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CHAPTER 1

Introduction

1. Context

In the standard formalism of quantum mechanics as formulated by Dirac [36] and von
Neumann [106], a measurement with outcome space Ω corresponds to a spectral measure
M concentrated on Ω and acting on a complex separable Hilbert space H. States of a
quantum mechanical system are described mathematically by density operators ρ, which
are non-negative trace-class operators on H with trace 1. The set of all density operators,
the ‘state space,’ is denoted by S(H). The following is postulated:

(P) The number Tr(ρM(∆)), i.e. the trace of the composition of operators ρ and M(∆),
is to be interpreted as the probability that in state ρ the outcome of the measurement
lies in ∆.

Two spectral measures E and F acting on the same Hilbert space, and defined on the
Borel subsets of outcome spaces Ω1 and Ω2 respectively, can be combined to get a spectral
measure E⊗F, defined on the Borel subsets of Ω1×Ω2 by E⊗F (∆1×∆2) = E(∆1)F (∆2)
(and unique extension), if and only if E and F commute. Von Neumann shows (Section
III.3 in [106]) that this condition is necessary and sufficient in order for the quantities
corresponding to E and F to be simultaneously measurable with arbitrary high accuracy.
Such measurements are not always desirable because they are very incomplete in the
sense that to each density operator ρ corresponds a large class [ρ]M of states ρ′ satisfying
Tr((ρ − ρ′)M(∆)) = 0 for all ∆. In other words: The range of M, considered as a
subspace of the vector space of bounded self-adjoint operators, has a large ‘orthogonal
complement’ in the space of self-adjoint trace-class operators.

More recent investigations [74, 73], [31] (among others) have led to the so-called
‘operational approach to quantum measurement.’ This theory is about the compound
system formed by object and measurement instrument, and the interaction between these
two parts plays an essential role. (See e.g. [58], [55], [30], [15] and [17].) A measure-
ment is described mathematically by an operator-valued measure M, defined on a σ-field
Σ of subsets of a set Ω and taking values in the set of non-negative bounded operators
on a separable complex Hilbert space, and normalized by the condition M(Ω) = I, the
identity operator. A measure M with these properties, is called a normalized positive
operator-valued measure, which we abbreviate to ‘POVM.’ A POVM M whose range
consists of projection operators only, is called a projection-valued measure, which we
abbreviate to ‘PVM.’ Measurements corresponding to POVMs are called generalized
measurements, and measurements corresponding to PVMs (spectral measures in par-
ticular) are called simple measurements. Many experiments performed in practice are
generalized measurements: For example [83]. Again (P) is assumed, but it is no longer
demanded that M has only projection operators as values. Now there is the possibil-
ity that the numbers Tr(ρM(∆)), ∆ ∈ Σ determine ρ completely: I.e. [ρ]M consists
of ρ only. Such measurements are called complete measurements, and the correspond-
ing POVMs are called complete. Eight-port optical homodyning (see e.g. [86, 87],
[47], [34]) is an example; The POVM corresponding to this measurement is called the

7



8 1. INTRODUCTION

Bargmann measure in this thesis, and it will be discussed a.o. in Sections 3.2 and 4 of
this introduction.

2. Probability distributions on the outcome space

To a POVM M, defined on a σ-field Σ of subsets of an outcome space Ω, and taking
values in the set of non-negative bounded operators on H, corresponds a function

VM : S(H)→ Prob(Ω,Σ), ρ 7→ VM [ρ],

from S(H) into Prob(Ω,B), the set of probability measures on (Ω,Σ), defined by

(1) VM [ρ](∆) = Tr(ρM(∆)).

Transformation VM commutes with taking finite (and countable) convex combinations.
Conversely, if V : S(H)→ Prob(Ω,Σ) commutes with taking finite convex combinations,
then a unique POVM M exists such that V = VM . This follows from the following two
facts:

- If V : S(H) → Prob(Ω,Σ) commutes with taking finite convex combinations and
∆ ∈ Σ, then L∆ : S(H) → [0, 1], defined by L∆[ρ] = V [ρ](∆), commutes with taking
finite convex combinations;

- To every function L : S(H) → [0, 1] that commutes with taking finite convex combi-
nations, corresponds a unique B ∈ B+(H) such that L[ρ] = Tr(ρB) for all ρ ∈ S(H).

The properties of the mapping VM are investigated in [16]. From the separability of
H follows the existence of a probability measure µ on Ω with the same sets of measure
zero as M. From the Radon-Nikodym theorem it follows that probability measure VM [ρ]
has a probability density pρ : Ω→ [0,∞) with respect to µ on Ω:

VM [ρ](∆) =

∫
∆

pρ(x)µ(dx).

For some POVMs a function ϕ(x) : Ω→ [0,∞) exists such that

(∀ρ ∈ S(H))(∀µx ∈ Ω) pρ(x) ≤ ϕ(x),

where ∀µx ∈ Ω abbreviates ‘for µ-almost all x ∈ Ω.’ In that case there is (according to
Lemma 24 below) a family (Mx) of bounded non-negative operatorsMx such that

(∀ρ ∈ S(H)) (∀µx ∈ Ω) pρ(x) = Tr(Mxρ).

Family (Mx) is called an operator density of POVM M with respect to measure µ. If,
for example, Ω = N and Σ is the collection of all subsets of Ω, then pρ(x) ≤ ϕ(x) with
ϕ(x) = 1/µ({x}), and Mx = M({x})/µ({x}). An example of a POVM for which no
operator density exists is the spectral measure of the ‘position operator’ Q on L2(R),
which is densely defined on its domain by Qf(x) = xf(x). More generally, the spectral
measure of a self-adjoint operator on L2(R) has an operator density if, and only if, it
has pure point spectrum; In that case the operator density (with respect to the counting
measure) consists of the orthogonal projections on the eigenspaces.

3. Motivation

The investigations reported in this thesis were motivated by the following questions:

(M i) How can we compare the amount of information about the density operator that
can be obtained by two distinct POVMs?
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(M ii) Is there a generalization to the case of generalized measurements, of the pre-order
relation on the set of simple measurements corresponding to the partial order
(i.e. inclusion) on the set of von Neumann algebras generated by the spectral
measures?

(M iii) Is there a generalization of Dirac’s concept of a complete set of observables to
the case of generalized measurements?

(M iv) Which POVMs correspond to complete measurements?

The last question will not be answered (completely) in this thesis. The second and the
third questions are answered in a (sufficiently) general context: Namely for POVMs on
countably generated measurable spaces, which includes all POVMs on the Borel subsets
of Rm with m ∈ N. This includes also POVMs which have no operator density. (This
provides at least a partial answer to the first question.)

3.1. Reconstruction of the density operator. If M is a POVM defined on the
subsets of Ω = N and having operators on H as values, and (Mk), related to M as in
Section 2 by Mk = M({k}), is a weak-star Schauder basis (this concept is defined in
[97], Definitions 13.2 and 14.2) of the Banach space of bounded operators on H, then

(2) ρ =
∑
k∈Ω

pρ(k)Mk,

where pρ(k) = Tr(Mkρ), and (Mk) is the basis (whose existence is guaranteed by [97],
Theorem 14.1) of the Banach space of trace-class operators on H satisfying Tr(MkM`) =
δk` for all k, ` ∈ Ω. (The expression δk` is called the Kronecker delta: It is equal to one if
k = ` and zero otherwise.)

If M does not correspond to a complete measurement, then a complete reconstruction
of ρ is impossible. If (Mk) is a weak-star Schauder basis of a weak-star closed linear
subspace of the Banach space of bounded operators on H, then a partial reconstruction
of ρ similar to (2) is possible.

In this thesis the possibility of a reconstruction of ρ similar to (2) is considered for
POVMs for which the above requirements are not satisfied. The investigations were
motivated by following questions:

(R i) Given a particular POVM M corresponding to a complete measurement, is there
a simple formula expressing the numbers Tr(ρB), for bounded non-negative op-
erators B which are not in the range of M, in terms of the numbers Tr(ρM(∆)),
where ∆ is contained in the σ-field on which M is defined. A similar question can
be formulated for a particular phase-space representation instead of a particular
measurement.

(R ii) Is a reconstruction of ρ similar to (2) possible if (Mk) does have a weak-star
dense linear span, but is a not a weak-star basis?

(R iii) Is a reconstruction of ρ similar to (2) possible if, for example, Ω = C and M is
non-atomic?

The first three questions are considered, in this thesis, only for one particular POVM,
namely the Bargmann measure which will be discussed below. For this POVM the
outcome space is C. Because this is a complete POVM, the possibility of a complete
reconstruction of ρ (in stead of a partial reconstruction) is considered. We give a positive
answer to question (R i) for this POVM and for the case of a particular family of phase-
space representations.
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3.2. Bargmann measure. The investigations reported in this thesis were moti-
vated by POVM M (Bargmann) on the Borel subsets BC of C, and taking values in the op-
erators on L2(R). This POVM is determined by the probability densities pρ : C→ [0,∞)
with respect to measure µ given by

p(Bargmann)
ρ (z) = (gz, ρgz), µ(dz) = π−1dRe(z)d Im(z),

where (gz) is the family of normalized (complex conjugate) coherent state vectors (also
called Gabor functions [48]):

gz(x) = λ(z) e
√

2z̄x−x2/2,

where λ(z) realizes the normalization. We have

(∀z ∈ C) M(Bargmann)
z = gz ⊗ gz,

where gz ⊗ gz is the operator of orthogonal projection on the one dimensional space
generated by the vector gz (of unit length). In [9] it has been shown that

M (Bargmann)(C) =

∫
C
M(Bargmann)

z µ(dz) = I,

or equivalently,

(∀ρ ∈ S(H))

∫
C
pρ(z)µ(dz) = 1.

4. Results

In [37] (and in Theorem 68 below) it has been shown that the concept of maximality
of POVMs, which was introduced in [80], generalizes the concept of a complete set of
commuting self-adjoint operators (which is a mathematical interpretation of the concept
of a complete set of observables introduced in [36]). We have been able to give a useful
characterization (Theorem 77) of the set of maximal POVMs, from which it follows e.g.
that M (Bargmann) is a maximal POVM: In particular, for each relation of M (Bargmann) with
another POVM of the form

(∀µz ∈ C) M(Bargmann)
z =

∫
Rm

K(z, x)Nx ν(dx),

where

- m ∈ N and ν is a finite positive Borel measure on Rm;
- (Nx) is a family of non-negative bounded operators;
- K : C× Rm → [0,∞) satisfies

∫
CK(z, x)µ(dz) = 1 for ν-almost all x ∈ Rm,

there is also a relation of the form

(∀νx ∈ Rm) Nx =

∫
C
K̃(x, z)M(Bargmann)

z µ(dz),

where K̃ : Rm × C→ [0,∞) satisfies
∫

Rm K̃(x, z) ν(dx) = 1 for µ-almost all z ∈ C.
We have exemplified the characterization of maximality by a POVM that has an

operator density. Our result is, however, applicable to the (more general) class of POMVs
on countably generated measurable spaces. An answer to question (M ii) is given in the
same context.

Questions (R ii) and (R iii) are answered only for the case of the Bargmann measure:
We prove (Theorem 161) that for the case of the Bargmann measure, a reconstruction
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of the density operator as in (2) is not possible: A family (Mz) of trace-class operators
such that

ρ =

∫
C
p(Bargmann)
ρ (z)Mz µ(dz)

does not exists. However similar approximative reconstructions of ρ are possible: There
exist families (Mz

n) of trace-class operators such that

(3) ρ = lim
n→∞

∫
C
p(Bargmann)
ρ (z)Mz

n µ(dz)

weakly in the Banach space of trace-class operators. This provides a positive answer
to question (R i) for the case of the Bargmann measure: We show (Theorem 164) that
for every bounded operator B and density operator ρ, we can approximate Tr(Bρ) (with

arbitrary high accuracy) by integrals over C in terms of probability density p
(Bargmann)
ρ :

Let c be an infinitely differentiable function on C with compact support such that c(0) =
1. For every bounded operator B on L2(R),

Tr(Bρ) = lim
n→∞

∫
C
p(Bargmann)
ρ (z) Tr(BM(n)

z )µ(dz)

where

M(n)
z =

∫
C

c(
w

n
)

e−|w|
2

(gz+w, gz−w)
gz−w ⊗ gz+w µ(dw), n ∈ N.

(The operators M(n)
z depend on c. For each choice of c we get a solution of (3).) We

have obtained similar results for a certain family of phase space representations: The
Bargmann measure is closely related to the so-called Husimi representation, representing
density operators ρ by functions z 7→ π−1(gz, ρgz) on C. For a family of phase-space
representations interpolating between the Husimi and the Wigner representations, we
present a unifying approach to approximate Tr(Bρ) by integrals over C in terms of
functions on phase-space. This provides, for these particular cases, a positive answer to
question (R i).

We have been able to give characterizations (Chapter 4, Section 7) of certain sub-
spaces of the space of Hilbert-Schmidt operators whose integral kernels are contained

in the Gelfand-Shilov space S
1/2
1/2(R

2) (these subspaces are considered e.g. by De Bruijn

in [32]) by means of growth conditions on the analytic continuation of the functions on
phase-space corresponding to one of the phase-space representations considered above.
For the special case of the Husimi representation, this characterization of operators B
can be put into the form

(∃M,A > 0)(∀z, w ∈ C) |(gz+w,Bgz−w)| ≤Me−A(|z|2+|w|2).

5. Outline

This thesis is organized as follows. In Chapter 3 we investigate the mathematical
properties of a pre-order relation, denoted by ←, on the collection of POVMs which
was introduced in [80] and further investigated in [37]. We show that ← provides
the generalization considered in question (M ii) above, and that the related concept of
maximality provides the generalization considered in question (M iii). In [80] and [37] a
characterization of the set of discrete maximal POMVs is given. This result is generalized
to the set of countably generated POVMs. (This includes the POVMs defined on the
Borel subsets of Rm.) To exemplify the theoretical results, we consider the Bargmann
measure and the Susskind-Glogower phase POVM, which is a POVM defined on the
Borel subsets of interval [0, 2π).
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In Chapter 4, we consider the definition and elementary properties of a family of
phase-space representations, interpolating between the Wigner and the Husimi repre-
sentations. We characterize particular subspaces of the range of these transformation in
terms of the growth conditions on the analytic continuations of functions on phase-space.
In Chapter 5, we give explicit formulas for the approximation of quantum mechanical
expectation values by integrals over phase-space. This provides a positive answer to
question (R i) for the case of the phase-space representations considered in Chapter 4.

In Chapter 6 we consider an extension of the usual orthonormal basis of the Bargmann
space, which consists of properly normalized analytic monomials, to an orthonormal
basis of a functional Hilbert space, densely contained in a space of square integrable
function classes on the complex plane. These basis functions are, up to a constant
factor, the Wigner functions of the operators h 7→ (ϕ`, h)ϕk on L2(R), where (ϕk) is the
Hermite basis, and have been investigated earlier in the context of Weyl-(de)quantization:
[27, 28] and [56].



CHAPTER 2

Preliminaries

1. Conventions, terminology and notation

A sesquilinear form on a vector space over C is linear in the second argument.
An operator A on a Hilbert space H is a linear transformation A : D(A)→ H, where

domain D(A) is a linear subspace of H. The linear hull of a subset S of a vector space is
denoted by span(S).

An isometry from a normed space X to a normed space Y is a mapping V : X → Y
such that ‖V[x]‖Y = ‖x‖X for all x ∈ X. Note that a linear isometry V : H1 → H2 from a
Hilbert space H1 to another Hilbert space H2 is a bounded operator satisfying V∗V = I1,
the identity on H1, and that consequently VV∗ is the operator of orthogonal projection
on range(V). A unitary mapping from a Hilbert space X onto a Hilbert space Y is a
linear isometry from X onto Y. A contraction from a normed space X to a normed space
Y is a mapping V : X→ Y such that ‖V[x]‖Y ≤ ‖x‖X for all x ∈ X.

By an algebra we mean a linear algebra and by a subalgebra we mean a linear
subalgebra. Related concepts that are used in this paper are defined in Appendix G.

The σ-field generated by the open sets of a topological space is called the Borel σ-
field. Elements of a Borel σ-field are called Borel subsets of the topological space. Let Σ
be a σ-field of subsets of a set Ω. A measurable partition of Ω is a family (ωi) of pairwise
disjoint elements of Σ such that Ω = ∪iωi. The contraction of a measure µ defined on a
σ-field Σ by an element ω ∈ Σ is the measure µ|ω on Σ, defined by µ|ω(∆) = µ(ω ∩∆).
For (operator-valued) measures µ1 and µ2 defined on the same σ-field Σ we write µ1 � µ2

to denote that µ1 is absolutely continuous with respect to µ2 : If ∆ ∈ Σ and µ2(∆) = 0
then µ1(∆) = 0. We use the following abbreviation: ‘∀µx ∈ Ω’ means ‘for µ-almost all
x ∈ Ω.’

If ϕn, n ∈ I is an orthonormal basis of L2(R) and m ∈ N, then ϕn, with n ∈ Im, is
defined almost everywhere on Rm by

ϕn(x) = Πm
j=1ϕnj

(xj).

2. Tensor product of two Hilbert spaces

For Hilbert spaces H1 and H2 the algebraic sesquilinear tensor product is denoted
by H1 ⊗ H2. This is a pre-Hilbert space with respect to its usual inner-product (See e.g.
Section 3.4 of [108]), and its completion is denoted by H1⊗̂H2. For a Hilbert space H,
we identify H⊗̂H with the space of Hilbert-Schmidt operators on H. For example: f ⊗ g,
where f, g ∈ H, is identified with the operator f ⊗ g on H defined by f ⊗ g[h] = (g, h)Hf.

13



14 2. PRELIMINARIES

3. Spaces of operators on a Hilbert space

Let H be a Hilbert space. We use the following notation:
B∞(H) : The bounded operators on H.
B2(H) : The Hilbert-Schmidt operators on H.
B1(H) : The trace-class operators on H.
B0(H) : The compact operators on H.
B00(H) : The operators with finite dimensional range.
B+(H) : The non-negative operators in B∞(H).
Op : The orthogonal projection operators contained in subset O of B∞(H).
O′ : The commutant of a subset O of B∞(H).

We have:
B00(H) ⊂ B0(H) ⊂ B1(H) ⊂ B2(H) ⊂ B∞(H).

The space B2 is a Hilbert space with inner product

(A,B)B2 = Tr(A∗B),

the trace of the composition A∗B of the Hilbert-Schmidt operators A∗ and B. The space
B1(H) consists of all compositions of pairs of Hilbert-Schmidt operators, and is a Banach
space with respect to the trace norm

‖T ‖1 = Tr |T |, |T | =
√
T ∗T .

A bounded operator B acts as a linear form on B1(H) through T 7→ Tr(T B). This linear
form is continuous; its norm is ‖B‖∞. Conversely, every continuous linear form on B1(H)
is of this form.

For n ∈ N, the inner product on L2(Rn) is defined by (f, g) =
∫

Rn f(x)g(x)dx.

Define K : L2(R)⊗̂L2(R)→ L2(R2) by K[f⊗g](x, y) = f(x)g(y) and linear and isometric
extension. Hilbert-Schmidt operators on L2(Rn) are integral operators with an integral
kernel from L2(R2). The unitary operator K maps Hilbert-Schmidt operators onto their
integral kernels. We will identify L2(R)⊗̂L2(R) with L2(R2) through K.

Reference: The above spaces of operators are introduced, for example, in [23]. Infor-
mation about integral kernels of Hilbert-Schmidt operators can be found, for example,
in [108].

4. Topologies on B∞(H) and L∞(µ)

WOT is short for weak operator topology on B∞(H), which is the locally convex
topology generated by seminorms A 7→ |(g,Ah)|, g, h ∈ H. Because we assume that H is
a complex Hilbert space, the WOT is generated already by the seminorms A 7→ |(h,Ah)|,
h ∈ H. SOT is short for strong operator topology on B∞(H), which is the locally convex
topology generated by seminorms A 7→ ‖Ah‖, h ∈ H. The weak-star topology on the
topological dual X′ of a normed space X is the locally convex topology generated by
the seminorms x′ 7→ |x′(x)| : X′ → C with x ∈ X. Examples are the weak-star topology
on B∞(H) which is generated by the seminorms B 7→ |Tr(BT )| with T ∈ B1(H), and
the weak-star topology on L∞(µ), for a finite measure µ on a σ-field of subsets of a set
Ω, which is generated by the seminorms ϕ 7→ |

∫
Ω
fϕ dµ|, with f ∈ L1(µ). In stead of

weak-star we write sometimes weak∗. The following facts are well-known (for example
[23, 25]):

(i) The space of operators with finite dimensional range is a representation of the
topological dual of (B∞(H), T ) where T ∈ {WOT, SOT}.

(ii) The SOT closure of a convex subset of B∞(H) is equal to its WOT closure.
(iii) The weak∗ and the WOT agree on bounded subsets of B∞(H).



4. TOPOLOGIES ON B∞(H) AND L∞(µ) 15

(iv) If H is a separable Hilbert space, then the closed unit ball of B∞(H) with the
weak-star topology is compact and metrizable.

(v) A convex subset of the topological dual of a separable Banach space is weak-star
closed if, and only if, it is weak-star sequentially closed.

(vi) A Banach space X is separable if, and only if, the closed unit ball of X′ with the
weak-star topology is metrizable.





CHAPTER 3

Positive operator-valued measures

1. Introduction

Positive operator-valued measures (POVMs, for shortness) are used to model quan-
tum mechanical measurements. In this paper their mathematical properties are inves-
tigated. A pre-order relation on the set of POVMs is considered. An answer of the
following question is given: Which POVMs belong to an equivalence class that is max-
imal with respect to the partial order induced by the pre-order. Attention is paid also
to POVMs associated to subnormal operators. The Bargmann measure, the Susskind-
Glogower phase POVM and the Pegg-Barnett phase PVMs are considered as examples
of maximal and subnormal POVMs.

2. Conventions, terminology and notation

In this chapter, H denotes a complex and separable Hilbert space. Unless stated
otherwise, Σ denotes a σ-field of subsets of a non-empty set Ω. We will explain what this
means:

A non-empty collection of subsets of a set Ω is called a field of subsets, or a (Boolean)
algebra of subsets, if it contains Ω and is closed under complementation and under the
formation of finite unions and, consequently, under the formation of finite intersections.
A function M defined on a field Σ of subsets of a set Ω and taking values in a vector
space, is called additive (or finitely additive) if it satisfies

M(∆1 ∪ · · · ∪∆n) = M(∆1) + · · ·+M(∆n)

for every n ∈ N and n-tuple (∆k) of pairwise disjoint sets in Σ.
A σ-field of subsets of a set Ω is a field of subsets of Ω which is closed under the

formation of countable unions (and consequently under the formation of countable in-
tersections). A function M defined on a σ-field Σ of subsets of a set Ω and taking values
in a vector space, is called σ-additive if it satisfies

M(
∞⋃
k=1

∆k) =
∞∑
k=1

M(∆k)

for every sequence (∆k) of pairwise disjoint sets in Σ. The pair (Ω,Σ) is called a measur-
able space. A measure (or positive measure) on Σ (or (Ω,Σ)) is a function µ : Σ→ [0,∞]
that satisfies µ(∅) = 0 and is countably additive. The triple (Ω,Σ, µ) is called a measure
space. If µ(Ω) < ∞ then µ is called a finite measure and (Ω,Σ, µ) is called a finite
measure space. A probability measure on (Ω,Σ) is a measure µ on (Ω,Σ) satisfying
µ(Ω) = 1. The triple (Ω,Σ, µ) is then called a probability space. A complex (valued)
measure is a linear combination of finite positive measures. (Every complex measure can
be written as a linear combination of four finite positive measures. This statement is
usually presented as a theorem, because usually, for example in [22], complex measures
are defined directly in stead of indirectly in terms of positive measures.)

For a collection C of subsets of a set Ω, there exists a smallest σ-field of subsets
of Ω that includes C. This σ-field is unique and is called the σ-field generated by C. If

17
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for k ∈ {1, 2}, Σk is a σ-field of subsets of a set Ωk, then Σ1 × Σ2 denotes the σ-field
of subsets of Ω1 × Ω2 generated by the collection of sets ∆1 × ∆2, with ∆1 ∈ Σ1 and
∆2 ∈ Σ2.

The difference between two sets A and B is denoted and defined by

A\B = A ∩Bc = {x ∈ A : x 6∈ B}.
The symmetric difference of two sets A and B is denoted and defined by

A4B = (A\B) ∪ (B\A) = (A ∪B)\(A ∩B) = (A ∪B) ∩ (Ac ∪Bc).

Note that 1A4B = (1A − 1B)2. For a field of subsets Σ, the triple (Σ,4, ∅) is a group.

3. Preliminaries

A finite positive operator-valued measure (we will call it an FPOVM for shortness)
is a function M : Σ → B+(H) with the property that for each h ∈ H, the function
Mh : Σ→ R+, defined by

(4) Mh(∆) = (h,M(∆)h)H, ∆ ∈ Σ,

is a finite measure. A normalized positive operator-valued measure (we will call it a
POVM for shortness) is an FPOVM M satisfying M(Ω) = I, the identity operator
on H. We have introduced FPOVMs only for technical reasons; this paper is primarily
concerned with POVMs. It is shown e.g. in Remarks 1 and 2 of [37] that the separability
of H implies the existence of a (scalar-valued) probability measure µ on Σ with the same
sets of measure zero as M. A PVM is a projection-valued POVM. A POVM M on Σ is
projection-valued if and only if

(∀A,B ∈ Σ) M(A ∩B) = M(A)M(B).

(See for example Theorem 2 of Section 36 in [54].) An FPOVM M is uniquely defined
by the associated measures Mh, h ∈ H : For f, g ∈ H and ∆ ∈ Σ,

Re(g,M(∆)f) = 1
4
{Mf+g(∆)−Mf−g(∆)},

Im(g,M(∆)f) = 1
4
{Mf+ig(∆)−Mf−ig(∆)}.

(5)

(We use the convention that an inner-product is linear in the second argument. If the
inner-product is linear in the first argument, then an extra factor −1 is needed for the
last equality.) The following theorem is similar to Theorem 2 in [10]; The essential

difference is that triangle inequality
√
µf+g(∆) ≤

√
µf (∆) +

√
µg(∆) is not part of

conditions (a),(b) below; it is implied by (a) and (b):

Theorem 1. Suppose that for each h ∈ H there is given a positive measure µh on Σ
satisfying µh(Ω) = ‖h‖2. In order that there exist a POVM M on Σ such that µh = Mh

for all h ∈ H, it is necessary and sufficient that for all f, g, h ∈ H,

(a) µch = |c|2µh for every c ∈ C;
(b) µf+g + µf−g = 2µf + 2µg

Proof. Theorem 225 below. �

We use the following abbreviation: ‘∀Mx ∈ Ω’ means ‘for M -almost all x ∈ Ω.’
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4. Naimark’s theorem

Proofs of Naimark’s theorem on the existence of a projection-valued dilation (for
which we shall use the term ‘Naimark extension’) of a POVM can be found in e.g. [45],
[3], [99] and [25]. In [25] only POVMs with compact support are considered. In [3]
and [99] POVMs on the Borel subsets of R (called ‘generalized spectral families’) are
considered. The proof in [99] is adapted in [61] for a version of Naimark’s theorem
concerning POVMs on arbitrary measurable spaces. From the statement of Naimark’s
theorem in [45] it is clear that σ-additivity of a positive operator valued set function is
not needed for the existence of a Naimark extension.

Theorem 2 ([45], Theorem II of Section 8). Let H be a Hilbert space. Let Σ be a
field of subsets of a set Ω. Let M : Σ → B+(H) be a finitely additive set function with
M(Ω) = I. There is a Hilbert space K, a projection-valued additive set function N : Σ→
B+(K) with N(Ω) = I and an isometry V : H→ K such that M(∆) = V∗N(∆)V for all
∆ ∈ Σ.

Definition 3. A Naimark extension of a positive operator-valued additive set func-
tion M is a triple (N,K,V) related to M as in Theorem 2.

Remark 4. Theorem 2, together with Proposition 7 below, implies Naimark’s the-
orem which says that every POVM M has a Naimark extension (N,K,V) where N is a
PVM.

Definition 5. A Naimark extension (N,K,V) of an additive set function M : Σ→
B+(H) is called minimal if the only subspace of K containing range(V) and reducing
N(Σ) is K itself. This is the case if, and only if, the only closed subspace of K, containing
N(∆)V[h] for all ∆ ∈ Σ and h ∈ H, is K itself: This condition can be formulated as

K = cl span{N(∆)V[h] : ∆ ∈ Σ, h ∈ H}.
Proposition 6. For k ∈ {1, 2}, let (Nk,Kk,Vk) be a minimal Naimark extension

of POVM M : Σ → B+(H). There exists a unitary operator U : K1 → K2 such that
UV1 = V2 and UN1(∆) = N2(∆)U for all ∆ ∈ Σ.

Proof. For finite sequences (∆n), (hn) we have

‖
∑
n

N1(∆n)V1[hn]‖2 =
∑
n,m

(N1(∆n ∩∆m)V1[hn],V1[hm])

=
∑
n,m

(M(∆n ∩∆m)hn, hm)

=
∑
n,m

(N2(∆n ∩∆m)V2[hn],V2[hm]) =

= ‖
∑
n

N2(∆n)V2[hn]‖2.

(6)

Hence ∑
n

N1(∆n)V1[hn] = 0 ⇔
∑
n

N2(∆n)V2[hn] = 0.

Hence there exists a linear mapping U from span{N1(∆)V1[h] : h ∈ H, ∆ ∈ Σ} to K2

satisfying

(7) U
[∑
n

N1(∆n)V1[hn]
]

=
∑
n

N2(∆n)V2[hn]

for finite sequences (∆n) and (hn). By (6), U is isometric. The minimality of Naimark
extension (N1,K1,V1) implies that there exists a unique extension of U to an isometric
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operator from K1 to K2. This extension is denoted again by U. From (7) we see that
UV1 = V2. From (7) and the multiplicativity of N1 and N2, it follows that UN1(∆) =
N2(∆)U for ∆ ∈ Σ. The minimality of Naimark extension (N2,K2,V2) implies that U
is surjective. �

Proposition 7. Let (N,K,V) be a minimal Naimark extension of a (finitely) addi-
tive set function M on a σ-field Σ. If M is σ-additive, then N is σ-additive.

Proof. Let ∆n, n ∈ N be a pairwise disjoint sequence of sets from Σ. For A,B ∈ Σ
and h ∈ H,

(N(A)V[h], N(∪n∈N∆n)N(B)V[h]) = (V[h], N(A ∩ ∪n∈N∆n ∩B)V[h])

= (h,M(A ∩ ∪n∈N∆n ∩B)h) =
∑
n∈N

(h,M(A ∩∆n ∩B)h)

=
∑
n∈N

(V[h], N(A ∩∆n ∩B)V[h])

=
∑
n∈N

(N(A)V[h], N(∆n)N(B)V[h]).

Because of the minimality of the Naimark extension, D = span{N(∆)V[h] : ∆ ∈ Σ, h ∈
H} is dense in K. By Lemma 204, this implies that N is σ-additive. �

Proposition 8. Let M : Σ → B+(H) be a POVM and let (N,K,V) be a minimal
Naimark extension of M. Then

N(∆) = 0 if and only if M(∆) = 0.

Proof. We have NV[h](∆) = Mh(∆) for every ∆ ∈ Σ. Hence N(∆) = 0 implies
M(∆) = 0. The minimality of N is used for the converse: M(∆) = 0 implies

(∀A ∈ Σ)(∀h ∈ H) NN(A)V[h](∆) = NV[h](A ∩∆) = Mh(A ∩∆) = 0.

Because N is minimal, this implies Nk(∆) = 0 for every k ∈ K. Hence N(∆) = 0. �

4.1. Example. Let Σ be a σ-field of subsets of a set Ω. Let µ : Σ → [0, 1] be a
probability measure. Define POVM M : Σ→ B+(H) by

M(∆) = µ(∆)I.
We will give a Naimark extension for M.

Definition 9. For a finite positive measure space (Ω,Σ, µ) let 1∆, for ∆ ∈ Σ, be the
operator of multiplication with the indicator function 1∆ on L2(Ω,Σ, µ), and let PVM

1 : Σ→ B+(L2(Ω,Σ, µ))

be defined by 1(∆) = 1∆ for ∆ ∈ Σ.

Let K = H⊗̂L2(Ω,Σ, µ). For ∆ ∈ Σ define orthogonal projection operator N(∆) on
K by

N(∆) = I
⊗
1∆.

Define linear isometry V : H→ K by

V[h] = h⊗ 1Ω,

It is easily seen that (N,K,V) is a minimal Naimark extension of M.
Hilbert space K can be identified with L2(Ω,Σ, µ; H), the Hilbert space of H-valued

µ-square-integrable function classes on Ω. We will give a Naimark extension of M related
to L2(Ω,Σ, µ; H).
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Definition 10. For a finite positive measure space (Ω,Σ, µ) let PVM

1
(H) : Σ→ B+(L2(Ω,Σ, µ; H))

be defined by 1
(H)(∆)f(x) = 1∆(x)f(x).

Define linear isometry V : H→ L2(Ω,Σ, µ; H) by

V[h](x) = h(x) for µ-almost all x ∈ Ω.

Then (1(H), L2(Ω,Σ, µ; H),V) is a minimal Naimark extension of M.

5. Separability

The σ-field generated by a collection C of subsets of a set Ω is the smallest σ-field of
subsets of Ω including C.

Definition 11. A σ-field Σ of subsets of a set Ω is countably generated if there
exists a countable subcollection C of Σ that generates Σ.

Lemma 12 (Lemma III.8.4 of [42]). The field of subsets generated by a countable
subcollection of Σ is again countable.

Proposition 13. Let m ∈ N. The Borel σ-field on Rm is countably generated. The
collection of all subsets of N is countably generated.

Definition 14. Let Σ be a σ-field of subsets of a set Ω. A positive measure µ on Σ
is countably generated if and only if Σ(µ) is countably generated: I.e., if there exists a
countable subcollection C of Σ such that the σ-field Σ′ generated by C has the following
property: For every A ∈ Σ, there exists a B ∈ Σ′ such that B ∈ [A]µ. (This is the case
if and only if µ(A) = µ(A ∩B) = µ(B).)

Definition 15. A positive measure µ on Σ is separable if there exists a countable
subcollection C of Σ such that for every A ∈ Σ and ε > 0, there exists a B ∈ C such that
µ(A4B) ≤ ε.

Theorem 16. Let (Ω,Σ, µ) be a finite positive measure space and let 1 ≤ p < ∞.
Let q ∈ (1,∞] be such that 1

p
+ 1

q
= 1. The following conditions are equivalent.

(a) Lp(Ω,Σ, µ) is a separable Banach space.
(b) ball(Lq(Ω,Σ, µ)) is weak-star metrizable.
(c) µ is separable.
(d) µ is countably generated.

Proof. (a) ⇔ (b): Theorem 5.1 of Chapter V in [23], or Theorem V.5.1 in [42].
(c) implies (a): This follows from |1A(x)−1B(x)| = 1A4B(x) because the simple functions
are dense in Lp(Ω,Σ, µ).
(d) implies (c): Lemma 3.4.6. in [22].
(a) implies (d): We use the same method as in the proof of Lemma III.8.5 in [42]: Let

{fn : n ∈ N} be dense in Lp(Ω,Σ, µ) and let f
(m)
n , with m,n ∈ N, be simple functions

such that limm→∞ ‖f (m)
n − fn‖p = 0. Let X0 be the countable set of the non-zero values

of the functions f
(m)
n . Let C be the countable collection of sets E ∈ Σ of the form

E = {x : f
(m)
n (x) = x0}, where m,n are arbitrary positive integers and x0 ∈ X0.

Let Ω1 = ∪{E : E ∈ C}. Let Σ1 be the σ-field of subsets of Ω1 generated by C. All the

functions f
(m)
n vanish on the complement of Ω1 and are Σ1-measurable. Hence µ(Ωc

1) = 0.
Let µ1 be the restriction of µ to Σ1. Let A ∈ Σ. There is a sequence (gn) of elements

of {f (m)
n : n,m ∈ N} such that gn → 1A ∈ Lp(Ω,Σ, µ). Then (gn) is an Lp(Ω,Σ, µ)-

Cauchy sequence, and hence an Lp(Ω1,Σ1, µ1)-Cauchy sequence. Because Lp(Ω1,Σ1, µ1)
is complete, there is a g ∈ Lp(Ω1,Σ1, µ1) such that gn → g ∈ Lp(Ω1,Σ1, µ1). This implies
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that gn → g ∈ Lp(Ω,Σ, µ), and hence that g(x) = 1A(x) for µ-almost all x. This implies
that g(x) = |g(x)|2 for µ-almost all x, and hence for µ1-almost all x. Hence there is a
Ã ∈ Σ1 such that 1Ã(x) = g(x) for µ1-almost all x. Hence 1Ã(x) = g(x) = 1A(x) for

µ-almost all x. Hence µ(A4Ã) =
∫

Ω
|1A(x)− 1Ã(x)|p µ(dx) = 0. �

Remark 17. In e.g. [14] a metric space is associated to each positive measure space
(Ω,Σ, µ). It is shown (Theorem 17.7 of [14]) that this metric space is complete if and
only if Lp(Ω,Σ, µ) is complete for some p ∈ [1,∞) if and only if Lp(Ω,Σ, µ) is complete
for every p ∈ [1,∞).

Definition 18. Let Σ be a σ-field of subsets of a set Ω. A POVM M : Σ→ B+(H)
is countably generated if and only if Σ(M) is countably generated: I.e., if there exists a
countable subcollection C of Σ such that the σ-field Σ′ generated by C has the following
property: For every A ∈ Σ, there exists a B ∈ Σ′ such that B ∈ [A]M . (This is the case
if and only if M(A) = M(A ∩B) = M(B).)

Definition 19. A POVMM : Σ→ B+(H) is separable if for every h ∈ H the measure
Mh is separable.

Lemma 20. A POVM M is separable if and only if there exists a countable subcol-
lection C of Σ such that for every A ∈ Σ, h ∈ H and ε > 0, there exists a B ∈ C such
that ‖M(A4B)h‖ < ε.

Proof. Assume that such a C exists. By the Cauchy-Bunyakovskii-Schwarz inequal-
ity, Mh(∆) ≤ ‖h‖ ‖M(∆)h‖. Hence Mh is separable.

Assume that M is separable: For every h there exists a countable subcollection
Ch of Σ such that for every A ∈ Σ and ε > 0, there exists a B ∈ Ch such that
Mh(A4B) ≤ ε. From 0 ≤ M(∆) ≤ I follows M(∆)2 ≤ M(∆) and consequently
‖M(∆)h‖2 = (h,M(∆)2h) ≤ Mh(∆). Let H0 be a countable dense subset of H and
let C = ∪{Ch : h ∈ H0}. Then C is countable. Let ε > 0, and h ∈ H with ‖h‖ = 1, and
A ∈ Σ. There exists a h0 ∈ H0 such that ‖h − h0‖ ≤ ε, and there exists a B ∈ C such
that ‖M(A4B)h0‖ ≤ ε. Then

‖M(A4B)h‖2 = ‖M(A4B)(h− h0)‖2 − ‖M(A4B)h0‖2 + 2(h,M(A4B)h0)

≤ ε2 + ε2 + 2ε.

�

Proposition 21. Let Σ be a σ-field of subsets of a set Ω. Let (N,K,V) be a minimal
Naimark extension of a POVM M : Σ → B+(H), and let µ be a finite positive measure
with the same sets of measure zero as M. The following conditions are equivalent:

(a) K is separable.
(b) N is separable.
(c) N is countably generated.
(d) µ is countably generated.
(e) M is countably generated.
(f) M is separable.

Proof. (e) implies (f): The proof of Lemma 3.4.6. in [22].
(a) implies (b): By Proposition 230 there is a bounded self-adjoint operator E on K that
generates commutative von Neumann algebra N(Σ)′′. The spectral measure E : BC →
B+(K) of E is countably generated and hence separable. Let h ∈ H. There exists a
countable subcollection CC of BC such that for every A ∈ BC and ε > 0, there exists a
B ∈ CC such that

‖E(A)h− E(B)h‖ = ‖E(A4B)h‖ < ε.
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By Lemma 196, for every A ∈ CC there exists a sequence (An) of sets in Σ such that

(∀n ∈ N) ‖N(An)h− E(A)h‖ ≤ 1

n
.

Let C′ = {An : A ∈ CC, n ∈ N}. For every ε > 0 and ∆ ∈ Σ there is an A ∈ BC, an
A′ ∈ CC, and a ∆′ ∈ C′ such that

‖N(∆)h− E(A)h‖ ≤ ε, ‖E(A)h− E(A′)h‖ ≤ ε, ‖E(A′)h−N(∆′)h‖ ≤ ε.

By the triangle inequality,

‖N(∆4∆′)h‖ = ‖N(∆)h−N(∆′)h‖ ≤ 3ε.

Because C′ is countable, this implies that Nh is separable.
(b) implies (a): Let C be as in Lemma 20. Let H0 be a countable dense subset of H.
Then K is the closure of the countable set formed by linear combinations with rational
coefficients of N(∆)V[h] with ∆ ∈ C and h ∈ H0.
(c) implies (b): The proof of Lemma 3.4.6. in [22].
(b) implies (c): Let (kn) be an orthonormal basis of K. (The sequence (kn) is countable
by (a).) For ∆ ∈ Σ let µ̃(∆) =

∑∞
n=1 2−nNkn(∆). By (b), µ̃ is separable. By Theorem

16, µ̃ is countably generated. Hence N is countably generated.
(c) ⇔ (d) ⇔ (e): µ and M and N have the same sets of measure zero.
(f) implies (d): Let (hn) be an orthonormal basis of H. (The sequence (hn) is countable
because H is separable.) For ∆ ∈ Σ let µ̃(∆) =

∑∞
n=1 2−nMhn(∆). Because M is sepa-

rable, µ̃ is separable. By Theorem 16, µ̃ is countably generated. Hence µ is countably
generated. Hence M is countably generated. �

5.1. Example. It is clear that K in Example 4.1 is separable if and only if L2(Ω,Σ, µ)
is separable.

6. Operator densities

In this section we introduce a technical tool which is needed in Section 17: We prove
that with the help of a Hilbert-Schmidt operator R, we can transform a POVM M into
an FPOVM ∆ 7→ R∗M(∆)R which has the special property that there exist a family
(Mx) of operators and a probability measure µ such that

R∗M(∆)R =

∫
∆

Mx µ(dx)

for all ∆ ∈ Σ. The operators (Mx) and the measure µ both depend on the choice of R.
Definition 22. Let Σ be a σ-field of subsets of a set Ω. An FPOVM M : Σ→ B+(H)

is said to have operator densityMx, x ∈ Ω with respect to a positive measure µ on Σ if

(∀∆ ∈ Σ)(∀h ∈ H) Mh(∆) =

∫
∆

(h,Mxh)µ(dx).

The operator density is called bounded if sup{‖Mx‖∞ : x ∈ Ω} <∞.
Lemma 23. If M : Σ→ B+(H) is an FPOVM with operator density (Mx) with respect

to a positive measure µ on Σ, then Mx ≥ 0 for µ-almost all x.

Proof. Let h ∈ H. For all ∆ ∈ Σ,
∫

∆
(h,Mxh)µ(dx) = Mh(∆) ≥ 0. This implies

that (h,Mxh) ≥ 0 for µ-almost all x. This is true for all h : For every h ∈ H there
exists a µ-null set Nh such that (h,Mxh) ≥ 0 for all x ∈ Ω\Nh. Let H0 be a countable
dense subset of H. From the σ-additivity of µ it follows that countable unions of µ-null
sets are again µ-null sets. Hence there exists a µ-null set N such that (h,Mxh) ≥ 0 for
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x ∈ Ω\N and all h ∈ H0. BecauseMx is a bounded operator, this implies thatMx ≥ 0
for x ∈ Ω\N. �

Lemma 24. Let Σ be a σ-field of subsets of a set Ω. Let M : Σ → B+(H) be an
FPOVM and let µ be a finite positive measure on Σ with the same sets of measure zero
as M. For h ∈ H let Q[h] be the Radon-Nikodym derivative of Mh with respect to µ :

(∀∆ ∈ Σ)(∀h ∈ H) Mh(∆) =

∫
∆

Q[h](x)µ(dx).

The following conditions are equivalent:

(a) There is a function ϕ : Ω→ [0,∞) such that

(∀h ∈ H)(∀µx ∈ Ω) |Q[h](x)| ≤ ϕ(x) ‖h‖2.
(b) There is a family (Mx) of non-negative bounded operators on H such that

(∀h ∈ H)(∀µx ∈ Ω) Q[h](x) = (h,Mxh).

Proof. (b) implies (a): Let ϕ(x) = ‖Mx‖.
(a) implies (b): For every f, g, h ∈ H there exists a µ-null set Nf,g,h such that for all
x ∈ Ω\Nf,g,h the following conditions are satisfied:

- 0 ≤ Q[h](x) ≤ ϕ(x) ‖h‖2,
- Q[ch](x) = |c|2Q[h](x) for c ∈ C,
- Q[f + g](x) +Q[f − g](x) = 2Q[f ](x) + 2Q[g](x).

Let H0 be a countable dense subset of H. From the σ-additivity of µ it follows that
countable unions of µ-null sets are again µ-null sets. Hence there exists a µ-null set N
such that for x ∈ Ω\N and all f, g, h ∈ H0 the three conditions above are satisfied. By
Theorem 225, there is, for every x ∈ Ω\N, an Mx ∈ B+(H) with ‖Mx‖∞ ≤ ϕ(x) such
that Q[h](x) = (h,Mxh) for all h ∈ H0. Hence

(∀h ∈ H0)(∀∆ ∈ Σ) Mh(∆) =

∫
∆

(h,Mxh)µ(dx).

Because H0 is dense in H, this implies (b). �

Example 25. Let BR be the Borel subsets of R, let µ be ordinary Lebesgue measure
on R, and let H = L2(R, µ). Define M : BR → B+(H) by M = 1. From

M(∆) =

∫
∆

|h(x)|2 µ(dx)

if follows that the Radon-Nikodym derivative Q[h] of Mh with respect to µ satisfies
Q[h](x) = |h(x)|2 for µ-almost all x ∈ R. It is known that a function ϕ : R→ [0,∞) such
that

(∀h ∈ H)(∀µx ∈ Ω) |h(x)|2 ≤ ϕ(x) ‖h‖2

does not exist: At page 23 of Section 3 of Chapter I in [106] it is shown that the identity
operator I on L2(R) is not an integral operator. This implies, in particular, that I is not
a Carleman operator. (This concept is defined e.g. in [52] and [108] and in Appendix J
below.) By Korotkov’s theorem (Theorem 6.14 in [108] or Theorem 17.2 in [52]) there
is no function ϕ : R→ [0,∞) such that |I[h](x)| ≤ ‖h‖ϕ(x) almost everywhere for every
h ∈ L2(R). This implies, by Lemma 24, that M does not have an operator density.

Lemma 26. Let M : Σ → B+(H) be an FPOVM such that kΩ = Tr(M(Ω)) < ∞.
There exists a probability measure µ on Σ with the same sets of measure zero as M
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and a family (Mx) of non-negative bounded operators on H such that ‖Mx‖∞ ≤ kΩ for
µ-almost all x ∈ Ω, and

(∀∆ ∈ Σ)(∀h ∈ H) Mh(∆) =

∫
∆

(h,Mxh)µ(dx).

Proof. Let probability measure µ on Σ be defined by

µ(∆) = Tr(M(∆))/kΩ.

If µ(∆) = 0 then Tr(M(∆)) = 0. Because M(∆) ≥ 0, this implies that M(∆) = 0. Hence
µ has the same sets of measure zero as M. Let Q[h] be the Radon-Nikodym derivative
of Mh with respect to µ :

(∀∆ ∈ Σ)(∀h ∈ H) Mh(∆) =

∫
∆

Q[h](x)µ(dx).

We will proof that

(8) (∀h ∈ H)(∀µx ∈ Ω) |Q[h](x)| ≤ kΩ ‖h‖2.
Assume that it is not true: There exists a h ∈ H and a ∆ ∈ Σ with µ(∆) > 0 such that
Q[h](x) > kΩ‖h‖2. This implies that

Mh(∆) =

∫
∆

Q[h](x)µ(dx) > µ(∆)kΩ‖h‖2 = Tr(M(∆))‖h‖2.

Hence Tr(M(∆)) < ( h
‖h‖ ,M(∆) h

‖h‖). This is impossible because M(∆) ≥ 0. Conse-

quently, (8) is satisfied.
By Lemma 24, there is a family (Mx) of non-negative bounded operators on H such

that
(∀h ∈ H)(∀µx ∈ Ω) Q[h](x) = (h,Mxh).

From (8) follows ‖Mx‖ ≤ kΩ for µ-almost all x ∈ Ω. �

Proposition 27. Let M : Σ → B+(H) be an FPOVM. Let R be a Hilbert-Schmidt
operator on H. There exists a probability measure µ on Σ with the same sets of mea-
sure zero as M and a family (Mx) of non-negative bounded operators on H such that
‖Mx‖∞ ≤ ‖M(Ω)‖∞ Tr(R∗R) for µ-almost all x ∈ Ω, and

(9) (∀∆ ∈ Σ)(∀h ∈ H) MRh(∆) =

∫
∆

(h,Mxh)µ(dx).

Proof. Define FPOVM MR on Σ by MR(∆) = R∗M(∆)R. Then MRh = MR
h for

all h ∈ H and MR(Ω) is a trace-class operator. Existence of µ and (Mx) satisfying (9)
and ‖Mx‖∞ ≤ Tr(MR(Ω)) follows from Lemma 26. By Proposition 201, Tr(MR(Ω)) ≤
‖M(Ω)‖∞ Tr(R∗R). �

Remark 28. Assume that H,Σ,Ω,R, µ,Mx are as in Proposition 27. Let T = RR∗

and Tx = RMxR∗. Then

(∀∆ ∈ Σ)(∀h ∈ H) MT h(∆) =

∫
∆

(h, Txh)µ(dx),

and Tr(Tx) ≤ ‖M(Ω)‖∞ (TrR∗R)2 <∞ for µ-almost all x ∈ Ω.

Example 29. Let H = L2(R) and let BR be the Borel subsets of R. PVM 1 : BR →
B+(H) does not have an operator density. An operator R on H for which there is a family
(ex) of vectors in H such that

(10) 1Rh(∆) =

∫
∆

|(ex, h)|2 dx
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can easily be found. Take for example R = FMf , where F is Fourier transformation
on H and Mf is the operator of multiplication with a bounded and square-integrable

function f. Then (10) is satisfied with ex(y) = f(y)eixy/
√

2π. The family (ex ⊗ ex) is an
operator density (with respect to the Lebesgue measure on R) for PVM 1.

7. Integration with respect to a POVM

Definition 30. Let Σ be a σ-field of subsets of a set Ω. Let M : Σ → B+(H) be a
POVM. The M -essential supremum of a Σ-measurable function ϕ : Ω → C is denoted
and defined by

‖ϕ‖∞ = inf{sup{|ϕ(x)| : x 6∈ ∆} : ∆ ∈ Σ, M(∆) = 0}
= inf{c > 0 : M({x ∈ Ω : |ϕ(x)| > c}) = 0}
= inf{c > 0 : (∀Mx ∈ Ω) |ϕ(x)| ≤ c}.

If this is finite then ϕ is M -essentially bounded. Let

L∞(Ω,Σ,M) = {ϕ : Ω→ C : ϕ is a an M -essentially bounded measurable function}.
The M -essential supremum is a norm on L∞(Ω,Σ,M) when functions that agree M -
almost everywhere are identified. The normed space thus obtained is denoted again by
L∞(Ω,Σ,M). It is a Banach space and it is (partially) ordered pointwise modulo sets of
measure zero.

Definition 31. Let M : Σ → B+(H) be a POVM. Let ρM : L∞(Ω,Σ,M) → B∞(H)
be defined by

(11) (h, ρM(ϕ)h) =

∫
Ω

ϕ(x)Mh(dx), h ∈ H

and polarization.

Proposition 32. Let M : Σ → B+(H) be a POVM. Then ρM : L∞(Ω,Σ,M) →
B∞(H) is a contractive operator.

For a POVM M : Σ→ B+(H) and probability measure µ on Σ with the same sets of
measure zero as M, there is a contractive operator ρ′M : B1(H)→ L1(Ω,Σ, µ) satisfying

(12) (∀ϕ ∈ L∞(Ω,Σ,M))(∀T ∈ B1(H)) Tr(ρM(ϕ)T ) =

∫
Ω

ϕ(x)ρ′M [T ](x)µ(dx).

A special case is

(∀∆ ∈ Σ)(∀h ∈ H) Mh(∆) =

∫
∆

ρ′M [h⊗ h](x)µ(dx).

If M has an operator density (Mx) with respect to µ, then ρ′M [T ](x) = Tr(TMx) for
µ-almost all x.

Proof. Let T ∈ B1(H). From (11) follows

Tr(ρM(ϕ)T ) =

∫
Ω

ϕ(x) Tr(M(dx)T ) ∀ ϕ ∈ L∞(Ω,Σ,M).

If ∆ ∈ Σ and µ(∆) = 0 then M(∆) = 0 and hence Tr(M(∆)T ) = 0. Let ρ′M [T ] be the
Radon-Nikodym derivative of ∆ 7→ Tr(M(∆)T ) with respect to µ : ρ′M [T ] ∈ L1(Ω,Σ, µ)
and Tr(M(dx)T ) = ρ′M [T ](x)µ(dx). Now (12) is satisfied. From the linearity of T 7→
Tr(M(∆)T ) it follows that ρ′M : B1(H)→ L1(Ω,Σ, µ) is linear. By Theorem 207,

‖ρ′M [T ]‖1 ≤ ‖M(∆)‖∞ ‖T ‖1 ≤ ‖T ‖1.
This means that ρ′M is contractive. By (12), this implies that ρM is also contractive.
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If M has an operator density (Mx) with respect to µ, then

Tr(M(∆)T ) =

∫
∆

Tr(MxT )µ(dx)

for all ∆ ∈ Σ. Hence ρ′M [T ](x) = Tr(TMx) for µ-almost all x. �

Proposition 33. If M : Σ→ B+(H) is a POVM, then

ρM : (L∞(Ω,Σ,M),weak∗)→ (B∞(H),weak∗)

is continuous. Conversely, if µ is a finite positive measure on Σ and

ρ : (L∞(Ω,Σ, µ),weak∗)→ (B∞(H),WOT)

is positive, linear, sequentially continuous and satisfies ρ(1) = I, then ρ = ρM for a
POVM M on Σ.

Proof. Let (ϕα) be a net in L∞(Ω,Σ, µ) converging to 0 with respect to the weak-
star topology. From (12) it follows that limα Tr(T ρM(ϕα)) = 0 for every T ∈ B1(H).
This means that ρM(ϕα) converges to 0 with respect to the weak-star topology of B∞(H).

By Theorem 1, there exists a POVM M : Σ→ B+(H) such that ρ(1∆) = ρM(1∆) for
∆ ∈ Σ. This implies, together with the first part of the proposition and the fact that the
indicator functions form a dense subset of L∞(Ω,Σ,M), that ρ = ρM . �

Remark 34. Using Theorem 208 and Proposition 209, it is easily seen that M is an
injective POVM if, and only if, {ρ′M [T ] : T ∈ B1(H)} is a dense subset of L1(Ω,Σ, µ),
where µ is a finite positive measure with the same sets of measure zero as M.

Let, for example, H = L2(R), and M = 1, and T = g ⊗ h. Then Tr(ρM(ϕ)T ) =∫
R ϕ(x)g(x)h̄(x) dx. Hence fT (x) = g(x)h̄(x). The space formed by functions x 7→
g(x)h̄(x), with g, h ∈ L2(R), is equal to (and hence dense in) L1(R). Hence M is in-
jective.

Theorem 35. Let M : Σ→ B+(H) be a PVM. Then

(a) ρM(ϕ · ψ) = ρM(ϕ)ρM(ψ) for all ϕ, ψ ∈ L∞(Ω,Σ,M);
(b) ‖ρM(ϕ)h‖2 =

∫
Ω
|ϕ(x)|2Mh(dx) for all ϕ ∈ L∞(Ω,Σ,M);

(c) ρM is injective
(d) ρM : L∞(Ω,Σ,M)→ B∞(H) is a linear isometry;
(e) range(ρM) is a C∗-subalgebra of B∞(H),

and ϕ ≤ ψ if, and only if, ρM(ϕ) ≤ ρM(ψ);
(f) range(ρM) is weak-star closed;
(g) ρM : L∞(Ω,Σ, µ)→ range(ρM) has a weak-star continuous linear inverse.

Proof. (a): Theorem 15 in [10]. (The general case can be reduced to the case where
ϕ and ψ are simple functions, for which (a) is easily verified.)
(a) implies (b): Take ϕ = ψ̄ and use ρM(ψ̄) = ρM(ψ)∗.
(b) implies (c): If

∫
Ω
|ϕ(x)|2Mh(dx) = 0 for all h ∈ H, then |ϕ(x)|2 = 0 for M -almost all

x. Hence ϕ(x) = 0 for M -almost all x.
(b) implies (d): Let ϕ ∈ L∞(Ω,Σ,M) and ‖ϕ‖∞ = 1. By (b),

‖ρM(ϕ)h‖2 =

∫
Ω

|ϕ(x)|2Mh(dx) ≤Mh(Ω) = ‖h‖2.

Hence ‖ρM(ϕ)‖ ≤ 1. Let ε > 0. There is a ∆ ∈ Σ with M(∆) 6= 0 such that |ϕ(x)| ≥ 1−ε
for x ∈ ∆. By (b),

‖ρM(ϕ)h‖2 ≥
∫

∆

|ϕ(x)|2Mh(dx) ≥ (1− ε)2Mh(∆).
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for h ∈ H. Hence
(∀h ∈ H) ‖ρM(ϕ)h‖ ≥ (1− ε)‖M(∆)h‖.

Operator M(∆) is a non-zero orthogonal projection operator and hence has norm 1.
Hence ‖ρM(ϕ)‖ ≥ 1 − ε. This is true for every ε > 0; hence ‖ρM(ϕ)‖ ≥ 1. Combining
both results gives: ‖ρM(ϕ)‖ = ‖ϕ‖∞ if ‖ϕ‖∞ = 1. This implies (d).
(a) implies (e): From (a) it follows that range(ρM) is a ∗-subalgebra of B∞(H). From (b)
it follows that range(ρM) is a C∗-subalgebra. The second part of (e) can be reduced to
the case ϕ = 0. If ψ ≥ 0 then clearly ρM(ψ) ≥ 0. Assume that ψ is Σ-measurable and
that ρM(ψ) ≥ 0. Then ρM(ψ) = ρM(ψ)∗ = ρM(ψ̄) hence ρM(ψ − ψ̄) = 0. Because ρM is
injective, this implies ψ = ψ̄ i.e. ψ is real-valued. Let ∆ = {x ∈ Ω : ψ(x) ≤ 0}. Then
∆ ∈ Σ and ρM(1∆ψ) ≤ 0. But for h ∈ H we have

(h, ρM(1∆ψ)h) = (M(∆)h, ρM(ψ)M(∆)h) ≥ 0 ∀ h ∈ H.

Hence ρM(1∆ψ) = 0. By the injectivity of ρM , this implies 1∆ψ = 0. Hence ψ ≥ 0.
(e) implies (f): Theorem 229.
(c) and (f) imply (g): Proposition 216 �

In the following proposition we give relations between ρM and ρN , where N is the
minimal Naimark extension of POVM M.

Proposition 36. Let M : Σ → B+(H) be a POVM and let (N,K,V) be a minimal
Naimark extension of M. Then L∞(Ω,Σ,M) = L∞(Ω,Σ, N). We have

(13) (∀ϕ ∈ L∞(Ω,Σ,M)) ρM(ϕ) = V∗ρN(ϕ)V.

Hence

(∀ϕ ∈ L∞(Ω,Σ,M))(∀h ∈ H) ‖ρM(ϕ)h‖2 ≤
∫

Ω

|ϕ(x)|2Mh(dx).

Proof. By Proposition 8, M and N have the same sets of measure zero. Hence
L∞(Ω,Σ,M) = L∞(Ω,Σ, N). For ϕ ∈ L∞(Ω,Σ,M) and h ∈ H,

‖ρM(ϕ)h‖2 ≤ ‖ρN(ϕ)V[h]‖2 =

∫
Ω

|ϕ(x)|2NV[h](dx) =

∫
Ω

|ϕ(x)|2Mh(dx).

�

Definition 37. A POVM M : Σ→ B+(H) is called injective if

ρM : L∞(Ω,Σ,M)→ B∞(H)

is injective (i.e. if ρM(ϕ) = 0 implies ϕ = 0).

Remark 38. Every PVM is injective. Not every injective POVM is projection-
valued: In Remark 8 of [37] an example is given of a POVM M : Σ→ B+(R2) which is
injective and not projection-valued.

Proposition 39. Let M : Σ → B+(H) be a POVM and let M(Σ)′′ be the von Neu-
mann algebra generated by its range M(Σ). Then range(ρM) ⊂M(Σ)′′.

Proof. The simple functions form a dense subset S of (L∞(Ω,Σ,M),weak∗). The
continuity of ρM implies that ρM(S) is dense in (range(ρM),weak∗). Because ρM(S) ⊂
M(Σ)′′ and M(Σ)′′ is weak-star closed, this implies that range(ρM) ⊂M(Σ)′′. �
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8. Dominance of POVMs

In [80] and [78] a pre-order on the collection of POVMs is explored. In [37] some
of the mathematical properties of this pre-order are investigated even further. In this
section we repeat some definitions and elementary results from [37]. In Section 17 we
characterize the set of POVMs that belong to an equivalence class which is maximal
with respect to the partial order induced by the pre-order. A similar characterization
was already given in [78] for the case of POVMs on finite outcome sets and in [37] for
discrete POVMs.

Definition 40 ([37], Section 2). For k ∈ {1, 2}, let Σk be a σ-field of subsets of a
set Ωk. Let M2 : Σ1 → B+(H) be a POVM. Let M(Σ1; Ω2,Σ2,M2) be the set of families
(p∆), indexed by Σ1 and consisting of equivalence classes of M2-measurable functions on
Ω2, such that

- p∆ ∈ L∞(Ω2,Σ2,M2) for all ∆ ∈ Σ1,

- pΩ1(x) = 1 and 0 ≤ p∆(x) ≤ 1 for M2-almost all x ∈ Ω2 and ∆ ∈ Σ1,
- p∆(x) =

∑∞
n=1 p∆n(x) for M2-almost all x ∈ Ω2 for every disjoint union ∆ = ∪∞n=1∆n

with ∆n ∈ Σ1.

Definition 41 ([37], Definitions 2 and 3). Let Σ1,Σ2 be σ-fields of subsets of sets
Ω1,Ω2 respectively. For POVMs M1 : Σ1 → B+(H) and M2 : Σ2 → B+(H) we say that
M1 is dominated by M2, denoting M1 ← M2, if there exists (p∆) ∈ M(Σ1; Ω2,Σ2,M2)
such that

(∀∆ ∈ Σ1) M(∆) = ρM2(p∆) =

∫
Ω2

p∆(y)M2(dy).

If both M1 ← M2 and M2 ← M1 then we say that M1 and M2 are equivalent which is
denoted by M1 ↔M2.

Definition 42 ([80]). A POVM M is maximal if M ← E for another POVM E,
implies M ↔ E.

Lemma 43 ([37], Lemma 2.2). ← is a pre-order and ↔ is the associated equivalence
relation.

Proposition 44. A POVM has commutative range if and only if it is dominated by
a PVM.

Proof. Let M : Σ → B+(H) be a POVM and let E : Σ2 → B+(H) be a PVM that
dominates M. Then M(Σ) is commutative because it is contained in range(ρE). Corollary
3.8 of [37] provides the remaining part of the proof. �

9. Four remarks about the definition of ←

Lemma 45. The three conditions in Defintion 40 are equivalent to

(a) p∆ ∈ L∞(Ω2,Σ2,M2) for all ∆ ∈ Σ,
(b) pΩ = 1 and 0 ≤ p∆ ≤ 1 in L∞(Ω2,Σ2,M2) for all ∆ ∈ Σ1,
(c) If ∆ is the disjoint union of family ∆n, n ∈ N of sets in Σ, then p∆ =

∑∞
n=1 p∆n in

(L∞(Ω2,Σ2,M2),weak∗).

Proof. Conditions (a), (b) are clearly equivalent to the first two condition in Defi-
nition 40. Assume that these conditions are satisfied and that p∆ = p∆1 + p∆2 for every
disjoint union ∆ of ∆1,∆2 ∈ Σ1.

It suffices to prove that (under the above assumptions) the third condition of Defi-
nition 40 is equivalent to condition (c):

Assume that we are given a disjoint union ∆ = ∪∞n=1∆n with ∆n ∈ Σ1. Let µ be a
probability measure on Σ2 with the same sets of measure zero as M2. For N ∈ N let
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ϕN =
∑N

n=1 p∆n . From the assumptions it follows that N 7→ ϕN is a monotone increasing
sequence of elements of L∞(Ω2,Σ2, µ) and that 0 ≤ ϕN ≤ p∆. We will prove that the
following conditions are equivalent:

(i) limN→∞ ϕN(x) = p∆(x) for µ-almost all x;
(ii) limN→∞ ϕN = p∆ in (L∞(Ω2,Σ2, µ),weak∗).

(i) implies (ii): This follows from the monotone convergence theorem
(ii) implies (i): Because 1Ω2 ∈ L1(Ω1,Σ2, µ), it follows from (ii) that

lim
N→∞

∫
Ω2

ϕN(x)µ(dx) =

∫
Ω2

p∆(x)µ(dx).

By Theorem 205, this implies (i). �

Lemma 46. For k ∈ {1, 2}, let (Ωk,Σk) be a measurable space, let Mk : Σk → B+(H)
be a POVM, and let µk be a probability measure with the same sets of measure zero as
Mk. The following conditions are equivalent.

(a) M2 ←M1;
(b) There exists a positive and weak-star continuous operator

K : L∞(Ω2,Σ2,M2)→ L∞(Ω1,Σ1,M1)

such that K[1Ω2 ] = 1Ω1 and ρM2 = ρM1 ◦K, or equivalently,

(∀∆2 ∈ Σ2) M2(∆2) =

∫
Ω1

K[1∆2 ](x)M1(dx).

(c) There exists a positive operator R : L1(Ω1,Σ1,M1)→ L1(Ω2,Σ2,M2) such that

(14)

∫
Ω2

R[f ](y)µ2(dy) =

∫
Ω

f(x)µ1(dx)

for all f ∈ L1(Ω1,Σ1, µ1) and ρ′M2
= R ◦ ρ′M1

.

Proof. (b) implies (a): For ∆2 ∈ Σ2 let p∆2(x) = K[1∆2 ](x). From the weak-star
continuity of K it follows that (p∆2) ∈ M(Σ2,Ω1,Σ1,M1). By construction, M2(∆2) =
ρM1(p∆2). Hence M2 ←M1.
(a) implies (b): Let S be the subspace of L∞(Ω2,Σ2,M2) consisting of simple functions
(i.e. linear combinations of measurable indicator functions). Let s ∈ S. There are N ∈ N,
an N -tuple (∆n) of pairwise disjoint sets from Σ2, and cn ∈ C such that s =

∑N
n=1 cn1∆n .

Define K[s] ∈ L∞(Ω1,Σ1,M1) by

K[s] =
N∑
n=1

cnp∆n .

It is easily seen that the properties of B 7→ pB imply that this does not depend on
the particular representation of s. Hence K is the unique linear function from S to
L∞(Ω1,Σ1,M1) such that K[1B] = pB for all B ∈ Σ2. It is easily seen that K is positive
(i.e. that K[s] ≥ 0 if s ≥ 0), and that K[1Ω2 ] = 1Ω1 . Hence ‖K[f ]‖∞ ≤ ‖f‖∞ for f ≥ 0.
Lemma 197 says that this implies that K is a bounded operator. Because S is a dense
linear subspace of L∞(Ω2,Σ2,M2), the bounded operator K has a unique extension to a
bounded operator from L∞(Ω2,Σ2,M2) to L∞(Ω1,Σ1,M1). By construction,

(∀B ∈ Σ2) M2(B) =

∫
Ω1

K[1B](x)M1(dx).
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If B = ∪∞k=1Bk is a disjoint union with Bk ∈ Σ2 then, by Lemma 45,
∞∑
k=1

K[1Bk
] = K[1B]

with respect to the weak-star topology. Theorem 46.4 of [25], says that this implies that
K is weak-star continuous.
(c) implies (b): If ρMk

is considered as

ρMk
: (L∞(Ω1,Σ1,M1),weak∗)→ (B∞(H),weak∗)

then (ρ′Mk
)′ = ρMk

. Hence ρ′M2
= R ◦ ρ′M1

implies ρM2 = ρM1 ◦K, where K = R′. By
Lemma 215, K is weak-star continuous. From (14) follows K[1Ω2 ] = 1Ω1 .
(b) implies (c): By Lemma 215, there is a bounded operator R : L1(Ω1,Σ1,M1) →
L1(Ω2,Σ2,M2) such that K = R′. We have K′ = R if we consider K as operator from
(L∞(Ω2,Σ2,M2),weak∗) to (L∞(Ω1,Σ1,M1),weak∗)). Hence ρM2 = ρM1◦K implies ρ′M2

=
R ◦ ρ′M1

. From K[1Ω2 ] = 1Ω1 follows (14). �

Definition 47. For k ∈ {1, 2}, let (Ωk,Σk) be a measurable space.
M((Ω2,Σ2), (Ω1,Σ1)) denotes the set of functions K : Σ2 × Ω1 → [0, 1] satisfying

- For each x ∈ Ω1, K(·, x) is a probability measure on (Ω2,Σ2);
- For each ∆ ∈ Σ2, K(∆, ·) is a Σ1-measurable function on Ω1.

Definition 48. For k ∈ {1, 2}, let (Ωk,Σk, µk) be two measure spaces.
M((Ω2,Σ2, µ2), (Ω1,Σ1, µ1) denotes the set of functions K : Ω2 ×Ω1 → [0,∞) satisfying:

- For each x ∈ Ω1, K(·, x) is a µ2-measurable function on Ω2;
- For each y ∈ Ω2, K(y, ·) is a µ1-measurable function on Ω1;
-
∫

Ω2
K(y, x)µ2(dy) = 1 for µ1-almost all x ∈ Ω1.

In this definition, µ1 may be replaced by a POVM on Σ1.

Lemma 49. For k ∈ {1, 2}, let (Ωk,Σk) be a measurable space, and let Mk : Σk →
B+(H) be a POVM. Consider the following conditions:

(i) M2 ←M1;
(ii) There exists a K ∈ M((Ω2,Σ2), (Ω1,Σ1)) such that

(∀∆2 ∈ Σ2) M2(∆2) =

∫
Ω1

K(∆2, x)M1(dx),

and K(·, x)�M2 for M1-almost all x ∈ Ω1.

Condition (ii) implies (i). If Σ2 is countably generated, then (i) implies (ii).

If, moreover, M2 has an operator density (M(2)
y ) with respect to probability measure

µ2 on Σ2, then condition (ii) is equivalent to the following: There exists a function
K ∈ M((Ω2,Σ2, µ2), (Ω1,Σ1,M1)) such that

(∀µ2y ∈ Ω2) M(2)
y =

∫
Ω1

K(y, x)M1(dx).

Proof. (ii) implies (i): For ∆2 ∈ Σ2 let p∆2(x) = K(∆2, x).
Then (p∆2) ∈ M(Σ2; Ω1,Σ1,M1) and M2(∆2) = ρM1(p∆2). Hence M2 ←M1.
(i) implies (ii): Assume that Σ2 is countably generated: There exists a countable sub-
family C of Σ2 such that Σ2 is the smallest σ-field containing C. The algebra of sub-
sets generated by C and Ω2 is again countable. We denote this algebra by A. Define
K : A× Ω1 → [0, 1] by

K(∆, x) = p∆(x),
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where p∆ is a representative satisfying 0 ≤ p∆(x) ≤ 1. The union of a countable family
of countable sets is again countable. The union of a countable family of M1-null sets is
again an M1-null set. Hence there exists an M1-null set N such that for every x ∈ Nc,

- K(·, x) : A→ [0, 1] is a countably additive set function;
- K(Ω2, x) = 1;
- K(∆, x) ≥ 0 for every ∆ ∈ A;
- K(∆, x) = 0 for every ∆ ∈ A with M2(∆) = 0.

By Theorem III.5.8 in [42], K(·, x) has a unique extension to a probability measure on
Σ2, for every x ∈ Nc. This extension is again denoted by K(·, x). Let F be the collection
of sets ∆ ∈ Σ2 for which the function K(∆, ·) : Nc → [0, 1] is measurable. Then F is
a σ-field which includes A. Hence K(∆, ·) : Nc → [0, 1] is measurable for all ∆ ∈ Σ2.
For x ∈ N we redefine K(·, x) in such a way that ∆ 7→ K(∆, x) becomes a probability
measure. (This can be done in many ways, but the choice is irrelevant because N is
a M1-null set.) Then K ∈ M((Ω2,Σ2), (Ω1,Σ1)) and K(·, x) � M2 for M1-almost all
x ∈ Ω1. By construction,

(∀∆2 ∈ A) M2(∆2) =

∫
Ω1

K(∆2, x)M1(dx).

The uniqueness part of Corollary III.5.9 in [42] implies that this is true also for ∆2 ∈ Σ2.
The final part of the lemma follows from the Radon-Nikodyn theorem and Fubini’s

theorem. Define y 7→ K(y, x) as the Radon-Nikodyn derivative of ∆ 7→ K(∆, x) with
respect to µ2. �

Remark 50. An element K ∈ M((Ω2,Σ2), (Ω1,Σ1)) is called (in Exercise 6 of Section
4 of Chapter 2 in [22]) a kernel from (Ω1,Σ1) to (Ω2,Σ2). For some properties of kernels,
see also Exercise 6 of Section 1 of Chapter 5 in [22]. In [15], K is called a conditional
confidence measure.

For k ∈ {1, 2}, let Σk be a σ-field of subsets of a set Ωk. Define Σ1×Σ2 as the σ-field
of subsets of Ω1 × Ω2 generated by the sets ∆1 ×∆2 with ∆k ∈ Σk.

Lemma 51. For k ∈ {1, 2}, let Σk be a σ-field of subsets of a set Ωk. Let M1 : Σ1 →
B+(H) be a POVM. Let p ∈ M(Σ2; Ω1,Σ1,M1). For ∆ ∈ Σ1 × Σ2 let

q∆(x) = p∆x(x), where ∆x = {y ∈ Ω2 : (x, y) ∈ ∆}.
Then (q∆) ∈ M(Σ1 × Σ2; Ω1,Σ1,M1). Define POVM M : Ω1 × Ω2 → B+(H) by

M(∆) =

∫
Ω1

q∆(x)M1(dx).

Then M(A×B) =
∫
A
pB(x)M1(dx). In particular, M(A× Ω2) = M1(A).

Proof. By Lemma 5.1.1 in [22], ∆x ∈ Σ2 for all x. Let F be the collection of sets
∆ ∈ Σ1×Σ2 for which q∆ is Σ1-measurable. Because qA×B = 1A(x)pB(x), A×B ∈ F for
all A ∈ Σ1 and B ∈ Σ2. It is easily seen that F is a σ-field. Hence F contains Σ1 × Σ2.
Hence q∆ ∈ L∞(Ω1,Σ1,M) for all ∆ ∈ Σ1 × Σ2. That (q∆) ∈ M(Σ1 × Σ2; Ω1,Σ1,M1)
follows easily from the definition of ∆x. �

10. Dominance between PVMs

Theorem 52. Let H be a Hilbert space and let Σ be a σ-field of subsets of a set Ω.
Let E : Σ→ B+(H) be a PVM. Then

(15) range(ρE) = E(Σ)′′.
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This is a maximal commutative von Neumann algebra if and only if

(16) (E(Σ)′)p = E(Σ).

Proof. Let µ be a non-negative finite measure on Ω with the same sets of measure
zero as E. By Theorem 35, range(ρE) is a weak-star closed C∗-subalgebra of B∞(H). By
von Neumann’s double commutant theorem, range(ρE) is a von Neumann algebra. We
will prove that

(17) range(ρE)p = E(Σ).

Let A = ρE(ϕ) be an orthogonal projection operator: A2 = A = A∗. Because every

PVM is injective, this implies that (ϕ(x))2 = ϕ(x) = ϕ(x) for E-almost all x ∈ Ω. Hence
ϕ(x) ∈ {0, 1} for E-almost all x ∈ Ω. Hence A = E(supp(ϕ)). Hence (17). Every von
Neumann algebra is the norm closed linear span of its projections. Hence range(ρE) is the
norm closed linear span of E(Σ). Hence range(ρE) is the von Neumann algebra generated
by E(Σ). By von Neumann’s double commutant theorem, this is equal to E(Σ)′′. This
is a maximal commutative von Neumann algebra if and only if E(Σ)′′ = E(Σ)′. We will
prove that conditions

(a) (E(Σ)′)p = E(Σ),
(b) E(Σ)′′ = E(Σ)′

are equivalent: (a) implies (b): E(Σ)′ and E(Σ)′′ are von Neumann algebras and hence
are equal to the norm closed linear span of their projections E(Σ). (b) implies (a):
(E(Σ)′)p = (E(Σ)′′)p = range(ρE)p = E(Σ). �

Proposition 53. Let Σ1 and Σ2 be σ-fields of subsets of sets Ω1 and Ω2 respectively.
Let E1 : Σ1 → B∞(H) and E2 : Σ2 → B∞(H) be two PVMs. Then E1 ← E2 if and only if
E1(Σ1) ⊂ E2(Σ2)

′′.

Proof. By Theorem 52, E2(Σ2)
′′ = range(ρE2). Assume that E1(Σ1) ⊂ E2(Σ2)

′′.
Then for every ∆ ∈ Σ1 there exists a ϕ∆ ∈ L∞(Ω2,Σ2, E2) such that E1(∆) = ρE2(ϕ∆).
We have ρE2(ϕΩ1) = I = ρE2(1). Hence ϕΩ1 = 1 by the injectivity of E2. By Theo-
rem 35, ϕ∆ ≥ 0. The injectivity of E2 and the σ-additivity of E1 implies that (ϕ∆) ∈
M(Σ1; Ω2,Σ2, E2). Hence E1 ← E2.

Assume that E1 ← E2. Then E1(Σ1) ⊂ range(ρE2) = E2(Σ2)
′′. �

11. Isomorphic POVMs

Let M be a POVM defined on a σ-field Σ. Two sets A,B ∈ Σ are said to be M -
equivalent if M(A\B) = M(B\A) = 0. The class of sets M -equivalent to A ∈ Σ is
denoted by [A]M . We put Σ(M) = {[A]M : A ∈ Σ}. Then Σ(M) is a Boolean σ-algebra
with operations defined by [A]M ∪ [B]M = [A ∪B]M for A,B ∈ Σ, etc. We define M on
Σ(M) by M([A]M) = M(A).

Definition 54. A boolean isomorphism Φ: Σ1(M1)→ Σ2(M2) is a bijective mapping
such that

Ψ([A]M\[B]M) = Ψ([A]M)\Ψ([B]M)

for A,B ∈ Σ1, and

Ψ
( ∞⋃
i=1

[Ai]M
)

=
∞⋃
i=1

Ψ([Ai]M)

for (Ai) ⊂ Σ1.
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Definition 55 ([37]). Two POVMs M1 : Σ1 → B+(H) and M2 : Σ2 → B+(H) are
isomorphic, denoting M1

∼= M2, if there exists a Boolean isomorphism

Ψ: Σ1(M1)→ Σ2(M2)

with the property
M1(∆) = M2(Ψ(∆)) ∀ ∆ ∈ Σ1.

Lemma 56. If POVMs M1 and M2 are isomorphic (M1
∼= M2) and M1 is countably

generated, then M2 is also countably generated.

Proof. Let Φ be as in Definition 55. Let A ⊂ Σ1 is a field of subsets of Ω1 that
generates Σ1(M1). Then Φ[[A]M1 ] generates Σ2(M2). �

Isomorphic POVMs are equivalent: For injective POVMs the converse is true:

Theorem 57 ([37], Theorem 2.6). Two equivalent POVMs which are both injective
are isomorphic.

Remark 58. Two PVMs which generate the same von Neumann algebra are equiv-
alent (by Proposition 53) and hence are isomorphic (by Theorem 57 and Remark 38).

Proposition 59. Let Σ be a σ-field of subsets of a set Ω. The following conditions
are equivalent:

(a) M is countably generated.
(b) M is isomorphic to a POVM on the Borel subsets of [0, 1].

Proof. Let (N,K,V) be a minimal Naimark extension of a POVM M : Σ→ B+(H).
Consider the following conditions:

(1) N is countably generated.
(2) N is isomorphic to a POVM on the Borel subsets of [0, 1].

We will prove that the four conditions are equivalent: (1) ⇔ (a): Proposition 21.
(2) ⇔ (b): Naimark’s theorem.
(1) ⇔ (2): By Proposition 21, K is separable. By Proposition 230 there is a bounded
self-adjoint operator E on K that generates commutative von Neumann algebra N(Σ)′′.
We can assume without loss of generality that ‖E‖∞ = 1. Let E : B → B+(K) be the
spectral measure of E . By Remark 58, N ∼= E.
(2) ⇔ (1): This follows form Lemma 56 because the σ-field of Borel subsets of [0, 1] is
countably generated. �

12. Unitary equivalence

Proposition 60. Let U : H → K be a linear isometry from Hilbert space H into
Hilbert space K. Let M1 : Σ1 → B+(K) and M2 : Σ2 → B+(K) be two POVMs. For
` ∈ {1, 2} and ∆ ∈ Σ` let N`(∆) = U∗M`(∆)U. Then N` : Σ` → B+(H), ` ∈ {1, 2} are
POVMs and M1 ←M2 implies N1 ← N2. If, moreover, U is surjective then

M1 ←M2 ⇔ N1 ← N2

and M1 is maximal if and only if N1 is maximal.

Remark 61. Let M1 : Σ1 → B∞(H1) and M2 : Σ2 → B∞(H2) be two PVMs. The
generated von Neumann algebras M1(Σ1)

′′ and M2(Σ2)
′′ are spatially isomorphic (as

defined in Definition 235) if and only if the ranges M1(Σ1) and M2(Σ2) are spatially
isomorphic. Assume that this is the case, i.e. that there exits a unitary operator U : H1 →
H2 such that M1(Σ1) = U∗M2(Σ2)U. Define a PVM M3 : Σ2 → B∞(H1) by M3(∆) =
U∗M2(∆)U. Then M1 and M3 are PVMs with the same range. By Remark 58, M1
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and M3 are isomorphic; i.e. there exists a Boolean isomorphism Ψ: Σ1 → Σ2 such that
M1(∆) = M3(Ψ(∆)) for ∆ ∈ Σ1. Hence the original PVMs are related by

M1(∆) = U∗M2(Ψ(∆))U ∀ ∆ ∈ Σ1.

13. Image measures

Let (Ω1,Σ1) and (Ω2,Σ2) be two measurable space. LetM : Σ1 → B+(H) be a POVM.
If Ψ: Ω1 → Ω2 is a measurable function, then Ψ(M) : Σ2 → B+(H), defined by

Ψ(M)(∆) = M(Ψ−1(∆)) = M({x ∈ Ω1 : Ψ(x) ∈ ∆)

is a POVM. Ψ(M) is called the image measure corresponding to M and transformation
Ψ. Marginals are examples of image measures.

Remark 62. In probability theory (for example [20]), Ψ is called an Ω2-valued
random variable. For each h ∈ H, we have Ψ(M)h = Ψ(Mh). If ‖h‖ = 1, then Ψ(Mh) is
sometimes called the distribution of Ψ (corresponding to the probability measure Mh).

Proposition 63. Let (Ω1,Σ1) and (Ω2,Σ2) be two measurable spaces and let H be a
Hilbert space. Let M : Σ1 → B+(H) be a POVM and Ψ: Ω1 → Ω2 a measurable function.
Then Ψ(M)←M. If M is injective then Ψ(M) is injective.

Proof. We have

Ψ(M)(∆) =

∫
Ω1

1∆(Ψ(x))M(dx).

Hence Ψ(M)←M. Let ϕ ∈ L∞(Ω2,Σ2,Ψ(M)). We have∫
Ω2

ϕ(y) Ψ(M)(dy) =

∫
Ω1

ϕ(Ψ(x))M(dx)

If this is zero and M is injective, then ϕ(Ψ(x)) = 0 for M -almost all x ∈ Ω1. Equivalently,
ϕ(y) = 0 for Ψ(M)-almost all y ∈ Ω2. �

14. Cones generated by POVMs

In this section we give a geometric interpretation of dominance of a POVM by an
injective POVM.

The proof of the following proposition is an adaptation of the proof of Lemma 3 of
Chapter IX in [35]. See also [64].

Proposition 64. Let M : Σ→ B+(H) be a POVM. We have

co(M(Σ)) = {ρM(ϕ) : 0 ≤ ϕ ≤ 1, ϕ ∈ L∞(Ω,Σ,M)},
where co(M(Σ)) is the weak-star closure of the convex hull of M(Σ).

Proof. By Proposition 33, ρM : (L∞(Ω,Σ,M),weak∗)→ (B∞,weak∗) is continuous.
Let U = {ϕ ∈ L∞(Ω,Σ,M) : 0 ≤ ϕ ≤ 1}. Then U is a compact convex subset of
(L∞(Ω,Σ,M),weak∗). Hence ρM(U) is a compact convex subset of (B∞,weak∗). Together
with M(Σ) ⊂ ρM(U), this implies that co(M(Σ)) ⊂ ρM(U). The proof of the reverse
inclusion: The simple functions in U form a dense subset S of (U,weak∗). The continuity
of ρM implies that ρM(S) is dense in (ρM(U),weak∗). In the proof of Lemma 3 of Chapter
IX in [35] it is shown that ρM(S) ⊂ co(M(Σ)). Hence ρM(U) ⊂ co(M(Σ)). �

Definition 65. Let M : Σ → B+(H) be a POVM. The cone generated by M is
denoted and defined by

cone(M) = {ρM(ϕ) : ϕ ∈ L∞(Ω,Σ,M), ϕ ≥ 0}

=
⋃
r>0

r co(M(Σ)).
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Proposition 66. Let Σ,Σ2 be two σ-fields of subsets of sets Ω,Ω2 respectively. Let
N : Σ → B+(H) and M : Σ2 → B+(H) be two POVMs. If N ← M then co(N(Σ)) ⊂
co(M(Σ)); in particular cone(N) ⊂ cone(M). If M is equivalent to an injective POVM
then

N ←M ⇔ cone(N) ⊂ cone(M).

Proof. Assume that N ← M. By Proposition 64, N(Σ) ⊂ co(M(Σ2)). Hence
co(N(Σ)) ⊂ co(M(Σ2)). By Proposition 64, this implies cone(N) ⊂ cone(M).

Assume that M is injective and cone(N) ⊂ cone(M). This implies that there is a
function ∆ 7→ ϕ∆ from Σ to (L∞(Ω2,Σ2,M))+ such that N(∆) = ρM(ϕ∆) for all ∆.
Because M is injective, ϕΩ = 1 and ϕ∅ = 0.

Let ∆ = ∆1 ∪∆2, with ∆n ∈ Σ, be a disjoint union. Because N is additive,

ρM(ϕ∆) = ρM(ϕ∆1 + ϕ∆2).

Because M is injective, this implies that ϕ∆ = ϕ∆1 + ϕ∆2 . We consider Σ to be ordered
by inclusion, and we considered L∞(Ω2,Σ2,M) to be ordered as usual; i.e. pointwise
and disregarding sets of measure zero. Then ∆ 7→ ϕ∆ is monotone increasing. Hence
0 ≤ ϕ∆ ≤ 1 for all ∆ ∈ Σ.

Let ∆ = ∪∞n=1∆n, with ∆n ∈ Σ, be a disjoint union. Then

N∑
n=1

ϕ∆n = ϕ∪N
n=1∆n

≤ ϕ∆ ∀ N ∈ N

Let µ be a finite positive measure with the same sets of measure zero as M. For every
positive f ∈ L1(Ω2,Σ2, µ), the sequence of positive numbers

N 7→
N∑
n=1

∫
Ω

f(x)ϕ∆n(x)µ(dx)

is monotone increasing and bounded, and hence a Cauchy sequence. Every integrable
function can be written as a linear combination of positive integrable functions. Hence
N 7→

∑N
n=1 ϕ∆n is a weak-star Cauchy sequence. By Proposition 212, there exists a

ϕ ∈ L∞(Ω2,Σ2,M) such that ϕ = limN→∞
∑N

n=1 ϕ∆n w.r.t. the weak-star topology. By
Proposition 33 and the linearity of ρM ,

ρM(ϕ) =
∞∑
n=1

ρM(ϕ∆n).

Because N is σ-additive,

ρM(ϕ∆) =
∞∑
n=1

ρM(ϕ∆n) = ρM(ϕ).

The injectivity of M implies that ϕ∆ = ϕ. By Lemma 45, this implies that (ϕ∆) ∈
M(Σ; Ω2,Σ2,M). Hence N ←M.

Assume now that M is equivalent to an injective POVM M2. From M ←M2 and the
first part of the proposition it follows that cone(M) ⊂ cone(M2). Because M2 is injective,
cone(N) ⊂ cone(M) implies N ←M2. Because M2 ←M, this implies N ←M. �

Proposition 67. Let M : Σ→ B+(H) be a POVM. Every extreme point of co(M(Σ))
belongs to M(Σ). If M is injective then M(Σ) = ext(co(M(Σ))), the set of extreme points
of co(M(Σ)).
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Proof. The first part of the proposition is a special case of Theorem 1 of Chapter
IX of [35]. Assume that M is injective and ∆ ∈ Σ. If ϕ1, ϕ2 ∈ L∞(Ω,Σ,M), 0 ≤
ϕ1, ϕ2 ≤ 1 and M(∆) = 1

2
(ρM(ϕ1) + ρM(ϕ2)) then 1∆ = 1

2
(ϕ1 + ϕ2). Hence ϕ1 = ϕ2 =

1∆. Hence ρM(ϕ1) = ρM(ϕ2) = M(∆). By Proposition 64, this shows that M(∆) ⊂
ext(co(M(Σ))). �

15. Maximal PVMs

In this section we show that a finite set of strongly commuting self-adjoint operators
on a separable complex Hilbert space H is a complete set of operators if, and only if,
the joint spectral measure is a maximal PVM. A finite set of strongly commuting self-
adjoint operators is called complete if the joint spectral measure generates a maximal
commutative von Neumann algebra, or equivalently, if the set is of uniform multiplicity
one ([104]). The related concept of a complete set of observables was introduced by
Dirac ([36]). In a Hilbert space formulation of quantum mechanics ([106], [90], [15]),
Dirac’s heuristic formulation of this concept becomes rigorous only in the case of a set
{A1, · · · ,An} of self-adjoint operators on a separable Hilbert space H having pure point
spectra. In that case {A1, · · · ,An} is called a complete set of operators if:

(a) To each n-tuple (λ1, · · · , λn) in the joint spectrum belongs a vector Ψλ1,··· ,λn from
the common domain of A1, · · · ,An which satisfies

AkΨλ1,··· ,λn = λkΨλ1,··· ,λn , k = 1, · · · , n,
and

(b) (Ψλ1,··· ,λn) is an orthonormal basis of H.

Even without the limitation to pure point spectra, a mathematically rigorous interpreta-
tion of Dirac’s formulation (of the concept of a complete set of observables) is possible:
[104] and [102]. To do this, Hilbert space is replaced by a system of two topological
vector spaces: One consisting of bras, the other consisting of kets. In this section an
extension of the Hilbert space is not needed because conditions (a) and (b) are equivalent
to the existence of a unitary operator U from H to the space `2(σ) of square summable C-
valued functions on the joint spectrum σ such that for all k, UAkU∗ = Qk, the operator
on `2(σ) of multiplication with (λ1, · · · , λn) 7→ λk. This condition is easily generalized
(Proposition 70) to the case where the joint spectral measure on σ is replaced by a PVM
on a measurable space (Ω,Σ).

Theorem 68. A PVM is maximal if, and only if, it generates a maximal commutative
von Neumann algebra.

Proof. Let M : Σ→ B+(H) be a PVM.
It follows from Proposition 53 that maximality of M is a necessary condition for M

to generate a maximal commutative von Neumann algebra.
Assume now that M generates a maximal commutative von Neumann algebra. Then

Proposition 53 implies that M is maximal if we can prove that every POVM M2 that
dominates M is projection-valued. We combine the proofs of Theorem 3.7 and Remark
3 in [37] to do this: Let P = M(∆). We will show that P ∈ M2(Σ) : There exists a
M2-measurable function p taking values in [0, 1] such that

P =

∫
Ω2

p(y)M2(dy).

Let n ∈ N and

Yn = {y :
1

n
≤ p(y) ≤ 1− 1

n
}.
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Then
1

n
M2(Yn) =

∫
Yn

1

n
M2(dy) ≤

∫
Yn

p(y)M2(dy) ≤ P.

and
1

n
M2(Yn) = I − (1− 1

n
)M2(Yn)−M2(Y

c
n )

≤ I −
∫
Yn

p(y)M2(dy)−
∫
Y c

n

p(y)M2(dy)

= I − P .
Hence M2(Yn) = 0. This is true for all n ∈ N. Hence p(y) ∈ {0, 1} for M2-almost all y.
Hence P ∈M2(Σ2).

We will now show that P = M2(A) ∈M2(Σ2)
′ : We have

M2(A)M2(B) = M2(A)M2(B ∩ A) +M2(A)M2(B ∩ Ac).
Because M2(A) is a projection, M2(A

c) is also a projection and

M2(A
c)M2(A) = M2(A)M2(A

c) = 0.

From this, together with Corollary 239, we see that: 0 ≤ M2(B ∩ A) ≤ M2(A) implies
M2(A)M2(B ∩A) = M2(B ∩A), and 0 ≤M2(B ∩Ac) ≤M2(A

c) implies M2(A)M2(B ∩
Ac) = 0. Hence

M2(A)M2(B) = M2(B ∩ A).

It follows similarly that M2(B)M2(A) = M2(B ∩ A). Hence P ∈M2(Σ2)
′.

This is true for all P ∈M1(Σ). Hence M1(Σ) ⊂M2(Σ2)
′. Hence M2(Σ2)

′′ ⊂M1(Σ)′ =
M1(Σ). Hence M2 is projection-valued. �

Proposition 69. Let (Ω,Σ, µ) be a finite measure space. 1(Σ)′′ is a maximal com-
mutative von Neumann algebra; More precisely: 1(Σ)′′ = Aµ, where Aµ is defined by
Definition 233.

Proof. By Theorem 52, (1(Σ)′′)p = 1(Σ) = (Aµ)p. Because every von Neumann
algebra is the norm closed linear span of its projections, this implies that 1(Σ)′′ = Aµ. �

Proposition 70. Let E : Σ→ B+(H) be a PVM. The following conditions are equiv-
alent:

(a) E is maximal.
(b) There exists a probability measure µ on Σ and a unitary operator U : H→ L2(Ω,Σ, µ)

such that E(∆) = U∗
1(∆)U for ∆ ∈ Σ; i.e.

(18) Eh(∆) =

∫
∆

|U[h](x)|2 µ(dx) ∀ ∆ ∈ Σ, h ∈ H.

Proof. (b) implies (a): This follows from Proposition 69, Theorem 68 and Propo-
sition 60.

(a) implies (b): Combining Theorem 68, Proposition 69 and Theorem 236 and Re-
mark 61, we see that there is a compact metric space Ω2, a regular Borel measure µ2

on the Borel subsets B of Ω2 and a unitary operator W : H → L2(Ω2,B, µ2) such that
E(Σ) = W∗

1(B)W. By Remark 61 there is a Boolean isomorphism Ψ: Σ(E) → B(1)
such that

(∀∆ ∈ Σ) E(∆) = W∗
1(Ψ(∆))W.

Hence

(∀∆ ∈ Σ)(∀h ∈ H) Eh(∆) =

∫
Ψ(∆)

|W[h](x)|2 µ2(dx)
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Define probability measure µ on Σ by µ(∆) = µ2(Ψ(∆))/µ2(Ω2). Define unitary operator
VΨ : L2(Ω,Σ, µ)→ L2(Ω2,B, µ2) by VΨ[1∆] = µ2(Ω2)

−1 · 1Ψ(∆) for ∆ ∈ Σ and linear and
isometric extension. It is easily seen that U = V∗

ΨW satisfies (18). �

16. Examples of maximal PVMs

Let Φ: N0 → L2(R) be the Hermite basis. Let 1 : BR → B+(L2(R)) be the PVM of
definition 9. Then

1h(∆) =

∫
∆

|h(q)|2 dq.

By Proposition 70, 1 is a maximal POVM. Let 1̂ : BR → B+(L2(R)) be the PVM defined
by 1̂(∆) = F∗

1(∆)F , where F is Fourier transform on L2(R). Then 1̂h(∆) = 1F [h](∆):

1̂h(∆) =

∫
∆

|F [h](p)|2 dp,

By Proposition 70, 1̂ is a maximal POVM. The σ-field of all subsets of N0 is denoted by
2N0 . Let N : 2N0 → B+(L2(R)) be the PVM defined by on the singletons by N({n}) =
ϕn ⊗ ϕn. Then

Nh(∆) =
∑
n∈∆

|(ϕn, h)|2

where (ϕn) is the Hermite basis of L2(R). By Proposition 70, N is a maximal POVM.
The PVMs 1, 1̂ andN are (the) mathematical representations of quantum mechanical

measurements of position, momentum and number observables respectively. The (self-
adjoint) position, momentum and number operators are defined as

Q =

∫ ∞

−∞
q 1(dq), P =

∫ ∞

−∞
p 1̂(dp), N =

∞∑
n=0

nN({n})

respectively.

17. Maximal POVMs

In this section we present the main result of this chapter. The following six lemmas
are used to prove it.

Let (Ω,Σ, µ) be a measure space. Let V be a vector space. A family Lx : V → C,
x ∈ Ω is called weakly µ-measurable if for each v ∈ V, the function x 7→ Lx(v) is µ-
measurable. The same terminology is used for families of elements of a Hilbert space
(the elements of a Hilbert space are considered as linear forms on the Hilbert space),
and for families of bounded operators on a Hilbert space (the bounded operators are
considered as linear forms on the space of trace-class operators).

Lemma 71. Let H be a separable complex Hilbert space. Let (Ω,Σ, µ) be a measure
space. Let Ax, x ∈ Ω be a weakly µ-measurable family of bounded operators on H. Let
ex, x ∈ Ω be a weakly µ-measurable family of points of H. Assume that for all h ∈ H,

(h,Axh) ≤ |(ex, h)|2 for µ-almost all x.

Then there exists a Σ-measurable function f : Ω→ [0, 1] such that

Ax = f(x) ex ⊗ ex for µ-almost all x.

Proof. Let H0 = {gn : n ∈ N} be a countable dense subset of H. The union of a
countable family of µ-null sets is again a µ-null set. Hence there exists a µ-null set N
such that

(h,Axh) ≤ |(ex, h)|2 ∀ x ∈ Nc, h ∈ H0.
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This implies that
Ax ≤ ex ⊗ ex ∀ x ∈ Nc.

By Corollary 239, there is a function f̃ : Ω→ [0, 1] such that

Ax = f̃(x) ex ⊗ ex ∀ x ∈ Nc.

We will prove that there is a Σ-measurable function f : Ω→ [0, 1] such that f̃(x) = f(x)
for all x ∈ Nc with ex 6= 0. For all h ∈ H, there exists a Σ-measurable function x 7→ fx(h)
from Ω to [0, 1] such that

(h,Axh) = fx(h)|(ex, h)|2 for µ-almost all x.

Let
Ωn = {x : (ex, gn) 6= 0}\ ∪n−1

k=1 Ωk.

Then (Ωn) is a family of pairwise disjoint sets in Σ such that

Ω = {x : ex = 0} ∪
⋃
n∈N

Ωn and (ex, gn) 6= 0 ∀ x ∈ Ωn

for all n ∈ N. Define the Σ-measurable function f : Ω→ [0, 1] by

f(x) =

{
fx(gn) if x ∈ Ωn;

0 if ex = 0.

Then f(x)|(ex, gn)|2 = f̃(x)|(ex, gn)|2 for x ∈ Ωn\N. Hence f(x) = f̃(x) for x ∈ Ωn\N.
This is true for all n. Hence f(x) = f̃(x) for all x ∈ Nc with ex 6= 0. �

Lemma 72. Let (Ω,Σ, ν) be a finite measure space, let M : Σ → B+(H) be an
FPOVM, and let V : H → L2(Ω,Σ, ν) be a linear isometry. Define POVM N : Σ →
B+(H) by

Nh(∆) =

∫
∆

|V[h](x)|2 ν(dx), ∆ ∈ Σ, h ∈ H.

Assume that M(∆) ≤ N(∆) for all ∆ ∈ Σ. Then there is a ν-measurable function ϕ
such that 0 ≤ ϕ ≤ 1 and

(19) (∀∆ ∈ Σ) M(∆) =

∫
∆

ϕ(x)N(dx).

Proof. By Lemma 199, we can (and will) assume without loss of generality that ν
and N have the same sets of measure zero.

Let R be a Hilbert-Schmidt operator on H with dense range. By Proposition 27,
there is a probability measure µ on Σ with the same sets of measure zero as M and there
areMx ∈ B+(H) such that

(∆ ∈ Σ)(∀h ∈ H) MRh(∆) =

∫
∆

(h,Mxh)µ(dx).

From M � N follows µ� ν. Let fν be the Radon-Nikodym derivative of µ with respect
to ν : µ = fµ · ν. Let M̃x = fµ(x)Mx. Then

(20) (∀∆ ∈ Σ)(∀h ∈ H) MRh(∆) =

∫
∆

(h,M̃xh) dν(x).

R is a Hilbert-Schmidt operator. Hence h 7→ V[Rh] is a Hilbert-Schmidt operator and
hence a Carleman operator: There are ex ∈ H such that x 7→ (ex, h) is a ν-measurable
function for all h ∈ H and

V[Rh](x) = (ex, h) ν-almost all x.
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This, M(∆) ≤ N(∆) for ∆ ∈ Σ, and (20), implies that for each h ∈ H,

(21) (h,M̃xh) ≤ |(ex, h)|2 for ν-almost all x.

By Lemma 71, there exists a Σ-measurable function ϕ : Ω→ [0, 1] such that (h,M̃xh) =
ϕ(x)|(ex, h)|2 for ν-almost all x. Let ∆ ∈ Σ. For h ∈ H,

MRh(∆) =

∫
∆

ϕ(x)NRh(dx).

Because range(R) is a dense subset of H, this implies that

(∀h ∈ H) Mh(∆) =

∫
∆

ϕ(x)Nh(dx).

�

Lemma 73. Let Σ and Σ2 be σ-fields of subsets of sets Ω and Ω2 respectively. Let
M : Σ→ B+(H) and N : Σ2 → B+(H) be two POVMs. If cone(N) ⊂ cone(M) and there
is a finite measure ν on Σ2 and a linear isometry W : H→ L2(Ω2,Σ2, ν) such that

(∀∆2 ∈ Σ2)(∀h ∈ H) Nh(∆2) =

∫
∆2

|W[h](y)|2 dν(y)

then there are (p∆2) ∈ M(Σ2; Ω,Σ,M) and (q∆) ∈ M(Σ; Ω2,Σ2, N) such that

(22) (∀∆ ∈ Σ,∆2 ∈ Σ2)

∫
∆

p∆2(x)M(dx) =

∫
∆2

q∆(y)N(dy).

In particular cone(N) = cone(M) and M ↔ N.

Proof. For every ∆2 ∈ Σ2 there is a function p∆2 : Ω→ [0,∞) such that∫
Ω

p∆2(x)M(dx) = N(∆2).

Let ∆ ∈ Σ. Then

(∀∆2 ∈ Σ2)

∫
∆

p∆2(x)M(dx) ≤ N(∆2).

By Lemma 72 there exists a function q∆ : Ω2 → [0, 1] such that

(∀∆2 ∈ Σ2)

∫
∆

p∆2(x)M(dx) =

∫
∆2

q∆(y)N(dy).

This is true for all ∆ ∈ Σ. Hence (22). It is easily seen that (p∆2) ∈ M(Σ2; Ω,Σ,M) and
(q∆) ∈ M(Σ; Ω2,Σ2, N). �

Lemma 74. Let s : H × H → C be a positive bounded non-zero sesquilinear form
and let q be the associated quadratic form: q(h) = s(h, h). The following conditions are
equivalent:

(a) |s(f, g)|2 = q(f)q(g) for all f, g ∈ H.
(b) dim(ker(q)⊥) = 1.

Proof. If q(g) = 0 then q(f + cg) = q(f)+2 Re s(f, cg) ≥ 0 for all c ∈ C and f ∈ H.
This implies that s(f, g) = 0 and q(f + g) = q(f) for all f ∈ H. This implies that ker(q)
is a linear subspace of H. Because s is bounded, ker(q) is a closed linear subspace of H.
Because s is non-zero, q is also non-zero: ker(q) 6= H.
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(b) implies (a): Assume that (b) is satisfied: There exists an h ∈ H such that
ker(q)⊥ = span{h}. Every f ∈ H has a unique decomposition of the form f = αfh+ f0,
where f0 ∈ ker(q) and αf ∈ C. This implies the following:

Re s(f, g) = 1
4
{q(f + g)− q(f − g)} = 1

4
{q((αf + αg)h)− q((αf − αg)h)}

= 1
4
{|αf + αg|2 − |αf − αg|2} q(h) = Re(αf ᾱg) q(h)

and similarly Im s(f, g) = Im(αf ᾱg) q(h). Hence s(f, g) = αf ᾱg q(h). Hence |s(f, g)|2 =
q(f)q(g).

(a) implies (b): If c ∈ C then

q(f + cg) = q(f) + |c|2q(g) + 2 Re s(f, cg), f, g ∈ H.

Hence if (a) is satisfied, c ∈ R and s(f, g) 6= 0 then

q(f + c
|s(f, g)|
s(f, g)

g) = (
√
q(f) + c

√
q(g))2.

This is zero for some c ∈ R. Hence q(g) 6= 0 implies that for every f ∈ H there exists
an α ∈ C such that f + αg ∈ ker(q). (If s(f, g) = 0 we take α = 0.) Hence H =
ker(q)

⊕
span{g}. Hence ker(q)⊥ = span{g}. This implies (b), because the existence of

a g ⊥ ker(q) with q(g) 6= 0 is implied by ker(q) 6= H. �

Lemma 75. Let (Ω,Σ, µ) be a finite measure space. Let sx : H × H → C, x ∈ Ω
be a family of positive bounded non-zero sesquilinear forms such that x 7→ sx(f, g) is a
Σ-measurable function for all f, g ∈ H. Let qx, x ∈ Ω be the associated quadratic forms:
qx(h) = sx(h, h) for all h ∈ H. The following conditions are equivalent:

(a) dim(ker(qx)
⊥) = 1 for µ-almost all x ∈ Ω.

(b) There exists a finite measure space (Ω2,Σ2, µ2) and a surjective measurable function
Ψ: Ω2 → Ω1 and a family Py, y ∈ Ω2 of operators with one-dimensional range such
that µ1 = Ψ(µ2) and for all f, g ∈ H,

sΨ(y)(f, g) = sΨ(y)(Pyf,Pyg) µ2-almost all y ∈ Ω2.

Proof. (a) implies (b): Let Ω2 = Ω, and Ψ(y) = y for all y, and Σ2 = Σ, and µ2 = µ,
and let Py be the operator of orthogonal projection on ker(qy)

⊥.
(b) implies (a): Follows from Lemma 74 and∫

Ψ(∆)

|sx(f, g)|2 µ(dx) =

∫
∆

|sΨ(y)(f, g)|2 µ2(dy)

=

∫
∆

|sΨ(y)(Pyf,Pyg)|2 µ2(dy)

=

∫
∆

qΨ(y)(Pyf)qΨ(y)(Py(g))µ2(dy)

=

∫
∆

qΨ(y)(f)qΨ(y)(g)µ2(dy)

=

∫
Ψ(∆)

qx(f)qx(g)µ(dx).

�

Lemma 76. Let (Ω,Σ, µ) and (Ω̃, Σ̃, ν) be two finite positive measure spaces. Let
M : Σ → B+(H) and N : Σ̃ → B+(H) be two POVMs. Assume that M has a bounded
operator density (Mx) with respect to µ, and that N has a bounded operator density (Ny)
with respect to ν. The following two conditions are equivalent:
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(a) There are (p∆̃) ∈ M(Σ̃; Ω,Σ, µ) and (q∆) ∈ M(Σ; Ω̃, Σ̃, ν) such that

(∀∆ ∈ Σ, ∆̃ ∈ Σ̃)

∫
∆

p∆̃(x)Mx µ(dx) =

∫
∆̃

q∆(y)Ny ν(dy)

(b) There exist measures m and n on Σ× Σ̃ such that

m(· × ∆̃)� µ and n(∆× ·)� ν ∀ ∆ ∈ Σ, ∆̃ ∈ Σ̃,

and
Mxm(dx, dy) = Ny n(dx, dy).

Condition (b) implies

(c) Mxm(dx, dy) = P̃yMxP̃ym(dx, dy) and Nx n(dx, dy) = PxNyPx n(dx, dy), where

P̃y is the operator of orthogonal projection on range(Ny), and Px is the operator of
orthogonal projection on range(Mx).

Condition (c) implies

(d) range(Mx) is one-dimensional for µ-almost all x ∈ Ω if, and only if, range(Ny) is
one-dimensional for ν-almost all y.

Proof. (b) implies (a): Let p∆̃ be the Radon-Nikodym derivative of ∆ 7→ m(∆×∆̃)

with respect to µ : m(dx× ∆̃) = p∆̃(x)µ(dx). Let q∆ be the Radon-Nikodym derivative

of ∆̃ 7→ n(∆× ∆̃) with respect to ν : n(∆× dy) = q∆(y)ν(dy).
(a) implies (b): By Lemma 51, there are measures m and n on Σ× Σ̃ such that

m(∆× ∆̃) =

∫
∆

p∆̃(x)µ(dx) and n(∆× ∆̃) =

∫
∆̃

q∆(y) ν(dy).

(b) implies (c): By Lemma 243, x 7→ Mx is a SOT µ-measurable function from Ω to
B+(H) and y 7→ Ny is a SOT ν-measurable function from Ω̃ to B+(H). By Proposition 246,

y 7→ P̃y is SOT ν-measurable. Let h ∈ H. By Proposition 241, there exists a sequence of

simple ν-measurable H-valued functions y 7→ h
(n)
y , n ∈ N such that limn→∞ ‖h(n)

y −P̃yh‖ =

0 and ‖h(n)
y ‖ ≤ 2‖P̃yh‖ ≤ 2‖h‖ for all n for ν-almost all y.

Let f, g ∈ H. We have

(f,Mxg)m(dx, dy) = (f,Nyg)n(dx, dy) = (P̃yf,NyP̃yg)n(dx, dy)

= lim
k→∞

lim
`→∞

(f (k)
y ,Nyg(`)

y )n(dx, dy)

= lim
k→∞

lim
`→∞

(f (k)
y ,Mxg

(`)
y )m(dx, dy)

= (Pyf,MxPyg)m(dx, dy),

(23)

where the dominated convergence theorem is used for the third and fifth equality and
(b) for the first and fourth equality.

(c) implies (d): If range(Ny) is one-dimensional for ν-almost all y, then this, together
with Lemma 75, implies that range(Mx) = ker(Mx)

⊥ is one-dimensional for µ-almost
all x. �

Theorem 77. Let Σ be a σ-field of subsets of a set Ω. Let M : Σ → B+(H) be a
separable POVM. The following conditions are equivalent:

(a) M is maximal.
(b) There exists a probability measure µ on Σ and a linear isometry V : H→ L2(Ω,Σ, µ)

such that M(∆) = V∗
1(∆)V for ∆ ∈ Σ; i.e.

(24) (∀∆ ∈ Σ)(∀h ∈ H) Mh(∆) =

∫
∆

|V[h](x)|2 µ(dx).
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If M has an operator density (Ax) with respect to a measure m on Σ with the same
sets of measure zero as M, then M is maximal if and only if dim range(Ax) = 1 for
m-almost all x ∈ Ω.

Proof. (a) implies (b): By Naimark’s theorem there is a Hilbert space K, an iso-
metric operator V : H → K and a PVM F : Σ → B+(K) such that M(∆) = V∗F (∆)V
for every ∆ ∈ Σ. Every commutative von Neumann algebra is contained in a maximal
commutative von Neumann algebra and (Proposition 230) every commutative von Neu-
mann algebra is generated by a single self-adjoint operator. Hence Proposition 53 implies
that there is a σ-field of subsets of a set Ω2 and a maximal PVM E : Σ2 → B+(K) such
that F ← E. Define N : Σ2 → B+(H) by N(∆2) = V∗E(∆2)V for every ∆2 ∈ Σ2. Then
M ← N. (See Proposition 60.) Because M is maximal, N ← M. By Proposition 70,
there exists a probability measure ν on Σ2 and a unitary operator U : K→ L2(Ω2,Σ2, ν)
such that

(∀∆2 ∈ Σ2)(∀k ∈ K) Ek(∆2) =

∫
∆2

|U[k](y)|2 dν(y)

Define linear isometry W : H→ L2(Ω2,Σ2, ν) by W = UV. Then

(∀∆2 ∈ Σ2)(∀h ∈ H) Nh(∆2) =

∫
∆2

|W[h](y)|2 dν(y).

Let R be a Hilbert-Schmidt operator on H with dense range. By Proposition 27 there
is a probability measure λm on Σ with the same sets of measure zero as M, there is a
probability measure λn on Σ2 with the same sets of measure zero as N, and there are
operatorsMx,Ny ∈ B+(H) such that

sup{‖Mx‖∞ : x ∈ Ω} <∞, sup{‖Ny‖∞ : y ∈ Ω2} <∞
and

(Mxh, h)λm(dx) = MRh(dx), (Nyh, h)λn(dy) = NRh(dy) ∀ h.
By Lemma 73 there are (p∆2) ∈ M(Σ2; Ω,Σ,M) and (q∆) ∈ M(Σ; Ω2,Σ2, N) such that

(∀∆ ∈ Σ, ∆2 ∈ Σ2)

∫
∆

p∆2(x)Mx λm(dx) =

∫
∆2

q∆(y)Ny λn(dy)

It is easily seen that range(Ny) is one-dimensional for λn-almost all y ∈ Ω2. By Lemma
76, this implies that range(Mx) is one-dimensional for λm-almost all x ∈ Ω: There
are ex ∈ H such that Mx = ex ⊗ ex for λm-almost all x ∈ Ω. Let µ = λm. Define
W : H→ L2(Ω,Σ, µ) by W[h](x) = (ex, h). Then

(∀∆ ∈ Σ)(∀h ∈ H)

∫
∆

|W[h](x)|2 µ(dx) = MRh(∆).

Define the isometric operator V : H → L2(Ω,Σ, µ) on range(R) by V[h] = W[R−1h].
Because range(R) is a dense, the linear isometry V is determined by its restriction to
range(R) and satisfies (24).

If M has an operator density (Ax) with respect to a measure m on Σ with the
same sets of measure zero as M, thenMx µ(dx) = RAxRm(dx). Let fµ be the Radon-
Nikodym derivative of µ with respect to m. Then Mx fµ(x)m(dx) = RAxRm(dx).
Hence RAxR = fµ(x)Mx for m-almost all x. Hence

dim range(Mx) = dim range(RAxR) = dim range(Ax)
for m-almost all x.

(b) implies (a): This follows from Lemma 73.
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Assume finally that M has an operator density (Ax) with respect to a measure m
on Σ satisfying dim range(Ax) = 1 for m-almost all x. There are ax ∈ H such that
Ax = ax ⊗ ax. Let V[h](x) = (ax, h) and µ = m. Then (24) is satisfied. �

Proposition 78. Let M : Σ→ B+(H) be a separable POVM and let R be a Hilbert-
Schmidt operator on H with dense range. Let (Mx) be an operator density of the FPOVM
∆ 7→ R∗M(∆)R with respect to finite positive measure µ on Σ with the same sets of
measure zero as M. POVM M is maximal if, and only if, dim(range(Mx)) = 1 for
µ-almost all x ∈ Ω.

Proof. Assume that M is maximal. By Theorem 77 and Lemma 199, there is a
probability measure µ̃ on Σ with the same sets of measure zero as M, and there is an
isometry V : H → L2(Ω,Σ, µ) such that Mh(∆) = 1V[h](∆) for ∆ ∈ Σ and h ∈ H. Let
f ∈ L1(Ω,Σ, µ) be the Radon-Nikonym derivative of µ̃ with respect to µ : µ̃(dx) =
f(x)µ(dx). There are ex ∈ H such that V[Rh](x) = (ex, h) for µ̃-almost all x. Then

(h,Mxh) = f(x) |(ex, h)|2 for µ-almost all x

This implies thatMx = f(x) ex ⊗ ex, and hence that dim(range(Mx)) = 1 for µ-almost
all x.

Assume now that dim(range(Mx)) = 1 for µ-almost all x. There are ex ∈ H such that
Mx = ex ⊗ ex for µ-almost all x. Define V : range(R)→ L2(Ω, Sigma, µ) by V[h](x) =
(ex,R

−1[h]). Then

MRh(∆) =

∫
∆

|V[Rh](x)|2 µ(dx)

for all h ∈ H and ∆ ∈ Σ. From MRh(Ω) = ‖Rh‖2 it follows that V : range(R) →
L2(Ω,Σ, µ) is isometric. Because range(R) is dense in L2(Ω,Σ, µ), this implies that V
has a unique extension to a linear isometry V : H→ L2(Ω,Σ, µ). By continuity,

Mh(∆) =

∫
∆

|V[h](x)|2 µ(dx)

for all h ∈ H and ∆ ∈ Σ. �

Theorem 79. Every POVM M : Σ→ B+(H) is dominated by a maximal POVM.

Proof. Let M : Σ→ B+(H) be a POVM. Let T be an injective non-negative trace-
class operator on H. By Proposition 27 and Remark 28 there is a probability measure µ
on Σ with the same sets of measure zero as M, and there is a family (Mx) of non-negative
bounded operators, such that Tr(Mx) <∞ and

(h,Mxh)µ(dx) = MT h(dx) ∀ h ∈ H.

For every x ∈ Ω, there are ϕ
(x)
n ∈ H, n ∈ N such that

Mx =
∞∑
n=1

ϕ(x)
n ⊗ ϕ(x)

n .

Hence

MT h(∆) =

∫
∆

∞∑
n=1

|W[h](x, n)|2 µ(dx)

where W[h](x, n) = (ϕ
(x)
n , h). Let τ be counting measure on N. Then W maps H into

K = L2(Ω× N,Σ× 2N, µ⊗ τ),
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where 2N denotes the σ-field of all subsets of N. From Mh(Ω) = ‖h‖2 it follows that
h 7→ W[T −1h] maps the dense linear subspace range(T ) of H isometrically into K.
Denote the extension to H of this linear isometry by U : H→ K. We have

Mh(∆) =

∫
∆

∞∑
n=1

|U[h](x, n)|2 µ(dx) ∀ h ∈ H.

Define POVM N : Σ× 2N → B+(H) by N(∆̃) = U∗
1(∆̃)U for ∆̃ ∈ Σ× 2N. Then

M(∆) = N(∆× N) ∀ ∆ ∈ Σ.

In particular, M ← N. By Theorem 77, N is a maximal POVM. �

18. Bargmann POVM

In this section we give an example of a maximal POVM. This POVM is discussed in
the context of quantum optics in [70], [96], [47], and [71]. A measurement scheme is
proposed in [87, 86].

Let BC be the σ-field of Borel subsets of C. Let g : C→ H be the family of normalized
coherent state vectors in H (with squeezing parameter 1) and let gz = g(z) :

gz = e−|z|
2/2

∞∑
n=0

z̄n√
n!
ϕn,

where (ϕn) is the Hermite basis. Define linear isometry Vg : H→ L2(C, µ), where µ(dz) =
dRe(z)d Im(z), by

Vg[h](z) =
1√
π

(gz, h).

We have

(25) Vg[ϕn](z) = e−|z|
2/2 zn√

n!
.

The range of Vg consists of the function classes that contain a function ϕ with the

property that z 7→ e|z|
2/2ϕ(z) is entire analytic.

Let M (Bargmann) be the POVM on BC defined by

M
(Bargmann)
h (∆) =

∫
∆

|Vg[h](z)|2 µ(dz).

This POVM is called the Bargmann POVM because Vg is up to multiplication by e−|z|
2/2,

the integral transform (denoted by UB in appendix F) introduced in [9] by Bargmann.
By Theorem 77, M (Bargmann) is a maximal POVM. A minimal Naimark extension of

M (Bargmann) is (1, L2(C, µ),Vh).

19. Susskind-Glogower phase POVM

The Susskind-Glogower phase POVM, introduced in [98], is another example of a
maximal POVM. In this section we give its definition. Let B(0,2π) be the Borel σ-field
of (0, 2π).

Let e : Z→ L2([0, 2π]) be the Fourier basis of L2([0, 2π]) :

en(θ) =
1√
2π

einθ

The Susskind-Glogower phase POVM S : B(0,2π) → B+(L2(R)) is defined by

Sh(∆) =

∫
∆

|VS[h](θ)|2 dθ,
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where linear isometry VS : L2(R)→ L2([0, 2π]) is defined by its action

VS[ϕn] = en ∀ n ∈ N0

on the Hermite functions. The range of linear isometry VS is the Hardy space. By
Theorem 77, S is a maximal POVM.

A minimal Naimark extension of S is (N, L2([0, 2π]),VS), where N(∆) = F∗
1(∆)F ,

where F : L2(R)→ `2(Z) is Fourier transformation: F [h](n) = (en, h).

Remark 80. The Susskind-Glogower POVM is an example of a so-called covariant
phase-observable: [68]. More recent is the investigation of the Weyl quantization of the
angle function in phase-space: [39, 41].

20. Density of the span of the range of a POVM

Let M : Σ → B+(H) be a POVM. By Proposition 39, range(ρM) ⊂ M(Σ)′′, the
von Neumann algebra generated by M(Σ). This section is motivated by the following
questions: Is range(ρM) weak-star dense in M(Σ)′′? Is M(Σ)′′ equal to B∞(H)? Every-
thing that we will say about the last question is the following: If M(Σ)′′ = B∞(H) then
M(Σ)′ = C I. For a commutative POVM this is only the case if its range is contained
in C I.

Proposition 81. Let M : Σ→ B+(H) be a POVM and let µ be a probability measure
on Σ with the same sets of measure zero as M. The following conditions are equivalent:

- span(M(Σ)) is weak-star dense in M(Σ)′′,
- range(ρM) is weak-star dense in M(Σ)′′,
- ρ′M [T ] = 0 implies Tr(T A) = 0 for all A ∈M(Σ)′′.

Proof. From the fact that the indicator functions form a weak-star dense linear sub-
space of L∞(Ω,Σ,M), it follows that span(M(Σ)) is a weak-star dense subset range(ρM),
and that consequently the first two conditions are equivalent. Using Proposition 209 to-
gether with the fact that

B1(H)/{T ∈ B1(H) : Tr(T A) = 0 for all A ∈M(Σ)′′}
is (a representation of) the topological dual of (M(Σ)′′,weak∗), we see that the last two
conditions of the proposition are equivalent. �

Proposition 82. Let Σ be a σ-field of subsets of a set Ω. Let M : Σ → B+(H) be
a maximal POVM, and let probability measure µ on Σ and linear isometry V : H →
L2(Ω,Σ, µ) be such that 1(∆) = V∗M(∆)V for ∆ ∈ Σ. The following conditions are
equivalent

- range(ρM) is dense in (B∞(H), SOT).
- range(ρM) is dense in (B∞(H),WOT).

- For finite subsets Λ and Γ of H,
∑

h∈Λ

∑
g∈Γ V[h](x)V[g](x) = 0 for µ-almost all

x ∈ Ω, implies that
∑

h∈Λ

∑
g∈Γ g ⊗ h = 0.

Proof. The following conditions are equivalent:

-
∑

h∈Λ

∑
g∈Γ V[h](x)V[g](x) = 0 for µ-almost all x ∈ Ω,

-
∑

h∈Λ

∑
g∈Γ(h,M(∆)g) = 0 for all ∆ ∈ Σ.

- Tr(TM(∆)) = 0 for all ∆ ∈ Σ where T =
∑

h∈Λ

∑
g∈Γ g ⊗ h.

By Proposition 209 and the fact that the space of operators with finite dimensional range
is (a representation of) the topological dual of (B∞(H), T ) where T ∈ {WOT, SOT}, this
is satisfied by all such operators T if, and only if, span(M(Σ)) is dense in (B∞(H), T ),
where T ∈ {WOT, SOT}. �
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In the following proposition we formulate a sufficient condition for range(ρM) to be
a weak-star sequentially dense subset of M(Σ)′′. This condition entails the existence
of a large ∗-subalgebra in range(ρM). In the following proposition we give a sufficient
condition for the sequential density of range(ρM) (for a POVM M defined on Σ) in
M(Σ)′′.

Proposition 83. Let Σ be a σ-field of subsets of a set Ω. Let M : Σ→ B+(H) be a
POVM. Let A be a weak-star sequentially dense subset of L∞(Ω,Σ,M) such that ρM(A)
is a non-degenerate ∗-subalgebra of B∞(H). Then ρM(A) is weak-star sequentially dense
in M(Σ)′′.

Proof. Because ρM : (L∞(Ω,Σ,M),weak∗) → (B∞(H),weak∗) is continuous, the
assumptions imply that ρM(A) is weak-star sequentially dense in range(ρM). By von
Neumann’s double commutant theorem, this implies that ρM(A) is weak-star dense in
M(Σ)′′. because B1(H) is separable, a convex subset of B∞(H) is weak-star closed if, and
only if, it is weak-star sequentially closed. This implies that the weak-star sequential
closure of ρM(A) is equal to M(Σ)′′. �

In the rest of this section we formulate (and prove) a sufficient condition for a ∗-
subalgebra of L∞(Ω,Σ,M) to be weak-star dense in L∞(Ω,Σ,M). First we need some
preparatory results.

Let Ω be a topological Hausdorff space. Let Cb(Ω) be the algebra of complex bounded
continuous functions on Ω. A finite positive Radon measure on Ω is a finite positive Borel
measure which is inner regular with respect to compact sets.

Theorem 84 ([101], Section 14). Let µ be a finite positive Radon measure on a
topological Hausdorff space Ω. Let A be a unital ∗-subalgebra of Cb(Ω). If A separates the
points of Ω then A is dense in L1(Ω, µ).

Lemma 85. Let (Ω,Σ, µ) be a σ-finite positive measure. For a subset A of L∞(Ω,Σ, µ),
the following conditions are equivalent:

(a) A is dense in L1(Ω,Σ, ν) for all finite positive measures ν on Σ with ν � µ.
(b) A is weak-star dense in L∞(Ω,Σ, µ).

Proof. The topological dual of L1(Ω,Σ, ν) is L∞(Ω,Σ, ν). By Proposition 209, this
implies that the following conditions are equivalent:

- A is dense in L1(Ω,Σ, ν).
- f ∈ L∞(Ω,Σ, ν) and

∫
Ω
fϕ dν = 0 for all ϕ ∈ A implies f = 0.

The topological dual of (L∞(Ω,Σ, µ),weak∗) is L1(Ω,Σ, µ). By Proposition 209, this
implies that the following conditions are equivalent:

- A is weak-star dense in L∞(Ω,Σ, µ).
- f ∈ L1(Ω,Σ, µ) and

∫
Ω
fϕ dµ = 0 for all ϕ ∈ A implies f = 0.

(b) implies (a): Assume that f ∈ L∞(Ω,Σ, ν) and
∫

Ω
fϕ dν = 0 for all ϕ ∈ A. If ν = gµ

with g ∈ L1(Ω,Σ, µ) then fg ∈ L1(Ω,Σ, µ) and
∫

Ω
fgϕ dµ = 0 for all ϕ ∈ A. Hence

f(x)g(x) = 0 for µ-almost all x. Hence f(x) = 0 for ν-almost all x.
(a) implies (b): Assume that f ∈ L1(Ω,Σ, µ) and

∫
Ω
fϕ dµ = 0 for all ϕ ∈ A. Let

µf = |f |µ. There exists a g ∈ L1(Ω,Σ, µf ) ∩ L∞(µf ) such that |g| = 1 and gµf = fµ.
The map ϕ 7→

∫
Ω
ϕg dµf is continuous on L1(Ω,Σ, µf ), and being zero on the dense

subspace A of L1(Ω,Σ, µf ), it is zero for all ϕ ∈ L1(Ω,Σ, µf ), in particular for ϕ = ḡ :
Thus

∫
Ω
ḡg dµf =

∫
Ω

dµf = 0. Hence µf = 0. Hence |f | = 0. Hence f = 0. �

Theorem 86. Let µ be a finite positive Radon measure on a topological Hausdorff
space Ω. Let A be a unital ∗-subalgebra of Cb(Ω). If A separates the points of Ω then
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then A is weak-star dense in L∞(Ω,Σ, µ). If, in addition, L1(Ω, µ) is separable, then A is
weak-star sequentially dense in L∞(Ω, µ).

Proof. Assume that A separates the points of Ω. From Lemma 85 and Theorem 84
it follows that A is weak-star dense in L∞(Ω, µ). If L1(Ω, µ) is separable, then a convex
subset of L∞(Ω, µ) is weak-star closed if, and only if, it is weak-star sequentially closed.
This implies that the weak-star sequential closure of A is equal to L∞(Ω, µ). �

20.1. Example. Let M (Bargmann) : BC → B∞(L2(R)) be the Bargmann measure de-
fined in Section 18. Define ρBargmann : L∞(C) → B∞(L2(R)) by ρBargmann = ρM(Bargmann) .
We will show that range(ρBargmann) is weak-star sequentially dense in B∞(L2(R)).

For τ > 0 let

Nτ =

∫
C
e(1−e

τ )|z|2 M (Bargmann)(dz).

We have

Nτ = 2
∞∑
n=0

∫ ∞

0

e−e
τ r2 r

2n+1

n!
dr ϕn ⊗ ϕn =

∞∑
n=0

∫ ∞

0

e−e
τxx

n

n!
dxϕn ⊗ ϕn

=
∞∑
n=0

e−(1+n)τϕn ⊗ ϕn.

Let

E =

∫
C

z

|z|
M (Bargmann)(dz).

We have

E =
∞∑
n=0

2

∫ ∞

0

r2n+2√
n!(n+ 1)!

e−r
2

dr ϕn+1 ⊗ ϕn

=
∞∑
n=0

∫ ∞

0

xn
√
x√

n!(n+ 1)!
e−x dxϕn+1 ⊗ ϕn

=
∞∑
n=0

ωn ϕn+1 ⊗ ϕn, where ωn =
Γ(3

2
+ n)√

n!(n+ 1)!
.

If A ∈M (Bargmann)(BC)′ then A ∈ {E ,Nτ}′. Hence

NτAϕn = ANτϕn = e−(1+n)τAϕn.
Hence Aϕn = λnϕn with λn ∈ C. But also

λnωnϕn+1 = EAϕn = AEϕn = ωnλn+1ϕn+1.

Hence λn = λn+1 for all n.HenceA ∈ span{I}. This is true for allA ∈M (Bargmann)(BC)′ :
Thus M (Bargmann)(BC)′ = span{I}. Hence H(BC)′′ = B∞(L2(R)).

Define ∗-subalgebra A of Cb(C) by

A = span{z 7→ ezw̄−z̄w : w ∈ C}.
By Theorem 86, A is weak-star sequentially dense in L∞(C). Let

Dw = e|w|
2/2

∫
C
ezw̄−z̄wM (Bargmann)(dz)

Using
(ga, gb) = exp{−1

2
(|a|2 + |b|2)}eb̄a ∀ a, b ∈ C,
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it is easily seen that

(ga,Dwgb) = exp{1
2
(|w|2 − |a|2 − |b|2)} 1

π

∫
C

exp{z̄(a− w) + z(b̄+ w̄)− |z|2}µ(dz)

= exp{1
2
(|w|2 − |a|2 − |b|2) + (b̄+ w̄)(a− w)}

= e(bw̄−b̄w)/2(ga, gb+w).

Hence Dwgb = e(bw̄−b̄w)/2gb+w and DzDw = e(wz̄−w̄z)/2Dz+w. Hence

ρBargmann(A) = span{Dz : z ∈ C}
is a ∗-subalgebra of B∞(L2(R)). Because D0 = I, ρBargmann(A) is a unital ∗-subalgebra.
This implies that ρBargmann(A) is non-degenerate. By Proposition 83, ρBargmann(A) is
weak-star sequentially dense in M (Bargmann)(BC)′′ = B∞(L2(R)). This implies in partic-
ular that ρBargmann(C

∞
b (C)) is weak-star sequentially dense in B∞(L2(R)), where C∞b (C)

are the bounded infinitely differentiable functions on C.

20.2. Example. The Susskind-Glogower phase POVM S : B(0,2π) → B∞(L2(R))
was introduced in Section 19. We will show that S(B(0,2π))

′′ = B∞(L2(R)), but that
range(ρS) is not weak-star dense in B∞(L2(R)). Let

Sk =

∫ 2π

0

e−ikθ S(dθ).

It is easily seen that

Sk =
∞∑
n=0

ϕn+k ⊗ ϕn,

Let A ∈ {Sk,S∗k : k ∈ N}′. Then A ∈ {S∗kSk : k ∈ N}′. But I − S∗kSk is the operator of
orthogonal projection on span{ϕn : 0 ≤ n ≤ k}. Hence A ∈ {ϕn ⊗ ϕn : n ∈ N0}′. Hence
A ∈ {S1, ϕn ⊗ ϕn : n ∈ N0}′ = span{I}. Hence {Sk,S∗k : k ∈ N}′ = span{I}. Hence
S(B(0,2π))

′′ = B∞(L2(R)).
If k 6= 0 then (ϕn, ρS(ek)ϕn) = 0 for all n. Hence if ϕ ∈ span{ek : k ∈ Z} then

(ϕn, ρS(ϕ)ϕn) = (ϕ0, ρS(ϕ)ϕ0) for all n. By Theorem 86, span{ek : k ∈ Z} is weak-
star sequentially dense in L∞([0, 2π],B(0,2π), S). Hence (ϕn,Aϕn) = (ϕ0,Aϕ0) for all
n and A ∈ range(ρS). Hence (ϕn,Aϕn) = (ϕ0,Aϕ0) for all n and A in the weak-star
closure of range(ρS). Hence range(ρS) is not weak-star dense in B∞(L2(R)). This follows
also from Proposition 82: |VS[ϕn](θ)| = |VS[ϕ0](θ)| for every n ∈ N and almost all
θ. Hence |VS[ϕn](θ)|2 − |VS[ϕ0](θ)|2 = 0 for every n ∈ N and almost all θ. Hence
range(ρS) is not dense in (B∞(L2(R)),WOT). This implies that range(ρS) is not dense
in (B∞(L2(R)),weak∗).

21. Prototypical POVMs

Theorem 87 below provides Naimark extensions of POVMs in the form of multipli-
cation operators.

Theorem 87. Let M : Σ → B+(H) be a POVM. There exists a separable Hilbert
space X, a probability measure µ on Σ with the same sets of measure zero as M and an
isometric operator V : H → L2(Ω,Σ, µ; X) such that M(∆) = V∗

1
(X)(∆)V for ∆ ∈ Σ;

i.e.

(26) Mh(∆) =

∫
∆

‖V[h](x)‖2X µ(dx)

for all h ∈ H and ∆ ∈ Σ. POVM M is projection-valued if, and only if, range(V) reduces
the operators 1(X)(∆), ∆ ∈ Σ.
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Proof. By the proof of Theorem 79, there is a probability measure µ on Σ with the
same sets of measure zero as M, and a linear isometry U : H→ L2(Ω×N,Σ× 2N, µ⊗ τ)
such that

Mh(∆) =

∫
∆

∞∑
n=1

|U[h](x, n)|2 µ(dx) ∀ h ∈ H.

Corresponding to Fubini’s theorem, we can identify L2(Ω × N,Σ × 2N, µ ⊗ τ) with
L2(Ω,Σ, µ; `2(N)) : U[h] is identified with V[h] ∈ L2(Ω,Σ, µ; `2(N)) defined by V[h](x) =
(U[h](x, n))n∈N ∈ `2(N). We have

Mh(∆) =

∫
∆

‖V[h](x)‖2`2(N) µ(dx) ∀ h ∈ H.

Let X = `2(N). This proves the first part of the theorem.
Now we will prove that M is projection-valued if, and only if, range(V) reduces

1
(X)(Σ). Assume first that range(V) reduces 1(X)(Σ). Then

M(∆)2 = V∗
1

(X)(∆)VV∗
1

(X)(∆)V

= V∗
1

(X)(∆)1(X)(∆)V = M(∆).

Hence M is projection-valued.
Assume now that M is projection-valued. Let

H̃ = cl span{1(X)(∆)V[h] : ∆ ∈ Σ, h ∈ H}.
Then (M,H, I) and (1(X), H̃,V) are two minimal Naimark extensions of POVM M. By

Proposition 6, H̃ = range(V). �

22. Multiplicity theory

In this section we provide a suitable context for the characterization of maximality
given in Theorem 77: Maximal POVMs are the POVMs of uniform multiplicity one
as defined below. This section refines the results of Section 21: Theorem 94 provides
minimal Naimark extensions of POVMs in terms of multiplication operators.

Definition 88. Let m ∈ N∪{∞}. A POVM M : Σ→ B∞(H) is of uniform multiplic-
ity m, if there exist a separable Hilbert space X with dim(X) = m, a probability measure
µ on Σ, and a linear isometry V : H → L2(Ω,Σ, µ; X) such that (1(X),V, L2(Ω,Σ, µ; X))
is a minimal Naimark extension of M.

This generalizes the usual concept of uniform multiplicity for a finite set of commuting
self-adjoint operators:

Proposition 89. A PVM E : Σ→ B∞(H) is of uniform multiplicity m if, and only
if, there exist a separable Hilbert space X with dim(X) = m, a probability measure µ on
Σ, and a unitary operator U : H→ L2(Ω,Σ, µ; X) such that E(∆) = U∗

1
(X)(∆)U for all

∆ ∈ Σ.

Proof. If such X, µ and U exist, then (1(X),U, L2(Ω,Σ, µ; X)) is a minimal Naimark
extension of E, and hence E is of uniform multiplicity m.

Assume now that E is of uniform multiplicity m : There exists a separable Hilbert
space X with dim(X) = m, a probability measure µ on Σ and a linear isometry V : H→
L2(Ω,Σ, µ; X) such that (1(X),V, L2(Ω,Σ, µ; X)) is a minimal Naimark extension of E.
The fact that E is projection-valued implies (by the second part of Theorem 87) that
range(V) reduces the operators 1(X)(∆), ∆ ∈ Σ. This, together with the minimality of
the Naimark extension, implies that range(V) = L2(Ω,Σ, µ; X). Hence V is unitary. �
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Theorem 90. A POVM M : Σ→ B+(H) is maximal if, and only if, it is of uniform
multiplicity 1.

Proof. M is of uniform multiplicity 1 if, and only if, there exist a probability
measure µ on Σ and a linear isometry V : H→ L2(Ω,Σ, µ) such that (1,V, L2(Ω,Σ, µ))
is a minimal Naimark extension of M.

By Theorem 77, M is maximal if, and only if, there exist a probability measure µ on
Σ and a linear isometry V : H → L2(Ω,Σ, µ) such that (1,V, L2(Ω,Σ, µ)) is a Naimark
extension of M. By Lemma 199, µ can be replaced by a measure with the same sets of
measure 0 as M.

To prove the equivalence of the two concepts, we show that every Naimark extension
of the form (1,V, L2(Ω,Σ, µ)) such that µ and M have the same sets of measure 0, is
minimal. Assume that it is not minimal: There exists a µ-square integrable Σ-measurable
function f such that

∫
∆

V[h](x)f(x)µ(dx) = 0 for all ∆ ∈ Σ and h ∈ H, but µ(∆f ) > 0,
where ∆f = {x ∈ Ω : f(x) 6= 0}. This implies, in particular, that the restriction of 1(∆f )
to range(V) is zero, and hence that M(∆f ) = 0. This is impossible because µ and M
have the same sets of measure zero. �

Lemma 91. Let Σ be a σ-field of subsets of a set Ω, let M : Σ → B+(H) be an
FPOVM, and let m ∈ N ∪ {∞}. If

- µ is a probability measure on Σ with the same sets of measure zero as M ;
- X is an m dimensional complex separable Hilbert space;
- V : H → L2(Ω,Σ, µ; X) is a contractive operator such that M(∆) = V∗

1
(X)(∆)V for

each ∆ ∈ Σ;
- T ext is an injective non-negative trace-class operator on L2(Ω,Σ, µ; X)

satisfying T ext(range(V)) ⊂ range(V);
- T = V∗T extV;
- (Mx) is a family of non-negative trace-class operators on H such that TM(∆)T =∫

∆
Mx µ(dx) for all ∆ ∈ Σ,

then the following conditions are equivalent:

(a) dim(range(Mx)) = m for µ-almost all x ∈ Ω,

(b) L2(Ω,Σ, µ; X) = cl span{1(X)(∆)V[h] : h ∈ H, ∆ ∈ Σ}.
Proof. T is an injective non-negative trace-class operator on H and VT = T extV.

(b) implies (a): There is a family (Nx) of non-negative trace-class operators such that
T ext

1
(X)(∆)T ext =

∫
∆
Nx µ(dx) for all ∆ ∈ Σ. From

(∀∆ ∈ Σ)

∫
∆

‖T ext[f ](x)‖2X µ(dx) =

∫
∆

(f,Nxf)µ(dx)

for all f ∈ L2(Ω,Σ, µ; X) follows dim(range(Nx)) = m for µ-almost all x. For µ-almost

all x ∈ Ω, there is an m-tuple ϕ
(x)
n , n ∈ I of non-zero pairwise orthogonal vectors of

L2(Ω,Σ, µ; X) such that

Nx =
m∑
n=1

ϕ(x)
n ⊗ ϕ(x)

n .

We have

(∀µx ∈ Ω) Mx =
m∑
n=1

V∗[ϕ(x)
n ]⊗V∗[ϕ(x)

n ].

From (b) follows

L2(Ω,Σ, µ; X) = cl span{range(

∫
∆

NxV µ(dx)) : ∆ ∈ Σ}.
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Hence dim(range(NxV)) = m for µ-almost all x. Hence dim(range(Mx)) = m for µ-
almost all x ∈ Ω.
(a) implies (b): Let I = {n ∈ N : 1 ≤ n < m+ 1}. Let X = `2(I). For every x ∈ Ω, there

is an m-tuple ϕ
(x)
n , n ∈ I of non-zero pairwise orthogonal vectors of H such that

Mx =
m∑
n=1

ϕ(x)
n ⊗ ϕ(x)

n .

We have TV∗
1

(X)(∆)VT =
∫

∆
Mx µ(dx). This can be written as∫

∆

|V[T h](x)|2 µ(dx) =
m∑
n=1

∫
∆

|(ϕ(x)
n , h)|2 µ(dx) ∀ h ∈ H.

Condition (b) is equivalent with the following condition:

L2(Ω,Σ, µ; X) = cl span{1(X)(∆)V[T h] : h ∈ H, ∆ ∈ Σ}.
Assume it is not satisfied: There are fn ∈ L2(Ω,Σ, µ) such that 0 <

∑m
n=1 ‖fn‖2 < ∞

but
m∑
n=1

∫
∆

fn(x)ϕ
(x)
n µ(dx) = 0

for all ∆ ∈ Σ. The integral has meaning in the weak sense, and the order of summation
and integration can be interchanged. Hence for all h ∈ H,

m∑
n=1

fn(x)(ϕ
(x)
n , h) = 0 for µ-almost all x ∈ Ω.

Because H is separable and the countable union of µ-null sets is again a µ-null set, this
implies that

m∑
n=1

fn(x)ϕ
(x)
n = 0 for µ-almost all x ∈ Ω.

Because (ϕ
(x)
k , ϕ

(x)
` ) = 0 unless k = `,

fn(x)‖ϕ(x)
n ‖2 = 0 for µ almost all x ∈ Ω

for all n ∈ I. Because ‖ϕ(x)
n ‖2 > 0 for all n, fn = 0 for all n. Because this is impossible,

condition (b) must be satisfied. �

Theorem 92 (Commutative multiplicity theorem). Let E : Σ → B+(H) be a PVM.
There exist pairwise disjoint sets Ωm ∈ Σ, m ∈ I = N ∪ {∞} such that each PVM
Em : Σ→ B+(Hm) in the countable direct sum

E = E∞ ⊕ E1 ⊕ E2 ⊕ · · ·
corresponding to orthogonal decomposition

H = H∞ ⊕ H1 ⊕ H2 ⊕ · · · where Hm = range(E(Ωm)),

is of uniform multiplicity m.

Proof. LetMx and µ be defined by Proposition 78. Let

Ωm = {x ∈ Ω : dim range(Mx) = m}
for m ∈ I. By Proposition 247, Ωm ∈ Σ for all m. From Lemma 91 it follows that Em
has uniform multiplicity m. �

Lemma 93. Let M : Σ→ B+(H) be a POVM. Let I = N ∪ {∞}. There exists
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- A measurable partition Ωm, m ∈ I ∪ {0} of Ω with M(Ω0) = 0;
- For each m ∈ I a finite measure µm on Σ with the same sets of measure zero as

∆ 7→M(Ωm ∩∆);
- For each m ∈ I an m-dimensional separable complex Hilbert space Xm;
- For each m ∈ I a contractive operator Vm : H→ L2(Ω,Σ, µm; Xm)

such that for all m ∈ I,
(27) M(∆ ∩ Ωm) = V∗

m1
(Xm)(∆)Vm ∀ ∆ ∈ Σ

and

(28) L2(Ω,Σ, µm; Xm) = cl span{1(Xm)(∆)Vm[h] : h ∈ H, ∆ ∈ Σ}.
Proof. Let X, µ,V be defined by Theorem 87. Let T ,Mx be defined as in the proof

of Theorem 87. Let Ωm = {x ∈ Ω : dim range(Mx) = m} for m ∈ I. By Proposition 247,
Ωm ∈ Σ for all m. Let Ω0 = {x ∈ Ω :Mx = 0}. Let Xm = Cm and X∞ = `2(N). Define
µm by µm(∆) = µ(Ωm ∩ ∆). Define Vm : H → L2(Ω,Σ, µm; Xm) by Vm = 1

(X)(Ωm)V.
Condition (27) follows from

M(∆ ∩ Ωm) = V∗
1

(X)(∆ ∩ Ωm)V

= V∗
m1

(X)(∆)Vm.

Condition (28) follows from Lemma 91. �

Theorem 94. Let M : Σ→ B+(H) be a POVM. Let I = N ∪ {∞}. There exist

- A measurable partition Ωm, m ∈ I ∪ {0} of Ω with M(Ω0) = 0;
- For each m ∈ I a finite measure µm on Σ with the same sets of measure zero as

∆ 7→M(Ωm ∩∆);
- For each m ∈ I an m-dimensional separable complex Hilbert space Xm;
- A linear isometry V : H→ K, where

K =
⊕
m∈I

L2(Ω,Σ, µm; Xm),

such that (F,K,V), where F : Σ→ B+(K) is defined by

F (∆) ⊕
m∈I

fm = ⊕
m∈I

1
(Xm)(∆)fm,

is a minimal Naimark extension M.

Proof. Let Vm and Xm be as in Lemma 93. Denote the inner-product of Xm by
(·, ·)m. Define linear isometry V : H → K by V[h] = ⊕

m∈I
Vm[h] for h ∈ H. To prove

minimality of the Naimark extension, it suffices to prove that fm ∈ L2(Ω,Σ, µm,Xm) and∑m
n=0 ‖fm‖2 <∞ and

(29)
∑
m∈I

∫
∆

(fm(x),Vm[h](x))m µ(dx) = 0 ∀ ∆ ∈ Σ, h ∈ H

implies fm = 0 for all m. Because µm is concentrated on Ωm, (29) implies∫
∆

(fm(x),Vm[h](x))m µ(dx) = 0 ∀ ∆ ∈ Σ, h ∈ H

for all m ∈ I. By (28), this implies that fm = 0 for all m ∈ I. �

Remark 95. POVMs of finite uniform multiplicity which have an operator density
are sometimes called frames. These are investigated (together with their relation to the
theory of reproducing kernel Hilbert spaces) in [6]. See also [7].
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23. Bounded subnormal operators

Definition 96. A bounded operator S on a Hilbert space H is subnormal if there
is a Hilbert space K, a bounded normal operator N on K, and an isometry V : H → K
such that VSV∗ = N on range(V).

Triple (N ,V,K) is called a normal extension of subnormal operator S on H. If H ⊂ K
and V is the identity operator, then N is called a normal extension of S.

Example 97. Every linear isometry is a subnormal operator.

In [72] an example is given of two commuting subnormal operators R,S such that
neither R+ S nor RS is subnormal.

Definition 98. A normal extension (N,V,K) of a subnormal operator S on H is
called minimal if the only subspace of K, containing range(V) and reducing N , is K
itself. This is the case if, and only if, the only closed linear subspace of K, containing
N ∗kV[h] for all k ∈ N0 and h ∈ H, is K itself: This condition can be formulated as

K = cl span{N ∗kV[h] : n ∈ N0, h ∈ H}.
Proposition 99 (Proposition 2.5 of Chapter II in [24]). Given two minimal normal

extensions (N1,V1,K1) and (N2,V2,K2) of a subnormal operator S on H, there exists a
unitary operator U : K1 → K2 such that UV1 = V2 and UN1 = N2U.

Theorem 100 (Spectral inclusion theorem, Problem 200 in [53]). If S is subnormal
and N is a minimal normal extension, then σ(N ) ⊂ σ(S).

A bounded operator S on a Hilbert space H is called hyponormal if ‖S∗h‖ ≤ ‖Sh‖
for h ∈ H. An operator S is normal if, and only if, both S and S∗ are hyponormal. Every
compact hyponormal operator is normal ([24]).

Proposition 101 ([53]). Every subnormal operator is hyponormal.

Lemma 102 ([45]). If A is a hyponormal operator then ||An|| = ||A||n for all n ∈ N.
Consequently, ||A|| = r(A), the spectral radius of A.

Proposition 103. If S is subnormal and N is its minimal normal extension, then
||S|| = ||N ||.

Proof. By the spectral inclusion theorem we have r(N ) ≤ r(A). By Lemma 102
implies ||N || ≤ ||A||. The inequality ||A|| ≤ ||N || follows directly from the appropriate
definitions. �

Remark 104. Let N be a (possibly unbounded) normal operator on a Hilbert space
K. If the domain D(N ) of N contains a closed linear subspace H of K and if N (H) ⊂ H,
then the restriction N|H is a subnormal operator with minimal normal extension N|J,
where

J = cl span{N ∗kh : h ∈ H, k ∈ N0}.

23.1. Susskind-Glogower phase POVM. The positive moments of the Susskind-
Glogower phase POVM S are

(30) Sn =

∫ 2π

0

e−inθ S(dθ) =
∞∑
`=0

ϕ`+n ⊗ ϕ`,

for n ∈ N0. These are linear isometries and hence subnormal operators. A minimal
Naimark extension of S is (1, L2([0, 2π]),VS). The moments of this Naimark extension
are the bilateral shifts w.r.t. the Fourier basis:

Zn =

∫ 2π

0

e−inθ 1(dθ) =
∑
`∈Z

e`+n ⊗ e`, n ∈ Z.
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A minimal normal extension of S1 is (Z1, L2([0, 2π]),VS).

24. Restriction algebra

In §11 of Chapter II of [24], the restriction algebra of a subnormal operator is inves-
tigated. In this section we introduce a similar concept for POVMs.

Definition 105. For a POVM M on σ-field Σ of subsets of set Ω, let

R(M) = {ϕ ∈ L∞(Ω,Σ,M) : ‖ρM(ϕ)h‖2 =

∫
Ω

|ϕ(x)|2Mh(dx) ∀ h ∈ H}.

This is called the restriction algebra for M.

Remark 106. Apart from the constant functions, the restriction algebra of a POVM
might be empty. However, if M : Σ→ B+(H) is a PVM then R(M) = L∞(Ω,Σ,M).

Proposition 107. Let M : Σ→ B+(H) be a POVM on σ-field Σ of subsets of set Ω.
Let (N,K,V) be a minimal Naimark extension of M. Then

(31) R(M) = {ϕ ∈ L∞(Ω,Σ,M) : ρN(ϕ)range(V) ⊂ range(V)}
and R(M) is a weak-star closed subalgebra of L∞(Ω,Σ,M).

Proof. Let ϕ ∈ L∞(Ω,Σ, N). For all h ∈ H,

‖V∗ρN(ϕ)V[h]‖ = ‖ρM(ϕ)h‖
and

‖ρN(ϕ)V[h]‖ =

∫
Ω

|ϕ(x)|2NV[h](dx) =

∫
Ω

|ϕ(x)|2Mh(dx).

The left-hand sides are equal for all h if, and only if, ρN(ϕ)range(V) ⊂ range(V). The
right-hand sides are equal for all h if, and only if, ϕ ∈ R(M). Hence (31). From (31)
it follows that R(M) is an algebra. Let ϕi be a net in R(M) and suppose that ϕi → ϕ
in (L∞(Ω,Σ, N),weak∗). By Proposition 33, ρN(ϕi) → ρN(ϕ) in (B∞(K),weak∗). Hence
for each h ∈ H, ρN(ϕi)V[h]→ ρN(ϕ)V[h] weakly. Because ρN(ϕi)V[h] ∈ range(V), this
implies that ρN(ϕ)h ∈ range(V). Hence ϕ ∈ R(M). �

Remark 108. Let S be a bounded subnormal operator on H with normal extension
(N ,V,K). LetN : B→ B+(K) be the spectral measure ofN , and define POVMM : B→
B+(H) byM(∆) = V∗N(∆)V. Then S = ρM(z) (this is an abbreviation for ρM(ϕ), where
ϕ is the function ϕ(z) = z) and from (31) it follows that R(M) contains the analytic
polynomials.

Proposition 109. For a POVM M on σ-field Σ of subsets of set Ω, R(M) ⊂ {ϕ ∈
L∞(Ω,Σ,M) : ρM(ϕ) is a subnormal operator}.

Proof. Let (N,K,V) be a minimal Naimark extension of POVM M. Let ϕ ∈ R(M).
Then ρM(ϕ) = V∗ρN(ϕ)V. From (31) it follows that VρM(ϕ)V∗ = ρN(ϕ) on range(V ).
Hence ρM(ϕ) is a subnormal operator with normal extension ρN(ϕ) on K. �

Theorem 110. The map

ρM : (R(M),weak∗)→ (B∞(H),weak∗)

is multiplicative, isometric and has closed range.

Proof. This follows from Proposition 109 above, together with Proposition 11.2 of
Chapter II in [24]. �

Remark 111. Theorem 110 implies that

R(M) ⊂ {ϕ ∈ L∞(Ω,Σ,M) : ‖ρM(ϕ)‖ = ‖ϕ‖∞}.
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Theorem 112. Let M : Σ→ B+(H) be a POVM on σ-field Σ of subsets of set Ω. If
R(M) contains an injective function, then M is an injective POVM.

Proof. By Proposition 109,
∫

C z ϕ(M)(dz) = ρM(ϕ) is a subnormal operator. By
Proposition 30.20 in [25], this implies that ϕ(M) is an injective POVM. If f is a mea-
surable function on C such that f ◦ ϕ ∈ L∞(Ω,Σ,M), then

ρM(f ◦ ϕ) =

∫
C
f(z)ϕ(M)(dz) = 0

implies f(z) = 0 for ϕ(M)-almost all z. Hence f(ϕ(x)) = 0 for M -almost all x. Conclu-
sion: If ϕ ∈ R(M) and f is a measurable function on C such that f ◦ ϕ ∈ L∞(Ω,Σ,M),
then ρM(f ◦ ϕ) = 0 implies f ◦ ϕ = 0. If ϕ is injective then every g ∈ L∞(Ω,Σ,M) can
be written in the form f ◦ ϕ for some f. �

24.1. Susskind-Glogower phase POVM. Let S be the Susskind-Glogower phase
POVM. Then span{ek : k ∈ N0} ⊂ R(S).

25. Constructing POVMs from PVMs

In this section we consider two operations on the set of POVMs: Projection and
smearing. We also consider taking the limit of a sequence of POVMs and taking convex
combinations of POVMs. The result of these operations is a POVM, but not always a
projection-valued one.

25.1. Projection of a PVM. Given a POVM, Naimark’s theorem guarantees the
existence of a PVM from which the POVM can be recovered with the help of a linear
isometry (or a projection operator, depending on the particular formulation of Naimark’s
theorem). The direction of this process can be reversed: Let N : Σ→ B+(K) be a PVM
with operators on a Hilbert space K as values, and let V be a linear isometry from a
Hilbert space H to K. Then M : Σ→ B+(H), defined by M(∆) = V∗N (∆)V, is a POVM.
(Similarly, if H is a closed linear subspace of K and P is the projection operator with
range H then M(∆) = PN(∆) defines a POVM taking its values in the operators on H.)

25.2. Smearing of a PVM. Let Σ be a σ-field of subsets of a set Ω and let Σ1 be a
σ-field of subsets of a set Ω1. From a POVM E : Σ1 → B+(H) and (p∆) ∈ M(Σ; Ω1,Σ1, E)
we can make a new POVM M : Σ → B+(H) by M(∆) = ρE(p∆). The word smearing is
used in Section II.2.3 of [15], to indicate the process of making a POVM out of a PVM
in this way.

The POVM M obtained in this way is not necessarily projection-valued, even if E
is. The POVM M has however commutative range if E is a PVM. By Proposition 44,
every POVM with commutative range is a smeared version of a PVM.

25.3. Convex combinations of PVMs. Given two POVMs M1 : Σ → B+(H)
and M1 : Σ → B+(H) we can make new POVMs Mκ : Σ → B+(H) by taking convex
combinations:

Mκ(∆) = κM1(∆) + (1− κ)M2(∆), κ ∈ (0, 1).

The resulting POVMs are not necessarily projection-valued even if M1 and M2 are. Con-
vex combinations (or probability averages) of uncountable sets of POVMs are considered
in [4] and [5]: In the context of POVMs on the Borel subsets B of a separable metriz-
able locally compact Hausdorff space Ω, it is shown that every POVM with commutative
range can be written as the probability average of a set of PVMs. More precisely: Given
a POVM M, there is a compact metrizable topology on the convex set X of all regular
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FPOVMs on B taking values in ball(M(B)′′)+, and there is a probability measure µ on
ext(X) (the extremal points of X) concentrated on the subset of POVMs, such that

(∀∆ ∈ B)(∀h ∈ H) Mh(∆) =

∫
ext(X)

Nh(∆)µ(dN).

If M has commutative range, then ext(X) consists of PVMs.
25.3.1. Example: Let (Σ2,Σ2, µ2) be a probability space. Let B be the Borel subsets

of a separable metrizable locally compact Hausdorff space Ω. Let (p∆) ∈ M(B; Ω2,Σ2, µ2).
Let H = L2(Ω2,Σ2, µ2). Consider the PVM 1 : Σ2 → B+(H). By Theorem 35,

ρ1 : L∞(Ω2,Σ2, µ2)→ B∞(H)

is a linear isometry. Define POVM M : B→ B+(H) by

M(∆) = ρ1(p∆), ∆ ∈ B.

The range M(B) of M is contained in the commutative von Neumann algebra 1(Σ2)
′′

generated by the range 1(Σ2) of 1. Let X be as above. Then ext(X) consists of PVMs
P : B→ B+(H) whose ranges are contained in 1(Σ2). For every such P there is a function
ΦP : B → Σ2 such that P (∆) = 1(ΦP (∆)) for ∆ ∈ B. Hence there is a probability
measure µ on ext(X) such that

(∀∆ ∈ B) p∆ =

∫
ext(X)

1ΦP (∆) µ(dP )

with respect to the weak-star topology of L∞(Ω2,Σ2, µ2). In [4], a minimal Naimark
extension of the POVM M is given in terms of (ext(X), µ).

25.4. Limits of PVMs.

Proposition 113. Let M (n) : Σ→ B+(H), n ∈ N be a sequence of POVMs such that
WOT-limits

M(∆) = lim
n→∞

M (n)(∆), ∆ ∈ Σ

exist. Then M is a POVM on Σ.

Proof. This follows from Theorem 1 and Proposition 203. �

Proposition 114. Let F (n) : Σ → B+(H), n ∈ N be a sequence of PVMs such that
the SOT-limits

F (∆) = lim
n→∞

F (n)(∆), ∆ ∈ Σ

exist. Then F is a PVM on Σ.

Proof. The SOT-limit of a sequence of orthogonal projection operators is again an
orthogonal projection operator. �

Every POVM is the WOT-limit of a sequence of PVMs and the restriction algebra
can be characterized in terms of the convergence of these limits.

Proposition 115. Let H be an infinite dimensional complex separable Hilbert space.
Let M : Σ → B+(H) be a POVM. There exists a sequence N (m) : Σ → B+(H), m ∈ N of
PVMs such that

(a) lim
m→∞

N (m)(∆) = M(∆) in the WOT for every ∆ ∈ Σ.

(b) R(M) = {ϕ ∈ L∞(Ω,Σ,M) : lim
m→∞

ρN(m)(ϕ) = ρM(ϕ) in the SOT}.
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Proof. Let (N,K,V) be a Naimark extension of M. Let ϕn, n ∈ N be an orthonor-
mal basis of H. For m ∈ N let Hm = span{ϕn : 1 ≤ n ≤ m}. Because H is infinite
dimensional, there exists for each m ∈ N a unitary operator Um : H → K satisfying
Um = V on Hm. Define PVM N (m) : Σ → Bp(H) by N (m)(∆) = U∗

mN(∆)Um. Let
ϕ ∈ L∞(Ω,Σ, N). If h ∈ Hm then

(h, ρN(m)(ϕ)h) = (h,U∗
mρN(ϕ)Umh)

= (Umh, ρN(ϕ)Umh)

= (V[h], ρN(ϕ)V[h]).

Let Pm be orthogonal projection on Hm. For h ∈ H,

lim
m→∞

(h, ρN(m)(ϕ)h) = lim
m→∞

(Pmh, ρN(m)(ϕ)Pmh)

= lim
m→∞

(V[Pmh], ρN(ϕ)V[Pmh])

=(V[h], ρN(ϕ)V[h]).

Hence
(h, ρM(ϕ)h) = (V[h], ρN(ϕ)V[h]) = lim

m→∞
(h, ρN(m)(ϕ)h) ∀ h ∈ H.

For h ∈ H,

lim
m→∞

‖ρN(m)(ϕ)h‖2 = lim
m→∞

(h, ρN(m)(|ϕ|2)h)

= (V[h], ρN(|ϕ|2)V[h])

= ‖ρN(ϕ)V[h]‖2.
Hence ϕ ∈ R(M) if, and only if,

lim
m→∞

‖ρN(m)(ϕ)h‖ = ‖ρM(ϕ)h‖.

�

25.5. Example. Let S : B → B∞(L2(R)) be the Susskind-Glogower phase POVM
introduced in Section 19. We introduce a sequence of PVMs, called the Pegg-Barnett
phase PVMs, that converge to S in the sense of Proposition 115.

25.5.1. Pegg-Barnett phase PVMs. The Pegg-Barnett phase PVMs ([88]) are max-
imal PVMs on finite dimensional spaces. For M ∈ N let NM = N0 ∩ [0,M ], let
ΦM : NM → L2(R) be the restriction of the Hermite basis Φ to NM , let the finite di-
mensional Hilbert space HM ⊂ L2(R) be defined by HM = span(ΦM).

Lemma 116. For m ∈ NM define θm ∈ [0, 2π) by θm = 2πm/(M +1). For θ ∈ [0, 2π)
let δθ be Dirac measure at θ. Let

µM =
2π

M + 1

M∑
m=0

δθm

Restriction e(M) : NM → L2([0, 2π]) of the Fourier basis e is an orthonormal basis of
L2([0, 2π], µM).

Proof. The lemma follows from

1

M + 1

M∑
m=0

einθm = 1(M+1)Z(n) ∀ n ∈ Z,
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which we will now prove: We have

(32)
M∑
m=0

eixθm =
e2πix − 1

e2πix/(M+1) − 1
.

This is clearly a continuous (M + 1)-periodic function on R\(M + 1)Z which is 0 for
x ∈ Z\(M+1)Z. The function on R in the left-hand side of (32) is the unique continuous
extension of the right-hand side and equals M + 1 at x = 0 and hence (by periodicity)
at the points x ∈ (M + 1)Z. �

The Pegg-Barnett phase PVM P (M) : BC → B+(HM) is defined by

P
(M)
h (∆) =

∫
∆

|V(M)
P [h](θ)|2 µM(dθ),

where the unitary operator V
(M)
P : HM → L2([0, 2π], µM) is defined in terms of its action

on the Hermite functions by

V
(M)
P [ϕ(M)

n ] = e(M)
n , n ∈ NM .

By Theorem 77, P (M) is a maximal PVM.
25.5.2. Moments. In order to prove that P (M) converges to S as M →∞ in the sense

of Proposition 115, we calculate the moments of P(M). The moments of S were given in
(30). The moments of the Pegg-Barnett phase PVM are

P(M)
n =

∫ 2π

0

e−inθ P (M)(dθ) =
M∑
`=0

Φ(γM(`+ n))⊗ Φ(`), n ∈ Z

where γ
M

: Z→ NM is defined by

γ
M

(x) = x−
⌊

x

M + 1

⌋
(M + 1).

25.5.3. Approximation of the Susskind-Glogower phase POVM. The definition of the
Pegg-Barnett phase PVM can be extended to get a PVM P (M) : BC → B+(L2(R)) : Let

P
(M)
h (∆) = 0 if µM(∆) = 0, and

P
(M)
h (∆) =

∫
∆

|V(M)
P [PMh](θ)|2 µM(dθ) + ‖(I − PM)h‖2,

where PM is the operator of orthogonal projection on the closed linear subspace HM of
L2(R), if µM(∆) > 0. From

P(2M)
n = Sn on HM ∀ n ∈ NM ,

P(2M)
−n = S∗n on HM ∀ n ∈ NM

it follows that

ρP (M)(ϕ)h = ρS(ϕ)h ∀ h ∈ HM , ϕ ∈ span{ek : −M ≤ k ≤M}.
By Theorem 86, span{ek : k ∈ Z} is weak-star sequentially dense in L∞(S). Hence

(∀∆ ∈ BC)(∀h ∈ L2(R)) lim
M→∞

P
(M)
h (∆) = Sh(∆).
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26. POVMs on Federer metric spaces

Definition 117. A Federer metric space is a metric space (Ω, d) with the following
property: For every regular Borel measure µ which is bounded on bounded Borel sets
and every function f : Ω → C which is integrable on bounded Borel sets, there exists a
µ-null set N such that for all r > 0 and all x ∈ Ω\N the closed ball ball(x, r) with radius
r and center x has positive µ-measure and the limits

lim
r↓0

1

µ(ball(x, r))

∫
ball(x,r)

f(y)µ(dy), x ∈ Ω\N

exist and define (pointwise) a µ-measurable function which is equal to f µ-almost every-
where.

Similar conditions on metric spaces are introduced in [43]. A proof of the following
theorem can be found in [104].

Theorem 118. Let n ∈ N and let | · | be a norm on Rn. Then Rn with metric d,
defined by d(x, y) = |x− y|, is a Federer metric space.

Definition 119. Let R be a bounded injective operator on Hilbert space H with
dense range. Hilbert spaces H− and H+ and sesquilinear form <·, ·> : H− ×H+ → C are
defined as follows:

- H+ = range(R), equipped with inner-product (h, g)+ = (R−1h,R−1g).
- H− is the completion of H with respect to inner-product (h, g)− = (R∗h,R∗g).
- Operator (R∗)ext : H− → H is the isometric extension of R∗ defined on H, considered

as a subspace of Hilbert space H−.
- <H, g> = ((R∗)ext[H],R−1g)H, for H ∈ H− and g ∈ H+.

The triple of Hilbert spaces H+ ⊂ H ⊂ H− is called ‘Gelfand triple associated with
operator R’ and sesquilinear form <·, ·> : H− × H+ → C is called ‘the pairing between
H− and H+.’

The following theorem and proof are in essence not new; they are similar to results
in [103] and [102] and to results about canonical Dirac bases in [104].

Theorem 120. Let (Ω, d) be a complete and separable and Federer metric space.
Let B be the Borel subsets of Ω, and let M : B→ B+(H) be a POVM.
Let I, (Ωm), (µm) be defined by Theorem 94.
Let R be an injective non-negative Hilbert-Schmidt operator on H, and let H+ ⊂ H ⊂

H− be the Gelfand triple associated with R, and let <·, ·> : H− × H+ → C be the pairing
between H− and H+. (See Definition 119.)

There is a M-null set N and there are F
(m)
x,j ∈ H−, (m,x, j) ∈ Ω̃, where

Ω̃ = {(m,x, j) : m ∈ I, x ∈ Ωm\N, 1 ≤ j ≤ m}
such that for all h ∈ H+,

(∀∆ ∈ B) Mh(∆) =
∑
m∈I

m∑
j=1

∫
∆

|<F (m)
x,j , h>|2 µm(dx)

and

(∀(m,x, j) ∈ Ω̃) lim
r↓0

∥∥∥∥F (m)
x,j − F

(m)
x,j (r)

∥∥∥∥
−

= 0

where

F
(m)
x,j (r) =

1

µm(ball(x, r))

∫
ball(x,r)

F
(m)
y,j µm(dy).
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Proof. From the results of Chapter 8 in [22] it follows that B is countably gener-
ated, and that every finite Borel measure is regular.

There are ρk > 0 and an orthonormal basis (vk) of H such that
∑∞

k=1 ρ
2
k <∞ and

R =
∞∑
k=1

ρk vk ⊗ vk.

Let (Km), (Vm) be defined by Lemma 93. Let ψ
(m)
j , 1 ≤ j ≤ m be an orthonormal

basis of Km. Let m ∈ I and j be an integer in [1,m]. Define Vm,j : H → L2(Ω,B, µm)

by Vm,j[h] = (ψ
(m)
j ,Vm[h](x)). There exists an M -null set Nm,j ⊂ Ωm such that for

x ∈ Ωm\Nm,j and k ∈ N limit

(33) ϕ
(m)
j,k (x) = lim

r↓0

1

µm(ball(x, r))

∫
ball(x,r)

Vm,j[vk](y)µm(dy)

exists and

(34) F
(m)
x,j =

∞∑
k=1

ϕ
(m)
j,k (x) vk

converges in H−.

Let r > 0 and (m,x, j) ∈ Ω̃. Element F
(m)
x,j (r) of H− is defined by its action

<F
(m)
x,j (r), h> =

1

µm(ball(x, r))

∫
ball(x,r)

<F
(m)
y,j , h>µm(dy), h ∈ H+

on H+. If (34) is used, we get an integral of a sum; we show that integration can be done
term-by-term: By Fubini’s theorem the following estimation suffices∫

ball(x,r)

∞∑
k=1

|ϕ(m)
j,k (y)(vk, h)|µm(dy) ≤

(∫
ball(x,r)

∞∑
k=1

ρ−2
k |(vk, h)|

2 µm(dy)

)1/2

·
(∫

ball(x,r)

∞∑
k=1

ρ2
k|ϕ

(m)
j,k (y)|2 µm(dy)

)1/2

≤
√
µm(ball(x, r)) ‖h‖+

( ∞∑
k=1

ρ2
k‖ϕ

(m)
j,k ‖

2

)1/2

≤
√
µm(ball(x, r)) ‖h‖+

( ∞∑
k=1

ρ2
k

)1/2

.

This is finite. Hence

(35) F
(m)
x,j (r) =

1

µm(ball(x, r))

∞∑
k=1

∫
ball(x,r)

ϕ
(m)
j,k (y)µm(dy) vk.

By Lemma 248 (Lemma 4 in [103]) there exists a µm-null set Nm such that for x ∈
Ωm\Nm

lim
r↓0

∥∥∥∥F (m)
x,j − F

(m)
x,j (r)

∥∥∥∥
−

= 0, 1 ≤ j ≤ m.

Let N = ∪m∈INm. �
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26.1. Susskind-Glogower phase POVM. The Susskind-Glogower phase POVM
S : B → B∞(L2(R)) was introduced in Section 19. Let r ∈ (0, 1). Let (ϕn) be the
Hermite basis of L2(R), and define operator Rr in terms of its action on the Hermite
basis functions by

(∀n ∈ N0) Rrϕn = rnϕn = exp{− log(1
r
)n}ϕn.

This is a positive and injective Hilbert-Schmidt operator on L2(R). Let

H
(r)
+ ⊂ L2(R) ⊂ H

(r)
−

denote the Gelfand triple associated with operator Rr. Note that (ϕn) is an orthogonal
basis of Hilbert spaces H+, H and H−. Let

<·, ·> : H
(r)
− × H

(r)
+ → C

be the pairing between H
(r)
− and H

(r)
+ . Define Fθ ∈ H

(r)
− , θ ∈ [0, 2π) by

(36) Fθ =
∞∑
n=0

en(θ)ϕn.

We have
(∀h ∈ H

(r)
+ )(∀θ ∈ [0, 2π)) VS[h](θ) = <Fθ, h>
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27. Integration of unbounded functions with respect to a POVM

We will use the theory of [67] concerning the integration of unbounded measurable
functions with respect to an operator valued measure. We only consider operator-valued
measures with positive values.

Definition 121. Let M be a POVM on σ-field Σ of subsets of a non-empty set Ω.
Let ϕ : Ω→ C be a Σ-measurable function. Let

Dϕ
M = {h ∈ H :

∫
Ω

|ϕ(x)|2Mh(dx) <∞}.

Definition 122 ([67], Appendix). Let M be a POVM on σ-field Σ of subsets of a
non-empty set Ω. Let ϕ : Ω→ C be a Σ-measurable function. We let D(LM(ϕ)) denote
the set of those h ∈ H for which ϕ is integrable with respect to all complex measures
(g,M(·)h), g ∈ H.

Lemma 123 ([67], Lemma A.1). For every h ∈ D(LM(ϕ)) there exist exactly one
element LM(ϕ)h of H satisfying

(g, LM(ϕ)h) =

∫
Ω

ϕ(x) (g,M(dx)h)

for all g ∈ H.

Definition 124. Let LM(ϕ) be the operator, with domain D(LM(ϕ)), such that

(g, LM(ϕ)h) =

∫
Ω

ϕ(x) (g,M(dx)h) ∀ g ∈ H, h ∈ D(LM(ϕ)).

We sometimes write
∫

Ω
ϕ(x)M(dx) in stead of LM(ϕ).

Lemma 125 ([67], Lemma A.2). Let M be a POVM on σ-field Σ of subsets of a
non-empty set Ω. Let ϕ : Ω→ C be a Σ-measurable function. Then

(1) Dϕ
M ⊂ D(LM(ϕ)).

(2) If M is projection-valued then Dϕ
M = D(LM(ϕ)).

Lemma 126 ([69], Section III, Part A). Let (N,K,V) be a Naimark extension of
POVM M on σ-field Σ of subsets of a non-empty set Ω. Let ϕ : Ω→ C be a Σ-measurable
function. Then

LM(ϕ) = V∗LN(ϕ)V on Dϕ
M .

Lemma 127. Dϕ
M is dense in H.

Proof. Let (N,K,V) be a Naimark extension of M. For n ∈ N let Ωn = {x : n−1 ≤
|ϕ(x)| ≤ n}. Then Dϕ

N contains N(Ωn)K for all n. This, together with the σ-additivity
of N, implies that Dϕ

N is dense in K. From∫
Ω

|ϕ(x)|2Mh(dx) =

∫
Ω

|ϕ(x)|2NV[h](dx)

it follows that Dϕ
M contains V∗Dϕ

N , which is dense in H because Dϕ
N is dense in K and

V∗ is a bounded operator from K onto H. �

Lemma 128. Let M be a POVM on σ-field Σ of subsets of a non-empty set Ω. Let
ϕ : Ω→ C be a Σ-measurable function. Then LM(ϕ)∗ extends LM(ϕ̄).

Proof. This follows from Lemma A.4 of [67] because D(LM(ϕ)) is a dense subset
of H. �
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Proposition 129. Let M be a POVM on σ-field Σ of subsets of a non-empty set Ω.
Let ϕ : Ω→ C be a Σ-measurable function and let h ∈ Dϕ

M . Then

(37) ‖LM(ϕ)h‖2 ≤
∫

Ω

|ϕ(x)|2Mh(dx).

If M is projection-valued then both sides of this inequality are equal.

Proof. Let (ϕn) be a sequence of simple functions converging pointwise to ϕ, with
|ϕn| ≤ |ϕ| for all n.

Let h ∈ Dϕ
M . From the proof of Lemma A.2 in [67], it follows that∫

Ω

|ϕn(x)| |(g,M(dx)h)| ≤ ‖g‖

√∫
Ω

|ϕn(x)|2Mh(dx)

for all g ∈ H. By the dominated convergence theorem,

|(g, LM(ϕ)h)| ≤
∫

Ω

|ϕ(x)| |(g,M(dx)h)| ≤ ‖g‖

√∫
Ω

|ϕ(x)|2Mh(dx)

for all g ∈ H. Hence (37).
Now assume that M is projection-valued. By (37),

‖LM(ϕ)k − LM(ϕn)k‖2 ≤
∫

Ω

|ϕ(x)− ϕn(x)|2Mk(dx)

for all n. By the dominated convergence theorem, the right-hand-side converges to
0. Hence (LM(ϕn)k) converges to LM(ϕ)k. By the dominated convergence theorem,
(
∫

Ω
|ϕn(x)|2Mk(dx)) converges to

∫
Ω
|ϕ(x)|2Mk(dx). Hence the result follows from

‖LM(ϕn)k‖2 =

∫
Ω

|ϕn(x)|2Mk(dx) ∀ n.

�

Proposition 130. Let (N,K,V) be a minimal Naimark extension of POVM M on
σ-field Σ of subsets of a set Ω. Let ϕ : Ω→ C be a Σ-measurable function. The following
conditions are equivalent:

(a) ‖LM(ϕ)h‖2 =
∫

Ω
|ϕ(x)|2Mh(dx) for all h ∈ Dϕ

M .

(b) LN(ϕ)V(Dϕ
M) ⊂ rangeV.

(c) VLM(ϕ) = LN(ϕ)V on Dϕ
M .

If these conditions are satisfied for ϕ then

(38) LM(ϕ)(Dϕψ
M ∩Dϕ

M) ⊂ Dψ
M and LM(ψ)LM(ϕ) = LM(ψϕ) on Dϕψ

M ∩Dϕ
M .

for Σ-measurable functions ψ : Ω→ C.
Remark 131. In Section 27.1, we give an example of a POVM on the Borel subsets

of C (which is not projection valued) such that (a) is satisfied not only by ϕ(z) = 1, but
also by ϕ(z) = zn for all n ∈ N.

Proof. LetM = LM(ϕ) and N = LN(ϕ). ThenM = V∗NV on Dϕ
M .

(b) implies (a): Let h ∈ Dϕ
M . Then NV[h] ⊂ rangeV and

‖Mh‖2 = (V∗NVh,V∗NVh) = (NVh,VV∗NVh)

= (NVh,NVh) = ‖NVh‖2 =

∫
Ω

|ϕ(x)|2NV[h](dx)

=

∫
Ω

|ϕ(x)|2Mh(dx).



66 3. POSITIVE OPERATOR-VALUED MEASURES

Hence (a).
(a) implies (b): Let h ∈ Dϕ

M . Then

‖NV[h]‖2 =

∫
Ω

|ϕ(x)|2NV[h](dx) =

∫
Ω

|ϕ(x)|2Mh(dx)

= ‖Mh‖2 = ‖V∗NV[h]‖2

= ‖VV∗NV[h]‖2.
Hence NV[h] ∈ range(V). Hence (b).

We have

V(Dψ
M) = {f ∈ range(V) :

∫
Ω

|ψ(x)|2Nf (dx) <∞} = range(V) ∩Dψ
N .

and LN(ϕ)Dϕψ
N ∩Dϕ

N ⊂ Dψ
N . Together with (b) this implies the first part of (38).

We have LM(ψ) = V∗LN(ψ)V on Dψ
M . If (b) is satisfied then VM = NV on Dϕ

M .
Hence

LM(ψ)M = V∗LN(ψ)VM = V∗LN(ψ)NV = V∗LN(ψϕ)V = LM(ψϕ)

on Dϕψ
M ∩Dϕ

M . �

Proposition 132. Let H be a Hilbert space. Let Σ be a σ-field of subsets of a
set Ω. Let M : Σ → B+(H) be a POVM. Let ϕ : Ω → C be a Σ-measurable function.

The operator LM(ϕ) on H with domain Dϕ
M is closable; the closure, denoted by LM(ϕ),

satisfies
D(LM(ϕ)) = {h ∈ H : Dϕ

M 3 g 7→ (h, LM(ϕ̄)g) is bounded}
and

(LM(ϕ)h, g) = (h, LM(ϕ̄)g) ∀ h ∈ D(LM(ϕ)), g ∈ Dϕ
M .

Proof. The closure LM(ϕ) of LM(ϕ) is the adjoint (LM(ϕ)∗)∗ of LM(ϕ)∗. By Lemma

128, LM(ϕ) = LM(ϕ̄)∗. �

Lemma 133. Let (N,K,V) be a Naimark extension of POVM M on σ-field Σ of
subsets of a non-empty set Ω. Let ϕ : Ω→ C be a Σ-measurable function such that

‖LM(ϕ)h‖2 =

∫
Ω

|ϕ(x)|2Mh(dx) ∀ h ∈ Dϕ
M .

Then V∗(Dϕ
N) ⊂ D(LM(ϕ̄)) and

(39) LM(ϕ̄)V∗ = V∗LN(ϕ̄) on D(LϕN).

Proof. Let f ∈ Dϕ
N and g ∈ Dϕ

M . By Proposition 130 and Lemma 128,

(V∗[f ], LM(ϕ)g) = (f,VLM(ϕ)g) = (f, LN(ϕ)V[g])

= (V∗LN(ϕ̄)f, g).

By Proposition 132, V∗[f ] ∈ D(LM(ϕ̄)) and

(LM(ϕ̄)V∗[f ], g) = (V∗[f ], LM(ϕ)g) = (V∗LN(ϕ̄)f, g), g ∈ Dϕ
M .

Hence (39). �



27. INTEGRATION OF UNBOUNDED FUNCTIONS WITH RESPECT TO A POVM 67

27.1. Bargmann measure. Let M (Bargmann) : B→ B∞(L2(R)) be as in Section 18.
This POVM is a mathematical representation of a simultaneous non-ideal measurement
([79]) of the position, momentum and number observables. An actual measurement
(instrument) represented by this POVM is eight-port optical homodyning (detector).
(See e.g. Sections 3.6 and 3.7 of Chapter VII in [15].) We will calculate the moments
of this POVM. Because the support of M (Bargmann) is not bounded, we need some of the
integration theory just described.

27.1.1. Naimark extension. A minimal Naimark extension of the Bargmann POVM
is (1, L2(C, µ),Vg).

27.1.2. Moments. Define the unbounded operator S by

S =

∫
C
z M (Bargmann)(dz).

We have

Sϕn =
∞∑
k=0

(∫
C
z
z̄kzn√
k!n!

e−|z|
2

dz

)
ϕk

=
√
n+ 1ϕn+1.

Let D = span{ϕn : n ∈ N0}. Let Z be the operator of multiplication with the identity
function, C 3 z 7→ z, on L2(C, µ) : Z =

∫
C z 1(dz). We have S = V∗

gZVg. It follows
from (25) that

Vg[D] = span{ϕ : ϕ(z) = zn, n ∈ N0},
and hence that Z maps Vg[D] into itself. This, together with the fact that D is a dense
subset of L2(R), implies that the three conditions of Proposition 130 are satisfied for the
functions in D, and that

(40) (S∗)kS` =

∫
C
z̄kz`M (Bargmann)(dz) ∀ k, ` ∈ N0

on D.





CHAPTER 4

Wigner and Husimi representations, and in between

1. Introduction

E. Wigner initiated the investigations of a correspondence between the Hilbert space
description of quantum mechanics, and a particular description by functions on phase-
space: [110] [109], [82], [89], [32], [46], [27, 28], [56]. One part of this correspondence
is to represent density operators ρ on L2(R) (which are non-negative trace-class operators
with trace 1) by functions Wρ on phase-space (which is R2 or C). This function Wρ is
known as the Wigner function of ρ. The transformation ρ 7→Wρ is linear. Phase-space
pictures corresponding to other linear transformation from the space of density operators
to functions on phase-space, are described e.g. in [1, 2], [21] and [40].

The Wigner function of a trace-class operator on L2(R) is an element of M(R2), the
Borel measurable functions on phase-space. There is no simple characterization of the
subspace of M(R2) that is formed by the Wigner functions of trace-class operators. It is
also not known when the Weyl quantization of a function on phase-space is a bounded
operator. Partial solutions of these problems are given in [46] and [29, 26]. In [89]
it is proven that the ‘Wigner functions’ of Hilbert-Schmidt operators are the square
integrable function classes on phase-space, and that this linear correspondence between
B2 (in this Chapter we write B2, B1 and B∞ in stead of B2(L2(R)), etc.) and L2(R2)
is, up to normalization, isometric. This linear transformation between B2 and L2(R2)
is the subject of Section 3. In Section 4 we introduce a family (Ws) of phase space
representations that interpolate between the Wigner and the Husimi [59] representations.
In Section 5 we investigate the phase space pictures of B1 and B∞ operators. In Section
6 we introduce a particular family of subspaces of B2 whose phase-space pictures we
investigate in Section 7.

2. Conventions and notation

Define self-adjoint operators P and Q on their usual domains in L2(R) by P [f ](x) =
−if ′(x) and Q[f ](x) = xf(x). We have

[Q,P ] = QP − PQ = iI,
where I is the identity operator. Let ϕn ∈ L2(R) be the n’th Hermite basis func-

tion. We define ϕn as follows: ϕ0(q) = π−1/4e−q
2/2 and ϕn = (n!)−1/2Snϕ0, where

S = (Q − iP)/
√

2. We have Sϕn =
√
n+ 1ϕn+1, S∗ϕn =

√
nϕn−1 and Nϕn = nϕn

where N = SS∗ = 1
2
(Q2 + P2 − I). The fractional Fourier transform Fθ is defined by

Fθ = exp(−iθN ), and satisfies Fθϕn = e−iθnϕn (see e.g. [9]). The ordinary Fourier
transform F = Fπ/2 satisfies

F [f ](p) =
1√
2π

∫
R
f(q)e−ipqdq.

We have F∗
θQFθ = cos(θ)Q + sin(θ)P . (This is a consequence of [iN ,Q] = P and

[iN ,P ] = −Q, as is explained in the proof of lemma 134 below.) In particular, P =

69
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F∗QF = −FQF∗. We have F = e−i(
π
2
)N . The parity operator Π, defined on L2(R) by

Π[f ](x) = f(−x), satisfies Π = F2, hence Πϕn = (−1)nϕn.
The squeezing operator Zλ : L2(R)→ L2(R) is defined by

Zλ = exp{−i1
2

ln(λ)(QP + PQ)}

and satisfies (Zλf)(x) = λ−1/2f(λ−1x).
For a bounded operator A on L2(R) we will denote by A(k) the operator on L2(Rn)

acting as A on the k’th variable only. For example F (1) and F (2) denote the Fourier
transforms on L2(R2) in the first and second variable.

3. Wigner representation

Let

GQ =
1

2
(Q
⊗
I − I

⊗
Q) and GP =

1

2
(P
⊗
I − I

⊗
P).

This is a pair of commuting self-adjoint operators on B2. Let

G̃Q =
1

2
(Q
⊗
I + I

⊗
Q) and G̃P =

1

2
(P
⊗
I + I

⊗
P).

This is also a pair of commuting self-adjoint operators on B2.

Lemma 134. Let Rϕ = exp{iϕ(Q
⊗
P + P

⊗
Q)}. Then

(41) K[Rϕ[A]](x, y) = K[A](x cosϕ+ y sinϕ, y cosϕ− x sinϕ)

for A ∈ B2 and almost all x, y ∈ R. We have

G̃Q = 1√
2
Rπ/4(Q

⊗
I)R−1

π/4, G̃P = 1√
2
Rπ/4(I

⊗
P)R−1

π/4,

GQ = −1√
2
Rπ/4(I

⊗
Q)R−1

π/4, GP = 1√
2
Rπ/4(P

⊗
I)R−1

π/4

(42)

on span{ϕk ⊗ ϕ` : k, ` ∈ N0}.
Proof. (42) follows from (41) and

K(Q
⊗
I) = Q(1)K, K(I

⊗
P) = −P(2)K

K(I
⊗
Q) = Q(2)K, K(P

⊗
I) = P(1)K.

(43)

Using the addition formulas for sine and cosine, it is easily seen that (41) is equivalent
to

K[Rϕ[A]](r cos θ, r sin θ) = K[A](r cos(θ − ϕ), r sin(θ − ϕ)),

which follows, for A ∈ span{ϕk ⊗ ϕ` : k, ` ∈ N0}, from

K[i(Q
⊗
P + P

⊗
Q)A](r cos θ, r sin θ) = − ∂

∂θ
K[A](r cos θ, r sin θ).

�

Proposition 135. There exists precisely one unitary operator W : B2 → L2(R2)
such that

(44) WG̃Q = 1√
2
Q(1)W and WG̃P = 1√

2
Q(2)W

and

(45) WGQ = −1√
2
P(2)W and WGP = 1√

2
P(1)W.
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For an f, g ∈ L2(R) we have W[f ⊗ g](q, p) =
√
πWf,g(q/

√
2, p/
√

2), where Wf,g is the
mixed Wigner function of f and g defined by

Wf,g(q, p) =
1√
2π

∫
R
f(q +

y

2
)g(q − y

2
)
e−ipy√

2π
dy.

Proof. From Lemma 134 and (43) it follows that W = (F (2))∗KR−1
π/4 satisfies (44)

and (45). Assume that unitary operator W̃ from B2 to L2(R2) also satisfies (44) and

(45). Then Q(1),Q(2),P(1) and P(2) commute with WW̃∗. Hence WW̃∗ = I. Hence

W = W̃. �

Remark 136. (45) implies the following: If AQ = QA then ∂
∂p

W[A](q, p) = 0. If

AP = PA then ∂
∂q

W[A](q, p) = 0.

Proposition 137. Let A ∈ B2.

(a) W[exp{2i(vGQ − uGP)}A](q, p) = W[A](q −
√

2u, p−
√

2v).

(b) W[exp{2i(vG̃Q − uG̃P)}A](q, p) = e
√

2i(vq−up)W[A](q, p).
(c) W[FθAF∗

θ ](q, p) = W[A](q cos θ − p sin θ, q sin θ + p cos θ).
(d) W[ZλAZ∗λ](q, p) = W[A](λ−1q, λp).

(e) W[e−τNAe−τN ] = e−τN
(1)
e−τN

(2)
W[A].

(f) W[FθAFθ] = F (1)
θ F

(2)
θ W[A].

(g) W[e−s(G
2
Q+G2

P )[A]] = e−
s
2
|4|W[A],

where 4 = ∂2/∂q2 + ∂2/∂p2 and |4| = −∂2/∂q2 − ∂2/∂p2.

Proof. The first and the last identities follow from (45). The second identity follows
from (44). From

- G2
Q + G̃2

Q = 1
2
(Q2

⊗
I + I

⊗
Q2) and G2

P + G̃2
P = 1

2
(P2
⊗
I + I

⊗
P2),

- N
⊗
I − I

⊗
N = 2(G̃QGQ + G̃PGP),

- N
⊗
I + I

⊗
N = G2

Q + G̃2
Q + G2

P + G̃2
P − I,

- 2(GQG̃P + GPG̃Q) = 1
2
(QP + PQ)

⊗
I − I

⊗
1
2
(QP + PQ)

follows

- Fθ
⊗
Fθ = exp{−2iθ(G̃QGQ + G̃PGP)},

- Zλ
⊗
Zλ = exp{−2i ln(λ)(GQG̃P + GPG̃Q)},

- Nτ
⊗
Nτ = eτ exp{−τ(G2

Q + G̃2
Q + G2

P + G̃2
P)},

- Fθ
⊗
F∗
θ = eiθ exp{−iθ(G2

Q + G̃2
Q + G2

P + G̃2
P)}.

Together with (44) and (45), this implies (d) and (e) and (f), and, together with some
calculation, also (c). �

Lemma 138. Let u, v ∈ R and Gu,v = exp{2i(vGQ − uGP)}. We have

(46) Gu,v = exp{i(vQ− uP)}
⊗

exp{i(vQ− uP)} = eivQe−iuP
⊗
eivQe−iuP

on B2. Let G̃u,v = exp{2i(vG̃Q − uG̃P)}. We have

(47) G̃u,v = exp{i(vQ− uP)}
⊗

exp{−i(vQ− uP)} = eivQe−iuP
⊗
e−ivQeiuP

on B2.

Proof. The first equalities in (46) and (47) follow from Theorem 8.35 in [108]. The
second equalities in (46) and (47) follow from Proposition 294. �
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Remark 139. In the right-hand sides of (46) and (47), the order of composition of
the two operators on both sides of the

⊗
symbol may be interchanged on both sides

simultaneously; on both sides this must be compensated with an extra factor, but the
two factors neutralize each other.

4. A family of representations interpolating between the Wigner and
Husimi representations

For s > 0 and f ∈ L2(Rm) define the function Gs[f ] on Rm by

(48) Gs[f ](x) = (2sπ)−m/2
∫

Rm

e−(x−x′)2/(2s)f(x′) dx′.

This function is square-integrable. The operator Gs on L2(Rm) is called them-dimensional
Gaussian convolution operator with parameter s. It can be written as

Gs = exp{− s
2
|4|}, where |4| = −

m∑
j=1

∂2/∂x2
j .

If m = 1 then Gs = exp{− s
2
P2}.

Definition 140. For s ≥ 0 and A ∈ B2 let Ws[A] = GsW[A], where Gs is the
2-dimensional Gaussian convolution operator.

Remark 141. The transforms Ws have been investigated e.g. in [19], [11] and [40].

Lemma 142. For n ∈ N0 and z ∈ Z,

G1[ϕn](
√

2z) = 2−1/2π−1/4 zn√
n!
e−z

2/2.

Consequently,
(gz, h) = π1/4

√
2e− Im(z)2+iRe(z) Im(z)G1[h](

√
2z),

where

gz = e−|z|
2/2

∞∑
n=0

z̄n√
n!
ϕn,

Proof. Let S = (Q− iP)/
√

2. Then Snϕ0 = (n!)1/2ϕn. By Proposition 288 together
with [P2,Q] = P [P ,Q] + [P ,Q]P = −2iP ,

G1S = G1SG−1
1 G1 = 2−1/2 exp{−1

2
P2}(Q− iP) exp{1

2
P2}G1

= 2−1/2(Q+ iP − iP)G1 = 2−1/2QG1

on span{ϕn : n ∈ N0}. Hence G1Sn = 2−n/2QnG1. Hence

G1[ϕn] = (n!)−1/2G1Snϕ0 = (2nn!)−1/2QnG1[ϕ0].

We have G1[ϕ0](x) = 2−1/2π−1/4e−x
2/4. �

Lemma 143. Let f, g ∈ L2(R). Then

W1[f ⊗ g](
√

2q,
√

2p) = G1[f ](q − ip)G1[g](q − ip) e−p
2

=
1

2
√
π

(g, g(q−ip)/
√

2)(g(q−ip)/
√

2, f).
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Proof. For s > 0,

Ws[f ⊗ g](q, p)

=
1

2π
√
s

∫
R2

exp{− 1

2s
(q − x+ y√

2
)2 − s

2
(
x− y√

2
)2 − ip(x− y√

2
)}f(x)g(y) dxdy.

Hence
W1[f ⊗ g](q, p)

=
1

2π

∫
R2

exp{−(
q − ip√

2
− x)2/2− (

q + ip√
2
− y)2/2− p2/2}f(x)g(y) dxdy.

�

Proposition 144. For s ≥ 0,

(49) WsG̃Q = 1√
2
(Q(1) + isP(1))Ws and WsG̃P = 1√

2
(Q(2) + isP(2))Ws

and

(50) WsGQ = −1√
2
P(2)Ws and WsGP = 1√

2
P(1)Ws.

Proof. (50) follows from (45) and the fact that Gs is a convolution operator, and
hence commutes with P . (49) follows from

GsQ = (Q+ isP)Gs.
(This follows easily from Gs = exp{− s

2
P2} and [P2,Q] = P [P ,Q] + [P ,Q]P = −2iP .)

�

Lemma 145 ([19]). Let A ∈ B2. Then

(51) Ws[A](
√

2q,
√

2p) =
1√
π

1

1 + s

∞∑
n=0

(
s− 1

s+ 1
)n(ϕ(q,p)

n ,Aϕ(q,p)
n ).

where ϕ
(q,p)
n = exp{i(pQ− qP)}ϕn.

Proof. By Proposition (137) and (46), this can be reduced to the case q = p = 0.
We have W1[f ⊗ g](0, 0) = (2

√
π)−1(g, ϕ0 ⊗ ϕ0[f ]). For s ≥ 1,

Ws[f ⊗ g](0, 0) = (2
√
π)−1(g, e(1−s)(G

2
Q+G2

P )[ϕ0 ⊗ ϕ0]f).

We have

GQ + iGP = 2−1/2(S∗
⊗
I − I

⊗
S),

GQ − iGP = 2−1/2(S
⊗
I − I

⊗
S∗),
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where S is defined in terms of its action on the Hermite basis elements by Sϕn =√
n+ 1ϕn+1. From S∗ϕ0 = 0 and Snϕ0 = (n!)1/2ϕn and S∗ϕn =

√
nϕn−1 follows

1

n!
(G2

Q + G2
P)nϕ0 ⊗ ϕ0 =

1

n!
(GQ − iGP)n(GQ + iGP)nϕ0 ⊗ ϕ0

= (−1)n2−n/2
1√
n!

(GQ − iGP)nϕ0 ⊗ ϕn

= 2−n
1√
n!

n∑
k=0

(
n

k

)
(−1)kSk[ϕ0]⊗ S(n−k)∗[ϕn]

= 2−n
n∑
k=0

(
n

k

)
(−1)kϕk ⊗ ϕk

=

(
1− Su ⊗ Su

2

)n
[ϕ0 ⊗ ϕ0],

where Su is defined on the Hermite basis functions by Suϕn = ϕn+1 for all n. Hence

e(1−s)(G
2
Q+G2

P )[ϕ0 ⊗ ϕ0] =
∞∑
n=0

(1− s)n
(

1− Su ⊗ Su
2

)n
[ϕ0 ⊗ ϕ0]

=
2

1 + s

(
1 +

1− s
1 + s

Su ⊗ Su
)−1

[ϕ0 ⊗ ϕ0].

This implies

Ws[A](0, 0) =
1√
π

1

1 + s

∞∑
n=0

(
s− 1

s+ 1
)n(ϕn,Aϕn).

�

Definition 146. For s > 0 and B ∈ B∞ define the function Ws[B] on R2 by

Ws[B](
√

2q,
√

2p) =
1√
π

1

1 + s

∞∑
n=0

(
s− 1

s+ 1
)n(ϕ(q,p)

n ,Bϕ(q,p)
n ).

5. The range of Ws

Theorem 147. Let s > 0. If A ∈ B1 then Ws[A] ∈ L1(R2) and

(52)
1√
π

∫
R2

Ws[A](
√

2q,
√

2p) dqdp = Tr(A)

and

(53)
1√
π

∫
R2

|Ws[A](
√

2q,
√

2p)| dqdp ≤ Tr(
√
A∗A).

If B ∈ B∞ then Ws[B] has an extension to an entire analytic function of two complex
variables and

(54)
1√
π
|Ws[B](q + iu, p+ iv)| ≤ e(u

2+v2)/s

sπ
‖B‖∞ ∀ q, p, u, v ∈ R.
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Proof. Let A ∈ B1 and f, g ∈ L2(R). By Lemma 145,

|Ws[f ⊗ g](
√

2q,
√

2p)| ≤ 1√
π

1

1 + s

∞∑
n=0

λn|(ϕ(q,p)
n , f)| |(g, ϕ(q,p)

n )|

≤ 1

2
√
π

1

1 + s

( ∞∑
n=0

λn|(ϕ(q,p)
n , f)|2 +

∞∑
n=0

λn|(g, ϕ(q,p)
n )|2

)
=

1

2

(
Ws′ [f ⊗ f ](

√
2q,
√

2p) + Ws′ [g ⊗ g](
√

2q,
√

2p)

)
with λ ∈ (0, 1) and s′ ∈ (1,∞) such that

λ =

∣∣∣∣s− 1

s+ 1

∣∣∣∣ =
s′ − 1

s′ + 1
.

It is easily seen that precisely one such s′ ∈ (1,∞) exists. Let h ∈ L2(R). We have
W1[h⊗ h](q, p) ≥ 0 for all (q, p) ∈ R2. Hence Ws′ [h⊗ h](q, p) ≥ 0 for all (q, p) ∈ R2. We
have

1√
π

∫
R2

Ws′ [h⊗ h](q, p) dqdp =
1√
π

∫
R2

W1[h⊗ h](q, p) dqdp = 2‖h‖2.

Because A is a trace-class operator, it can be written in the form:

A =
∞∑
n=1

an fn ⊗ gn

with (an) ∈ `1(C) with
∑

n |an| = Tr(
√
A∗A), and with (fn), (gn) orthonormal families

in L2(R). Hence

|Ws[A](q, p)| ≤
∞∑
n=1

|an| |Ws[fn ⊗ gn](q, p)|

≤ 1

2

∞∑
n=1

|an|
(
Ws′ [fn ⊗ fn](q, p) + Ws′ [gn ⊗ gn](q, p)

)
.

By Fubini’s theorem, this implies that Ws[A] ∈ L1(R2) and that (53) is satisfied. The
dominated convergence theorem can be used to prove (52).

Now we will prove (54). Let B ∈ B∞. We have Ws[B] = Gs−εWε[B]. By Lemma 253,

|Ws[B](q + iu, p+ iv)| ≤ e(u
2+v2)/(2(s−ε))‖Wε[B]‖∞.

From Definition 146 follows |Wε[B](q, p)| ≤ ‖B‖∞(
√
π2ε)−1. Hence

|Ws[B](q + iu, p+ iv)| ≤ (
√
π2ε)−1e(u

2+v2)/(2(s−ε))‖B‖∞
for every ε ∈ (0, s). �

6. The spaces B+ and B−

For τ > 0 let Nτ be the operator on L2(R) which is characterized in terms of its
action on the Hermite basis by

(55) Nτϕn = e−(n+1/2)τϕn, n ∈ N0.

Let B+ = ∪{NτANτ : A ∈ B2, τ > 0} and let B− be the space of linear forms on B+

that are bounded on each set ∪{NτANτ : A ∈ B2, ‖A‖2 ≤ M} with τ,M > 0. We can
identify B∞ as a space of linear forms on B1 : Identify B ∈ B∞ with linear form LB on
B1, defined by LB(A) = Tr(B∗A).
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Proposition 148. We have

B+ ⊂ B1 ⊂ B2 ⊂ B∞ ⊂ B−.

The space B+ is dense in B1 which is dense in B2.

Proof. Inclusion B+ ⊂ B1 follows from the fact that Nτ ∈ B1 for all τ > 0. The
space B+ is dense in B1 and in B2 because range(Nτ ) is dense in L2(R) for every τ > 0.
Inclusion B∞ ⊂ B− : Let B ∈ B∞. Then LB is a continuous linear form on B1. Hence LB
is bounded on the subsets

B1(M) = {AB : A,B ∈ B2, ‖A‖2 ≤M, ‖B‖2 ≤M}
of B1, where M > 0. Let τ > 0. For every M > 0, the set

B+(M, τ) = {NτANτ : A ∈ B2, ‖A‖ ≤M}
is contained in a set B1(M

′) for some M ′. Hence LB ∈ B−. �

We use the following notation: The application of a linear form B ∈ B− on A ∈ B+

is denoted by <B,A>. If B ∈ B∞ then <B,A> = <LB,A> = Tr(B∗A).

Lemma 149. The space B+ can be characterized as follows:

B+ = {
∞∑

k,`=0

αk,` ϕk ⊗ ϕ` : ∃ t > 0 such that |αk`| = O(e−t(k+`))}.

The space B− can be characterized as follows: A linear form L on B+ is an element of
B− if, and only if,

|L(ϕk ⊗ ϕ`)| = O(et(k+`)) ∀ t > 0.

Proof. This follows from (55). �

If s > 0 then s−1
s+1

< 1. Hence the following definition makes sense:

Definition 150. For s > 0 and B ∈ B− define the function Ws[B] on R2 by

Ws[B](
√

2q,
√

2p) =
1√
π

1

1 + s

∞∑
n=0

(
s− 1

s+ 1
)n<B, ϕ(q,p)

n ⊗ ϕ(q,p)
n >.

7. Characterization of Ws(B+) and Ws(B−)

For A,B ∈ R and M > 0 let A(M,A,B) be the set of functions on R2 that have a
continuation to an entire analytic function ϕ on C2 satisfying

|ϕ(q + ix, p+ iy)|2 ≤M exp{−A(q2 + p2) +B(x2 + y2)} ∀ q, p, x, y ∈ R
From Theorem 267 and Proposition 137 it follows that: For s ≥ 0,

Ws(B+) =
⋃
{
⋃
M>0

A(M,A,B) : A > 0, B > 0, sB < 1},(56)

and for s > 0,

Ws(B−) =
⋂
{
⋃
M>0

A(M,A,B) : A < 0, sB > 1}.

Proposition 151. The following operators on B2 leave B+ invariant:

(a) exp{i(vQ− uP)}
⊗
I and I

⊗
exp{i(vQ− uP)} with u, v ∈ R;

(b) Fθ
⊗
I and I

⊗
Fθ with θ ∈ [0, 2π).

The following operators on B2 map B+ into itself:

(i) Zλ
⊗
I and I

⊗
Zλ with λ > 0;



7. CHARACTERIZATION OF Ws(B+) AND Ws(B−) 77

(ii) e−τN
⊗
I and I

⊗
e−τN with Re(τ) ≥ 0;

(iii) e−s(G
2
Q+G2

P ) with s ≥ 0.

The operators exp{i(vQ − uP)}
⊗
I and I

⊗
exp{i(vQ − uP)}, with u, v ∈ C\R, are

unbounded on B2, but map B+ into itself.

Proof. (a): Let u, v ∈ R. By Proposition 137 and (56), the operators Gu,v and G̃u,v

on B2 leave B+ invariant. By Lemma 138, this implies that the operators exp{i(vQ −
uP)}

⊗
I and I

⊗
exp{i(vQ− uP)} leave B+ invariant.

(b) and (ii): This follows from Lemma 149.
(i): Let λ > 0. By Proposition 137 and (56), the operator Zλ

⊗
Zλ on B2 maps B+ into

itself. Because Fπ/4Zλ = Z1/λFπ/4
it follows from (b) that the operator Zλ

⊗
Z1/λ on B2

maps B+ into itself. By taking a composition we see that Zλ
⊗
I maps B+ into itself.

The proof that I
⊗
Zλ maps B+ into itself is similar.

(iii): By Proposition 137 and (56), We−s(G
2
Q+G2

P )[B+] = GsW[B+] = Ws[B+] ⊂W[B+].
The proof of the final statement is similar to the proof of (a). �

Remark 152. All the operators of Proposition 151 can be defined on B− by contra-
position: If A is one of the above operators, and L is a linear form on B+, then A[L] is
defined as the composition L ◦ A. If L is in B− then A[L] is in B−.





CHAPTER 5

Phase-space analogues for quantum mechanical expectation
values

1. Introduction

It is shown e.g. in [18], [57], and [2] that quantum mechanical expectation values
can be expressed as phase-space averages. At this point, insufficient care has been taken
to provide a mathematically rigorous formulation.

For a density operator ρ, the quantum mechanical expectation value of a bounded
operator B is given by Tr(ρB). This chapter is concerned with the problem of expressing
Tr(ρB) in terms of phase-space integrals involving a phase-space representation of ρ. The
Hilbert space on which operators ρ and B act is L2(R) in this section, and we write, as
before, B2, B1 and B∞ in stead of B2(L2(R)), etc. Only the phase-space representations
of Section 4 of Chapter 4 are considered. We prove that:

- For every B ∈ B∞ and s ∈ [0, 1], there exists a sequence of bounded, integrable and
infinitely differentiable functions (bn) on R2 such that

(57) Tr(ρB) = lim
n→∞

∫
R2

bn(q, p)Ws[ρ](q, p) dqdp

for every ρ ∈ B1. The convergence is uniform for ρ in compact subsets of B1.
- For s = 1, there is a projection operator B with the property that no sequence of

functions (bn) exists for which the above limit converges uniformly for ρ ∈ {ϕn⊗ϕn :
n ∈ N}, where (ϕn) is the Hermite basis of L2(R).

After that we consider one particular (linear) way of obtaining a sequence of functions
(bn) satisfying (57).

Remark 153. In [8], Tr(BA) is expressed as a sum over integrals containing the
functions W1[A] and 4nW1[B], with n ∈ N0.

Remark 154. In [63], a construction is given for the (uniform) approximation of
trace-class operators by integrals involving projections on the coherent state vectors.

Remark 155. In Section 6 of [16], it is remarked that a POVM M : Σ→ B+(H) on
a σ-field Σ of subsets of a set Ω with the property that ρM has weak-star dense range,
serves to define a kind of classical representation of quantum mechanics in the following
sense: For any B ∈ B∞(H), and ε > 0, and a finite set ρ1, . . . , ρn of density operators,
there exists a complex bounded function f on Ω such that∣∣∣∣∫

Ω

f(x) Tr(M(dx)ρi)− Tr(Bρi)
∣∣∣∣ < ε for all i = 1, · · · , n.

This can be viewed as an approximate representation of the quantum mechanical expec-
tation values Tr(ρA), for density operator ρ and bounded operators B.

For the special case of the Bargmann measure, this is very similar to our objectives
for s = 1. We consider, apart from the existence of such functions f, also a particular
choice.

79
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2. Wigner representation

Theorem 156. Let A ∈ B1 and B ∈ B∞. Then

Tr(B∗A) = lim
n→∞

∫
R2

bn(q, p)W[A](q, p) dqdp

where bn = W[B1/n] with B1/n = N1/nBN1/n.

Proof. N1/n is a Hilbert-Schmidt operator. Hence B1/n is also a Hilbert-Schmidt
operator. Because W is unitary,∫

R2

bn(q, p)W[A](q, p) dqdp = Tr(B∗1/nA).

Let h ∈ L2(R) then limn→∞ ‖N1/nh− h‖ = 0. This can be used together with

‖B1/nh− Bh‖ = ‖N1/nBN1/nh− BN1/nh‖+ ‖BN1/nh− Bh‖
to prove that limn→∞ ‖B1/nh−Bh‖ = 0 for all h ∈ L2(R). By the dominated convergence
theorem, this implies that limn→∞ Tr(B∗1/nA) = Tr(B∗A). �

3. Existence of phase-space analogues for quantum mechanical expectation
values

Lemma 157. Subspace

{
∫

C
ϕ(z)gz ⊗ gz dz : ϕ ∈ L1(C) ∩ C∞b (C)}

of B∞ is weak-star sequentially dense in B∞.

Proof. This lemma improves the result of Example 20.1. We use the same method
to prove it: We show that a non-degenerate ∗-subalgebra is contained in the above
subspace. Let S =

∫
C z M

(Bargmann)(dz). In Section 27.1.2 of Chapter 3 we saw that

Sϕn =
√
n+ 1ϕn+1.

By Theorem 86, span{z̄kz`e−τ |z|2 : τ > 0, k, ` ∈ N0} is weak-star sequentially dense
in L∞(C). Let

A = span{
∫

C
z̄kz` gz ⊗ gz e−τ |z|

2

dz : τ > 0, k, ` ∈ N0}.

From Nτϕn = e−τ(n+1)ϕn follows Nτ g̃z = e−τ g̃e−τ z, where g̃z = e|z|
2/2gz. Together with

(40), this implies that

A = span{e−τNS∗kS`e−τN : τ > 0, k, ` ∈ N0}.
Using mathematical induction, SS∗ = S∗S −I and e−τNS = e−τSe−τN , it is easily seen
that A is a ∗-subalgebra of B∞. A is non-degenerate, because it contains the injective
operators e−τN , τ > 0. By Proposition 83 and the results of Example 20.1, A is weak-star
sequentially dense in B∞. �

Theorem 158. For every B ∈ B∞ and s ∈ [0, 1], there exists a sequence of bounded
infinitely differentiable functions (bn) on C such that

Tr(BT ) = lim
n→∞

∫
C
bn(z)Ws[ρ](z) dz

for every T ∈ B1.



4 81

Proof. Let B ∈ B∞. By Lemma 157, there exists a sequence of integrable functions
(bn) such that

B = lim
n→∞

1

π

∫
C
bn(z)gz ⊗ gz dz

in the weak-star sense. This means that

Tr(BT ) = lim
n→∞

1

π

∫
C
bn(z)(gz, T gz) dz

for every T ∈ B1. We have

|
∫

C
bn(z)(gz, T gz) dz| ≤ ‖bn‖1 ‖T ‖∞ ≤ ‖bn‖1 ‖T ‖1.

Consequently, there are operators Bn ∈ B∞ such that

(∀T ∈ B1) Tr(BnT ) =
1

π

∫
C
bn(z)(gz, T gz) dz.

Let s ∈ [0, 1]. Because W[T ] ∈ L∞(C) and bn ∈ L1(C), Fubini’s theorem can be used to
prove that ∫

C
bn(z)W1[T ](z) dz =

∫
C
G1−s[bn](z)Ws[T ](z) dz.

Hence everything can be reduced to the case s = 1. �

4. Non-uniformity of approximation of expectation values

In this section we prove the existence of a projection operator P whose expectation
values Tr(ρP) cannot be approximated uniformly in ρ by phase-space integrals.

Lemma 159. Let 1
2
π < |α| < 3

4
π. There is no sequence of functions (f

(α)
n ) on C such

that

(ϕk,Fαϕk) = lim
n→∞

∫
C
f (α)
n (z)W1[ϕk ⊗ ϕk](z) dz.

converges uniformly for k ∈ N.

Proof. We have (ϕk,Fα[ϕk]) = e−ikα and |(gz, ϕk)|2 = |z|2k

k!
e−|z|

2
. It is assumed that∫

C
|f (α)
n (z)| e−|z|2 dz <∞.

It suffices to proof that there is no sequence of functions (g
(α)
n ) on (0,∞) such that

e−ikα = lim
n→∞

∫ ∞

0

g(α)
n (x)

xk

k!
e−x dx.

converges uniformly for k ∈ N. Assume that there is such a sequence (g
(α)
n ). Then there

exists an N ∈ N such that

Re

∫ ∞

0

g(α)
n (x)

(eiαx)k

k!
e−x dx ≥ 1

2

for n ≥ N and all k ∈ N0. Then

Re

∫ ∞

0

g(α)
n (x)

(λeiαx)k

k!
e−x dx ≥ λk

2

for n ≥ N and λ ∈ (0, 1) and k ∈ N0. It is assumed that

(58)

∫ ∞

0

|g(α)
n (x)| e−x dx <∞
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Hence

Re

∫ ∞

0

g(α)
n (x)e−x exp{λeiαx} dx ≥ 1

2

∞∑
k=0

λk.

for n ≥ N and λ ∈ (0, 1). Hence

lim
λ↑1

Re

∫ ∞

0

g(α)
n (x)e−x exp{λeiαx} dx = +∞

for n ≥ N. Because (58) and Re(λeiαx) = λ cos(α)x < 0, this is impossible (by the
dominated convergence theorem). �

For a bounded subset S of B1 let BS be the set of all bounded operators B with the
property that there exists a sequence of functions (bn) on C such that

Tr(T B) = lim
n→∞

∫
C
bn(z)W1[T ](z) dz.

converges uniformly for T ∈ S.
Lemma 160. For every bounded subset S of B1, BS is a closed linear subspace of B∞.

Proof. It is easily seen that BS is a linear subspace. Let N ∈ cl(BS). There is a
sequence (Nj) of operators in BS such that ‖Nj−N‖∞ converges to zero as j →∞. For

every j there is a sequence (f
(j)
n ) such that

Tr(T Nj) = lim
n→∞

∫
C
f (j)
n (z)W1[T ](z) dz.

converges uniformly for T ∈ S. There is a subsequence (kn) of N such that

Tr(T N ) = lim
n→∞

∫
C
fn(z)W1[T ](z) dz

where fn = f
(n)
kn
. Hence N ∈ BS. �

Theorem 161. There exists an orthogonal projection operator P for which there is
no sequence of functions (pn) such that

(ϕk,Pϕk) = lim
n→∞

∫
C
pn(z)W1[ϕk ⊗ ϕk](z) dz.

converges uniformly for k ∈ N.
Proof. Let S = {ϕk ⊗ ϕk : k ∈ N}. Assume that the statement in the theorem is

not true. Then every projection operator is an element of BS. But the norm closed linear
span of the projection operators is all of B∞. Hence BS = B∞, by Lemma 160. This is
impossible by Lemma 159. �

5. A method to approximate expectation values

Lemma 162. Let A ∈ B1. There are Ax,y ∈ B1 such that

W[Ax,y](q, p) = W[A](q + x, y + p) ∀ q, p ∈ R.
Let B ∈ B∞. The function (x, y) 7→ Tr(BAx,y) on R2 is continuous and bounded.
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Proof. By Proposition 137,

Ax,y = exp{ −i√
2
(yQ− xP)}A exp{ i√

2
(yQ− xP)}.

Hence ‖Ax,y‖1 = ‖A‖1 for all A ∈ B1. The operators with finite dimensional range form
a dense subspace of B1. Hence there is a sequence (A(n)), of operators with finite dimen-

sional range, that converges to A in B1. For every n, the function (x, y) 7→ Tr(BA(n)
x,y) on

R2 is bounded and continuous. From

|Tr(BAx,y)− Tr(BA(n)
x,y)| ≤ ‖B‖∞‖A −A(n)‖1

it follows that also (x, y) 7→ Tr(BAx,y) is bounded and continuous. �

Lemma 163. Let A ∈ B1 and B ∈ B∞. Let c be a function on R2 with compact support
such that c(0) = 1 and let

d(x, y) =

∫
R2

c(q, p)
ei(xq+yp)

(2π)2
dqdp.

Let s > 0. Then∫
R2

W
(c)
−s[B](q, p)Ws[A](q, p) dqdp =

∫
R2

1

s2
d(
x

s
,
y

s
) Tr(B∗Ax,y) e−(x2+y2)/(4s)dxdy,

where

W
(c)
−s[B](q, p) =

∫
R2

c(u, v)Ws[B](q + 2iu, p+ 2iv)
exp{−(u2 + v2)/s}

sπ
dudv.

Proof. Let τ > 0. We will prove first that

(59)

∫
R2

W
(c)
−s[Bτ ](q, p)Ws[A](q, p) dqdp =

∫
R2

1

s2
d(
x

s
,
y

s
) Tr(B∗τAx,y) e−(x2+y2)/(4s)dxdy,

where Bτ = NτBNτ . From Proposition 137 it follows that W[A] is a bounded function
on R2. Because W[Bτ ] ∈ L1(R2) it follows from Lemma 255 that∫

R2

W
(c)
−s[Bτ ](q, p)Ws[A](q, p) dqdp

=

∫
R2

1

s2
d(
x

s
,
y

s
)W[Bτ ]∗ ∗W[A](x, y) e−(x2+y2)2/(4s)dv,

where W[Bτ ]∗(q, p) = W[Bτ ](−q,−p) and · ∗ · denotes convolution. Because Bτ an Ax,y
are Hilbert-Schmidt operators, it follows from the unitarity of W : B2 → L2(R2) that

W[Bτ ]∗ ∗W[A](x, y) =

∫
R2

W[Bτ ](q, p)W[Ax,y](q, p) dqdp

= Tr(B∗τAx,y).
This implies (59).

Let 0 < ε < min(s, 1). We have Ws[Bτ ] = Gs−εWε[Bτ ]. From Definition 146 follows

|Wε[Bτ ](q, p)| ≤ ‖Bτ‖∞ (2ε)−1 ≤ ‖B‖∞ ε−1

and limτ↓0 Wε[Bτ ](q, p) = Wε[B](q, p). By the dominated convergence theorem,

lim
τ↓0

Ws[Bτ ](q + 2iu, p+ 2iv) = Ws[B](q + 2iu, p+ 2iv).

By Lemma 253,

|Ws[Bτ ](q + 2iu, p+ 2iv)| ≤ ‖B‖∞ ε−1 e2(u2+v2)/s,
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and

|W(c)
−s[Bτ ](q, p)| ≤ ‖B‖∞

1

ε

∫
R2

c(u, v)
exp{(u2 + v2)/s}

sπ
dudv

for all τ > 0. Hence
lim
τ↓0

W
(c)
−s[Bτ ](q, p) = W

(c)
−s[B](q, p).

By the dominated convergence theorem and Theorem 147,

lim
τ↓0

∫
R2

W
(c)
−s[Bτ ](q, p)Ws[A](q, p) dqdp =

∫
R2

W
(c)
−s[B](q, p)Ws[A](q, p) dqdp.

It is easily seen that

|Tr(B∗τAx,y)| ≤ ‖Bτ‖∞‖A‖1 ≤ ‖B‖∞‖A‖1.
and

lim
τ↓0

Tr(B∗τAx,y) = Tr(B∗Ax,y).

The result follows by another application of the dominated convergence theorem. �

Theorem 164. Let A ∈ B1 and B ∈ B∞. Let s > 0. Let c be an infinitely differentiable
function on R2 with compact support such that c(0) = 1. Then

Tr(B∗A) = lim
n→∞

∫
R2

bn(q, p)Ws[A](q, p) dqdp

where

(60) bn(q, p) =

∫
R2

c(
u

n
,
v

n
)Ws[B](q + 2iu, p+ 2iv)

exp{−(u2 + v2)/s}
sπ

dudv.

Proof. By Lemma 163,∫
R2

bn(q, p)Ws[A](q, p) dqdp =

∫
R2

1

s2
d(
x

s
,
y

s
) Tr(B∗A x

n
, y
n
) e−(x2+y2)/(4sn2)dxdy,

Let C∞00(R2) be the space of infinitely differentiable functions on R2 with compact support
and let S(Rm) be the Schwartz space of infinitely differentiable functions on R2 with
derivatives that decay rapidly at infinity. It is well-known that

C∞00(R2) ⊂ S(R2) ⊂ L1(R2)

and that S(R2) is invariant under Fourier transformation. Hence c ∈ C∞00(R2) implies
d ∈ S(R2). Hence d is integrable. By the dominated convergence theorem and the fact
that (x, y) 7→ Tr(B∗Ax,y) ∈ Cb(R2), we have

lim
n→∞

∫
R2

bn(q, p)Ws[A](q, p) dqdp =

∫
R2

1

s2
d(
x

s
,
y

s
) Tr(B∗A) dxdy.

�

There is an interesting expression for the analytic continuation of W1 :

Remark 165. For B ∈ B∞ and q, p, u, v ∈ R,

W1[B](q + 2iu, p+ 2iv) =
1

2
√
π

(gz̄/2+iw̄,Bgz̄/2−iw̄)

(gz̄/2+iw̄, gz̄/2−iw̄)
,

where z = q + ip and w = u+ iv.
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Theorem 166. Let A ∈ B+ and B ∈ B−. Let s > 0. Let c be a bounded function on
Rm which has a compact support, is continuous in 0, and satisfies c(0) = 1. Then

Tr(B∗A) = lim
n→∞

∫
R2

bn(q, p)Ws[A](q, p) dqdp

where (bn) is given by (60). The convergence is uniform for A in subsets

{NτONτ : O ∈ B2, ‖O‖ ≤M},
with M, τ > 0.

Proof. This follows from the unitarity of W : B2 → L2(R2), Proposition 137, and
Theorem 273. �





CHAPTER 6

Extended Bargmann space

1. Introduction

The Bargmann space is the closed linear subspace of entire analytic functions in
L2(C, µ), where

µ(dz) = π−1 exp{−|z|2}dRe(z)d Im(z).

We extend the Bargmann space to a functional Hilbert space W2 which is a Sobolev space
related to the Laplacian operator on L2(C, µ). The inner product of W2 coincides with
that of the Bargmann space. We extend the usual orthonormal basis of the Bargmann
space to an orthonormal basis (Ψ`,k) of L2(C, µ) which is orthogonal in the triple of
Hilbert spaces W2 ⊂ L2(C, µ) ⊂ W−2, where W−2 is the strong topological dual of W2.

Remark 167. The functions Ψ`,k are used to investigate Weyl-(de)quantization in
[27, 28] and [56].

2. Hermite polynomials

Let γ > 0 and let
ν(dx) = (πγ)−1/2e−x

2/γdx.

Lemma 168. The polynomials form a dense subspace in L2(R, ν).
Proof. This can be reduced to the case γ = 1. This case is treated e.g. in the proof

of Theorem V.1.3.6 in [76]. �

The adjoint of the operator d
dx
, densely defined on the polynomials, can be calculated

by integration by parts:

(
d

dx
)∗ =

2x

γ
− d

dx
on the polynomials.

The operators d
dx

and ( d
dx

)∗ map the space of polynomials into itself. Consequently,
finite compositions of these operators are again well defined on the polynomials. The
(non-normal) operator d

dx
satisfies [ d

dx
, ( d
dx

)∗] = 2
γ
[ d
dx
, x] = 2

γ
on the polynomials. Using

[A2,B] = A[A,B] + [A,B]A, we see that [ d
2

dx2 , (
d
dx

)∗] = 4
γ
d
dx

on the polynomials. For

z ∈ C, exp{z d2

dx2} is defined on the space of polynomials p by

exp{z d
2

dx2
}p =

∞∑
n=0

zn

n!
(
d

dx
)2np,

in which only a finite number of terms are non-zero. By Proposition 288,

(61) exp{γ
4

d2

dx2
}( d
dx

)∗ exp{−γ
4

d2

dx2
} =

2x

γ
.

Definition 169. For n ∈ N0 let H
(γ)
n = ( d

dx
)∗n1. Let Hn = H

(1)
n .

87
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Proposition 170. We have the following expression for H
(γ)
n :

H(γ)
n (x) = exp{−γ

4

d2

dx2
}
(2x
γ

)n
.

Hence
1
√
πγ

∫
R
e−(x−y)2/γH(γ)

n (y) dy =
(2x
γ

)n
.

Hence
H(γ)
n (x) = γ−n/2Hn

(
x√
γ

)
Proof. This follows from (61) and exp{−γ

4
d2

dx2}1 = 1. �

Operator d
dx

and its adjoint are densely defined and hence closable. The closure of
d
dx

is denoted by d̄
dx
.

Proposition 171. Let N = γ
2
( d̄
dx

)∗ d̄
dx
. Then N is a self-adjoint operator on L2(R, ν)

and NH(γ)
n = nH

(γ)
n . The polynomials H

(γ)
n , n ∈ N0 form an orthogonal family in L2(R, ν)

for each (fixed) γ > 0.

Proof. From (61) follows

exp{γ
4

d2

dx2
}N exp{−γ

4

d2

dx2
} = x

d

dx
on the polynomials

From 170 and x d
dx
xn = nxn follows NH(γ)

n = nH
(γ)
n . Lemma 237 says that N is self-

adjoint. The orthogonality of H
(γ)
n , n ∈ N0, is a consequence. �

Proposition 172. We have
∞∑
n=0

αn

n!
H(γ)
n (x) = exp{2xα

γ
− α2

γ
}.

Hence

H(γ)
n (x) =

( ∂
∂α

)n
exp{2xα

γ
− α2

γ
}
∣∣∣
α=0

.

Proof. This follows from Proposition 170 and

1
√
πγ

∫
R
e−(x−y)2/γ exp{2yα

γ
− α2

γ
} dy = exp{2xα

γ
}.

and injectivity of Gaussian convolution. �

Proposition 173. Hn(x) = 2n
∫

R(x+ iy)n ν(dy).

Proof. This follows from Proposition 172 and

exp{2xα− α2} =

∫
R

exp{2α(x+ iy)} ν(dy).

�

Proposition 174. We have

Hn(x) = n!

bn
2
c∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
.
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Proof. This follows by using in the integral expression for Hn(x) in Proposition
173, the binomial formula on (x+ iy)n and identity∫

R
yk ν(dy) =

{
π−1/2Γ(k

2
+ 1

2
) = 4−k(2k)!/k! if k = 0, 2, · · ·

0 if k is odd.

�

Proposition 175. Hn is the n’th Hermite polynomial. (H
(γ)
n

√
(γ/2)n/n!) is an

orthonormal basis of L2(R, ν).
Proof. The first part follows from the explicit expression of Hn given in Proposition

174. By Proposition 170, the second part can be reduced to the case γ = 1. �

Remark 176. In [77] and [76] one can find some other (but closely related) properties
of the Hermite polynomials.

3. Laguerre polynomials

The differential operators defined by

(62)
∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
),

∂

∂z̄
=

1

2
(
∂

∂x
+ i

∂

∂y
)

are called Wirtinger derivatives (or operators).
Harmonic functions are the infinitely differentiable solutions of Laplace equation

4f = 0, where 4 = 4 ∂
∂z

∂
∂z̄
. Entire analytic functions are the infinitely differentiable

solutions of the Cauchy-Riemann equations on C. The Cauchy-Riemann equations are
equivalent to the single equation ∂

∂z̄
f = 0. For γ > 0 let

µ(dz) = (πγ)−1e−|z|
2/γdRe(z)d Im(z).

From the density of the polynomials in Re(z) and Im(z) in L2(C, µ) follows the density
of the polynomials in z and z̄. The Wirtinger operators map the space of polynomials
into itself. Consequently, finite compositions of these operators are again well defined on
the polynomials. They commute on the space of polynomials. Their adjoints are given
by

(63) (
∂

∂z
)∗ =

z

γ
− ∂

∂z̄
, (

∂

∂z̄
)∗ =

z̄

γ
− ∂

∂z
on the polynomials in z, z̄.

The (non-normal) operators ∂
∂z

and ∂
∂z̄

satisfy [ ∂
∂z
, ∂
∂z

∗
] = [ ∂

∂z̄
, ∂
∂z̄

∗
] = I/γ on the poly-

nomials. For w ∈ C, exp{w4} is defined, on the space of polynomials p in z and z̄,
by

exp{w4}p =
∞∑
n=0

wn

n!
4np,

in which only a finite number of terms are non-zero. From [ ∂
∂z

∂
∂z̄
, ( ∂
∂z

)∗] = 1
γ
∂
∂z̄

and

[ ∂
∂z

∂
∂z̄
, ( ∂
∂z̄

)∗] = 1
γ
∂
∂z

it follows easily that

(64) exp{γ
4
4}( ∂

∂z
)∗ exp{−γ

4
4} =

z

γ
, exp{γ

4
4}( ∂

∂z̄
)∗ exp{−γ

4
4} =

z̄

γ

on the polynomials in z and z̄.
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Definition 177. For k, ` ∈ N0 let

(65) Ψ
(γ)
`,k = γ(k+`)/2 ( ∂

∂z

∗
)`( ∂

∂z̄

∗
)k1

√
`!k!

.

Let Ψ`,k = Ψ
(1)
`,k .

Proposition 178. We have the following expression for Ψ
(γ)
`,k :

Ψ
(γ)
`,k (z) = exp{−γ

4
4} z`z̄k√

k!`!γk+`
.

Hence
1

πγ

∫
C
e−|w−z|

2/γΨ
(γ)
`,k (z)dz =

w`w̄k√
k!`!γk+`

.

Hence
Ψ

(γ)
`,k (z) = Ψ`,k

(
z√
γ

)
Proof. This follows from (64) and exp{−γ

4
4}1 = 1. �

Proposition 179. For every n ∈ N,

span{Ψ(γ)
`,k : `, k ∈ {1, · · · , n}} = span{z 7→ z`z̄k : `, k ∈ {1, · · · , n}}.

Proof. Inclusion ⊂ follows from (63) and (65). Inclusion ⊃ follows from Proposition
178 and the fact that exp{γ

4
4} is injective and maps the set span{z 7→ z`z̄k : `, k ∈

{1, · · · , n}} into itself. �

Operators ∂
∂z

and ∂
∂z̄

and their adjoints are densely defined and hence closable. The

closure of ∂
∂z

is denoted by ∂̄
∂z
, and the closure of ∂

∂z̄
is denoted by ∂̄

∂z̄
.

Proposition 180. For k, ` ∈ N0,

(66) γ(
∂

∂z
)∗
∂

∂z
Ψ

(γ)
`,k = `Ψ

(γ)
`,k , γ(

∂

∂z̄
)∗
∂

∂z̄
Ψ

(γ)
`,k = kΨ

(γ)
`,k .

Polynomials (Ψ
(γ)
`,k ) are orthogonal in L2(C, µ) for each (fixed) γ > 0.

Proof. From [4, ∂
∂z

] = [4, ∂
∂z̄

] = 0 and (64) it follows that

exp{γ
4
4}( ∂

∂z
)∗
∂

∂z
exp{−γ

4
4} =

1

γ
z
∂

∂z
,

and

exp{γ
4
4}( ∂

∂z̄
)∗
∂

∂z̄
exp{−γ

4
4} =

1

γ
z̄
∂

∂z̄

on the polynomials. By Proposition 178, the identities z ∂
∂z
z`z̄k = `z`z̄k and z̄ ∂

∂z̄
z̄`z̄k =

kz`z̄k imply (66). Lemma 237 says that ( ∂̄
∂z

)∗ ∂̄
∂z

and ( ∂̄
∂z̄

)∗ ∂̄
∂z̄

are self-adjoint. The or-

thogonality of (Ψ
(γ)
`,k ) is a consequence. �

Proposition 181. We have
∞∑

k,`=0

α`βk√
k!`!

Ψ`,k(z) = exp{αz + βz̄ − αβ}.

Hence

Ψ`,k(z) =
1√
k!`!

( ∂
∂α

)`( ∂
∂β

)k
exp{αz + βz̄ − αβ}

∣∣∣
α=β=0

.
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Proof. This follows from Proposition 178 and

1

π

∫
C
e−|w−z|

2

exp{αz + βz̄ − αβ} dz = exp{αw + βw̄}.

and injectivity of Gaussian convolution. �

Proposition 182. Ψ`,k(z) =
∫

C
(z−w)`(z̄+w̄)k

√
`!k!

µ(dw).

Proof. This follows from Proposition 181 and

exp{αz + βz̄ − αβ} =

∫
C

exp{α(z − w) + β(z̄ + w̄)}µ(dw)

�

Definition 183. For n,m ∈ N0, let

`m,n(r) = (−1)n

√
n!

(n+m)!
rm/2Lmn (r),

where Lmn is a generalized Laguerre polynomial:

(67) Lmn (x) =
n∑
k=0

(
n+m

n− k

)
(−x)k

k!
.

Proposition 184. For n ∈ N0 and m ∈ N0,

Ψn+m,n(re
iθ) = eimθ`m,n(r

2), Ψn,n+m(reiθ) = e−imθ`m,n(r
2).

Proof. By Proposition 182, Ψ`,k(z) = Ψk,`(z). Hence the second identity follows
from the first. We will now prove the first identity: By expanding (r−w)n+m and (r+w̄)n

using the binomial formula we get (using definition (67) of the Laguerre polynomials and

π−1
∫

Cw
kw̄`e−|w|

2
dw =

√
k!`!δk`)

(−1)nn!rmLmn (r2) =
1

π

∫
C
(r − w)n+m(r + w̄)n e−|w|

2

dw.

This, together with Proposition 182, implies the desired result. �

Proposition 185. The family Ψ
(γ)
`,k , k, ` ∈ N0 is an orthonormal basis of L2(C, µ).

Proof. By Proposition 178, this can be reduced to the case γ = 1. Then the result
follows from Proposition 184: For every m ∈ N0, the family (`m,n)n∈N0 is an orthonormal
basis of L2([0,∞), e−rdr). �

Proposition 186. For z ∈ C and k, ` ∈ N0,
∞∑
n=0

Ψ`,n(z)Ψn,k(z) = e|z|
2

δ`k.

Proof. From Proposition 182 follows that the sum on the left-hand-side is∫
C

∫
C

(z − w)`√
`!

exp{(z̄ + w̄)(z − w′)}(z̄ + w̄′)k√
k!

µ(dw)µ(dw′).

This is

e|z|
2

∫
C
ew̄z

(z − w)`√
`!

(z̄ − (z̄ + w̄))k√
k!

µ(dw).
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By Proposition 252, the value of the integral does not change if we replace (w, w̄) by
(w + z, w̄) in the integrand. Doing so, we get

e|z|
2 1

π

∫
C
ew̄z

(−w)`√
`!

(−w̄)k√
k!

e−(w+z)w̄dw.

This is

e|z|
2

∫
C

(−w)`√
`!

(−w̄)k√
k!

µ(dw) = e|z|
2

δk`.

�

3.1. Estimate for Ψ`,k.

Proposition 187. There is a function C : C\{0} → (0,∞) which is bounded on
compact subsets of C\{0} such that

|Ψ`,k(z)| ≤ C(z)
Γ(k+`

2
+ 1)

√
k!`!

(k + `+ 1)−1/6

for all k, ` ∈ N0 and z ∈ C\{0}. We have

(68)
Γ2(k+`

2
+ 1)

k!`!
≤ 1 + min(k, `)

1 + min(k, `) + (k − `)2/4
.

Proof. The first part follows from Proposition 184 and the proof of Proposition
286. (68) follows from Proposition 283. �

4. Relation between Hermite and Laguerre polynomials

We have

(
∂

∂z
)∗
∂

∂z
=

1

2γ
(x

∂

∂x
+ y

∂

∂y
)− i

2γ
(x

∂

∂y
− y ∂

∂x
)− 1

4
(
∂2

∂x2
+

∂2

∂y2
),

(
∂

∂z̄
)∗
∂

∂z̄
=

1

2γ
(x

∂

∂x
+ y

∂

∂y
) +

i

2γ
(x

∂

∂y
− y ∂

∂x
)− 1

4
(
∂2

∂x2
+

∂2

∂y2
).

Hence

(69) γ(
∂

∂z
)∗
∂

∂z
+ γ(

∂

∂z̄
)∗
∂

∂z̄
= N

⊗
I + I

⊗
N .

Hence Ψ
(γ)
`,k and H

(γ)
` ⊗ H

(γ)
k are simultaneous eigenvectors of ( ∂

∂z
)∗ ∂
∂z

+ ( ∂
∂z̄

)∗ ∂
∂z̄

with
eigenvalue k + `.

Proposition 188. Define unitary operator Uγ : L2(R, ν)⊗̂L2(R, ν) → L2(C, µ) by

Ψ
(γ)
`,k = Uγ[

√
γk+`

2``!2kk!
H

(γ)
` ⊗H

(γ)
k ]. Then

(70) Uγ[f ⊗ g](z) =

∫
R
g(

z√
2
− x)f(

z√
2

+ x) ν(dx),

for f, g ∈ span{H(γ)
n : n ∈ N0}. Measure ν on R is defined, as before, by ν(dx) =

(πγ)−1/2e−x
2/γdx.

Proof. It suffices to prove that

(71) Ψ
(γ)
`,k (z) =

∫
R

√
γk+`

2``!2kk!
H

(γ)
k (

z̄√
2
− x)H(γ)

` (
z√
2

+ x) ν(dx)
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for all k, ` ∈ N0. This can be reduced to the case γ = 1. By Proposition 172,
∞∑

`,k=0

α`βk√
`!k!

H`(x)Hk(y)√
2``!2kk!

= exp{
√

2(αx+ βy)}e−(α2+β2)/2.

(71) (with γ = 1) follows from∫
R

exp{
√

2(α(
z√
2

+ x) + β(
z̄√
2
− x))− α2 + β2

2
} ν(dx) = exp{αz + βz̄ − αβ}.

and Proposition 181. �

Proposition 189. For f, g ∈ L2(R, ν) and q, p ∈ R,

Uγ[f ⊗ g](q + ip) = γ−1/2 e(q
2+p2)/(2γ) W[M[f ]⊗M[g]](q,−p/γ).

where M is defined by M[f ](x) = e−x
2/(2γ)f(x).

Proof. From (70) and Proposition 250 follows

Uγ[f ⊗ g](q + ip) =
e(q

2+p2)/(2γ)

√
2πγ

∫
R
M[g](

q − x√
2

)M[f ](
q + x√

2
) eixp/γ dx

for f, g ∈ span{H(γ)
n : n ∈ N0}. The rest follows from Proposition 135. �

Proposition 190. Let

U (γ)
z =

∞∑
`,k=0

Ψ
(γ)
`,k (z)

√
γk+`

2``!2kk!
H

(γ)
` ⊗H

(γ)
k .

Then Uγ[f ⊗ g](z) = (U (γ)
z g, f).

Operator U (γ)
z is bounded, self-adjoint, and proportional to a unitary operator, and

can be expressed alternatively as

(72) U (γ)
z = (exp{z 1√

2

d

dx
})∗Π exp{z 1√

2

d

dx
}

where Π = exp{iπN} (the parity operator). We have:

(73)
∂

∂z
Uγ = Uγ

1√
2

d

dx

⊗
I, ∂

∂z̄
Uγ = UγI

⊗ 1√
2

d

dx

and

(74) (
∂

∂z
)∗Uγ = Uγ(

1√
2

d

dx
)∗
⊗
I, (

∂

∂z̄
)∗Uγ = UγI

⊗
(

1√
2

d

dx
)∗

on span{H(γ)
` ⊗H

(γ)
k : `, k ∈ N0}.

Proof. From Ψ`,k(z) = Ψk,`(z) follows (U (γ)
z )∗ = U (γ)

z . From Proposition 186 follows

(U (γ)
z )2 = e|z|

2I. Hence U (γ)
z is proportional to a unitary operator and is in particular a

bounded operator.
If the function f : R → C has a continuation to an entire analytic function then

exp{z 1√
2
d
dx
}[f ](q) = f(q + z√

2
). From (70) follows

(75) (U (γ)
z g, f) = Uγ[f ⊗ g](z) = (Π exp{z 1√

2

d

dx
}g, exp{z 1√

2

d

dx
}f)

for real analytic functions f, g ∈ L2(R, ν) and (because real analytic functions form a
dense subset of L2(R, ν)) hence for all f, g ∈ L2(R, ν). Hence (72).
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(73) follows from (75) and ∂
∂z

exp{z 1√
2
d
dx
} = 1√

2
d
dx

exp{z 1√
2
d
dx
}. (74) follows from (73)

and the unitarity of Uγ. �

Remark 191. By Proposition 190,

UγN
⊗
I = γ(

∂

∂z
)∗
∂

∂z
Uγ, UγI

⊗
N = γ(

∂

∂z̄
)∗
∂

∂z̄
Uγ

on span{H(γ)
` ⊗H

(γ)
k : `, k ∈ N0}. Cf. (69).

5. Analytic and Harmonic functions

In this section we determine the kernels of the operators ∂̄
∂z
, ∂̄
∂z̄

and 4̄, where 4̄ is

the closure of 4 ∂
∂z

∂
∂z̄
, defined on the polynomials.

Lemma 192.

(76)
∂̄

∂z
=

1
√
γ

∞∑
k,`=0

√
`+ 1 Ψ

(γ)
`,k ⊗Ψ

(γ)
`+1,k

and D( ∂̄
∂z

) = {h ∈ L2(C, µ) :
∑∞

`,k=0 `|(Ψ
(γ)
`,k , h)|2 <∞}.

∂̄

∂z̄
=

1
√
γ

∞∑
k,`=0

√
k + 1 Ψ

(γ)
`,k ⊗Ψ

(γ)
`,k+1

and D( ∂̄
∂z

) = {h ∈ L2(C, µ) :
∑∞

`,k=0 k|(Ψ
(γ)
`,k , h)|2 <∞}.

4̄ =
4

γ

∞∑
k,`=0

√
(`+ 1)(k + 1) Ψ

(γ)
`,k ⊗Ψ

(γ)
`+1,k+1

and D(4̄) = {h ∈ L2(C, µ) :
∑∞

`,k=0 `k|(Ψ
(γ)
`,k , h)|2 <∞}.

Proof. We only treat the case of ∂̄
∂z
. From (65) it follows that ∂

∂z
is equal to the

right-hand side of (76) on span{Ψ(γ)
`,k : `, k ∈ N0}.

Let (λ`,k) be a double sequence of complex numbers such that
∑∞

`,k=0 `|λ`,k|2 < ∞.
Let h =

∑∞
`,k=0 λ`,kΨ

(γ)
`,k and let hn =

∑n
`,k=0 λ`,kΨ

(γ)
`,k . Then hn → h ∈ L2(C, µ) and

∂̄
∂z
hn → g ∈ L2(C, µ) where

g =
1
√
γ

∞∑
`,k=0

λ`+1,k

√
`+ 1Ψ

(γ)
`,k

Because ∂̄
∂z

is closed, h ∈ D( ∂̄
∂z

) and ∂̄
∂z
h = g. This shows that ∂̄

∂z
extends the operator

on the right-hand-side of (76). For equality one has to prove that the operator on the
right-hand-side of (76) is closed. This follows from the fact that the operator

1
√
γ

∞∑
k,`=0

√
`Ψ

(γ)
`,k ⊗Ψ

(γ)
`,k

(with the same domain) is self-adjoint. �

It follows easily from the previous lemma that

| ∂̄
∂z
| = 1
√
γ

∞∑
k,`=0

√
`Ψ

(γ)
`,k ⊗Ψ

(γ)
`,k , | ∂̄

∂z̄
| = 1
√
γ

∞∑
k,`=0

√
kΨ

(γ)
`,k ⊗Ψ

(γ)
`,k ,
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|4̄| = 4

γ

∞∑
k,`=0

√
k`Ψ

(γ)
`,k ⊗Ψ

(γ)
`,k .

Hence the kernels are given by

ker(
∂̄

∂z
) = cl(span{Ψ(γ)

0k : k ∈ N0}), ker(
∂̄

∂z̄
) = cl(span{Ψ(γ)

`0 : ` ∈ N0}),

ker(4̄) = cl(span{Ψ(γ)
`,k : k, ` ∈ N0, k` = 0}).

We write La2(C, µ) = ker( ∂̄
∂z̄

). This is the closed linear subspace of entire analytic functions

in L2(C, µ). We write Lh2(C, µ) = ker(4̄). This is the closed linear subspace of harmonic
functions in L2(C, µ).

6. Extended Bargmann space

In the following we take γ = 1 and simplify our notation: Let

U = U1, Uz = U (1)
z , z ∈ C.

We will extend the Bargmann space to a functional Hilbert space densely contained
in L2(C, µ).

6.1. Sobolov space W2. We denote the inner product of L2(C, µ) by (·, ·)0.

Definition 193. W2 = D(4̄), equipped with inner-product

(f, g)2 = (f, g)0 + (4̄f, 4̄g)0.

In the previous section we saw that ker(4̄) = Lh2(C, µ). It is clear that (f, g)2 = (f, g)0

if either f or g is contained in Lh2(C, µ). From Lemma 237 it follows that W2 is a Hilbert
space. Let R be the square root of the bounded operator (I + |4|2)−1 on L2(C, µ).
Note that RΨ`,k = (1 + 16k`)−1/2Ψ`,k, that R in not a compact operator, and that
R : L2(C, µ)→ W2 is unitary.

Proposition 194. Point evaluation is continuous on W2. Moreover, there exist Ew ∈
W2, w ∈ C, such that w 7→ (Ew, f)2 is a continuous representative of f ∈ W2.

Proof. By Proposition 187,

|Ψ`,k(z)|2 ≤ C(z)2 (1 + k`)(k + `+ 1)−1/3

1 + k`+ (k − `)2/4
.

Hence
|Ψ`,k(z)|2

1 + 16k`
≤ C(z)2 (k + `+ 1)−1/3

1 + k`+ (k − `)2/4
.

Hence
|Ψ`,k(z)|2

1 + 16k`
≤ 4C(z)2 (k + `+ 1)−1/3

4 + k2 + `2
.

Using polar coordinates and the estimate sin(θ) + cos(θ) ≥ 1 as 0 ≤ θ ≤ π/2, it is easily
seen that ∫ ∞

0

∫ ∞

0

(x+ y + 1)−1/3

4 + x2 + y2
dxdy <∞.

By calculating the first partial derivatives, it is easily seen that the integrand is a mono-
tone decreasing function in x for fixed y and also in y for fixed x. Hence

∞∑
k,`=0

(k + `+ 1)−1/3

4 + k2 + `2
<∞.
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Hence
∞∑

k,`=0

|Ψ`,k(z)|2

1 + 16k`
<∞.

This implies the convergence in W2 of the sum

Ew =
∞∑

k,`=0

(1 + 16k`)−1Ψ`,k(w)Ψ`,k.

We have f(w) = (Ew, f)2, which proves continuity of point evaluation. For f ∈ W2, the
sum

(77) f̃(w) =
∞∑

k,`=0

(Ψ`,k, f)0Ψ`,k(w)

converges uniform on compact subsets of C\{0}. It is easily seen that f̃ is a representative

of f and that f̃ is continuous on C\{0}. If f ∈ W2 then g, defined by g(z) = f(1
2
z − 1),

is also contained in W2. The continuity of f in 0 follows from the continuity of g in
z = 2. �

6.2. Sobolev space W−2. Define a sesquilinear form (·, ·)−2 on L2(C, µ) by

(f, g)−2 = (Rf,Rg)0.

Let W−2 be the completion of L2(C, µ) equipped with this inner-product.
The family (Ψ`,k) is an orthogonal basis in each of the three Hilbert spaces in

W2 ⊂ L2(C, µ) ⊂ W−2.

Define Rext on W−2 by

Rext =
∞∑

`,k=0

(1 + 16k`)−1/2Ψ`,k ⊗Ψ`,k.

W−2 is a representation of the topological dual of W2 : For F ∈ W−2 we define a con-
tinuous linear form on W2 by <F,w> = (RF,R−1w)0 for w ∈ W2. All continuous linear
forms on W2 are represented this way. Denote the continuous representant of w ∈ W2

by w̃. For each z ∈ C, there is an element δz ∈ W−2 such that <δz, w> = w̃(z) for all
w ∈ W2. For all z ∈ C,

δz =
∞∑

k,`=0

Ψ`,k(z)Ψ`,k.

The sum converges in W−2. We have Ez = R2δz.

6.3. Bargmann projection. Define Pa on L2(C, µ) by

Pa =
∞∑
`=0

Ψ`0 ⊗Ψ`0.

This is the operator of orthogonal projection on the closed linear subspace La2(C, µ)
of entire analytic functions. We have PaR = RPa = Pa. The orthogonal projection
operator Pa maps Ew on

ew =
∞∑
n=0

w̄n√
n!

Ψn,0.
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We have ew(z) = ew̄z. Define Pext
a on W−2 by

Pext
a =

∞∑
`=0

Ψ`0 ⊗Ψ`0.

It satisfies
Pext
a = PaR

ext,

and maps W−2 onto closed linear subspace La2(C, µ) of W2, and maps δw ∈ W−2 on ew.

6.4. Sobolev space V2. We identify the sesquilinear tensor product

L2(R, ν)⊗̂2 = L2(R, ν)⊗̂L2(R, ν)
with the space of Hilbert-Schmidt operators on L2(R, ν).

Definition 195. V2 = D(N 1/2
⊗
N 1/2), equipped with inner-product

(A,B)2 = (A,B)0 + 16(N 1/2AN 1/2,N 1/2BN 1/2)0.

By Remark 191, N 1/2
⊗
N 1/2 = U∗4̄U. Hence U : V2 →W2 is unitary and

R̃ = (I + 16N
⊗
N )−1/2 : L2(R, ν)⊗̂2 → V2

is unitary. Note that R̃Hk ⊗H` = (1 + 16k`)−1/2Hk ⊗H`.

6.5. Sobolev space V−2. Define a sesquilinear form (·, ·)−2 on L2(R, ν)⊗̂2 by

(f, g)−2 = (R̃f, R̃g)0.

Let V−2 be the completion of L2(R, ν)⊗̂2 equipped with this inner-product. The family
(Hk ⊗H`) is an orthogonal basis in each of the three Hilbert spaces in

V2 ⊂ L2(R, ν)⊗̂2 ⊂ V−2.

Define unitary operator Uext : V−2 →W−2 by

Ψ`,k = Uext[(2``!2kk!)−1/2H
(γ)
` ⊗H

(γ)
k ]

and linear and continuous extension. We have RUext = UR̃ext, and Uext[Uz] = δz. V−2

is a representation of the topological dual of V2 : For H ∈ V−2 we define a continuous
linear form on V2 by <H, v> = (R̃H, R̃−1v)0 for v ∈ V2. For v ∈ V2,

U[v](z) = <Uz, v>.

6.6. Overview. The following diagram gives the relations between the spaces and
operators involved in this section:

V2
R̃←−−− L2(R, ν)⊗̂2 R̃←−−− V−2

U

y yU

yU

W2
R←−−− L2(C, µ)

R←−−− W−2

Pa

y yPa

yPext
a

La2(C, µ) La2(C, µ) La2(C, µ)





APPENDIX A

Miscellaneous results

Lemma 196. Let P be a projection operator on a Hilbert space H. Let (Pk) be a finite
sequence of projection operators on H that commute with P and have pairwise orthogonal
ranges. Let ε > 0 and h ∈ H. If (λk) is a finite sequence of complex numbers and

‖Ph−
∑
k

λkPkh‖ ≤ ε,

then

‖Ph−
∑
k

{Pkh : |λk| ≥ ε1/4}‖ ≤ ε+ ε1/4‖h‖+
√

(2‖h‖+ ε)ε+ 2
√
εε1/4.

Proof. Because P is a contraction, ‖Ph −
∑

k λkPkPh‖ ≤ ε. By the triangle in-
equality, | ‖

∑
k λkPkPh‖ − ‖Ph‖ | ≤ ε. This implies that ‖

∑
k λkPkPh‖ ≤ ε + ‖h‖. By

the Cauchy-Bunyakovskii-Schwarz inequality, the triangle inequality, and the pairwise
orthogonality of the sequence (PkPh), this implies that∑

k

|1− λk|2 ‖PkPh‖2 =
∑
k

(1− λ̄k)(1− λk)(PkPh,PkPh)

=
∑
k

(1− λ̄k) (PkPh,Ph−
∑
`

λ`P`h)

≤ ‖
∑
k

(1− λk)PkPh‖ ‖Ph−
∑
`

λ`P`h‖

≤ (‖
∑
k

PkPh‖+ ‖
∑
k

λkPkPh‖)ε

≤ (2‖h‖+ ε)ε.

By the pairwise orthogonality of the sequence (PkPh), we have, for every finite set ∆ of
indices,

‖
∑
∆

PkPh−
∑
∆

λkPkPh‖2 ≤
∑
k

|1− λk|2‖PkPh‖2 ≤ (2‖h‖+ ε)ε.

Let ∆ε = {k : |λk| ≥ ε1/4}. By the pairwise orthogonality of the sequence (Pk(I −P)h),

‖
∑
∆ε

Pk(I − P)h‖2 =
∑
∆ε

‖Pk(I − P)h‖2 ≤ ε−1/2
∑
k

|λk|2‖Pk(I − P)h‖2

= ε−1/2‖
∑
k

λkPk(I − P)h‖2 ≤ ε−1/24ε2 = 4ε
√
ε.

By the triangle inequality,

‖Ph−
∑
∆ε

λkPkPh‖ ≤ ‖Ph−
∑
k

λkPkPh‖+ ‖
∑
∆c

ε

λkPkPh‖

≤ ε+ ε1/4‖h‖.

99
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Hence, by the triangle inequality,

‖Ph−
∑
∆ε

Pkh‖ ≤ ‖Ph−
∑
∆ε

λkPkPh‖+ ‖
∑
∆ε

λkPkPh−
∑
∆ε

Pkh‖

≤ ε+ ε1/4‖h‖+ ‖
∑
∆ε

λkPkPh−
∑
∆ε

PkPh‖+ ‖
∑
∆ε

Pk(I − P)h‖

≤ ε+ ε1/4‖h‖+
√

(2‖h‖+ ε)ε+ 2
√
εε1/4.

�

Lemma 197. Let X be a C∗-algebra and let Y be a normed space. Let f : X→ Y be a
linear function satisfying ‖f [x]‖ ≤ ‖x‖ for x ≥ 0. Then ‖f [x]‖ ≤ 8‖x‖ for every x ∈ X.

Proof. Let a, b, c, d ∈ X. We have

|a+ b|2 ≤ |a+ b|2 + |a− b|2 = 2(|a|2 + |b|2)
and

‖a+ b‖2 = ‖ |a+ b|2 ‖ ≤ 2‖ |a|2 + |b|2 ‖.
Hence

‖a+ b+ c+ d‖2 ≤ 2‖ |a+ b|2 + |c+ d|2 ‖ ≤ 4‖ |a|2 + |b|2 + |c|2 + |d|2 ‖.
Every x ∈ X can be written as x = x1−x2 + i(x3−x4) with xk ≥ 0 and x1x2 = x3x4 = 0.
We have

‖
4∑

k=1

x2
k‖ = ‖(x1 − x2)

2 + (x3 − x4)
2‖ = 1

2
‖x∗x+ xx∗‖ ≤ 1

2
(‖x∗x‖+ ‖xx∗‖)

= 1
2
(‖x‖2 + ‖x∗‖2) = ‖x‖2

Hence

‖f [x]‖ ≤
∑
k

‖f [xk]‖ ≤
∑
k

‖xk‖ ≤ 4 sup
k
‖xk‖ = 4‖ sup

k
xk‖

≤ 4‖
∑
k

xk‖ ≤ 8

√
‖
∑
k

x2
k‖ ≤ 8‖x‖.

�

Lemma 198. Let (Ω,Σ, µ) be a finite measure space. Let K be a separable closed
linear subspace of L2(Ω,Σ, µ). There is a ω ∈ Σ such that

(78)

∫
∆

|ϕ(x)|2 µ(dx) = 0 ∀ ϕ ∈ K ⇔ µ|w(∆) = 0

for ∆ ∈ Σ.

Lemma 199. Let H be a separable Hilbert space and let (Ω,Σ, µ) be a finite measure
space. Let M : Σ → B+(H) be an FPOVM. Let V : H → L2(Ω,Σ, µ) be an isometric
operator such that

Mh(∆) =

∫
∆

|V[h](x)|2 µ(dx) ∀ h ∈ H, ∆ ∈ Σ.

There exists an ω ∈ Σ such that the contraction µ|ω of µ to ω satisfies µ|ω �M and

Mh(∆) =

∫
∆

|V[h](x)|2 µ|ω(dx) ∀ h ∈ H, ∆ ∈ Σ.

Proof. This follows from Lemma 198. �
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1. Measurable covers and partitions

Lemma 200. Let (Ω,Σ) be a measurable space. Let I be a countable set. Let (∆n)n∈I
be a family of sets in Σ that covers Ω. There exists a measurable partition ωk, k ∈ I of
Ω satisfying ωn ⊂ ∆n for all n.

If ω
(1)
k , k ∈ I and ω

(2)
k , k ∈ J are two measurable partitions of Ω, then ω

(1)
i ∩ ω

(2)
j ,

(i, j) ∈ I× J is also a measurable partition of Ω.

2. Hilbert-Schmidt operators

The Hilbert space of Hilbert-Schmidt operators on a Hilbert space H is denoted by
B2(H). The Hilbert-Schmidt norm is denoted and defined by

‖A‖2 =
√

Tr(A∗A) =
√

Tr(AA∗).
Proposition 201. Let H be a separable Hilbert space. Let A ∈ B2(H). Then

‖Ah‖ ≤ ‖A‖2‖h‖ ∀ h ∈ H.

Let A ∈ B2(H) and B ∈ B∞(H). Then

Tr(A∗BA) ≤ ‖B‖∞ Tr(A∗A).

3. Trace-class operators

The Banach space of trace-class operators on a Hilbert space H is denoted by B1(H)
and consists of compositions AB of Hilbert-Schmidt operators A and B. The trace-class
norm is denoted and defined by

‖T ‖1 = Tr(
√
T ∗T ).

Proposition 202. Let H be a separable Hilbert space and let T ∈ B1(H).
Then ‖T ‖2 ≤ ‖T ‖1.

Proof. There are A,B ∈ B2(H) such that T = AB. We have to prove that√
Tr(B∗A∗AB) ≤ Tr(

√
B∗A∗AB).

In terms of the eigenvalues (λk) of the non-negative compact operator
√
B∗A∗AB, this

can be expressed as √∑
k

λ2
k ≤

∑
k

λk.

By squaring both sides, this is easily seen to be satisfied. �

4. Convergence and σ-additivity of measures

Proposition 203. Let Σ be a σ-field of subsets of a set Ω and let µn, n ∈ N be a
sequence of real-valued measures on Σ such that limits

µ(∆) = lim
n→∞

µn(∆), ∆ ∈ Σ

exists in R. Then µ is a measure on Σ.

Proof. This is a part of the Nikodym convergence theorem. (Related results, such
as the Nikodym boundedness theorem, can be found in [42] and [35].) �

Lemma 204. Let H be a complex separable Hilbert space. Let Σ be a σ-field of subsets
of a set Ω. Let M : Σ → B∞(H) be a function. Let D be a dense subset of Hilbert space
H. The following three conditions are equivalent

(a) ∆ 7→ (h,M(∆)h) is σ-additive for all h ∈ D;
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(b) ∆ 7→ (h,M(∆)h) is σ-additive for all h ∈ H;
(c) ∆ 7→M(∆)h is σ-additive for all h ∈ H.

Proof. (a) implies (b): Trivial.
(a) implies (b): Let h ∈ H. There are hn ∈ D such that limn→∞ hn = h. Using the triangle
inequality and the Cauchy-Bunyakovskii-Schwarz inequality we see that (h,M(∆)h) =
limn→∞(hn,M(∆)hn) for every ∆ ∈ Σ. By Proposition 203, ∆ 7→ (h,M(∆)h) is σ-
additive.
(b) implies (c): ∆ 7→ M(∆)h is weakly σ-additive by (b) and the polarization formula.
The Orlics-Pettis theorem (see e.g. Chapter I of [35]) says that this implies (c). �

5. Monotone convergence theorem and a partial converse

Theorem 205. Let (Ω,Σ, µ) be a measure space, and let f and f1, f2, · · · be [0,∞]-
valued Σ-measurable functions on Ω satisfying

(79) f1(x) ≤ f2(x) ≤ · · · for µ-almost all x.

Consider the following conditions:

(a) f(x) = limn→∞ fn(x) for µ-almost all x.
(b)

∫
Ω
f(x)µ(dx) = limn→∞

∫
Ω
fn(x)µ(dx).

Condition (a) implies (b). If f is µ-integrable and fn(x) ≤ f(x) for all n and µ-almost
all x, then (b) implies (a).

Proof. (a) implies (b): Monotone convergence theorem.
(b) implies (a): Let g(x) = supn fn(x). Then g(x) ≤ f(x) for µ-almost all x, and∫

Ω

f(x)µ(dx) = lim
n→∞

∫
Ω

fn(x)µ(dx) =

∫
Ω

g(x)µ(dx),

where the monotone convergence theorem is used for the second equality. Hence
∫

Ω
f(x)−

g(x)µ(dx) = 0. Hence f(x) = g(x) for µ-almost all x. �

6. Radon-Nikodym theorem

Theorem 206 ([23]). If (Ω,Σ, µ) is a σ-finite positive measure space and ν is a
complex-valued measure on (Ω,Σ) such that ν � µ, then there is a unique complex-
valued function f ∈ L1(Ω,Σ, µ) such that ν(∆) =

∫
∆
f(x)µ(dx) for every ∆ ∈ Σ.

This implies in particular that ν(Σ) is a bounded subset of C. For a measure ν : Σ→ C
we define the total variation measure |ν| : Σ→ [0,∞) by

|ν|(∆) = sup
∞∑
k=1

|ν(∆k)|,

the supremum being taken over all measurable partitions {∆k} of ∆. This is a positive
measure (see e.g. [93]).

Theorem 207 ([93], Theorem 6.13). If (Ω,Σ, µ) is a σ-finite positive measure space
and f ∈ L1(Ω,Σ, µ), and

λ(∆) =

∫
∆

f(x)µ(dx),

then

|λ|(∆) =

∫
∆

|f(x)|µ(dx).

In particular ‖f‖1 = |λ|(Ω).
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7. Strong topological dual of L1(Ω,Σ, µ)

The following well-known theorem can be found e.g. in appendix B of [23].

Theorem 208. Let (Ω,Σ, µ) be a σ-finite measure space. For ϕ ∈ L∞(µ), define
Lϕ : L1(µ)→ C by

Lϕ(f) =

∫
Ω

ϕ(x)f(x)µ(dx)

The map ϕ 7→ Lϕ is an isometric (and linear and topological) isomorphism of L∞(µ)
onto the strong topological dual of L1(µ) equipped with its dual norm

L 7→ sup{|L(f)| : f ∈ ball(L1(µ))}.





APPENDIX B

A criteria for the density of subspaces

Let X′ be the topological dual of a normed space X. For a subspace V of X let V ⊥ be
the following subspace of X′ :

V ⊥ = {x′ ∈ X′ : x′(x) = 0 ∀ x ∈ V }.
For a subspace W of X′ let ⊥W be the following subspace of X :

⊥W = {x ∈ X : x′(x) = 0 ∀ x′ ∈ W}.

Proposition 209. Let X′ be the topological dual of a normed space X and let V be
a subspace of X and let W be a subspace of X′. Then

(a) V ⊥ is a weak-star closed linear subspace of X′.
(b) ⊥W is a weakly closed linear subspace of X.
(c) The closure of V, the weak closure of V and ⊥(V ⊥) are equal.

(d) (⊥W )⊥ is the weak-star closure of W in X′.

Consequently, the following conditions for V are equivalent

- V is dense in X.
- V is weakly dense in X.
- V ⊥ = {0}.

and the following conditions for W are equivalent

- W is weak-star dense in X′.
- ⊥W = {0}.

References: Chapter 4 in [94], Section 6.3 of Chapter II in [12]
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APPENDIX C

Weak-star topology on dual Banach spaces

The topological dual of a Banach space is called a dual Banach space.

Definition 210. Let X be a normed space. Let Y be a closed linear subspace of X.
The quotient norm on X/Y is defined by

‖x+ Y‖ = inf{‖x+ y‖ : y ∈ Y}.
Let X′ be the topological dual of X. The dual norm on X′ is defined by

‖x′‖ = sup{|x′(x)| : x ∈ ball(X)},
where ball(X) is the closed unit ball of X.

In Section III.4 of [23], it is shown that the quotient norm is a norm, and that X/Y,
equipped with the quotient norm, is a Banach space, if X is a Banach space.

In Section III.5 of [23], it is shown that X′, equipped with the dual norm, is a Banach
space.

In Section III.10 of [23], it is shown that, if p : X→ X/Y is the natural map, compo-
sition with p provides a linear isometry from (X/Y)′ into X′ with range

Y⊥ = {x′ ∈ X′ : Y ⊂ ker(x′)}.
Thus (X/Y)′ and Y⊥ can be identified.

The following proposition says in particular that a weak-star closed subspace of a
dual Banach space is again a dual Banach space.

Proposition 211. Let X be a normed space with topological dual X′. Let Z be a closed
linear subspace of (X′,weak∗), and let Y = X/(⊥Z). Then

(i) Y′ = Z as sets.
(ii) The dual norm on Y′ equals the restriction to Z of the dual norm on X′.
(iii) The weak-star topology on Y′ equals the topology on Z induced by the weak-star

topology on X′.

Proof. This follows from (⊥Z)⊥ = Z and Theorem 2.2 of Section V.2 in [23]. �

Proposition 212. Let X be a Banach space with topological dual X′. Then (X′,weak∗)
is sequentially complete.

Proof. Let Ln, n ∈ N be a Cauchy sequence in (X′,weak∗). Because C is complete,
limn→∞ Ln(f) exists for every f ∈ X. By the Banach-Steinhaus theorem, there exists an
L ∈ X′ such that

L(f) = lim
n→∞

Ln(f) ∀ f ∈ X.

This means that Ln → L in (X′,weak∗). �

Proposition 213. Let X be a Banach space with dual X′. For a sequence Ln, n ∈ N
in X′ to converge in (X′,weak∗), it is necessary and sufficient that

- the sequence (‖Ln‖) is bounded, and
- the limit limn→∞ Ln(f) exists for all f in a dense subset D of X.
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Proof. The necessity of the first condition is a direct consequence of the uniform
boundedness principle. The necessity of the second condition is obvious. Let M =
sup{‖Ln‖ : n ∈ N}. For f ∈ X and g ∈ D,

|Ln(f)− Lm(f)| = |Ln(f)− Ln(g)|
+ |Ln(g)− Lm(g)|+ |Lm(g)− Lm(f)|
≤ 2M‖f − g‖+ |Ln(g)− Lm(g)|.

(80)

Because D is a dense subset of X and Ln(g) is a Cauchy sequence for every g ∈ D, (80)
implies that Ln(f) is a Cauchy sequence for every f ∈ X. Because C is complete, this
implies that limn→∞ Ln(f) exists for every f ∈ X. By Proposition 212, (Ln) converges in
(X′,weak∗). �

Proposition 214. Let X,Y be Banach spaces with duals X′ and Y′ respectively. If
Y is separable and ρ : X′ → Y′ is a linear isometry and ρ : (X′,weak∗) → (Y′,weak∗) is
continuous, then range(ρ) is closed in (Y′,weak∗).

Proof. Let (Ln) be a sequence in X′ such that (ρ(Ln)) converges in (Y′,weak∗). By
the uniform boundedness principle, the sequence (‖ρ(Ln)‖) is bounded. Because ρ is
isometric, the sequence (‖Ln‖) is bounded. For each y ∈ Y, the linear form L 7→ ρ(L)(y)
on (X′,weak∗) is continuous. Therefore a linear mapping ρ′ : Y → X, satisfying L(ρ′(y)) =
ρ(L)(y) for all L ∈ X′ and y ∈ Y, exists. If L ∈ X′ is zero on the subspace range(ρ′)
of X, then ρ(L) = 0; hence L = 0. By Proposition 209, range(ρ′) is a dense subspace of
X. For each y ∈ Y, the sequence (ρ(Ln)(y)) converges. Hence the sequence (Ln(ρ

′(y)))
converges; i.e. (Ln(x)) converges for x ∈ range(ρ′). By proposition 213, this implies that
(Ln) converges in (X′,weak∗). Hence range(ρ) is sequentially closed in (Y′,weak∗). The
proof is completed by the following corollary of the Krein-Smulian theorem: Corollary
12.7 of Chapter V in [23] says: A convex subset of the topological dual of a separable
Banach space is weak-star sequentially closed if and only if it is weak-star closed. �

Lemma 215. Let X,Y be Banach spaces with topological duals X′ and Y′ respectively.
Let ρ : X′ → Y′ be linear. The following conditions are equivalent:

(a) ρ is weak-star continuous.
(b) ρ = L′ for some bounded operator L : Y → X.

Proof. (a) implies (b): Let y ∈ Y. The linear form x′ 7→ ρ(x′)(y) on X′ is weak-star
continuous. Hence there is an L(y) ∈ X such that ρ(x′)(y) = x′(L(y)) for all x′ ∈ X′.
The linearity of y 7→ ρ(x′)(y) implies the linearity of y 7→ L(y). The weak continuity of
y 7→ ρ(x′)(y) implies the weak continuity of y 7→ L(y). By Theorem VI.1.1 in [23], every
weakly continuous map between two Banach spaces is bounded. Hence L is bounded.
(b) implies (a): If x′i → x′ ∈ (X′,weak∗) then x′i(L(y))→ x′(L(y)) for every y ∈ Y. Hence
ρ(x′i)(y) → ρ(x′)(y) for every y ∈ Y. I.e. ρ(x′i) → ρ(x′) with respect to the weak-star
topology of Y′. Hence ρ is weak-star continuous. �

Proposition 216. Let X,Y be Banach spaces with topological duals X′ and Y′ re-
spectively. Let ρ : X′ → Y′ be linear and weak-star continuous. Then ρ is bounded. If,
moreover, ρ is injective and has weak-star closed range, then ρ : X′ → range(ρ) has a
bounded and weak-star continuous inverse.

Proof. By Lemma 215, ρ is the dual of some bounded linear map L : Y → X. From
ρ(x′) = x′ ◦ L for x′ ∈ X′, it follows that ρ is bounded.

Assume now that ρ is injective and has weak-star closed range. The injectivity of
ρ implies that range(L) is dense in X. By Theorem VI.1.10 in [23], range(L) is closed.
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Hence range(L) = X. By Proposition VI.1.8 in [23],

ker(L) = ⊥(range(ρ))

By the inverse mapping theorem (Theorem III.15.5 in [23]), L : Y/ker(L) → X has a
bounded linear inverse. By Proposition VI.1.4 in [23], ρ has a bounded linear inverse,
and ρ−1 = (L−1)′. By Proposition 211,

range(ρ) = (Y/ker(L))′.

By Lemma 215, ρ−1 : range(ρ)→ X′ is weak-star continuous. �





APPENDIX D

Bounded sesquilinear forms on Hilbert spaces

Let H,K be Banach spaces. Let s : H×K→ C be a sesquilinear form. The following
three conditions are equivalent:

- There exists an M > 0 such that |s(h, k)| ≤M‖h‖‖k‖ for all h, k.
- s : H× K→ C is continuous.
- s is continuous in (0, 0).

If these conditions are satisfied then s is called bounded and M is called a bound for s.

Proposition 217. Let H,K be Banach spaces. A sesquilinear form s : H × K → C
is bounded if, and only if, the following conditions are satisfied:

- For each h ∈ H, the linear form sh on K, defined by sh(k) = s(h, k), is bounded;

- For each k ∈ K, the linear form sk, on H, defined by sk(h) = s(k, h), is bounded.

Proof. Assume that sh, s
k are bounded for each h, k. Equivalently: For each h ∈ H,

the linear form sh on K is continuous, and the set of continuous linear forms {sh : h ∈
ball(H)} is simply (i.e. pointwise) bounded. By the uniform boundedness principle, every
simply bounded set of continuous linear forms on a Banach space is bounded uniformly
on every bounded set. Thus, {sh : h ∈ ball(H)} is bounded uniformly on ball(K). There
exists an M > 0 such that |s(h, k)| ≤ M‖h‖‖k‖ for all h, k with ‖h‖ = ‖k‖ = 1. Hence
|s(h, k)| ≤M‖h‖‖k‖ for all h, k. �

The Riesz representation theorem can be used to prove the following theorem (see
e.g. [23]):

Theorem 218. If H,K are Hilbert spaces and u : H×K→ C is a bounded sesquilinear
form with bound M, then there are unique bounded operators A : H→ K and B : K→ H
such that

s(h, k) = (Ah, k) = (h,Bk) ∀ h ∈ H, k ∈ K

and ‖A‖ = ‖B‖ ≤M.
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APPENDIX E

Hilbertian semi-norms

P. Jordan and J. von Neumann proved in [60] that a norm ‖ · ‖ on a vector space
over C is generated by an inner-product if and only if it satisfies the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 ∀ x, y.
Consequently, a semi-norm p on a vector space over C is generated by a semi inner-
product if and only if it satisfies the parallelogram law

p(x+ y)2 + p(x− y)2 = 2p(x)2 + 2p(y)2 ∀ x, y.
We prove that this is still true if p is not assumed (a priori) to satisfy the triangle
inequality; the triangle inequality is implied by the remaining properties,

p(x) ≥ 0 and p(λx) = |λ|p(x) for all vectors x and scalars λ,

satisfied by all semi-norms, together with the parallelogram law.

Remark 219. A quadratic form on a vector space V is a function of the form x 7→
b(x, x), where b is a bilinear form on V. It is known [50] that a function q : V → R
satisfying

q(x+ y) + q(x− y) = 2q(x) + 2q(y), q(λx) = |λ|2q(x) ∀ x, y ∈ V, λ ∈ C
is not necessarily a quadratic form.

Lemma 220. Let X be a vector space over R. If ` : X→ R satisfies `(x+y) = `(x)+`(y)
for all x, y ∈ X, then `(cx) = c`(x) for all x ∈ X and c ∈ Q.

Proof. The assumptions imply that `(0) = 0 and hence `(−x) = −`(x) for all
x ∈ X. Let n ∈ N and x ∈ X. The assumptions imply `(nx) = n`(x) and n`(x/n) = `(x).
The lemma is proven by combining these results. �

Lemma 221. Let X be a vector space over C. If q : X→ C satisfies

- q(x) ∈ R for all x ∈ X;
- q(ix) = q(x) for all x ∈ X;
- q(x+ y) + q(x− y) = 2q(x) + 2q(y) for all x, y ∈ X,

then s : X× X→ C, defined by

s(y, x) = 1
4
{q(x+ y)− q(x− y) + iq(x+ iy)− iq(x− iy)},

satisfies

- q(x) = s(x, x)

- s(x, y) = s(y, x)
- s(x, y + z) = s(x, y) + s(x, z)
- s(x, cy) = cs(x, y)

for all x, y, z ∈ X and c ∈ Q + iQ.
Proof. From q(x) ∈ R follows Re s(y, x) = 1

4
{q(x+y)−q(x−y)}. By Theorem 0.1 of

[50], Re s is symmetric, biadditive and satisfies q(x) = Re s(x, x). From the parallelogram
law follows q(0) = 0 and q(−y) = q(y). From q(ix) = q(x) and q(−x) = q(x) follows

113



114 E. HILBERTIAN SEMI-NORMS

s(x, y) = s(y, x). Hence s(x, x) ∈ R. Hence q(x) = s(x, x). The rest follows from Lemma
220 �

Lemma 222. If a, b ≥ 0 then

2ab = inf{(ca)2 + (1
c
b)2 : c ∈ Q}.

Proof. a2 + b2 − 2ab = (a− b)2 ≥ 0. Hence 2ab ≤ a2 + b2 for all a, b ∈ R. Hence

2ab ≤ ca2 + 1
c
b2 ∀ a, b ∈ R, c > 0.

First we consider the case ab = 0: If a = 0, then we let c approach ∞ and if b = 0,
we let c approach 0.

Now assume that ab 6= 0. We have

2ab = min{(ca)2 + (1
c
b)2 : c > 0};

the minimum is attained at c =
√
b/a. This implies the result. �

Definition 223. A semi-norm p on a vector space X over is said to be Hilbertian
if there exists a positive sesquilinear form s on X× X such that p(x) =

√
s(x, x) for all

x ∈ X.

Theorem 224. Let X be a vector space over C. If q : X→ C satisfies

(i) q(x) ≥ 0 for all x ∈ X;
(ii) q(cx) = |c|2 q(x) for all x ∈ X and c ∈ C;
(iii) q(x+ y) + q(x− y) = 2q(x) + 2q(y) for all x, y ∈ X,

then p : X→ [0,∞), defined by p(x) =
√
q(x), is a Hilbertian semi-norm.

Proof. By squaring the triangle inequality

p(x+ y) ≤ p(x) + p(y)

we get the equivalent inequality

q(x+ y) ≤ q(x) + q(y) + 2p(x)p(y).

By Lemma 222, this inequality is satisfied if, and only if,

(81) q(x+ y)− q(x)− q(y) ≤ c2 q(x) + 1
c2
q(y)

for all c ∈ Q. By (iii), the left hand side of (81) is
1
2
{q(x+ y)− q(x− y)}

and by (ii) and (iii) the right hand side of (81) is

q(cx) + q(1
c
y) = 1

2
{q(cx+ 1

c
y) + q(cx− 1

c
y)}.

Hence p satisfies the triangle inequality if, and only if,

(82) q(x+ y)− q(x− y) ≤ q(cx+ 1
c
y) + q(cx− 1

c
y) ∀ x, y ∈ X, c ∈ Q.

By Lemma 221,

q(x+ y)− q(x− y) = q(cx+ 1
c
y)− q(cx− 1

c
y) ∀ x, y ∈ X, c ∈ Q.

Together with (i), this shows that (82) is satisfied. Hence p satisfies the triangle inequal-
ity. Hence also

|p(x)− p(y)| ≤ p(x− y) ∀ x, y ∈ X.

In particular,
|p(x+ αy)− p(x+ βy)| ≤ |α− β| p(y)
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for x, y ∈ X and α, β ∈ C. This can be used to prove that s, defined in Lemma 221,
satisfies s(x, cy) = cs(x, y) for all c > 0. It is easily seen that s is a a sesquilinear form
otherwise. �

Theorem 225. Let X be an inner-product space over C. The inner-product is denoted
by (·, ·). If q : X→ C satisfies

(i) q(x) ≥ 0, for all x ∈ X;
(ii) q(xn)→ 0 for every null-sequence (xn) in X;
(iii) q(cx) = |c|2 q(x) for all x ∈ X and c ∈ C;
(iv) q(x+ y) + q(x− y) = 2q(x) + 2q(y) for all x, y ∈ X,

then there is an A ∈ B+(H) such that q(x) = (x,Ax) for all x ∈ X. If, moreover,
q(x) ≤M(x, x) for all x ∈ X then ‖A‖∞ ≤M.

Proof. By Theorem 224, there exists a positive sesquilinear form s on X × X such
that q(x) = s(x, x) for all x ∈ X. We will show that for each x ∈ X, the linear form sx
on X, defined by sx(y) = s(x, y), is continuous in 0. Let p(x) =

√
q(x). Then p satisfied

the triangle inequality. Hence

|p(x± yn)− p(x)| ≤ p(yn), |p(x± iyn)− p(x)| ≤ p(yn).

From this, together with condition (ii), it follows that q(x±yn)→ q(x) and q(x± iyn)→
q(x) for all x and null-sequences (yn) in X. From this, together with

Re sx(y) = 1
4
{q(x+ y)− q(x− y)},

Im sx(y) = 1
4
{q(x+ iy)− q(x− iy)},

it follows that sx(yn)→ 0. Hence sx in continuous in 0 for all x. By Proposition 217, this
implies that s is bounded. Let H be the Hilbert space completion of X and let se be the
unique extension of s to a bounded sesquilinear form on H× H. By Theorem 218, there
exists an A ∈ B(H) such that se(x, y) = (x,Ay). Hence q(x) = (x,Ax) for all x ∈ X.

Assume now that q(x) ≤ M(x, x) for all x ∈ X. In e.g. [54], it is shown that a
sesquilinear form is bounded if and only if the associated quadratic form is bounded
and that for symmetric sesquilinear forms the two norms coincide. Hence s and se are
bounded with norm ≤ M. By Theorem 218, there exists an A ∈ B(H) with norm ≤ M
such that se(x, y) = (x,Ay). �





APPENDIX F

Bargmann space

Define measure µ on C by µ(dz) = π−1e−|z|
2
dRe(z)d Im(z). The Bargmann space HB

is the Hilbert space of entire analytic functions that are square-integrable with respect
to µ. This space is introduced in [9]. It is a functional Hilbert space; it contains elements
ez such that (ez, ϕ) = ϕ(z) for all z ∈ C and ϕ ∈ HB. Convergence in HB implies uniform
convergence on compacta.

The family of functions un(z) = zn
√
n!
, n ∈ N0 is an orthonormal basis of HB. The

linear transformation ϕ 7→ [ϕ], the µ-equivalence class of ϕ, maps HB isometrically onto
the closure of span{un : n ∈ N0} in L2(C, µ). The equivalence class of ez is given by

[ez] =
∞∑
n=0

un(z)un.

It is easily seen that the entire analytic representant is w 7→ ez̄w. Hence

ez(w) = ez̄w ∀ z, w ∈ C.
The integral transform

f 7→ (UBf)(z) =

∫ ∞

−∞
A(z, q)f(q) dq,

with
A(z, q) = π−1/4 exp{−1

2
(z2 + q2) +

√
2zq},

establishes a unitary mapping from L2(R) onto HB. If ϕn is the n’th Hermite basis
function then UB[ϕn] = un.

If A and A∗ are the creation and annihilation operators on L2(R), then

UBAU∗
B =

d

dz
and UBA∗U∗

B = Z,

where Z denotes the operator of multiplication with the identity function. Hence Z∗ = d
dz

and Z∗ew = w̄ew.

117





APPENDIX G

C∗-algebras

A ∗-subalgebra of B∞(H) is a linear subspace A of B∞(H) with the following proper-
ties:

- A,B ∈ A implies AB ∈ A,
- A ∈ A implies A∗ ∈ A.

A unital ∗-subalgebra is a ∗-subalgebra that contains the identity operator. A (unital)
C∗-subalgebra is a norm-closed (unital) ∗-subalgebra.

1. Von Neumann algebras

A von Neumann algebra is a SOT-closed unital C∗-subalgebra of B∞(H). The von
Neumann algebra generated by a subset A ⊂ B∞(H) is the smallest von Neumann algebra
contained in B∞(H) and containing A.

Proposition 226 (Proposition 4.8 of Chapter IX in [23]). A von Neumann algebra
is the norm closed linear span of its projections.

A C∗-subalgebra A of B∞(H) is called non-degenerate if for every non-zero f ∈ H there
exists an A ∈ A such that Af 6= 0. Example: Unital C∗-algebras are non-degenerate.

Theorem 227 (von Neumann’s double commutant theorem). A non-degenerate C∗-
subalgebra A of B∞(H) is SOT-closed if and only if A′′ = A.

Consequences are:

- The SOT-closure of a non-degenerate C∗-subalgebra A of B∞(H) is A′′.
- A C∗-subalgebra A of B∞(H) is a von Neumann algebra if and only if A′′ = A.
- The commutant A′ of a subset A ⊂ B∞(H) is a von Neumann algebra.
- The von Neumann algebra generated by a self-adjoint subset A ⊂ B∞(H) equals A′′.

The intersection of the closed unit ball of a Banach space with a subset A is denoted
by ball(A). The following result is a part of Kaplansky’s density theorem.

Theorem 228. Let A be a non-degenerate C∗-subalgebra of B∞(H). The SOT-closure
of ball(A) is ball(A′′).

Theorem 229 (Theorem 45.6 in [25]). A C∗-subalgebra of B∞(H) is weak-star closed
if, and only if, it contains the supremum of every norm-bounded increasing net of self-
adjoint operators contained in the algebra.

2. Commutative von Neumann algebras

Proposition 230 ([100], Chapter III, Proposition 1.21). Every commutative von
Neumann algebra of operators on a separable Hilbert space is generated by a single
bounded self-adjoint operator.

3. Maximal commutative von Neumann algebras

A commutative subalgebra is said to be maximal if it is not contained in any other
commutative subalgebra.
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Proposition 231 ([84], Section 7 of Chapter II). Every commutative subalgebra is
contained in a maximal commutative subalgebra.

Proposition 232 ([112], Proposition 21.2). A C∗-subalgebra A of B∞(H) is a max-
imal commutative von Neumann algebra if and only if A = A′.

Definition 233. Let (Ω,Σ, µ) be a σ-finite measure space. Let Aµ ⊂ B∞(L2(Ω, µ))
be defined by

Aµ = {Mϕ : ϕ ∈ L∞(Ω, µ)},
whereMϕ is the operator of multiplication with ϕ.

Proposition 234 ([25]). Let (Ω,Σ, µ) be a σ-finite measure space. Aµ is a maximal
commutative von Neumann algebra:

Aµ = A′µ = A′′µ.

Definition 235. Let H,K be two Hilbert spaces. A subset A1 of B∞(H) and a subset
A2 of B∞(K) are called spatially isomorphic if there is a unitary operator U : H→ K such
that A2 = UA1U

∗.

Theorem 236 (Theorem 14.5 in [25]). Let H be a separable Hilbert space. Every
maximal commutative von Neumann algebra contained in B∞(H) is spatially isomorphic
to an algebra Aµ for a finite positive regular Borel measure µ on a compact metric space
K with supp(µ) = K.

Lemma 237. Let A be a closed densely defined operator on Hilbert space H. Then:

(i.) D(A) is a Hilbert space with inner product (g, h)A = (g, h) + (Ag,Ah).
(ii.) I+A∗A has a bounded linear inverse, and A∗A is self-adjoint. We have D(A∗A) =

{(I +A∗A)−1h : h ∈ H}.
(iii.) D(A) = D(|A|) = D((I +A∗A)1/2).

(iv.) ker(A) = ker(|A|) = ker(A∗A), where |A| =
√
A∗A.

Proof. (i): We will show that D(A) is complete: If (hn) is a Cauchy sequence in
D(A) with respect to (·, ·)A then ({hn,Ahn}) is a Cauchy sequence in H×H. Because A
is closed, the sequence has a limit (h,Ah) with h ∈ D(A). This implies that (‖hn−h‖A)
converges to 0.

(ii): This is part of Theorem 2 of Section 3 in Chapter VII of [111].
(iii): The first equality follows from A∗A = |A|2 and Theorem 5.40 in [108]. The

second equality follows from the spectral theorem.
(iv): The first equality is part of Theorem 5.39 in [108]. The second equality follows

from A∗A = |A|2. �



APPENDIX H

Operator ranges

In [44] a survey of the theory of operator ranges (the ranges of bounded operators
in Hilbert space) is given. We use the following result:

Theorem 238 ([38]). Let A and B be bounded operators on Hilbert space H. The
following conditions are equivalent:

(a) range(A) ⊂ range(B).
(b) A∗A ≤ λ2B∗B for some λ > 0.
(c) A = BC for some bounded operator C on H.

Corollary 239. If P is an operator of orthogonal projection on Hilbert space H and
A is a bounded operator on H such that |A| ≤ λP for some λ > 0, then range(A) ⊂
range(P), or equivalently, A = PA. If range(P) is one-dimensional and A is self-adjoint,
this implies that A = cP for some scalar c.

Proof. We have |A|2 = A∗A. From |A| ≤ λP follows |A| ≤ λI and hence that

A∗A =
√
|A||A|

√
|A| ≤ λ

√
|A|I

√
|A| = λ‖A‖ ≤ λ2P = λ2P∗P .

The rest follows from Theorem 238. �
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APPENDIX I

Measurable Banach space-valued functions

Let (Ω,Σ, µ) be a finite measure space and X a Banach space. A function Ψ: Ω→ X
is µ-measurable if there is a sequence of simple functions (Ψn) with

lim
n→∞

‖Ψn(x)−Ψ(x)‖ = 0

for µ-almost all x. A function Ψ: Ω→ X is weakly µ-measurable if, for every continuous
linear form ` : X → C, the composition ` ◦ Ψ is µ-measurable. Every µ-measurable
function is weakly µ-measurable.

Proposition 240 ([35]). Let (Ω,Σ, µ) be a measure space and X a separable Banach
space. Every weakly µ-measurable function Ψ: Ω→ X is µ-measurable.

Proposition 241 ([35]). Let (Ω,Σ, µ) be a finite measure space, let X be a Banach
space and let Ψ: Ω → X be a µ-measurable function. There exists a sequence of simple
functions Ψn : Ω→ X such that

- Ψn(x)→ Ψ(x) for µ-almost all x ∈ Ω,
- ‖Ψn(x)‖ ≤ 2‖Ψ(x)‖ for all x and n.

Let (Ω,Σ) be a measurable space and X a Banach space. A function Ψ: Ω → X
is Σ-measurable if Ψ−1(∆) ∈ Σ for every Borel subset ∆ of X. We have the following
relation between these concepts.

Proposition 242. Let (Ω,Σ, µ) be a finite measure space, let X be a Banach space.
Every µ-measurable function is equal µ-almost everywhere to a Σ-measurable function.

Proof. Let Ψ: Ω → X be a µ-measurable function. There is a sequence (Ψn) of
simple functions and a µ-null set N ∈ Σ such that limn→∞ ‖Ψ(x) − Ψn(x)‖ = 0 for
all x ∈ Ω\N. Each Ψn is Σ-measurable. Hence x 7→ Ψn(x)1Ω\N(x) is Σ-measurable.
Let Φ(x) = limn→∞ Ψn(x)1Ω\N(x). The pointwise limit of a sequence of Σ-measurable
functions is Σ-measurable; hence Φ is Σ-measurable. We have Ψ(x) = Φ(x) for µ-almost
all x. �

Lemma 243. Let H be a separable complex Hilbert space and let (Ω, µ) be a measure
space. Let Φ: Ω→ B+(H) be a function. The following conditions are equivalent

(i) (h,Φ(·)h) is µ-measurable for every h ∈ H.
(ii) Φ(·)h : Ω→ H is weakly µ-measurable for every h ∈ H.
(iii) Φ(·)h : Ω→ H is µ-measurable for every h ∈ H.

Function Φ is called SOT µ-measurable if these conditions are satisfied.

Proposition 244. Let (Ω,Σ, µ) be a finite measure space, let H be a separable Hilbert
space and let Ψ,Φ: Ω→ B∞(H) be (SOT) µ-measurable functions. The function Ξ: Ω→
B∞(H), defined by

Ξ(x) = Φ(x)Ψ(x),

is (SOT) µ-measurable.
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Proof. Assume first that Φ and Ψ are SOT µ-measurable. Let (ϕn) be an orthonor-
mal basis of H. Then

(h,Ξ(x)h) =
∑
n

(h,Φ(x)ϕn)(ϕn,Ψ(x)h).

Hence Ξ is SOT µ-measurable.
Assume now that Φ and Ψ are µ-measurable. Assume first that Φ,Ψ are simple

functions. Then Ξ is also a simple function and measurable by definition. Now assume
that Φ,Ψ are not simple. Let Φn,Ψn : Ω → B∞(H), n ∈ N be sequences of integrable
simple functions such that ‖Φn(x) − Φ(x)‖ → 0 and ‖Ψn(x) − Ψ(x)‖ → 0 for µ-almost
all x. Define a sequence of measurable functions Ξn : Ω→ B∞(H) by

Ξn(x) = Φn(x)Ψn(x).

We have
Ξ(x)− Ξn(x) =(Φ(x)− Φn(x))(Ψ(x)−Ψn(x))

+ (Φ(x)− Φn)Ψn(x) + Φn(x)(Ψ(x)−Ψn(x)).

Hence
‖Ξ(x)− Ξn(x)‖ ≤‖Φ(x)− Φn(x)‖ ‖Ψ(x)−Ψn(x)‖

+ ‖Φ(x)− Φn(x)‖ ‖Ψn(x)‖+ ‖Φn(x)‖ ‖Ψ(x)−Ψn(x)‖.
Hence Ξn(x)→ Ξ(x) for µ-almost all x. Hence Ξ is µ-measurable. �

Lemma 245. Let (Ω,Σ, µ) be a finite measure space, let H be a separable Hilbert space
and let Ψ: Ω → B∞(H) be a SOT µ-measurable function with self-adjoint values such
that 0 ≤ Ψ(x) ≤ I for all x. The function Ξ: Ω→ B+(H), defined by

Ξ(x) =
√

Ψ(x),

is SOT µ-measurable.

Proof. There is a sequence of real polynomials pn on R such that

0 ≤ p1(t) ≤ p2(t) ≤ · · · ≤ pn(t) ≤
√
t ∀ t ∈ [0, 1]

and limn→∞ pn(t) =
√
t uniformly for t ∈ [0, 1]. For each n, let the SOT µ-measurable

function Ξn : Ω→ B∞(H) be defined by

Ξn(x) = pn(Ψ(x)).

Then ‖Ξ(x)− Ξn(x)‖ = sup{
√
t− pn(t) : 0 ≤ t ≤ 1}, and this approaches 0 as n→∞.

Hence Ξ is SOT µ-measurable. �

For A ∈ B∞(H) let PA be the operator of orthogonal projection onto cl(range(A)).

Proposition 246. Let (Ω,Σ, µ) be a finite measure space, let H be a separable Hilbert
space and let Ψ: Ω → B∞(H) be a SOT µ-measurable function such that 0 ≤ Ψ(x) ≤ I
for all x. The function Ξ: Ω→ Bp(H), defined by

Ξ(x) = PΨ(x),

is SOT µ-measurable.

Proof. For each n, let the measurable function Ξn : Ω→ B∞(H) be defined by

Ξn(x) = (Ψ(x))1/2n

.

The continuous monotone increasing function
√
· maps the interval [0, 1] onto itself and

has the following property: Every sequence of points obtained by applying
√
· repeat-

edly, beginning with a point in (0, 1], is monotone increasing and approaches 1. By the
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monotone convergence theorem, limn→∞(h,Ξn(x)h) = (h,Ξ(x)h) for every h ∈ H and all
x. Hence Ξ is SOT µ-measurable. �

Proposition 247. Let (Ω,Σ, µ) be a σ-finite measure space, let H be a separable
Hilbert space and let Ψ: Ω → B∞(H) be a SOT µ-measurable function such that 0 ≤
Ψ(x) ≤ I for all x. The function ψ : Ω→ [0,∞], defined by

ψ(x) = dim range(Ψ(x)),

is µ-measurable.

Proof. Let Ξ(x) = PΨ(x). By Proposition 246, Ξ: Ω→ B∞(H) is SOT µ-measurable.
We have ψ(x) = Tr(Ξ(x)). It is easily seen that ψ is the pointwise limit of a sequence of
µ-measurable functions. Hence ψ is µ-measurable. �





APPENDIX J

Carleman operators

Let H be a Hilbert space. A linear operator R : H → L2(M,µ) is called a Carleman
operator if there exists a function k : M → H such that for all f ∈ D(R),

(83) R[f ](x) = (k(x), f)H for µ-almost all x ∈M.

The function k is called the inducing function of R. Every Carleman operator is closable.
Hence D(R) = H implies that R is bounded. Every Hilbert-Schmidt operator from a
Hilbert space H to L2(M,µ) is a bounded Carleman operator. A Carleman operator is a
Hilbert-Schmidt operator if and only if x 7→ ‖k(x)‖2 is µ-integrable.

Some results about Carleman operators are presented in [108]. In [52], bounded
integral operators on L2(R) (of which bounded Carleman operators are special cases) are
investigated.

1. Generating vectors

Lemma 248 (Lemma II.4.4 in [104]). Let H be a separable Hilbert space. Let (Ω, d)
be a metric space. Let µ be a regular Borel measure on Ω with the following properties:

- Bounded Borel sets have finite µ-measure.
- For every function f : Ω→ C which is integrable on bounded Borel sets, there exists

a µ-null set N such that
- For all r > 0 and all x ∈ Ω\N, the closed ball ball(x, r) with radius r and center
x has positive µ-measure.

- For all x ∈ Ω\N, the limits

lim
r↓0

1

µ(ball(x, r))

∫
ball(x,r)

f(y)µ(dy), x ∈ Ω\N

exist.
- The function defined by the limits is µ-almost everywhere equal to f.

Let R : H → L2(Ω, µ) be a Carleman operator with inducing function k such that x 7→
‖k(x)‖2 is µ-integrable on bounded Borel sets. Let (vk) be an orthonormal basis of H and
let

mk(x, r) =
1

µ(ball(x, r))

∫
ball(x,r)

R[vk](y)µ(dy), r > 0.

There exists a µ-null set N such that for x ∈ Ω\N :

(a) For all k, the limit ϕk(x) = limr↓0mk(x, r) exists.

(b) ex =
∑

k ϕk(x) vk and ex(r) =
∑

kmk(x, r) vk, with r > 0, converge in H.
(c) lim

r↓0
‖ex(r)− ex‖ = 0.

Theorem 249 ([104]). Assume that the conditions of Lemma 248 are satisfied. For

each h ∈ H there is a representant R̃[h] in R[h] such that for x ∈ Ω\N,
(a) R̃[h](x) =

∑
k(vk, h)ϕk(x).

(b) R̃[h](x) = (ex, h).
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(c) R̃[h](x) = lim
r↓0

1

ball(x, r)

∫
ball(x,r)

R[h](y)µ(dy).



APPENDIX K

Application of Gauss’s theorem

1. On the real line

Proposition 250. Let f be entire analytic function and let d ∈ R. If for all τ > 0
and y ∈ R, |f(x+ iy)| = O(eτx

2
) as x→∞, then∫ ∞

−∞
f(x+ id) dx =

∫ ∞

−∞
f(x) dx

if both integrands are integrable.

Proof. We will use the following special case of Gauss’s theorem: For an entire
analytic function g and a, b ∈ R,∫ b

a

g(x) dx+

∫ d

0

g(b+ iy) dy +

∫ a

b

g(x+ id) dx

+

∫ 0

d

g(a+ iy) dy = 0.

Let c =
∫ d

0
f(iy) dy. If

lim
a→−∞

∫ d

0

f(a+ iy) dy = 0 and lim
b→∞

∫ d

0

f(b+ iy) dy = 0

then

lim
a→−∞

∫ 0

a

f(x) dx−
∫ 0

a

f(x+ id) dx = c

and

lim
b→∞

∫ b

0

f(x) dx−
∫ b

0

f(x+ id) dx = −c.

Hence if
lim

x→±∞
f(x+ iy) = 0

uniform for y in compact subsets of R then∫ ∞

−∞
f(x+ id) dx =

∫ ∞

−∞
f(x) dx.

Let τ > 0. Define the entire analytic function fτ on C by

fτ (z) = f(z) exp(−τz2).

Then
|fτ (z)| = |f(z)| exp{−τ Re(z)2 + τ Im(z)2}.

Hence ∫ ∞

−∞
fτ (x+ id) dx =

∫ ∞

−∞
fτ (x) dx ∀ τ > 0.

By the dominated convergence theorem,∫ ∞

−∞
f(x+ id) dx =

∫ ∞

−∞
f(x) dx.
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�

An entire analytic function f is completely determined by its restriction to the real
line. By the following consequence of Proposition 252, certain integrals over f(x + iy)
can be expressed as repeated integrals involving f(x).

Corollary 251. Let ω : R→ [0,∞) be a Lebesgue measurable function and let f, g
be entire analytic functions satisfying

(a) ḡf is ω(y)dxdy-integrable;

(b) x 7→ g(x+ iy)f(x) is integrable for every y ∈ R;

(c) |g(x+ iy)f(x)| = O(eτx
2
) for every y ∈ R and τ > 0.

Then ∫∫
R2

g(x+ iy)f(x+ iy)ω(y)dxdy =

∫
R

(∫
R
g(x+ 2iy)f(x) dx

)
ω(y)dy.

2. On the complex plane

Proposition 252. Let ϕ be an entire analytic function of two complex variables and
let a, b ∈ C. If for all τ > 0 and w ∈ C, |ϕ(z − w, z̄ + w̄)| = O(eτ |z|

2
) as z →∞, then∫

C
ϕ(z + a, z̄ + b) dz =

∫
C
ϕ(z, z̄) dz

if both integrands are integrable.

Proof. We will use the following special case of Gauss’s theorem: For an entire
analytic function g and c, d ∈ R,∫ c

−c
g(x) dx−

∫ c

−c
g(x+ id) dx

=

∫ d

0

g(−c+ iy) dy −
∫ d

0

g(c+ iy) dy.

(84)

We will apply this to the entire analytic function f on C2, defined by

f(z1, z2) = ϕ(z1 + iz2, z1 − iz2).

For z, w ∈ C,
ϕ(z, z̄) = f(Re(z), Im(z)),

ϕ(z − w, z̄ + w̄) = f(Re(z)− i Im(w), Im(z) + iRe(w)).

Hence ∫ c1

−c1

∫ c2

−c2
ϕ(z, z̄) dRe(z)d Im(z)−

∫ c1

−c1

∫ c2

−c2
ϕ(z − w, z̄ + w̄) dRe(z)d Im(z)

=

∫ c1

−c1
D(x1, c2) dx1 +

∫ c2

−c2
E(c1, x2 + iRe(w)) dx2.

where

D(x1, c2) =

∫ c2

−c2
f(x1, x2) dx2 −

∫ c2

−c2
f(x1, x2 + iRe(w)) dx2,

E(c1, z) =

∫ c1

−c1
f(x1, z) dx1 −

∫ c1

−c1
f(x1 − i Im(w), z) dx1.
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By (84),

D(x1, c2) =

∫ Re(w)

0

f(x1,−c2 + iy2) dy2 −
∫ Re(w)

0

f(x1, c2 + iy2) dy2,

E(c1, z) =

∫ − Im(w)

0

f(−c1 + iy1, z) dy1 −
∫ − Im(w)

0

f(c1 + iy1, z) dy1.

Hence if

lim
Im(z)→±∞

∫
R
ϕ(z − a, z̄ + ā) dRe(z) = 0,

lim
Re(z)→±∞

∫
R
ϕ(z − a, z̄ + ā) d Im(z) = 0

uniform for a in compact subsets of C, then∫
C
ϕ(z, z̄) dz =

∫
C
ϕ(z − w, z̄ + w̄) dz

Let τ > 0. Define the entire analytic function ϕτ on C2 by

ϕτ (z1, z2) = ϕ(z1, z2) exp(−τz1z2).

Then
|ϕτ (z − a, z̄ + ā)| = |ϕ(z − a, z̄ + ā)| exp(−τ |z|2 + τ |a|2) ∀ a ∈ C.

Let w = b̄− a. Then ∫
C
ϕτ (z, z̄) dz =

∫
C
ϕτ (z − w, z̄ + w̄) dz

By the dominated convergence theorem,∫
C
ϕ(z, z̄) dz =

∫
C
ϕ(z − w, z̄ + w̄) dz.

This implies the result. �
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3. Gaussian convolution on Lp(Rm)

Let m ∈ N. Let p, q ∈ [1,∞] be related by 1
p

+ 1
q

= 1. We will denote Lp(Rm) by Lp

and Lq(Rm) by Lq. Let s > 0. For z ∈ C and f ∈ L1(Rm, e−(z−x)2/(2s)dx), let

Gs[f ](z) = (2πs)−m/2
∫

Rm

e−(z−x)2/(2s)f(x) dx.

For z, w ∈ Cm let z · w =
∑m

j=1 zjwj and z2 = z · z.
For g ∈ Lq define g∗ ∈ Lq by g∗(x) = g(−x). Clearly ‖g∗‖ = ‖g‖. For f ∈ Lp and

g ∈ L∞, the convolution product g ∗ f is the function

g ∗ f(x) =

∫
Rm

g(x− y)f(y) dy.

By Hölder’s inequality, g ∗ f : Rm → C is a bounded function, and

(85) ‖g ∗ f‖∞ ≤ ‖g‖q ‖f‖p.
If p < ∞, every f ∈ Lp can be approximated in Lp by a sequence (fn) of infinitely
differentiable functions with compact support. Together with the triangle inequality,
(85) implies that g ∗ f can be approximated uniformly by the infinitely differentiable
functions g ∗ fn, n ∈ N. Hence g ∗ f is continuous. Because g ∗ f = f ∗ g, this is also true
if p =∞ :

(86) g ∗ f ∈ Cb(Rm) ∀ g ∈ Lq, f ∈ Lp,

where Cb(Rm) denotes the set of bounded continuous functions on Rm.

Lemma 253. Let x, y ∈ R and g ∈ L1(Rm, e−(x−u)2/(2s)du). Then

|Gs[g](x+ iy)| ≤ (2sπ)−m/2ey
2/(2s)

∫
Rm

|g(x+ u)| e−u2/(2s) du.

Proof. This follows easily from

Gs[g](x+ iy) =

∫
Rm

e−(x+iy−u)2/(2s)

(2sπ)m/2
g(u) du

= sm/2ey
2/(2s)

∫
Rm

eiy·u

(2π)m/2
e−su

2/2g(x+ su) du

(87)

�

Lemma 254. Let x ∈ Rm and let f, g ∈ L1(Rm, e−|u−x|
2/(2s)du). Let c be an integrable

function on Rm and let

(88) d(x) =

∫
Rm

c(y)
eiy·x

(2π)m
dy.

Then ∫
Rm

c(y)Gs[g](x+ iy)Gs[f ](x+ iy)
exp{−y2/s}

(sπ)m/2
dy

=

∫∫
R2m

e−(u−x)2/s

(sπ)m/2
(

2
s

)m
d(2

s
v) g(u− v)f(u+ v) e−v

2/sdvdu.

(89)
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Proof. By (87),

Gs[g](x+ iy)Gs[f ](x+ iy)
exp{−y2/s}

(sπ)m/2

= (s/π)m/2
∫

R2m

e−iy·(v−u)

(2π)m
g(x+ sv)f(x+ su) e−s(u

2+v2)/2 dvdu.

(90)

Because c is integrable, Fubini’s theorem can be used to get∫
Rm

c(y)Gs[g](x+ iy)Gs[f ](x+ iy)
exp{−y2/s}

(sπ)m/2
dy

= (s/π)m/2
∫∫

R2m

d(u− v) g(x+ sv)f(x+ su) e−s(u
2+v2)/2dvdu

= (sπ)−m/2
∫∫

R2m

(
2

s

)m
d(

2

s

u− v√
2

) g(x+
√

2v)f(x+
√

2u) e−(u2+v2)/sdvdu.

For (89) we use

u2 + v2 = (
u+ v√

2
)2 + (

u− v√
2

)2

and the following: Let F : R2 → R2 be defined by

F (u, v) = (F1(u, v), F2(u, v)) = (
u− v√

2
,
u+ v√

2
).

Let ∂k = ∂
∂xk

. We have [∂kF`]
2
k,`=1 = 1√

2

(
1 −1
1 1

)
. The Jacobian of transformation F is 1.

Hence∫
R

c(y)Gs[g](x+ iy)Gs[f ](x+ iy)
exp{−y2/s}

(sπ)m/2
dy

= (sπ)−m/2
∫∫

R2m

(
2
s

)m
d(−2

s
v) g(x+ u+ v)f(x+ u− v) e−(u2+v2)/sdvdu.

�

Lemma 255. Let f ∈ Lp and g ∈ Lq. Let c be an integrable function on Rm and let d
be as in (88). Then∫

Rm

c(y)

(∫
Rm

Gs[g](x+ 2iy)Gs[f ](x) dx

)
exp{−y2/s}

(sπ)m/2
dy

=

∫
Rm

(
1
s

)m
d(1

s
v) g∗ ∗ f(v) e−v

2/(4s)dv.

(91)

If c has compact support then

(92)

∫
Rm

Gc(x)Gs[f ](x) dx =

∫
Rm

(
1
s

)m
d(1

s
v) g∗ ∗ f(v) e−v

2/(4s)dv,

where Gc(x) =
∫

Rm c(y)Gs[g](x+ 2iy) exp{−y2/s}
(sπ)m/2 dy.

Proof. By (90) and Hölder’s inequality,∫
Rm

|Gs[g](x+ iy)Gs[f ](x+ iy)|exp{−y2/s}
(sπ)m/2

dx

≤ ‖f‖p‖g‖q (s/π)m/2(2π)−m
∫∫

R2m

e−s(u
2+v2)/2 dvdu = ‖f‖p‖g‖q (sπ)−m/2.
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From Lemma 254 follows∫∫
R2m

c(y)Gs[g](x+ iy)Gs[f ](x+ iy)
exp{−y2/s}

(sπ)m/2
dxdy

=

∫∫
R2m

(
1
s

)m
d(1

s
v) g(u− v)f(u) e−v

2/(4s)dudv.

(91) follows from Corollary 251.
From (87) follows

|Gs[g](x+ 2iy)| ≤ sm/2e2y
2/s(2π)−m/2

∫
Rm

e−su
2/2|g(x+ su)| du.

This, together with (91), (86) and Fubini’s theorem implies (92). �

Theorem 256. Let f ∈ Lp and g ∈ Lq. Let c be an infinitely differentiable function
on Rm with compact support such that c(0) = 1. Then

(93)

∫
Rm

g(x)f(x) dx = lim
n→∞

∫
Rm

Gn(x)Gs[f ](x) dx,

where Gn(x) =
∫

Rm c(y/n)Gs[g](x+ 2iy) exp{−y2/s}
(sπ)m/2 dy.

Proof. Let d be as in (88). By Lemma 255,∫
Rm

Gn(x)Gs[f ](x) dx =

∫
Rm

(
n
s

)m
d(n

s
v) g∗ ∗ f(v) e−v

2/(4s)dv

=

∫
Rm

(
1
s

)m
d(1

s
v) g∗ ∗ f(v/n) e−v

2/(4sn2)dv.

Let C∞00(Rm) be the space of infinitely differentiable functions on Rm with compact sup-
port and let S(Rm) be the Schwartz space of infinitely differentiable functions on Rm

with derivatives that decay rapidly at infinity. It is well-known that

C∞00(Rm) ⊂ S(Rm) ⊂ L1(Rm)

and that S(Rm) is invariant under Fourier transformation. Hence c ∈ C∞00(Rm) implies
d ∈ S(Rm). Hence d is integrable. By the dominated convergence theorem and the fact
that g∗ ∗ f ∈ Cb(Rm), we have

lim
n→∞

∫
Rm

Gn(x)Gs[f ](x) dx =

∫
Rm

(
1
s

)m
d(1

s
v) g∗ ∗ f(0) dv.

This is equal to
∫

Rm d(v) dv g∗ ∗ f(0) = c(0) g∗ ∗ f(0) = g∗ ∗ f(0). �



APPENDIX L

Integral operators with a Gaussian kernel

Let ϕn be the n’th Hermite basis function in L2(R) :

ϕn(x) =
Hn(x)√

2nn!
π−1/4e−x

2/2.

1. Calculations

Lemma 257. If n ∈ N, z ∈ C, p, r > 0 and q ∈ R then√
|q|
2π

∫
R
e−

1
2
(pz2+ry2+2qzy)r1/4ϕn(

√
ry) dy = un(z)

where

un(z) = ac(z)
(bz)n√
n!

with a = (2π)−1/4( q
2

2r
)1/4, b = −q√

2r
and c(z) = exp{( q2

2r
− p) z2

2
}.

Proof. From
1√
π

∫
R
e−(z−y)2Hn(y) dy = (2z)n

follows √
|q|
2π

∫
R
e−ry

2+qzy(r/π)1/4Hn(
√
ry) dy = aeq

2z2/(4r)(qz/
√
r)n.

�

Lemma 258. For z ∈ C, p, r > 0 and q ∈ R let

(94) ρ(z) =
|q|√
πr

exp{pr − q
2

r
Re(z)2 − p Im(z)2}.

Then (un) is an orthonormal family in L2(C, ρ(z)dz) and
∞∑
n=0

|un(z)|2 =
q2

2πrρ(z)
.

Proof. Let a and b be as in Lemma 257. Then

ρ(z) =
b2

πa2
exp{pr − q

2

r
Re(z)2 − p Im(z)2}.

Hence

(95) |c(z)|2ρ(z) =
b2

πa2
exp{−|bz|2}.

Hence

uk(z̄)u`(z)ρ(z) =
b2

π

(bz̄)k(bz)`√
k!`!

.

Hence ∫
C
uk(z̄)u`(z) ρ(z)dz =

1

π

∫
C

z̄kz`√
`!k!

e−|z|
2

dz = δk`.

135
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We have
∞∑
n=0

|un(z)|2 = a2|c(z)|2 exp(|bz|2)

By (95) this is b2/(πρ(z)). �

2. The integral operators Spqr
For z, w ∈ Cm let

(a) z · w =
∑m

j=1 zjwj, and z2 = z · z,
(b) Re(z) = (Re(zj)) ∈ Rm, and Im(z) = (Im(zj)) ∈ Rm.

Let p, r > 0 and q ∈ R.
Definition 259. For f ∈ L2(Rm) let

Spqr[f ](z) = ( |q|
2π

)m/2
∫

Rm

e−
1
2
(pz2+ry2+2qz·y)f(y) dy.

For z ∈ Cm let
ρ(z) = Πm

j=1ρ(zj),

where ρ(zj) is defined by (94).

Lemma 260. Spqr : L2(Rm)→ L2(Cm, ρ(z)dz) is a linear isometry and

(96) |Spqr[f ](z)|2 ≤ ‖f‖2(2π)−m/2( q
2

2r
)m/2 exp{−pr − q

2

r
Re(z)2 + p Im(z)2}.

If, conversely, an entire analytic function ϕ : Cm → C satisfies

(97) |ϕ(z)|2 ≤M exp{−pr − q
2

r
Re(z)2 + p Im(z)2} ∀ z ∈ C

for some M > 0, then ϕ ∈ range(Sp′,q′,r′) where r′ > 0 and q′ ∈ R and

p′ > p and p′r′ − (q′)2 <
r′

r
(pr − q2).

Proof. Everything can be reduced to the case m = 1. (96) follows from Lemma 258
and the following estimate:∣∣∣∣ ∞∑

n=0

(un,Spqr[f ])un(z)

∣∣∣∣2 ≤ ( ∞∑
n=0

|(un,Spqr[f ])| |un(z)|
)2

≤
∞∑
n=0

|(un,Spqr[f ])|2
∞∑
n=1

|un(z)|2.

Assume that ϕ satisfies (97) and let ρ′(z) be related to p′, q′, r′ by (94). It is easily seen
that ϕ ∈ L2(C, ρ′) and that range(Sp′,q′,r′) consists of the entire analytic functions in
L2(C, ρ′). Hence ϕ ∈ range(Sp′,q′,r′). �

2.1. Gaussian convolution. Let s > 0 and

Gs[f ](z) = (2πs)−m/2
∫

Rm

e−(z−y)2/(2s)f(y) dy, z ∈ Cm.

Let

ρs(z) =
1√
sπ

exp{− Im(z)2/s}.
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Lemma 261. Gs : L2(Rm)→ L2(Cm, ρs(z)dz) is a linear isometry and

|Gs[f ](z)|2 ≤ ‖f‖2(2
√
sπ)−m exp{Im(z)2/(2s)}.

If, conversely, an entire analytic function ϕ : Cm → C satisfies

|ϕ(z)|2 ≤M exp{Im(z)2/(2s)} ∀ z ∈ Cm

for some M > 0, then ϕ ∈ range(Gs′) where 0 < s′ < s.

Proof. Let p = r = 1/s and q = −1/s. Then pr − q2 = 0 and Gs = Sp,q,r. �

2.2. Harmonic oscillator. Let τ > 0 and

Nτ [f ](z) = (2π sinh τ)−m/2
∫

Rm

exp
{ −1

2 sinh τ
(cosh τ(x2 + y2)− 2x · y)

}
f(y) dy.

If m = 1, then Nτ [ϕn] = exp{−(n+ 1
2
)τ}ϕn.

Let

ρτ (z) = (π sinh τ cosh τ)−m/2 exp{tanh(τ) Re(z)2 − coth(τ) Im(z)2}.
Lemma 262. Nτ : L2(Rm)→ L2(Cm, ρτ ) is a linear isometry and

|Nτ [f ](z)|2 ≤ ‖f‖2(2π sinh(2τ))−m/2 exp{− tanh τ Re(z)2 + coth τ Im(z)2}.
If, conversely, an entire analytic function ϕ : Cm → C satisfies

|ϕ(z)|2 ≤M exp{− tanh τ Re(z)2 + coth τ Im(z)2} ∀ z ∈ C
for some M > 0, then ϕ ∈ range(Nτ ′) where 0 < τ ′ < τ.

Proof. Let p = r = coth τ and q = −1/ sinh τ. Then pr−q2 = 1 andNτ = Sp,q,r. �

Remark 263. Lemma 262 follows from the results in [105].

2.3. Combination. For t ∈ (−min(s, 1
s
), 1) let

ρs,t(z) =
exp{ tRe(z)2

st+1
− Im(z)2

s+t
}

(π(st+ 1)(s+ t))m/2
.

Lemma 264. Let s ≥ 0 and z ∈ Cm. For every f ∈ L2(Rm), the function t 7→
GsNatanh(t)[f ](z) on (0, 1) has an analytic continuation to

{t ∈ C : −min(s, 1
s
) < Re(t) < 1},

where 1
s

= +∞ if s = 0.

Let t ∈ (−min(s, 1
s
), 1). Then GsNatanh(t) : L2(Rm) → L2(Cm, ρs,t(z)dz) is a linear

isometry and

|GsNatanh(t)[f ](z)|2 ≤ ‖f‖2
√

1− t2
exp{− tRe(z)2

st+1
+ Im(z)2

s+t
}

2m(π(st+ 1)(s+ t))m/2
.

If, conversely, an entire analytic function ϕ : C→ C satisfies

|ϕ(z)|2 ≤M exp{−tRe(z)2

st+ 1
+

Im(z)2

s+ t
}

for some M > 0, then ϕ ∈ range(Gs′Natanh(t′)) where t′ ∈ (−min(s′, 1
s′

), 1) and

s′ + t′ < s+ t,
t′

s′t′ + 1
<

t

st+ 1
.

Remark 265. The function t 7→ t/(st+1) on (−min(s, 1
s
), 1) is monotone increasing.

The function t 7→ 1/(s+ t) on (−min(s, 1
s
), 1) is monotone decreasing and positive.
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Proof. If t > 0 then GsNatanh(t) = Sp,q,r where

p =
1

s+ t
, r =

st+ 1

s+ t
, q =

−
√

1− t2
s+ t

.

Condition −min(s, 1
s
) < Re(t) < 1 implies that Re(s + t) > 0 and that Re(st + 1) > 0

and hence that p, r and q depend analytically on t. We have

pr − q2 =
t

s+ t
.

The assumptions on s and t imply that p, r,−q > 0. �

Corollary 266. Let s ≥ 0. Then

|Gs[ϕn](z)|2 ≤ e−(n+1/2)atanhtMs,t(z) ∀ n ∈ N, t ∈ [0,min(s, 1
s
))

with Ms,t(z) =
√

1− t2 exp{− t Re(z)2

st+1
+

Im(z)2

s+t
}

2m(π(st+1)(s+t))m/2 .

Consequently, we can define Gs on a Hermite series
∑∞

n=0 cnϕn with (cn) = O(en atanht)
and t ∈ [0,min(s, 1

s
)) by

Gs[
∑
n∈Nm

0

cnϕn](z) =
∑
n∈Nm

0

cnGs[ϕn](z).

The sum on the right-hand side converses pointwise.

Proof. This follows from Lemma 264 and

Gs[ϕn](z) = e−(n+1/2)atanhtGs[N−atanhtϕn](z).

�



APPENDIX M

Gelfand-Shilov space S
1/2
1/2.

1. Introduction

The Gelfand-Shilov space S
1/2
1/2(R

m) is the space of functions on Rm that have contin-

uations to entire analytic functions ϕ satisfying

|ϕ(z)| ≤M exp{−ARe(z)2 +B Im(z)2} ∀ z ∈ Cm

for certain M,A,B > 0. It was introduced by Gelfand and Shilov in [49]. S1/2
1/2 (Rm) can

be identified with a subspace of L2(Rm) :

S1/2
1/2 (Rm) = {h ∈ L2(Rm) : ∃t > 0 ∀n ∈ Nm

0 : |(ϕn, h)| = O(e−tn)},

where (ϕn) is the Hermite basis of L2(Rm). In [32], S
1/2
1/2(R

m), with m = 1, is used as a

test space for a theory of generalized functions. This theory is based on the semigroup
properties of a particular one-parameter family Nτ , τ > 0 of operators on L2(Rm) which
are called smoothing operators. The operators Nτ are characterized in terms of their
action on the Hermite basis by

(98) Nτϕn = e−(n+1/2)τϕn, n ∈ Nm
0 .

This can be generalized to m ∈ N. The test space S = S1/2
1/2 (Rm) can be expressed in

terms of the ranges of the smoothing operators as

S =
⋃
τ>0

Nτ (H).

The space of generalized functions T is formed by the solutions u : (0,∞) → L2(Rm) of
the evolution equation

du

dt
= −Nu,

where −N is the infinitesimal generator of the semigroup (Nτ ) (See [33]). We write
Nτ [u] = u(τ) for τ > 0. The generalized functions act on S through a sesquilinear form
<·, ·> : T× S, defined by

(99) <F, h> = (Nτ [F ],N−τ [h]),

for τ > 0 such that h ∈ Nτ (H). The semi-group properties of Nτ imply that this does
not depend on the particular value of τ > 0.

2. The spaces H+ and H−.

We use a new notation for the spaces S and T introduced in Section 1: Let H =
L2(Rm), H+ = S and H− = T. Elements of H− are considered as linear forms on H+

through (99). We write H+(Rm) and H−(Rm) if we want to make the dependence on m
explicit.

It is easily seen that

(100) H+ =
⋃
{H+(M, τ) : M > 0, τ > 0},

139
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1/2

1/2.

where
H+(M, τ) = {f ∈ range(Nτ ) : ‖N−1

τ f‖ ≤M}.
For A,B ∈ R and M > 0 let A(M,A,B) be the set of entire analytic functions ϕ on Cm

satisfying
|ϕ(z)|2 ≤M exp{−ARe(z)2 +B Im(z)2} ∀ z ∈ Cm.

It is easily seen that

∪τ>0A(M, tanh τ, coth τ) = ∪A,B>0A(M,A,B) ∀M > 0.

From Lemma 262 follows:

∀M, τ > 0 ∃M ′, A,B > 0 such that A(M ′, A,B) ⊂ H+(M, τ);

∀M,A,B > 0 ∃M ′, τ > 0 such that H+(M ′, τ) ⊂ A(M,A,B).
(101)

This, together with (100), implies that

H+ =
⋃
{A(M,A,B) : M,A,B > 0}.

We can get a similar representation of H− : Denote the set of linear forms on H+ by H∗
+.

Then

(102) H− =
⋂
{H−(M, τ) : M, τ > 0} =

⋂
{H−(M,A,B) : M,A,B > 0},

where
H−(M, τ) = {L ∈ H∗

+ : L is bounded on H+(M, τ)}
and

H−(M,A,B) = {L ∈ H∗
+ : L is bounded on H+(M,A,B)}.

3. The spaces H
(s)
+ and H

(s)
−

Let s > 0. The Gaussian convolution operator Gs is defined on L2(Rm) by (48). Define
Gs on H−(Rm) by

(103) Gs[
∑
n∈Nm

0

cnϕn] =
∑
n∈Nm

0

cnGs[ϕn], where (cn) = O(etn) ∀ t > 0.

By Corollary 266, the sum on the right-hand side converses pointwise. Let

H
(s)
+ = Gs(H+(Rm)), H

(s)
− = Gs(H−(Rm)).

We write H
(s)
+ (Rm) and H

(s)
− (Rm) if we want to make the dependence on m explicit.

Theorem 267.

H
(s)
+ =

⋃
{
⋃
M>0

A(M,A,B) : A > 0, B > 0, sB < 1} ∀ s ≥ 0

H
(s)
− =

⋂
{
⋃
M>0

A(M,A,B) : A < 0, sB > 1} ∀ s > 0.

Proof. If M > 0 and A ≥ A′ ∈ R and B ≤ B′ ∈ R, then A(M,A,B) ⊂
A(M,A′, B′). It is easily seen that for s ≥ 0,⋃

t>0

A(M,
t

st+ 1
,

1

s+ t
) =

⋃
A>0

B>0∧ sB<1

A(M,A,B) ∀M > 0.

From Lemma 264 it follows that

(104) H
(s)
+ =

⋃
{A(M,

t

st+ 1
,

1

s+ t
) : M > 0, t > 0}.
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It is easily seen that for s > 0,⋃
−min(s,1/s)<t<0

A(M,
t

st+ 1
,

1

s+ t
) =

⋃
A>0
sB>1

A(M,A,B) ∀M > 0.

From Lemma 264 it follows that

H
(s)
− =

⋂
{
⋃
M>0

A(M,
t

st+ 1
,

1

s+ t
) : −min(s, 1

s
) < t < 0}.

�

4. Duality between H
(s)
− and H

(s)
+

Lemma 268. Let F ∈ H−. Then

lim
τ↓0
GsNτ [F ](x) = Gs[F ](x) ∀ x ∈ Rm.

There are ε,M > 0, such that

GsNτ [F ] ∈ A(M,A,B) ∀ τ ∈ [0, ε), A < 0, B > 1/s

Proof. The first part follows from (103) and (98). The second part follows from
Lemma 264. �

Theorem 269. Let ϕ ∈ H
(s)
+ and ψ ∈ H

(s)
− . We have

<G−1
s ψ,G−1

s ϕ> =

∫
C
ψ(z)ϕ(z) ρs(z)dz.

Proof. There is an F ∈ H− such that Gs[F ] = ψ. Let fτ = Nτ [F ]. Let ψτ = Gs[fτ ].
It is easily seen that

<G−1
s ψτ ,G−1

s ϕ> =

∫
C
ψτ (z)ϕ(z) ρs(z)dz

for every τ > 0, and that

<G−1
s ψ,G−1

s ϕ> = lim
τ↓0

<G−1
s ψτ ,G−1

s ϕ>.

There are M,A > 0 and B < 1/s such that ϕ ∈ A(M,A,B). By Lemma 268 and the
dominated convergence theorem, this implies that

lim
τ↓0

∫
C
ψτ (z)ϕ(z) ρs(z)dz.

∫
C
ψ(z)ϕ(z) ρs(z)dz.

�

5. Approximation in H−

Let c be a bounded function on Rm which has a compact support, is continuous in
0, and satisfies c(0) = 1.

Definition 270. For F ∈ H− define Cn[F ] ∈ H− by

<Cn[F ], h> =

∫
Cm

c(Im(z)/n)Gs[F ](z)Gs[h](z) ρs(z)dz ∀ h ∈ H+.

Proposition 271. If h ∈ H+ and F ∈ H− then

<Cn[F ], h> =

∫
Rm

fn(x)Gs[h](x) dx,

where fn(x) =
∫

Rm c(y/n)Gs[F ](x+ 2iy) ρs(iy)dy.
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1/2.

Proof. This follows from Proposition 250, Theorem 267, and Fubini’s theorem. �

Remark 272. Cn is a non-negative convolution operator on H. (This is easily seen if
we take F (x) = eiyx with y ∈ R in Proposition 271.)

Theorem 273. Let F ∈ H− and h ∈ H+. Then

<F, h> = lim
n→∞

<Cn[F ], h>.

The convergence is uniform for h in subsets H+(M,A,B) with M,A,B > 0.

Proof. By Theorem 269,

<F, h> =

∫
C
Gs[F ](z)Gs[h](z) ρs(z)dz.

By definition,

<Cn[F ], h> =

∫
Cm

c(Im(z)/n)Gs[F ](z)Gs[h](z) ρs(z)dz.

It suffices to prove that for every ψ ∈ H
(s)
− ,

(105) lim
n→∞

∫
Cm

(1− c(Im(z)/n))|ψ(z)ϕ(z)| ρs(z)dz = 0

uniform for ϕ ∈ Gs(H+(M, τ)), for every M, τ > 0. From (104) it follows that it suffices

to prove that for every ψ ∈ H
(s)
− , limit (105) converges uniformly for ϕ ∈ A(M,A,B), for

every M,A > 0 and B < 1/s. Let such ψ,M,A and B be given. By Theorem 267, there
are M ′, A′ > 0 such that

|ψ(z)ϕ(z)| ρs(z) ≤M ′ exp{−A′|z|2} ∀ z ∈ C, ϕ ∈ A(M,A,B).

Because the function in the right-hand-side of this estimate is integrable, the dominated
convergence theorem can be used to prove that limit (105) converges uniformly for ϕ ∈
A(M,A,B). �



APPENDIX N

Estimates

1. Estimates for Bessel functions on (0,∞)

We prove in this section that for every n ∈ N0 the n’th Bessel function of the first
kind Jn satisfies

|Jn(x)| ≤ 3x−1/3 ∀ x > 0.

First we will prove some preparatory results.

Lemma 274. Let −∞ ≤ a < b ≤ ∞, and let ϕ : (a, b) → (c, d) be a monotone
increasing diffeomorphism with a monotone increasing derivative. Assume that p ∈
(0,∞) and n ∈ N are such that d− c = np. Let f : (c, d) → R be a continuous function
satisfying f(x+ p) = −f(x) for all x ∈ (c, d− p) and f(c+ t) ≥ 0 for t ∈ (0, p). Then∫ b

a

f(ϕ(x)) dx ≤
∫ ϕ−1(c+p)

a

f(ϕ(x)) dx.

Proof. Let I =
∫ b
a
f(ϕ(x)) dx. For k ∈ {0, 1, · · · , n− 1} let

Ik =

∫ ϕ−1(c+(k+1)p)

ϕ−1(c+kp)

f(ϕ(x)) dx.

Note that the sign of the integrand is constant for each k. By the integral transformation
theorem and the well-know formula for the derivative of the inverse of a function,

Ik =

∫ c+(k+1)p

c+kp

f(y)
1

ϕ′(ϕ−1(y))
dy.

From

|f(c+ (k + 1)p+ t)| = |f(c+ kp+ t)| ∀ t ∈ (0, p), k ∈ {0, · · · , n− 1}
and the fact that 1/ϕ′(ϕ−1(x)) is a monotone decreasing function, it follows that |Ik+1| ≤
|Ik| for all k. Hence I = I0 +

∑n−1
k=1 Ik ≤ I0. �

Lemma 275. Let −∞ ≤ a < b ≤ ∞, and let ϕ : (a, b) → (c, d) be a monotone
increasing diffeomorphism with a monotone increasing derivative. Assume that p ∈
(0,∞) and n ∈ N are such that d− c = 2np. Let f : (c, d)→ R be a continuous function
satisfying f(x + p) = −f(x) for all x ∈ (c, d − p) and 0 ≤ f(c + t) = −f(c + p − t) for
t ∈ (0, p

2
). Then ∫ b

a

f(ϕ(x)) dx ≤
∫ ϕ−1(c+

p
2
)

a

f(ϕ(x)) dx.

Proof. Let I =
∫ b
a
f(ϕ(x)) dx. For k ∈ {0, 1, · · · , 2n− 1} let

Ik =

∫ ϕ−1(c+(k+1)
p
2
)

ϕ−1(c+k
p
2
)

f(ϕ(x)) dx.

143
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Note that the sign of the integrand is constant for each k. By the integral transformation
theorem and the well-know formula for the derivative of the inverse of a function,

Ik =

∫ c+(k+1)
p
2

c+k
p
2

f(y)
1

ϕ′(ϕ−1(y))
dy.

From

|f(c+ (k + 1)p
2

+ t)| = |f(c+ k p
2

+ (p
2
− t))| ∀ t ∈ (0, p

2
), k ∈ {0, · · · , 2n− 1}

and the fact that 1/ϕ′(ϕ−1(x)) is a monotone decreasing function, it follows that |Ik+1| ≤
|Ik| for all k. Hence I = I0 +

∑2n−1
k=1 Ik ≤ I0. �

Lemma 276. Let n ∈ N. Then Jn(n) ≤ n−1/3.

Remark 277. Formula 9.1.61 in [75] provides a sharper estimate. However no proof
and no analogue estimates for the Bessel functions of the second kind are given.

Proof. The following integral representations for Jn, the n’th Bessel function of the
first kind is well known:

Jn(z) =
1

π

∫ π

0

cos(nθ − z sin θ) dθ.

We use this formula to prove that Jn(n) ≤ n−1/3. It is known that the first positive zero
jν of Jν on [0,∞) satisfies jν > ν and that Jν(x) is positive for x ∈ (0, jν).

For ν > 0 define diffeomorphism ϕν : (0, π)→ (0, νπ) by

ϕν(θ) = ν(θ − sin θ).

Then

Jn(n) =
1

π

∫ π

0

cos(ϕn(θ)) dθ.

From Lemma 275 it follows that

Jn(n) ≤ 1

π

∫ ϕ−1
n (

π
2

)

0

cos(ϕn(θ)) dθ

= n−1/3 1

π

∫ n1/3ϕ−1
n (

π
2

)

0

cos(ϕn(n
−1/3θ)) dθ.

We will show that n1/3ϕ−1
n (π

2
) ≤ π, or equivalently, that π

2
≤ ϕn(n

−1/3π). We show that
even

(106) ϕν(ν
−1/3π) ≥ π ∀ ν ≥ 1.

Note that we have equality for ν = 1. We have

d

dν
ϕν(ν

−1/3π) = ν−1/3π(2
3

+ 1
3
cos(ν−1/3π))− sin(ν−1/3π).

This is ≥ 0 because
2
3

+ 1
3
cos θ ≥ sin θ

θ
∀ θ ∈ [0, π].

Hence (106). Hence Jn(n) ≤ n−1/3. �

Lemma 278. Let n ∈ N. Then |Yn(n)| ≤ (2.2)n−1/3.
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Proof. The following integral representations for Yn, the n’th Bessel function of the
second kind is known: If Re(z) > 0 then

−Yn(z) =
1

π

∫ π

0

sin(nθ − z sin θ) dθ +
1

π

∫ ∞

0

(ent + e−nt cos(nπ))e−z sinh t dt.

It is known that the first positive zero yν of Yν on [0,∞) satisfies yν > ν and that Yν(x)
is negative for x ∈ (0, yν). An argument similar to the one used in the proof of Lemma
276 shows that the first integral in the above representation of −Yn(n) is ≤ n−1/3. Using

sinh t ≥ t+ t3/6 ∀ t ≥ 0,

we see that

(ent + e−nt cos(nπ))e−z sinh t ≤ 2ente−n sinh t ≤ 2ente−n(t+t3/6) = 2e−nt
3/6.

Because ∫ ∞

0

e−t
3

dt =
1

3

∫ ∞

0

e−xx−2/3 dx = 1
3
Γ(1

3
),

this implies that

−Yn(n) ≤ n−1/3 +
2

π

∫ ∞

0

e−nt
3/6 dt = n−1/3 +

2

π
61/3 1

3
Γ(1

3
)n−1/3 ≤ (2.2)n−1/3.

�

Lemma 279. J0(x) ≤ 2x−1/2 for x > 0.

Proof. The following integral representations for J0 is well known:

J0(x) =
2

π

∫ ∞

0

sin(x cosh t) dt.

Hence

J0(x) = x−1/2 2

π

∫ ∞

0

sin(x cosh(x−1/2t)) dt.

Because cosh(y) ≥ 1 + y2/2 we have for t ≥
√

2π,

x cosh(x−1/2t) ≥ x+ 1
2
t2 ≥ π ∀ x > 0.

The function x 7→ x cosh(x−1/2t) is positive and monotone increasing on (0,∞). By
Lemma 274,

|J0(x)| ≤ x−1/2 2

π

∫ √
2π

0

| sin(x cosh(x−1/2t))| dt.

Hence

|J0(x)| ≤ x−1/2 2
√

2√
π
≤ 2x−1/2 ∀ x > 0.

�

Lemma 280. |Jn(x)| ≤ 3x−1/3 for all n ∈ Z and x > 0.

Proof. Since J−n(z) = (−1)nJn(z), we can assume without loss of generality that
n ≥ 0. For n = 0, the estimate follows from x1/2|J0(x)| ≤ 2.

Let n ∈ N. Let Mn(x) =
√
Jn(x)2 + Yn(x)2. In [107] (page 446) we find that x 7→

x1/2Mn(x) is monotonic decreasing in (0,∞) when n > 1/2. Hence x 7→ x1/3Mn(x) is
monotonic decreasing in (0,∞). The results above Lemma 280 imply that n1/3Mn(n) ≤ 3.
Combining these results we see that x1/3Mn(x) ≤ 3 for all x ≥ n. Hence x1/3|Jn(x)| ≤ 3
for all x ≥ n.
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For n ≥ 1, Jn(x) is non-negative and increasing on 0 ≤ x ≤ n. (Proof: For n ≥ 1,
J ′n(0) ≥ 0 and j′n > n, where j′n is the first positive zero of J ′n. See [107]) Hence
0 ≤ x1/3Jn(x) ≤ n1/3Jn(n) when 0 ≤ x ≤ n. Hence x1/3|Jn(x)| ≤ 3 for all x ≥ 0 and
n ≥ 1. �

2. Estimates for the Gamma function

Proposition 281 ([66]). If k ≥ 0 and 0 < λ < 1 or λ > 2 then

Γ(k + λ)

Γ(k + 1)
< (k + λ/2)λ−1.

Remark 282. This generalization (to non-integer values of k) of Lorch’s improvement
of Gautschi’s inequality was obtained by Laforgia in [66].

Proposition 283 ([51]). If δ, α + δ > 0 then

Γ2(δ + α)

Γ(δ)Γ(δ + 2α)
≤ δ

δ + α2
.

Remark 284. This is Gurland’s inequality. It is proved in [51] (and in [91]) by
application of the Rao-Cramer inequality (in estimation theory) to the gamma distribu-
tion. It is proved without an appeal to statistical arguments in [13] by using Gauss’s
formula for F (a; b; c; a).

We have equality if, and only if, α ∈ {0, 1}. An alternative form is

Γ2(x+y
2

)

Γ(x)Γ(y)
≤ min(x, y)

min(x, y) + (x− y)2/4

for x, x+y > 0. Here, the two appearances of min(x, y) can be replaced (simultaneously)
by anything larger; e.g. by x, y or (x + y)/2. Yet another form of Gurland’s inequality
is the first inequality in

Γ2(j)

Γ(j +m)Γ(j −m)
≤ j − |m|
j − |m|+m2

≤ j

j +m2

for j > 0 and m > −j.

3. Estimates for Laguerre polynomials on (0,∞)

The following integral representations for Lmn , the n’th generalized Laguerre polyno-
mial with parameter m is well known: For n,m ∈ N0 and r > 0,

(107) n!rm/2Lmn (r) = er
∫ ∞

0

e−yyn+m/2Jm(2
√
yr) dy.

Definition 285. For n,m ∈ N0, let

`m,n(r) = (−1)n

√
n!

(n+m)!
rm/2Lmn (r).

Proposition 286. For n,m ∈ N0 and r > 0,

|`m,n(r)| ≤ 3r−1/6er
1 + min(n, n+m)

1 + min(n, n+m) +m2/4
(2n+m+ 1)−1/6.

In particular
|Ln(r)| ≤ 3r−1/6er (2n+ 1)−1/6 ∀ r > 0, n ∈ N0.
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Proof. By (107) and Lemma 280,

|`m,n(r)| ≤
3r−1/6er

21/3
√
n!(n+m)!

∫ ∞

0

e−yyn+m/2−1/6 dy

=
3r−1/6er

21/3
√
n!(n+m)!

Γ(n+
m

2
+

5

6
).

By Proposition 281,

|`m,n(r)| ≤ 3(2r)−1/6er
Γ(n+ m

2
+ 1)√

n!(n+m)!
(2n+m+

5

6
)−1/6.

This, together with Proposition 283 and 2n + m + 5
6
≥ 5

6
(2n + m + 1), implies the

result. �





APPENDIX O

Cambell-Baker-Hausdorff formulas

1. Introduction

The first Cambell-Baker-Hausdorff formula is

(108) eABe−A = e[A,·]B = B + [A,B] +
1

2!
[A, [A,B]] + · · · .

The second Cambell-Baker-Hausdorff formula is eAeB = eC where

C = A+ B + 1
2
[A,B] + 1

12
{[A, [A,B]] + [B, [B,A]]}+ · · · .

The Lee-Trotter product formula is:

(109) eA+B = lim
n→∞

(
e

1
n
Ae

1
n
B
)n
.

Formulas (108) and (109) hold for all operators A and B on a finite dimensional Hilbert
space.

References: [65], [62], [95], [81]
Special cases of the Cambell-Baker-Hausdorff formulas are often used even in the

infinite dimensional case without justification or references. In this appendix we proof
(108) under the assumption that A is nilpotent, and we proof the second Cambell-Baker-
Hausdorff formula in case A and B are self-adjoint and commute with [A,B] and satisfy
some technical conditions.

Example 287. Using (108) and the Taylor series around 0 of the (hyperbolic) sin
and cos functions respectively, we get: If [C,A] = B and [C,B] = A then

esCAe−sC = cosh(s)A+ sinh(s)B, s ∈ R
If [C,A] = B and [C,B] = −A then

esCAe−sC = cos(s)A+ sin(s)B, s ∈ R.

2. e[A,·] if A is nilpotent

Let V be a vector space and let A and B be linear transformations on V.

Proposition 288. If for every v ∈ V there is an Nv ∈ N such that Anv = 0 for
all n ≥ Nv, then there is, for every v ∈ V, an Ñv ∈ N such that [A, ·]n(B)v = 0 for all
n ≥ Ñv. In that case

eABe−A = e[A,·](B)

where for e±A is defined on V by

e±Av =
∞∑
n=0

(±1)n

n!
Anv

and e[A,·](B) is defined on V by

e[A,·](B)v =
∞∑
n=0

1

n!
[A, ·]n(B)v.

149
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Proof. [A, ·]n(B) =
∑2n

k=1 B
(n)
k , where B(n)

k is the composition, in some order, of n
times the operator A and one time the operator B. Consequently [A, ·]n(B)v = 0 for

n ≥ max(NBv, NBAv + 1, NBA2v + 2, · · · , NBANv−1v +Nv − 1).

The coefficient of An−kBAk in the expansion of eABe−A is (−1)k

(n−k)!k! . All we have to do is

to prove that

(110) [A, ·]n(B)v =
n∑
k=0

(
n

k

)
(−1)kAn−kBAkv.

Using [A, ·]n(B) = [A, [A, ·]n−1(B)] and mathematical induction, this can be reduced to

n−1∑
k=0

(−1)k
(
n− 1

k

)
An−kBAkv −

n∑
k=1

(−1)k−1

(
n− 1

k − 1

)
An−kBAkv

=
n∑
k=0

(−1)k
(
n

k

)
An−kBAkv,

which follows from
(
n−1
k

)
+
(
n−1
k−1

)
=
(
n
k

)
. �

3. A generalization

Proposition 289. Let H be a Hilbert space and let A be a (possibly unbounded)
operator on H. Let V be a subspace of H consisting of vectors v in the domain of A such
that Av ⊂ V, and

(111)
∞∑
n=0

1

n!
‖Anv‖ <∞.

Let v ∈ V and let B be a linear transformation on V such that

(112)
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
‖An−kBAkv‖ <∞.

Then
eABe−Av = e[A,·](B)v,

where e±Av =
∑∞

n=0
(±1)n

n!
Anv for v satisfying (111), and e[A,·](B)v =

∑∞
n=0

1
n!

[A, ·]n(B)v
for v satisfying (112).

Proof. By (a vector-valued version of) Fubini’s theorem,

eABe−Av =
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
(−1)kAn−kBAkv.

The result follows from (110). �

Remark 290. (112) is satisfied if there are Mn > 0 such that ‖An−kBAkv‖ ≤ Mn

for all n, k, and
∑∞

n=0
2n

n!
Mn <∞. Let, for example H = L2(C). Let

V = span{(r, θ) 7→ e−r
2/2rneimθ : n ∈ N0,m ∈ Z}.

Define the unbounded operators A and B by A[f ](r, θ) = ∂
∂θ
f(r, θ) and B[f ](r, θ) =

r cos(θ)f(r, θ). We have

‖An−kBAkf‖2 ≤ 22(n−k)
∫ ∞

0

∫ 2π

0

|r( ∂
∂θ

)nf(r, θ)|2 rdrdθ
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If s ∈ N0 and m ∈ Z and f(r, θ) = rseimθ, then

‖An−kBAkf‖ ≤ (2|m|)n ‖(r, θ) 7→ rf(r, θ)‖ ∀ n, k.
Consequently, (112) is satisfied for all v ∈ V. Let Cf(r, θ) = r sin(θ)f(r, θ). We have
[A,B]f(r, θ) = −Cf(r, θ) and [A, C]f(r, θ) = Bf(r, θ). Hence

eα
∂
∂θ r cos(θ)e−α

∂
∂θ f(r, θ) =

(
cos(α)r cos(θ)− sin(α)r sin(θ)

)
f(r, θ)

= r cos(θ + α)f(r, θ).

4. If operators A and B are skew-adjoint

Proposition 291 ([108], Theorem 8.35). Let A be a skew-adjoint operator on Hilbert
space H. Then

e[A,·] = exp{A
⊗
I + I

⊗
A} = exp{A}

⊗
exp{A}

on the space of Hilbert-Schmidt operators on H. This means that e[A,·]B = eABe−A for a
Hilbert-Schmidt operator B.

Theorem 292 (Trotter product formula, Theorem 5 of Section 8 in [85], Theorem
X.51 in [92]). Let A,B and A+ B be the infinitesimal generators of strongly continuous
contraction semigroups P t, Qt and Rt on a Banach space X. Then for all u ∈ X,

Rtu = lim
n→∞

(
P

t
nQ

t
n

)n
u

uniformly for t in any compact subset of [0,∞).

Theorem 293 (Theorem 7 in [85]). Let A,B be skew-adjoint operators on a Hilbert
space H, and suppose that the restriction of [A,B] to D(AB)∩D(BA)∩D(A2)∩D(B2)
is essentially skew-adjoint. Then for all u ∈ H,

et[A,B]u = lim
n→∞

(
e
−

√
t
n
A
e
−

√
t
n
B
e

√
t
n
A
e

√
t
n
B
)n
u

uniformly for t in any compact subset of [0,∞).

5. If operators A and B commute with [A,B].

Proposition 294. Let A,B be skew-adjoint operators on a Hilbert space H, and
suppose that the restriction of [A,B] to D(AB)∩D(BA)∩D(A2)∩D(B2) is essentially
skew-adjoint. If etA and etB commute with e−tAe−tBetAetB for every t then

(113) et
2[A,B] = e−tAe−tBetAetB ∀ t ∈ R.

If, moreover, A+ B is essentially skew-adjoint then

(114) etA+B = etAetBe−
1
2
t2[A,B] ∀ t ∈ R.

Proof. Let
F (t) = e−tAe−tBetAetB.

We have
F (t)2 = e−tAF (t)etAF (t) = e−2tAe−tBe2tAetB ∀ t.

Hence
F (t)4 = F (t)2e−tBF (t)2etB = e−2tAe−2tBe2tAe2tB = F (2t) ∀ t.

Hence
(F (t))4n

= F (2nt) ∀ t.
Hence

(F (
√

t
4n ))4n

= F (
√
t) ∀ t.



152 O. CAMBELL-BAKER-HAUSDORFF FORMULAS

By Theorem 293,

et[A,B]u = lim
n→∞

(F (
√

t
4n ))(4n) = F (

√
t).

Hence (113). Using mathematical induction and (113), we get

(etAetB)n = etnAetnBe−
1
2
t2n(n−1)[A,B] ∀ n ∈ N, t ∈ R.

Hence

(e
t
n
Ae

t
n
B)n = etAetBe−

1
2
t2(1− 1

n
)[A,B] ∀ n ∈ N, t ∈ R.

This, together with Theorem 292, implies (114). �
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69. P. Lahti, J.-P. Pellonpää, and K. Ylinen, Operator integrals and phase space observables, J. Math.

Phys. 40 (1999), no. 4, 2181–2189.
70. Y Lai and H. A. Haus, Characteristic functions and quantum measurements of optical observables,

Quantum Opt. 1 (1989), 99–115.
71. U Leonhardt and H Paul, Phase measurement and Q function, Phys. Rev. A 47 (1993), no. 4,

R2460–R2463.
72. A. Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math. J. 26 (1977),

no. 5, 839–845.
73. G. Ludwig, An axiomatic basis of quantum mechanics, Interpretations and foundations of quantum

theory (Marburg, 1979), Grundlagen Exakt. Naturwiss., vol. 5, Bibliographisches Inst., Mannheim,
1981, pp. 49–70.

74. Günther Ludwig, Foundations of quantum mechanics. I, Texts and Monographs in Physics,
Springer-Verlag, New York, 1983, Translated from the German by Carl A. Hein.

75. I.A. Stegun M. Abramowitz, Handbook of mathematical functions with formulas, graphs, and math-
ematical tables, Dover Publications, 1965.

76. Paul Malliavin, Integration and probability, Graduate Texts in Mathematics, vol. 157, Springer-
Verlag, New York, 1995, With the collaboration of Hélène Airault, Leslie Kay and Gérard Letac,
Edited and translated from the French by Kay, With a foreword by Mark Pinsky.

77. , Stochastic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences], vol. 313, Springer-Verlag, Berlin, 1997.

78. H. Martens, The uncertainty principle, Ph.D. thesis, TUE, 1991.
79. H. Martens and W.M. de Muynck, The inaccuracy principle, Found. Phys. 20 (1990), no. 4, 357–

380.
80. , Nonideal quantum measurements, Found. Phys. 20 (1990), no. 3, 255–282.
81. Albert Messiah, Quantenmechanik. Band 1, second ed., p. 442, Walter de Gruyter & Co., Berlin,

1991, Translated from the French and with a foreword by Joachim Streubel.
82. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949),

99–124.
83. W. M. Muynck and A. J. A. Hendrikx, Haroche-ramsey experiment as a generalized measurement,

Physical Review A 63 (2001), 042114/1–15.
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Samenvatting

In de, aan de quantum mechanica gerelateerde, meettheorie worden positieve op-
erator waardige maten gebruikt als wiskundig model voor metingen. De wiskundige
eigenschappen hiervan worden onderzocht waarbij vooral wordt gekeken naar dom-
inantie en het hieraan gerelateerde begrip maximaliteit. De wiskundige methoden
die worden toegepast bij deze onderzoekingen komen uit de hoek van de functionaal
analyse, maattheorie en operator theorie.

Eveneens aan de quantum mechanica gerelateerd zijn de zogenaamde fase-ruimte
representaties. Hieraan ten grondslag ligt de keuze van een lineaire afbeelding van
de vector ruimte die wordt bepaald door de verzameling van dichtheidsoperatoren,
welke model staan voor de quantum mechanische toestanden, naar een vector ruimte
van functies op het zogenaamde fasevlak. Onderzocht worden, in het speciale geval
van een familie van faseruimte representaties interpolerende tussen de Wigner en
Husimi representaties, de wiskundige eigenschappen van de bijbehorende afbeeldin-
gen. Hierbij wordt gebruik gemaakt van methoden uit de functionaal analyse en de
complexe functietheorie van een enkele variabele.
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