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Small ScaleVelocity Jumps in Shear Turbulence
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We measure structure functions and structures in uniformly sheared strong turbulence using an array
of hot-wire velocity sensors. We find that the large-scale shear persists down to the smallest scales.
There is a marked asymmetry between velocity increments measured in the shear direction, and those
measured in the plane perpendicular to it. In the shear direction the scaling exponents tend to a
constant, signifying the presence of small-scale cliffs. Direct evidence for those is presented by the
spatial structure of the strongest velocity gradients.
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FIG. 1. Homogeneous shear turbulence. Open circles: mean
velocity U; closed circles: rms fluctuations u at x=H� 5:1 be-
hind the shear generating grid, where H� 0:9 m is the height of
the tunnel. Near the lower wall the turbulent boundary layer
marks the end of the homogeneous shear region. The Reynolds

�1
Kolmogorov scale ), the velocity difference in Eq. (1) number is Re� � 630, and the shear strength dU=dy� 5:95 s .
Fluid turbulence involves a wide range of scales.
Motion on large scales will carry the imprint of aniso-
tropic forcing, but according to Kolmogorov theory [1],
the small-scale eddies will have lost memory of the way
in which the large scales are stirred. This return to iso-
tropy underlies the construction of turbulence models
which are needed for the computation of turbulent flows
in cases of practical interest. A startling recent discovery
is that isotropy will probably never be restored, not even
at very large Reynolds numbers where very small scales
are reached [2,3]. In numerical simulations at low Rey-
nolds numbers, the failure of return to isotropy has been
linked to vortex sheets [4] which have been rolled up by
the shear. In this Letter we will for the first time show that
these structures can indeed be observed in an experiment,
and we will relate them to the anisotropic scaling proper-
ties of the velocity field.

The test case is homogeneous shear turbulence, which
has a linear variation of the mean flow velocity U in the
shear (here y) direction, a constant fluctuation velocity u,
and an energy spectrum that does not depend on y. It is
the simplest possible anisotropic turbulent flow, whose
large-scale anisotropy is characterized by a single num-
ber: the shear rate S � dU=dy. Creating such a flow is an
experimental challenge, as is a measurement of the sta-
tistics of velocity increments over separations in the shear
direction y which necessitates the usage of arrays of
precisely calibrated velocity probes.

The experimental arrangement is sketched in Fig. 1.
With the mean flow U�y� in the x direction, the shear
points in the transverse y direction. In the case of homo-
geneous isotropic turbulence, all odd-order moments,
p � 3; 5; 7; . . . , of transverse velocity increments

GT
p�r� � h��Tu�r��pi � h�u�x� rey� � u�x�	pi; (1)

vanish identically because of reflection symmetry. In
Eq. (1), ey is the unit y vector and u is the x component
of the fluctuating velocity (GT

1 � 0). In the presence of
shear, these odd-order moments will be nonzero at large
length scales, but should vanish at small enough r when
the isotropy is restored. Down at the smallest scale (the
0031-9007=03=90(9)=094501(4)$20.00 
approximates the velocity derivative, and the anisotropy
can be quantified through the skewness which is defined
as STp � h�@u=@y�pi=h�@u=@y�2ip=2, p � 3. Restoration of
isotropy implies that the skewness vanishes at large Rey-
nolds numbers. Assuming that, to first order, both the odd-
order moments [Eq. (1)] and the skewness are poportional
to the shear rate S, a simple dimensional argument pre-
dicts ST3 to decrease with Reynolds number as ST3 / Re�1

� ,
where Re� is the Taylor microscale Reynolds number (the
Taylor scale is an intrinsic correlation length of turbu-
lence) [5]. Instead, a much slower decay of ST3 with Re�
was found in [2] with Reynolds numbers increasing up to
Re� � 103. Moreover, the skewness with p � 5 remained
constant, and with p � 7 it increased with Re�. At
smaller Reynolds numbers, such slower decay for p � 3
was also found in [3], while for p � 5 it showed a slight
decline.
2003 The American Physical Society 094501-1



P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2003VOLUME 90, NUMBER 9
In this Letter we will concentrate on the structure
functions Eq. (1) for which the dimensional argument
predicts

GT
p�r� / Sr�p�2�=3; p � 3; 5; . . . : (2)

We will show that the properties of the shear are re-
flected directly in the low-order moments, whereas the
high-order moments are determined by very strongly in-
termittent events, which will be demonstrated to be of a
special kind.

We produce homogeneous shear turbulence in a 0:9�
0:7 m2 cross section recirculating wind tunnel with a
maximal Reynolds number Re� � 630. To generate a
uniform mean velocity gradient we use a novel grid
whose y dependent solidity is tuned to preserve a constant
rms profile throughout most of the wind tunnel height.
The quality of the flow is illustrated in Fig. 1 which shows
that the variation of the rms velocity hu2i1=2 with y is very
small and the shear rate is constant over the extent of the
probe array (0.24 m). Furthermore, the measured energy
spectra E�kx; y� at different y were found to be indistin-
guishable [6]. Avery large number of data points [O�109�]
was collected in experiments that ran many hours while
velocities were sampled at 2� 104 Hz, which is nearly
twice the Kolmogorov frequency U= � 1:1� 104 Hz,
with  � 1:6� 10�4 m.

A few measured transverse structure functions
[Eq. (1)], for both even and odd orders, are shown in
Fig. 2. Let us recall that the odd-order ones would all
have been zero for isotropic turbulence. The tendency to
return to isotropy at small r= is strongest for the low-
order (p � 3), but decreases for the higher-order mo-
ments. It means that the return to isotropy is increasingly
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FIG. 2. Structure functions in homogeneous shear turbulence
at Re� � 630. Full lines: odd orders, jGpj

1=p, p � 3; 5; . . . ; 13.
Dashed lines: even orders, G1=p

p , p � 2; 4; . . . ; 12. Dash-dotted
lines: fits of jGpj � r�p . The dots in the p � 3; 5 structure
functions denote the discrete distances in the probe array.
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frustrated by the strongest events in turbulence which
dominate the high-order structure functions.

The structure functions were measured using a hot-
wire array of ten probes (sensitive length 200�m), the 45
distances between them spaced close to exponential, as is
illustrated in the inset of Fig. 1. Each point of the struc-
ture functions in Fig. 2, therefore, corresponds to a dis-
tance r � yi � yj between different probe pairs that are at
different locations yi, yj. It is seen that the scaling is
genuinely in the separation r, with the homogeneity of
the shear reflected in the smoothness of the curves. The
usual measurement [2], with one fixed probe and one
probe at different positions y, would take a much longer
integration time and would have difficulty to discrimi-
nate shear inhomogeneity from the r dependence of GT .

From the measured structure functions we determined
the scaling exponents �Tp by fitting jGT

pj � r�
T
p . We find

a strong asymmetry between odd and even low-order
scaling exponents. For example, while �T2 � 0:72 is the
value found in homogeneous and isotropic turbulence,
�T3 � 1:4, which is close to the value 5=3 predicted by
Eq. (2). For the cross spectrum Exy�k� (which vanishes
in isotropic turbulence) the equivalent prediction would
be Exy�k� � k�, with � � �7=3. Consistency with this
prediction was concluded in [8] where it was found that
� � �2:1, while slightly larger � were seen in other
experiments [9]. Surprisingly, the conclusions of a recent
paper [7] are at odds with these findings, and no asym-
metry between even and odd transverse exponent was
observed.

From the measured probability density functions
(PDF’s) Pr��

Tu�, it becomes clear that the large negative
velocity increments �Tu (that have the same sign as the
shear) are more numerous than the large positive ones.
This asymmetry grows as the magnitude of the incre-
ments increases. At large orders, therefore, both even and
odd-order moments are dominated by the negative incre-
ments and the asymmetry between odd and even expo-
nents will disappear. This trend is evident from the
measured scaling exponents in Fig. 3. We also see that
the scaling of the transverse velocity increments in the
shear direction is strongly anomalous: the deviation from
the Kolmogorov self-similar prediction is much larger
than for increments measured in other directions. As a
reference we show measured scaling exponents from lon-
gitudinal velocity increments ju�x� rex� � u�x�j, which
follow the prediction of the log-Poisson model [11].

A conspicuous feature of the transverse scaling expo-
nents in Fig. 3 is that they tend for large p to a limiting
value �Tp � �1 � 2:8 which is reached at p � 15. Before
interpreting this behavior, we will first argue that it is
significant and is not caused by a lack of statistical
accuracy of these large order moments.

First, the saturating behavior of the scaling exponent
is reproduced in repeated runs of the same experiment,
and is not observed in our experiments on homogeneous
094501-2
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near-isotropic turbulence. A second argument for satura-
tion is directly related to the measured PDF’s Pr��u� of
the velocity increments �u at separation r. Then, a suffi-
cient, but not necessary, condition for saturation of the
scaling exponents is that the function Qr��u� �
�r=r1���1Pr��u� becomes for large j�uj independent of
r for r values inside the inertial range [12]. Using their
stretched exponential representation, we will now show
that our PDF’s actually satisfy this criterion.

All measured transverse PDF’s can be represented well
by stretched exponentials Ps

r�x� � are��rjxj�r , where the
parameters ar, �r, and �r are different for the negative
and positive velocity increments. The difference between
Ps
r and the measured Pr is insignificant in a �2 sense [13].

Saturation of the scaling exponents to �1 then requires
that the function Qs

r��u� � ar �r=r1�
��1e��rj�uj�r be-

comes r independent for large j�uj.
In Fig. 4 we show the function Qs

r��u� for several
separations r inside the inertial range 30 � r= � 300.
It is indeed observed that the more probable, negative tails
of the probability density functions become independent
of r when properly rescaled. This was, of course, already
evident from the scaling exponents in Fig. 3 that were
computed from precisely these tails. The inset of Fig. 4
shows, on a much expanded scale, that the function Qs

r�x�
is completely consistent with our data. At very large �u,
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FIG. 3. Scaling exponents of p-order moments of velocity
increments. Open circles connected by line: �p, with the error
bars set by the variation of �p in different experiments. Full
line: scaling exponents of moments of absolute values of longi-
tudinal velocity increments. Open squares connected by line:
scaling exponents for passive scalar fluctuations measured
by Moisy et al. [10]. As [10] provides relative values, these
exponents have been normalized by setting �2 � 2=3. Dash-
dotted lines (K41): Kolmogorov 1941 prediction [1]; (SL): pre-
diction of log-normal model [11]; (S): shear prediction Eq. (2)
of odd order moments. The line of the log normal model
obscures the longitudinal measurement.
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the functionsQs
r��u� for different r start to deviate again,

but this is already beyond the �u needed to determine
moments of order p � 15 [14].

Saturation of the scaling exponents �p ! �1 points to
clifflike structures in the velocity field. This can be read-
ily understood in the framework of the multifractal
model, where �1 would be the codimension of these
structures [15]. A similar behavior of the scaling expo-
nents both in numerical simulations [12] and in experi-
ments [10] has been found for the concentration
fluctuations of a passive scalar that is advected by a
turbulent flow. It has been linked to the well-known
‘‘ramp and cliff ’’ structure of the concentration field
[4,12]. Therefore, the velocity field of turbulence with
an imposed large-scale shear and the concentration field
in turbulence with a large-scale gradient of the contami-
nants behave analogously. The difference is that the con-
centration field is more intermittent than the velocity field
so that the saturation of the concentration scaling expo-
nents occurs at lower orders p (p � 12), as is also illus-
trated in Fig. 4.

Since we measure the turbulent velocity field with
many probes simultaneously, it is possible to search for
strong events that extend in the shear (y) direction; this is
not possible in point measurements of the velocity field.
In our quest for these events, we adopted the simple
strategy to look for n velocity profiles u�x; y� which
have the largest transversal velocity difference j�uT j �
ju�x; y� !y� � u�x; y�j across two closely spaced probes
(separation !y= � 6), which is also a local maximum in
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FIG. 4. Full lines: the function Qs
r��u� � �r=r1�

��1Ps
r��u�,

with r1= � 30, r= � 30; 50; 100; 190; 270, and �1 � 2:85.
Inset: Full lines: Qs

r��u�=Q
s
r0 ��u�, with r0= � 100 and r=

taken in the inertial range, r= � 30, 100, and 270, respec-
tively. Symbols: Qr��u� � �r=r0���1Pr��u�=Ps

r0 ��u�, for
r0= � 100, and r= � 30 (open circles), r= � 100 (closed
dots), and r= � 270 (open squares), respectively. Notice that
the low probability tails of the PDF are skewed towards the
negative velocity increments.
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FIG. 5. Average velocity profile of the 256 largest events in a
times series of 108 velocity line samples. (a) With �u �
u�x; y6� � u�x; y5�< 0 with y6 � y5 � 1:0 mm � 9. For
clarity, the y axis is shown reversed. (b) With �u > 0.
(c) Same as (a), but in gray scale over a larger �x; y� range. It
clearly shows the residual large-scale gradient. (d) Same as (c),
but �u > 0.
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the x direction. The sign of strong events is favored by the
shear, out of n events (e.g., n � 200 out of 108 line
samples), � 0:7n have the same (negative) sign as the
shear. This is not a simple additive effect; the mean shear
gives a mere �uS � 0:1 ms�1 across the viscous-range
separation !y, a factor of 4 smaller than the size fluctua-
tion of the n largest events.

The separate averages shown in Fig. 5 of the positive
and negative events were done by choosing the local
maximum of �u in the x (streamwise) direction at x � 0.
Most remarkably, the average shape of the positive stron-
gest events is very different from that of the negative ones.
While the negative events clearly reveal a clifflike struc-
ture of the velocity field, the average positive events are
indistinguishable from those found in near-isotropic tur-
bulence and do not carry the imprint of the large-scale
shear. As high-order structure functions are determined
by the negative events, it can now be understood why the
behavior of the scaling exponents in shear turbulence
differs from those in (near-)isotropic turbulence.

In conclusion, strong turbulence that is driven by a
uniform mean shear at its largest scales shows the imprint
of this anisotropy at the small scales. The failure of the
return to isotropy is reflected both in the behavior of the
scaling exponents and in the occurrence of extremely
intermittent structures which have remembered the way
in which the turbulent flow is driven. Although the
Reynolds number of our experiment (Re� � 630) is mod-
est, there is a clear inertial range, and we believe that the
094501-4
persistence of anisotropies is a genuine property of strong
turbulence, a conclusion that is consistent with [2].

We gratefully acknowledge financial support by the
‘‘Nederlandse Organisatie voor Wetenschappelijk On-
derzoek (NWO)’’ and ‘‘Stichting Fundamenteel Onder-
zoek der Materie (FOM).’’ We are indebted to Gerard
Trines, Ad Holten, and Gerald Oerlemans for technical
assistance.
[1] A. Kolmogorov, Dokl. Akad. Nauk. 30, 4 (1941); re-
printed in Proc. R. Soc. London, Ser. A 434, 9–13 (1991).

[2] X. Shen and Z. Warhaft, Phys. Fluids 12, 2976 (2000).
[3] M. Ferchi and S. Tavoularis, Phys. Fluids 12, 2942

(2000), although restoration of isotropy is concluded,
ST3 decreased slower with Re� than expected. A recon-
ciliation with the result of [2] is given by Z. Warhaft and
X. Shen, Phys. Fluids 13, 1532 (2001).

[4] A. Pumir and B. I. Shraiman, Phys. Rev. Lett. 75, 3114
(1995).

[5] J. L. Lumley, Phys. Fluids 10, 855 (1967).
[6] The variation of hu2i1=2 with y is significantly smaller

than that reported in [2], which may also explain the
different behavior of the scaling exponents in [7].

[7] X. Shen and Z. Warhaft, Phys. Fluids 14, 370 (2002).
[8] S. G. Saddoughi and S. F. Veeravalli, J. Fluid Mech. 268,

333 (1994).
[9] S. Kurien and K. R. Sreenivasan, Phys. Rev. E 62, 2206

(2000) find � � �2:1, while Z. Warhaft and X. Shen,
Phys. Fluids 14, 2432 (2002) find � � �2:0.

[10] F. Moisy, H. Willaime, J. Andersen, and P. Tabeling, Phys.
Rev. Lett. 86, 4827 (2001).

[11] Z.-S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994).
This model is found to accurately parametrize many
measurements of the scaling of hj�Lujpi.

[12] A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola,
Phys. Rev. Lett. 84, 2385 (2000).

[13] W. van de Water and J. A. Herweijer, J. Fluid Mech. 387, 3
(1999). A stretched exponential description is strictly
untenable [see A. Noullez, G. Wallace, W. Lempert,
R. B. Miles, and U. Frisch, J. Fluid Mech. 339, 287
(1997)]. The stretching exponent ranges from �r < 1 at
small r to �r � 2 at integral-scale separations r. For j�uj
large enough, small-r velocity increments of a given
size �u would then have a larger probability than
large-r increments of the same size, which is impossible.
Since the small-r PDF’s are narrower than the large-r
ones, this will occur only at extremely small probability
levels and would be observed only at a number of samples
that is many orders of magnitude larger than what we
used (109).

[14] The maximum �um needed is set roughly by the value
where �u15Pr��u� reaches a maximum, which is at
�um � �3, �5, and �8 ms�1 for r= � 30, 100, and
270, respectively.

[15] U. Frisch, Turbulence (Cambridge University Press,
Cambridge, 1995).
094501-4


