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Abstract

We perform the rounding error analysis of a conjugate gradient algorithm,
using recursive residuals, for the computation of the solution of a system
of linear equation Ax = b, where A is a n x n positive definite matrix.

We prove that (when the occurence of underflow is ignored) these recursively
computed residual vectors r, tend to zero if 106 ¢ (C1 + 2C2 + 8) K2 < 1.
Here k is the condition number of A in the spectral norm, € is the relative

machine precision of the floating point arithmetic and C, and C, are

2
constants depending on n and connected with the calculation of Ax and with
the calculation of inner products.

This result not only holds if the initial conjugate direction vector Py is

taken equal to the initial residual vector r.:= b - Ax0 but also if Py is

chosen arbitrarily. °
Furthermore we show that the computed sequences {ri} and {pi} converge at
worst at a linear rate and that this rate is bounded by the convergence
rate of the steepest descent method.

For the computed sequence {xi} we are only able to prove that ultimately
||A£(§ - xi)H/ﬂAéillis of order e(KB/Zlog 1/e-+K2), where X is the solution
of Ax = b.

Similar results are proved for the gradient algorithm, using recursive

residuals.

AMS classification scheme 1979 65G05 65F10
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Introduction

Introduction

We study a classical conjugate gradient method (cg) for the solution of

a linear system Ax = b, where A is an x n positive definite matrix.

It is one of the variants of the cg-method developed by E. Stiefel and

M.R. Hestenes [ 3]. In the classification of Reid [ 7] it is the cg-algorithm
given by the formulas (2.3a), (2.4), (2.5b), (2.6a) and (2.7) of -that

paper. Especially we mention here our computation of the residual vector ..
Instead of actually computing the residual vector r, = b - Axi at each step
for computation of the conjugate direction vector P;» We use for i 2 0 the

recursion relation (2.5b)

r. = r, - a.Ap.
i+l 1 1 P1

The vectors T, which are obtained by using this updating formula will be
referred to as recursive residual vectors. In exact arithmetic these vectors
are equal to the residual vectors b - Axi at each step.

Algebraically cg produces the solution X = A-lb after at most n steps. In

the presence of round-off however the n-th computed vector x is not even a
reasonable approximation of X if we have an ill-conditioned system. This is
caused by the fact that the theoretical orthogonality relations are disturbed
in the presence of round-off. However, regarded as an iterative method for

the solutzon of large and sparse systems, continuing after more than n itera-
tione, the method has several very pleasant features, that already have been
menticned by Reid [7].

Unti) now only a few theoretical analyses have been carried out to explain

the pumerical behaviour of cg. Wozniakowski [8] is the only one who gives a
full ervor-analysis of a conjugate gradient algorithm. It is a version of

the cg-method that is not contained in the paper of Stiefel and Hestenes [ 3 ]
or in the paper of Reid [ 7 ]. One important difference with our cg-version

is that Wozniakowski's version uses true residuals r, = b - Axi.

We consider an implementation of cg in floating point arithmetic with relative
machine precision e, We will show that the computed recursive residual vectors
r, and the computed conjugate gradient vectors P; tend to zero if

1068(01 + 2C2 + S)Kz < 1. Here ¢, and 02 are constants depending on the

!
implementation of the calculation of Ax and of inner products respectively.

x is the condition number of the matrix A. We even prove that

|

(n izA"griHai < (1 +e(136, + 3¢, + 38)) Lt IIA_%roll



where L is a number close to (x-1)/(k+1), which is the convergence rate
of the steepest descent method (= gradient method). Hence the numerical

convergence of cg is at worst linear (as far as the convergence of r, is

concerned).

We will prove that the approximants X; ultimately satisfy

I ad (x; = %)

(2) < 6e{(119 log 1/e + 173).<3/2 +25C, + 3?3,

Y
We realize that this last result is rather poor in that it involves a factor
k“. We ascribe the appearance of this factor to the fact that we use recursive
residuals. An analysis of the gradient algorithm with recursive residuals

reveals the same factor.

The numerical experiments that we have carried out, confirmed the limit-
properties r, > 0, p; 0 (i - @) and the convergence rate expressed by
(n.

Since we have executed only a rather limited number of experiments, we
dare not say whether the factor K2 in the estimate (2) is realistic or

not. We will report on these numerical experiments in another paper.

1.2 Summazz

We summarize the contents of the paper.

In chapter 2 we formulate the cg-algorithm and we briefly state some basic
algebraic properties of the algorithm that are important for the error
analysis. We also consider the so-callled independent start conjugate
gradient method (iscg). This method differs from cg only by the fact that
Py is not coupled with I, but can be chosen freely. Hence cg is a special
case of iscg and we will concentrate on the last method. We will derive
some basic results for iscg. Most of these results were known already by
Crowder and Wolfe [1], but they did not write them down explicitely. We
also report on results of Powell [6] in connection with iscg.

Chapter 3 deals with the rounding error analysis of one step of iscg. We

only consider the computation of r, and Piyre We here mention the fact

+1 +1
that in this report we have not ignored terms of any order in €.
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In chapter 4 we prove the convergence to zero of the computed vectors r,
and P;- Furthermore we will show that the speed of convergence can be
expressed by (1).

The computation of X. .

1+]
not hold anymore in the presence of round off, we need to analyse the

is studied in chapter 5. Since r, = b - Axi does

difference between r, and b - Axi. This analysis is carried out in chapter 5
where we finally prove (2).

In the final chapter we consider the gradient algorithm for the computation
of the solution of Ax = b. We sum up the results of Wozniakowski [8] for

the case when true residuals are used and we give new results for the case
when recursive residuals are used. We also compare our results for iscg
with Wozniakowski's results for his cg-method. Besides we introduce a class
of conjugate gradient methods for which we can prove similar results on

numerical behaviour as in the iscg-case.

Preliminary on rounding errors and floating point arithmetic

Throughout this report we assume that the algorithms are performed in
floating point arithmetic. The floating point numbers will be assumed

to have base B and a mantissa with t digits (B 2 2, t 2 1). Then every

real number in the floating point range of the machine can be represented
with a relative error which does not exceed the relative machine precision e
which is defined by ¢ = iBl-t.

Furthermore we assume that we have a machine with proper rownding arithmetic
in the sense of T.J. Dekker [2].

This means that the execution of any arithmetical operation @ (this can be
+, =, %, /) on two machine numbers a and b gives a machine number fl(a & b)
such that there is no other machine number closer to the exact result of
aeb,

Consequently the following two relations hold

(3) fl(a®b) = (a®b)(l + &),
(4) (1 + n)fl(aeb) =aehb
where both

(5) el se, |n| <e.

Hence, adding or subtracting two machine vectors x and y and multiplying
a machine number a and a machine vector x gives computed vectors fl(x * y)

and fl(ax) satisfying



(6) fl(x = y) = (I + Fl)(x ty),
(7 fl(ax) = (I + F2) ax ,

(8) (I+G6DPflxzy)=x*ty,
(9) (T + Gz)fl(ax) = ax ,

where Fl’ F2’ Gl and G2 are diagonal matrices satisfying

(10) |F]| <el, |F2| < el , |G1| < el , |G2| < el
and consequently
(1) IIFIH <€, IIFZH <e, IIG]H < e, IIG2H Sie .

We suppose that the computation of Ax is implemented in such a way that
the computed vector fl(Ax) satisfies

(12) fl1(Ax) = (A + E)x ,
where E is a matrix such that

(13) el < eCNIAH

The constant Cl depends only on n.
We assume that the algorithm for inner product calculation of two machine

vectors x and y satisfies
(14) £1((x,y)) = ((I + D)x,y) ,
where D is a diagonal matrix such that

(15) IDll < EC2 .

The constant C2 also depends only on n.

For many straightforward implementations Cl = n3/2 and C2 = n.
Remark 1.
Note that we do not put a restriction on the range of the exponent of the
machine numbers. Hence, we neglect the possibility of underflow or overflow.

]
If two vectors are added then the rounding errors occuring in this operation
can be expressed by (6) and (8). Another, rather unusual way to express this
rounding errors is given in the following lemma. It will be of special interest
if one vector is much smaller than the other vector. We will meet this

situation in chapter 5.



Note that it follows from the assumption that we have proper rounding
arithmetic that if a and b are machine numbers and if |b| < (e/B)|a|

then
(16) fl(a +b) = a .

From this we can prove the following lemma.

Lemma 2. If x and y are machine vectors then
(17) fl(x+y) =x+ (I+Hy,

where H is a diagonal matrix satisfying

(18) |H| < 8 + )T,
and hence
(19) lHI < B + €

Proof. Let fl(x +y) = x+ y + 8s and let x? denote the jth component
of x.

if |yj| < (e/B)|xj| then if follows from (16) that
(20) st = --yj .

Consequently, in that case

@ les?] = |y .

1 |y3| = (e/8)|x}| then it follows with (3)

(22) |dsj| < e|xj + yj| < (B + e)|yj| .

Hence in both cases |dsJ| < (B + s)|yJ

Defining Hjj:= ssd, Hij =0 (i # j) completes the proof.

As an illustration of the use of lemma 2 we prove the following theorem.

A similar result will be derived in chapter 5.

Theorem 3. Let 3 (i 2 0) be machine vectors satisfying

(23) Iy s Lluyoll,

where 0 < L < 1 and let Sk (k 2 0) be computed from



(24) s0:= Yo i
for k z 1 do s, := fl(s, _, * yk) .
Then we have
HyOH
1 -L

k
—— 1og ]/€
(25) limlls, - ] y.lse(®+ 2){ + 1}
K k jop 1 log 1/L

Proof. We have for k = 1:

(26) 8, = 8§ +

where, from (6):

(27) Htkﬂ < e(Msk_IH + Hka)

and, from lemma 2:

(28) Htk“ < (B + e)Hka .

From (26) we conclude

IZ( lf
(29) s, — y, = t.
. k i=0 1 j:] J

From (23) and (28) it follows that th converges. Therefore we devide the

sum in (29) into two parts:

AT 1
(30) e, = J wils J Megl+ § o Well, (k> o= 2).
DT =P R R =S

For indices i < £ we use estimate (27) and as soon as s is small (of
order ¢) we use estimate (28) (this last restriction gives the condition
for £). From (27), (28) and (29) we obtain

-1 -

Iolly, i+ § e,y se@®+2) ] ly,l

(31) le. < elly, Il +
J 1 =0 i=1 i=0

< e(B + 2)Hy0H/(l - L)

and consequently

L
(32) Lot i< e+ Duyll/(-1)
=1 3 °



For the second sum in (30) we find, using (28),

k -]
(33) ] ledls @+e)] lylis @+ eor iy ya -1
jugel 3 jeg el J

Substitution of (32) and (33) in (30) yields

k L+1
(34) s, = I y;ls (B+2ly,liter + L

i=0

Y (-1 .

Now let £ 2 2 be the smallest integer such that L“l < €. Then certainly
(35) 2 < (log 1/e)/(log 1/L) .

Hence form (34) we finally get for k sufficiently large

Iyl

$ log 1/¢
s, - ) yill < e® + 2){ * lly—t

150 log 1/L

Notations and conventions

Matrices are denoted by capital letters, vectors and numbers by small
letters.

The linear equations to be solved are written as Ax = b, where A is supposed
to be an n X n real (symmetric) positive definite matrix and b is supposed

to be a real (column) vector with n components.

We further mean by

A the transposed matrix of A,

Afl the inverse of A,

A* the unique positive definite matrix satisfying Ag.A% = A,
A the inverse of A*,

|A| the matrix which elements are defined by (IAI)ij:= |Aij|’
A< A' that for all elements Aij < Aij R

I the unit matrix,

X the solution vector A-]b of the linear system Ax = b,

xj the jth component of vector x,

(x,y) the otdinary Euclidean inner product xTy of the vectors X and y,
hx the Euclidean norm (x,x)£ of vector x,

hall the spectral norm max (lAx|l/llxl) of A,

x#0 -1
K the condition number [lAllA "Il of A,



B the base of the floating point numbers in use,

t the length of the mantissa of the floating point number,

€ the relative machine precision; € = %B]_t

£1(*) the computed value, using floating point arithmetic, of the

expression between brackets,
C1 a constant depending on n and appearing in the upperbound for
the relative error for the computation of Ax (see section 1.3),
C2 a constant depending on n and appearing in the upperbound for

the relative error for inner product calculation (see section 1.3),

lim x, the limit superior of the sequence {xi},
cg the conjugate gradient algorithm defined in section 2.1 ,
iscg the independent start conjugate gradient algorithm defined in

section 2.2 ,

trg the gradient algorithm defined in section 6.1, using true
residuals (formula 6.4)),

rrg the gradient algorithm defined in section 6.1, uysing recursive
residuals (formula 6.5)),

weg Wozniakowski's version of the conjugate gradient method, described

in section 6.1.

In any chapter theorems, lemma's, definitions, algoritms and remarks are
numbered 1, 2, ..., and formulas are numbered (1), (2),...

If we refer to theorem 2 (say) in some chapter, this means theorem 2 of
the same chapter. If we refer to theorem 1.2, this means theorem 2 of

chapter 1.
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2. The cg and iscg algorithm

2.1, The cg algprithm

In this section we formulate the conjugate gradient algorithm (cg) and
sum up some of its most important algebraic properties.

We will follow the notation of Hestens and Stiefel [31].

Given a system
(1 Ax = b

of n linear equations whose matrix is symmetric and positive definite,

then the cg-algorithm can be formulated by the following statements.

Algorithm 1. The conjugate gradient algorithm:

take x r,:=b - Ax

0’ Po*T To 0’
i:= 0 ;

while r. $# 0V P; # 0 do

(2) a;i= (r;,p;)/(p;»4p;) 3

(3) Xie1PT X Y AP

(4) ToeiT T T a;Ap.

(5) boe= = (x, 1s8p,)/ (p;sAP) 5
(6) Pie1’= Tivg ¥ bipi ;

(7N it=1i + 1

end.

. . T
By the inner product we mean the ordinary scalar product (x,y) = x'y.

Remark 2.
The formulas (2) and (5) are not the formulas that were used as basis
relations in the cg-algorithm by Hestenes and Stiefel (see [3], section 5).

Actually, they used the following two relations:
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(8) a, = (ri.ri)/(pi.Api) ,

) by = (e Tie

)/(ribri) .

(These are the formulas (2.3b) and (2.6b) of Reid [71]).

Taking either (2) or (8) for a; and taking either (5) or (9) for b, in
algorithm 1, we obtain &4 different algorithms which algebraically give

the same results. From a numerical point of view however they are different
and in the presence of round off we will only consider the choices (2) and

(5) in this report.
Before mentioning some properties of cg we first give a definition.

" Definition 3. Let A be a symmetric n x n matrix, then the vectors

X,y € R™ are said to be congugate if (x,Ay) = O whereas x # 0 and
y ¢ 0.

Note that mutually conjugate vectors are linearly independent, if A

is positive definite.

The most important property of cg is the finite temination property:
As long as X # X the successive directions Pg» Pyse+esP; are mutually

conjugate and consequently X, = X for some i < n,

(X - x)Il on the affine

4
+1 |

and spanned by’po, Pys+++s P;. Hence A

A further property of cg is that x; minimizes Il A

set passing trough x X - xiH

0
decreases monotonically.

Another property of cg is that IIX - xiH decreases monotonically as i in-

creases. The following relation holds

2 2

ciate, 1

(10) 1% = x,, 1P = 1% - x, P - dp, WAy, DZ@A™E,

T.
1+] i+]

Hestenes and Stiefel [3] gave a proof of (10) using a backward induction
based on the fact that X = X for some i < n. Kammerer and Nashed [5]
gave a proof by forward induction, that is also valid in the Hilbert space

case-

The iscg algorithm

We now introduce the independent start conjugate gradient algorithm (iscg).
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Algorithm 4. The independent start conjugate gradient algorithm:

take xo H r0:= b - Ax
takepo#o;

ii= 0 ;

0 *

while r, #0vV P; # 0 do
begin calculate as X
and (6) ;

it= 1 + 1

+1? Tieq? Py Py from (2), (3), (&, )

end ,
Remark 5.
Apart from the start this method is exactly the same as the cg-method.
0= b - Ax, we take r; = b - Ax, and p #0
may be chosen arbitrarily. The cg-method is a special case of iscg and

Instead of the start Ppi= T
consequently all the properties of iscg also hold for cg. O

Remark 6.
It is quite obvious from an induction argument that the residual vector
corresponding with x, is equal to r, for all i =2 0, i.e.

(1) r, = b - Axi .

Since r. is not calculated from this formula but from recursion (4) we
call r, the recursive restidual vector, The vector b - Axi is called the
true residual vector, If exact arithmetic is in use the formulas would

give exactly the same results. From (11) it immediately follows that
(12) X-x, =A r, .

This is called the error vector.

Relation (11) also immedialtely gives
P - 2
(13) A% (R xi) A r. .

This is called the natural error vector. This name will be explained in
remark 9. The natural relative error is defined byl A%(i - xQH/HAiﬁﬂ.
In the remaining part of this chapter we will concentrate on r, and P;
but from the foregoing three relations the results can easily be inter-
preted for X - x;. Note that r, = 0 implies X, = X and r, > 0 implies

X, > % (1 +» =),
i ( )
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Remark 7.
The main purpose of introducing iscg is the fact that iscg is a one-step

method: for every i, the step from X;» T;s Py O X, can be

i+1° Ti+1? Pisg
considered as the first step of iscg with start vectors Xi» T and p;

(xi and r, are coupled by (11)).

Remark 8.

One could also consider iscg with the formulas (8) and (9) just like we

did for cg. This gives algebraically different algorithms and these algo-
rithms have different algebraic properties. We will discuss this in another

paper.

Remark 9.

The choice (2) for the formula for a; is a natural choice from the following
point of view.

The function
(14) £(a):=] A}z - x; = ap I =1ak - x 2 - 2aad (s - xi),A%pi)
v aliatp g ? anat@ - x 07 - 280 ,p) + Plp; )

reaches its minimum value for a = (ri'pi)/(pi’Api)’ Hence X minimizes
Ai(i - x) along the line through X, parallel to P;» if a; is computed
from (2). This also means that A*(i - xi) seems to be the natural norm

to measure the error of the approximate solution X .

2.3. Algebraic properties of the iscg algorithm

We are now ready to prove two important theorems concerning the convergence
of iscg. Most of the results were known already by Crowder and Wolfe [1]
although they did not write them down explicitely. Our main reason to give
the proofs here is because of the fact that we will use the same kind of

argumentation to prove the convergence of iscg in the presence of round off.

Theorem 10.

Consider iscg and let X3Py € RD, Py # 0. For i 2 0 we have, if r, # 0
APy % 0:

(15) (r;p1oP5) =0

(16) a1 Pia) = (Tt o
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-4 2 b2 ot 2
an Iha ri+1" +|IaiA Pi" IlA riH ,
(18) (pi+l’Api) =0,
} 2 i 2 - 3 2
(190 natp, ¥+ ubatp P =nate P
Proof. >

If =, ¥ 0 A P; # 0 then r.,, and Pi,; 8re well-defined.

1
From (2) and (4) it immediately follows that

(20) (ri+]’pi) = (ri'pi) - ai(pi’Api) = 0.

Together with (6) this yields

@ (CiapPiag) = (Fppariyy) * 0y (g 1opy) = (rgoriyy) o

From (4) it follows that

-} i 8
(22) A ri+l + aiA P; A r, .

By taking squared norms of left and right hand sides and using (21) we get

2

-4 2 bR = att
(23) Il A "+ NaAp, 17 = 1A 2r, 07 o

Tivl
From (5) and (6) it immediately follows that
(24) (Pi+lsApi) = (ri+]sApi) + bi(Pi;Api) =0 .

From (6) it follows that

(25) Aép - biAip = Air .

i+1 i i+l

By taking squared norms of left and right hand sides and using (24) we get

12

H 4 4
(26) Ia Py I+ b atp 1P = lla ro P

Remark 11.
Note that if follows from (16) that i # 0 implies Pi4 # 0. Therefore

it follows that if iscg ends then it ends because of the fact that L 0

as well as Piyy = 0. Consequently the condition Piy] = 0 could be left out

in the stopping criterion.

Theorem 12.

. . n
Consider iscg and let XPg € R, P, ¢ 0, Ty # 0.
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Then

27) nAf*riu < uA‘*rou ,

and, if i 2 1 and T, # 0, then

T I P N P R N R P

Consequently, either r, = 0 for some i 2 1 or r; + 0 (1 + =),

Proof.
Inequalitly (27) follows immediately from (17).
Let i 2 0 and r, # 0. Using the definition of a;, (17) may be written as

(29) 187 e, P = 1= e aatp AT P

Similarly, from the definition of bi’ (19) may be written as

2

(30) labp,, 1 = (1 - o, Api>2/alA*piu||A*ri+ln>2H|A5ri+lu .

i+]?

Hence, certainly for i 2 1:
o< qat
(31) Il A piH <lla riH .

Substitution of (16) in (29) and using (30) gives for i 2 1:

32y, P s (- nefsaake i nZna e

From the Kantorovich inequality (see [4], p. 83)

(r,r)z > 4K

(33) -1 2
(r)Ar) (r,A 'r) (x + 1)

we finally get for i 2= 1:

(34) ia e, 2

i+1

IA

(k - 1)2/(K + 1)2||A._£ri||2

which proves (28).
Since (x - 1)/(x + 1) < 1 this implies that 1f r. # 0 for all i 2 | then

[N irill + 0 (i » ©) and since HriH A iII HA r; I then also r, > 0 (i » =),

Remark 13.
[ — -1
From (28) it follows that if no r, = 0 then the convergence of A 2ri is

at worst linear. Crowder and Wolfe [ 1 ] gave an example of iscg in which

O
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the ratio UAfiri+]H/"A-£riH is constant for all i 2 0 and hence the finite
termination property of cg does not hold in all cases for iscg. Obviously

there are initial vectors r for which the convergence is only linear.

0* Po
Powell [6] proved the following stronger results for iscg.

Theorem 14,

If r, # 0 for al1 0 £ i < n + 1 then:

(35) There exists an % satisfying 2 <2< n such that PyseeesPy are

mutually conjugate and P, and Py, are not conjugate.

(36) For all i 2 0 the directions Pj,p2*rPs,, are mutually conjugate,
but Pis and P;4g4p are mot conjugate,
(37) Termination never occurs and convergence to the solution occurs

at a linear rate.

Remark 15.
The condition & 2 2 in theorem 14 immediately follows from (18) which states

that always (pl.Apz) = 0. If Pyse«++»p, are mutually conjugate then LI 0

since X then minimizes lA°(X ~ x) Il on the affine set passing through x

and spanned by the n independent vectors PyseeesPye Therefore £ < n in

1

theorem l4.

Remark 16.
The most important conclusion of theorem 14 is that iscg either terminates
within (n + 1) iterations or convergence to the solution occurs at a linear

rate. Powell also shows that in the general case, when both r, and P, are

0
arbitrary, then the linear rate of convergence is usual. We think that this
last fact has been overlooked in the literature. For instance, it means

that if during the cg iterations r, and p; are computed exactly in all steps

exept from one, then we may expect the convergence to be only linear.

Remark 17.
Obviously iscg generally does not end and hence for practical implementation
one needs an extra stopping criterion for the case where r. ¥ 0 and p; # 0

for all i. We will not formulate a stopping criterion here.
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Remark 18.
We finally mention the fact that (14) does not hold for iscg and that
there exist initial vectors r, and Py for which the error vector X - xiH

0
does not decrease monotonically.
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3. Round~off analysis of one step of the iscgfalgorithm

3.1. Introduction

In the presence of rounding errors one of the most pleasant features of
the conjugate gradient method, the finite termination property, does not
hold anymore. For ill-conditioned linear systems the iterand X is not
even a reasonable approximation of X. For this reason cg became quite un-
popular. It was Reid [7] who brought the method back to the attention of
numerical analists. For reasonably well conditioned systems cg, when
considered as an iterative method, appears to give very satisfactory
results after less than n steps. The convergence rate of cg strongly
depends on the condition number of the matrix involved. Therefore in
practice one uses cg in combination with a preconditioning method. We
will not discuss this here.

Although it turns out that for ill conditioned systems X ~may be a bad
approximation of %X, continuing the iteration steps ultimately gives values
of X that are reasonable approximations of X and the recursive residuals
r, even tend to zero.

Up to now, no literature has been published explaining this behaviour. In
this report we will prove that in the presence of round-off r, tends to
zero, not only for cg but also for iscg.

Although cg, as a special case of iscg, has stronger algebraic properties
than iscg itself, we believe that for ill conditioned systems the numerical
behaviour of cg and iscg is very similar, except from the first few
steps.

One effect of round-off is that orthogonality relations like (ri’pj) =0
(i > j) and (Pi’Apj) =0 (i # j) are no longer true and that the decay

of orthogonality for increasing |i - j| destroys the stronger algebraic
properties that are based on induction arguments. However, neither of the
relations of theorems 2.10 and 2.12 depend on any inductive hypothesis
for their validity and therefore we may expect them to hold quite accurately
even in the presence of round-off. Stated differently, the approximate
validity of these relations is not affected by the loss of orthogonality
and hence we may expect that the linear convergence of exact iscg is not

disturbed drastically by rounding errors.

3.2. Round-off error analysis

In this section we will investigate the numerical counterparts of several

of the algebraic relations of iscg, mentioned in section 2.3, Especially



- 19 -

we are interested in (2.16) , (2.29) and (2.30),. since these are the
key-points for the proof of theorem 2.12, .

We will closely follow the lines of the proof of theorem 2.10. The
capital characters D, E, F and G, appearing in the error analysis, will
always refer to matrices describing particular computations as mentioned
in section 1.3 . By a.y bi’ Tis Tiogs Pys Py e will always indicate
the numbers and vectors as they are computed and stored by iscg. For
clearness' sake, (ri,pi) is the exact inner product of the stored vectors
r, and P;» where as fl((ri,pi)) denotes the computed value of this inner
product. In the formulation of the lemma's and theorems we will not always
mention the restriction that r, and p, are supposed to be nonzero during
the computations.

We are primarily interested in studying how the matrix condition number «
influences the various error estimates. We did not make much effort to
determine the smallest possible numbers appearing as numerical factors

in the various bounds. Surely many of them can easily be lowered.

In the whole error analysis that will be carried out in this section, we
have not ignored terms of any order in €.

We are now ready to prove

Theorem 1.

Consider iscg with arbitrary initial vectors 5Py # 0.

Suppose

(n 16e(Cl + 202 + NDek<l.

Then for i 2 0 :

- 2 2 - 2 -4 2
2 187k 1P = 0= e aatp nna e n? a7

4 2 _ 0 2 } } 2 } 2
(3) A%, (17 = {1 = Gz, oA ) /AP I A E, (D7 + o, WAPE, I
(4) (T, apil ) = (1 + A, )llE, 1P

i+1°Fi+] i+l i+l ’
where
(5) luil < e(13¢, + 3C, + 38)x ,
(6) lpi4y] s €(Cp + 20, + 25)¢ ,
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2

3/2, ,~1/2 -1/
(7) |*i+1| S e(8C, + 12C, + 64)™ A Tr WA T

Proof. The three combinations (2)(5), (3)(6) and (4)(7) will be proved
in the three separate parts I, II and III.

Part I.

We first consider the computation of a,.

= ' =
(8) fl((l’isPi)) (I + Di)ri:Pi) (ri.Pi) + ai. ’
where
= ! ' <
9) la;| = [@r;p )| <UDl Mle Hlip s eClie, llp Il <

< ecpchia e nnatp 1.

Further we have

(10) fl((PioAPi)) = ((I + D;)Pio(A + Ei)pi) = (PipAPi) + Bi ’
where
(11) |Bi| = |(D2P1.Api) + (py,E;py) * (DYp,,E;p.)| <

2 2 2
eCle P; I Ap, i+ eC]llAll Npill + € C]CZIIAII ||pi|| <

A

2 o2 .
s e(C, + ZCz)HAﬂllpiH < e(C, + 2C2)KHA piH
We used the fact that from (1) it follows that eC1 < 1.
So finally
f1(r.,p.) (r.,p.) + a;
(12) a, = fl( k- ) - ( 12 1)(1 +v))
fl(Pi:APi) (PivAPi) + Bi
whare
(13) lYiI e,
Hence

(14) ai = (ri’pi)/(pi’Api).+ Gai ’
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where Gai satisfies

From (1) and (11) it follows that

(16) |8,/ (p;shp,)| s €(C, + 2C)k < § .

since | (r;,p,)| < 1A e Aty Il we gind £rom (1), (@, (1), (1), (3)
and (16)

-4 4
17) I(pi,Api)Gai| < 2e(c, + 3C, + 2)dlAPr IA%p .

Note that by a similar derivation we can find the upperbound

(18) |(pi,Api)6ai| < 2£(C] *3C, + Z)AIriH HpiH .

For the computation of T.e Ve have

v - - '
(19) (1+ Gi+l)ri+l ri (1 + Fi)ai(A + Ei)pi ¢
Hence
(20) Tigp =% aiApi + 6ri+l ’
where
] 1 ] 1]
(21) H6ri+llls "aiEipill+ HaiFiApiH + "Gi+1ri+1" + "aiFiEipi" <
2
< eClHAHIIaipiH + eHaiApiH + eHri+lII+ € CIHAIIHaipiH <
s elatiaa e, 1+ c, + 2ctiaalp. ) <
i+l 1 AP =
<elate, 1+, + 2)aadp, mediaty .
i+l | i i

We are now ready to prove (2)(5).
It follows from (20) that

-4 I I
(22) A gt aiA P; A 6ri+l A T
and hence, by taking squared norms of left and right hand sides we get

(23) a7k P haatp, P = e he P 4

—l -
28; (TyqpoPy) *2(8rg 0 Try )+ 28, (6ry 0py) A

}

6ri+1

2
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From (14) and (20) we get

(24) a, (r

2
1(Tiapopy) = a;(xiopy) - a7 (pyadpy) + a; (Oryy,0py)

2
= -(ri’pi)aai - (pi’Api)(aai) + ai(sri+l'pi) .

Substitution in (23) gives the counterpart of (2.17 ) in the presence

of round off:

-4 2 bR - at R
(25) WA 2r, I+ lla,a%p 7 = A P |

+ 2{(r P )Ga -P(p ,Ap )(6a ) -+(6r ,A r )} -lA” % +1||2.

Bringing llaiAipill2 to the right hand side and substituting (14) for a;

gives the counterpart of (2.29 ):

(26) a7, P - 1 - (ri,pi)z/alA*piu a7t m? + w At
where

-1 -} R
27 P = [(p »Ap; )(Ga ) + 2(8r, Y. r1+1) -lla 6ri+l" 1/IlA riH .

From (17) we get

28)  (p.4p,) (827 = | (o, )80, Pty 1P <

< 4e2(c|-+3c2-+2)2K2uAf*ri|F < e(c, +3C, +2)KMA‘*ri|F :

since it follows form (1) that 4e(Cl + 3C2 + 2)x < 1.
From (21) we get

-1 -4 -4
(29) (6rg, o8 e 0 s A hiner,, 10T 1 s
s ela b, P4 +nnaA% s te,,
and
(30) 1o dsr. 1P < cfaa ir e €y + Dla abp 022 <
1+1 1
s2aa b, 1P+ ¢, + DAty 1P s

- 2 2
< e(lA iri + (C1 + 2 aiAipi M« ,

ol
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since it follows form (1) that 2ex < | and Ze(C + 2)x < 1. In order
to determine a bound for |u | we need to boundllA sr H and |l a, Aip I
in terms of A irlll

From (17) it follows that

(31 | (epop8a; ] = [a7he, ado ) ||y utp )60, [ Matp, 1P <

-3 2
< Ze(Cl + 302 + 2)dlA vriH

Substitution of (3.35 ), (3.36 ) and (3.38 ) in (3.32) gives

N T R W O P I M L P IR D
v 2eda e, P+ 2e(c, + Ddlaabp n1aThe,
i+l ] 1" i+]
or
(33) It PG =200 ~2e(c, s aalp 187 ieagatp 17

<{1 +6¢ (C1 +3C, +2)c i A-iri ||2

Since, from (1) we have 2exk < }, 2€(C1 + 2)k < § and 6€(C] + 3C2 + Dk < 1

it follows that

(34) aate P -daatp niahe nesaaty i < saThe i
and from this quadratic inequality it easily follows that
4 -4

(35) HaiA pi" < 21A riH
and

-1 -4
(36) A riHIISZIIA rill .
From (28), (29), (30), (35) and (36) we find for (27):
(37) |“i| S e{(C +3C, +2) +2(4 + 4(Cp + 2)+ (4 +4(C, + 2D}k <

< e(l3Cl + 3C2 + 38)x ,

which proves (5).
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The now following proof of (3)(6) is entirely analogous to the proof of
(2)(5) given above.

We first consider the computation of b, .

(38)

where

(39)

E1((r;, 0Ap;)) = ((T + DY)r,, 1, (A + EDp) = (5, ,4p) + 74

i+]?

- " " <
1yl = 10f vy, olpy) + (ry bBipy) + (0" r; WEip )] <

2
eCllrg, WlAp, Il + eC Al iz, Iip I+ e“Ciclallin, Hip, s

A

A

e(C] + 2C2)HAHIIri+1H|IpiH <

IA

4 4
e(Cl + ZCZ)KHA ri+1H|IA piH .

Hence, with (10)

(40)

where

(41)

£1(r. . ,,Ap.) (r., ,,Ap.) + T,
by = - fl( R R >= _( ie127F4 i

= ) (O +v.)
fl(PisAPi) (pi’Api) + Bi

lv;| s e

From this it follows that

(42)

where &b,
i

(43)

bi = —(ri+1’Api)/(pi’Api_) - Gbi ’

satisfies
(py2Ap)8by = {1+ (T; 08073y, *

- Bi(ri+l'Api)/(pi’Api)}/{l + Bi/(pi’Api)} .

since | (r;, .ap)| < Iatr,, 1uabp 1ve £ind £rom (1), (1), (16), (39),
(41) and (43)

(44)

4 4
|(pi,Api)6bi| < 4€(Cl + 202 + Ddl A ri+1HIIA piH .

For the computation of Pjyq Ve have

(45)

1 = "n
(T + Gl PPy = Tyqy * (T + FDbp,
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Hence

(46) Pieg = Tiap * B3Py * 6Py s

where

(47) Hépi+lﬂ < "bingi" +||Gg+lpi+l” < eHbipi" + E“pi+l" <

} } -
< eliba’p, Il + A%, IDHATZI .

We are now ready to prove (3) and (6).
It follows from (46) that

(48) abp,

S TR - al
i+ biA P A 6pi+ A‘r ’

1 i+l

and hence, by taking squared norms of left and right hand sides we get

4 2 02 _ il 2
(49) IlA pi+l" + HbiA pi" I A ri+]H + 2bi(pi+l,Api) +
+ 2(p:. . ,ASp:..) - 2b, (8 ap.) - latep, I
Pie12%P44 i \OPi4p29P4 i+ ¢
From (42) and (46) we get
2 -
(50) b, (p;,.1s4P;) = b, (r;, |»4p;) + b (p;,Ap;) + b, (8p;,  e4p;) =

2
= (ri+1’Api)5bi + (PisAPi)(5bi) + bi(‘spi"'l'Api) .

Substitution in (49) gives the counterpart of (2.19 ) in the presence of
round-off:

} 2 b2 oAl 2
(51) A pi+l” + HbiA piH I A ri+]H +
2
— Al 2
ilA 6pi+1H .

Bringing HbiA&piIF to the right hand side and substituting (42) for bi
gives the counterpart of (2.30 ):

4 AP 2 } } 2 } 2
(52) Natp, 1P = {1 = (r,0hp )7/ QA%p WA, D% 4 0 WAPr,
where
(53) 0. . = [(p.,Ap.)(8b.)° + 2(6 Ap. ) - Iatsp, PI/mate, 1P
i+l P8Py i Pis129P14 i+1 i+1
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From (44) we get

2 2,03 2
(54) (Pi :Api) (Gbi) I (Pi .Api)ﬁbi| MA P; I” <

+ D22 ake, 12

A

2 <
16¢ (Cl + 202 I <

”

1A

)
E(C1 +2C, + 1dlA L

2 1

since it follows from (1) that 16s(Cl + 2C, + Dk < 1,

2
From (47) we get

' b }
(55) | Gp, sap;, 0] < WA N N6p,, NlA%p,  I<
bR } } 4
< e(la pi+l" + HbiA piHIIA pi+l")K
and
4 2 < 2qb.at b 2
(56) ia*sp,, I° < " b A%p Il + IATDg, D%k <

2 i 2 i 2
< 2e ("biA piH + A pi+1H )k S

b2 4 2
< edlbiA piH + 1A pi+1" )

since it follows from (1) that 2ex < 1.

In order to determine a bound for |pi+1| we need to boundllbiA%piH and
4 . 4
il A pi+l" in terms of llA ri+1H.
From (44) it follows that
(57) | (.. ,,4p.)6b,| = I(Air at )| | (p: sAp; ) 8D |AIA5p P
i+129P1/00 f+12% P/ LIPS 98P0 i ®
< 4e(c, +2¢, + Dalatr, 1P
- i 2 i+l *
Substitution of (54), (55) and (57) in (51) gives
(58) iadp, R+ ub.adp i suabe. R+ secc, + 2c, + Delatr, I+
Pis1 it Pl i+1 1 2 i+1
4 2 3 .4 2
+ 2(-:(Cl + 2C2 + Dkl A ri+l" + 2exllA pi+]H +
4 4 § i
+ 2ek HbiA piHIIA i

pi+l

or
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} 2, _ b, b 4 4 b2
(59) Il A pi+l" (1 2ex?) - 2exillA pi+]H HbiA piH + "biA piH <

+ Dedate P

< {1 + lOe(c1 + 2C 1

2

and just like for (33) it follows that

5 3
(60) la*p;, I's 204, I
and
) 4
(61) b, a%p, Il < 2A%e, 0.

From (54), (56), (60) and (61) we find for (53)

(62) |pi+l| <e{(C, +2C, + 1) + 16 + 8}k < e(C, + 2C, + 25)k ,

which proves (6).

Part III.

Now we finally prove (4) (7).

From (46) we get

(63) TiapPiap) = (FpppaTing) * 05 (rg o) + (g 08Py, )

From (14) and (20) we get

(64) by (ryypopy) = by{(riupy) = a; (pyadpy) + (81y,,,p5))
= -bi(pi,A.pi)Gai + bi(Gri+],pi) .
Substitution in (63) gives
(65) (ri+l’pi+])=(ri+l’ri+l) = bi(pi'Api)dai + bi(ériﬂ’pi) + (ri+l’6pi+])
= Oy D ETiey)
where
2
(66) Aigp = {-bi(pi,A.pi)tSa:.L + bi(éri+1,pi) + (ri+],6pi+])}/ﬂri+lll .
From (17) and (61) we get
-4 3
(67) |bi(pi,Api)Gai| < 2€(C] + 3C2 + 2)«ll A riH HbiA piH <

A

-4 §
4e(C] + 302 + 2)dl A riH IIA ri+l” .
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From (21), (35), (36) and (61) we get

-4 }
(68) [o; (8r;, op )| s HA *Hlsr,  Wib A%, Il <

< bec, + 12l A e niake, 0

From (36), (47), (60) and (61) we get

. =4y Al
(69) | (g pp o805, 01 S g, WUSp,, WS delA200AT,  Wlr, 1<

IR -4 b ad -4
< dexllafe,  NIA e, 1S BecAPr,  IIHA e .

Substitution of (67), (68) and (69) in (66) gives

| } -4 2
(70) In;,,| s e(8c; + 12¢, + 64)ella?e,  WIA e /lx, 17 <

< e(8C] + 12C, + 64)|<3/2I|A_iriII/IIA-iri .

2 +1

Remark 2.

If we would have ignored terms of order 82 in the presence of terms of

order ¢ then, instead of (53) we would have taken

5

and from (55), (60) and (61) it then follows that

(D) oy = 2060y, ey, AL

i+1? i+l

(72) |pi+l| < l6t—:|<i .

}

is caused by the fact that the second order terms in (53) are of order

This upperbound differs from (6) by a factor of order «°., The difference

€2K2 which give order ex under the assumption ex < 1.

Remark 3.

It follows from (2)(5) and (3)(6) that (2.29 ) and (2.30 ) hold quite
well in the presence of round-off. Especially it follows from (2)(5)
that HA—iri+1Hﬂ|Af§rillnever exceeds 1 + e(lBC1 + 302 + 38)«.

From (4)(7) it follows that in the presence of round-off (2.16 ) may be
seriougly perturbed if HAfirilVHA_iri+1H is large. Stated differently,

relation (2.16) holds reasonably well unless HAfiri+l||<< uA-iriH.
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4.1.

4.2.

—29..

The convergence of r.
1

Introduction

Considering the proof of theorem (2.12 ) we may expect that in the presence
of round-off the approximate validity of (2.16 ) expressed in terms of r.
and P; instead of LT and Piyp? and the approximate validity of (2.29

and (2.30 ) will imply the approximate validity of (2.32) and consequently
the approximate validity of (2.34) . Together with remark (3.3) this gives
the basic idea for the proof of the convergence of r.: HA—iri+1H/HAf£riH

is less than (k - 1)/(x + 1) unless HA-iriH/HAfiri_lH is very small, or,
stated more precisely, if the natural error vector does not decrease by

the expected rate in step i+] then it did decrease at least by the square
of the expected rate in step i and i+l together.

Since, clearly, HA?*ri+lIVHA7*riH depends on IIA“iriII/IIA-i

consider two successive steps of iscg.

ri-l"’ we first
From this we will prove the linear convergence of iscg. Once more we mention
the fact that for simplicity we often estimate rather roughly the factor
appearing in the various bounds and that we ignore the possibility of under-
flow and overflow. Again in lemma's and theorems we suppress mentioning the
fact that we suppose that no r, = 0 or P; = 0.

The capital characters D, E, F and G and the symbo}s a, bi? r.,_ri+1, P; and

1

Py, 8re used under the same conventions as mentioned in section (3.2 ). No

terms in e are ignored.

Two steps of iscg

The influence of the rate HA-irlIVHAfirollon the rate HAf%rZIVHAfirlH is

expressed by the following lemma.

Lemma 1. Let l6e(C1 + 2C2 + 1)k < | and consider two steps of iscg with

arbitrary initial vectors r # 0. Then we have

0°Po

?,

() uA'*r2|F < (e - DY+ D2+ yl}uA‘*rl

where

(2) v | s ecy +2¢, + 8)(64K5MA75r0|vnA75r1|1+ 14k) .
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Proof. From (3.2) we know

- - - 2
(3) 1A te 2 nahe 12 =1 - (rl,pl)z/a|A*plu||A SRR
and
(4) |u1| < e(13Cc; + 3C, + 38)x .

From (3.3) we get

(5) llAipluz <iabe 2o,
and
(6) |p1| < e(Cy + 2C, + 25)c .

Together with (3.4 . this gives

(0 N TAMIERWE
(7) ( — ) 2 —
Natp 1HATie ¥ At 1A 1P+ o))

Hence, using the Kantorovich inequality (2,33)

(£,,p,) 2 (1 + x])z he (1 + xl)z
(8) r -i ) > 3 = > + (P] ’
| A le IIA rll k + DA + pl) (k + 1)
where
—he (1 + A])zpl
9 Q=

Yowr nfare)

2

(r,2p) w1+ 2’
But since ( ] = > < 1, also 5 < 1 and consequently
ilA plullA rll (k + D0 + pl)

(19) |¢]| < |p1| < e(C, + 2C, + 25)k .

Substitution of (8) in (3) yields

uA'*rzu2 be (1 + xl)z o] 2, 2y ol e e o]
(1) - Sl = e + [y, | < (e = DT/ (e + 1)+ B[N kY
IA ;r1|F  + 1)2 ! ! !
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where

(12) |wl| = |u] -9l = |”l| + |¢l| < 7e(2C, + C, + 9k .
From (3.7) we have

(13) 2,1 s ese, + 12¢, + o> A e wnate 0,

and consequently

(14) 8Ix,J«”" < 32e(2c, + 4c, + 16)chaTde AT 0

Now (1), (2) follows from (11), (12) and (14).

Theorem 2.

Consider two steps of iscg with arbitrary initial vectors P # 0.
Let 0 < 8 < | and
244
(15) L= {6+ (1 -0)((k - )/ + 1))7} .
If
2 2
(16) 106e(Cl + ZC2 + 8)x” < eLe

then at least one of the following two inequalities is true:

IA

-4 -4
(17) IA 2c, Il < LA *x 01,

-4 2 =4
(18) it A r2H < LGHA rOH .

Proof. Since eLg < 1 the restriction of lemma (1) certainly is satisfied

and from (3.2) it follows that

(19) b b, A e P o<1 s s

If HAfir IF/HA-ér IF < Lg then we are ready. If IIA—‘J‘rzllz/nA—%roll2 > Le
then it follows from (19) and the fact

A~ r 2at roIF = (14 r 2/ st r, IP XIS r II2/|IA ryIF) that

(20) ||A‘*r1 uz/uA‘*'ro IR T
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_32_

Substitution in (2) gives

¢3)) lv,| = etc, +2c, + 8)(92.<5Lg2 + 14k) < 106e(C, + 2C, + 8)KL;2 ,

since ng > 1.

Hence, form (16), |Y1| < o ! and then it finally follows from (1) that

2

II“ =<

2

A

(22) it 12 < (e - DY+ D2+ oAb

2 1

IA

(e - D2+ D2+ soc/(c + 12 uA‘*rln2

2
l|| .

2, -1
LeHA r

Remark 3.

Since iscg is a one-step—method we also may conclude from theorem 2 that
if 106e(C, + 2c,

following two inequalities is true:

+ 8)K2 < 6L, then for any k 2 | at least one of the

- -
(23) WA e, 0 LlA e 0,

(24) TR SN PEL P N

k+1 k-1

This means that if in a certain step the natural error vector does not
. . . : 2,

decreage by a factor Le, then still it did decrease by a factor Le in

the last two steps together. It is easily seen .that the assertion given

by (23), (24) is equivalent with the assertion that for every k > 2

1 =1
. )
T L WO "
R = ! = s
Y N P SN

Remark 4.

Note that Le > (k- 1)/(xk + 1) if 6 + 0. This is the algebraic convergence
rate of (2.28 ) Relation (16) shows that it depends on the value of us

how nearly this theoretical rate of convergence can be reached.

The linear convergence of r,

The linear convergence of r, is expressed by the following theorem.
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Theorem 5.
Consider iscg with arbitrary initial vectors 5P # 0, Let 0 < 8 < |
and let Le be defined by (15). If

(25) 106€(C, + 2, + 8)k? < eLg

then we have for i 2 0:

(26) uA'*ri s (1 +e(13c, + 3C, + 38)K)L;MA'5r

.l .

0

Proof.
For i = -] inequality (26) is trivially satisfied since L6 <1, Fori=20
it follows immediately from (3.2)
Now let k = 1 and suppose (26) holds for all -1 < i <k - 1.
-4 -4
If 1A rk+l"ﬂ|A rkH < Ly then

@ aate, st aade wnaTie paaTie et <

k-1, ,~4
< Le(l + e(l3c1 + 302 + 38)K)Le A rOH

k4=
= (1 + €(13C, + 3C, + 38))LgIA *ryll .

If HAfirk+‘IVHAf*r Il > L, then, from (24), certainly ||A ir H/HA §r

and therefore

k=1

@) wahe st i aatte, it ase et <

0

IA

Lg(l + e(13¢, + 3C, + 38)K)L§‘2uA“*r

2 =

o!

(1 + 8(13C1 + 3C, + 38)K)L:"A_ir [

2 0

Hence, in both cases, (26) also holds for i = k and (26) follows by

induction.

Remark 6.

If « 2 2 then Le 2 1/9. Hence, if we are willing to make the additional

assumption that k 2 2 then (16) and (25) certainly are satisfied if

(29) 9548(C1 + 2C2 + 8)|<2 < 8

We now come to the most important result of this section.
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Theorem 7.

Consider iscg with arbitrary initial vectors r,Pg # 0 and let

(30) 106€ (C, + 2C, + 8kl < 1

then

(31) r, > 0 and P; ~ 0 (1 » =) ,
Proof.

2 2 .
9 + 8)k~ < BLe. This

In theorem 5 take 0 € (0,1) such that 106e(C, + 2C
is possible since eLg is a continuous function varying from 0 to 1.

Then, since Le < 1 it follows from (26) that "Afiri+llb+0 (i > ») and con-
sequently r, > 0 (1 » =),

From (33), (36) and (30) it follows that

2

3 3 2 4 2
(32) Iap, 17 < (1 + |pi+l|)HA .10 s At

7

and consequently P; * 0 (1> =),
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The convergence of x.

5.1. Introduction

5.2,

In the two foregaing chapters we disregarded the computation of X, . The
convergence of the computed recursive residual to zero does not guarantee
the convergence of'xi to X since in the presence of round-off r, is dif-
ferent from the true residual ?i:= b - Axi, since the computational errors
occuring in the implementation of (2.3 ) and (2.4) are rather independent.
From this one can

Especially, a perturbation on X, does not effect .,

see that assuming only that the m;chine has strong ari;hmetic in the sense
of Dekker [2], i.e. multiplication, division, addition and subtraction
have a low relative error, bounded by € times the magnitude of the exact
result (see (1.4 ) and (1.5 )), is not sufficient to guarantee the uniform
boundedness of fi - r.. For in that case the error in the computation of

X

can be of order eHxiH at each step. Then the difference T -r

i+l i+1 i+]
can increase by e"AHllxiH at each step and this ultimately equals

el All I,

From his experiments Reid [7] found that ?i and r; depart from each other
very slowly. He showed that any errors that occur in the evaluation of P;
and a; do not make a direct contribution to thé difference between the
computed recursive residual r, and the actual value of b - Axi+].
In the next section we will examine how much the exact true residual of

X1 and the computed recursive residual ., can differ in order to
obtain an estimate for the asymptotic behaviour of the natural error .
% -~
ector A - X, .
vecto (% x1+1)

An estimate for the natural relative error

In this section we use the results of chapter 4 with 6:= } and L:= L%
as defined by (4.15 ) Taking another 6 would give similar results.
The error analysis is carried out under the same conventions as mentioned

in section 3.2 and no terms in € are ignored.

Theorem 1.

Congider iscg with initial vector x
Py * 0.

0t= 0 and arbitrary initial vector
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If
2
(1) 424€(Cl + 202 + 8)k” <1
then there exists an io > 0 such that we have for all i 2 iO:
14tz - x) 1 22 )
(2) < 6e{ (119 log 1/e + 178)x + 25(C, + 3)x"} .
, ia 1
Il A%XI
Proof.

Let fi be the exact true residual of x,

(3) L= b - Axi .
P . e ha 2 b R PO -4
Note that x, 0 implies r, b I, and A T, A‘x = A ry .
We have
b -1 1 -4
(4) A (% xi+])H Il A ri+lu <A (ri+l ri+l)" + A ri+l" .

Since BLg 2 } if 8 = }, inequality (1) implies the validity of (4.25 ) and
consequently we may use the result (4.26). Rather than (4.26) we will

use the weaker result:

(s) iate, 1< atiatzn, G@=o0 .

r.
i+l

Hence, in (4),||A—%ri+lﬂ tends to zero and therefore we will concentrate

).

N PP
on y;i= A (T, -y

The computed vector x. satisfies (see (1.8 ) and (1.7 )):

i+]
(6) (L + Gi+1)xi+l = x; + (I + Fi)aipi .
Hence
(7) X0 = X *ap+ 6xi+] .
where
(8) H6x1+lﬂ = "_Gi+1xi+l + Fiaipi” < dlxi+lH + E”aipi" .
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Further

9) B b - Ax, - a;Ap, - Aéxi+l -F - a;Ap, - A6xi+l .

Together with recursion (3.20) this yields

(10) PO PR PR Pl 6ri+] - A<‘5xi_'_l
or

v - o} - at
an Vie1 = Y3 A 6ri+l A 6xi+1 .

Hence, since ry = fo, we obtain the basic formula

i+l - i+l !
(12) Yiel Z A er, - QZ A*Sx)
L7 L

The convergence of the first sum follows from the following consider-

ation.

From (3.21.), (3.35) and (3.36) we may conclude for £ 2 }:
-4 } b4
(13) HGrgH <e(la rlﬂ + (Cl + ZNlazflA pZ-]“)K TA* I <
< 2¢(c, + ehatnnaiz, 0.
1 -1
This immediately gives

(14) sz, 0 < 2e(c, + kil natéy

and together with (5) it yields for £ > 2:

(15) Il6x,l < 4ecc, + et aliny 4tz .
Hence
i+l —i . i L3
(16) ) lia 8t Il < 2e(C) + NIA'RICI + 2 2 L4 <
2=1 2=2

< 6e(c, + Hulatzia - 7!,
Since generally X will not tend to zero, the convergence of the second
sum at the right-hand side of (12) will not follow from (8). However, from

lemma 1.2  and formula 1..7 " we may conclude that X1 also satisfies
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(17 X =X + (I + Hi)(I + Fi>aipi

and therefore also

(18) ||6xi+lH =||(Hi +F. + HiFi)aipi“ <
< (B+e+ (B+ e)eﬂlaipiﬂ < 3ﬂlaipiﬂ .

Since it follows from (3.35) and (5) that for i = |

(19) Na,p, s hatunaabp, 1 s 2a nna e, 1< wabiei-Yalzn,
1" 1 1 1 1
where L < 1, the sum ZIIanQH converges. Consequently, from (18) we
L =1

may conclude the convergence of the second sum in (12).

We now have come to the basic idea for estimating Yie) © in
i+] )
) A

leﬂ use (8) for small ¢ and use (18) as soon as H%poH/HA%iH
=1

is of order €.

The last index for which we use (8) will be denoted by N. Let N 2 1
firet be arbitrary. Then it follows from (12) that for i = N:

i+l ! i+l -
(20) Iy o syl + §  NA%sx I+ § 1A *6r, 0l .
1+1 N LEN+1 1 LEN] 1

First we estimateIIyNH using (8). To do so we derive a recursion for ¥;
in terms of X and dri.

We have

1) Ix, —wnenzns A At - 1R

s ffx
A

i+l

A

Tl uAfifi+,u +IRI < uAf*u(uyi+,||+ uA“*ri+,u) + IR

Since, from (5), IIA_iri i< 2HA£§H, we find

+1

(22) xS HA Hiay,, 0 Aatrn Gz 0) .
From (19)
(23) lagp s wa™dinatzl, = .
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For i = 0 one even has llagp Il < m|A'*u||A'*rou = aa i natzo.

Substitution of (22) and (23) in (8) yields
-4 ba
(24) H6x1+lﬂ <ela Hdlyi+lﬂ + MAXID)

Hence it follows with (11)

(25) Iy s tygl+ ecday,, 1 matzn «uador, 0
or
(26) (1 - ey, nsny s 18, 1 e zechiatan

Backward repetition from N to O of this recursion gives, since Yo = 0,

@n lygls 3 (- et Mg aden 1 gechatan
L=1
-N- - 4
Since emi < } we know that (1 - €K§)2 N-1 < (1 - eni) N eZNe'< and hence
we have
4 N
(28) Myl s ™ (mechiatzn + § naTher, 0 .

=1

We now return to (20).

4
Since eZNEK > 1 we may conclude from (20) and (28) that for i > N » 1:
i i+l i+l
(29) Iy, I s e (neciatzn+ A 55r I+ 3 1atex, 1 .
1+1] 2
g =1 2 =N+1
We now use (18) to estimate the last sum in (29).
From (18) and (19) we find
i+l
(30) ) HAinQH gtz 7 2 ? < daatz™ o -t
2.=N+1 2=N+1

Substitution of (16) and (30) in (29) yields

ZNEKi

Gy, 0s 2 aned + sece, + e - T iakzy +

1226t (1 - 7Ytz
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Now let N be the smallest integer such that LN_] < e,
Then
(32) N < (log 1/e)/(log 1/L) + 2 .

Since L = (1 - 2¢/(x + 1)2)i and ¢ 2 1 it follows

(33) L<1-x/(k+ l)2 , (log 1/L) > (16|<)_l
and consequently
(34) N < 16k log 1/e + 2 < 17¢ log l/e ,

1/2

(35) Nek /2 < 173/ %e10g 176 .

} ZNEK%

Note that ¢ log 1/e < 4/e so that, with (1), 2Nex? < | and e < 3, Also

(1 - L)_1 < 4k,

Substituting the various inequalities in (31) yields for i 2 N:

3/2 2 i
(36) ”yi+l” < 3e{(119 log 1/e + 16B)«k + 24(Cl + 3" HARI .
From (5) and our choice of N we find for i 2 N:

(37) 1o b, 1< 2aatza

Fiel
Substitution of (36) and (37) in (4) proves (2).
Remark 2.

Wozniakowski [8 ] proves, neglecting terms of order 62, that his version of

the conjugate gradient algorithm (wcg) produces vectors X such that

ultimately

LI }
(38) ha*(x - xi)lls Cexll A IIHxiN s
where C is a constant depending on C] and C2.
From (38) it follows that

IARR - x,) I
(39) —— = clec’l?
A%kl

This result essentially differs from our result (2), (50) by a factor

max (Ki,log 1/e). From our assumption (1) it does not follow which of

}

the two constants k° and log 1/e is the largest.



—4]_

Analytically the factor |<i is caused by the fact that our estimate for

Z A%Grz contains a factor (1 -~ L)_l, which is of order K2 (see (16)).
2=]

This factor is not a consequence of the rather complicated way we bounded
7 A
2 A “6xg,

The factor log 1/¢ comes from the first N terms of the sum z A %Gx
£=1
We think that it will be difficult to find a set of data that confirm the

difference between the estimates (2) and (39) for respectively iscg and wcg.

Remark 3.

We may expect that ultimately the computed true residual ?i:= fl(fi) is

at least of order cllAfliXll. Since r, tends to zero as i tends to infinity,
the difference between the computed true residual and the computed recursive

residual ultimately will be at least of order el All I xIl.

Remark 4.

Let 1 £ j £ n and let xj denote the jth component of the vector x. Suppose
there exists an io and a positive real number o such that Ix.l 2 o for all
iz io. Since fl(a, P ) =0 (i » ») then certainly there exists an 1l such
that |(fl(a p. ))J| < (E/B)|xJ| for all i 2 i ,. From (1.16) we then may

1

conclude that xi+l = xi for all i = il. Consequently, if all components
of ¥ are nonzero and if ¢ is small enough, then after a certain number of

iterations the vectors x; do not change anymore.

Remark 5.

If we take an arbitrary x, # 0 in theorem 1| then ro # fo and consequently

0
# 0. We will study what difference it makes for the proof
o7 0

Instead of (5) we have in that case

NI-—

of tneorem 1 given earlier if x

(40) HA_%ri+]" < 2LiHA_%rON , (1 20
and (12) becomes

i+l i+l !
(41) Yis1 = Yo~ 2 A Por, - 1 A’ex,
Following the llnes of the proof of theorem ! we obtain:

instead of (24)

-1 - i
. 2 . i 2 + A2 R
(42) H6x1+lHS el A H(Ny1+l| + 6llA rdl MAZRN )
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instead of (27) :

N

(43) lygl s C1=ex) Ny,

S $oa-N-1, -} 3 -3 bo
+ ) (1-ex?) 1A ?sr I+ ec®(6lIA *ryll + IARI)]} .
2=1

instead of (36)

3/2 -} i
(44) Iy, < 3e{Hy0H/£ + 17 log 1/ex /(6HA erH + IA%RI) +

=1 ) =1
+ 240, + D I ey + 1683/ 1A g}

For the computation of r, ve have

(45) r0=(I +F) (b-(A+ E)xo) =% + F(b - Axo) - ( I+ F)Ex, .

0

1 -1 1
Hence, since HAZXOH <A ZfOH + ||A%% ]l we obtain using (1)

=1 -1 1 1
- 3 _a T 3y A2
(46) Hyoﬂ = A (rO ro)" < (1A 2l "roﬂ + 2C]K A2 UXOH) <
< 2 E(Cl + Dk (A rOH + A%%1 )

Consequently, again using (1),

1

-1 - 1 -
Iygl + 14722 ) < « PiaZg + 214 2

Nt~

(47) A~

IA

rdl

Hence,certainly

IA

-1 1 v =1
(48) A Prgll < AR + 2142

and from (40) for i = N

A

_1
I < 2¢ qata + 287

-1
2

1+1]
So finally from (4), (44), (46), (47), (48) and (49) we get

3/2

1 1 1
(50) lA%(X - xi)n < 48e{[Bx? + 2(c1 + 3k + 8 log 1/ex” ' “MA%RI +

+ 13 log 1/e + 280372 & 4(c, + 327 1adz - x I}

1 1
Hence, if [A%*(R - XO)H < ClA%R|] for some reasonably small C > O then (50)
essentially is the same as (2). This certainly is the case if

1 1
”AszH < CIA*R || (and especially if x, = 0).

1 -1 1
If IA%(R - xO)H < Ck 2 ||JA’% || we even have

(51) “A%(i - x )l

: < 485{2[0l + 3+ (C + 1)BJc + [(8 + 13C)]log 1/¢ +
I AR

+ acle, + 3)7 372
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6. Final comments

6.1, Comparison with Wozniakowski's results

In this section we compare Wozniakowski's [ 8 ] results and our results. In
order to be in a position to ignore factors of the type (1 + O(e)) Wozniakowski
uses inequalities of the type f(e) < g(e), which means that

f(e) s g(e)(1 + 0(e)). Most of his results are expressed in terms of this

sort of inequalities.

We will use the same notation in this section. In order to be able to

report on Wozniakowski's results and to discuss the relation to our results,

we define the following two gradient algorithms.

Algorithm 1.

take xo H
r0:= b - Axo H
it= 0 3

while r, # 0 do

begin

(1 a;i= (ri.ri)/(ri,Ari) ;

(2) X oiT % + a,r. ;

(3) o {either b= Ax, .
i+1°

(4) or T, aiAri :

(5) it= 1 + 1

end .

If the true residual formula (3) is in use then this algorithm will be
referred to as true residual gradient algorithm (trg) and if the recursive
formula (4) is in use, then this algorithm will be referred to as
recursive residual gradient algorithm (rrg). Ofcourse, algebraically

there is no difference between these two versions.

Wozniakowski considers first trg with round-off and then uses the results
for the analysis of his version of the conjugate gradient algorithm
(wecg) .

For trg he proves the following basic result
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Theorem 2.
If

(6) 2€(Cl + 2C, + 8)x < 1

2

then the sequence {xi} computed by trg satisfies

@) Tm Al - x,) 1 5 3e(sc, + Dt T lix, I
iso0 ! o T

However, from this theorem it does not even follow that llmllxiH is

bounded.
Since
(8) Tim Ix, Il < 11 sia i TEiate - x) 1,

we may conclude from (7) that

3/2

(9) TTEIIA*(R - xi)H < 3e(5C, + 1){K"Ai"||§" + K :TTEIIA*(? - xi)H} .

Consequently, if additionally to (6) also

(10) 3e(5¢, + k32 <

is satisfied, then it follows that

3E(5C1 + Dk } .
A% IxIl =

(11) TIEllA*(ﬁ -x)ll <
i 1 - 3e(s¢, + 132

= 3e(sc, + Delatnngn .

Hence in that case lim X, is bounded.

From (11) it follows that ultimately

i ~
Na*(x - =x.) 1,
(12) L < 3e(sC, + 1)|<3/2 ,
ARl

if (6) and (10) are satisfied.
Then under the same conditions one can prove that ultimately for the

computed true residuals

- . 1.
(13) A iriu 2 eQisc, + RS-
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Wozniakowski [8] does not contain results on rrg.

We made an error analysis of rrg, carried out under the same conventions
as used in chapters 3 and 4. Note that part I of the proof of theorem 3.1
also holds for rrg replacing all P; by r..

We obtained the following result.

Theorem 3.

Let 0 < 8 <1 and let

(14) 16e(Cl + 2C2 + 2)|<3/2 <86,

then the sequence {ri} computed by rrg satisfies

-} -}
(15) A I < LeHA r.ll,

T.
1+]

where Le is defined by (4.15)

Consequently r, > 0 (1 » =),

From this it follows, using similar arguments as in chapter 5, that

ultimately for rrg , with Xg =0,

i ~
ha?(x - xi)H /2

(16) <3e{(119 log 1/e + 173).<3 + 25(C, + 3).<2} R
ia 1
lAZxl
if
(17) 16e(c, + 2¢, + 2>/ F < 1,

2

Remark 4.

Note that restriction (10) and (17) are of the same order in ¢ and x but
the estimates (12) and (16) differ by a factor K£. This is due to the fact
that, just like in (3.21 ) the estimate for Gri of the recursive residual

r, contains a factor Ki for rrg (see also remark 5.2)

Remark 5.

If we compare the restriction (5.1 ) for iscg and the restriction (17)
for rrg, then we see that (17) is weaker in the sense that it contains

3/2

a factor « instead of Kz. Restriction (5.1 ) for iscg is a direct

consequence of restriction (4.16 ) in theorem 4.2 which contains a
2 . .

factor «”. Tracing the proof of theorem 4.2 we observe that this

2., . .
factor Kk is caused by the fact that the estimate for Y contains a factor k.
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Considering the proof of lemma 4.1 we notice that the factor « appearing
in the estimate for Yy is a consequence of the factor k in the estimates
for ¥ and oy-

However, for the proof of theorem 3 we did not use the estimate (3.5)
for i but from (3.26 ) and (3.27 ) in part I of the proof of theorem

3.1 we proved for the rrg-case the validity of the inequality

1a b, P e, i 1ahe, 12
(18) — <1 - — T (] - 1. ) ,
A ;riHZ A £rinzuAZriuz 1 uriui

under the restriction l6e(Cl + 2C2 + 2)k < 1,
where

(19) n, - E"AH(SK%(CI $ 1) e+ 3C, + 18)

From this theorem 3 easily follows.

Since in rrg the vectors P; do not occur, the constant Py is irrelevant

in this case.

Remark 6,
From (15) it follows that A-.%ri decreases at least by a factor L at each

step for rrg, whereas for iscg we were only able to prove the weaker result

expressed in remark 4,3 .

Having indicated the difference between the use of true and recursive
regiduals for the gradient algorithm, we now come to the difference between
Wozniakowski's version of the conjugate gradient algorithm (wcg) and our

version.

The algorithm wcg is closely related to trg.
In wecg each step consists of two parts:

First the algorithm computes z,,

i+1 from X by one step trg, 1l.e.

(20) r, = b - Axi H
(21) a;i= (ri,ri)/(ri,Ari) ;

(22) zi+1:= X, + airi .
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}

Secondly, the next approximant X,

Hence z, , minimizes lA*(xX - z) Il along the line z = X, + ar;.

1 is computed from

(23) AT R TS B T

(24) Pieti™ Oyepd = A23 )/ O padyg )

(25) Xia1i™ 2141 T Piai¥ieg

Hence X0 minimizes HAi(ﬁ -x) along'the line x = Zioy T byi+l' Note that

in (18) as well as in (22) true residuals are taken. If no round-off occurs

then wecg and cg give the same sequence {xi}. Algebraically it is trivial

that X;,1 18 2 better approximant to X than Ziq0 whatever Vi might be.

Wozniakowski shows that, numerically, X is nearly (apart from terms of
d a s

order €) as good as Z:

For z. ., he uses the results for trg. Then he obtains

Theorem 7.
If

(26) Ze(Cl + 2C, + 8)k < 1

2
then the sequence {xi} computed by wcg satisfies
27) T ARG = %) 1 2 3e(sc, + 2l ab I TRl 0

In a similar way as we concluded from theorem 2 the validity of (12), we

conclude from theorem 6 that wcg produces % that ultimately satisfy

1
A% (xR - x ) /2

(28) 2 3€(SCl + 2)|<3

AR ]

if (26) holds and if, moreover,

(29) 3e(5¢, + 032 .

Looking only at factors K£ appearing in the convergence results for the
estimates for the natural relative error and in the restrictions, we come

to the following brief comparison for the various algorithms
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trg and rrg : the same restriction; the natural relative error is a factor

!

k* larger for rrg,

i

rrg and iscg: the restriction is a factor «* stronger for iscg; the same
natural relative error,
wcg and trg ¢ the same restriction; the same natural relative error,

}

relative error is a factor Ki larger-for iscg.

wcg and iscg: the restriction is a factor «* stronger for iscg; the natural

A class of iscg algorithms

Wozniakowski [8] considers a class of conjugate gradient algorithms. This
class consists of algorithms that are the same as his original version of
the conjugate gradient algorithm except from the computation of the constant
bi appearing in the original algorithm (see (2.4 )). Instead of taking the

value of the expression (24) the algorithms compute and use constants bi

satisfying

bi = bi(l + Gbi) ’

where |6bi| < 1 and bi is given by (24). He shows that his convergence
results for wcg are valid for this whole class.

In imitation of Wozniakowski we define for every M 2 0 a class &, of iscg~

M
algorithms. An algorithm ¢ belongs to QM if ¢ is defined by the statements
of iscg (see section 2.2 ) except from the computation of bi' The actual

values of bi now only must satisfy

(x, sAP')
1+] 1
b, = = emce———— (] + 6D.
i (PisAPi) ( 1) ’

with |6bi| < M. It is quite obvious that (3.2 ) and (3.5 ) also hold for
every ¢ € ¢M since part I of the proof of theorem is only based on
the formula (2.2 ) and (2.4 ) It is easily seen that the conjugacy

relation (pi ,Api) = 0 does not hold if Gbi # 0 and therefore the name

+1
conjugate gradient algorithm in fact is incorrect. All the results for

iscg, given in the chapters 3, 4 and 5, can be generalized for @M. We

only formulate the following generalization of theorem 4.5 .

Theorem 4.

Let M 20, ¢ ¢ ¢M and let TysPg # 0 be arbitrary initial vectors.

Let 0 <8 <1 and
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4(1 - 8)k 15
(c + D2 + O+ 1)°)

LM.6:= {1 -

1f

2

2 2
+ 8k M+ 1) < eLM’e ’

208€(Cl + 2C2

then the sequence {ri} computed by ¢ satisfies

}

-} i -
la .. < (1 + s(l3C1 + 3C2 + 38)K)LM,6"A rOH .

1
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