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Universiteit Eindhoven, 2006. – Proefschrift.

ISBN 90-386-0616-85-X

NUR 804

Keywords: Multi-echelon / One-warehouse multi-retailer systems / Distri-
bution systems / Balance assumption / Optimal control / Serial systems /
Newsboy characterizations / Stochastic demand / Replenishment policies

Printed by Printpartners Ipskamp, Enschede, The Netherlands

Cover designed by Paul Verspaget



Optimal Control of One-Warehouse
Multi-Retailer Systems:

An Assessment of the Balance
Assumption

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op woensdag 1 februari 2006 om 16.00 uur

door

Mustafa Kemal Doğru
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Chapter 1

Introduction

In this dissertation, we consider the inventory control of a multi-echelon diver-
gent system. Divergent structures are characterized by the property that each
stock point has a single predecessor. The system under study is composed
of a central inventory facility (referred to as the warehouse) serving several
downstream stock points (referred to as the retailers). In the literature, this
system is known as one-warehouse multi-retailer or distribution system; we
use these terms interchangeably.

1.1 System under Study

The warehouse orders a single item from an external supplier with ample
stock, and the retailers are replenished by the shipments from the warehouse
(see Figure 1.1). There are deterministic replenishment leadtimes between the
supplier and the warehouse, and in between the warehouse and the retailers.
The stochastic demand of the customers occur at the retailers. Any unfulfilled
demand is backlogged and satisfied as soon as possible. We assume that the
system has a single decision maker; hence, there is centralized control.

The one-warehouse multi-retailer system can be observed in inventory, man-
ufacturing and hierarchial production planning contexts; an example within
each context is given below:

• Inventory: Consider a retail chain with a central warehouse that replenishes
multiple retailer stores, which are geographically dispersed over a wide area.
A planner responsible for the inventory control of a certain good in the
whole supply chain would be facing the problem of determining when and

1
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Figure 1.1: One-warehouse multi-retailer system.

how much to order from the supplier (e.g., the manufacturer or the national
distributor of the good), and when and how much to ship to the retailers.
It is common practice that an order has a leadtime to become available at
the warehouse, and there are additional time lags to get the goods from the
warehouse to the retailers.

• Manufacturing: Suppose an intermediate product/subassembly is stocked
at a central location, which is used in the manufacturing/assembly of mul-
tiple different end products. The production manager has to decide how
much to produce/order of the intermediate product/subassembly, and how
much to manufacture of each end product. For example, in a company
that produces photocopiers, the planner makes the production decision for
a base model and end products that are manufactured by adding various
modules to this base model. The leadtimes are the assembly times of the
base model and the extra modules. See Rogers and Tsubakitani (1991), for
example.

• Hierarchial production planning: Consider a production facility that man-
ufactures a product family consisting of several product types. The pro-
duction planner periodically decides on how much to manufacture at the
aggregate product family level and passes this information to the shop floor.
This aggregate volume decision is fixed over a time lag (orientation lead-
time) during which the planner is flexible in determining the product mix.
In other words, once the aggregate volume decision is made for the product
family, disaggregation among the individual product types (i.e., allocating
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the aggregate volume between the product types) is carried out after an
orientation leadtime. After a further time lag, known as the frozen lead-
time, the manufacturing is completed and the items from each product type
become available to satisfy customer demand. (See Wijngaard (1982) and
de Kok (1990) for detailed discussions.)

Generally, the warehouse is a stock-keeping facility in the inventory and man-
ufacturing contexts. However, the warehouse might also be a cross-docking
point where no physical stock is carried. The functions of such a warehouse
are to benefit from quantity discounts through consolidation and to exploit
risk pooling by carrying a single inventory during the warehouse leadtime1.
Eppen and Schrage (1981) refer to the former function as economies of scale
and the latter as economies of statistics. Moreover, in both contexts, the
aforementioned decisions of ordering, shipment or manufacturing give insights
about the amount and positioning (where to keep stock) of the safety stocks
in the system. On the other hand, the warehouse in the hierarchial production
planning context is a virtual entity. It should be interpreted as a stock point
that does not hold stock.

One-warehouse multi-retailer models are also used to study delayed product
differentiation in the field of operations management. In this setting, an in-
termediate product is manufactured through a common process (possibly con-
sisting of multiple production stages) and used in the production of several
distinct finished goods. The stage after which the products obtain their unique
features is called the point of differentiation. In one-warehouse multi-retailer
system, while the warehouse may be viewed as the point of differentiation,
each retailer can be regarded as a particular finished good. For more detailed
information on this topic, see Lee and Tang (1997) and Aviv and Federgruen
(2001).

The one-warehouse multi-retailer system under study can be analyzed in con-
tinuous or periodic review setting. While the opportunities to review the sys-
tem information and make decisions exist continuously over time in the former,
they are restricted to discrete and equidistant points in time2 in the latter.
The decision maker may have several objectives while controlling the system.
The more common objectives one may find in the literature and practice are
minimizing the expected total costs (these costs may consist of holding costs
due to inventory carrying, penalty costs due to backlogging and fixed cost of
ordering/shipment) solely, or minimizing expected total costs (these costs may
consist of inventory holding costs and fixed cost of ordering/shipment) subject

1Note that these benefits are also available for a stock-keeping warehouse.
2Time in between these points are called periods. An hour, a day, a week, etc. can be a

period.
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to service level constraints like target no-stockout probabilities or target fill
rates at the retailers. In this dissertation, we consider the minimization of
the expected inventory holding and penalty costs. For more information on
service measure models, see Diks et al. (1996).

We close this section by giving the definitions of some conventional terms in
the inventory literature. On-hand stock is the physical stock at a stock point;
it is nonnegative. Echelon stock of a stock point is the stock at that stock
point plus in transit to or on hand at any stock point downstream minus the
backorders at the end stock points. Echelon inventory position of a stock point
is the echelon stock plus all orders that are in transit to this stock point. For
example, in our distribution model, echelon stock of the warehouse is the on-
hand stock at the warehouse plus pipeline inventories between the warehouse
and the retailers (the shipments that have already left the warehouse, but have
not reached their final destinations) plus the on-hand stock at the retailers
minus the backorders. Echelon inventory position of the warehouse is the
echelon stock of the warehouse plus the orders that have already been placed
but not yet received by the warehouse.

1.2 Motivation of the Research

The literature on one-warehouse multi-retailer systems can be divided into
two streams depending on the review type employed. In the first stream, con-
tinuous review is used. Here, the structure of the optimal policy is unknown.
Generally, a class of policies for the control of the system is assumed like base
stock policies, and the policy parameters are optimized (optimization within
the class). The seminal work in this stream is by Sherbrooke (1968) who built
a mathematical model for the analysis of base stock policies (coined as MET-
RIC model), and developed an approximate evaluation scheme based on the
first moment of the resupply time of a retailer order. An exact evaluation
for the METRIC model was provided by Simon (1971) and an approximation
based on two-moment fits by Graves (1985). Moreover, Graves developed an
exact optimization scheme to find the optimal base stock levels, which holds
for general distribution structures. The extension of the METRIC approach to
installation stock (R,Q) policies3 was carried out by Deuermeyer and Schwarz
(1981). Later, Chen and Zheng (1997) developed an exact evaluation scheme
for echelon stock (R,Q) policies4 under centralized control. Axsäter (1990)

3When the inventory position drops to or below R, one or more batches of size Q are
ordered to bring the inventory position above R.

4When the echelon inventory position drops to or below R, one or more batches of size
Q are ordered to bring the echelon inventory position above R.
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proposed a new approach for the exact evaluation of the METRIC model. In
this analysis, a unit is followed from the moment it enters the system un-
til it exits by fulfilling a demand for the purpose of determining the holding
and penalty costs associated with this unit. This approach led to further ex-
tensions, see Axsäter (2000). For an extensive review on continuous review
models we refer to Axsäter (2003) and the references therein.

A common assumption in the stream of continuous review papers is that the
backlogged retailer orders are fulfilled at the warehouse on a first-come-first-
served (FCFS) discipline. This is a restrictive assumption because the al-
location of the warehouse stock is based on the arrival times of the retailer
requests only. Thus, the current inventory levels of the retailers are not taken
into account, and no differentiation between the retailer attributes (e.g., cost
parameters) is made. There is recent research that investigates ways to relax
the FCFS rule, see Axsäter and Marklund (2004), and Marklund (2004).

The second stream assumes periodic review. In this stream, a main analysis
technique emanates from the early work by Clark and Scarf (1960). The au-
thors considered an N -echelon serial inventory system5, see Figure 1.2 for a
representation of the system. Stock point 1 is facing the stochastic demand of
the customers and replenished by shipments from its predecessor, stock point
2. Stock point 2 is replenished by shipments from 3, ..., N − 1 by shipments
from N , and stock point N orders from an external supplier with ample stock.
There are fixed replenishment leadtimes for each stock point. Clark and Scarf
developed a dynamic programming formulation for the centralized control of
this system in a finite horizon of n periods. The objective is to minimize
the expected total discounted holding and penalty cost of the system. They
showed that the resulting N -dimensional dynamic program (DP) can be op-
timized by solving N single-dimensional DPs sequentially. Their approach
works as follows. First, stock point 1 is considered in isolation assuming there
is ample stock at stock point 2 (this structure is referred to as subsystem 1).
An n-period DP for subsystem 1 is formulated and the optimal policy is a
base stock policy, i.e., in each period the inventory position of stock point 1
is raised to a period specific base stock level. Next, a subsystem that consists
of stock point 1 and 2 is considered in isolation assuming there is ample stock
at stock point 3 (this structure is referred to as subsystem 2). An n-period
DP is constructed for subsystem 2. Next, an induced-penalty cost function is
introduced for each period, which shows the cost increase at stock point 1 in
case the optimal base stock level (that is found by solving the DP for subsys-
tem 1) is not attained. Clark and Scarf showed that the induced-penalty cost

5A serial system is a special divergent structure where each stock point has a single
successor and a single predecessor.
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function is a function of the echelon inventory of stock point 2 and the solution
of the DP for subsystem 1. Further, they proved that the DP for subsystem 2
can be decomposed into two distinct DPs where one is the DP for subsystem
1, and the other is a DP that minimizes the sum of the expected holding costs
of stock point 2 and the expected induced penalty costs. Although the second
DP uses the solution of the DP for subsystem 1, it is a single-dimensional DP,
and the optimal policy is an echelon base stock policy. Continuing in this man-
ner, the N -dimensional DP formulated for the entire system can be worked
out by solving single-dimensional DPs recursively starting from subsystem 1.
We refer to this result as the decomposition property, and the analysis carried
out by Clark and Scarf as the decomposition technique. The decomposition
property allowed Clark and Scarf to characterize the optimal policy for an
N -echelon serial system where each stock point follows an echelon base stock
policy.

The decomposition property and the optimality of echelon base stock policies
were extended to infinite horizon case under the average and discounted cost
criteria by Federgruen and Zipkin (1984c). In an infinite horizon problem, the
optimal base stock levels become stationary and these base stock levels can
be computed by solving N nested single-dimensional convex cost functions
sequentially (See Langenhof and Zijm (1990), van Houtum and Zijm (1991),
Chen and Zheng (1994b)).
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Figure 1.2: N -echelon serial system.

Clark and Scarf (1960) also tried to apply their decomposition technique to
divergent structures, but it is not possible to show the decomposition property
due to the allocation (rationing) problem. (In a one-warehouse multi-retailer
setting, in each period the decision maker decides on the amount of stock
to keep at the warehouse and the shipment sizes for the retailers, which is
called the allocation problem.) Thus, the optimization requires the analysis
of a multi-dimensional DP, which is intricate. Like in the continuous review
stream, the structure of the optimal policy for the one-warehouse multi-retailer
model is unknown. However, a presupposition, known as the balance assump-
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tion, leads to the decomposition property and the full characterization of the
optimal policy. This key assumption is the relaxation of the physical constraint
that the inventory positions of the retailers just after the shipment decisions
are greater than or equal to the inventory positions prior to these decisions.
Other interpretations of the balance assumption are

• allowing negative quantities to be shipped to the retailers,

• permitting immediate return (with no leadtime) of stock at any retailer to
the warehouse at no cost,

• allowing the lateral transhipment (shipments between the retailers) of stock6

with the leadtime of the receiving retailer at no cost7.

Under the balance assumption, the retailers can be aggregated into a single
stock point and the decomposition technique can be applied for the resulting
two-echelon serial system.

The balance assumption was introduced by Eppen and Schrage (1981)8. They
considered a one-warehouse multi-retailer system with a stockless warehouse
(cross-docking point) and identical retailers (in terms of cost and leadtime
parameters). By optimizing within the class of base stock and (T, S) policies9,
they were able to derive closed-form expressions for the optimal inventory
control parameters under the balance assumption. The optimal policies under
the balance assumption have been characterized for finite and infinite horizon
problems by Federgruen and Zipkin (1984b,c). Federgruen and Zipkin’s anal-
ysis is based on dynamic programming and they were the first to make the
connection between the decomposition technique and the balance assumption.

The three aforementioned papers have pioneered in the development of the
theory on the analysis of divergent systems. Here are some papers in the
literature that make the balance assumption and lead to various extensions in
the one-warehouse multi-retailer system: Jönsson and Silver (1987), Jackson
(1988), Schwarz (1989), Erkip et al. (1990), Chen and Zheng (1994b), Kumar
et al. (1995), Bollapragada et al. (1998), Diks and de Kok (1998), Cachon and
Fisher (2000), Rappold and Muckstadt (2000), Aviv and Federgruen (2001),

6In this setting, lateral transhipment has a broader meaning. It does not only imply the
shipment of on-hand stock from one retailer to the other, but also includes shipment of stock
from one retailer’s pipeline inventory to the other.

7The lateral transhipment interpretation was first addressed by Clark and Scarf (1960).
8Eppen and Schrage refer to the balance assumption as the allocation assumption.
9Ordering every T periods such that the echelon inventory position of the warehouse is

increased to S.
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and Özer (2003). See also the review papers by van Houtum et al. (1996),
and Axsäter (2003).

Although the balance assumption was proposed by Eppen and Schrage (1981),
Clark and Scarf (1960) were the first to address the issue of balanced retailer
inventories. The balance assumption allows the shipment decisions to be just
based on the echelon stock of the warehouse. The individual inventory posi-
tions of the retailers become irrelevant since negative shipments are permitted.
The inventory positions of the retailers under such a shipment scheme repre-
sent an ideal state where the retailer inventories are called to be in balance.
However, in a real setting where the balance assumption is not made, there
may be departures from the ideal state and this contributes to the imbalance
of the system.

As demonstrated, the balance assumption is utilized extensively in the liter-
ature, but there are only a few studies that analyze the quality of this as-
sumption. Zipkin (1984) proposed the first analytical approach, which uses
dynamic programming. In a relatively simple setting (zero leadtimes for or-
ders and shipments, warehouse as a cross-docking point), he developed a DP
that accounts for the imbalance in the system. In the spirit of the induced
penalty cost approach of Clark and Scarf (1960), the system cost is modelled
consisting of two components: cost obtained under the balance assumption,
and an additional cost that is a consequence of the imbalance in the system.
A numerical study shows the accuracy of the approximation for the limited
number of scenarios considered. It is concluded that imbalance can be sig-
nificant when demand variances are large. The studies by van Donselaar and
Wijngaard (1987), and van Donselaar (1990) investigate the effect of imbal-
ance on P1 service level, i.e., probability of stockout. In the former study, the
results of a numerical study conclude the little impact of imbalance on the
system service level. We believe that the numerical study conducted is rather
restricted to come to such a conclusion. The latter paper, incorporates the
effect of batch sizes on the imbalance of retailer inventories.

Federgruen and Zipkin (1984a), Kumar and Jacobson (1998), and Axsäter
et al. (2002) developed heuristics for the control of one-warehouse multi-
retailer systems. Since the optimal policy and the associated cost is unknown,
instead of comparing the cost of their heuristics to the optimal cost, they all
used the relative gap between the cost of the system under the balance assump-
tion and the cost of the heuristics (found by simulation) as the performance
measure10. The numerical results of these papers give ideas on the effect of

10Note that the balance assumption leads to a relaxation of the original optimization
problem. Thus, the system-wide cost calculated analytically under the balance assumption
is a lower bound for the true optimal cost. An estimate for the cost of a given policy can be
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the balance assumption on system-wide cost. A small relative gap implies that
the heuristic used is a good alternative for the optimal policy, and the lower
bound value (analytical cost obtained under the balance assumption) is an
accurate approximation for the true optimal cost.

The numerical results provided by Federgruen and Zipkin (1984a) indicate
that the relative gaps are small (maximum relative gap of 6.42%) when the
retailers are identical in terms of holding and penalty cost parameters, lead-
times and demand distributions, and there is a fixed cost of ordering. For
scenarios with no fixed cost of ordering, the gaps are still small (mostly less
than 2% and a maximum relative gap of 4.14%) when the holding and penalty
costs and demand distributions are not identical across the retailers.

Kumar and Jacobson (1998) developed a new heuristic coined as the hybrid
heuristic. They also used the relative gap between the cost of the hybrid
heuristic obtained by simulation and the cost of the system obtained under
the balance assumption in order to test the impact of the balance assumption
on system cost. The numerical results from 64 scenarios for identical retailers
(equal holding and penalty cost parameters, leadtimes, and demand distribu-
tions) show that the maximum relative gap among (i) 28 moderate variance
scenarios (coefficient of variation 0.8 or 1) is 0.78% (ii) 36 low variance sce-
narios (coefficient of variation 0.2, 0.4 or 0.6) is 0.15%.

In a recent study, Axsäter et al. (2002) studied a system composed of a stock
keeping warehouse and multiple (possibly nonidentical) retailers. While the
retailers follow base stock policies, the warehouse applies an echelon (R,Q)
policy. Considering two heuristics for the warehouse replenishment policy and
two heuristics for the allocation problem, the average expected holding and
penalty costs of four different combinations of these heuristics are determined
via simulation under various scenarios. The relative gap between the sim-
ulation results and the analytical optimal expected cost under the balance
assumption is used to assess the performance of the heuristics. The results
for 68 scenarios show that even the best heuristic may result in a relative
gap of 93.9%. Although they conclude that the balance assumption is less
appropriate in situations with long order cycles and large differences between
the retailers in terms of service requirements and demand characteristics, we
believe that they cannot come to such strong conclusions without knowing the
true optimal cost.

The numerical results of Aviv and Federgruen (2001) and Rappold and Muck-

obtained by simulation, so the cost of a feasible policy constitutes an upper bound for the
true optimal cost of the system. Using the relative gap between the upper and the lower
bounds as a performance measure is common in the analysis of one-warehouse multi-retailer
systems; see also Cachon and Fisher (2000), Özer (2003).
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stadt (2000) also advocate the use of the balance assumption. Although they
consider other issues like capacity and seasonality, the topology of the systems
considered is distribution type.

The balance assumption is a key step in the analysis of one-warehouse multi-
retailer systems under periodic review. Although it has been used extensively,
and there is evidence that it may not be an accurate approximation, there
is no clear-cut study in the literature that investigates the appropriateness
of the balance assumption. The numerical results from studies that develop
heuristics are limited and the focus of these studies is to test the performance
of the heuristics developed.

In this research, we analyze the impact of the balance assumption on the
expected average system-wide cost in an infinite horizon in one-warehouse
multi-retailer systems under periodic review. The details of the model are
discussed in §1.1; notice that we consider neither capacity nor lot sizing issues.
Our methodology is explained in the subsequent paragraph.

The balance assumption allows one to apply the decomposition technique and
characterize the optimal policy. Under the balance assumption, the optimal
ordering policy is echelon base stock policy (the echelon inventory position of
the warehouse is raised to a certain base stock level in each period), and the
optimal shipment policy is myopic allocation (echelon stock of the warehouse
is allocated among all stock points such that the sum of the expected hold-
ing and penalty costs of the retailers in the periods the shipped quantities
reach their destinations is minimized). The average expected cost of this pol-
icy can be determined by solving analytical cost functions. Since the balance
assumption is the relaxation of some constraints in the original optimization
problem, the average expected system-wide cost calculated is a lower bound
(LB) for the true optimal cost (cf. Geoffrion (1970)). Even though the op-
timal policy is fully characterized under the balance assumption, the optimal
shipment decisions can be negative, which makes the implementation of this
policy infeasible. In such a case, the shipment decisions can be modified as
the retailers with negative shipments are given nothing and the warehouse
on-hand stock is rationed among the rest of the retailers. Since the resulting
policy (we refer to as LB heuristic policy11 throughout the dissertation) is
feasible, the simulation of it gives an upper bound (UB) for the true optimal
cost.

We set up two numerical studies for the assessment of the balance assump-

11This policy is indeed optimal if the system is controlled myopically, see Axsäter et al.
(2002, p.79) or Zipkin (2000, pp. 340-342). The LB heuristic policy was also used by
Federgruen and Zipkin (1984a) and Axsäter et al. (2002).
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tion. In the first one, we use the relative gap between the optimal average
cost obtained analytically under the balance assumption (LB) and the cost
estimated by simulating the LB heuristic policy (UB). Two test beds con-
sisting of 2000 and 3888 scenarios are developed for identical (in terms of cost
parameters, leadtimes and demand distributions) and nonidentical retailers,
respectively. The results direct us to a clear and complete overview on when
the relative gap is small and when not. The scenarios with small gaps are
the cases in which the use of balance assumption is justified. For these sce-
narios, it can be concluded that (i) LB is a good proxy for the true optimal
average expected cost, and (ii) LB heuristic policy performs well. We also
look at the relationship between the various scenario parameters (holding and
penalty costs, demand parameters, leadtimes, number of retailers) and the rel-
ative gap. Many practically relevant cases with nonidentical retailers exhibit
moderate or large relative gaps. In order to be able to analyze the effect of the
balance assumption in these cases, it is necessary to compute the true optimal
cost of the system, which is the main objective of the second numerical study.

As done in studies by Clark and Scarf (1960), and Federgruen and Zipkin
(1984b,c), a DP, which is inevitably multi-dimensional, can be developed for
the control of the system under study. Due to the curse of dimensionality, it
is unrealistic to solve the resulting DP numerically in a practical setting. The
need for a numerical solution method (e.g., value iteration ) and the curse
of dimensionality compel us to use discrete demand distributions and limited
values for input parameters for the second study. However, the decomposition
and optimality results under the balance assumption only exist for continuous
demand distributions. Therefore, we extend the optimality of the base stock
policies to the discrete demand case as a preliminary study.

In the second numerical study, assuming discrete and bounded demand dis-
tributions, we calculate the optimal system-wide cost by value iteration (suc-
cessive approximation) for the settings with moderate or large gaps that are
identified in the first study. Due to the curse of dimensionality, we are forced
to work with a limited number of retailers and demands distributed over a re-
stricted number of points. The results allow us to evaluate the true impact of
the balance assumption by determining the relative gap between the optimal
cost (found by solving the DP) and the cost under the balance assumption
(LB). While the results demonstrate the impact of the balance assumption
and the performance of the LB heuristic policy, they also provide valuable
information about the optimal policy behavior.

As mentioned before, we prove that the decomposition property and the opti-
mality of base stock policy is still valid in one-warehouse multi-retailer systems
facing discrete customer demands under the balance assumption. In addition,
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we show that the optimal base stock levels satisfy newsboy characterizations.
The newsboy model was introduced by Arrow et al. (1951). The name em-
anates from a typical problem faced by a newsboy who has to decide how
many newspapers to purchase each day to maximize his profit, where demand
is stochastic. For each copy that is left at the end of a day there is a loss asso-
ciated and any copy that is sold brings profit. The newsboy model of Arrow
et al. (1951) uses this analogy for modelling the main trade-off faced by an
inventory manager under demand uncertainty: keeping stock vs. backlogging
demand. Assigning a holding cost for each item that is kept in stock at the end
of a period and a penalty cost for each demand unit that is backlogged, the
optimal policy that minimizes the expected cost is characterized as base stock
policy. The optimal base stock level results in a probability of no-stockout
that is equal to a ratio of the holding and penalty costs. We refer to such con-
ditions for optimal policy parameters as newsboy characterizations. Newsboy
characterizations show a direct relation between the probability of no-stockout
(at a stock point facing customer demand) as a result of an optimal policy pa-
rameter (e.g., base stock level, reorder level) and the cost parameters (e.g.,
holding and penalty costs) in the from of equalities or inequalities. Newsboy
characterizations are appealing because they

• are easy to explain to nonmathematical oriented people like managers and
MBA students,

• contribute to the understanding of optimal control,

• help intuition development by providing a direct relation between cost and
optimal policy parameters.

Newsboy characterizations for multi-echelon inventory systems were first de-
veloped by van Houtum and Zijm (1991) who derived newsboy equalities for
the optimal base stock levels in a serial system. Similar characterizations were
identified for serial systems with fixed replenishment intervals by van Houtum
et al. (2003). Diks and de Kok (1998) derived newsboy equalities for optimal
base stock levels of general divergent structures under the balance assumption.
In this dissertation, we show newsboy characterizations for (i) one-warehouse
multi-retailer systems facing discrete customer demands, and (ii) serial sys-
tems with fixed batch quantities. Our newsboy inequalities for one-warehouse
multi-retailer systems with discrete demands extend the newsboy equalities
of Diks and de Kok (1998) for the continuous demand case. The newsboy
inequalities that we have derived for one-warehouse multi-retailer systems en-
couraged us to seek for similar expressions in other multi-echelon structures.
Hence, we also study an N -echelon serial system where materials flow from
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one stock point to another in fixed batches12 for which Chen (2000) has proved
that echelon (R,Q) policies are optimal. Based on the work of Chen (1998),
we develope a new cost formulation for the system and show that the opti-
mal reorder levels satisfy newsboy equalities (inequalities) when the demand
distribution is continuous (discrete). These results generalize the newsboy
equalities of van Houtum and Zijm (1991) to systems with fixed batch sizes
and discrete demand distributions.

There is a line of research that is closely related to the studies on newsboy char-
acterizations. Shang and Song (2003) studied an N -echelon serial inventory
system under the average cost criterion in an infinite horizon. As mentioned
before, N nested cost functions have to be solved sequentially for the purpose
of computing the optimal base stock levels. Shang and Song rewrote these
cost functions in terms of installation holding costs, which allowed them to
bound the aforementioned cost functions from above and below by single-stage
newsboy-type functions. They showed that the base stock levels minimiz-
ing the newsboy-type bound functions envelope the optimal base stock levels.
Moreover, they developed a heuristic which uses the average of the bounds
as a proxy for the optimal base stock level, and the numerical results show
that the heuristic performs successfully. The results are extended to serial sys-
tems with fixed batch sizes in Shang and Song (2005). Following the approach
of Shang and Song (2003), Lystad and Ferguson (2005) developed a similar
newsboy-type heuristic for general divergent structures. The main difference
between our newsboy characterizations and Shang and Song’s studies is that
while we derive newsboy characterizations for the optimal policy parameters
(base stock and reorder levels), they bound the cost functions to be solved
by single-stage newsboy-type functions. Moreover, our approach leads to the
lower bound cost function, and the corresponding lower bound reorder level
(for the optimal reorder level) developed by Shang and Song (2005).

1.3 Problem Statement and Research Questions

The research presented in this dissertation aims to investigate the appropri-
ateness of an assumption, the balance assumption, which is widely used in the
analysis of one-warehouse multi-retailer systems. In order to achieve this goal,
we try to find answers to the following questions:

1. Does the balance assumption lead to an accurate approximation?

12This model is a generalization of Clark and Scarf model where fixed batch quantities
equal to one at each stock point.
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2. In which system settings (scenarios) is the use of the balance assumption
justified (unjustified)? In other words, under which conditions does the
balance assumption lead to an accurate (inaccurate) approximation?

3. What is the optimal policy behavior in the scenarios where the balance
assumption leads to a mediocre approximation?

4. How is the performance of the LB heuristic policy?

5. Does the decomposition property and the optimality of the base stock policy
still hold under the balance assumption when the demand distributions are
discrete? Under the balance assumption, Diks and de Kok (1998) have
shown that the optimal base stock levels satisfy newsboy equations in N -
echelon divergent inventory systems with continuous demand distributions.
If the extension of the decomposition property and the optimality of the
base stock policies is possible, does a similar newsboy characterization also
exist for the optimal base stock levels (under the balance assumption)?

1.4 Outline of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we
analyze the one-warehouse multi-retailer system facing discrete customer de-
mands under the balance assumption. The decomposition property and the
optimality of the base stock policies are shown to hold for the discrete demand
case, too. Further, we provide newsboy characterizations for the optimal base
stock levels.

Chapter 3 is dedicated to the first numerical study where the relative gap
between the optimal average cost under the balance assumption (obtained
analytically) and the cost obtained by simulating the LB heuristic policy is
used. We explicitly identify the scenarios resulting in small (moderate or large)
relative gaps.

In Chapter 4, we develop a DP for the control of the system under study for
the purpose of computing the true optimal cost. We assume discrete demand
distributions with finite supports (specifically, demand is assumed to be dis-
tributed over a small set of points) in order to be able to solve the resulting
DP. Using value iteration algorithm, we compute the true optimal cost for
various settings that are found to lead to moderate or large relative gaps in
Chapter 3. As a second numerical study, the optimal cost under the balance
assumption is compared to the true optimal cost. The results allow us to de-
termine the impact of the balance assumption precisely. In addition, we are
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able to evaluate the performance of the LB heuristic policy. Moreover, we get
new and interesting insights into the optimal policy behavior.

The newsboy characterizations presented in Chapter 2 encouraged us to seek
for similar results in other multi-echelon systems. In Chapter 5, we analyze an
N -echelon serial system with a fixed batch size at each echelon. Chen (2000)
has shown that echelon stock (R,Q) policies are optimal for such systems. We
show that the optimal reorder levels satisfy newsboy inequalities (equalities)
when the demand distribution is discrete (continuous).

Finally, we summarize the main results of the research and discuss directions
for further research in Chapter 6.

This dissertation resulted in three Beta Research School working papers. We
are currently in the process of getting them published in scholarly journals.
The studies in Chapter 2, 3 and 5 led to Doğru et al. (2004), Doğru et al.
(2005a) and Doğru et al. (2005b), respectively. At present, we are working
on turning the study of Chapter 4 into a paper.





Chapter 2

Distribution Systems Facing
Discrete Demands

Abstract: In this chapter, we consider a two-echelon distribution system,
which consists of a single warehouse serving N (possibly nonidentical) retail-
ers that face discrete stochastic demand of the customers. We assume periodic
review and centralized control, and the objective is to minimize the average ex-
pected inventory holding and penalty costs. Under the balance assumption,
we show that base stock policies are optimal. Actually, we extend the opti-
mality of base stock policies for continuous demand models under the balance
assumption to the discrete demand case. Further, we derive newsboy inequali-
ties for the optimal base stock levels and develop an efficient algorithm for the
computations of an optimal policy.

2.1 Introduction

This chapter treats a two-echelon distribution system under periodic review
and centralized control. There are several retailers supplied by shipments from
a warehouse, which in return orders from an exogenous supplier with ample
stock. There are fixed leadtimes between the supplier and the warehouse, and
between the warehouse and the retailers. The retailers face discrete stochastic
demand of the customers. Excess demand is backlogged and linear penalty
costs are incurred. There are no fixed costs and the objective is to minimize
the average inventory holding and penalty costs of the system in the long-run.

Clark and Scarf (1960) were the first to consider the inventory control problem
in a distribution system facing continuous demands. They were not able to

17
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apply the decomposition technique to these systems due to the so-called allo-
cation (rationing) problem. There is an allocation decision of how to distribute
the physical stock at the warehouse among all the stock points, which has to
be made in each period.

Although the optimal policy for the inventory control of a distribution system
is unknown, there are some approximate approaches. The key assumption
(in these approaches) is that the inventories of the retailers are balanced,
i.e., the allocation policy may apportion negative quantities to the retailers.
The balance assumption allows one to apply Clark and Scarf’s decomposition
technique to distribution systems.

The distribution model under consideration with continuous demands is well
studied in the literature; see Clark and Scarf (1960), Eppen and Schrage
(1981), Federgruen and Zipkin (1984a,b,c), Diks and de Kok (1998). See
also van Houtum et al. (1996), and Axsäter (2003) for extensive reviews.
However, the discrete demand case has not been studied up to now. Discrete
demand processes are important since it makes it possible to handle positive
probability mass at any point in the demand distribution, particularly at zero.
This is highly important in case of intermittent demand.

Our contribution in this study is twofold. First, under the balance assumption,
we extend the optimality of base stock policies to two-echelon distribution sys-
tems facing discrete demands. The proof is not a trivial extension because the
proof in the continuous demand case heavily depends on identifying equalities
that have to be satisfied by the optimal control parameters (base stock levels
and allocation functions). In contrast, in the discrete demand case, optimal
control parameters have to satisfy certain inequalities. Second, we show that
the optimal base-stock levels satisfy newsboy inequalities. Under continuous
demand, newsboy equalities have been derived for multi-echelon serial and
distribution systems by van Houtum and Zijm (1991), and Diks and de Kok
(1998), respectively. Our newsboy inequalities extend the newsboy equalities
of Diks and de Kok, and to the best of our knowledge are the first newsboy
characterization for multi-echelon systems with discrete demand. In addition,
we develop an efficient algorithm for the computation of an optimal policy.

This chapter is organized as follows. In §2.2, we introduce the model. The
complete analysis is presented in §2.3; §2.3.1 and §2.3.2 set the stage for the
proof, which is conducted in §2.3.3 and §2.3.4. Newsboy inequalities and the
algorithm for the computation of an optimal policy are discussed in §2.3.5 and
§2.3.6, respectively.
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2.2 Model

Consider a two-stage distribution system that consists of a single warehouse
and N retailers. The warehouse (indexed as stock point 0) orders from an ex-
ogenous supplier with ample stock and the retailers are supplied by shipments
from the warehouse. Retailers face stochastic and independent demands of
the customers. Demands in different periods are i.i.d., discrete nonnegative
random variables. Any unfulfilled demand at a retailer is backlogged. Time is
divided into periods of equal length and the following sequence of events takes
place during a period:

• inventory levels are observed and the current period’s ordering/shipment
decisions are made considering the arrival of the orders/shipments given
before (at the beginning of the period),

• orders/shipments arrive following their respective leadtimes (at the begin-
ning of the period),

• demand occurs,

• holding and penalty costs are assessed on the period ending inventory and
backorder levels (at the end of the period).

Leadtimes of orders (between the supplier and the warehouse), and shipments
(between the warehouse and the retailers) are fixed. Costs consist of linear
holding and penalty costs. Finally, we assume that the system is centrally
controlled and the objective is to minimize the expected holding and penalty
costs of the system in the long-run.

Here is the basic notation for this study:

Z = set of integer numbers. Z+ = {1, 2, ...}, and Z+
0 = Z+ ∪ {0}

t = index for time. Period t is defined as the time interval between
epochs t and t + 1 for t ∈ Z+

0 .
N = number of retailers, N ∈ Z+.
i = index for stock points, i = 0 is the warehouse, and i = 1, 2, ..., N

are the retailers.
J = set of retailers, i.e., J = {1, 2, ..., N}.
li = leadtime parameter for stock point i. li ∈ Z+

0 ∀i ∈ J and l0 ∈ Z+

pi = penalty cost parameter for retailer i. A cost pi is charged for each
unit of backlog at the end of a period at retailer i. pi > 0 ∀i ∈ J
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hi = additional inventory holding cost parameter for stock
point i. At the end of a period:
(i) cost h0 is charged for each unit on stock at the
warehouse or in transit to any retailers, h0 ≥ 0,
(ii) cost h0 + hi is charged for each unit on stock at
retailer i, hi ≥ 0 ∀i ∈ J .

µi = mean of one-period demand faced by retailer i.
µ0 = mean of one-period demand faced by the system, i.e.,

µ0 =
∑

i∈J µi.
Di(t, t + s) = discrete random variable denoting the demand faced by

retailer i during the periods t, t + 1, ..., t + s for t, s ∈ Z+
0 .

D0(t, t + s) = discrete random variable denoting the aggregate demand
faced by the system during the periods t, t + 1, ..., t + s,
i.e., D0(t, t + s) =

∑
i∈J Di(t, t + s) for t, s ∈ Z+

0 .
D

(l)
i = discrete random variable denoting l-period demand

faced by retailer i, l ∈ Z+
0 .

D
(l)
0 = discrete random variable denoting l-period aggregate

demand faced by the system, l ∈ Z+
0 .

F
(l)
i = cumulative distribution function of l-period demand

of retailer i defined over Z+
0 .

F
(l)
0 = cumulative distribution function of l-period demand

faced by the system defined over Z+
0 , i.e.,

F
(l)
0 = F

(l)
1 ∗ F

(l)
2 ∗ ... ∗ F

(l)
N .

Ii(t) = echelon stock of stock point i at the beginning of period
t just after the receipt of the incoming order/shipment.

Îi(t) = echelon stock of stock point i at the end of period t.
ˆIP i(t) = echelon inventory position of stock point i at the end

of period t− 1, t ∈ Z+ = echelon inventory position of
stock point i at the beginning of period t just before
ordering (if i = 0) or shipment (if i ∈ J).

IPi(t) = echelon inventory position of stock point i at the
beginning of period t just after ordering (if i = 0) or
shipment (if i ∈ J).

2.3 Analysis

We discuss the ordering and allocation decisions with their impacts on the
costs, and introduce the optimization problem under study in §2.3.1. The
allocation decision is analyzed and the balance assumption is introduced in
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§2.3.2. This constitutes the basis for the analysis of a single ordering cycle,
and the derivation of an average cost optimal policy, in §2.3.3 and §2.3.4, re-
spectively. Finally, we discuss the newsboy inequalities in §2.3.5 and conclude
with an algorithm for computations in §2.3.6.

2.3.1 Dynamics of the System

The total cost of the system at the end of an arbitrary period t is equal to

h0

(
Î0(t)−

∑
i∈J

Îi(t)

)
+
∑
i∈J

(h0 + hi)Î+
i (t) +

∑
i∈J

piÎ
−
i (t)

where a+ = max{0, a} and a− = −min{0, a} for a ∈ R. Substituting Îi(t) =
Î+
i (t)− Î−i (t) first, rearranging the terms, and then using the identity Î+

i (t) =
Îi(t) + Î−i (t) leads to the following result:

h0

(
Î0(t)−

∑
i∈J

Îi(t)

)
+
∑
i∈J

(h0 + hi)Î+
i (t) +

∑
i∈J

piÎ
−
i (t)

= h0Î0(t) +
∑
i∈J

hiÎ
+
i (t) +

∑
i∈J

(h0 + pi)Î−i (t)

= h0Î0(t) +
∑
i∈J

hiÎi(t) +
∑
i∈J

(h0 + hi + pi)Î−i (t). (2.1)

We define h0Î0(t) as the cost attached to the echelon of the warehouse (echelon
of stock point 0) at the end of period t. This cost is denoted by C0(t). We
define hiÎi(t)+(h0 +hi +pi)Î−i (t) as the cost attached to the echelon of retailer
i at the end of period t, and denote it by Ci(t).

Consider the following two connected decisions and the resulting effects on the
expected costs, which start with an order given to the supplier in period t,
t ∈ Z+

0 . Figure 2.1 illustrates the dependence among these decisions and the
resulting cost consequences.

Ordering Decision: Assume that at the beginning of period t the warehouse
gives an order that raises the inventory position of the system to some level
y0, i.e., IP0(t) = y0. The order materializes at the beginning of period t + l0
and the echelon stock of the warehouse at that epoch is y0 −D0(t, t + l0 − 1).
There are two consequences of the ordering decision:
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t q q q
6

Ordering

Decision

IP0(t) = y0

-
A
A
A
A
A
A
A
AAU

Determines

C0(t + l0)

t + l0 q q q
6

Allocation

Decision

IPi(t + l0) = wi ∀i ∈ J ,
P

i∈J

wi ≤ y0 −D0(t, t + l0 − 1),

wi ≥ ˆIP i(t + l0) ∀i ∈ J .

?
Determines

Ci(t + l0 + li) ∀i ∈ J

t + l0 + li q q q

Figure 2.1: The consequences of an order given to the supplier in period t.

• It directly determines the expected value of the cost attached to the echelon
of the warehouse at the end of period t + l0,

E [C0(t + l0)|IP0(t) = y0] = E[h0(y0 −D0(t, t + l0))]
= h0(y0 − (l0 + 1)µ0).

• It limits the shipment quantities to the retailers. In other words, it puts an
upper bound on the level to which one can increase the aggregate echelon
inventory positions of the retailers in period t + l0,∑

i∈J

IPi(t + l0) ≤ y0 −D0(t, t + l0 − 1).

Allocation Decision: At the beginning of period t+l0, the system-wide stock
is rationed among all stock points. In other words, the shipment quantities
to the retailers are determined; as a result, the decision of how much stock to
retain at the warehouse is made. At epoch t + l0, the inventory position of
retailer i is increased to some level wi such that

∑
i∈J wi ≤ y0−D0(t, t+ l0−1)

and wi ≥ ˆIP i(t + l0) for all i ∈ J . These decisions directly affect the cost of
echelon i at the end of period t + l0 + li, for all i ∈ J . The expected value of
the cost attached to echelon i is
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E [Ci(t + l0 + li)|IPi(t + l0) = wi]

= E
[
hi(wi −Di(t + l0, t + l0 + li))

+(h0 + hi + pi) (wi −Di(t + l0, t + l0 + li))
−]

= hi (wi − (li + 1)µi) + (h0 + hi + pi)E [Di(t + l0, t + l0 + li)− wi]
+ .

We define the expected costs as a consequence of the ordering and allocation
decisions that begin with the warehouse’s order given at epoch t as the cycle
cost of period t and denote it by Ccyc(t).

Ccyc(t) = C0(t + l0) +
∑
i∈J

Ci(t + l0 + li)

Let Π and g(π) denote the set of all ordering/allocation policies and the av-
erage expected cost of policy π, respectively. The expected long-run average
cost of any policy π ∈ Π is simply the average of the expected value of the
sum of costs over all cycles:

g(π) def= lim
T−→∞

1
T

E

[
T−1∑
t=0

N∑
i=0

Ci(t)

]

= lim
T−→∞

1
T

E

[
l0−1∑
t=0

C0(t) +
l0+li−1∑

t=0

∑
i∈J

Ci(t) +
T−1∑
t=0

Ccyc(t)

−
T+l0−1∑

t=T

C0(t)−
T+l0+li−1∑

t=T

∑
i∈J

Ci(t)

]

= lim
T−→∞

1
T

T−1∑
t=0

E[Ccyc(t)].

The expression above requires the existence and the finiteness of the expec-
tations. Although this may not be the case for any given policy, especially
for the ones that do not order enough to satisfy demand, any policy with an
underlying Markov process that is unichain meets this requirement. We are
interested in such policies. (In the subsequent sections, we show the optimal-
ity of base stock policies. The class of base stock policies are well known to
satisfy these necessities.) Thus, the optimization problem that we consider is

min
π∈Π

lim
T−→∞

1
T

T−1∑
t=0

E[Ccyc(t)]. (2.2)
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The minimization problem given above is intricate since the decisions are
highly interdependent. In the next subsection, we introduce the myopic allo-
cation problem and discuss the balance assumption.

2.3.2 Analysis of the Allocation Decision

In this subsection, we discuss the Allocation Decision described in §2.3.1. Con-
sider the sequence of decisions and the resulting costs as a result of increas-
ing the inventory position of the system up to y0 at the beginning of period
t, t ∈ Z+

0 . Suppose the echelon stock of the warehouse at the beginning of pe-
riod t+ l0 (i.e., y0−D0(t, t+ l0−1)) is distributed among all stock points such
that the sum of the expected holding and penalty costs of the retailers in the
periods the allocated quantities reach their destinations (i.e., period t + l0 + li
for retailer i) is minimized. This way of rationing is called myopic allocation
because the effect of the allocation decisions on the subsequent periods is not
considered. The mathematical formulation of the problem is as follows:

min
wi, i∈J

∑
i∈J

E [Ci(t + l0 + li)|IPi(t + l0) = wi] (2.3)

s.t.
∑
i∈J

wi ≤ y0 −D0(t, t + l0 − 1) (2.4)

ˆIP i(t + l0) ≤ wi ∀ i ∈ J (2.5)

Both constraints serve for the physical balance of the stocks. While (2.5)
assures that no negative quantity is allocated to the retailers, (2.4) compels
that the sum of the allocated quantities cannot exceed the available stock in
the system.

Although myopic allocation allows the allocation decisions to be made inde-
pendent of the future allocation and ordering decisions, it still depends on
previous periods’ decisions due to (2.5). Consider a relaxed version of the my-
opic allocation problem where (2.5) is omitted. This is equivalent to assuming
that the quantities allocated to the retailers may be negative. We refer to this
assumption as the balance assumption.

In the absence of (2.5), Ccyc(t) depends only on the ordering and allocation
decisions that start with the order given by the warehouse in period t, not on
decisions of other periods. Next, we focus on how to minimize the cycle cost
of period t.



2.3. Analysis 25

2.3.3 Analysis of a Single Cycle

First of all, we give the definition of convexity for functions defined over Z.
Let ∆f(x) and ∆2f(x) denote first and second order difference equations for a
function f where ∆f(x) = f(x+1)−f(x) and ∆2f(x) = ∆f(x+1)−∆f(x) =
f(x+2)−2f(x+1)+f(x). A discrete function is convex over Z if ∆2f(x) ≥ 0
for all x ∈ Z.

For retailer i, define Gi(yi) as the expected cost attached to echelon i at the
end of period t+ li when the inventory position at the beginning of period t is
increased to yi for yi ∈ Z, and t ∈ Z+

0 , i.e., Gi(yi) = E[Ci(t + li)|IPi(t) = yi].
Now, we analyze the function Gi(·) in Lemma 2.1.

Lemma 2.1 For all i ∈ J :

(i) Gi(yi) = hi (yi − (li + 1)µi) + (h0 + hi + pi)E[Di(t, t + li)− yi]+, yi ∈ Z,

(ii) ∆Gi(yi) = (h0 + hi + pi)F
(li+1)
i (yi)− (h0 + pi), yi ∈ Z,

(iii) Gi(yi) is convex over Z,

(iv) Gi(yi) is minimized at all yi ∈ Y ∗i = {y∗
i
, y∗

i
+ 1, ..., y∗i } where

y∗
i

= min
{

yi|F (li+1)
i (yi) ≥ h0+pi

h0+hi+pi

}
and

y∗i = min
{

yi|F (li+1)
i (yi) > h0+pi

h0+hi+pi

}
.

If
{

yi|F (li+1)
i (yi) > h0+pi

h0+hi+pi

}
= ∅ then y∗i = ∞.

(Note that y∗i = ∞ if hi = 0. Moreover, y∗
i

= ∞ if hi = 0 and F
(1)
i has an

infinite support.)

Proof : The proof is straightforward and omitted.

Notice that if y∗
i

satisfies F
(li+1)
i (y∗

i
) = h0+pi

h0+hi+pi
, then there are multiple op-

timal values. The results of Lemma 2.1 are utilized for the solution of the
relaxed myopic allocation problem.

Let zi : Z → Z, i ∈ J be an allocation function such that zi(a) is the portion
of a allocated to retailer i for a ∈ Z. Assume that the system-wide stock at
time t ∈ Z+

0 is x ∈ Z, i.e., I0(t) = x. The myopic allocation problem of period
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t under the balance assumption may be rewritten as:

min
zi(x) ∀i∈J

∑
i∈J

Gi(zi(x)) (2.6)

s.t.
∑
i∈J

zi(x) ≤ x, (2.7)

where a solution is denoted by {zi(x)}i∈J . Define {z∗i (x)}i∈J and H∗(x) as an
optimal solution and the optimal objective function value of (2.6)-(2.7) for a
given x, respectively; H∗(x) =

∑
i∈J Gi(z∗i (x)).

Next, we discuss how to characterize an optimal solution for the myopic allo-
cation problem under the balance assumption, i.e., for (2.6)-(2.7).

Lemma 2.2 Let x ∈ Z.

(i) If x ≥
∑

i∈J y∗
i
, then z∗i (x) ∈ Y ∗i for all i ∈ J such that

∑
i∈J z∗i (x) ≤ x,

(ii) If x ≤
∑

i∈J y∗
i
, then (2.7) is binding, i.e.,

∑
i∈J z∗i (x) = x.

Proof : See §2.4.

Notice that the optimal solution of (2.6)-(2.7) for x ≥
∑

i∈J y∗
i

is fully char-
acterized by Lemma 2.2. The following lemma identifies optimal solutions for
x <

∑
i∈J y∗

i
.

Lemma 2.3 Let x <
∑

i∈J y∗
i
, and x ∈ Z.

(i) A given solution {z∗i (x)}i∈J is optimal if and only if:

∆Gi(z∗i (x)) ≥ ∆Gj(z∗j (x)− 1) ∀i, j ∈ J, i 6= j.

(ii) Given an optimal solution {z∗i (x)}i∈J for x, an optimal solution {z∗i (x +
1)}i∈J for x + 1 is given by

z∗k(x + 1) = z∗k(x) + 1, where

k ∈
{

i ∈ J |∆Gi(z∗i (x)) = minj∈J ∆Gj(z∗j (x))
}
, and

z∗j (x + 1) = z∗j (x) ∀j ∈ J \ {k}.

(iii) Given an optimal solution {z∗i (x)}i∈J for x, an optimal solution {z∗i (x −
1)}i∈J for x− 1 is given by
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z∗k(x− 1) = z∗k(x)− 1, where

k ∈
{

i ∈ J |∆Gi(z∗i (x)− 1) = maxj∈J ∆Gj(z∗j (x)− 1)
}
, and

z∗j (x− 1) = z∗j (x) ∀j ∈ J \ {k}.
Proof : See §2.4.

Define
z = set of allocation functions, i.e., {zi}i∈J .

z∗ = set of optimal allocation functions, i.e., {z∗i }i∈J such that z∗i (x)
is optimal for all x ∈ Z and for all i ∈ J .

ẑ∗ = set of nondecreasing optimal allocation functions (i.e., {ẑi
∗}i∈J

such that ẑi
∗(x) is optimal and ∆ẑi

∗(x) = ẑi
∗(x + 1)− ẑi

∗(x) ≥ 0
for all x ∈ Z and for all i ∈ J).

z̃∗ = set of nondecreasing optimal allocation functions with the
additional property that for all i ∈ J with |Y ∗i | > 1,
z̃∗i (x) ∈ Y ∗i \ {y∗i } for x >

∑
i∈J y∗

i
.

Lemma 2.3 simply says that given an optimal solution for x, an optimal alloca-
tion of x+1 (x−1) units can be carried out by taking the optimal solution for x
and giving a retailer k with the smallest ∆Gk(zk(x)) (largest ∆Gk(zk(x)−1))
value one unit more (less). This greedy procedure is also known as the marginal
allocation. An important implication of this lemma is that if an optimal so-
lution of the myopic allocation problem is known for some x ∈ Z, starting
from this optimal solution, one can find optimal allocation functions (z∗) by
following the aforementioned greedy procedure.

We are prepared for the main result in regard to optimal allocation functions
of the retailers.

Theorem 2.4 There exist nondecreasing optimal allocation functions ẑ∗.

Proof : Distinguish two cases: (i)
∑

i∈J y∗
i

is finite, (ii)
∑

i∈J y∗
i

is infinite. In
case (i), z∗i (

∑
i∈J y∗

i
) = y∗

i
∀i ∈ J due to Lemma 2.2. Starting from this opti-

mal solution, optimal solutions for x <
∑

i∈J y∗
i

can be obtained using part (iii)
of Lemma 2.3, which leads to z∗i (x+1)−z∗i (x) = ∆z∗i (x) ∈ {0, 1} for all i ∈ J .
For x >

∑
i∈J y∗

i
, take z∗i (x) = y∗

i
∀i ∈ J ; as a result ∆z∗i (x) = 0 for all i ∈ J .

In case (ii), an optimal solution {z∗i (x)}i∈J of (2.6)-(2.7) can be determined
for some given x ∈ Z by Lagrange relaxation (see Everett (1963)). Based on
{z∗i (x)}i∈J , optimal solutions for x + 1 and x− 1 can be constructed utilizing
parts (ii) and (iii) of Lemma 2.3, respectively. Continuing in this manner,
z∗i (x) is determined for all x ∈ Z and i ∈ J such that ∆z∗i (x) ∈ {0, 1}. 2
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Remark 2.1 Theorem 2.4 shows the existence of nondecreasing optimal al-
location functions, but not all optimal allocation functions have to be non-
decreasing. Consider the case with three identical retailers, i.e., three retail-
ers with identical leadtimes, cost parameters and demand distributions. De-
fine z̄∗(x) = (z∗1(x), z∗2(x), z∗3(x)). There are three optimal alternatives for
rationing 4 units: z̄∗(4) ∈ {(2, 1, 1), (1, 2, 1), (1, 1, 2)}. For x = 5, z̄∗(5) ∈
{(2, 2, 1), (1, 2, 2), (2, 1, 2)}. Given z∗(4) = (2, 1, 1), if one follows part (ii) of
Lemma 2.3, then z∗(5) is (2, 2, 1) or (2, 1, 2), which leads to nondecreasing op-
timal allocation functions at x = 4. Consider the following optimal allocations:
z∗(4) = (2, 1, 1) and z∗(5) = (1, 2, 2); observe that then z∗1(x) is decreasing for
x = 4.

The following corollary follows directly from the proof of Theorem 2.4.

Corollary 2.5 There exist optimal allocation functions z̃∗.

Proof : The additional property in the definition of z̃∗ simply tells that for
all the retailers with multiple optimums minimizing Gi(·) (i.e., for all i ∈ J
with |Y ∗i | > 1), z∗i (x) 6= y∗i for all x >

∑
i∈J y∗

i
. In fact, the optimal alloca-

tion functions constructed in the proof of Theorem 2.4 do have the additional
property.

We can show the following properties of the function H∗(·).

Lemma 2.6 Let x ∈ Z.

(i) ∆H∗(x) < 0 for x <
∑

i∈J y∗
i
,

(ii) ∆H∗(x) = 0 for x ≥
∑

i∈J y∗
i
,

(iii) H∗(x) is convex in x.

Proof : See §2.4.

Lemma 2.6 gives the shape of the optimal objective function of the myopic
allocation problem given in (2.6)-(2.7) as a function of the amount to allocate.
H∗(x) is convex, strictly decreasing in the region (−∞,

∑
i∈J y∗

i
), and constant

over [
∑

i∈J y∗
i
,+∞).



2.3. Analysis 29

Let
G0(y0) = expected value of the cost attached to the echelon of the

warehouse at the end of period t + l0 given IP0(t) = y0

for y0 ∈ Z, and t ∈ Z+
0 , i.e.,

G0(y0) = E [C0(t + l0)|IP0(t) = y0]= h0(y0 − (l0 + 1)µ0)

τ(y0) =
[
y0 −

∑
i∈J y∗

i
+ 1
]+

, y0 ∈ Z.

Under the balance assumption, let us denote the expected cycle cost of period
t given IP0(t) = y0 and z for y0 ∈ Z, t ∈ Z+

0 , by Gcyc(y0, z). Thus,

Gcyc(y0, z) = E

[
C0(t + l0) +

∑
i∈J

Ci(t + l0 + li) | IP0(t) = y0, z

]

= G0(y0) +
∞∑

x=0

∑
i∈J

Gi(zi(y0 − x))Pr{D(l0)
0 = x}. (2.8)

Lemma 2.7 .

(i) Gcyc(y0, z∗) = G0(y0) +
∞∑

x=0
H∗(y0 − x)Pr{D(l0)

0 = x}, y0 ∈ Z,

(ii) Gcyc(y0, z∗) ≤ Gcyc(y0, z), y0 ∈ Z,

(iii) ∆Gcyc(y0, z∗) = h0 +
∞∑

x=τ(y0)

∆H∗(y0 − x)Pr{D(l0)
0 = x}, y0 ∈ Z,

(iv) Gcyc(y0, z∗) is convex in y0,

(v) Gcyc(y0, z∗) is minimized at all y0 ∈ Y ∗0 = {y∗
0
, y∗

0
+ 1, ..., y∗0} where

y∗
0

= min {y0|∆Gcyc(y0, z∗) ≥ 0}, and y∗0 = min {y0|∆Gcyc(y0, z∗) > 0}.

Proof : See §2.4.

Part (ii) of Lemma 2.7 implies that whatever ordering decision is made at
the beginning of the cycle, utilizing z∗ for allocation leads to expected cycle
costs as good as any other set of allocation functions. The expressions for the
optimal order-up-to levels minimizing Gcyc(y0, z∗) are given in part (v); note
that if ∆Gcyc(y0, z∗) = 0 then |Y ∗0 | > 1.

Corollary 2.8 Under the balance assumption, the minimum expected cycle
cost of an arbitrary period t ∈ Z+

0 is Gcyc(y∗0, z
∗).
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2.3.4 Analysis of the Infinite Horizon Problem

In the previous section, we studied the cycle cost of an arbitrary period, which
is shown to be convex under the balance assumption. Now, we return to
the infinite horizon problem given in (2.2) and study it under the balance
assumption.

Denote a base stock policy by a tuple (y0, z), where y0 is the target echelon
inventory position of the warehouse, and {zi(x)}i∈J are the (state-dependent)
target inventory positions of the retailers when the system-wide on-hand stock
(state) is x. The decisions are made so that, at the beginning of each period
t:

• the echelon inventory position of the warehouse is increased up to y0, i.e.,
IP0(t) = y0,

• the inventory position of retailer i is raised to zi(I0(t)), i.e., IPi(t) =
zi(I0(t)) ∀i ∈ J .

Theorem 2.9 Under the balance assumption, the minimization of the aver-
age expected cost of the system in an infinite horizon (see (2.2)) can be ac-
complished by following a base stock policy (y0, z∗) with y0 ∈ Y ∗0 .

Proof : Corollary 2.8 shows that base stock policy (y0 ∈ Y ∗0 , z∗) minimizes
the expected cycle cost of period t. Due to the fact that warehouse order-up-to
level (y0 ∈ Y ∗0 ), and optimal allocation functions (z∗) are independent of time,
the proposed control policy can be applied to optimize each period’s cycle cost
within the horizon; as a result minimizing (2.2). 2

Remark 2.2 There are two causes for an imbalance situation. On one hand,
the retailers might face disproportionate demands in the previous period and
the amount of stock at the warehouse (at the beginning of the current period)
is not enough to preclude the allocation of a negative quantity to at least one
retailer. On the other hand, imbalance may emanate from decreasing allocation
functions. Recall the example in Remark 2.1. Take some period t ∈ Z+

0 .
Assume that: (i) at the beginning of period t, the amount of stock to allocate
is 4, (ii) the amount of stock the warehouse will receive in period t + 1 is 1,
(iii) z̄∗(4) = (2, 1, 1), z̄∗(5) = (1, 2, 2). If no demand occurs at any of the
retailers in period t, then an imbalance occurs in period t+1 due to decreasing
z∗1(x) at x = 4. This kind of imbalance can be prevented by using a base stock
policy (y0 ∈ Y ∗0 , ẑ∗) with nondecreasing allocation functions ẑ∗ (i.e., {ẑ∗i }i∈J

such that ẑ∗i (x) is optimal and nondecreasing for all x ∈ Z and for all i ∈ J).
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2.3.5 Newsboy Inequalities

The optimality of base stock policies has been proven in §2.3.4. In this sub-
section, we identify necessary conditions for an optimal warehouse base stock
level, which constitute newsboy inequalities.

Define
Pi(y0, z) = probability of no-stockout at retailer i in period t + l0 + li

given z, and IP0(t) = y0 for y0 ∈ Z and t ∈ Z+
0 , i.e.,

Pi(y0, z) =
∞∑

x=0

F
(li+1)
i (zi(y0 − x))Pr{D(l0)

0 = x}. (2.9)

By Corollary 2.5, the existence of nondecreasing allocation functions with the
additional property, z̃∗ is assured.

Next, we derive upper and lower bounds on ∆Gcyc(y0, z̃∗).

Lemma 2.10 For all i ∈ J , and y0 ∈ Z:[
(h0 + pi)− (h0 + hi + pi)F

(li+1)
i (y∗

i
)
]
F

(l0)
0 (τ(y0)− 1)− pi

+(h0 + hi + pi)

Pi(y0, z̃∗)−
∞∑

x=τ(y0)

Pr{D(li+1)
i = z̃∗i (y0 − x)}Pr{D(l0)

0 = x}



≤ ∆Gcyc(y0, z̃∗) ≤

[
(h0 + pi)− (h0 + hi + pi)F

(li+1)
i (y∗

i
)
]
F

(l0)
0 (τ(y0)− 1)− pi

+(h0 + hi + pi)Pi(y0, z̃∗).

Proof : See §2.4.

If material availability is always guaranteed by the warehouse then the optimal
order-up-to levels at the retailers are such that the no-stockout probability at
each retailer i ∈ J is at least h0+pi

h0+hi+pi
, see Lemma 2.1. Utilizing the result of

Lemma 2.10, similar newsboy inequalities can also be derived for an optimal
warehouse order-up-to level.
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Theorem 2.11 For each y0 ∈ Y ∗0 and for all i ∈ J :

Pi(y0, z̃∗) ≥ pi

h0 + hi + pi

+
[
F

(li+1)
i (y∗

i
)− h0 + pi

h0 + hi + pi

]
F

(l0)
0 (τ(y0)− 1), (2.10)

Pi(y∗0 − 1, z̃∗) <
pi

h0 + hi + pi

+
[
F

(li+1)
i (y∗

i
)− h0 + pi

h0 + hi + pi

]
F

(l0)
0 (τ(y∗

0
)− 2)

+
∞∑

x=τ(y∗
0
)−1

Pr{D(li+1)
i = z̃∗i (y∗

0
− 1− x)}Pr{D(l0)

0 = x}.

Proof : These inequalities follow directly from the result of Lemma 2.10, and
the properties that ∆Gcyc(y∗0, z̃

∗) ≥ 0 and ∆Gcyc(y∗0 − 1, z̃∗) < 0. 2

The message of Theorem 2.11 is that an optimal order-up-to level of the ware-
house leads to a no-stockout probability at each retailer i ∈ J , which is at least

pi

h0+hi+pi
. Note that F

(l0)
0 (τ(y0) − 1) in (2.10) corresponds to the probability

that retailers can reach inventory positions y∗
i

via shipments from the ware-

house (i.e., there is no shortage at the warehouse). F
(li+1)
i (y∗

i
) − h0+pi

h0+hi+pi
is

the overshoot from the target newsboy level for retailer i due to discreteness.
In case of continuous demand, there is no overshoot; moreover, the newsboy
inequalities for the retailers and (2.10) can be satisfied with equality. Thus,
(2.10) can be streamlined as Pi(y∗0, z̃

∗) = pi

h0+hi+pi
for all i ∈ J (cf. Diks and

de Kok (1998)).

Corollary 2.12 Pi(y0, z̃∗) ≥ pi

h0+hi+pi
∀i ∈ J , ∀y0 ∈ Y ∗0 .

Proof : Result follows directly from (2.10) and the definition of y∗
i
. 2

The newsboy inequalities derived in Theorem 2.11 allow us to see the follow-
ing direct relations between the holding cost parameters and the order-up-to
levels under an optimal policy.

Corollary 2.13 If there exists a retailer i ∈ J with hi = 0 and an infinite
support for its demand distribution F

(1)
i , then the warehouse becomes a cross-

docking point under an optimal policy.
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Proof : From Lemma 2.1, y∗
i

= ∞. Thus, in each period, all available stock
at the warehouse is allocated to the retailers under an optimal policy. 2

Lemma 2.14 .

(i) If h0 = 0 then the inventory position of retailer i can always be increased
to at least y∗

i
for all i ∈ J under an optimal policy (y0, z̃∗) with y0 ∈ Y ∗0 .

(ii) If h0 = 0 and there is at least one retailer i ∈ J with an infinite support for
its demand distribution F

(1)
i , then y∗

0
= ∞ under an optimal policy (y0, z̃∗),

y0 ∈ Y ∗0 = {∞}. Thus, infinite stock is kept at the warehouse.

Proof : See §2.4.

For N = 1, the model reduces to a two-echelon serial system facing discrete
demand. The newsboy inequalities discussed in this subsection hold for this
system as well. For a detailed analysis of newsboy characterizations in serial
systems, see Chapter 5.

2.3.6 Computational Issues

The results of the previous subsections are used to develop an efficient opti-
mization scheme. The general line is reminiscent of the technique developed
for serial systems by Clark and Scarf (1960). First, y∗

i
∀i ∈ J are determined

utilizing part (iv) of Lemma 2.1. Second, following the arguments in the proof
of Theorem 2.4 and using parts (ii) and (iii) of Lemma 2.3, z̃∗ is constructed.
Finally, a simple search procedure can be run to find y∗

0
; details are as follows.

Take a retailer i ∈ J , preferably one with |Y ∗i | > 1. Start the search at y0

for which Pi(y0, z̃∗) ≥ pi

h0+hi+pi
for the first time. Unless ∆Gcyc(y0, z̃∗) ≥ 0,

increase y0 by a suitable step size (depending on the distribution of demand
at retailer i) until ∆Gcyc(y0, z̃∗) ≥ 0. Initiate a bisection procedure and ter-
minate it when y∗

0
is determined. Once y∗

0
, and z̃∗ are obtained, the values

are substituted into (2.8) and the optimal long-run average cost of the system
under the balance assumption is obtained.
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2.4 Appendix: Proofs

Proof of Lemma 2.2:

(i) Observe that (2.6) consists of N independent components that are convex
functions. In the absence of (2.7), the problem is separable and the min-
imization of each component solves the problem; i.e., z∗i (x) ∈ Y ∗i for all
i ∈ J . In case x ≥

∑
i∈J y∗

i
, z∗i (x) = y∗

i
∀i ∈ J constitutes an optimal solu-

tion, but any other z∗i (x) ∈ Y ∗i is also possible as long as
∑

i∈J z∗i (x) ≤ x.

(ii) For x ≤
∑

i∈J y∗
i
, consider a solution {zi(x)}i∈J such that

∑
i∈J zi(x) < x.

Since
∑

i∈J zi(x) <
∑

i∈J y∗
i
, there exists a retailer j with zj(x) < y∗

j
. Allo-

cate one unit extra to retailer j. Since ∆Gi(yi) < 0 for yi < y∗
i
, ∀i ∈ J , the

objective function improves. Thus, it is suboptimal to allocate less than x
units when x ≤

∑
i∈J y∗

i
, independent of how the rationing is carried out.

This makes (2.7) binding. 2

Proof of Lemma 2.3: Note that (2.7) is binding since we assume x <∑
i∈J y∗

i
(see Lemma 2.2).

(i) Gross (1956) considered a slightly different resource allocation problem and
derived the same necessary and sufficient conditions. His proof applies
to our problem and goes as follows. First, we prove the necessity of the
condition by contradiction. Suppose ∆Gk(z∗k(x)) < ∆Gm(z∗m(x) − 1) for
k, m ∈ J and k 6= m. The solution zk(x) = z∗k(x) + 1, zm(x) = z∗m(x) − 1,
zj(x) = z∗j (x) ∀j ∈ J \ {k, m} leads to a lower value for (2.6), which
contradicts to the optimality of {z∗i (x)}i∈J . The sufficiency follows from
the convexity of the function Gi(·) for i ∈ J . For the details, see Gross
(1956) or Saaty (1970, pp. 184-186). See also Fox (1966) for a more general
study.

(ii)-(iii) Substitute the proposed solutions in parts (ii) and (iii) in the necessary and
sufficient optimality condition given in part (i), and verify them. Parts (ii)
and (iii) constitute the greedy steps in an incremental (marginal) alloca-
tion algorithm, which was first proposed by Gross (1956). See Ibaraki and
Katoh (1988) for an extensive discussion on incremental analysis. 2

Proof of Lemma 2.6:

(i) Take x <
∑

i∈J y∗
i
, x ∈ Z and a corresponding optimal solution {z∗i (x)}i∈J

for (2.6)-(2.7). An optimal solution of (2.6)-(2.7) for x+1 can be constructed
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using part (ii) of Lemma 2.3. This is a solution z∗k(x + 1) = z∗k(x) + 1,
and z∗i (x + 1) = z∗i (x) ∀i ∈ J \ {k} with z∗k(x) < y∗

k
. Thus, ∆H∗(x) =

H∗(x + 1)−H∗(x) = ∆Gk(z∗k(x)) < 0.

(ii) This is a direct result that follows from part (i) of Lemma 2.2, and part
(iv) of Lemma 2.1.

(iii) Distinguish between three regions: x <
∑

i∈J y∗
i
− 1, x =

∑
i∈J y∗

i
− 1, and

x ≥
∑

i∈J y∗
i
. Firstly, consider {z∗i (x)}i∈J for x <

∑
i∈J y∗

i
− 1, and x ∈ Z.

By implementing part (ii) of Lemma 2.3, optimal solutions for x + 1 and
x + 2 can be determined, which are, z∗k(x + 1) = z∗k(x) + 1 for some k ∈ J
and no change ∀i ∈ J \ {k}, and z∗m(x + 2) = z∗m(x + 1) + 1 for some m ∈ J
and no change ∀i ∈ J \ {m}. Note that k = m is possible. We find

∆2H∗(x) = [H∗(x + 2)−H∗(x + 1)]− [H∗(x + 1)−H∗(x)]
= ∆Gm(z∗m(x + 1))−∆Gk(z∗k(x)) ≥ 0.

The last step follows from part (i) of Lemma 2.3 in case k 6= m, and from the
convexity of Gk(·) in case k = m. Secondly, for x =

∑
i∈J y∗

i
− 1, by parts

(i) and (ii), ∆2H∗ = −∆H∗(
∑

i∈J y∗
i
− 1) > 0. Thirdly, for x ≥

∑
i∈J y∗

i
,

∆H∗(x) = 0 resulting in ∆2H∗(x) = 0. 2

Proof of Lemma 2.7:

(i) Follows directly from (2.8) and the definition of H∗(·).

(ii) For all y0 ∈ Z:

Gcyc(y0, z∗) = G0(y0) +
∞∑

x=0

H∗(y0 − x)Pr{D(l0)
0 = x} ≤

G0(y0) +
∞∑

x=0

∑
i∈J

Gi(zi(y0 − x))Pr{D(l0)
0 = x} = Gcyc(y0, z).

(iii) For all y0 ∈ Z:

∆Gcyc(y0, z∗) = ∆G0(y0) +
∞∑

x=0

∆H∗(y0 − x)Pr{D(l0)
0 = x}

= h0 +
∞∑

x=0

∆H∗(y0 − x)Pr{D(l0)
0 = x}. (2.11)
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This proves part (iii) for y0 <
∑

i∈J y∗
i
. If y0 ≥

∑
i∈J y∗

i
then the lower limit

of the summation in (2.11) can be reduced to y0−
∑

i∈J y∗
i
+1 utilizing part

(ii) of Lemma 2.6.

(iv) Since G0(x) and H∗(x) are convex functions, so is Gcyc(y0, z∗).

(v) Due to the fact that Gcyc(y0, z∗) is convex with respect to y0, the first min-
imizing value (y∗

0
) is obtained at the point where ∆Gcyc(y0, z∗) ≥ 0 for the

first time. If ∆Gcyc(y0, z∗) = 0, then there are multiple optimal values. The
maximum of such points is the one where ∆Gcyc(y0, z∗) turns positive. 2

Proof of Lemma 2.10: Let y0 ∈ Z. We continue from part (iii) of Lemma
2.7:

∆Gcyc(y0, z̃∗) = h0 +
∞∑

x=τ(y0)

∆H∗(y0 − x)Pr{D(l0)
0 = x}

= h0 +
∞∑

x=τ(y0)

∑
j∈J

Gj(z̃∗j (y0 + 1− x))

−
∑
j∈J

Gj(z̃∗j (y0 − x))

Pr{D(l0)
0 = x}

= h0 +
∞∑

x=τ(y0)

min
j∈J

{
∆Gj(z̃∗j (y0 − x))

}
Pr{D(l0)

0 = x}. (2.12)

Note that for x ≥ τ(y0), x ∈ Z:

∆Gi(z̃∗i (y0 − x)− 1) ≤ min
j∈J

{∆Gj(z̃j
∗(y0 − x))} ≤ ∆Gi(z̃∗i (y0 − x)), (2.13)

for all i ∈ J . While the upper bound in (2.13) is obvious, lower bound follows
from part (i) of Lemma 2.3. Substituting (2.13) into (2.12) leads to

h0 +
∞∑

x=τ(y0)

∆Gi(z̃∗i (y0 − x)− 1)Pr{D(l0)
0 = x} ≤ ∆Gcyc(y0, z̃∗)

≤ h0 +
∞∑

x=τ(y0)

∆Gi(z̃∗i (y0 − x))Pr{D(l0)
0 = x},
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for all i ∈ J . The lower bound may be rewritten in terms of Pi(y0, z̃∗), which
is defined in (2.9):

h0 +
∞∑

x=τ(y0)

∆Gi(z̃∗i (y0 − x)− 1)Pr{D(l0)
0 = x}

= h0 +
∞∑

x=τ(y0)

[
(h0 + hi + pi)F

(li+1)
i (z̃∗i (y0 − x)− 1)− (h0 + pi)

]
Pr{D(l0)

0 = x}

= (h0 + pi)F
(l0)
0 (τ(y0)− 1)− pi +

∞∑
x=τ(y0)

[
(h0 + hi + pi)F

(li+1)
i (z̃∗i (y0 − x)− 1)

]
Pr{D(l0)

0 = x}

= (h0 + pi)F
(l0)
0 (τ(y0)− 1)− pi

+(h0 + hi + pi)
∞∑

x=τ(y0)

(
F

(li+1)
i (z̃∗i (y0 − x))

−Pr{D(li+1)
i = z̃∗i (y0 − x)}

)
Pr{D(l0)

0 = x}

= (h0 + pi)F
(l0)
0 (τ(y0)− 1)− pi

+(h0 + hi + pi)

Pi(y0, z̃∗)−
τ(y0)−1∑

x=0

F
(li+1)
i (z̃∗i (y0 − x))Pr{D(l0)

0 = x}

−
∞∑

x=τ(y0)

Pr{D(li+1)
i = z̃∗i (y0 − x)}Pr{D(l0)

0 = x}

 .

Recall from Lemma 2.1 that F
(li+1)
i (yi) = F

(li+1)
i (y∗

i
) for yi ∈ Y ∗i \ {y∗i }.

Hence, the expression
∑τ(y0)−1

x=0 F
(li+1)
i (z̃∗i (y0 − x))Pr{D(l0)

0 = x} reduces to
F

(li+1)
i (y∗

i
)F (l0)

0 (τ(y0)− 1) and rearranging the terms leads to:

h0 +
∞∑

x=τ(y0)

∆Gi(z̃∗i (y0 − x)− 1)Pr{D(l0)
0 = x}

=
[
(h0 + pi)− (h0 + hi + pi)F

(li+1)
i (y∗

i
)
]
F

(l0)
0 (τ(y0)− 1)− pi

+ (h0 + hi + pi)
[
Pi(y0, z̃∗)−

∞∑
x=τ(y0)

Pr{D(li+1)
i = z̃∗i (y0 − x)}Pr{D(l0)

0 = x}

 .
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Similarly, the upper bound can be expressed in terms of Pi(y0, z̃∗):

h0 +
∞∑

x=τ(y0)

∆Gi(z̃∗i (y0 − x))Pr{D(l0)
0 = x}

=
[
(h0 + pi)− (h0 + hi + pi)F

(li+1)
i (y∗

i
)
]
F

(l0)
0 (τ(y0)− 1)− pi

+ (h0 + hi + pi)Pi(y0, z̃∗). 2

Proof of Lemma 2.14:

(i) Take retailer i ∈ J such that z̃∗i (
∑

i∈J y∗
i
− 1) = y∗

i
− 1. From (2.9) and

(2.10), for each y0 ∈ Y ∗0 :

Pi(y0, z̃∗) =
τ(y0)−1∑

x=0

F
(li+1)
i (z̃∗i (y0 − x))Pr{D(l0)

0 = x}

+
∞∑

x=τ(y0)

F
(li+1)
i (z̃∗i (y0 − x))Pr{D(l0)

0 = x}

≥ pi

hi + pi
+
[
F

(li+1)
i (y∗

i
)− pi

hi + pi

]
F

(l0)
0 (τ(y0)− 1),

which can be rewritten as
∞∑

x=τ(y0)

F
(li+1)
i (z̃∗i (y0 − x))Pr{D(l0)

0 = x} ≥

pi

hi + pi

(
1− F

(l0)
0 (τ(y0)− 1)

)
(2.14)

using the property that F
(li+1)
i (z̃∗i (x)) = F

(li+1)
i (y∗

i
) for x ≥

∑
i∈J y∗

i
, x ∈ Z.

Further, the inequality in (2.14) may be rewritten as

∞∑
x=τ(y0)

F
(li+1)
i (z̃∗i (y0 − x))Pr{D(l0)

0 = x} ≥

∞∑
x=τ(y0)

pi

hi + pi
Pr{D(l0)

0 = x}. (2.15)

From z̃∗i (
∑

i∈J y∗
i
− 1) = y∗

i
− 1 and Lemma 2.1 , F

(li+1)
i (z̃∗i (y0 − x)) <

pi

hi+pi
for x ≥ τ(y0). Thus, the inequality in (2.15) can only be satisfied if
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Pr{D(l0)
0 ≥ τ(y0)} = 0, i.e., F

(l0)
0 (τ(y0)− 1) = 1. This implies that y0 ∈ Y ∗0

is greater than or equal to any possible realization of D
(l0)
0 plus

∑
i∈J y∗

i
.

(ii) An infinite support for F
(1)
i , i ∈ J implies that there is also an infinite

support for F
(1)
0 . From part (i), F

(l0)
0 (τ(y0) − 1) = 1 for y0 ∈ Y ∗0 can only

be attained when y∗
0

= ∞. 2





Chapter 3

Relative Gap between the
Upper and Lower Bound

Abstract: The balance assumption is widely used in the analysis of one-
warehouse multi-retailer inventory systems, and accepted to provide solutions
of good quality in the literature. The balance assumption leads to a relaxed ver-
sion of the original optimization problem, so the corresponding cost is a lower
bound for the true optimal cost. An upper bound can be obtained by simulat-
ing the solution of the relaxed problem under a modified allocation rule. The
relative gap between these bounds is used as a measure to assess the impact
of the balance assumption on the average expected cost. The effect of lead-
times, holding and penalty costs, mean and variance of the demand processes,
and number of retailers on the relative gap is identified. The parameter set-
tings resulting in small gaps are determined explicitly. Further, the relation
between the imbalance probability and the relative gap is analyzed numerically.
Our results point out that for several practically relevant cases, the balance
assumption may lead to large gaps unlike the generally established belief in
the literature that this assumption is not a serious limitation. In the light of
the insights obtained, we conclude that researchers should put more effort in
developing good heuristics for these relevant cases.

3.1 Introduction

In this chapter, we consider the simplest form of a single-item divergent (ar-
borescent) multi-echelon inventory system: one-warehouse multi-retailer sys-
tem. A divergent structure is characterized by the property that each stock

41
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point is supplied by exactly one other stock point. In the system under study,
there is a single stock point, called the warehouse, supplying downstream
points, called retailers, which face stochastic demand of customers. The ware-
house orders a single-item from an external supplier with ample stock and
ships to the retailers. There are fixed leadtimes between the external sup-
plier and the warehouse, and in between the warehouse and the retailers. Any
unfulfilled demand of a customer is backlogged. Costs consist of linear inven-
tory holding and penalty costs. We assume centralized control under periodic
review and average cost criterion.

The literature on divergent multi-echelon inventory systems can be divided
into two streams on the basis of the review policy used: continuous review and
periodic review. In the former stream, in which continuous review is employed,
opportunities to review inventory levels and to implement the derived policies
exist continuously over time. While the early work in this stream is mainly on
repairable items, the same line may be followed for consumable goods, too (see
Axsäter (2003)). For the models in this stream, the structure of the optimal
policies is not known. In general, base stock or (R,Q) policies are assumed,
and optimization is carried out within the class. A common assumption in this
line of research is that the backlogged retailer orders are fulfilled on first-come,
first-served basis.

There are three main approaches for the evaluation of base stock policies in
divergent systems under continuous review:

(i) approximating the mean resupply time of a retailer order, which consists of
a deterministic leadtime and a random waiting time due to the stockouts
at the warehouse. This approximation is the heart of the approach of
Sherbrooke (1968) for the METRIC model.

(ii) considering all retailers as a single one and determining the outstanding
orders of the aggregate retailer. By splitting the aggregate outstanding
orders among the retailers, one can compute the inventory and backorder
levels of the retailers exactly. Simon (1971) provided an exact evaluation
for the METRIC model. The exact evaluation can also be used as a part of
an optimization routine to determine the inventory levels at all stock points
that optimizes some criterion, see Graves (1985). Further, Graves developed
a two-moment fit for the number of outstanding orders at a retailer and the
numerical results show that this approximation outperforms the METRIC
model. Following this approach, Chen and Zheng (1997) developed an exact
evaluation scheme for echelon stock (R,Q) policies.

(iii) following a unit from the moment it enters the system until it exits by
fulfilling a demand. This allows one to determine the holding and penalty
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costs associated with this unit (see Axsäter (1990)). Further, Axsäter de-
rives upper and lower bounds on the optimal base stock levels that lead to
an efficient optimization procedure.

Lately, some research in this stream is focusing on how to relax the restrictive
assumption of the first-come, first-served rule at the warehouse; see Axsäter
and Marklund (2004), and Marklund (2004). We refer to Axsäter (2003) and
the references therein for more information on continuous review divergent
multi-echelon models and the extensions of the approaches discussed above.

The seminal work on periodic review multi-echelon models is by Clark and
Scarf (1960). They developed a discounted dynamic program for the inventory
control of an N -echelon serial system in a finite horizon. By introducing the
concepts echelon stock and induced penalty cost, they were able to decompose
the resulting multi-dimensional dynamic program (DP) into a series of single-
dimensional programs (this is known as the decomposition property), and prove
the optimality of base stock policies. Although they developed a similar DP
for a two-echelon distribution system, decomposition is not possible due to the
so-called allocation (rationing) problem: the decision of how to distribute the
on-hand stock at the warehouse among the retailers at the beginning of each
period.

Although the optimal policy for the inventory control of a distribution system
is unknown, there are some structural results for slightly modified models.
The key assumption in all these models is that the inventory positions of the
retailers may be balanced completely by the allocation of warehouse stock at
the beginning of each period. This is equivalent to allowing negative quantities
to be apportioned to the retailers. We refer to this assumption as the balance
assumption. Under the balance assumption, similar to the serial case, the
optimality of base stock policies can be shown, and the decomposition property
can be obtained, i.e., the optimal base stock levels are determined by solving
single-dimensional optimization problems.

Though Clark and Scarf (1960) were the first to discuss the balance issue,
it was Eppen and Schrage (1981) who made it explicit. Eppen and Schrage
(1981) considered a one-warehouse multi-retailer system with a stockless ware-
house (cross-docking point). The function of such a warehouse is to benefit
from quantity discounts through consolidation and/or to exploit risk pooling
by carrying a single inventory during the warehouse leadtime rather than in-
dividual retailer inventories. In their context, the balance assumption (which
they referred to as the allocation assumption) implies that the quantities allo-
cated by rationing are always sufficient to ensure equal stockout probabilities
for the retailers. Making the balance assumption, and taking the retailers
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identical in terms of cost and leadtime parameters allowed them to derive
closed-form expressions for optimal inventory control parameters of two poli-
cies they considered: base stock policy, and (T, S) policy (ordering every T
periods up to the base stock level S). Under the balance assumption, Fed-
ergruen and Zipkin (1984b) characterized the optimal allocation and replen-
ishment policies for a divergent system composed of a stockless warehouse
serving N (possibly nonidentical) retailers in a finite horizon. The optimal-
ity results were extended to the infinite horizon case under an average cost
criterion for a system with identical retailers and a stock keeping warehouse
by Federgruen and Zipkin (1984c). Under the balance assumption, Diks and
de Kok (1998) generalized the decomposition property and the optimality of
base stock policies to general N -echelon divergent structures with nonidentical
cost and leadtime parameters. In addition, they derived newsboy equalities for
the optimal base stock levels. In Chapter 2 of this dissertation, these results
have been extended to one-warehouse multi-retailer systems with discrete de-
mand, in which case newsboy inequalities instead of equalities are obtained.
For more information about periodic review distribution systems, we refer to
the review papers by van Houtum et al. (1996) and Axsäter (2003).

The balance assumption also plays a central role in the development of heuris-
tics for distribution systems under periodic review. Up to our knowledge, all
heuristics in the literature utilize the balance assumption in some form. See
Federgruen and Zipkin (1984a), Jackson and Muckstadt (1989), Kumar and
Jacobson (1998), Axsäter et al. (2002), Cao and Silver (2005), and Lystad
and Ferguson (2005).

Until recently, there was a generally established belief that the balance as-
sumption provides solutions of very good quality (see Axsäter (2003, p. 544)).
Although Axsäter et al. (2002) demonstrated numerically that the analysis un-
der the balance assumption may lead to large errors in some cases, there is no
clear-cut study interrogating the appropriateness of the balance assumption.
Our numerical study tries to fill this hiatus by a numerical study (conducted
over a wide range of parameters) that specifies the parameter settings where
the balance assumption leads to a good approximation.

Our method can be explained as follows. The balance assumption leads to a
relaxed version of the original problem, so the optimal expected cost of the
relaxed problem is a lower bound (LB) for the optimal cost of the original one.
When the optimal base stock levels of the relaxed problem are coupled with
a myopic allocation procedure (the warehouse on-hand stock is distributed
such that the sum of the expected holding and penalty costs of the retailers
in the periods the allocated quantities reach their destinations is minimized),
the resulting policy is a feasible heuristic policy, referred to as LB heuristic
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policy. The simulation of the LB heuristic policy serves as an upper bound
(UB) for the true optimal cost. The relative gap (ε% = 100UB−LB

LB ) is used as
a measure to assess the impact of the balance assumption. The following input
parameters are considered in the numerical study: holding and penalty costs,
warehouse and retailer leadtimes, the number of retailers, and the mean and
the coefficient of variation of the demand processes. We generated two test
beds consisting of 2000 and 3888 problem instances for identical (in terms of
costs, leadtimes, and demand distributions) and nonidentical retailers cases,
respectively. The number of retailers is restricted to two in the nonidentical
retailers case.

Due to the fact that the optimal cost of the original problem is between LB
and UB, a small relative gap implies that LB value is close to the optimal cost
of the original problem. Thus, the balance assumption leads to an accurate
approximation of the true optimal cost. Further, one can infer that the LB
heuristic policy is a good heuristic. In sum, a small relative gap justifies the use
of the balance assumption for that input parameter setting. On the other hand,
we cannot come to concrete conclusions when there is a moderate or a large
relative gap because the distance between the true optimum and LB becomes
an important issue. Due to the curse of dimensionality, true optimal cost
can only be determined (numerically) for small problems where the number of
retailers and the warehouse leadtime are limited, and the demand processes are
discrete and distributed over a small set of points. For settings with moderate
and large gaps, the computation of the true optimal cost by value iteration
and the assessment of the precise effect of the balance assumption are carried
out in Chapter 4.

The results of this chapter directed us to a clear and complete overview on
when the relative gap is small and when not. In the identical retailers case,
the relative gap is small when one of the following conditions hold: (i) the
coefficient of variation is low or moderate, (ii) the added value at the warehouse
is very low compared to the retailers, (iii) the warehouse leadtime is short while
the retailer leadtimes are long. Large gaps up to 38.6% are observed when the
coefficient of variation is high and the relative added value at the retailers is
moderate or low. In the nonidentical retailers case, the relative gap turns out
to be small when one of the following conditions is satisfied: (i) the added
value at each stock point is positive and equal, (ii) the warehouse leadtime
is short together with long retailer leadtimes, (iii) the warehouse leadtime is
short while the big retailer’s (in terms of mean demand) leadtime is long and
the leadtime of the small one is short. The main determinants of large gaps
(which are up to 186.9%) are positive added value at one retailer and zero at
the other, and long warehouse leadtimes.
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Further analysis routed us to interesting and new insights together with the
justification of the previous findings in the literature. The retailer size turns
out to be an important factor; as the asymmetry in the means of the retailers
grows, relative gaps tend to increase. Coefficient of variation, echelon holding
cost of the warehouse, and warehouse leadtime are positively correlated to rel-
ative gaps. Further, a phenomenon coined as forwarding-to-the-small-retailer
is identified. When there is no added value at the small retailer, overstocking
takes place at this retailer, which increases the relative gaps.

During the simulation runs, we also estimated the imbalance probabilities.
It is found out that a considerable number of problem instances with high
imbalance probability display relatively low ε%, but not the reverse.

Our contribution to the literature is twofold. To the best of our knowledge,
this is the most comprehensive numerical study specifically targeting to assess
the impact of the balance assumption on the expected long-run cost. We
explicitly identify the parameter settings under which the relative gaps are
small and under which not. Our results point out that the scenarios with
large relative gaps are practically relevant, so there is a need for research on
developing heuristics for these cases. Second, analysis of the relations between
the relative gaps and the input parameters led us to new and interesting
insights.

The rest of the chapter is organized as follows. The literature review on the
balance assumption is given in §3.2. We present the notation, the model and a
brief analysis in §3.3. The balance assumption and the relaxed version of the
optimization problem resulting in the lower bound model are also discussed
in this section. §3.4 is dedicated to the presentation and discussion of the
numerical results. We close with a brief conclusion and directions for further
research in §3.5.

3.2 Literature on the Balance Assumption

There are some analytical and numerical studies that interrogate the appro-
priateness of the balance assumption. The first of these is an analytical study
by Zipkin (1984) who considered a one-warehouse multi-retailer system with
zero leadtimes for orders and shipments, and a cross-docking warehouse. The
author formulated a DP to determine inventory policies in which one dimen-
sion of the DP is a measure to assess the stock imbalance in the system. A
numerical study shows the accuracy of the approximation for the limited num-
ber of scenarios considered. It is concluded that imbalance can be significant
when demand variances are large.
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Federgruen and Zipkin (1984a) conducted a numerical study to evaluate the
performance of some heuristics developed under the balance assumption for
a one-warehouse multi-retailer system with a stockless warehouse. They used
the relative gap between an upper and a lower bound as a measure to evaluate
the performance of their heuristics. The effects of fixed ordering cost, ware-
house leadtime and penalty cost are investigated. Their results for identical
retailers (with respect to cost parameters, leadtimes and demand distribu-
tions) show that the balance assumption does not impose a restriction. It has
been identified that high coefficient of variation or high penalty cost results
in larger relative gaps. The test bed consisting of 40 problem instances with
nonidentical retailers with zero fixed ordering cost (these results are compa-
rable to ours because the underlying models are equivalent) also exhibits low
relative gaps (the maximum relative gap reported is 4.14%). Among these,
the scenarios with long warehouse leadtimes display larger relative gaps.

A recent study in the same spirit of Federgruen and Zipkin (1984a) is by
Axsäter et al. (2002), in which a system composed of a stock keeping ware-
house and multiple (possibly nonidentical) retailers is considered. While the
retailers follow base stock policies, the warehouse applies an (R,Q) policy; each
period the echelon inventory position drops to or below R, one or more batches
of size Q are ordered to bring the inventory position above R. Considering
two heuristics for the warehouse replenishment policy (optimal policy under
the balance assumption and virtual assignment) and two heuristics for the
allocation problem (optimal allocation policy under the balance assumption,
i.e., relaxed myopic allocation, and two-step allocation), the average expected
holding and penalty costs of four different combinations of these heuristics are
determined via simulation for various parameter settings. The relative gap
between the simulation result and the optimal expected cost under the bal-
ance assumption is used to assess the performance of the heuristics. A more
sophisticated heuristic, virtual assignment/two-step allocation, exhibits a bet-
ter performance than the classical approach (optimal ordering and allocation
policies under the balance assumption). Although the numerical study is set
up for testing the heuristics considered, the results also give insight into the
impact of the balance assumption. As the demand variability in the system,
the warehouse leadtime and the warehouse batch size increase, the relative
gap between the analytical cost under the balance assumption and the cost
obtained via simulating the optimal policy (under the balance assumption)
grows.

For the effect of imbalance on the P1 service level (probability of stockout)
at the retailers, see van Donselaar and Wijngaard (1987), and van Donselaar
(1990). Jönsson and Silver (1987), McGavin et al. (1993, 1997), and van der
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Heijden et al. (1997) are other studies on the issue of balanced retailer inven-
tories. For risk-pooling effect, see Schwarz (1989), and Jackson and Muckstadt
(1989).

In this study, we follow the same line of thought of Federgruen and Zipkin
(1984a) and Axsäter et al. (2002), but our study is different in certain aspects.
The main dissemblances are: (i) While their focal point is the performance of
their heuristics, we focus particulary on the effect of the balance assumption.
(ii) Federgruen and Zipkin consider a fixed cost for ordering from the external
supplier and Axsäter et al. assume a fixed batch size for warehouse orders; we
do not consider these issues. (iii) Federgruen and Zipkin consider a warehouse
that cannot hold stock; Axsäter et al. and ourselves relax this restriction.
(iv) Federgruen and Zipkin assume normal demands at the retailers; when the
coefficient of variation is higher than 0.25, the normal distribution assumption
creates complications because negative demands appear in the analysis. In
real life, the coefficient of variation is higher than 0.5 in many cases, and can
even be more than 3; see §3.6. We incorporate instances with coefficients
of variation up to 3, and model all demand processes as mixtures of Erlang
distributions. (v) For nonidentical retailers, Federgruen and Zipkin require the
holding and penalty costs to be proportional1. Axsäter et al. and ourselves
relax this restriction. Especially, the points (iv) and (v) allow us to consider
some extreme scenarios (e.g., coefficient of variation of demand equal to 3, or
added value of zero at a retailer) for the purpose of finding out the extent of
the impact of the balance assumption.

3.3 Model and Analysis

In §3.3.1, we introduce the notation and the basic assumptions. Then we
review some results from Chapter 2 where the system is analyzed in detail.
A lower and an upper bound model for the original optimization problem
are described in §3.3.3 and §3.3.4, respectively. Finally, we discuss the gap
between the bounds and its interpretation in §3.3.5.

3.3.1 Preliminaries and Notation

Consider a one-warehouse multi-retailer inventory system controlled centrally
under a periodic review setting. The retailers are replenished by shipments
from the warehouse (indexed as stock point 0), which in turn orders from an

1It is assumed that there exist positive constants p, h, and ci, i = 1, 2, ..., N , such that
pi = pci, hi = hci for i = 1, 2, ..., N where N is the number of retailers.
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exogenous supplier with ample stock. Leadtimes between the supplier and the
warehouse, and in between the warehouse and the retailers are assumed to
be constant. The retailers face the stochastic i.i.d. demand of the customers
that are stationary and continuous on (0,∞) with no probability mass at zero.
Costs consist of linear inventory holding and penalty costs. Time is divided
into periods of equal length and we assume that the following sequence of
events takes place during a period: (i) inventory levels are observed and the
current period’s replenishment decisions are made (at the beginning of the
period), (ii) order/shipments arrive following their respective leadtimes (at
the beginning of the period), (iii) demand occurs, (iv) holding and penalty
costs are assessed on the period ending inventory and backorder levels (at the
end of the period).

The objective is to minimize the expected holding and penalty costs of the
system in the long-run; i.e., our performance criterion is the expected average
system-wide cost. We refer to Chapter 1 for the definitions of echelon stock
and echelon inventory position. We use the following notation:

R = set of real numbers.
Z = set of integer numbers; Z+ = {1, 2, ...}, and Z+

0 = Z+ ∪ {0}.
t = index for time. Period t is defined as the time interval between

epochs t and t + 1 for t ∈ Z+
0 .

N = number of retailers, N ∈ Z+.
i = index for stock points, i = 0 is the warehouse and i = 1, 2, ..., N

are the retailers.
J = set of retailers, J = {1, 2, ..., N}.
hi = additional inventory holding cost parameter for stock point i.

At the end of a period:
(i) cost h0 ≥ 0 is charged for each unit on stock at the
warehouse or in transit to any of the retailers.
(ii) cost h0 + hi is charged for each unit on stock at retailer i
(hi ≥ 0, i ∈ J).

pi = penalty cost parameter for retailer i. A cost pi is charged for
each unit of backlog at the end of a period at retailer i
(pi > 0, i ∈ J).

li = leadtime parameter for stock point i (li ∈ Z+
0 for i = 1, ...N ,

and l0 ∈ Z+).
µi = mean of one-period demand faced by retailer i (µi > 0, i ∈ J).
µ0 = mean of one-period demand faced by the system, µ0 =

∑
i∈J µi.

cvi = coefficient of variation of one-period demand faced by retailer i
(cvi > 0, i ∈ J).

F
(l)
i = cumulative distribution function of l-period demand of retailer i.
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Ii(t) = echelon stock of stock point i at the beginning of period t just
after the receipt of the incoming order/shipment.

IPi(t) = echelon inventory position of stock point i at the beginning of
period t just after the ordering/shipment decision.

We assume that the underlying demand distribution per period of a retailer
is a mixture of Erlang distributions with the same scale parameter (cf. Ti-
jms (2003, pp. 444-446)). An Erlang-k distributed random variable (which
is a sum of k ∈ Z+ independent exponentially distributed random variables
with the same mean λ−1) is denoted by Ek,λ where the cumulative probability
distribution function is given by Ek,λ(x) = 1−

∑k−1
j=0

(λx)j

j! e−λx for x ≥ 0.

When cvi ≤ 1, a mixture of Ek−1,λ and Ek,λ distributions is fitted for the
one-period demand distribution of retailer i; i.e., F

(1)
i (x) = pEk−1,λ(x) + (1−

p)Ek,λ(x) for x ≥ 0. The parameters k ≥ 2, 0 ≤ p ≤ 1 and λ are chosen such
that:

1
k
≤ cv2

i ≤
1

k − 1
, p = 1

1+cv2
i

[
kcv2

i −
√

k(1 + cv2
i )− k2cv2

i

]
, λ =

k − p

µi

.

When cvi > 1, a mixture of E1,λ and Ek,λ distributions is fitted; i.e., F
(1)
i (x) =

pE1,λ(x)+(1−p)Ek,λ(x) for x ≥ 0. The smallest k ≥ 3 that satisfies cv2
i ≤ k2+4

4k
is chosen. The values of p and λ are determined by:

p = 2kcv2
i +k−2−

√
k2+4−4kcv2

i

2(k−1)(1+cv2
i )

, λ =
p + k(1− p)

µi

.

3.3.2 Analysis of the System

The one-warehouse multi-retailer inventory system is analyzed in detail in
Chapter 2. The concept of cost attached to an echelon (which allows one to
rewrite the costs in terms of echelon stock), the interdependence between the
ordering and allocation decisions, the cycle cost definition, and the optimiza-
tion problem faced are discussed in §2.3.1. In §2.3.2, the myopic allocation
problem and the mathematical interpretation of the balance assumption are
introduced. Finally, the derivation of the optimal policy is given in §2.3.3 and
§2.3.4. Note that the demand distributions in this chapter are continuous,
which is the only departure from the analysis in Chapter 2.

Next, we review some of the results from Chapter 2. Consider the myopic
allocation problem given in (2.3)-(2.5). The balance assumption implies that
the quantities allocated to the retailers may be negative; i.e., (2.5) is omit-
ted. This relaxation helps the analysis in two important ways. First, the
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myopic allocation problem turns into a convex, separable, nonlinear optimiza-
tion problem subject to a linear constraint, which can be solved easily by the
Lagrangian technique (see Bertsekas (1995, pp. 253-282)). Second, in the ab-
sence of (2.5), Ccyc(t) depends only on ordering and allocation decisions that
start with the ordering decision in period t; not on decisions of other periods.
Then, it can be proved that myopic allocation is optimal (see Federgruen and
Zipkin (1984b,c)). As a result, it is possible to decompose the system like in
Clark and Scarf (1960), and characterize the optimal ordering and allocation
decisions.

As long as there is sufficient stock at the warehouse, the retailers follow base
stock policies where the optimal order-up-to levels, y∗i , i ∈ J , satisfy the fol-
lowing newsboy equations (see Lemma 2.1):

F
(li+1)
i (y∗i ) =

h0 + pi

h0 + hi + pi
for i = 1, 2, ..., N. (3.1)

The interpretation of the expression above is that y∗i corresponds to a level at
which the probability of being out of stock is hi

h0+hi+pi
for retailer i.

Let zi : R → R, i ∈ J be an allocation function such that zi(x) is the portion
of x allocated to retailer i for x ∈ R. When the system-wide stock (x ∈ R)
is not sufficient, i.e., x <

∑
i∈J y∗i , the myopic allocation problem under the

balance assumption is solved:

min
zi(x), ∀i∈J

{∑
i∈J

Gi(zi(x)) :
∑
i∈J

zi(x) ≤ x, zi(x) ∈ R for i ∈ J

}
(3.2)

where a solution is denoted by {zi(x)}i∈J . Let {z∗i (x)}i∈J be an optimal solu-
tion of (3.2) for a given x. Define

z = set of allocation functions, i.e., {zi}i∈J .
z∗ = set of optimal allocation functions, i.e., {z∗i }i∈J such that z∗i (x) is

optimal for all x ∈ R and for all i ∈ J .

Note that the objective function of (3.2) is separable and consists of N convex
components. The solution {z∗i (x) = y∗i }i∈J is optimal for (3.2) when the
constraint is not binding (i.e., for x >

∑
i∈J y∗i ) or when x =

∑
i∈J y∗i . For

x <
∑

i∈J y∗i , Lagrangian relaxation can be used to find an optimal solution
for (3.2); see Bertsekas (1995, pp. 253-282).

3.3.3 Lower Bound Model

The balance assumption is the relaxation of a nonnegativity constraint in the
original model; thus, (3.2) is used for the allocation decision instead of (2.3)-
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(2.5). Due to this relaxation, the expected average cost obtained by an optimal
policy derived under the balance assumption serves as a lower bound for the
original optimization problem given in (2.2).

Denote a base stock policy by a tuple (y0, z), where y0 is the target echelon
inventory position of the warehouse, and zi(x) for all i ∈ J are the target levels
of the retailers when the system-wide stock is x. The decisions are made such
that, at the beginning of each period t ∈ Z+

0 :

• the echelon inventory position of the warehouse is increased up to y0, i.e.,
IP0(t) = y0,

• the inventory position of retailer i is raised to zi(I0(t)) where {zi(I0(t))}i∈J

is a feasible solution for (3.2).

Consider the expected cycle cost attached to period t. As mentioned before,
under the balance assumption, E[Ccyc(t)] depends only on the ordering and
allocation decisions that start with an order given by the warehouse in period
t. As a result, it can be shown that base stock policy (y∗0, z

∗) is the optimal
replenishment policy with y∗0 satisfying the following newsboy equations:

∞∫
0

F
(li+1)
i (z∗i (y∗0 − u))dF

(l0)
0 (u) =

pi

h0 + hi + pi
∀i ∈ J, (3.3)

(cf. Diks and de Kok (1998)). (3.3) indicates that y∗0 is the level at which the
probability of being out of stock at retailer i is h0+hi

h0+hi+pi
.

Due to the fact that warehouse order-up-to level (y∗0) and optimal allocation
functions (z∗) are independent of time, policy (y∗0, z

∗) can be applied to opti-
mize each period’s cycle cost within the horizon. Thus, the expected average
cost obtained by following (y∗0, z

∗) is a lower bound (LB) for (2.2).

Remark 3.1 Consider the following two extreme scenarios: (i) h0 = 0 and
hi > 0 ∀ i ∈ J , (ii) h0 > 0, hi = 0, and hj > 0 for j ∈ J \{i}. In scenario (i),
right-hand sides of the equalities in (3.1) and (3.3) become the same. Since the
demand is distributed over (0,∞), left-hand sides of (3.1) and (3.3) can only be
equal when y∗0 = ∞. In other words, the warehouse keeps infinite stock. This is
intuitive because there is no cost of keeping stock at the warehouse (h0 = 0). In
such a case, imbalance of the retailer inventories is not an issue. In scenario
(ii), the right-hand side of (3.1) is 1 for retailer i, which requires y∗i = ∞. For
the other retailers, there exists finite optimal order-up-to levels, i.e., y∗j < ∞
for j ∈ J \ {i}. Due to the fact that the right-hand side of (3.3) is less than 1,
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y∗0 is also finite. As a result, under the optimal policy, the warehouse becomes
a cross-docking point, forwarding any stock that might have been kept at the
warehouse to retailer i. Note that if the warehouse does not keep stock at the
end of an arbitrary period, then there might be an imbalance among retailer
inventories. It is not hard to expect that the imbalance of retailer inventories
becomes an important issue in scenario (ii).

3.3.4 Constructing an Upper Bound

Consider the base stock policy (y∗0, z
∗) which is discussed in §3.3.3. This pol-

icy is indeed the optimal replenishment policy for (2.2) if the system never
experiences imbalance. When policy (y∗0, z

∗) is implemented, there might be
negative shipments, which make it infeasible to apply the solution of (3.2). In
such a situation, one may ship nothing to retailers with negative shipments,
deduct their inventory positions from system-wide stock, and allocate the re-
maining among the rest of the retailers by solving (3.2). This way of allocation
is indeed the optimal solution of the myopic allocation problem in (2.3)-(2.5),
cf. Axsäter et al. (2002, p. 79) or Zipkin (2000, pp. 340-342). The replen-
ishment/allocation policy described, which we refer to as LB heuristic policy,
is feasible and can be applied in each period within the horizon. This policy
is not optimal, so the average expected cost of it is an upper bound (UB) for
(2.2).

3.3.5 The Gap between LB and UB

For a given problem instance, the optimal inventory control parameters can
be calculated for the lower bound model since analytical results are available.
An estimate for an upper bound can be determined by simulating the LB
heuristic policy described in §3.3.4. Since the value of (2.2) lies between LB
and UB, the gap can be used to measure the impact of the balance assumption
on the expected system-wide cost. Let ε% = 100UB−LB

LB where ε% is defined as
the relative gap. If ε% is small for a problem instance, then one can conclude
that the balance assumption is not restrictive for that setting. While LB is
an appropriate proxy for the true optimal cost, the LB heuristic policy is an
accurate heuristic. On the other hand, a moderate or a large ε% requires
a further investigation which is the purpose of Chapter 4. We also consider
UB − LB and LB values in the numerical study since they might provide
additional information apart from ε%.
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3.4 Numerical Study and the Results

Our main objective is to identify the input parameter settings for which the
resulting relative gaps are small and for which not. In addition, we try to
illustrate the effect of leadtimes, holding and penalty costs, and the demand
parameters of the retailers on the relative gaps. In order to achieve these goals,
two test beds are generated; one for the case where retailers are identical,
and the other for nonidentical retailers. The results and the discussions are
presented in §3.4.1 and §3.4.2 for identical and nonidentical retailers cases,
respectively. This section is concluded in §3.4.3 with a summary of the insights
obtained from the results, and a comparison of these insights against the
previous findings in the literature.

We use the words scenario and problem instance interchangeably for each com-
bination of the input parameters N, l0, h0 and hi, pi, µi, li, cvi for i = 1, ..., N .

In order to determine the optimal order-up-to level of each stock point, an
integral with an upper limit of +∞ has to be evaluated. For the calculations,
we terminated when cdf value of any demand distribution had reached 1−10−8.
The random number generator used is a prime modulus multiplicative linear
congruential generator given in Law and Kelton (2000). The method of batch
means is used for constructing a point estimate and a confidence interval for
the steady-state mean of the cost. The batch size is fixed at 10,000 periods
and the observations of the first batch were deleted (i.e., the warmup period
consists of 10,000 periods). We ran each scenario for at least 200 batches
and terminated as soon as the width of a 95% confidence interval about the
average cost function was within 1% of the average cost. In scenarios with
low coefficient of variation, LB and UB figures are very close. In some runs,
UB turned out to be slightly lower than the corresponding LB value, an effect
entirely caused by sampling errors2.

3.4.1 Identical Retailers

For this subsection, the retailers are taken identical in terms of leadtime,
holding and penalty costs, and the mean and coefficient of variation of the
demand processes, i.e., li = li+1, hi = hi+1, pi = pi+1, µi = µi+1, and cvi =
cvi+1 for i = 1, ..., N − 1. Without loss of generality, the mean demand (µi)
and the holding cost (h0 + hi) at each retailer i is kept at 1 for all scenarios.

2Federgruen and Zipkin (1984a, p. 115) report similar observations where the simulated
cost is lower than the corresponding LB value. See also Table 9 in Axsäter et al. (2002).
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The following set of parameters is used (for i = 1, 2, ..., N):

hi = 0, 0.1, 0.5, 0.9, 0.99 pi = 4, 9, 19, 99 N = 2, 3, 4, 5
(l0, li) = (1, 1), (1, 3), (3, 1), (1, 5), (5, 1) cvi = 0.25, 0.5, 1, 2, 3

The penalty costs are chosen to assure no-stockout probabilities of 80%, 90%,
95%, and 99% at each retailer under an optimal policy in the lower bound
model. Additional inventory holding cost at a stock point reflects the added
value at that point. Notice that as hi increases from 0 to 0.99, the added value
at the warehouse decreases since h0 +hi = 1. A full factorial design is used to
generate a test bed that consists of 2000 problem instances.

During the simulation runs for computing UB, the probability of imbalance
was also estimated. The probability of imbalance is defined as the fraction of
periods in which a negative quantity is allocated to a retailer when (3.2) is
solved.

The results are given in Table 3.1, which is organized in such a way that the
results are summarized with respect to one parameter at a time. For example,
the first part of the table is dedicated to display the effect of the coefficient
of variation of demand. The first column gives the values of various measures
for a set of 400 problem instances in which cvi = 0.25 for i = 1, 2, ..., N .
The measures used in the analysis are minimum, maximum and average ε%
(denoted by min ε%, max ε% and ave. ε%, respectively), minimum, maximum
and average probability of imbalance (denoted by min π, max π and ave. π,
respectively), maximum and average UB−LB (denoted by max δ and ave. δ,
respectively), and average LB (denoted by ave. LB). All probability figures
are given as percentages. Due to sampling errors, UB − LB can be negative
for a few scenarios. When calculating ave. ε% and ave. δ for such scenarios,
UB − LB is taken as zero.

The main findings are summarized below.

1. In order to identify the impact of the balance assumption, we looked at
max ε% and ave. ε% values in Table 3.1. An input parameter resulting in
max ε% ≤ 10 and ave. ε% ≤ 2 is considered to be a setting with a small
relative gap. The results for identical retailers show that the relative gap is
small when

• the coefficient of variation of the retailers is moderate or low (i.e., cvi= 0.25,
0.5 or 1), or

• the added value at the retailers is very high compared to the one at the
warehouse (i.e., hi = 0.99), or



56 Relative Gap between the Upper and Lower Bound

• the warehouse leadtime is short, and retailer leadtimes are long (i.e., (l0, li)=
(1,3) or (1,5)).

Especially in scenarios with low coefficient of variation, the relative gap is
negligible, see max ε% and ave. ε% figures for cvi = 0.25 and 0.5 in Table 3.1.

Out of the 2000 problem instances studied, 1713, 1487 and 1275 of them have
ε% less than or equal to 5, 2, and 1, respectively. When the ε% values (of
all instances) are sorted, the scenarios with high relative gap figures have the
following common parameter settings:

(i) 40 scenarios with ε% > 25; all having cvi = 3, l0 = 3 or 5, and hi =0, 0.1
or 0.5.

(ii) 12 scenarios with 25 ≥ ε% > 20; all having cvi = 3, and hi =0, 0.1 or 0.5.

(iii) 36 scenarios with 20 ≥ ε% > 15; all having cvi = 2 or 3, and hi =0, 0.1 or
0.5.

(iv) 70 scenarios with 15 ≥ ε% > 10; all having cvi = 2 or 3.

The figures above suggest that a high coefficient of variation is the main deter-
minant of large gaps; see also Figure 3.1. Especially, when a high coefficient of
variation is combined with moderate or low added value at the retailers, the
gaps grow.

2. The imbalance probabilities are scattered against the corresponding ε%
values in Figure 3.1, where a different symbol is used for each coefficient of
variation value. First, the results show that a high probability of imbalance
does not necessarily lead to high ε%, but a high π is a necessity for a large
relative gap. Among all the instances, 273 and 85 of them have ε% < 2 and
π > 15, and ε% < 1 and π > 20, respectively. Second, when the points with
very high ε% and π values are analyzed, it turns out that they have long ware-
house leadtimes and high coefficient of variations in common. There are 44
points in the region ε% ≥ 24.03 and π ≥ 37.39, all coming from scenarios with
cvi = 2 or 3, and (l0, li) = (3,1) or (5,1).

3. The probability of having imbalanced retailer inventories increases when

• the warehouse leadtime extends (compare ave. π and max π values of
columns (1,1), (3,1) and (5,1) in Table 3.1), or
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Table 3.1: The summary of the results from scenarios with identical retailers.

cvi

0.25 0.5 1 2 3
min ε% 0.00 0.00 0.00 0.00 0.00
max ε% 0.15 0.36 4.93 16.63 38.55
ave. ε% 0.01 0.04 0.93 4.21 7.56
min π 0.00 0.00 0.13 0.08 0.09
max π 0.00 4.55 41.03 63.96 63.87
ave. π 0.00 2.22 21.06 30.91 27.69
max δ 0.01 0.03 0.76 8.52 25.81
ave. δ 0.00 0.00 0.17 1.53 4.50
ave. LB 7.29 11.13 19.98 39.71 63.50

hi (= 1− h0)
0 0.1 0.5 0.9 0.99

min ε% 0.00 0.00 0.00 0.00 0.00
max ε% 37.12 37.40 38.55 13.73 1.86
ave. ε% 4.25 4.29 3.32 0.82 0.08
min π 0.00 0.00 0.00 0.00 0.00
max π 63.96 63.96 63.87 51.31 13.35
ave. π 25.78 25.65 21.65 7.68 1.12
max δ 25.81 25.81 25.15 10.08 1.13
ave. δ 2.09 2.09 1.57 0.42 0.04
ave. LB 32.68 31.91 28.71 24.79 23.53

pi N

4 9 19 99 2 3 4 5
min ε% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max ε% 31.44 38.55 20.13 27.74 30.08 37.19 37.86 38.55
ave. ε% 2.47 3.21 2.14 2.39 2.46 2.73 2.60 2.41
min π 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max π 63.96 63.96 63.96 63.96 49.56 58.75 62.32 63.96
ave. π 15.81 17.10 17.01 15.58 12.06 15.93 18.03 19.48
max δ 13.56 25.15 14.73 25.81 15.01 22.01 24.75 25.81
ave. δ 0.74 1.39 1.13 1.70 0.72 1.16 1.44 1.64
ave. LB 17.68 24.41 30.35 40.85 16.64 24.43 32.22 40.01
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Table 3.1: Continued.

(l0, li)
(1,1) (1,3) (1,5) (3,1) (5,1)

min ε% 0.00 0.00 0.00 0.00 0.00
max ε% 21.67 8.62 6.66 37.63 38.55
ave. ε% 2.31 1.12 0.82 4.13 4.38
min π 0.00 0.00 0.00 0.00 0.00
max π 48.73 48.73 48.73 61.96 63.96
ave. π 15.30 16.09 16.31 17.01 17.17
max δ 12.45 10.47 6.60 23.16 25.81
ave. δ 0.91 0.67 0.60 1.86 2.16
ave. LB 22.33 32.04 40.13 23.20 23.91

• the number of retailers increases (compare ave. π and max π values for
N = 2, 3, 4, 5 in Table 3.1), or

• the added value at the warehouse increases (compare ave. π and max π
values for hi = 0.01, 0.1, 0.5, 0.9, 1 in Table 3.1).

In the rest of this subsection, we further discuss the effect of the coefficient
of variation, leadtimes, holding and penalty costs, and the number of retailers
on the performance measures.

Coefficient of Variation
The coefficient of variation and the imbalance of inventories are positively cor-
related. As the coefficient of variation increases, max ε%, ave. ε%, max δ and
ave. δ all increase (see Table 3.1). This phenomenon is intuitive, suggesting
that as the variance in the demand process gets larger, the retailer inventories
become more imbalanced. The values of max π and ave. π seem to support
this argument. For max π and ave. π, a steady rise is observed as the coeffi-
cient of variation increases from 0.25 to 2, but the figures drop for 3. In order
to explain this decline, we compared the order-up-to level of each of the 400
scenarios with cvi = 2 against the corresponding one with cvi = 3. It turns
out that more stock is kept at the warehouse in the scenarios with cvi = 3,
which results in lower imbalance probability. Though the imbalance proba-
bility figures decrease for cvi = 3, it does not affect the trend for gap measures.
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Figure 3.1: Probability of imbalance vs. relative gap for scenarios with iden-
tical retailers.
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Holding Costs
In order to see the effect of the holding costs better, we extended the study for
more hi values between 0.1 and 0.8, see Table 3.2. The cost figures in Table
3.2 are chosen in a way that at one extreme there is no added value at the
retailers (hi = 0); at the other extreme, 99% of an item’s value is attained at
the retailers (hi = 0.99). Our observations are as follows:

• Compare max π figures for different hi values in Table 3.2. Between 0 and
0.3, max π is level at 63.96. For hi = 0.5 and 0.6, there is a slightly lower
level (63.87), and max π decreases as hi grows starting from hi = 0.7. For
ave. π, there is a steady decline as hi increases. The trend in imbalance
probability measures is due to keeping more stock at the warehouse than

Table 3.2: The summary of the results for various values of hi with identical
retailers.

hi (= 1− h0)
0.00 0.10 0.20 0.30 0.40 0.50

min ε% 0.00 0.00 0.00 0.00 0.00 0.00
max ε% 37.12 37.40 37.68 37.96 38.25 38.55
ave. ε% 4.25 4.29 4.24 3.75 3.50 3.32
min π 0.00 0.00 0.00 0.00 0.00 0.00
max π 63.96 63.96 63.96 63.96 63.95 63.87
ave. π 25.78 25.65 25.13 23.89 22.79 21.65
max δ 25.81 25.81 25.15 25.15 25.15 25.15
ave. δ 2.09 2.09 2.04 1.82 1.68 1.57
ave. LB 32.68 31.91 31.13 30.35 29.54 28.71

0.60 0.70 0.80 0.90 0.99
min ε% 0.00 0.00 0.00 0.00 0.00
max ε% 20.15 18.99 17.30 13.73 1.86
ave. ε% 2.38 1.88 1.41 0.82 0.08
min π 0.00 0.00 0.00 0.00 0.00
max π 63.87 63.75 58.52 51.31 13.35
ave. π 18.94 15.91 12.37 7.68 1.12
max δ 14.74 14.72 13.87 10.08 1.13
ave. δ 1.13 0.93 0.72 0.42 0.04
ave. LB 27.85 26.92 25.91 24.79 23.53
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at the retailers as h0 decreases (compared to hi) since it is less costly. As a
result, the chance of imbalance decreases.

• Compare max ε% figures in Table 3.2. There is an increasing trend starting
from hi = 0 until hi = 0.5. Then a sharp decline occurs at hi = 0.6
(max ε% = 38.55 for hi = 0.5 and max ε% = 20.15 for hi = 0.6). From this
point on, max ε% values decrease with another sharp decline at hi = 0.99.
For ave. ε%, there is a steady decreasing trend as hi increases starting from
hi = 0.1 with sharp declines at hi = 0.6 and hi = 0.99.

These observations point out a general tendency that the relative gap decreases
as the added value at the upper echelon gets smaller with respect to the one
at the lower echelon (i.e., h0 decreases with respect to hi). This pattern is
more apparent when the added value at the warehouse is less than the one at
the retailers (i.e., for hi =0.6,0.7,0.8,0.9,0.99).

Leadtimes
Warehouse Leadtime: When l0 extends, max ε%, ave. ε%, max δ, and
ave. δ all increase (compare (1,1), (3,1) and (5,1) in Table 3.1). One can
conclude that the longer the warehouse leadtime, the larger the relative gap.
As the warehouse leadtime extends, it takes a longer time to recover from an
imbalance situation. When the system stays in imbalance for more periods in
a row, the effect on the expected cost becomes considerable.

Retailer Leadtime: Consider columns (1,1), (1,3) and (1,5) in Table 3.1.
While max ε%, ave. ε%, ave. δ and ave. δ decrease, ave. LB shows a con-
siderable increase. We conclude that gaps shrink as retailer leadtimes grow.
Although the variance faced by the system grows and the warehouse is forced
to ration far in advance as retailer leadtimes lengthen, the coefficient of vari-
ation over the retailer leadtime decreases. This is the reason for decreasing
relative gaps.

Penalty Costs
The results do not show a clear relation between pi and the measures consid-
ered.

Number of Retailers
As N gets larger, max ε%, max π, ave. π, max δ, and ave. δ figures grow.
However, the trend in these measures is not reflected on ave. ε%.
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3.4.2 Nonidentical Retailers

The number of retailers is restricted to two (N = 2) for the nonidentical
retailers case since all the effects that we are after can be captured. The
following parameter settings are used:

(h0, h1, h2) = (0.5, 0, 0.5), (0.5, 0.5, 0), (0.5, 0.5, 0.5), (0.9, 0, 0.1), (0.9, 0.1, 0),
(0.9, 0.1, 0.1)

(cv1, cv2) = (0.5, 0.5), (0.5, 1), (0.5, 2), (1, 0.5), (1, 1), (1, 2), (2, 0.5), (2, 1), (2, 2)
(l0, l1, l2) = (1, 1, 1), (1, 1, 5), (1, 5, 1), (1, 5, 5), (5, 1, 1), (5, 5, 5)
(µ1, µ2) = (0.05, 0.95), (0.2, 0.8), (0.5, 0.5)
(p1, p2) = (9, 9), (9, 19), (19, 9), (19, 19)

All combinations of the parameters generate a test bed of 3888 problem in-
stances. All through the chapter, we treat the mean demand as a representant
of the size of a retailer. The values for mean demands are chosen to see the
effect of big/small retailer and without loss of generality, the sum is kept at
1. Note that in all the problem instances considered, the first retailer is equal
or smaller in size compared to the second. Three values are selected for the
coefficient of variation: 0.5 (low), 1 (moderate), 2 (high). This leads to nine
distinct combinations. We picked leadtime values to reflect the effect of short
warehouse and retailer leadtimes [(1,1,1)], long warehouse and retailer lead-
times [(5,5,5)], long warehouse leadtime-short retailer leadtime [(5,1,1)] and
vice versa [(1,5,5)], and short warehouse leadtime and asymmetric retailer
leadtimes [(1,1,5) and (1,5,1)]. We interpret the holding costs as a way of
reflecting the added value. While (0.5,0.5,0.5) combination corresponds to
an equal added value at all stock points, (0.9,0.1,0.1) represents high added
value at the warehouse. The other combinations are chosen to see the effect of
having zero added value at one of the retailers. From two values selected for
penalty costs, high (19) and moderate (9), four combinations are generated to
see the effect of equal and asymmetric penalty costs.

A summary of the results can be found in Table 3.3 (identical to Table 3.1 in
terms of organization); the main findings are given below.

1. We still stick to the conditions max ε% ≤ 10 and ave. ε% ≤ 2 as a
criterion for a relative gap to be small. The results in Table 3.3 show that for
nonidentical retailers, the relative gap is small when

• there is positive and equal added value at each stock point (i.e., (h0, h1, h2)=
(0.5,0.5,0.5)), or

• the warehouse leadtime is short, and the leadtime of the second retailer
(equal or larger in size) is long (i.e., (l0, l1, l2)=(1,5,5) or (1,1,5)).
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There are 1888, 2652 and 3390 problem instances having ε% less than or equal
to 1, 2, and 5, respectively (out of the 3888 scenarios studied). The instances
with high ε% figures have the following common parameter settings:

(i) 27 scenarios with ε% ≥ 69.76; all having (l0, l1, l2)=(5,1,1), (h0, h1, h2)=
(0.5,0,0.5), and (µ1, µ2)=(0.05,0.95).

(ii) 36 scenarios with 69.76 > ε% ≥ 43.65; all having h1 = 0 and (l0, l1, l2)=
(5,1,1).

(iii) 55 scenarios with 43.65 > ε% > 25; all having h1 = 0 and l0 = 5.

(iv) 23 scenarios with 25 ≥ ε% > 17.85; all having h1 = 0 or h2 = 0, and l0 = 5.

(v) 35 scenarios with 17.85 ≥ ε% > 15.3; all having h1 = 0 or h2 = 0.

The figures above reveal the fact that long warehouse leadtime and having zero
added value at one of the retailers cause significantly high gaps; especially no
added value at the small retailer (a through discussion on this issue is presented
under the heading Holding Costs in item 3).

It is interesting to notice that although the coefficient of variation turned
out to be the main determinant of gaps in the identical retailers case, even
(cv1, cv2) = (0.5, 0.5) may lead to ε% as high as 178.17, depending on the
values of the other parameters, in the nonidentical retailers case.

Unlike in the identical retailers case, it is striking that the relative gap is
small only in a few parameter settings. In many practically relevant parameter
combinations, we observe large gaps. Especially, when there is asymmetry in
the size of the retailers, a long warehouse leadtime, or a low added value at
the small retailer, large gaps may occur.

2. The imbalance probabilities are scattered against the corresponding ε%
values as can be seen in Figure 3.2. The figure shows that a high ε% requires
a high π, but a high π does not necessarily correspond to a high ε%. For
example, out of all scenarios considered, 1437 of them have ε% < 2 and π > 15,
and 601 of them have ε% < 1 and π > 20. Now, we look at the points in the
region with high ε% and π. There are 118 problem instances with ε% ≥ 25.94
and π% ≥ 62.51. It turns out to be that all these points have l0 = 5 and zero
added value at the small retailer (µ1=0.05 or 0.2).

In the rest of this subsection, we delve into the relationships between the input
parameters and the measures on the basis of trends.
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Table 3.3: The summary of the results from scenarios with nonidentical re-
tailers, N = 2.

(cv1, cv2)
(0.5,0.5) (0.5,1) (0.5,2) (1,0.5) (1,1) (1,2)

min ε% 0.00 0.00 0.00 0.03 0.02 0.00
max ε% 178.17 155.96 69.76 179.57 156.47 69.81
ave. ε% 3.15 3.24 1.95 3.92 4.17 2.91
min π 0.67 1.68 2.03 3.03 7.29 6.90
max π 85.96 89.79 85.57 86.00 89.82 85.67
ave. π 11.96 15.60 17.90 24.54 28.84 27.82
max δ 5.322 9.327 8.830 5.394 9.380 8.852
ave. δ 0.105 0.193 0.215 0.139 0.253 0.308
ave. LB 4.294 6.303 10.832 4.898 6.860 11.347

(2,0.5) (2,1) (2,2)
min ε% 0.17 0.22 0.09
max ε% 186.86 159.42 70.23
ave. ε% 5.48 5.84 4.56
min π 6.19 12.80 13.53
max π 86.21 89.96 86.16
ave. π 40.00 42.73 35.51
max δ 5.705 9.614 8.943
ave. δ 0.238 0.409 0.538
ave. LB 6.329 8.216 12.605

h0 0.5 0.9
(h1, h2) (0,0.5) (0.5,0) (0.5,0.5) (0,0.1) (0.1,0) (0.1,0.1)
min ε% 0.00 0.00 0.00 0.00 0.00 0.00
max ε% 186.86 24.76 8.12 67.90 15.35 14.53
ave. ε% 13.71 1.73 1.28 3.72 1.48 1.56
min π 3.92 0.69 0.67 2.97 1.97 2.02
max π 89.96 49.74 50.68 89.43 57.94 60.24
ave. π 43.21 20.11 18.98 31.61 24.35 25.01
max δ 9.614 2.145 0.867 2.934 1.638 1.633
ave. δ 0.862 0.113 0.100 0.260 0.126 0.137
ave. LB 7.196 5.921 7.827 8.990 8.749 9.106
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Table 3.3: Continued.

(l0, l1, l2)
(1,1,1) (1,1,5) (1,5,1) (1,5,5) (5,1,1) (5,5,5)

min ε% 0.00 0.00 0.05 0.00 0.00 0.00
max ε% 17.84 4.90 17.32 2.93 186.86 43.30
ave. ε% 2.43 0.81 2.19 0.59 13.98 3.48
min π 1.32 0.69 2.29 1.88 0.67 1.24
max π 74.60 66.95 74.42 67.94 89.96 89.94
ave. π 24.71 22.04 27.49 24.70 32.25 32.09
max δ 0.591 0.511 0.555 0.434 9.614 4.279
ave. δ 0.125 0.071 0.136 0.063 0.839 0.365
ave. LB 5.193 8.793 6.395 10.007 6.450 10.952

(µ1, µ2) (p1, p2)
(0.05,0.95) (0.2,0.8) (0.5,0.5) (9,9) (9,19) (19,9) (19,19)

min ε% 0.00 0.00 0.01 0.00 0.00 0.00 0.00
max ε% 186.86 69.66 24.76 129.53 186.86 127.00 182.49
ave. ε% 6.11 3.25 2.37 3.33 4.75 3.34 4.23
min π 0.69 0.87 0.67 0.84 0.86 0.69 0.67
max π 89.96 70.67 49.82 89.96 89.96 89.96 89.96
ave. π 30.59 26.79 24.25 27.28 27.84 26.57 27.16
max δ 9.614 5.236 2.145 6.305 9.589 6.304 9.614
ave. δ 0.373 0.229 0.197 0.206 0.336 0.217 0.307
ave. LB 8.159 7.946 7.790 7.389 8.236 7.670 8.565

Remark 3.2 In the test beds for both the identical and nonidentical retailers,
we considered some extreme input parameter values like coefficient of variation
equal to three or zero added value. Such parameter figures have a significant
effect on the max ε% and ave. ε% values that one sees in Table 3.1 and 3.3,
but not on the trends observed.

Retailer Size
The results show that as the size of the retailers become disproportionate, the
relative gap escalates. When µ1 is decreased with respect to µ2, we observe
that max ε%, ave. ε%, max δ and ave. δ all increase. The measures max π and
ave. π side with this trend. The impact of retailer size will be more evident as
we discuss the other parameters like holding costs and coefficient of variation.
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Figure 3.2: Probability of imbalance vs. relative gap for scenarios with non-
identical retailers.
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Holding Costs

• Similar to the identical retailers case, we observe that as the added value
at the warehouse increases, the retailer inventories tend to become more
imbalanced. Compare max ε% and ave. ε% values in columns (0.5,0.5,0.5)
and (0.9,0.1,0.1) of Table 3.3. In both cases holding cost at the retailers
is 1, but the warehouse holding cost differs. When h0 gets larger, the
system prefers to keep less stock at the warehouse, which in return increases
the chance of imbalance. Larger min π, max π and ave. π in column
(0.9,0.1,0.1) supports this reasoning.

• We can also discuss the combined effect of size and holding costs. Recall
that the first retailer is equal to or smaller than the second one with re-
spect to size. In Table 3.3, compare the following columns: (0.5,0,0.5) to
(0.5,0.5,0.5), and (0.9,0,0.1) to (0.9,0.1,0.1). The results indicate that when
the added value at the first retailer becomes zero, imbalance emerges as
an important issue. Note that low added value at a retailer increases its
order-up-to level (see (3.1)), so instead of retaining stock, the warehouse
ships to this retailer. Since little or no inventory is kept at the warehouse,
the chance of imbalance increases. There are two observations that ver-
ify this argument. First, all measures except ave. LB show a considerable
increase when the holding cost at the first retailer becomes zero. Second,
in terms of all measures the trend is stronger when h0 = 0.5 because all
the stock kept at the warehouse is routed to the small retailer. Since not
much stock is kept at the warehouse when h0 = 0.9 (due to high holding
cost), the impact is weaker compared to h0 = 0.5 case. We do not observe
such a strong trend when the added value at the second retailer decreases;
compare the following columns in Table 3.3: (0.5,0.5,0) to (0.5,0.5,0.5), and
(0.9,0.1,0) to (0.9,0.1,0.1). Moreover, ave. ε%, min π, max π, ave. π values
are lower in column (0.9,0.1,0) as compared to (0.9,0.1,0.1).

Table 3.4 shows all scenarios with (h0, h1, h2) equal to (0.5,0,0.5) and (0.5,
0.5,0), grouped with respect to the mean demands. When the added value
at the first retailer is zero, max ε%, ave. ε%, max π, ave. π, max δ and
ave. δ all show a sharp increase when the first retailer’s mean demand
decreases. In contrast, the aforementioned measures decrease as the second
retailer’s mean demand increases in case (0.5,0.5,0). In the light of these
observations, we conclude that when the added value at one retailer is
zero, both the probability and the extent of imbalance grows significantly
as this retailer’s mean demand decreases with respect to the other. Under
the balance assumption, the amount of stock to keep at the warehouse is
underestimated. Since the optimal order-up-to level for the retailer with
zero added value is infinity, anything that might have been kept at the



68 Relative Gap between the Upper and Lower Bound

warehouse is sent to this retailer. As the mean demand of this retailer
decreases it creates more and larger imbalance in the system. We call this
phenomenon of the system getting severely imbalanced due to no added
value at the small retailer as forwarding-to-the-small-retailer.

Table 3.4: Forwarding-to-the-small-retailer effect.

(h0, h1, h2)
(0.5,0,0.5) (0.5,0.5,0)

(µ1, µ2) (0.05,0.95) (0.2,0.8) (0.5,0.5) (0.5,0.5) (0.2,0.8) (0.05,0.95)
min ε% 0.00 0.00 0.08 0.11 0.00 0.00
max ε% 186.86 69.66 24.26 24.76 8.89 5.37
ave. ε% 27.17 10.63 3.33 3.39 1.25 0.55
min π 5.73 10.53 3.92 3.91 0.87 0.69
max π 89.96 70.67 49.82 49.74 39.85 43.22
ave. π 61.98 41.91 25.74 25.71 19.30 15.32
max δ 9.614 5.236 2.101 2.145 0.725 0.453
ave. δ 1.654 0.701 0.232 0.239 0.075 0.025
ave. LB 7.196 5.921 6.410 6.410 5.785 5.569

(Note that the table is organized in such a way that the mean demand of the retailer
with zero additional inventory cost increases from left to right.)

Penalty Costs
Unlike the identical retailers case, interesting relationships are identified be-
tween the gaps and the penalty costs.

• The results confirm that as the penalty costs get larger, the relative gap
grows significantly. When we compare columns (9,9) and (19,19) in Table
3.3, we observe that max ε%, ave. ε%, max δ and ave. δ all increase. Notice
that max π and ave. π do not show a trend.

• For the effect of size, compare the following columns in Table 3.3: i. (9,9)
to (9,19), ii. (9,9) to (19,9). In case (i), while probability measures do not
show a trend, max ε%, ave. ε%, max δ and ave. δ all increase when the
penalty cost of the second retailer is increased. However, in case (ii), there
is hardly any change in any of the measures. We can conclude that as the
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penalty cost of the second retailer increases, the relative gap widens. When
the penalty cost of the big retailer is high, the negative effect of overstocking
at the small retailer gets stronger, resulting in a larger gap.

Coefficient of Variation

In line with the identical retailers case, coefficient of variation and the im-
balance of inventories are correlated. Compare the columns (0.5,0.5), (1,1)
and (2,2) in Table 3.3. We observe an ascending trend in ave. ε% and ave. δ.
As the variation of demand rises, the inventories become more imbalanced;
observe the significant increase in min π and ave. π figures. Interestingly,
max ε% shows a considerable decrease as the demand variance grows.

The joint effect of the retailer size and the coefficient of variation is somehow
more complicated. Recall that the first retailer is smaller or equal to the
second retailer in terms of size (mean demand). In Table 3.3, when the second
retailer’s coefficient of variation is kept constant and the first retailer’s is varied
(compare columns i. (0.5,0.5), (1,0.5), (2,0.5) ii. (0.5,1), (1,1), (2,1) iii. (0.5,2),
(1,2), (2,2)), or the coefficient of variation of the first retailer is fixed and the
second retailer’s is varied (compare columns iv. (0.5,0.5), (0.5,1), (0.5,2) v.
(1,0.5), (1,1), (1,2) vi. (2,0.5), (2,1), (2,2)), we observe different trends in the
measures. In cases (i)-(iii), all measures show a positive trend as the coefficient
of variation of the first retailer increases. For example, in case (i), ave. ε%
is 3.15, 3.92 and 5.48 in columns (0.5,0.5), (1,0.5) and (2,0.5), respectively.
This behavior is intuitive since the demand variability faced by the system
grows. However, in cases (iv)-(vi), we do not observe a similar trend when
the coefficient of variation of the second retailer increases. While max. ε%
figures shrink considerably, ave. ε% first inclines as cv2 increases from 0.5 to
1, followed by a decline as cv2 becomes 2. For example, in case (iv), ave. ε%
is 3.15, 3.24 and 1.95 in columns (0.5,0.5), (0.5,1) and (0.5,2), respectively. In
order to distinguish the effects of size asymmetry and coefficient of variation
on the balance of inventories, we prepared Tables 3.5 and 3.6.

Table 3.5 is constructed as follows. 1296 scenarios with µ1 = µ2 = 0.5
are clustered with respect to coefficient of variation, which leads to 9 cases
((cv1, cv2)=(0.5,0.5), (0.5,1), (0.5,2), (1,0.5), (1,1), (1,2), (2,0.5), (2,1), (2,2))
of 144 scenarios each. Observe that since retailer sizes are equal and there
are two retailers, each scenario with (cv1, cv2)=(0.5,1) is equivalent to another
scenario with (cv1, cv2)=(1,0.5). When cases with (cv1, cv2) equal to (0.5,1)
or (1,0.5), (0.5,2) or (2,0.5), and (1,2) or (2,1) are aggregated, one is left with
6 cases: (cv1, cv2)=(0.5,0.5), (0.5,1) or (1,0.5), (0.5,2) or (2,0.5), (1,1), (1,2)
or (2,1), (2,2). The measures for these 6 cases are calculated and presented in
Table 3.5, which is organized as follows. In groups 1, 2 and 3, one retailer’s
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coefficient of variation is kept constant at 0.5, 1 and 2, respectively. In each
group, the other retailer’s coefficient of variation obtains values 0.5, 1 and 2
as moved from left to right. In other words, in each group, while one retailer’s
coefficient of variation is constant, the other retailer’s coefficient of variation
is varied. Observe that within each group in Table 3.5, as one retailer’s coeffi-
cient of variation increases, all measures show significant positive trends. We
conclude that when there is no size asymmetry, as a retailer’s coefficient of
variation increases, the relative gap grows. This inference is intuitive because
the variance of the total demand faced by the system gets larger; as a result,
the relative gap increases.

In Table 3.6, the coefficient of variations of the retailer demands are kept con-
stant and the retailer sizes are varied. Observe that max ε%, ave. ε%, max π
and ave. π all increase significantly when the retailer sizes get disproportion-
ate for (cv1, cv2) equal to (0.5,0.5) and (1,1). However, the trend is reverse
for ave. ε% and ave. π when (cv1, cv2) = (2, 2). As observed, when there is
no coefficient of variation asymmetry, the trend in relative gaps is not solely
determined by the retailer size.

The trends of all gap and probability measures in cases (i)-(iii), i.e., inclining
measures when the second retailer’s coefficient of variation is kept constant
and the first retailer’s coefficient of variation is increased, can be explained
by the tendency observed in Table 3.5. Unfortunately, the behavior in cases
(iv)-(vi) is more complicated and Tables 3.5 and 3.6 do not provide enough
insights to identify this behavior.

Leadtimes
Warehouse Leadtime: The impact of warehouse leadtime is in line with the
observations from the identical retailers case. When the columns (1,1,1) and
(5,1,1) of Table 3.3 are compared, one sees the drastic effect of warehouse
leadtime. Both max ε% and ave. ε% obtain very high values when l0 = 5.
Notice that as ave. LB increases from 5.193 to 6.450 (by 128%), ave. δ jumps
to 0.839 from 0.125 (571% rise). When the warehouse leadtime extends, the
probability of having imbalanced inventories increases (compare ave. π and
max π) and an imbalance situation takes a longer time to fix, which both
expand the gaps.

Retailer Leadtimes: In Table 3.3, compare column (1,1,1) to (1,5,5). Al-
though imbalance probability measures show a slight increase, max ε%, ave. ε%
and ave. δ figures point out a significant descent as both retailer leadtimes
extend. Finally, when leadtime of the first retailer is increased, there is a ten-
dency that inventories become more imbalanced; compare column (1,5,1) to
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(1,1,5) and observe that min π, max π and ave. π all show a positive trend
when the leadtime of the first retailer is longer. Further, all three relative gap
measures follow the same trend.

Table 3.5: The effect of coefficient of variation on the balance of inventories
when retailer sizes (mean demands) are equal.

Group 1 2
(0.5,1) (0.5,2) (0.5,1) (1,2)

(cv1, cv2) (0.5,0.5) or or or (1,1) or
(1,0.5) (2,0.5) (1,0.5) (2,1)

min ε% 0.01 0.09 0.09 0.09 0.64 0.99
max ε% 1.43 7.34 15.72 7.34 12.10 18.56
ave. ε% 0.25 0.98 1.62 0.98 2.48 3.66
min π 0.67 3.03 6.17 3.03 8.71 12.80
max π 9.82 24.27 33.98 24.27 33.62 46.94
ave. π 4.27 14.09 26.10 14.09 26.02 35.66
max δ 0.031 0.266 1.104 0.266 0.508 1.372
ave. δ 0.008 0.043 0.120 0.043 0.138 0.310
ave. LB 4.209 5.491 8.474 5.491 6.670 9.548

Group 3
(0.5,2) (1,2)

(cv1, cv2) or or (2,2)
(2,0.5) (2,1)

min ε% 0.09 0.99 1.91
max ε% 15.72 18.56 24.76
ave. ε% 1.62 3.66 6.03
min π 6.17 12.80 21.72
max π 33.98 46.94 49.82
ave. π 26.10 35.66 36.23
max δ 1.104 1.372 2.145
ave. δ 0.120 0.310 0.677
ave. LB 8.474 9.548 12.210
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Table 3.6: The effect of retailer size on the balance of inventories when coeffi-
cient of variations are fixed.

(cv1, cv2) (0.5,0.5) (1,1)
(µ1, µ2) (0.05,0.95) (0.2,0.8) (0.5,0.5) (0.05,0.95) (0.2,0.8) (0.5,0.5)
min ε% 0.00 0.00 0.01 0.02 0.35 0.64
max ε% 178.17 35.56 1.43 156.47 60.90 12.10
ave. ε% 7.70 1.51 0.25 6.66 3.41 2.48
min π 0.69 0.87 1.32 11.16 16.88 21.12
max π 74.60 29.26 6.44 73.57 40.05 26.06
ave. π 14.92 6.77 3.91 25.89 24.41 25.28
max δ 0.378 0.096 0.019 0.368 0.249 0.175
ave. δ 0.034 0.011 0.008 0.042 0.071 0.126
ave. LB 4.383 4.290 4.209 7.059 6.851 6.670

(cv1, cv2) (2,2)
(µ1, µ2) (0.05,0.95) (0.2,0.8) (0.5,0.5)
min ε% 0.09 0.98 1.91
max ε% 70.23 46.73 24.76
ave. ε% 3.26 4.38 6.03
min π 13.53 21.97 30.78
max π 53.02 39.47 31.74
ave. π 25.61 29.55 31.21
max δ 0.262 0.436 0.591
ave. δ 0.072 0.266 0.465
ave. LB 13.024 12.582 12.210

3.4.3 Summary and Insights

In this subsection, we summarize the results and insights obtained, and discuss
their implications. We also compare our results against the previous findings
in the literature.

The results for the identical retailers show that coefficient of variation, ware-
house leadtime and relative added value at the warehouse are positively cor-
related to relative gaps. High coefficient of variation, and moderate or high
added value at the warehouse (relative to the retailers) may lead to large rel-
ative gaps, as high as 38.6%. The relative gap is small (irrespective of the
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values of the other input parameters) when one of the following conditions is
satisfied:

(i) the coefficient of variation is low or moderate,

(ii) the added value at the warehouse is insignificant with respect to the retail-
ers,

(iii) short warehouse leadtime and long retailer leadtimes.

Under these settings, the use of the balance assumption is justified. If none of
these conditions hold, high relative gaps may occur. In such settings, one has
to be cautious in either utilizing LB as a proxy for the true optimal cost or
using the LB heuristic policy as a control tool.

The results from the test bed of 3888 problem instances with nonidentical
retailers indicate that the relative gap is small in a confined set of input pa-
rameters. The relative gap is small when one of the following conditions is
satisfied:

(i) positive and equal added value at the warehouse and the retailers,

(ii) short warehouse leadtime, and long retailer leadtime at the big retailer or
at both retailers.

Large gaps (as high as 186.9%) are observed in scenarios with a long ware-
house leadtime and/or positive added value at one retailer and zero at the
other. The latter situation is relevant to production environments where a
finished product or a semi-finished assembly is stored centrally to supply two
downstream stock points: at one, negligible value is added (e.g., just trans-
portation or packaging), and at the other there is a positive added value (e.g., a
module is added or further assembly operations are carried out). The relative
gaps tend to expand as warehouse leadtime, holding cost at the warehouse and
penalty costs at the retailers increase. Moreover, large differences in cost and
demand parameters among the retailers augment the gaps, which conform to
the results of Axsäter et al. (2002). In addition, we identified a phenomenon
coined as forwarding-to-the-small-retailer, which is a result of overstocking at
the small retailer due to negligible added value at this retailer. Forwarding-
to-the-small-retailer leads to a severely imbalanced system, which results in
big gaps. In such a case, one may consider putting an upper bound on the
order-up-to level of the small retailer. Further, the combined effect of the
retailer size and the coefficient of variation of demand turned out to be more
interesting and complicated than expected.
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The scenarios with high relative gaps also exhibit high imbalance probability,
but there are some cases with a high imbalance probability and a quite small
relative gap. These results may be important for developing heuristics that
are based on or use imbalance probability (e.g., Verrijdt and de Kok (1995)).
Eppen and Schrage (1981) derived an approximate term for the probability of
having a balanced allocation, and the findings reveal the fact that probability
of imbalance grows as the number of retailers increases; our results for the
imbalance probabilities are in line with this fact.

Remark 3.3 Schwarz (1989) has demonstrated that under the balance as-
sumption, the benefit of risk pooling is high in situations with high demand
variability, or long warehouse leadtime together with short retailer leadtimes.
Our results reveal the fact that these are the settings where the gaps grow sig-
nificantly. Although, it is not possible to conclude that the solution of the lower
bound model is mediocre for these settings without knowing the optimal solu-
tion of the original problem, the prospective savings that are shown to exist
under the balance assumption may not be attainable in a realistic setting.

3.5 Conclusion

In this chapter, we studied the effect of a widely used assumption, the balance
assumption, in the analysis of periodic review divergent inventory systems on
the average expected cost. The balance assumption leads to a relaxation of
the original problem, and the corresponding average expected cost is a lower
bound. When the optimal policy of the relaxed model is modified (LB heuris-
tic policy) and simulated, an upper bound is obtained. We used the relative
gap between these bounds as an indicator for the effect of the balance as-
sumption. We explicitly determined the scenarios that lead to small relative
gaps (i.e., the settings under which the use of the balance assumption is jus-
tified); see 3.4.3 for a summary. In many practically relevant scenarios, which
are identified expressly, the relative gaps are found to be moderate or large.
These cases require the exact positioning of the optimal cost with respect to
the upper and lower bounds.

In the next chapter, we solve the original optimization problem given in (2.2)
by dynamic programming. Due to the curse of dimensionality, it is not possible
to consider the problem instances of this chapter (even for the simple one-
warehouse two-retailers system). Thus, we restrict ourselves to simple discrete
demand structures and limited number of retailers. The results allow us to
assess the precise impact of the balance assumption and shed more light on
the optimal policy behavior.



3.6. Appendix: Demand Data from Practice 75

3.6 Appendix: Demand Data from Practice

There are some studies in the literature providing real life demand data that
exhibit large variability. One of the oldest reference is a paper by Burgin and
Wild (1967) who mention actual demand data having a coefficient of variation
slightly less than 2. Muckstadt (1997) argues that the manufacturing and
distribution environments have gone through drastic changes since 90’s, and
the customers demand shorter delivery times (leadtimes). As the leadtimes
shrink, the customer demand exhibits larger variability. Muckstadt provides
data from six different companies; we mention two of them here:

• The weekly demand data (over a year) for 39 products manufactured by a
cell at an aerospace component manufacturer exhibits high demand vari-
ability. While the coefficient of variations of demands of the products vary
between 0.77 and 7.14, 28 products have coefficient of variations above 2.

• The second demand data comes from an assembly cell at a manufacturer
supplying truck, bus, construction, mining and machine tool sectors through-
out North America. About 76% of the unit demand for finished products
have leadtimes of two weeks or less. The biweekly demand data over a year
for 26 products assembled at this cell are given. While the coefficient of
variation of demand of a product varies between 0.51 and 4.39, 17 products
exhibit coefficient of variations larger than 1.

In Table 3.7, we provide weekly demand data obtained from a multi-national
high volume electronic goods producer (having headquarters located in the
Netherlands) for a product family consisting of 22 end products. Demand
originates from retailers and wholesalers. For confidentiality reasons, means
and standard deviations are manipulated, but the coefficient of variation val-
ues are exact. The figures show that demands for all end products have a
coefficient of variation greater than 0.5; even two with more than 3.
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Table 3.7: Weekly demand data for a product family from a consumer elec-
tronics company.

end product µ σ cv end product µ σ cv
1 1493 1737 1.16 12 15175 11956 0.79
2 68 175 2.58 13 1286 1810 1.41
3 2158 2025 0.94 14 13184 12909 0.98
4 90 236 2.60 15 909 3460 3.81
5 93 237 2.53 16 17676 12632 0.71
6 1829 1910 1.04 17 3055 6106 2.00
7 3761 2467 0.66 18 1208 2927 2.42
8 7291 5301 0.73 19 405 645 1.59
9 1178 1025 0.87 20 12397 13115 1.06
10 9428 12542 1.33 21 787 1253 1.59
11 1444 2371 1.64 22 1034 3997 3.87

(µ= mean demand, σ= standard deviation of demand, cv= coefficient of variation of
demand)



Chapter 4

Relative Gap between the
Optimal Cost and the Bounds

Abstract: This study is a continuation of the one in Chapter 3. For the set-
tings with moderate or large relative gaps between the upper and lower bounds
(as identified in the previous chapter), we position the optimal cost between the
bounds, and determine the precise effect of the balance assumption. The one-
warehouse multi-retailer inventory system is modelled as a multi-dimensional
stochastic dynamic program and the optimal expected average cost is calcu-
lated by solving the resulting dynamic program by value-iteration algorithm.
By comparing the optimal cost against the bounds, we (i) quantify the impact
of the balance assumption on the long-run expected average cost, (ii) evalu-
ate the quality of the lower bound as a proxy for the true optimal cost, (iii)
determine the performance of the LB heuristic policy. We provide the first,
concrete evidence in the literature that the balance assumption may lead to con-
siderable errors. Further, the LB heuristic policy performs poorly compared to
the optimal cost under various settings, which are identified explicitly. This
indicates the need for efficient, accurate and robust heuristics. Finally, for the
first time in the literature, we analyze the optimal policy behavior numerically,
which facilitates the development of heuristics.

4.1 Introduction

This chapter deals with a distribution system that consists of a warehouse
and multiple (possibly nonidentical) retailers. The retailers are replenished
by shipments from the warehouse, which in return orders from an exogenous

77
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supplier with ample stock. The retailers face stationary stochastic demand
of the customers. All unfulfilled demand is backlogged and a penalty cost
is charged. Inventory transfers between the retailers (lateral transhipment)
are not permitted. We assume fixed replenishment leadtimes between the
warehouse and the retailers, and between the supplier and the warehouse.
Costs consist of linear holding and penalty costs. The system is controlled
centrally and periodic review is employed. We consider the minimization of
the expected total holding and penalty cost of the system in the long-run both
under the discounted and average cost criteria.

The one-warehouse multi-retailer system is a relevant model in inventory, man-
ufacturing and hierarchical production planning contexts (see Chapter 1). The
problem of determining order and shipment sizes and their frequencies can be
formulated as a stochastic dynamic program (DP). Unfortunately, the result-
ing DP is a multi-dimensional one where the dimension grows in the number of
retailers and the warehouse leadtime. Therefore, it is too complex to compute
an optimal policy in a practical setting due to the curse of dimensionality.
However, introducing an assumption (called the balance assumption) simpli-
fies the structure of the DP. The balance assumption is a relaxation of a con-
straint that prohibits the shipment of negative quantities to the retailers. This
is equivalent to allowing instantaneous return of stock to the warehouse with
no cost. Under the balance assumption, the decomposition result1 of Clark
and Scarf (1960) shown for serial systems also holds for one-warehouse multi-
retailer systems. Hence, instead of a multi-dimensional DP, it is sufficient to
solve single-dimensional DPs sequentially. Besides a tremendous reduction in
the complexity of the problem, the balance assumption leads to important
structural results. The optimal policy can be characterized, which turns out
to be an echelon base stock policy for ordering (of the warehouse) and my-
opic allocation policy for shipment decisions. The parameters of this optimal
policy can be computed efficiently and the corresponding average cost can be
determined. Due to the fact that the balance assumption is a relaxation, the
cost calculated under this assumption is a lower bound for the true optimal
cost.

The balance assumption is first introduced by Eppen and Schrage (1981) who
used the term allocation assumption. It was Federgruen and Zipkin (1984b)
who made it explicit in the dynamic programming context and derived the

1Clark and Scarf (1960) developed a discounted dynamic program for the inventory con-
trol of a multi-echelon serial system in a finite horizon. By introducing the concepts echelon-
stock and induced penalty cost, they were able to decompose the resulting multi-dimensional
DP into a series of single-dimensional programs, which is known as the decomposition prop-
erty. See Chapter 1 for a detailed discussion.
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optimality results for the relaxed model2.

The balance assumption is a widely used presupposition in the analysis of
one-warehouse multi-retailer systems under periodic review. It is an essen-
tial assumption to obtain structural results. Moreover, up to our knowledge,
all heuristics developed in the literature are based on the balance assump-
tion. The following list of references utilize the balance assumption in vari-
ous versions of the standard one-warehouse multi-retailer model discussed in
this chapter: Eppen and Schrage (1981), Federgruen and Zipkin (1984a,b,c),
Jönsson and Silver (1987), Jackson (1988), Schwarz (1989), Erkip et al. (1990),
Chen and Zheng (1994b), Kumar et al. (1995), Bollapragada et al. (1998),
Diks and de Kok (1998), Kumar and Jacobson (1998), Cachon and Fisher
(2000), Axsäter et al. (2002), Özer (2003), Cao and Silver (2005). In the
literature, there is an established belief that the balance assumption is a good
approximation. In his extensive survey study, Axsäter (2003, p. 544) states:

“The balance assumption has been used extensively in the inventory lit-
erature and has been shown to produce solutions of very good quality in
many different situations, see for example ...”

There are several studies that investigate the appropriateness of the balance
assumption; we refer to §3.2 and the references therein for a detailed literature
review. Albeit the fact that the balance assumption is considered to be a good
approximation, Axsäter et al. (2002) and Chapter 3 of this dissertation cast
the first doubt on this widely accepted conviction. In Chapter 3, we explicitly
identify the settings leading to moderate or large relative gaps between the
upper and lower bounds. In this chapter, we further investigate these settings
(with moderate or large relative gaps) by calculating the true optimal cost.
Due to the curse of dimensionality, it is unrealistic to consider the scenarios3

of Chapter 3 as they are, so the demand processes of the current chapter
are discrete and distributed over a limited set of points. In this chapter, by
calculating the true optimal cost, we are able to study the precise impact of
the balance assumption for the first time in the literature.

Our methodology is as follows. First of all, we assume that retailer demand
distributions are discrete and have finite supports. For a given problem in-
stance, using the analytical results from Chapter 2, we compute the optimal
policy parameters for the relaxed model and determine the average cost, which

2We use the terms relaxed model and lower bound model interchangeably to refer to the
model under the balance assumption.

3We use the term scenario and problem instance interchangeably to refer to a combination
of input parameters (number of retailers, leadtimes, holding and penalty cost parameters,
mean and coefficient of variation of demand).
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is a lower bound (LB) for the true optimal cost. The myopic allocation (the
optimal shipment policy for the relaxed model) may lead to negative ship-
ments. Hence, we modify the myopic allocation policy to make it feasible for
the original model. When the optimal base stock policy for ordering in the
relaxed model is coupled with the modified allocation policy, one obtains a
policy that is feasible for the original model. This policy is a heuristic and
gives an upper bound (UB) that may be estimated via simulation. Since this
heuristic is based on the relaxed model, we call it as LB heuristic policy. The
upper and lower bounds envelope the true optimal cost (g∗). If the relative
gap between the bounds (ε% = 100UB−LB

LB ) is small for a scenario, then we
can conclude that the use of the balance assumption is justified for that set-
ting. Federgruen and Zipkin (1984a), Kumar and Jacobson (1998), Axsäter
et al. (2002) and ourselves in Chapter 3 use ε% as a performance measure in
the numerical experiments; while they use ε% to test the heuristics they con-
sider, we use it to assess the appropriateness of the balance assumption. This
measure does not say much when the relative gap is considerable. For such
problem instances, we calculate the optimal average cost by solving the multi-
dimensional DP using the value-iteration algorithm. The relative gap between
LB and the optimal cost (ε∗% = 100g∗−LB

LB ) shows the effect of the balance
assumption; if ε∗% is significant, we conclude that the balance assumption has
a considerable impact on the optimal cost. Also, the comparison of the relative
gap measures provide additional insights (note that ε∗% ≤ ε% by definition):

(i) if both ε∗% and ε% are small, we conclude that LB is a proxy for the
optimal cost, the LB heuristic policy is an appropriate heuristic, and UB
approximates the optimal cost well for that particular setting.

(ii) if both ε∗% and ε% are significant and close, then we conclude that LB
cannot approximate the optimal cost, but the LB heuristic policy is a good
heuristic for that particular setting.

(iii) if both ε∗% and ε% are significant and considerably different, then we con-
clude that the balance assumption is not appropriate for that particular
setting. In such a case, neither LB is a proxy for the optimal cost nor the
LB heuristic policy is an appropriate heuristic.

(iv) if ε∗% is small whereas ε% is large, then we conclude that LB is a proxy
for the optimal cost, but the LB heuristic policy is a mediocre heuristic for
that particular setting.

We treated the identical and nonidentical retailers cases separately. Due to
the curse of dimensionality, the number of retailers is restricted to two. A test
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bed of 81 scenarios is set up for the identical retailers case. The scenarios have
gap measures that fall into categories (i), (ii) and (iii) of the four categories
listed above. The results support the conclusion of Chapter 3 such that the
balance assumption is not a restriction when the retailers are identical and
the coefficient of variation is low or moderate (0.5 or 1). However, when the
coefficient of variation is high (2), the effect of the balance assumption can
be significant; ε∗% values up to 12.25 have been found. We report problem
instances that fall into category (iii) (e.g., one scenario has ε% = 20.98 and
ε∗% = 12.12), where the balance assumption is a serious restriction. There
are also scenarios for which the LB heuristic policy is a very accurate one. We
conclude that when the coefficient of variation is high in the identical retailers
case, the relative gap measures comply with categories (ii) and (iii).

For the nonidentical retailers case, we analyzed 37 scenarios. Unlike in the
identical retailers case, there are scenarios that fall into category (iv) of the
four categories listed above. For example, we report a problem instance with
ε% = 86.73 and ε∗% = 0.61. The following settings conform to category (iv):

• when there is negligible added value at the small retailer or at both retailers
(keeping other parameters equal),

• when there is size asymmetry between the retailers (keeping other param-
eters equal).

In case of asymmetric size and coefficient of variations, the relative gap mea-
sures comply to category (iii).

The results also provide valuable information about the optimal policy be-
havior. In a few scenarios, we analyzed the optimal policy numerically. On
one hand, the behavior of the optimal policy coincides with the LB heuristic
policy structure, but with different base stock levels. On the other hand, in
some scenarios, the optimal policy uses detailed state information.

The main contributions of this study are as follows:

• Up to our knowledge, for the first time in the literature, we determine the
exact error made in the calculation of the long-run average expected cost of
a one-warehouse multi-retailer system by utilizing the balance assumption.
Our numerical results show that the error can be significant, which implies
that LB may be an inaccurate approximation for the optimal cost. Further,
we identified several problem instances for which neither LB nor the LB
heuristic policy is acceptable, so the balance assumption is an inappropriate
presupposition under such conditions.
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• The studies up to now have used ε% as a measure to evaluate the perfor-
mance of the heuristics proposed or the effect of the balance assumption.
Our results show that ε% is inadequate to anticipate the behavior of ε∗%.
Further, we conclude that the LB heuristic policy is not robust because
while the performance of this heuristic is comparable to the optimal policy
in some scenarios, it is extremely poor in others. Note that this conclusion
is in line with the results of Axsäter et al. (2002).

• As a direct consequence of the two items above, we have identified a need
for good, robust and efficient heuristics for the control of one-warehouse
multi-retailer systems.

• We analyze the solutions of the DPs for a few scenarios, which provides
valuable insights about the optimal policy behavior. This information can
be useful for developing good heuristics.

The rest of the chapter is organized as follows. We introduce the notation and
formulate a stochastic dynamic program for the model in §4.2. The analysis of
the dynamic program and the approach for quantifying the effect of the balance
assumption are discussed in §4.3. §4.4 is dedicated to the explanation of the
computational procedure followed and the results of the numerical study. In
§4.4.4, the optimal policy behavior is investigated in several scenarios. Finally,
the insights obtained from the study are summarized in §4.4.5, which can be
read independent of the other parts of the chapter. We conclude and discuss
the directions for future research in §4.5. The proofs of the lemmas can be
found in §4.6.

4.2 Model

Consider a two-stage distribution system composed of a warehouse serving N
retailers. The warehouse orders from an exogenous supplier with ample stock
and the retailers are supplied by shipments from the warehouse. Time is di-
vided into periods of equal length. The periods are numbered as 0,1,2, . . . .
Define

Z = set of integer numbers. Z− = {...,−2,−1}, Z+ = {1, 2, ...}, and
Z+

0 = Z+ ∪ {0}.
t = index for time. Period t is defined as the time interval between

epochs t and t + 1 for t ∈ Z+
0 .

The following parameters describe the system:
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N = number of retailers, N ∈ Z+, N ≥ 2.
i = index for stock points, i = 0 is the warehouse and i = 1, 2, ..., N

are the retailers.
J = set of retailers, i.e., J = {1, 2, ..., N}.
li = leadtime parameter for stock point i, li ∈ Z+

0 ∀i ∈ J and l0 ∈ Z+.
α = discount factor, 0 < α ≤ 1.

We refer to Chapter 1 for the definitions of echelon stock and echelon inventory
position.

The following events occur in each period t. At the beginning of the period,
ordering and shipment decisions are made:

y(t) = size of the order placed by the warehouse at the beginning of
period t.

z(t) = vector of quantities shipped to the retailers at the beginning of
period t, z(t) = (z1(t), ..., zN (t)) where zi(t) is the shipment size
for retailer i.

Next, also at the beginning of the period, the incoming order and shipments
arrive, i.e., y(t − l0), z1(t − l1), ..., zN (t − lN ) are received at stock points
0, 1, ..., N , respectively.

During the period, retailers face stochastic, stationary and independent de-
mands of the customers. Demands in different periods are discrete i.i.d. ran-
dom variables distributed over Z+

0 . Let

Di(t, t + s) = discrete random variable denoting the demand faced by
retailer i during the periods t, t + 1, ..., t + s for t, s ∈ Z+

0 .
D0(t, t + s) = discrete random variable denoting the aggregate demand

faced by the system during the periods t, t + 1, ..., t + s

for t, s ∈ Z+
0 , i.e., D0(t, t + s) =

∑N
i=1 Di(t, t + s).

D
(l)
i = discrete random variable denoting l-period demand

faced by retailer i, l ∈ Z+
0 .

D
(l)
0 = discrete random variable denoting l-period aggregate

demand faced by the system, l ∈ Z+.
F

(l)
i = cumulative distribution function of l-period demand of

retailer i defined over Z+
0 .

F
(l)
0 = cumulative distribution function of l-period demand

faced by the system defined over Z+
0 , i.e.,

F
(l)
0 = F

(l)
1 ∗ F

(l)
2 ∗ ... ∗ F

(l)
N .

µi = mean of one-period demand faced by retailer i, µi > 0.
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µ0 = mean of one-period demand faced by the system, i.e.,
µ0 =

∑N
i=1 µi.

cvi = coefficient of variation of one-period demand faced by retailer i.

Notice we assume that Di(t, t) is distributed over integers for all i ∈ J , i.e.,
Di(t, t) ∈ Z+

0 . Further, we impose the following mild assumptions4: (i) there
is a finite support for Di(t, t), i ∈ J , such that Di(t, t) ∈ [0, Ai], where Ai is a
finite integer, (ii) Pr{Di(t, t) = 1} > 0. As a result, D0(t, t) ∈ Z+

0 and has a
finite support [0, A0] with A0 =

∑
i∈J Ai.

At the end of the period, holding and penalty costs are incurred on the period-
ending stock and backorder levels. The cost parameters are:

hi = additional inventory holding cost parameter for stock point i. At
the end of a period:
(i) cost h0 is charged for each unit on stock at the warehouse or
in transit to any retailer,
(ii) cost h0 + hi is charged for each unit on stock at retailer i.

pi = penalty cost parameter for retailer i. A cost pi is charged for each
unit of backlog at the end of a period at retailer i.

Define

I0(t) = echelon stock of the warehouse at the beginning of period t
just before the receipt of the incoming order.

IPi(t) = inventory position of retailer i at the beginning of period t
just before the shipment decision, i ∈ J .

Îi(t) = echelon stock of stock point i at the end of period t,
i ∈ J ∪ {0}.

The total cost of the system at the end of a period t is equal to

h0

(
Î0(t)−

∑
i∈J

Îi(t)

)
+
∑
i∈J

(h0 + hi)Î+
i (t) +

∑
i∈J

piÎ
−
i (t),

where a+ = max{0, a} and a− = −min{0, a} for a ∈ Z. (Note that we incur
holding cost for the pipeline inventories in between the warehouse and the

4The regularity condition on the demand distribution, assumption (ii), is widely used;
see Hadley and Whitin (1961), Chen and Zheng (1997), Chen (1998), Cachon and Fisher
(2000), Cachon (2001).
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retailers.) As carried out in §2.3.1, the expression above can be rewritten as

h0Î0(t) +
∑
i∈J

hiÎi(t) +
∑
i∈J

(h0 + hi + pi)Î−i (t).

Define

C0(t) = cost attached to the echelon of the warehouse (echelon 0) at
the end of period t, C0(t) = h0Î0(t).

Ci(t) = cost attached to the echelon of retailer i (echelon i) at
the end of period t, Ci(t) = hiÎi(t) + (h0 + hi + pi)Î−i (t).

Notice that the total cost of the system at the end of period t is reformulated
into echelon holding costs using the concept of cost attached to an echelon (cf.
Federgruen and Zipkin (1984c), Rosling (1989)).

The decisions of period t ∈ Z+
0 directly affect the costs C0(t+ l0) and Ci(t+ li)

for i ∈ J . Thus, we account the discounted values of the costs C0(t + l0)
and

∑
i∈J Ci(t + li) to period t. The expected one-period holding cost for the

system-wide inventory at the end of period t + l0 discounted to period t is

E
[
αl0C0(t + l0)

]
= E

[
αl0h0

(
I0(t) +

l0∑
k=0

y(t− k)−D0(t, t + l0)

)]

= αl0h0

(
I0(t) +

l0∑
k=0

y(t− k)− (l0 + 1)µ0

)

= G0

(
I0(t) +

l0∑
k=0

y(t− k)

)
,

where G0(·) is defined by

G0(x) = αl0h0(x− (l0 + 1)µ0), x ∈ Z. (4.1)

The first order forward difference function of G0(x) is

∆G0(x) def= G0(x + 1)−G0(x) = αl0h0. (4.2)

Similarly, the expected one-period holding and penalty cost for retailer i at
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the end of period t + li discounted to period t is

E
[
αliCi(t + li)

]
= E

[
αli {hi[IPi(t) + zi(t)−Di(t, t + li)]

+ (h0 + hi + pi)[IPi(t) + zi(t)−Di(t, t + li)]−
}]

= αli
{

hi(IPi(t) + zi(t)− (li + 1)µi)

+ (h0 + hi + pi)E
[(

IPi(t) + zi(t)−D
(li+1)
i

)−]}
= Gi(IPi(t) + zi(t)),

where Gi(·) is defined by

Gi(x) = αli
{

hi(x− (li + 1)µi)

+ (h0 + hi + pi)E
[(

x−D
(li+1)
i

)−]}
, x ∈ Z. (4.3)

Observe that Gi(x) is a newsboy type function, which is known to be convex.
The first order forward difference function of Gi(x) is ∆Gi(x) = Gi(x + 1) −
Gi(x), which can be expressed as

∆Gi(x) =


αli
(
−(h0 + pi) + (h0 + hi + pi)F

(li+1)
i (x)

)
if x ≥ 0

−αli(h0 + pi) o/w.

(4.4)

4.2.1 Stochastic Dynamic Programming Formulation

In this subsection, we develop a stochastic dynamic program for the system
under consideration. The beginning of each period is a decision epoch, i.e., the
decision epochs are t ∈ Z+

0 . At the beginning of each period t, the following se-
quence of events takes place. First, the state of the system, (I0(t),y(t), IP(t)),
is observed, where

y(t) = vector of outstanding orders at the beginning of period t,
y(t) = (y(t− l0), ..., y(t− 1))

IP(t) = vector of inventory positions of the retailers at the beginning
of period t, IP(t) = (IP1(t), ..., IPN (t)).

Second, ordering and shipment decisions (y(t), z(t)) are made. Third, in-
coming order (y(t − l0)), and shipments (zi(t − li), ∀i ∈ J) arrive following
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their respective leadtimes. The ordering and shipment decisions (actions) are
constrained by the following inequalities:

0 ≤ y(t), (4.5)
0 ≤ zi(t) ∀i ∈ J, (4.6)∑

i∈J

zi(t) ≤ I0(t) + y(t− l0)−
∑
i∈J

IPi(t). (4.7)

Each state-action pair leads to an expected immediate cost:

G0

(
I0(t) +

l0∑
k=1

y(t− k) + y(t)

)
+
∑
i∈J

Gi(IPi(t) + zi(t)).

The realization of demands, Di(t, t) for all i ∈ J , determine the transitions.
The system begins the next period with the following state variables:

I0(t + 1) = I0(t) + y(t− l0)−D0(t, t),
y(t + 1) = (y(t− l0 + 1), ..., y(t)),

IP(t + 1) = (IP1(t) + z1(t)−D1(t, t), ..., IPN (t) + zN (t)−DN (t, t)).

4.3 Analysis

The stochastic dynamic program formulated in §4.2.1 is analyzed in this sec-
tion. Under the discounted cost criterion, some properties of an optimal policy
are derived, and these results are used to bound the state and action spaces in
§4.3.1.2 where further implications of this result for the average cost criterion
are also discussed. We explain the lower and upper bound models in §4.3.2
and §4.3.3, respectively. We close this section with a discussion on how we
quantify the effect of the balance assumption in §4.3.4.

4.3.1 Discounted Cost Criterion

In this subsection, we analyze the infinite horizon problem with 0 < α < 1.
The results obtained also have implications on the long-run average cost of
the system.

Given a finite initial state (I0(0),y(0), IP(0)), following the accounting scheme
described in §4.2, the expected total discounted cost of the system in an infinite
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horizon under some policy f can be formulated as

Vf
def= E

[ ∞∑
t=0

αt

{
G0

(
I0(t) +

l0∑
k=0

y(t− k)

)

+
∑
i∈J

Gi (IPi(t) + zi(t))

}]
. (4.8)

Note that the holding costs for the system-wide stock in periods 0, ..., l0 − 1,
and holding and penalty costs for retailer i ∈ J in periods 0, ..., li − 1 are the
same for any given policy f . Thus, they are not incorporated in (4.8).

We are interested in finding an optimal policy f∗, i.e., a policy f∗ among the
set of all feasible policies F such that Vf∗ ≤ Vf , for all f ∈ F .

We restrict the cost parameters as follows:

Assumption 1 .

(i) hi > 0 ∀i ∈ J ,

(ii) h0 > 0,

(iii) pi > 1−αli

αli
h0 ∀i ∈ J .

It is assumed that all additional holding costs are positive, which implies that
there is a positive added value at each stock point in the system. Further,
we do not want the system to backlog forever; (iii) serves for this purpose.
Suppose policy f does not ship anything to retailer i ∈ J and at the end of
period t − 1, retailer i has a negative inventory position, which implies that
retailer i is in a backlog situation. Construct policy f̃ that imitates all actions
of f except that it orders one unit at the beginning of period t in order to send
it to retailer i in period t + l0. Compared to policy f , under policy f̃ , there
is one unit more in the inventory position of echelon 0 starting from period t
and onwards, and a unit more in the inventory position of retailer i starting
from period t + l0 and onwards. Thus, the cost difference between the two
policies is

Vf − V
ef

= −
∞∑

m=t

αm∆G0

(
I0(m) +

l0∑
k=0

y(m− k)

)

−
∞∑

m=t+l0

αm∆Gi(IPi(m))

= −
∞∑

m=t

αm(αl0h0) +
∞∑

m=t+l0

αm(αli(h0 + pi))
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=
αt+l0

1− α

(
αli(h0 + pi)− h0

)
,

where the second equality follows from (4.2) and (4.4). Since we want policy
f to be suboptimal, Vf −V

ef
should be positive, which leads to (iii). Note that

(ii) and (iii) implies that all penalty costs are positive. Moreover, as α ↑ 1,
(iii) simplifies as pi > 0 ∀i ∈ J , which is a standard assumption in inventory
theory.

As mentioned before, Gi(x) for i ∈ J is a convex function, so it is mini-
mized at the first point for which ∆Gi(·) ≥ 0. Let xi be the first point such
that ∆Gi(xi) ≥ 0, i.e., xi = min

{
x|F (li+1)

i (x) ≥ h0+pi

h0+hi+pi

}
. If F

(li+1)
i (xi) =

h0+pi

h0+hi+pi
then there are multiple optima. These are elements of the set {xi, xi+

1, ..., xi} where xi = min
{

x|F (li+1)
i (x) > h0+pi

h0+hi+pi

}
. Otherwise, there is a sin-

gle optimum and xi = xi. Note for all i ∈ J , xi ∈ Z+
0 , and xi is finite because

hi > 0.

For the sake of brevity, in the rest of this section, we make the following as-
sumption with respect to the initial state.

Assumption 2 .

(I0(0),y(0), IP(0)) = (0, (0, ..., 0), (0, ..., 0)).

This assumption on the initial state is used in our derivations in the next
subsection, but it is not key for our results, and can easily be relaxed, see
Remark 4.1.

4.3.1.1 Properties of an Optimal Policy

As discussed in §4.1, it is very hard to characterize the optimal policy for
the system under consideration because it heavily depends on the full state
description (I0(·),y(·), IP(·)). In this subsection, we give some properties of
an optimal policy.

Lemma 4.1 Under any optimal policy, for t ∈ Z+
0 and i ∈ J :

(i) zi(t) = 0 if IPi(t) > xi,

(ii) zi(t) ≤ xi − IPi(t) if IPi(t) ≤ xi.

Proof : See §4.6.
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Lemma 4.1 simply tells that an optimal policy does not ship anything to re-
tailer i having inventory position greater than or equal to xi, the largest point
minimizing Gi(·). Further, if there will be a shipment to retailer i, then the in-
ventory position cannot be increased above xi. This is a strong result, which is
valid for any finite initial state. The next corollary is a direct result of Lemma
4.1 and the initial state given by Assumption 2.

Corollary 4.2 Under any optimal policy, IPi(t) + zi(t) ≤ xi for all t ∈ Z+
0

and i ∈ J .

The following lemma bounds the ordering decisions from above.

Lemma 4.3 Under any optimal policy, for t ∈ Z+
0 :

(i) y(t) = 0 if I0(t) +
∑l0

k=1 y(t− k) ≥ l0A0 +
∑

i∈J xi,

(ii) y(t) ≤ l0A0 +
∑

i∈J xi−
[
I0(t) +

∑l0
k=1 y(t− k)

]
if I0(t)+

∑l0
k=1 y(t−k) ≤

l0A0 +
∑

i∈J xi.

Proof : See §4.6.

The result implies an upper bound l0A0 +
∑

i∈J xi for the system-wide inven-
tory position. If a policy, which complies with Lemma 4.1, orders such that
this level is exceeded, a portion of the order stays at the warehouse at least for
one period for sure and results in an extra holding cost. Similarly, if a policy
(conforming to Lemma 4.1) places a positive order when the system-wide in-
ventory position is above this upper bound, then the entire order is certainly
kept at the warehouse at least for one period.

We utilize Assumption 2 in the proof of Lemma 4.3, but it is straightforward
to extend the result for any initial state as long as IPi(0) ≤ xi for all i ∈ J .
Notice that this assumption (IPi(0) ≤ xi for all i ∈ J) is crucial here because
when the retailer inventories are highly imbalanced, it might be beneficial to
order even though the system-wide inventory position is above l0A0+

∑
i∈J xi.

For example, let N = 2, IP1(0) < 0, IP2(0) > l0A0 + x1 + x2 − IP1(0),
I0(0) − (IP1(0) + IP2(0)) = 0 and y(0) = (0, ..., 0). There is no on-hand
stock at the warehouse and no order in the pipeline. While retailer 1 is in a
backlog situation, retailer 2 is overstocking. Although I0(t)+

∑l0
k=1 y(t−k) >

l0A0 +
∑

i∈J xi, it can easily be shown that under an optimal policy y(0) > 0.

The next corollary follows from Lemma 4.3 and Assumption 2.
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Corollary 4.4 Under any optimal policy, I0(t) +
∑l0

k=0 y(t − k) ≤ l0A0 +∑
i∈J xi for all t ∈ Z+

0 .

Remark 4.1 Note that as long as the initial state is finite and µi > 0 ∀i ∈ J ,
due to the result of Lemma 4.1, an optimal policy eventually leads the system
into states where inventory position of each retailer i is less than or equal to
xi, and keeps it there. Once this is realized, by Lemma 4.3, under an optimal
policy, the system drifts into states where the echelon inventory position of the
warehouse does not exceed l0A0 +

∑
i∈J xi. Hence, as t →∞, Corollaries 4.2

and 4.4 hold. In that respect, Assumption 2 is not necessary, but improves the
presentation. For a similar reasoning, we refer to the definition of long-run
balance and the discussion on the realization of long-run balance in Rosling
(1989).

4.3.1.2 Bounding the State and Action Spaces

In §4.3.1.1, we identified some characteristics of an optimal policy. These
properties bound the state variables from above:

I0(t) ≤ l0A0 +
∑
i∈J

xi, IPj(t) ≤ xj ∀j ∈ J,

for all t ∈ Z+
0 . In a similar fashion, the assumptions on costs (Assumption

1) and the finite supports for demand distributions make us suspect that the
state variables are also bounded from below. We make the following assump-
tion:

Assumption 3 .

Under an optimal policy, there exists finite integers I0 and IP j for all j ∈ J

such that I0 ≤ I0(t) and IP j ≤ IPj(t) for all t ∈ Z+
0 .

Recall that a positive penalty cost forces a single-stage inventory system to
order when the inventory position becomes negative (independent of the future
demand realizations). An optimal policy for our model is also expected to
order and ship to the retailers in order to satisfy customer demand. Although
the system may fall into a backlogging situation, an optimal policy would not
let the state of the system drift to −∞. (Note that having demands with finite
supports is crucial for this reasoning.) In parallel to this intuitive logic, the
computational results in §4.4 support the validity of Assumption 3. Moreover,
any computational procedure like value iteration require finite state spaces,
e.g., see Xu et al. (1992, p. 1135).
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The compactness of the state space follows immediately from Corollaries 4.2-
4.4 and Assumption 3:

I0 ≤ I0(t) ≤ l0A0 +
∑
i∈J

xi,

0 ≤ y(t) ≤ l0A0 +
∑
i∈J

xi − I0,

IP j ≤ IPj(t) ≤ xj ∀j ∈ J,

(4.9)

for all t ∈ Z+
0 . For any given state (I0(t),y(t), IP(t)) satisfying (4.9), the

action space is also compact with

0 ≤ zj(t) ≤ xj − IPj(t) ≤ xj − IP j ∀j ∈ J,

0 ≤ y(t) ≤ l0A0 +
∑
i∈J

xi −
(

I0(t) +
l0∑

k=1

y(t− k)
)
≤ l0A0 +

∑
i∈J

xi − I0.
(4.10)

Note that all bounds are state independent. Under the assumptions made, any
optimal policy has finite and compact discrete state and action spaces. Due to
this, immediate costs (G0(·), Gi(·)) associated with each state-action pair are
also bounded. Further, we assume stationary costs and transition probabili-
ties. As a result, there exists an optimal deterministic stationary policy. (See
Puterman (1994, p. 154).) This finding has another important consequence
related to the average cost criterion. Define the expected long-run average
cost of the system under policy f and an initial state (I0(0),y(0), IP(0)) as

gf
def= lim

T→∞

1
T

E

[
T−1∑
t=0

{
G0

(
I0(t) +

l0∑
k=0

y(t− k)

)

+
∑
i∈J

Gi (IPi(t) + zi(t))

}]
, (4.11)

where G0(x) and Gi(x) are given with α = 1 in (4.1) and (4.3), respectively.
Since an optimal policy in the discounted case has (i) discrete and finite state
and action spaces, (ii) bounded costs, (iii) stationary transition probabilities,
there exists α0 ∈ (0, 1) and a stationary policy f∗α0

such that f∗α0
is α-discount

optimal for α ∈ (α0, 1). Further, f∗α0
is average cost optimal. (See Proposition

6.2.3 in Sennott (1999, p. 99).) Therefore, the bounds developed for the state
and action spaces in (4.9) and (4.10) are also valid for the average cost criterion
when α = 1. Moreover, f∗α0

is initial state independent under the average cost
criterion. These are important results because we will use the average cost
criterion in our computations in §4.4.
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4.3.2 Lower Bound Model

Although the stochastic dynamic program under consideration is multi-di-
mensional with N + l0 + 1 state variables, the relaxation of a constraint in
the model leads to a great simplification. When the nonnegativity constraint
in (4.6) is omitted, the infinite horizon dynamic program can be investigated
using a single cycle analysis as carried out in Chapter 2. As shown there,
the optimal policy can be characterized completely. The relaxation of (4.6),
equivalent to allowing negative shipments to the retailers, is referred to as
the balance assumption. Under the balance assumption, the ordering and
shipment decisions can be made in isolation of the previous and subsequent
ordering and shipment decisions.

Besides the characterization of the optimal policy, the balance assumption
leads to an efficient computational procedure for determining the optimal pol-
icy parameters and the associated expected system-wide cost. Note that the
expected cost calculated under the balance assumption is a lower bound (LB)
for the true optimal cost because the resulting model is a relaxation of the
original one. We refer to Chapter 2 and §3.3.3 for details of the optimal policy
for the lower bound model.

4.3.3 Upper Bound

The long-run expected cost of any feasible policy is an upper bound for the
true optimal cost. Other than the difficulty in characterizing the optimal
policy, the complexity of the model usually does not permit the determination
of the expected cost of a given policy analytically. Instead, this policy can be
simulated long enough to give an estimate for the expected long-run cost.

Notice that the optimal policy for the lower bound model described in §4.3.2
is indeed optimal for the original model provided (4.6) is never violated, but
this is not always the case in many settings. The optimal policy for the lower
bound model can be modified so that it is feasible for the original model.
This policy is not optimal, but it is a heuristic widely used in the literature.
We refer to this policy as LB heuristic policy since it is based on the lower
bound model. The LB heuristic policy follows an echelon base stock policy for
ordering and myopic allocation policy for shipments; see §3.3.4 for the details
of this policy. The simulation of the LB heuristic policy gives an upper bound
(UB) for the true optimal cost.
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4.3.4 Quantifying the Effect of the Balance Assumption

Our main objective in this study is to demonstrate the precise effect of the
balance assumption on the long-run average expected cost by comparing the
true optimal cost to the lower bound obtained under the balance assumption.
For a given input parameter combination5 (which we refer to as scenario or
problem instance):

(i) LB can be calculated using the analytical results of Chapter 2,

(ii) the true optimal cost (g∗) can be computed by solving the DP using a
numerical technique (e.g., policy iteration, value iteration),

(iii) UB can be determined by simulating the LB heuristic policy.

Define ε% = 100UB−LB
LB as the relative gap between the lower and upper

bound, and ε∗% = 100g∗−LB
LB as the relative gap between the optimal cost and

the lower bound. Recall that we used ε% to analyze the effect of the balance
assumption in Chapter 3. Since g∗ lies in between LB and UB, a small ε%
implies that the impact of the balance assumption is insignificant and the
LB heuristic policy (resulting in UB) is a good heuristic. In Chapter 3, we
could not come to strong conclusions about scenarios with moderate or large
ε% because the exact positioning of g∗ with respect to the bounds becomes
important. In this study, we consider the settings leading to moderate or large
ε% and calculate ε∗% for the purpose of (i) quantifying the error made by using
LB as an approximation for g∗, and (ii) determining the appropriateness of
the LB heuristic policy as a control mechanism. If a scenario with significant
ε% exhibits

• a small ε∗%, then LB is a good proxy for g∗, but the LB heuristic policy
is not an appropriate heuristic.

• an ε∗% close to ε%, then the LB heuristic policy is a good heuristic and
UB approximates g∗ well.

• an ε∗% that is not close to zero nor ε%, then neither LB is an accurate
proxy for g∗ nor the LB heuristic policy is an appropriate heuristic.

5Any given combination of values of N, l0, h0 and hi, pi, µi, li, cvi for i = 1, ..., N .
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4.4 Computational Results

This section is dedicated to the results obtained from the numerical study con-
ducted. Due to the curse of dimensionality, we restricted ourselves to N = 2
and one-period retailer demands distributed over integers in [0,3], see Table 4.1
for the distributions used for various mean and coefficient of variation values.
The identical and nonidentical retailers cases are treated separately as done
in §3.4, and the numerical results are given in §4.4.2 and §4.4.3, respectively.
Next, we discuss the details of the computational procedure.

Table 4.1: The probability distribution functions used in the numerical study
for one-period retailer demand.

cvi 0.5 1 2
µi 0.89 2.11 1.14 0.45

x Px x Px x Px x Px

0 0.15 0 0.14 0 0.42 0 0.78
1 0.82 1 0.11 1 0.20 1 0.07
2 0.02 2 0.25 2 0.20 2 0.07
3 0.01 3 0.50 3 0.18 3 0.08

(Px
def= Pr{Di(t, t) = x} for i = 1, 2.)

4.4.1 Computational Procedure

We used the average cost criterion for the computations. For each scenario,
LB was calculated using the analytical results of Chapter 2. We simulated
the LB heuristic policy for the purpose of computing UB, and used a prime
modulus multiplicative linear congruential random number generator given in
Law and Kelton (2000) in the simulations. As in Chapter 3, we used the
method of batch means for constructing a point estimate and a confidence
interval for the steady-state mean of the expected cost. The batch size is fixed
at 10,000 periods and the observations of the first batch were deleted for the
warmup procedure. Each problem instance is run for at least 200 batches and
terminated as soon as the width of a 95% confidence interval about the average
cost function is within 1% of the average cost.
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We applied value iteration (successive approximation) algorithm for solving
the stochastic dynamic program developed. The accuracy number used for
termination is 10−4. The absolute error made with this accuracy number
depends on the cost estimated with the value iteration algorithm. In this
numerical study, we present the optimal cost (g∗) values with three decimal
places, and g∗ figures can deviate at most ±10−3 from the theoretical optimal.

Albeit the fact that Assumption 3 provides lower bounds for some of the
state variables, we do not know the values of I0, IP 1 and IP 2 for an ar-
bitrary scenario. Our approach is to truncate the state space and approx-
imate the value function along the boundaries. First, we assign values for
I0, IP 1 and IP 2. Any transition beyond the boundaries is redirected to a
state along the boundary. For example, let l0 = 1, I0 = −6, IP 1 = −9,
IP 2 = −9, and the state of the system (after the actions are taken) be
(I0(0),y(0), IP(0)) = (−6, (0), (−9, 3)). Note that any positive demand at
a retailer drifts the system beyond the boundary. If both retailers experi-
ence demand of 2, instead of evolving to (−10, (0), (−11, 1)), the transition
is routed to (−6, (0), (−9, 1)). Manipulating transitions in this way prohibits
visiting states with larger expected costs. Hence, the optimal cost value ob-
tained from the value iteration algorithm underestimates the true optimal cost
if I0 and IP i do not cover the entire class of recurrent states. Next, we run
the value iteration algorithm with lower I0 and IP i values than before and
repeat the computational procedure until the calculated cost does not differ
from the previous iteration. Table 4.2 shows the average cost values obtained
by applying the computational procedure described above for a scenario with
identical retailers. Starting with (I0, IP 1, IP 2) = (0,−6,−6), the cost figures
increase until (I0, IP 1, IP 2) = (−6,−12,−12) where g∗ is achieved. We do
not provide the data of each scenario (like in Table 4.2) regarding the conver-
gence, but it was observed in all scenarios considered in the study. This is a
numerical evidence supporting Assumption 3.

The convergence of the value iteration algorithm is reported to be problem
dependent and the number of iterations typically increases in the number
of states (see Tijms (2003, p. 259)). However, our experiences are quite
satisfactory. The number of iterations required for convergence with accuracy
number 10−4 ranges from 7 to 55; most of the scenarios converge in 20 to 40
iterations.

4.4.2 Identical Retailers

We developed a test bed of 81 scenarios with both retailers being identical in
terms of cost and leadtime parameters, and demand distributions. In other
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Table 4.2: The results of the computational procedure for various values of the
lower bounds of the state variables from a scenario with l0 = 1, l1 = l2 = 3,
h0 = 0.90, h1 = h2 = 0.10, p1 = p2 = 4 and cv1 = cv2 = 2.

I0 IP 1 IP 2 Optimal Cost
0 -6 -6 8.79803391
-1 -7 -7 8.80378125
-2 -8 -8 8.80539633
-3 -9 -9 8.80594393
-4 -10 -10 8.80609908
-5 -11 -11 8.80611030
-6 -12 -12 8.80611031
-7 -13 -13 8.80611031

words, l1 = l2, h1 = h2, p1 = p2, µ1 = µ2 and cv1 = cv2. All possible
combinations (resulting in 81 problem instances) of the following parameters
are used:

hi = 0.01, 0.1, 0.5 pi = 4, 9, 19 (l0, li) = (1, 0), (1, 1), (1, 3) cvi = 0.5, 1, 2,

for i = 1, 2. Without loss of generality the holding cost at each retailer is kept
at 1 in all scenarios, i.e., h0 = 1 − hi. The one-period demand distribution
with a mean of 0.89 is utilized in scenarios with cvi = 0.5.

We first calculated LB and UB values for each scenario. When 81 scenarios
are ranked with respect to ε%, 29 of them have ε% > 1.85. Among these
29 problem instances, 27 and 2 of them have coefficient of variation 2 and
1, respectively. The two scenarios with coefficient of variation 1 have ε%
values 1.87 and 2.13. Hence, we decided to study all problem instances with
coefficient of variation equal to 2, which are listed in Table 4.3 where scenarios
are numbered on the basis of decreasing ε%. Next, for each scenario in Table
4.3, we determined g∗. The results of the computations are also tabulated in
Table 4.3.

In order to see the influence of the warehouse leadtime, we also considered
9 additional scenarios having cvi = 2 for i = 1, 2, which are listed with the
computational results in Table 4.4. Similar to Table 4.3, the scenarios in Table
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4.4 are also numbered on the basis of decreasing ε%. The relative gap measures
(ε∗% and ε%) for scenarios 1- 36 are graphically depicted in Figure 4.1.

Table 4.3: The results for scenarios 1-27 with cvi = 2. (i=1,2)

Sce. l0 li h0 hi pi LB g∗ UB ε∗% ε%

1 1 0 0.50 0.50 4 3.828 4.127 4.632 ± 0.006 7.81 21.00
2 1 0 0.90 0.10 4 3.828 4.292 4.632 ± 0.006 12.12 21.00
3 1 0 0.99 0.01 4 3.828 4.297 4.632 ± 0.006 12.25 21.00
4 1 1 0.90 0.10 19 8.340 8.783 9.053 ± 0.014 5.31 8.55
5 1 1 0.99 0.01 19 8.421 8.915 9.134 ± 0.015 5.87 8.47
6 1 1 0.90 0.10 9 6.987 7.243 7.440 ± 0.010 3.66 6.48
7 1 0 0.90 0.10 19 5.990 6.181 6.378 ± 0.010 3.19 6.48
8 1 0 0.99 0.01 19 5.990 6.232 6.378 ± 0.010 4.04 6.48
9 1 1 0.99 0.01 9 7.068 7.372 7.521 ± 0.010 4.30 6.41
10 1 0 0.50 0.50 9 5.095 5.288 5.289 ± 0.005 3.79 3.81
11 1 0 0.90 0.10 9 5.095 5.289 5.289 ± 0.005 3.81 3.81
12 1 0 0.99 0.01 9 5.095 5.289 5.289 ± 0.005 3.81 3.81
13 1 1 0.50 0.50 19 7.918 8.188 8.201 ± 0.010 3.41 3.57
14 1 3 0.50 0.50 4 7.485 7.725 7.728 ± 0.010 3.21 3.25
15 1 3 0.50 0.50 9 9.374 9.598 9.677 ± 0.014 2.39 3.23
16 1 1 0.50 0.50 4 5.226 5.380 5.383 ± 0.005 2.95 3.00
17 1 3 0.90 0.10 9 10.454 10.756 10.757 ± 0.015 2.89 2.90
18 1 3 0.90 0.10 4 8.565 8.806 8.808 ± 0.011 2.81 2.84
19 1 3 0.99 0.01 9 10.697 10.999 11.000 ± 0.015 2.82 2.83
20 1 1 0.90 0.10 4 5.586 5.741 5.743 ± 0.005 2.77 2.81
21 1 1 0.99 0.01 4 5.667 5.822 5.824 ± 0.005 2.74 2.77
22 1 3 0.99 0.01 4 8.808 9.049 9.051 ± 0.011 2.74 2.76
23 1 3 0.50 0.50 19 11.006 11.227 11.303 ± 0.019 2.01 2.70
24 1 0 0.50 0.50 19 5.799 5.919 5.946 ± 0.006 2.07 2.53
25 1 3 0.90 0.10 19 12.086 12.381 12.384 ± 0.020 2.44 2.47
26 1 3 0.99 0.01 19 12.329 12.624 12.627 ± 0.020 2.39 2.42
27 1 1 0.50 0.50 9 6.528 6.635 6.649 ± 0.009 1.64 1.85

The findings can be summarized as follows:

1. In the test bed of 81 problem instances with l0 = 1, there are 25 scenarios
with ε% > 2.5; all have coefficient of variation equal to 2, see Table 4.3.
Further, scenarios 28-36 have ε% figures greater than 2. This is in line with
the finding of Chapter 3 that the main determinant of considerable ε% is
high coefficient of variation of demand when the retailers are identical.
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Table 4.4: The results for scenarios 28-36. (i = 1, 2)

Sce. l0 li h0 hi pi cvi LB g∗ UB ε∗% ε%

28 2 0 0.90 0.10 4 2 4.232 4.644 4.914 ± 0.006 9.74 16.12
29 2 0 0.99 0.01 4 2 4.232 4.675 4.914 ± 0.006 10.47 16.12
30 2 0 0.90 0.10 9 2 5.535 5.959 6.316 ± 0.011 7.66 14.11
31 2 0 0.99 0.01 9 2 5.535 5.990 6.316 ± 0.011 8.22 14.11
32 2 0 0.50 0.50 9 2 5.415 5.703 5.831 ± 0.007 5.32 7.68
33 2 0 0.50 0.50 4 2 4.195 4.467 4.509 ± 0.005 6.48 7.49
34 2 0 0.90 0.10 19 2 6.616 6.895 6.947 ± 0.009 4.22 5.00
35 2 0 0.99 0.01 19 2 6.695 7.014 7.026 ± 0.009 4.76 4.94
36 2 0 0.50 0.50 19 2 6.190 6.308 6.317 ± 0.006 1.91 2.05

2. In scenarios 1-36, the relative gap between g∗ and LB, i.e., ε∗%, is in the
range [1.64,12.25] with 11 scenarios having ε∗% > 5, which implies that the
error made by using LB as a proxy for the optimal average expected cost
can be significant.

3. The performance of the LB heuristic policy is scenario dependent. We
calculated ε%

ε∗% ratios for all scenarios in Tables 4.3 and 4.4. For scenar-
ios 10-14, 16-22, 25-26, and 35, ε%

ε∗% ≤ 1.05. For these settings, the LB
heuristic policy is a good heuristic. However, the performance deteriorates
significantly in scenarios 1-9 and 28-33, see Figure 4.1. Unfortunately, the
results do not reveal any specific parameter value that may cause good/bad
performance.

4. Observe from Tables 4.3 and 4.4, scenarios 1-26 and 28-35 have ε∗% figures
greater than 2. In these scenarios, ε% > 2.42. Further, we do not have any
problem instance with significant ε% and negligible ε∗%. Hence, based on
the results in identical retailers case, we conclude that when ε% is high in
a problem instance, the corresponding ε∗% is also considerable.

5. In order to investigate whether a relationship exists between the input pa-
rameters and ε∗%, we set up Figures 4.2 and 4.3. In Figure 4.2 (a), ε∗% val-
ues are scattered against penalty costs for 9 scenarios with (l0, li) = (1, 0).
Each serie in the graph corresponds to a specific h0. Similarly, Figure 4.2
(b), Figure 4.3 (a) and Figure 4.3 (b) depicts ε∗% values of scenarios with
(l0, li) equal to (2,0), (1,1) and (1,3), respectively. A trend is only observed
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in Figure 4.2. For a given penalty cost, ε∗% grows as h0 increases in Figure
4.2 (a) and (b). Further, in Figure 4.2 (b), for a given h0 level, ε∗% shrinks
as the penalty cost increases.

4.4.3 Nonidentical Retailers

We developed a test bed consisting of 1280 scenarios for nonidentical retailers
case. The following input parameter settings were used:

(h0, h1, h2) = (0.5, 0.5, 0.5), (0.5, 0.5, 0.01), (0.5, 0.01, 0.5), (0.5, 0.01, 0.01),
(0.9, 0.1, 0.1), (0.9, 0.1, 0.01), (0.9, 0.01, 0.1), (0.9, 0.01, 0.01)

(cv1, cv2, µ1, µ2) = (0.5, 0.5, 0.89, 2.11), (0.5, 0.5, 0.89, 0.89), (0.5, 0.5, 2.11, 2.11),
(0.5, 1, 0.89, 1.14), (0.5, 1, 2.11, 1.14), (0.5, 2, 0.89, 0.45),
(0.5, 2, 2.11, 0.45), (1, 1, 1.14, 1.14), (1, 2, 1.14, 0.45),
(2, 2, 0.45, 0.45)

(l0, l1, l2) = (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)
(p1, p2) = (4, 4), (4, 19), (19, 4), (19, 19).

Similar to how we set up the test beds in §3.4 and §4.4.2, a full factorial design
using the input parameters given above results in a total of 1280 scenarios.

We interpret additional holding costs as parameters that represent the dis-
tribution of the added value in a supply chain. For example, the added
value is higher at the warehouse compared to the retailers in a scenario with
(h0, h1, h2) = (0.9, 0.1, 0.1). Moreover, we take the mean of the demand at a
retailer as an indicator of its size. As an example, if µ1 = 2.11 and µ2 = 0.45
then the first retailer is almost five times larger than the second one in size.

The results of the numerical study show that many problem instances have
high ε%; relative gap value ε% = 530 is found. We decided to focus on
510 of them, which have ε% > 5. Out of these 510 scenarios, while 148
of them have an added value of 0.01 at both retailers (i.e., (h0, h1, h2) =
(0.5,0.01,0.01) or (0.9,0.01,0.01)), 261 of them have an added value of 0.01
at only one of the retailers, i.e., (h0, h1, h2) =(0.5,0.5,0.01), (0.5,0.01,0.5),
(0.9,0.1,0.01) or (0.9,0.01,0.1). The rest of the scenarios (101 out of 510) with
(h0, h1, h2) =(0.5,0.5,0.5) or (0.9,0.1,0.1) and ε% > 5 are enumerated with
respect to coefficient of variation composition and the results are tabulated in
Table 4.5. When we analyzed these 101 scenarios, the ones with (cv1, cv2) =
(0.5,1) have (h0, h1, h2) = (0.9,0.1,0.1), and the ones with (cv1, cv2) = (0.5,0.5)
have (µ1, µ2)= (0.89,0.89) or (0.89,2.11). In the light of these observations,
we decided to set up a new test bed that consists of 37 scenarios, which are
given in Table 4.6.
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Figure 4.1: Relative gaps for scenarios 1-36.
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(1, 0), (b): (l0, li) = (2, 0) for scenarios 1-36. (i=1,2)
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Table 4.5: The composition of 101 scenarios having (h0, h1, h2) =(0.5,0.5,0.5)
or (0.9,0.1,0.1) with respect to coefficient of variation.

cv1, cv2 (0.5,2) (0.5,1) (0.5,0.5) (1,1) (1,2) (2,2)
Number of scenarios 32 7 14 2 20 26

Table 4.6 is organized as follows. There are 7 sets of scenarios, the first six
of which target a specific interaction between the input parameters. In set 1,
the relationship between the added value (h1, h2) and the size of the retailers
(µ1, µ2) is investigated. While h0=0.5, negligible added value (0.01) is assigned
to one or both of the retailers. Leadtimes, penalty costs and coefficient of
variations are set to equal and lowest possible values. Set 2 scenarios are
identical to set 1 scenarios except the holding costs; all scenarios in set 2
have h0 = 0.9. Sets 1 and 2 allow us to study the forwarding-to-the-small-
retailer phenomenon (see §3.4.2) further. In set 3, we inquire into the effect
of size. All parameters except mean demands are kept constant and equal.
The difference between set 3 scenarios, and scenarios 40-41 and 45-46 is that
the added values at the retailers are not negligible (0.1) and penalty costs
are higher (19). The scenarios in set 4 are developed to see the impact of
asymmetric penalty costs; in each scenario, the retailers are identical except
the penalty costs. Set 5 show us the combined effect of size, coefficient of
variation, and penalty cost asymmetry. Although the input parameters in
scenarios 54-59 might seem too specific, the relative gaps provide interesting
implications. The seven scenarios in set 6 are chosen to see the impact of the
coefficient of variation. The common aspect among the problem instances in
set 7 is high ε%.

The computational results for the scenarios of Table 4.6 are tabulated in Table
4.7. Note that in scenarios 41, 42, 46, 49, 51 and 53, UB is slightly lower
than LB, and in scenario 50 UB is slightly lower than g∗, but in all these
settings aforementioned LB and g∗ figures are within the calculated confidence
intervals.

Next, we analyze the results by comparing ε% and ε∗% figures from different
scenarios and draw conclusions.

1. Compare scenario 37 against 38. While the larger retailer has an insignif-
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Table 4.6: The parameters of scenarios 37-73.

Set Sce. l0 l1 l2 h0 h1 h2 p1 p2 cv1 cv2 µ1 µ2

37 1 0 0 0.50 0.50 0.01 4 4 0.5 0.5 0.89 2.11
38 1 0 0 0.50 0.01 0.50 4 4 0.5 0.5 0.89 2.11

1 39 1 0 0 0.50 0.01 0.01 4 4 0.5 0.5 0.89 2.11
40 1 0 0 0.50 0.01 0.01 4 4 0.5 0.5 0.89 0.89
41 1 0 0 0.50 0.01 0.01 4 4 0.5 0.5 2.11 2.11
42 1 0 0 0.90 0.10 0.01 4 4 0.5 0.5 0.89 2.11
43 1 0 0 0.90 0.01 0.10 4 4 0.5 0.5 0.89 2.11

2 44 1 0 0 0.90 0.01 0.01 4 4 0.5 0.5 0.89 2.11
45 1 0 0 0.90 0.01 0.01 4 4 0.5 0.5 0.89 0.89
46 1 0 0 0.90 0.01 0.01 4 4 0.5 0.5 2.11 2.11
47 1 0 0 0.90 0.10 0.10 19 19 0.5 0.5 0.89 2.11

3 48 1 0 0 0.90 0.10 0.10 19 19 0.5 0.5 0.89 0.89
49 1 0 0 0.90 0.10 0.10 19 19 0.5 0.5 2.11 2.11
50 1 0 0 0.50 0.50 0.50 4 19 0.5 0.5 0.89 0.89

4 51 1 0 0 0.50 0.50 0.50 4 19 0.5 0.5 2.11 2.11
52 1 0 0 0.90 0.10 0.10 4 19 0.5 0.5 0.89 0.89
53 1 0 0 0.90 0.10 0.10 4 19 0.5 0.5 2.11 2.11
54 1 0 0 0.90 0.10 0.10 4 19 0.5 2 2.11 0.45
55 1 0 0 0.90 0.10 0.10 19 4 0.5 2 2.11 0.45

5 56 1 1 1 0.90 0.10 0.10 4 19 0.5 2 2.11 0.45
57 1 1 1 0.90 0.10 0.10 19 4 0.5 2 2.11 0.45
58 1 1 1 0.90 0.10 0.10 4 19 0.5 1 2.11 1.14
59 1 1 1 0.90 0.10 0.10 19 4 0.5 1 2.11 1.14
60 1 0 0 0.50 0.50 0.50 4 4 0.5 2 2.11 0.45
61 1 0 0 0.90 0.10 0.10 4 4 0.5 2 2.11 0.45
62 1 0 0 0.50 0.50 0.50 4 4 0.5 2 0.89 0.45

6 63 1 0 0 0.90 0.10 0.10 4 4 0.5 2 0.89 0.45
64 1 0 0 0.50 0.50 0.50 4 4 1 2 1.14 0.45
65 1 0 0 0.90 0.10 0.10 4 4 1 2 1.14 0.45
66 1 0 0 0.50 0.50 0.50 4 4 2 2 0.45 0.45
67 1 0 0 0.90 0.10 0.10 4 4 2 2 0.45 0.45
68 1 0 0 0.90 0.10 0.10 19 4 1 2 1.14 0.45
69 1 0 0 0.90 0.01 0.10 19 4 1 2 1.14 0.45

7 70 1 0 1 0.50 0.50 0.01 19 4 0.5 2 2.11 0.45
71 1 0 1 0.50 0.50 0.50 19 4 0.5 2 2.11 0.45
72 1 0 1 0.90 0.10 0.10 19 4 0.5 2 2.11 0.45
73 1 0 0 0.50 0.01 0.50 4 19 0.5 0.5 0.89 2.11
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Table 4.7: The results of scenarios 37-73.

Set Sce. LB g∗ UB ε∗% ε%
37 1.320 1.320 1.320 ± 0.002 0.00 0.00
38 1.597 1.607 1.876 ± 0.002 0.63 17.47

1 39 1.166 1.176 1.482 ± 0.002 0.86 27.10
40 0.818 0.825 0.825 ± 0.003 0.86 0.86
41 1.798 1.798 1.797 ± 0.002 0.00 -0.06
42 2.053 2.053 2.051 ± 0.003 0.00 -0.10
43 2.058 2.069 2.394 ± 0.003 0.53 16.33

2 44 1.979 1.990 2.322 ± 0.003 0.56 17.33
45 1.047 1.054 1.054 ± 0.003 0.67 0.67
46 2.933 2.933 2.931 ± 0.003 0.00 -0.07
47 2.636 2.664 4.041 ± 0.008 1.06 53.30

3 48 2.611 2.643 2.656 ± 0.008 1.23 1.72
49 3.382 3.382 3.380 ± 0.003 0.00 -0.06
50 1.583 1.702 1.701 ± 0.007 7.52 7.45

4 51 2.670 2.670 2.668 ± 0.002 0.00 -0.07
52 1.590 1.711 1.785 ± 0.007 7.61 12.26
53 3.082 3.082 3.080 ± 0.003 0.00 -0.06
54 4.414 4.414 4.416 ± 0.004 0.00 0.05
55 3.471 3.603 11.194 ± 0.021 3.80 222.50

5 56 7.978 8.187 9.428 ± 0.008 2.62 18.17
57 6.964 7.128 11.217 ± 0.017 2.35 61.07
58 8.839 8.852 8.890 ± 0.006 0.15 0.58
59 7.938 7.951 8.703 ± 0.006 0.16 9.64
60 3.119 3.204 3.618 ± 0.003 2.73 16.00
61 3.184 3.452 4.682 ± 0.004 8.42 47.05
62 2.521 2.616 2.617 ± 0.003 3.77 3.81

6 63 2.533 2.663 3.657 ± 0.006 5.13 44.37
64 3.838 4.019 4.352 ± 0.004 4.72 13.39
65 3.838 4.134 4.352 ± 0.004 7.71 13.39
66 3.828 4.127 4.632 ± 0.006 7.81 21.00
67 3.828 4.292 4.632 ± 0.006 12.12 21.00
68 4.366 5.002 8.184 ± 0.015 14.57 87.45
69 4.205 4.847 8.068 ± 0.015 15.27 91.87

7 70 2.898 2.974 15.748 ± 0.033 2.62 443.41
71 3.884 3.911 6.854 ± 0.010 0.70 76.47
72 4.175 4.339 12.088 ± 0.021 3.93 189.53
73 1.635 1.645 3.053 ± 0.005 0.61 86.73
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icant added value in the former, it is the reverse in the latter; all other
parameters (leadtimes, penalty costs and coefficient of variations) are kept
equal and at lowest values (within the parameter combinations of the test
bed). Conceding the fact that the impact of this difference is big on ε%
(0.00 vs. 17.47), respective ε∗% values 0.00 and 0.63 for scenarios 37 and
38 implies that the performance of the LB heuristic policy is poor when
there is a negligible added value at the small retailer. Now, consider sce-
nario 39, which has insignificant added value at both retailers (the retailer
sizes are not equal). Observe that ε% = 27.10 whereas ε∗% = 0.86, which
shows the mediocre performance of the LB heuristic policy. However, when
the size effect is removed, look at scenarios 40 and 41, ε% drops consider-
ably. Analogues observations can be made for set 2 scenarios. In the light
of these, we conclude that the LB heuristic policy does not perform well
when the retailer sizes are disproportionate, and the added value only at
the small retailer or at both retailers are insignificant. Moreover, LB ap-
proximates g∗ accurately under these settings. Recall from Chapter 3 that
ε% grows considerably when there is a negligible added value at the small
retailer. We call this phenomenon as forwarding-to-the-small-retailer due
to the overstocking at the small retailer under the LB heuristic policy. The
results for scenarios 38 and 39 show that the error made by forwarding-
to-the-small-retailer is substantial, so the performance of the LB heuristic
policy is poor under such settings.

2. Although we see the effect of retailer size in sets 1 and 2, it is a combined
effect with small added value at the retailers. Thus, we decided to study the
sole impact of retailer size and considered set 3 and the following scenarios:

l0 l1 l2 h0 h1 h2 p1 p2 cv1 cv2 µ1 µ2

1 0 0 0.50 0.50 0.50 4 4 0.5 0.5 0.89 2.11
1 0 0 0.50 0.50 0.50 4 4 0.5 0.5 0.89 0.89
1 0 0 0.50 0.50 0.50 4 4 0.5 0.5 2.11 2.11
1 0 0 0.50 0.50 0.50 19 19 0.5 0.5 0.89 2.11
1 0 0 0.50 0.50 0.50 19 19 0.5 0.5 0.89 0.89
1 0 0 0.50 0.50 0.50 19 19 0.5 0.5 2.11 2.11
1 0 0 0.90 0.10 0.10 4 4 0.5 0.5 0.89 2.11
1 0 0 0.90 0.10 0.10 4 4 0.5 0.5 0.89 0.89
1 0 0 0.90 0.10 0.10 4 4 0.5 0.5 2.11 2.11

Note that except retailer size, all other input parameters are kept constant.
Further, (h0, h1, h2) = (0.5,0.5,0.5) and (0.9,0.1,0.1), which is the main
deviation from the scenarios of sets 1 and 2. For the nine scenarios listed
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above, ε% < 0.2, thus, we concentrate on the problem instances in set 3.
Compare ε% figures in scenarios 47-49. When there is a size asymmetry
(scenario 47), ε% = 53.3, but ε∗% = 1.06, which shows g∗ is close to LB.
Further, ε% and ε∗% figures become close when size asymmetry is removed,
see scenarios 48 and 49. This observation leads to the conclusion that the
LB heuristic policy may perform poorly in the presence of size asymmetry.

3. Consider the following comparisons between the scenarios: 40 vs. 41, 45 vs.
46, and 48 vs. 49. In these problem instances, there is no size asymmetry.
The difference between scenarios 40 and 41 is the mean demands of the
retailer, similar observation holds for scenarios 45 and 46, and 48 and 49.
While ε∗% = 0.00 in scenarios 41, 46 and 49 , ε∗% > 0.5 in scenarios 40,
45 and 48. This indicates the impact of the demand distribution on the
quality of LB in approximating g∗.

4. Set 4 is developed to investigate the penalty cost asymmetry. All input
variables except the penalty costs are identical in scenarios 50-53. The
results for scenarios 51 and 53 suggest how good is LB as a proxy for g∗,
but the performance deteriorates substantially in scenarios 50 and 52 where
retailer mean demands are 0.89. Similarly, the LB heuristic policy functions
well in scenarios 50, 51 and 53, but poorly in scenario 52. However, results
point out a joint effect in scenario 52. Compare scenario 51 against 50 and
53 against 52. When mean demand at the retailers drops from 2.11 to 0.89,
g∗ escalates above 7.5 from 0. This shows the significant effect of demand
distribution, which is also pointed out in item 3. These observations lead
one to expect that ε% = 12.26 in scenario 52 is a joint effect of the demand
distribution and the asymmetry in penalty costs. Nevertheless, the LB
heuristic policy may not be an appropriate heuristic in the presence of
penalty cost asymmetry.

5. Consider scenarios 54 and 55. The difference between the two settings
is that the smaller retailer (retailer 2) has a higher penalty cost (19) in
scenario 54 than in scenario 55. The impact on ε% values is huge; observe
the sudden jump from 0.05 to 222.5. Next, consider scenarios 56 and 57,
which are identical to 54 and 55, respectively except (l1, l2) = (1,1). The
performance of the LB heuristic policy is mediocre in both scenarios 56
and 57 (ε% = 18.17 in scenario 56 and ε% = 61.07 in scenario 57). Now
compare scenario 56 against 58 and 57 against 59; except the coefficient
of variation and the mean demand of the second retailer (cv2=1, µ2=1.14
in scenarios 58 and 59), the problem instances are identical. Notice that
the ε% and ε∗% values are larger in scenarios 56 and 57, which implies
that the effect of the balance assumption increases as the retailers become
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more unlike. The results lead us to the conclusion that the LB heuristic
policy performs inferiorly when the small retailer has a larger coefficient of
variation and penalty cost.

6. Notice that in each set 6 scenario, retailers are identical except the coef-
ficient of variations and mean demands. Further, scenarios 66 and 67 are
identical to scenarios 1 and 2, respectively. ε∗% figures in set 6 are scat-
tered against four coefficient of variation and mean demand combinations
in Figure 4.4. The scenarios with h0 = 0.5 and h0 = 0.9 are represented in
two distinct series. The first retailer’s coefficient of variation increases as
moved from left to right along the x-axis in Figure 4.4. First of all, observe
that ε∗% values are higher when h0 = 0.9. When the added value at the
warehouse increases (with respect to the retailers) both ε% and ε∗% increase
substantially. Second, when h0 = 0.5, ε∗% exhibits an escalating trend as
the coefficient of variation of the first retailer increases. For h0 = 0.9, a
similar trend is observed starting from (cv1, cv2, µ1, µ2) = (0.5,2,0.89,0.45).
These observations lead one to expect that the more variable the demand
faced by the system, the larger the relative gap between g∗ and LB. The
performance of the LB heuristic policy is poor in all problem instances of
set 6 in general; moreover, the performance deteriorates significantly when
h0 is high, compare scenario 61 to 60 and 63 to 62.

7. Consider the problem instances in set 7. All scenarios have high ε%, but ε∗%
does not exhibit a similar behavior. While ε∗% figures are high in scenarios
68 and 69, scenarios 71 and 73 have low ε∗%. Unlike in the identical retailers
case, there are many problem instances in Table 4.7 with negligible ε∗%.
Hence, although ε∗%-ε% relation is clear in certain settings, we conclude
that ε% is not sufficient to understand how ε∗% behaves in general.

4.4.4 Optimal Policy Behavior

In this subsection, we investigate the optimal policy derived by the value
iteration algorithm in a couple of selected scenarios, which are found to give
interesting insights. We do not intend to analyze the optimal policy behavior
thoroughly; instead, we would like to compare the optimal policy to the LB
heuristic policy and identify the similarities and the main differences. We
consider scenarios 1, 2, 13, 39 and 55, which fall into the respective categories
(iii), (iii), (ii), (iv) and (iv), as defined in §4.1.

When the value iteration terminates, the stationary policy derived is a ε-
optimal policy where ε is the accuracy number used; in our study ε = 10−4.
The Markov chain induced by this ε-optimal policy is unichain, so composed
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Figure 4.4: Relative gap vs. coefficient of variation-mean demand combination
for the scenarios of set 6.

of recurrent and transient states. Let R be the set of recurrent states. In
order to analyze the optimal policy behavior in the steady state, we need to
determine R and the corresponding optimal actions for each state s ∈ R. The
algorithm developed by Fox and Landi (1968) can be utilized to determine the
set of recurrent states, but in our numerical experiments, there are Markov
chains with more than 500 thousand states. Since the algorithm by Fox and
Landi is based on matrix structure, we decided to follow another route. Our
approach is described in the next paragraph.

Let Ω denote the set of all states used in the value iteration. Recall that Ω
is finite and compact. Define a∗(s), s ∈ Ω as the optimal actions (ordering
and shipment decisions) under the ε-optimal policy derived by value iteration.
For a scenario, the system is simulated under ε-optimal policy given by the
value iteration for 4 million periods. In this run, after the first 2 million
periods, the states visited by the system in the next 2 million periods are
recorded. The set of states recorded are denoted by Rsim. Then, a state
s ∈ Rsim is picked. a∗(s) and all possible demand realizations, (d1, ..., dN ) with



4.4. Computational Results 111

Pr{D1(t, t) = d1, ..., DN (t, t) = dN} > 0 where di ∈ {0, 1, ..., Ai} for i = 1, 2,
determine the states visited in one transition starting from s. Let S1(s) be
the set of states that are accessible from s in one transition under ε-optimal
policy. Next, for each state i ∈ S1(s) we determine S1(i), and continue in this
manner until no new state is identified. This recursion provides all states that
are accessible from s, which is denoted by the set A(s). If s ∈ R, i.e., s is a
recurrent state, then all states in A(s) are also recurrent. Further, if for all
s ∈ Rsim, A(s) = Rsim then we can conclude R = Rsim.

We analyzed scenarios 1, 2, 13, 39 and 55. For each problem instance, first
Rsim was identified. Then we checked for all s ∈ Rsim, whether A(s) = Rsim

holds. In all scenarios, this was demonstrated. Next, we analyzed the re-
current states, R, and the corresponding optimal actions. In all the scenar-
ios considered l0 = 1, so each state s ∈ R can be represented by a tuple
(I0, o1, IP1, IP2) where I0 is the echelon stock of the warehouse, o1 is the in-
coming order, and IP1 and IP2 are the inventory positions of retailer 1 and 2,
respectively. The optimal actions for s are denoted by another tuple (o, r1, r2)
where o is the order size, and r1 and r2 are the respective shipment quantities
for retailer 1 and 2. In every scenario, for every state s ∈ R, we calculated
I0 + o1 − (IP1 + IP2 + r1 + r2) and plotted these quantities against I0 + o1.
In other words, for each scenario, we depicted the amount of stock retained
at the warehouse after a shipment decision against the echelon stock of the
warehouse just before the shipments. We also plotted the order size, o, against
the echelon stock of the warehouse just before the shipments, I0 + o1. In ad-
dition, we scattered the amount of stock retained at the warehouse after the
shipment decision and the order size under the LB heuristic policy for I0 + o1

values on these graphs. Next, we discuss each selected scenario in detail.

Scenario 1
In R of scenario 1, echelon stock of the warehouse at the beginning of a period
(I0 + o1) varies over the integers in [-3,5]. By Lemma 2.1 (iv) and Lemma 2.7
(iv), y∗

1
= y∗1 = y∗

2
= y∗2 = 2 and Y ∗0 = {3}. Hence, under the LB heuristic

policy, no stock is kept at the warehouse and the ordering is carried out such
that the echelon inventory position of the warehouse is increased up to 3.

Now, we investigate the optimal ordering behavior by analyzing Figure 4.5
(b). Observe from the figure that the warehouse increases its echelon inventory
position up to three distinct levels by ordering. These levels depend on the
echelon stock of the warehouse; for (I0 + o1) ∈ {−3,−2,−1} level is 3, for
(I0 + o1) ∈ {1, 2, 3} level is 4, and for (I0 + o1) ∈ {4, 5} level is 5. When
I0 + o1 = 0, depending on the inventory positions of the retailers, the level
becomes 3 or 4. On one hand, if inventory position of zero can be realized
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at both retailers after shipments (i.e., IP1 + r1 = IP2 + r2 = 0) then the
warehouse orders 3 units. On the other hand, if (IP1 + r1, IP2 + r2) = (1,-1)
or (-1,1), then order size is 4. Note that in case of imbalance between the
retailers (the latter case), warehouse orders more. This is an interesting point
showing the sensitivity of the optimal policy on individual inventory positions
of the retailers.

Unlike the LB heuristic policy, the optimal policy keeps stock at the warehouse
depending on I0 + o1, IP1 and IP2, see Figure 4.5 (a). When I0 + o1 = 3,
inventory positions of the retailers determine the decision of retaining a unit
or not at the warehouse. At all states corresponding to (I0 + o1, I0 + o1 −
(IP1 + IP2 + r1 + r2) = (3,0) in Figure 4.5 (a), inventory position of one
retailer is 2, i.e., IP1 = 2 or IP2 = 2. However, when it is possible to attain
(IP1 + r1, IP2 + r2) = (1,1) with the shipment decisions (these are the states
corresponding to (I0 + o1, I0 + o1 − (IP1 + IP2 + r1 + r2)) = (3,1) in Figure
4.5 (a)), then one unit is retained at the warehouse. Further, at states with
I0 + o1 = 5, it is always possible to reach (IP1 + r1, IP2 + r2) = (2,2), and the
optimal policy keeps a unit at the warehouse.

The differences in ordering and shipment decisions detailed above results in
a considerable improvement in terms of costs as can be seen from Table 4.3:
ε∗% = 7.81 and ε% = 21.00.

Scenario 2
The optimal base stock levels for the relaxed model are y∗

1
= y∗1 = y∗

2
= y∗2 = 3

and Y ∗0 = {3}. As a consequence, no stock is hold at the warehouse under the
LB heuristic policy. As can be seen from Figure 4.6 (a), under the optimal
policy, the warrehouse keeps stock when I0 + o1 = 5.

The optimal ordering policy structure is somehow similar to the one in scenario
1. When (I0 + o1) ∈ {−3,−2,−1, 0}, (I0 + o1) ∈ {2, 3} and (I0 + o1) ∈ {4},
the optimal ordering scheme raises the inventory position of the warehouse up
to 3, 4 and 5, respectively; see Figure 4.6 (b). If I0 + o1 = 5 then no order is
placed, and if I0+o1 = 1 then the order size depends on the individual retailer
inventory positions:

• at the states corresponding to (I0 + o1, o) = (1,2) in Figure 4.6 (b), (IP1 +
r1, IP2 + r2) = (1,0) or (0,1) after the shipment decisions,

• at the states corresponding to (I0 + o1, o) = (1,3) in Figure 4.6 (b), one
retailer has an inventory position of 2 just before the shipment, i.e., IP1 = 2
or IP2 = 2. Thus, the other retailer’s inventory position can be increased
up to -1, and 3 units are ordered.
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Figure 4.5: Behavior of optimal and LB heuristic policies in scenario 1: (a)
Amount of stock retained at the warehouse after the shipment decision vs.
echelon stock of the warehouse just before the shipment, (b) Order size vs.
echelon stock of the warehouse just before the shipment.
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Even though the base stock level of the warehouse for the relaxed model is
different in scenarios 1 and 2, the behavior of the LB heuristic policy is iden-
tical in these problem instances because the sum of the base stock levels of the
retailers is greater than the base stock level of the system. Thus, no stock is
kept at the warehouse. Since the installation holding costs of the retailers are
equal (h0 + hi = 1 for i = 1, 2) under both settings, LB values are equal and
ε% = 21.00 for both scenarios. On the contrary, the optimal policy behavior in
scenarios 1 and 2 is different and this has an impact on the long-run expected
average cost, which can be observed from the respective ε% figures 7.81 and
12.12.

Scenario 13
We have chosen this scenario on purpose. Note that ε% and ε∗% values are
close, see Table 4.3. Since the cost of the LB heuristic policy is close to
g∗, the differences between the structure of the LB heuristic policy and the
optimal policy can give important insights. The optimal base stock levels for
the relaxed model are y∗

1
= y∗1 = y∗

2
= y∗2 = 4 and Y ∗0 = {9}. In the recurrent

class R, I0 takes integer values in [-3,9], and (I0 + o1) ∈ {3, 4, ..., 9}. We start
with the analysis of the optimal ordering policy. As can be seen from Figure
4.7 (b), the echelon inventory position of the warehouse is raised to a single
level 9 at all recurrent states. This coincides with the ordering behavior of the
LB heuristic policy. Hence, we can conclude that under the optimal policy
the warehouse follows an echelon base stock policy with a base stock level 9.

At all states with I0 + o1 ≥ 6, both retailers’ inventory positions are increased
to 3, i.e., IP1 + r1 = IP2 + r2 = 3. Starting from I0 + o1 = 7, the warehouse
retains any stock in excess of 6 units, see Figure 4.7 (a). Moreover, at states
with I0 + o1 = 3, 4 and 5, the inventory positions of the retailers after the
shipment decision, (IP1 + r1, IP2 + r2), are (1,2) or (2,1), (2,2), and (2,3)
or (3,2), respectively. These observations indicate that the optimal shipment
policy also has a base stock policy structure with base stock levels 3. The
main difference between the optimal policy and the LB heuristic policy is the
base stock levels for the retailers.

Scenario 39
We have developed scenario 39 to see the joint effect of negligible added value
at the retailers and asymmetric size. Respective relative gap figures for ε%
and ε∗% are 27.10 and 0.86. g∗ is close to LB and the performance of the LB
heuristic policy is mediocre. For the relaxed model, the optimal base stock
levels are y∗

1
= y∗1 = y∗

2
= y∗2 = 3 and Y ∗0 = {8}. Next, we analyze the optimal

policy and investigate the causes of the large difference between the relative
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Figure 4.6: Behavior of optimal and LB heuristic policies in scenario 2: (a)
Amount of stock retained at the warehouse after the shipment decision vs.
echelon stock of the warehouse just before the shipment, (b) Order size vs.
echelon stock of the warehouse just before the shipment.
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Figure 4.7: Behavior of optimal and LB heuristic policies in scenario 13: (a)
Amount of stock retained at the warehouse after the shipment decision vs.
echelon stock of the warehouse just before the shipment, (b) Order size vs.
echelon stock of the warehouse just before the shipment.
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gap measures.

First, the recurrent states have I0 ∈ {−4,−3, ..., 8} and (I0+o1) ∈ {2, 3, ..., 8}.
Figure 4.8 (b) suggests that the optimal ordering strategy has a base stock
policy structure. When I0 + o1 is below 8 at a recurrent state, the inventory
position of the warehouse is increased up to 8. This ordering scheme coincides
with the ordering behavior of the LB heuristic policy in that range.

The optimal shipment policy has an interesting structure. We tabulated (IP1+
r1, IP2 + r2) figures for each I0 + o1:

I0 + o1 (IP1 + r1, IP2 + r2)
2 (1,1)
3 (1,2)
4 (1,3)
5 (2,3)
6 (2,3)
7 (2,3)
8 (2,3)

Note that until the second retailer’s inventory position reaches 3, the optimal
shipment policy prioritizes the second retailer, which is the larger retailer.
This behavior might be related to the probability distributions other than the
second retailer being larger in size. As can be seen from Table 4.1, while the
probability of having demand of 2 or 3 is 0.03 for the first retailer, it is 0.75
for the second one. Further, unlike the LB heuristic policy, the optimal policy
does not increase the first retailer’s inventory position above 2. As a result,
the warehouse keeps stock when I0 + o1 ≥ 6, see Figure 4.8 (a).

As mentioned before, the ordering structures in the optimal and LB heuristic
policies are identical. It is interesting to observe how the shipment policy leads
to a significant difference in terms of long-run expected average cost.

Scenario 55
This scenario’s relative gap figures are ε∗% = 3.8 and ε% = 222.5, which
leads one to expect a considerable difference between the optimal and the LB
heuristic policy. The optimal base stock levels are y∗

1
= y∗1 = y∗

2
= y∗2 = 3 and

Y ∗0 = {7} for the relaxed model. In R, I0 ∈ {−5,−4, ..., 8} and (I0 + o1) ∈
{1, 2, ..., 8}. The optimal ordering policy raises the echelon inventory position
of the warehouse to 7 when I0 + o1 = 1, 2, 3 or 4, and to 8 when I0 + o1 = 5,
6 or 7. No order is placed when when (I0 + o1) = 8, see Figure 4.9 (b).

The optimal shipment policy is similar to the one in scenario 39. (IP1 +
r1, IP2 + r2) and I0 + o1 figures are tabulated for the recurrent states:
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Figure 4.8: Behavior of optimal and LB heuristic policies in scenario 39: (a)
Amount of stock retained at the warehouse after the shipment decision vs.
echelon stock of the warehouse just before the shipment, (b) Order size vs.
echelon stock of the warehouse just before the shipment.
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I0 + o1 (IP1 + r1, IP2 + r2)
1 (-2,3)
2 (-1,3)
3 (0,3)
4 (1,3)
5 (2,3)
6 (2,3)
7 (2,3)
8 (2,3)

Under the optimal policy, the inventory position of the second retailer (larger
in size, and having higher penalty cost and less variable demand) just after
the shipment is always maintained at 3. For I0 + o1 ≥ 6, stock in excess of 5
units is retained at the warehouse, see Figure 4.9 (a).

4.4.5 Summary

The insights obtained from the results of this study can be summarized as
follows:

• As discussed in detail in §4.1, the balance assumption is accepted as a
well-established assumption in the analysis of one-warehouse multi-retailers
systems. There are many past and recent studies that utilize this presuppo-
sition. Our results show that the error in calculating the long-run expected
average cost made by introducing the balance assumption can be significant.
We report ε∗% values more than 10, see scenarios 2, 3, 29, 67-69.

• The LB heuristic policy, which is built on the optimal policy for the relaxed
model, is not a robust heuristic. While it is accurate in some scenarios, it
performs poorly in others.

• The results show that ε% is solely not enough to explain the behavior of
ε∗% in general. There are scenarios with

(i) low ε∗% and ε%, which implies that LB is an accurate proxy for the
optimal long-run expected average cost, and the LB heuristic policy
is a proper heuristic, e.g., scenarios 37, 41, 42, 51.

(ii) considerable and close ε∗% and ε%, which implies that the LB heuristic
policy performs well, e.g., scenarios 10, 35, 50, 62.

(iii) considerable ε∗% and much larger ε%, which implies neither LB nor
the LB heuristic policy is appropriate, e.g., scenarios 2, 30, 63-69. The
use of the balance assumption leads to substantial errors under such
settings.
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Figure 4.9: Behavior of optimal and LB heuristic policies in scenario 55: (a)
Amount of stock retained at the warehouse after the shipment decision vs.
echelon stock of the warehouse just before the shipment, (b) Order size vs.
echelon stock of the warehouse just before the shipment.
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(iv) low ε∗% and significant ε%, which implies that although LB is a proper
proxy, the LB heuristic policy is a mediocre heuristic, e.g., scenarios
39, 44, 59, 73.

Albeit the fact ε% is not sufficient to understand the behavior of ε∗%, we
determined several settings that fit into one or more of the items listed
above. When retailers are identical, the main determinant of ε% is the
coefficient of variation. The scenarios with identical retailers, and low (0.5)
or moderate (1) coefficient of variation exhibit ε% < 2.1. This observation
conforms to the findings of Chapter 3. In the case of identical retailers,
both ε% and ε∗% are significant when there is high coefficient of variation
(2). The comparison of the relative gap measures (ε% and ε∗%) falls into
items (ii) and (iii) given above. We report ε∗% figures as high as 12.25.

Recall forwarding-to-the-small-retailer phenomenon introduced in §3.4.2.
Having negligible added value at the small retailer expands ε% substan-
tially. The results for optimal cost show that the settings with negligible
value added at the small retailer or at both retailers (while keeping other
parameters equal) fall into item (iv). In these type of settings, putting an
upper bound on the order-up-to level of the small retailer can be considered
(the optimal policy of scenario 39 supports this idea). Similarly, when there
is only a size difference between the retailers, the relative gaps comply with
item (iv). The joint effect of size asymmetry and coefficient of variation
asymmetry conforms to item (iii).

• There is a need for good heuristics under the settings that fall into items
(iii) and (iv). Although Axsäter et al. (2002) report that their heuristics
perform better than the classical approach (which refers to the LB heuristic
policy in our system setting) and show ε% can be reduced to half in some
scenarios, the difference between the cost of their best heuristic and the
optimal may still be substantial. For example take scenario 55 with ε% =
222.50 and ε∗% = 3.80. Even if another heuristic leads to a 50% reduction
in ε%, having ε∗% = 3.80 suggests that there is still a substantial potential
improvement that can be realized.

• The numerical analysis of the optimal policy in some problem instances
show that the optimal policy behavior resembles the LB heuristic policy
behavior, but with different base stock levels. On the other hand, we also
identified more complicated optimal ordering and shipment behavior where
the full state description of the system is utilized.
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4.5 Conclusion and Further Research

In this study, we investigate the effect of the balance assumption on the long-
run average expected cost in one-warehouse multi-retailer inventory/produc-
tion systems. The balance assumption is a widely used presupposition in the
analysis of the aforementioned systems under periodic review. Although there
are a few studies suggesting that this assumption might not be appropriate for
some system parameter settings, the general belief in the multi-echelon inven-
tory literature is that the assumption is well-founded. The balance assump-
tion leads to a relaxation of the original model, which is a multi-dimensional
stochastic dynamic program, and analytical results are available for the re-
sulting (relaxed) model. As a consequence, the cost of the relaxed model is
a lower bound for the optimal cost of the system. The optimal policy for
the relaxed model can be modified to give a feasible policy for the original
model, and the simulation of this modified policy leads to an upper bound
for the optimal cost of the system. We conducted a numerical study where
the upper and lower bounds, and the optimal cost are calculated for various
scenarios. For the first time in the literature, our results show that the error
made by utilizing the balance assumption can be substantial. There are nu-
merous problem instances having considerable ε∗% and substantially higher
ε%, which suggests that neither the lower bound is a proxy for the optimal
cost nor the LB heuristic policy is an accurate heuristic. Further, ε%, which
is used in the literature to assess the performance of heuristics and quantify
the effect of the balance assumption, can be a misleading measure because
we found problem instances with high ε% and very low ε∗%, or very close ε%
and ε∗% figures. These results suggest a need for good, robust and efficient
heuristics for the control of one-warehouse multi-retailer inventory systems.
The numerical analysis of the optimal policy for some scenarios show that the
optimal policy behavior is similar to the behavior of the LB heuristic policy.
Keeping the ordering and shipment behavior of the LB heuristic policy, but
determining the base stock levels differently might be a potential candidate
for a good heuristic. As a future research, we plan to develop new heuristics.
The performance of these heuristics can be tested by comparing them against
the optimal cost and the costs of the available heuristics in the literature.
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4.6 Appendix: Proofs

Proof of Lemma 4.1:

(i) Take an arbitrary policy f . For some t ∈ Z+
0 and i ∈ J , let IPi(t) = xi + b

and zi(t) = a, a ∈ Z+ and b ∈ Z+
0 . Consider policy f̃ (all variables of this

policy are represented with ∼) that imitates all actions of f except that
z̃i(t) = 0 and z̃i(t + 1) = zi(t + 1) + a. In other words, policy f̃ postpones
the shipment of a units to retailer i in period t by one period. Verify that
IPi(s)+zi(s) = ĨP i(s)+z̃i(s) for s ≤ t−1, IPi(t)+zi(t) = ĨP i(t)+z̃i(t)+a,
and IPi(s) + zi(s) = ĨP i(s) + z̃i(s) for s ≥ t + 1. Thus, the expected total
discounted costs of both policies differ only by the expected costs attached
to retailer i for period t; as a result,

Vf − V
ef
= αt {Gi(xi + a + b)−Gi(xi + b)} > 0,

which follows from the convexity of Gi(·) and the definition of xi. Hence,
policy f is suboptimal.

(ii) Take an arbitrary policy f . For some t ∈ Z+
0 and i ∈ J , let IPi(t) = xi − b

and zi(t) = a such that a, b ∈ Z+ and a > b. Consider policy f̃ (all
variables of this policy are represented with ∼) that imitates all actions of
f except that z̃i(t) = b and z̃i(t + 1) = zi(t + 1) + a − b. In other words,
policy f̃ postpones the shipment of a − b units to retailer i in period t
by one period. Verify that IPi(s) + zi(s) = ĨP i(s) + z̃i(s) for s ≤ t − 1,
IPi(t) + zi(t) = ĨP i(t) + z̃i(t) + a− b, and IPi(s) + zi(s) = ĨP i(s) + z̃i(s)
for s ≥ t + 1. Therefore,

Vf − V
ef
= αt {Gi(xi + a− b)−Gi(xi)} > 0,

which shows that policy f is suboptimal. 2

Proof of Lemma 4.3:

(i) Proof is by contradiction. Take an optimal policy f . For some t ∈ Z+
0 , let

y(t) = a, a ∈ Z+ while I0(t) +
∑l0

k=1 y(t − k) ≥ l0A0 +
∑

i∈J xi. Due to
Corollary 4.2, IPi(s) ≤ xi for all s ∈ Z+

0 . Observe that I0(t + l0) = I0(t) +∑l0
k=0 y(t−k)−D0(t, t+l0−1) ≥

∑
i∈J xi+a because I0(t)+

∑l0
k=0 y(t−k) ≥

l0A0 +
∑

i∈J xi +a and the maximum realization of D0(t, t+ l0− 1) is l0A0.
Thus, by Lemma 4.3, y(t) as a whole stays at the warehouse in period t+ l0.
Consider policy f̃ (all variables of this policy are represented with ∼) that
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imitates all actions of f except that ỹ(t) = 0 and ỹ(t+1) = y(t+1)+a. In
other words, policy f̃ postpones the ordering of a units in period t by one
period. Since no portion of y(t) is shipped in period t + l0, any shipment
under f can be replicated by f̃ . The expected total discounted costs of both
policies differ only by the expected system-wide holding cost in period t.
Therefore,

Vf − V
ef

= αt

{
G0

(
I0(t) +

l0∑
k=1

y(t− k) + a

)

−G0

(
Ĩ0(t) +

l0∑
k=1

ỹ(t− k)

)}
= αt+l0h0a

> 0,

which contradicts the optimality of f .

(ii) Proof is by contradiction. Take an optimal policy f . For some t ∈ Z+
0 ,

let I0(t) +
∑l0

k=1 y(t − k) = l0A0 +
∑

i∈J xi − b and y(t) = a such that
a, b ∈ Z+ and a > b. By Corollary 4.2, IPi(s) ≤ xi for all s ∈ Z+

0 . Note that
I0(t+ l0)+y(t) = I0(t)+

∑l0
k=0 y(t−k)−D0(t, t+ l0−1) ≥

∑
i∈J xi +(a−b)

because I0(t)+
∑l0

k=0 y(t−k) = l0A0 +
∑

i∈J xi +(a− b) and the maximum
realization of D0(t, t + l0 − 1) is l0A0. Thus, by Lemma 4.3, at least a − b
units of y(t) are kept at the warehouse in period t + l0. Consider policy f̃
(all variables of this policy are represented with ∼) that imitates all actions
of f except that ỹ(t) = y(t)− (a− b) = b and ỹ(t + 1) = y(t + 1) + (a− b).
In other words, policy f̃ postpones the ordering of a − b units in period t
by one period. Since a− b units of y(t) is not shipped in period t + l0, any
shipment under f can be replicated by f̃ .

The expected total discounted costs of both policies differ only by the ex-
pected system-wide holding cost in period t. Therefore,

Vf − V
ef

= αt

{
G0

(
l0A0 +

∑
i∈J

xi + (a− b)

)
−G0

(
l0A0 +

∑
i∈J

xi

)}
= αt+l0h0(a− b)
> 0,

which contradicts the optimality of f . 2



Chapter 5

Newsboy Characterizations
for Serial Inventory Systems

Abstract: This chapter considers an N -stage serial production/inventory sys-
tem where materials flow from one stage to another in fixed batches. Linear
holding and penalty costs (for backorders) are assumed. By Chen (2000), ech-
elon stock (R,Q) policies are optimal for such systems. Based on the results of
Chen (1998), we show that the optimal reorder levels satisfy newsboy inequal-
ities (equalities) when the demand has a discrete (continuous) distribution.
The newsboy inequalities/equalities show a direct relation between the proba-
bility of no-stockout at the most downstream point and the cost parameters.
Thus, they contribute to the understanding of optimal control. Also, they are
easy to explain to managers and non-mathematical oriented students.

5.1 Introduction

This chapter considers an N -stage serial inventory/production system facing
stochastic demand of the customers at the most downstream stage (stage 1).
The stages are numbered such that stage 1 orders from stage 2, 2 from 3, ...,
and stage N from an external supplier with ample stock. The order size at
each stage is required to be a nonnegative integer multiple of a base quantity
specific for that stage. Further, there is an integer-ratio constraint implying
that the base quantity at some stage should be a positive integer multiple of
the base quantity of the immediate successor stage. The leadtimes between
the stages are constant. Any unfulfilled demand is backlogged and a penalty
cost is incurred. We assume centralized control and periodic review of the

125



126 Newsboy Characterizations for Serial Inventory Systems

inventories. The objective is to minimize the average expected holding and
penalty costs of the system in an infinite horizon.

For the system under study, Chen (2000) has shown that an optimal ordering
policy for each stage is to follow an echelon stock (R,Q) policy: whenever
the echelon inventory position at stage i is at or below the reorder level Ri,
a minimum integer multiple of its base quantity (Qi) that brings the echelon
inventory position above Ri is ordered from stage i + 1. By Chen (1998),
the optimal reorder points are calculated by solving N single-stage (R,Q)
models sequentially. In other words, N single dimensional average cost func-
tions are minimized successively. This study focuses on the optimal reorder
points. We heavily draw on the results of Chen (1998). Introducing a new
representation based on the concept of shortfall, we are able to derive alter-
native expressions for cost functions, which lead to newsboy characterizations
(newsboy inequalities /equalities) for the optimal reorder levels. Newsboy in-
equalities/equalities are expressions that show a direct relation between the
probability of no-stockout at stage 1 (as a result of a given reorder level at
some stage i) and the cost parameters.

Our contribution in this study is as follows. First, we develop a new cost
formulation for the long-run average expected cost of the system based on
the shortfall concept. Second, we show that the optimal reorder levels in an
N -stage serial inventory/production system with fixed batch sizes satisfy news-
boy inequalities (equalities) when the demand distribution is discrete (contin-
uous). Newsboy characterizations are appealing because: (i) they provide new
insights and contribute to the understanding of optimal control, (ii) they are
relatively easy to explain to non-mathematical oriented students (e.g., MBA
students) and managers when compared to recursive expressions that one finds
in the literature.

Under continuous demand, newsboy equalities have been derived for multi-
echelon serial systems without batching (Clark and Scarf (1960) model), se-
rial systems with fixed replenishment intervals, and divergent systems under
the balance assumption by van Houtum and Zijm (1991), van Houtum et al.
(2003), and Diks and de Kok (1998), respectively. In Chapter 2, we extended
the results of Diks and de Kok (1998) to the discrete demand case where
newsboy inequalities instead of newsboy equalities are obtained. This study
generalizes the newsboy characterizations of van Houtum and Zijm (1991)
in two directions; our model incorporates fixed batch sizes and can handle
discrete demand distributions.

In a recent paper, Shang and Song (2005) consider the same model that we
study in this chapter. They construct upper and lower bound functions for
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the cost functions that have to be minimized sequentially in order to calculate
optimal reorder points. The upper and lower bound functions are single-stage
newsboy functions with modified holding and penalty costs. The minimization
of these functions leads to lower and upper bounds for the optimal reorder
levels, which follow from newsboy characterizations. In contrast, we derive
newsboy characterizations for the optimal reorder levels themselves. By our
newsboy characterizations, one obtains an alternative proof for the property
that the variables rl

i as defined by Shang and Song (2005) are lower bounds
for the optimal reorder levels; see Remark 5.3.

The rest of the chapter is organized as follows. We introduce the model in
§5.2. The results from Chen and Zheng (1994a), and Chen (1998) that we use
in our analysis are presented in §5.3.1. Newsboy characterizations are derived
in §5.3.2. We dedicate §5.3.3 for the discussion of our results when the demand
process is continuous, and conclude in §5.4.

5.2 Model

Consider a serial N -stage inventory/production system under periodic review.
The most downstream stage, stage 1, orders from stage 2, 2 from 3, ..., N − 1
from N , and stage N from an exogenous supplier (called stage N+1) with
ample stock. Any order of stage i is an integer multiple of a base order
quantity Qi. Further, we assume that Qi+1 = niQi for i = 1, ..., N − 1 where
ni is a positive integer (integer-ratio assumption). Because of the integer-
ratio assumption, we presuppose that the initial on-hand stock at stage i is an
integer multiple of Qi−1 for i = 2, ..., N . Stage 1 faces the stochastic demand
of the customers. Demands in different periods are i.i.d., discrete, nonnegative
random variables. Any unfulfilled customer demand at stage 1 is backlogged
and a penalty cost is incurred. There are deterministic leadtimes between the
stages, and between the supplier and stage N . Holding cost at every stage,
and penalty cost at stage 1 are linear. We assume centralized control and the
objective is to minimize the average expected holding and penalty costs of the
system in the long-run.

The following sequence of events takes place during a period: (i) inventory
levels at all stages are observed and the current period’s ordering decisions
are made (at the beginning of the period), (ii) orders arrive following their
respective leadtimes (at the beginning of the period), (iii) demand occurs
during the period, (iv) holding and penalty costs are assessed on the period
ending inventory and backorder levels (at the end of the period).

We follow the same notation and assumptions as Chen (1998), except that we
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consider a periodic review setting with i.i.d. demand. For details, we refer to
§2 and §3 of Chen (1998). As indicated by Chen, his analysis and the results
also hold for periodic review models with i.i.d. demand. However, we need
to modify the definitions of some variables and introduce new notation. In
addition to the notation introduced above, we define:

Z = set of integers; Z+ is the set of positive integers, and
Z+

0 = Z+ ∪ {0}.
R = set of real numbers.
t = index for periods, t ∈ Z+.

Li = leadtime from stage i + 1 to stage i, L1 ∈ Z+
0 and Li ∈ Z+

for i = 2, ..., N .
li = total leadtime from the outside supplier to stage i,

li =
∑N

j=i Lj for i = 1, ..., N .
hi = echelon holding cost per unit per period at stage i, hi > 0

for i = 1, ..., N .
Hi = installation holding cost per unit per period at stage i,

Hi =
∑N

j=i hj for i = 1, ..., N .
p = penalty cost per backlogged unit per period, p > 0.

D(t) = discrete demand in period t, which is distributed over Z+
0

with Pr{D(t) = 1} > 0.
µ = expected one-period demand, E[D(t)] = µ ∀t, µ > 0.

Di(t) = demand during the periods t + li+1, ...,t + li.
D−

i (t) = demand during the periods t + li+1, ...,t + li − 1.
F = cumulative distribution function of one-period demand

defined over Z+
0 .

B(t) = backorder level at stage 1 at the end of period t.
ILi(t) = echelon inventory of stage i at the end of period t, i.e.,

on-hand inventory at stage i plus inventories in transit to or
on-hand at stages 1, ...,i− 1 minus backorders at stage 1,
i = 1, ..., N .

IL−i (t) = echelon inventory of stage i at the beginning of period t just
after the receipt of the incoming order, but before the
demand, ILi(t) = IL−i (t)−D(t), i = 1, ..., N .

IPi(t) = echelon inventory position at stage i at the beginning of
period t just after ordering, but before the demand,
i.e., IL−i (t) + inventories in transit to stage i, i = 1, ..., N .

When the period index t in variables Di(t), D−
i (t), B(t), ILi(t), IL−i (t) and

IPi(t) is suppressed, the notation represents the corresponding steady state
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variables. While D−
i denotes Li period demand in steady state, Di stands for

Li + 1 period demand (in steady state).

Remark 5.1 We assume Pr{D(t) = 1} > 0 in order to obtain an irreducible
Markov chain that describes the behavior of the system. All results derived in
the rest of this chapter are valid under this condition. However, the results can
be shown to hold under weaker conditions on the demand, see the appendix of
Chen (2000).

Example 5.1: In order to illustrate our results, we use a system with N = 2,
L1 = L2 = 1, Q1 = 2 and Q2 = 4 as an example throughout the chapter. The
data implies that l1 = 2, l2 = 1 and n1 = 2. See Figure 5.1 for a visual
representation of the system. 2

2 1
Supplier

Q2=4 Q1=2

h2 h1+h2, p

L2=1 L1=1

l2=1

l1=2

D(t)

Figure 5.1: The representation of the system considered in Example 5.1.

5.3 Analysis

This section is composed of three parts. We review some of the main results
from Chen (1998) in §5.3.1; as a matter of fact, some results stem from Chen
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and Zheng (1994a). These are used in §5.3.2 to derive the newsboy characteri-
zations. The case of continuous demand and its consequences on the newsboy
characterizations are discussed in §5.3.3.

5.3.1 Preliminaries

We express the expected holding costs via echelon holding cost parameters.
At the end of period t, the expected holding and penalty cost of the system is

N∑
i=1

hiILi(t) + (p + H1)B(t). (5.1)

Consider the following chain of actions that starts with the ordering decision
of stage N in period t. After ordering, the echelon inventory position of stage
N is IPN (t). This order is received by stage N at the beginning of period
t+ lN and the echelon inventory of stage N at that epoch is IL−N (t+ lN ). Note
that IL−N (t + lN )

(i) bounds the ordering decision of stage N − 1 in period t + lN from above,
i.e., IPN−1(t + lN ) ≤ IL−N (t + lN ), and

(ii) determines the echelon holding cost of stage N at the end of period t + lN ,
i.e., hNILN (t + lN ).

Similarly, the order placed by stage N − 1 in period t + lN arrives in period
t + lN−1 and it bounds the ordering decision of stage N − 2 from above,
i.e., IPN−2(t + lN−1) ≤ IL−N−1(t + lN−1), and affects the echelon N − 1 cost
hN−1ILN−1(t + lN−1). Apply this reasoning for the rest of the stages. The
sum of the costs as a consequence of the chain of actions that starts with the
ordering decision of stage N in period t is

N∑
i=1

hiILi(t + li) + (p + H1)B(t + l1). (5.2)

We call the cost hiILi(t + li) for i = 2, ..., N as the cost attached to echelon i,
and the cost h1IL1(t + l1) + (p + H1)B(t + l1) as the cost attached to echelon
1. Note that, under the average cost criterion in an infinite horizon, (5.1) and
(5.2) are equivalent. Further, when the system reaches the steady state, the
time index can be suppressed for the calculation of the expected value of (5.2).

Example 5.1 (continued): The chain of events (and their consequences)
that starts with the ordering decision of stage 2 in period t is depicted in
Figure 5.2. 2
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......

Stage 2 orders Stage 1 orders

IP2(t) IP1(t+1)

t t+1 t+2

D-
2(t) D1(t)

D2(t)

IP1(t+1)≤ IP2(t)−D-
2(t)

h2IL2(t+1) h1IL1(t+2)+
(p+H1)B(t+2)

Figure 5.2: The relationship between the decisions and their cost-wise conse-
quences in the system of Example 5.1.

Chen (2000) showed that echelon stock (R, Q) policies are optimal for each
stage of the system under study. Hence we are interested in finding optimal
echelon reorder levels, R∗ = (R∗1, ..., R

∗
N ), that minimize

C(R) def= E

[
N∑

i=1

hiILi + (p + H1)B

]
, (5.3)

where C(R) is the expected average cost of the system in a steady state when
echelon reorder points R = (R1, ..., RN ) are used (cf. Chen (1998, p. S225)).

In order to set the stage for new results, we now review some important findings
that originate from Chen and Zheng (1994a), and Chen (1998). First, note
that

ILi = IPi −Di, i = 1, ..., N (5.4)

From Lemma 1 of Chen and Zheng (1994a),

IPi = Oi[IL−i+1], i = 1, ..., N
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where

Oi[x] def=
{

x if x ≤ Ri + Qi

x−mQi if x > Ri + Qi,

and m = max{b|x− bQi > Ri, b ∈ Z+}.

We define the following random variables:

Pr{Ui = u} =
1
Qi

, u = 1, ..., Qi, i = 1, ..., N

Pr{Zi = z} =
1
ni

, z = 0, ..., ni − 1, i = 1, ..., N − 1.

These random variables are independent of each other and independent of the
demand process. If two random variables X and Y have the same distribution,
then we denote it by X

d= Y . From Lemma 1 in Chen (1998), it holds that

Ui+1
d= ZiQi + Ui for i = 1, ..., N − 1. (5.5)

Hadley and Whitin (1961) has shown that the inventory position of a single-
stage (R,Q) system is distributed uniformly over [R + 1, ..., R + Q]. Similar
to this result, due to the assumption of ample stock at the supplier, it is not
hard to see that IPN has a uniform distribution over [RN + 1, ..., RN + QN ],
i.e., IPN

d= RN + UN . Unfortunately, such a property does not hold for the
lower echelons. However, Chen (1998) has shown a similar behavior such that
IPi

d= Vi + Ui for i = 1, ..., N , where

VN = RN , Vi = min{Ri, Vi+1 + ZiQi −D−
i+1} for i = N − 1, ..., 1.

(Notice that when a recursion starts from some stage i and continues until
stage j for i > j, we use a descending index.) Chen (1998) calls Vi as the
effective reorder point at stage i. This result is very important because a
characteristic known for a single-stage system also holds in a multi-echelon
setting, but in a slightly different way: At stages 1, ..., N − 1, IPi is uniformly
distributed over [Vi + 1, ..., Vi + Qi] where Vi is a random variable instead of
the fixed reorder point Ri.

5.3.2 Newsboy Characterizations

We are now prepared for new results. First, we develop an alternative average
cost formula for C(R). Then, subsystem costs are introduced and the first
order difference functions of these costs are derived. These are explicit differ-
ence functions that lead to the newsboy characterizations.
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Alternative average cost formula
Define

Bi = shortfall of the effective reorder point from the reorder
level at stage i, i.e., Bi = Ri − Vi for i = 1, ..., N .

B0 = backorder level at stage 1, i.e., B0 = B.

Due to the infinite stock at the supplier,

BN = 0. (5.6)

For i = N − 1, ..., 1:

Bi = Ri − Vi

= Ri −min{Ri, Vi+1 + ZiQi −D−
i+1}

= Ri + max{−Ri,−Vi+1 − ZiQi + D−
i+1}

= max{0, Ri − Vi+1 − ZiQi + D−
i+1}

= max{0, (Ri+1 − Vi+1)− (Ri+1 −Ri)− ZiQi + D−
i+1}

=
[
Bi+1 + D−

i+1 − (Ri+1 −Ri)− ZiQi

]+
, (5.7)

where [x]+ = max{0, x} for x ∈ Z. Since B = [D1− IP1]+ and IP1
d= V1 +U1,

B = [D1−V1−U1]+. Substituting V1 = R1−B1 in the expression for B leads
to

B0 = B = [B1 + D1 −R1 − U1]
+ . (5.8)

Lemma 5.1 IPi
d= Ri−Bi + Ui for i = 1, ..., N where the Bi are defined by

(5.6)-(5.7).

Proof : By Theorem 1 of Chen (1998), IPi
d= Vi + Ui for i = 1, ..., N . By

definition, Bi = Ri − Vi for i = 1, ..., N . Substituting Vi = Ri − Bi into the
result of Theorem 1 in Chen (1998) leads to the result given in the lemma. 2

The following lemma gives an alternative formula for the expected long-run
average cost of the system.

Lemma 5.2 Let R ∈ ZN . The long-run average expected cost under the
echelon stock (R,Q) policy with reorder levels R is

C(R) =
N∑

i=1

hi

(
Ri − E[Bi] +

Qi + 1
2

− (Li + 1)µ
)

+ (p + H1)E[B0],
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where Bi for i = N, ..., 0 are defined by (5.6)-(5.8).

Proof : The result is obtained by the substitution of (5.4) and the result of
Lemma 5.1 into (5.3):

C(R) = E

[
N∑

i=1

hiILi + (p + H1)B

]

= E

[
N∑

i=1

hi (IPi −Di) + (p + H1)B0

]

= E

[
N∑

i=1

hi (Ri −Bi + Ui −Di) + (p + H1)B0

]
.

=
N∑

i=1

hi

(
Ri − E[Bi] +

Qi + 1
2

− (Li + 1)µ
)

+ (p + H1)E[B0]. 2

Example 5.1 (continued): We continue with the alternative average cost
formula for the system in Example 1:

C(R) = h2

(
R2 +

5
2
− 2µ

)
+ h1

(
R1 − E[B1] +

3
2
− 2µ

)
+ (p + h1 + h2)E[B0], (5.9)

where B1 =
[
D−

2 − (R2 −R1)− 2Z1

]+ with Pr{Z1 = 0} = Pr{Z1 = 1} = 0.5,
and B0 = [B1 + D1 −R1 − U1]

+ with Pr{U1 = 1} = Pr{U1 = 2} = 0.5. As
can be seen in Figure 5.2, while D−

2 is a random variable representing one-
period demand, D1 stands for two-period demand. 2

Subsystem costs and forward difference functions
Consider the following i-stage serial subsystem with i ∈ {1, ..., N}: stage k
follows echelon stock (Rk, nQk) policy for k = 1, ..., i, and stage i + 1 has
ample stock. In the i-stage subsystem, only the costs attached to the echelons
1, 2, ..., i are taken into account. A similar expected long-run average cost
expression is obtained for this subsystem as for the full system in Lemma 5.2:

Ci(R1, ..., Ri)
def=

i∑
k=1

hk

(
Rk − E[B(i)

k ] +
Qk + 1

2
− (Lk + 1)µ

)
+(p + H1)E[B(i)

0 ], (5.10)
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where the B
(i)
k for k = i, ..., 0 are defined by

B
(i)
i = 0, (5.11)

B
(i)
k =

[
B

(i)
k+1 + D−

k+1 − (Rk+1 −Rk)− ZkQk

]+
, k = i− 1, ..., 1, (5.12)

B
(i)
0 =

[
B

(i)
1 + D1 −R1 − U1

]+
. (5.13)

Remark 5.2 Note that B
(N)
k = Bk for k = 0, ..., N . For i = 1, ..., N − 1:

B
(i)
k = (Bk|Bi = 0) for k = 0, ..., i. Further, CN (R) = C(R).

Example 5.1 (continued): In our example, we distinguish two subsystems:
2-stage subsystem and 1-stage subsystem. The 2-stage subsystem is identical
to the full system. The 1-stage subsystem is equivalent to a single-stage system
(the parameters are represented with ∼) having a leadtime L̃ = L1 = 1, a fixed
batch size Q̃ = Q1 = 2, identical demands, i.e., D̃(t) = D(t), a holding cost
h̃ = h1, and a penalty cost p̃ = p + H2 = p + h2. We depict the 1-stage
subsystem in Figure 5.3. 2

12

∞ stock

L1=1

Batches of Q1=2

D(t)

Inventory holding cost: h1

Penalty cost: p+H2

Figure 5.3: The representation of the 1-stage subsystem in Example 5.1.

Define ci(R1, ..., Ri) = Ci(R1, ..., Ri + 1)−Ci(R1, ..., Ri), which is the first or-
der forward difference function of Ci(·) in Ri.
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Lemma 5.3 Let i ∈ {1, ..., N}, and (R1, ..., Ri) ∈ Zi. Then,

ci(R1, ..., Ri) = hi +
i−1∑
k=1

hkPr{B(i)
j > 0 for j = i− 1, ..., k}

−(p + H1)Pr{B(i)
j > 0 for j = i− 1, ..., 0}, (5.14)

where the B
(i)
k for k = i− 1, ..., 0 are defined by (5.11)-(5.13), and the sum on

the righthand side is taken to be a null sum when i = 1.

Proof : Let B̂
(i)
k be defined by (5.11)-(5.13), but with Ri replaced by Ri + 1.

Then, B̂
(i)
i = B

(i)
i = 0. Note that B̂

(i)
i−1 = [B̂(i)

i + D−
i − (Ri + 1 − Ri−1) −

Zi−1Qi−1]+ = [B(i)
i−1 − 1]+. If B

(i)
i−1 = 0 then B̂

(i)
i−1 − B

(i)
i−1 = 0; else if

B
(i)
i−1 > 0 then B̂

(i)
i−1 − B

(i)
i−1 = −1. Next, B̂

(i)
i−2 = [B̂(i)

i−1 + D−
i−1 − (Ri−1 −

Ri−2) − Zi−2Qi−2]+. If B
(i)
i−1 > 0 and B

(i)
i−2 > 0, then B̂

(i)
i−2 − B

(i)
i−2 = −1; if

B
(i)
i−1 = 0 or B

(i)
i−2 = 0, then B̂

(i)
i−2 = B

(i)
i−2. Continuing in this fashion shows

that E[B̂(i)
k ]− E[B(i)

k ] = Pr{B(i)
j > 0 for j = i− 1, ..., k}, k = i− 1, ..., 0. This

result in combination with (5.10) leads to (5.14). 2

We are able to rewrite (5.14) in a recursive way, which is given in the next
lemma.

Lemma 5.4 For i ∈ {1, ..., N}, and (R1, ..., Ri) ∈ Zi:

ci(R1, ..., Ri) =
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0}

−
i−1∑
k=1

Pr{B(i)
k = 0}ck(R1, ..., Rk), (5.15)

where the B
(i)
k for k = i− 1, ..., 0 are defined by (5.11)-(5.13), and the second

sum on the righthand side is taken to be a null sum when i = 1.

Proof : For i = 1, (5.15) is read as c1(R1) = h1−(p+H1)Pr{B(1)
0 > 0}. This is

the expression given in Lemma 5.3. In the rest of the proof, let i ≥ 2, and any
summation with the lower limit greater than the upper limit (e.g.,

∑i−1
m=i) be a

null sum. For k ∈ {1, ..., i−1}, we may rewrite Pr{B(i)
j > 0 for j = i−1, ..., k}

as
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Pr{B(i)
j > 0 for j = i− 1, ..., k}

= 1−
(
Pr{B(i)

k = 0}+ Pr{B(i)
k+1 = 0, B

(i)
k > 0}+ ...

+Pr{B(i)
i−1 = 0, B

(i)
j > 0 for j = i− 2, ..., k}

)
= 1−

(
Pr{B(i)

k = 0}

+
i−1∑

m=k+1

Pr{B(i)
m = 0, B

(i)
j > 0 for j = m− 1, ..., k}

)

= 1−
(
Pr{B(i)

k = 0} +
i−1∑

m=k+1

Pr{B(i)
j > 0

for j = m− 1, ..., k|B(i)
m = 0}Pr{B(i)

m = 0}
)

. (5.16)

Similarly,

Pr{B(i)
j > 0 for j = i− 1, ..., 0}

= 1−
(
Pr{B(i)

0 = 0}+ Pr{B(i)
1 = 0, B

(i)
0 > 0}+ ...

+Pr{B(i)
i−1 = 0, B

(i)
j > 0 for j = i− 2, ..., 0}

)
= Pr{B(i)

0 > 0}

−
i−1∑
m=1

Pr{B(i)
j > 0 for j = m− 1, ..., 0|B(i)

m = 0}Pr{B(i)
m = 0}. (5.17)

Substituting (5.16) and (5.17) into (5.14), and rearranging the terms results
in

ci(R1, ..., Ri) =
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0} −

i−1∑
k=1

hkPr{B(i)
k = 0}

−

[
i−1∑
k=1

hk

i−1∑
m=k+1

Pr{B(i)
j > 0 for j = m− 1, ..., k|B(i)

m = 0}Pr{B(i)
m = 0}

−(p + H1)
i−1∑
m=1

Pr{B(i)
j > 0 for j = m− 1, ..., 0|B(i)

m = 0}Pr{B(i)
m = 0}

]
.
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Changing the order of summation gives

ci(R1, ..., Ri) =
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0} −

i−1∑
k=1

hkPr{B(i)
k = 0}

−

[
i−1∑
m=2

Pr{B(i)
m = 0}

m−1∑
k=1

hkPr{B(i)
j > 0 for j = m− 1, ..., k|B(i)

m = 0}

−(p + H1)
i−1∑
m=1

Pr{B(i)
j > 0 for j = m− 1, ..., 0|B(i)

m = 0}Pr{B(i)
m = 0}

]
.

Next,

ci(R1, ..., Ri)

=
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0} −

i−1∑
k=1

hkPr{B(i)
k = 0}

−

[
i−1∑
m=2

Pr{B(i)
m = 0}

m−1∑
k=1

hkPr{B(m)
j > 0 for j = m− 1, ..., k}

−(p + H1)
i−1∑
m=1

Pr{B(m)
j > 0 for j = m− 1, ..., 0}Pr{B(i)

m = 0}

]

=
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0}

−Pr{B(i)
1 = 0}

[
h1 − (p + H1)Pr{B(1)

0 > 0}
]

−
i−1∑
m=2

Pr{B(i)
m = 0}

[
hm +

m−1∑
k=1

hkPr{B(m)
j > 0 for j = m− 1, ..., k}

−(p + H1)Pr{B(m)
j > 0 for j = m− 1, ..., 0}

]
=

i∑
k=1

hk − (p + H1)Pr{B(i)
0 > 0} −

i−1∑
k=1

Pr{B(i)
k = 0}ck(R1, ..., Rk),

where the first equality follows from the fact that {B(i)
j > 0 for j = m −

1, ..., k|B(i)
m = 0} ≡ {B(m)

j > 0 for j = m−1, ..., k} for k ∈ {m−1, ..., 0}, second
equality from rewriting some of the expressions under a single summation, and
the last equality from the equivalence of (5.14) for i = 1 and i = m to the
expressions within the first and the second brackets, respectively. 2
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Newsboy inequalities
Let Y 1 be a minimizing point of C1(R1). For i = 2, ..., N , define recur-
sively Y i ∈ Z as a point that minimizes Ci(Y 1, ...Y i−1, Ri). The function
Ci(Y 1, ...Y i−1, Ri) is equal to Gi(Ri) of Chen (1998) for i = 1, ..., N and
Ri ∈ Z. As shown there in Lemma 3, Gi(Ri) is convex in Ri (and thus also
Ci(Y 1, ..., Y i−1, Ri)). Due to Theorem 1 of Chen (1998), the optimal reorder
levels are found by minimizing Ci(Y 1, ...Y i−1, Ri) for i = 1, ..., N recursively.

Theorem 5.5 Let i ∈ {1, ..., N}. An optimal reorder level Y i ∈ Z is an
element of the set yi

def= {yl
i, y

l
i + 1, ..., yu

i } where

yl
i = min

{
Ri|Pr{B(i)

0 = 0} ≥ p + Hi+1

p + H1

+
1

p + H1

i−1∑
k=1

Pr{B(i)
k = 0}ck(Y 1, ..., Y k)

}
, (5.18)

yu
i = min

{
Ri|Pr{B(i)

0 = 0} >
p + Hi+1

p + H1

+
1

p + H1

i−1∑
k=1

Pr{B(i)
k = 0}ck(Y 1, ..., Y k)

}
, (5.19)

and

B
(i)
i = 0, (5.20)

B
(i)
i−1 =

[
B

(i)
i + D−

i − (Ri − Y i−1)− Zi−1Qi−1

]+
, (5.21)

B
(i)
k =

[
B

(i)
k+1 + D−

k+1 − (Y k+1 − Y k)− ZkQk

]+
, k = i− 2, ..., 1, (5.22)

B
(i)
0 =

[
B

(i)
1 + D1 − (Y 1 + U1)

]+
. (5.23)

(For i = 1: B
(1)
1 = 0, B

(1)
0 = [B(1)

1 + D1 − (R1 + U1)]+, and the summations∑0
k=1 are taken to be null sums.)

The set{
Ri|Pr{B(i)

0 = 0} ≥ p + Hi+1

p + H1
+

1
p + H1

i−1∑
k=1

Pr{B(i)
k = 0}ck(Y 1, ..., Y k)

}
6= ∅;

thus, yl
i is finite. The set{

Ri|Pr{B(i)
0 = 0} >

p + Hi+1

p + H1
+

1
p + H1

i−1∑
k=1

Pr{B(i)
k = 0}ck(Y 1, ..., Y k)

}
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may be empty; then, yu
i = +∞.

Proof : From the convexity of Ci(Y 1, ..., Y i−1, Ri) in Ri, Y i ∈ yi = {yl
i, y

l
i +

1, ..., yu
i } where yl

i is the minimum Ri satisfying ci(Y 1, ..., Y i−1, Ri) ≥ 0, and
yu

i is the minimum Ri satisfying ci(Y 1, ..., Y i−1, Ri) > 0. By Lemma (5.4),

ci(Y 1, ..., Y i−1, Ri) =
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0}

−
i−1∑
k=1

Pr{B(i)
k = 0}ck(Y 1, ..., Y k)

≥ 0

with the B
(i)
k defined by (5.20)-(5.23). By substituting Pr{B(i)

0 > 0} = 1 −
Pr{B(i)

0 = 0} and rearranging the terms, this inequality may be rewritten as

Pr{B(i)
0 = 0} ≥ p + Hi+1

p + H1
+

1
p + H1

i−1∑
k=1

Pr{B(i)
k = 0}ck(Y 1, ..., Y k).

The expression for yu
i can be derived similarly.

By Lemma 5.3, limRi→+∞ ci(Y 1, ..., Y i−1, Ri) = hi for i = 1, ..., N . Further,
due to the convexity of Ci(Y 1, ..., Y i−1, Ri) in Ri, ci(Y 1, ..., Y i−1, Ri) is a non-
decreasing function of Ri. Since hi > 0, there exists finite Ri values that
satisfy ci(Y 1, ..., Y i−1, Ri) ≥ 0. Hence, yl

i is a finite point. 2

The intuitive message of Theorem 5.5 is informative. Assume that N = 1,
i.e., there is a single-stage system. Note that (5.18) becomes Pr{B(1)

0 = 0} ≥
p+H2

p+H1
= p

p+h1
. The optimal reorder level, Y 1, is chosen such that the proba-

bility of having no-stockout (as a consequence of this reorder level) is greater
than or equal to p

p+h1
, which is the newsboy fractile in a single-stage inven-

tory system. For a general N -stage system, an optimal reorder level at each
stage i ≥ 1 is chosen such that the probability of no-stockout at stage 1 in the
i-stage subsystem is at least equal to p+Hi+1

p+H1
plus a term that depends on the

extent the newsboy fractiles are met at the stages 1, ..., i − 1, see (5.18) and
(5.19). The second term is nonnegative, by definition, since ck(Y 1, ..., Y k) ≥ 0
for k = 1, ..., N . This leads to the following corollary.

Corollary 5.6 For i = 1, ..., N : Y i satisfies

Pr{B(i)
0 = 0} ≥ p + Hi+1

p + H1
,
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where B
(i)
k for k = i, ..., 0 are defined in (5.20)-(5.23).

We can verify the following intuitive relationship between the holding cost
parameters and the reorder levels under an optimal policy.

Corollary 5.7 There exists an optimal (R,Q) policy under which no safety
stock is held at stage i + 1 when hi ↓ 0, i = 1, ..., N − 1.

Proof : Let i ∈ {1, ..., N − 1}. Note that limRi→+∞ ci(Y 1, ..., Y i−1, Ri) = hi

and ci(Y 1, ..., Y i−1, Ri) is a nondecreasing function of Ri due to Lemma 5.3
and the convexity of Ci(Y 1, ..., Y i−1, Ri) in Ri, respectively. If hi ↓ 0, then
yu

i → +∞; thus, we may choose Y i = +∞. This then implies that all goods
arriving at stage i + 1 are immediately forwarded to stage i at the beginning
of each period; resulting in no-stock-keeping at stage i + 1. 2

When Qi = 1 for i = 1, ..., N , the system reduces to the Clark-Scarf model
for which the optimality of base stock policies has been known for more than
four decades (see Clark and Scarf (1960), Federgruen and Zipkin (1984c), and
Chen and Zheng (1994b)). The results of Theorem 5.5 still apply for the
calculation of optimal base stock levels, S∗ def= (S1, ..., SN ), with Si = Y i + 1
for i = 1, ..., N .

For N = 2 with Q1 = Q2 = 1, our newsboy inequalities are equivalent to
the findings in Chapter 2 when the one-warehouse multi-retailer system has a
single retailer (cf. (2.9)).

Example 5.1 (continued): Assume that h1 = 1, h2 = 2 and p = 7;
hence, H1 = 3 and H2 = 2. Further, one-period demand has the following
distribution:

a 0 1 2
Pr{D(t) = a} 0.2 0.5 0.3

An optimal reorder level for stage 1 is determined as follows. The event
{B(1)

0 = [D1−R1−U1]+ = 0} is equivalent to the event {D1−U1 ≤ R1}. The
random variable D1 has a distribution of two-period demand. The probability
distributions of D1 and D1 − U1, and the cumulative probability distribution
of D1 − U1 are given below:

a -2 -1 0 1 2 3 4
Pr{D1 = a} 0 0 0.04 0.2 0.37 0.3 0.09

Pr{D1 − U1 = a} 0.02 0.12 0.285 0.335 0.195 0.045 0
Pr{D1 − U1 ≤ a} 0.02 0.14 0.425 0.76 0.955 1 1
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Note that Pr{B(1)
0 = 0|R1 = a} = Pr{D1 − U1 ≤ a}. From (5.18) and (5.19),

an optimal reorder level for stage 1 (Y 1) must satisfy Pr{B(1)
0 = 0} ≥ p+H2

p+H1
=

9
10 . Since Pr{B(1)

0 = 0|R1 = 2} = 0.955 > 0.9, yl
1 = yu

1 = Y 1 = 2.

Next, we find an optimal reorder point for stage 2. By (5.15), c1(Y 1 = 2) =
1 − (10)(0.045) = 0.55. In order to find Y 2, we need to determine the first
point satisfying

Pr{B(2)
0 = 0} ≥ p

p + H1
+

1
p + H1

Pr{B(2)
1 = 0}c1(Y 1) (5.24)

= 0.7 + 0.055Pr{B(2)
1 = 0},

where B
(2)
1 = [D−

2 − (R2 − 2)− 2Z1]+ and B
(2)
0 = [B(2)

1 + D1 − 2− U1]+. For
R2 = 1, the distributions of B

(2)
1 and B

(2)
0 are tabulated below:

a Pr{D−
2 − 2Z1 + 1 = a} Pr{B(2)

1 = a} Pr(a) Pr{B(2)
0 = a}

-4 0 0 0.007 0
-3 0 0 0.047 0
-2 0 0 0.13475 0
-1 0.1 0 0.2215 0
0 0.25 0.35 0.24125 0.6515
1 0.25 0.25 0.191 0.191
2 0.25 0.25 0.11025 0.11025
3 0.15 0.15 0.0405 0.0405
4 0 0 0.00675 0.00675

where Pr(a) def= Pr{B(2)
1 + D1 − 2− U1 = a}. Note that Pr{B(2)

1 = 0} = 0.35
and Pr{B(2)

0 = 0} = 0.6515, so (5.24) does not hold for R2 = 1. For R2 = 2,
the distributions of B

(2)
1 and B

(2)
0 are as follows:

a Pr{D−
2 − 2Z1 = a} Pr{B(2)

1 = a} Pr(a) Pr{B(2)
0 = a}

-4 0 0 0.012 0
-3 0 0 0.077 0
-2 0.1 0 0.204 0
-1 0.25 0 0.29025 0
0 0.25 0.6 0.2435 0.82675
1 0.25 0.25 0.126 0.126
2 0.15 0.15 0.0405 0.0405
3 0 0 0.00675 0.00675

Substituting Pr{B(2)
1 = 0} = 0.6 and Pr{B(2)

0 = 0} = 0.82675 in (5.24) leads
to Pr{B(2)

0 = 0} = 0.82675 > 0.733. Hence, yl
2 = yu

2 = Y 2 = 2, which follows
from (5.18) and (5.19).
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The optimal reordering points are (Y 1, Y 2) = (2, 2). In order to determine
the optimal long-run average cost of the system (see (5.9)), we calculate
E[B1] = E

[
[D−

2 − 2Z1]+
]

and E[B0] = E [[B1 + D1 − 2− U1]+] using the dis-
tributions given above; the corresponding values are 0.55 and 0.22725, respec-
tively. Substituting these values in (5.9) leads to

C(Y 1 = 2, Y 2 = 2) = 2
(

2 +
5
2
− 2(1.1)

)
+ 1

(
2− 0.55 +

3
2
− 2(1.1)

)
+10(0.22725)

= 7.6225.

Under the optimal policy, (Y 1, Y 2) = (2, 2), the distributions of IP2 = Y 2+U2,
IP1 = Y 1 −B1 + U1 and V1 = R1 −B1 are given below:

a Pr{IP2 = a} Pr{IP1 = a} Pr{V1 = a}
0 0 0 0.15
1 0 0.075 0.25
2 0 0.2 0.6
3 0.25 0.425 0
4 0.25 0.3 0
5 0.25 0 0
6 0.25 0 0

While IP2 is distributed uniformly over the integers in [Y 2 + 1, Y 2 + Q2], IP1

does not exhibit such a behavior. However, IP1 is distributed uniformly over
the integers in [V1 + 1, V1 + Q1]. Unlike at stage 2 where Y 2 = 2 is fixed, V1

is a random variable. (cf. the discussion at the end of §5.3.1) 2

5.3.3 Continuous Demand

The newsboy characterizations in Theorem 5.5 can be further sharpened when
the demand process is continuous. For the rest of this section, assume that
the demand distribution F is continuous on (0,∞) with F (0) = 0. Then,
Ci(R1, ..., Ri) becomes a continuous function. Further, ci(R1, ..., Ri) is now
defined as ∂Ci(R1,...,Ri)

∂Ri
. The results of Lemmas 5.3 and 5.4 still hold.

Contrary to the discrete demand case, we now know for i = 1, ..., N that
there is a Y i ∈ R such that ci(Y 1, ..., Y i) = 0, because of the continuity and
convexity of Ci(Y 1, ..., Y i−1, Ri). Also, for (R1, ..., Ri−1) = (Y 1, ..., Y i−1), the
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second summation in (5.15) vanishes. Thus, we find Y i such that

ci(Y 1, ..., Y i) =
i∑

k=1

hk − (p + H1)Pr{B(i)
0 > 0} = 0.

This leads to the following simplified newsboy characterization.

Theorem 5.8 If F is a continuous cdf on (0,∞) with F (0) = 0, then the
optimal reorder level Y i ∈ R satisfies

Pr{B(i)
0 = 0} =

p + Hi+1

p + H1
, i = 1, ..., N, (5.25)

where the B
(i)
k for k = i, ..., 0 are defined by (5.20)-(5.23).

The interpretation of this theorem is that the optimal reorder level at some
stage i (assuming ample stock at stage i + 1) leads to a probability of no-
stockout at stage 1 that is equal to p+Hi+1

p+H1
. This result is a generalization of

the newsboy equalities shown by van Houtum and Zijm (1991) for the Clark
and Scarf model.

Remark 5.3 On the connection to the lower bounds for the optimal
reorder levels as derived by Shang and Song (2005).

For i ∈ {2, ..., N}, define:

B̂
(i)
i = 0,

B̂
(i)
i−1 = B̂

(i)
i + D−

i − (Ri − Y i−1)− Zi−1Qi−1,

B̂
(i)
k = B̂

(i)
k+1 + D−

k+1 − (Y k+1 − Y k)− ZkQk for k = i− 2, ..., 1,

B̂
(i)
0 =

[
B̂

(i)
1 + D1 − (Y 1 + U1)

]+
.

For j = i, ..., 0, one can show recursively that Pr{B̂(i)
j ≤ a} ≥ Pr{B(i)

j ≤ a}
∀a ∈ Z; i.e., B

(i)
j is stochastically larger than B̂

(i)
j , which is denoted by B

(i)
j ≥st

B̂
(i)
j . In particular, B

(i)
0 ≥st B̂

(i)
0 . The expression for B̂

(i)
0 may be rewritten

as,

B̂
(i)
0 =

D1 +
i∑

j=2

D−
j −Ri −

 i−1∑
j=1

ZjQj + U1

+

=

D1 +
i∑

j=2

D−
j − (Ri + Ui)

+

,
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where the second equality follows from (5.5). Define

rl
i = min

{
Ri|Pr{B̂(i)

0 = 0} ≥ p + Hi+1

p + H1

}
.

This rl
i is identical to the lower bound for the optimal reorder level Y i as defined

by Shang and Song (2005, §3.5). By Corollary 5.6, Y i is such that Pr{B(i)
0 =

0} ≥ p+Hi+1

p+H1
. Since B

(i)
0 ≥st B̂

(i)
0 , it follows that Y i ≥ rl

i, i ∈ {2, ..., N}. Note
that rl

1 defined by Shang and Song is equal to the optimal reorder point Y 1;
see their Theorem 4.

5.4 Concluding Remarks

In this chapter, we considered a multi-stage serial inventory/production system
where each stage follows an (R,Q) policy. We developed a new cost formula
for the long-run average expected cost based on the concept of shortfall, which
allowed us to show that the optimal reorder levels satisfy newsboy inequalities
(equalities) when demand distribution is discrete (continuous). These results
add insights to our knowledge in the behavior of such systems under an optimal
control, and generalize the newsboy characterizations found for the Clark and
Scarf model.

We studied a periodic review model with i.i.d. demand, but it is straight-
forward to extend the results to a continuous review model with compound
Poisson demand. Further, Chen (2000) has shown that a pure assembly sys-
tem with fixed batch sizes can be transformed into an equivalent serial system
under a specific integer ratio assumption, and, as a result of this, the optimal-
ity of echelon stock (R,Q) policies (with a slight modification) still holds. For
the assembly systems that the serial transformation is possible, our results are
also valid.





Chapter 6

Conclusions and Further
Research

The one-warehouse multi-retailer inventory system is a well-known model with
clear-cut applications in inventory, manufacturing and hierarchal production
planning contexts. The model can be analyzed under continuous or periodic
review, but it is rather complex in both settings. Up to now, no one has been
able to characterize the optimal policy structure in any review setting. Under
continuous review, the main approach is to assume first-come, first-served
for the backlogged retailer orders at the warehouse and optimize the control
parameters of a given policy. On the other hand, under periodic review, one
faces the problem of solving a multi-dimensional stochastic dynamic program
(DP). Unfortunately, the size of the DP grows in the number of retailers and
the warehouse leadtime, which makes it impossible to solve the DP for real life
applications. Moreover, there is no special structure of the DP that enables the
reduction of the number of dimensions or simplification of the overall problem.
However, relaxing a constraint, called the balance assumption, decomposes
the problem of solving a multi-dimensional DP into a problem where single-
dimensional DPs are solved sequentially. In addition, the structure of the
optimal policy is characterized.

The balance assumption is used extensively in the analysis of the standard
one-warehouse multi-retailer inventory system and its extensions. Further,
in the light of limited numerical experiments reported in the literature, the
balance assumption is accepted to be an accurate approximation. The main
aim of this dissertation was to challenge the established conviction that the
balance assumption leads to good performance under general conditions. We
quantified the effect of the balance assumption on the long-run average cost

147



148 Conclusions and Further Research

of the system, and identified the settings where it is justified/not justified.

This dissertation is a collection of four papers, which constitute chapters 2-
5. We mainly focused on studying the balance assumption in one-warehouse
multi-retailer systems. In addition, we derived results regarding newsboy char-
acterizations. Thus, the conclusions and suggestions for further research are
discussed under two separate headings, Balance Assumption and Newsboy
Characterizations in §6.1 and §6.2, respectively.

6.1 Balance Assumption

Our objective was to measure the error that emanates from making the balance
assumption. The optimal cost of the system under the balance assumption
(the relaxed model) is a lower bound for the true optimal cost and it can be
calculated analytically. The optimal policy of the relaxed model may not be
feasible for the original one, but it can be modified to satisfy the constraints
of the original model. The simulation of this modified policy, which is referred
to as LB heuristic policy, gives an upper bound for the true optimal cost. For
the purpose of measuring the error (resulting from the balance assumption),
it was necessary to solve a multi-dimensional DP by a numerical technique.
Due to the curse of dimensionality, we had to confine ourselves to discrete
demand distributions and limited input parameters. Thus, we first extended
the optimality results in the relaxed model that exist for continuous demand
distributions to discrete demand distributions. This gave us the theoretical
basis for the comparison. Next, we conducted a rather extensive numerical
study where instead of comparing the optimal cost against the lower bound, we
used the relative gap between the upper and lower bounds (ε%) as a measure.
Since these bounds envelope the optimal cost, a small ε% value implies a small
error due to the balance assumption. We wanted to distinguish the settings
with small ε% from the ones with significant ε%, so that we could focus on the
scenarios with substantial relative gaps. We developed two test beds; one for
identical retailers consisting of 2000 problem instances, another having 3888
problem instances for nonidentical retailers. The results from the identical
retailers case show that the main determinant of a large relative gap (ε%) is
the coefficient of variation. Independent of the other input parameters, ε% is
small as long as

• the coefficient of variation of the retailers is low or moderate (0.25,0.5,1),

• the added value at the warehouse is negligible with respect to the one at
the retailers ((h0, hi) = (0.01, 0.99) for i = 1, 2, ..., N),
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• the warehouse leadtime is short and the retailer leadtimes are long ((l0, li) =
(1, 3) or (1, 5) for i = 1, 2, ..., N).

In the nonidentical retailers case, relative gaps are small when one of the
following conditions satisfied:

• the added value at the warehouse is equal to the added value at the retailers
((h0, h1, h2) = (0.5, 0.5, 0.5)),

• there is a short leadtime at the warehouse and a long retailer leadtime at
the big retailer ((l0, l1, l2) = (1, 5, 5) or (1, 1, 5)).

Under most of the settings in nonidentical retailers case, ε% is moderate or
large. Hence, the relative gap between the lower bound and the optimal cost
(ε∗%) had to be computed.

Next, we formulated a DP and solved it by value iteration algorithm for sys-
tems with two retailers. The results show that ε% is not sufficient to interpret
the behavior of ε∗% in general ; a scenario with a significant ε% may have a
ε∗% that is (i) small, (ii) close to ε%, or (iii) significant and substantially less
than ε%. The relative gap measures fall into

• item (ii) and (iii) when the retailers are identical and the coefficient of
variation is high (2),

• item (i) when the small retailer has a negligible added value or both retailers
have negligible added values,

• item (i) when there is an asymmetry between the retailers in terms of size,

• item (iii) when there is an asymmetry between the retailers in terms of
coefficient of variation and size.

We reported ε∗% values up to 15.27. We provided the first concrete evidence
in the literature that the balance assumption may have a significant impact.
Further, the results show that the LB heuristic policy is not robust; its perfor-
mance is scenario dependent. In the scenarios that fall into item (iii), neither
the lower bound estimates the optimal cost well nor the LB heuristic policy
performs satisfactorily. The use of the balance assumption in the analysis
under these settings is inappropriate.

Our results indicate the need for efficient and accurate heuristics for the control
of one-warehouse multi-retailer systems. We also analyzed the behavior of the
optimal policy in some scenarios, which gives valuable and interesting insights.
As a follow-up research, we plan to develop new heuristics.
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6.2 Newsboy Characterizations

The newsboy model is developed by Arrow et al. (1951). The main idea
behind the model is the trade-off between holding stock and backlogging de-
mand under demand uncertainty. When costs are assigned to the associated
actions, these cost figures together with the demand distribution determines
the optimal ordering policy in a single-echelon inventory system. The opti-
mal policy is base stock policy and the optimal base stock level results in a
probability of no-stockout that is equal to a ratio of the holding and penalty
costs. We refer to such conditions for optimal policy parameters as newsboy
characterizations.

Since 1951, the modelling concept introduced by Arrow et al. (1951) has
been the dominating paradigm in the inventory theory. Although the sys-
tems studied have evolved into more complex structures and cost forms have
been enriched, the main trade-off has been between the demand overage (e.g.,
holding cost) and underage costs (e.g., penalty costs).

In this dissertation, we first showed that newsboy characterizations hold for
one-warehouse multi-retailer systems facing discrete demand under the balance
assumption. Although it may not be surprising that the optimal base stock
levels for the retailers satisfy newsboy characterizations when the demand is
discrete, we did not directly expect such a behavior for the optimal order-up-to
level of the warehouse. Second, we proved that the optimal reorder levels in
a multi-echelon serial system with fixed batch quantities conform to newsboy
characterizations.

The results for newsboy characterizations led us to an ambitious direction
for further research. Since the newsboy characterizations hold in a variety of
multi-echelon inventory systems, we plan to develop the underlying idea (an
optimal inventory level at a stock point leads to a no-stockout probability at a
down stream stock point facing demand, which is at least a certain ratio of the
related cost parameters) to a framework for analyzing general multi-echelon
inventory models. Even if the framework does not produce optimal solutions
for general structures, it might still be a candidate for a good heuristic.
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Summary

In this dissertation, we consider the inventory control problem for a two-
echelon distribution system that is composed of a single warehouse serving
N retailers. The warehouse is replenished by an external supplier, which has
ample stock. The retailers face the stochastic demand of the customers. Any
unfulfilled demand is backlogged and a penalty cost is incurred. There are
fixed leadtimes of ordering from the supplier and shipping to the retailers.
We assume periodic review of the inventories and centralized control. The
objective is to minimize the average expected holding and penalty costs of the
system in the long-run. The one-warehouse multi-retailer model has important
applications in inventory, manufacturing and hierarchial production planning
contexts.

The system can be modeled by dynamic programming, but the resulting dy-
namic program (DP) is a multi-dimensional one where the dimension grows
in the number of retailers and the warehouse leadtime. Unfortunately, no
approach to decrease the dimension of the DP or to decompose the DP into
simpler ones has been reported in the literature. Hence, the analysis of a
one-warehouse multi-retailer system is intricate and the optimal policy is not
known. However, relaxation of a constraint in the original optimization prob-
lem, which is referred to as the balance assumption, simplifies the analysis
considerably and leads to structural results. The balance assumption is widely
used in the analysis of one-warehouse multi-retailer systems and there is an
established belief in the literature that it produces solutions of good quality.
In addition, all heuristics for the control of one-warehouse multi-retailer sys-
tems under periodic review are based on the balance assumption. There are
a few studies that investigate the impact of the balance assumption, but both
the numerical experiments considered and the insights obtained are limited.
This dissertation aims to quantify the effect of the balance assumption on the
long-run average expected cost of the system, and to determine the settings
under which this presupposition is justified/unjustified.

The balance assumption results in a relaxed model of the original optimization
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problem, and the optimal policy for this relaxed model can be characterized.
The optimal cost for the relaxed model is calculated through analytical func-
tions and this cost is a lower bound (LB) for the true optimal cost (g∗). The
optimal policy of the relaxed model is based on the balance assumption, and
is not feasible for the original problem. However, it can be slightly modified to
give a suboptimal, but feasible policy, which is referred to as the LB heuristic
policy. The long-run average expected cost of the LB heuristic policy may be
estimated by simulation, and this is an upper bound (UB) for g∗. For a given
problem instance, g∗ can be determined by solving the DP by a numerical
technique. However, the curse of dimensionality compels one to consider dis-
crete demand distributions with finite supports and limited input parameters
(e.g., small number of retailers and short warehouse leadtime). Thus, it was
necessary to extend some analytical results for one-warehouse multi-retailer
systems, and we decided to conduct two numerical studies to investigate the
impact of the balance assumption.

First, we analyzed a one-warehouse multi-retailer system with discrete demand
distributions under the balance assumption. The optimality of base stock
policies for the continuous demand has been extended to the discrete demand
case. Further, we developed an efficient algorithm for the computation of the
optimal control parameters and the optimal long-run average expected cost
for the relaxed model. These results gave us the necessary analytical grounds
for the calculation of LB for a given problem instance.

Next, we conducted an extensive numerical study where the relative gap be-
tween LB and UB, ε% = 100UB−LB

LB , is used as a measure to assess the
impact of the balance assumption. The results give a clear picture of the
input parameter (number of retailers, leadtimes, holding and penalty cost pa-
rameters, mean and coefficient of variation of demand) combinations resulting
in small/moderate/large relative gaps. For the settings with small ε%, one
may conclude that LB is an accurate proxy for g∗ and the LB heuristic policy
is a good heuristic. In the numerical study, we developed separate test beds
for identical and nonidentical retailers. The test bed of 2000 scenarios with
identical retailers shows that the main determinant of large ε% is high coeffi-
cient of variation of demand. Relative gap (ε%) values up to 38.55 were found.
The relative gap is small when one of the following conditions is satisfied:

• the coefficient of variation of demand is low (0.25,0.5) or moderate (1),

• the added value at the warehouse is very small compared to the added
values at the retailers,

• the warehouse leadtime is short and the retailer leadtimes are long.
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The test bed of 3888 scenarios for the nonidentical retailers case shows that
the group of settings with guaranteed small ε% is quite limited. The relative
gaps are small when one of the following conditions is satisfied:

• the added value at the warehouse is equal to the added value at the retailers,

• there is a short warehouse leadtime and long retailer leadtimes,

• the leadtimes of the warehouse and the small retailer are short, and the
leadtime of the big retailer is long.

Many of the settings in the nonidentical retailers case exhibit moderate or large
ε%. 118 scenarios have ε% > 25 and the maximum ε% reported is 186.86.

In both test beds, we also analyzed the relationship between the input pa-
rameters and ε%, which provided interesting insights. Further, we estimated
the probability of imbalance (π) during the simulation runs for computing the
UB, and we investigated the relation between π and ε%. The probability of
imbalance is defined as the fraction of periods in which a negative quantity
is allocated to a retailer under the optimal policy of the relaxed model. The
results show that a high ε% requires a high π, but a high π does not necessarily
correspond to a high ε%.

When the relative gap is moderate or high, the assessment of the impact
of the balance assumption based on the measure ε% is limited because the
relative position of g∗ between the bounds LB and UB becomes important.
Hence, we decided to study the settings with moderate/high ε% further. We
developed a DP for the control of the system. In order to be able to solve the
resulting DP numerically, discrete demand distributions with finite supports
are assumed. We developed two test beds (one for identical retailers, and
another for nonidentical retailers case) to analyze the settings with moderate
or high ε%, which were identified in the previous numerical study. Due to
the curse of dimensionality, we were not able to consider the scenarios of the
previous study as they are, but with restricted values for input variables. We
selected one-period retailer demands that are distributed over four points,
two retailers (N = 2), and short warehouse leadtimes (1 or 2 periods). For
each scenario, LB, g∗, UB, ε% and ε∗% (the relative gap between LB and
g∗), which is defined as ε∗% = 100g∗−LB

LB are calculated. A scenario with
a significant ε% may have a ε∗% that is (i) small, (ii) close to ε%, or (iii)
significant and substantially less than ε%. In category (ii), the performance
of the LB heuristic policy is good, but this heuristic is poor in categories (i)
and (iii). The LB model leads to a proper proxy for the true optimal cost in
category (i), but to an inaccurate proxy in categories (ii) and (iii). Observe
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that in category (iii) the balance assumption leads to neither a good heuristic
policy nor a proper proxy for the optimal cost. We considered several input
parameter settings and found that scenarios fall into

• category (ii) or (iii) when the retailers are identical and the coefficient of
variation is high (2),

• category (i) when there is a small retailer with negligible added value or
when both retailers have negligible added values,

• category (i) when there is asymmetry between the retailers in terms of size,

• category (iii) when there is asymmetry between the retailers in terms of
coefficient of variation and size.

We found ε∗% values up to 15.27 and 20 scenarios out of 73 have ε∗% > 5.
These results are the first concrete evidence in the literature that the balance
assumption may have a significant impact. In addition, the performance of the
LB heuristic policy is scenario dependent. Hence, it is not a robust heuristic.

Our results indicate the need for more research on efficient and accurate heuris-
tics for the control of one-warehouse multi-retailer systems. We also analyzed
the behavior of the optimal policy in some scenarios with high ε∗%, which has
led to valuable and interesting insights for what goes wrong under the LB
heuristic policy.

Besides the results discussed up to now, we also derived newsboy characteri-
zations for two basic models of multi-echelon production/inventory systems.
Newsboy characterizations are equations/inequalities for optimal policy pa-
rameters that directly connect the probability of no-stockout at a stock point
facing customer demand to the inventory holding and penalty cost parame-
ters. These characterizations are appealing because they facilitate intuition
development, and they are easy to convey to students and managers. First,
we derived newsboy inequalities for the optimal base stock levels in a one-
warehouse multi-retailer system with discrete demands and under the balance
assumption. This result extends the newsboy equations that hold when the
demand distributions are continuous. Next, we considered an N -echelon serial
inventory system where stock flows from one echelon to the other in given fixed
batch quantities. This system is a generalization of the Clark and Scarf model.
We showed that the optimal reorder levels in this system satisfy newsboy equa-
tions (inequalities) when the demand distribution is continuous (discrete).



Samenvatting

In dit proefschrift beschouwen we de voorraadbeheersing voor een twee-echelon
distributiesysteem bestaande uit een centraal voorraadpunt en N retailers.
Het centraal voorraadpunt wordt bevoorraad door een externe leverancier, die
altijd voldoende voorraad heeft. De retailers hebben te maken met stochastis-
che vraag van klanten. Vraag die niet direct kan worden beantwoord, komt
in de ’backlog’ en wordt zo snel als mogelijk nageleverd. Voor na te lev-
eren vraag worden boetekosten betaald. De doorlooptijden voor leveringen
van de externe leverancier naar het centraal voorraadpunt en voor zendingen
van het centraal voorraadpunt naar de retailers zijn vast. We veronderstellen
discrete tijd. Dat wil zeggen dat de tijd is verdeeld in perioden van gelijke
lengte. Voorraadhoogten worden bepaald aan het begin van iedere periode en
op die momenten worden bestellingen geplaatst door zowel het centraal voor-
raadpunt als de retailers. Het doel is het minimaliseren van de gemiddelde
voorraad- en boetekosten. Het twee-echelon distributiesysteem vindt haar
toepassing binnen voorraadbeheersing, productiebesturing en hiërarchische
planningsomgevingen.

Het voorraadbeheersingsprobleem kan worden gemodelleerd als Dynamisch
Programmeringsprobleem, maar het resulterende DP probleem is multi-di-
mensionaal, waarbij de dimensie stijgt als functie van het aantal retailers
en de levertijd van de externe leverancier. Er is jammer genoeg geen meth-
ode bekend om de dimensie van het DP probleem te verlagen of om het DP
probleem te laten uiteen vallen in eenvoudigere, kleine problemen. Het voor-
raadbeheersingsprobleem voor het twee-echelon distributiesysteem is derhalve
lastig. Echter, via de relaxatie van een bepaalde constraint, aangeduid als
de balansaanname, vereenvoudigt de analyse van het oorspronkelijke prob-
leem aanzienlijk en in dat geval kunnen mooie, analytische resultaten worden
afgeleid. De balansaanname wordt vaak toegepast in analyses van distribu-
tiesystemen en onderzoekers in het algemeen denken dat deze relaxatie tot
goede oplossingen leidt voor het oorspronkelijke probleem. Alle heuristieken
die tot nog toe ontwikkeld zijn voor distributiesystemen met discrete tijd, zijn
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gebaseerd op de balansaanname. Er zijn een paar studies bekend waarin de
impact van de balansaanname is onderzocht. Echter, de inzichten uit die stud-
ies en de uitgevoerde numerieke experimenten zijn beperkt. Het doel van dit
proefschrift is om het effect van de balansaanname grondig te onderzoeken
en om vast te stellen onder welke omstandigheden de balansaanname gerecht-
vaardigd is en wanneer niet.

De balansaanname resulteert in een gerelaxeerd model voor het oorspronkelijke
probleem, en voor dit gerelaxeerde model kan een optimale strategie worden
afgeleid. De optimale kosten voor het gerelaxeerde model kunnen aan de hand
van analytische kostenfuncties worden berekend, en ze vormen een ondergrens
(LB) voor de gemiddelde kosten van het oorspronkelijke model (g∗). De opti-
male strategie voor het gerelaxeerde model is gebaseerd op de balansaanname,
en is geen toegelaten strategie voor het oorspronkelijke model. Echter, uit deze
strategie is een toegelaten strategie te verkrijgen via een kleine aanpassing.
Deze licht aangepaste strategie heet de LB heuristiek. De gemiddelde kosten
van de LB heuristiek kunnen worden bepaald via simulatie en ze vormen een
bovengrens UB voor g∗. Voor een gegeven probleeminstantie kan g∗ worden
bepaald via Dynamische Programmering. Echter, vanwege de rekencomplex-
iteit, kan men dit alleen doen voor problemen met discreet verdeelde vraag op
een beperkt aantal punten en voor kleine waarden voor andere inputparame-
ters (zoals het aantal retailers en de levertijd van de externe leverancier). Om
die reden hebben we besloten om twee numerieke experimenten uit te voeren.

Als eerste analyseren we een twee-echelon distributiesysteem met discreet
verdeelde vraag en we maken de balansaanname. We bewijzen voor dit systeem
de optimaliteit van basestock strategieën. Dit is een uitbreiding van hetzelfde
resultaat voor distributiesystemen met continu verdeelde vraag. Daarna on-
twikkelen we een efficiënt algoritme voor de berekening van de optimale bases-
tock niveau’s en de optimale kosten voor het gerelaxeerde model. Daarmee zijn
we in staat om de ondergrens LB te berekenen voor een willekeurige instantie.

Vervolgens voeren we een uitgebreid numeriek experiment uit waarin de re-
latieve afstand tussen LB en UB, ε% = 100UB−LB

LB , wordt gebruikt als maat
voor de impact van de balansaanname. De resultaten geven een helder beeld
van de combinaties van input parameters (aantal retailers, doorlooptijden,
voorraad- en boetekostenparameters, gemiddelde en variatiecoefficient van
de vraag) die leiden tot een kleine/gematigde/ grote relatieve afstand ε%.
Voor instanties met kleine ε% kan men concluderen dat de ondergrens LB
een nauwkeurige benadering is voor g∗ en dat de LB heuristiek een goede
heuristiek is. Het numerieke experiment bestaat uit een testbed voor syste-
men met identieke retailers en een testbed voor niet-indentieke retailers. Het
testbed voor identieke retailers bevat 2000 instanties en laat zien dat een hoge
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variatiecoefficient van de vraag de belangrijkste verklarende factor vormt voor
een grote ε% waarde. We hebben relatieve afstanden (ε%) tot en met 38.55
gevonden. De relatieve afstand is klein als aan één van de volgende voorwaar-
den wordt voldaan:

• de variatiecoefficient van de vraag is laag (0.25,0.5) of gematigd (1),

• de toegevoegde waarde bij het centraal voorraadpunt is erg klein ten opzichte
van de toegevoegde waarde bij de retailers,

• de levertijd van de externe leverancier is kort en de doorlooptijden voor
verzendingen naar de retailers zijn lang.

Het testbed met 3888 instanties voor niet-identieke retailers laat zien dat bin-
nen dit testbed de groep instanties met een gegarandeerd lage ε% waarde
tamelijk beperkt is. De relatieve afstand is klein als aan één van de volgende
voorwaarden wordt voldaan:

• de toegevoegde waarde bij het centraal voorraadpunt is gelijk aan de toe-
gevoegde waarde bij de retailers,

• de levertijd van de externe leverancier is kort en de doorlooptijden voor
verzendingen naar de retailers zijn lang,

• de levertijd van de externe leverancier en de doorlooptijd richting de kleine
retailer zijn kort en de doorlooptijd richting de grote retailer is lang.

Voor de meeste instanties met niet-identieke retailers zijn gematigde tot grote
ε% waarden gevonden. In 118 scenarios vonden we ε% > 25 en de grootste
gevonden ε% waarde was 186.86.

In beide gevallen hebben we ook het gedrag van ε% als functie van input
parameters onderzocht, wat tot interessante resultaten heeft geleid. Verder
hebben we de onbalanskans (π) bepaald tijdens de simulatieruns ter bepaling
van UB, en we hebben de relatie tussen π en ε% onderzocht. De onbalanskans
is gedefinieerd als de fractie van de perioden waarin een negatieve hoeveelheid
aan een retailer zouden worden gealloceerd onder de LB heuristiek, d.w.z.
onder de strategie die je krijgt via de balansaanname. Dat heeft laten zien
dat alleen een grote ε% waarde wordt gevonden in instanties met een hoge π
waarde, maar een hoge π waarde impliceert niet dat dan de ε% waarde hoog
is.

Als de relatieve afstand tussen LB en UB gematigd of hoog is, dan is er nog
geen duidelijke conclusie over de impact van de balansaanname. De positie van
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g∗ tussen de grenzen LB en UB is dan belangrijk. Daarom hebben we besloten
om instanties met gematigde/grote ε% verder te onderzoeken. Voor de bepal-
ing van de optimale kosten g∗ via DP is een efficiënt programma ontwikkeld.
Voor de vraagverdelingen zijn discrete verdelingen op een eindig aantal pun-
ten genomen. Op basis van de voorgaande studie is een serie instanties met
identieke en niet-identieke retailers geselecteerd met een gematigde/grote re-
latieve afstand ε%. Ten behoeve van de rekencomplexiteit is daarbij gewerkt
met vraagverdelingen op 4 punten, 2 retailers (N = 2) en korte levertijden
van de externe leverancier (1 of 2 perioden). Voor elke instantie zijn LB, g∗,
UB, en ε% bepaald, en daarnaast ook ε∗% = 100g∗−LB

LB , de relatieve afstand
tussen LB en g∗. Voor een instantie met significante ε% onderscheiden we
drie gevallen voor ε∗%: (i) ε∗% is klein; (ii) ε∗% is bijna even groot als ε%;
(iii) ε∗% is significant maar substantieel kleiner dan ε%. In geval (ii) geldt
dat de prestatie van de LB heuristiek goed is, maar deze heuristiek is matig
in de gevallen (i) en (iii). Het LB model leidt tot een goede benadering voor
de optimale kosten g∗ in geval (i), en tot een onnauwkeurige benadering in de
gevallen (ii) en (iii). In geval (iii) leidt de balansaanname dus noch tot een
goede heuristiek noch tot een goede benadering voor de optimale kosten g∗.
We hebben vele instanties bekeken en onderzocht wanneer welk geval verkre-
gen wordt. Een instantie resulteert in:

• geval (ii) of (iii) als de retailers identiek zijn en de variatiecoefficient van de
vraag hoog (2) is,

• geval (i) als er een kleine retailer is met verwaarloosbaar kleine toegevoegde
waarde of als beide retailers verwaarloosbaar kleine toegevoegde waarde
hebben,

• geval (i) als de retailers asymmetrisch zijn met betrekking tot de grootte,

• geval (iii) als de retailers asymmetrisch zijn met betrekking tot de vari-
atiecoefficient en de grootte.

We hebben ε∗% waarden tot en met 15.27 gevonden en bij 20 van de 73
instanties was ε∗% > 5. Deze resultaten vormen het eerste concrete bewijs
in de literatuur van de significante impact die de balansaanname kan hebben.
Bovendien tonen deze resultaten aan dat de kwaliteit van de LB heuristiek
instantie-afhankelijk is. Het is dus geen robuuste heuristiek.

Onze resultaten tonen de noodzaak aan van meer onderzoek naar efficiënte,
nauwkeurige heuristieken voor twee-echelon distributiesystemen. We hebben
ook de structuur onderzocht van optimale strategieën voor instanties met een
hoge ε∗%. Hieruit hebben we geleerd wat er onder de LB heuristiek mis
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gaat, en dat heeft aanwijzingen opgeleverd voor de ontwikkeling van nieuwe
heuristieken.

Naast de bovenstaande resultaten met betrekking tot de balansaanname, hebben
we Newsboy karakteriseringen afgeleid voor twee multi-echelon modellen. News-
boy karakteriseringen laten het verband zien tussen optimale basestock niveau’s
en stockout kansen bij de meest stroomafwaartse voorraadpunten waar de
vraag van klanten plaats vindt. Deze karakteriseringen dragen bij aan het be-
grip van wat er onder optimale voorraadbeheersing gebeurt, en ze zijn relatief
eenvoudig uit te leggen aan studenten en managers. We hebben allereerst
Newsboy ongelijkheden afgeleid voor de optimale basestock niveau’s in een
twee-echelon distributiesysteem met discrete vraag en onder de balansaan-
name. Deze resultaten vormen een uitbreiding van reeds bestaande resultaten
voor distributiesystemen met continue vraag. Vervolgens hebben we een N -
echelon, serieel voorraadsysteem bestudeerd waarbij voor ieder voorraadpunt
een vaste bestelgrootte is gegeven. Dit systeem is een directe generalisatie van
het Clark-en-Scarf model. We hebben aangetoond dat de optimale basestock
niveau’s voldoen aan Newsboy vergelijkingen (ongelijkheden) in het geval van
continu (discreet) verdeelde vraag.
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