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A new size consistent extension to the multi reference configuration interaction method is 
described. The method termed multireference coupled electron pair approximation 
(MRCEPA) is akin to a multireference CEPA( 0) approach, though nonlinear terms do 
receive separate attention. We show the performance of the approach in some model systems 
as well as in an application to calculation of ground and excited TV* states of ethylene. 

I. INTRODUCTION 

The coupled electron pair approximation (CEPA) 
method has the advantage over the method for configuration 
interaction with all single and double replacements (SDCI) 
that it yields size consistent results with only a slight increase 
in computational effort. Here, size consistency means that 
the energy of two subsystems is additive if the subsystems do 
not interact. It may be successfully applied to both closed’ 
and open* shell systems, provided that a single configuration 
state function (CSF), e.g., the restricted Hartree-Fock de- 
terminant, is dominant in the correlated wave function. 
However, if there are low lying excitations (in case of multi- 
bond dissociation, open shell systems with high symmetry), 
more than one CSF is needed for a proper zeroth order de- 
scription of the wave function.3*4 

Fairly accurate results may be obtained using the multi- 
reference single double configuration interaction 
(MRSDCI) method. However, since any restricted CI cal- 
culation suffers from size consistency defects, an extension 
of the CEPA method to multiconfiguration (MC) reference 
sets is called for. In the following, a method is proposed, 
which includes size consistency corrections in MRSDCI cal- 
culations in a manner analogous to the CEPA(0) method, 
provided that the reference configuration set is complete in 
the active orbital space. Thus, our starting wave function is a 
second order CI function and the resulting function will ac- 
cordingly be called the second order CEPA function. 

In practice, our method amounts to shifting the diag- 
onal H-matrix elements of the single and double excitations, 
as in the CI-type implementation of the CEPA method.’ 
However, our method dithers from the straightforward gen- 
eralization of the CEPA(0) method to MC reference sets, 
which should be identical to the linearized version of the MC 
reference coupled cluster (CC) development.“‘2 Since the 
nonlinear terms in our modified MRSDCI equations are po- 
tentially important, they should receive proper attention 
when formulating size consistency corrections for wave 
functions based on a MC reference configuration set. 

The results obtained by this method will be compared to 
results of the averaged coupled pair functional ( ACPF) the- 
ory, as introduced recently by Gdanitz and Ahlrichs’3 and 
which may also be considered as a generalization of the 
CEPA (or CPF) philosophy to MC reference configuration 
sets. 

In Sec. II, the method used for modifying the MRSDCI 
equations will be discussed. Applications to some model sys- 
tems, including comparison with full CI and MRACPFi3 
results, are reported in Sec. III and the method is applied to 
the calculation of ground and excited states of ethylene in 
Sec. IV. Finally, conclusions are drawn in Sec. V. 

II. THEORY 
In this section the size consistency corrections for sec- 

ond order wave functions will be discussed in terms of the 
spin orbital formalism. Our reasoning is analogous to the 
derivation of the coupled pair approximation (CPA) equa- 
tions by Hurley. l4 

A. Wave functions 

The second order wave function to be used is designated 
by 

IyC)=~cRIR)+~ciIAi)9 (1) 

where the refetence conhgiration set { IR )} is assumed to be 
complete within some (small) orbital subset (the active spin 
orbitals) and the set {[Ai)} contains all single and double 
excitations with respect to any (R ). 

The size consistency corrections to be applied to the CI 
secular equations for this function will be calculated in the 
form of diagonal H-matrix element shifts. These shifts are 
calculated by assuming that the second order CEPA func- 
tion may be approximated by the corresponding MC refer- 
ence coupled cluster function”’ with internal contraction:i5 

IYcc> = exp(T) IO), (2) 
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where the reference function 10) is given by 

IO> =pI$w 
Al-- 

c’“7 (3) 
R 

with the same coefficients c, as in Eq. ( 1). T generates all 
single and double excitations with respect to any ]R ), 

T= c 2 t,lPrPP + c c c c L,P~~~v-Po~ (4) 
P P P v P 0 

where r is an excitation operator, t is the corresponding con- 
nected cluster amplitude, p and Y are inactive or active spin 
orbital indices, andp and u are active or external spin orbital 
indices. According to Eq. (3)) the reference function IO) is 
normalized. The excitation operators are defined such that 
they yield normalized excited functions r]O), i.e., we assume 

(olr+rlo) = 1. (5) 
We do not need the explicit form of T, as given by Eq. 

(4). Instead, we define excitation classes as follows; The ex- 
citation class (k,(3 contains all excitations with k holes in 
the inactive orbitals and /particles in the external orbitals. 
Since the number of electrons in the active orbitals is not 
fixed, k and kmay differ from each other. Eq. (4) is thus 
equivalent to 

T= C C T(k,d O<k,&Z, except k= F=O. (6) 
k / 

We also use the corresponding projection operators 
P( k,f’J and the projection operators P,, Pa, and Pb defined 
by: 

PO = P(O,O), 

P, =~~P(k,e), 
k / 

O<k,&Z, except k = /= 0 

Pt,=~~PWl, 
k / 

k>2 or f52. (7) 
Thus, P,, projects to the reference configuration space, P, 
projects to the interacting space of the reference configura- 
tions spanned by the set {]Ai)] and Pb projects to the space 
spanned by all higher excitations. In practice, Pb may be 
considered to project to the interacting space of the set 
CIAi)I* 

In the following, we assume that the second order 
CEPA function may be written as 

I*,) = (PC +P,)IY,,) = [I +P, exp(T)]lO) (8) 
This function will be used for calculating the size consistency 
corrections to be applied to the second order SDCI function 
in order to obtain the second order CEPA function. 

B. The diagonal H-matrix element shift 

The coupled cluster function is assumed to satisfy the 
following equations 

(01 W - El exp( T) IO) = 0, (9) 
(Olrt(H - E) exp( 2’) 10) = 0 for each r. (10) 

Since the higher excitations in YCC (viz. that part of YcC 

which is given by Pb Y,, ) do not interact with any reference 
configuration ]R ), Eq. (9) is identical to the first secular 
equation for the corresponding CI problem: 

E = (OIH IO> + (OJHT IO> = E, + IL,,,. (11) 
Using Eqs. (2)) (7)) and (8), Eq. ( 10) may be rewritten 

as 

(Olr+(H - E) IY,) + (0]7+HP, exp(T) IO) = 0. (12) 

The second term in Eq. ( 12)) which is missing in the secular 
equations for the SDCI function, will be used to obtain the 
size-consistency corrections wanted. To this end we note 
that Eq. (12) may be rewritten as: 

(OJr+(H+ AH, - E)IY,) = 0, (13) 
provided that the diagonal shift AH, is given by 

AH, = (OldHP, exp( T) ]O)/(O]rt]Yc). (14) 
In the following, Eqs. ( 13) and ( 14) will be taken as the 

set of equations to be satisfied by the second order CEPA 
function Yc. These equations lead to a pseudo eigenvalue 
problem since the shifts AH, depend on the connected clus- 
ter amplitudes in T, or, equivalently, on the configuration 
coefficients ci in Y c. 

Note that the coefficients ci in Eq. ( 1) are not identical 
to the connected cluster amplitudes t in Eq. (4) since the ci 
will contain contributions from disconnected clusters.‘6”7 

In the following, Eq. (14) is simplified using two ap- 
proximations which are analogous to the approximations 
used in the CEPA(0) method. 

C. The direct term approximation 

This approximation was introduced by Kelly and 
Sessler18 and Kelly. l9 In our formalism it takes the follow- 
ing form. In the expansion of exp( ZJ IO) in Eq. ( 14), only 
those terms are retained which contain 7. The selection of 
terms thus depends on the excitation r for which the shift is 
being calculated. In order to determine which terms in 
exp( 2’) IO) contain the excitation 710) and also which terms 
belong to the interacting space of T]O), we divide the excita- 
tion operators in Tin two groups. The first group T, contains 
r and all excitation operators r’ which only contain spin 
orbital indices which are also present in 7. The complement 
of T, is denoted by T,“. It contains all other excitation opera- 
tors. Assuming that all excitation operators mutually com- 
mute, we then have 

exp(T)lO) = exp(T’,)exp(T,)lO). (15) 
The direct term approximation is obtained by projecting 

the second factor in Eq. ( 15 ) to Q-IO), after projection by Pb 
[cf. Eq. ( 14) 1. This yields 

P,, exp( T) 10) z=Pb exp( T’, )rlO) 

X (ol~teWT,)lO). (16) 
Because of the Pauli exclusion principle, we have #r/O) = 0. 
Therefore, T’, in Eq. ( 15) may be replaced by T. Moreover, 
since all excitation operators in T,’ generate excitations 
which are orthogonal to r/O), T, in Eq. (16) may also be 
replaced by T. Therefore, we have 

Pb exp( T) 10) =Pb exp( T)r)O) (Ojr+ exp( T)JO). (17) 
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Further, we have from Eqs. (2), (4), and (8) 

(Olr+ exp( T) IO> = (Ol~+lY,). (18) 
By substituting Eqs. (17) and (18) into Eq. (14) we then 
find 

AIT& = (Olr+HP, exp( T)r]O), (19) 
for the diagonal H-matrix element shift. This is equivalent to 
taking only the first term in Eq. (47) in the evaluation of Eq. 
(49) of Ref. 4. 

D. H-matrix element equivalence 

In the spin orbital formalism, the matrix element 
between a double and a quadruple excitation is either zero or 
it is equal to the matrix element between the reference deter- 
minant and (another) double excitation.‘6*17 If the quadru- 
ple excitation ] Q ) is doubly excited with respect to the dou- 
ble excitation ID ) = r]O), we have 

IQ) = r’jlD) = r’rl0) (20) 
and in this case the interaction H-matrix elements are related 
by 

(D IH IQ) = (Ol~+IWlO) 

= (Opw~O) = (OIH(D’), (21) 
where we have assumed that r and r’ do not have orbital 
indices in common. In the CEPA method, this relation is 
used in order to avoid the explicit calculation of matrix ele- 
ments involving quadruple excitations. In the CEPA(0) 
variant we use the approximation’*” 

(D IHT ID ) = (Oj8HT~lO) z (OIHT IO) for any 7. (22) 
In the case of a single determinant reference function, 

the configurations in Pb exp( Z’)r]O) interacting with ~10) 
consist of the quadruple excitations Trio). Therefore, we 
have 

(OI~+HP, exp( T)r]O) = (O]r+HTr]O). (23) 
For the diagonal shift we thus have for the single reference 
CEPA(0) variant 

AH, = (O[HTlO). (24) 
For a MC reference set, we now consider the analogous rela- 
tion 

(R Ir+HP, exp(T)r]S) = (R IHTIS). (25) 
Using Eq. (25) directly leads again to Eq. (24) for the diag- 
onal shift, i.e., we then use Eq. (24) with Eq. (3). This 
would be the linearized version of the multi reference cou- 
pled cluster method in its simplest form. 

Equation (25) only holds for those terms 7’ in T which 
satisfy the following three conditions: 

( i ) The corresponding H-matrix element contains only 
2-electron contributions, since in this case the matrix 
element only depends on the orbital replacements relat- 
ing the two configurations. 
(ii) T and r have no orbital indices in common. 
(iii) r’r]O) belongs to excitation class (k,fl with k > 2 
or /> 2. 
The first two conditions also apply in the case of a single 

determinant reference function; The third condition is then 
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automatically satisfied. According to (i), Eq. (25 ) may not 
be used for the single excitation terms in T. Because of the 
generalized Brillouin theorem” the shift contribution 
(O]Hr, (0) vanishes if the multiconfiguration self-consis- 
tent-field (MCSCF) values for the reference coefficients cR 
are used. These shift contributions may thus be expected to 
be small. Moreover, the invariance with respect to transfor- 
mations among the active orbitals can only be preserved by 
not distinguishing between the single and double excitations. 
Therefore, no attempts will be made to include corrections to 
Eq. (25) for the single excitation terms. 

In analogy to the CEPA(0) method, the second condi- 
tion will also be ignored in the present formalism. 

Because of these approximations the shifts will only de- 
pend on the excitation class of 7. Using condition (iii) and 
Eqs. (7) and (25), we then have for any excitation operator 
r( k,fi belonging to the excitation class (k,&) the following 
shift: 

AH(k4 = (01rt(k,4~P, exp(T)rWJ IO) 

= (Ol~t(kt”)ff~ C [exp(T)l,~,~~(k~lO) 
k’ / 

= f"IHx 1 [exp(T)lk'i'iO) 
k’ /’ 

= (OIffC ~P(W’>l‘u,), 
k’ /’ 

(26) 

wherek’>2-kore’>2-L 
The restrictions on k and /follow from the second line of 

Eq. (26) [k + k ’ > 2 or 4+ /’ > 2, because of the projection 
with Pb, cf. Eq. (7) 1. The result is, that only those excitation 
classes (k ‘,r’) contribute to the shift, that are complemen- 
tary to (k,/) in the sense that the excitations 
T(k + k ‘,/+ /‘) do not belong to the interacting space of 
the reference set. This is the essential difference with the 
single reference determinant result of Eq. (24). The reason 
for excluding the excitations with k + k ‘(2 or e+ /I(;2 is 
that they are already included in the MRSDCI configuration 
set, so their interaction matrix element already appears in 
the CI matrix. This argument only holds exactly if the refer- 
ence set is complete with respect to the active orbital occupa- 
tions. 

Ignoring condition (ii) implies the introduction of the 
so-called exclusion principle violating ( EPV ) terms. l4 
Further refinements are possible if the EPV terms are con- 
sidered in more detail. This, however, spoils for example, the 
invariance under transformations within the various orbital 
subsets. Note that the unsatisfactory behavior of the 
CEPA( 0) method in cases of near degeneracy will not carry 
over to the multi configuration reference case, provided all 
configurations which are dominant in the wave function are 
included in the reference set. 

E. The relation between dH(k,kj and the correlation 
energy 

Equation (9) may be used to calculate the energy of Y,. 
The reference energy is given by 

E. = (OIHIO). (27) 
Using the projection operators of Eq. (7)) we have 
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E = (WV’,) = Eo + (Ol~Pa I’&) = x C E(k,d, k / . 
(28) 

where 

E(k,P) = (OI~P(k,(ll’J’,). (29) 
The shift AH(k,tJ may thus be expressed in terms of the 
correlation energy contributions per excitation class 

AH(k,l”) = 
FE 

Ek./’ (k’>2-k or e1>2-4. 
’ (^ 

(30) 
Using Eq. (30) in Eq. ( 12) we see that the only differ- 

ence with the CEPA(0) method is that the shifts depend on 
the excitation class of the configuration at hand. If our meth- 
od is applied in the case of a single determinant closed shell 
reference function with only the double excitations, it is 
identical to the CEPA( 0) method, since then we have only 
one excitation class,i.e., k == e= 2 and thus 

AH(2,2) = E(2,2) = E - E,. 

Equation ( 11) then, reduces to 
(31) 

(o~~+WW--o)(‘&) =O (32) 
and this equation is linear in the coefficients of the double 
excitations in Yc as in the CEPA(0) method.“7’2 However, 
if we use Eq. (26)) we have to deal with a nonlinear problem, 
resulting in a pseudo-eigenvalue problem which has to be 
solved iteratively. This may be done efficiently by using the 
Davidson diagonalization method (cf. Ref. 21) . The diag- 
onal element shifts then only have the effect of slightly slow- 
ing down convergence compared to a normal MRSDCI cal- 
culation. 

F. The spin-adapted formalism 

The approximations made in the previous section for a 
wave function based on spin orbitals may equally well be 
used in a spin adapted formalism, although it is not quite 
clear whether they will have the same effect. This is particu- 
larly true for the shift contributions of the single excitations 
if the reference set contains open shell configurations. 

The H-matrix element equivalence relation Eq. (25) is 
based on the assumption that the matrix elements do not 
contain contributions from the l-electron part of H. How- 
ever, if 1s ) is singly excited with respect to IR ), the Coulomb 
integral contributions (,u~/pp) to the left hand side of Eq. 
(25) depend on the orbital indices in r and therefore Eq. 
(25) does not hold for these terms. 

In the spin orbital formalism, these terms may be avoid- 
ed by discarding all single excitation contributions to E( k,LJ 
in Eq. (24). For a single configuration reference function 
this problem is also avoided if SCF orbitals are used, because 
these orbitals satisfy the Brillouin theorem. In the MC refer- 
ence case, however, the single excitation contributions may 
be numerically important because of the relaxation of the 
reference configuration coefficients in the second order 
CEPA function with respect to their complete active space 
self-consistent-field (CASSCF) coefficients. 

Therefore, treating the single excitations [ (k,L) with 
k = 1 or (= 11 in the same way as the other classes intro- 

duces an error in the shift, which may be expected to increase 
with the relaxation of the reference configurations in the 
MRCEPA calculation. The advantage of this procedure is 
that the CEPA shifts are easily implemented in a direct 
MRSDCI program,22 using the spin-adapted formalism. 
Also, the invariance to transformations within the inactive, 
active, and external orbital sets, respectively, is retained.23 

III. TEST CALCULATIONS 

MRCEPA has been tested for three different test cases. 
The results have been compared with SCF, CASSCF, Da- 
vidson corrected and uncorrected MRSDCI results, 
MRACPF,13 and full CI.24V25 

The Davidson correction to the MRSDCI,26 uses the 
following multireference version of this formuia:27~28 

AE = U-Lm,a - &csw ) ( 1 - ci ); 

6 = (%RSDCI YMCSCF I >* (33) 
All calculations are done with the GAMESS*~-~' and AT- 

MOL~**~~ program packages. The Werner and Knowles sec- 
ond order MCSCF program34 as included in the ATMOL 
package is used for the CASSCF calculations. 

The MRCEPA, as derived above, assumes that a com- 
plete active space, even without space or spin symmetry re- 
strictions, is used as a reference configuration set. This re- 
quirement does not have to be strictly met. The absence of 
symmetry restrictions though, is imperative to obtain size 
consistency regardless of spin-coupling, e.g., in 0,. In the 
test calculations on He,, 0, , H, 0, and BeH, consequently, 
no such restrictions were employed. For the HZ0 calcula- 
tions results for a C,, restricted CAS reference set are shown 
to illustrate the rather insensitiveness of MRCEPA to the 
actual reference configuration set used. In the calculations 
on ethylene the reference configurations were all screened on 
symmetry. 

A. Size consistency of He, and 0, 

The size consistency of the MRCEPA results is illustrat- 
ed by calculations on the He dimer using a 
( 14s,2p) = ) [ 6s,2p] basis35 and on two oxygen atoms using 
a (9s,5p) = ) [4s,2p] double zeta basis.36 For He, the refer- 
ence wave function was CAS in the Hartree-Fock 1s and 2s 
orbitals of each atom. The oxygen atoms were described by 
single-configuration Hartree-Fock wave functions and the 
dimers employ the corresponding proper dissociation func- 
tion. Table I shows the energies of the monomers and of the 
dimers at large distance and the size-consistency errors cal- 
culated from these numbers. The singlet and quintet cou- 
plings for the oxygen atoms yield identical results. 

The results in Table I nicely illustrate that the 
MRCEPA method yields size-consistent results to within 
the convergence criterion (3 x 10 -5 ) used. Note that, un- 
like in CI, the accuracy of the MRCEPA energy is only lin- 
ear in the accuracy of the CI coefficients. 

B. H,O 
The test calculations involve the cleavage of both OH 

bonds at a constant angle in the water molecule. Geometry 
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TABLE I. Size consistency tests: energies in hartree, size consistency error 
(A ) in phartree. 

He, Monomer Dimer A 

TABLE III. Energy differences with full CI in mhartree for H, 0 with a 55 
CSF reference (see text). 

Geometry 1 .OR,, lSR,, 2.OR, 

SCF - 2.861 679 1 - 5.123 358 2 0.0 
MRSDCI - 2.899 719 5 - 5.798 892 9 546.1 
MRSDCI Dav. - 2.900 004 0 - 5.799 994 0 14.0 
MRCEPA - 2.900 001 8 - 5.800 003 5 0.1 

02 

(MC)SCF - 74.802 100 15 - 149.604 200 30 0.0 
MRSDCI - 74.857 013 69 - 149.71190191 2125.5 
MRSDCI Dav. - 74.858 134 87 - 149.716 023 22 246.5 
MRCEPA - 74.858 175 60 - 149.716 354 25 3.1 

and basis set were chosen according to Gdanitz and Ahl- 
richs.13 The 1s orbital was frozen on the SCF level, so the 
MRCEPA results can be compared with full CI results from 
Bauschlicher and Taylor” and MRACPF. Two sets of cal- 
culations are reported, featuring different sizes for the active 
space, that defines the CAS reference space for the 
MRCEPA and MRACPF calculations. In Table II, the 
CAS space consists of the 3a, ,4a,, lb,, and 26, orbitals. This 
active space, which is the minimal space required for proper 
dissociation, yields 12 symmetry allowed CSF’s. For the cal- 
culations reported in Table III, the active space is extended 
to the 3a, ,4a,, lb,, lb,, 2b, and 2b, orbitals, yielding a total 
of 55 symmetry allowed CSF’s in the reference space. The 
equilibrium OH bond length R,, is 1.889 726 bohr, the 
HOH angle is fixed at 104.5”. The calculations are performed 
for the three internuclear distances used previously.” The 
calculations employing only the symmetry allowed refer- 
ence configurations are denoted by a suffix “sym”. 

The energy difference with full CI is small for all calcu- 
lations beyond the MCSCF level, though both MRCEPA 
and MRACPF are an order of magnitude better than 
straight MRSDCI. The quality of the MRCEPA method 
seems to follow the quality of the reference wave function, 
getting better for larger distances and larger reference wave 
functions. The MRACPF method does not show such regu- 
lar behavior. 

TABLE II. Energy differences with full CI in mhartree for H,O with a 12 
CSF reference (see text). 

Geometry LOR, 1.5R,, 2.OR, 

Full CI (hartree) energy - 76.256 62 - 76.071 41 - 75.952 27 

MCSCF 161.90 146.62 128.59 
MRSDCI 4.8 1 4.29 3.62 
MRSDCI Dav. - 1.61 - 1.87 - 1.15 
MRCEPA - 1.15 - 1.10 - 0.74 
MRACPF - 0.12 - 0.22 0.18 

MRSDCI,,, 4.96 4.51 3.75 
MRSDCI Dav,,,, - 1.43 - 1.60 - 1.00 
MRCEPA,,, - 0.97 - 0.84 - 0.59 

Full CI (hartree) energy - 76.256 62 - 76.071 41 - 75.952 27 

MCSCF 126.74 118.26 112.39 
MRSDCI 2.30 1.72 1.54 
MRSDCI Dav. - 1.45 - 1.93 - 1.75 
MRCEPA - 0.85 - 0.73 - 0.61 
MRACPF - 0.40 - 0.79 - 0.78 

MRSDCI,,, 2.50 2.04 1.79 
MRSDCI Davqym - 1.21 - 1.57 - 1.48 
MRCEPA,,, - 0.62 - 0.39 - 0.34 

The symmetry restricted and complete reference func- 
tions yield quite comparable results. 

C. BeH, 

The last comparison with Full CI and MRACPF con- 
cerns the C,, insertion reaction of H, with Be. Geometry 
and basis set are taken from Laidig and Bartlett.37 The CAS 
space in the first set of calculations (1) consists of the lb, 
and the 3a, orbitals (cf. Ref. 13), which provides proper 
dissociation to Be and HZ. Since no allowance is made for the 
near degeneracy in Be itself, the MRCEPA wave function 
may be expected to be of rather meager quality. Therefore, 
we also performed a calculation correlating the Be atom bet- 
ter, extending the active space to {2a, ,3a, , 1 b, ,2b, } yielding 
a CAS space of 12 symmetry adapted CSF’s. The results for 
this CAS space are labeled large. The results are given in 
Table IV. 

The comparison shows that in this case, the MRCEPA 
and the normal and the corrected MRSDCI values are less 
good than the ones of MRACPF.13 For the large CAS space, 
the MRCEPA is better, but the MRSDCI itself is even closer 
to the full CI. This suggests an overcorrection of the un- 
linked cluster contributions in this case. 

TABLE IV. Be/H, energy differences with full CI energy in mhartree. 

Geometry Gl 

Full CI energy (hartree) 

MCSCF 
MRSDCI 
MRSDCI Dav. 
MRCEPA 
MRACPF 
MRLCCM 

- 15.622 88 

53.31 
0.78 

- 2.57 
- 1.65 
- 0.90 
- 2.62 

MCSCF large 9.06 
MRSDCI large 0.04 
MRSDCI Dav. large -0.11 
MRCEPA large - 0.06 

G2 G3 

- 15.602 92 

64.35 
1.91 

- 5.02 
- 2.55 
- 0.90 
- 2.40 

15.97 
0.08 

- 0.66 
- 0.41 

- 15.624 96 

66.68 
3.05 

- 4.02 
- 5.88 
- 0.53 
- 5.50 

23.66 
0.18 

- 1.07 
- 1.16 
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IV. APPLICATION TO ETHYLENE 
A. Introduction 

To investigate the behavior of the MRCEPA in a practi- 
cal application, we applied the method to the ground state 
(N) and the V’ (n-,n-* ) state of ethylene in its planar and 
twisted conformation. The resulting potential energy sur- 
faces will be used in a calculation of the UV absorption spec- 
trum of the system. 38 We performed calculations with dif- 
ferent numbers of reference configurations and compared 
the result with those of the MCSCF and MRSDCI ap- 
proaches. Ethylene provides an interesting test problem be- 
cause obtaining a proper description of its V+- N transition 
has been a major challenge for many years of theoretical 
studies. 

The first problem encountered is the calculation of the 
vertical transition energy. Diffuse functions must be includ- 
ed in the basis set to account for the diffuse character of the V 
state, but at the SCF level this results in a vertical transition 
energy which is too low, while the state becomes very diffuse 
and so the oscillator strength becomes too sma11.39v40 These 
results can be improved by a SDCI calculation, but several 
studies have shown that for a good description of the Estate, 
a MRSDCI calculation is needed414’ and that the inclusion 
of higher order excitations, e.g., by using the Davidson size 
consistency correction, does have a significant effect on the 
calculated vertical transition energy. Recently, it was shown 
by R. J. Cave” that size inconsistency of CI calculations can 
also have a significant effect on the calculated molecular 
properties of the Estate of ethylene. 

The most important geometry change in ethylene upon 
excitation to the V state is the relaxation to a 90” twisted 
conformation, so we included this geometry in our test cal- 
culations. 

B. Method 

For the calculations on the planar conformation (sym- 
metry D,, ) we used the experimental ground sttte geometry 
reported by Kuchitsu:45 R (C-C) = 1.330 A, R(C-H) 
= 1.076 A, a( C-C-H) = 12 1.7”. This geometry is also used 

in other theoretical studies, but it is slightly different from 
the “standard” geometry of Herzberg46 : R (C-C) = 1.339 
&R(C-H) = l.O86Aanda(C-C-H) = 121.2”.Thesedif- 
ferences are not relevant in this study, since we will not com- 
pare with experimental data. For the twisted conformation, 
these parameters are left unchanged, except for the C-C tor- 
sion angle which is put to 89.9”, forcing the symmetry point 
group to D, (a torsion angle of 90” would give a D,, symme- 
try which is reduced to C,, by our CI program, causing the V 
state to be of A, symmetry). 

To define the symmetry labels for the planar conforma- 
tion, we use the following axis assignments: The z axis is 
taken to be along the C-C bond and the x axis is perpendicu- 
lar to the plane of the molecule. For the twisted conforma- 
tion we use the same choice for the z axis. This causes the B, 
and B, representation in D, to correlate with the twofold 
degenerate E representation in Dzd. 

The A0 basis set employed is the triple-zeta basis set due 
to Dunning47 with a (5s) = ) [ 3s] contraction for hydrogen 

TABLE V. Summary of the active orbital spaces (CAS), the number of 
reference configurations (N,,,) and the total number of configurations 
(Neon, ) for the calculations on the ground (N) and Y ’ ( r,TT,7j ) state. 

NC‘>“f 
State Method CAS NE, Planar Twisted 

V A’ n-p’ 1 22 121 38 739 
B’ Tr,n*,2Tr,2?r* 4 78 950 129 976 
C’ 77,7r’,u,d 4 83 298 146 800 
D’ 7i-,lr8,27r,21T’,u,d 13 294 950 507 702 

N A n,?r’ 2 19 525 34 465 
B ?r,Tr’,2n,21T’ 6 74 142 123 468 
C l-r,7r*,u,u* 7 105 674 184 612 
D 7r,Tr’,2~,2n’,u,,d 19 3 10 236 533 280 

and a ( lOs,6p) = ) [ 5s,3p] contraction for carbon, augment- 
ed with polarization functions on the carbon and the hydro- 
gen4* and a set of diffuse s and p functions (exponent 0.02 
bohr - ’ ) on each carbon atom, giving a total number of 72 
functions. 

For both geometries and both states a series of calcula- 
tions with different sets of configurations is done. First, we 
do a CASSCF calculation for four different sets of active 
orbitals. Those CAS functions constitute the reference space 
for the subsequent MRSDCI and MRCEPA calculations. 
So the orbitals entering the MRSDCI and MRCEPA calcu- 
lations are optimized for each state separately in a CASSCF 
calculations for the reference configurations. The SCF 
ground state configuration is, for the planar geometry (D,, ) 

la~16:,2a~2b:,lb:,3a~l~~~l~~~ 

and for the twisted geometry (D, ) 

2-“21aflb~2a:2b:lb:lb:3af(2b: +2b:). 
The active orbital spaces are summarized in Table V. 

The smallest set (A) consists of just the n- ( 1b3,/2b3 ) and 
r* ( 1 b,,/2b, ) orbitals. (B) has an additional pair of orbitals 
of rr and rr* symmetry, while (C) has an additional 
a(3ag/3a, )/a’(36,,/36, ) pair. The largest set (D) has 
both the additional r/r* an a/a* orbitals. The number of 
electrons in the active space is two for (A ) and (B) and four 
for(C) and (D). 

In the MRSDCI and MRCEPA calculations, all single 
and double excitations relative to the reference configura- 
tions are included, but the two lowest (T orbitals and their 
complements are kept doubly occupied and unoccupied, re- 
spectively. The resulting numbers of configurations are giv- 
en in Table V. 

C. Results and discussion 
The results of all the calculations, for the planar and the 

twisted geometries on the N and the V states with the four 
different sets of reference configurations are given in Table 
VI. 

First, we will show how the results depend on the choice 
of the reference set. For this purpose, we plot in Fig. 1 the 
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TABLE VI(A). The energies” for the ground (N) and Y’ (n,s’ ) state of ethylene at the planar geometry. 

State Methodh CASSCF MRSDCI MRSDCI + Q’ MRCEPA 

V A’ - 71.788 956 
B’ - 71.789 848 
C’ - 77.803 410 
D’ - 77.819 459 

N A - 78.088 898 
B - 78.091 346 
C - 78.114 552 
D - 78.120 212 

(B) For the twisted geometry 
V A’ - 17.840 353 

B’ - 77.847 814 
C’ - 77.861 986 
D’ - 77.875 360 

N A - 77.968 708 
B - 77.969 383 
c - 77.983 954 
D - 77.993 097 

- 78.048 851 
- 78.052 931 
- 78.057 360 
- 78.061 182 

- 78.360 411 
- 18.362 727 
- 78.365 828 
- 78.368 371 

- 78.137 756 
- 78.141044 
- 78.144 131 
- 78.148 174 

- 78.241 862 
- 78.243 034 
- 78.245 910 
- 18.248 223 

- 78.072 631 
- 78.083 973 
- 78.080 918 
- 78.089 629 

- 78 383 378 
- 78.385 928 
- 78.385 731 
- 78.388 118 

- 78.167 029 
- 18.169 999 
- 78.171 392 
- 78.174 576 

- 78.265 962 
- 78.267 464 
- 78.268 852 
- 78.270 489 

- 78.105 601 
- 78.088 006 
- 78.103 483 
- 78.090 364 

- 78.387 806 
- 78.389 365 
- 78.389 008 
- 78.390 216 

- 78.175 loo 
- 78.175 682 
- 78.175 a39 
- 78.176 394 

- 78.271 938 
- 78.272 423 
- 78.272 646 
- 78.272 600 

‘) In atomic units. 
b, See Table V. 
‘) The Davidson corrected MRSDCI. 

energy of the CASSCF, MRSDCI, and MRCEPA calcula- 
tions for method (A ), (B), and ( C) (see Table V) relative to 
the energy of the corresponding calculation with the largest 
number of configurations (D). This is done for both states 
and both geometries. 

Planar, PI-PI* state Twsted. PI--PI* state 

1.0 

m 

t&Cl 
--__ 

-*--- --+-p S--‘:&, 
. . 

NRCEPA 

A’ B’ C’ D 
Method 

-0.5 L----J 
A’ B’ C’ D 

Method 

1.0 

0.8 

0.6 

Planar. ground state Twsted, ground state 

A B C Q 
Method 

-0.2 - 
A B c D 

Method 

FIG. 1. Relative energies calculated for the reference sets of Table V. The Davidson corrected values are less dependent on 

First, we note that the CASSCF and the MRSDCI ener- 
gies are decreasing as a function of the number of configura- 
tions, which is to be expected because of the variational char- 
acter of these methods. Strictly speaking, this argument is 
not valid for comparing (B) and (C), because (C) does not 
include all configurations of (B), but it is correct for the 
series A-B-D and A-C-D. 

In contrast, the MRCEPA results are almost indepen- 
dent of the number of configurations, except for the Estate 
of the planar geometry. In this case, the MRCEPA calcula- 
tions based on a reference space which contains only one 
configuration of the G--T* type (A ’ and C’) gives energies 
which are far lower than any reasonable full CI estimate. 
These results suggest that increasing the reference space 
hardly affects the MRCEPA result as soon as the most im- 
portant configurations are included in the reference space. 
So, for the description of the V’(r,a*) state at the planar 
geometry it is essential to include at least two orbitals of n* 
symmetry in the reference space. This observation is consis- 
tent with the conclusions of several other CI studies.4143 
The omission of an important reference configuration in a 
MRCEPA calculation can be identified a posteriori by the 
inspection of the MRCEPA vector: One or more configura- 
tions not included in the reference space gain a large coeffi- 
cient, while the sum of the squares of the coefficients of the 
reference configurations 

i$=-pf (34) 
ieref 

is much smaller than unity. This was also observed by 
Bauschlicher et ~1.~’ in MRACPF calculations. It is, of 
course, not possible to give rock-solid criteria, but for the 
aforementioned calculations (A ‘) and ( C ‘) we find 
Zz = 0.38 and 0.50, respectively, while in all other 
MRCEPA calculations .?i varies between 0.83 and 0.90. 
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TABLE VII. The vertical excitation energies in eV. 

Geometry Method CASSCF MRSDI MRSDCI + Q MRCEPA 

Planar A 8.16 8.48 8.46 7.68 
B 8.20 8.43 8.22 8.20 
C 8.47 8.39 8.29 7.77 
D 8.18 8.34 8.12 8.16 

Twisted A 3.49 2.83 2.69 2.63 
B 3.31 2.78 2.65 2.63 
C 3.32 2.77 2.65 2.63 
D 3.20 2.12 2.61 2.62 

the reference set than the MRSDCI results, if the calcula- 
tions (A ’ ) and ( C ‘) for the I/state at the planar geometry are 
discarded, but the results are not as constant as for the 
MRCEPA. Furthermore, it would have been difficult to dis- 
card the results (A ‘) and (C ‘) by inspection of the MRSDCI 
vector. 

Generally, one is interested in relative energies, rather 
than in absolute values, so we extracted from Table VI the 
vertical transition energies at both geometries (Table VII) 
and the difference between the energies of the twisted and 
the planar geometry, i.e., the torsion barrier in both states 
(Table VIII). 

Although we lack full CI data to compare with, we can 
draw some interesting conclusions from Tables VII and 
VIII. Considering the vertical transition energy of the planar 
geometry we first note that we should discard the MRCEPA 
results of methods (A ‘) and (C’) because of reasons men- 
tioned above. The remaining MRCEPA values (8.20 and 
8.16 eV) are, respectively, 0.23 and 0.18 eV lower than the 
corresponding MRSDCI values. Comparable size-consis- 
tency effects on the vertical transition energy of ethylene 
have been found before. For example, Cavebl reports the 
values 8.35 and 8.17 eV, respectively, for a two reference CI 
and a quasidegenerate variational perturbation theory 
(QDVPT)50.51 calculation (they use the same geometry but 
a different basis set). The Davidson-corrected results show 
the same trend but have a larger spread. 

For the vertical transition energy at the twisted geome- 
try, the favorable behavior of the MRCEPA is evident; It 
gives almost constant values. For the larger reference spaces, 

TABLE VIII. The torsion barriers in kcal/mole. 

the MRSDCI and particularly the Davidson corrected val- 
ues tend to the same results. 

From Table VIII it is clear that the size-consistency ef- 
fects for the torsion barriers is rather small: Both the 
MRCEPA and the Davidson correction give a lowering of 
O-2 kcal/mol, except again for the calculations (A ‘) and 
(C’) for the Estate. 

V. CONCLUSION 

We have given the theory for a multi reference CEPA 
approach. It shows in test calculations to compare well with 
full CI. The resulting potential curves are seen to converge to 
the full CI result as the reference configuration set is in- 
creased. 

We have demonstrated by a series of calculations on the 
ground and V’ (~,,a* ) state on the planar and twisted con- 
formation of ethylene, that the MRCEPA energy depends 
on the set of reference configurations in a very favorable 
way: If the most important configurations are contained in 
the CAS space which constitutes the reference space, a result 
is obtained which hardly changes upon increasing the refer- 
ence set. The omission of an important reference configura- 
tion can easily be identified by inspection of the CEPA vec- 
tor: The contributions of the reference configurations to the 
CEPA vector (Z$ ) are then far from unity. 

The calculation of the torsion barriers and the vertical 
transition energies in ethylene suggest that the MRCEPA is 
a promising tool for the calculation ofboth ground and excit- 
ed state potential energy surfaces. 

State Method CASSCF MRSDCI MRSDCI + Q MRCEPA 

V A’ 
B’ 
C’ 
D’ 

N A 
B 
C 
D 

- 32.3 
- 36.4 
- 36.8 
- 35.1 

75.4 
76.5 
82.0 
79.8 

- 55.8 
- 55.3 
- 54.4 
- 54.2 

74.4 
75.1 
75.2 
75.4 

- 59.2 
- 54.0 
- 56.8 
- 53.3 

73.7 
74.3 
73.3 
73.8 

- 43.6 
- 55.0 
- 45.4 
- 54.0 

72.7 
73.4 
73.0 
73.8 
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