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laboratory experiments and numerical modelling, the numerical model has firmly
been based on the results of the extensive test program of Van Geel and vice versa,
changes and additions to the experimental test program were specified as a result of
new insights gained from the numerical modelling.

To establish sound physical/mechanical explanations of the complex mechanical
behaviour of concrete loaded in multiaxial compression, this behaviour is
subdivided in two ways. On the one side, three scale levels of perception/
observation are distinguished. On the other side, a distinction is made between four
typical behavioural stages in multiaxial compression tests. This subdivision is
chosen because the macroscopically observed mechanical behaviour is very
characteristic for each of these four stages. Furthermore, the consideration of
multiple scale levels of observation at each of these stages is essential, as the
complex macroscopic mechanical behaviour at each of those stages proves to be
directly related to the physical conditions and basic mechanisms prevailing at the
lower scale levels.

The subdivision of the mechanical behaviour of concrete with respect to scale levels
of observation and typical behavioural stages in a multiaxial compression test has
provided a solid basis for constitutive modelling. Herewith, the concept of a
Representative Volume Element (RVE) has been adopted to account for the specific
heterogeneity of concrete at the lower scale levels of observation. Such an RVE at a
material point of a continuum is defined as a material volume statistically
representative of a small material neighbourhood of that point.

The great differences in scale of heterogeneity of the concrete material between the
pre-peak and the post-peak region of a multiaxial compression test could be
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captured well by the subdivision chosen. These differences in scale of
heterogeneity, however, could not be captured by a single RVE. Consequently, two
different RVEs have been conceived. The first one, RVE,, captures the most
dominant features having first-order influence on the pre-peak mechanical
behaviour of concrete loaded in multiaxial compression. The second one, RVE,,
captures the most dominant features with first-order influence on the post-peak
mechanical behaviour of concrete.

By choosing the geometrical shape of the RVEs rationally and with a thorough
analysis of basic (crack) mechanics, straightforward ‘low-scale’ constitutive laws
could be efficiently combined with sophisticated — physically appealing — ‘high-
scale’ constitutive laws, applicable both in the pre-peak and post-peak region. For
linear elastic material behaviour, in this way general analytic solutions of the
stress/displacement fields have been derived for both RVEs. Non-linear material
behaviour within the RVEs has been effectively introduced through the
development of sophisticated ‘high-scale’ elasto-plastic laws, derived exclusively
from straightforward Mohr-Coulomb stress-state bounding surfaces in 3D stress
space.

The numerical model, which consists of the above RVE-formulations incorporating
linear elastic as well as the whole range of non-linear material behaviour in
multiaxial compression, has been entitled as ‘mesoscopic model’. This model — as
outlined in chapters 4 and 5 — is well suited for small-scale analyses of concrete
structures subjected to multiaxial compression. For large-scale analyses, the
mesoscopic model is less practical. To enhance the practicality and speed up
computations, chapter 6 presents an adjusted approach, entitled as ‘macroscopic
model’.

The performance of both the mesoscopic and the macroscopic model is illustrated
by a wide range of accurate numerical simulations of multiaxial compressive tests
from the extensive experimental test program performed by Van Geel'”®. The
experimental data is reproduced well, not only in terms of overall monotonic (and
cyclic) loading curves in all (axial and lateral) directions, but also in terms of crack
patterns, influence of loading path and boundary conditions.

SAMENVATTING

Het onderhavige onderzoek omvat de ontwikkeling van een tweedimensionaal (2D)
numeriek model, dat in staat is om het mechanische gedrag uit meerassige
drukproeven op betonnen proefstukken in een 2D proefopstelling voldoende
nauwkeurig (uit het oogpunt van de Bouwvoorschriften voor het constructieve
ontwerp) te voorspellen. Aangezien het model zich ten doel stelt om het
constructieve gedrag van een willekeurige 2D betonconstructie realistisch te
voorspellen bij een willekeurig belastingspad, is het model gebaseerd op solide
fysische/mechanische interpretatie en verklaring — en niet op empirische formules —
van het constructieve betongedrag onder meerassige druk zoals bekend en
voorhanden uit laboratoriumproeven.

Dit (numerieke) onderzoek is het vervolg op een lange historie van betononderzoek
aan de Technische Universiteit Eindhoven, geinitieerd in het begin van de jaren
tachtig van de 20° eeuw. Het is uitgevoerd in nauwe samenwerking met het
(experimentele) onderzoek van Van Geel '*®. Door de sterke wisselwerking tussen
het laboratorium onderzoek en het numeriek modelleren, werd het ontwikkelde
numericke model deugdelijk ondersteund door de resultaten van het uitgebreide
proevenprogramma van Van Geel enerzijds en anderzijds werd het
proevenprogramma ook aangepast en uitgebreid als gevolg van het voortschrijdend
inzicht verkregen uit de resultaten van het numerieke onderzoek.

Om te komen tot een solide fysische/mechanische onderbouwing van het
(complexe) betongedrag onder meerassige druk, is dit betongedrag onderverdeeld
op twee verschillende manieren. Enerzijds worden drie verschillende schaalniveaus
van observatie/schematisatie onderscheiden. Anderzijds wordt er een onderscheid
gemaakt tussen vier gedragsstadia in geval van meerassige drukproeven. Dit
onderscheid is gemaakt omdat de karakteristicken van het macroscopisch
waargenomen betongedrag duidelijk verschillen in elk van deze vier stadia.
Bovendien is het beschouwen van meerdere schaalniveaus van observatie/
schematisatie binnen elk van de gedragsstadia essentieel. Het complexe
macroscopische betongedrag blijkt namelijk direct verband te houden met de
fysische condities en fundamentele mechanismen zoals deze zich voordoen en
werken op de lagere schaalniveaus.

De onderverdeling van het gedrag van beton onder meerassige druk met betrekking
tot schaalniveaus van observatie en karakteristicke gedragsstadia heeft een solide
basis opgeleverd voor de ontwikkeling van constitutieve materiaalmodellen. Om de
invloed van de specifieke heterogeniteit van beton — zoals deze bestaat op de lagere
schaalniveaus — in rekening te brengen, is daarbij in de modellering het concept van
een ‘Representatief Volume Element’ (RVE) gebruikt. Een RVE in een punt van
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een materiaalcontinuiim is gedefinieerd als een materiaal volume dat statistisch
representatief is voor de materiaalstructuur in de directe omgeving van dat punt.

De grote verschillen in mate van heterogeniteit van het betonmateriaal voor en na
het bereiken van de maximale sterkte in een meerassige drukproef kunnen goed in
de gekozen onderverdeling worden ondergebracht. Deze verschillen kunnen echter
niet worden verenigd in één RVE, daarom zijn twee verschillende RVE’s
ontwikkeld. In de eerste, RVE;, worden de overheersende kenmerken
verdisconteerd die een 1° orde invloed hebben op het constructieve betongedrag
voor het bereiken van de maximale sterkte in een meerassige drukproef. De tweede,
RVE,, bevat de overheersende kenmerken die een 1° orde invloed hebben op het
constructieve betongedrag na het bereiken van de maximale sterkte.

Op basis van een rationele keuze van de geometrische vorm van de RVE’s en een
grondige analyse van de fundamentele (scheur) mechanismen kunnen eenvoudige
constitutieve formuleringen op een ‘laag schaalniveau’ effectief gecombineerd
worden tot verfijnde — fysisch onderbouwde — constitutieve materiaalmodellen op
een ‘hoog schaalniveau’, toepasbaar voor het constructieve betongedrag zowel voor
als na het bereiken van de maximale sterkte.

Op deze wijze zijn — voor lineair elastisch materiaalgedrag — algemene analytische
oplossingen afgeleid voor de spannings- en verplaatsingsvelden van beide RVE’s.
Niet-lineair materiaalgedrag in de RVE’s is effectief geintroduceerd door de
ontwikkeling van verfijnde elasto-plastische constitutieve materiaalmodellen op een
‘hoog schaalniveau’, gebaseerd op uitsluitend eenvoudige constitutieve
formuleringen in de vorm van Mohr-Coulomb plasticiteit in de 3D spanningsruimte.

Het numericke model, bestaande uit bovenstaande RVE modelleringen die zowel
het lineair elastische alsmede de hele reeks van niet-lineair materiaalgedrag van
beton onder een meerassige drukbelasting beschrijven, wordt het ‘mesoscopisch
model’ genoemd. Dit model — zoals beschreven in de hoofdstukken 4 en 5 — is zeer
geschikt voor de analyse van kleinschalige betonconstructies onder een meerassige
drukbelasting. Voor de analyse van grootschalige betonconstructies is het model
minder geschikt. Teneinde deze toepasbaarheid te vergroten en de berekeningen te
versnellen, wordt in hoofdstuk 6 een aangepaste methode gepresenteerd, het
‘macroscopisch model’.

De ‘performance’ van zowel het mesoscopisch als het macroscopisch model wordt
geillustreerd aan de hand van de resultaten van een groot aantal numerieke
simulaties van meerassige drukproeven uit het uitgebreide proevenprogramma van
Van Geel”. De experimentele resultaten worden goed benaderd, niet alleen met
betrekking tot de globale (monotone en cyclische) last-verplaatsingskrommen in
alle richtingen (axiaal en lateraal), maar ook met betrekking tot scheurpatronen, de
invloed van het belastingspad en de proefstuk randvoorwaarden.

SYMBOLS, NOTATION AND ABBREVIATIONS

LATIN CAPITALS

A cross-sectional area

. cross-sectional area of aggregate grain(s)
A cross-sectional area of the bulk cement paste
Az cross-sectional area of the ITZ

Cy centre of Mohr’s stress circle

D diameter

D diameter of aggregate grain

diameter of the largest aggregate grain in the concrete mix
Det determinant

E Young’s Modulus
B Young’s Modulus of the aggregate grains
Ey Young’s Modulus of the bulk cement paste

E. Young’s Modulus of the ITZ

F force

o order of magnitude function

R, radius at centre of ITZ-layer in RVE, representation

R, radius of aggregate grain in RVE, representation

R, outer radius of ITZ-layer in RVE; representation

R, outer radius of bulk cement paste layer in RVE, representation
14 volume

w work (done by a force)

LATIN LOWER CASE

cohesion
gz cohesion for aggregate fracture / cement paste crushing
Gy cohesion at (macro)crack initiation

(before redistribution of local stresses along the crack)

Conini cohesion at zero pore closure (compressive pore collapse)

€ s cohesion at maximum pore closure (compressive pore collapse)
d width of the unit cell (RVE,)

f(r,0) stress function in cylindrical coordinates

Fofish mathematic functions of stress-state bounding surfaces

- uniaxial compressive strength of the aggregate
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b A compressive strength for compressive pore collapse

¥ tensile strength

Sobuik tensile strength of the bulk cement paste

Fboi equivalent tensile strength for local mode II cracking through bulk
cement paste along a global mode I crack

Fico tensile strength of the cement paste (ITZ + bulk cement paste)

f,f;del tensile strength for global mode I cracking

Jific fictitious tensile strength, introduced in the transformation process of
the stress-state bounding surface during local stress redistribution

Siini initial Jocal tensile strength of the ITZ (stage I/1I)

Sz average tensile strength of the ITZ along a curved crack

o ™ equivalent tensile strength for Jocal mode II cracking through the ITZ
along a global mode I crack

Jipe tensile strength for compressive pore collapse

L length or width

m mass

r radius

Ty radius of Mohr’s stress circle

t (point in) time

u displacement in radial direction (cylindrical (r,0) — coordinate system)

uy, u,,u; displacements in principal directions
(v, = maximum displacement, #; = minimum displacement)

u” crack opening displacement

w displacement in tangential direction (cylindrical (r,0) — coordinate
system)

w crack sliding displacement

O material parameter defining the crack sliding displacement for which

softening ends (during aggregate fracture/cement paste crushing)

GREEK

a (global) angle of crack plane with respect to the direction of the
minimum (most compressive) principal stress

B ratio between the maximum and the minimum principal stress

- maximum shear strain

Yo (in-plane) shear strain (rotated Cartesian (#,7,z) — coordinate system)

Yro (in-plane) shear strain (cylindrical (7,0) — coordinate system)

Yu» Yar» ¥y, Shear strains (global Cartesian (x,y,z) — coordinate system)

€,8,,&  principal strains (g, = maximum strain, &; = minimum strain)

€,,€,€,  normal strains (rotated Cartesian (»,7,z) — coordinate system)

£,, & normal strains (cylindrical (r,0) — coordinate system)

SYMBOLS, NOTATION AND ABBREVIATIONS Xi

€yol

G By s ©x

G1,0,,03
Gn 2 GI

Gy> Op
G,,0,, 0,
max

nt

Tro

s Tazo Ty

¢agg
Bpe

\Upc

volumetric strain

normal strains (global Cartesian (x,y,z) — coordinate system)
heterogeneity (material) parameter

angle of the n-axis (of rotated (n,7,z) — coordinate system) with respect
to the orientation of the normal to the plane of maximum shear stress
angle of the n-axis (of rotated (»,7z) — coordinate system) with respect
to the global y-axis

angle of the n-axis (of rotated (n,7,z) — coordinate system) with respect
to the global x-axis

plastic multiplier (plastic flow formulated in terms of strains)

plastic multiplier (plastic flow formulated in terms of displacements)
internal state parameter

internal state parameter governing tensile softening

material parameter defining the end of tensile softening

plastic volumetric compaction (internal state parameter)

material parameter defining the plastic volumetric compaction at
maximum pore closure

momentary value of relative crack length with crack sliding
displacement according to the ‘overriding’ mechanism

average value of A1 throughout the formation history of a
macrocrack

(model) parameter affecting the shape of the stress-state bounding
surface at stage I1I/TV

mean value of normally distributed quantity

Poisson’s ratio

overlap Mohr’s stress circle with respect to the stress-state bounding
surface of a straight crack

standard deviation of normally distributed quantity

principal stresses (o; = maximum stress, G; = minimum stress)
normal stresses (rotated Cartesian (#,2,z) — coordinate system)
normal stresses (cylindrical (r,0) — coordinate system)

normal stresses (global Cartesian (x,y,z) — coordinate system)
maximum shear stress

(in-plane) shear stress (rotated Cartesian (n,7,z) — coordinate system)
(in-plane) shear stress (cylindrical (#,0) — coordinate system)

shear stresses (global Cartesian (x,y,z) — coordinate system)

friction angle

friction angle for aggregate fracture / cement paste crushing

friction angle for (straight) cracking through cement paste

friction angle for compressive pore collapse

dilatancy angle

dilatancy angle for compressive pore collapse
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Ao maximum deviation angle of a curved crack

Aoy, maximum deviation angle of a curved crack in the virgin concrete

Ao local deviation angle of an irregularly curved crack

Aa,, maximum local deviation angle at which overriding still occurs

Ad increase of friction angle due to the mesoscopic curvature of a crack

Ad,, increase of friction angle due to the mesoscopic curvature of a crack
(before redistribution of local stresses along the crack)

Adg. increase of friction angle of ‘an equivalent fictitious regularly curved
crack through cement paste’ (with equivalent crack dilatancy)

Ay" increase of friction angle due to the mesoscopic curvature of a crack

(after redistribution of local stresses along the crack)

SUPERSCRIPTS
0
1
1
n

initial state

final state

elementary state I

elementary state 11

coarse fraction of the aggregate grains
crack quantity

elastic (strain, displacement)

coarse

cr

e

Juse fine fraction of the aggregate grains

— material point is located within the ITZ

= local quantity

m macroscopic quantity

s mode I crack quantity

el mode II crack quantity

£ plastic (strain, displacement)

! trial state

MISCELLANEOUS

u,,6,,&  dotabove a quantity indicates a first order derivative with respect to

time (e.g. velocity instead of displacement)

two dots above a quantity indicates a second order derivative with
respect to time (e.g. acceleration instead of displacement)

u,,0,,&,  narrow line above a quantity indicates an averaged or effective value
underlined quantity indicates a vector instead of a scalar

increments or corrections of displacements, stresses and strains

At increment of time (time step)

SYMBOLS, NOTATION AND ABBREVIATIONS

xiii

bold latin capital indicates a matrix
matrix, vector

transpose of a matrix, vector
minimum value of scalar a or b
absolute value of scalar a

|a

|a| length of vector a

AB vector pointing from 4 to B

A AND operator

= equivalent symbol

ABBREVIATIONS

2D two-dimensional

3D three-dimensional

COD Crack Opening Displacement

EUT Eindhoven University of Technology
FEM Finite Element Method

ITZ Interfacial Transition Zone

LEFM Linear Elastic Fracture Mechanics
LVDT Linear Variable Displacement Transducer
ROT Rotation of finite element

RVE Representative Volume Element
UDEC Universal Distinct Element Code
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CHAPTER 1

INTRODUCTION

1.1 Scope and objectives

In the field of structural engineering, the considerable increase of load-bearing
capacity due to confinement of a concrete element is common knowledge. A large
increase of deformations accompanies this increase in load-bearing capacity.

The advantageous influence of a multiaxial compressive stress state, which arises
due to a confinement of a concrete element, may be employed in many cases. With
respect to service-state analysis of structures, multiaxial compressive stress states
arise, for example, in many junctions of (possibly prestressed) concrete elements, in
spirally reinforced concrete columns or in-filled concrete steel tube columns and in
the introduction zones of concentrated loads (e.g. pre- and posttensioning).

In limit-state analysis, safety concepts such as structural integrity and absorption of
energy during impact loading become increasingly important. In this respect, taking
into account the advantageous effects of the large deformations generally
accompanying multiaxial compressive stress states, looks promising (remember the
large lateral bending deflections of the spirally reinforced concrete columns on
ground level of the Pentagon — of the order of magnitude of three to four times the
lateral dimensions — after the attack of 11 September 2001 [Harris ****]). Depending
on the loading path of a potential multiaxial compressive stress state, carefully
designed structural elements may well display large deformational capacity before
reaching the ultimate stren§th and a high residual strength after reaching the
ultimate strength [Van Geel . 98].

In spite of this, the advantageous influence of multiaxial compressive stress states is
scarcely found in building codes. General rules are not available. The existing rules
on multiaxial compressive stress states are empirical formulations based on findings
in extensive laboratory testing, valid only for the specific structural specimens
tested.

This fundamental lack of knowledge triggered a research project at Eindhoven
University of Technology (EUT) in the early eighties. Van Mier ** carried out an
extensive laboratory test program on uniaxiall?/ and multiaxially loaded plain
concrete specimens (cubes and prisms). Vonk '*> focussed on the mechanical
analysis and modelling of the structural behaviour (including failure) of concrete
loaded in uniaxial compression. The term ‘structural behaviour’ was introduced to
distinguish the failure process of a concrete specimen after reaching the ultimate
load-bearing capacity. The behaviour before reaching the ultimate load-bearing
capacity might be referred to as ‘material behaviour’, as the deformations upon
loading at this stage are grosso modo still continuously distributed over the concrete
volume. Consequently, neither the boundary conditions (test set-up), nor the
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geometry and dimensions of the specimen dominantly influence the mechanical
response of the specimen at this stage of loading.

Unlike the ‘continuum’ material behaviour as displayed at the loading stage before
reaching the ultimate load-bearing capacity, the mechanical response of a concrete
specimen at and after reaching the ultimate load-bearing capacity is governed by
local fracture processes which dominate the behaviour of the surrounding
continuum. These fracture processes prove to be highly dependent on the boundary
conditions and the geometry/dimensions of the specimen, i.e. the entire structural
system of the test set-up.

The present numerical research is carried out in close cooperation with the
experimental research done by Van Geel '**%. At EUT Van Geel carried out a large
number of uniaxial and multiaxial compressive tests on plain concrete cubes and
prisms. This research provided most of the experimental data needed for the
development of a numerical model, such as:

= Qverall data: stress-strain/displacement curves and failure patterns,

= Data on the development of cracks during loading,

= Data on the influence of the ‘loading path’,

= Data on the test set-up.

The main objective of the present research is to develop a two-dimensional (2D)
numerical model, which is capable of providing accurate predictions of the
mechanical response of multiaxial compressive tests in a 2D test lay-out. In a
similar investigation later on, the 3D version of the numerical model is to be defined
and accomplished.

As a result of close interaction between laboratory experiments and numerical
modelling, a numerical model could be developed based on an extensive test
program. Otherwise, the insight obtained from the numerical modelling also has
been used to specify changes or additions to the experimental test program executed
(by van Geel). The influence of the test set-up on the mechanical response of the
concrete specimens upon loading could be allowed for by performing both the
experiments and the numerical simulations on specimens matching geometry and
boundary conditions as close as possible.

The numerical model developed aimed from the beginning at simulating the
experimental test program as close as possible, but also at predicting the true
mechanical response of an arbitrary 2D structure subjected to an arbitrary loading
path. From this point of view, it was essential that convincing physical explanations
— versus empirical formulations — should be found for the observed phenomena.
Empirical formulations should strictly be used within the limits of the test series
upon which they are formulated. They are not likely to provide proper results for
other geometries, boundary conditions and/or loading histories. The Eindhoven
research project from the beginning followed the research track of interaction of
alternate laboratory experiments and physical/numerical modelling, in order to
circumvent a.o. the laming restrictions of the ‘empirical approach’.
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The present research concentrated on the investigation of the influence of multiaxial
stress states on the static, mechanical response of normal-strength concrete with
aggregates of relatively high stiffness and strength. No influence of time effects,
like drying shrinkage, creep or loading rate has been taken into account’.

The insight gained from this research, however, may be adopted for other concrete
mixes. In this way, possibly new insight might be gained for material improvement
by e.g. adaptation of the concrete mix.

1.2 Terminology and symbols

1.2.1 Coordinate systems and stress-strain states

Throughout this thesis a Cartesian (x,,z) - coordinate system is used to indicate the
global coordinates of a material point. Stresses and strains according to this global
coordinate system are indexed according to figure 1.1.a. The sign convention of
stresses and strains is also indicated in this figure: (ex)tension is positive while
compression is negative. To satisfy the condition of moment equilibrium and
according to the definition of shear strain the following conditions apply

Ty = Tix Yo = Vix
Tyz = sz sz = Yzy
T =T Yo = Ve

A Cartesian (1,2,3) - coordinate system is used to indicate the Jlocal axes of
principal stresses (or strains) in a certain material point (see figure 1.1.b).

255y 0,.8&

G3, 8

G, &

(a) (b) !

Figure 1.1. Coordinate systems for (a) a global (primary) stress/strain state and
(b) for a principal stress/strain state.

' The concrete specimens used in the experimental test program [Van Geel 19%] were stored under water

during 28 days and sealed in plastic bags afterwards. Testing occurred at moderate loading rates. Ergo, the
potential influence of drying shrinkage, creep and loading rate on the test results may be neglected.
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A useful graphical method of analysing the state of stress and converting primary
stresses into principal stresses has been developed by Mohr. In this method, the
normal and shear stresses on any plane (e.g. the x,y-plane) are represented by a
point on a plane orthogonal diagram of which the horizontal ‘coordinate’ is the
normal stress (e.g. o, and 6,) and the vertical ‘coordinate’ is the shear stress (e.g. Ty,
and t,,).

o,

(@) (b)

Figure 1.2. Mohr’s construction for a two-dimensional state of stress. (a) Physical
plane; (b) Mohr’s plane.

For the present purpose, it is necessary only to regard the shear stress as positive if
it has a clockwise moment about a point within the element. In figure 1.2, the points
X and Y on the (o,t) plane represent the stresses acting on planes perpendicular to
the x- and y-axis. The circle drawn through X and Y and having its centre C on the
c-axis, is called Mohr’s circle for the considered state of stress. The circle graphical
represents the normal stress and shear stress on all planes through the z-axis (i.e.
0 < a <2m). The points A and B, where the circle intersects the c-axis, define the
principal stresses. The angle made by CA with CX is twice the angle the direction
of o; makes with the x-axis in the physical plane.

Another point of interest is P’, called the pole of a Mohr’s circle. The stresses acting
on and the direction of the normal to any plane can be graphically determined by
drawing a line from P to any point on the circle. The angle between this line and
P*X is equal to the angle the normal to the plane makes with the x-axis.

For a three-dimensional stress state, three Mohr’s circles for three orthogonal planes
can be constructed. Likewise, a three-dimensional strain state is represented by
three Mohr’s circles in a plane diagram of which the horizontal ‘coordinate’ is the
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normal strain (e.g. & and &,) and the vertical ‘coordinate’ is half the shear strain
(e.g- YsY¥y and Yay,). In order to denominate typical stress or strain states, a
classification is made according to the potential presence of zero principal stress or

strain in one or two directions (see figure 1.3 and 1.4).

uniaxial stress state
(2 principal stresses are zero)

uniaxial strain state
(2 principal strains are zero)

uniaxial tensile stress state
T

c,=0,=0

3

T
Q

<

uniaxial compressive stress state
T

l c,=06,=0

T @1

|

o

w uniaxial extensional strain state

¥
€,=¢;,=0

uniaxial compressive strain state
¥

l £,=g,=0

F——21l———>¢

T

biaxial/plane stress state
(1 principal stress is zero)

biaxial/plane strain state
(1 principal strain is zero)

plane stress - tensile stress state
T T
+«—|0;=0

l

plane stress - tensile/compressive
stress state
T

+—|0,=0 %

plane stress - compressive stress state
1 T

—|0,=0

I

®

1

@

)

plane strain - extensional strain state
T Y
— 83=0 —

l

plane strain - extensional/compressive
strain state

+—|&,=0|—> %

plane strain - compressive strain state
1 Y

— s |5=0

T

6

(@~

o)

Figure 1.3. Uniaxial and biaxial stress/strain states.
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triaxial stress state triaxial strain state
(no principal stresses are zero) (no principal strains are zero)

triaxial tensile stress state = triaxial extensional strain state

B e | e

triaxial tensile/compressive stress state | = triaxial extensional/compressive
strain state
E ¥

60~ | (35~
56— | 36—

triaxial compressive strain state

triaxial compressive stress state

pel-| ael

Figure 1.4. Triaxial stress/strain states.

The material model for concrete mechanical behaviour, presented in this thesis, is
limited to two dimensions. The global z-axis is in the following the (principal) out-
of-plane direction. To describe in this 2D configuration stresses and displacements
at a straight discontinuity (crack), it is convenient to define a local Cartesian (»,t,2) -
coordinate system in which the n-axis runs perpendicular to the crack direction and
the 7-axis runs parallel to the in-plane crack direction (see figure 1.5).

To describe, in a 2D configuration, a stress/strain state at the circumference of a
certain material point O, a cylindrical (r,0) - coordinate system is defined according
to figure 1.6. Within this coordinate system the angle 6 is zero in the direction of
maximum shear stress, or, the radius at 6 = 0 makes an angle of /4 radians with the
axes of maximum and minimum principal stress (1- and 3-axes).

INTRODUCTION 7

l o, : crack normal stress
T,, : crack shear stress
& ue : crack opening displacement
we : crack sliding displacement

Figure 1.5. Denomination of crack stresses and displacements.

r = radius (OP)

Figure 1.6. Stresses and displacements in a cylindrical (¥, §)-coordinate system.

1.2.2 Fracture of concrete

A crack in a solid can be loaded in three different basic modes, as indicated in
figure 1.7. Normal stresses give rise to the opening mode or mode I loading. In-
plane shear loading results in the s/iding mode or mode II loading, whereas out-of-
plane shear loading leads to the fearing mode or mode III loading. A general case of
loading can be described by a superposition of these three basic modes.

I II III
Figure 1.7. Three basic modes of loading [Broek"**].
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If the solid consists of a heterogeneous material with strong inclusions (such as
normal strength concrete), tortuous cracks will be formed, meandering around the
strong inclusions (see figure 1.8). Although globally a mode II loading is applied,
the local crack displacements along such cracks are a combination of opening and
sliding crack displacements. When such a tortuous crack is considered on the global
level, the crack is referred to as a mode II crack with crack dilatancy’.

NN\ = tortuous crack e = strong inclusion

— —— — — — — — — — +—

(@) (b)

Figure 1.8. (a) Formation of a tortuous crack in mode 1l loading and
(b) sliding and dilation of a tortuous mode II crack.

R 'y

//?; b

RN

NN

/’/
t t t
} ' |

FEr Lot ?
blb b b .
NN 1
(@ (b)
Figure 1.9. (a) Pore collapse and (b) tensile splitting.

RN
boph s

2 Originally, the basic crack modes concern potential local crack growth at the crack tip of an existing crack.
In the present research, the same terminology is used also to specify the global loading condition along the
length of the potential or existing crack.
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In this research, two other terms regarding crack formation are discussed here: pore
collapse and tensile splitting. When — in a highly porous material loaded in
compression — the pore structure collapses due to largely distributed mode II
cracking, the term pore collapse is used. When mode I cracking occurs in lateral
direction due to axial splitting forces, the term tensile splitting is used (figure 1.9).

1.2.3 Theory of elasto-plasticity

The numerical model presented in chapter 4 and 5, is developed within the
framework of elasto-plasticity. Therefore, the basics and terminology of this theory
are discussed cursorily in this section.

According to the classical theory of elasto-plasticity, the strain vector g is
decomposed in an elastic and a plastic component.

g=g’+8g”

The constitutive relationship between the stress vector ¢ and the strain vector g is
given by

o=D(g-¢’) (1.1

where D° is_the matrix of the moduli of elasticity. The presented numerical model is
fieveloped in a 2D plane strain configuration. For plane strain analysis of an
isotropic material, equation (1.1) yields for the in-plane global stress components

o, 1-v v 0 || e,—¢”
6, |l=0——7—| V 1= 0 -g 7
a2 Voo e
» 0 2=V || o~ Yo

in which the isotropic elastic material behaviour is characterised by Young’s
modulus £ and Poisson’s ratio v.

The same theory may also be applied for describing the constitutive behaviour of a
discontinuity (crack). In this case, the crack relative displacement vector u is
decomposed in an elastic and a plastic (crack) component u” = [ u”, w”]".

u=u"+u’

The constitutive relationship between the crack stresses 6 = [G,,, T, ]T and the crack
displacements is then given by

o=K*(u-u") (12)

with K° being the matrix of the moduli of elasticity of the crack’.

3 4 p 5 % y .

flnbreallty, the elasth deformations of an interfacial (potential) crack are zero. Generally, this is accounted
or by taking the e.lasnc stiffness K* so high that the elastic deformations of the crack may be neglected with
respect to the elastic deformations of the continuum.
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For mode II cracking, the crack opening and crack sliding velocities are interrelated
by the so-called dilatancy angle y (see figure 1.10)

u
tany =

. Cr

(1.3)

L N N N
y W W W W
v
' T
Mode II cracking Mode I cracking

Figure 1.10. Direction of plastic flow for mode I and mode II cracking.

For mode I cracking the crack sliding velocity is zero, so for both crack modes the
direction of plastic flow is fully determined.

. t
4= Sumode11|: afll ‘q (Mode II cracking)
<P _ Q model 1 i
i =9’ . (Mode I cracking)

Q mode Il q model
9, S,

Where the plastic multipliers and are positive scalars, which are
nonzero only when plastic deformations occur. They can be determined from the
condition that during plastic flow the stresses remain bounded (see section 1.2.4).

Differentiation of equation (1.2) and inserting the expressions for the direction of
plastic flow finally yields:

: [ ta

[_G"} =K*\u- 9,"””"3”{ ?Wﬂ (Mode 1II cracking) (1.4)
Tni
: [ 1

{(_s”} =K°| -9 [Oﬂ (Mode I cracking) (1.5)
Tt L

In some cases, it is convenient to smear discrete crack displacements over a certain

width ¢ of the continuum. Plastic strain rates and crack velocities are in that case
coupled according to figure 1.11.

INTRODUCTION 11

. ‘,'VCr
Uy L~o~—" ey |
- y W W ="
T discrete discrete
£ /\%ﬁw\k/ mode I cracking mode Il cracking
| g
il L
Snp = [ . e
n Yo 7
smeared smeared

Figure 1.11. Smeared and discrete relative crack velocities.

According to figure 1.11, application of equation (1.3) results in — for smeared
mode II cracking — the following relationship

¢, =17, tany

The rate of plastic normal strain in ¢ and z-direction is zero, so the plastic
volumetric strain rate £7, =¢,7+¢,”+¢,” and the rate of maximum plastic shear

vol

deformation y7  are expressed by

&2 =87 =7 tany (1.6)

vol
pr=y(e,7- e P+ (3,7)
=, yl+tan’y (1.7)

P

_Yw
cosy

Comparison of the expressions above gives the classical interrelation between the
plastic volumetric strain rate and the rate of maximum plastic shear deformation.

éfol = ’Y(Ir;mx Sin\l’

As the maximum and minimum plastic principal strain rates are related to the plastic
volumetric strain rate and the rate of maximum plastic shear deformation according
to (out-of-plane plastic strain rate £,” =£,” =0)

él’

vol

5Py a P
=& +¢&,
4

wP P
ymax_sl _83

the following expression for the direction of plastic flow — for smeared mode II
cracking — is found
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o b .

Bl § modell %(l + Sm\V)
&, ‘ ~1(1-siny)
For mode I cracking, the n-direction equals the maximum principal strain rate
direction and the #-direction equals the direction of the minimum principal strain

rate. As the rate of plastic normal strain in #-direction equals zero, the direction of
plastic flow for smeared mode I cracking becomes

(Mode II cracking)

A . 1
[81} =9, [OJ (Mode I cracking)

€3

Inserting the expressions for the direction of plastic flow in equation (1.1) finally
gives after differentiation:

(&, IENE (1 +si

i |_pel| ™ _.9;"“"’”[ f( S?n“l)} (Mode II cracking) (1.8)
65 | L£; —7(1—sm\y)
r61_ —-_él— Q model 1 1

=Del| -8, (Mode I cracking) (1.9)
[ O | LL&5 ] 0

1.2.4 Concept of a stress-state bounding surface

The magnitude of plastic deformations — characterized by the plastic multiplier 9.,
— is determined by introducing the concept of a stress-state bounding surface,
formulated in stress space, which separates permissible from non-permissible stress
states. If the stress state is inside the bounding surface the deformations are purely
elastic, whereas plastic deformations can occur if the stress state is on the bounding
surface. In this concept stress states outside the bounding surface are not allowed.
For application to concrete, the most known and simple examples of such surfaces
are, for mode II cracking, the Mohr-Coulomb bounding surface and the Rankine
bounding surface for mode I cracking. These bounding surfaces are governed by the
following equations:

fi(@=|t,|-c+o,tan¢=0 (Mohr-Coulomb)
fr@=0,-f,=0 (Rankine)

Tnt

in which the cohesion c, the friction angle ¢ and the tensile strength f; are material
properties.
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Tnt

f

Rankine

T

<—fl—>|

Figure 1.12. Mohr-Coulomb and Rankine stress-state bounding surfaces.

To trigger the initiation of a crack in a continuum, Moht’s stress circle for a certain
state of stress may be applied in the (o,t) plane. When the stress circle touches the
bounding surface, a crack is initiated along a plane making an angle o with the
direction of the minimum (most compressive) principal stress (see figure 1.13).

mode II cracking
Vil

IRERRE
g
ArAtrt
a

Rankine

mode I cracking
- —
- —>
-« —
-— —
- —
-— —

._.% G

BRERE )
N

trtt
Figure 1.13. Mode I and mode II crack initiation.
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So far, the stress-state bounding surface has been considered as a static surface in
stress space. However, for a more detailed description of the inelastic behaviour of
cracks, a dependency upon the previous loading history may be introduced. The
simplest and most common extension to the theory as adopted above, is to make the
expression for the bounding surface also dependent on a scalar measure « of the
plastic strain (or relative displacement) vector. This scalar k is often referred to as
an internal state parameter.

f=r(ox)

For increasing x the bounding surface may either shrink or expand. In case the
bounding surface expands, the term strengthening is used and if the bounding
surface shrinks, the term softening is used.

@
=]
a 2
2 o
= @n
c o g o
w QO —p
o =
= 9
a 5
= @
=¥ E.
@ 5
: @
Figure 1.14. Terminology for expansion/shrinkage of Mohr-Coulomb and
Rankine stress-state bounding surfaces.
T T T
o} o L O
" frictional cohesive tensile

strengthening/softening strengthening/softening

strengthening/softening

Figure 1.15. Terminology for expansion/shrinkage of a non-linear stress-state
bounding surface.

For a Mohr-Coulomb bounding surface, both the cohesion ¢ and the friction angle ¢
may depend on k. If the cohesion depends on «, the term cohesive strengthening (or
softening) is used. In case the friction angle depends on k, the term frictional
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strengthening/softening is used. Unlike the Mohr-Coulomb bounding surface, the
Rankine bounding surface is characterized by just one parameter, the tensile
strength f;. In this case shrinkage or expansion of the bounding surface are
denominated as tensile softening or strengthening (figure 1.14).

The same terminology not only applies for Mohr-Coulomb or Rankine plasticity,
but also for non-linear bounding surfaces that account for both mode I and II
cracking (see figure 1.15).

The concept of a stress-state bounding surface, as explained above, can be used to
determine the magnitude of plastic flow. In section 1.2.3, a linear relation between
the stress-rate vector & and the strain-rate vector £ is set. To obtain total stresses
and strains at an arbitrary loading stage, the equations must hence be integrated
along the loading path. To this end, it is assumed that the loading steps are very
small. Under this condition, the material properties (y, ¢, ¢, f;) may be considered
to remain constant during one small loading step and the stress/strain rate vectors in
section 1.2.3 may be replaced by stress/strain increments. These considerations also
apply for stresses and crack displacements in the case of discrete cracking.

Starting from an initial stress state ¢’, a trial stress state ¢’ can be computed by
adding an elastic trial stress increment.

¢ =0’ +KAu (discrete cracking)

o'=c’ +DAg (smeared cracking)

If the trial stress state falls outside the bounding surface (f(c’,x%) >0), cracking
occurs and a correction must be applied, i.e. the trial stress state must be mapped
back to the bounding surface. The direction of this correction Ag is given by the
direction of plastic flow (see equations (1.4), (1.5), (1.8) and (1.9)). The magnitude
is given by the condition that the final — corrected — stress state ' is located on the
bounding surface, i.e. (' k%) =0.

0 T
Ag = _KeASumodell [tanq{(‘( ):| C(Ko) 7\
t o (%)

cn

Figure 1.16. Return-mapping of crack stresses in case of Mohr-Coulomb plasticity.



16

CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION — NUMERICAL MODELLING

CHAPTER 2

REVIEW OF LITERATURE

The review of literature presented here comprises two parts. First of all a review is
given on the specific characteristics of the mechanical behaviour of concrete loaded
in multiaxial compression as observed in experiments. In addition, more extensive
reviews on this subject can be found in Newman '*”’, Van Mier '**, Vonk '** and
Van GCCI 1995a, 1995b, 998.

Secondly, an overview is given of existing modelling approaches for concrete that
take into account the effects of mode I and mode II cracking in concrete.

2.1 Experiments

2.1.1 Multiaxial compressive stress state

Multiaxial compression tests on concrete have been performed using two essentially
different test setups. In the first setup, referred to as triaxial cell, the cylindrical
shaped concrete test specimen is mounted between steel end blocks and placed in a
pressure vessel. In radial direction, fluid pressure loads the specimen. In axial
direction, the specimen is loaded independently by means of a hydraulic jack.
Application of a flexible, impermeable membrane between the specimen and the
hydraulic fluid prevents the fluid from entering the specimen. This test setup has the
limitation that the two confining principal stresses are always equal.

The second test setup, the “true” triaxial loading apparatus, consists of a
construction of three orthogonal loading frames permitting the concrete test
specimen (cube or prism) to be loaded in three orthogonal directions independently.

2.1.1.1 Influence on strength

The compressive strength of concrete in the main (axial) loading direction is highly
sensitive to the presence of lateral confinement. The axial compressive strength
decreases in the presence of lateral tensile stresses, while the strength increases in
the presence of lateral compressive stresses. This sensitivity to the presence of
lateral confinement is governed by the roughness of (potential) mode II cracks. As
the roughness is characterized by the friction angle in the classic Mohr-Coulomb
bounding surface, concrete is called a frictional material.

2.1.1.1.1 Biaxial strength

Basically, the biaxial strength can be measured in a triaxial cell without axial load
[Richart et al '®**]. This technique has the limitation that o, always equals o3 (o] =
0). To studﬁy the whole biaxial loading range, other techniques have been developed.
Bellamy '**' induced (approximate states of) biaxial compression by loading hollow
mortar cylinders in a triaxial cell with an external fluid pressure. This technique,
however, gives only satisfactory results for thin-walled mortar tubes (radial stresses
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are nearly zero). Concretes with larger aggregates require thicker specimens and
therefore cannot be tested in this way.

The aforementioned drawbacks do not exist when concrete cubes are loaded
biaxially between two sets of load bearing platens and by independently controlled
hydraulic jacks (similar to a ‘true’ triaxial loading apparatus without the third
loading axis). Performing this kind of test Iyengar et al ** reproduced similar test
results as Bellamy. In these tests rigid bearing platens were used. When the load is
applied by these platens, significant frictional stresses along the ‘concrete — steel
platen’ interfaces are introduced (i.e. a triaxial state of stress). Reduction of this
platen restraint reduces the biaxial compressive strength of concrete considerably as
can be found in the work of Robinson'*”’, Kupfer et al'®® ' Liu'” and
Nelissen "%,

Figure 2.1 shows biaxial strength data of Kupfer and Liu, with reduction of platen
restraint, in addition to tests done at Eindhoven University of Technology,
Technical University in Munich (TUM), Bundesanstalt fiir Materialpriifung in
Berlin (BAM) [Schickert & Winkler '*’’] and the University of Colorado (CU).

G3/Guniaxial [ ]

if A Biaxial test results by Van Geel [1998]
i ® Biaxial test results by Van Mier [1984]

i e

0505+ | e } Biaxial test results by Kupfer [1973]

#1 | m—— Biaxial test results by Liu [1972]

Biaxial test results by TUM in [Gerstle,1978]
0254 T e Biaxial test results by BAM in [Gerstle,1978]
! |- Biaxial test results by CU in [Gerstle,1978]

| Il | | I |
t T T T 1 T

-O‘.25 0 0.25 050 0.75 1.00 1.25 1.50

6,/ O migiar []

Figure 2.1. Plane stress (biaxial) strength envelope [Van Geel "**].
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2.1.1.1.2 Triaxial strength

The strength of concrete is highly sensitive to the presence of lateral confinement.
However, the biaxial strength envelope (see figure 2.1) shows the effect of the latter
only poorly. The effect increases drastically when — moreover — confinement in the
third principal direction is applied.

The essence of this kind of material behaviour is incorporated in the Mohr-Coulomb
strength criterion based on the maximum and minimum principal stress and internal
friction. This criterion is widely used because of its appealing physical background
and its simplicity.

Triaxial strength data of concrete tested in a triaxial cell were first given by Richart
et al %%, Afterwards, much testing has been done in the sixties and the seventies of
the 20" century. Examples can be found in Hobbs '*”' of tests performed in a triaxial
cell and in Mills et al ", Launay et al 1970 and Bertacchi et al *7? of tests performed
in a “true” triaxial loading apparatus. Test results of loading techniques, including
extensive research on the influence of boundary conditions, are given in the
cooperative research of Gerstle et al o

Ahmad et al'®® gathered triaxial strength data by performing experiments on
concrete confined by steel tubes of varying wall thickness. These results compared
favourably with the test data above.

A S

Figure 2.2. Haigh-Westergaard coordinate system in space of principal stresses.

Test data on triaxial strength are often visualised by adopting the Haigh-
Westergaard cylindrical coordinate system (figure 2.2). This coordinate system is
related to the Cartesian coordinate system of principal stresses by the following
equations:
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Figure 2.3. Cross section of triaxial strength envelope in 7,-c, plane
[Podgorski **'].
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Figure 2.3 shows the triaxial strength envelope in the Rendulic plane (o, = o3). All
results from tests carried out in a triaxial cell are located in this plane. The
compressive meridian comprises the ultimate stress states when one major
compressive principal stress goes together with two equal minor confining principal
stresses. The tensile meridian comprises the ultimate stress states when two equal
major confining principal stresses go together with one minor compressive principal
stress.

The shape of the strength envelope in the octahedral (or deviatoric) planes at
various hydrostatic stress levels is depicted in figure 2.4. As tests carried out in a
triaxial cell only provide data on the compressive and tensile meridians, more data
from tests carried out in a “true” triaxial loading apparatus (o, # o, # 03) are needed
to construct the shape of the triaxial strength envelope in this plane.

‘—01/fC

—Gz/fC _Gs/fc

X Experiments (Launay et al)
Five Parameter Model

(f; = uniaxial compressive strength) Deviatoric Sections

Figure 2.4. Cross section of triaxial strength envelope in octahedral (deviatoric)
plane [Willam S

The basic characteristics of the Mohr-Coulomb strength criterion are indeed
confirmed by experimental data as depicted in figure 2.3 and 2.4: the triaxial
strength envelope is convex, highly sensitive to lateral confinement and open ended,
i.e. no failure is found for high hydrostatic compression [BaZant et al '**°].
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The today’s interpretation of the Mohr-Coulomb triaxial strength criterion is the
first-order approximation of the triaxial strength envelope obtained by triaxial test
data. The linear shaped compressive and tensile meridians and a linear interpolation
between the meridians in the octahedral plane (i.e. no influence of the intermediate
stress level), inherent to the Mohr-Coulomb criterion, do not permit an accurate
estimation of the triaxial strength. Also, the experimentally observed change of
shape of the deviatoric section, from triangular to more circular with increasing
hydrostatic compression [Hannant'*™*], is not represented by the Mohr-Coulomb
criterion.

Many researchers have proposed adjusted strength criteria for better agreement with
experimental data. Emperical models with meridians as guadratic functions of the
hydrostatic stress have been proposed [Hoek & Brown '**’], possibly extended with
a smooth elliptic interpolation in the deviatoric sections [Willam & Warnke '*”>;
Menétrey & Willam '**]. Fan & Wang **? combined an empirical approach for the
derivation of quadratic functions of the hydrostatic stress with a more theoretical
approach of adjusting the shape of deviatoric sections by entering the intermediate
principal stress level directly into the shape functions.

Other — more phenomenological models — try to capture the global shape of the
experimentally observed strength envelope in a mathematical format with the
assumption that the triaxial strength of concrete is a function of independent stress
variables, such as the stress invariants [Lade 1982. Hsieh et al '**%; Podgorski e )

2.1.1.2 Stress-displacement curves

-320— 6, =0,=-195 MPa
28 o, =0,=-100 MPa
-240
6, =06,=-50 MPa
-160
-120
| 0,=0,=-25MPa
-80
/ 6,=06,=-10 MPa
4
/,,4'4 6,=0,=-3 MPa

u, = u, [mm] u; [mm]

Figure 2.5. Stress-displacement curves in triaxial compression tests (dashed lines
represent uniaxial test) [Van Geel "*].
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Figure 2.5 shows typical test results of normal strength concrete cubes
(100x100x 100 mm’) loaded in triaxial compression towards the compressive
meridian (o3 < 6 = 67). Apart from the major increase of strength with increasing
confining pressure, also a considerable increase in ductility is observed. The post-
peak response changes drastically from highly brittle in uniaxial compression to
highly ductile for high confinement levels. This phenomenon, often referred to as
brittle-ductile transition, is investigated by many experimentalists [Jamet '***; Smith
et al ' Sfer et al %],

(4 +uy+ u3)/3 [mm]

Figure 2.6. Axial displacement versus mean ‘volumetric disg)lacement’ in triaxial
]

tests on normal strength concrete [Van Geel e

Figure 2.6 shows another distinctive property of concrete loaded in triaxial
compression, i.e. the development of volumetric strain (or displacement) during
testing. Kotsovos & Newman 177 pointed out that three notable points might be
indicated in the curve of volumetric strain. The first point indicates a change in the
rate of volumetric strain towards more contraction and exhibits distinct non-linear
material behaviour. The second point indicates a change in the rate of volumetric
strain towards more dilation. While the first two points can only be determined
upon close examination of the deformational behaviour, and consequently, not from
figure 2.6 only, the third point (around peak stress in figure 2.5) is easily defined
since it coincides with the level at which the overall volume of the material
becomes a minimum. These points indicate a distinctive change in the fracture
process of the specimen [Kotsovos & Newman 1977 Imran & Pantazopoulou '**]
Another topic of interest is the potential loading path dependency of triaxial test
results. Based upon loading path variations in the pre-peak regime, Gerstle et al 1978,
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Smith et a and Imran & Pantazopoulou " concluded that the triaxial strength
of concrete was basically path-independent. Kotsovos *” confirmed this for low
levels of confinement, but found the strength results in the ‘high confinement’
region somewhat dependent on the maximum achieved hydrostatic stress level
during different loading paths. Although the observed path-dependency is only
small regarding the strength of concrete, the pre-peak volumetric deformational
behaviour is influenced much more by the chosen loading path [Kotsovos '*”%;
Imran & Pantazopoulou '**¢]
By carrying out ‘rotation experiments’, i.e. tests in which the most compressive
principal stress direction is rotated affer reaching peak stress, Van Mier #8419
showed that the strength after rotation in some cases was dependent on the loading
history. The existence of path dependency upon post-peak preloading was found to
depend mainly on the direction of macrocracks formed in the post-peak stage before
rotation.

2.1.2 Cracking in concrete

2.1.2.1 Uniaxial compression

The fracture process of normal strength concrete in uniaxial compression has been
studied extensively in the early sixties of the 20" century at Cornell University. An
extensive review of this research is given in Slate & Hover'***. Based on direct
microscopic observations and x-ray photographs Hsu et al *® related the process of
internal microcracking to the shape of the stress-strain curve. To comprehend the
fracture process it is essential to consider the heterogeneous nature of the concrete
material. To this end, the highly heterogeneous system of concrete was simplified to
a two-phase composite structure of coarse aggregate grains embedded in a mortar
matrix. A subdivision into three crack types was made:
= Aggregate cracks through coarse aggregate grains
= Mortar cracks through the mortar matrix
= Cracks occurring at the so-called interfacial transition zone (ITZ)', providing
bond between the mortar matrix and the surface of the aggregate grains.
It was observed that a significant number of cracks or crack-like voids exist prior to
the application of external loads. These cracks are primarily ITZ cracks caused by
micro bleeding at the coarse aggregate grains and non-homogeneous volume
changes during setting and hydration. The existence of these cracks shows that the
ITZ is the weakest link in the heterogeneous concrete system [Hsu & Slate '%;
Alexander et al '*®*]. Above about 30% of the ultimate load, new ITZ cracks are
formed and the existing ITZ cracks start to grow around the aggregate grains. The
stress-strain curve starts to deviate from a straight line (see figure 2.7). As the load
reaches 70 to 90% of the ultimate load, cracks through the mortar start to grow
noticeably. These mortar cracks form bridges between adjacent ITZ cracks. The
curvature of the stress-strain curve becomes more pronounced. This loading range

! The existence and specific structure of the ITZ is further explained in chapter 3.
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coincides with the occurrence of a “critical stress’ level, i.e. the stress level at which
the volume of the concrete starts to increase rather than continuing to decrease
[Shah & Chandra ).

GM
Opesk |— — —— = .
unstable growth of combined cracks
080y |— — —ff— = ==
formation of combined cracks: mortar
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pre-existing ITZ cracks
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Figure 2.7. Crack formation and the compressive o-¢ curve according to
Hsu et al ™ (redrawn from Vonk'**?).

At further increase of loading, crack growth becomes unstable resulting in the
formation of a continuous crack pattern at failure.

More recently, much more research has been carried out on measurement of crack
growth in concrete specimens loaded in uniaxial compression [amongst others:
Suaris & Fernando '**’; Darwin & Dewey '**’; Nemati et al 19981 Although improved
crack survey techniques permitted more cracks to be ‘visualised’, the process of
crack growth as described by Hsu et al was generally confirmed.

Regarding the crack pattern at failure, much controversy exists about the relative
degrees of mode I (axial splitting) versus mode II (inclined shear) cracking. In this
respect, Torrenti et al™®® reported clear mode II cracking while Rutland &
Wang " reported predominantly mode I cracking. Evidently, the mode of failure is
much influenced by the boundary conditions, i.e. frictional restraint at the
specimen-loading platen interface [Kotsovos '**]. With reduction of the frictional
restraint at the loading surface, combined mode I and mode II crack planes were
observed - in two orthogonal directions - dividing the specimen in slender conical
pieces [Van Mier '***; Vonk '**%; Van Geel ).

The observation of combined mode I and mode II cracking does not necessarily
imply the initiation of mode 1I cracks during loading. As stated before, isolated
inclined (ITZ) cracks are already present in concrete prior to loading. Horii &
Nemat-Nasser '® showed by analysing an idealized brittle material with pre-
existing inclined flaws, that the formation of inclined macrocracks may occur solely
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through the initiation of tensile splitting (mode I) cracks bridging between the pre-
existing inclined flaws. Nevertheless, complete failure of the specimen occurs still
by sliding along the pre-existing inclined cracks, implying that internal friction still
remains a determinative factor in uniaxial compressive failure.

2.1.2.2 Triaxial compression

The fracture process of concrete loaded in triaxial compression is conceptually
identical to fracture in uniaxial compression. It was observed by Krishnaswamy '**®
that the presence of lateral confinement only decreases the rate of development of
internal cracks. As stated in section 2.1.1.2, Kotsovos & Newman "’ pointed out
three characteristic points on the curve of volumetric strain that were strongly
related to the fracture process. The first point — indicating a tendency towards more
contraction — is defined by “local fracture initiation”. Kotsovos postulated that the
observed change in deformational behaviour was caused by strain redistribution due
to limited crack branching at the tips of existing isolated cracks. The second point —
indicating a tendency towards more dilation — is defined by the “onset of stable
fracture propagation”, i.e. like in uniaxial compression pre-existing ITZ cracks start
to grow continuously. The third point, indicating the level at which the overall
volume of the material becomes a minimum, is defined by the “onset of unstable
fracture propagation”, i.e. combined cracks have grown to such extent that the crack
system becomes unstable. Acoustic emission measurements during triaxial
compressive loading of model concrete specimens made with 5 mm glass balls and
cement paste confirmed the existence of the transition points as indicated above
[Bergues ***]. A clear difference in the fracture process between uniaxial and
triaxial compression is that the change in the rate of volumetric strain towards more
contraction practically does not exist in uniaxial compression.

More recently, Nemati et al '**® reported that the crack density at 80 to 85% of the
ultimate load decreased considerably with increasing confinement. Confinement
also decreased the percentage of ITZ cracks. The recordings were made after
impregnating the specimens with an alloy — called Wood’s metal — in the liquid
phase, while the specimen was under load. The specimens were not unloaded until
the metal was solidified to preserve the microstructure in the specimens under load.
These observations indicate that the occurrence of interconnected open cracks under
load, i.e. mode I cracks, decreases with increasing confinement. Isolated cracks and
closed (mode II) cracks are not filled with the metal, and consequently, remained
undetected.

2.1.2.3 Crack patterns at failure

Within the triaxial loading regime, Van Mier '** distinguished three distinct failure

modes (figure 2.8):

= Planar failure mode. This mode is observed in triaxial tests allowing for only
one tensile deformation (plane strain tests, triaxial tests with two clearly
different confining pressures). These specimens show very pronounced inclined
shear-bands with the normal oriented perpendicular to the intermediate
compressive direction (one directional mode II failure).
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= Cylindrical failure mode. This mode is observed in triaxial tests allowing for two
large tensile (positive) deformations. This mode occurs in triaxial tests with
equal confining pressures (compressive meridian) with the uniaxial compression
test as a special case. These specimens show a more distributed failure mode,
which is the result of interfering shear planes in two directions (two directional
mode II failure).

s Tensile failure mode. This mode is displayed in specimens loaded in tension
with one or two confining pressures. At failure, these specimens displayed a
single tensile crack, perpendicular to the tensile stress direction (mode I failure).
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Figure 2.8. Classification of failure modes [Van Mier'***].

The observations of Van Mier were limited to a lateral level of confinement of 10%
(01 =0, =0,l03). Observations on specimens loaded in triaxial compression with a
level of confinement of more than 25% revealed hardly any macroscopic (localised)
fracture in the work of Jamet '*** and Van Geel '**%, although extensive deformation



28 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION — NUMERICAL MODELLING

is reported. Yet, such absence of localised fracture — at these high levels of
confinement — is somewhat controversial, since also localised fracture is reported
[Rutland & Wang '*"; Sfer et al 2°%].

Considering the case of uniaxial compression within the triaxial loading regime of
figure 2.8, it appears that this loading case is located in the transition regime
between the tensile failure mode and the cylindrical failure mode. Therefore, it is
not surprising that the failure mode in uniaxial compression is highly influenced by
a small amount of lateral compression or tension, caused — for instance — by the
boundary conditions.

2.1.2.4 Localisation of deformations

The most salient aspect of post-peak concrete behaviour is the formation of large
macrocracks forming a failure mechanism. All further deformations concentrate in
these macrocracks while the surrounding continuum is unloaded, i.e. the
deformations /Jocalise in a few macrocracks. Consequently, the geometry,
dimensions and the boundary conditions dominantly influence the mechanical
response of the concrete specimen/element. For this reason, often the term
‘structural’ behaviour is used as opposed to ‘material’ behaviour that marks a
continuously well-distributed deformation pattern upon loading, for which the
continuum theory is valid and the mechanical behaviour can be characterised by a
unique stress-strain relationship. In this sense, pre-peak concrete behaviour
macroscopically is material behaviour.

151

144 STRESS-DISPLACEMENT DIAGRAM / POST-PEAK
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Figure 2.9. Measured post-peak response in uniaxial compression tests on three
specimens with varying height (redrawn from Van Mier ks ).
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The occurrence of localised deformations is best demonstrated by comparing the
stress-displacement curves of specimens of different size. After all, continuum
‘material’ behaviour incorporates a unique stress-strain relationship, while fully
localised behaviour is governed by crack displacement and so incorporates a unique
stress-displacement relationship [Van Mier *]. In this way, Van Mier "*** first
demonstrated localisation of deformations in uniaxial compression in the post-peak
loading regime (see figure 2.9). Later on, many experimentalists confirmed this
finding [Vonk 1992; Van Vliet 1996; Van Mier et al 1997]. Apart from the behaviour
around peak stress, Van Geel 9% found similar descending stress-displacement
curves for concrete loaded in multiaxial compression. As already expected from the
observed crack patterns at failure in these tests (pronounced shear band rupture, see
figure 2.8), this confirms the existence of localisation of deformations also in the
presence of confinement.

In the work of Van Geel ™, the presumption was further made that around peak
stress the mechanical response is neither uniquely characterised by a stress-
displacement curve, nor by a stress-strain curve. By performing extensive strain
gauge measurements at the surface of the specimens under triaxial loading, Van
Geel indeed demonstrated that the mechanical response at and just after peak
strength was governed by continuum material behaviour as well as localised
macrocrack growth. In such cases, also the strength of the structure is influenced by
localisation of deformations. This effect, known as size effect for strength, has been
observed for many concrete structures failing due to mode I cracking
[Bazant 1% 1994

1998
1

2.2 Modelling

In this section, a global overview is given of existent modelling approaches dealing
with the specific structural behaviour of concrete under loading as partially outlined
in the preceding sections. A global distinction is made between models regarding
cracks as true spatial discontinuities in a continuous solid (section 2.2.1), models
that allow the formation of spatial discontinuities (cracks) at an arbitrary location
and orientation by simplifying the geometric representation of the continuous solid
(section 2.2.2) and models that account for the effects of cracking by distributing
the crack displacements over a certain volume in order to produce crack strains and
preserve the original continuity of the problem formulation (section 2.2.3).

2.2.1 Discrete crack modelling

2.2.1.1 Discrete crack modelling in a homogeneous brittle solid:
Linear Elastic Fracture Mechanics (LEFM)

Fundamental work on fracturing of brittle homogeneous materials was done by
Griffith ***. He investigated the influence of a flaw on the strength of a
homogeneous material in a uniformly loaded two-dimensional body by simulating
such a flaw with an elliptical hole, for which Inglis 13 gave previously the solution
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of the elastic stress field. Griffith concluded that ‘maximum stress’ at the tip of the
flaw was not an appropriate strength criterion and suggested an alternative theory
based on an energy concept. This concept was that solids, similar to liquids, possess
surface energy and, in order to propagate a crack (or increase its surface area), the
corresponding surface energy must be compensated through externally added or
internally released (strain) energy. For a linear elastic solid, the release of strain
energy upon crack extension may be calculated from the solution of the elastic
stress field of the crack problem.

In the early 1950’s, researchers who were primarily interested in catastrophic failure
of large metallic structures reconsidered the energy balance theory. It was then
concluded that for metals considerable plastic deformations are present at the crack
front and that this plastic work should be included in the energy balance. Under the
condition that the plastic zone around the crack tip is very small compared to the
crack size, it was observed that the rate of strain energy available for fracture could
still be calculated from the purely elastic solution of the crack problem. In addition,
Irwin "7 18 developed a universal method for calculating the rate of strain energy
available for fracture of a solid. He recognized that stress and displacement fields
around the crack front in a linear elastic solid under most general loading conditions
may be expressed in terms of three sets of universal angular functions, multiplied by
three ‘stress intensity factors’ for mode I, II and III cracking (see figure 1.7). These
‘stress intensity factors’ are the only quantities dependent on the loading and
geometry of the solid. Based upon the stress intensity factors for a specific crack
growth problem, the corresponding strain energy release rates Gy, Gy and Gy
(energy available to create a unit fracture surface) can be evaluated.

To complete the energy balance, a realistic single-parameter characterization of the
material’s resistance to fracture is also needed. For brittle solids it is assumed that
the size and the shape of the fracture process (or energy dissipation) zone remain
essentially constant during crack propagation, which implies that the energy needed
to create a unit fracture surface is a material constant (for each crack mode). Irwin
designated this fracture resistance energy as fracture toughness Gc¢ (Gic for mode 1
cracking).

In later years, much effort has been put in solving stress and displacement fields of
various linear elastic crack problems (mainly mode I) in order to calculate the stress
intensity factors. For rather complicated geometries/loading this can only be done
using numerical methods, like the Finite Element Method (FEM). An overview of
such methods is given by Petit et al ">,

An important issue involving fracture mechanics is the direction of crack growth. In
a pure mode I loading situation it is evident that the crack extension takes place in
the direction of the original crack. Yet, in practical engineering problems, mode I
loading is generally accompanied by a certain amount of mode II loading. In such
mixed-mode loading conditions, crack extension usually takes place under an angle
with respect to the direction of the original crack. Two criteria have been
formulated to determine the angle of crack extension in mixed-mode loading
conditions, the Maximum Stress Criterion [Erdogan & Sih'**] and the Strain
Energy Density Criterion [Sih 7]
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2.2.1.2 Influence of heterogeneity

LEFM may be applied for fracture of homogeneous solids where potential inelastic
behaviour is limited to a small region around the crack tip compared to the crack
size and the size of the solid. A highly heterogeneous material like concrete
generally does not satisfy this condition. It is widely accepted that in concrete
fracture a rather large fracture process zone exists ahead of the crack tip, displaying
distinct non-linear material behaviour.

There exist consensus among researchers that LEFM may be applied to study large-
scale crack growth in large-scale concrete structures, like concrete dams. In such
massive structures, the influence of the small-scale heterogeneity of concrete
disappears. The structure can be considered macroscopically homogeneous and the
size of the fracture process zone becomes small compared to the crack size and the
size of the structure [Ingraffea & Saouma '*®].

The scale of most concrete structures, however, is too small to justify the
application of LEFM. As the same deficiency existed in the case of fracture of
ductile metals, the concrete fracture mechanics community reviewed various
techniques developed for these metals, utilizing elasto-plastic fracture mechanics
(with emphasis on mode I fracture). Worth mentioning in this respect is the J-
integral technique [Rice 19681 which was found to be applicable for elastic (linear

and non-linear) material behaviour in the fracture process zone. Since non-linear
elasticity is equivalent to the deformation theory of plasticity (provided there is no
unloading), the J-integral technique performed well for fracture of ductile metals.
Mode I cracking in concrete, however, displays a considerable amount of unloading

within the fracture process zone. Hence, the J-integral technique is not applicable
1983
]

for the analysis of concrete mode I fracture [Hillerborg

Figure 2.10. Representation of fracture process zone in ‘Fictitious Crack Model’
[Hillerborg et al sy

Based on the plastic crack models of Dugdale 1960 and Barenblatt '*** for metallic

fracture, Hillerborg et al '’ proposed a concept named ‘Fictitious Crack Model’,
which has since been used extensively for modelling mode I cracking in concrete.
In this model, the crack is assumed to propagate when the normal stress at the crack
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tip reaches the tensile strength f;. When the crack opens, the stress is not assumed to
fall to zero at once, but to decrease with increasing crack opening u. At the crack
opening u4 the stress has fallen to zero. For that part of the crack (u < u,), the
“fictitious’ crack in reality corresponds to a microcracked zone (fracture process
zone) with some ligaments for stress transfer. The amount of energy Gr absorbed
per unit crack area in opening the crack from zero to or beyond u, is

Gp= "jcdu
0

and corresponds to the area under the stress-displacement curve o = f{u) as depicted
in figure 2.10. The fracture energy Gr and the shape of the stress-displacement
curve (figure 2.10) are regarded in this model as material properties.

Using either LEFM or Hillerborg type fracture mechanics, the discrete crack
approach may be applied within FEM computations. However, this has some
serious implications. A priori, it is generally not known in what direction potential
cracks will propagate. This information comes only available during the FEM
analysis, implying that during the analysis the geometry of the structure (including
the cracks) constantly changes and remeshing of the structure is inevitable. This
procedure might be very time-consuming unless the process is highly automated
and the remeshing technique is made computationally very efficient. Using LEFM,
this kind of analysis has been reported by Ingraffea & Saouma '**’, Sousa et al 1989
Reich et al '*** and Bittencourt et al '**°.

Above difficulties can be avoided when the crack path is known in advance. In such
cases the continuum elements are aligned along the assumed crack path and
interface fracture may occur along the aligned element edges. Crack problems being
not very sensitive to the true direction of cracking might also be dealt with by
inserting interface elements along all conceivable paths in the beginning of the
analysis [Tran et al %%, i

b

Pearce et a
Analyses incorporating non-linear mode I fracture models (e.g. Fictitious Crack
Model) may be performed with pre-assumed crack paths [Rots '*%; Reich et al '***].
Extension of the Fictitious Crack Model to include also mode II cracking is also
reported. With a crack path obtained from previous LEFM analysis, Galvez et al ***
investigated the potential influence of mixed-mode cracking by supplementing the
scalar-valued tensile strength criterion with a non-linear (Mohr-Coulomb type)
stress-state bounding surface, incorporating tensile and cohesive softening.

Another approach to allow for the heterogeneity of the concrete material is to model
the heterogeneous structure of concrete explicitly, for instance, by a stochastic
approach in which material properties (e.g. ultimate strength, Young’s modulus) are
randomly distributed throughout the structure. Such an approach requires the size of
the mesh elements to be sufficiently small with respect to the size of the structure to
be modelled, so that the probabilistic analysis performed on the scale of the mesh
elements is representative of the structure as a whole. Such analyses indicate that,
despite the application of a local brittle failure criterion, stochastic modelling
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introduces (ductile) softening behaviour on the global (structural) level caused by
crack arrest effects at stronger adjacent mesh elements [Rossi et al ' 19%2],

The heterogeneous structure of concrete might also be modelled explicitly by
considering the micro/mesostructure of concrete, for instance, by modelling
concrete as a two-phase composite of large aggregate grains embedded in a mortar
matrix with pre-existing cracks present at the ITZ between hardened cement paste
and aggregate grains [Zaitsev & Wittmann '**'; Wang & Huet "**]. Assuming that
each of the phases is homogeneous and behaves in a linear elastic and brittle way,
LEFM may be applied in such systems. Classical crack path criteria for elastically
homogeneous materials, however, are not valid when the crack advances at a
bimaterial interface, because — in this case — the relative magnitudes of the fracture
toughnesses between the constituent materials and the interface are also involved
[Bilyiikoztiirk & Lee ']
The assumption of linear elastic brittle material behaviour in each phase of a two-
phase characterization of concrete (with inherent stress singularity at the crack tip),
however, is still debatable. Finite element computations, using a two-phase
characterization of concrete and non-linear Hillerborg type material behaviour for
mode I cracking, show that for obtaining a close match between simulation and
experimental test results, the introduction of — though more brittle — tensile
softening laws is still required [Vonk 1992, Roelfstra '*®; Stankowski "% %, Kwan
et al"®™’]. To allow for realistic concrete behaviour in uniaxial compression, the
material laws in these modelling approaches were supplemented with a Mohr-
Coulomb type slip criterion, allowing for the effects of cohesion and internal
friction between crack faces loaded in shear/compression (mode II).

2.2.2 Non-continuum modelling

A major drawback of the discrete crack approach is that, unless the crack path is
known in advance, extensive remeshing has to be performed during the crack
analyses. This problem is avoided in the approaches presented in this section. These
approaches assume a discretization of the continuum solid, i.e. a non-‘space filling’
structure is generated that could resemble the porosity of concrete. For such
structures it is possible to allow for potential cracking (displacement discontinuity)
anywhere throughout the structure.

2.2.2.1 Lattice modelling

In a lattice type model the material is schematised as a network of (small) truss or
beam elements. Crack growth is obtained by removing elements that exceed a
certain fracture criterion, most often their tensile strength.

Concrete fracture in mode 1 was simulated in this way by Burt & Dougill ",
adopting geometrically random lattices (2D) with overlapping truss elements. The
truss elements were taken to be linear elastic and brittle, the heterogeneity was
introduced by assigning a random distribution of the material properties (Young’s
modulus and tensile strength) throughout the structure.

Another way of introducing the heterogeneity of concrete is projecting a lattice on
top of a generated structure of aggregate grains embedded in a mortar matrix and
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assigning a different strength and stiffness to the beam (or truss) elements
depending on their location in the two-phase material (see figure 2.11). Using truss
elements and introducing tensile softening, this kind of modelling is adopted by
Schorn & Rode'”', Bazant et al'*. Realistic mode I crack patterns and load-
deformation curves are obtained. However, a geometrically random lattice of truss
elements, as used by BaZant, is not capable of reproducing a correct value of
Poisson’s ratio because the #russ elements only allow axial force transfer.

In the work of Van Mier & Schlangen [Schlangen & Van Mier ¥,
Schlangen '**], triangular regular and random lattices of non-overlapping beam
elements” are used in order to predict correct values of Poisson’s ratio. Simulated
(mode I) crack patterns match very well those observed in experiments. Although
brittle fracture is assigned to the individual beams, the load-deformation curves still
show some ductility as a result of the heterogeneity introduced. Yet — compared to
experiments — the simulated structural response is too brittle.
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Figure 2.11. (a) Generated grain structure; (b) projection of triangular lattice;
(c) definition of aggregate, ITZ and matrix beams [Schlangen'**’].

Schlangen '*** hypothesized that smaller particles included in the generated grain
structure could enhance the ductility of the structural response. Arslan '**® and Lilliu
& Van Mier®™® pointed out that several factors enhance the ductility of the
structural response:

= Smaller particles included in the generated grain structure

= Including voids in the generated grain structure

= Taking into account the true three-dimensional nature of cracking

Based on these observations, it seems legitimate to conclude that the ductility of the
structural response of plain concrete structures failing in mode I is the result of
brittle microcrack phenomena at various lower scale levels.

A drawback of using regular lattices in mode I crack studies is that a certain amount
of anisotropy is introduced due to the orientation of the lattice beams.
Consequently, the material behaviour and crack patterns can be expected to depend
on the orientation of the lattice [Schlangen & Garboczi'®’]. To reduce any
influence of mesh orientation, random lattices can be used [Vervuurt 1997, \Van Mier
& Vervuurt '**’]. The adoption of a fracture criterion based on the average stress

2 Beam lattices as a numerical technique in theoretical physics were first used by Herrmann et al %,
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state in the nodes reduces also the dependency on mesh orientation [Schlangen &
Garboczi ']

Although lattice modelling with beam removal upon cracking seems a promising
tool for studying mode I or mixed mode crack phenomena, their use is highly
debatable for mode II crack studies. The removal of lattice beams upon cracking is
only legitimate if the crack opens and remains open during further loading. This is
not the case for concrete loaded in (multiaxial) compression. Although cracking in
compression might initiate in mode I, crack closure and force transfer through
closed cracks are essential during the formation of the final failure mode in uniaxial
and particularly in multiaxial compression.

2.2.2.2 Assemblages of spheres or disks

The structure of the concrete material may also be modelled as an irregular
assemblage of rigid spheres or disks (resembling the coarse aggregate grains),
locally bonded together by elastic contact layers. Initially, this method was used for
simulating the failure process of non-cohesive granular soils [Cundall & Strack 7]
The rigid spheres or disks are allowed to translate and rotate. Normal deformation
and shear deformation is allowed in the contact layers. Slip within the contact layers
is most often modelled by assigning a Mohr-Coulomb type slip criterion to the
contacts.

The approach may be extended to the analysis of cohesive granular materials by
including cohesive strength of the contact layers. In conformance with the classical
Mohr-Coulomb slip theory non-zero cohesion may be introduced [van Baars '*°°).
After loss of cohesive strength, the contact layers are still capable of transferring
compressive stresses and the effects of internal friction are still accounted for.
Conceptually, the approach may therefore capture mode I as well as mode II
cracking.

Of course, other contact laws may be assigned as well. Zhong & Chang ™~ applied
a contact law based on internal progressive microcracking in the contact layer
according to the LEFM theory. Acceptable results were obtained for concrete
loaded in uniaxial tension and uniaxial compression. Biaxial compression tests were
also simulated with the 2D model. However, its validity for such stress states can be
questioned, since the 2D model only allows for crack formation with in-plane
normals to the crack plane, while the normals to the crack planes in biaxial
experiments typically point out-of-plane (see figure 2.12).
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Figure 2.12. Typical crack planes (with normals pointing out-of-plane)
in a biaxial compression test.
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Unlike the lattice approach, the modelling consisting of locally bonded rigid spheres
or disks is not easy to extend to allow for cracking through the aggregate grains. In
tension or uniaxial compression substantial cracking through the aggregate grains
only is observed in lightweight or high strength concrete, not in normal strength
concrete. However, in multiaxial compression substantial aggregate cracking is
observed in normal strength concrete [Van Geel ).

2.2.3 Continuum solid mechanics

Within the framework of continuum solid mechanics, cracking is treated not as
discontinuities in the displacement field, but the crack displacements are distributed
over the surrounding continuum. As opposed to discrete cracking this concept is
often referred to as smeared cracking.

A distinction is made in the modelling of diffuse cracking prior to peak load, in
which the crack strains are the crack displacements divided by the crack spacing,
and Jocalised cracking after peak load where the term crack spacing loses its
meaning (see figure 2.13).

crack spacing

&

diffuse cracking localised cracking

Figure 2.13. Diffuse cracking versus localised cracking.

2.2.3.1 Diffuse cracking in continuum solid mechanics

The overall non-linear material behaviour of concrete in the pre-peak region of the
loading diagram due to diffuse cracking is usually modelled within the framework
of the theory of elasto-plasticity or/and the theory of continuum damage mechanics.

2.2.3.1.1 Elasto-plasticity

The basics of the classical theory of elasto-plasticity are explained in chapter 1.
Although the theory is originally developed for metals, some distinct features may
also be applicable to concrete behaviour. From a macroscopic point of view
concrete also displays substantial non-linear stress-strain behaviour and significant
plastic strain upon unloading. Although for concrete it is more appropriate to use
the term “irreversible” strain, instead of plastic strain [Chen & Han'®®]. The
non-linearity due to the heterogeneous nature of the concrete composite is usually
accounted for by defining strengthening laws based on internal state parameters and
expanding stress-state bounding surfaces until the ultimate strength surface (figures

REVIEW OF LITERATURE 37

2.3 & 2.4) is reached. Realistic volumetric strain curves as depicted in figure 2.6
may be achieved by variation of the dilatancy angle, which governs the direction of
(non-associated) plastic flow. Examples of this modelling apgroach can be found in
Vermeer & de Borst '**, Faruque & Chang '**¢, Lin et al ™, Ohtani & Chen '**,
Pramono & Willam 1989 Zaman et al ">, Btse & Willam o Meyer et al 1%

The theory of elasto-plasticity may be formulated in strain space as well. The
concept of a stress-state bounding surface then is replaced by an equivalent strain-
state bounding surface. Examples of such strain-space based elasto-plasticity
models are described in Mizuno & Hatanaka '** and Pekau et al **2,

2.2.3.1.2 Continuum damage mechanics

The theory of continuum damage mechanics is based on degradation of stiffness
due to microcracking. The stiffness of concrete usually decreases with increasing
strain. This sort of behaviour is considered to be the result of decreasing ‘contact’
area during loading due to the nucleation and growth of open microcracks.

An ideal material model, for which all non-linear behaviour originates from
stiffness degradation due to microcracking, was proposed by Dougill '*"® and called
a “progressively fracturing solid” (see figure 2.14.b).

Mathematically, the formulation is closely related to elasto-plasticity [Carol et
al'®*]. Strains may be split in elastic strains and degrading strains. A loading
function (or stress/strain-state bounding surface) distinguishes elastic loading from
loading where changes in stiffness occur. A strengthening/softening law based on
internal state parameter(s) governs the evolution of the loading function. Yet, the
designation of a ‘flow’ rule (direction of degrading strains) is not sufficient to
define the evolution of the degradation model. A degradation rule for the secant
stiffness (or compliance) tensor itself is needed.

The stiffness degradation may directly be defined in terms of the evolution of the
secant stiffness tensor itself. However, for a three-dimensional state of stress this
involves evolution laws for 21 independent components of the (symmetric) 6x6
secant stiffness tensor. Alternatively, it is reasonable to assume a reduced set of
variables that fully characterize the internal state of microcracking or damage in the
material, for which simple evolution laws can be postulated. In this case, the secant
stiffness tensor is the product of the original stiffness tensor with the damage-effect
tensor, representing the internal state of damage. In its most simple case this
damage-effect tensor reduces to a single scalar and the stiffness tensor is obtained as

S=(1-w)s’

In which ® (0 < @ < 1) is the damage effect parameter, S° is the elastic stiffness
tensor and S is the secant stiffness tensor.

The internal state of microcracking may be determined considering the
microstructure of concrete. Analytical solutions for the effective (mean) elastic
moduli — based on the microstructure of concrete — exist for idealized crack
problems, e.g. for randomly distributed flat (not interacting) cracks in a
homogeneous solid [Budiansky & O’Connell 19761
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The evolution of damage is the process of nucleation of new microcracks and
growth of existing microcracks. The energy consumed on nucleation and growth of
microcracks should balance the (strain)energy available from the intact continuum.
Consequently, the process of stable (diffuse) microcracking depends on the stress
state and the heterogeneity (presence of crack arrestors, like aggregates) of the
concrete.

Estimation of the cracking process is only correct when crack interaction is
considered (including potential crack closure) and the effect of crack arrestors.
Amongst others, such a micromechanical damage model was proposed by Ju &
Lee ™" and Lee & Ju'®". Yet, since the experimental determination of the precise
statistics of microcracks is not possible, the only identifiable and measurable
continuum damage parameter is the macroscopic effective stiffness
[Krajcinovic?™].

Using the macroscopic experimental observation of reduced stiffness, the evolution
of damage can be calculated by tracking the movement of the loading function in its
approach towards the bounding surface of ultimate strength [Baluch et al**]. The
loading function may be formulated in stress space [e.g. VoyiadTiis & Abu-
Lebdeh 1993], strain space [e.g. Leland '*%; Krajcinovic & Fonseka 1981, Mazars &
Lemaitre '***] or in terms of free energy (energy that can be recovered upon
unloading, i.e. elastic strain energy — corresponding to the current secant stiffness —
that is available for further microcracking) [e.g. Baluch et al**®]. A set of
experiments, selected a priori, may be simulated easily with accurate results.

Yet, in order to have some predictive potential, such models — based on the
technique of inverse modelling — also should incorporate essential physics of
microcracking, such as crack closure, crack interaction and internal friction.

2.2.3.1.3 Coupling of elasto-plasticity and continuum damage mechanics

Figure 2.14.c shows a material exhibiting both plastic deformation and stiffness
degradation. This type of behaviour is apparent in the loading diagrams of concrete
loaded in cyclic compression. A theory of elasto-plasticity coupled with continuum
damal%% mechanics, called plastic-fracturing theory, was first proposed by Bazant &
Kim 7"
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Figure 2.14. Typical material behaviours [Chen & Han" i A
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The formulation of BaZant & Kim encounters some difficulties in the definition of
the loading criterion because the plasticity criterion is specified in stress space while
the damage criterion is specified in strain space. To avoid this problem, subsequent
models have been formulated entirely in stress space [Yazdani & Schreyer'®;
Abu-Lebdeh & Voyiadjis '*”’] or in strain space [Han & Chen 1986, Stevens &
Liu'®?]. While continuum damage mechanics normally deals with decreasing
stiffness in order to ensure positive energy dissipation during loading, the
combination with elasto-plasticity also allows for treatment of stiffening effects.
Stiffening as a result of volumetric compaction during triaxial compressive loading
in the high confinement region is captured in this way by Burlion et al "**,

2.2.3.1.4 Heterogeneity

Within the framework of continuum solid mechanics, the heterogeneity of the
concrete composite is mostly accounted for by incorporating implicitly the most
striking consequence of heterogeneity, i.e. the non-linearity of the material
behaviour. This is accomplished by defining evolution laws for the stress/strain-
state bounding surface in elasto-plasticity and loading functions in continuum
damage mechanics.

Heterogeneity may also be implemented directly. Stochastic approaches can be
found in elasto-plasticity [Fafitis & Shah'***] as well as in continuum damage
models [Mazars & Lemaitre 1985, Breyssel”o; Carmeliet & Hens 1994]. Instead of
assigning stochastic properties to certain material parameters, the heterogeneity of
the concrete composite may also be accounted for by modelling concrete as a two-
phase composite of large aggregate grains embedded in a mortar matrix. As
mentioned in section 2.2.1.2 most of these models allow discrete cracking at the
ITZ between aggregate and mortar matrix. Cracking through the mortar matrix, on
the other hand, often is allowed for through a continuum approach [Roelfstra et
al %, Stankowski 1% 1992],

2.2.3.1.5 Isotropy/anisotropy

Under the assumption that pre-load (shrinkage) cracks are orientated randomly,
concrete may be regarded as an isotropic material prior to loading. Unlike shrinkage
cracks, stress/strain-induced cracks during loading generally do have a certain
preferred direction that causes a certain degree of anisotropy. The modelling
approaches of 2.2.1 and 2.2.2 incorporate this effect naturally because the
orientation of the crack is fixed in the finite element mesh.

Continuum solid modelling does not incorporate stress/strain-induced anisotropy
straightforwardly. Within the framework of elasto-plasticity, isotropic rules for
strengthening/softening may be replaced by kinematic (or mixed) rules, i.e. the
stress-state bounding surface does not expand/shrink symmetrically around the
hydrostatic axis, but (also) translates in a direction dependent on the current state of
stress [Chen & Han'***]. As for continuum damage mechanics, a scalar-valued
damage effect parameter only is capable of ‘memorizing’ the extent of
microcracking. Retaining also the direction of cracking would inevitably imply the
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designation of additional internal state parameters, usually by replacing the damage-
effect scalar by a higher order damage-effect tensor.

A physically appealing approach to account for stress-induced anisotropy is the
geometric consideration of weak (continuous) planes. The normal and tangential
stresses in such a plane are the resolved components of the macroscopic stress state.
According to the first model in this category, the Fixed (smeared) Crack model,
mode I cracking is initiated in a plane perpendicular to the maximum tensile stress,
when the principal stress exceeds the uniaxial tensile strength of the continuum.
Upon further loading a sudden stress drop [Rashid '*®®*] or a strain softening law,
analogous to the fictitious crack model, is applied for the tensile stress normal to the
fixed (weak) plane. As no secondary cracking is allowed for in this concept, stresses
may arise exceeding the tensile strength significantly upon rotation of the stress
state. Various approaches were formulated in extending this concept to cope
realistically with rotating stress states also. In the Rotating Crack model [Cope et
al "] the crack plane rotates so as to remain perpendicular to the maximum
principal stress. Stress-induced anisotropy is however lost in this concept. Stress-
induced anisotropy is retained in the Multiple Fixed Crack model [De Borst &
Nauta '*®%; Rots ”®]. In this concept, the formation of secondary fixed crack(s) is
allowed for when the principal stress has rotated beyond a certain threshold angle.
The statically constrained Microplane model [Carol & Prat'**°] and the Adaptive
Fixed Crack model [Weihe et al '*®] are extensions of the Multiple Fixed Crack
model in the sense that they conceptually also allow for mode II or mixed mode
crack initiation and that the latter allows initiation of secondary cracks, whenever
the stress state in any plane exceeds the cracking criterion.

The above ‘weak plane’ models aim at reproducing concrete behaviour with
continuous planes of fracture. The material behaviour due to distributed
microcracking is better reproduced by the Microplane model with a kinematic
constraint [Bazant & Oh 1985, Bazant & Prat 1988]. In this concept, the strains at the
(weak) micro-planes are the resolved components of the total macroscopic strain
state. For each plane a constitutive law is applied, resulting in new normal and
tangential micro-stresses. The macroscopic stress tensor is established through
integration over the fixed set of microplanes in an energetically consistent manner.
In a more recent version of the Microplane model [OZbolt et al**'] the kinematic
constraint has somewhat been released to account for the loss of continuity of the
strain field for dominant tensile loads, i.e. continuous planes of fracture due to mode
I cracking.

2.2.3.2 Localisation of deformations in continuum solid mechanics

As outlined in the previous section, besides pre-peak also post-peak non-linear
material behaviour may be incorporated in a continuum mechanics based model by
assigning a strain-softening law. However, unlike pre-peak strengthening, post-peak
softening exhibits a strong dependence on the size of the finite elements. This is
best explained by considering a one-dimensional strain-softening bar as depicted in
figure 2.15. This bar may be divided in 5 or 15 (constant strain) elements. Under the
assumption that the shaded elements are slightly weaker than the other elements,
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softening will occur in these elements while the other elements are unloading. This
kind of behaviour is similar to the localisation of deformations, as observed in
experiments in the post-peak region.
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Figure 2.15. (a) Strain-softening bar and stress-strain softening law.
(b) Load displacement curves for two different element sizes.

Comparing the overall load-deformation curves (figure 2.15.b), a striking difference
is found between the bars with 5 elements and 15 elements. The hatched area
represents the total dissipated energy. It follows that the energy dissipation and
brittleness of the bar are highly dependent on element size. More than that, the
dissipated energy vanishes completely when the element size approaches to zero.

Some kind of regularization technique is obviously required. Assuming that
localisation always occurs in one element, conservation of energy dissipation is
satisfied by considering the fracture energy as a material property, as proposed in
the Crack Band model of BaZant & Oh '*®. In this model, the fracture process zone
is treated as a non-sharp-edged crack band of constant width w, governed by a
strain softening relation as depicted in figure 2.15.a. The inelastic (fracture) strain is
integrated over the crack band width resulting in constant energy dissipation
provided that the finite element width 4 equals the crack band width w,. This theory
is quite equivalent to the Fictitious Crack Model (section 2.2.1.2). The fracture
energy Gr corresponds now to the area under the stress-strain curve multiplied by
the width of the crack band w,. To allow for finite element sizes different from the
crack band width, energy dissipation is conserved by enforcing the condition that
the fracture energy in one element equals the fracture energy of the crack band, i.e.
Gr corresponds to the area under the stress-strain curve multiplied by the width of
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the finite element 4. Obviously, this requires f; or g, in figure 2.15.a to be
reformulated as effective material parameters dependent on the finite element
width A.

Although computationally very efficient, a drawback of the Crack Band model is
that it may lead to spurious stress locking when the localisation band is not aligned
with the mesh, i.e. when the crack band propagates through the mesh in a zig-zag
manner. As it leaves the width of the localisation band unspecified, it also is
impossible to determine how the fracture process zone width could vary during
fracture growth. Theoretically, a more elegant approach is to introduce additional
terms (or localisation limiters) in the continuum description representing the
changes in the microstructure occurring during failure processes.

Frequently applied in combination with the theory of continuum damage mechanics
is the nonlocal theory [Pijaudier-Cabot & Bazant '**’; Ozbolt & Bazant '%]. This
concept deviates from the idea that the residual stress beyond peak load is
exclusively a function of the inelastic strain in the material point itself. Instead, it
postulates that the residual stress also depends on the inelastic strain in adjacent
material points. Practically, this implies that the internal damage state in a material
point is based on an average of the strain field in a neighbourhood of this material
point.

Alternatively, the gradient approach introduces spatial derivatives of the inelastic
strain (or internal state parameters dependent on the inelastic strain). In the early
model of Schreyer & Chen'®® first order derivatives were used. Later, it was
recognized [Miihlhaus & Aifantis '**'; De Borst et al 19921 that second order spatial
derivatives better characterize the geometric nature of a localisation band.

Less worked-out alternatives are the Cosserat extension of classical continua
[Miihlhaus '*%; De Borst'”'] and introduction of strain-rate dependency
[Needleman "**; Sluys & De Borst 19911 The Cosserat theory introduces rotational
degrees of freedom in the continuum description, based on the observation of
distinct particle rotation in localised shear bands of non-cohesive granular materials
[Bardet & Proubet '**?].

The above extensions of the classical continuum theory all have in common that a
certain internal length scale is introduced, which in fact regularizes the localisation
process. From a computationally point of view, a major drawback of these
approaches is the fact that in order to capture the localisation band properly, very
small finite elements need to be foreseen at and near the localisation band. This
implies that either a very fine mesh has to be generated at the start of the analysis,
or that a sophisticated adaptive remeshing procedure has to be applied during the
analysis.

A promising development is the formulation of models that allow the introduction
of displacement jumps in the conventional finite elements to reproduce the
geometric nature of localised cracking [Klisinski et al '**!; Larsson et al '**; Wells
et al %], The crack path does not have to be known a priori and since the localised
crack is situated in one finite element, these concepts allow the utilisation of coarse
finite element meshes. Of course, attention should be paid to the continuity of the
crack path across the finite element boundaries.

CHAPTER 3

FUNDAMENTALS OF CONCRETE LOADED IN MULTIAXIAL
COMPRESSION

Research regarding the mechanical behaviour of concrete loaded in multiaxial
compression is usually limited to a study of macroscopic quantities like overall
stress-strain  curves and localised macroscopic cracking. The basic
physics/mechanics accounting for the specific characteristics of these macroscopic
quantities are yet not very well understood. Due to the infinite number of potential
triaxial loading cases, experimental test programs only can cover a very limited
range of loading paths in the 3D stress (strain) space. Consequently, the
applicability of numerical models — merely based on such test programs and
developed without sufficient knowledge of the basic physics/mechanics underlying
the observed macroscopic features — is not wider than its starting-basis i.e. restricted
to the limited range of loading cases as carried out in the particular experimental
test program.

Development of a numerical model, being more generally applicable, therefore,
should incorporate a sound knowledge of the basic physics/mechanics of concrete
loaded in multiaxial compression. Here, it will be demonstrated that a classification
of the observed physical/mechanical phenomena in experimental tests according to
the frame as shown in figure 3.1, yields such a solid understanding of the
significance of these phenomena, their interaction and the basic physics/mechanics
underlying them.

Mechanical behaviour

i
of concrete
1

i
loaded in multiaxial compression
i ] ]

Figure 3.1. Frame for classifying concrete mechanical behaviour.

The frame of figure 3.1 distinguishes on the one hand three different scale levels of
observation. These scale levels are explained in section 3.1. On the other hand a
distinction is made between four typical stages in multiaxial compression tests.
These typical stages are explained in section 3.2. This division is chosen because
the macroscopically observed mechanical behaviour at each stage is typically
characteristic. Furthermore, the consideration of multiple scale levels at each stage
is essential. The complex macroscopic mechanical behaviour at each stage proves to
be directly related to basic mechanisms taking place at lower scale levels. As a
result, the generated classification provides a solid base for numerical modelling to
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be valid and applicable much wider than the mere range of experimental tests
carried out.

3.1 Scale levels

Mechanical phenomena, such as cracking, may be observed at different scale levels
during experimental testing of concrete. These separate observations often provide a
direct link between global stress-strain curves and the formation and growth of
micro- and macrocracks. With this in mind Wittmann '**” proposed, on the basis of
common practice in material science, a practical subdivision into three scale levels:

= Micro level

= Meso level

=  Macro level

meso level macro level

Figure 3.2. Scale levels for concrete.

3.1.1 Micro level

At this level the microstructure and the mechanical properties of the hardened
cement paste are considered. These properties and the porosity of the microstructure
are strongly affected by the interaction of the cement with water.

The microstructure of the hardened cement paste in concrete is far from
homogeneous. The most striking aspect in this respect is the existence of an
interfacial transition zone (ITZ) between the aggregate grains and the bulk cement
paste. Many researchers have reported the existence of this zone in normal strength
Portland cement concrete and the concept is widely accepted.

The microstructure of the ITZ differs considerably from that of the surrounding
bulk cement paste [Larbi®'; de Rooij "% 2*®]. Figure 3.3 shows schematically the
microstructural features of the ITZ and the surrounding bulk cement paste. At the
surface of the aggregate grains a contact layer of about 2-3 um thickness exists,
consisting mainly of calcium hydroxide (CH) crystals. Adjacent to this layer a thin
film of calcium-silicate-hydrates (C-S-H) exists in the form of short fibres. On the
other side of the contact layer a very porous zone exists. In this zone large panel-
shaped CH-crystals and clusters of ettringite needles often are found. The CH-
crystals in the ITZ have a preferential orientation perpendicular to the aggregate
surface. This preferred orientation of the CH-crystals vanishes in the bulk cement
paste microstructure.
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contact layer
| 7

. : - !
! interfacial transition zone bulk cement paste

Figure 3.3. Diagrammatic representation of the ITZ and bulk cement paste in
concrete [de Rooij "**°].

There is no clear evidence which mechanism(s) cause(s) the formation of the ITZ.
The most reported mechanisms, however, are ‘micro-bleeding’, introducing an
excess of water at the aggregate surface, and the ‘wall effect’, resulting in an
inefficient packing of cement grains against the aggregate surface. Only recently,
another phenomenon has been formulated as a possible cause for the formation of
the ITZ [de Rooij '**®]. This phenomenon, called syneresis, is the tendency of a gel
to shrink spontaneously under the expulsion of pore liquid. If the cement paste is
seen as a gel, this phenomenon could also occur in fresh concrete. The water is then
being pressed out of the cement paste and accumulates around the aggregate grains,
also resulting in water excess at the aggregate - cement paste interface.

Concerning the mechanical properties of the cement paste, a distinction is made
between two types of potential failure, i.e. (1) mode I / mixed mode microcracking
inducing volumetric dilation and (2) pore collapse of the cement paste
microstructure inducing volumetric contraction.

As already pointed out in section 2.1.2, the ITZ between the aggregate grain and the
bulk cement paste can be considered as the weakest link in normal strength
concrete. The density of pre-existing mode I / mixed mode microcracks in this zone
is higher than in the bulk cement paste. These microcracks tend to run along the
contact layer and along the cleavage (weak) planes of the calcium hydroxide (CH)
crystals.

Potential pore collapse of the microstructure in the high compressive loading regime
is strongly related to the porosity of the material. At the micro level, the cement
paste has a distinct porous structure. Figure 3.4 shows results of pore size
measurements of cement paste and mortar obtained with the aid of a mercury
intrusion porosimeter [Larbi '**']. It appears that the pore structure of plain cement
paste (a/c = 0) contains mainly pores with a radius between 0.01 and 0.07 pm.
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Figure 3.4 also shows that an increase in sand-cement ratio from 0 to 2 is
accompanied by an increase of total porosity of about 60% of which the increase of
larger pores (r > 0.1 pum) contribute to a large extent. This effect is likely to be the
result of the formation of highly porous ITZs around the sand particles.

Porosity - % (v/v of paste portion)
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Figure 3.4. Cumulative pore size distribution of mortars plotted as volume
percentage of cement paste portion in mortar (w/c = 0,40; age = 100
days; a/c = aggregate(sand)-cement ratio) [Larbi'*"'].

Studies using Scanning Electron Microscopy (SEM) combined with image analysis
of backscattered electron (BSE) images frequently have reported higher proportions
of largerg) res (r > 0.1 um) in the ITZ than in the bulk cement paste [Scrivener &
Nemati '**%; Scrivener = 9]. These studies also indicate that the characteristics of the
microstructure of the ITZ more properly are described in terms of gradients of
microstructure perpendicular to the aggregate grain. The thickness of the ITZ may
be appointed as the distance between aggregate grain and bulk cement paste (see
figure 3.3) over which the microstructure significantly differs from that of the bulk
cement paste. However, as elucidated by Diamond & Huang 2001 it should be
realised that the ITZ is highly heterogeneous itself and large variations in properties
are found along the surface of the aggregate grains.

Quantification of the dimensional proportions and the total porosity of bulk cement
paste and ITZ is a difficult task considering the heterogeneity of the material. The
thickness of the ITZ depends on the type of aggregate and cement used, the water-
cement (w/c) ratio of the mix, the age of the composite and the method used to
estimate it. The reported thickness of the ITZs, which occupy 30 to 50 % of the total
volume of cement paste, usually ranges from 25 to 100 pm with a typical thickness
of 50 pm [Larbi "*'].

With respect to the porosity of the ITZ, SEM studies have reported pore contents (of
pores with radius > 0,1pm) up to 30% within a few pm proximity of the aggregates,
while the porosity of the bulk cement paste is in the range of 5-15%. Based on
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mercury intrusion porosimetry experimental data and on an analysis of perculation
through a 3D mortar model, Bourdette et al 1993 computed the ITZ porosity and bulk
cement paste porosity with pore radii down to 0,003 pm. This study revealed ITZ
porosity up to 50% (mean value over an assumed constant thickness of 30 pm) and
a bulk cement paste porosity of about 20%. It is further noticed that the ITZ
porosity decreases during the maturation of the material, presumably due to ongoing
deposition of calcium hydroxide and hydration of anhydrous cement grains.

With regard to the quantification of total porosity it should further be noted that the
‘total” porosity as extracted from mercury intrusion porosimetry experimental data
represents a lower bound of the actual total porosity, because only the
interconnected pores with a radius larger than 0,003 um are recorded.

3.1.2 Meso level

At the meso level, the heterogeneous structure of concrete — a composite of
aggregate grains, hardened cement paste, large pores and pre-existing cracks — is
taken into account. At this level the ITZs between the aggregate grains and the bulk
cement paste are schematised as homogeneous (weak) layers around the aggregate
grains with constant thickness.

The mechanical behaviour of the composite at this level is determined by the
mechanical properties of the individual constituents, i.e. the aggregate grains, the
bulk cement paste and the ITZs.

3.1.2.1 Mechanical properties of the constituents

Natural aggregates are quite heterogeneous themselves; their mechanical properties
can only be specified within a range. A typical value of Young’s modulus of strong
and dense aggregates such as river gravel — used in most mixes of normal strength
concrete in practise — is about 60.000 MPa [Hirsch '*®, Wittmann et al'**]. The
order of magnitude of the strength of river gravel may be compared to the strength
of granite, which is characterised by a Young’s modulus of 70.000-80.000 MPa and
a compressive strength of about 180 MPa [Alexander ', Caliskan et al ****].

The mechanical properties of plain cement paste (without aggregates) are strongly
influenced by the type of cement, the age at testing (degree of hydration), the water-
cement (w/c) ratio, curing and the test setup. With this in mind, the stiffness and
strength of cement paste out of ordinary Portland cement (age: 28 days or more, w/c
ratio: 0,3-0,5) are typically within the ranges given in table 3.1.

Table 3.1 Stiffness and strength of plain cement paste

Reported experimental data [MPa]
15.000 — 25.000 &

Young’s modulus

Compressive strength 50— 100 429
Direct tensile strength 3,5-40 M
Flexural tensile strength 9-129@

1 e
4) Hsu & Slate 1°%; 2 Alexander et al 1968; %) Bazant et al 1%
) Hirsch 1962, Wittmann et al '*>®, Alexander 1o , Yang 1k
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The mechanical properties of the ITZ are obviously influenced by the properties of
the aggregates (type, roughness, size) and the cement paste (type, age, w/c ratio) as
well as the treatment of the concrete mix during manufacturing (vibration, curing).
Van Mier & Vervuurt ' reviewed the issues regarding modelling and testing of the
mechanical properties. They distinguished two strategies by which the properties of
the ITZ may be determined. The first one involves scaling up of the ITZ to obtain
specimens in which a macroscopic test is feasible to measure the properties of the
ITZ. In these tests, composite specimens are prepared in which the cement paste is
cast against a rock surface, which is usually polished. The second strategy is based
on the concept of inverse modelling and involves testing of real concrete and
simulation of the test by an appropriate numerical meso-level model. Knowing the
properties of the aggregates and the bulk cement paste, the properties of the ITZ are
calibrated so that the simulation corresponds to the experimental observations [e.g.
Vervuurt 1997].

The scaling up strategy provides direct test data. However, the prepared specimens
are not similar to the ITZ as existent in real concrete. It is remarked that differences
in surface texture and size of the aggregates and differences in the manufacturing
process will undoubtedly affect the structure of the ITZ. The limitation of the
inverse modelling strategy is that it relies heavily on the assumptions regarding the
correctness of the simulation model used.

In view of the above drawbacks on measuring mechanical properties of the ITZ, no
quantitative results are reported here on the stiffness and strength of this zone.
There exists, however, consensus among researchers, that — in normal strength
concrete with strong and dense aggregates — the strength and stiffness of the ITZ are
less than those of the surrounding bulk cement paste.

3.1.2.2 Mechanical behaviour of the composite

As explained in the preceding section, the aggregate grains are much stiffer than the
surrounding cement paste in normal strength concrete. As a result these grains will
act as stress concentrators during initial loading. The internal forces will mainly be
transferred between the aggregate grains by the shortest connection through the
cement paste, resulting in a highly heterogeneous stress state. Dantu'*>’ and (later
on) Swamy "' already observed such highly heterogeneous stress states performing
uniaxial compressive tests on sliced concrete specimens using a reflective
photoelastic technique.

The heterogeneity of the stress state during initial loading is further enlarged by the
presence of pre-existing cracks and large pores. As stated in section 2.2.1.1, large
stress concentrations are found around voids and near crack tips in a homogeneous
material. Although the increase in stress level is far less pronounced for a
heterogeneous material — like concrete — than predicted by LEFM, the local stress
level near voids and initial cracks can differ considerably from the overall stress
level.

The occurrence of tensile splitting cracks in uniaxial compression tests with little
lateral boundary restraint (section 2.1.2.1) has frequently been attributed to the
heterogeneity of the stress state [Reinhardt '*”’; Murakami & Ohtani °”]. Due to the
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concentration of compressive forces between stiff aggregate grains (see figure 3.5),
tensile stresses often arise even when the overall stress field is compressive.

y

~—~ tensile splitting crack

—--> <--- tension

f compression

?

Figure 3.5. Force transfer between aggregate grains in concrete.

Horii & Nemat-Nasser *® suggested another potential cause of tensile splitting

failure (section 2.1.2.1) by considering the heterogeneity of the stress field due to
pre-existing cracks. By analysing an idealized brittle material with pre-existing
inclined flaws loaded in compression, they showed that the local stress state at the
tips of the pre-existing flaws encourage the formation of tensile splitting cracks. It
was also shown that, with a suitable distribution of the pre-existing flaws, these
‘wing’-shaped cracks joined together forming a complete failure pattern.

These studies demonstrate clearly the existence of tensile stresses in a uniaxial
compressive (overall) stress field when the heterogeneity of the material is taken
into account. Along with the sensitivity of concrete regarding mode I crack
formation this may easily lead to the formation of tensile splitting cracks.
Nevertheless, a complete failure pattern is only formed when the initiated splitting
cracks grow in an inclined direction to pass through the compressive strut in figure
3.5 or, in the case of pre-existing inclined cracks, when sliding along these pre-
existing cracks occurs. As pointed out also in section 2.1.2.1, in combination with
tensile splitting also sliding along (newly formed or pre-existing) inclined cracks is
necessary for complete failure of the specimen, implying that internal friction is a
determinative factor in uniaxial compressive failure.

To illustrate the formation of the — experimentally observed — tortuous crack
patterns of combined mode I / mode II cracks in uniaxial compression, a generic
representation of crack growth in a heterogeneous material such as concrete is
explained below.

In figure 3.6 a pre-existing or newly formed mode II crack is considered. This crack
is inclined with respect to the direction of the (compressive) principal stress os.
Crack growth is prevented when the crack tip meets an aggregate grain because the
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strength of the aggregate grain is much higher than the strength of the surrounding
cement paste. In such a case, three possible mechanisms for crack growth exist:

1. Through the aggregate grain

2. Around the aggregate grain (compressive side)

3. Around the aggregate grain (tensile side)

Considering the presence of local tensile stresses near the crack tip in uniaxial
compression and the sensitivity of concrete regarding mode I crack formation,
mechanism 3 will generally occur.

IR AR AR AR AR

Figure 3.6. Mechanisms for crack growth in concrete.

While tensile splitting is abundant in wniaxial compression, concrete specimens
failed in multiaxial compression show hardly any tensile splitting cracks. Instead,
very pronounced inclined mode II cracking is observed, often passing straight
through the aggregate grains [Van Geel '***]. Obviously, in these tests mechanism 1
prevails.

The absence of large tensile splitting cracks in multiaxial compression is often
explained by pointing out that the confining stresses suppress the development of
local tensile stresses induced by the heterogeneity of the concrete composite.
However, this does not fully explain the absence of large tensile splitting cracks in
multiaxial compression because close examination of the inclined crack bands does
reveal the presence of small tensile splitting cracks along the inclined crack bands.
Apparently, small-scale tensile splitting takes place but these cracks remain stable
and limited in length. This kind of cracking may be viewed upon as secondary
cracking, because — at ultimate failure — a primary continuous mode II crack is
formed (see figure 3.7).
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Mode II crack

(a) (®)
Figure 3.7. (a) UV-photograph showing small-scale tensile splitting along a mode
1II crack in a plane strain multiaxial compression test [Van Geel =Ry
(b) Schematic refresentation of cracking mechanism [see also Van
Mier & Vonk™”'].
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Figure 3.8. Local crack stresses in multiaxial compression.

An explanation for the formation of continuous mode II cracks at ultimate failure in
multiaxial compression, can be found considering figure 3.8. It shows that when the
crack is not straight (mechanisms 2 & 3), the contact area of the crack will be
reduced upon sliding. Consequently, both the axial and the lateral loading will be
transferred through a considerably reduced contact area of the crack. It turns out
that for mechanism 3 the local crack stresses in the main loading direction (vertical
axis) are equal to those for mechanism 1. However, the local crack stresses in the
minor loading direction are much greater (more compressive) for mechanism 3 than
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for mechanism 1. As the strength of concrete is highly sensitive to the presence of
lateral confinement (section 2.1.1.1.2), the local stress state of mechanism 1 is much
more favourable for crack growth in multiaxial compression than the local stress
state of mechanism 3.

Another aspect of concrete failure — best explained on the meso level — is the
observed shape of the descending branch of the loading curve during mode I crack
growth in tensile tests, which is best typified by a steep part just beyond ultimate
strength followed by a long shallow tail (figure 3.9). Whereas the (initial) steep part
of the descending branch may be ascribed to opening of small isolated (ITZ) cracks
in the fracture process zone, the shallow long tail of the descending branch has to be
attributed to the formation of so-called crack interface grain bridges during the
development of a continuous crack profile through the specimen [Van Mier 19921 In
this process, two overlapping crack tips approach each other, but coalescence seems
prohibited due to the presence of the stiff aggregate grains in the crack path. In this

way ‘bridges’ are created between the overlapping cracks with rather low (flexural)
stiffness.

/ opening of isolated ) / grain bridging between \
(ITZ) cracks overlapping
'continuous' cracks

F in fracture process zone
@ o
| "e®="0

«® @
@
Aid » ,@oq;.‘e‘

Aggregate grain

Uy

overall response of tensile test

Figure 3.9. Meso-mechanical behaviour of concrete loaded in tension.

Overlapping cracks are also observed in compression. Stroeven '*72 reported already
arrays of (micro) splitting cracks transforming in a continuous shear crack during
subsequent loading in uniaxial compression and, as shown in figure 3.7, these
overlapping splitting cracks exist also in multiaxial compression. Clearly, the
existence of these arrays of small splitting cracks decreases the stiffness of the
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structure to some extent. However, considering the small length of the splitting
cracks, ductility induced by the formation of crack interface bridges between
overlapping crack tips will be very limited in multiaxial compression.

3.1.3 Macro level

At the macro level concrete is considered a homogeneous material. Mechanical
properties, such as uniaxial compressive or tensile suength, can be{ rn.easured
directly in standard tests at this level. The measured mechanical properties in these
tests are not only dependent on the concrete mix, but also on the age at loading,
moisture content, temperature, loading rate and test setup. When the strengths for
different concrete mixes are compared, these other influencing factors should be the
same or at least similar, which clearly indicates the need for standard, well-
documented test procedures.

With respect to the mechanical behaviour of multiaxially loaded concrete, an
immense number of potential loading combinations and loading histories arises.
Though the availability of well-documented test data is important here also, this is
not sufficient to reveal all essential aspects of the mechanical behaviour of concrete
loaded in multiaxial compression. In contrast with uniaxial compression, individual
testing for every potential loading path in 3D stress space is upfeagible for
multiaxial compression, so trends in mechanical behaviour have to be 1df3nt1ﬁed and
thoroughly analysed in order to be able to extrapolate them to other loadfng paths.

In chapter 2.1 a survey of experimental recordings at the macroscopic level has
been given. From these macroscopic recordings, trends regarding ultimate strfeng:th
and the shape of the c-¢ curves can already be qualified. The shape of the triaxial
strength envelope is found to be convex, highly sensitive to lateral conﬁnement and
open ended, i.e. no failure is found for high hydrostatic compression. Overall
loading curves of concrete loaded in multiaxial compression show largf: pre-peak
non-linearity and characteristic points on the curve of volumetric strain may t?e
identified. Furthermore, a distinct shift from uniformly distributed deformations in
the pre-peak region to highly localised deformations (macrocracks) in the post-peak
region (figure 3.10) is common for concrete loaded in multiaxial compression.

The macroscopically observed mechanical behaviour of concrete must be
interpreted in terms of mechanisms acting at lower scale levels, i.e. the meso and
the micro level. Coupling with these lower levels will certainly produce valuable
information on the identification and quantification of trends observed at the macro
level. In the next section of this chapter special attention is given to crack growth at
the meso level. Much of the mechanical behaviour of normal strength concrete can
be explained by its heterogeneous structure at this level. In some cases, however, an
analysis at the meso level does not suffice. In these cases a further step back to the
micro level is necessary in order to understand the observed macroscopic behaviour.
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Figure 3.10. Evolution of macrocracks in multiaxial compression

[Van Geel **].
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3.2 Stages in crack formation

This section describes concrete mechanical behaviour at several stages of multiaxial
compressive loading. A subdivision into four stages is made with each stage having
its own specific (macroscopic) mechanical behaviour. Figure 3.11 shows the load-
deformation curve of a typical multiaxial compression test (plane strain test: &, = 0;
6;=0.1503[Van Geel 1998]). The stages, as indicated in figure 3.11, are entitled:

I Linear elastic stage

II. Non-linear strengthening stage

III. Around peak stress

IV. Softening stage

The transitions between these stages are not as abrupt as indicated in figure 3.11. In
fact, the transition from one stage to the other develops very gradually.

-200 —

4 ‘) 0 £ -4 -6
u, [mm] uy [mm]

Figure 3.11. Stages in typical multiaxial compressive loading.

3.2.1 Linear elastic stage (I)

During this stage, the increase in damage due to (micro) cracking is very small. As a
result, the observed mechanical behaviour can be fairly well described by applying
the classical theory of linear elasticity. The elastic properties of the concrete
composite depend on the elastic properties of the separate components (aggregate
grains and cement paste), the compaction of the concrete mixture during casting and
the amount of pre-existing (ITZ) cracks.

As stated in section 2.1.2.1, normal strength concrete contains a significant number
of pre-existing cracks, i.e. cracks existing prior to the application of external loads.
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Although a significant number of such ITZ cracks exist prior to loading, the growth
of these pre-existing ITZ cracks and the formation of new ITZ cracks during initial
loading is negligible, thus producing the nearly linear stage I of the load-
deformation curve.

3.2.2 Non-linear strengthening stage (II)

According to macroscopic observations, the non-linear strengthening stage in a
multiaxial compression test is characterised by a decrease of the slope in the loading
diagram coupled with non-elastic volume compaction. The development of non-
elastic volumetric strain (total volumetric strain minus elastic volumetric strain)
during the typical multiaxial compression test of figure 3.11 is displayed in figure
3.12.
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non-elastic volumetric strain [%]
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Figure 3.12. Non-elastic volumetric strain in a multiaxial compression test.

As the ITZ is the weakest link in normal strength concrete, it may be expected that
the displayed macroscopic behaviour is a result of isolated crack formation in the
ITZ. This assumption is supported by visual recordings of specimens loaded up to
stage II in multiaxial compression. Up to this stage no (macroscopic) cracking
occurs that can be seen with the naked eye. Moreover, no evident damage was
visualised by Van Geel *® using a vacuum impregnation technique (figure 3.10.a).
With this technique, specimens are impregnated with a fluorescent epoxy resin,
which fills cracks in contact with the outer specimen surfaces. After hardening of
the resin, the specimens are sawn into slices. By photographing these slices using
ultraviolet light, internal cracks can be recorded. In this way only continuous crack
patterns can be visualised, isolated microscopic or mesoscopic cracks remain
invisible. As no continuous cracks could be visualised at stage II, the apparent
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non-linear behaviour is indeed most probably due to isolated crack formation in the
.

g;zvertheless, the issue of the true nature of isolated crack formation in the ITZs
remains. Basic crack behaviour like mesoscopic mode II or mode I failure along the
ITZ results in an increase of non-elastic volumetric strain. Therefore, the displayed
macroscopic behaviour must be caused primarily by another phenomenon.
Consideration of the ITZ at the micro level reveals such a potential cause of the
displayed macroscopic behaviour. In section 3.1.1 it was explained that the porosity
of the ITZ is very high and substantially higher than the porosity of the surrounding
bulk cement paste and the non-porous aggregate grains. Due to its high porosity,
pore collapse of the ITZ microstructure is likely to occur in multiaxial compressive
stress states, which may greatly account for the non-elastic compaction observed at
stage IL.

Pore collapse only occurs in highly porous materials. During pore collapse the
porosity of the ITZ decreases. At a certain level of low porosity, further pore
collapse of the ITZ does not occur anymore and an increase of stiffness is the result.
Bazant et al '**® already observed this stiffening effect, by carrying out confined
compression tests on small cylindrical specimens loaded up to 2068 MPa. They
found indeed that after an initial decrease, the slope of the loading diagram
continuously increases.

ITZ bulk cement paste

aggregate

Schematisation

Concrete composite Basic part

aggregate D aggregate J

'ITZ' springs '‘Bulk cement paste' springs

Figure 3.13. Mesoscopic ‘spring’ representation of concrete composite.
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Though limited pore collapse may also occur within the bulk cement paste, it is
assumed that only isolated crack formation in the ITZ around the aggregate grains
occurs, and consequently, that the (macroscopic) strains at stage II are more or less
uniformly distributed. Accordingly, the concrete composite at the meso level may
be regarded as a system of springs connected in parallel and in series as shown in
figure 3.13.

Due to cracking (pore collapse within the ITZ, mode I/II failure along the ITZ) the
‘ITZ’ springs include irreversible deformations during stage II, while the parallel
connected ‘bulk cement paste’ springs retain their initial elastic behaviour. This
combination of springs causes a branch with a positive inclination — yet
considerably less than at the elastic stage — in the loading diagram.

The mesoscopic spring representation is also a useful tool for interpreting the
characteristic unloading/reloading behaviour at stage II. Figure 3.14 shows the
LVDT measurements for a cyclic plane strain multiaxial compression test
performed by van Mier at Eindhoven University of Technology.
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Figure 3.14. Loading diagram of the main loading axis in a typical cyclic
multiaxial compression test [Van Mier "***].

According to figure 3.14 the unloading curve is characterised by an initial steep
slope, which decreases considerably when a zero stress state is approached. For
reloading, the opposite happens.

The analogy with the mesoscopic spring representation, with irreversible
deformations in the ITZ at stage II, is straightforward. At initial unloading the
stresses in the entire spring system decrease according to initial elastic stiffness
until the stresses in the ITZ — and consequently in the, in series connected,
aggregate grains — become zero. At this point the stresses in the parallel-connected
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‘bulk cement paste’ springs are not zero, because there are no irreversible
deformations in these components. At further unloading the ITZ opens with no
further decrease of stress, as no tensile stresses can be transferred across the crushed
ITZ. Further decrease of stresses therefore will occur at the parallel-connected ‘bulk
cement paste’ springs only, which results in a rather flat unloading branch (see
figure 3.15). For reloading the opposite occurs. At first, stresses are solely built up
at the parallel-connected bulk cement paste springs until the gaps at the ITZs are
closed again. From then on, reloading of the entire system takes place and initial
elastic stiffness is recovered.
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Figure 3.15. Load cycle according to the mesoscopic spring representation.

* main loading axis (c;)

Figure 3.16. Microscopic photograph of an ITZ after loading up to stage 11
and subsequent unloading [Van Geel & Bongers By
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According to the assumed mechanical behaviour as outlined above, gaps at the ITZs
(perpendicular to the main compressive loading direction) should be present after
unloading a specimen previously loaded up to stage II in multiaxial compression.
With this in mind Van Geel & Bongers '**’ analysed the damage at the ITZs after
unloading of specimens previously loaded up to stage II, using microscopic
photography. Unlike the vacuum impregnation technique discussed before, this
technique enables to visualise isolated cracks also. These microscopic photographs
showed indeed clear gaps — up to 50 um — at the ITZs perpendicular to the main
loading direction (black layer in figure 3.16). It should be noted that the recorded
gaps at the ITZs are not likely due to micro-bleeding beneath the coarse aggregate
grains in the fresh cement paste, as the casting direction does not coincide with the
main loading direction but with the out-of-plane direction of figure 3.16.

3.2.3 Around peak stress (I1I)

At the macro level, stage III is characterised by reaching the ultimate strength and
the early start of macroscopic (mode II) cracks. A clear picture of the start of
macroscopic cracking at this stage is given in figure 3.10.b. At the meso level this
means that the isolated cracks at the ITZs — already present at stage II — become
interconnected through the bulk cement paste. This crack joining mechanism results
in a non-elastic increase of the concrete volume. A gradual shift is therefore taking
place with respect to the gradient of the volumetric strain curve (see figure 3.12):
from volumetric compaction to (incrementally) volumetric dilation.

The ultimate strength in multiaxial compression in the first place is dependent on
the concrete mix and the extent of confining pressure. Furthermore, the ultimate
strength may be dependent on the loading path in 3-dimensional stress space, prior
to reaching the ultimate strength envelope at a certain specific stress point. If such
path dependency exists, ultimate strength envelopes such as depicted in section
2.1.1.1 are valid only for those loading paths — followed in the test series — on the
basis of which the strength envelopes are constructed.

Path dependency of tensile strength might be expected when multiaxial compressive
loading at stage II precedes the execution of a uniaxial tensile test. As isolated
mesoscopic cracking at the ITZs takes place at stage II of multiaxial compression,
the local capacity for tensile force transfer across these mesoscopic cracks
decreases. Consequently, the overall capacity for tensile force transfer will decrease
as well. The existence of such a path dependency of tensile strength was clearly
demonstrated by Lin et al >,

Based on the experimental observation that tensile splitting is abundant in uniaxial
compression, similar effects are expected in the case of uniaxial compression. Van
Geel '*® investigated such an influence of multiaxial preloading on the ultimate
strength in uniaxial compression. These results are displayed in figure 3.17. It
appears that for uniaxial compression the ultimate strength clearly decreases with
increasing multiaxial compressive preloading.
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Figure 3.17. Ultimate strength in uniaxial compression with and without
multiaxial compressive preloading [Van Geel L A
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Figure 3.18. Ultimate strength in multiaxial compression with and without
multiaxial compressive preloading [Van Geel 1

When multiaxial compressive preloading is followed by a multiaxial compressive
test, inconsistent test results are reported in literature. As stated in section 2.1.1.2,
tests performed by Gerstle et al 1978 Smith et al '**° and Imran & Pantazopoulou L
showed no evidence for path-dependency on the triaxial strength of concrete. On the
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other hand, Kotsovos '*”® actually found the strength results somewhat dependent on

the maximum achieved hydrostatic stress level during different loading paths.
As the loading path variations in the pre-peak regime of the above test series were
rather small, Van Geel '**® investigated this phenomenon experimentally by testing
several concrete cubes with substantial differences in multiaxial compressive
preloading. After preloading, each specimen was loaded up to failure according to a
multiaxial proportional loading path, the same for all tests (plain strain
configuration with o / 63 = -0.05/-1.0). All preloadings did not exceed stage I, so
cracking was mainly restricted to the ITZ. Figure 3.18 shows the results of these
multiaxial compression tests with and without preloading. A strong path-
dependency is observed. Moreover, while the wuniaxial compressive strength
decreases upon high preloading with high confinement (figure 3.17), it appears that
the multiaxial compressive strength increases upon similar preloadings.
This phenomenon of strength increase upon high multiaxial compressive preloading
with high confinement may be explained by considering the process of mesoscopic
crack growth. As was stated in section 3.1.2.2, initial macroscopic cracking in
multiaxial compression is characterised by the growth of ITZ cracks around the
aggregate grains and the growth of these cracks through the bulk cement paste,
according to mechanism 3 (see figure 3.6). Crack growth according to this
mechanism leads to the concentration of forces in the ‘contact area’ of the crack
(figure 3.8). Considering the fact that the strength of concrete is highly dependent
on the presence of lateral confinement, the local stress state at the contact area of
the crack — with increasing confinement upon further crack growth — becomes
invariably less favourable for crack growth according to mechanism 3. Hence, a
strengthening mechanism is induced. This mechanism of crack growth proceeds —
with invariably increasing load — until the crack grows fully around the ‘locked’
aggregate grain, or until failure through the aggregate grain occurs. Note that
strengthening due to aggregate interlock, as described above, can only be supposed
for brittle heterogeneous materials with strong inclusions, such as normal strength
concrete, loaded in multiaxial compression. Accordingly, the influence of lateral
confinement on strength will be substantially larger for the highly heterogeneous
concrete composite than for its — more homogeneous — separate components.
The extent of strengthening due to aggregate interlock, and consequently, the
influence on strength of lateral confinement, depends on three factors:
= The strength of the aggregate grains related to the strength of the ITZ and the
bulk cement paste.
= The size of the aggregate grains
= The distance between the aggregate grains
These factors are properties of the concrete mix. However, the distance between the
aggregate grains depends not only on the mesostructure of the concrete mix prior to
loading, but may change also during loading. As indicated in figure 3.19, ‘contact
areas’ of a potential macroscopic crack — defined as those areas where the opposite
crack faces remain in contact during a sliding displacement — are situated at those
locations where the local crack angle o is maximum. These locations correspond to
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the regions where massive compressive pore collapse within the ITZs has occurred
at stage IL.

Main loading axis (o) ——___ Dore collapse
-- potential macro crack

Figure 3.19. Designation of ‘contact areas’ along the crack path of a potential
macro crack coinciding with regions of compressive pore collapse.

Obviously, pore collapse within the ITZs at stage II reduces the distance between
the aggregate grains at those locations where the crack faces remain actually in
contact during a subsequent sliding displacement, inducing an increase of the
maximum local crack angle .. Consequently, concentration of forces at the contact
area results in a local stress state with a higher level of confinement ratio
(61 | 55'°), which is less favourable for crack growth.

In this way, the occurrence of massive pore collapse at stage II from a preloading
consequently may result indeed in a higher ultimate strength in multiaxial
compression. It should be noted that the observed increase of multiaxial strength is
limited to those cases where the macroscopic cracks mainly curve around the
aggregate grains. Generally, this is observed for specimens loaded in multiaxial
compression with low confinement. Macroscopic cracks in specimens loaded in
multiaxial compression with high confinement show much more cracking straight
through the aggregate grains. Apparently, in the region of high confinement the
strength of the concrete is dominated by the strength of the aggregate grains and no
substantial effect of preloading on multiaxial compressive strength is expected here.
Having this in mind, the test results of Taliercio et al 199 may better be understood.
They performed a series of creep tests on concrete cylinders. After loading these
cylinders in a triaxial cell to a certain hydrostatic stress level, the specimens were
loaded along the deviatoric plane towards the compressive meridian. At 90 % of the
deviatoric strength, the stress level was sustained for a maximum period of about 5
days. After this period the specimens were reloaded to failure along the deviatoric
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planes at various hydrostatic stress levels. For the reloading tests in the region of
low confinement, a distinct increase of deviatoric strength with respect to the virgin
loading (without sustained triaxial stresses) was found. However, the increase of
deviatoric strength reduced for the reloading tests at higher hydrostatic stress levels
(high confinement region). Assuming that deformations due to pore collapse
increase in time upon sustained loading, these results appear consistent with the
results of Van Geel.

3.2.4 Softening stage (IV)

At stage IV, decrease of strength and evolution of large macroscopic cracks (see
figure 3.10.c-f) are observed at the macro level. The mechanical behaviour is
determined by increasing deformations in the localised macroscopic cracks while
the continuum in between these macroscopic cracks unloads. These phenomena are
clearly shown in figure 3.20. This figure shows a plane strain multiaxial
compression test (o7 / 63 = -0.05/-1.0). In this particular test, not only the overall
stress-deformation behaviour was measured (LVDT’s), but also the stress-
deformation behaviour of the continuum (strain gauges). By subtracting the
averaged continuum stress-deformation behaviour from the overall stress-
deformation behaviour, the averaged stress-deformation behaviour of the localised
macroscopic crack was obtained.

-80 —
60 —] Continuum contribution
o
E - Measured overall stress-deformation curve
=& (LVDT's)
o
40 —
Local macroscopic crack contribution
Averaged continuum behaviour derived
20 —] from strain gauge measurements
T T T T T T T T T T T 7T 71

0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5
uy [mm]

Figure 3.20. Continuum versus local behaviour [Van Geel ***].
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Hence, during stage IV the deformations are localised in macroscopic cracks. In
section 1.1 it was already mentioned that localisation of deformations leads to a
strong dependence of the load-deformation response on the geometry and boundary
conditions of the concrete structure at hand. As a result, the load-deformation
behaviour at stage IV cannot be evaluated apart from the geometry and boundary
conditions of the structure/specimen.
with identical geometry and boundary conditions and concrete mix, the shape of the
overall c—u curves still may differ considerably depending on loading path and the
extent of confining pressure. The development of volumetric deformation as
depicted in figure 2.6 in chapter 2 shows the influence of the extent of confining
pressure. It appears that — at the softening stage IV — the incremental dilation of the
specimen (with respect to the volume at peak stress) is much more for low
confining pressures than for high confining pressures. The observed magnitude of
difference in dilation cannot be ascribed to the continuum behaviour of the
specimens because the unloading branches of the continuum parts differ only
slightly. Hence, the differences in dilation arise from the differences in mechanical
behaviour of the macroscopic cracks.
A variety of researchers have proposed models to describe the mechanical
behaviour of a fully-grown — shear loaded — crack in concrete. Although a good
agreement with experimental data is accomplished, empirical models such as the
‘rough crack model’ of Bazant & Gambarovalggo, provide little insight in the
mechanics of the problem. More insight is provided by the so-called physical
models, which consider the geometrical structure of a fully-grown crack at the meso
level [Fardis & Buyukozturk '*”’; Walraven '**°; Li et al '**’; Divakar & Fafitis '*?).
In these models, overall roughness of a crack is regarded as a superposition of
‘mesoscopic roughness’, i.e. the roughness of a tortuous crack around interlocking
aggregate grains discernible at the meso level (figure 3.21), and ‘microscopic
roughness’, i.e. the roughness of the cement paste (bulk or ITZ) along the tortuous
mesoscopic crack discernible at the micro level only. When a crack — as shown in
figure 3.21 — is loaded in shear, sliding will occur. Because interlocking grains
block this sliding deformation, contact points between the aggregate grains and the
cement paste will be formed. Upon further sliding forces build up at these contact
points until either:
= The upper part overrides the interlocking aggregate grain of the lower part. In
this case the local shear force at the contact point exceeds the resisting frictional
force. This resisting frictional force is determined by the extent of microscopic
roughness and the magnitude of the local normal compressive force at the
contact point.
* The cement paste crushes at the contact point.
* The interlocking aggregate grain fractures.
Which mechanism prevails in a particular situation depends on the properties of the
concrete mix (local contact angle at the contact point, strength of the aggregate
grains and the cement paste) and the compressive stress normal to the global
direction of the macroscopic crack. This means that for very high confining
pressures crushing of the cement paste or fracturing of the aggregate grains will
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prevail, whereas for very low confining pressures overriding prevails. As the
‘overriding’ mechanism is the only mechanism causing substantial crack dilation,
macroscopic observation of decreasing crack dilation signifies increasing confining
pressures.

contact point with
local contact angle

Figure 3.21. Tortuous crack due to aggregate interlock [Walraven "**].

At stage IV, the shape of the descending branch in the loading diagram of the main
loading axis is highly dependent on the loading path also. Figure 3.22 shows the
loading diagrams of three plane strain compression tests, each with a different
loading path, but with identical test setup and concrete mix. It appears that the
‘ductility’ of the softening branch increases when the direction of the loading path

becomes more perpendicular to the (schematic) bounding envelope of ultimate
strength.
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Figure 3.22. Sofiening branches (b) of multiaxial plane strain compression tests (a).
(Proportional path: o; /o3 =-0.15 /-1.0).
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For these tests, (schematic) bounding envelopes of ultimate and res.idual strength
are constructed in figure 3.22.a. It can be seen that loading beygnd ultimate §trength
along a ‘deviatoric’ stress path (perpendicular to the plane strain ‘hydrostatic’ §x1s)
towards the envelope of residual strength leads to a small stress d‘rop only, while a
proportional stress path leads to a very large stress drop_ beyopd ultimate §trength.
The residual strength in multiaxial compression tests is mainly determined by the
capacity of transfer of shear forces across the f\}lly-grown mode ;I cracks at large
sliding displacements. At these large sliding displacements, no intact continuum
junctions between the opposite crack faces exist anymore. The residual capacity of
shear force transfer at large sliding displacements exclusively is based on internal
friction. Worded differently, transfer of shear forces at large sliding displacemen‘ts
is possible due to aggregate interlock (mesoscopic‘roughness) ?nd microscopic
roughness of the crack only, provided that compressive forces exist normal to the
crack. ‘ o ‘
The gradual transition from ultimate to residual strength in multiaxial compression
coincides with the growth of macroscopic cracks with increasing crack opening, as
shown in figure 3.10.c-f. Although not visualised in figure 3.10, it should be
emphasized that the concrete parts not divided by visible macroscopic cracks are
heavily damaged also due to mesoscopic cracking at stage I and III.
Basically, the (gradual) diminishing capacity of shear force transfer across the
growing macroscopic cracks at stage IV can be explained by two phenomena:
= Loss of cohesive strength, i.e. fracture of ‘intact’ concrete parts along the path of
growing macroscopic cracks.
= Decreasing frictional resistance against sliding due to decreasing roughness of
the macroscopic crack.
The first phenomenon causes highly brittle behaviour and produces a brittle
softening branch as observed in tensile tests [Van Mier '***]. The softening branch
in multiaxial compression tests is much more ductile. It seems therefore that the
softening branch in these tests is mainly a result of decreasing frictional resistance
against sliding. The loss of cohesive strength mainly occurs during the
strengthening mechanisms involving mesoscopic cracking at stage II and III,
discussed previously.
As stated above, sliding along a macroscopic crack may involve several
(mesoscopic) mechanisms: overriding, crushing of cement paste and aggregate
fracture. In fact, all these mechanisms potentially may cause a reduction of
roughness. During overriding, the local contact angle decreases at the contact areas
of the crack, reducing mesoscopic roughness. Due to polishing of the contact area,
also a reduction of microscopic roughness may be expected. Provided that
aggregate fracture and/or cement paste crushing occur only at those aggregate
grains with highest local contact angle, these mechanisms also may lead to a
reduction of mesoscopic roughness, as overriding along the remaining part of the
crack takes place at contact areas with lower local contact angles.
Shortly, sliding along macroscopic cracks at stage IV involves a reduction of
roughness, which is caused by a complex interaction of mechanisms acting at lower
scale levels in the presence of compressive stresses normal to the crack direction.
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CHAPTER 4

NUMERICAL MODELLING AT THE MESO LEVEL

At a lower scale level than the macro level, concrete is a heterogeneous material.
However, even at the macro level, it is nowadays well-known that numerical
modelling can only be done properly if the specific properties of the meso- and
microstructure of concrete are taken into account. The need for a localization
limiter, i.e. an internal length scale as a measure of material heterogeneity in strain
softening problems is here illustrative'.
There are two fundamental ways of taking into account the heterogeneous meso-
and microstructure of concrete:
= Explicit consideration of the geometrical features of the heterogeneous meso- or
microstructure, e.g. by generating meso- or microscopic meshes in Finite
Element computations.
= Implicit consideration of the heterogeneous meso- and microstructure in the
macroscopic constitutive (and possibly kinematic) equations.
For structural engineering purposes, explicit consideration of the microstructure of
concrete involves, even in a 2D representation, great computational effort.
Therefore, the heterogeneous microstructure is generally accounted for in an
implicit way. Examples of models with explicit consideration of the mesostructure
are given in section 2.2. Such models allow typical mesomechanical features — like
crack interface bridging and aggregate interlock — to be reproduced by applying
rather simple constitutive laws for the separate phases.
Implicit consideration of the heterogencous meso- and microstructure in the
macroscopic constitutive (and possibly kinematic) equations is common practice in
models based on continuum solid mechanics (section 2.2.3). Most of these models
focus on the behaviour of concrete in tension. Extension of these constitutive
models to simulate tensile, compressive as well as multiaxial compressive
experiments often leads to complex formulations. Generally, this complexity leads
to rather abstract considerations of the mesostructure of concrete and a clear
physical meaning of material properties related to the mesostructure is often
lacking.
In this chapter, a method is pursued with both explicit and implicit consideration of
the mesostructure of concrete. The proposed model will be entitled ‘mesoscopic
model’. This mesoscopic model is restricted to two dimensions (plane strain, plane
stress). Although this restriction is quite severe when simulating concrete behaviour
in general, it will be shown that quite reasonable results are obtained for simulations
of uniaxial, biaxial (plane stress) and plane strain tensile or compressive
experiments.

!'See section 2.2.3.2
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4.1 Computational environment

The computations are carried out using the computer code UDEC (Universal
Distinct Element Code, Itasca Consulting Group '***). At Eindhoven University of
Technology, Vonk '*** also used this code in a previous Ph.D study on the present
topic. By using the same computer code, basic elements of this research could be
transferred easily to the present study.

UDEC is based on the Distinct Element Method developed by Cundall "' and is
mainly characterized by:

1. A division of structures into blocks and contacts between these blocks

2. Allowance of large displacements and rotations between blocks

3. Automatic recognition of new contacts as the calculation progresses

4. An explicit dynamic solution procedure

4.1.1 Division into blocks and contacts

In UDEC, a structure is split up into blocks by creating a continuous pattern of
interfaces through the structure (see figure 4.1). The generated blocks may have any
polygonal shape and represent the material volume of the structure.

— contact

() block

7
/\\Q zone

Figure 4.1. UDEC system of blocks (zones) and contacts.

The blocks may be rigid, simply deformable or fully deformable. In the latter case a
mesh of finite elements is generated, dividing the block in triangular constant strain
elements (called zones in UDEC).

If the corner of a block/zone (nearly) touches another block, a contact is created.
Creation of these contacts may occur prior to the calculation but also during the
calculation.

4.1.2 Explicit finite difference solution scheme

UDEC uses a dynamic explicit finite difference solution scheme, based on
Newton’s second law of motion and on the assumption that during one calculation
cycle (time step) the influence of an incremental load or displacement on one
element travels not further than its neighbouring elements. The velocities and
accelerations are assumed to be constant within a single time step.
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Figure 4.2. Basic calculation cycle for the Distinct Element Method.

Figure 4.2 shows the basic calculation cycle in UDEC. Each time step the law of
motion is applied to each block (or zone) and the constitutive laws are applied to
each element (blocks (zones) and contacts).

Figure 4.3 shows a one-dimensional illustration of the calculation procedure in case
of rigid blocks. At time ¢ = 0 a force F is applied to block 1. Application of the law
of motion results in an acceleration # = F/m of block 1. At the end of the time step
At this results in a displacement increment Au (Au = 1At = % iiAf"). Now the
constitutive law for the contacts (assumed: elastic springs with stiffness k) is
applied. According to this constitutive law the reaction forces in the springs are
AF =k Au. In the next time step the law of motion for block 1 and block 2 is solved,
again taking these reaction forces into account.

In this way, boundary information is transmitted through the structure. This explicit
step-by-step solution scheme is only valid, however, in case of very small time
steps. The critical time step is calculated by UDEC based on the speed of
propagation of information through the structure.

P,

1 e
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' ' 1Au
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Figure 4.3. Illustrative example of the calculation procedure of UDEC (redrawn
from Vonk ™).

Though the solution scheme of UDEC is dynamic, quasistatic problems can also be
solved. In this case the equations of motion are damped to reach a force equilibrium
state as quickly as possible [Cundall '***].
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Due to the small time step needed in explicit methods in order to obtain numerical
stability, these methods are — compared to implicit methods — not very effective if
the structural behaviour is rather linear. However the method becomes competitive
for highly non-linear problems and when there are changes in the connectivity of
the elements.

A major advantage with respect to the development of non-linear constitutive
models is that — due to the very small time step in the explicit method — the internal
state variables may be assumed constant during the time step. This usually implies
great simplifications in the constitutive equations.

4.2 Mesh generation

For the generation of Finite Element meshes, resembling the mesostructure of
concrete, a 2D mesh generation code has been written at Eindhoven University of
Technology. This mesh generation code is adapted from a method used by Vonk '**?
and is documented extensively in Bongers %,

The generation procedure aims at generating a mesh of coarse aggregate grains
randomly positioned in a matrix of mortar. First, a regular pattern of hexagonal
shaped aggregate grains is generated (see figure 4.4). Subsequently this pattern is
deformed in such a way that the generated grain structure resembles well the
irregular distribution of the coarse aggregate grains in a cross section of a real
concrete structure (see figure 4.5).

—— ITZ interface

.......... mortar interface

Figure 4.4. Regular pattern of aggregate grains in a mortar matrix.

In the earlier work of Vonk '*%, an analogous technique was adopted with potential

discrete cracks being already explicitly present in the initial mesh in the form of

interfaces. Two types of interfaces were distinguished:

= ITZ interfaces, positioned around the coarse aggregate grains and representing
the ITZ

= mortar interfaces, connecting the ITZ interfaces in a logical and systematic
manner

As a result, interface patterns like the one in figure 4.6, were created.
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Figure 4.5. (a) Cross section of a concrete cube (casted by Van Geel !
(b) Example of generated pattern of coarse aggregate grains.

— ITZ interface
-~ mortar interface

(@ (b)
Figure 4.6. (a) Basic interface pattern and (b) randomly disturbed interface
pattern [Vonk' e

In the work of Vonk '**? all potential cracking was restricted to these interfaces, the
continuum remained linear elastic. Although this discrete crack approach fits very
well within the computational strategy of UDEC, it has some major drawbacks:

®* The direction of potential cracks through the mortar is fixed a priori

®* Cracking through the aggregate grains is not possible

It depends on the properties of the concrete composite (maximum aggregate size)
and the type of loading whether these drawbacks are significant or not. Failure of
concrete loaded in tension or in uniaxial compression is characterized by very
tortuous crack patterns through the ITZ and bulk cement paste. In these cases the
drawbacks mentioned above are not very significant. In triaxial compression



74 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION — NUMERICAL MODELLING

however, failure of concrete is generally characterized by rather straight cracks
frequently running through the aggregate grains. As a result of the above
drawbacks, the procedure used by Vonk is not capable of reproducing these straight
cracks. In general, this leads to a significant overestimation of the strength of a
structure loaded in triaxial compression.
As the purpose of this work is to simulate concrete behaviour in triaxial
compression, cracking in any direction and through any phase of the concrete
material should be allowed for. This may be accomplished by (see also section 2.2):
=  Adopting a remeshing technique during the analysis, i.e. insertion of interface
elements (discrete cracks) at the onset of cracking in a direction determined by
the cracking criterion.
= Allowing the introduction of arbitrarily located displacement jumps at the
boundary of conventional finite elements to reproduce the geometric nature of
localised cracking.
= Incorporating the effects of cracking through a continuum element by
distributing the crack displacements over a certain volume in order to produce
crack strains and preserve the original continuity of the problem formulation
(smeared cracking approach).
The first two methods model cracks by introducing displacement discontinuities in
the displacement field, which obviously approaches the geometric nature of
cracking the most. Yet, the third method is much easier to implement in Finite
Element calculations. Despite its limitations — as outlined in section 2.2.3.2 — the
smeared cracking approach is therefore adopted and that in its simplest form, i.e. the
crack deformations are uniformly distributed over the element width.
For parallel-connected systems, the combination of smeared and discrete cracking
leads to displacement incompatibility. This is displayed in figure 4.7. Though the
structure is loaded in pure tension, it will only fail if the interfaces 2 and 3 fail in
pure shear. For a material like concrete, which is stronger in shear than in tension,
the combination of smeared and discrete cracking will result in an overestimation of
the failure load. This overestimation will be even more pronounced when also
lateral compressive loading is present.
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Figure 4.7. Displacement incompatibility for a combination of smeared and
discrete cracking.
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As the combination of discrete and smeared cracking ends in non-realistic
mechanical behaviour for (partly) parallel-connected systems, the present model
allows only for smeared cracking. This implies that the ITZ and mortar interfaces
(as shown in figure 4.4) do not represent any potential cracks, like they did in the
work of Vonk. These interfaces now only divide the structure into (convex) blocks
of mortar and coarse aggregates in order to create a realistic heterogeneous material
representation.

4.3 Constitutive theory (Stage I & II)

The development of a fundamental constitutive theory, which introduces the effects
of cracking in the stress-strain relations of the continuum elements (mortar, coarse
aggregate grains) of the mesh, is basically divided into two parts:

= A constitutive theory describing the effects of micro-cracking, i.e. isolated
micro-cracking within the ITZ.

s A constitutive theory describing the effects of meso-cracking, i.e. the formation
of continuous cracks through ITZ, bulk cement paste and possibly aggregate
grains.

The distinction between micro- and meso-cracking is made because of the eminent
difference in the scale of heterogeneity involved. At the meso level, the scale of
heterogeneity of undamaged concrete is determined by the size of the aggregate
grains. The size of micro-cracks within the ITZ does not exceed the size of the
aggregate grains. As a result, this type of cracking does not affect the scale of
heterogeneity of undamaged concrete.

Meso-cracking, on the other hand, affects the scale of heterogeneity of undamaged

concrete considerably. The meso-cracks run along many aggregate grains, the scale

of heterogeneity is hence entirely determined by the size of these cracks.

The constitutive theory for meso-cracking (at stage III and 1V) is treated in chapter

5. The constitutive theory for micro-cracking is treated in this section.

4.3.1 The concept of a Representative Volume Element (RVE)

The mesh layout consists of two phases, the coarse aggregate grains and the mortar
matrix. The mortar is a homogenisation of the heterogeneous mesostructure of fine
aggregate grains, bulk cement paste and ITZ.

The averaging method used to establish this homogenisation of the heterogeneous
mesostructure of fine aggregate grains, bulk cement paste and ITZ is based on the
concept of a Representative Volume Element (RVE). The term RVE was first put
forward by Hill'®®. As continuum mechanics deals with idealized materials
consisting of material points and material neighbourhoods, it assumes that the
material distribution, the stresses and the strains are essentially uniform in the direct
neighbourhood of the material points. However, at the lower (meso and micro) scale
levels these quantities are, in general, not uniform at all. For such a heterogeneous
micro(meso)structure, an RVE at a material point of a continuum mass is a material
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volume that is statistically representative of the infinitesimal material
neighbourhood of that material point. To be representative, the RVE should, for
randomly ordered meso- or microstructures, include a very large number of such
meso- or microheterogeneities. If the material has a periodic meso- or
microstructure, the RVE can be reduced to one unit cell.

In recent years, the RVE approach has among others been used by Chang 1993 for
granular materials, by Onck et al '®’ for polycrystalline metals and by Smit 9% for
heterogeneous polymers. They used either an RVE of many microhéterogeneities
(Chang) or a unit cell for — assumed — periodic microstructures (Onck, Smit). In all
cases the boundary conditions of the macroscopic element are applied to the RVE.
Subsequently, using the Finite Element Method, the response of the RVE is
calculated. This response is assumed to be representative of the whole macroscopic
element. In this way, computer time is reduced considerably compared to Finite
Element computations of the entire microstructure.

Although the main objective of the RVE-approach is to gain computer time, the
accuracy of the method should also be considered carefully. In this respect, the
ﬁmda}rgr;?ntals on which an RVE should be based are provided by Nemat-Nasser and
Hori ™:

‘Perhaps one of the most vital decisions that the analyst makes is the definition of
the RVE. An optimum choice would be one that includes the most dominant features
that have first-order influence on the overall properties of interest and, at the same
time, yields the simplest model.’

Consequently, the dominant features having a first-order influence on the
mechanical behaviour of concrete in multiaxial compression have to be established.
These features have been explained in chapter 3. Delimiting our analysis to the
stages I and II, the most dominant features are the elastic properties of the concrete
composite (depending on the volume ratio’s and the elastic properties of the
separate components) and isolated crack formation in the ITZ. Taking the basic part
of the concrete volume of figure 3.13 as an RVE in the form of a unit cell, then
these most dominant features can be accounted for.

The circular-shaped schematised unit cell as displayed in figure 3.13 produces
isotropic behaviour. This corresponds with the initial behaviour of real concrete that
— except for the influence of the casting direction — is more or less isotropic.
Disregarding the influence of the casting direction, the initial isotropy of the
concrete volume is thus accounted for by the circular-shaped unit cell. Although an
assembly of circular shaped unit cells cannot fill the volume completely, this is not
considered an essential drawback. The adopted circular-shaped RVE for the
concrete mesostructure is not a unit cell in the sense that an assembly of such
identical cells fills the material volume, but merely a representative shape of an
assembly of irregularly shaped and sized cells.

The circular cylinder displayed in figure 4.8 is hence the most simple model that
accounts for the dominant features of concrete in multiaxial compression at stage I
and II and is therefore taken as the RVE for normal strength concrete.

With respect to the meshes described in section 4.2, the dimensions of the RVE for
the coarse aggregate grains are given by
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4,
IR =
o
R, - R, = average thickness of ITZ around coarse aggregate grains
R, - R, = average thickness of bulk cement paste around coarse aggregate grains

A, = area of the block representing a coarse aggregate grain

The dimensions of the RVE for each mortar continuum element are determined by
the properties of the concrete mix (except for the coarse aggregate grains), i.e. the
average radius of the fine aggregate grains and the volume ratio of fine aggregate
grains, bulk cement paste and ITZ.

R, =average radius of fine aggregate grains
Rz2 _R12 _ Vnz

2 - fine
Rl Vagg

2 2
R3 —Rz _ Vbulk
2 = 17 fine
R, Vige

phase 1
Aggregate grain

Figure 4.8. RVE for normal strength concrete.

4.3.2 RVE calculation scheme
Within -thg basic calculation cycle of UDEC (figure 4.2), the RVE-concept is used
only within the procedure “application constitutive laws”. For each continuum
element UDEC provides macro-strain increments Ag” and the initial macro-stress
state O_O,m = @ . .

8™ — according to the global (x,y,z) coordinate system — as input for the
constitutive laws (index m for macro). As output UDEC requests the final macro-
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stress state ¢, Figure 4.9 shows the RVE calculation scheme, which includes the
effects of ITZ cracking and provides the requested final macro-stress state ¢

Input

section 4.3 4
Trial local

stress states in ITZ

GI,ITZ = GO.ITZ+ Ace,ITZ

Initial macro-stresses:
Om 0,m 0,m
glm otn

macro-strain increments:

Section 433

A€ = Ae," macro-stress state @
Agyloc - Agym
A‘Txyloc - Ay,xym Section 435 & 436

Cracking in ITZ
Primary local stress corrections

AO-ITZ

U

section4.3.7

volume
average

1m — & lloc
g, =0y

1Lm — & Liloc
Gy —Uy

Lm — = Llloc
Txy = Txy

Crack interaction
Secondary local stress corrections
o LITZ — o I,ITZ+ AO'ITZ + AAO-ITZ

macro-stresses.
le,m O-yl,m Txyl'm

Figure 4.9. Overview of RVE calculation scheme.

The RVE is loaded by the macro-strain increments Ag” provided by UDEC. From
the definition of the RVE, the stresses and displacements at the outer boundary of
the RVE must resemble the (uniform) macro-stress and displacement fields at the
material point considered. As outlined in appendix A, these conditions can only be
satisfied approximately along the outer boundary of the RVE. Worded differently,
the local distributions of both incremental stresses and displacements at the outer
boundary of the RVE can resemble the uniform macroscopic distributions only in
an average sense.

Generally, two bounds for the distribution of outer-boundary stresses and
displacements may be indicated [Nemat-Nasser & Hori '**]. The first bound refers
to the case that the distribution of outer-boundary ‘strain’ increments Ag” (outer-
boundary displacements divided by the width of the RVE at a specific point on the
outer boundary) equals the uniform distribution of the macro-strain increments.
These conditions of constraint will be referred to as macro-strain conditions of
constraint. The second bound refers to the case that the distribution of stress
increments at the outer boundary of the RVE is uniform. These uniform stress
conditions of constraint will be referred to as macro-stress conditions of constraint.
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For linear elastic material behaviour, these bounds for the distribution of outer-
poundary stresses and displacements are given in appendix A. In this case and with
the given macro-strain increments Ag”, the true distribution of local incremental
displacements at the outer boundary of the RVE may vary between the elastic
macro-strain and the macro-stress distribution. When the material behaviour
changes from elastic to elasto-plastic at stage II, the distribution of outer-boundary
displacements may somewhat change. However, as the RVE is also representative
at this stage, the distribution of outer-boundary displacements still has to resemble
approximately the uniform macroscopic displacement field. It seems therefore
legitimate to apply in this case the same procedure to determine the distribution of
local outer-boundary incremental displacements as applied in the case of linear
elastic material behaviour.

The mechanical response of the RVE upon the imposed conditions of constraint
may be computed by means of finite (or distinct) element computations. In the
present approach, however, the response is computed analytically. In this way,
again a considerable gain in computation time is accomplished. The procedure
pursued is indicated in figure 4.9 and is explained below.

According to the selected distribution of outer-boundary incremental displacements,
a trial macro-stress state is computed by adding elastic macro-stress increments to
the initial macro-stress state. To this end, effective elastic moduli for the RVE are
determined in section 4.3.3, establishing a linear relationship between the macro-
strain increments and the elastic macro-stress increments.

At stage I and II, cracking is restricted to the ITZ. Hence, the local stresses within
this zone have to be checked upon a certain cracking criterion. To this end, a stress-
based cracking criterion is developed in section 4.3.6. To check whether the local
stress state at certain places in the ITZ violates this cracking criterion, /ocal trial
stress states are computed in an adequate number of points within the ITZ by adding
elastic local stress increments to the initial Jocal stress states (section 4.3.4). If a
local trial stress state violates the cracking criterion, the local stress state in that
point is corrected. These ‘primary’ stress corrections do not take into account any
crack interaction effects. Such crack interaction effects are allowed for after
calculation of all primary stress corrections within the ITZ. This results in
secondary (minor) corrections of the local ITZ stress states (section 4.3.7).

Based on the computed stress corrections in the ITZ, section 4.3.5 shows how the
local internal state variables (crack displacements) in the ITZ are computed and
how the local stress corrections in the ITZ affect the stress state at the outer
boundary of the RVE. Based on the obtained distribution of stress corrections at the
outer boundary, the correction of the trial (elastic) macro-stress state is determined
in section 4.3.8.

4.3.3 Effective elastic moduli for the RVE

In literature, a wide range of models is presented for the determination of effective
elastic properties of heterogeneous materials. The earliest and simplest models were
based on the assumption that the material (in this case concrete) consists of two
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phases: aggregate grains and cement paste. These early models involved simple
mixing rules such as a volume-average of the stiffnesses [Voigt '**] or a volume-
average of the compliances [Reuss'®®]. Among others Hirsch'®®* suggested
empirical expressions for the estimation of Young’s modulus of mortar or concrete.
More sophisticated models consider the cement paste as the connecting phase with
disconnected ellipsoidal aggregate inclusions as the second phase. A review of these
models is given by Nemat-Nasser and Hori ',

More recently, models incorporate the influence of the ITZ. In these models a three-
phase composite consisting of spherical aggregate grains, bulk cement paste and
ITZ is modelled. Some of these models only use estimates of average stress and
displacement field solutions [Yang ', Lutz et al '*7]. Other models are based on
exact analytical solutions of the stress and displacement fields for distinct loading
cases. Ramesh et al '’ analysed the stress and displacement fields for an assembly
of three composite spheres with a common centre embedded in an infinite
equivalent homogeneous solid under hydrostatic and shear loading at infinity. This
resulted in a rather simple solution for the overall bulk modulus whereas the
solution for the overall shear modulus is very complicated. Zhao & Chen '***19%
analysed a 2D (plane stress) assemblage of two aligned and co-centred composite
cylinders of circular cross sections embedded in an infinite solid of cement paste
subjected to a uniaxial tensile stress at infinity (figure 4.10).
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Figure 4.10. Model of microstructure of concrete [Zhao & Chen"**].

As the present RVE calculation scheme not only requires the effective elastic
moduli but also the true stress distribution in the ITZ, a method is pursued
resembling Zhao & Chen '*%'*®_ Yet instead of embedding the composite cylinders
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of aggregate and ITZ in an infinite solid of cement paste, the stress/displacement
fields are solved analytically for the RVE as displayed in figure 4.8 for two
elementary stress-strain states. This method yields linear equations for the effective
clastic moduli and exact stress/displacement fields in the ITZ for the considered
stress-strain states (see appendix A). In section 4.3.4 it is shown that the elastic
stress/displacement distribution in the ITZ for an arbitrary stress-strain state may be
computed by a linear combination of the elementary stress-strain states considered
in appendix A.

The expressions for the effective elastic moduli, derived in appendix A, are a
function of the individual elastic moduli (£,v) and the radii R;, R, and R;. These
expressions assume different Young’s moduli, yet Poisson’s ratio is equal for all
phases. This assumption simplifies the expressions for the global moduli
considerably and, whereas information about Young’s modulus of the separate
phases is scarce, little to nothing is known about Poisson’s ratio of the separate
phases.

With the given expressions for the in-plane effective elastic moduli (E,q, V,q) and
the out-of-plane effective Young’s modulus E,, the in-plane macro-stresses and
macro-strains in the global, Cartesian coordinate system (x,y,z) are related to one
another through

Ao | |[K+G K-G0 Ae.”
Ao, " |=|K-G  K+G 0|l As,” (4.1
g, " 0 0 G| Ay,"”
with
E-— Fa a4 G- Z(IE*_ )
2(1-@, —2v? _re] Vo

4.3.4 Elastic stress distribution in the ITZ

Computations involving the RVE-approach not only cover the elastic behaviour
(stage I) of the material, but also isolated crack formation in the ITZ at stage II.
Isolated crack formation occurs when the ITZ stresses reach a certain critical value
(see section 4.3.6).

To check whether the ITZ stresses reach a critical value, ‘trial’ stress states in the
ITZ are computed by adding elastic stress increments to the initial stress states.
Obviously, this procedure requires the distribution of elastic stress increments in the
ITZ. In appendix A, exact solutions for this distribution of stress increments are
given for two elementary stress-strain states (figure 4.11) in cylindrical coordinates.
Furthermore, a distinction is made between a macrostress approach (uniform stress
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boundary conditions) and a macrostrain approach (uniform displacement boundary
conditions).

Elementary stress-strain state I

Elementary stress-strain state II

Cartesian: o;(R)=0o;(R)=1 Cartesian: o,(R)=1 o;(R)=-1
or & R)=¢;R)=1 or g,®=1 g45(R) =~1
cylindrical: o,(R)=1 1t,,(R)=0 cylindrical: ©,(R) =sin20 T,,(R) = cos20

or u®=1 w@R=0 or u(R)=sin20 w(R)=cos20

Figure 4.11. Elementary stress-strain states in cylindrical and Cartesian
coordinates.

Converting the two elementary stress-strain states from cylindrical (7,0)-coordinates
to Cartesian coordinates according to the principal 1,3-axes, results in simple,
uniform distributions for these states. Furthermore it appears that any uniform
macroscopic stress-strain state can be written as a linear combination of these two
elementary states.

Figure 4.12 shows the conversion from the cylindrical coordinate system to the
Cartesian (1,2,3)-coordinate system oriented according to the principal directions,
with the 2-axis in the out-of-plane direction.

For elementary stress-strain state I (t,o = 0) this results in the following expressions:

macrostress approach.:
F =F, cos(E - 9)
4

F,=F, sin(E = 9)
4

macrostrain approach:

T
u, =u(R) cos(z - 9)

. (m
uy =u(R) sm[z - 6)

: R,
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= E :Grzl Slmz 11:1 =u(R{e)=;
cos(iE - G)Rde cos(— - G]R

_ F3 —Gr—l 83m= T’;S =u(}f)=;
sin[£—9)R£ sin(——G)R

= o,(R) Rd®
6~ Tro (R) Rde

Figure 4.12. Conversion from cylindrical to Cartesian coordinates.

For elementary stress-strain state II (macrostress) the expressions for the principal
~ macro-stresses are:

F = Lsin 20 cos(% = 9) +cos 29sin(§ - GDRdG

F, = [sin 20 sin(g - 9) —c0s20 cos(% - GDRdG

—:sin29+cos29tan(§——9)
cos(% — GJRdO

m_ F, sin20-— cos26
sin(E -0 |RdO tan(E - 9)
4 4



84 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION — NUMERICAL MODELLING
With
e 1—-sin26
tan| ——0 |=——
4 c0s20
1 _1+5sin20

tan( L ej cos20
4

this results in the following expressions for the principal macro-stresses

Likewise, it can be derived that the elementary state II implies uniform macro-
strains in Cartesian 1,3-coordinates when the macrostrain approach is pursued.

To derive elastic ITZ stress increments Ac “”# in an arbitrary part of the ITZ — of
‘which the location is specified by the angle 0 — it is convenient to define a Cartesian
coordinate system (»,7,z) with the n-axis coinciding with the r-axis at the above
angle O (see figure 4.13). According to such a rotated (n,z) coordinate system, any
vector of uniformly distributed elastic stress (or strain) increments at the outer
boundary of the RVE can be written as a linear combination of the two elementary
states above.

t Ac, " () 1] sin 20
macros ?:SS AG,e’m ) |= p’ 1|+ p” —sin20 4.2
¥ : .
approac A’Cnte’m (9) __O_ COS 29 ( )
@) I
. B Aenm (e) 1] sin 20
macrostrain m Y T —si
; Ae"(®) |=¢'|1|+&"|-sin26 4.3)
approach : .
A 16y,"®)] 0] | cos26 (
@ an

Figure 4.13 is a graphical representation of equation (4.2). The centre of Mohr’s
stress circle is determined by state I (multiplied by p'). The radius is determined by
the multiplication factor p” of state 1l and, finally, the arbitrarily oriented stress state
[Ac,2™(0), Ac,~™(0), At,>"(0)]" is determined by the angle 26.
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considered part of the ITZ

S
20 '

p" cos20

Ac* Ac"() o Ac,="(0) Ao,
p’sin20

Figure 4.13. Linear combination of elementary stress-strain states I and II.

According to the macrostress approach the quantities p’, p” sin20 and p” cos26 are
derived from the macro-stress increments [Ac,””, A", At,,*™]" at angle O using
equation (4.2).

I

p =1{Ac,”"(8) + Ac,”"(0)
p"sin20 =1(Ac, “"(6)-Ac,”"(6)
p"cos20 =At,”"(0)

“4.4)

With equation (4.1) these quantities may also be derived from the macro-strain
increments [Ag,” , Ag,” , Ay, 1" at angle 0
b’ =K |Ae,"(0) +Ag,"(0)
p"sin20 =G (Ae,"(6)-Ae,"(0)
p'cos20 =G Ay,"(6)

(4.5)

Following the macrostrain approach the quantities &, £”sin20 and &”cos20 are
derived directly from the macro-strain increments using equation (4.3).

g =1{Ag,"(0) + Ag,"(0)
e”sin20 =1(Ae,"(0)-Ag,"(0)
g”c0s20 =LAy "(0)

2

(4.6)

The elastic stresses in the ITZ for the elementary states I and II are given by
€quations (A.11), (A.19) and (A.27) in appendix A (j =2 ). A linear combination of
these elementary states yields the following expressions for the elastic stress
increments, in cylindrical coordinates, at the centreline (R, =+(R, +R,)) of an

arbitrary part of the ITZ at angle 0:
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i Ac,“™ (@) =M p’ + A p” sin 20
macrostress i o B wm B
Ac B)=A,p —Ayp" sin20 4.7
approach:: ee nz( ) gp - aP @7
Aty (@) =X p" cos20
_ Ac,“™(0) =20 K &' + 2"\ G £ sin 20

m”m’m:’” Ac,"™(©) = 2X. K ¢ — 20131 G & sin 20 4.8)
approach: —

i At,""(0) = 2M A Ge cos 20
with
A= A—ZZ +2C, 3= . =
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3
Xg = —-A—Zz + 26, A =-2B, - 6Cj ———4Dj
R, R, R,
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Appendix A : Appendix A :

-Section A.2.2 -Section A.3.1.2: macrostress

-Section A.3.2.1: macrostrain

From (4.5), (4.6), (4.7) and (4.8) a linear relation is established between the (n,7,2)
macro-strain increments and the elastic stress increments at the centreline of an
arbitrary part of the ITZ at angle 6.

Ac,“™(@) | |[ME+NNG MK -G 0 || 4¢,"(®)
Aoy (0) |=| MK MG MK +ADG 0 |[AeO) | (49)
A’Cree’ITZ(e) 0 O 7\.1,.199\4]55 AY,,,'"(G)

According to equation (4.9), elastic stress increments can be computed in any point
along the centreline of the ITZ. Nevertheless — to avoid excessive computations
later on — the number of points along the centreline of the ITZ is limited to 12 (see
figure 4.14). Due to the centre-symmetry of the RVE and its boundary conditions,
this limits the directions 6; to be considered to 6 (i = 1,...,6). It is assumed that this
discretization of the RVE results in sufficiently accurate results.
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To avoid any dependency of the results on the orientation of the RVE, the angle 0,
(with respect to the global y-axis) is chosen differently for every finite element in
the structure to be analysed. In fact, a random distribution is applied in the range
(0...m/6). Correspondingly, the directions of the remaining ITZs are given by

9;=e;+(i—1)§ (i=2,...6)

Figure 4.14. Discretization of RVE into 12 parts.

According to the proposed discretization into 6 directions, equation (4.9) turns into

8o @)]| [ME+NME  NE-NMG 0 T as"@)
Ac,"™(0)) | = MK -NaMIG MK + MG 0 Ae,"(8))
A, (0]) 0 0 KiekoG || Av,"(8))

(i=1,...6)
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4.3.5 Treatment of non-linear behaviour in the ITZ

The trial stress state ¢ */"“ in each part of the ITZ — of which the location is specified

by angle 6; — is computed according to
(0] =" (O)) +Ac"(6])

When this trial stress state violates a certain cracking criterion, the stress state is

corrected to a final stress state "/ in that particular part of the ITZ.

c"™(0;)=c""(6;)+Ac"(6})

This non-linear behaviour in parts of the ITZ leads to the local stress correction
vector Ag”z(e:) at Ry, as well as the Jocal incremental crack displacements
Au® (G;) at Ry and the local correction of the stress state Ac (0:,R3) at the outer
boundary R of pie-shaped parts of the RVE, as shown in figure 4.15.>

4 n
t‘\fz
output at R,
. Ac(6],R,)
input a’E R_0 e
Ag"™(8;)

9" output at Ry
AE"(GD

X

Figure 4.15. Pie-shaped part of the RVE.

To determine the local quantities Au (;)and Agc (6;,Rs), a method is pursued
based on similar elementary stress-strain states as considered in section 4.3.4
(macrostress approach). However, instead of imposing a macroscopic stress state
c” [c,,"’,o-,"’,t,,,"']T as a condition of constraint, a ‘displacement discontinuity’ is
introduced at the centreline Ry of the ITZ (ITZ crack). At the location of this
displacement discontinuity, the local ITZ stress correction vector Ac’™(0;) is
imposed as a static condition of constraint. The relative incremental (crack)
displacements at the centreline Ry of the ITZ are still unknown. During cracking
within the ITZ the imposed macro-strain state £” remains intact, i.e. at the outer
boundary R; zero-displacements apply as a kinematic condition of constraint.

% The overall correction of the trial stress state at the outer boundary R; (Ac”™, see figure 4.9) is determined by
averaging all Jocal stress correction vectors Ag (6;,Rs). This operation is performed in sections 4.3.7 and
4.3.38.
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Unlike the macroscopic stress state g, the combination of arbitrary local stress
correction vectors along the ITZ (9;,...,6;) generally not represents a global
uniform stress state in Cartesian coordinates. Hence, an analytical solution of the
stress/displacement field is not available. A suitable approximation of the solution
however may be found when it is hypothesized that the local *incremental crack
displacements Au® (9;) and the local stress corrections Ac (ei,R3)* at the outer
boundary of the RVE for a particular pie-shaped part with direction 6; are primarily
determined by the local stress corrections Ac'™(8;) in the ITZ of the same pie-
shaped part. In this way, analytical solutions of global *stress/displicement fields
can be used to determine the Jocal quantities Au“ (6;)and Ag(6;,R;) in each
individual pie-shaped part of the RVE.

Ac,(Ry) = Ao, ™(0))
Ao, (Ry) = Ac_em’(ei) Global stress/displacement field, which is
A, (Ry) = At,d™(6) representative for hatched (pie-shaped) area

u(Ry) = w(R) = 0

n

Figure 4.16. Global stress/displacement field representative of local
stress/displacement field at angle 6, (% of RVE is drawn).

On the basis of this hypothesis, the Jocal incremental crack displacements at Ry and
the local stress corrections at the outer boundary R; of each pie-shaped part can be
found by imposing (1) the Jocal ITZ stress correction Ac,/™(®;) as an internal
normal stress condition of constraint for the entire RVE in the direction normal to
the considered part of the ITZ (n-axis in figure 4.16) and (2) the Jocal ITZ stress
correction At,q"%(0;) as an internal shear stress condition of constraint for the entire
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RVE in the direction tangential to the considered part of the ITZ (z-axis in figure
4.16)".

The minor influence of the stress corrections along the ITZ in the rest of the RVE is
allowed for by calculating an averaged normal stress correction AG,"4(6;) in the
direction tangential to the considered part of the ITZ (z-axis in figure 4.16) and
imposing this averaged stress component as an internal normal stress condition of
constraint in #-direction. In this way, the global stress/displacement field in the
(n,t,z) Cartesian coordinate system as shown in figure 4.16 is representative of the
local stress/displacement field in the pie-shaped part at angle 6;.

R, =" (R+Ry)

Figure 4.17. Average normal stress in tangential direction AGy™( 6’,*).

This leaves the calculation of the (volume) averaged normal stress correction in the
direction tangential to the considered pie-shaped part of the ITZ. In figure 4.17 the
representative stress/displacement field is considered of a pie-shaped part of the
RVE with orientation 6. In this figure non-linear ITZ behaviour occurs, apart from
the non-linear behaviour at 0}, only in one other part of the ITZ (at 0,). In this case,
the averaged normal stress correction in tangential direction at 6] is given by*

(Ac T2(0;)sin(0,—0;) — At,, "2 (0;) cos(;,— 6] )) R, sin(0;,-6))
imR,’

If non-linear behaviour occurs in an arbitrary number of parts along the ITZ (other
than the non-linear behaviour at 0,), the expression becomes

AG,(6)) =

* The hypothesis includes centre-symmetry of the non-linear behaviour in the ITZ.
* see also appendix A, section A.3.2.2

NUMERICAL MODELLING AT THE MESO LEVEL 91

(Ao, (6})sin(6; - 6) - At,s (8} ) cos(B;~ 9,‘))%&,2 sin(8}—6")
AGQ 1 ) Z 1 TEROZ

6
k=2 2

Recapitulating, a representative (global) stress/dlsplacement field is assigned to
each pie-shaped part of the RVE at angle 9 (i=1,...,6). This stress/dlsplacement
field is based primarily on the local ITZ stress correction Ac'™ (9,-) and secondarily
on an average of all other local ITZ stress corrections. By using the analytical
soluthl’l of this representative stress/displacement field, local crack displacements
Au (6;) at Ry and the local correction of the stress state Ac (6;,Rs) at the outer
boundary of the pie-shaped part at hand may be determined. .

As this procedure is repeated for all pie-shaped parts of the RVE (6],...,05), the
distributions of both crack displacements (at Ro) and stress corrections at the outer
boundary R; are generated along the entire circumference of the RVE.

Finally, the stress-strain state according to the representatlve static condition of
constraint [Ac, = Ac,”z(e ), Ao, = Ace”z(e ), ATy = At ITZ(G )] can be written as a
linear combination of two similar elementary stress-strain states as considered in
sectlon 4.3.4 (equation (4. 2)) for each pie—shapcd part of the RVE located at angle
9 However, the quantities P, p"sin20 and p" c0s26 now are not derived from the
macro-stress increments but from the ITZ stress corrections at angle 0; (compare
with equation (4.4)).

'l =1l ™@)+ 85,7 @))
[0 sin26], =1(ac,™(©0]) - A5,™(6))) i=1,...6 4.10)
[p” cos 29]i = A1, (8])

The computation of crack displacements (at R,) and outer-boundary stresses (at R3)
for these two elementary states is carried out below.

4.3.5.1 Elementary state I - Stress/displacement field

The precise location of cracking within the ITZ is not necessarily the location where
the elastic ITZ stresses are computed (R,). However, as the variation of elastic ITZ
stresses over the thickness of the ITZ is very small, the stresses at the centreline of
the ITZ are considered to be representative of the stress state within the entire ITZ.
Likewise, the problem with respect to the location of crackmg is simplified
considerably by assuming the stress correction vector Ac™ and the elasto-plastic
strains to be uniform over the thickness of the ITZ. According to this assumption
the location of cracking does not have any influence on the computation of crack
displacements and outer-boundary stresses. Accordingly, the ITZ stress correction
vector is the same at both sides of the ITZ. With these static conditions of constraint
and zero boundary displacements at the outer boundary of the RVE (Rs), the
stress/displacement fields of the RVE can be computed.
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For elementary state I, the general elastic stress/displacement field of all phases of
the RVE in cylindrical coordinates is described by equation (A.8) of appendix A.

Gr=i2+2C

’A (4.11)
O4 =——2‘+2C

r

1+v( 4
By el et B B
o= f [ 2 ( V))

1 P (4.12)
u=ﬂ(-—+2Cr(1—2v))

E r

with crack displacements:

displacement discontinuity
u° and w

w(R;)=0

Aggregate grain u(R;) =0

note:

p' as drawn acts on

the aggregate grain and
the bulk cement paste.

Figure 4.18. Conditions of constraint for elementary state 1.

Applying the following conditions of constraint solves the constants of integration
of the stress/displacement field in the aggregate grain

Gr (Rl)zp F
o,(0)%e
From this it follows that 4=0 and C= %p', which results in the following

expressions for the normal strain in tangential direction and the normal
displacement at R;
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1+v
g, (R)= 7“159,11’ ! (A’Iw,l =z (1- 2")]
agg
1+v
u(R)= }\'Iu,lpl [7‘11:,1 = E (1 - ZV)le
agg

Applying the following conditions of constraint solves the constants of integration
of the stress/displacement field in the bulk cement paste

Gr(RZ)z pI
”(R3)= 0
RR(1-2v) R}

Le————— p'

A= =
) R’(1-2v)+R,

= P
R(1-2v)+R,’
For elementary state I, this results in the following expressions for the outer-
boundary normal stress, the normal strain in tangential direction at R, and the

normal displacement at R,

2R, (1-v)
Ry)=%op' g o, =Ha W=V
O'r( 3) o P or R32(1—2V)+R22J
1+v (1—2v)(R 4_R 2)
R =}\‘1 ' ;\.[ = 2 3
gy(R))=NX,D 0,2 E,. ( R32 (1—2V)+R22
2 b7
u(RZ):}\,Iu,sz 7\'['"2 _ 1+V R2(12—2V)(R2 _R23 )
E.( R (l——2v)+ R,

The ITZ stresses and strains are assumed to be uniform over the ITZ. This is an
approximation, so the equations (4.11) and (4.12) do not apply here. However, the
(uniform) normal radial strain and the normal tangential stress/strain in the ITZ can
be computed using the following simplified conditions of constraint

1 1
Sem = E(Se (Rl ) + &g (Rz ))= }Jeepl (7‘-159 = 5(7“126.1 *+ ;“159-2 ))

o, =p'

One additional condition of constraint is required to complete the boundary value
problem. This condition of constraint depends on whether a plastic normal strain
component in tangential direction is present or not. When no plastic normal strain
component exists, the elastic normal strain component equals the total normal strain

component in tangential direction.

p.TZ JITZ 1z
€ =0->¢g, " "=¢,
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Applying the equations of Hooke’s law for plane strain (Appendix A: equation
(A7)) yields for this case

8 172=)\'1 p[ }\'1 _ 1 (1+V)(1—2V)_VX1
r er er 1_ v E”z €0
I
0_0172 = }\.Ioepl }“]ce = -—1 _1 - (—E{Ti}:’w + VJJ

With zero g¢”/%, the crack displacements are given by

u=u(Ry) -u(R) -2, (R, ~R)=N.p' | N, =2, N, A, (R, —RI))

WL‘I'= O

When a plastic normal strain component in tangential direction is present, the
(given) normal stress in tangential direction is imposed as a condition of constraint.

pITZ IZ » 3
gy "#20 > o, " isgiven

Applying Hooke’s law in this case yields

u‘" = (A'Iu - )\'lce)"u,ae )pl + ;\’u,aecenz [)‘u,ce = -—_V('M(RZ . Rl ))
E]TZ
gy = (_)\‘106}\'59,0'9 )P[+ xee,oeceﬂz (}\'50,09 =MJ
EITZ
wcr= 0

4.3.5.2 Elementary state II - Stress/displacement field

For elementary state II the general elastic stress field of all phases of the RVE in
cylindrical coordinates is described by equation (A.14) of appendix A.

c, = (—ZB—g—fgjsinZG
o

O, = (lZAr2 +2B+ g)sin 26
F

T = (— 64r* -2B +—6r—4C+i—ZD)cos29
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The displacement field is described by equation (A.15) of appendix A.
(1+v)sin 20 2C | M)

= 3

(— 4vAr® —2Br +
¥ r

1+ v)cos 26 2C (2-4v)D
w=(_+—vi-59——(-614r3(1—§v)—23r—r—3+——7-—-

The conditions of constraint for this loading case are indicated in figure 4.19.

R,

displacement discontinuity
with crack displacements:
uc and wer

6,(R)) = 6,(R,) = p"sin20
T,0(R;) = T,4(R;,) = p 0520

W) =0
u(R) =0

note:

p"as drawn acts on

the aggregate grain and
the bulk cement paste.

Figure 4.19. Conditions of constraint for elementary state I11.

Applying the following conditions of constraint solves the constants of integra?ion
of the equations describing the stress and displacement field of the aggregate grain

o, (R, )=p" sin20
t,0(R, )= p" cos26
o, (0) # 00
7,4(0)= oo

From this it follows that A=C=D=0 and B= —%p", which results in the
following expressions for the displacements and the normal strain in tangential

direction at R,
(}JI _ (1 +V)R1)
ul —
E

agg

u(R)=2% p"sin20
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1+V)R
w(R,) =A%, p" cos26 s = ———( )R,
Eagg
u I I &= (1 +=V
gg(R) =Xy, p" sin20 Kooy = )
Eagg

The conditions of constraint for the bulk cement paste are
c,(R,)=p"sin26
7,4(R,) = p" cos20
u(R3)= w(R3 ) =0

—¥ A = wp” B =
R, a,
oy = (R, + R,*(3-4v))R,”
o o RHR(3-4v)

1

a’o
o, = 3R22R32(R32_R22)+0L (3—4v)£
2 ao 1 R32

o, =0,-3+4q,

This yields the following expressions for the outer-boundary stresses and the
displacements and normal strain in tangential direction at R,

% 2
c,(R,)=2" p"sin20 i _9% 3R . 40L1R22
(X,3 a3R3 G3R3
2 4 5
T,4(R,)=A" p" cos20 B =M+&+ 3R, . _20‘sz2
ok, oy, aR R,
u(R,) =2, p” sin 20 NI - 1+v( o, +1-4v—4a,(1-2v) %,
E e o,

w(R,)) =M\, p" cos20 ;L1y1”=1+v o, -
’ ' Ebulk

=

| Ly [—a3+ 4(l—v)(3—2a,)D

Ey O

gg(R;) =N, p" 5in20
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The elastic stress-strain field of the ITZ (uniform over r) is given by

o-r”zz p” Sin 26
1, =p" c0s20

v, =N/ p" cos20

1+v
}L”=
-5

senz = %(89 (Rl) ek, )J = NP 5in20 (7"1819 = %(7\‘1819,1 + o2 )j

In case no plastic normal strain component in tangential direction is present

(gee"TZ = g7%), applying Hooke’s law for plane strain yields

g ™ =\ b7 5in 20 A — 1 (([1+v)(1- ZV)_ vl
r er er 1—v E”Z €0

A = 1 (Ephg o
o 1-vl 1+v

With zero &g o TZ, the expressions for the crack displacements are

u” = u(Ry)-u(R)-¢," (R, - R,)

o, =Nl p" sin26

3 psin20 (=32, -8, -2 (8, - )
w=wR,) - wR)—v,s  (R,—R,)
AT o520 (x N N (R, - R, ))

When a plastic normal strain component in tangential direction is present, the
normal stress in tangential direction oy~ is imposed as a condition of constraint.
Application of Hooke’s law for plane strain gives

i — (?\.’lf - lﬁekm‘, )p” sin 20 + 7»“'090'9”2
80" = (- ATk g 00 )" SIN 20+ A g o5y ™

w”=\! p” cos 20

4.3.5.3 Stress/displacement fields for arbitrary ITZ stress correction vectors

For any angle G,f, the local stress correction vector at the outer-boundary of the RVE
[Ac, (6}, R3), At,(8;,R;)]" and the local incremental crack displacements at the
centreline R, of the ITZ [Au“(0;), Aw™(8;)]" can be computed for an arbitrary ITZ
stress correction vector [Ac,”™(8;), At,.6" 2 (6;), AE(,’TZ(G;)]T by inserting equations
(4.10) in the stress-strain-displacement expressions of the two elementary stress-
Strain states derived in the preceding sections 4.3.5.1 and 4.3.5.2. The following
expressions for these quantities are achieved in this way.
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B I b4 I Al
AG, (O, Ry) =| 2ot Rer | m(gr) 1 [ X P | 77 gy
r r i [¢] i
at R 2 2 (4.13)

_ATrG (e:’ R3) = XI: ATrGIIZ(e:)

In case no plastic normal strain component in tangential direction is present:

}\‘1 e 7\‘11

I b/
A (8)) = (M]Ac,’”(e: )+ [—]Aae’”(e:)
2 2 (4.14)

in ITZ| Aw”(0;) = M At,,"(0))

I i T _ 7
Ac,(0)) = [-)%@JAO'THZ(BI) + (%JAEQ’”(G:) (4.15)

Acem (0;)=local ITZ normal stress correction in tangential direction
AES‘GHZ (6;)=global (averaged) ITZ normal stress correction in tangential direction

In case a plastic normal strain component in tangential direction is present, the local
normal stress correction in tangential direction Aoy %(8;) is taken as an additional
condition of constraint. The expressions then become

I /g I /4
A (6) = [xu ;x,, Mg+ xm] Ao (@) +
2
I _All ol (4.16)
+(}‘" S et xu,ceJAae’”w:) e 80, (6))

in ITZ| Aw™(8]) = A2 Az, (8])

1 b/
Ko@) =[—ﬁ%xwﬁe]m/”(e:) ‘

(4.17)

Ao =22 — HZ,p* ITZ
+ Ty Meboe AG, °(6;) + Apeelo, (O,)

4.3.6 Constitutive model for ITZ non-linear behaviour

In section 4.3.5 an ITZ stress correction vector Ac’™(6;) is introduced which is
added to the ‘trial’ stress state o*/"4(6,) in case this trial stress state violates a
certain cracking criterion. Based on this ITZ stress correction vector a framework is
expounded that establishes linear relationships between, on the one hand, the local
ITZ stress correction vector and, on the other hand, the local outer-boundary stress
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correction and the local incremental crack displacements at the centreline of the ITZ
at angle 9:.

In this section a constitutive model is presented that providgs the local ITZ stress
correction vector in an arbitrary part of the ITZ at angle 6;, for several types of
cracking in the ITZ. In chapter 3 is outlined that the macroscopic observed
mechanical features at stage II of concrete in multiaxial compression can be
explained by isolated crack formation in the ITZ, such as (microscopic) pore
collapse possibly in combination with mesoscopic mode II or mode I cracking along
the ITZ. These types of cracking all are incorporated in this constitutive model for
ITZ non-linear material behaviour.

The constitutive model is formulated according to the principles of classical elasto-
plasticity. If the elastic stress state in the ITZ falls outside the stress-state bounding
surface, “yielding” is detected and the elastic (trial) stress state is put back onto the
bounding surface. Expansion and/or shrinkage of the bounding surface is governed
by the introduction of internal state parameters.

As the constitutive model is incorporated in the explicit solution procedure of the
computer code UDEC, return mapping of the trial stress state onto the bounding
surface may also occur explicitly, i.e. the assumption is made that the internal state
parameters remain constant during the entire time step and are only updated at the
beginning of each time step. Consequently, the shape and position of the stress-state
bounding surface remains unaltered during one small time step.

4.3.6.1 Mesoscopic mode I and mode II cracking along the ITZ

Mesoscopic mode I and mode II cracking along the ITZ are captured by bounding
the ITZ normal stresses in radial direction (c,) and the shear stresses in tangential
direction (1,¢) by a linear Mohr-Coulomb type bounding surface (see figure 4.20),
allowing mesoscopic interfacial cracking along the tangential 0"-direction of the
ITZ. The stress-state bounding surface is determined by two parameters, the friction
angle ¢ and the tensile strength f;.

Tensile (linear) softening is incorporated in the model by introducing a dependency
between the parameter f; and the loading history through the internal state parameter
K;. The friction angle ¢ probably also depends on the loading history. Experimental
observations by Alexander'®”' show that at first slip the friction angle increases to
some extent and decreases to a stationary level as slip proceeds. The observed
variation of ¢ however is small and, therefore, will have only a minor influence on
the global behaviour of the RVE. As this influence is small and the model only aims
at reproducing the most salient mechanical behaviour, the potential dependency of ¢
on the loading history is disregarded.

Mathematically, the stress-state bounding surface for mesoscopic mode I and mode
I cracking along the ITZ is expressed as

o™ %)= ||~ (£.0) ~ 0, Jtan =0




100 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION — NUMERICAL MODELLING

The internal state parameter k; depends on the incremental crack opening Au and

crack sliding Aw™ displacements by

Ak, = \/CSu”’)2+ (Aw")2

ITZ
re

) : N

c,,u

Trea w

f’fu
T 4

ft‘ (Kl,max) f; ,-I,,i

S GrlIZ

Figure 4.20. Mohr-Coulomb stress-state bounding surface with tensile softening.

mode IT
G178} crack sliding
“ JIZ,
Agnz(e’:) |Tre
MT(E)) T
0,ITZ( "
o6 mixed mode
o]'?oplo crack opening/sliding
€ T
"ec{, b
<o,
G1%(B;) = initial stress state 2
'T4(@}) = (elastic) trial stress state / mode I
S0} = final stress state ) / crack opening
AG™™(0}) = ITZ stress correction N~ ot
),

Figure 4.21. Return mapping of the (elastic) trial stress state.
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The direction of return mapping of the trial stress state onto the bounding surface is
determined by the direction of plastic flow, i.e. the ratio between incremental crack
opening and crack sliding displacements. During mesoscopic mode I or mode II
cracking along the ITZ no irreversible (plastic) normal strain component in
tangential direction is present (89”’”2 =0), so the crack displacements are given by
equation (4.14) in section 4.3.5.3. According to this equation, there is a linear one-
to-one relation between the decrease of shear stress At,4"~ and incremental crack
sliding displacement Aw™, as well as a linear one-to-one relation between the
decrease of normal stress Ac,”’ and incremental crack opening displacement Au®".
In the compressive region (o, <0), pure mode II cracking is assumed with no
dilatancy. In the tensile region (o,””? > 0), mixed mode cracking occurs depending
on the ratio between shear and normal tensile stress. The accompanying direction of
return mapping is indicated in figure 4.21.

4.3.6.2 Pore collapse

As the thin contact layer between the aggregate grain and the rest of the ITZ (figure
3.3 in section 3.1.1) is considered to be the weakest layer of the ITZ, mesoscopic
mode I/1I cracking is likely to occur along this layer. Because this layer is also the
most porous one, compressive collapse of the pore structure of the ITZ will initiate
here also. However, when pore collapse proceeds and the porosity in this layer
decreases, the phenomenon of pore collapse will extend over the entire thickness of
the ITZ.

Microcracks involving pore collapse are not restricted to run along the tangential 6
direction of the ITZ, but may run in any direction. This phenomenon is a distributed
process and a continuum approach is therefore adopted.

It is assumed that the stress-state bounding surface of the ITZ continuum resembles
a straight Mohr-Coulomb bounding surface determined by two parameters, the
cohesion (c,. ) and the friction angle (¢,. ). When the local stress state — as indicated
by Mohr’s stress circle in figure 4.22 — violates this cracking criterion, the stress
state represented by point 4 on Mohr’s stress circle has to be put back onto the
bounding surface.

The mathematical formulation of the stress-state bounding surface for pore collapse
follows from the comparison between the radius of Mohr’s stress circle 4, and the
distance of C), perpendicular to the bounding surface as drawn in figure 4.22.

£(6™)=ry (6™) - sin 4’;:::[&‘ vy (glrz)] -0
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Figure 4.22. Mohr’s stress circle touching bounding surface for pore collapse.

As stated before, compressive collapse of the pore structure of the ITZ initiates in
the thin, most porous, contact layer between the aggregate grain and the rest of the
ITZ. When pore collapse proceeds, this type of failure will extend to the — less
porous and hence stronger — outer layers of the ITZ. This implies that the resistance
to subsequent pore collapse will increase during the process of pore collapse until
the porosity has decreased to such a level that further pore collapse does not occur
anymore. This happens in the present model when the plastic volumetric
compaction k, reaches a critical value K max. Beyond this critical level, the stress
state in the ITZ is no longer bounded by a bounding surface for pore collapse.

The strengthening effect during pore collapse may be allowed for by introducing
cohesive and/or frictional strengthening, i.e. introducing a dependency between the
parameters of the Mohr-Coulomb bounding surface, c,. and/or ¢, and the plastic
volumetric compaction ;. Such a strengthening law cannot be derived
unambiguously, since the only obvious requirement for this law is that c,. and/or ¢,
should increase during pore collapse. An appropriate strengthening law may
however be obtained by comparing model simulations at stage II with
(macroscopic) test results. In this way, satisfactory agreement with test results was
achieved applying a strengthening law including only cohesive strengthening
according to the following relationship:

K,

cpc (KZ) = cpc,ini + (Cpc,end - cpc,ini) 4 K
2,max

K, max = Plastic volumetric compaction at maximum pore closure

c = cohesion at zero pore closure

pe,ini

¢ = cohesion at maximum pore closure

pc,end
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The incremental plastic volumetric compaction is given by the sum of plastic
normal strains in the ITZ. (The expressions for Au” and Aeg”™” are given by
equation (4.16) and (4.17) in section 4.3.5.3)

Au = p.ITZ

ATZ ATZ
Ak, =Ae,P"+ Ag P = +Ag,

2 1

The final expression for the stress-state bounding surface for pore collapse is given
below and is graphically illustrated by figure 4.23.

O e

|TITZi

s o7

Figure 4.23. Expansion of bounding surface for pore collapse due to a decrease
of porosity.

The direction of return mapping of the trial stress state onto the bounding surface is
determined by the direction of plastic flow. To this end a dilatancy angle for
compressive pore collapse . is introduced. According to the classical theory of
elasto-plasticity, the relations between the principal plastic strain increments and
Yy are

Asl‘”m %(1 +siny C)
I:A83P’ITZ = AS& _% 3 g (418)
with

A p,ITZ _ v 4 3 2 & @
€ =maximum principal plastic strain increment

AS pITZ - 3§ g 3 G o, B
; =minimum principal plastic strain increment
A8, =plastic multiplier
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The principal plastic strain increments are linked to the plastic strain increments in
r- and " -direction by

ASIp,ITz= %(Asrp,nz " Asep,nz s J(Agrp,ITZ_ ASQP’ITZ )2+ (AYrep,nz)2)

Ae,P = %(As,""” 1 Aeg™™ — (86,7 = Ae P + (Ay,e""”)zj

with
Ag P = . and Ay, = .l

R, —Rl Rz -k
The expressions for As’™, Au” and Aw™ at angle 0; are given by equation (4.16)
and (4.17) in section 4.3.5.3. The (minor) influence of AG,"%, however, is not taken
into account because this stress component is calculated as an average of the stress
correction vectors along the entire ITZ. As the present constitutive law will be
applied locally for a single small part of the ITZ at a certain angle 0;, the value of
AG,™ is not known a priori. After application of the constitutive law for all parts of
the ITZ, the influence of AG¢ T however will be allowed for (section 4.3.7).
Disregarding the influence of AG,""%, the plastic strain increments in r- and 0'-
direction are linked to the local ITZ stress corrections by

A‘?'rp,nz }\‘er,cr }\’sr,ce 0 Acrnz
ASGPJTZ = xse,cr }“59,0'6 0 AGGHZ (419)
Ay, "™ 0 0 A, || A ™
with
b oL (M M,
TR —R 2 2
}\,1 7\111
}\'ee,crr = ——2—}\'89,09
}“ - }"u,csﬁ
gr,o0 Rz _ R1
;\’II
i Rz -Rl

In conformance with the theory of classical elasto-plasticity, the principal plastic
strain increments due to compressive pore collapse coincide with the principal ITZ
stresses, i.e. the axes of principal ITZ stresses do not rotate during return mapping.

Accordingly, a stress point (g ,0) can be indicated towards which the corrections of
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all stress points on Mohr’s stress circle do point (see figure 4.24). The components
of the stress correction vector herewith are interrelated as follows

ITZ t,ITZ
Aoy Oy —Op
e 1z 112
A’Cr() Tr(‘)

AO’,”Z ~ Grt,ITZ__ Gy
7 ATZ

A’C,el tret

Substituting these expressions into equation (4.18) results in a quadratic equation

in OR.

siny (@ —020, ) +g’ =0, 00, (4.20)

with

()“er o‘r 99 or ) rt " + (lar,ce + ;\’se,o'e )0.9””2

LITZ tITZ
( eror 5907) + (}"erce ——)\'59,69)09

= + Ry o T o Fhigon

II

= ;\‘secr+}"erce }\‘eﬁ,ce
t,ITZ
o= lyr,e
!
c1,172 |)tr(9t’nz I
ITZ
lA‘ch
TP et e
cpc(KZ)
¢pc
o112/ no rotation Ox o1
k— — oz
Ao, Ao,

Figure 4.24. Return mapping with no rotation of axes of principal stress.

Raising equation (4.20) to the square yields the following potential solutions

0,0, sin’y,, — a,a, * siny v/ Det

2 .2 2
o, Sin \upc—a3
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with
Det = (0,00, — 0,0, ) + asz(cx32 —a,’sin’ \ypc)

It appears that for physically acceptable values assigned to the elastic properties of
the RVE, the determinant Det is always positive (|| > |oy| ). In this way, two
solutions for o are generated. The correct solution for oy is that solution satisfying
equation (4.20), and in case both solutions satisfy equation (4.20), that solution
which produces the largest amount of plastic work’

AW (04)+0, s |

G, )=max
Having determined the location of o, the ‘trial’ elastic stress state can be put back
onto the stress-state bounding surface. Return mapping of stress point 4 gives

At, Ao,
Ty 0470

t,ITZ tITZ
=g A A

r

pITZ
87‘

€q

A A1A+A0Atan¢pc:cpc(ncz)—cAtancl)pc—rA

ATA _ cpc(KZ)_GA tan(bpc _TA

Ty +(6A —Og )tand)pc

Ty
with
t,ITZ tITZ ) .
GA=CM(g )'H'M(Q )Sm¢pc
_ ( t,ITZ)
T, =ryl\o cos¢pc

Finally, the ITZ stress correction vector in 7,8 -coordinates is given by

7z t,ITZ
Ac, G, —0Oj
A 2 | At, 1,ITZ
Og 7 Og —Op
I7Z 4 1,ITZ
A‘Cre Tre

By introducing the dilatancy angle for pore collapse y,., an additional material
parameter is introduced that may influence the strengthening (or softening)
behaviour of the RVE loaded in multiaxial compression. This becomes clear when
compressive pore collapse is considered upon loading consisting of imposed
deformations in radial and tangential direction, e.g. a (compressive) loading path6
with g9 = -0.1¢,. Such a loading path will induce strengthening behaviour when the
ratio between the plastic strain in 6'-direction and the plastic strain in r-direction
g¢’/e? is more (positive) than —0.1. On the other hand, softening occurs when the
ratio is less than —0.1. Evidently, for each loading path of imposed deformations a
critical value y,,;; can be indicated upon which the material behaviour changes from
strengthening to softening. This is illustrated in figure 4.25.

® The plastic work in shear is equal for both solutions of o¢
¢ In this example Poisson’s ratio is more than 0.1 (v > 0.1). Hence, a loading path with g, = -0.1, is
multiaxial compressive in the elastic region (o < 0).
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Figure 4.25. Strengthening in case . > y,,; and softening in case Yo < Weri.

4.3.6.3 Mesoscopic cracking along the ITZ or microscopic pore collapse?

The stress state in the ITZ is bounded by two bounding surfaces concerning the
cracking criteria as described in the preceding sections. If the trial stress state in the
ITZ violates only one of these two failure criteria, the stress state is put back onto
that particular bounding surface. However, when the ITZ trial stress state violates
both cracking criteria, it is not evident which procedure should be pursued.

This problem is usually tackled by determining intersection point(s) of the bounding
:surfaces in stress space and defining the right bounding surface at either side of the
intersection point(s). Obviously, this procedure can only be applied when both
bounding surfaces are formulated in the same stress space. The bounding surfaces
concerning the cracking criteria as described in the preceding sections, however, are
not formulated in the same stress space. While the criterion of microscopic pore
collapse is formulated in a ‘continuum’ stress space (in which Mohr’s stress circle
resembles. the stress state in all planes with arbitrary orientation), the criterion of
mesos?oplc cracking along the ITZ is formulated in a ‘single plane’ stress space for
a specific plane running along the tangential "-direction (in which the stress state
resembles a single point).

The problem is solved when the linear Mohr-Coulomb bounding surface for pore
collapse is transferred from the ‘continuum’ stress space to the ‘single plane’ stress
:Slfac‘e (q,, Tr0). After this transfer, the normal stress component in tangential
0 -direction Op is not considered anymore, i.c. the stress vector is reduced from
three to only two components: o, and t,q. To account for the influence of o4 on the
~§hape of the bounding surface in the case of pore collapse, this stress component is
;ntrodu)ced as an additional internal state parameter in the ‘single plane’ stress space
Gy, T,p).

When the linear bounding surface for pore collapse is transferred from the

;mtlnut.lm’ stress space to the ‘single plane’ stress space (o), t,¢), the shape
flanges into an ellipse. |
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Figure 4.26. Bounding surfaces for pore collapse in the (o,, T,¢) stress-space for
several values of 64"~

The stress coordinates of the intersection point(s) I of the bounding surfaces for
mesoscopic cracking along the ITZ and microscopic pore collapse are found by

solving the following set of equations.

.fl (_G.Hza K )= 0
£ (gnz,Kz’o_enz )= 0
The potential solutions of the resulting quadratic equation in o, are
2f tan> ¢ —c,, sind,,, +/Det
2tan’ ¢ +1cos’ ¢,

mz
+

(SrH2 (‘I) = 06

with
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Det = (4c;m (c;c -f sin(])pc) - (f,' cos ¢pc)zj tan’¢ + (c;m)2
= fr(Kl)_ 0'9”Z

Tz .
Che =c,,c(|<2)cos¢_,,c—c>'e sing,,

Zero, one or two solutions exist for the point of intersection, depending on the value
of the determinant Det and the sign of t,o “(/). These potential solutions are
illustrated graphically in figure 4.27.

2 points of intersection

ersection

4 J . o points of intersection

.(0&

le

<

no points of intersection

Figure 4.27. Potential intersection points of stress-state bounding surfaces.

Depending on the ‘trial’ stress state o*/’“ and the solution of the intersection

pomt(s)_, the diagram displayed in figure 4.28 shows which cracking criterion should
bg applle.d. This procedure might not be very accurate for ‘trial” stress states in the
direct rluIaTlZghbourhood of the point of intersection. In those cases, the final stress
State g might fall outside the stress-state bounding surface that was not taken
nto account. However, as this error will be corrected during the next time step and
ihe time steps are very small, the accuracy of the presented procedure suffices.
%Gen'erally Jepe <[t <fipe> SO mesoscopic cracking along the ITZ prevails in the
'ns1le .and _low compressive regime, while microscopic pore collapse is
r.redoqnnant in the high compressive regime. This results in an overall stress-state
bounding surface as depicted in figure 4.29.
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» f, : mesoscopic cracking along the ITZ

\

no

o < g!™(1,) J

no yes

Det<0 |—2—
no

o4 < g/™(I,)

no
yes
[ o1z > o-rlzz(lz)J_—__.
no

> f, - microscopic pore collapse

\ 4

yes

Notes:
I, : potential solution with subtraction of VDet
L, : potential solution with addition of VDet

Figure 4.28. Flow chart for the determination of the ‘true’ cracking criterion.
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Figure 4.29. Overall stress-state bounding surface.

4.3.6.4 Crack closure

During an unloading/reloading cycle in a multiaxial compression test, potential
crack closure of open mode I cracks loaded in compression is essential. Craqk
modelling according to the theory of classical elasto-plasticity does not capture this
phenomenon sufficiently. Therefore, the classical theory is extended allowing crack
closure without built-up of compressive forces.
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During tensile loading the (plasticy Crack Opening Displacement COD” is
recorded. When the loading reverses from tensile to compressive, the constitutive
model allows no compressive force transfer between the crack faces if the COD is
positive. Consequently, no compressive forces will arise during crack closure while
the COD decreases to zero. When the crack is fully closed (COD = 0), compressive
forces will build up again as in the classical theory of elasto-plasticity (figure 4.30).

? .
[

Figure 4.30. Crack opening/closure during load cycles in radial direction.

4.3.7 Crack interaction effects

The computation of local ITZ stress correction vectors Ac’%(8;), as explained in the
preceding section, does not include any crack interaction effects. Each local ITZ
stress correction vector at a certain angle 0; is computed assuming no plasticity in
any other part of the ITZ.

According to the equations derived in section 4.3.5.3, the incremental crack opening
displacement Au(6;) (or Ac,”"™(6;)) and — in the case of microscopic pore collapse
~ the Jocal plastic normal strain in tangential direction Agg”/™4(6;), also depend on
the averaged normal stress correction AGg 4(0;) in the tangential 6"-direction of the
considered part of the ITZ. After computation of the primary ITZ stress correction
vectors Ag_”z(ef) in all parts around the RVE, AEQITZ(G:) can be calculated for each
specific part. The influence of this averaged stress component is then allowed for by
computing additional secondary ITZ stress corrections AAG,IYZ(G:) and AAGQITZ(G:),
with this averaged stress component and the computed incremental crack
displacements (or plastic ITZ strains) as conditions of constraint. In case of
mesoscopic cracking along the ITZ, these secondary 1TZ stress corrections are

“The COD .equals exclusively the radial crack displacement #” during mesoscopic mode I cracking along the
ITZ. Potential (negative) radial crack displacement during pore collapse is not taken into account.
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Iz * 7“1,, —}\'Z — ITZ ®
Ao, (8,) = 37 ur |ASs ®))
f (4.21)

1 i I _an
AAGQITZ(GZ) = (ﬁiz_}”@_‘}AAcrlzz(e:) + (7\.59 . Aso ]AB—GITZ(O:)

In case of microscopic pore collapse, the interrelation between the plastic normal
strains and the primary 1TZ normal stress corrections is given by equation (4.19).
Considering (4.16) and (4.17), the interrelation between the (zero) secondary plastic
normal strain increments and the secondary 1TZ normal stress corrections becomes

AAc,™(8;
O )\‘ercr }\'ercﬁ }\‘arEG o-rITZ( i)
=5 ’ 7 || Ado, 7(8;)
O ;\‘ee,cr )\'80,0'6 }\'89,39 AEBITZ (9: )
with
I gl I _ gl
}\.sr G ! x” }“u ik }LUG }\'09 )\‘u pry
TR, -R 2 2 :
}\ll _}\‘II
}“se,ae = _;‘92—097"39,59

Solving this set of equations yields identical expressions for the secondary 1TZ
stress corrections as given in equation (4.21). Obviously, in case of zero secondary
plastic strains — i.e. elastic material behaviour — no distinction exists between the
two crack mechanisms.

Crack interaction effects also exist for the shear component of the ITZ stress
correction vectors. Generally, the corrected ITZ shear stresses are not in
equilibrium. In fact, a state of equilibrium is only reached if the addition of all shear
stress correction vectors equals zero (figure 4.31).

Y Ac,™())

At,¢™(8))

6
Moment equilibrium: Ry Y, Atre’”(ei) =0
i=1 I

|

Figure 4.31. Moment equilibrium in case of non-linear ITZ behaviour.
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In case the primary shear stress correction vectors At,"(8;) are not in equilibrium,
the core of the RVE rotates within the outer layer of the RVE until a state of
equilibrium is reached. As a result, a secondary ITZ shear stress correction AAt,,

equal for all parts of the ITZ, is computed
Tz 1 & ITZ (A*
M, = _EZATW ((-),. )
i=1

Finally, the final stress state is obtained — for each part of the ITZ at angle 9: — after
applying both primary and secondary stress corrections

a"(0]) =" (8]) + Ac"(8]) + A (6])

If cracking in the ITZ occurs, the primary ITZ stress corrections put the ‘trial’ stress
state back onto the appropriate bounding surface. The addition of the secondary 1TZ
stress corrections causes the final ITZ stress state to deviate from this bounding
surface. The algorithm therefore remains stable only when the secondary stress
corrections remain small compared to the primary stress corrections. The numerical
simulations with the model (section 4.4) show that this is indeed the case.

4.3.8 Correction of trial macro stress state

For each part of the ITZ at a specific angle 6;, the local stress corrections at the
outer boundary of the RVE are determined with equation (4.13). Including the
secondary stress corrections in the ITZs they now read

I b4 I Al
80,(6],R,) = (%J (80,0} + A4, ™(0)))+ [%}@’”(e:)

At (0], R,) =1 (Ac,,™(0]) + AT, (0)))

Based on these local stress corrections at the outer boundary of the RVE, the
correction of the trial macro-stress vector is determined by computing the volume
average of these local stresses according to a rotated Cartesian (x’,y’,z)-coordinate
system (with the y’-axis aligned with 9; =0, — n/12). This procedure is indicated
in figure 4.32.

Further evaluation of the expressions for the (x’,y’,z) macro-stress corrections, as
shown in figure 4.32, results in

Ac." = %g(Acr (6, By )sinz(E); - GW) +At, (6, ,R3)sin(9: -6, )cos(G;.r ~0 )J

Ac,” = %Zﬁ:[m, (6;,R,)cos?(0; - 6",.) ~ At,, (67, R,)sin(6; — 0", )cos(6; —63,, )j
i=1

" =13 [Ac,(e:,& Jsin(6; -6, )cos(6; —6;,,) — Ac,, 6] , R, Jsin(6] —e:y-)j

i=1
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At " = %i(Acr (6,' R, )sin(e,f -0, )cos(e: - G:y) +At, (6,' " R3)cosz(6: -9, ))

i=1

N . . c0s(6i-6))
Ac’= Ac,(0;,R,) + AT,(6,,R;) Sin(9;— 9;9,)
cos(6;—6;,)

—3— A 9:-,R
Sin(ei— eyy) tre( 3)

t4,. = 2R3tan(%) sin(0]—6},) R;sin(6)—6},)

A‘txg?. = Ac,(6},R,)

.§61 A,=6Ry tan(%)

sin(0;— 9;/) w
cos(6—8,)

+ At,4(6;,R,)

g M L Ac)= Ac,(0],R,) — At,4(6}.R;)

sin(0;—6,,)
cos(6/—6,)

TR A= 2Rjan()cos8-6)) Reos§-6))

At = Ac,(6;,R,)

note: A, = area of part i

Figure 4.32. Determination of macro-stress corrections in the rotated (x’,y’,z)-
coordinate system.
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In appendix B is outlined that when the ITZ shear stress corrections (and
consequently the outer boundary shear stress corrections) are in moment

equilibrium, the volume averaged macroscopic shear stresses At,.," and At,,." are
equal to each other. As the ITZ shear corrections are forced to be in equilibrium
from the addition of the secondary ITZ shear stress corrections, the above
macroscopic shear stresses are identical.

m s m
A'cx,y, —ATyvxv

Finally, the results obtained in the rotated (x’y’z)-coordinate system have to be
rotated back to the global (x,y,z)-coordinate system using the transformation law

m 2n* < 2n* * . * m
Ac, cos’0 sin“0 —2cos0,,sinb . || Ac,.

m «2Nn* 2n* * . * m
Ac,” |= sin“0,,. cos 0, 2co0s0,,sin0 , || Ao,

m * . * * . * 2 * . 2 * m
At,, cos0,,.sind —cos6,,sinf cos“0,,. —sin“0 . || At,.,

Adding these macro-stress corrections to the trial macro-stress state, the new macro-
stress state according to the non-rotated (x,y,z)-coordinate system is given by

1,m tm m
o, c, Ac,

ILm | _ t,m m
o,” |=|o,” |+| Ao,

1,m tm m
Ty Ty At,,

4.4 Performance of the numerical model

The performance of the numerical model at stage I and II is illustrated by
simulations of a series of multiaxial plane-strain compression tests performed by
Van Geel '**® at Eindhoven University of Technology. These proportional tests, with
5 %, 10 %, 15 %, 25 % and 50% ratio between lateral and axial boundary forces,
are performed on cubic specimens of 100x100x100 mm’. The test set-up is
displayed in figure 4.33.

The tests are carried out with uniform boundary displacement of the loading platens.
To reduce frictional forces at the boundary of the concrete specimen, the
experiments of Van Geel are carried out with teflon layers between the loading
platens and the specimen. These teflon layers are modelled by adding interface
elements with low frictional restraint (tang = 0.012) [Vonk '***] between the loading
platens and the specimen.
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l o3 (us)
steel loading platen f teflon layer

<+ o, ()

Figure 4.33. Test set-up.

The mesoscopic mesh for the concrete specimen is generated according to the
procedure explained in section 4.2. Mesh generation is carried out in such a way
that the grain pattern of a cross-section of the concrete cubes used by Van Geel is
reproduced approximately, at least for the largest fraction of aggregate grains. The
weight percentages of the concrete constituents, used by Van Geel, are listed in
table 4.1.

Table 4.1. Weight percentages of concrete constituents [Van Geel "** A

Constituents Normal Strength Concrete
PC Cement Type B 15.8%
Max. aggregate size 8 mm

(Rounded river gravel)

Size distribution 5-8 mm 17.0 %
3-5 mm 5.7%

2-4 mm 15.3 %

1-2 mm 11.5%

0.5-1 mm 11.5%

0.2-0.63 mm 9.8%

quartz sand 53%

Water 8.1 %
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The total mass of the (wet) concrete cube is about 2.5 kg. The aggregate mass
percentage is 76.1 %. This means that the total mass of the aggregate is about 1.9
kg. With a density of the aggregates equal to 2800 kg/m® (estimate), the total
volume of the aggregate fraction equals: 1.9/2800 ~ 0.00068 m”.

To come to a representative cross section of a concrete cube with a certain grain
distribution, a method is adopted presented by Walraven '**'%8!, The method
computes the total area of an arbitrary fraction of circular-shaped grains in a
representative cross section out of a sphere-shaped grain distribution according to
the Fuller grading-curve. As the grain distribution of Van Geel resembles the Fuller
grading-curve quite well [Bongers 1997, 199821 " application of the method is permitted
here. According to this method, the probability that an arbitrary point in a
representative cross section is located within an intersection circle with diameter
D < Dy is given by

4
1.072 Dy —0.0535( D, ] = e
D D

max

6 8 10
.—00115 20| —0.0045 22| ~0.0025 2
Dmax Dmax Dmax

p, =ratio between the total volume of the aggregates and the concrete volume

max

PC(D<D0)=Pk

with

D_, =diameter of the largest aggregate grain

Application of this function, with p;=0.68 and D= 8 mm., results in the grain
distribution of a representative cross section as shown in table 4.2.

Table 4.2. Grain distribution of a representative cross section of the concrete
cubes casted by Van Geel.

Dy | Dy, pre. P, P, Fraction (Dy, prev < D < Dy) in a cross
_[mm] | [mm] | (D<Dy) | (Doprev<D <Dy) | section of 100 x 100 mm’ [mm’]

2 0 0.3643 0.3643 3643 (0.3643 x 100 x 100)

3 2 0.4457 0.0814 814  (0.0814 x 100 x 100)

5 3 0.5702 0.1245 1245 (0.1245 x 100 x 100)

8 5 0.6800 0.1098 1098 (0.1098 x 100 x 100)

The grain distribution in the generated mesh is listed in table 4.3. Comparison of the
grain distributions of both the generated mesh and the representative cross section
of the tested concrete cubes learns that most of the largest fraction is incorporated
explicitly in the generated mesh. The remaining part of the aggregate grains will be

Ef;ccounted for implicitly by choosing properly the RVE-dimensions of the finest
action.
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Table 4.3. Area of grain fractions in the generated mesh.

computed area in generated mesh | mm’ ]
Total of aggregate grains 1400
Fraction 8-16 mm 0
Fraction 5-8 mm 839
Fraction 3-5 mm 492
Fraction 2-3 mm 63
Fraction 0-2 mm 6

The RVE-dimensions of the explicit coarse aggregate grains are calculated
according to section 4.3.1. The average thickness of the ITZ around these grains and
the average thickness of the bulk cement paste layer are both estimated equal to
150 um. The total cross sectional area of the ITZ layers A7, and the bulk cement
paste layers A, around the explicit coarse aggregate grains is interrelated by

considering the average diameter of these grains
D — 839-6.5+492-4+63-2.5+6 _ 5.42 mm.
ol 1400

Average RVE-dimensions for explicit coarse aggregate grains:

R =2.71mm.
A ( tiz =150 ”-m)

R,™™ =2.86 mm.
R coarse __ 3 01 ( tbqu = 150 Hm)
3 =J. mm.

. (R (r=)
1z (R}

R coarse )2 (R coarse )2
A coarse __ 3 - 2
bulk 2
coarse
(R

The average diameter of the fine aggregate grains (mortar) is calculated by
averaging the remainder of the aggregate grain fractions.
(1098 -839)-6.5 + (1245 —492)- 4+ (814 — 63)- 2.5+ (3643 - 6)

6800-1400

2

1400 =159 mm?

1400 =168 mm”*

T fine
s =

=1.89 mm.

It is assumed that the ITZs occupy 40 % of the total volume of cement paste (see
section 3.1.1). This implies that the ITZs occupy 1280 mm® and the bulk cement
paste occupies 1920 mm® of the total cross sectional area of cement paste
(10000 — 6800 = 3200 mm?). After subtraction of the ITZ and bulk cement paste
cross sectional areas around the explicit coarse aggregate grains, the cross sectional
areas of the ITZ and bulk cement paste around the fine aggregate grains are
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A = Ay — AR =1280~-159 =1121 mm®
A = Ay — A =1920-168 = 1752 mm?

The RVE-dimensions for the fine aggregate grains (mortar) are determined by the
cross sectional areas of the separate components

X L

(=) s

With A7 = Ay — Aree . = 6800 — 1400 = 5400 mm?, this results in the following

agg
RVE-dimensions for the fine aggregate grains (mortar)

R =0.945mm.

R,” =1.038 mm.
R =1.169 mm.

(7, =93 pm)
(s =131 pm)

The thickness of the ITZ layer of the RVE (both for the coarse aggregate grains and
the mortar) may seem somewhat too large considering the statements about this
zone in section 3.1.1. However, the cross sectional thickness of this layer does not
resemble the 3-dimensional thickness of the layer perpendicular to the aggregate
grain (see figure 4.34). The current 2-dimensional RVE can be interpreted as a
representative cross section of a spherical 3-dimensional RVE. According to figure
4.34 this apparently yields a larger thickness of the ITZ layer in a 2D-configuration
than in a 3D-configuration.

t,77°: thickness of ITZ in a 2D configuration

representative cross section t,r77: thickness of ITZ in a 3D configuration

Figure 4.34. Thickness of the ITZ layer in 2D and in 3D.
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Based on the properties of the concrete mix, used by Van Geel, the dimensions of
the RVEs for the fine aggregate grains (mortar) and the explicit coarse aggregate
grains are fixed. This leaves only the determination of the material properties of the
separate phases. The material properties used in the simulations are listed in
table 4.4.

Young’s modulus of the aggregate grains and the bulk cement paste are averages
from experimental data listed in section 3.1.2.1. Poisson’s ratio and Young’s
modulus of the ITZ are determined according to an inverse modelling strategy, i.e. a
best fit of the overall elastic moduli (computed according to appendix A) with the
experimental data of Van Geel is achieved by variation of these properties.

Table 4.4. Input parameters.

Distribution of outer boundary displacements of the RVE
> macro-stress + % macro-strain
RVE-dimensions Elastic properties

Fine agg. [ mortar

Coarse aggregates
(2-8mm)

Fine agg. [ mortar

Coarse aggregates
(2-8mm)
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for a large range of lateral confinement. The capability of the model to simulate the
characteristic phenomenon of non-elastic volume compaction at stage II is also
shown in figure 4.36. The experimental data of Van Geel is reproduced quite well,
although the deviations become quite substantial for those tests with low
confinement (B =0.05, 0.10, 0.15) way before ultimate strength is reached. This
seems to indicate that the transition between stage II (volumetric contraction) and
stage I1I (volumetric dilation) develops very gradually.

Although the agreement with the experimental data of Van Geel is very close for
the axial loading diagram, the computed lateral deformations differ somewhat more
from the experimental data. The fact is that, for the low confinement tests, the
lateral deformations are slightly overestimated at initial non-linearity. This indicates
that, at this stage, mesoscopic mode I/II cracking along the ITZ (those parts with
radius Ry pointing approximately in lateral direction) is more pronounced in the
simulations than in the experiments. This corresponds with experimental
observations from Alexander "' as explained in section 4.3.6.1. According to these
observations, the friction angle ¢ for mesoscopic mode II cracking is at first slip
somewhat higher than its final stationary value. As the present model uses the final
stationary value also at first slip, an overestimation of lateral deformation will be
the result. However, as stated in section 4.3.6.1, the influence on the macroscopic
behaviour is small and is therefore not included in the numerical model.

Ri=0.945 mm. - FEoge= 70000 MPa | E,g = 65000 MPa
R>=1.038 mm. R>- Ry =0.150 mm. Erz=10000 MPa Erz=10000 MPa
R;=1.169 mm. | R3-R,=0.150mm. | Epu= 18000 MPa Epue= 18000 MPa
v=0.12 v=0.12
Mode I/II cracking along the ITZ Pore collapse in ITZ
b =25° Bpe = 0° Ka.max = 30 %
ﬁ,ini = 4 MPa Cpc,ini = 15 MPa \lfpc = -600

Kima = 0.005 mm. Cpeend = 40.5 MPa

Experimental data on the material properties for mesoscopic mode I/II cracking
along the ITZ is scarce. The friction angle ¢ =25° resembles the stationary level
after first slip reported by Alexander ' (see section 4.3.6.1). In conformity with
the remarks regarding the tensile strength of the ITZ in section 3.1.2.1, the tensile
strength f, ;,; of the ITZ is less than those values reported for the bulk cement paste.
According to results obtained by Schlangen " softening properties of the tensile
strength are assumed to be very brittle.

Regarding the phenomenon of microscopic pore collapse, there is some
experimental data available on the porosity of the ITZ layer. Based on this data (see
section 3.1.1), maximum volumetric compaction of 30 % seems a proper choice.
The remaining listed values are obtained by inverse modelling, i.e. a best fit with
the observed macroscopic behaviour at stage II of the plane strain compression tests
performed by Van Geel is achieved by variation of these material parameters for
pore collapse.

The computed results are displayed in figure 4.35, along with experimental data of
Van Geel. From these results it is clear that the model is capable of simulating
macroscopic characteristics, such as initial elastic behaviour at stage 1 and
strengthening behaviour and non-elastic volume compaction at stage II, quite well
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€=0 l ------------------------- experiment (Van Geel)
200 -
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sl " =005 "
_ AN\ 17 74
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Figure 4.35. Model simulations of a test series of concrete loaded proportionally in
multiaxial plane-strain compression.
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Figure 4.36. Non-elastic volume compaction at stage II.

Apart from these macroscopic characteristics, discussed in sections 3.2.1 and 3.2.2,
also the unloading/reloading behaviour is mentioned as a typical macroscopic
feature of concrete loaded in multiaxial compression at stage II. The performance of
the model for such loading conditions is displayed in figure 4.37.

The unloading/reloading curves in figure 4.37 are quite realistic compared to those
found by Van Mier (figure 3.14). Nevertheless, two differences may be pointed out.
First of all, the model computations indicate that if unloading would be continued to
a zero stress state, this would imply much more ‘unloading’ deformation than
displayed by the experimental curves in figure 3.14. This discrepancy can be
explained by the model assumption that potential cracking at stage II is limited to
the ITZ. Still, as stated in the preceding section, substantial deviations between the
simulations and the tests with low confinement indicate a very gradual transition
between stage II and stage III. Ergo, (limited) cracking is likely to occur also in the
bulk cement paste, long before ultimate strength is reached.

The second difference, pointed out with regard to the observed unloading/reloading
behaviour, is that initial reloading according to the model takes place with a lower
stiffness than initial reloading according to the experiment. Due to the fact that the
model does not allow any compressive force transfer between crack faces in an
open crack, open ITZ cracks are immediately closed at reloading, resulting in a
lower initial reloading stiffness. Due to the irregular shape of the crack faces of ITZ
mode I cracks, limited compressive force transfer through open cracks is likely to
occur in the experiments, thus producing an initially more steep reloading branch.
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Figure 4.37. Model simulations for cyclic and monotonic loading.

Regarding the lack of mesoscopic experimental data for the determination of the
numerical values of the input parameters for pore collapse (¢ ,Cpe,Wp) as listed in
table 4.4, a parameter study is carried out on these parameters. Figure 4.38 shows
the influence of a variation of ¢,. on the macroscopic stress-displacement curves of
three proportional tests (8 = 0.05, 0.10 and 0.15). For the simulations with ¢, = 15°,
the value of ¢y . is also adjusted just in order to obtain a close match with at least
one of the experimental tests (f = 0.05).

Figures 4.39 and 4.40 show the influence of a variation of y,. on the macroscopic
curves of the three proportional tests. For y,. = -50° (figure 4.39) the value of ¢, cna
is set equal to the value of ¢, . Accordingly, no strengthening mechanism exists
due to expansion of the pore collapse bounding surface. In this way, it is clearly
indicated that a high (less negative) value of y,. involves a too steep branch at stage
I of the axial loading diagram. On the other hand, figure 4.40 shows that for a low
value of y,. (-80°) the degree of inclination of the ascending branch at stage 1l of
the axial loading diagram becomes too low.
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As a low dilation angle v, involves a low degree of inclination of the loading
branch at stage II and a high friction angle ¢, as well as a large expansion of the
pore collapse bounding surface (Cpeend - Cpeini) involve a high degree of inclination
of the loading branch at stage Il, it is investigated whether such a combination of
material parameters also results in a good correspondence with experimental data
(like the simulations with material parameters from table 4.4). Figure 4.41 shows
the computed results for such a combination of material parameters. From these
results it appears that a high friction angle and a large expansion of the failure
surface for pore collapse mainly induce a shift of the loading branch at stage II to a
higher (more compressive) stress level. However, the inclination of the loading
branch at stage II is hardly affected.

With regard to the parameter study of the phenomenon of pore collapse, displayed
in the figures 4.38 to 4.41, it appears that the dilatancy angle y,. and the friction
angle ¢,. are dominant parameters describing the shape of the loading curves
qualitatively. Having determined the values of these parameters, the initial- and
end-values of the cohesion ¢, can be chosen so that close quantitative agreement
with experimental results is obtained.

Besides the lack of mesoscopic experimental data for the numerical values of the
input parameters for pore collapse, there is also no mesoscopic experimental data
about the true distribution of displacements at the outer boundary of the RVE.
Therefore, a parameter study is also carried out for this parameter. The influence of
this parameter is best demonstrated by cyclic test simulations. Figure 4.42 shows
the results of a simulation of a proportional (§ =0.15) cyclic test for a distribution
of outer-boundary displacements according to the macro-stress approach, whereas
figure 4.43 shows the results for a ratio of 75% macro-strain displacements and
25% macro-stress displacements. Simulations with outer-boundary displacements
distributed completely according to the macro-strain approach did not produce
stable material behaviour, and therefore, are omitted from this analysis.

The most striking difference between figures 4.42 and 4.43 concerns the model
behaviour at the final stage of unloading. It turns out that for ‘100% macrostress’
boundary displacements, the transition point between the initial — high stiffness —
branch of the unloading curve and the final — low stiffness — branch of the
unloading curve is located at a higher (more compressive) stress level than for
¢25% macrostress/ 75% macrostrain’ boundary displacements. Furthermore, the
lateral deformations in the latter case increase exorbitantly at final unloading, a
phenomenon which is not observed in the experiments of Van Mier. Based on these
distinct features at the final stage of unloading, comparison between experimental
data and computed model simulations indicates that the distribution of outer-
boundary displacements according to table 4.4 is a proper choice. A remark must be
made, however, that the model assumes the same distribution of outer-boundary
displacements throughout the entire simulation. Although this is a proper
assumption in case of linear elastic material behaviour, it is questionable whether it
still holds when the material behaviour of the RVE becomes elasto-plastic. As there
is no data available on this aspect, further research on this topic is required.
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Figure 4.43. Variation of RVE boundary displacements (2).
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CHAPTER 5

NUMERICAL MODELLING OF STAGE III AND IV
BEHAVIOUR

In chapter 3, stage III is characterised by reaching the ultimate strength and the
onset of mesoscopic cracking, i.e. crack propagation is taking place in the bulk
cement paste starting from the ITZ cracks originated at stage II. At stage IV, these
mesoscopic cracks localise into large macroscopic cracks, forming a failure pattern.
In section 4.3, a clear distinction is drawn between micro-cracking at stage II and
meso/macro-cracking at stage III and IV. This distinction is based on the eminent
difference in the scale of heterogeneity involved. Whereas the scale of
heterogeneity for micro-cracking is determined by the size of the aggregate grains,
the scale of heterogeneity for meso- or macro-cracking is determined by the size of
the cracks, running along a few (meso-cracking) or many (macro-cracking)
aggregate grains. This implies that for meso- and macro-cracking the RVE of figure
4.8 is not applicable anymore.

5.1 RVE for meso- and macro-cracking

As it is stated in section 3.2.3, a strengthening mechanism exists during meso-
cracking at stage III as a result of a redistribution of stresses along the curved crack.
Growth of a newly formed mesoscopic crack around an ‘interlocking’ aggregate
grain will in this case only occur at a higher stress-level. Yet, before reaching this
higher stress-level, additional meso-cracking will take place parallel to the first
mesoscopic crack until also these cracks meet an ‘interlocking’ aggregate grain. In
brief, due to the strengthening mechanism induced by aggregate interlock, a
distributed pattern of parallel mesoscopic cracks will arise at stage III of concrete
loaded in multiaxial compression.

At stage IV, the stresses at the interlocked aggregate grains have reached a critical
level. At this level, mesoscopic cracks will grow either around the aggregate grains
or through the aggregate grains. In either case the capability of transferring stresses
across the crack will decrease during further crack growth. During this soffening
process the mesoscopic cracks will localise into large macroscopic cracks forming a
failure pattern.

For a distributed pattern of parallel mesoscopic cracks a unit cell may be defined as
indicated in figure 5.1.b. The crack spacing d between the mesoscopic cracks
determines the size of the unit cell. In this case, the crack spacing is equal to the
(average) size of the aggregate grains. For a localised macroscopic crack, a similar
unit cell may be defined as indicated in figure 5.1.c. In this case the crack
displacements of only one localised crack are, according to the smeared cracking
approach, uniformly distributed over the width of the finite element. Consequently,
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taking the thickness d of the unit cell for macroscopic cracking equal to the width of
the finite element, is an appropriate choice.

finite element strengthening softening
mesoscopic cracking macroscopic cracking
(@ (b ©

Figure 5.1. Unit cell for (b) mesoscopic and (c) macroscopic cracking.

5.2 Incorporation in main calculation scheme

The RVE-calculations for stage III and IV behaviour are incorporated in the main
calculation scheme of figure 4.9. This results in the extended calculation scheme as
displayed in figure 5.2. _
Within the second RVE-concept (RVE, for stage III and IV behaviour), the
heterogeneous concrete material around the potential meso/macro-crack is
homogenised into an isotropic material displaying linear elastic behaviour. The
elastic moduli for such a homogenised material are given by K and G in section
4.3.3. With these effective elastic moduli and the macro-strain increments (provided
by UDEC), the RVE, elastic macro-stress increments Ac“” are determined
according to equation (4.1) in section 4.3.3 and added to the initial stress state o™,
The stress state along the potential crack corresponds to the stress state given by a
point on Mohr’s stress circle in that particular direction (see section 1.2.1). This
elastic stress state is treated as a trial stress state' and it is checked whether this #rial
stress state violates a certain cracking criterion. If so, cracking occurs and a stress
correction vector Ag is added to the trial stress state, producing a new — corrected —
stress state that does not violate the cracking criterion anymore.

Based on this stress correction vector, the plastic part of the macro-strain increments
is computed (smeared crack displacements) and subtracted from the total macro-

! Generally, only macroscopic stress/strain fields are considered in stage III/TV RVE, computations.
Therefore, the index ™ (to indicate macroscopic stress/strain fields) is omitted. In the occasional event of
local stress/strain states, the index "° will be added.
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strain increments. Finally, this results in a new vector of elastic macro-strain
increments, which, together with the unaltered initial macro-stress state _c_r_o”", serves
as input for the stage I/II RVE; calculations.

According to the calculation scheme of figure 5.2, the occurrence of meso/macro-
cracking (RVE,) is checked before the occurrence of micro-cracking (RVE,). In this
way, potential meso/macro-cracking — which produces lower material strength than
micro-cracking — will always prevail. This agrees with the fact that, in case of
several potential failure mechanisms, nature always chooses for the one having the
lowest strength. Nevertheless, the sequence of checking will be of minor importance
in the case of computations with very small loading steps. In fact, reversing the
checking sequence for various UDEC-calculations with the present model, did not
have any noticeable effect on the results.

Input

Initial macro-stresses:
o Om o Ot » Om
g
\ macro-strain increments:
Ag” @sym,-,:Ayxyw

Trial
macro-stress state
ohm= O-O.m + Ao-e,m

Correction of
trial macro-stress state
Ao

Plastic part of
macro-strain increments
Ag?

macro-strain increments
(AE™),e, = DA™ — AgP

new

. macro-stresses:
1Lm im 1,
glrairx In

Figure 5.2. Main calculation scheme extended with RVE ) calculations.
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5.3 Crack initiation criterion

For a concrete material, a mesoscopic or macroscopic mode II crack may arise
according to three basic mesoscopic mechanisms (section 3.2.4): overriding,
aggregate fracture and cement paste crushing (figure 5.3). Overriding involves the
initiation of a curved crack running solely through the cement paste, while
aggregate fracture involves the initiation of a straight crack through both the
aggregate grains and the cement paste. In normal strength concretes, with strong
aggregates embedded in a matrix of (porous) cement paste, cement paste crushing
postpones fracture of the aggregates while still a straight crack (with zero crack
dilatancy) is initiated. As both aggregate fracture and cement paste crushing involve
the initiation of a straight crack, both mechanisms will be represented by only one
crack initiation criterion.

crushing

cement paste crushing

overriding aggregate fracture

Figure 5.3. Basic mesoscopic cracking mechanisms.

Whether a mesoscopic or macroscopic crack is actually initiated depends on the
global stress state in the RVE. To check this stress state upon cracking, the concept
of a stress-state bounding surface is employed. The bounding surfaces applied here
for concrete crack initiation are based on the classical Mohr-Coulomb formulation
for mode II cracking (see section 1.2.4). Appropriate bounding surfaces
representing the initiation criterion of a straight crack running through cement paste
only? as well as a straight crack incorporating also aggregate fracture and/or cement
paste crushing are given in section 5.3.1.

In normally compacted concretes, a crack — running through cement paste only —
cannot be straight, but has to curve around interlocking aggregate grains. The
curvature of such a crack can be characterised by a material property Ao, which
represents the maximum local deviation angle of the curved crack with respect to the
global crack direction. Based on this material property, a stress-state bounding
surface is derived in section 5.3.2 for initiation of a curved crack. In section 5.3.3
the individual bounding surfaces are combined to one overall bounding surface,
accounting for the initiation of cracks with an arbitrary mixture of curved cracking
through cement paste, aggregate fracture and cement paste crushing.

2 Potential cracking mechanism in concretes with a diluted distribution of aggregate grains
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5.3.1 Straight crack running through cement paste or aggregate grains

The — Mohr-Coulomb type — bounding surfaces applied for initiation of straight
cracks running through cement paste only (dilute distribution of aggregate grains)
and straight cracks in normally compacted concretes (aggregate fracture / cement

paste crushing) are displayed in figure 5.4.
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Figure 5.4. Stress-state bounding surfaces representing initiation criteria of
straight cracks. '

Each bounding surface is defined by two parameters, the friction angle ¢., and
tensile strength f, ., for cracking through cement paste and the friction angle ¢4, and
cohesion c,,, for aggregate fracture/cement paste crushing.

The friction angle of a straight crack (at the meso-level) depends on the micro-
roughness of the crack. As a straight crack through cement paste will mostly run
through the weakest zone of the cement paste, i.e. the thin contact layer between the
aggregate grain and the rest of the ITZ, the friction angle of a straight meso- or
macroscopic crack through cement paste will not deviate much from the friction
2n3gle ¢ for mesoscopic cracking along the ITZ at stage II as discussed in section

3.6.1,

Observation of cracks through the aggregate grains in the experiments of Van Geel
indicate that these cracks have very smooth surfaces, comparable with the (smooth)
outer surface of an intact aggregate grain. Taking furthermore into consideration
that the friction angle for mesoscopic cracking along the ITZ at stage II is mainly
determined by the smooth outer surface of the aggregate grain, it is acceptable to
assume that also the friction angle of a straight crack through an aggregate grain
will not deviate much from the friction angle for mesoscopic cracking along the ITZ
at stage II.
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The mechanism of cement paste crushing is essentially identical to the mechanism
of pore collapse as explained in section 4.3.6.2. Best fit with experimental test data
(section 4.4) was obtained for ¢,. =0, i.c. with no influence of confinement on the
maximum shear strength. To obtain the overall strength of the straight crack, the
crushing (cohesive) strength must be added to the strength of the straight part of the
crack through cement paste (as drawn in figure 5.3). This implies that the friction
angle is only determined by the straight part of the crack through cement paste. The
influence of potential cement paste crushing is allowed for only by the cohesion
Cage, Which is either the aggregate cohesive strength or the crushing cohesive
strength of the cement paste, whichever is the lowest.

For reasons of simplicity, small deviations between the friction angles are neglected
in the present model. Therefore, the friction angles of the crack types as discussed
above are assumed to be equal.

Oy = Duge = ¢ (stage I (5.1

5.3.2 Curved crack running through cement paste

According to figure 5.4, a straight crack runs preferably through cement paste only
instead of crossing (stronger) aggregate grains either by aggregate fracture or
cement paste crushing. At least, if interlocking aggregate grains do not prevent the
formation of such a straight crack, as in the case of normally compacted concrete. In
such concrete the crack has to curve around the interlocking aggregate grains.

(@ (b)
Figure 5.5. Deviation angle of a regularly (a) and irregularly (b) curved crack.

The curvature of the crack at the meso-level introduces an additional roughness to
the crack, which may be characterised by a maximum mesoscopic deviation angle
Ao (figure 5.5). In case of a regularly curved crack, as shown in figure 5.5.a, the
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crack is fully characterised by Aa.. Cracks in concrete, however, are highly irregular
and in that case, in addition to the maximum deviation angle Aa, also the
irregularity of the crack must be quantified to characterise the crack completely.

Slip along a regularly curved crack will only occur when the crack is fully
developed, that is when the stress state has reached the initiation criterion of a
straight crack through cement paste in the crack directions ranging from a-Aa to
o+Aa. This criterion is graphically illustrated in figure 5.6 for the initiation of a
curved mode II crack along a plane making an angle o with the minimum (most
compressive) principal stress direction. According to this procedure, a new stress-
state bounding surface may be identified representing the initiation criterion of a
regularly curved mode II crack through cement paste with a global crack angle o
and a deviation angle Act.
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Figure 5.6. Stress-state bounding surface for initiation of a regularly curved
mode II crack through cement paste.

The new stress-state bounding surface for initiation of a regularly curved mode II
crack is char.ac.terised by an increase of the friction angle with A¢.,. According to
figure 5.6 this increase of the friction angle is determined by the magnitude of the
overlap of Mohr’s stress circle with regard to the bounding surface for a straight
crack through cement paste.
(p-1)r = rtan(2Aa)tan Ac.
_l+tan’Aa
1-tan’*Aa

tanAg,, = (p-1)tang,, (5.2)
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From figure 5.6 it can be seen that when the deviation angle Aa equals the global
crack angle o, A¢,, equals o too and Mohr’s stress circle passes through the tensile
strength f;,. In this case, the deviation angle at the right-hand side of the global
crack direction a (Ao, in figure 5.7) is no longer limited by the bounding surface.
As a result, initiation of a crack is still possible for the same stress state, even when
Aa exceeds a. In this case, a mixed mode crack will be formed such that the
addition of the left- and right-hand deviation angles (Ao, + Aa,) still equals the
material property 2Aa (see figure 5.7). Hence, the bounding surface for mode II
crack initiation does not expand when Aa is increased beyond a. In other words,
Ad, is bounded by a maximum value

Ad,™ =a (5.3)

Ao, =Aa, =0 c

¥

Figure 5.7. Cracking criterion when Aa exceeds the global crack angle c.

The direction of the bounding surface according to the maximum friction angle, as
defined in equation (5.3), coincides with the direction of the stress path of uniaxial
compression in stress space (figure 5.8). This specific stress path appears to be a
special stress path, not only with respect to crack initiation, but also with respect to
the mechanical behaviour of the crack after initiation. This will be discussed further
in section 5.4.

To find the stress-state bounding surface for initiation of an irregularly curved
crack, a similar approach is adopted as for initiation of a regularly curved crack. In
this case the crack is subdivided into parts, each having a different deviation angle
Aay;. For each part, a local bounding surface is determined according to equations
(5.2) and (5.3). A global bounding surface is derived next by averaging these local
bounding surfaces. _

To illustrate this procedure, a number of bounding surfaces is drawn in figure 5.9,
each belonging to a different part with a different local deviation angle Aa; of an
irregularly curved crack. As the bounding surface for a regularly curved crack is
defined by a maximum overlap of Mohr’s stress circle with respect to the bounding
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surface of a straight crack, it seems logical to average the overlap p for an
irregularly crack in order to come to an equivalent bounding surface — with an
equivalent overlap p — for the entire crack (see figure 5.9).
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Figure 5.8. Maximum friction angle and stress path of uniaxial compression.
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Figure 5.9. Equivalent bounding surface for initiation of an irregularly curved
mode II crack.
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5.3.3 Overall bounding surface

To account for both straight mode II cracking crossing aggregate grains and curved
cracking through cement paste, the bounding surface of figure 5.4 and the
equivalent bounding surface of figure 5.9 are combined to one bilinear overall
bounding surface (see figure 5.10).

f;,cP

—>

Figure 5.10. Construction of a bilinear overall bounding surface for mode II crack
initiation.

The sharp corner of such an overall bounding surface indicates a sudden transition
from a curved crack running through cement paste around the aggregate grains to a
completely straight crack through or crossing all interlocking aggregate grains
(aggregate fracture or cement paste crushing). Such a sudden transition is not likely
to occur. The bounding surface of figure 5.10 is based on averaging the local linear
bounding surfaces of an irregularly curved crack through cement paste only. With
respect to the construction of an overall bounding surface it is, however, more
realistic to average the ‘local’ bilinear bounding surfaces instead. This procedure is
shown in figure 5.11. In this figure a potential irregularly curved crack is considered
with local deviation angles ranging from 15° to 30°. The bilinear bounding surfaces
for crack initiation in each local part of the crack (part 1 to 4) are drawn in stress-
space. The overall bounding surface representing the initiation criterion of the entire
crack may now be established as a curved surface, through continuously averaging
the overlap p along the bounding surface representing the initiation criterion of a
straight crack through cement paste.
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Figure 5.11. Construction of overall bounding surface for mode Il crack initiation
by averaging ‘local’ bilinear bounding surfaces.

The curvilinear shape of the overall stress-state bounding surface as derived in
figure 5.11 is not very convenient for computational purposes. Therefore, the
curvilinear shape of figure 5.11 is approximated by a mathematical more convenient
shape.

The proposed shape consists of a linear part as well as a part of a circle (see figure
5.12). The proposed simplified overall bounding surface is determined by two
material parameters, the maximum deviation angle Ao, — which determines Ad,,
according to equation (5.2) and (5.3) — and the position of the linear part relative to
the stress-state bounding surfaces for initiation of a straight crack through cement
paste only and a straight crack crossing interlocking aggregate grains. This relative
flistance depends on the irregularity of the crack and decreases with increasing
irregularity of the crack.

For ordinary types of concrete mixes, the irregularity of a potential curved crack
through cement paste will not vary much. Therefore, a fixed value is assigned to
this material property. According to figure 5.12, the relative distance is 2/3. This
value is also applied for the computations performed with the model at hand
(section 5.7) and provides acceptable results. Moreover, the observed macroscopic
mechanical behaviour is influenced only moderately upon variation of this
parameter (section 5.7.6).
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Figure 5.12. Simplification of overall stress-state bounding surface.

Applying the value of 2/3, the linear part of the simplified overall bounding surface
for mode II crack initiation is characterised by the friction angle ¢, and the
cohesion cp;.
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The coordinates of the point of contact P between the circular part of the bounding
surface and the linear part of the bounding surface are

_ cini - f;,cp tan(d)cp + %Aq)cp)
tan¢cp a tan( cp + %A(I)cpj
TP = cim' - 0_P tan¢cp
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