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Abstract

We perform the rounding error analysis of a conjugate gradient algorithm,

using recursive residuals, for the computation of the solution of a system

of linear equation Ax ... b, where A is a n x n positive definite matrix.

We prove that (when the occurence of underflow is ignored) these recursively

computed residual vectors r i tend to zero if 106 € (C I + ZCZ + 8) K
Z

< I.

Here K is the condition number of A in the spectral norm, € is the relative

machine precision of the floating point arithmetic and C
1

and Cz are

constants depending on n and connected with the calculation of Ax and with

the calculation of inner products.

This result not only holds if the initial conjugate direction vector PO is

taken equal to the initial residual vector r O:'" b - AxO but also if Po is

chosen arbitrarily.

Furthermore we show that the computed sequences {r.} and {p.} converge at
1 1

worst at a linear rate and that this rate is bounded by the convergence

rate of the steepest descent method.

computed sequence {x.} we are only able to prove that ultimately
1

1 1
x.)11 /11 A2 5C II is of order € (K

3 2log Ih + K
Z), where 5C is the solution

1

of Ax ... b.

Similar results are proved for the gradient algorithm, using recursive

residuals.

AMS classification scheme 1979 65G05 65F10



Instead of actually computing the residual vector r. = b - Ax. at each
1. l.

for computation of the conjugate direction vector Pi' we use for i ~ 0

recursion relation (2.5b) :
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t. Introduction

1.1 Introduction

We study a classical conjugate gradient method (cg) for the solution of

a linear system Ax = b, where A is a n x n positive definite matrix.

It is one of the variants of the cg-method developed by E. Stiefel and

M.R. Hestenes [3J. In the classification of Reid [7] it is the cg-algorithm

given by the formulas (2.3a), (2.4), (2~5b). (2.6a) an9 (2.7) of-that

paper. Especially we mention here our computation of the residual vector r .•
~

step

the

r. 1 '" r. - a.Ap.
:l.+a 1. 1. 1.

The vectors r. which are obtained by using this updating formula will be
1.

referred to as ~cursive residuaZ vectors. In exact arithmetic these vectors

are equal to the residual vectors b - Ax. at each step.
~

Algebraically cg produces the solution x = A-1b after at most n steps. In

the presence of round-off however the n-th computed vector x is not even a
n

reasonable approximation of x if we have an ill-conditioned system. This is

caused by the fact that the theoretical orthogonality relations are disturbed

in the presence of round-off. However, regarded as an iterative method for

the solution of large and sparse systems, continuing after more than n itera

tions? themetnod has several very pleasant .features, that already have been

mentiGued by Reid [7J.

Until now only a tew theoretical analyses have been carried out to explain

the n~m0rical behaviour of cg. Wozniakowski [8J is the only one who gives a

full €rror-analysis of a conjugate gradient algorithm. It is a version of

the cg-method that :Ls not contained in the paper of Stiefel and Hestenes [3 J

or in the paper of Reid [ 7 J. One important difference with our cg-version

is that Wozniakowski's .version uses true residuals r.:= b - Ax .•
l. 1.

We consider an implementation of cg in floating point arithmetic with relative

machine precision E. We will show that the computed recursive residual vectors

r. and ~he computed conjugate gradient vectors p. tend to zero if
1. 2 1.

106e(C1 + 2CZ + 8)K <~. Here c! and C
2

are constants depending on the

implementation of the calculation of Ax and of inner products respectively.

K is the condition number of the matrix A. We even prove that

( 1) II A-- 4r i + 1 li:s;( + E ( 13C! + 3C 2 + 38) K) L i II A- i rOll
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where L is a number close to (K-I)/(K+I), which is the convergence rate

of the steepest descent method (= gradient method). Hence the numerical

convergence of cg is at worst linear (as far as the convergence of r i is

concerned) •

We will prove that the approximants x. ultimately satisfy
1

(2)
II A! (xi - x) II 3/2 2
--UA-1"'x-'-I-::;; 6e:{(II9 log I/f. + 17S)K + 25(G I + 3)K }.

We realize that this last result is rather poor in that it involves a factor

K
2 • We ascribe the appearance of this factor to the fact that we use recursive

residuals. An analysis of the gradient algorithm with recursive residuals

reveals the same factor.

The numerical experiments that we have carried out, confirmed the 1imit

properties r. ~ 0, p. ~ a (i ~ ~) and the convergence rate expressed by
1 1

( 1) •

Since we have executed only a rather limited number of experiments, we

dare not say whether the factor K
2 in the estimate (2) is realistic or

not. We will report on these numerical experiments in another paper.

1.2, Summarz.

We summarize the contents of the paper.

In chapter 2 we formulate the cg-algorithm and we briefly state some basic

algebraic properties of the algorithm that are important for the error

analysis. We also consider the so-ca111ed independent start conjugate

gradient method (iscg). This method differs from cg only by the fact that

PO is not coupled with r O but can be chosen freely. Hence cg is a special

case of iscg and we will concentrate on the last method. We will derive

some basic results for iscg. Most of these results were known already by

Crowder and Wolfe [IJ, but they did not write them down exp1icite1y. We

also report on results of Powell [6J in connection with iscg.

Chapter 3 deals with the rounding error analysis of one step of iscg. We

only consider the computation of r. 1 and p. I' We here mention the fact
1+ 1+

that in this report we have not ignored terms of any order in f..



to zero of the computed vectors r.
~

the speed of convergence can be
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In chapter 4 we prove the convergence

and p .• Furthermore we will show that
~

expressed by (1).

The computation of x. 1 is studied in chapter 5. Since r. = b - Ax. does
~+ ~ ~

not hold anymore in the presence of round off, we need to analyse the

difference between r. and b - Ax .• This analysis is carried out in chapter 5
~ ~

where we finally prove (2).

In the final chapter we consider the gradient algorithm for the computation

of the solution of Ax = b. We sum up the results of Wozniakowski [8J for

the case when true residuals are used and we give new results for the case

when recursive residuals are used. We also compare our results for iscg

with Wozniakowski's results for his cg-method. Besides we introduce a class

of conjugate gradient methods for which we can prove similar results on

numerical behaviour as in the iscg-case.

1.3. Preliminary on rounding errors and floating point arithmetic

Throughout this report we assume that the algorithms are performed in

floating point arithmetic. The floating point numbers will be assumed

to have base 8 and a mantissa with t digits (8 ~ 2, t ~ 1). Then every

real number in the floating point range of the machine can be represented

with a relative error which does not exceed the reZative machine precision E

which is defined by E = ~81-t.

Furthermore we assume that we have a machine with proper ~unding arithmetic

in the sense of T.J. Dekker [2J.

This means that the execution of any arithmetical operation $ (this can be

+, -, x, /) on two machine numbers a and b gives a machine number fl(a $ b)

such that there is no other machine number closer to the exact result of

a $ b.

Consequently the following two relations hold

(3) £l(a $ b) = (a $ b)(1 + ~),

(4) (1 + n)fl(a $ b) = a $ b

where both

(5) Inl ~ E •

Hence, adding or subtracting two machine vectors x and y and multiplying

a machine number a and a machine vector x gives computed vectors fl(x ± y)

and fl(ax) satisfying
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(6) flex ± y) = (I + FI)(x ± y) ,

(7) fl(ax) = (I + F2) ax ,

(8) (I + GI)fl(x ± y) = x ± y ,

(9) (I + G2)fl(ax) = ax ,

where FI , F2, GI and G2 are diagonal matrices satisfying

(10)

and consequently

We suppose that the computation of Ax is implemented in such a way that

the computed vector fl(Ax) satisfies

(12) fl(Ax) = (A + E)x ,

where E is a matrix such that

The constant CI depends only on n.

We assume that the algorithm for inner product calculation of two machine

vectors x'and y satisfies

(14) fl«x,y» = «I + D)x,y) ,

where D is a diagonal matrix such that

(15) II D II s e:C
2

•

The constant C2 also depends only on n.
3/2For many straightforward implementations CI • nand C2 • n.

Remark I.

Note that we do not put a restriction on the range of the exponent of the

machine numbers. Hence, we neglect the possibility of underflow or overflow. .

o
If two vectors are added then the rounding errors occuring in this operation

can be expressed by (6) and (8). Another, rather unusual way to express this

rounding errors is given in the following lemma. It will be of special interest

if one vector is much smaller than the other vector. We will meet this

eituation in chapter 5.
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Note that it follows from the assumption that we have proper rounding

arithmetic

then

that if a and b are machine numbers and if Ibl < (E/6)laj

(16) fl(a + b) ... a •

From this we can prove the following lemma.

Lemma 2. If x and yare machine vectors then

(17) fl(x + y) = x + (I + H)y ,

where H is a diagonal matrix satisfying

(18) IHI :;; (6 + E)I ,

and hence

(19) IIHII:;;6+E

( ) J. h .thProof. Let fl x + y = x + y + os and let x denote t e J component

of x.

If Iyjl < (E/6)lxJ I then if follows from (16) that

(20) osj = _yJ •

Consequently, in that case

If Iyjl ~ (E/S)lxjl then it follows with (3)

(22) 16s j l :;; Elxj + yjl :;; (6 + E)lyjl •

Hence in both cases 10sJI :;; (6 + E)lyjl.

Defining H.. := osj, H.. = 0 (i ~ j) completes the proof.
J J 1.J

As an illustration of the use of lemma 2 we prove the following theorem.

A similar result will be derived in chapter 5.

o

Theorem 3.
,-

Let y. (i ~ 0) be machine vectors satisfying1.

(23)

where 0 < L < 1 and let sk (k ~ 0) be computed from
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(24)

Then we have

(25)

Proof.

(26)

k 1 1/£ II YO II
lim II sk - I y. II ~ £(6 + 2){ og I/L + I} 1 - L
k~ i=l ~ log

We have for k ~ I:

where, from (6):

and, from lemma 2:

(28) II t
k

II ~ (6 + £)11 Y
k

II •

From (26) we conclude

(29)
k k

sk - I y. = I t.
i=O ~ j= I J

From (23) and (28) it follows that Et. converges. Therefore we devide the
J

sum in (29) into two parts:

(30)
k £ k

II sk - I y. II ~ I II t . II + I II t. II, (k > Q. ~ 2).
i=O ~ j=1 J j=Q.+I J

For indices i ~ £ we use estimate (27) and as soon as y. is small (of
~

order £) we use estimate (28) (this last restriction gives the condition

for £). From (27), (28) and (29) we obtain

(31)
j-I j-I

II t j II ~ £ (II y. II + I II y. II + I II t. II) ~
J i=O ~ i=l ~

~ £ (6 + 2 )11 YO 11/ (1 - L)

co

d6 + 2) I II y. II
i=O ~

and consequently

(32)
t
I

j=1
II t. II ~ £ (13 + 2>£11 Y II / (I - L)

J 0
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For the second sum in (30) we find, using (28),

(33)
k CIO JI.+I
Lilt. II :5 (8 + E) Lily. II :5 (8 + E) Lily0 11/ (I - L)

j-Jl.+1 J jaJl.H J

Substitution of (32) and (33) in (30) yields

(34) II s k

k
I Yi II :5 (B + 2)lIy

o
ll(EJI. + LJI.+I)/(I - L) •

i-O

JI. +1Now let JI, ~ 2 be the smallest integer such that L :5 E. Then certainly

(35) JI, < (log I/~)/(log I/L) •

Hence form (34) we finally get for k sufficiently large

\I s k

k

L
iaO

/ II YO II
y. II :5 dB + 2){ log I E + I} I _ L
~ log IlL o

1.4. Notations and conventions

Matrices are denoted by capital letters, vectors and numbers by small

letters.

The linear equations to be solved are written as Ax = b, where A is supposed

to be an n x n real (symmetric) positive definite matrix and b is supposed

to be a real (column) vector with n components.

We further mean by

that for all elements A.. < A~. ,
~J ~J

the spectral norm max (II Ax II/II x II) of A,
x,&O _I

the condition number II A11.11 A II of A,

the transposed matrix of A,

the inverse of A,

the unique positive definite matrix satisfying A~.A! = A,

the inverse of A!,

the matrix which elements are defined by (IAI) .. := IA .. I,
~J ~J

unit matrix,

solution vector A-Ib of the linear system Ax = b,
.th fJ component 0 vector x,

Tordinary Euclidean inner product x y of the vectors x and y,

Euclidean norm (x,x)! of vector x,

the

the

the

the

the

A < AI

I
...
x

x j

(x,y)

II xII

II All



a
t

g

fl(')

C
I

Cz

l~ x.1
cg

iseg

trg

rrg

weg
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the base of the floating point numbers in use.

the length of the mantissa of the floating point number.

h 1 · h' . . lsl-tt e re at1ve mac 1ne prec1s1on; £ = 2

the computed value. using floating point arithmetic, of the

expression between brackets.

a constant depending on n and appearing in the upperbound for

the relative error for the computation of Ax (see section 1.3),

a constant depending on n and appearing in the upperbound for

the relative error for inner product calculation (see section 1.3),

the l~mit superior of the sequence {x.} ,
1

the conjugate gradient algorithm defined in section 2.1 ,

the independent start conjugate gradient algorithm defined in

section 2.2

the gradient algorithm defined in section 6.1, using true

residuals (formula 6.4)),

the gradient algorithm defined in section 6.1,.~sing recursive

residuals (formula 6.5»),

Wozniakowski's version of the conjugate gradient method. described

in section 6.1.

In any chapter theorems, lemma's, definitions. algoritms and remarks are

numbered I. 2•••• and formulas are numbered (1). (2) ••••

If we refer to theorem 2 (say) in some chapter, this means theorem 2 of

the same chapter. If we refer to theorem 1.2, this means theorem 2 of

chapter 1.
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2. The cg and iscg algorithm

2.1. The cg algorithm

In this section we formulate the conjugate gradient algorithm (cg) and

sum up some of its most important algebraic properties.

We will follow the notation of Hestens and Stiefel [3J.

Given a system

(1) Ax=b

of n linear equations whose matrix is symmetric and positive definite,

then the cg-algorithm can be formulated by the following statements.

Al_gorithm 1. The conjugate gradient aZgorit;hm:

i:- 0

while r. ; 0 v p. ; a do
1. 1.-

begin

(2)

(3)

a.:= (r.,p.)/(p.,Ap.)
1. 1. 1. 1. 1.

(4) r '=i+ 1· r. - a.Ap. ;
1. 1. 1.

(5)

(6)

b . :.. - (r . + 1,Ap . ) / (p . ,Ap . )
1. 1. 1. 1. 1.

(7) i:= i + 1

end.--
By the inner product we mean the ordinary scalar product (x,y)

T
= x y.

Remark 2,

The formulas (2) and (5) are not the formulas that were used as basis

relations in the cg-algorithm by Hestenes and Stiafel (see [3J, section 5).

Actually, they used the following two relations:
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(8) a. = (r.,r.)!(p.,Ap.) ,11111

(9) b. = (r. 1,r. I)!(r.,r.)1 1+ 1+ 1 1

(These are the formulas (2.3b) and (2.6b) of Reid [7J).

Taking either (2) or (8) for a. and taking either (5) or (9) for b. in
1 1

algorithm I, we obtain 4 different algorithms which algebraically give

the same results. From a numerical point of view however they are different

and in the presence of round off we will only consider the choices (2) and

(5) in this report. 0

Before mentioning some properties of cg we first give a definition.

Definition 3. Let A be a symmetric n x n matrix, then the vectors

x,y E IR
n

are said to be eonjUgate if (x,Ay) = 0 whereas x ~ 0 and

y .;. O.

Note that mutually conjugate vectors are linearly independent, if A

is positive definite.

The most important property of cg is the finite tennination property:

As long as xi ~ x the successive directions PO' PI, ••• ,Pi are mutually

conjugate and consequently x. m X for some i < n.
1

A further property of cg is that x. 1 minimizes \I A! (x - x) lion the
. 1+ ! A

set pass1ng trough X o and spanned by PO' PI"'" Pi' Hence II A (x -

decreases monotonically.

affine

x.1I
1

Another property of cg is that II x-x. II decreases monotonically as i in
1

creases. The following relation holds

(10) 2 2 1 2 -I 2 -! 2II x - x. +1 II = II x - x. II - (II p. II/II A p. \I) (II A r. II + II A r. +1 II )1 111 1 1

based on the fact that x. 1 • x for some1+
gave a proof by forward induction, that is also valid in the Hilbert space

Hestenes and Stiefel [3J gave a proof of (10) using a backward induction

i < n. Kammerer and Nashed [5J

case.

2.2. The iscg algorithm

We now introduce the independent start conjugate gradient algorithm (iscg).
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AlgOl:ithm 4. The indepenCknt start conjugate gradient algorithm:

take Xo ; r O: a b - AXa ;
take Po ~ a

i: a 0

while r. ~ 0 v p. ~ a do
1. 1.-

begin calculate ai' xi +I ' r i +I , bi , Pi+1 from (2), (3), (4), (5)
and (6)

i:- i +

~.

Remark 5.

Apart from the start this method is exactly the same as the cg-method.

Instead of the start PO:- ra:- b - Axa we take r O = b - AxO and Po ~ a
may be chosen arbitrarily. The cg-method is a special case of iscg and

consequently all the properties of iscg also hold for cg. IJ

Remark 6.

It is quite obvious from an induction argument that the residual vector

corresponding with x. is equal to r. for all i ~ 0, i.e.
1. 1.

Since

(11 )

call

tvue

r .... b - Ax. •
1. 1.

r. is not calculated from this formula but from recursion (4) we
1.

r. the reaursive residual vector. The vector b - Ax. is called the
1. 1.

~8idual vector. If exact arithmetic is in use the formulas would

give exactly the same results. From (II) it immediately follows that

(12)
_ -1
x-x. = A r.

1. 1.

This is called the error vector.

Relation (11) also i"'dialtely gives

(13)

This is called the natural error vector. This name will be explained in

remark 9. The natural, rel,ative error is defined by II A~Oc - ~)II/IIA!xlI.
In the remaining part of this chapter we will concentrate on r. and p.

1. 1.

but from the foregoing three relations the results can easily be inter-

preted for x- x .• Note that r .... 0 implies x .... x and r. -+ 0 implies
1. 1. 1. 1.

x. -+ x (i -+ co).
1.

o
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Remark 7.

The main purpose of introducing iscg is the fact that iscg is a one-step

method: for every i, the step from xi' r i , Pi to xi +I ' r i +I , Pi+1 can be

considered as the first step of iscg with start vectors x
1
" r. and p.

1 1

(x. and r. are coupled by (II».
1 1

o

Remark 8.

One could also consider iscg with the formulas (8) and (9) just like we

did for cg. This gives algebraically different algorithms and these algo

rithms have different algebraic properties. We will discuss this in another

paper. D

Remark 9.

The choice (2) for the formula for a. is a natural choice from the following
1

point of view.

The func tion

(14) f(a):=11 Al(x - x. - ap.)11 2 -II Al(x - x.)11 2 - 2a(Al (x - x.),Alp.)
11111

2 l 2 l A 2 2+ aliA p.1I -IIA (x - x.~1 - 2a(r.,p.) + a (p.,Ap.)
1 111 1 1

reaches its minimum value for a = (r.,p.)/(p.,Ap.). Hence x'+ 1 minimizesl 1 1 111
A (x - x) along the line through x. parallel to p., if a. is computed

111

from (2). This also means that Al(x - x.) seems to be the natural norm
1

to measure the error of the approximate solution x.. D
1

2.3. Algebraic properties of the iscg algorithm

We are now ready to prove two important theorems concerning the convergence

of iscg. Most of the results were known already by Crowder and Wolfe [IJ

although they did not write them down explicitely. Our main reason to give

the proofs here is because of the fact that we will use the same kind of

argumentation to prove the convergence of iscg in the presence of round off.

Theorem 10.

Consider iscg and let xO,PO € lR n , PO ~ O. For i ~ 0 we have, if r i ~ 0

A p. ;. 0:
1
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(18)

(19)

- 14 -

-! 2 i 2 -i 2II A r. +1 II + II a. A p. II • II A r. II ,111 1

(Pi+l,APi) = 0 ,

i 2 i 2 i 2
II APi+1 II + II bi APi II '" II A r i +1 II •

Proof.

If r. ; 0 A p. ; 0 then r. I and p. I are well-defined.1 1 1+ 1+
From (2) and (4) it immediately follows that

Together with (6) this yields

(21 ) (r. I'P· 1) = (r. l,r. 1) + b.(r. I'P') = (r·+ I ,r·+ 1) •1+ 1+ 1+ 1+ 1 1+ 1 1 1

From (4) it follows that

(22)

By taking squared norms of left and right hand sides and using (21) we get

(23) -! 2 ! 2 -i 2II A r. + I II + II a. A p. II = II A r. II •111 1

From (5) and (6) it immediately follows that

(24) (P'+ I ,Ap.) = (r. 1,Ap.) + b. (p. ,Ap.) = 0 •1 1 1+ 1 1 1 1

From (6) it follows that

By taking squared norms of left and right hand sides and using (24) we get

(26) o

Remark 11.

Note that if follows from (16) that r. 1 ; 0 implies p. I ; O. Therefore1+ 1+
it follows that if iscg ends then it ends because of the fact that r i +1 = 0

as well as Pi+1 '" O. Consequently the condition Pi+l = 0 could be left out

in the stopping criterion. 0

Theorem 12.

Consider iscg and let xO'PO € lR n , Po ; 0, r O ; O.
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Then

and, if i ~ 1 and r. ~ 0, then
1

(28)

Consequently, either r. == 0 for some i ~ 1 or r. -+ 0 (i -+ =),
1 1

Proof.

Inequalitly (27) follows immediately from (17),

Let i ~ 0 and r. ~ O. Using the definition of a., (17) may be written as
1 1

(29) -6 2 2 6 -6 2 -6 2II A r. 1 II == {I - (r., p .) / (II A p. II II A r.lI) }II A r. II •1+ 1 1 1 1 1

Similarly, from the definition of b., (19) may be written as
1

(30) 6 2 26 6 2! 2II A p. ] II = {I - (r. 1,Ap.) / (II A p. II II A r. 1 II) }II A r. +1 II ,1+ 1+ 1 1 1+ 1

Hence, certainly for i ~ I:

(31 )

Substitution of (16) in (29) and using (30) gives for i ~ I:

(32) II A- 6r. 1 112 ~ {I - II r. 114/ (II Air. II II A- 6r. II) 2 }1I A-! r. 112 ,1+ 1 1 1 1

(33)

From the Kantorovich inequality (see [4J, p. 83)

2
(r,r) ~ 4K

(r ,Ar) (r,A-I r) (K + 1) 2

we finally get for i ~ 1:

(34) -! 2II A r. III1+

which proves (28).
Since (K - I)/(K + 1) < 1 this implies that if r. ~ 0 for all i ~ 1 then

II A-!r.11 -+ 0 (i -+ =) and since II r. II ~ II A+ i 1111 A- i / II then also r. -+ 0 (i -+ 00). 01 111

Remark 13.
_1

From (28) it follows that if no r. == 0 then the convergence of A 2 r . is
1 1

at worst linear. Crowder and Wolfe [ 1 ] gave an example of iscg in which
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the ratio II A-!r. I II/II A-!r. II is constant for all i ~ 0 and hence the finite1.+ 1.
termination property of cg does not hold in all cases for iscg. Obviously

there are initial vectors r O' PO for which the convergence is only linear. 0

Powell [6] proved the following stronger results for iscg.

Theorem 14.

If r. ; 0 for all 0 sis n + 1 then:1.

(35)

(36)

(37)

There exists an R, satisfying 2 s JL < n such that PI"" 'PJL are

mutually conjugate and PI and P~~I are not conjugate.

For all i ~ 0 the directions p. I""'P. n are mutually conjugate,1.+ 1.+'"
but Pi+1 and Pi+JL+I are not conjugate.

Termination never occurs and convergence to the solution occurs

at a linear rate.

Remark IS.

The condition ~ ~ Z in theorem 14 immediately follows from (18) which states

that always (PI,APZ) m O. If PI"",Pn are mutually conjugate then rn+1 = 0

since xn+1 then minimizes II Ai (x - x) II on the affine set passing through Xl

and spanned by the n independent vectors PI •••• ,Pn • Therefore R, < n in

theorem 14. 0

Remark 16.

The most important conclusion of theorem 14 is that iscg either terminates

within (n + I) iterations or convergence to the solution occurs at a linear

rate. Powell also shows that in the general case. when both r O and Po are

arbitrary, then the linear rate dconvergence is usual. We think that this

last fact has been overlooked in the literature. For instance, it means

that if during the cg iterations r. and p. are computed exactly in all steps1. 1.
exept from one, then we may expect the convergence to be only linear. 0

Remark 17.

Obviously iscg generally does not end and hence for practical implementation

one needs an extra stopping criterion for the case where r. + 0 and p. ; 01. 1.
for all i. We will not formulate a stopping criterion here. 0
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Remark 18.

We finally mention the fact that (14) does not hold for iscg and that

there exist initial vectors r
O

and Po for which the error vector II x - xi II

doe. not decrease monotonically. 0
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3. Round-off analysis of one step of the iscg algorithm

3.1. Introduction

In the presence of rounding errors one of the most pleasant features of

the conjugate gradient method, the finite termination property, does not

hold anymore. For ill-conditioned linear systems the iterand x is notn
even a reasonable approximation of x. For this reason cg became quite Un-
popular. It was Reid [7J who brought the method back to the attention of

numerical analists. For reasonably well conditioned systems cg, when

considered as an iterative method, appears to give very satisfactory

results after less than n steps. The convergence rate of cg strongly

depends on the condition number of the matrix involved. Therefore in

practice one uses cg in combination with a preconditioning method. We

will not discuss this here.

Although it turns out that for ill conditioned systems x may be a bad
n

approximation of i, continuing the iteration steps ultimately gives values

of x. that are reasonable approximations of x and the recursive residuals
1

r. even tend to zero.
1

Up to now, no literature has been published explaining this behaviour. In

this report we will prove that in the presence of round-offr. tends to
1

zero, not only for cg but also for iscg.

Although cg, as a special case of iscg, has stronger algebraic properties

than iscg itself, we believe that for ill conditioned systems the numerical

behaviour of cg and iscg is very similar, except from the first few

steps.

One effect of round-off is that orthogonality relations like (r.,p.) = 0
1 J

(i > j) and (p.,Ap.) = 0 (i ~ j) are no longer true and that the decay
1 J

of orthogonality for increasing Ii - jl destroys the stronger algebraic

properties that are based on induction arguments. However, neither of the

relations of theorems 2.10 and 2.12 depend o~ any inductive hypothesis

for their validity and therefore we may expect them to hold quite accurately

even in the presence of round-off. Stated differently, the approximate

validity of these relations is not affected by the loss of orthogonality

and hence we may expect that the linear convergence of exact iscg is not

disturbed drastically by rounding errors.

3.2. Round-off error analysis

In this section we will investigate the numerical counterparts of several

of the algebraic relations of iscg, mentioned in section 2.3. Especially
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we are interested in (2.16) , (2.29) and (2.30),. since these are the

key-points for the proof of theorem 2.12.

We will closely follow the lines of the proof of theorem 2.10. The

capital characters D, E, F and G, appearing in the error analysis, will

always refer to matrices describing particular computations as mentioned

in section 1.3. By a., b., r., r. I' P.. p. I we will always indicate
1 1 1 1+ 1 1+

the numbers and vectors as they are computed and stored by iscg. For

clearness' sake, (r.,p.) is the exact inner product of the stored vectors
1 1

r. and p., where as fl«r.,p.» denotes the computed value of this inner
1 1 1 1

product. In the formulation of the lemma's and theorems we will not always

mention the restriction that r. and p. are supposed to be nonzero during
1 1

the computations.

We are primarily interested in studying how the matrix condition number K

influences the various error estimates. We did not make much effort to

determine the smallest possible numbers appearing as numerical factors

in the various bounds. Surely many of them can easily be lowered.

In the whole error analysis that will be carried out in this section, we

have not ignored terms of any order in E.

We are now ready to prove

Theorem I.

Consider iscg with arbitrary initial vectors rO'PO ; O.

Suppose

(I) 16E(C
I

+ 2C2 + I)K < 1 •

Then for i ~ 0 :

(2)

(3)

(4)

where

-! 2 2! -! 2 -! 2IIA r. 111 = {J - (r.,p.) 1(11 A p.1I IIA r.lI) + 1l.}IIA r.1I ,
1+ 1 1 1 1 1 1

! 2 2 ! ! 2 ! 2
II APi+ I II = {I - (ri + 1' Ap i ) I (II APi II II A r i + 1 II) + Pi+ 1}II A r i +I II ,

(5) Illil S E(13C 1 + 3C2 + 38)K ,

(6) 1Pi+l l S dCI + 2C2 + 25)K ,



- 20 -

Proof. The three combinations (2)(5), (3)(6) and (4)(7) will be proved

in the three separate parts I, II and III.

Part I.

We first consider the computation of a .•
1.

(8)

where

(9)

fl«r.,p.» .. «I + D!)r.,p.) .. (r.,p.) + a. ,
1. 1. 1. 1. 1. 1. 1. 1.

Ia. I .. I(D! r. , p . ) I SliD! II II r. II II p. II s e: C211 r. II II p. II s
1. 1. 1. 1. 1. 1. 1. 1. 1.

1 -1 1s e:C
2

K II A r. II II A p. II •
1. 1.

Further we have

(10)

where

(11 )

fl«p.,Ap.» III «I + D'.')p.,(A + E.)p.) .. (p.,Ap.) + 8. ,
1. 1. 1. 1. 1. 1. 1. 1. 1.

18. I .. I (D'.'p. ,Ap.) + (p.,E. p.) + (D'.'p.,E. p. ) I s
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

We used the fact that from (1) it follows that e:C 1 S 1.

So finally

(12)

where

(13)

Hence

(
f1(r. ,p.) )

a. III f1 1. 1. ..
1. H(p. ,Ap.)

1. 1.

ly.1 s e: •
1.

(
r.,p.)+a.)

1. 1. 1. (1 )+ y. ,
1.

(p. , Ap .) + 8.
1. 1. 1.

(14) a." (r.,p.)/(p.,Ap.)+ oa. ,
1. 1. 1. 1. 1. 1.
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where oa. satisfies
1

(15) (p.,Ap.)oa. - {a.+y.(r.,p.)-B.(r.,p.)/(p.,Ap.)+a.y.}/{J+tL/(p.,Ap.)} •
111 111 1 111 1 111 111

From (1) and (II) it follows that

(16) Ie. / (p. ,Ap.) I ~ e: (C 1 + ZCZ)K ~ I •
1 1 1

Since I(r.,p.)1 ~ IIA- I r. II II Alp. II we find from (I), (9), (11), (13), (15)
1 1 1 1

and (16)

(17) I (p. , Ap . ) 0a. I ~ Ze: (C I + 3C
Z

+ 2) KII A-I r. II II AIp. II •
11111

Note that by a similar derivation we can find the upperbound

(18) I (p. ,Ap. )oa.1 ~ 2e:(C
1

+ 3C2 + Z)KII r. 1111 p. II •
11111

For the computation of r
i

+
1

we have

(19)

Hence

(I + G~+I)r'+1 • r. - (I + F~ )a. (A + E. )p ••
11111 11·

where

(21 ) lIor·+ 1 1l ~ lIa.E.p.1I + lIa.F~Ap.1I + IIG~ Ir. 111 + lIa.F!E.p.1I ~
1 1 1 1 1 1 1 1+ 1+ 1 1 1 1

2
~ e:C IIIAlllla,p.1I + e:lla.Ap.1I + e:llr'+11I + e: CIIIAlllla.p.1I ~

1 1 111 1 1

We are now ready to prove (2)(5).

It follows from (20) that

(22) A-Ir + a Alp A-I~r • A-Ir, ,'+1 . . - u. 11 1 1 1+ 1

and hence, by taking squared norms of left and right hand sides we get

(23)
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From (14) and (20) we get

(24) 2
a.(r.+I,p.) • a.(r.,p.) - a. (p.,Ap.) + a.(or.+I,p.) =
111 111 111 111

2
= -(r.,p.)oa. - (p.,Ap.){oa.) + a.(or.+I,p.) •

11111 1 111

Substitution in (23) gives the counterpart of (2.17 ) in the presence

of round off:

(25)

2 . -) -~ 2
+ 2{(r.,p.)oa. +(p.,Ap.)(oa.) +(or. I,A r.+ I )}-IIA or. )11.

1 1 1 1 1 1 1+ 1 1+

Bringing II a.Alp. 11
2

to the right hand side and substituting (14) for a.
1 1 1

gives the counterpart of (2.29 ):

(26)

where

(27)

-6 2 2 6 -6 2 -~ 2II A r • I II .. {I - (r., p .) I (II A p. II II A r. II) + ll.}11 A r. II ,
1+ 1 1 1 1 1 1

From (17) we get

(28) 2 2 ~ 2(p.,Ap.)(oa.) .. l(p.,Ap.)oa.1 IliA p.ll- S
1111111

since it follows form (I) that 4e(C
I

+ 3C
2

+ 2)K < ).

From (21) we get

(29) (ori +1,A-Iri +
l
) S II A- 6 11 II ori+11I1I A- 6r i +

1
II S

S dIlA- 6r. 11I2+(CI+2)lIa.A6p.III1A-~r'+III)K
1+ 1 1 1

and

(30)

-6 2 6 2
S dliA r. III + (C 1 + 2)lIa.Ap.II)K,

1+ 1 1
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since it follows form (I) that 2EK < 1 and 2E(C I + 2)K < I. In order

to determine a bound for Ill. I we need to bound II A-1r.+
1

1I and II a.Alp. II
1 ~ ~ 1 ~

in terms of II A- 2 r. II.
~

Fro~ (17) it follows that

(31) I I I -1 1 II I i 2(r.,p.)oa. - (A r.,Ap.) (p.,Ap.)oa. /IIAp.1I s
~ ~ ~ ~ ~ 1 ~ ~ 1

Substitution of (3.35 ), (3.36 ) and (3.38 ) in (3.32) gives

(32)

or

(33)

-l 2 1 2 -l 2 -1 2IIA r. III + lIa.Ap.1I s IIA r.1I + 6E(C I + 3C2 + 2)KIIA r~1I +
~+ 1 1 1 L

Since. from (I) we have 2EK < 1, 2E(C
1

+ 2)K < 1 and 6E(C I + 3C2 + 2)K < I

it follows that

(34) -l 2 l -l l 2 -l 2311 A r . +I II - 211 a. A p. II II A r . I II + 311 a. A p. II S 811 A r. II
~ 1 1 1+ 1 1 1

and from this quadratic inequality it easily follows that

(35)

and

(36)

From (28), (29), (30). (35) and (36) we find for (27):

(37) Illil S E{(C 1 + 3C2 + 2) + 2(4 + 4(C I + 2» + (4 + 4(C 1 + 2»}K S

S E(13C I + 3C2 + 38)K ,

which proves (5).
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Part II.

The now following proof of (3)(6) is entirely analogous to the proof of

(2)(5) given above.

We first consider the computation of b.•
1

(38)

where

(39)

H«r.+I,Ap.» ... «I + D'!')r.+I,(A + E.)p.) ... (r. I,Ap.) + T.
1 1 1 1 1 1 1+ 1 1

IT·I ... I (D'."r·+I,Ap.) + (r. I,E.p.) + (D'."r. I,E.p.)I:o;
1 1 1 1 1+ 1 1 1 1+ 1 1

:0; € C211 r. I II II Ap. II + € CIII A II II r. I II II p. II + €
2

C1C211 A II II r. + I II II p. II ::;
1+ 1 1+ ~ 1 1

+2C
2

)IIAllllr·
l

llllp.II:O;
1+ 1

~ ~+ 2C2 )K11 A r i +1 II II A Pi II •

Hence, with (10)

(40)

where

(41 )

(
H(ri+I,APi»)

b .... - fl ...
1

H (p. ,Ap. )
1 1

Iv·1 ::; €
1.

(
r. I ,Ap.) + To)

1+ 1 1 (I + v.)
1

(p. ,Ap.) + a.
111

From this it follows that

(42) b .... -(r.+I,Ap.)/(p.,Ap.) - ab.
1 1. 11.1. 1

where ob. satisfies
1.

(43) (p.,Ap.)ab. = {To +v.(r.+I,Ap.)T.V. +
111 11.1 1. 1. 1

- a.(r.+I.Ap.)/(p.,Ap.)}/{1 + a./(p.,Ap.)} •
1 1 11.1. 111

Since I (ri +1,APi) I :0; II A~ri+1 II II A~Pi II we find from (I), (II), (16), (39).

(41) and (43)

For the computation of p. 1 we have
1+
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Hence

where

(47) lI<5p. 11I~lIb.F'.'p.II+IIG'.' IP . 11I~€lIb.p.II+€llp. III~1+ 1 1 1 1+ 1+ 1 1 1+

We are now ready to prove (3) and (6).,

It follows from (46) that

(48)

and hence, by taking squared norms of left and right hand sides we get

(49)

From (42) and (46) we get

(50) 2
b·(p_+I,Ap.) • b.(r_+I,Ap.) + b.(p.,Ap.) + b.(op. I,Ap.) =1 1 1 1 1 1 1 1 1 1 1+ 1

2
• (r. I,Ap.)<5b. + (p.,Ap.)(<5b.) + b.(<5P'+I,Ap.) •1+ 1 1 1 1 1 1 1 1

Substitution in (49) gives the counterpart of (2.19) in the presence of

round-off:

(51) IIA~Pi+1112 + IIbiA~Pi 11
2

• IIA~ri+11I2 +

2
+ 2{(ri+I,Api)<5bi + (Pi, AP i)(<5b i ) + (<5Pi+I, AP i+I)} +

~ 2
- IIA <5Pi+11I •

Bringing IIb.A~P' Ir to the right hand side and substituting (42) for b.
1 1 1

gives the counterpart of (2.30 ) :

~ 2 2 ~ ~ 2 ~ 2
(52) IIA Pi+11I = {I - (ri+I,Api) /(11 A Pi liliA ri+llI) + Pi+l}IIA r i +1 11

where

(53) 2 ~ 2 ~ 2= [(p.,Ap.)(<5b.) + 2(<5p. 1,Ap. I) - IIA <5p. III ]filA r'+1 111 1 1 1+ 1+ 1+ 1
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From (44) we get

(54) (p .•Ap.)(Ob.)2. !(p .•Ap.)ob.\2/1IA!P.1I2
:5

1111111

222! 2
:5 16£ (C

1
+ 2C

2
+ J) K IIA r

i
+

1
11 :5

since it follows from (I) that 16£(C
I

+ 2C
2

+ I)K < I.

From (47) we get

and

(56) ! 2 2 i i· 2II A opi + 1 II :5 £ 01 b i APi II + II APi+1 II) K :5

2 i 2 i 2
:5 2£ (lIb.A p. II + IIA p. III)K :5

1 1 1+

since it follows from (I) that 2£K < I.

In order to determine a bound for \p. II we need to bound II b. A!P. II and
1+ 1 1

II Aipi+1 II in terms of IIA!ri + l lI.

From (44) it follows that

(57)

Substitution of (54). (55) and (57) in (51) gives

(58) II Aipi+1 11
2

+ IIbiA!Pi1l2 :5 II A1ri + 1 11
2

+ 8£(C I + 2C2 + I)KIIAi r i +1 1I
2

+

or
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(59)

! 2
:s; {I + 10e:(C I + 2C2 + I)dll A ri+111 ,

and just like for (33) it follows that

and

From (54), (56), (60) and (61) we find for (53)

(6Z) 1Pi+1 1 :s; e:{(C I + 2C2 + I) + 16 + 8}K :s; e:(C 1 + 2C2 + 25)K ,

which proves (6).

Part III.

Now we finally prove (4)(7).

From (46) we get

From (14) and (20) we get

(64) b.(r.+I,p.) = b.{(r.,p.) - a.(p.,Ap.) + (or.+I,p·)}111 111 111 1 1

= -b.(p.,Ap.)oa. + b.(or.+I,p.) •1 1 1 1 111

Substitution in (63) gives

(65)

where

(66)

(r. I'P· l)=(r. I,r. I) - b.(p.,Ap.)oa. + b.(or. I'P.) + (r. l'oP'+ 1)1+ 1+ 1+ 1+ 1 1 1 1 1 1+ 1 1+ 1

2
A.+ I = {-b.(p.,Ap.)oa. + b.(or. I'P.) + (r. l'oP' I)}/Ilr. III •1 1 1 1 1 1 1+ 1 1+ 1+ 1+

From (17) and (61) we get

(67) lb. (p. ,Ap.)Oa·1 :s; 2e:(C 1 + 3CZ + 2)KIIA-!r.llllb.A!P. II :s;1 1 1 1 111
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From (21), (35). (36) and (61) we get

(68) Ib.(or.+ 1,p.)1 ~ II A-I II lIor'+ 1 1I11b.Al p. II ~111 111

(70)

From (36), (47). (60) and (61) we get

Substitution of (67). (68) and (69) in (66) gives

I\+1 1 ~ e:(8C 1 + 12C2 + 64)KII Ai r i +1 1111 A-I rill III r i +1 11
2 ~

~ e:(8C
1

+ 12C
2

+ 64)K3/2I1A-lri II/I1A- l r
i

+
1

1I •

Remark 2.

If we would have ignored terms of order e: 2 in the presence of terms of

order e: then, instead of (53) we would have taken

and from (55), (60) and (61) it then follows that

(72) 1Pi+l1 ~ 16e:K I •

This upperbound differs from (6) by a factor of order Ki • The difference

is caused by the fact that the second order terms in (53) are of order

2 2 h' h' d d h . 1e: K w 1C g1ve or er e:K un er t e assumpt10n e:K < •

Remark 3.

It follows from (2)(5) and (3)(6) that (2.29) and (2.30) hold quite

well in the presence of round-off. Especially it follows from (2)(5)

that IIA-lri+II1/I1A-iri II never exceeds 1 + e:(l3C I + 3C2 + 38)K.

From (4) (7) it follows that in the presence of round-off (2.16) may be

seriously perturbed if IIA- i r.II/I1A- i r. III is large. Stated differently,
1 1+ i i

relation (2.16) holds reasonably well unless II A- r
i
+

1
11 « II A- r i II.

o

o

o
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4. The convergence of r i

4.1. Introduction

Considering the proof of theorem (2.12 ) we may expect that in the presence

of round-off the approximate validity of (2.16 ) expressed in terms of r.
1.

and p. instead of r'+ 1 and p. I' and the approximate validity of (2.29
1 1. 1+

and (2.30 ) will imply the approximate validity of (2.32) and consequently

the approximate validity of (2.34) • Together with remark (3.3) this gives

the basic idea for the proof of the convergence of r.: II A-1r.+ 1 11/1l A-1r. II
111.

is less than (K - l)/(K + I) unless IIA- 1r.II/IIA- 1r. III is very small, or,1 1.- _

stated more precisely, if the natural error vector does not decrease by

the expected rate in step i+1 then it did decrease at least by the square

of the expected rate in step i and i+t together. .

Since, clearly, IIA- 1r. tIl/IIA-lr.1I depends on IIA-1r. II/I1A- 1r. til, we first
1+ 1 1. 1-

consider two successive steps of iscg.

From this we will prove the linear convergence of iscg. Once more we mention

the fact that for simplicity we often estimate rather roughly the factor

appearing in the various bounds and that we ignore the possibility of under

flow and overflow. Again in lemma's and theorems we suppress mentioning the

fact that we suppose that no r. = 0 or p. = o.
1 1

The capital characters D, E, F and G and the symbols a., b., r., r. l' p. and
. 1. ~ 1.. 1.+ 1.

Pi+1 are used under the same conventions as mentioned in section (3.2). No

terms in E are ignored.

4.2. Two steps of iscg

The influence of the rate IIA- 1r
t

Il/IlA-1roll on the rate IIA- 1r 2 111I1A-1r 1 11 is

expressed by the following lemma.

Lemma 1. Let 16E(C1 + 2C2 + I)K < 1 and consider two steps of iscg with

arbitrary initial vectors rO'pO p O. Then we have

where
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Proof. From (3.2) we know

and

From (3.3) we get

and

Together with (3.4 . this gives

(7)

Hence, using the Kantorovich inequality (2.33)

\ (rl,P I ) ~
2 2 2

(8)
4K (I + AI) 4K (I + AI)

+ 'PI
IAlpIIIIIA-~

~ = ,
(K + I) 2 (I + PI) (K + I) 2

where

(9 ) 'P I : =

2
-4K (I + AI) P I

2 •
(K + I) (I + PI)

But

2
4K(I + AI)

also ------~2~-------~ I and consequently
(K + I) (I + PI)

Substitution of (8) in (3) yields

(II)
II A- i r

2
112

IIA-1r
t
lr ~
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where

From (3.7) we have

and consequently

Now (1), (2) follows from (11), (12) and (14).

Theorem 2.

Consider two steps of iscg with arbitrary initial vectors rO'PO +O.

Let 0 < a < 1 and

(15) La := {a + (I - a)«K - 1)/(K + 1»2}1 •

If

then at least one of the following two inequalities is true:

D

(17)

( 18)

Proof. Since aL~ < I the restriction of lemma (1) certainly is satisfied

and from (3.Z) it follows that

( 19) II A-I r 2 112III A-I r 1 112 S 1 + I15 I I S 2 •

If IIA- 1r 2 Ir/IlA-1roIr S L: then we are ready. If IIA-lr2I1Z/IIA-lro liZ > L:

then it follows from (19) and the fact

IIA-1rz,r/IlA-1ro Ir = (1IA-lrzlr/IlA-lrI112) (Ij-'A-1r
1

Ir/IIA- l r
o

Ir) that

(20) IIA-IrI112/I1A-lroIl2 > IL~ •
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Substitution in (2) gives

(21 )

-2since La > I.

Hence, form (16), Ilil s aK- I and then it finally follows from (I) that

(22) II A-~r2 11
2 s {(K - 1) 2/ (K + 1) 2 + aK-I HI A- ~ r 1 112 s

s {(K - 1) 2/ (K + 1)2 2 -~ 2+ 4aK/(K + l) IIA rill

2 -i 2= Lall A r I II •

Remark 3.

Since iscg is a one-step-method we also may conclude from theorem 2 that

if l06£(C I + 2C
2

+ 8)K2
< aLa then for any k ~ 1 at least one of the

following two inequalities is true:

o

(23)

(24)

This means that if in a certain step the natural error vector does not

decrease by a factor La' then still it did decrease by a factor L~ in

the last two steps together. It is easily seen .that the assertion given

by (23). (24) is equivalent with the assertion that for every k ~ 2

S L2 or. e
o

Remark 4.

Note that La + (K - I)/(K + 1) if a ~ o. This is the algebraic convergence

rate of (2.28 ) Relation (16) shows that it depends on the value of £K 2

how nearly this theoretical rate of convergence can be reached.

4.3. The linear convergence of r
i

The linear convergence of r. is expressed by the following theorem.
1

o
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Theorem 5.

Consider iscg with arbitrary initial vectors rO'PO + O. Let 0 < 8 < 1

and let L
8

be defined by (15). If

(25)

then we have for i ~ 0:

Proof.

For i .. -I inequality (26) is trivially satisfied since L8 < I. For i .. 0

it follows immediately from (3.2)

Now let k ~ I and suppose (26) holds for all -I ~ i ~ k - I.

If IIA-~rk+lIl/IlA-~rkII ~ La then

(27) IIA-~rk+lIl/IIA-~roll" (IIA-~rk+lIl/IlA-~rkll)(IIA-~rkIl/IlA-~roll)~

k-l -~
~ L

8
(1 + £(13C

1
+ 3C2 + 38)K)Le IIA rOll"

k -~.. (1 + £(13C I + 3C2 + 38»LeIiA r OII •

If IIA-lrk+lII/IlA-~rkll > Le then, from (24), certainly IIA-lrk+III/IIA-lrk_l" ~ L~
and therefore

(28) IIA-~rk+III/IIA-!roll" (IIA-~rk+IIl/IlA-~rk_III)(IIA-lrk_III/IIA-!roll)~

~ L~(1 + dl3CI + 3C2 + 38)K)L~-21IA-!ro II =

= (1 + d 13C
1

+ 3C2 + 38)K)L~IA-lroll •

Hence, in both cases, (26) also holds for i = k and (26) follows by

induction.

Remark 6~

If K ~ 2 then Le ~ 1/9. Hence, if we are willing to make the additional

assumption that K ~ 2 then (16) and (25) certainly are satisfied if

D

(29) D

We now come to the most important result of this section.
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Theorem 7.

Consider iscg with arbitrary initial vectors rO.PO ~ 0 and let

(30)

then

(31) r. -+ 0
1.

and p. -+ 0
1.

(i -+ co) •

Proof.

In theorem 5 take a € (0,1) such that 106£(C I + 2C2 + 8)K2 ~ eL~. This

is possible since aL~ is a continuous function varying from 0 to I.

Then, since Le < I it follows from (26) that IIA-~ri+III-+O (i -+ co) and con

sequently r. -+ 0 (i -+ co).
1.

From (33), (36) and (30) it follows that

(32) ~ 2II A p. 1 II ~
1.+

~ 2
~ 211 A r. I II ,

1.+

and consequently p. -+ 0 (i -+ co).
1.

o
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5. The convergence of xi

5.1. Introduction

In the two foreg~ng chapters we disregarded the computation of x .• The
1

convergence of the computed recursive residual to zero does not guarantee

the convergence of x. to x since in the presence of round-off r. is dif-1 . 1

ferent from the true residual r.:= b - Ax., since the computational errors
1 1

occuring in the implementation of (2.3 ) and (2.4) are rather independent.

Especially, a perturbation on x. I does not effect r. I. From this one can
1+ 1+

see that assuming only that the machine has stpong arithmetic in the sense

of Dekker [2J, i.e. multiplication, division, addition and subtraction

have a low relative error, bounded by € times the magnitude of the exact

result (see (1.4 ) and (1.5 », is not sufficient to guarantee the uniform

boundedness of r. - r .• For in that case the error in the computation of
1 1

Xi + 1 can be of order dI xi II at each step. Then the difference r i + 1 - r i + 1
can increase by Ell A II II x. II at each step and this ultimately equals

1

£11 A II II xII.

From his experiments Reid [7J found that r. and r. depart from each other
1 1

very slowly. He showed that any errors that occur in the evaluation of p.
1

and a. do not make a direct contribution to the difference between the
1

computed recursive residual r i and the actual value of b - Axi +
l

•

In the next section we will examine how much the exact true residual of

x. I and the computed recursive residual r. 1 can differ in order to
1+ 1+

obtain an estimate for the asymptotic behaviour of the natural error

vector A!(x - x. I).
1+

5.2. An estimate for the natural relative error

In this section we use the results of chapter 4 with e:= ! and L:= L!

as defined by (4.15) Taking another e would give similar results.

The error analysis is carried out under the same conventions as mentioned

in section 3.2 and no terms in € are ignored.

Theorem I.

Consider iscg with initial vector x
O

:= 0 and arbitrary initial vector

Po 1 o.



- 36 -

If

then there exists an i O > 0 such that we have for all i ~ i O:

(2)

Proof.

Let r. be the exact true residual of x.:
1 1

(3) r.:- b - Ax ••
1 1

Note that Xo .. 0 implies r
O

.. b - rO and A-~ro .. A~X - A-iro .
We have

(4) IIA!Oc - xi +l ) II .. IIA- i r i +1 1I ~ IIA- i (ri +1 - r i +l ) II + IIA- i r i +1 1I •

Since eL~ ~ i if e - i, inequality (I) implies the validity of (4.25 ) and

consequently we may use the result (4.26). Rather than (4.26) we will

use the weaker result:

(5) II A-i II < 2Li ll Aix"'" ,r. I -1+ (i ~ 0) •

Hence, in (4), IIA-!r. III tends to zero and therefore we will concentrate
_~ '" 1+

on Yi+l:- A (ri +1 - r i + I ).

The computed vector x. I satisfies (see (1.8) and (1.7 » :1+

Hence

(7)

where

(8)

X1'+ 1 .. x. + a.p. + ox. I '1 1 1 1+

II ox.+11I .. II-G. IX. I + F.a.p. II $ Ell x. III + £11 a.p. II •1 1+ 1+ 1 1 1 1+ 1 1
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Further

to.echer with recursion (3.20) this yields

or

Hence, since r
O

... rO' we obtain the basic formula

i+l
A- l l5r -

i+l
I(12) Yi+l ... - l: l: A I5xg. •

R.-I
t. t·1

The convergence of the first sum follows from the following consider

ation.

From (3.21.), (3.35) and (3.36) we may conclude for t ~ J:

(13) I1l5rR, II ~ dllA-1rt II + (C I + 2)11 at-:IAlpt._J II)K 11IA1 1I ~

~ 2e:(C1 + 3)KIIIAIIIIIA-lrt...,111 •

This immediately gives

and together with (5) it yields for t ~ 2:

Hence

i+l m

(16) L IIA-lcSr~ II ~ 2e:(C1 + 3)KIIA1xIlO + 2 r tR....2) ~
t =1 t-2

:;;; 6e:(C
J

+ 3)KIIAl xIIO - L)-I •

Since generally x. I will not tend to zero, the convergence of the second
1+

sum at the right-hand side of (12) will not follow from (8). However, from

lemma 1.2 . and formula 1:. 7' we may conclude that xi +1 also satisfies
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and therefore also

(18) lIox1.'+I11 = II (H1.' + F. + H.F.)a.p.1I s;1. 1. 1. 1. 1.

s; (8 + e: + (8 + e:)e:)lla.p.11 s; 38I1a.p.1I •1. 1. 1. 1.

Since it follows from (3.35) and (5) that for i ~ 1

(19)

OQ

where L < 1, the sum I II a 'Po II converges. Consequently, from (18) we
t=1 t",

may conclude the convergence of the second sum in (12).

We now have come to the basic idea for estimating Yi+1 in
i+l
I IIA!ox

t
ll use (8) for small R, and use (18) as soon as Iia p II/IIA!ill

tel t t

is of order e:.

The last index for which we use (8) will be denoted by N. Let N ~

first be arbitrary. Then it follows from (12) that for i ~ N:

First we estimate /I Y
N

/I using (8). To do so we derive a recursion for Yi

in terms of i and cr .•1.
We have

(21) II x. 1 II s; II x. 1 - ill + II illS; /I A-! II II A! (x. 1 - i) /I + II xII s;1.+ 1.+ 1.+

s; II A-! II II A-! ri +1 II + II xII s; II A-! II (II yi +I II + II A-! r i +I II) + II xII •

(22)

From (19)

(i ~ 0) •

(23) II a. p. II s; 411 A-! II II A! i II ,1. 1. (i ~ 1) •
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Substitution of (22) and (23) in (8) yields

Hence it follows with (II)

or

(26)

Backward repetition from N to 0 of this recursion gives, since YO = 0,

N
(27) II YN II:;; l (I - EK!r~' -N-I (II A-16rt II + 7EK i ll Ali II) •

.t.e 1

1 1 ~-N-I 1 -N 2NEK I
Since EK 2 < I we know that (I - EK 2 ) :;; (I - EK 2

) < e and hence

we have

(28)

We now return to (20).

. 2NEK i
S1nce e > 1 we may conclude from (20) and (28) that for i ~ N ~ I:

We now use (18) to estimate the last sum in (29).

From (18) and (19) we find

(30)
i+1
l IIAi ox II:;; 12K i allAl ill ~ Lt -

2 :;; 12K i allA1illiN- I (I - L)-I •
t =N+ 1 R, R, "N+ I

Substitution of (16) and (30) in (29) yields

(31) II y. ]11:;;
1+

2NEK1 Ie (7NEK + 6E(C
I

+ 3)K(1

12K1aLN- I (I - L)-IIIAiill •
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N-INow let N be the smallest integer such that L ~ E.

Then

(32) N ~ (log I/E)/(log I/L) + 2 ,

Since L • (1 - 2K/(K + 1)2)~ and K ~ 1 it follows

(33) L < 1 - K/(K + 1)2 , -1
(log I/L) > (16K)

and consequently

(34)

(35)

Note that

(l - L)-1

N ~ 16K log I/E + 2 ~ 17K log I/E ,

1/2 3/2NEK ~ 17K Elog I/E •

~ 2NEK~
£ log I/E ~ 4/e so that, with (1), 2NEK < 1 and e < 3. Also

S 4K.

Substituting the various inequalities in (31) yields for i ~ N:

From (5) and our choice of N we find for i ~ N:

(37)

Substitution of (36) and (37) in (4) proves (2),

Remark 2.
2Wozniakowski [8 ] proves, neglecting terms of order E , that his version of

the conjugate gradient algorithm (wcg) produces vectors x. such that
~

ultimately

o

(38)

where C is a constant depending on C
1

and C2 ,

From (38) it follows that

(39)
IIA!Oc-x.)1I
---T-""-~--. c' 3/ 2

~ EK
IIA~xll

This result essentially differs from our result (2), (50) by a factor

max (K~,log I/E), From our assumption (1) it does not follow which of

the two constants K~ and log I/E is the largest,
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the

(1 - L)-I. which is of order K
2 (see (16».

go

from the first N terms of the sum I A-~~XJ/,'
)/,"'1

difficult to find a set of data that confirmWe think that it will be

Analytically the factor K~ is caused by the fact that our estimate for
go

I A!~rt contains a factor
9,-1
This factor is not a consequence of the rather complicated way we bounded

go !I A- ~Xt·
)/, " I
The factor log I/E comes

difference between the estimates (2) and (39) for respectively iscg and wcg. 0

Remark 3.

We may expect that ultimately the computed true residual ?:= fl(r.) is
1 1

at least of order Ell All II ill. Since r. tends to zero as i tends to infinity.
1

the difference between the computed true residual and the computed recursive

residual ultimately will be at least of order Ell A II II ill. 0

Remark 4.

Let I ~ j ~ n and let xj denote the jth component of the vector x. Suppose

there exists an i a and a positive real number a such that Ixil ~ a for all

i ~ i a• Since fl(a.p.) ~ a (i ~ go) then certainly there exists an i) such
• 1 1 .

that I (fl(a.p.»JI < (€/6)lx~1 for all i ~ i
l

• From (1.16) we then may
1 1 • . 1

conclude that x~ I = x~ for all i ~ i). Consequently. if all components
1+ 1

of x are nonzero and if € is small enough. then after a certain number of

iterations the vectors x. do not change anymore.
1

o

Remark 5.

If we take an arbitrary Xo # 0 1n theorem 1 then r O # r O and consequently
_1 _1

A 2 rO # A 2P
O

' Yo # O. We will study what difference it makes for the proof

of theorem 1 given earlier if Xo # O.

Instead of (5) we have in that case

(40)

and (12) becomes

(41 )

Following

i+) I

Yi+l = yO -J/,~)A-20rt

the lines of the proof

i+) I

'i. A 20xtt=)
of theorem we obtain:

instead of (24) :
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instead of (27) :

(43) IIYNII ~ ( I-E:K!)-~IYOII +

instead of (36)

(44)

For the computation of r
O

we have

(45) rO=(I + F) (b - (A + E)x
O

) = r
O

+ F(b - Ax
O

) - ( I + F)Ex
O

•

1 _1 1
Hence, since IIA 2x

O
il ~ IIA 2rO il + IIA 2xli we obtain using (I)

-1 _1 1 1
(46) IIYoll = IIA 2(r

O
- r

O
)1I ~ dliA 211 II rOll + 2CIK211A211 IIxoll)~

~ 2 E: (C
I

+ I)K (IIA-!r
o

ll + IIA!xlI ) •

Consequently, again using (I),

(47)

Hence, certainly

_1 1 _1
(48) IIA 2rOll ~ IIA 2XlI + 211A 2rOll

and from (40) for i ~ N

(49) - ! 2 ~ (II AL~ll - IIIA 2r . III < <. 1\1 + 211A ira) .1+ -

So finally from (4), (44), (46), (47), (48) and (49) we get

(50)
1 1 3/2 1

IIA 2(x - x
i

)1I ~ 48d[I3K 2 + 2(C
I

+ 3)K + 8 log I/E:K JIIA 2xII +

+ [(13 log lit. + 213)K 3 /
2

+ 4(C
I

+ 3)K
2

J IIA!(x - x
O

)\\} •

1 I

Hence, if IIA 2(x - x
o

) II ~ CIIA 2XII for some reasonably small C > a then (50)

essentially is the same as (2). This certainly is the case if
I I

IIA 2xO li ~ ellA 2X II (and especially if X
o

= 0).

(51)
I

IIA 2 (x - x )11a
----~1--~-- ~ 48E:{2[C

I
+ 3 + (c + 1)I3JK + [(8 + 13C)Jlog I/E: +

II A2 xII

+ 4C(C I + 3)J K
3/ 2 }
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6. Final comments

6.1. COmparison with Wozniakowski's results

In this section we compare Wozniakowski's [8] results and our results. In

order to be in a position to ignore factors of the type (I + O(e» Wozniakowski

uses inequalities of the type fee) ~ gee), which means that

fee) ~ g(e)(1 + O(e». Most of his results are expressed in terms of this

sort of inequalities.

We will use the same notation in this section. In order to be able to

report on Wozniakowski's results and to discuss the relation to our results,

we define the following two gradient aLgorithms.

Algori thIn 1 ,

take Xo ;
r O:= b - AxO
i:= 0

while r. rf 0 do
1

begin

( 1) a ' • (r. ,r. ) / (r. ,Ar. ). ,
1 1 1 1 1

(2) xi + 1:= x. + a.r.
1 1 1

(3) {either b - Axi + 1
.,

r '.. I'
(4) 1+

- a.Ar.or r.
1 1 1

(5) i:= i + 1

end.

If the true residual formula (3) is in use then this algorithm will be

referred to as true residuaL gradient aLgorithm (trg) and if the recursive

formula (4) is in use, then this algorithm will be referred to as

reaursive residuaL gradient algorithm (rrg). Ofcourse , algebraically

there is no difference between these two versions.

Wozniakowski considers first trg with round-off and then uses the results

for the analysis of his version of the conjugate gradient algorithm

(weg) ,

For trg he proves the following basic result
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Theorem 2.

If

then the sequence {x.} computed by trg satisfies
1

(7) Hm II A! (x - Xl') II :::; 3e: (5C I + I )KII A! II Hm II x. II
i -+00 i -+00 1

However, from this theorem it does not even follow that Hm II x. II is
1

bounded.

Since

(8)

we may conclude from (7) that

Consequently, if additionally to (6) also

(10) 3e:(5C
I

+ I)K3/ 2
< 1

is satisfied. then it follows that

(11 )
! 3e:(5C I + I)K ! _.

Hm II A (x - x.) II ~ 3/2 II A II II x II III

1 1 - 3e:(5C
I

+ I)K

Hence in that case lim x. is bounded.
1

From (11) it follows that ultimately

(12)

if (6) and (10) are satisfied.

Then under the same conditions one can prove that ultimately for the

computed true residuals
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Wozniakowski [8J does not contain results on rrg.

We made an error analysis of rrg, carried out under the same conventions

as used in chapters 3 and 4. Note that part I of the proof of theorem 3.1

a180 holds for rrg replacing all p. by r .•
1 1

We obtained the following result.

Theorem 3.

Let 0 < e < 1 and let

then the sequence {r.} computed by rrg satisfies
1

(15) -1 -}
1/ A r. I II S Lell A r. II ,1+ 1

where Le is defined by (4.15)

Consequently r. ~ 0 (i ~ ~).
1

From this it follows, using similar arguments as in chapter 5, that

ultimately for rrg , with Xo = a ,

(16)

if

!
IIA2 (i - x.) II

! 1 S3E{(J19
IIA ill

3/2 2log I/e + 176)K + 25(C I + 3)K } ,

Remark 4.

Note that restriction (10) and (17) are of the same order in e and K but

the estimates (12) and (16) differ by a factor K!. This is due to the fact

that, just like in (3.21) the estimate for or. of the recursive residual
1

r. contains a factor K! for rrg (see also remark 5.2) . 0
1.

Remark 5.

If we compare the restriction (5.1) for iscg and the restriction (17)

for rrg, then we see that (17) is weaker in the sense that it contains
3/2 2a factor K instead of K • Restriction (5.1 ) for iscg is a direct

consequence of restriction (4.16 ) in theorem 4.2 which contains a

factor K
2

. Tracing the proof of theorem 4.2 we observe that this
2

factor K is caused by the fact that the estimate for Y
I

contains a factor K.
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Considering the proof of lemma 4.1 we notice that the factor K appearing

in the estimate for YI is a consequence of the factor K in the estimates

for ~\ and PI'

However, for the proof of theorem 3 we did not use the estimate (3.5)

for ~i' but from (3.26 ) and (3.27 ) in part I of the proof of theorem

3.1 we proved for the rrg-case the validity of the inequality

(18)

under the restriction 16e(C\ + 2C2 + 2)K < I,

where

From this theorem 3 easily follows.

Since in rrg the vectors p. do not occu~ the constant p. is irrelevant
1 1

in this case. o

Remark 6.

From (15) it follows that decreases at least by a factor L at each

step for rrg, whereas for iscg we were only able to prove the weaker result

expressed in remark 4.• 3 ° 0

Having indicated the difference between the use of true and recursive

residuals for the gradient algorithm, we now come to the difference between

Wozniakowski's version of the conjugate gradient algorithm (wcg) and our

version.

The algorithm wcg is closely related to trg.

In weg each step consists of two parts:

First the algorithm computes zi+1 from xi by one step trg, i.e.

(20)

(21)

(22)

r 0= b - Ax. ;iO 1

a. : = (r., r . ) / (r. ,Ar. )
11111

z. := x. + a.r .•
1+1 1 1 1
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Hence z. 1 minimizes IIAi(i - z) II along the line z = x. + ar .•1.+ 1. 1.
Secondly, the next approximant xi +1 is computed from

(24) b '=. I·1.+

Hence xi +1 minimizes II Ai (i - x) II along the line x = zi+1 - bYi+I' Note that

in (18) as well as in (22) true residuals are taken. If no round-off occurs

cg give the same sequence

a better approximant to i

shows that, numerically,

then wcg and

that x. I is1.+
Wozniakowski

{x.}. Algebraically it is trivial
1.

than z. I' whatever y. I might be.1.+ 1.+
X. 1 is nearly (apart from terms of1.+

order e) as good as zi+l.

For zi+1 he uses the results for trg. Then he obtains

Theorem 7.

If

(26) 2e(C I + 2C2 + 8)K < I

then the sequence {x.} computed by wcg satisfies1.

(27) lim IIAi(i - x.) II ~ 3d5CI + 2)KIIAi II Hm IIx.1I •1. 1.

In a similar way as we concluded from theorem 2 the validity of (12), we

conclude from theorem 6 that wcg produces x. that ultimately satisfy1.

(28)

if (26) holds and if, moreover,

(29) 3e(5C I + 2)K3/ 2
< 1 •

Looking only at factors Ki appearing in the convergence results for the

estimates for the natural relative error and in the restrictions, we corne

to the following brief comparison for the various algorithms
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the same restriction; the natural relative error is a factor

K! larger for rrg,

rrg and iscg: the restriction is a factor K! stronger for iscg; the same

natural relative error,

wcg and trg : the same restriction; the same natural relative error,

wcg and iscg: the restriction is a factor K! stronger for iscg; the natural

relative error is a factor K! larger"for iscg.

6.2. A class of iscg algorithms

Wozniakowski [8J considers a class of conjugate gradient algorithms. This

class consists of algorithms that are the same as his original version of

the conjugate gradient algorithm except from the computation of the constant

b i appearing in the original algorithm {see (2.4 ». Instead of taking the

value of the expression (24) the algorithms compute and use constants b.
1.

satisfying
,.,
b. = b. (I + ob.) ,

1. 1. 1.

where lob. I ~ 1 and b. is given by (24). He shows that his convergence
1. 1.

results for wcg are valid for this whole class.

In imitation of Wozniakowski we define for every M ~ 0 a class ~M of iscg

algorithms. An algorithm ~ belongs to ~M if ~ is defined by the statements

of iscg (see section 2.2) except from the computation of b .• The actual
1.

values of b. now only must satisfy
1.

b. =
1.

(r·1,Ap.)
1.+ 1.

( A ) (I + ob.) ,p., p. 1.
1. 1.

with lob. I ~ M. It is quite obvious that (3.2 ) and (3.5 ) also hold for
1.

every ~ E ~M since part I of the proof of theorem is only based on

the formula (2.2 ) and (2.4) It is easily seen that the conjugacy

relation (P'+l,Ap.) = 0 does not hold if ob. ~ 0 and therefore the name
1. 1. 1.

conjugate gradient algorithm in fact is incorrect. All the results for

iscg, given in the chapters 3, 4 and 5, can be generalized for ~M' We

only formulate the following generalization of theorem 4.5 •

Theorem 4.

Let M ~ 0, ~ E ~M and let rO'pO ~ 0 be arbitrary initial vectors.

Let 0 < e < 1 and
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If

then the sequence {r.} computed by ~ satisfies
1

o
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