)wn level is J1;reater th(1,1l or equal t,o 

thf "n" in the T.l.t-message i, th" following' if a node f~ceiv,'s i1 Te$t-mes5a.g~' with i1 level gr€"l.t'r 

than H.s own l(·'vei, th~Il 

it. """ld be in the same fragm"nt, as t.lH' sender of the Tes/rIlLes.age, while it ha, not. yet received 

the new niUm, "m! the new lev~l, or 

.- it could be in anoth", hagmellt than the s~"d,:,r of I.he Test-mes5ag~, (thus, with another nallle, 

if any). 

G()n~"qll"nt.ly, if the level of th~' r""e;ver (-,f the Te;t-message is 1.00 low, th~n it, ha~ nO way of determin­

ing which of these case5 adually occurs, This problem i, solved by inchl(lillg t.he delay, In th~<)r~m 6.1 

we show that thi$ dcby does not lead t(l (1 dcadlock. (In the program describing Gallaget's algorithm 

a node ddays ~ollle message from IWing processed by repla~ing it at the end of t.he node's message 

queue,) 

A node that has f€<:eived ,. Rejeci--message along (me of its adjacent "dgc~ places thaI. lOdge in the 

1<:jec/c,t-state, since th" edge «"".eets two node., ill til!: same fragment, (ind continues its ,eaxch for its 

miniml.11n-wdght outgoing adjacent. edg" hy ~electing the next pOSSible one and ~endil1g a Test-message 

alOllg this edge. 

In some ca~('~, "r~~ponse to a Testrme~s3gc is superfluous. 'rh~ designer's of GaJlagcr)~ algorithm have 

achieved ,OUlC optimizatlon w.r.t. th" IlHIlIher of transmitt~d messages sent by n(lde~ participating ill 

t.h.· ta.~k considered her~: if a llode has transmitted a Tht-message along, say, edge e and it receives 

a Te$t-m€~sage wit,h the same 11ame and l"v<:1 as its own, then it simply marks the edge as rejected, 

Sln('e t.he !lodes adjacent to thj,; ,,(lg(: have the same name aIld, thus, belong t,1) the same fragment, ...... d 

continues its search for the minimum-weight o\.tgoiIlg adjacent edge ill.mediately, wit,hont sending a 

Reject-uH'ssage along this edge. 

If a !lode has receivfd "" Accept-message as a rc,;pO •• se to one of it~ n,.t-messages, (,hen it has found 

its minimum-weigbt outgoing adjacent ~~dgc. 
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After finding t,h!: minimum-weight outgoing adjacent edges, the node~ in Fill mu$t tOOpcra-t~ to d~­

termine the minimum-weight outgoing edge of F"'. At this stage the significance of the vari"ble, 

inbranchi , for nOd<:$ i i,l V, b~comes clear. Due to the tlariable8 inbranchi, f.ilch nod" in Fill ia able 

to trace the path to the node adjacent to the CQre He"! its sid.- of tlte fmgment". This is true because 

each node in Fill has recorded the edge along which the Initiate-message has been received and t.h~ 

lnitiate-nu~%ag~$ haY;: flowII ftom each of the nodes adjacent to the core "dowILtrr.i: OIl its side of the 

fragment Fill l' . 

Before actually determining the minimum-weight. QlltgoiIlg ;,dge of F"', the weight of this edge )5 

determined- This part of the algorithm is very similar to the reporting phase, desuibiIlg tha-t the 

required information has been r<'!ceived in(k~d, ill Segall's PIF -protocol; each leaf in the fr"gment F'" 

sends a Report-message "uptree"_ Th;!; m<l~"a.g" carries the weight of its minimum-weight. (1)tgoing 

adj::u;ent edg~_ In t<'L~<' [10 such edge e)Cists, this "weight" equal the fktitiolls weight 00. An interior 

node waits until it has re~e\v",cl all -R~por/'-messa.ges from the nodes "downtree" _ Thereafter it seuds a 

message Report(W) "llptrCc", W being the minimum of all the value!; T",~eiv~d in the Report-messages 

and th", Wl:ight of its own minimum-weight outgoing adjacent. edge_ Then it goes into the found-state, 

siuce its own contribution to it!; $~«<ch to the miuimum"weight outgoing edge of the fragment F m has 

been completed. This contribution of a node in Fill to the task considered here th\[~ consists of 

" cooperating in supplying the nodes in Fill with the new lLa.lne a,nd level of their fragment, 

- finding it~ own minimum-weight outgoing "dj,,~~nt ~dg;:, and 

- reporting the minimum of the weights of the minimum-weight (1)t,g<)ing adja.cent edge, including 

its own, of nodes "'down-trccn • 

EVClltuaJly, the nodes i' and i" adjacent to t.he ccte will e)Cchange the RepQrt-me,!;ages- This ena-bles 

these nodes to deterrnille wh~ther an outgoing edge of the current fragment F'" exists. If so, these 

nodes are able to determine the weight of this edge and, also, on which side of the fragment this edge 

lie~_ Ot.h~rwise, Le., if no outgoing edge exjljt~, the algorithm terminates and the fragme);)t f'''' i$ the 

minimwn-weight spanning tree T of the graph (V, E) (cf. theorem 4_2(b))_ This discussion concludes 

our description of the task considered in this subsection-

The PI'OgrlUIl a..ssocia-ted with this task consist~ of, fOr ~ach nod" i i,l pm, the program segments labdOld 

Cj in figure 2_ The program II;EV'" Cj does not describe the ta»k, how<:ver. (llecall that V'" deno\e8 

the s;,t of all nodes in the fragml:nt F"'.) The reason is that nodes outside th~ fragment F'" also 
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~On!,ribllt(' 1.(> I,h" task, bec.ause they may send Accept-messages (and not otherwise) to nodes in Fill 

when. the'y r(~:!ipol1(l to 11~:Ht'-InCSH-ag+~~ re(:eiv~.'~d frorn nodes in PI". Cons-equent,lYl we rl:lU!:if, ahiO irlC;lud*~ 

tlll' program oegments of nodes outside F m thaI are activaled to send Accept-messages. 

Definition 1.1_1.1 Let, for nodes i olll.side the fragment 1"'" which fire counected by some edge with a 

(:~rtah\ nod~ In F"', the segments labdNl (6) in ,'s loop in Jiglll:e 2, viz., "response to receipt of 

'l'est(l, f) on edge ,." when' ,. h adja~:ent to f~agment Fit', togel.he~ wit,h their bodie~ be denoj,ed 

by Ti . l"d N(VIII) denote the set of all I.hose nodes outside V'" which ate connected by some edge 

wH.h .a (erlaill node ill V"'. The prograrrl a~~odat.E~rl with th<~ t.ask <:oIL!;id.i.:n~d IH~re ib: t.ht:ll (k~t'rihcd 

by 8~ "" (lli',v'" C,) II (11"'N(v"') Td·. 

IIi t.he program S~ below, apart from variables already described, one can discern the following vari­

ables; 

test-edge" to record lhe edgc heing tested hy node i for outgoingncss, 

best-wt;, (,0 record the minimUltl"weigllt of all the weights ,'eceived so far from nodes "downtree" 

dud the wdght of nod~~ i\ t}wn rrIinjrnUDl-wejght out,goh),g a.dja(~~nt ~dg~ (d~t.~TIninpd };O far), 

and 

- best-edgei, to rCeo«1 t,h" ,.:dg~ t,h,,-!. h"" Kupl'li~d node i with tI", valu~ r.,,:orckd hy the variable 

lX:Ht-wtl" 

Note Lhat t.h~ va.ri.<"tbl(·~ f iTul(~01J,nt i an~ lllip.d to· rlett-~nIline whdlu~[" all R(.·l)()7't-IIle~sa.g{~~ fruIIl node i 

neighbors "downtree" has been rec.~ivcd (d. lemma 6.4(f) belOW). 

Lemma 6.4 Assume that assuntptioII I, fI/;~uIIlpti()l, 2, property 1, propetty 2, aIld the induction 

hypothesis (UI) hold. Let program 8 2 's postcondition (cf. lemma 6.3 above) be program 8/s precon­

dit.io11. Then the following holds for program 83: 

(a) 'Vi i= V"'.(~Hi=fi~d V . .";=!o,,,ul) II 

II 'ii Eo V"'-'it; E Rds€J(e)=basic V s€,(e)=1'€j€cted V 8ei(e)=b",,"'~h) i~ (Ul invariant. 

(b) For all i E VIII, i 1{i', i"}.i will receive the message Initiate(L+l, w(e), find) exactly Oll(:e and 

nO IHHk <)uhid~' v'" will ever receive this Illeosage. (Re(:all that i' E V' and i" E V" HIe the 

two nod~ adjacent to tilt' ~Or~ ,.' of th~ fragIlteIlt Fm.) Alty su~h Initiate-message \'eceived by a 
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('e,tain node in VIII h~ been transIDitt"d by it5 father node when the fragment Fill is assumed 

to be consistiIlg of two fragments rooted at the nodes i' and iH, The edge along whkh thf' 

Initiate-message is received by node i is recorded by the variable illbrallch;, 

Evenh,ally, t,h~ following i, ""t.i~fipd' 

\Ii E V III ,(lni=L+1 A Jni=w(e') II srticc}ind), and taking into account the dire(t.ioII~ ofcdgc~ a~ 

suggested by the variables inbranch" i.e" if inbranch/=e then edge e is directed from node i to 

the node at the other end of e, we also have that 

(V', (i"bru",:hi E E' liE V'}) fOrms a directed tre,", root,cd at node i' ami 

(V", {i nbranchi E E" liE V"}) forms a directed tree rooted at node i", 

f'utthetmOI'e, inbranch,' = inb1'allch i" = e' is an invariant. 

(c) For all nodes i E V"', i i{i', i"}, if node i has received the Initiate-message along edge c, then 

inbr(1,'Tld~,i. = f! holds ii$ a po~t(:olldit.i()Il for the body ()f ~'re5{Jonse to receipt of Initiate(l~ f~ 

s) on edge e" and it will remain so afterwards, 

(e) If node i E VIII transmits an Initiate-message along edge e, then se,(e)=branch holds as a pre­

condition for the corresponding action. It transmits such a message before it transmits any other 

messages associated with this task, 

If nodc i E V'" rcceives an Initiate-messag.:: alaI!g edge <', then lic;(c)=brunch holds as a precon­

dition for the (onesponoing "d,iqn, 

(fl FOr all i E V"', at. ,~ath pOil!t in aJ.!y collljlutation sequcnce if findL'ou"ti='1 holds for some 

natural number n, then n equals the number of Initiate-messages (with third argument find) 

mi!)\l~ til", !luIDbe, of R~port,m~$sages prO~~~S~d by Ilode i that. have bl:en rec(!ive(\ alOElg edges 

dUfnent [rom the OIle identified by iT<br(ln~hi' 

(g) No node in VII! will receive a Connecf"message from any other node in V''', • 

The proof ot the above lemma is straightforward. 

The most difficult P3It of th", progr3II1 $3, and M Gallag<;r'o Q.!g'"ithm, i, t.hat. part a;;sotiatcd with 

the actual search of minwedge(F''') on which we shall now COllcentrate-

According to the description of the task COn.idered in this subse(t.ion each node i,l V'" will, at any 
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t.im~, i"v~~tigat,~ at nlost one edge when it is searching for it" minirrl1,ml-w~ight outgoing edge, This 

observation leads to the notion of an nnan8W€Ted T€8t"m~"~agc. Illtllitive1y, a Test-message j~ U,lo.n­

"W,,, .. <I if it h«" bee" t,rfLnsmit,teti along some node's adjacent edge and the I1o(k h,,1; not, yet determined 

whet,ber thai, Ntg.., i~ au olltgoing Oll~. 

D .. finit.ion 6.7 

(il) A n(),I~ .; (: v'" ha~ an '"'r),,,n,;lllered Test-message on edge e f= 1'), ifl" .; ha~ t,l'ansmilt.ed a Te3t· 

rrle~,o.ge o.long ~r.lge e ~nd t,l", following hollis; ""i(,')#'td,lcted and i has not. pro"""H,,,1 il" A<:r:<:i)/­

message received along (: (\fter it h(\., t.ran>mit.t.~d thi, T".t-message, 

(L) Nodei ( V'" has all unanswered Test-message iff i haH an Im""O;w(:l'(:J 'fest-message on some 

edge f E lSi· • 

ObViously, if 11 node receives a Reject-meo~a/!,,, or an A(:r'''1ddlles~age along one of its adjacent ~dg~~, 

then the node ha, an \lnan,w"r~d '1':8trlllCssage on this edge, 

WI) do.im tho.t. wh<-n a I1("lt in pm starts participat.ing in the task d€o{:rilwd hy t.he prf>f:(ram 8 3 it has 

no unanswered Tfstcn~es"ager;, Thi, holcb b"tau~e of the following; 

- When ~ node in F m part,idp,,-t,," in tlu: t,asks described in the 8uhse(:t.ionR 6.1 and 6.2 it, docs not 

send any Te$t-messages. During eX,'('\lti(m of t.he progra.ms S1 and Sr, which will be int.rodll(~cd 

in t.h(: next. t.wo sllbscnion 110 Te$t-messages will ever h",: "!Out hy ally llOde i in Fill, (Thb h 

obvious from S1'S (I.lld S5'S progro.In t,ext,".) 

- When a node staAts partidpati(1Il iIi the t.ask described in this subse(:tion for \,hl: first. tillie, t.hat 

i" «ft.er « fr«gmciit. (ollsist.i[lg of a single node has been wmhi"cd with another fragment as 

described ill section 6,2 for the first time, it ha, no 1l1lfl.II~wer(:(1 Test-messages. 

- When a node has complet,ed it, partidpo.tiou ill t.he task described in this suboectkm it has Ill} 

(lnil.I1oW,,,,:cj TC8tr[[\{Oi;sages (cr. lemma 6,8(a) below}. 

As a consequence. the following lemma. i~ t.rue: 

Lemma 6.5 For all !1od(:~ i C V"', 

(a) At, (lIlY t.im/> ; has at, most one unanswered Te8t-m~S$o.g(:, 
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(b) If i bas some unanswered Test-message on edge e (e E E;), the'l tf:!.t-edgf!i=<: holds. 

Proof 

130th (a) and (b) Me proved by an inductive argument.. 

From the discussion abov( it l-'-'llow~ that, ill order to prove the lemma, it suffices to show I.hat the 

properties (a) and (b) aI(: sat.isfied for the program S~. From same discussion it follows that (a) and 

(b) hold i,l the initial state of the program 53' 

Now suppose that (a) and (h) hold up to a certain point in a computation of 5" (the indUdion 

hypothesis) . 

(il) If node i has some ullanswered Test-message and tmnsmits <'Ilother 2bt-IIl"ssage thereafter, 

then node i 

(i) differs from the llodes ;' and i" and it ~esponses to an 11l.iti,*cIllt'$$agc, i.e., 

it executes the program segment lab,Md (5) in figure 2, 

(ii) is either i' or i" and it executes the progIall1 ,egrn~nt. l",h"I<'<1 (3) belonging to the part 

labeled C, in figu~e 2, 

(iii) responses to sOme Te$t-m,:s$agc rC(Cived along edge ~ where test-edge.,=e holds, (d. t.h€ 

program segment labeled (6) in figtlre 2), ,IT it 

(iv) responses to an Reject-message, i.e., 

it executes che program ~~grn~nt labeled (8) ill figure 2. 

Case (i) cannot occur, since this implies that a Te$t-m"'$S<'Lgc has be~II sent b,Y node i before it 

has transmitted an Initiate-message, which wnt.radict.s lemma 6.4(e), or it implies that node i 

receives more than two Initi(lte-lIlO~$$<'Lg($ dl1ring execution of the program 53, which contradicts 

lemma 5.4(b). 

Ca.se (ii) ~annot o((ur because of lemma 6.4(g). 

If (,as.: (iii) occurS, then, by the induction hypothesis, node i'r; un<U1sw;'r<,<1 1'est-rnessage has been 

transmitted along edge e. This rncssa.g~, thus, becomes answered, I.e" not unanswer~d, wh.:n 

it processes the other Test-message. Therefore, whcn node i transmits the latter Test-message 

it. has no unanswered Test-messages. By the same argument. it can bl: ShOWII that the lemma 

remains true when case (iv) above occurs. 
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(Il) TIl(' p1'Ool" M1lOulcl nOw he ohvious, • 

Using lemma 6,5, it. is 5t.raif!;htJorwo,rd t.o pmv" t,hat. the following holds when th(, PH.>gTiUll ."h " 

<.':<<."'l1t,'d, 

(b) A Test-message can be t,ran~mit,t.,~d by i only 'Lftl:1' it. hru; t.nl..IlSmil,led an Trlit'ial.,"-rn"'~~O-!T (wit.h 

third ~1[~UIIl('·llt. j'ind)\ [tl~d wh~n€ver i. t.r~n5mit,5 i't T<-!at,-nH::;'HH.g:C '''''''i:-:find holds, 

(e) If i ["e(cive~ <l.J.I Acc<:pt"message on edge e, t,nen ~n,~jintll\ ",'i(,,)=IJlLSil: 1\ tcst·cdge,,=c holc!.>. 

If i exe('ut.e, (,,"II O(:cmn'II"" of) til(' ',"ignmelli. ,~ei(e) ;-rejected, the)' .~f,(·:)-'-II(],Bi" hol,l, as a 

l>n:(':(mrlitiou. 

(d) If i (.H'Jl~~llit.~ 0- n:~t-m"so"g(' "kHl~ ed~c ", (,hen e is the minimum-weight, ,,-,Ij,,-"""t. ed~e of'i ill 

t,he :!-itat.e b{LJii(:l a.ud i will !lever l'ece-ive two OJ:' r:no:re m~~~i;'Igps of th(~ f()ll()wiI~g type along this 

edge while performing t.h" progr"-'" S,1' rul A ''''':1' {-, 11 Reject", or a Test-me%!lg.' wit,h i!.i, ('Wll 

(€) O!)(~ f is ill t.h~ Q1'(Lnchrst,at", from nod" ,,'s point. of view, then it remains 50 a.ft.<erwitIdn. 

During ex~~ut.ion of t.h~ pr<,'gr/lm S~ no ,,,IS" is plat:.:d in the orunell-stat,e. 

OH({~ f~ i~ ill th(' .. t~jedvd-state fronl node Cs point of vkw, th~~lI it. l"CIlW..illS so aft~rward~- -

Since the weight. of t.he ('or,' i~ du)~('n a, t,he ,1<l.J.ne of allY non-trivial fr!lf!;Jn''''t, w(, ,\l~() have the 

followiTlg l~Il'lTna, whl..'J.~ ... : pr(H')f is t)bviOu£;, 

L.,rnrnn 6.7 for all nodesi E V'II, 

(a) If; H"'elW" a IIH'~,a~~ fr!'ilia/a(l, f, 8), then in. '" i holds a.s a pr"wrl<lit.i()n, Here, we as~ume 

that if in, does not. h~ve a dpfined value, t,hen it. diffea fl'om any defined valll"-

(b) Tit., variahl" In; (for nod,: i different Crom i' and i") can c.h"ngl' only, possibly from an undefined 

value to a defined one) after node i hao received a.rl hi/,il1te-message, 

(c) If i r~cdv~$ it Ill~~~:..ge h),iliatf(l, f, s), then lni < I hold~ M it precondition, • 
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It also follows that when two nodes arc combined into a larger olle always a n(:1I! ",UlIe: is Cl!OijCIl. Thi~ 

is an immediate consequence of the fa;;t that when w( <') is chosen to be the na:me of a fragillel.t, <> is 

<'Ill ed~I' <if thaI, fr"grnent while b~for~ th"t nWIU,,"nl, e b"'-'5 not been in that fragment. Comequently, it 

follows from l"rnrna 6.7 tha.t any name occurs at most at one level. 

Next\ COllsider the (Me that a. t.erta.in node i. ill VTII he).."'; dJl UB~111~Wen~d T(~.'lt'-II.u.~!':i~a.g{~ (}Il edge (~. Thil-> 

irnpli~, t.hat i h""" j,ransmitted a J:'estrmfssage along edge e and that it has not processed an Accept·, 

a Reject", or a Test-message with its own name (hence, with its own level) received alOllg edp;~ e 

afterwards. From kllLma 6.5(b), it. follows th"t tp.st-edyp.;=e hold,. Now, eith~r (A), (B), (C), or (D) 

below occurs: 

(A) i deadlock:>;. That. is, t.he ::n~.lj't'-IIlf:SSa.g(! n:ln':umi llIlaIl!:iW(:n~d. A~ a. ~~<.ms¢ql,u::-n~:~~, tF.tit,-rat9":~=f,' 

continuously holds afterwards. 

(B) i will rc(tivc "n Ac~eplrmC~$<l-g<: a.k)ng ~,dg~ e, ~ay fTOro node j. 

ClaiIIl 1: j rI. V'" iLoi<l~. 

Proof; The proof is by contradiction. Suppose that j E V'" holds. When node j transmits 

an Accept-m~,~ag~ along cdg~' e, th~'n In; ~ 111; -'-' £+t and fn; I- fn; bold. Since j E; V"', 

In) ::; L+l holds, too, when executing the program S3' Whence, tn, ~ tn) holds. Consequently, 

we obta;n tilat h,; '" f nj is satisfied (, otherwise, llode j, ill tile sallie fragmellt as 1I0de i, would 

hav(, Ictc1v(:d til,: ~<'Ilne level, but yet allother [1<'llnC than j; co[Ltradktion), This contradict.s the 

assumption that fni f fn; holds when node j has transmitted the Acaptcmessage 1,0 node i. 

(e) i will n:teive a Rej"c/-message along edge e, say from node j. 

Claim 2: j E VIII holds. 

Proof: Wh",n nod~ j tran~mit,~ tht; flej~drm\'~$ag~ along "dgc e, !n; ;:>: In; "" L+l and fnj = fn; 

hole!. Sin¢e tn; '" Inj iL"ld. at that, tinl~, too, it follow. that. tiL<, nOe!~S ; and i h.,long to tile 

same fragment, (Recall. that no node outside the fragment F'" will ever receive the name w(e' ), 

d. lemma 6.4). 

(D) i will receive a Teslrmes,age along edge e, say from node j, ~aJTyjng the same name and lev. I 

as its OWl!. 

In this case j E V'" holds. The proof is similar to the O1J.e given in (C) above. 

From the,." case-distiILctioIL and from S3'S program text, we can now conclude that eventually OIlC of 

the following )$ ~ati$fled for ILode i E VIII, 
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(a) i (kadlo<:b. 1.<:., from a (:trtain point in the compntation of th~ pn.>gr;un .)"3 t"st-CdY"i=" 

u)I.t.iIlllCm~ly holds for a cerc.lln edge e E E,. 

(b) te.li--edge;=nil and i has r~c~iv€d an Acceplrrn,;%ag~ alClI'g NIgr ~, " E E i • This implies that edge 

e. is nod~~ ';1':0. H1.1nirmnn-wdght ont.g()ing fldjaceIll edge. 

(e) tG8t-rdgei=llil II V" " E; ..• ,·:(,,) 1-1"",<: hol<b. This implies that node i's h':l~ no ()\ltgoillg "dg(:s. 

AI, t.hi" sl,af',e we eaunol prove t.hat the fir5t pos~ibiUty, i.e., (;.) ah'}VI', will nt'vet occur. That is, 

Wf'~ fa.nnot ~:Olldllde '!lOW th':-l.t ~:VCIltlla.ny each !lode in VW ""HI eVoE;"lt\J.tllly dd,PrIIliuc its IIliI'liII"lUln­

weight. outgoing adjacent edge (, if any). In or<l<:r to do w, we have to incorporat.e that low-l"vl,I 

fr(tgment., which att."IllI't. t.o cornhin" wit.h high-level ones are immediat,ely "ah""Th,,,I" hy t.hesc high­

kvel fragments. In theorem 6.1, we will show that Gallag~r's alg(,ritluIl is deadlock· free. 

At thi~ sl,agr we make t.he following assumption: 

Assumption 3, Eventually, for all nodI', ; E V"', ,·it.htr (1)) Or (e) above will occm .• 

Observe I.hat thi, ","llI"l't.io" iIIll'lie~ t.h"l eventually node i will find it.s mininmrn-weight outgOitlg 

edge, provided thaI, I.hi, cd);" "xi,,!.,. 

Nodes in VIII that. have d~t.",rmiIl(,d t,ftdr Illi"iIllllIll-W~ight outgoing adjacent edge m"st. (:e",p,,,,,t.:: to 

tld"rllli",~ t.he weight of tileir fragment's minim\Im-wdght (mt.g(}iug 'ldge. This is the subjed. of th" 

following lemma. 

Lemma 6.8 For the progr~ul 8, t,he following is satisfied: 

(a) Each node i Eo V'" will traui;lIlit exactly one Report-message. Wh"" thi~ occurs i has no lman­

~wl.·Tr.(l rpe.,lft-I:r:U:~ssa.ges. 

(b) A node i E V'" transmi\,~ thl' R"P",·trnllossage ruong the edge identified hy its variable inbrallch/. 

COllsequently, any Rf.P"rtrme,~age is SImI, "Ioug au edg,e ill the brancllr8t.(tte (,·f. h'IllIIla 6.4(b,c) 

and Iemm" 6.0(")). 

(c) If node i E VIII t,Tansmit, H", U"l'"d-Inessage then it has received a R"llOri-message along each 

of its adjae,,"t ,~dgei; ill the branch-state except for the (me id~Ilt.ifi~d by its variable inbr(,,,,:hi • 

Observe that when a node in V"'·- {i', in} transmits a Report-mesoagl' alOllg one of its a~a.cent edg.;" 

it has received an Jnitiate-m,~~,a.gr along that edge earlier. Due to t.hi, (,h~ .. tvaUon. to the property 
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formulated in (c) above, and to the fact that no variable iT<lir<1ncil j of nodes j "downtree" in P'" ('an 

change after nod~ i ha5 tran~mitt.<'d "- .R"l"'T/-Il\c~s"-ge we can consider directed subtrees of F"; a:nll f"'.i 

at any point of 83 's execution when node i in V',; and V"i, r~sl'<'~tiv(oly, transmits a Report.message_ 

Define for node i E V' the directed tree P';, rooted at i (takiIlg into account directions suggested by 

th", variable~ in"T(lnclll fOr n<)d~ e i,t V', ~f. lcm,ua 6,4(h)), by 

F"'=(V"" E"i) where the following is satisfied, 

i {{i}, if .. ,3f E V',f '" i fI-ir!b-ta{.ch l E El 
V', = {i} u U{t E V' I e f i A inbranchl E Ej} U U{j E V'/II '" i 1\ inbranchl E En, otheTW"" 

and {0' if ",3f E V'.f =f. .j fI jnbranchl E El 
e','= 

{inbranchl leE V',; A 3j E V"i.inQT(lnchj E Ei,d, otherwise. 

The directed tree F",i rooted at i E V" i. ddiIl<,d in the same way. We then hav~ l.h. fl,ll,)wing 

(el) For a.llnodes i E V', if i transmits a Report-me~sag" wit.h argument W then sn;=fo'1;na. Nn­

tinuously holds afterw"",ds and W eq,uals the minimum of aU weight!; of edg"~ " such that e is 

a.Il outgoing edge of the fragment Fill IUId e io a.dja.cent to some node in the tree F"i. H.~r", 

W = 00 iff nO ~lIc.h edg<~ exist.s, The sa.me property holds, of (ourS€, <>IF) f'.1< nodes i E V" with 

F"I replaced by F,,·i. 

(e) Eventually, for all nodes i ill V"', fin(i(.(>IJ.nt;=O continuously holds (again)- fin(i(.mmti=O l~arl 

only hold if 8"i"" fc;mnd is satisfied. Eventually, the nodes i' a.nd i" will exchange a Report-message 

alOIlg t.he: COre c/. 

(f) During executiorl of the pn)grartl 53, the following property invariantly holds f<,r a.I.l nodes i E V"': 

either best-wt; hAA a.n undefined value, or Qest-wtl has a defttl!'d value and 

(b~,'t-W/i=OO =;.best-edgei""nil) II 

A( best-wt, < 00 *3e E E;,( best-cdgei=e A (~ei(e)=branch V se.,(e)",b".ic))). 

(g) EVCIlt.Ua.l.ly> best-wt; has a defined value and the vallIe for the variable best-wt, has been supplied 

along the edge identifi\!d by the variable best-edge, (i E V"'). 

(h) When node i transmits a Report-messa.ge, then this message carries best-wti AA "'" argument, 

(i) i' and i" are the only nocl~~ ; in V'" that will receive a Report-messag~ along the edges identified 

by the variable inbranch;. 
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If in H", final Ht.at.,·, of allY ",x"":llt,io" of H", progrH"" Ss, IX?st-wti' =best-wti" holds then this b 

eqlli'lalent to bes·t"wt;,-o.'!'/-wt;",,-oo, since distinct edges have distind weightf', whkh implie~ 

that F'" has no outgoing edges, see (d) and (h) above, whkh impli~h tha.t. F"'=1' holds. 

It follow, that if the algorithm terminat.eH, i."., if til<, nod", adjatent to ftHgment F,II,s core have 

excf'uted the halt"statement, then the minimum-weight spanning tree T h"H 1w"n wuBt.ruttcil, 

1Il that m~e the posl.cowlitioll q forIllulated in section 5 then holds. 

If the algorithm does not terminate, i.e" no halt-statement hat< h,!,,,,, ex"qlt"c1, t.hen {",st-wl;, f. 

(j) A norte i in V"I, i 1{i', i"}, completes its contribution t.o the program S'~ wI",", it I.ransmits 

a lI"l'"l't-IlH·ssag(,. A nod" i, ; E {·i'. ·i"), (')]II"lde~ il.~ cOlltl'ibntion to the program 53 when it 

has hOI.h scnt and rcceived a n"pori-mcssage along the edl{e e', and it. has eithl'T ~)(~,·,]t.~d t.h~ 

halt-statement OJ" it hM determined that the value I)f its vari~hl., but-wt; cliflh. fr(,m I.he vah,e 

rc'c"iv"cl III til<' lIr'l")7'ic",,,""agt. (TIl<'s(, are I.he t.erminat.ion conditions.) • 

Jt, should be d'jar th<lt d\lring e)(e~"ti<>n CJf (.11" progr"m S~, prop,·ert.y 2(",1», s"e se1:t.ioll 6.2, invru'iantly 

hold". Als,} upOlI tel"lnillatioll of S3, property 1 and for all i E' VIII, snj=found hold. 

6.4 Notifying the node adjacent to the ftagmeIlt's minimum-weight outgoing edge 

8\]1'1")'" t.hat. t.h,> aIgoril.hm ha~ nOt. tOnst.IIIdNI the minimum-weight spanning tree. In that. (:ase, ill 

the final state of the proj\ram S~, best-wi" f. bc.'st"wt,,, holds. The node, in V In shOulcl aU(}[llp1ish the 

tMk of notifying t.he 'lOde in V'" that it is adja(:ell\ to fragIll""t. F"'"s ,uinimum-weight outgoing edge. 

A$ollln(: I.hat. /":'/-'111/'i' < /),'.t-wt,,, holds i,l program 33 's final state. (The other ~Me is .imil;).!".) 

ClertL'l.Y, best-wti, is the weight of fragment Fill's roinim\lrn-wdght 'Jllt.going <'(Ige. Denote this edge 

hy ~"'. D,,,, to l"IIlIIla 6.8(£) "",I (g), til<, pat.h iTt to the node f. in V'" adjacent \0 this edge can be 

traced from node i' hy following th" erlg\," idelLt.ifi"rl hy b, .. t-"rlil"; fOr noues i along pi, A message 

Ch(HI'9"-H",,t i~ ~eIlI. along the edges constituting the path pt from until this mess<lg" h"", aniv~d al. 

node e, It remains to d<:'s(Tib~' how a noilc along I.he path pt "kIlt)Ws" whether it is adjacent to edge 

e'" Thh i$ trivial, hc/w~ver. 1f for;,. llod" i along pt, sei(best-edgei)=branch holds, then the edge 

identified hy /I(:.t-""ile; is lU, "dge in F"'; otherWise, sei(best-edge,)=ba3ic holds (cf. lemm~ 6.8(f)) 

"nd tIn: ",Ige id"lLt.ifi,>,l hy be.t-,·dil'·' is illl outgoing one. 
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The program 5. a.ssociated with the task considered here ,~ d~fl.Il~d hdow: 

Definition 6.8 DdiIl~ 5. ~lliEV'" D j (d. figure 2 in section 4.3) .• 

Lemma 6.9 If the program 8. is eJ(ec1,l\.ed in I'rOgrillIl S3', final state for which best-wt,' "'" best-IVt," 

holds, t.hen 

(b) nodes i different. from e on the path from the node i' wheu be,t-1)'(i' < b<,.t-wt,,, is satisfied, 

or from the node i" when best-IVt;" < I",.t-'Wt" is satisfied, to the node £ in V'" adj<l-(-ent t.o 

minwedge( Fill) ~omplete t.hcir participation in S4 after transmitting 0- meS$ligc Chil7lye-Root. 

Other nodes in V'" different from ( n'-'VI" ,',wcute illly statement in the program 84- Nmk ( 

completes its participation iu 54 after it has determined that se/(best-edge/) I'/:>mn(:h holds. (Cf. 

the program ~egm1'nt labeled (12) in figure 2.) • 

6.6 Sending a Connect-messa.ge on the minimum-weight outgoing edge 

After the nodes in the fra!!;Illent F'" have del~rllli"cd the W<'oight of F""s minimum-weight outg(>in{l 

edge e'" alld "n"r node tin F m adjacent to em h~ been notifkd ab(mt this, the fragment Fill attempt~ 

10 ,:oIIlbin~ with the fragment, say F"", at tile other end of e'''. III order to do ~o, node f .""ds a 

Connect-me~~",g<, tartying Fill's level, i.e., L+1, ~ it.s argnm~nt" Assume that F""=(V"", E"") holdo 

and t.hat node k E V'''' is adjaceut to edg~ ~"'. Also assume that the fragment F"" is at level L+ 1 

ar,d that k has transmitted", C01i.7ltd.-message along edge elll
, too, Theu th~ two fragments will be 

combined into a l(ltgGt fragment Fill" as described in section 6.2_ For i E VIII U V"", node i partitipaks 

in the task of combining these fragxnent~ (az described above), when it executes the prOgram segments 

labeled El Qr E; in the figure shown in figure 2-

Definition 6.9 Let Gi denote the program segment consisting of node i's W0gl'arn S('gnt"nts labeled 

E1 or E'f, Define So ~11.Q'v"'uv"" Gi • • 

Lemma 6.10 Under the aforement.ioned a.s$\lIIlptioIIS, lemma 6.3 holds for the pJ:Ogram 5s when in 

that lemma F m , L, e' , i', and i" are replaced by F"II/, L+l, e''', e, and k respectively .• 
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Observe lllut if nod~ f. ill th" frag"""'!' F'" t,ransmits a Connect-message along edge <', lhell this IIle~sag~ 

(:H.rrio(~~ F'ml~ ]~voel as an arguluent and m..in·llJf(lfl(~(FTIJ) h()ld~. AIs() {")b!-i(.~rv(~ that t.hf;' C{mn~d-n,1f:'!:'!:l::\gE;' 

is then lrullsmitted a]ong <U' ('dg~ m!\Iked as a branch. From the property formulated ailer lemma 6.8 

and from lemma 6.(), it il.lso follows th,,!. "ll lIodes in the fragment Fill are in the joun,/.state when 

the CO""'~d-l1"~'oag" i. "':11/,. This establlshes the induction step (cf. section 6.2, where the induction 

hypoU,,:>b (TIT) has been formulated). 

fL(i Combining the above specifications 

Above we have: aSH<>(:iat"d <' "pw:ification t,o each program describing one of the ~lIbtilsh (d. settioll 

4.3). Each specification COl\~isu, of, lor .'a("h I,,)(k i p<,rt-kip<,/,iIlg in t,he rCijp('~tiw program, a precon­

ditil'm l'r(~i, ~ P{)!jt,condihon postl! an invariant iIi and a LetlllillatiolL f.oIldit.ioIL '1~. Tht~s~~ a."-iH~rt.iOll!:i 

have Le'~!l 1'!l"Ilmlat.,·:d in the lemmata 6.1 through 6.10. We now apply the ptil~cipl~ of s<:ctioll 3.3 

ill ord~r to obtain one algorithln that descl"ib~:b thcl.t frOIlI ~.1. lugiutl poiILt of view the fiv(,: ta~kf> nIP 

performed sequentiillly and r<:p<:at,'dly. III (>r<kr t() de) >;0, ohserve t.hat tlw pH)gram, whkh hf<ve been 

a..nill'yz~d abo¥!' "'"y involve distind, s"t of nodes. This can be seen, e.g., with the prop;rams S~ aud 

8~. Progr<u!! 52 describes how two fragments F' and F" are combined into a Iill'ge,' ftagmerlL F'" (see 

section 6.2). hI this prOr;ralll i-lll !lode, (>f thf: fragment Fill are wn,idered. Whereas in program 5" 

which eh':5crihf:5 how the mininllull"weight outgoing edge of fragment Fill is determined, apart from 

nodes in pm also neighboring [lo~k!i of Fill a:n~ i,:<'lIl~ider~d. 

The principle below 8tate~ how tht' ~<:t of m)d",; iIlvolv~d iII " n·r/.aln progr<Ull ':<Ul )", allgm,,,,/',,d while 

pH'~~rving "II properties of the original program. 

The intuitjoll bdrilLd t,hi. I'riIl(:ipk i, a~ follow~: 

Let.:D=< V', {PI liE V'}, ActD > be some algorithm. By assumption (see sectioll 2), no Ilode olltside 

V' is actually involved i,l D. Ld V" be ")1[1<: ,<:t of nodes ,atisfyil~g V' C;; V". Nod<:~ iII V" - V' do 

not actually participate in D (a.., hilS been observed abOve). ConsllquO!ltly, if Pi is an arbitrary st",!", 

a~$'~rt.i')Tl~ of n()d<:,~ i E V"- V') characterizing node i's precondition and if Pi does not refer to variables 

wllich (all be (hill.g.-:d by ll"d~o different, from i, then Pi i~ an invari"nt and a t;:rminatiull tondition 

for node i (i E V" - V' when the illgorithm D'=< V", {Jl; liE V'} U {Pi 1 i E v" - V'}, Act!' > is 

executed. This idea leads t.o th~ fOllowing prha:iple: 
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Let D=< V', {Pi liE V'}, Act'D > be some algorithm. 

- Let V 5at < {Ij I j E V'}, {Tj I j E V'}, {<;(j I j E V'} > holel-

- Let V" be a set sati5fying V' ~ V" c; V-

- Let for j E: V" - V' state assertio);\~ Pj be given. Assume that nUIll: of these assertio)J~ (~mt.ain 

any programming varjahl~H which can be chaJJg~d by "diMS of nodes differ€nt. from j, and that 

they do nut '~(mta.in pl'oof variahles pc(,,) a.nd CTl(e) for nod€.5 e f j_ 

- Define for j E V" - V', Ij ~ Pj' Tj == Pj, and % == Pj' 

Then the following is satisfied fOr <ilgorithm 'D'=< V", {Pi liE V' U V"}, ActV y 

- 'D' sat < {Ij I j EVil}. {Tj I j E V"}, {qj I j EVil} >, 

The 5<nmdness of this principle iH obvious. 

We nuw combine the prog:l'!\Plo t.hat have been analped in the sections 6_1 through 6.5. Each on~ 

descibes how som" fragment solves a certain task, In order to do ~o, we may assume, as described 

hy till: prillciple above, that <ill programs involve tM saule set of nodes- The ~olnbination can then 

be achieved by means of the prindple for formal sequenH<illy phased reasoniJ:1g (~c~ section 3.3)_ II, 

nlust therefore be shown that all verilkMi<)rl cOl.ditions required fOr a sound application of the latter 

mentioned ptiIlciple are sat.iofitd, For each of th~ programs involved in t.h" tolilbinatioll, w~ have 

derived invariants :l.ud termination \:ouditions in the lemmat.a 6.1 through 6_10_ It is Htaightforward 

to verify all the othe~ verification conditions (d_ <ilm section 6.7 for th~ (aSC in which a C(lnn"ci­

message is received by a node too "early", i.e., if this me5sage is received along an edge not in the 

branchrstate). The complete proofs are, however, quite lengthy and do nOt, prOVide us with more 

insight in Gallager's algorithm. Therefore, <1.$ ;).II illustration that all verification condit.i,)ns of the 

principle are sati~fied, we concentrat~ on the requirement th",t ;:ach llode can (a>:\llally) participate in 

one $llbtask at a time_ We collsider two cases: 

(1) A node which participM,t$ in the program S2 cannot participate in the program S,- (These 

programs h",ve been defined in the sections 6.2 and 6-5-) This holds be~au~c of the following: 

If lLode i partieipates in program S~, then sn,=a/eeping V Inj=O holds. If node i participates in 

program S~, then ani'" found holds and it has received a message Change-Root, which in tmn 

implies that it h~ increased its level earlier, i.e., In, >0 lIold$. It is now obvious that node i 
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(IT) A node CatlllOt !\,u·tieipa!,e in t.h,. pn)gr"", .':12 =II,,;vw D. when it is part, of a fragment (V'", EIII) 

Ht. lev'" L+ 1 (d. section 6.2) while it is participating in til(' pmgr"'n S; =lli[V"" 13, wh(:n it, is 

Pm'1 of <I frilg"l(:nt (V"", E"") o.t, level L. This follows from the following; 

If Il(Hh· i. pnrtidpatf;".3 in the progl'alll S'i.l th€h it. hAo:'! receiv(:d H, (:unn(:ct-ILl{~S~mg<.: with arg:llI!H~Ilt, 

T+l (->..long rut edge ulUrk<:d a, >I lim,,,:h. H follows that, lni=r+l hotd, when it ha~ received 

t,hl~ Con1H~ct-nlessage, If it would at th.{: ~a.rIH~ tiIIl~~ prlrtitipat(' in t,'l-w progr.:un S;, tlH'Jt it ~t,~.Tt.,:, 

pal'ti(ipMiIlg in thi, prograIIl when Ini < L holds (d. section 6.2); contradiction. 

n.7 ,(,h", full version of Gallager's algorit,hIIl 

WI' [lOW nm,ider Gallager's program. Iu thi~ pmgram ,Hff",""t grollp of I1ode~ perform their tasks 

('on('llrrently W.Ll. iI"othtr. Furth.,.II",r", a t,ask performed by one group of nodes Cat) be Jisttitbed 

(ttmp()rarily) due to interference with the task of an other grOllJl. 

At first., W(! de~(:ribe how to combine two progrilJ.HS performed hy t.W<J disjoint gTOlIpS of nod,'s. Intll­

itively, these program, ,m.: "x,:qlt~d (:ornpl~t,ely independent of each other. A prindplE' fo1' combining 

slId, program, is st,raightforwa.rcl; 

Let A=< {V',{p, l'i C V'},ActA > a,,,1 B'--< {V",{p, I i EO V"}, ActB > he algorithms . 

... A"Slllm: t,!,at V' n V" = 0 holds (no node is involved in both iltgorithIllH). 

Assume that. A sat <. {lj 1 j E V'},{Tj 1 j f V'},{qj I j E V'} > and B sat < {Ii 1 j E 

V"}, {Tj I j f V"}, {qj I j E V"} > 1",ld. 

A.'lllm: that none of the assertions Pi' If' TJ , and qt, j E V' U V", conta.ins any pwgrllJHming 

v",riahles of nodes different from j aIld that th,:y do Il(}t r"f<:r tq pr<)"f v~i(!.hks I'/(~) and (T/(f) 

for e f j. 

"l'htIl I<)r algorit,hm C = < V U Vir, {Pi 1 i f' Vi U V"}, ActD >; 

C ~at < {Ij 1 j E v' u V"}, {1j 1 j E v' U V"}, {qj I j E v' U V"} > holds. 

W" hH.Ye de5(orihed how programs which ate ~"eeuted complttely indrptndent. frnm tadl nt,her call ht: 

tnmhin",d int,Q one algorithm. Next, we consider the possibility that Iwrles in a fragment F can he 

dist\lrbed (t,ernporarily) when they participate in one of t,he tilsb di~cIl8s{:d ",1.H.wc. C(>Il~cqllrntly, we 
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a~k our"dv(:~ the qu".t.i<l11 what. me$~ag"" n"de$ i" F <:"", r(,,,dv(: fnlIIl ""d(:$ out~idc F whe" th,~y 

perform a certain task The answer of this question shows that some millor changes in the program of 

figm~ 2 h"ve t.Q he m"de "nd t.hat. ~ome of t.he assert.i(>os derived in t.he previ()1.ls .uh,e~.t.i"n" hav..: t.n 

be weakened. 

A n,,<;Ie in " fragment. F (ao obviously re('eive Accept-, Teet-. aDd CO'l'leclrmeJ;J;"g~:~ (not <">I.h(:rwi!;(:) 

from nodes outside P. 

An Accept-message can be seod by some oode j outside F t.o a certaio nod€ i in F only, if it h", 

rcceived a Tcs/.-mes.agc from node; taxli('r, i.('., if node i paxticipates i,l the task desCl'ibed ill section 

6.3. Since responding to Te.t-messages by means of Accept-messages is part of t.hat tMk, node i is not 

diHurh..,d in th" p"rf<lrm"",ce (>f it, t.",k. 

Now suppose that node j outside the fragment F sends a Test.message to node i in F. Observe that 

thi$ im.plie8 tilM '!/I~ have to i'lCOTpoTIJte in the Q.8$~:Ttil!n" of ,,(}(1,~ i a.sociated with the tasks di.cussed 

iT, the .edirms 6.1 through 6.5 that Te.t-messages can be received and that they are placed at the end 

of 'lode i's message queue. This is strroghtforwro:d, howev~r. Now, if node i h in t.h(: .l"~piny-stat~, 

then it be awakened by this message and it will start partidpatin?; in the task des(ribed in se(:ti()n 

6.1. Therefore assume th"t i i5 not. in th.., .1<:"1)iny-st.at,c. Node i, wh'~Il receiving the Test-message, 

will be disturbed in the performance of the tMk in which it pro:ticipates. When the Test-message is 

r~moved from nOd~' i'l; <jU,',l,"" it. is cith.::r pia.ces this message back at the end of its queue (if Inj's value 

is less than the value of the level's argument in the Test-messag,,) or it ,end, <Ul Aocept-message back 

t.e) th~ sender of the Teat-message. In any case, node i will execute the program segment labeled (6) 

in figure 2. During this execution none of node i's program variables are "hanged. Cons,~queIltly, the 

invariant M~odat.ed with the t~k in whith it paxtidpates remain valid when it executes this segment. 

In a.dditioIl, since this execution will always leave the program segment labeled (6) it will r~$\lmc it.s 

participation in the disturbed tMk. Note that if node i h~ /lot fini~h~d t.his paxticipati01l when being 

dist.urbed, th"n this remains so afterwards during i's response to the receipt of the T~~t.me~J;",g,",; 

otherwise, Le., if it has completed its partidpat.ion in the task when responding to the Test-message, 

thel~ its participation in this task remains completed afterwards (d. also verification tondition (j) of 

th~ pd/ldpl~ in ~edi(\n 3.3). 

Tlu: most difficult case of interference occurs when node i receives a message Connect( L) frOm SOme 

node outside its fragment F. Obviously, if i i, in the $/eeping !ltat~, thtn it will be awakened and start 

participating in the task described in section 6.1. We therefore Msume that, when nod~ i receives this 
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message, it is in the not in th~ 8Ieeping-~I."I.c. A~~LlIne that node j transmitt~d thc Connect-message. 

At th~ "'o",,,"I. of trallsmission Inj"" L holds. Now, 

-- either L=O h<.>hh, I.>r 

L >0 holds alld Ilode j has received an Accept-rn~,~alS{' alo[lg <,>dge .. earlier. Wh~n IlO,\(' ; 

transmit.ted this A""eptrm<>'H>'H<> Inj ::; Ini holds. Since lev~15 an, [loll-decreasing (cC. lemma 

GA( d)) aud I10d~ j's own level cannot, increa,e aft. .. U,/, receillt of the A ccept-)l1('osage ;Ind before 

Lhe trD.nsmission <.>f t.he C(>"11~drm"'5sag", it. follows thD.t Inj :S In, hold, whl~ll node j transmits 

the Con1M:(:t'-IIH~!-i~agc. 

hom these two cases it follows th<lt wheIl~v.,," Ilod.., -i receives a message COll1!ect( L) "nd t\1<'>cks whether 

In,=L hr>ldo, thb \.<',1. i, "'I',ival<'nt to dleckhlg whether ~(In; < L) is satislied. (In the final v~r,il)n 

of tho. program, see figure 3 below, this ob~erv"-ti(111 ]',,$ h.-.ell taken into ac.c.ount.) 

Now, when node i receives the meso"!,:,, Con""r:t(L) along edge e, L S In, ('~I' aIH)vc) aIld sei(e);=basic 

V "r:i(e)=!J'NLl1.d, (d. property 1 in se(,tion 6.2) hot.h h'lld. 

Jf 11l,=L "nd "",(r.·)=I"",""oll hold, then node i proceeds a.s d",,:ribed in the sections 6." and 6-5. 

If ITli=L aIld .,ei(e)-basic hold, then th'" C(ln1l.~dr"ICssage is delayed. (This ca~e iij ~imilat to delaying 

a Te~t-m~sliagf~! !-if,,:~: ah()vt:). 

If, on the other hand, L < Ill, is satbfied, t.hen it. follows from the indu(:tion hyp<lthesis (lH), see section 

6.2, <lnd fr<)m Imnma fi.8(o.) that fol' all nodes kin j's fTagm<,nt., ~ay F', ilttk=follnd A lirui<:(mntk=O 

holds, when node j tran5mitt~d th;: C011'f",:<:t-message. It also follows from (IH) that edge e is fragmtnt. 

F"s minimum-weight olltgoing edge. Note that upon i's receipt of tlw Connect-message along ",diSC (', 

• Ini is ddiued. This is true because In, >0 if; ,atisn.ed (as a consequenc.e <If 0::; L <: lni) and 

property 2 (s.~ ,.d.iou fi.2) holds . 

• Fragment F"s level eqllals '''''-/TI'j, which follows from (IH). 

F'tom the description of G<llIag~r'H algorithm in section 4 it follow, th",t. the fragments F and }r" axe 

immedJatdy ~omhi[led into a larger fragment. Therefore, "POll receipt of the C07171~ct-message node i 

maTh edge e "s a. branch. (At that time a new tragnlel1t has been formed.) ThereaItet, node i supplies 

th~ nodes ill the fra.gment F' with the name i\.nd level of its own fragment (a~ fax as "known" to i). 
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Consequently, the variables Ink, k E V. increase indeed. We now consider three cases which caJ! hold 

wh~n nc:>d~ i r~~pc:>n~~~ to th~ Connec~m~s5ag",: 

(a) node i has not yet received fragInent F'g new name, i.e., it has not yet received an Initiate­

I[lessage with third argUIll(:Ilt {iTid, 

(b) node i has r~"eived fragInent F's new name, but it has not yet transmitted a Repor~mes5age, 

i.e., it i~ participatiIl~ in the task descrihed ill sedioll 6.3, or 

(c) node i has received fragment F's new name and it has transmitted a Report-message. 

In cas" (b) above, obviously, en;=find holds. It will immediat~Jy transmit the message Initiate(ln;, 

In;, sni) such that all nodes in pI will participate i,l the ""llarged fragIlleIlt's s",arch fot its rniIlimUIn­

weight olJtgoing edge. The invariants derived in section 6.3 clearly remaiJ:l valid. Also th", t",rmination 

conditions of the nodes are not changed, i.e., interference-freedom of specifications can be proved. 

In CMe (c) there is no need for the nodes in F' to part.icipate in the (already completed) Sean,h fOr 

F's minimum· weight outgoing edge since the nodes in F' will not contribute anything to this search. 

Th", r~1ll;"n i. th", fC)llC)wing: 

node i has transmitted a Report-message by assumption. Therefore node i has determined its mln,imlJlll­

weight (>\It.going «dja(tmt ~dg('. Cons"'queIltly, b~st-wli :::;; w( c) th"'n holds, SiIl~~ ~dg .. C is OI.e of node 

,'s outgoing edges. 

Clahn: best-wt; <wi e) hold., too. 

f'~oo(; The proof is by contradiction. Suppose that beet-wt,=w(e) holds. This implies that node i 

ha.s re~eived an A.ccep~me$$ag" along "dge ¢ ':;(>;rlicr, $in~t': " has provided the valu'" for best"wt, (d. 

l",mma 6.8). When node j transmitted this message In) ~ In, holds, It follows that In, has decreased 

afterwards; contradiction .• 

We obtain that, in this case, for all outgoing edges 61 of fragment F', w(e1}2:w(e» best-wt. holds. 

Cons<'!qlJtmtly, in the cases (a) and (c), contrary to case (b), the nodes in F' should synchronize their 

search for the minimum-weight outgoing edge of the enlarged fragInent with node~ in the fragment 

F, I.e., they should wait for this search until they have received th'" name a.nd level of the enlarged 

fra.gment. The cases (a) and (c) are distinguished from case (b) by the third argument in the Initiate­

message. If a node receives an Initiate-message, then it updates its variahle S7l according to the third 

arglJment of th", m~$$<tge. It starts seMching for its minimum-weight outgOing adjacent edge only, if it 

is in the find-~tate (d. sectioIl 0.3). (lniti{J.t<!-mes~agcs with a third argument found propagate through 
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the fragment F' ill exactly Ule sallie way as the information in Segall's PlP-proto(ol h PTlIl'''S''j.",!. 

The invaria.nt.=-: H.nd t(~rrl'lin.a.Hon c:()l1.cBt'ion:-; for thh part of Un: algOritlUIl are very sinlilat to the ones 

defined in iSR89h].) This ohservation has been incorporated in the pn'gram hd.-,w. N.-,t(! that t,he 

"-",'rl.io,,0, ,," hef,)rt,'. ddined in the previ')\I~ ~\lb~~"t.iOIl" havf' to he (Slightly) weakened, since now 

node! can receive Initialf-messages with third argument found, but that, agair" jIlt~rf,~ren('\,-fTt",d<lm 

(~f lilH~~jfiUl.tioI1s can b~: !:ihOWIl. 

Nott: t.hat. Wh':IWV(:r I:H)Ira: IliHh~ k. (,:X(:(:'lt(~~ (~Tl ~)(:nlrr(':llC(~ of) the rlSsigllIllent sek(e);-:;rejected for a 

certain edge ,~ E Eh , "'~k(e)","ba.ic holds a.s a precondition, d, lemma 6.6. Gon~~q\'ent.ly, w,: "''''' 

n:I'I",,~ e~dl ,\Ich all Msignmel)t, by th~ conditional if $~kk)=b(1"';C then ""k(");=1'l'jedM fi without 

affecting any ()f Om (!aJ'lier result,s, This modification is, however, necessary in order t<) avoid (,he 

following (unintended) situation, 

1I0de i ~Clld~ a T"sldncssagc a.\(JIlg edge ", hcfotc it receives along edge e a message Connect(L) with 

L <. htt~ 

node i receives a message Connect( L) with L < In; along edge e: 
n(,,1to i 1'1"<:<:0 e<1ge " in t.ll!' 1"';11.d'rot.;,/.<: ;111<1 o<:nd. " mei;S;,gc lrliliale(lni, fn;, sn;l alo~lg € (ObS<'TV<' 

that sni""7find hOlds); 

noM i re(,,:,iv(;,s ~ message Reject along ~ and pla(€o the €dS<:' f in the ,'ejected-state, 

Consequently, e l1as been placed in the rejected 51,ate by node i. Edge ~ i<, h()w<:v(:r, aJI eLlge in the 

~p,mning t,r~<;, T', b~('a\l~e the node dHfer~nt from i ,,(\jo.,:(:r,t. t.() " ha. <1ct"'nnilled that e occurs in T. 

Taking this modification and the two observations above into account, we arriv,; «t the prOglillll i,l 

figure 3 below. This program describes (the full version of) Gall«g"r', algorit.hLIl. 
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The program segment. (1), (2), (5), 6'i:'''(9),-··, (12) are the same." the one~ in fig~r. 2. 
(3) repo,,$e to r.,ceipt of Connect(I) on edge e 

begi .. 

if bn,;-":oleeping then exe-cut~ p;("l)(:edur~ wa.kt!-up fl.; 
ifl<ln 
the" se(o)--:bra."ch; send Initi~t.e(IIlJ~,SI\) on edge C; 

ifsll-find then nndcount. :=finclcou,>t,+1 Ii 
cis .. if se( e) = b~"i< 

Ii 
end 

then place received message on end of queue 
.,1.., (" ,=w(e); hi ,---,1111·1; inbranch :=': sn :=find, 

for all cdS88 e' #- e ',loh that, se(e')=llmnch 

1\ 

do send Inijia;e(ln, (1\, sn) on e'i nl •• lcoullt ,'''nndcollnt+l od: 

be!=lt-edge :=nHi best-wt ;""':":"OOi -execute procedure test 

(4) reponse to receipt of In'tintc(l, f, sJ on edge" 

besin 

In ;=li fII ;-fi Sn :'::::!i; inbraneh :=ce::; 

for all e' ,. e "urh that se(e')=bt&och 
do ,end Initiate(ln, fn, sn) on e': if slI=fhld then findcounl ,_findcollnt+l fi od: 

best-cdr;c ::::.nil; best-wt :=00; if~n=fjl1,d then eXr:::l;ute procedure test fi 

end 
(Il) repon.e to ,e<:eipt of Test(l, f) on edge c 

begin 

if sn=.sh:eping then execute prQcedu1'"~ wa.ke~up iij 
ifl·(ln 
then place received I"Il€:ssa.ge 0.) eud of queue 
",Ise iffIlif 

Ii 
end 

then send Arcept on edge e 
else ifse(t)=basic then sere) '''' rejected fi: 

,rtest-edge;f. t th~n send Reject on edge. else execute proeed u,,, test Ii 

Ii 

(8) rcpons" to receipt of Reject on eds<> "-

begin if St(c) = baSic then ~e(e) :~rejected 6.; execute prl)~ed.l,J,:J;'"e test end 

Figur", 3. The loop execl,lted bY--;;~d~ ''{( (E V). (Variables occurring in this loop are asSl,lmed to'-be 

subscripted by i.) The program consisting of all tbese loops describes Gallager's algorithm. 
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A principl<: which 1Lnderlies t,lIC ai..loye kind of reasoning w.r.t. t,he <:li~hITb"Il{""" if; IlI'xl, f'H"IIlUlated, FOI' 

ease of exposition, we G(lnoid~T t.h" ""H" t.hat. at mo~t o,le ,lOde k Catl be disturbed in t,h~' p~Tform""c,, 

of its task. 

l,et t,hh t,,,-,k be ""llVf'd hy algorit.hm 

(el) B=< V', (pr I i f V'}, AdB >. 

Since node k mn b~ disturbed in the pedo>:!)l(\n(:e in (~, k Illay receive messages from node, oubid,-, 

V'. Re(:eiving and pf()ce,~ing <1,,:h rn,,,"a!l'" are adiom associated with another algodthrn, Hay, 

(C2) C-< {V",PY I 'l E: V"},AdC >, 
From tile assumption that k is the only no<:l~ t,h~.t m"y 1)(' di,turbe,l (due to :tctions in C), it follow" 

th~1.t. WI'~ may ':l!i~llIne t.hat 

(C3) V' n V"-{k} is satisfied. 

Sinu~ 8 and C liolve dh,t.illd. t.;~l-;khl w(~ HJ.rl.'y aSSl1flle t.hat 

(C4.) ActB n ActC = 0 (thi, h the ('~He in C"llag"r', prograIIl indeed), 

N(:xt 1 i-l-npp()ii:'-~ that. 

(CD) B sat. < {rp I j Eo V'}, {Tf3 I j E V'), {<If I j E V'} :> and C gat < {If I j Eo V"}, {If I j E 

V"}, {'If l:i EVil} > hav~ i..I~ell proved, 

(C6) Assume that no assertion sub~c[)pt,ed by j \:"n <.:v,.:r he <:h;\IlgC<.l by actions of nodes different. fWIll 

Ilock k (cf. v(-"rifkatioll c(m<iitiol1 (3) ill sec-tion 3). 

Now at, aIly Umc in B's computation, node k n~1"t. "U.)W to he .li~t,l1rbed by :tctions oc.curring in Acl. 

This is t.h~ case if th,,: lIlv"r;"ILt If hold~ whenever node k st(\rts p"rticip"tiIlg iIL "lgo1"it,1I111 C, In 

piirticul; •• , thii; i~ ~atidied wlle11 pf "" If! is satisfied. When nock h: li; pH1"lidpating in algorithm C, 

Le" when it e;(ecutes (1;(' adi,,,, ">~od"t,,,d iIL AdC , the reasoning about algorithm B Hhould rClllain 

yali,l. 

Define, for assertions P "wj Q ",,"I fOr a H:t of actions AG, the assertion Jnt-fr'f'{P, Q, AC) express· 

iILg t,hat. if SOme action a is executed in a stat,e satisfying P 1\ Q, thel' P is not invaJidated by (l 

(interferen(e-freedom) . 

We n>.quiTt' that for illl noile j t: V' the following holds: 

((;7) IT<irfr""Uf 1\ ·,TjB, If 1\ ~TP, Actr) and Int-free(Jp 1\ TJB,ff fI,TP, Actf) (t E V"). 

or course, it lIlust also be required that the reaH<)IIiIlg alwl1t illgodthm C femmm valid UIII.kr ",:t.io,IS 

of 13; 
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(C8) lnt-/r<:e(!f 1\ ~Tf, if 1\ ~TCB, Act?) and Int-jt<'c(!f (I Tf, If A ~T/;J, ActP) (j E V", f E V'). 

Th" kind of disturbances appearing in Gallager'~ program can occur only wlleIl a node participates in 

a certain task and it reccivl's i). rne,,~age assodated with another task. A~ remarked above, such a llod;, 

ll\".t at any time be prepared to receive these kinds of messages. Internal actions and send actions of 

node k associated with differCIl!. !.asb cannot be enabled simtiltan~ollsly, howev!"f. (This observation 

holds for Gallager's program.) We, thus, requir<, t.hat. 

(C9) for each action a E ISP, disabled(Ip A ~T!! A ental, n;f) holds for all computation sequences 

of.6 and similarly that 

(CIO) fOr each action a E; 1sf, disabled(lf 1I~·,1f A fTl(a),lSp) holds for all computat.iOn o~q\l€nce5 

of C (d. section (3) for the definitions of the sets 1Sr arId [Sf and for the definition of the assert.iOll 

di.Nbkd). 

Finally, wi' req'.lire that actions associated with algorit.hm C (:ann(lt enable nor disable action~ associ­

at.ed with algorithm C and that actions aswciated with Ccannot enable nOr disable adic",s ~,odated 

with '0; 

(ell) Intrfree(~en(a),1f A ~TF,ActP) lot alIa E 1St, 

[nt,-jree(en(a),rp II ,1,[,ActP) fOr all a E Isf, 
r"t-jt~(;( ~",n(a), If A ~Tf, Actf) for all a E [Sr, 

lnt.jree(en(a), If II ·,Tf, Actf) fOr all a E Isf 

If (C1), ... ,(C11) are all satisfied, then we lIlily !.hen (:on(·lude that for the algorithm D=< V'UV", {pf5 I 
i E V"} u {pf I ; E V" - {k}}, ActB U ActC > the followiIlg holds; 

V gat <{If I j E Vi - {k}} ~J {If I j E V" - {k}} U uP V if}, 
{If II TP I j E v' - {k}} U {If A Tf I j E V" - {k}) U {Ip 1\ If A Tf! A Tf}, 
{qf I j E V' - {k}} U {qy I j E V" - {k}} U {qf A£} >. 

We have th" follOWing' 

'rheol'em 6.1 Tile program S described in figure 3 above meets it,s specification (d. section 5). 

Proof: From the previous lemma!.iI aIld the above discussions it should be clear t.hilt. the program 

S is partially co~rect w.r.t. precondition p and postcoIldition q. where p and q have been defined in 

.<'<'tion 5. tn order to prove that S always terminates when executed in an initial state satisfying p, it 

119 



suflices to pl'oV~ th(tt, in any Il()Il-I,,,rlllillal st,(tte T!'(t(:h"d ciminI; execution of S ,()Ine (proper) pmg"'" 

om he, IILade. Consider som€ ~t<lt,,, which can be readled duriIlg ,uell an execut,i')n, WI' Illay assume 

that in t,hi, ,t.at." for "ll llOdes i E V, ,'1'/,; f .l<:Q,in1 holds, since oth"rwise at least 01",' ''',Hie, could 

""wak,' spolltan('ously" and, th\l:" progress could he ma(l". 

Let, Frog i)" til<, ,do "I' ,,11 fragments ill the ('(msi<kre,l st,ate. Let. LF1'ag~:;'I<'riJ'!I he the set of all hn.grnel1t.g 

which h,w(, t.ll<' lowest, lev~llllr""'g't, all fragments in Jilr(J.g. Ddiw' F f'LFrog to h" " fragment with 

t,he smallest. minhnum-w.,ight. ,mt.g<)i[lg ed~e among til<, fragments in LFmg. 

(a) Suppose that, ""IlI~ node ill (,he fraRm<;Ilt F h,'<.'; ttansmitted a 7'<:.frmessage. Be('~'u,(' "I' thl, 

cI,oi"" of P, eventnally thio r""frIll"'iiil.gc will be('om~ an,wered (either by a" A(":"Idrllll~ss<tge or 

b.y l\ Reject-m~~><\g")' 

(h) Suppose t.hitt some nod" in the fr,l,gmcllt F ha~ tr~.n'mitt:ed a Conncct-lll<;o'"W' "[OI1g it certain 

edg~ ~: E: E i · '1'[",,[ this node will, ag"in I>y the choice of P, dtt[er receive a GonneGtrIne,s;'gl' 

along edge e, or it. will ['"""iv~ il.ll lnitjate-m(""'g<" ,110111'; edge e, C:0I1~"'lu"Iltly, eventll<llly t.lll' 

fr.a.gnH~Ilt'~ level will il)(:n~~lSt~. AgaiLl! pl'og-ress wjl1 lw Ina(it.. 

(t) In all other t~"" it ,huultl he den)' thH.t pmgn's~ is ensured, • 

6.8 Some notes (I •• OaUagel"'S algorithm 

The conedIl~" of Galla((<'r's algorithm h(",vil,y depends on proptrti,'s or the underlying udwot'k. As 

we h"vl' sec" i,l the sect,ioft> 6.3 thrnllgh 6,5, (,he [H"sihility of ident,ifying edges by their weight, 

is crucial for it~ Wrr(:ttuess. Another, k~' ollviolls, constrrunt whid[ i. essential ti.l ("""tr",:t the 

minimum-weight spanning I,r"" "iiiIlg this algorit,hm i, tha.t the underlying uNwO!'k contains no ,,,If­

loops, j,e., th"I, t.here are no ~dges e E E •.• fe\[ ;'"Y node i. T.his prop~[t,'y has act.ually hc'"'' u~t'(l ill 

lemma (I.I(e). In case th<; ,,,,t.work does contain ,df-[<),)p~ it. is not ell5uTt'd t.hat. Gallager's al"oTit.hm 

indeed finds the rninimlllll-weight spanning t,r~~ T of the network, A~ illl example, lI"ume t,hat there 

exist, ,0nW ~llg~ ,~ E E i " for a ~eT\,ain node i in V. Ag5um~ t.h",t. " i~ the minim11rn-wdghl. ,.djacent edgt' 

of ll()d~ i holds, too, Whe" i awakens it will r"ark ',: a~ a branch, COnStllUently, from node i\ point. of 

view e will alway> in Ull' bm"ch state afterwards. It follows Ihlll, in '1"'h a case th~, algorithm (illlIlOt 

satisfy its spedfkat,i(>Il. One can slightly rdilx the assumption I,hat the graph mu~t n(>t, contain any 

self-loops in ortier 1.0 construct. T u~ing Gallager's algorithm: if a node's adjacent ~'dg<, is .1 selHoop, 
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th(,n it iJ; not, the node's minimum-weight adjacent edge. It (:a.Tl hI' p,oved that if this condition hold~, 

(h~n Gallager's algorilhm is correct. 

Our program desc.ribing Gallager's algorit.hlll is slightly mi.r,' dfkknt (,han the progra.m ill IGHS83]. 

WhM w<' rnerdy upda(,e program variables of nodes that have cx(,hanged a Connect-mess':'!\e alOIlg 

some adjacent edg" (s"" figure 3), in the program in [GHS83] the 110d<'s ; ,tdj,l<\,nt to thh edg~, ,aye, 

first exchange.:. m"ssag~ 1'Ii,til1/,(I",+I, wid, find), after having exchanged the message Con",eot(ln,), 

and Q"j(JIT they broadcast the Initiate-message t() (,h.., ()th(or node, in their fragment. ObviollS1y, we 

have saved some t,rrulslIli.,i,luS of me~,age, when compared with the prograIll ill [GHSS3]. 

AIl()ther (slight) optimization is possible; if a certain Hode i ( V trrtn,mit, ~\ Test-message along SOllIe 

edge e a.nd it rec~iv<"s a message C(}nnl:d(L) with L < Ini along thi~ edge before it has <l(tually r(;(:dv"cl 

a respouse to that. T".,t,me~'':I.ge, then there is no need to wait for this T<~S(l()n.,,,. In this ,'a.SP., i would 

':I.lway, receive a Reject-message .:tftel'w.:ttds. COllsc'l"c,ntly, llf,1d~ i can, in this ease, continue its search 

for th~ millim1ll11-w(,ight [lIltg(ling adja~·@t edge without waiting for a l'espmlse to (,he Tf.~t,me~~age. 

The node j at the other end of" wllid th(", a, well ignore the Test-message in such a sitllat.i()ll, i."., 

if it ,,\.tempts t,o process a message Test( I, f) with I < In; rNeived a.l(lng an edge in the state branch. 

7 Conclusion 

Correduess of HIe clistrn",I . .,d nrluiIll\lln-w,-,ight ,panning tree algorithm of Gallager, HUlllbJ..t, and 

Spira [GHS83] has been proved. The strateg.y Moptcd iu thi$ paper in <)Td~r to prove that the span­

ning tree algorithm meets its spetinration is tn ,tart with some sequential program which consttucts 

the lllilliIlllllll-weigitt, ,panning tree, t,(l r<,fin<', as described in [B88] and lCM88], parts of this program 

until distI'ibuted pr0!ir;Un$ arc Obtil.iIlCd, a.nd finally to combine these programs in ordel' to ()htaill 

a di5tributed counterpart of the initial sequential progrrun. The latMr ('omhlnatiol1s hav<, been ac­

compliHhcd by r('pI,«kdly applying the prindple for sequentially phased reasoIliug "h,lllt (~o"':\lrT('ntly 

performed (sub)tasks. cr. [SE8Da, SE8!)b], Thesi' a.pplka(,ion, h«ve 5hown that one can obtain from 

prOgram5 50lving ~<'rtain sub tasks another program which solves the whok tuk, as if the ~uhtasks 

are performed sequentially, even when these subtasks are performed repeatedly a.nd U)Il("rrent1y by 

"'-"pandiIlg group$ ()f llO<l%. In addi1.i(ln, it bas been shown that our principle can cope with with I,he 

phenom",non that tasks performed by one group ()f node" are dhtmbed temporarily by interference 
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of another group of nodes. For thio r~a~<)[L invaria.nts play an important role for 0\1r priIldple, since 

t,l",y all<)w 0,"" t,D prove iIlt.erfNenct'-freedom of specific.ations. A future paper will show that such 

illv,uiallt,; call be gel.et;).led J(lring the design phas(' of progTilmH. 
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The II-Calculus as an Assertion~Language 
for Fairness Arguments 

F. A. STOMP 

Unil)~"'.5ity ~r Nijmegefi. D~parlment .oJ Computer Sder1('c\ 
To,mooiveld I, 6525 ED Nijmegtn, Tn.: Nelherlands 
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t',"dlr"v," UnivcrsilY of ncir"O/oIlY, 
D~p(lrtmfnt ~f Computer Science and Malilemalic .• , 

POB 513,5600 MB E;jndhown, The Netherland. 

Variou~ principles of proof bave been proposed In reason about fairness. This 
paper addresses-for the fi~1 time-tho que.tiM in what formalism such fairness 
arg\lmcnt~ can be couched. To wit: we prove that Park's monotone fir~t-order 

I'-calculus, augmented with constants for all recursive ordin~b Cl'P serve a$ an 
.ssertion-Ianguage for proving fair termination of do-loops. In particular, the 
weakc::;it pr~ondition for fair t~rmlnation of a loop W.Lf. !;iQm~ p-o!;otcondHh;m tS 

ddinsble in it. The relevsnce of this result tn proving eventualities in the temporal 
logic rormalism of Manna a.nd Pnudis (in uFounda.tions of Compul~r SGi~nce IV~ 
Part 2," Math. Centre Tracts, Vol. 159, Math. Centrum, Amsterdam, 1983) is 
dis:cuued. ~~ ]989 AGlI.d.~mic f"n::s!:. Inc. 

1. MOTIVATION 

Fairness is the defining property of good schedulers. The very notion of 
fairness presumes some kind of (metaphorical) competition for some 
shared rcsource(s). This competition is settled by arbitration, resulting in 
synchronization of competitor and resource. One speaks of a fair schedul~ 
ing mechanism when this arbitration meets certain standards. Roughly, a 
scheduling discipline for a set of processes is called fair, whenever, inside a 
process, one or more (constituent) agents are "sufficiently often" allowed to 
compete for some shared resource, one of these agents is eventually 
scheduled for synchronization with that resource. Different notions of 
fairness can be distingUished according to their specification of what 
"sufficiently often" means, of their identification of resources, and of sets 
of agt;nts inside processes, and of when these agents are considered to 
compele. 

0890-5401/89 $3.00 
CC'Pyri8ht ~ 19'&9 by AC8dc:mi~ P"r~~$. h~c. 
All n.sM$. r;,f ~pf'()dlldiCln in any rorm ~I'.,td. 
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/1-< 'AU 'IIUIS HlR FAIRNESS AROUMI:N I'S 

The prescnt papcr concentrates on that notion of fairne~~, which 
prescribes that "an <~CtiOIl which is infinitely often enabled is eventually 
tahn." Hcre, sufficiently often is interpreted ,lS infinitely often; the set of 
agents are singleton set5; the ac(i()n~ are guarded statement.s of guarded 
command$; an action is enahled (allowed to compete) whenever its guard 
evaluates to true; and whem:ver in <l- guarded ~election all guards evaluate 
(0 false this ~electi()n is considered to be waiting, i.e., repeated execution 
results in (re- )evaluation of its guards (and possibly, in execution of a com­
mand guarded by a true guard), and not in failure upon its first execution 
as in sequential programming (Manna and Pnueti, 1983). 

This notion of fairness is linked with the interleaving model of con­
currency to remedy the following deficiency, Since the only requirement in 
the interleaving model is a syntactic one, namely, that actions from every 
process continue to be nondeterministically interleaved (sequentialized) as 
long <IS th<lt p(Qce~s has not terminated, this requirement is also fulfilled for 
an interleaving which systematically selects re-cvaluatiQn of the guards of 
a waiting guarded selection whcn thc~e happen to be false and which nevtr 
sdcGts execution of that selection when these guards have become true (due 
to wme interleaved action of another proctss). 

That is, in the intGrleaving model for concurrency, guards may be 
systematically selected for evaluation at the wrong moments. Now this 
behaviour does not occur in cas~ eve~y proce~s has its own active proctsso~ 
(which notices when guards evaluate to true), Thus, the nondeterministi­
cally interleaved s.:quentia\ c)(CGuti(ln of processes need not necessa61y lead 
to the same result as the concurrent extcution of those processes on 
separate processors. Yet we want to maintain the int.:rleaving model of 
concurrency as Our model for the concurrent execution of processes since 
this is the only model upon which successful verification theories have been 
built (other models for reasoning about correctness properties of con­
current processes are always obtained from this model by introducing 
equivalence relations and congruenG':s). In this we succeed by imposing as 
an extra requirement the fuirness requirement above. 

Next, nearing the focus of this paper, the interaction between fairness 
and the interleaving model must be examined. 

How Does Olle Deduce Properties in the .Resulting Model? 

The properties of interest always contain eventualities which are enforced 
by the assumption of fairness. Pure invariances, i,e" p.operties which are 
invariant during execution, are not inOucnced by postulating fairness as an 
extra requirement and Can be derived lIsing more traditional methods. 

Tht ,tate of art offers the following picture: Let t/I denote some state for­
mula, i.c., 1/1 is a direct property of program states not requiring temporal 
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operators such as 0 for its expression. To establish that for a concurrent 
program 1/1 eventually holds, thc following stratcgy is taken; 

(1) Amongst the concurrCnt processes a distinction is made between 
those processes-in Manna and Pnueli's (1983) terminology dubbed helpful 
processes-whose execution brings satisfaction of 1/1 always ncar<:r, and 
those processes that do not do so, i.e., whose execution possibly does not 
bring satisfaction of 1/1 any nearer, called steady (or unhelpful) processes. 

(2) It must be proved that systematically avoiding execution of any 
helpful process either leads to an interleaving of steady processes which 
does not satisfy fairness, I.e., is unfair, since infinitely often a helpful process 
is enabled but not takcn, or, due to some nondeterministic choice of a 
steady process in the int<:rkaving, docs bring satisfaction of 1/1 eventually 
nearer or even establishes tjI. 

Essential here is that upon closer inspection part (2) above requires 
application of the same strategy to a syntactically simpler program; just 
remove the helpful processes from the original program and prove that 
eventually one 01' the following holds: 1/1, getting nean:r to Ijt or, a helpful 
process is enabled. 

As a preparation for a technical formulation of this strategy, wC first 
introduce a number of auxiliary notions (Manna and Pnlleli, 1983). Let 
p"" PIli·· ·11 P" he some program with '1;" I. 

Assume that both 1 and 1// are statc formulae. 

-For i satisfying I" i" II, we say that PI kads from ,p to ,p' when 
every state transition in P, establishes 1// provided ¢ is satisfied first. 

-We say that P leads from ¢ to ¢' when for all I, I ... i ~ n, P, leads 
from ¢ to ¢'. 

A technical formulation of the above-mentioned strategy requires the 
introduction of well-founded sets and looks as follows (Manna and Pnueli, 
1983); 

THE WELL-FOUNDED LIVENESS PRINCIPLE WBLL Let £m = (A, ... ) be a 
well-founded ordered structure. Let ¢(o:) be a parametrized state formula 
over A, where 0: intuitjvely expresses how far establishing 1/1 is. Let /J; A ... 
{ I ..... n} be a helpfulness function identifying for each 0: E A the helpful 
process PbIO ) for states satisfying ¢(o:). 

(A) f-P leads from ,p(a) to [1/1 v (3P"';0:·¢(P»)] 

(8) f-Ph(o) leads from ¢(Il) to [1/1 v (3/1<0: .¢(Ji))] 

(C) f--¢(o:):::> 0 [1/1 v (3/1 < 0:' ,p(P») v Enabled(Ph(.)] 

H3a.¢(o:));;oOI/i. 



WCALCULUS FOR FAIRNESS ARGUMENTS 

The wundness proof of this rule requires induction over well-founded 
sets. 

Conversely, given the fact that 01/1 is valid, (naive) set theory is used to 
argue the existence of the required auxiliary quantities, i.e., the well-foun­
ded ordered structun; 9)1, the ranking predicate "'(0:), and the helpfulness 
function h, which satisfy clauses (A), (8), (e), so that for each such 1/1, 
WELL can always be applied. This proves that WELL is semantically 
complete. 

Manna and Pnueli (1983) even prove that for certain classes of for­
mulae, their temporal logic formalism is complete relative to the set of tem­
pora.l formulae valid in the given domain interpretation. Typically, tneir 
proof shows that the reasoning about temporal assertions concerning the 
execution sequcnces of programs can be reduced to the reasoning about 
assertions concerning the states of programs, the so-called state properties. 

Now we are ready to ask the one question this paper is about: How do 
these results help us if we are sure that Otjl holds and want to apply the 
rule above to verify Olj;? The answer is: not much. 

Questions such as: 

--- How does one obtain the appropriate well-founded ordered 
structure IDl? 

-How does onc cx:pn:ss, and reason about, the helpfulness function h 
and the ranking predicate ¢( a)1 

-In general, which assertion-language should be used to establish 
hypotheses (A), (In (C) of WELL? 

arc not answered by the above results, since the reasoning about state 
properties is not formali<!:cd in Manna and Pnueli (1983). 

The present paper suggests a direction to answer these questions, by con­
centrating on these problems as they occur when proving termination of 
do-loops under the above fairness assumptions, Le_, fair termination of 
do-loops. That this docs not lea.d to oversimplification follows from the fact 
that the same au~iliary quantities, with comparable objectives, occur in the 
rule whose expression and use we shall investigate (GrUmberg, France2, 
Makowsky, and de Roever, 1981). 

THE WELL-FOUNDED L1VENESS PRINCIPLIl fOR LooPS·"-QRNI\.'S 

RULE. Let Wi: = (W, ;;;) be a well-founded structure. Let 11: W .... 
(States .... t true, false}) be a predicate, and q be a state predicate. Let for 
wE' W, with w not minimal (denoted by 0 < w), be given pairwise disjoint 
sets Dw and Sf,., such that Dw 'F 0 and Dw v Sf", = {I, ... , n}: 

(3) f-[1t(W) 1\ w> 01\ bJ Sj[3v < W· rr(v)], for all j iii; Dw 

(b) f-[rr(w) A w>O 1\ bJ] SJ[3v";;W-J1:(v)), for alljESI .. 
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(c) f-[lt(W) 1\ w> 0]* [0 i. St,. hi A I\i. f>w ,br "" S;] [true) 

(d) f-r => (3v, n(c)) 
Hn(w) 1\ W > 0) => V;'_ I b, 
f-ll(O) => «1\;'_ I ,h,) 1\ q) 

Hr]" [07_ I b,- S,](q]. 

Note, when comparing Orna's rule with WELL, that the commands S; 
act as state transitions. Since in Orna's rule the assignment w --->- (D"" St . .,) 
for w;> 0 merely generalizes WELL's notion of helpfulness function, the 
same kind of aUlliliary quantities are required to apply both ruks. 

This paper proves that to express and reason about 00l, It, and the 
assignment w-(D""Stw ) for w>O and we W, a slight extension is 
required of the formalism used to prove termination of recursive proce­
dures, Park's /l-calculus (Hitchcock and Park, 1973; Park, 1969). 

Finally we note that, historically, two ruks have been formulated to 
prove fair termination of nondeterministic programs: Orna's rule (Grtim­
berg et a/., 1981) and the LPS-rule (Lehmann et al., 1981). Both these rules 
model, each in their own way, a specific intuition rdated to the notion of 
eventuality implied by fairness assumptions. For fairly terminating loops 
they have been proved to be equivalent (Griimberg eta/., 1981), but the 
LPS-rule also applies to proving fair termination of COncurrent processes. 

This article is organized as follows: Section I contains the motivation for 
this paper; Section 2 specifies the programming language used in this 
paper. In this programming language, we restrict oursdves to sequences of 
assignments and to commands in which nested repetitions are not allowed. 
Section 3 discusses various semantics for this programming hll1guage. In 
Sections 4 and 5 the proof system and the assertion-language, Le.. the 
monotone ~-calculu$, are dealt with. A term in the assenion-language, 
which expresses fair termination of a repetition is constructed in Section 6. 
Completeness and soundness of the proof system are proved in Sections 7 
and 8. In Section 9 we drop the restriction that we imposed w.r.L the 
nesting of repetitions and outline how to deal with the more general case 
in which nested repetitions are allowed as commands. Finally Section 10 
contains the conclusion. 

2. THE LANGUAGE OF GUARDED COMMANDS 

In this section we describe the syntax of the programming language used 
throughout this paper. In the next section various semantics for this 
language are defined. 

The syntall is specified below using the standard BNF-notation (braces 
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enclm;c a repeated item, that may occur zero or more times). We do not 
specify the structure of variables and (boolean) expressions. Expressions 
arc assumed to be terms in an underlying signature containing constant, 
function, anJ pn:Jicate symbols. We shall only usc simple variables in the 
remainder of this paper. 

DEFINITION 2.1 (Syntax of the programming language). Start with some 
signature. The language of guarded commatlds, LGC, is defined by: 

<command) ::= <repetition) I <simple command). 
<simple command> :: '" (assignrnent > I 

(simple command); (simple command). 
(assignment) ::= <variable):= <expression>. 
(repetition) ::= *[{U<~elcction)}]. 
(selection> ::= (guard> --> (simple command). 
(guard> ::= "a quantifier-free (boolean) expression." 

We identify '4< [ ] with the assignment x := x (skip). In the remainder of 
this paper, we shall oflen abbreviate ·[Db, .... S,D .. ·Ub,,-S,,] 10 

~[U ;'= 1 h, --> Sil 
The main differences between the language as described above and that 

of Oijkstra's are that. in our language, guarded sdections are not allowed 
as commands and that in a repetition '" [0 ;'_ , b i --> S,], the S, never 
contain repetitions (i = I, ... , n). In Section 9, it is shown how to deal with 
fairness issues when the latter restriction is dropped. 

In the sequel we also need the notion of a direction of a repetition 
*[0;'_, bi ....,. S,] with n;;' 1. 

DEFINITION 2.2 (Directions of repetition). Let S", ,.. [0 :'_ I b, --> S,] be a 
repetition with n;': I. For i = I, ... , fI, hi; S, is called the fth direction of S. 

3. SEMANllCS 

In this section we define four semantics for the language of Section 2. 
Two of them are defined without consideration of fairness constraints. The 
other ones are defined when such fairness constraints are imposed. The first 
semantics fitting for partial correctness is defined using relations, since non­
determinism is involved. To reason about (nondeterministic) termination, 
we introduce the notions of an execution sequence of a repetition and of 
nondeterministic divergence of a repetition. Then the partial correctness 
semantics is extended to fit for total correctness. 

Thereafter, we discuss two important fairness constraints, viz., strong 
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fairness and unconditional fairness. These constraints lead to the notions of 
a strongly fair or unconditionally fair execution sequence of a repetition, of 
strongly fair or unconditionally fair divergence of a repetition from some 
state ~, and of strongly fair or unconditionally fair termination of 
ro:po:tition. 

The relation between nondeterministic termination, strongly fair ter­
mination, and unconditionally fair termination of II repctition is discusso:d. 
The third semantics in this section is defined taking strong fairness into 
account; the fourth one takes unconditional fairness into account. 

3.1. Preliminaries 

Before defining the various semantics for the language of Section 2, we 
first recapitulate a number of basic notions. 

DEFINITION 3. LI (First-order structure). A first-order structure 911 
consists of 

(a) a non-empty set, also referred to as a domain, denoted by Ifill, 
(b) a set of n-ary function symbols and a set of n-ary predicate sym­

bols (n ~ 0), such that for each n-ary function symbol (resp. predicate 
symbol) there corresponds a n-ary function (resp. predicate) over Ifill, and 

(c) a set of constant symbols, corresponding to elements of 1M I· 

We assume the equality symbol" =" to be present as a binary predicate 
symbol, corresponding to the standard equality over WI, 

In the remainder of this section we assume that Wl is some first-order 
structure, which contains all symbols that may appear in a program 
SE LOC. We adopt the convention to denote LGC by LGC(fil) in such a 
ca$C. 

DEFINITION 3. L2 (State, enabled ness, disabled ness, slate variant), 

(a) A state is a function from the collection of all program variables 
to the domain of interpretation. e. ~i' C etc. are used to denote states. The 
set of all states is denoted by States. The value of the expression e in state 
~ is denoted by ~(e). (We assume that the {(e) is always defined!) 

(b) If a guard b evaluates to true in state ¢, i.e" ~(b) holds, we say 
that b is enabled in state ¢; otherwise, b is disabled in e. 

(c) For a state e, a variable x, and an expression e, the state variant 
e{ ... /x} is defined as usual: {{ e/x }(x) = ~(e). and {f e/x }(y) = ely} if x ~ Y-

Next, we introduce the operator "0" denoting composition of relations. 
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OFFINITION 3.1.3 (Compn~ilion (If relations), Let A I! A 2' und A J dcnote 
sets. Assume that R, ,;; A, )( A 2 and 1<2';; A 2 X A.l arc binary relations. Then 
RIo R, ,;; A, x A.l is a binary relation, (00. This relation satisfies: [or all 
a,EA" a)EA], (R 1"R 2 )((/,,(/1) holds iff there exists some a2EAl with 
RI(al, a~) and R 2(a2, all. 

3.2, Partial Correctness 

We now associate with each program S the (relational) ~cmantics 
R~·rl S States x States. Note that, due to nondeterrnillism, for input state ,; 
artd nrogram S, there may be more than one output state or even infinitely 

I oncs. If S nowhen: terminates when started in ¢ (in the semantics 
under dis(;ussion) there will be no output state, i,e,. the set of output states 
is empty, 

DICFlNlnON 3,2, I (Partial correctncss scmantics). 

(a) S~x :=e: R~"" = {ie, e{ejx})l¢ a state), 

(b) S=S,; S2' for simple commands SI and S2: R~"n =Rr,:,"'oR1~'" 

(c) S"""'[[)7~,hi-->Si], for n~l and simple command S" 
i = 1, "" n: Let Rs = {( e, 0 I ¢ a state satisfying B) for boolean expressions 
B and let b denote the formula v;'~ , b,. Define R.~ = U7~ 1 (Rb," R~.~"). Then 
R~,'" "" (U;~ 0 R~~)" R ,b' where R~ denotes the i-fold composition of the 
relation K~ with itself. 

Observe that for repetitions S = *[ n;,~ I h, --.. S,], R~a,' contains the 
pairs (~, 0 for c; satisfying C; F 1\;'_ j ,b,. This means that S 
"immediately" tcrminatc~ if S is executed in an initial state in which none 
of the guards is enabled, 

DI:fINITION 3.2.2 ([pJ S[q]"a,,)' Let p and q denote u~scrtions in an 
assertion-language containing all program v<iriable~, terms, and booie"n 
expressions over 9R Let SIS LGC(ffil). Then we define 9Jl F [pJ S[q]p"" iIT 
'lll F 'r/~, ('[(p(O 1\ R~m(C;, ()) => q(~')] (partial correctness). I.e., WI F 
[p] S[qJ p." holds iff "foT all input states < satisfying p the following holds: 
if S terminates when started in ~, then the output state ~ati~fie~ lj." 

3,3. Total Correctness 

Next, to rcason about termination, we add to the set of states a special 
.tatl; .L, standing for divergence, As usual, the state variant ~ {e/x} is 
d~fined to be 1. For <in assertion p, p(l.) is defined to be false, I.e., p never 
holds in L In the sequel we assume ~ to be present in States. 

DEFINITION 3.3.1 (Total correctness semantics. execution sequences of 
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repetitions, nondeterministic divergence of a repetltlotl from a 
state). Define the relation R~, for S e LGC(Wl) as follows: 

(a) R~ .. R~·tlv{(l,J.)},ifS~)::=e 

(b) R~ = (R~, 0 R s,), if S;; S,; S2 and both S, and Sl are simple. To 
define R~ for repetitions S, the notion of an execution sequence of S is 
introduced: 

(c) an execution sequence of a repetition S == "[ D;'= l bi ---> S;], n) 1, 

is a maximal sequence of states ~O--->io~,--->i]~2'''' such that (Rb.oR~.) 
(e j , ~j+ d holds for all j, k satisfying j ~ 0 and k = if with I". k ". n. The 
sequence is considered to be maximal if it cannot be extended, i.e., it is 
either infinite or ends with some state ~k satisfying 1\7~ lib,. 

(d) We say that a repetition S can diverge nondeterministically from 
~ if there exists an infinite execution sequence of S starting in ~. 

(e) For S;;;;·[07_1b' ..... Sj] with n;:<;1 and simple commands S, 
Ii = I, ... , n), define R~ = R~'" v {(e, 1..) I S can diverge nondeterministically 
from 0 v {(l.., 1..»). 

DEFINITION 3.3.2 (Nondeterministic termination, [p] S[q],). For 
S E LGC(\m) and assertions p, q as above: 

(a) Termination of a (nondeterministic) program S is straight­
fo.wardly defined as It~ # 1.. . I Rs(e, 1.. J. 

(b) 9JI F [p] Seq). iff WI F V{, {'[(p(~) /\ Rs(~, t))~q(~')] (total 
correctness). I.e., 9JI F [p] Seq], holds iff "s always terminatc~ in a state 
satisfying q, provided execution of S started in a state satisfying p" 

3.4. Strong F'airness and Unconditional Fairness 

Termination of a program S has been defined as V~"".L. --, R~(~, 1.). 
This is, however, a rather strong requirement. Consider, e.g., Dijkstra's 
(1976) random number generator: SO"" *[b --> x:""): + 1 0 h --> h := false]. 
So need not necessarily terminate if started in a state ~ such that ~(b) 

holds, because its execution may be governed by an extremely one-sided 
scheduler that consistently refuses to Cl(ccutc the second direction of So, 
I.e., b; b := false, in any iteration. 

Consequently, various constraints on schedulers have been proposed 
which prohibit schedulers to neglect the execution of directions under 
certain circumstances. Termination of a repetition is considered relative to 
a set of schedulers thus constrained. 

Before presenting two important constraints or fairness assumptions on 
such schedulers, viz., strong fairness and unconditional fairness (Apt el al., 
1984; Lehman eta!., 1981), we first introduce (hc notions of enabled ness 
and disabledness of directions of a repetition. 
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DEFINITION 3.4, I (Enabledness and disabledness of dirCl;tions), Let 5 ~ 
*[11;'_1 h, --> 5/] be a repetition. Assume that ~o ,,+'" S, --;.il." is an execu­
tion sequence of S, For ,tate ~"" In;;' 0, occurring in this sequence we say 
that the ith direction of 5 is enabled in ~'" if ~",(h,) holds, where I,::;; i';;: 1'1; 
otherwise the ith direction of Sis disabkd in ~m 

DEfiNITION 3,4,2 (Strongly fair execution $equenccs, strongly fair 
tcrmination, strongly bir divergcnl;c of repetitions). 

(a) An exccution sequence of a repdition 5 is strongly fair, either if 
it is finite or if it is infinite and every direction of S which is infinitely often 
enabled in this sequence is cho,cn infinitely often along the ~equence, 

(b) A repetition terminates strongly fair if it admits no infinite 
strongly fair execution sequcnccs_ 

(e) A repetition diverges strongly fair from state ¢ if it admih an 
infinite strongly fair execution scqucnr.:e starting in ¢. 

Observe that, while the ahove program, 50' admits infinite computa­
tions, none of them i~ strongly fair; i_e_, 50 terminates strongly fair. 

In the scquel, we also need the notion of uncondition:\1 hirrtess, that 
does nO! take enabledness and disablcdne$$ of directions into account. 

DEFINITION 3,4,3 (Unconditionally fair ex.ecution sequences, uncondi­
tionally fair termination, unconditionally fair divergence of a r~pClition)_ 

(<1) An execution sequence of a repetition is unconditionally fair, 
either if it i~ finite or if it i$ infinite <1nd every dir~ction is chosen intinitely 
often along the s~qllence_ 

(b) A repetition terminates unconditionally fair if it admits no 
infinite unconditionally fair execution ~equences. 

(c) A repetition diverges unconditionally fair from 5tal~ e if it admits 
an infinite unconditionally fair execution sequence starting in e. 

The program SI == *[x=O--->x:= 10 x= I---->x :="'] docs admit 
infinite strongly fair e{)mputati~)ns, but nO unconditio[lally fair ones. 

Other examples of unconditionally fair and strongly fair terminating 
programs can be found in Grtimberg el ai. (1983)_ We should remark here 
that some authors use a different terminology. In Lehmann el al_ (1981) the 
names impartiality (resp. fair) are used instead of unconditionally fair 
(resp. strongly fair). 

The rdation betwecn nondeterministic termination, strongly fair ter­
mination, and unconditionally fair termination of a repetition is given in 
the following: 

136 



Sl"OMP, 010 ROeVER, AND GERTH 

THEOREM 3.4.4 (Relation between unconditionally fair, strongly fair, and 
nondeterministic termination). For each repetilion S, 

(i) S terminates nondeterminislically =;> 51 terminates strongly fair. 

(ii) S terminates strongly fair =0> 51 terminates uncondilionally fair. 

Proof (i) and (ii) immediately follow from the definitions above. 
Observe that the examples above show that the implications are proper. 

We now proceed to define other semantics, taking fairness assumptions 
into account. The meaning of a command S under the assumption of 
strong fairness is given by the relation R'J; under the assumption of 
unconditional fairness it is given by the rdation R'ff. 

DEFINITION 3.4.:5 (Semantics under fairness assumptions). For simple 
commands S, we simply define: 

R~r = R~ = R:~, 
and for repetitions S ~ *[ D 7_ 1 bi -+ Sa with II;;' I and simple S" 
;= I, .'" n: 

R~r = R~",l V {(~, 1) I S can diverge unconditionally fair from ~} u 
{ (1, 1)} and 

R~ = R~A'I V {«(, .1) I S can diverge strongly fair from (} u {(.1, .1)). 

Next, termination of a program S under fairness assumptions and 
validity of (p] Seq]. for sE {uf, sf} are defined. 

DEFINITION 3.4.6 (Termination under fairness assumptions, [pJ S[q].f, 
and (p] S[q]uf)' (a) A program S terminates strongly fair, uncondi­
tionally fair, respectively, iff ¥¢ # 1 ',R~(¢, 1), ¥~"# 1 . --, R~f(~, l), 
respectively, hold. (Cf. Definitions 3.4.2(b) and 3.4.3(b ).) 

(b) For SE {uf, sf}, assertions p and q, as above, and program S, we 
define 

~ F [p] SEq], iff IDI f= 'Ie, n(p(o A R~(~, ';'):::;J q({')). 

In the sequel .; denotes a state other than 1, unless stated otherwise. 

4. THE PROOf SYSTEM 

We use a Hoare-like proof system. The axioms and rules are as follows: 

(1 ) assignment 

(p{e/x}Jx :=e(p]; 
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(2) composilion 

~pJ SI[q], [q] ~l[r] 
[pJ ,')'1; Sl[r) 

(3) consequence 

p~p..!..' [PI] S[ql]' ql ~q, 
[p] Seq) 

(4) Oma's rule (see Section I). for simple commands SI (i = I, ... , n). 

Note lha.t we only consider repetition~ under the assumption of ~lrong fair­
ness. However, Orna's rule can also be applied to ordinary terminating 
do-lOOps. In this case, one simply takes the sets SIR" WI; W to be empty. 
We then obtain Hard's (1979) rule for terminating loops. 

5. THE ASSf,RTIQN-LANCiUAGE L 

Our assertion-language is based on the tl-calculus of Hitchcock and Park 
(1973; also Park, 1969), which is appropriate both to prove termination of 
recursive parameterless procedures (see de Bakker, 1980; Hitchcock and 
Park, 1973) and to express the auxiliary quantities associated with those 
ptoofs_ 

In thi~ section, we first recapitulate the basic ideas on which the 
~-calculus is based and introduce some fixed point definitions that are 
needed in Sections 6 and 7. In particular, we express the domain of well­
foundedness of a binary relation as a iL-term. The term expressing the 
non-existence of infinite strongly fair execution sequences of a loop, see 
Section 6, will be a more complicated variant of that Jl-term. 

After introdUcing the assertion-language L used throughout the remain­
der of this paper, we define validity of formulae in L As is usual in com­
pleteness proofs, we shall need the ability to encode finite sequences. In 
this, we base ourselves on Moschovakis (1974). 
A~ is argued in Apt and Plotkin (1985), fairness arguments require the 

use of recunivl;: ordinals_ For this reason we introduce the notion of an 
Qrdinal acceptable strueture (see Definition 5.5.3). Relative to such struc· 
tures completeness will be shown in Section 7. 

5.1. Preliminaries 

The J1-ealculus is based on Knaster and Tarski's theorem (Tarski, 1955). 

THEOREM 5. 1.1 (Knaster~Tarski theoreml. Let (A, 1;;) be a complere 
lartite and F: A - A a monotonic June/ion; in Jad a cpo suffices. Then F has 
a Mast fixed point, denoled by ~a· [F(a)). meaning that 
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(i) F(Jia· [F(a)]);= Jia· [F(a)], i.e., JiCl· [F(,))] is a fixed point of F. 

(ii) if there exists some bE A such that F(b) =' b, then fJ.a· [F(a)) I;;;; b, 
i.e., Ita· [F(a)] is Ihe least fixed point 0/ F. 

Using the notation as above, fJ.a· [F(a)] is unique since the partial 
ordering I;;;; is anti-symmetric. Tn the sequel, we refer to property (il 
formulated in Theorem 5.1.1 as the fixed point property. 

LEMMA 5.1.2 (Characte6:j:ations of least fixed points). There ate seoeral 
ways to regard least fixed poinls. Using Ihe nolalion as above, first, 

(a) fla· [F(a)] = nrxe A I F(x)=x} = n{XE A I F(x) I;;; x}, where n 
denotes the infimum. A proof of this can be found in de 8akk~r (1980). 

Second, Ihe leas/ fixed point can be obtained by iterating F into the Irans­
finite ordinals. 

(b) Define Jor each ordinal A: 

FO(x) = x, 

FA(X)=F( U FP(X)). 
t<:A 

if A ,.,to. 

Here U denotes the supremum. Let .1 A denote A's least element, which 
cxists since A is a complete lattice. l'hen fla· (F(a)] = F'(1_",) for some 
ordinal 0:. For a proof, we refer the reader to Moshovakis (1974). Clearly, 
if Ilo· [F(a)] = F"( 1..~) holds, then for all (J ~ 0:, Jia· [F(a)] = FP(J.. A) 
holds, [00. 

5.2. Fixed Point Definitions 

Next, we introduce some fixed point definitions. 

DEFINITION 5.2.1 (R -> p, Ro pl. Let R be a binary relation over some 
set and let p be a predicate on the same set. Define 

(i) R -4 p by (R -4 P )(x) iff \Ix' . [R(x, x') ~ pix')], and its dual 

(ii) Ro p by -,(R ... -,p). So (R 0 p)(x) holds iff 3x'· 
[R(x, x') /\ pix')]. 

Since the collection of predicates ordered by p (;;; q iff p :::0 q forms a com­
plete lattice with falSI! as the least element, and R -4 p, as well as R 0 p, is 
monotonic in p> pp . [R -4 p] exists. 

THEOREM 5.2.2 (Domain of well-roundedness or a binary relation R. 
lip· [R -+ p]). LeI R be a binary relation oller some set. Then IJ.P' [R -4 p] 
describes the domain of well1Qundedness of R; i.e., for all x the following is 
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Wi is/led: liP' [R --> pJ(x) hillds ill there exists flO iI/finite sequence XO,."I"I' 

x~, ... Ivitll x=x" ami R(Xi' X,+ I) (i;:'0). 

Proof (= ) Define r( p) = R .... p. Observe that lIP' [R --> p] = 
,'(false) holds for ,Qme <.)[(Jin~1 (1.. Consequently, it sufilccs to show that 
for all x: if ,'(j(llse)(xj holds, then there exists no infinite sequence ':(0) XI, 

Xl'''' with .'I:=.~o and R(xi,xi+ll for i;o(), 
Using induction on fl, we prove that for all ~ '" (1. the following holds: 

Tli(/a/sl! )(x) = there i, no infinite sequence Xn, X I, X" ... wilh x = '\'0 and 
R(x" x, + tl (i)o 0) holds. 

Induction basis. ii == 0: trivial. 
Induction hypothesis. Suppose that the implication holds for all ,\ < fl. 
Inuut;lion .tep. For (J ,.. 0, we have 

yll(fall{')(x) -= (R --> U ,[A(falsd) (x) 
"<: Ii 

= 'rIX"[ R(x, x') =;. C~Jl ,A(faISe)) ex')]. 

So ,I\.!alse)(x) implies that for all x' such that .R(x> x') no infinite 
"descending" sequence ,tarting in x' exists. This follows from the induction 
hypothesis. Th~1l there is no infinite "descending" sequ~nce st,nting in .'1:. 

(-<=) 'fo prove the other implication, assume that 'liP' [R --> p 1(..1') 
holds. By the fixed point property, ,(R --> IlP' [R --> p])(x) holds, too. So, 
there is an x 1 such that R(x. x I) and '!J.P' [R --> P ](x d· This process can 
be repeated ad infinitum, and we obtain an infinite "descending" sequence 
x~, XI, x 2 > .. • ~uch that .'I:=Xo and R(x" x, ,.1) (i~O). I 

If F is a mon()(onic operator mapping predicates to predicates, then its 
greatest fixed point, vp· [F(p)], exists too. This is because the collection of 
predicate~ a~ defined <Ibovc is a complete lattice. Moreover, the greatest 
fixed point is representable in terms of the Il-operator. This follows from 
the following lemma whose proof can be found in de Bakker (1980), 

LEMMA 5,2.3 (Representability of the greatest fixed point in Il-terms). 

vp· [F(p)] -= 'IlP" [F(p){ ....,plp} l 

Since R 0 P is monotonic in P, vp· [R 0 p] exists. Using Lemma 5.2.3, we 
obtain the equivalences vp·[Rop]-'ftP [,(Ro,plJ-'llP' 
[R'->pl 

Recall that "0" denotes composition or relations. We adopt the conven· 
tion that ",," has priority over "v." I.e., R I" R2 V R J should be parsed 3S 

(RloRdvR). 
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Let R denote a binary relation over some set, and let I denote the iden­
tity relation over the same set. It is easily seen that F(X) = R " Xu / is 
monotonic in X, where X denotes a relation variable. So F's least fixed 
point I1X·[RoXuI] exists, In informal nota!iM I1X,[RoXv{]= 
Iu Ru R2 u ... u R"u . ". 

Not(1tion 5.2,4 (R*, R+), 

(a) We abbreviate p.X· [R 0 Xu 1] to R*, the rdation obtained by 
composing R, zero or more times with itsdf. 

(b) In the sequel, we shall also use R +, the relation obtained by 
composing R at least once with itself, as an abbreviation for R" R*. 

We then have 

FACT 5.2.5, Let R denote a binary relation over some set and I the 
identity rdation over the same set. The following holds: 

(a) I'=.R'*, R+ s;;R*, R+ ==-R*oR. 

(b) If T denotes a binary rdation and T<;;;, R, then T" s;: R* and 
R*oT,;;:R*. 

5,3. The Assenion Language L 

Let 9:n be some first-order structurc. The first-order logic over M is 
defined as usual. Now we extend this logic so as to be able to express fixed 
point defmitions. For this an infinite set of n-ary predicate variables. 
p. X, Y, ... , is introduced for every n pO. These predicate variables may 
appear in formulae, but may not be bound by quantifiers. These variabks 
from the ba~is of the lixed point definitions. To ensure the e~istence of least 
(and greatest) fixed points, mono tonicity has to be imposed. In fact, we 
introduce the notion of syntactic monotonicity of formulae, which implies 
their semantic monotonicity. In essence, this notion requires that each 
occurrence of the predicate vadable p that is to be bound by the least fixed 
point operator p. is within the scope of an even number of ,·signs, 

DEFINITION 5.3.1 (Syntactic monotonicity and syntactic anti-
rnonotonicity). We inductively define sets sm(p) (resp. sa(p)), denoting 
the class of formulae that are syntactically monotonic (resp. syntactically 
anti-monotonic) in a variable p: 

(i) I/> E sm(p), if p does not occur free in 1/>. 

(ii) ,l/>esrIi(p), if I/> 10 sa(p). 

(iii) ¢I ::::o1/>2Esm(p), if 1/>1 ESa(p) and ¢lEsm(p). 

(iv) 'ix!/>, 3x!/>Esm(p), if ¢;;;sm(p). 
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(v) pE~m(p). 

(vi) lip, fqlJ, vPI' [¢) Esm(p), if .p€~m(p)(1sm(pd· 

(vii) (i)··(iv) with sm and sa interchanged. 

(viii) ].J.P,· [¢>]. vp, [¢>]Esa(p), if ¢esa(p)nsm(PJ)' 

Under the usual ordering, ¢ I \;;; rp2 iff ¢; I ::;) ¢~, it can be proved by induc­
tion on the structure, i.e., the complexity of the formulae that syntactic 
monOl(micity implic~ semantic mono\onicity. 

DEFINITION S.3,2 (Assertion-Ianguagl;: J. The assertion-language I.(lm) 
Over some struetU{l; I)JI, is the smallest class B such that 

(i) .p, IlP' [JP(P)], vp' [Jj;(p)] € B, where rj; and J/! are first-order 
formulae over WI, <p does not contain any free predicate variables and 
1/1 Esm(p). 

(ii) if rj;, Jj;e B then rj; A J/!, rj; v Jj;, rj;=>Jj;, and ,.peB, too, 

Remark. If in a formula IlP' [!,V(p)] or vp· [!,V(p)]. p does not occur 
free in if, then we will often write f instead, Note that formulae of the form 
JiP' [if/(p)], where ljJ conlain$ a ll.operatDr, are not allowed, However, we 
shall lise slich formulae, in which such a nesting of Il.operators OCCUrs, 
since they are representable in £(9Jl), see Moschovakis (1974), 

In the sequel we shall often abbreviate L(':UI) to L, when the structure lm 
is clear from the context. 

5.4. Validity of L-Fol'mulae 

We next define validity of L·formulae. This definition is clear, except for 
the case~ ].J.P' [if(p)1 and vp·[t/I(p)]. Recall that flP'[f(p)] can be 
obtained by iteration. We now formali~c this idea in the following con­
struct by defining predicates l~ for {I ~ 0 "by iterating f (i times from 
below," 

DEFINITION 5.4.1 (I!). Fo( li(st·ordcr formulae >/I over WI, J/I e sm(p), we 
define I! for ordinals f1 by 

I~ "" Ax false, 

I~ = 1.,;: . !,V (x, U''''Jl/~) for II ';'0, 

I .. =dx, U ... o l~(x), 

By the monotonicity of '" the following holds (Moschovakis, 1974): 

LI:'MM'" 5.4.2 (Properties of I~). 

(i) (~";#)=(I~(x)=I~(X)); 

(ii) for some ordinal K; I .. =1; = UHK I~; 

I 12 



STOMP, Df: flOliVI;R, ANO ()~RTH 

(iii) I", is Ihe lea ... 1 predicate C sali!;fVing C(x).,.". "'C'(, e); i.e., 
1~(.q*",C~, If) and ife sati4/es ('(x) .... ",(x, e), thell /",(X) = C(.q. I 

Observ~ that the clauses (1) and (ii) in Lemma 5.4.2 ensure that I! is 
monotonic in p and that there exists some ordinal K for which the fixed 
point is reached. In fact. 1", as defin~d above is obtained after K iterations 
of 1/1. Moreovt(, in this way the least fixed point is obtained indeed. This 
is an immediate consequence of L~mma 5.4.2(iii). 

DEFINIiION 5.4.3 (Validity of /l.P· [\II(p)] and of vp· [ljt(p)]). Let l/! be 
a first-order formula Over WI, \II E sm(p). We now define 

(a) IDI f.- f.l.P' [!/I(p)](x) iff IDI F I",(i), 
(b) 9Jl F f.l.P' ["'(p)] itT for all x, 9Jl F!1P' ["'(p)](i), and 

(c) IDI F vp.[l/!(p)] ilT\ffif.-'/.-Ip"[l/!(p){---,p/p}]. I 

5.5. Acceptable Structures 

As is usual in completeness proofs, we need the ability to encode finite 
sequences. In our case, this is necessary to define the well-founded sel 
necessarily for applying Orna's rule. For this, we introduce Ihe notion of an 
acceptable structure (Mo~chovakis, 1974). 1 First we introduce a number of 
notions needed for the definition of acceptable structures. 

DEFINITION 5.5.1 (Coding scheme, decoding relations, and decoding 
functions). 

(a) A coding scheme for a sct A is a triple '(j= ur, ,,;:;", ( )"') 
such that 

(i) tr E A, ,;; "" is an ordering On tr :\nd the structure 
< N"', ,;; "') is isomorphic to the integers with their usual 
ordering. 

(ii) < > 'C is a one~one function, mapping the set U" .. 0 A i of all 
finite sequences over A to A. By convention, AO = ¢; the 
empty sequence < ) '{j' is the only $cqu~nce of length O. 

(b) With each coding scheme 't', we associate the following decoding 
relations and functions: 

(i) Seq""(x)=there ex.Ist x1' ... ,x. such that x=<Xj,,,.,x,,)"'. 
Bere, x'"' < ) "', the code of the empty sequence, is covered by 
the convention that x = (xl> .... X. > '>' if n '"' O. 

(ii) The length function Ih'" for sequences maps A into /IfG, and 

, Alternatively, we could have introduced the notiotl of an arithmetical .truclure (Hard, 
1979). 
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hence into the integers, because of the isomorphism of 
(N°', ",;'. > with <N, ,,:;): 

Ih'''( ) == {a, if ,Seq'''(.>;) 
x n, if Seq"(.>;-) 1\ x "" <XI' .'" x" )" for some XI, __ ., x". 

(iii) The projcr.tion (xl;', as a function of x and i, is defined by 

~' {x" (x), = 0, 
if X = <xl"",xlI)'lfforsomexl, __ ·,''"'" I ,,:;i":;fI 
otherwl~e. 

DEF1NITlON 5.5.2 (Elementary coding scheme). 

(a) A function I is first-order definablc on a structure 'ID iff its graph 
is first-order definahle, i.c, ilf {(x, yl I I(x) =V} is first-order definable 
On WI. 

(b) A coding ~chemc <t is elementary on a structure m if the rela­
tions and functions yo, ",; I, Seq'G, Ih"'( )"", are all elementary, i.e., first­
order definable On WI. 

Note that the class of elementary relations on a structure is closed under 
conjunction and quantification. This is an immediatc conseq uence of 
Definition 5,5,2. It follows that the functions p~ defined by p=(x l' ... , x.l = 

<x" '''1 Xn >.., are elementary, as p:(x t, ... , x.) == u -= (Seq'o"(u) A Ih'(u) = 
n A 'ii, [10;; iO;; n=> ((u)7 =x;l]l. (In the sequel, we shall omit the super­
scripts <to l 

As argued beforc, we need the ability to encode finite sequences. Also 
fairness arguments require the use of recursive ordinals. In Our case these 
requirements afe necessary to define the well-founded set required to apply 
Orna's rule. 

DF.FINITION 5.5.3 (Acceptable and ordinal acceptable first-order structures). 

(a) A first-order ~tru<;ture 9:n is acceptable if there exists a coding 
scheme elementary on WI. 

In the sequel, we consider acccptable structures such that for all recur­
sive ordinals a, there exists a constant symbol ri interpreted as the ordinal 
Ct, We therefore introduce the notion of an ordinal acceptable structure; 

(b) A first-order ordinal acceptahle structure is a structure WI such 
that: 

(i l WI is an acceptable structure, 

(ii 1 WI's signature contains syrnhol~ (.'1 fOr all i < tv't, and 
c, = iE 1:011, where w~' is the first non-recursive ordinal, and CI 

denotes the interprctation of c,. 
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(iii) the predicates Ord (Ord(a) holds ifT a E 19R1 (', (l)'t) and -< 0,", 

the usual ordl;ring on (I)';', arc flrst-Nder definable in 911', 
where wr is a reduct on ~1JI, obtained by removing all ordinal 
constants c; from its signature. 

Let ffil be an ordinal acceptable structure. For completeness, we need 
amongst others, representability of the guarded commands partial correct­
ness ~cmantics. First note that the I/O-relation of a program S only con­
strains the valuation of its free variables (in the oulput stale). We shall be 
somewhat more precise below. To do so, suppose that S is a program. 
Denote by F the set of free variables occurring in S. tet F' denote the com­
plement of F, I.e., F' is the set of all variables not occurring free in S. If 
R~·"(~, n holds, then R~"'(" r') holds, too, provided ~IF=,IF, 
~'I F= t' I F, and" I F" = -r' I Ft

, where I denotes restriction. Using this obser­
vation, the semantics R~"" is easily seen to be representable: for example, 
if S == * [b .... 8'] then R~a,,(~, n = ffil F /-IX· [(Rb 0 R') 0 X V oRb ]():. y), 
whert~ x and yare the codeS of elF (t I F resp.). Here R' denotes the rela­
tion R~~" associated with S', and F the set of free variables occurring in S 
Observe that the codes x and y exist since WI is an ordinal acceptabk 
structure. 

We next construct an extension of M by adding for every guarded com­
mand S a relation symbol Rs , interpreted as the semantics R~'" of S. Since 
Rs is repn;sentable, we obtain a structure ~t' such that Th(Wl') = Th(M), 
where Th(M)= (pELIWI F pl. I.e., Th(9J1') is conservativf: over Th(ill/) 
and we do not obtain a more expressive language in this way. 

We conclude this section by showing that a number of predicates exten­
sively used in the sequel are reprcst:ntable in L 

THEOREM 5.5.4 (Representability of a number of predicates l. Assume 
that WI is some ordinal acceplUble Structure. Let R j Clnd Rl denole binary 
re/alion'; On IMI elementary on WI. The following constructs are representable 
in L:R1oR", R,vR" R{, andf-1.p·(R j ---->-p)' 

Proof (t should be clear how to represent R j 0 R" and R j v R2 in L Rt 
is representable by I1X, [Rj 0 X v IJ, where 1 denotes the identity relation. 
Finally flP' [R j ----> p] can be represented as follows: define rP(x, p) "" 
Vx'[Rj(x, x') => pix')]. Then flP' [¢(x, p)] represents f-1.p' [R j --> p](x). I 

In the remainder of this paper we shall also use the construct foR for 
predicates r and binary relations on 19111, where WI is as above. Intuitively. 
r 0 R is satisfied in x iIT x is R-reachable from some y in which r holds. 

DEFINITION 5.5.5 (f 0 R). Using the notation as above, we define for 
predicates r and binary relations R on linl the predicate ro R by r o R(x) 
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iff :lyerly) A R(y, X)]. Observe that r" R is trivially representable in L, if 
R is elementary in WI. 

In the remainder of thiN paper illl always denotes some first-order ordinal 
acceptable structure. 

6. CONSTRUCTION OF A p.-TERM EXPRESSING 

STRONGLY FAIR TERMINATION 

In this section we show that the property "S is strongly fair terminating" 
is representable in L. More precisely, let +[O;'_lh,--->S,J and let 
Wl be some ordinal acceptable structure. We construct a formula 
SFAlR(RI> ... , Rn) such that \VI F -;SFAIR(R j •••• , R,,)(O holds ilT "S 
terminates strongly fail' when started in ~." Here, R, denotes the relation 
Rb,oR~!. associated with h,; S, (i= 1 •... ,11). 

For programs with two directions, a II-term expr<lssing strongly fair ter­
mination has been constructed in de ~ocvu (1981). To give the reader 
some intuition, we first construct a term describing the exist<lncc of infinite 
strongly fair <ll'ecution sequences of a program S= '"[hI --> SID hi -, S~]. 

From Definition 3.4.2, we obtain that in an infinite strongly fair execu­
tion sequence of S, either 

(l) both directions of S are infinitely often enabled in this sequence, 
and hence infinitely often taken in it, or 

(2) the first direction becomes eventually continuously disabled and 
the second direction of S is continuously taken from some point onwards 
in the execution sequence, or 

(3) the symmetrical casc of (2), i.e., the second direction of S 
becomes eventually continuously disabled and the first direction is con" 
tinuously taken from some point onwards in the execution sequcnce. 

The construction of the term describing the existence of an infinite 
strongly fair execution sequence of S naturally splits up into three cases, 
according to the three possibilities {1): (2), and (3) above. Let RI (resp. R 2 ) 

denote the relations Rb ,oR1, (resp. Rb,oR1,) associated with hl;S, (resp. 
b2 ; S2)' 

Case I. We cOI1::>idcr such a ~cqucncc as COn$l$tmg of an infinite 
number of so-called unconditional fair parts. roughly being Ilnite sub­
sequences of the infinite sequence in which every direction is taken at least 
once. Such an unconditional part can be described as follows: 
(Rt o R 2 vRt o R 1 ). 

This characterization stems from Park (I 980). Recall that truth of the 
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predicate vp· [R 0 p J in '"(0 cxrrcsses the c~istenee nf an infinite sequence 
'\'0,."( I, -"2, ... such that R(xi' Xi+ I) holds for i", O. As a consequence, the 
existence of an infinite strongly fair sequence, according to the first 
possibility above, i~ cartured by the prcdic"tt vp· [(R t "R 2 U 

R 2+ 0 R tl" p J. This term is called UF(R I' Rl)' 

Case 2. We consider possibility (2) above. In this case, the existence of 
an infinite strongly fair execution sequence of S can be described by a term 
expressing that after some finite prefix, in which (possibly both) directions 
1 and 2 are chosen, only the second direction is continuously taken, since 
the other one becomes eventually continuously disabled. In the infinite tail 
of the sequence each intermediate state satisfies -, hi' This term is captured 
by (R I uR 2 )·ovp [((bll\ -'btloR2)op). This term is called fair(R 2 ) 

fin(Rd. 

Case 3. Symmetrically to case (2) the existence of such an execution 
sequence can be described by fair(R I ) fin(R l ), 

Now define SFAIR(R I , R2 ) by SFAIR(R I , R l ) "" UF(R I , R2 ) v fair(R 2 ) 

fin(R,) v fair(R,) fin(R 2), We then obtain that S admits an infinite strongly 
fair execution sequence iff SFAIR(R I, RJ holds. 

The structure of Section 6 is as follows: in Section 6,1 we describe the 
predicate UF(R" '''' R~) for n;;' I. This predicate is a generalization of 
UF(RI' Rz ) that we derived in CaSe: (I) "bove. In Section 6.2 wc extend the 
re"soning of case (2), hence case (3), when there are more than two direc­
tions in a repetition, Finally, in Section 6,3 we show that for every com­
mand S and command q, the weakest precondition for fair termination is 
definable in L. 

6.1. Unconditionally Fair Tltrmination 

At first, we consider execution sequences of programs *[ 0;'_ I bi ..... S,), 
in which each direction of S is chosen infinitely often, Any such sequence 
is strongly fair iff it is unconditionally fair. In the sequel, we assume that 
RI , ... , Rn are the relations Rh, ' R~f, "" Roo 0 R;,r associated with the 
statements b l ; SI' ... , bn ; So. Consequently, we first consider the problem of 
describing in L the existence of an infinite sequence of R,-movcs in which 
each of the R, occurs infinitely often (i = I, "" n). 

Con~ider such an infinite sequence, Since each R, (i "= 1, ... , n) occurs an 
infinite number of times, this sequence may be viewed as consisting of an 
infinite number of finite sequences, the so-called U(nconditional)parts. 
Every Upart satisfies: 

(i) each R, occurs in the Upart. 

(ii) this Upart is the smallest sequence satisfying (i); I.e., any initial 
fragment of Upart leaves some Ri out. 
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To define it relation Upart(R" ___ , R,,), which expresses for evcry pair of 
stales (~, ~'), whether C can be rea.;:h~d from { by executing all Upart 
(w_r.1. R I' ... , R,,), it ~unicc, to c{)nsider Uparts in whi.;:h the first occurren­
ce, of the moves are in some predescribed order, so-called Usegmen/S, since 
any Upart of R I, ___ , R" is an Usegment of som~ permutation R;" .. ,' R", 
More dearly. a Usegmcnt of the Ordered sequence of moves R-" ___ , R" is a 
finite sequence in which for no i, j with I ~ i < j"'n a R,-move occurs 
before a R;-move has occurred, 

The relation Usegmenl(R" ... , R,,) is defined inductively (w_LL n) as 
follows: The case n = 1 is simple: define Usegmenl(R I) = R , . 

Now, suppose that Usegmenl(R I, ___ , Rd has been defined_ Then, 
Usegmcnt( R I, ---, Rk + I) looks like R " ... , R i , w, R., ___ , Rk +" where thc 
first occurrences of R- I, R" Rk> Rk + I are shown (I < i < kl- First, observe 
that Rk+ I occurs only once; this is a consequence of requirement (ii) 
above. Second, obscrvc that the prefix R I' ... , Ri , .. " R. of the above 
sequence is a Usegment of R I' ... , Rk • Hencc, the sequence up to, bul not 
including Rk + I is not necessarily a Orart of R I' ... , Rk. However, it starts 
at least with a Uscgmcnt of R I' ___ , Rk • The remaining part may contain 
any (finite) number of R,-occurfcnccs (hut no nH I)' This motivale~ the 
following definitions_ 

DEflNrrlON 6.1.1 (Usegmenl(R" ... , R,,) for II?;:< 1). Usegment(R-d = R, 
and for n p l: 

DEFINITION 6.1.2 (Upart(R" ... ,R,.) for n?;:<I). Forn;;'l: Upart(RI,_·_, R.l 
=U'I._.I.p"m~{l._."Uscgment(R", ___ ,R,J- Le_. in Upart(RI •. ".R"j the 
order of the R; (i = l, ___ , II) is immaterial. 

Remembering the example given above, the existence of an infinite 
se-quence of Uparls, starting in a state e. is expressed by satisfaction of a 
predicate UF(R, .... , R,,) in ~, defined as follows: 

DEFINITION 6.1.3 (UF(R-I' ___ , R.l for n~ I). For n';::-I: UF(R, .... , R,,) 
= vp - [Upart(R 1 •• ". R,,) 0 p]. (Recall that Ri denote relations.) 

An execution sequence of a program S", * [0 :'_ I bi .---> 5,] in which each 
direction is chosen infinitely often is strongly fair iff it is unconditionally 
fair. Consequently, the program S ~ * [0 ;'_ I b l ..... SI] (II;;:' l) admits an 
infinite unconditionally fair execution sequence starting in ~ iff 
UF(R" ___ , R.l holds in e. Recall that Ri denotes (he relation Rb,oR~, 
associated with bi; S( (i= 1, .--,11)-
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6.2. Strongly Fair Termination 

Now, consider infinite sequences of a program * [n 7= , fl, --> S,] in which 
directions can become disabled. Suppose thaI the nth direction bn ; S" 
becomes eventually never enabled any more. Then an infinite strongly fair 
sequence of R" ... , R,,-moves cOnsists of some finite sequence of R I' ... , R.­
moves followed by an infinite strongly fair sequence of R I, ... , R" __ ,"moves 
in which every intermediate state satisfies 'I b". In case no other direction 
of S becomes eventually continuously disabled, the existence of such a 
sequence is expressed by a predicate (R1u -" uR.)*oUF(,b"oR"" .. 
,b"oR._,). Observe that this predicate is equivalent to (b,oR,u ". U 

b"o R,,)* 0 UF((b, /I. ,b.). R" ... , (b,,_, /I. ,b.)" Rn_ I)' since the enabling 
condition bl is incorporated in Ri (i"" 1, "., n). The possibility that other 
moves may become disabled, too, leads to the following definition 2

: 

DEFINITION 6.2.1 (fair(b"oRil,,,.,b,,"Ri.jfin(bl •• ,oR, •• ,, ".,b"oR,) for 
n ~ 2 and 1 .( k < n). Let n ~ 2 and suppose that iI, .'" i" is some permuta­
tion of I, ... , n. For k, satisfying 1 ~ k < n, define 

fair(bi, • R ,l , ... , b,. 0 Ri,) fin(b
"

" 0 R i •• " ... , b"o R,) 

( bl,A A Ib il )·) R i,). 

J-Ji. t 1 

Remark, fair(b" 0 R 1, • • ,,' b" c RI,l fin(b i •• , 0 RiHl , ... , b.,o R,) holds 10 

state': ilT there exists an infinite strongly fair sequence, starting in ~. in 
which the directions hi .. ,; S". " .. ., b,,; S,. are eventually never enabled any 
more. 

Now, finally the predicate expressing the existence of infinite strongly fair 
sequences can be formulated. 

DEFINITION 6.2.2 (SFAIR(b1oR., ... ,b.oRn) for n);I). SFAIR(b,oRd 
=UF(b,oR1l, and for n);2; 

SFAIR(b, oR1, ... , bnoR.) 

v 
il. '.', ;ilp<:rm of t • .. ,11 

l';;:k"':n 

! This definition is due to P. van Emde Boa •. 
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In thc sequel WI: always aSSllrne that the relation b, is incorporated in the 
relation R I • Also. with R, wc always associate h, as enabling condition. 
Thus, Ri will denote the relation Ro,e R~,. 

Wc defined here. for every sequence of relations R I, .... Rn a dif.lerent 
predicate. ]n other words, SFAIR is not a sccond order formula! For the 
proof of Theorem 6.3A we need the following technical lemma. 

LEMMA 6.2.3 (Charaet~rization ofSFAIR(R
" 

.. " R,,)). 

rol F ,SFA[R(R" --., Rn) 

-=-[!m F -;UF(R" .'" R,,) 1\ 11 ..... I"JJ.Ofl .. " C~, R1r 
I r:.;: k .: II 

Proof For n = 1 this follows by Definition 6.2.2. So assume that n ~ 2. 
Then the lemma follows from Definition 6,2.2, Definition 6.2.1, and 
Lemma 5.1.3. I 

6,3, Weakest Precondition for Strongly Fair Termination 

As a last preparation for the soundness and completeness proofs, we 
mention the notions of the weakest liberal precondition and of the weakest 
precondition for strongly fair termination. 

DEFINITION 6,3.1 (Weakest liberal precondition). An assertion 
p = wlp(S. q) is the weakest Uberal precondition w,r.t, a comm<lnd S and a 
condition q if!m F [p] S[q]""" and for each r.!m F [r] S[q]~." implies 
un F r:::) p. 

In (de Bakkcr, 1980). it has been shown that for each command Sand 
assertion q, wlp(S. q) is definable in L It is useful 10 mention lhat fOT loops 
S wlp(S, q) "" (((U; N' R,)* e 1\;'_ 1 ,b.l- q). 

DfflNITION 6.3.2 (Weakest precondition for strongly fair termina­
tion). An <lssertion p is the weakest precondition for strongly fair termina­
tion w.r.l. a command S and a condition q if 9111= [p] S['1],( and for each 
r, WI F [r] S[q],f implies 'm 1= r:::) p. 

We next stale Ih~ key result of this section, viz., the definability of the 
we<lkest precondition for strongly fllir termination sfwp(S, q) for any com­
mand S and any condition q. In Theorem 6.3.4 below, we prove lhat wpsf 
indeed defines the weakest precondition for strongly fair termination. 
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DEFINITION 6.3.3 (sfwp(S, q}). For each command Sand 1;ondi(i(lO !. 
sfwp(S, q) is inductively defined by 

(a) sfwp(x;- e, q) -- q {e/x}, 
(b) SfWP(SI;Sl' q)""sfwp(S"sfwp(S.,q)), where SI and S1 are 

simple commands, and 

(e) sfwp(*[o;'_t hi .... Sa, q) = ,SFAIR(R I , ... , R,,) 1\ (((U;'_I R,)* 
01\;'_. ,bi ) ---> q), where S, are assumed to be simple. 

THEOREM 6.3.4. For each command S and condition q, sfwp(S, q) is 
indeed the weakest precondition for strongly fair terminlltion W.f.l. Sand q. 

Proof The proof is standard except for the case that S,=­
• [0 ;'_ I b i .... Sa with simple Si' i", I, ... , n. Consequently, we prove that 
both 

(a) 9JI F [sfwp( *"[ 0 7- I b, ---> S,], q)J* [07_ I b i ---> S,] [q ],r, and 

(h) 9R F [r)*[O;'_1 b,--+S,] [q],r= WI 1= r~ sfwp("[O;'_1 b,--->S,],q) 
hold. 

To do so, it suffices to prove that for every ~: 9J1 F [r] ... [(j;'~ I hi .... S,] 
[q]W =-- 9)/ F r;;:> (, SFAJR( R" ... , R,,) A (((U;'," I R,)· 0 /\;'_ I ,b,) --+ q)) 
((), holds. 

("..) Suppose thilt WI 1= [r] • [0 ;'_ I bi --+ S,] [q lr holds. Choose some 
state { such that \ill F riO holds. Assume, to obtain a contradiction, that 
\ill F SFAIR(R1, n., R,,)(o, Then this leads immediately to a contradiction, 
since this implies the existence of an infinite strongly fair execution 
$cquence, starting in e. So 9R F ,SFAIR(R" ... , R")(~) holds. It remains 
to prove that WI F (((U7ml R,)*o/\;'_I ,b,)--->q)(O holds, too To do 
this. choose some r satisfying ':mF ((U:'_ I RJl<, /\;'''-1 ,b/)((, n. Clearly, 
then also 9). p .R1«(, ('), where S .. * [,] 7 ~ I b, -- S,], and so by the 
hypothesis 9Jl F q(O· 

(~) Suppose that IDl F r=>(,SFAIR(R" ... , R~) 1\ «U7-1 R')*. 
/\~_I ,h,) --+ q). Choose state { such that \ill F r(0- Since, by hypothesis 
IDl F ., SFAIR(R1, ... , R,,)(o, the repetition always terminates strongly 
fair. We have to prove that, in this ease, each final state satisfies q. Choose 
some {' such that 9Jl F R1(~, t), where S,=- .( 0 ;'_ , hi --+ S,]. Clearly, then 
also 9:n~((U7~IRI)*o/\7_I,bl)(('O and so, by the hypothesis, 
\lJ1 f= q(n holds, which had to be shown. I 

COROLLARY 6.3.5. For every~: 9R F- sfwp(*[O;'_1 b, ---> S;],lrue)(e)= 
9Jl F ,SFAIR(RJ> ... , Rn)(o. 

This corollary states that strongly fair termination of a repetition is 
indeed expressible in the i-Incalculu$. 
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7. COMPLETENESS 

In this section, we prove the completene8s of our proof system, i.e., we 
will show that for any ~tatement S E LGC(9J!), assertions r, q E L, 

9Jl f= [r] S[q],r =0- Th(M) r- [r] S[q] holds. 

Here ID? is by convention a first·order ordinal acceptable structure, and 
Th(9J1) = {pELIWl F= p}. As is usual in such proofs, completeness is 
establi~hed hy structural induction on thr;: complexity of statements S. 
Ohserve that (*) is trivial in case S is not a repetition. Thereforr;: to pr()ve 
(*), it suffices to concr;:ntratc On the case where Sc;;;. *[0;'_1 h,-I> S,] with 
n ~ 1. In this caSe, we establish (*) by induction on tI, the number of direc­
tions in S. Next observe that when n = I the proof of (.) is straightr~)rward, 
Consequently, we proceed with loops with more than one direction, the 
induction hypothesis br;:ing 

INDUCTION HYPOTHESIS OH). (a) and (b) he/ow both hold: 

(a) for all simp/c «(Jmmantis S, ID? f= [r J S[q],( =0- Th(M) r­
[r] Seq]. 

(b) for allk, 1 ~k<n, ill! f= [r] *[[J~ftl h;--> S,][qJ.f,*Th(':UiH~ 
(r] "(U~~ 1 hi-->S,][q]. 

From the discussion above it follows that we may assume that S is a 
repetition with at least two directions and that (IH) holds_ Consequently, 
we are going to prove that given the fact that Wi F (r] 
"'[ 07_ I b i ---> S,] [q],f holds for n;<: 2, we can define in L the auxiliary 
quantities, I.e" a well-founded set (W, -<), a ranking predicate "It, and 
pairwise disjoint sel~ Ow and Slw for wE W, wrO, such that the premisses 
(a), (b), (cl, and (d) of Oma's rule as stated in Section 1 hold_ The 
definitions of the auxiliary quanti tics are developed in Section 7.1. In 
Lemmata 7_2_1 through T2,4, validity of premisses (a) through (d) are 
proved, culminating in completeness theorem 7.2.5, whose proof is then 
standard, 

1.1. The A uxiliary Quantities 

Assume that 9Jl f= [r] • [0;' _ I b i ---> Sa [q] ,r holds. The main results of 
this section are that the auxiliary quantities necessary to apply Orna's rule 
are definable within L 

First we are going to dr;:finc a well-founded set Wand a predicate 
It: W - (States -I> {true, false}), ranking every state (reachable by S)_ To 
do so, we observe (hat the usual approach of counting moves does not 
work, because not every move brings the program closer to termination, 
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E.g., in case of Dijkstra's random number generator, see Section 3.4, move 
R I will not help reach termination. 

Now S terminates strongly fair and hence also unconditionally faiL This 
follows from Theorem 3.4.4. At any time, there is at least one decreasing 
move; otherwise there exists a state in which no move would bring the 
program closer to termination, resulting in the existence of an infinite 
strongly fair sequence, yielding a contradiction. So, if in a successive 
sequence of iterations, "every enabled move has been executed at least 
once," then certainly the program has come closer to termination. This 
shows that viewing execution sequences as consisting of Uparts is a natural 
thing to do. Unfortunately, counting Uparts does not quite work, because 
we have to rank all states in order for Orna'g rule to apply. 

Consider such a Upart. It suffices that the states reached by executing 
this Upart, are ranked in such a way that it reflects the "progress" that is 
made w.r.t. executing this Upart itself. Now a move leads to "progress" if 
it is a new one that has not been made in the Upart as yet. This gives the 
intuition behind the definitions of Wand 7t that we now develop. First, we 
consider the problem of ranking states related by Uparts in more detail. At 
this stage, we therefore disregard the internal progress within a Upart; such 
progress is incorporated afterwards. 

Consider any reachable state (. Intuitively this state will be ranked by 
counting the number of Dparts necessary to reach a final stale, i.e., ~ 
will be ranked by f3 if it takes the program at most f/ UpaftS from ~ 

to reach termination. To define the rank P of ~, we apply thc techniques 
developed in Section 5. Define ,(pI =..t~ -(Upart(R" ... , R.) ----> p)(~). From 
Lemma 5.1.2 it follows that the least fixed point of, exists and that it can 
be obtained by iteration. Intuitively, '/:P(fa/se) holds in ~ if in I; we are at 
most P Uparts away from termination_ It also follows from Lemma 5.1.2 
that there exists some A such that 

holds. (AI 

Let cl be the least ordinal satisfying (A). IX is a recursive ordinal, d. Apt and 
Plotkin (1985)_ Therefore, we have that for all P<ii, P is a recursive 
ordinal, too. 

Of course, for this idea to work we need to show that rP(false) is 
representable by a formula in L. 

7.1.1. THEOREM (Definability of,t(false ))_ Lel-r(p);; 1~. (Upart( R I, ___ , R.) 
----t p)( ~)_ There o:ists a formula tP in L slich that for all ~ and all P ~ Cl • 
,P(faise)(O holds if/WI ~ q,(P)(n 

Proof Define ,p(P) = j.J.f' [3a < fJ - (Upart(R" ... ,R,,)-,r(C())]. By 
induction on fl ~ IX we prove that for all flo;;, ii and all ~, TP(jlllse){ e) holds 
iff Wl F= ,p(/J)( 0. 
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Induction basis, p'=' O. Trivial, since for all ~, rOC(alse)(O <=> false and 
~ll= ¢>(O)(O=M F jalse(O-=false_ 

Induction hypothesis (IH). For all X < If and all e, T«fldse)(~) holds iff 
9R 1= ¢U)(~). 

Induction step. For fJ = 0, we have that 

ID1 F ¢(P)(O <=> WI F W' [3ct < p. (Upaft(R!, ... , R,,) ----> rCa)) ](~) 

(definition of ¢» 

- im F 30: < p. (Upart(Rb"" R,,) ----> ¢>(tt))(O 

(fixed point property) 

-for somd<p, WI F= (Upart(R!, .. " Ro) ..... ¢(..\))(~) 

=- for some ..\ < P and for all C 

WI F= [Upart(R! .... , R")(~, r):;;>¢>(..\)(t)J 

=- for some J.. < p and for all C 

WI F [Upart(R]> ... , R.)(~, r)J ~T<(false)(~') (IH) 

-= for all ~', 9Jl F Upart( Rb ___ , R")(~,- ~'):::> (3'\ < p. T<(falseHe')) 

-=- for all ~', WI F Upart(R I, .--, R.)(e, ~'):::> U 'CJ.(fal$e)(~') 
-1"'~ 

Now, we define the well"foundcd ordered set W: each WE W, w not mini­
mal, consists of two components. The first one counts Uparts, the second 
one records "progress" within the last (incomplete) Upart and is a 
sequence of length at most n, the number of directions within this Dpart, 
which records the directions within this Upart. that have already been 
taken. 

We nellt define the predicate seq,,(s) which holds iff s is sequence of 
length at most n, in which directions are recorded only and in which each 
direction is rccorded at most once. 

DEFINITION 7.1.2 (seq,,). 

seq,,(s)=Seq(s) r-Ih(s)o>;n 1\ Vi[(1 o>;io>;lh(.I'))=>(I,:;;(s)i';;:nj] 

1\ Vi,j[(I";i,j.;;:lh(s) r- i:;tj)=> (s);:;t(s)j] 

(ef. Definition 5.5.1). 

Next, we define the well-founded structure required to apply Oma's rule_ 
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DllflNlnON 7.1.3 (The well-founded structure W"n)­

(a) W.,,,=- {(A.slID""A",,&: A seq.(s)) v {OJ. 
(b) The ordering --< defined on W~ n is the following: 0 -< (l s) for all 

(A,slEW"., and U"S,)-<02,S2) iff (A 1 <A2 )v«(,1:,=X2)Alh{s2)< 
Ih(sJ! A V'i[ (1 0 ~ Ih(s.))::. (S2), = (S, ),]). 

Next, we define the ranking predicate 11:. 

DEfiNITION 7,1.4 (The ranking predicate 1l). The predicate n: W" .• -
(States ----> {true, false} ) is defined by: 

niX, < » = ,1(false) A r {~, RI)* A :'1, hi. 

11(,1:, (i1> " .• ik» = tl(false) ° ( Usegment(R", .'" R,,)o(~l RiJ) *) 
Aro(U RI)· AV b, 

J-1 ,"" 1 

(for 1 ""k<n), 

1I(X, (i" ---, in» = U fP(false) A TO (0 R,)* A V hi, 
P<), ,.:::IlL I i-I 

1I(O)=r o (Q, Ri)'" A l\ ,b,. 
Note that accessibility is demanded for n(w), WE W" •. If I ~ k < n 

and nil (il> .'" ik»(~) holds, then then.~ exists Ii state ~' in which the 
program is at most 1 Uparts away from termination_ It takes a fragment, 
i.e" an initial part of a Usegment to reach ~ from ~', namely 
Usegment(R", ___ • R i.) 0 (U~_, R/.)*. 

Defining Slw and Dw for w>-t, WE W~., is simple now_ ]fwe are at the 
start of a Upart, i.e., W = (1, < » or w'= (1, OJ> "" i,,») for some 1 "" a, 
then every move leads to eventual completion of this Upart. Otherwise, 
w'" (X, (i , . ,_" ik » for some .t, I '" k < 11, and only moves different from 
R 1I , "., R/, lead to eventual completion of this Uparl, 

7, I S DEFINITION (The set of helpful and steady moves D", and 
SI",). Let WEW<i,,,. w>-o. Then w",(I,s) for some .t,,:;a, and s with 
seqn(s), 

If lh(s) = 0 or if Ih{s) = n, then D", = p, "., n} and St","" 0-
If O<lh(s)<I1. then D",= {i1(1 ~i",n) A 'Vj' I ""j,,;lh(s)[(s),#-i]}, 

St,,= {l,,,,,n}-D,,,, 
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Note (hat for all w EO Wo '" 111 >- 0: D". n Sr", = 0, D", to- 0 and 
D".vSr .. ", {I, ... , n}. . 

7.2. Completeness of Omu's Rule 

Using the above definitions, we next prove that the four premises, 
(a)--(d) of Oma's rule are valid. To be more prcci~c, Lcmmllta 7.;:>,1···7,2.4 
below show that these four premises are satisfied indeed. From the induc­
tion hypothesis, completeness of the rule and hence of our proof system 
(hen easily follows. Assume that 911 f=. [r] ·[l]7~1 bl--S,][qL holds, 

By Definition 6.3.3 and Theorem 6.3.4 we may assume that 911 f=. r::::l 
(--.SFAIR(R" .. "Ro)A (((U7~1 Ri)"Q/\7~1 --.b,)-->q)) holds, too. 

LEMMA 7.2.1 (Corresponding to premise (a) of Orna's rule). Let 
w;;; W •. ,,, j., Dw; i.e., R) is a decreasing mODI'. Suppose rhal WI F r::::l 
(--.SFAIR(R" ... ,Ro)A((U7_IRi)+"1\7~I--'b,)-q) holds. Then 91If=. 
[n(w) /\ w ':>-0 A hj] 8j [3v -< IV' n(v)] holds, 100. 

Proof We have 10 prove that rOr all ~,~' E States such that ffil I­
Rj(~, fl, WI F (1I:(w) /\ w>-O)(O=;.WI f=. 3u..;; w 'n(v)(fl,J Choose states 
I! and e' satisfying WI f=. Rj(~' t) and suppose that 911 f=. (n(w) 1\ w>-O)(O 
holds. To prove the \emma, we distinguish two cases: 

(a) ~I f=. 1\:'_1 --,hi(~')' 'n this case, 911 f=. n(O)({'), and we are done. 

(b) WI F V b,(O (i) 
I-I 

ince rot F n(w)({) holds, 9R F r o (U7_1 R/)" (0 holds, too, I,e" 

holds. (ii) 

5 a consequence of Fact 5.2.5, we obtain that (U7_IR,)·oRjs, 
)7-1 R,)*. Therefore, it follows from WI F Rj(~' nand (ii) that 911 F 
:"(tW' ) 1\ (U7~ 1 R,)* W', {')] holds, too; i.e., 

(iii) 

:xt, let w = 0:, s). We are going to prove that 911 F 3v -< IV' I«V)(~') 
Ids. To do so, we distinguish three cases: 

(1) Ih(s)=O, i.e" s= < >. Since 911 f=. n(w)(~), ~I F ,J:Ualse)(O 
'ds. Consequently, it follow~ that 9JI F 3¢,,[,1(false)(';") 1\ Rj(C, tll 
Relnembcr that R, is the relalion Rbi 0 "1, associated with hi; fir 
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Hence, together with Rj ~ R/. which follows from Fact 5.2.5. we obtain 
that WI F 3~"[TJ(false)(~") " R/ w. n]; Le., 9:11 F (t"Ualsej 0 R/ )(~')]. 
Together with (i) and (iii). WI F n:0. (j) )(,;') follows and hence 
m F 3v--< IV ·1t(v)(~'). 

(2) I ~ Ih(s) < n, so s = (i[ •...• ik ) for some ii, ... , ik with {i, •... , ik } 

~ {I • ...• n} and I..;,k<n. From 1})1 F n:(w)(~) we derive ml F Cr'(false)o 
Usegment(Ri, .... , R i.) Q (U~_I R,)*)(o. Since Usegrnent(R", .. , R,.) 0 

(U~_I R,)· 0 Rj = Usegment(R", ... , R." R) ~ (Definition 6.L1 and 
j #- i[, .... ik for j IS Dwl <;; Usegment(Ri" ... , R •• , R) 0 (U; _ [ R" v RJ )* 
(Fact 5.2.5). together with the fact that '!Ul F- RJ(~' n holds, it follows 
that I})l f= T"(false) 0 Usegment(RII' .... R I,. RJ)(~') holds, too. It follows 
together with (i) and (iii) that WI F itO:, (it. ,.., ibj»)(t) holds. Again, 
\Ill F 3v -< w . n( v)(~') follows. 

(3) Ih(s) = n. From I})l F x(l s)«) and Definition 7.1.3, [he existence 
of a P < J. such that WI F n(p, < »)(0 follows. As in case (I ), '!Ul F- 3v-< 
(/1,( »).n(v)(n, and soIDlf= 3v-«J., ( »)·n(v)(O I 

L£MMA 7.2.2 (Corresponding to premise (b) of Orna's rule). Let 
w€ W~ .• , JESt .. ; i.e., Rj is a steady move. Suppose Ihat I})l F'~ 

(""SFAIR(Rlo ... ,R.)/I, ((U7_IR,)·°!\7_1 ,bi)--q) holds. Then '!Ull= 
[n(w) /I, w>-O" bj ] Sj[3v:(w'lI(v)] holds, 100. 

Proof. We have to show that for all stat~s ~,~' such that WI F 
Rj(~, n, WI F (n(w) /I, W >- O)(~) '* IDl F 3v~ w .n(v)(O To do so 
choose states ~,~' and suppose that WI F (n(w) " w >- O)(~) holds. Let 
w = (1, $). As in Lemma 7.2.1 there are two cases: 

(a) \Ill f= 1\7-1 .,bi(e'). In this case the lemma is trivial. 

" 
(b) IDI F V bl(~'). (i) 

I-I 

We have to prove that \ffi f= 3v",\ W 'lI(v)(n is satisfied. Note that Ih(s)-#O 
and lh(s);t. n. because Ih(s) = 0 Or lh(s) = n implies that Stw = 0. So 
let w=(,!, (il, ... ,i~»). I..;,k<n, {i" ... ,ids{I .... ,n}. Since jeSt •. , 
j=il for some I, I..;t";k. Now, IDIf=1l:(w)(o. so IDIF,J(fa/se)o 
Usegment( R/, • ... , RI.} 0 (U~ _ I RI,J* (~); i.e., 

IDI F =W· [T~uaISe)(~") /I, Usegment(R
"

, .... R,,) 

o(~1 R,,)'" (c, ~)J (ii) 
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Since (U7_,R,J""RjC;:;(U;_,RJ)*' see FactS.2.5, we obtain that 
Usegment(R J " .... R,,l 0 (U7w 1 Rd"" RJ >;; Usegment(R i " ... , R,,)o (U7- , R.)*, 
From. (ii) and the fact that 9.n f= RJ(~' n. it follows that ffi/ f= 
3n,'(fal.\'e)(~") A Usegment(R i " .. " Ri,)Q(U;_l R,,l* «(', ~')]; i.e., 

!m F [( T'(fal.~e) ,', Usegment(RI" ... , Ri.)~ (QI RIJ'') (')]. (iii) 

Moreover, as in the proof of Lemma 7.2.1, we see that 

WI F r{Ql Ri)* (¢') holds, too. (iv) 

Now, (i), (iii), and (iv) imply \IJl F 1t(.t (il> ... , i k ) )('), whence Wl F 
3v ~ W ·1t(I))(O I 

The following lemma shows that clause (c) of Orna's rule is satisfied, 
too, under the assumption Ih",t [r) "[ 0 7_1 b, -. S,](q ],r holds. 

LEMMA 7.23 (Corresponding to premise (c) of Orna's rule). Suppose 
that '{Jj F= r:;;;> (', SFAIR(R I, ... , Rn) A (( (U7- , R i )· 0 A:'~ 1 """l hi) --> q)) holds. 
Then 'ill F [rr( W) A W>- 0) ,.. [0 i < St. b i A I\J E". -, bj --> S,) [true] hold~, 
wo. 

Proof Observe that for all W E W~,n such that W >- 0, Dw -:f- 0. So 
Slw ¥ {I, .. " n}. It follows that the program S' :;0 • [0 Ie St. b i A I\J. D, ...., bi 
--> S,) contains less directions than the original program. Therefore, 

we may apply the induction hypothesis. If Srw = 0 then by convention 
S';;;; skip, in which case the lemma is trivial. So assume Slw ¢ 0. 

After a possible renumbering, we may assume, too. that Slw = {I. __ ., k}, 
I ~ k < n. So, D .... = {k + I, .,., n}. Let b' denote Aje D. ,bJ = Ajd + 1 -,bj' 
and let R; -- b', R i . By Theorem 6.3.4, and Corollary 6.3.5 we obtain that 
un F (n(w) A w>- 0):;;;> -,SFAIR(R;. "., Ri,) implies 9Jl F [n(w) 1\ w>- 0] 
·[07_ l b,AAjmk+"bj .... S,][true] holds. 

So, to prove the lemma, it suffices to show that 9Jl F (n(w) /\ w >-- 0):;;;> 
,SFAIR(R'" __ ., R~}. This follows from the nel't two claims. 

CLAIM 1. Under the aforementioned a.'iSumplions, un F (1l( W) A W >-- 0) 
:::;> -, UF(R'I' .'" R~) holds. 

Proof of Claim I. Suppose that jill F n(w)(O /\ w>-O holM Then 
jill F rQ(U;'_ I R,)* (~), i.e., Wl F ::1(". [r(~") A (U7-1 R,)* (C, OJ holds, 
100. As a consequence of our assumptions, we obtain that ffil F 
r:::;> -,SFAIR(R" ... , Rnl and so \IJl F 3~"· [,SFAIR(R j , ... , Rn)(~") A 

(U~ . l Ri )· (C, ~)], Thus, WI F 3¢" . [((U7_ I R,)'" --> ,UF«A7_ k + 1 ,b,) 
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. R[, "., (1\7_k+, ,hili) RdHt') {\ (U;'~ [ R,)* {e, OJ holds by Lemma 
6.2.3. Consequently, WI F 3¢". ({{U;'-, Ri)* ---> -,UF(R'" .'" R~))(C) {\ 
(U:'_IR,)"'(C,elJ, from which WIF-,UF(R'".",R~)(e) follows hy 
ddinition of R --> p. This proves Claim I. 

Now, if k "" I, the lemma follows immediately fn)m Claim I and Defini­
tion 6.2.2. So assume that k ;<; 2. 

CLA!M 2. Under the aforemenlion"d assumptions, 

WI F (7!(w) (\ W >- O):;;l !\ ,fair( R:" "" R;,) 
ii, .. " i~.: P(:i'ffi of !, .". k 

I ~I" k 

fin( R;" , ' ... , R:,) hold~, 

Prool of Claim 2. Let 1 ~ I < k. For simplicity, we shall prove that 
\IJI F (1l( w) i\ W>- 0) :::J ,fair( Rj , ...• R;) fin( R; + I> "" R;J, since any other 
permutation is treated in a similar way. By Definition 6,2,1, we must show 
that 

WI F (tr(w) /I w>-O);;;>((U R;)* .... ,UF((,b' v . A Ih i ) 

J-l rw 1+ t 

holds. This is a consequence of the following chain of implications: 

WI F (n(w) 1\ 11'>-6)(~) 

= III F r o ( U RI)* (0 
,~ I 

(Definition 7.1.4) 

=>-\IJI F W .[rw) 1\ C~I Rir (Co t;)] 

(Definition 5.5,5) 

=>-WI F 3t' ,[ -,SFAIR(R1, "'. Rn)(C) 1\ (~l R}" (C, el] 

(by assumptions) 

=>-W[F3~"'[((U Ri)* --+IUF( A -'OjoR 1,,,,, 

I"! )-'+ I 

. A 'hi"R')) W) 1\ (u R;)'" ((", oJ. ("') 
I ··1+ I 1_ I 
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The latter illlplication follows from Lemma 6.2.3. Hence, for all I = I, .... I. 

=(,//y A 'bi)f'.b'''R, 
i-r- f+ 1 

=(h'f'..A ,hl)"R, 
1-' t I 

= 1\ ,bioR, 
I ... ) I I 

(since 1+ l."k<n). 

So, (.) implies that 'Ill p 3C . [((U;'.>I R,)" --> -,UF((,h' y 
1\731+ I ,hi)" R;, ... , (,h' V 1\~_III'lbi)"R;))(¢") f'. (U;'~ I R,)* (C, ~)], 
and finally WI F ((U7-1 R;)''' --> ,UF((-,b' v 1\1_1+, ,bi ) " R;, .... 
(,h' v 1\:_1+ J ,b,)o Ri))(O by using Fact 5.2.5. As an immediate 
consequence, we then obtain that WII=((U7~IR;)"-->,UF(('-lb'v 
I\~_I' I ,b;)oR;, ... , (,h' v /I.~~I+I ,hi)oR;))(~) holds, too. This proves 
Claim 2 and hence thc lemma. I 

It remains to show that clause (d) of Oma's rule is satisfied, too. This is 
established in the following 

LEMMA 7.2.4 (Corresponding to clause (d) of Orna's rule). Suppose rhat 
9.11 F ro:>(,$FAIR(R 1 , ••• , R,,) 1\ ((U;'_J R,)·,I\:'_I ,h,)-->q) holds. Then 
(a), (h), and (c) hdow hold, too. 

(a) WI F r ~ (3D' n(v)). 

(b) 'JJ"If= (n(w)A w;.-.O)=>V7_ l h,. 

(e) WI f= 7«0) Cj «!\7-, -,b,) /\ q}. 

Proof (a) Let ~ E States satisfy WI f= riO. If 9Jl 1= 1\7 ~ I ,bM), then 
we are done, because WI ~ 7t(6)(~) holds. Hencc, let 

lUI F V h,(~). (i) 

Clcilrly, 

holds. (ii) 
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Since WI P f(O holds, IlJl F -,SFAIR(RI' --, R,,)(O holds, too, and conse­
quently, 

9Jl j= -,Uf'(R 1 , ___ , R,,)(O; i.e., 9R F r''(false)( n 

It follows from (i), (ii), (iii) that \Ul F II (a, < »)(0 holds. 

(b) This immediately follows from Definition 7.1.4. 

(iii) 

(c) From Definition7_L4 it follows that \UlFn(O)~I\;'~I-,h, 
Therefore, it remains to show that 9.» F n(O) =>q. To do so, choose 
some ~ with 9Jl F- n(O)(~). 8y Definition 7,1.4, there exists SOme ¢' 
satisfying IlJl F r(O 1\ (U7= I R,)" (~', 0 Since IDI F r => (((U7~ I R;l'" <> 

1\7= I rh,) ----> q) holds by assumption, the implication to be proved now 
immediately follows. I 

THEOREM 7.2.5 (Completeness of our proof system), For aft aSSl,'r(ions r, 
q, commands S, IDI F [r] Seq],! implies Th(\IJl) f- [rJ Seq). 

Proof. Clearly, the only non-trivial case is when S;;;;*[07_ 1 b,----.S,) 
for n ~ 2_ We have to show that for all assertions r, q, 9Jl F [r] 
"[ 0 ;'_ I hi ----> S;] [q ],r = Th(9Jl) f- [t] *[ 0 ;'_ I hi ----> S,] [q] holds, This is, 
however, an immediate consequence of the induction hypotht:sis, 
Theorem 6,14, Section 4, Definitions 7, L3 through 7.1.5, and the Lem" 
mata 7_2_1 through 7.2.4. I 

8. SOUNDNESS 

In this section we prove the soundness of our proof system, i,e" for all 
assertions r, q and command S, Th(\1JO I--- [r) Seq 1 =0- WI F [r] S[q ],r, 

It is obvious that the rules for assignment, consequence, and sequential 
composition are sound_ Therefore it remains to prove the soundness of 
Orna's rule, Let s;;;; *[07= I hi ----> S,l In case n = lOrna's rule reduces (0 

Harel's rule for terminating loops proved sound in Harel (1979), Conse. 
quently, assume that n ;;. 2 holds, We may assume, too, that the following 
induction hypothesis (m) holds: 

-For all simple commands S, Th(\lll) f- [r] Seq] =9Jl F [r] S[q).r. 
and 

---For all k with 1:;;; k < n, Th(1lJ1) I--- [r] *[I::l~. I h,---> S,][q] ~W1 F 
[r] >l<[D~_1 hi-->Si][qL, 

Nt:~t assume Th(Wl) f--- [r] Seq]. We have (0 prove that m F [t] S[q],r 
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holds. To do so, it suffices Lo show that WI "'- r => wpsf( S, (/) which by 
Ddlnition 6.:1,3 and Theorem n.J.4 amounts to proving 

WI F r~( ,SFAIR(R1, ... , R,,) t\ (((~I Ri)*",I:, Ih} ... q)} 
By Lemma6.2.3 ~mF,SFAIR(R" ... ,R")=9JIF('UF(R".,R,,jA 
/\(l,.'[dPel'"mo(I •..• n;I~:k.:,.J(U;'11:1 RJ)~ -+ --IUF(!\'j ... k+1 -l}\ " Rill ---1 

A} ,"+1 -lhi,,,Ri,). Consequently, we have to show that 9JII= r=> 
,UF(R 1, ... , R"j, 

..... ...,LJF( A ,hij"R", ... , A ...,hi/,R,,). 
J'" k + 1 J'" k + 1 

and WI F r::>(((U;'''1 Ri)~"'/\;'_, ...,bi) ..... q) hold, These are established in 
Theorcrn~ ~. t, 82, and 83 below. 

LEMMA 8.1. Assume that Th(9J1) f- rr] *[0;'_1 b/ .... S,][q] holds. Then 
9n 1= r ~..., UF(R" ... , R,,) hoids, wo. 

Prot!! Let I)Jl 1= r( ~) and ,uppoSc, to obtain a contradiction that, 
WI F UF(R 1, ... , R,,)(~) holds, Since D".1-0 for w>O, there exists 
an infinite decreasing ~cqucn.-,;c in W, starling in SOme wE W such that 
\Ul F :rr(w)(O holds. This contradicts the well-founded ness of W. I 

Next, as a preparatior\ for Lemma 8,2 we fir'st prove the following claim 
that captures the m()~t difficult part of that lemma. 

CLAIM. Assume that Th(9J/)f-[rJ*[O;' .. ,b, ..... SJ[q] holds'. LeI 
~ he a state such that ~1 1= r(O holds. For all ~' salis/ying 9Jl F 
(U;'_I R,)' (~, n, illl F """JUF(h'oR 1 , ... , h'"Rd(e') holds, where b'"" 

A7rTk+ I .hl " 

Proof Assume that the claim is false; i,e" there exist states ~ and ~' 

such that ':UI F (U;'_ I R,l* (~, nand ':UII= UF(b' 0 R 1 , ... , b' 0 R.J(~') hold. 
Both ~ and r art; accessiblc states; i.e., both IJJl f. r o (U7~ 1 R,)'" (~) and 
':Ull= ro (U;' .. I R,j" (';') hold, From the assumption that Wll= 
U F(b' 0 R" .... h'" Rd(,;') holds, we infer the existence of an infinite 
strongly fair sequence of moves b' 0 R I, ... , b' " Rk . As a consequence of the 
assumption that Th(WI) f- [r] *[0;'_, hi ..... S;][q] holds, we conclude 
that Orna's rule has been applied. Consequently, related to the infinite 
strongly fair sequence of moves, whose existence we showed above, is an 
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inlinite sequence W" \\1 2 , W), ... in W such that \1JI F 71:( W, )(~') and for all 
i;;" 0 W, ;>W,+ I hold. Since W is wdl fDunded we obtain that there e~ 'IS 

some j;. 0 such that for all i): j W,:::: W, I ,. This implies that eventu 
nOne of the move~ taken in the infinite strongly fair seq uenee are deema'" 11to 

moves, Furthermore, there exists a state (" sueh that 

(a) IlJI F (Upar!(b'QR" ... , b'oRk))* (e n, 
(b) WI F UF(b' 0 R" ... , b'o R.)((,'), and 

(c) there exist a w", w" not minimal, satisfying "." ~ 11'" 1))1 F 
n(w")(C), and {I, ... , k},;; SI,,". 

Let St .. " "" {j" ... ,.ik +m} for some m;:' 0, wherej, = I, for I = I, ... , k. Note 
that this implies that D"" '" Uk + '" + " ... , j,,} '" jl, ... , II}- 5'1" .. holds. Now, 
11''' > 0 and Th(9.R) f- [1\"( w") /\ w" > 0]* [0 IE ,\",' bi /\ I\i' 0" ,hi --> S,] 
[Irlle] holds by the third clause of Orna's rule. Hence, a5 a c<)nwqucncc of 
the induction hypothesis and the fact that WI F (n(w") 1\ 1\''' > O)(e"), we 
obtain that 

9.R F ,SFATR ( A ,hi,,·RIl , .. " A .....,b,," R, .. m) Wi, (ij 
l ..... k+m+1 ,=I.;+I7I+! 

i.e., there docs not exist an intlnite strongly fair sequence of steady moves 
in which no decreasing move is ever enabled. To obtuin a contradiction, w~ 
now distinguish two cases: 

(A) m=O. Then (i) implies that W1F rUF(b'"R" .. "b'oRdW) 
as jt '" I for I,;;; I ~ k. This follows from Definition 6,2.3, and contradicts 
(b). 

(B) m;¢'O. Note that for all $, k+ I ~.I"~k+m, the actual 
cnablings-condition for I\;'_k.,,,,,, ,bi,,,,R, is 1\;"".,.",+1 -,hi, 1\ h,. By (I) 
and OefInition 6.2.2 Wl F -, fail'(/\;'.k.,.",." ,h;, " R I, ... , /\~_.' ,," , -, bi, 0 Rd 
fin(/\;'d +m+ I -,bj, 0 R"", ... , I\~=h +m+, -, bJ. 0 RJi , .. )(~") holds. So by Defi­
nition 6.2.1, 9.RF (U1:."'(/\;'_Hn, + , -,b f,) 

0 Rj ,)* ..... -,UF(CoR, .... , CoR.) 
(e") hold$, too, wh!m~ C=1\7~'+m+1 -,bj , 1\ /\;::;'+1 r(/\;'_k+m+"bj , 

II bj ) Hence, we obtain 9R F -'UF(CoR,. ... , CoR.)(e"), As 9JI F C= 
1\;~k+1 .....,b" this implies 9.R F ""UF(I\:'~k+1 -,bjoR" ... , 1\;'.kT I ,bj

o 
R.)(C), again contradicting (b), 

This proves the claim. I 

LEMMA 8.2. Assume Ihal Th(WI) r- [r] *[0;'., b, ..... S,][q] holds, LeI k 
be given, 1 ,,;; k < n. and assume furthermore that i) , .. " in i,v some permutation 
of 1, .. " rI. Then!ln 1= r~ ,fair(R." ... "R i,) fin(R i,,,, ... , R I,,) holds, ((iO. 

Proof Possibly, after a renumbering, let ii, ... , i" be the identity 
permutation of I, ... , n. Hence, we show that WI F= ,fair(R" .. ., Rk ) 
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tln(R A , I, '''' R,,)(O holds, where ~ satisfies r. According 10 Definition 6.2.1, 
it suffices to prove th.H for <ill {' satisfying WI F (U;'- I Ri)* (~, n, 
WI F ,UF(b' 0 R I, ... , b'·, R.)(e') holds, where b' = I\;'-H 1 ,hi' This 
immediately follows from the claim above and c~tablishc$ the theorem. I 

tllMMA 8,3, Asstlme that Th(ffil) f- [r] *[0;'_1 bI-S,][q] holds. Then 
ffil F r:;)((U7~1 R,)*"I\:'_, ,bi--+q) holds, 100, 

Pro4 This lemma is trivial. I 
Finally, we arrive at the main theorem of this section, stating the sound­

ness of our proof system. Its proof is straightforward nOw. 

THEOREM 8.3 (Soundness of the proof system). F'or all asserlionf r, q, 
commands S, Th(WI)f- [r] Seq] =~ F [r] S[q],[ h(lldv. 

PrO(i(. The only non-trivial case is when s=-*[n7~lbi-->S,] and 
n ~ 2. Consequently, we have to prove that Th(WI) f- [r] 
>1<[07.1 b, -~ S,J[q] =WI F [rJ *[O:'~ I b,-> SI][qJ." holds for n;;,2. 
This follows from Lemmata 8.1, 8.2, 8.3, (IH), Definition 6.3.3, and 
Theorem 6.3.4. I 

9. How TO DEAL WITH NESTED REPETITIONS 

In the previous sections we have considered a rather simpk program­
ming language. E.g., according to the syntax given in Section 2 repetitions 
never contained inner repetitions. In this section we shall drop tllis restric­
tion and outline how to deal with the more general case. Basically, we 
proceed as before, adjusting the definitions and theorems to deal with a less 
restrictive programming language, 

9.1. Basic Ideas 

Until now, we have considered a very simple programming language, in 
which, in repetition S;;;, 0; [0 ~ _ 1 b, .... S, J, n?:- I, the S, consisted of finite 
sequences of assignment~ (i = I, ... , n). According to the syntax given in 
Section 2, the program 

S,,,,-[b, ..... -[I>, ..... x:=;.:+ I 
Ilh; ~ b l :=lalse 
] 

Ob, ..... b, :=fl1lse 
] 

is not allowed. The reason for di~allowing nested repetitionS is the 
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possibility of (strongly fair) divergence of inner loops, which slightly com­
pli1;ates the earlier theorems. 

Intuitively speaking, the program S2 above should terminate strongly 
fair, when this notion is suitably refined: if execution of 8 2 starts in a state 
satisfying both b l and b2-the other cases are trivial and omitted-S1 

terminates as soon as direction 2, Le., b[;b[ :=/alse, is taken. Under the 
strong fairness, as defined below, this direction must be chosen eventually 
because the inner loop *[b 2 -->x:=x+ILJb 2 -->b1 :=/alse] terminates 
strongly fair. To gain a better understanding of this notion, consider tk 
program below. It does not terminate strongly fair according to the defini­
tion of strongly faif tr;:rmination (see Definition 9.4 below). 

·[b,~b;;=mje 

Db, .... ·[bi-b, ;=/alu 
Db1 ~ b, ; = /alse 
] 

]. 

Starting in a state in which b, holds, executing the first dirr;:ction, i.e., 
b l ; b 2 := true, followed by executing the second direction, in which in thc 
inner loop the second direction always is chosen, i.e" b,; (b l ; b l := fa/se), 
constitutes a strongly fair computation (according to the definition below), 
Each of the loops is treated strongly fair wheneuer entered. However, 5trong 
fairness does not constrain choices thut are made in consecutive executions 
of the same loop. This program would terminate undCf yet another fairness 
assumption; viz., that of all·level (global) fairness (Apt et 1.11., 1984), 

In this section we bdefly outline how to deal with a less r~strjctjve 
language, LGC'(!m) in which nested repetitions are allowed. Again, we 
assume a given signature and a first-order structure 911 as above. The 
syntax of the less restricted language is given by the following BNF· 
productions: 

<command> ::;;;;; (assignment) I (composition) I (repetition), 

(assignment) ::= (variable) := (expression). 

(composition) ::= (command); (command). 

(repetition) ::= * [ { o selection n 
(selection) ;;= (guard) .... (command). 

(guard) ::== "quantifier-free boolean el(pression," 

Again, ... [ ] is identified with skip and "'[D,/~ I hi -+ S,] abbreviates 
"'[Ob j .... S[ ... Db" .... S,,} (n;;. I J. 

As before, four semantics, viz" R~"", R~, R~r, R~r for SE LGC'(roll are 
defined. Thr;: case R~'" is essentially the same as in Section 3 and is there-
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fore omitted. For Ihc (lther cases the possibility of divergence within some 
branch will now have to be taken into <lcc\)unl. 

Let States denote the Sd of states and let ~ denote the divergence state. 
In [he sequel it is assumed that ~ E States and that for each relation R s;;: 

States 2
, IJ~ . LR( 1. 0 = ¢ = ~] holds_ For assertions p, p( ~) = falw, i.e., [i 

never holds in ~_ 
The definitions of the various semantics, as well as the soundness and 

completeness proofs will usc induction on the level of statements: 

DEFINITION 9.2 (Level of statements). The level of an assignment x := e 
is 0_ Ld the leveb of S, be k, (i '" 1,2)_ Then Sl ;.'>1 has level max(k I' k I)' 

Let S"'*[O;'~lb,---+S.J, with n~l. Then the level ofS is I+max{k,l 
1 ,;:; i <s n}, where Si has level Ai for i = I, ___ , n_ 

DEFINITION 9_3 (W~). For SE LGC'(WI), the relation R~ is defined as 
follows: 

R~= J<~a"v {(..L, J.), if S,.,x :=e. 

To define R~ for repetitiOns S, <lgain the notion of an execution sequence 
of S is needed_ Its definition is similar to Definition 3_2.1 <lnd therefore 
omitted. S is said to diverge nondeterministically from (, if there exists an 
execution sequence of S starting in ~ that is either infinite, or finite and 
ends in L 

Finally, define for S"", "[0;'_1 bi---+S,J with n?-I, 

i?', "" P'I~"" U {(~, ~) I S can diverge nondeterministically from <:-} 

v I(L ~ll. 

Note that an execution sequence of a loop S ends in ~ when an inner loop 
of S is executed which diverges nondeterministically. 

We now proceed with defining strongly fair execution sequences for 
repetitions S=. *[n;'_1 h,---->S,J with n~ L As the example of S2 above 
shows, strong-fairness d,)es not consider the choices made at the top-level 
only, i.e., choices between the hi (1= I, ... , n), but also the choices made 
between the guards of inner loops of S. 

DI;FINmON 9.4 (Strongly fair t~rmin<tti(ln)_ 

(i) Let ~ denote a state, ~ ",.t. An assignment always terminates 
strongly fair from (. S I; Sl terminates strongly f<lir from ~, if S I terminates 
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strongly fair from ~ and S2 terminates strongly fair for all possible output 
~tates produced by ~trongly fair computations of 51" 

Now, let S;;; *[ [] 7~ I b/--> 5 ,J, with II;;" I. An execution sequence of S 
starting in ~, is strongly fair, if either 

(a) it is finite (say ~Q' ~" ... , ~"" where ( = (ol and eith<:r ~'" -,t. ~, 
or ~'" = ~ and there exist~ an 5, (i = 1, ... , n) which strongly 
fair diverges from ~m _ I' or 

(b) it is infinite and every direction in 5, which is infinitely often 
enabled along the sequence is chosen infinitely ohen. We say 
that S terminates strongly fair from 0; if it admits neither 
infinite strongly fair execution sequences nor finite ones ending 
in .1 that start in ~. 

(ii) A program terminates strongly fair if it terminates strongly fair 
from (, for every ( 'f- 1., 

(iii) A program is said to diverge strongly fair if it admits a strongly 
fair computation, starting in ( that is either infinite, or finite and ends in .1. 

DEFINiTION 9-5 (Unconditionally fair termination). 

(i) Let ~ denote a state, (#.1. An assignment always terminates 
unconditionally fair from e. SI; S2 terminates unconditionally fair from (, 
if Sl terminates unconditionally fair from 0; and S2 terminates uncondi· 
tionally fair for all possible output states produced by unconditionally fair 
computations of S I . ~ 

Now, let S~>Io[D7_lb,-.StJ, with n;:<:l. An execution sequence of S 
starting in ~, is unconditionally fair, if either 

(a) it is finite (say eo, {I' ... , (m' where {= {oj and either ~m -,t. 1.. 
or (m =.1 and there exists an S, (i = 1, ... , n) which uncondi­
tionally fair diverges from ~m _ I, or 

(b) it is infinite and every direction in S is chosen infinitely often. 
We say that S terminates unconditionally fair from { if it 
admits neither infinite unconditionally fair execution sequences 
nor finite ones ending in 1., that start in (. 

(ii) A program terminates unconditionally fair if it terminates 
unconditionally fair from ~, for every ( # .1. 

(iii) A program is said to diverge unconditionally fair if it admits an 
unconditionally fair computation, starting in ~ thllt is either infinite, or 
finite and ends in L 

4 Although. we ha •• not defined whal Qulpul ~1'les produced by strongly rair computations 
are, this nolion should be clear. 

'Although, we have not defined whal outpu1 S1ales produced by unconditionally rair 
CompulationS ar~. Ihi. nolion should be d.ar. 
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It can be shown that the relation between the fairness ussumptiQn~ as 
formulated in Theorem 3.3.4 still holds. 

R~'=R~=R'~ for S=x :=I!, 

R':f = R~~ 0 R~~ and R~ = R~,,, R~, 

For s= *[L:l7_ I b, --> S,J with n ~ I, we define 

R':j = R~,I'" l,) {(~, ~) I s can diverge unconditionally fair fr~)lI'l e) 

l,) ((1., 1.)}. 

R': = R~:'" u {(~, .1.) I S can diverge strongly fair from 0 
u{(1.,l.)}. 

As before, wc define the notions of nondeterministic, unconditionally fair 
(resp. strongly fair), termination of a program S by 'r/~;i:..i . ---, R~(~. 1.), 
II~ 'i' .i·'R~f(~, .i) (resp. V~ ",1.. "'iR1(~, .i)). 

Again, this gives us four notions of validity, 9Jl f= [p] S[ql" for 
S E {part, t, uf, sf} whir.:h are the same us formulated in Dcfiniti()l\s 3.2.2, 
3.3-2, and 3.4.6. 

The proof system is similar to the one in Section 4, except that in the 
composition rule and in Orna's rule the restriction to simpk commands is 
dropped. 

We now proceed to dd'ine a formula F(R.d such that for any stute {, 
F(R s )(<!) holds itT S terminates strongly fair when e1'ecution of S is started 
in ~. Clearly, if S is a loop, the formula ,SFAIR does not s.uffice any more 
to describe the absence of infinite strongly fair execution ~equences of S, 
since this formula only constrains choices made at the outermost level of 
the repetition. We now need a formula that also constrains the choices 
made in inner loops. 

DEFINITION 9.7. The formula F(R) is inductively defined as 

F(R~) =).~ . true, 

F(R1) = F(R~,) A (li~, --> F(R~,)), 

if S=x:=e. 

if S~SI;S~, 

FilJ~Hy. if S=·[O;·_lb, ..... S,] (n;:'I), then F(R~)=((U7_IRi)* .... 
t\;'_,(b,::;) F(R~))) A ...,SFATR(R" __ ., R,,); i.e., whenever the ith direction 
i~ taken along an execution ~c4uence of S, S, terminates strongly fair and 
S docs not admit infinite strongly fair execution sequences. 
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Observe that R is not a free variable of F. I.e., for every statement S, we 
define a different F(Rsl. Hence, the F(Rl are first-order formulae. From 
now on, we fix some first-order ordinal acceptable Structure ':l.ll. As before 
we are able to define the weakest precondition for strongly fair termination 
sfwp( S, q) for commands S and conditions q. or course, the only interest­
ing case is when S is a repetition. This is the subject of the next theorem. 

THEOREM 9.8. L~t S","[D;'~,bi--->SI] with n~L Fot every ~ the 
following holds: 

WI F sfwp CI~I b/-> s.]. q) (el 

iff 9)1 F (F(R~f) A ((9, Ri) ~ Q l't -,b, .... q)) (n 

Proof. A straightforward adaptation of the proof of Theorem 6.3.4. 

9Jl F sfwp (Ti~ hi .... sJ true) (~) 
Soundness and completeness is established by 

THEOREM 9.10. 9Jl F [r] S[q].r iff Th(WI) f--"- [rJ Seq]. 

Proof Again, the only non-trivial case is when S =: .. [07. I bi .... S,] 
with n ~ 1 holds. The equivalence is proved by induction on the level of S. 

If S has levell, i.e., if S has no inner loops, then the theorem follows 
from the results in Sections 7 and 8. Now suppose that S has level k + I 
(k ~ I) and that the theorem holds for programs S with level I satisfying 
l~k_ Assume that Wlp[r]5[q].r holds. Then Wll-r;;>[F(R1ll\ 
«V7., R/l* 0/\7.1 Ih, --> q)] holds, too. From the definition of F(R1), it 
follows that WlFr::;.[(U7.IR')*--+1\7_I(bl::;.F(R~t»)), i.e., for every 
execution sequence of S sta(ting in a state satisfying r, whenever b i holds, 
5, terminates strongly fair (i = I, ._., n)_ For the same r~ason IDl F r::::> 

-,SFAIR(R
" 

... , Rnl holds. So, we may proceed as in Section 7 and 
conclude that Th(WI) I- [rJ S[ql 

The other implication, i.e., Th(ffill r- [r) Seq] implies WI F [rJ S[q).r, 
should be obvious. 
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10. CONCLUSION 

We have shown that the It-calculus can be used as an assertion-I~ngu~ge 
to prove fair termin~tion of do-loops. The notion of fairness considered in 
this paper is that of strong fairness. 

V~rious rule~ (Apt el aI., 1984; Griimberg et al., 1981; Lehmann el al., 
1981; Manna and Pnueli, 1983) for proving strongly fair termination of 
repetitions have been studied in the literature. All of them have been 
proved to be ~Qund and complete. However, this was done using set theory 
as an assertion-language. One of these rules, Orna's rule (Grilmbcrg eI af .• 

1981 j, is considered in detaH in this paper. 
The key result of this paper is the fact that the weakest precondition 

expressing strongly fair termination is definable in the It-calculus. This 
result is used in the completeness and soundness proof of the rule. The 
completeness proof required verifying that the weakest precondition for fair 
termination implies the premises of the rule. Here, the ordinals are used to 
define the auxiliary quantities required to apply this rule. We believe that 
these ordinals can be removed, but we have not done this yet. The sound­
ness proof required to ve,ify that the premises of Orna's rule imply the 
weakest precondition for fair termination. The LPS-rule (Lehmann el al., 
1981), another rule to prove strongly fair termination of do-loops can be 
shown to be sound and complete ill the same manner as Orna's rule. 

Future work will be carried out to remove the ordinal constants used in 
the comple\ene$~ proof. Furthermore, we will try to define a predicate in 
the II-calculus which expresses whether a repetition terminate:,; under the 
assumption of all-level, i.e., global fairness (Apt el al., 1984). Future 
research will aloo be carried out to extend these arguments to more 
complex forms of f~irness ~nd to concurrent programs. 
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SAMlSNVATTING 

Dit pfodschl'ift bcstMt nit een bundeling van eel) viertal artikelen, 

Dc eel'st" ririe artikelen beschrijven een priucipe voor het ontwerpen va\) gedistrihlleerde pr<..>­

!l;ramma's uit ~en hepaalrle klasse volgens een bijzollder type van redenereu, Deze klasse bestaat 

uit programma's waarin een groep van knopen ill een n~twerk eeu zekere taak llitvoeren die 

vanuit een logisch oogpunt bn worden opgesplitst in een aanta,l sllbtaken alsof deze seqllentieel 

worrlen llitgevoerd, Vauuit cell operationeel oogpunt worden dcze sllbtaken echter concurrent 

door de knopen uitgevoerd. 

Het ontwerppri1l6pc worM. eerst gei'dentiflceerd in het ccrste artikel, "A cOrrectness proof of 

a di~tril.JUted minimum-weight spanning tree algorithm (extended ab;;tract)". Dan wordt in 

het tweede ill"tikcl, "Designing distributed algorithms by means of fOrIlla,! sequentially phased 

reasoning", CCIl tedmische formulering van het olltwerpprincipe gegeven. Een t.oepassing van 

het principc wordt gegeven in het derde artikel, "A detailed analysis of Gallager, Humblet, 

and Spira';; minimum-weight spanning tree algorithm". In dit artikel worden bovcndien twee 

andere principes geformuleerd: Hct ecrste beschrijft hoe twee on;tfhankelijk van elkaa~ llit.ge. 

voerdc (,aken kunnen worden gecombineerd; He! tweede principe is v;tn t.oepassing wanlleer cen 

aantal grocpen concurrent ten opzichte van clkaar een aantal take.) \litvoeren terwijl eeJl taak 

uit.gevoerd rlOOT een groep tijdelijk 1<:.,').11 worden verstoonl als gevolg van interactie met knopen 

uit een andere grOCJI. 

Het vicrde art.ikel, "The /l-cakulus as a.n assertion-language for fairness arguments", handelt 

over faire terminatie van do-loops. Hierin wordt de /l-calculus voorgesteld als absertieta.a.l voor 

het l"edenCl'cn over dit type vall tennioatie. Soundness en vollcdigheid van een regel voor het 

hewijzen van faire tenninatic worden bewezen, Bovcndien wordt de zwakstc preconditie voor 

Caire t.t'rminatie van een do-loop met betrekking tot een 2;ekere postconditie in de p-calculus 

gedefinieerd. 

Lineaire Tempo,ele Logka (LTL) loopt als een rode draad door de vier bovenstaande adikelen. 

Wordt bel, olltwerpprincipe direct gefOrm\lleerd met behulp va.11 LTL, in het laalste artikel 

wOrden dc gl'Ondslagen van LTL o!ldet~ocht. De resultaten d",,').rvan suggereren (zonder hewijs) 

dat "\1001' het verifier en dat een progra.mma [air tenninecrt, een eigenschap die op natuurlijke 



wijze In LTL gefonnuleerd kan worden, een assertktaal nodig is die veelmeer uitdrukkingskracht 

heeft dan LTL zelf. 
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