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ABSTRACT 

The research presented comprises the development of a two-dimensional (2D) 
numerical model, which is capable of providing predictions of the mechanical 
response of multiaxial compressive tests on concrete specimens in a 2D test lay-out 
of sufficient accuracy (from the point of view of the Building Codes for the design 
of structures). As the model aims at predicting realistically the mechanical response 
of an arbitrary 2D concrete structure subjected to an arbitrary loading path, the 
model has been based on sound physical/mechanical interpretation and explanation 
- rather than empirical formulations - of the mechanical behaviour of concrete 
loaded in multiaxial compression as observed in experimental tests. 

The (numerical) research presented is the prolongation of a long history of concrete 
research at Eindhoven University of Technology- initiated in the early eighties of 
the 201

h century - and was carried out in close cooperation with the (experimental) 
research done by Van Geel 1998

• As a result of the close interaction between 
laboratory experiments and numerical modelling, the numerical model has firmly 
been based on the results of the extensive test program of Van Geel and vice versa, 
changes and additions to the experimental test program were specified as a result of 
new insights gained from the numerical modelling. 

To establish sound physical/mechanical explanations of the complex mechanical 
behaviour of concrete loaded in multiaxial compression, this behaviour is 
subdivided in two ways. On the one side, three scale levels of perception/ 
observation are distinguished. On the other side, a distinction is made between four 
typical behavioural stages in multiaxial compression tests. This subdivision is 
chosen because the macroscopically observed mechanical behaviour is very 
characteristic for each of these four stages. Furthermore, the consideration of 
multiple scale levels of observation at each of these stages is essential, as the 
complex macroscopic mechanical behaviour at each of those stages proves to be 
directly related to the physical conditions and basic mechanisms prevailing at the 
lower scale levels. 

The subdivision of the mechanical behaviour of concrete with respect to scale levels 
of observation and typical behavioural stages in a multiaxial compression test has 
provided a solid basis for constitutive modelling. Herewith, the concept of a 
Representative Volume Element (RYE) has been adopted to account for the specific 
heterogeneity of concrete at the lower scale levels of observation. Such an RYE at a 
material point of a continuum is defined as a material volume statistically 
representative of a small material neighbourhood of that point. 
The great differences in scale of heterogeneity of the concrete material between the 
pre-peak and the post-peak region of a multiaxial compression test could be 
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captured well by the subdivision chosen. These differences in scale of 
heterogeneity, however, could not be captured by a single RYE. Consequently, two 
different RVEs have been conceived. The first one, RVEt, captures the most 
dominant features having first-order influence on the pre-peak mechanical 
behaviour of concrete loaded in multiaxial compression. The second one, RVE2, 
captures the most dominant features with first-order influence on the post-peak 
mechanical behaviour of concrete. 
By choosing the geometrical shape of the RVEs rationally and with a thorough 
analysis of basic (crack) mechanics, straightforward 'low-scale' constitutive laws 
could be efficiently combined with sophisticated - physically appealing - 'high­
scale' constitutive laws, applicable both in the pre-peak and post-peak region. For 
linear elastic material behaviour, in this way general analytic solutions of the 
stress/displacement fields have been derived for both RVEs. Non-linear material 
behaviour within the RVEs has been effectively introduced through the 
development of sophisticated 'high-scale' ela:sto-plastic laws, derived exclusively 
from straightforward Mohr-Coulomb stress-state bounding surfaces in 3D stress 
space. 

The numerical model, which consists of the above RYE-formulations incorporating 
linear elastic as well as the whole range of non-linear material behaviour in 
multiaxial compression, has been entitled as 'mesoscopic model' . This model- as 
outlined in chapters 4 and 5 - is well suited for small-scale analyses of concrete 
structures subjected to multiaxial compression. For large-scale analyses, the 
mesoscopic model is less practical. To enhance the practicality and speed up 
computations, chapter 6 presents an adjusted approach, entitled as 'macroscopic 
model'. 

The performance of both the mesoscopic and the macroscopic model is ill.ustrated 
by a wide range of accurate numerical simulations of multiaxial compresstve tests 
from the extensive experimental test program performed by Van Geel1998

• The 
experimental data is reproduced well, not only in terms of overall monotonic (and 
cyclic) loading curves in all (axial and lateral) directions, but also in terms of crack 
patterns, influence of loading path and boundary conditions. 

SAMENVATTING 

Het onderhavige onderzoek omvat de ontwikkeling van een tweedimensionaal (2D) 
numeriek model, dat in staat is om het mechanische gedrag uit meerassige 
drukproeven op betonnen proefstukken in een 2D proefopstelling voldoende 
nauwkeurig (uit het oogpunt van de Bouwvoorschriften voor het constructieve 
ontwerp) te voorspellen. Aangezien het model zich ten doel stelt om het 
constructieve gedrag van een willekeurige 2D betonconstructie realistisch te 
voorspellen bij een willekeurig belastingspad, is het model gebaseerd op solide 
fysische/mechanische interpretatie en verklaring - en niet op empirische formules -
van het constructieve betongedrag onder meerassige druk zoals bekend en 
voorhanden uit laboratoriumproeven. 

Dit (numerieke) onderzoek is het vervolg op een lange historie van betononderzoek 
aan de Technische Universiteit Eindhoven, ge'initieerd in het begin van de jaren 
tachtig van de 20e eeuw. Het is uitgevoerd in nauwe samenwerking met het 

1998 d k . 1 k. ( experimentele) onderzoek van Van Geel . Door e ster e wtsse wer mg tussen 
het laboratorium onderzoek en het numeriek modelleren, werd het ontwikkelde 
numerieke model deugdelijk ondersteund door de resultaten van het uitgebreide 
proevenprogramma van Van Geel enerzijds en anderzijds werd het 
proevenprogramma ook aangepast en uitgebreid als gevolg van het voortschrijdend 
inzicht verkregen uit de resultaten van het numerieke onderzoek. 

Om te komen tot een solide fysische/mechanische onderbouwing van het 
( complexe) betongedrag onder meerassige druk, is dit betongedrag onderverdeeld 
op twee verschillende manieren. Enerzijds worden drie verschillende schaalniveaus 
van observatie/schematisatie onderscheiden. Anderzijds wordt er een onderscheid 
gemaakt tussen vier gedragsstadia in geval van meerassige drukproeven. Dit 
onderscheid is gemaakt omdat de karakteristieken van het macroscopisch 
waargenomen betongedrag duidelijk verschillen in elk van deze vier stadia. 
Bovendien is het beschouwen van meerdere schaalniveaus van observatie/ 
schematisatie binnen elk van de gedragsstadia essentieel. Het complexe 
macroscopische betongedrag blijkt namelijk direct verband te houden met de 
fysische condities en fundamentele mechanismen zoals deze zich voordoen en 
werken op de lagere schaalniveaus. 

De onderverdeling van het gedrag van beton onder meerassige druk met betrekking 
tot schaalniveaus van observatie en karakteristieke gedragsstadia heeft een solide 
basis opgeleverd voor de ontwikkeling van constitutieve materiaalmodellen. Om de 
invloed van de specifieke heterogeniteit van beton - zoals deze bestaat op de lagere 
schaalniveaus - in rekening te brengen, is daarbij in de modellering het concept van 
een 'Representatief Volume Element' (RYE) gebruikt. Een RYE in een punt van 
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een materiaalcontinuiim is gedefinieerd als een materiaal volume dat statistisch 
representatief is voor de materiaalstmctuur in de directe omgeving van dat punt. 
De grote verschillen in mate van heterogeniteit van het betonmateriaal voor en na 
het bereiken van de maximale sterkte in een meerassige dmkproef kunnen goed in 
de gekozen onderverdeling worden ondergebracht. Deze verschillen kunnen echter 
niet worden verenigd in een RVE, daarom zijn twee verschillende RYE's 
ontwikkeld. In de eerste, RVE1, worden de overheersende kenmerken 
verdisconteerd die een 1 e orde invloed hebben op het constmctieve betongedrag 
voor het bereiken van de maximale sterkte in een meerassige dmkproef. De tweede, 
RVE2, bevat de overheersende kenmerken die een 1 e orde invloed hebben op het 
constmctieve betongedrag na het bereiken van de maximale sterkte. 
Op basis van een rationele keuze van de geometrische vorm van de RYE's en een 
grondige analyse van de fundamentele (scheur) mechanismen kunnen eenvoudige 
constitutieve formuleringen op een 'laag schaalniveau' effectief gecombineerd 
worden tot verfijnde - fysisch onderbouwde - constitutieve materiaalmodellen op 
een 'hoog schaalniveau', toepasbaar voor het constmctieve betongedrag zowel voor 
als na het bereiken van de maximale sterkte. 
Op deze wijze zijn - voor lineair elastisch materiaalgedrag - algemene analytische 
oplossingen afgeleid voor de spannings- en verplaatsingsvelden van beide RYE's. 
Niet-lineair materiaalgedrag in de RYE's is effectief gei"ntroduceerd door de 
ontwikkeling van verfijnde elasto-plastische constitutieve materiaalmodellen op een 
'hoog schaalniveau', gebaseerd op uitsluitend eenvoudige constitutieve 
formuleringen in de vorm van Mohr-Coulomb plasticiteit in de 3D spanningsmimte. 

Het numerieke model, bestaande uit bovenstaande RVE modelleringen die zowel 
het lineair elastische alsmede de hele reeks van niet-lineair materiaalgedrag van 
beton onder een meerassige dmkbelasting beschrijven, wordt het 'mesoscopisch 
model' genoemd. Dit model- zoals beschreven in de hoofdstukken 4 en 5- is zeer 
geschikt voor de analyse van kleinschalige betonconstmcties onder een meerassige 
dmkbelasting. V oor de analyse van grootschalige betonconstmcties is het model 
minder geschikt. Teneinde deze toepasbaarheid te vergroten en de berekeningen te 
versnellen, wordt in hoofdstuk 6 een aangepaste methode gepresenteerd, het 
'macroscopisch model'. 

De 'performance' van zowel het mesoscopisch als het macroscopisch model wordt 
gelllustreerd aan de hand van de resultaten van een groot aantal numerieke 
simulaties van meerassige dmkproeven uit het uitgebreide proevenprogramma van 
Van Geel 1998

. De experimentele resultaten worden goed benaderd, niet alleen met 
betrekking tot de globale (monotone en cyclische) last-verplaatsingskrommen in 
alle richtingen ( axiaal en lateraal), maar ook met betrekking tot scheurpatronen, de 
invloed van het belastingspad en de proefstuk randvoorwaarden. 

SYMBOLS, NOTATION AND ABBREVIATIONS 

LA TIN CAPITALS 

A cross-sectional area 
Aagg cross-sectional area of aggregate grain(s) 
Abulk cross-sectional area of the bulk cement paste 
A1n cross-sectional area of the ITZ 
CM centre ofMohr's stress circle 
D diameter 
D agg diameter of aggregate grain 
Dmax diameter of the largest aggregate grain in the concrete mix 
Det determinant 
E Young's Modulus 
Eagg Young's Modulus ofthe aggregate grains 
Ebulk Young's Modulus of the bulk cement paste 
EI1Z Young's Modulus ofthe ITZ 
}( force 
0 order of magnitude function 
R0 radius at centre ofiTZ-layer in RVE1 representation 
R1 radius of aggregate grain in RVE1 representation 
R2 outer radius ofiTZ-layer in RVE1 representation 
R3 outer radius of bulk cement paste layer in R VE1 representation 
V volume 
W work (done by a force) 

LA TIN LOWER CASE 

c 

cpc,ini 

cpc,end 

d 
f(r,e) 

J,J;,fz 
fc.agg 

cohesion 
cohesion for aggregate fracture / cement paste crushing 
cohesion at (macro )crack initiation 
(before redistribution oflocal stresses along the crack) 
cohesion at zero pore closure (compressive pore collapse) 
cohesion at maximum pore closure ( compressive pore collapse) 
width of the unit cell (RVE2) 

stress function in cylindrical coordinates 
mathematic functions of stress-state bounding surfaces 
uniaxial compressive strength of the aggregate 
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compressive strength for compressive pore collapse 
tensile strength 
tensile strength of the bulk cement paste 
equivalent tensile strength for local mode II cracking through bulk 
cement paste along a global mode I crack 
tensile strength of the cement paste (ITZ + bulk cement paste) 
tensile strength for global mode I cracking 
fictitious tensile strength, introduced in the transformation process of 
the stress-state bounding surface during local stress redistribution 
initial local tensile strength of the ITZ (stage 1/II) 
average tensile strength of the ITZ along a curved crack 
equivalent tensile strength for local mode 11 cracking through the ITZ 
along a global mode I crack 
tensile strength for compressive pore collapse 
length or width 
mass 
radius 
radius ofMohr's stress circle 
(point in) time 
displacement in radial direction (cylindrical (r,e)- coordinate system) 
displacements in principal directions 
(u 1 =maximum displacement, u3 =minimum displacement) 

crack opening displacement 
displacement in tangential direction (cylindrical (r, e)- coordinate 
system) 
crack sliding displacement 
material parameter defining the crack sliding displacement for which 
softening ends (during aggregate fracture/ cement paste crushing) 

(global) angle of crack plane with respect to the direction of the 
minimum (most compressive) principal stress 
ratio between the maximum and the minimum principal stress 
maximum shear strain 
(in-plane) shear strain (rotated Cartesian (n,t,z)- coordinate system) 
(in-plane) shear strain (cylindrical (r, 8)- coordinate system) 
shear strains (global Cartesian (x,y,z)- coordinate system) 
principal strains (e1 =maximum strain, e3 =minimum strain) 
normal strains (rotated Cartesian (n,t,z)- coordinate system) 
normal strains (cylindrical (r,e)- coordinate system) 
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volumetric strain 
normal strains (global Cartesian (x,y,z)- coordinate system) 
heterogeneity (material) parameter 

XI 

angle of then-axis (of rotated (n,t,z)- coordinate system) with respect 
to the orientation of the normal to the plane of maximum shear stress 
angle of then-axis (of rotated (n,t,z)- coordinate system) with respect 
to the global y-axis 
angle of then-axis (of rotated (n,t,z)- coordinate system) with respect 
to the global x-axis 
plastic multiplier (plastic flow formulated in terms of strains) 
plastic multiplier (plastic flow formulated in terms of displacements) 
internal state parameter 
internal state parameter governing tensile softening 
material parameter defining the end of tensile softening 
plastic volumetric compaction (internal state parameter) 
material parameter defining the plastic volumetric compaction at 
maximum pore closure 
momentary value of relative crack length with crack sliding 
displacement according to the 'overriding' mechanism 
average value of Amech 1 throughout the formation history of a 
macrocrack 
(model) parameter affecting the shape of the stress-state bounding 
surface at stage III/IV 
mean value of normally distributed quantity 
Poisson's ratio 
overlap Mohr's stress circle with respect to the stress-state bounding 
surface of a straight crack 
standard deviation of normally distributed quantity 
principal stresses (cr1 =maximum stress, cr3 =minimum stress) 
normal stresses (rotated Cartesian (n,t,z)- coordinate system) 
normal stresses (cylindrical (r,e)- coordinate system) 
normal stresses (global Cartesian (x,y,z)- coordinate system) 
maximum shear stress 
(in-plane) shear stress (rotated Cartesian (n,t,z)- coordinate system) 
(in-plane) shear stress (cylindrical (r,e)- coordinate system) 
shear stresses (global Cartesian (x,y,z)- coordinate system) 
friction angle 
friction angle for aggregate fracture / cement paste crushing 
friction angle for (straight) cracking through cement paste 
friction angle for compressive pore collapse 
dilatancy angle 
dilatancy angle for compressive pore collapse 
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Lla 
L1a0 

Llai 
Llaljl 
Ll<j> 

Ll<J>ep 

maximum deviation angle of a curved crack 
maximum deviation angle of a curved crack in the virgin concrete 
local deviation angle of an irregularly curved crack 
maximum local deviation angle at which overriding still occurs 
increase of friction angle due to the mesoscopic curvature of a crack 
increase of friction angle due to the mesoscopic curvature of a crack 
(before redistribution oflocal stresses along the crack) 
increase of friction angle of 'an equivalent fictitious regularly curved 
crack through cement paste' (with equivalent crack dilatancy) 
increase of friction angle due to the mesoscopic curvature of a crack 
(after redistribution oflocal stresses along the crack) 

SUPERSCRIPTS 

0 

I 

11 
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er 

e 

fine 

ITZ 

foe 

m 

model 

model] 

p 

initial state 
final state 
elementary state I 
elementary state 11 
coarse fraction of the aggregate grains 
crack quantity 
elastic (strain, displacement) 
fine fraction of the aggregate grains 
material point is located within the ITZ 
local quantity 
macroscopic quantity 
mode I crack quantity 
mode 11 crack quantity 
plastic (strain, displacement) 
trial state 

MISCELLANEOUS 

Ux,O"x,Ex 

g,Q,~ 

Llg,LlQ,Ll~ 

M 

dot above a quantity indicates a first order derivative with respect to 
time (e.g. velocity instead of displacement) 
two dots above a quantity indicates a second order derivative with 
respect to time (e.g. acceleration instead of displacement) 
narrow line above a quantity indicates an averaged or effective value 
underlined quantity indicates a vector instead of a scalar 
increments or corrections of displacements, stresses and strains 
increment of time (time step) 

D 
[" .. ], [:] 
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bold latin capital indicates a matrix 

matrix, vector 

transpose of a matrix, vector 

minimum value of scalar a or b 

absolute value of scalar a 

length of vector a 

vector pointing from A to B 
AND operator 
equivalent symbol 

ABBREVIATIONS 

2D 
3D 
COD 
EUT 
FEM 
ITZ 
LEFM 
LVDT 
ROT 
RYE 
UDEC 

two-dimensional 
three-dimensional 
Crack Opening Displacement 
Eindhoven University of Technology 
Finite Element Method 
Interfacial Transition Zone 
Linear Elastic Fracture Mechanics 
Linear Variable Displacement Transducer 
Rotation of finite element 
Representative Volume Element 
Universal Distinct Element Code 

xiii 
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CHAPTER! 

INTRODUCTION 

1.1 Scope and objectives 

In the field of structural engineering, the considerable increase of load-bearing 
capacity due to confinement of a concrete element is common knowledge. A large 
increase of deformations accompanies this increase in load-bearing capacity. 
The advantageous influence of a multiaxial compressive stress state, which arises 
due to a confinement of a concrete element, may be employed in many cases. With 
respect to service-state analysis of structures, multiaxial compressive stress states 
arise, for example, in many junctions of (possibly prestressed) concrete elements, in 
spirally reinforced concrete columns or in-filled concrete steel tube columns and in 
the introduction zones of concentrated loads (e.g. pre- and posttensioning). 
In limit-state analysis, safety concepts such as structural integrity and absorption of 
energy during impact loading become increasingly important. In this respect, taking 
into account the advantageous effects of the large deformations generally 
accompanying multiaxial compressive stress states, looks promising (remember the 
large lateral bending deflections of the spirally reinforced concrete columns on 
ground level of the Pentagon - of the order of magnitude of three to four times the 
lateral dimensions- after the attack of 11 September 2001 [Harris 2002

]). Depending 
on the loading path of a potential multiaxial compressive stress state, carefully 
designed structural elements may well display large deformational capacity before 
reaching the ultimate stren?th and a high residual strength after reaching the 
ultimate strength [Van Geel 1 98

]. 

In spite ofthis, the advantageous influence of multiaxial compressive stress states is 
scarcely found in building codes. General rules are not available. The existing rules 
on multiaxial compressive stress states are empirical formulations based on findings 
in extensive laboratory testing, valid only for the specific structural specimens 
tested. 

This fundamental lack of knowledge triggered a research project at Eindhoven 
University of Technology (EUT) in the early eighties. Van Mier 1984 carried out an 
extensive laboratory test program on uniaxiall~ and multiaxially loaded plain 
concrete specimens (cubes and prisms). Vonk 992 focussed on the mechanical 
analysis and modelling of the structural behaviour (including failure) of concrete 
loaded in uniaxial compression. The term 'structural behaviour' was introduced to 
distinguish the failure process of a concrete specimen after reaching the ultimate 
load-bearing capacity. The behaviour before reaching the ultimate load-bearing 
capacity might be referred to as 'material behaviour', as the deformations upon 
loading at this stage are grosso modo still continuously distributed over the concrete 
volume. Consequently, neither the boundary conditions (test set-up), nor the 
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geometry and dimensions of the specimen dominantly influence the mechanical 
response of the specimen at this stage of loading. 
Unlike the 'continuum' material behaviour as displayed at the loading stage before 
reaching the ultimate load-bearing capacity, the mechanical response of a concrete 
specimen at and after reaching the ultimate load-bearing capacity is governed by 
local fracture processes which dominate the behaviour of the surrounding 
continuum. These fracture processes prove to be highly dependent on the boundary 
conditions and the geometry/dimensions of the specimen, i.e. the entire structural 
system of the test set-up. 
The present numerical research is carried out in close cooperation with the 
experimental research done by Van Geel 1998

• At EUT Van Geel carried out a large 
number of uniaxial and multiaxial compressive tests on plain concrete cubes and 
prisms. This research provided most of the experimental data needed for the 
development of a numerical model, such as: 
• Overall data: stress-strain/displacement curves and failure patterns, 
• Data on the development of cracks during loading, 
• Data on the influence ofthe 'loading path', 
• Data on the test set-up. 

The main objective of the present research is to develop a two-dimensional (zD) 
numerical model, which is capable of providing accurate predictions of the 
mechanical response of multiaxial compressive tests in a zD test lay-out. In a 
similar investigation later on, the 3D version of the numerical model is to be defined 
and accomplished. 
As a result of close interaction between laboratory experiments and numerical 
modelling, a numerical model could be developed based on an extensive test 
program. Otherwise, the insight obtained from the numerical modelling also has 
been used to specifY changes or additions to the experimental test program executed 
(by van Geel). The influence of the test set-up on the mechanical response of the 
concrete specimens upon loading could be allowed for by performing both the 
experiments and the numerical simulations on specimens matching geometry and 
boundary conditions as close as possible. 
The numerical model developed aimed from the beginning at simulating the 
experimental test program as close as possible, but also at predicting the true 
mechanical response of an arbitrary 2D structure subjected to an arbitrary loading 
path. From this point of view, it was essential that convincing physical explanations 
- versus empirical formulations - should be found for the observed phenomena. 
Empirical formulations should strictly be used within the limits of the test series 
upon which they are formulated. They are not likely to provide proper results for 
other geometries, boundary conditions and/or loading histories. The Eindhoven 
research project from the beginning followed the research track of interaction of 
alternate laboratory experiments and physical/numerical modelling, in order to 
circumvent a.o. the laming restrictions ofthe 'empirical approach'. 
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The present research concentrated on the investigation of the influence of multiaxial 
stress states on the static, mechanical response of normal-strength concrete with 
aggregates of relatively high stiffness and strength. No influence of time effects, 
like drying shrinkage, creep or loading rate has been taken into account1

• 

The insight gained from this research, however, may be adopted for other concrete 
mixes. In this way, possibly new insight might be gained for material improvement 
by e.g. adaptation of the concrete mix. 

1.2 Terminology and symbols 

1.2.1 Coordinate systems and stress-strain states 

Throughout this thesis a Cartesian (x,y,z)- coordinate system is used to indicate the 
global coordinates of a material point. Stresses and strains according to this global 
coordinate system are indexed according to figure l.l.a. The sign convention of 
stresses and strains is also indicated in this figure: ( ex)tension is positive while 
compression is negative. To satisfY the condition of moment equilibrium and 
according to the definition of shear strain the following conditions apply 

'txy = 'tyx 

'tyz = 'tzy 

'tzx ='txz 

Yxy = Yyx 

Yyz = Y zy 

Yzx=Yxz 

A Cartesian (1,2,3)- coordinate system is used to indicate the local axes of 
principal stresses (or strains) in a certain material point (see figure l.l.b). 

(a) 
3--< 

1 (b) 

Figure 1.1. Coordinate systems for (a) a global (primary) stress/strain state and 
(b) for a principal stress/strain state. 

1 The concrete specimens used in the experimental test program [Van Geel 1998
] were stored under water 

during 28 days and sealed in plastic bags afterwards. Testing occurred at moderate loading rates. Ergo, the 
potential influence of drying shrinkage, creep and loading rate on the test results may be neglected. 
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A useful graphical method of analysing the state of stress and converting primary 
stresses into principal stresses has been developed by Mohr. In this method, the 
normal and shear stresses on any plane (e.g. the x,y-plane) are represented by a 
point on a plane orthogonal diagram of which the horizontal 'coordinate' is the 
normal stress (e.g. ax and ay) and the vertical 'coordinate' is the shear stress (e.g. 'txy 

and 'tyx). 

(a) (b) 

Figure 1.2. Mohr's construction for a two-dimensional state of stress. (a) Physical 
plane; (b) Mohr's plane. 

For the present purpose, it is necessary only to regard the shear stress as positive if 
it has a clockwise moment about a point within the element. In figure 1.2, the points 
X and Y on the (a,t) plane represent the stresses acting on planes perpendicular to 
the x- and y-axis. The circle drawn through X and Y and having its centre C on the 
a-axis, is called Mohr's circle for the considered state of stress. The circle graphical 
represents the normal stress and shear stress on all planes through the z-axis (i.e. 
0 ~a~ 2n). The points A and B, where the circle intersects the a-axis, define the 
principal stresses. The angle made by CA with CX is twice the angle the direction 
of a I makes with the x-axis in the physical plane. 
Another point of interest is p*, called the pole of a Mohr's circle. The stresses acting 
on and the direction of the normal to any plane can be graphically determined by 
drawing a line from p* to any point on the circle. The angle between this line and 
p*x is equal to the angle the normal to the plane makes with the x-axis. 
For a three-dimensional stress state, three Mohr's circles for three orthogonal planes 
can be constructed. Likewise, a three-dimensional strain state is represented by 
three Mohr's circles in a plane diagram of which the horizontal 'coordinate' is the 
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normal strain (e.g. Ex and Ey) and the vertical 'coordinate' is half the shear strain 
(e.g. Yzyx:v and Yzyyx) . In order to denominate typical stress or strain states, a 
classification is made according to the potential presence of zero principal stress or 
strain in one or two directions (see figure 1.3 and 1.4). 

uniaxial stress state 
(2 principal stresses are zero) 

"' uniaxial tensile stress state 

a2=cr3=0 --0-- --3 a 

"' uniaxial compressive stress state 

1 cr 1 =cr2=~t D 3--2 I--~cr 

l 
biaxial/plane stress state 
(1 principal stress is zero) 

"' plane stress - tensile stress state 

l 
t 

--la3=01--
1 

"' plane stress- tensile/compressive 
stress state 

! t 

-la2=01--
l 

cr 

"' plane stress - compressive stress state 

! 
t 

-la1=01--
l 

uniaxial strain state 
(2 principal strains are zero) 

"' uniaxial extensional strain state 

~[j':'~"-,fr, 
"' uniaxial compressive strain state 

1 E1=E2=~y D 3--2 1--~E 

l 
biaxial/plane strain state 
(1 principal strain is zero) 

"' plane strain - extensional strain state 

l 
y 

--IE3=oi--
! 

"' plane strain- extensional/compressive 
strain state 

! 
y 

--IE2=oi--
l 

"' plane strain - compressive strain state 

! 
y 

--IE~=ol--
1 

Figure 1.3. Uniaxial and biaxial stress/strain states. 
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triaxial stress state 
(no principal stresses are zero) 

I!! triaxial tensile stress state 

Ill triaxial tensile/compressive stress state 

Ill triaxial compressive stress state 
t 

t--t---7cr 

Figure 1.4. Triaxial stress/strain states. 

triaxial strain state 
(no principal strains are zero) 

I!! triaxial extensional strain state 
y 

Ill triaxial extensional/compressive 
strain state 

y 

Ill triaxial compressive strain state 
y 

The material model for concrete mechanical behaviour, presented in this thesis, is 
limited to two dimensions. The global z-axis is in the following the (principal) out­
of-plane direction. To describe in this 2D configuration stresses and displacements 
at a straight discontinuity (crack), it is convenient to define a local Cartesian (n,t,z)­
coordinate system in which the n-axis runs perpendicular to the crack direction and 
the t-axis runs parallel to the in-plane crack direction (see figure 1.5). 
To describe, in a 2D configuration, a stress/strain state at the circumference of a 
certain material point 0, a cylindrical (r,8) - coordinate system is defined according 
to figure 1.6. Within this coordinate system the angle 8 is zero in the direction of 
maximum shear stress, or, the radius at 8 = 0 makes an angle of re/ 4 radians with the 
axes of maximum and minimum principal stress (1- and 3-axes). 

INTRODUCTION 

cr. : crack normal stress 
tm : crack shear stress 
ucr :crack opening displacement 
wcr : crack sliding displacement 

Figure 1.5. Denomination of crack stresses and displacements. 

8=0 

3 

0 
r =radius (OP) 

Figure 1. 6. Stresses and displacements in a cylindrical (r, B)-coordinate system. 

1.2.2 Fracture of concrete 

7 

A crack in a solid can be loaded in three different basic modes, as indicated in 
figure 1.7. Normal stresses give rise to the opening mode or mode I loading. In­
plane shear loading results in the sliding mode or mode li loading, whereas out-of­
plane shear loading leads to the tearing mode or mode Ill loading. A general case of 
loading can be described by a superposition of these three basic modes. 

I 11 Ill 

Figure 1. 7. Three basic modes of loading [Broee986
]. 
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If the solid consists of a heterogeneous material with strong inclusions (such as 
normal strength concrete), tortuous cracks will be formed, meandering around the 
strong inclusions (see figure 1.8). Although globally a mode II loading is applied, 
the local crack displacements along such cracks are a combination of opening and 
sliding crack displacements. When such a tortuous crack is considered on the global 
level, the crack is referred to as a mode II crack with crack dilatancl. 

~ = tortuous crack Q = strong inclusion 

~~ ----------(a) (b) 

Figure 1.8. (a) Formation of a tortuous crack in mode 11 loading and 
(b) sliding and dilation of a tortuous mode 11 crack. 

mode 11 crack 

~ 
••• 

. ' 
' 

(a) (b) 

Figure 1.9. (a) Pore collapse and (b) tensile splitting. 

2 Originally, the basic crack modes concern potential local crack growth at the crack tip of an existing crack. 
In the present research, the same terminology is used also to specify the global loading condition along the 
length of the potential or existing crack. 
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In this research, two other terms regarding crack formation are discussed here: pore 
collapse and tensile splitting. When - in a highly porous material loaded in 
compression - the pore structure collapses due to largely distributed mode II 
cracking, the term pore collapse is used. When mode I cracking occurs in lateral 
direction due to axial splitting forces, the term tensile splitting is used (figure 1.9). 

1.2.3 Theory of elasto-plasticity 

The numerical model presented in chapter 4 and 5, is developed within the 
framework of elasto-plasticity. Therefore, the basics and terminology of this theory 
are discussed cursorily in this section. 
According to the classical theory of elasto-plasticity, the strain vector §. IS 
decomposed in an elastic and a plastic component. 

The constitutive relationship between the stress vector Q and the strain vector §. is 
given by 

Q=De (§.-~/) (1.1) 

where De is the matrix of the moduli of elasticity. The presented numerical model is 
developed in a 2D plane strain configuration. For plane strain analysis of an 
isotropic material, equation (1.1) yields for the in-plane global stress components 

V 

1-v 

0 

in which the isotropic elastic material behaviour is characterised by Young's 
modulus E and Poisson's ratio v. 
The same theory may also be applied for describing the constitutive behaviour of a 
discontinuity (crack). In this case, the crack relative displacement vector !l. Is 
decomposed in an elastic and a plastic (crack) component K = ( Ucr, Wcr]T. 

The constitutive relationship between the crack stresses Q = [an, •m ]T and the crack 
displacements is then given, by 

Q=Ke(g-gp) (1.2) 

with Ke being the matrix of the moduli of elasticity of the crack3
• 

3 
In reality, the elastic deformations of an interfacial (potential) crack are zero. Generally, this is accounted 

for by taking the elastic stiffness K' so high that the elastic deformations of the crack may be neglected with 
respect to the elastic deformations of the continuum. 
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For mode 11 cracking, the crack opening and crack sliding velocities are interrelated 
by the so-called dilatancy angle \jf (see figure 1.10) 

·er u 
tan\jf =~ 

w 

-----
~ ----------

Mode II cracking 

(1.3) 

t t t t t t t 

~ 
Mode I cracking 

Figure 1.1 0. Direction of plastic flow for mode I and mode If cracking. 

For mode I cracking the crack sliding velocity is zero, so for both crack modes the 
direction of plastic flow is fully determined. 

!l_P = tJumodeJI [ t~ \jf] (Mode 11 cracking) 

Up= tJmode/[1] 
- u 0 (Mode I cracking) 

Where the plastic multipliers sumodell and sumodel are posltlve scalars, which are 
nonzero only when plastic deformations occur. They can be determined from the 
condition that during plastic flow the stresses remain bounded (see section 1.2.4). 

Differentiation of equation (1.2) and inserting the expressions for the direction of 
plastic flow finally yields: 

[ ~J = Ke[ !l_ _ tJumodeii[ ta: \jf ]] 

[ ~~] = Ke[!l_ -tJ:nodel[~ ]] 

(Mode 11 cracking) 

(Mode I cracking) 

(1.4) 

(1.5) 

In some cases, it is convenient to smear discrete crack displacements over a certain 
width J! of the continuum. Plastic strain rates and crack velocities are in that case 
coupled according to figure 1.11. 
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I El 
~~t 

'r::J 
mode I cracking mode I! cracking 

smeared 

Figure 1.11. Smeared and discrete relative crack velocities. 

According to figure 1.11, application of equation ( 1.3) results in - for smeared 
mode 11 cracking- the following relationship 

The rate of plastic normal strain in t- and z-direction is zero, so the plastic 
volumetric strain rate s;:.,1 = i:/ + i:/ + i:/ and the rate of maximum plastic shear 
deformation Y~ax are expressed by 

(1.6) 

. P _ ~( . P . P )z ( . P)z 
Ymax- En -E, + Ynt 

(1.7) 
• p 

.Lr._ 
cos \jf 

Comparison of the expressions above gives the classical interrelation between the 
plastic volumetric strain rate and the rate of maximum plastic shear deformation. 
• p -. p • Evol - Y max Slll \jf 

As the maximum and minimum plastic principal strain rates are related to the plastic 
volumetric strain rate and the rate of maximum plastic shear deformation according 
to (out-of-plane plastic strain rate i: 2 P = i: z P = 0) 

the following expression for the direction of plastic flow - for smeared mode 11 
cracking - is found 



12 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION - NUMERICAL MODELLING 

(Mode II cracking) 

For mode I cracking, the n-direction equals the maximum principal strain rate 
direction and the t-direction equals the direction of the minimum principal strain 
rate. As the rate of plastic normal strain in t-direction equals zero, the direction of 
plastic flow for smeared mode I cracking becomes 

(Mode I cracking) 

Inserting the expressions for the direction of plastic flow in equation (1.1) finally 
gives after differentiation: 

(Mode II cracking) (1.8) 

(Mode I cracking) (1.9) 

1.2.4 Concept of a stress-state bounding surface 

The magnitude of plastic deformations - characterized by the plastic multiplier St(u) 

- is determined by introducing the concept of a stress-state bounding surface, 
formulated in stress space, which separates permissible from non-permissible stress 
states. If the stress state is inside the bounding surface the deformations are purely 
elastic, whereas plastic deformations can occur if the stress state is on the bounding 
surface. In this concept stress states outside the bounding surface are not allowed. 
For application to concrete, the most known and simple examples of such surfaces 
are, for mode II cracking, the Mohr-Coulomb bounding surface and the Rankine 
bounding surface for mode I cracking. These bounding surfaces are governed by the 
following equations: 

f. (Q:) = I• nt 1-c + cr n tan~= 0 (Mohr-Coulomb) 

(Rankine) 

in which the cohesion c, the friction angle ~ and the tensile strength}; are material 
properties. 
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Figure 1.12. Mohr-Coulomb and Rankine stress-state bounding surfaces. 

To trigger the initiation of a crack in a continuum, Mohr's stress circle for a certain 
state of stress may be applied in the (cr,c) plane. When the stress circle touches the 
bounding surface, a crack is initiated along a plane making an angle a with the 
direction of the minimum (most compressive) principal stress (see figure 1.13 ). 

mode 11 cracking 

:~: .. .. .. .. 
-----'~ '11 .. t t t ( 

i 

--3>G 

Figure 1.13. Mode I and mode If crack initiation. 
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So far, the stress-state bounding surface has been considered as a static surface in 
stress space. However, for a more detailed description of the inelastic behaviour of 
cracks, a dependency upon the previous loading history may be introduced. The 
simplest and most common extension to the theory as adopted above, is to make the 
expression for the bounding surface also dependent on a scalar measure K of the 
plastic strain (or relative displacement) vector. This scalar K is often referred to as 
an internal state parameter. 

f=f(g_,K) 

For increasing K the bounding surface may either shrink or expand. In case the 
bounding surface expands, the term strengthening is used and if the bounding 
surface shrinks, the term softening is used. 

Figure 1.14. Terminology for expansion/shrinkage of Mohr-Coulomb and 
Rankine stress-state bounding surfaces. 

't 't 't 

frictional cohesive tensile 
strengthening/softening strengthening/softening strengthening/softening 

Figure 1.15. Terminology for expansion/shrinkage of a non-linear stress-state 
bounding surface. 

For a Mohr-Coulomb bounding surface, both the cohesion c and the friction angle <1> 

may depend on K. If the cohesion depends on K, the term cohesive strengthening (or 
softening) is used. In case the friction angle depends on K, the term frictional 
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strengthening/softening is used. Unlike the Mohr-Coulomb bounding surface, the 
Rankine bounding surface is characterized by just one parameter, the tensile 
strength j;. In this case shrinkage or expansion of the bounding surface are 
denominated as tensile softening or strengthening (figure 1.14). 
The same terminology not only applies for Mohr-Coulomb or Rankine plasticity, 
but also for non-linear bounding surfaces that account for both mode I and 11 
cracking (see figure 1.15). 

The concept of a stress-state bounding surface, as explained above, can be used to 
determine the magnitude of plastic flow. In section 1.2.3, a linear relation between 
the stress-rate vector .Q: and the strain-rate vector ~ is set. To obtain total stresses 
and strains at an arbitrary loading stage, the equations must hence be integrated 
along the loading path. To this end, it is assumed that the loading steps are very 
small. Under this condition, the material properties ('JI, <j>, c, fr) may be considered 
to remain constant during one small loading step and the stress/strain rate vectors in 
section 1.2.3 may be replaced by stress/strain increments. These considerations also 
apply for stresses and crack displacements in the case of discrete cracking. 
Starting from an initial stress state ~l, a trial stress state 5l can be computed by 
adding an elastic trial stress increment. 

I 0 K eA Q = Q + L.l.!!:_ 

I 0 DeA 
Q = Q + ti~ 

(discrete cracking) 

(smeared cracking) 

If the trial stress state falls outside the bounding surface (f(Q1
,K

0
) > 0 ), cracking 

occurs and a correction must be applied, i.e. the trial stress state must be mapped 
back to the bounding surface. The direction of this correction ~Q is given by the 
direction of plastic flow (see equations (1.4), (1.5), (1.8) and (1.9)). The magnitude 
is given by the condition that the fina1 - corrected - stress state QI is located on the 
bounding surface, i.e.f(Q1

,K
0
) = 0. 

t..cr = -Ke t,3 model/ [tan\j/( K0~ 
- u 1 J 

____,. (Jn 

Figure 1.16. Return-mapping of crack stresses in case of Mohr-Coulomb plasticity. 
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CHAPTER2 

REVIEW OF LITERATURE 

The review of literature presented here comprises two parts. First of all a review is 
given on the specific characteristics of the mechanical behaviour of concrete loaded 
in multiaxial compression as observed in experiments. In addition, more extensive 
reviews on this subject can be found in Newman 1979

, Van Mier 1984
, Vonk 1992 and 

Van Geel 1995a, 1995b, 998. 

Secondly, an overview is given of existing modelling approaches for concrete that 
take into account the effects of mode I and mode II cracking in concrete. 

2.1 Experiments 

2.1.1 Multiaxial compressive stress state 
Multiaxial compression tests on concrete have been performed using two essentially 
different test setups. In the first setup, referred to as triaxial cell, the cylindrical 
shaped concrete test specimen is mounted between steel end blocks and placed in a 
pressure vessel. In radial direction, fluid pressure loads the specimen. In axial 
direction, the specimen is loaded independently by means of a hydraulic jack. 
Application of a flexible, impermeable membrane between the specimen and the 
hydraulic fluid prevents the fluid from entering the specimen. This test setup has the 
limitation that the two confining principal stresses are always equal. 
The second test setup, the "true" triaxial loading apparatus, consists of a 
construction of three orthogonal loading frames permitting the concrete test 
specimen (cube or prism) to be loaded in three orthogonal directions independently. 

2.1.1.1 Influence on strength 

The compressive strength of concrete in the main (axial) loading direction is highly 
sensitive to the presence of lateral confinement. The axial compressive strength 
decreases in the presence of lateral tensile stresses, while the strength increases in 
the presence of lateral compressive stresses. This sensitivity to the presence of 
lateral confinement is governed by the roughness of (potential) mode II cracks. As 
the roughness is characterized by the friction angle in the classic Mohr-Coulomb 
bounding surface, concrete is called a frictional material. 

2.1.1.1 .1 Biaxial strength 

Basically, the biaxial strength can be measured in a triaxial cell without axial load 
[Richart et al 1928

]. This technique has the limitation that cr2 always equals cr3 ( cr1 = 

0). To studX the whole biaxial loading range, other techniques have been developed. 
Bellamy 19 1 induced (approximate states of) biaxial compression by loading hollow 
mortar cylinders in a triaxial cell with an external fluid pressure. This technique, 
however, gives only satisfactory results for thin-walled mortar tubes (radial stresses 
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are nearly zero). Concretes with larger aggregates require thicker specimens and 
therefore cannot be tested in this way. 
The aforementioned drawbacks do not exist when concrete cubes are loaded 
biaxially between two sets of load bearing platens and by independently controlled 
hydraulic jacks (similar to a 'true' triaxial loading apftaratus without the third 
loading axis). Performing this kind of test Iyengar et al 1 65 reproduced similar test 
results as Bellamy. In these tests rigid bearing platens were used. When the load is 
applied by these platens, significant frictional stresses along the 'concrete - steel 
platen' interfaces are introduced (i.e. a triaxial state of stress). Reduction of this 
platen restraint reduces the biaxial compressive strength of concrete considerably as 
can be found in the work of Robinson 1967 Kupfer et al 1969

• 
1973 Liu 1972 and 

Nelissen 1972• ' ' 

Figure 2.1 shows biaxial strength data of Kupfer and Liu, with reduction of platen 
restraint, in addition to tests done at Eindhoven University of Technology, 
Technical University in Munich (TUM), Bundesanstalt fiir Materialpriifung in 
Berlin (BAM) [Schickert & Winkler 1977

] and the University of Colorado (CU). 
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• Biaxial test results by Van Gee! [1998] 
• Biaxial test results by Van Mier [1984] 

==}Biaxial test results by Kupfer [1973] 

-·-·-·- Biaxial test results by Liu [1972] 
--- Biaxial test results by TUM in [Gerstle, 1978] 
············· Biaxial test results by BAM in [Gerstle,1978] 
---- • Biaxial test results by CU in [Gerstle, 1978] 
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Figure 2.1. Plane stress (biaxial) strength envelope [Van Geel 1998
]. 
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2.1.1.1 .2 Triaxial strength 

The strength of concrete is highly sensitive to the presence of lateral confinement. 
However, the biaxial strength envelope (see figure 2.1) shows the effect ofthe latter 
only poorly. The effect increases drastically when- moreover- confinement in the 
third principal direction is applied. 
The essence of this kind of material behaviour is incorporated in the Mohr-Coulomb 
strength criterion based on the maximum and minimum principal stress and internal 
friction. This criterion is widely used because of its appealing physical background 
and its simplicity. 
Triaxial strength data of concrete tested in a triaxial cell were first given by Richart 
et al 1928

. Afterwards, much testing has been done in the sixties and the seventies of 
the 20th century. Examf.les can be found in Hobbs 1971 of tests performed in a triaxial 
cell and in Mills et al 1 70

, Launay et al 1970 and Bertacchi et al 1972 of tests performed 
in a "true" triaxialloading apparatus. Test results of loading techniques, including 
extensive research on the influence of boundary conditions, are given in the 
cooperative research of Gerstle et al 1978

• 

Ahmad et al 1982 gathered triaxial strength data by performing experiments on 
concrete confined by steel tubes of varying wall thickness. These results compared 
favourably with the test data above. 

Figure 2.2. Haigh-Westergaard coordinate system in space of principal stresses. 

Test data on triaxial strength are often visualised by adopting the Haigh­
Westergaard cylindrical coordinate system (figure 2.2). This coordinate system is 
related to the Cartesian coordinate system of principal stresses by the following 
equations: 
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1 
cro =3(crl +cr2 +cr3) 

to = 1~(crl - cr2 )
2 

+ (cr2- crS + (cr3- cri Y 
2cr 1 - cr 2 - cr 3 

COS<p = {;; 
Jt

0
-.'2 

in which cr0 is the octahedral normal stress and t 0 is the octahedral shear stress. 
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Figure 2.3. Cross section oftriaxial strength envelope in T0 -a0 plane 
[Podgorski 1985

}. 
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Figure 2.3 shows the triaxial strength envelope in the Rendulic plane ( cr2 = cr3). All 
results from tests carried out in a triaxial cell are located in this plane. The 
compressive meridian comprises the ultimate stress states when one major 
compressive principal stress goes together with two equal minor confining principal 
stresses. The tensile meridian comprises the ultimate stress states when two equal 
major confining principal stresses go together with one minor compressive principal 
stress. 
The shape of the strength envelope in the octahedral (or deviatoric) planes at 
various hydrostatic stress levels is depicted in figure 2.4. As tests carried out in a 
triaxial cell only provide data on the compressive and tensile meridians, more data 
from tests carried out in a "true" triaxialloading apparatus ( cr1 * cr2 * cr3) are needed 
to construct the shape of the triaxial strength envelope in this plane. 

X Experiments (Launay et al) 
--Five Parameter Model 

(fe = uniaxial compressive strength) Deviatoric Sections 

Figure 2.4. Cross section oftriaxial strength envelope in octahedral (deviatoric) 
plane [Willam 1975

]. 

The basic characteristics of the Mohr-Coulomb strength criterion are indeed 
confirmed by experimental data as depicted in figure 2.3 and 2.4: the triaxial 
strength envelope is convex, highly sensitive to lateral confinement and open ended, 
i.e. no failure is found for high hydrostatic compression [Ba.Zant et al 1986

]. 
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The today's interpretation of the Mohr-Coulomb triaxial strength criterion is the 
first-order approximation of the triaxial strength envelope obtained by triaxial test 
data. The linear shaped compressive and tensile meridians and a linear interpolation 
between the meridians in the octahedral plane (i.e. no influence of the intermediate 
stress level), inherent to the Mohr-Coulomb criterion, do not permit an accurate 
estimation of the triaxial strength. Also, the experimentally observed change of 
shape of the deviatoric section, from triangular to more circular with increasing 
hydrostatic compression [Hannant 1974

], is not represented by the Mohr-Coulomb 
criterion. 
Many researchers have proposed adjusted strength criteria for better agreement with 
experime~tal data. Emperical models with meridians as ~uadratic functions of the 
hydrostatic stress have been proposed [Hoek & Brown 198 

], possibly extended with 
a smooth elliptic interpolation in the deviatoric sections [Willam & Warnke 1975

; 

Menetrey & Willam 1995
]. Fan & Wang 2002 combined an empirical approach for the 

derivation of quadratic functions of the hydrostatic stress with a more theoretical 
approach of adjusting the shape of deviatoric sections by entering the intermediate 
principal stress level directly into the shape functions. 
Other - more phenomenological models - try to capture the global shape of the 
experimentally observed strength envelope in a mathematical format with the 
assumption that the triaxial strength of concrete is a function of independent stress 
variables, such as the stress invariants [Lade 1982

; Hsieh et al 1982
; Podgorski 1985

] . 

2.1.1.2 Stress-displacement curves 

<J 1 = <J 2 = -195 MPa 

a 1 = a 2 = -25 MPa ---
<J 1 = <J 2 = -10 MPa 

6 4 2 0 -2 -4 -6 -8 -10 
u1 = u2 [mm] u3 [mm] 

Figure 2.5. Stress-displacement curves in triaxial compression tests (dashed lines 
represent uniaxial test) [Van Geel 1998j. 
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Figure 2.5 shows typical test results of normal strength concrete cubes 
(1 00 x 100 x 100 mm3

) loaded in triaxial compression towards the compressive 
meridian (cr3 < cr1 = cr2). Apart from the major increase of strength with increasing 
confining pressure, also a considerable increase in ductility is observed. The post­
peak response changes drastically from highly brittle in uniaxial compression to 
highly ductile for high confinement levels. This phenomenon, often referred to as 
brittle-ductile transition, is investigated by many experimentalists [Jamet 1984

; Smith 
et al 1989

; Sfer et al 2002
]. 

2 I 0 -1 -2 

(u1 + U2 + u3)/3 [mm] 

Figure 2. 6. Axial displacement versus mean 'volumetric dist,lacement' in triaxial 
tests on normal strength concrete [Van Gee/ 199 

'). 

Figure 2.6 shows another distinctive property of concrete loaded in triaxial 
compression, i.e. the development of volumetric strain (or displacement) during 
testing. Kotsovos & Newman 1977 pointed out that three notable points might be 
indicated in the curve of volumetric strain. The first point indicates a change in the 
rate of volumetric strain towards more contraction and exhibits distinct non-linear 
material behaviour. The second point indicates a change in the rate of volumetric 
strain towards more dilation. While the first two points can only be determined 
upon close examination of the deformational behaviour, and consequently, not from 
figure 2.6 only, the third point (around peak stress in figure 2.5) is easily defined 
since it coincides with the level at which the overall volume of the material 
becomes a minimum. These points indicate a distinctive change in the fracture 
process of the specimen [Kotsovos & Newman 1977

; Imran & Pantazopoulou 1996
]. 

Another topic of interest is the potential loading path dependency of triaxial test 
results. Based upon loading path variations in the pre-peak regime, Gerstle et al 1978

, 
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Smith et al 1989 and Imran & Pantazopoulou 1996 concluded that the triaxial strength 
of concrete was basically path-independent. Kotsovos 1979 confirmed this for low 
levels of confinement, but found the strength results in the 'high confinement' 
region somewhat dependent on the maximum achieved hydrostatic stress level 
during different loading paths. Although the observed path-dependency is only 
small regarding the strength of concrete, the pre-peak volumetric deformational 
behaviour is influenced much more by the chosen loading path [Kotsovos 1979

; 

Imran & Pantazopoulou 1996
]. 

By carrying out 'rotation experiments', i.e. tests in which the most compressive 
· · 1 d. · · d .+. h. k V M. 1984 1986 pnnc1pa stress 1rect10n IS rotate aJter reac mg pea stress, an 1er · 

showed that the strength after rotation in some cases was dependent on the loading 
history. The existence of path dependency upon post-peak preloading was found to 
depend mainly on the direction ofmacrocracks formed in the post-peak stage before 
rotation. 

2.1.2 Cracking in concrete 

2.1.2.1 Uniaxial compression 
The fracture process of normal strength concrete in uniaxial compression has been 
studied extensively in the early sixties of the 201

h century at Cornell University. An 
extensive review of this research is given in Slate & Hover 1984

. Based on direct 
microscopic observations and x-ray photographs Hsu et al 1963 related the process of 
internal microcracking to the shape of the stress-strain curve. To comprehend the 
fracture process it is essential to consider the heterogeneous nature of the concrete 
material. To this end, the highly heterogeneous system of concrete was simplified to 
a two-phase composite structure of coarse aggregate grains embedded in a mortar 
matrix. A subdivision into three crack types was made: 
• Aggregate cracks through coarse aggregate grains 
• Mortar cracks through the mortar matrix 
• Cracks occurring at the so-called interfacial transition zone (ITZ)1

, providing 
bond between the mortar matrix and the surface of the aggregate grains. 

It was observed that a significant number of cracks or crack-like voids exist prior to 
the application of external loads. These cracks are primarily ITZ cracks caused by 
micro bleeding at the coarse aggregate grains and non-homogeneous volume 
changes during setting and hydration. The existence of these cracks shows that the 
ITZ is the weakest link in the heterogeneous concrete system [Hsu & Slate 1963

; 

Alexander et al 1968
]. Above about 30% of the ultimate load, new ITZ cracks are 

formed and the existing ITZ cracks start to grow around the aggregate grains. The 
stress-strain curve starts to deviate from a straight line (see figure 2.7). As the load 
reaches 70 to 90% of the ultimate load, cracks through the mortar start to grow 
noticeably. These mortar cracks form bridges between adjacent ITZ cracks. The 
curvature of the stress-strain curve becomes more pronounced. This loading range 

1 The existence and specific structure of the ITZ is further explained in chapter 3. 
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coincides with the occurrence of a 'critical stress' level, i.e. the stress level at which 
the volume of the concrete starts to increase rather than continuing to decrease 
[Shah & Chandra 1968

]. 

<Jpeak 

0.9<Jpeak 

O.?crpeak 

0.3crpeak 

unstable growth of combined cracks 

formation of combined cracks: mortar 
cracks bridging between ITZ cracks 

growth of ITZ cracks 

pre-existing ITZ cracks 

Figure 2. 7. Crack formation and the compressive a-& curve according to 
Hsu et a/ 1963 (redrawn from Vone992 

). 

At further increase of loading, crack growth becomes unstable resulting in the 
formation of a continuous crack pattern at failure. 
More recently, much more research has been carried out on measurement of crack 
growth in concrete specimens loaded in uniaxial compression [amongst others: 
Suaris & Fernando 1981

; Darwin & Dewey 1989
; Nemati et al 1998

]. Although improved 
crack survey techniques permitted more cracks to be 'visualised', the process of 
crack growth as described by Hsu et al was generally confirmed. 
Regarding the crack pattern at failure, much controversy exists about the relative 
degrees of mode I (axial splitting) versus mode 11 (inclined shear) cracking. In this 
respect, Torrenti et al 1989 reported clear mode 11 cracking while Rutland & 
Wang 1997 reported predominantly mode I cracking. Evidently, the mode of failure is 
much influenced by the boundary conditions, i.e. frictional restraint at the 
specimen-loading platen interface [Kotsovos 1983

]. With reduction of the frictional 
restraint at the loading surface, combined mode I and mode 11 crack planes were 
observed - in two orthogonal directions - dividing the specimen in slender conical 
pieces [Van Mier 1984

; Vonk 1992
; Van Geel 1998

]. 

The observation of combined mode I and mode 11 cracking does not necessarily 
imply the initiation of mode 11 cracks during loading. As stated before, isolated 
inclined (ITZ) cracks are already present in concrete prior to loading. Horii & 
Nemat-Nasser 1985 showed by analysing an idealized brittle material with pre­
existing inclined flaws, that the formation of inclined macrocracks may occur solely 
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through the initiation of tensile splitting (mode I) cracks bridging between the pre­
existing inclined flaws. Nevertheless, complete failure of the specimen occurs still 
by sliding along the pre-existing inclined cracks, implying that internal friction still 
remains a determinative factor in uniaxial compressive failure. 

2.1.2.2 Triaxial compression 
The fracture process of concrete loaded in triaxial compression is conceptuallls 
identical to fracture in uniaxial compression. It was observed by Krishnaswamy 19 8 

that the presence of lateral confinement only decreases the rate of development of 
internal cracks. As stated in section 2.1.1.2, Kotsovos & Newman 1977 pointed out 
three characteristic points on the curve of volumetric strain that were strongly 
related to the fracture process. The first point - indicating a tendency towards more 
contraction- is defined by "local fracture initiation". Kotsovos postulated that the 
observed change in deformational behaviour was caused by strain redistribution due 
to limited crack branching at the tips of existing isolated cracks. The second point­
indicating a tendency towards more dilation - is defined by the "onset of stable 
fracture propagation", i.e. like in uniaxial compression pre-existing ITZ cracks start 
to grow continuously. The third point, indicating the level at which the overall 
volume of the material becomes a minimum, is defined by the "onset of unstable 
fracture propagation", i.e. combined cracks have grown to such extent that the crack 
system becomes unstable. Acoustic emission measurements during triaxial 
compressive loading of model concrete specimens made with 5 mm glass balls and 
cement paste confirmed the existence of the transition points as indicated above 
[Bergues 1982

]. A clear difference in the fracture process between uniaxial and 
triaxial compression is that the change in the rate of volumetric strain towards more 
contraction practically does not exist in uniaxial compression. 
More recently, Nemati et al 1998 reported that the crack density at 80 to 85% of the 
ultimate load decreased considerably with increasing confinement. Confinement 
also decreased the percentage of ITZ cracks. The recordings were made after 
impregnating the specimens with an alloy - called Wood's metal - in the liquid 
phase, while the specimen was under load. The specimens were not unloaded until 
the metal was solidified to preserve the microstructure in the specimens under load. 
These observations indicate that the occurrence of interconnected open cracks under 
load, i.e. mode I cracks, decreases with increasing confinement. Isolated cracks and 
closed (mode II) cracks are not filled with the metal, and consequently, remained 
undetected. 

2.1.2.3 Crack patterns at failure 
Within the triaxialloading regime, Van Mier 1984 distinguished three distinct failure 
modes (figure 2.8): 
• Planar failure mode. This mode is observed in triaxial tests allowing for only 

one tensile deformation (plane strain tests, triaxial tests with two clearly 
different confining pressures). These specimens show very pronounced inclined 
shear-bands with the normal oriented perpendicular to the intermediate 
compressive direction (one directional mode II failure). 
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• Cylindrical failure mode. This mode is observed in triaxial tests allowing for two 
large tensile (positive) deformations. This mode occurs in triaxial tests with 
equal confining pressures ( compressive meridian) with the uniaxial compression 
test as a special case. These specimens show a more distributed failure mode, 
which is the result of interfering shear planes in two directions (two directional 
mode II failure). 

• Tensile failure mode. This mode is displayed in specimens loaded in tension 
with one or two confining pressures. At failure, these specimens displayed a 
single tensile crack, perpendicular to the tensile stress direction (mode I failure). 
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Figure 2.8. Classification of failure modes [Van Mier 1984
}. 

The observations of Van Mier were limited to a lateral level of confinement of 10% 
(cr1 = cr2 = O,lcr3). Observations on specimens loaded in triaxial compression with a 
level of confinement of more than 25% revealed hardly any macroscopic (localised) 
fracture in the work of Jamet 1984 and Van Geel 1998

, although extensive deformation 
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is reported. Yet, such absence of localised fracture - at these high levels of 
confinement - is somewhat controversial, since also localised fracture is reported 
[Rutland & Wang I

997
; Sfer et al 2002

]. 

Considering the case of uniaxial compression within the triaxial loading regime of 
figure 2.8, it appears that this loading case is located in the transition regime 
between the tensile failure mode and the cylindrical failure mode. Therefore, it is 
not surprising that the failure mode in uniaxial compression is highly influenced by 
a small amount of lateral compression or tension, caused - for instance - by the 
boundary conditions. 

2.1.2.4 Localisation of deformations 

The most salient aspect of post-peak concrete behaviour is the formation of large 
macrocracks forming a failure mechanism. All further deformations concentrate in 
these macrocracks while the surrounding continuum is unloaded, i.e. the 
deformations localise in a few macrocracks. Consequently, the geometry, 
dimensions and the boundary conditions dominantly influence the mechanical 
response of the concrete specimen/element. For this reason, often the term 
'structural' behaviour is used as opposed to 'material' behaviour that marks a 
continuously well-distributed deformation pattern upon loading, for which the 
continuum theory is valid and the mechanical behaviour can be characterised by a 
unique stress-strain relationship. In this sense, pre-peak concrete behaviour 
macroscopically is material behaviour. 
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Figure 2.9. Measured post-peak response in uniaxial compression tests on three 
specimens with varying height (redrawn from Van Mier 1984 
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The occurrence of localised deformations is best demonstrated by comparing the 
stress-displacement curves of specimens of different size. After all, continuum 
'material' behaviour incorporates a unique stress-strain relationship, while fully 
localised behaviour is governed by crack displacement and so incorporates a unique 
stress-displacement relationship [Van Mier 1984

]. In this way, Van Mier 1984 first 
demonstrated localisation of deformations in uniaxial compression in the post-peak 
loading regime (see figure 2.9). Later on, many ex~erimentalists confirmed this 
finding (Vonk 1992

; Van Vliet 1996
; Van Mier et al 199 

]. Apart from the behaviour 
around peak stress, Van Geel 1998 found similar descending stress-displacement 
curves for concrete loaded in multiaxial compression. As already expected from the 
observed crack patterns at failure in these tests (pronounced shear band rupture, see 
figure 2.8), this confirms the existence of localisation of deformations also in the 
presence of confinement. 
In the work of Van Geel 1998

, the presumption was further made that around peak 
stress the mechanical response is neither uniquely characterised by a stress­
displacement curve, nor by a stress-strain curve. By performing extensive strain 
gauge measurements at the surface of the specimens under triaxial loading, Van 
Geel indeed demonstrated that the mechanical response at and just after peak 
strength was governed by continuum material behaviour as well as localised 
macrocrack growth. In such cases, also the strength of the structure is influenced by 
localisation of deformations. This effect, known as size effect for strength, has been 
observed for many concrete structures failing due to mode I cracking 
[Bazant 1984, 1994]. 

2.2 Modelling 

In this section, a global overview is given of existent modelling approaches dealing 
with the specific structural behaviour of concrete under loading as partially outlined 
in the preceding sections. A global distinction is made between models regarding 
cracks as true spatial discontinuities in a continuous solid (section 2.2.1), models 
that allow the formation of spatial discontinuities (cracks) at an arbitrary location 
and orientation by simplifying the geometric representation of the continuous solid 
(section 2.2.2) and models that account for the effects of cracking by distributing 
the crack displacements over a certain volume in order to produce crack strains and 
preserve the original continuity of the problem formulation (section 2.2.3). 

2.2.1 Discrete crack modelling 

2.2.1.1 Discrete crack modelling in a homogeneous brittle solid: 
Linear Elastic Fracture Mechanics (LEFM) 

Fundamental work on fracturing of brittle homogeneous materials was done by 
Griffith 1924

• He investigated the influence of a flaw on the strength of a 
homogeneous material in a uniformly loaded two-dimensional body by simulating 
such a flaw with an elliptical hole, for which Inglis 1913 gave previously the solution 
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of the elastic stress field. Griffith concluded that 'maximum stress' at the tip of the 
flaw was not an appropriate strength criterion and suggested an alternative theory 
based on an energy concept. This concept was that solids, similar to liquids, possess 
surface energy and, in order to propagate a crack (or increase its surface area), the 
corresponding surface energy must be compensated through externally added or 
internally released (strain) energy. For a linear elastic solid, the release of strain 
energy upon crack extension may be calculated from the solution of the elastic 
stress field of the crack problem. 
In the early 1950's, researchers who were primarily interested in catastrophic failure 
of large metallic structures reconsidered the energy balance theory. It was then 
concluded that for metals considerable plastic deformations are present at the crack 
front and that this plastic work should be included in the energy balance. Under the 
condition that the plastic zone around the crack tip is very small compared to the 
crack size, it was observed that the rate of strain energy available for fracture could 
still be calculated from the purely elastic solution of the crack problem. In addition, 
Irwin 1957· 1958 developed a universal method for calculating the rate of strain energy 
available for fracture of a solid. He recognized that stress and displacement fields 
around the crack front in a linear elastic solid under most general loading conditions 
may be expressed in terms of three sets of universal angular functions, multiplied by 
three 'stress intensity factors' for mode I, II and Ill cracking (see figure 1.7). These 
'stress intensity factors' are the only quantities dependent on the loading and 
geometry of the solid. Based upon the stress intensity factors for a specific crack 
growth problem, the corresponding strain energy release rates Gh Gu and Gm 
(energy available to create a unit fracture surface) can be evaluated. 
To complete the energy balance, a realistic single-parameter characterization of the 
material's resistance to fracture is also needed. For brittle solids it is assumed that 
the size and the shape of the fracture process (or energy dissipation) zone remain 
essentially constant during crack propagation, which implies that the energy needed 
to create a unit fracture surface is a material constant (for each crack mode). Irwin 
designated this fracture resistance energy as fracture toughness Gc ( Grc for mode I 
cracking). 
In later years, much effort has been put in solving stress and displacement fields of 
various linear elastic crack problems (mainly mode I) in order to calculate the stress 
intensity factors. For rather complicated geometries/loading this can only be done 
using numerical methods, like the Finite Element Method (FEM). An overview of 

h h d . . b p . 11996 sue met o s 1s g1ven y ebt et a . 
An important issue involving fracture mechanics is the direction of crack growth. In 
a pure mode I loading situation it is evident that the crack extension takes place in 
the direction of the original crack. Yet, in practical engineering problems, mode I 
loading is generally accompanied by a certain amount of mode II loading. In such 
mixed-mode loading conditions, crack extension usually takes place under an angle 
with respect to the direction of the original crack. Two criteria have been 
formulated to determine the angle of crack extension in mixed-mode loading 
conditions, the Maximum Stress Criterion [Erdogan & Sih 1963] and the Strain 

. C . . [S'h 1974] Energy Density ntenon 1 . 
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2.2.1.2 Influence of heterogeneity 
LEFM may be applied for fracture of homogeneous solids where potential inelastic 
behaviour is limited to a small region around the crack tip compared to the crack 
size and the size of the solid. A highly heterogeneous material like concrete 
generally does not satisfy this condition. It is widely accepted that in concrete 
fracture a rather large fracture process zone exists ahead of the crack tip, displaying 
distinct non-linear material behaviour. 
There exist consensus among researchers that LEFM may be applied to study large­
scale crack growth in large-scale concrete structures, like concrete dams. In such 
massive structures, the influence of the small-scale heterogeneity of concrete 
disappears. The structure can be considered macroscopically homogeneous and the 
size of the fracture process zone becomes small compared to the crack size and the 
. 1985] s1ze of the structure [Ingraffea & Saouma . 

The scale of most concrete structures, however, is too small to justify the 
application of LEFM. As the same deficiency _existed in t~e case . of fractur~ of 
ductile metals, the concrete fracture mechamcs commumty rev1ewed vanous 
techniques developed for these metals, utilizing elasto-plastic fracture mechanics 
(with emphasis on mode I fracture). Worth mentioning in this respect is the J­
integral technique [Rice 1968], which was found to be applicable for elastic (linear 
and non-linear) material behaviour in the fracture process zone. Since non-linear 
elasticity is equivalent to the deformation theory of plasticity (provided there is no 
unloading), the J-integral technique performed well for fracture of ductile metals. 
Mode I cracking in concrete, however, displays a considerable amount of unloading 
within the fracture process zone. Hence, the J-integral technique is not applicable 

. '11 b 1983] for the analys1s of concrete mode I fracture [H1 er org . 

fictitious (J 

crack 

o~~~~~~~~r----. 

0 u 

Figure 2.10. Representation of fracture process zone in 'Fictitious Crack Model' 
[Hillerborg et al 1976

]. 

. 1960 bl 1962 c 11' Based on the plastic crack models of Dugdale and Baren att 10r meta 1c 
fracture, Hillerborg et al 1976 proposed a concept named 'Fictitious Crack Model', 
which has since been used extensively for modelling mode I cracking in concrete. 
In this model, the crack is assumed to propagate when the normal stress at the crack 
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tip reaches the tensile strength .fr. When the crack opens, the stress is not assmned to 
fall to zero at once, but to decrease with increasing crack opening u. At the crack 
opening uA the stress has fallen to zero. For that part of the crack (u < uA), the 
'fictitious' crack in reality corresponds to a microcracked zone (fracture process 
zone) with some ligaments for stress transfer. The amount of energy GF absorbed 
per unit crack area in opening the crack from zero to or beyond uA is 

UA 

GF = fcrdu 
0 

and corresponds to the area under the stress-displacement curve cr = f(u) as depicted 
in figure 2.10. The fracture energy GF and the shape of the stress-displacement 
curve (figure 2.10) are regarded in this model as material properties. 
Using either LEFM or Hillerborg type fracture mechanics, the discrete crack 
approach may be applied within FEM computations. However, this has some 
serious implications. A priori, it is generally not known in what direction potential 
cracks will propagate. This information comes only available during the FEM 
analysis, implying that during the analysis the geometry of the structure (including 
the cracks) constantly changes and remeshing of the structure is inevitable. This 
procedure might be very time-consmning unless the process is highly automated 
and the remeshing technique is made computationally very efficient. Using LEFM, 
this kind of analysis has been reported by Ingraffea & Saouma 1985

, Sousa et al 1989
, 

Reich et al 1994 and Bittencourt et al 1996
• 

Above difficulties can be avoided when the crack path is known in advance. In such 
cases the continuum elements are aligned along the assumed crack path and 
interface fracture may occur along the aligned element edges. Crack problems being 
not very sensitive to the true direction of cracking might also be dealt with by 
inserting interface elements along all conceivable paths in the beginning of the 
analysis [Tran et al 1998

; Pearce et al 2000
]. 

Analyses incorporating non-linear mode I fracture models (e.g. Fictitious Crack 
Model) may be performed with pre-assmned crack paths [Rots 1988

; Reich et al 1994
]. 

Extension of the Fictitious Crack Model to include also mode II cracking is also 
reported. With a crack path obtained from previous LEFM analysis, Galvez et al 2002 

investigated the potential influence of mixed-mode cracking by supplementing the 
scalar-valued tensile strength criterion with a non-linear (Mohr-Coulomb type) 
stress-state bounding surface, incorporating tensile and cohesive softening. 

Another approach to allow for the heterogeneity of the concrete material is to model 
the heterogeneous structure of concrete explicitly, for instance, by a stochastic 
approach in which material properties (e.g. ultimate strength, Young's modulus) are 
randomly distributed throughout the structure. Such an approach requires the size of 
the mesh elements to be sufficiently small with respect to the size of the structure to 
be modelled, so that the probabilistic analysis performed on the scale of the mesh 
elements is representative of the structure as a whole. Such analyses indicate that, 
despite the application of a local brittle failure criterion, stochastic modelling 
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introduces (ductile) softening behaviour on the global (structural) level caused by 
crack arrest effects at stronger adjacent mesh elements [Rossi et al 1987

• 
1992

]. 

The heterogeneous structure of concrete might also be modelled explicitly by 
considering the micro/mesostructure of concrete, for instance, by modelling 
concrete as a two-phase composite of large aggregate grains embedded in a mortar 
matrix with pre-existing cracks present at the ITZ between hardened cement paste 

. [Z . & w· 1981 W & H 1993] A . h and aggregate grams a1tsev 1ttmann ; ang uet . ssummg t at 
each of the phases is homogeneous and behaves in a linear elastic and brittle way, 
LEFM may be applied in such systems. Classical crack path criteria for elastically 
homogeneous materials, however, are not valid when the crack advances at a 
bimaterial interface, because - in this case - the relative magnitudes of the fracture 
toughnesses between the constituent materials and the interface are also involved 
[Biiyiikoztiirk & Lee 1993

]. 

The assumption of linear elastic brittle material behaviour in each phase of a two­
phase characterization of concrete (with inherent stress singularity at the crack tip), 
however, is still debatable. Finite element computations, using a two-phase 
characterization of concrete and non-linear Hillerborg type material behaviour for 
mode I cracking, show that for obtaining a close match between simulation and 
experimental test results, the introduction of - though more brittle - tensile 
softening laws is still required [Vonk 1992

; Roelfstra 1989
; Stankowski 1990

• 
1992

; Kwan 
et al 1999

]. To allow for realistic concrete behaviour in uniaxial compression, the 
material laws in these modelling approaches were supplemented with a Mohr­
Coulomb type slip criterion, allowing for the effects of cohesion and internal 
friction between crack faces loaded in shear/compression (mode II). 

2.2.2 Non-continuum modelling 

A major drawback of the discrete crack approach is that, unless the crack path is 
known in advance, extensive remeshing has to be performed during the crack 
analyses. This problem is avoided in the approaches presented in this section. These 
approaches assume a discretization of the continumn solid, i.e. a non- 'space filling' 
structure is generated that could resemble the porosity of concrete. For such 
structures it is possible to allow for potential cracking (displacement discontinuity) 
anywhere throughout the structure. 

2.2.2.1 Lattice modelling 
In a lattice type model the material is schematised as a network of (small) truss or 
beam elements. Crack growth is obtained by removing elements that exceed a 
certain fracture criterion, most often their tensile strength. 
Concrete fracture in mode I was simulated in this way by Burt & Dougi11 1977

, 

adopting geometrically random lattices (2D) with overlapping truss elements. The 
truss elements were taken to be linear elastic and brittle, the heterogeneity was 
introduced by assigning a random distribution of the material properties (Young's 
modulus and tensile strength) throughout the structure. 
Another way of introducing the heterogeneity of concrete is projecting a lattice on 
top of a generated structure of aggregate grains embedded in a mortar matrix and 
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assigning a different strength and stiffness to the beam (or truss) elements 
depending on their location in the two-phase material (see figure 2.11 ). Using truss 
elements and introducing tensile softening, this kind of modelling is adopted by 
Schorn & Rode 1991

, Bazant et al 1990
. Realistic mode I crack patterns and load­

deformation curves are obtained. However, a geometrically random lattice of truss 
elements, as used by Bazant, is not capable of reproducing a correct value of 
Poisson's ratio because the truss elements only allow axial force transfer. 
In the work of Van Mier & Schlangen [Schlangen & Van Mier 1992

a,b, 

Schlangen 1993
], triangular regular and random lattices of non-overlapping beam 

elements2 are used in order to predict correct values of Poisson's ratio. Simulated 
(mode I) crack patterns match very well those observed in experiments. Although 
brittle fracture is assigned to the individual beams, the load-deformation curves still 
show some ductility as a result of the heterogeneity introduced. Yet - compared to 
experiments - the simulated structural response is too brittle. 

(a) (b) (c) 

Figure 2.11. (a) Generated grain structure; (b) projection of triangular lattice; 
(c) definition of aggregate, ITZ and matrix beams [Schlangen 1993

]. 

Schlangen 1993 hypothesized that smaller particles included in the generated grain 
structure could enhance the ductility of the structural response. Arslan 1996 and Lilliu 
& Van Mier 2003 pointed out that several factors enhance the ductility of the 
structural response: 
• Smaller particles included in the generated grain structure 
• Including voids in the generated grain structure 
• Taking into account the true three-dimensional nature of cracking 
Based on these observations, it seems legitimate to conclude that the ductility of the 
structural response of plain concrete structures failing in mode I is the result of 
brittle microcrack phenomena at various lower scale levels. 
A drawback of using regular lattices in mode I crack studies is that a certain amount 
of anisotropy is introduced due to the orientation of the lattice beams. 
Consequently, the material behaviour and crack patterns can be expected to depend 
on the orientation of the lattice [Schlangen & Garboczi 1997

]. To reduce any 
influence of mesh orientation, random lattices can be used [Vervuurt 1997

; Van Mier 
& Vervuurt 1997

]. The adoption of a fracture criterion based on the average stress 

2 Beam lattices as a numerical technique in theoretical physics were first used by Herrmann et al 1989
• 
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state in the nodes reduces also the dependency on mesh orientation [Schlangen & 
. 1997] Garboczt . 

Although lattice modelling with beam removal upon cracking seems a promising 
tool for studying mode I or mixed mode crack phenomena, their use is highly 
debatable for mode 11 crack studies. The removal of lattice beams upon cracking is 
only legitimate if the crack opens and remains open during further loading. This is 
not the case for concrete loaded in (multiaxial) compression. Although cracking in 
compression might initiate in mode I, crack closure and force transfer through 
closed cracks are essential during the formation of the final failure mode in uniaxial 
and particularly in multiaxial compression. 

2.2.2.2 Assemblages of spheres or disks 
The structure of the concrete material may also be modelled as an irregular 
assemblage of rigid spheres or disks (resembling the coarse aggregate grains), 
locally bonded together by elastic contact layers. Initially, this method was used for 
simulating the failure process of non-cohesive granular soils [Cundall & Strack 1979

]. 

The rigid spheres or disks are allowed to translate and rotate. Normal deformation 
and shear deformation is allowed in the contact layers. Slip within the contact layers 
is most often modelled by assigning a Mohr-Coulomb type slip criterion to the 
contacts. 
The approach may be extended to the analysis of cohesive granular materials by 
including cohesive strength of the contact layers. In conformance with the classical 
Mohr-Coulomb slip theory non-zero cohesion may be introduced [van Baars 1996

]. 

After loss of cohesive strength, the contact layers are still capable of transferring 
compressive stresses and the effects of internal friction are still accounted for. 
Conceptually, the approach may therefore capture mode I as well as mode 11 
cracking. 
Of course, other contact laws may be assigned as well. Zhong & Chang 1999 applied 
a contact law based on internal progressive microcracking in the contact layer 
according to the LEFM theory. Acceptable results were obtained for concrete 
loaded in uniaxial tension and uniaxial compression. Biaxial compression tests were 
also simulated with the 2D model. However, its validity for such stress states can be 
questioned, since the 2D model only allows for crack formation with in-plane 
normals to the crack plane, while the normals to the crack planes in biaxial 
experiments typically point out-of-plane (see figure 2.12). 

~ 

Figure 2.12. Typical crack planes (with normals pointing out-of-plane) 
in a biaxial compression test. 
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Unlike the lattice approach, the modelling consisting of locally bonded rigid spheres 
or disks is not easy to extend to allow for cracking through the aggregate grains. In 
tension or uniaxial compression substantial cracking through the aggregate grains 
only is observed in lightweight or high strength concrete, not in normal strength 
concrete. However, in multiaxial compression substantial aggregate cracking is 
observed in normal strength concrete [Van Geel 1998

]. 

2.2.3 Continuum solid mechanics 
Within the framework of continuum solid mechanics, cracking is treated not as 
discontinuities in the displacement field, but the crack displacements are distributed 
over the surrounding continuum. As opposed to discrete cracking this concept is 
often referred to as smeared cracking. 
A distinction is made in the modelling of diffuse cracking prior to peak load, in 
which the crack strains are the crack displacements divided by the crack spacing, 
and localised cracking after peak load where the term crack spacing loses its 
meaning (see figure 2.13). 

diffuse cracking localised cracking 

Figure 2.13. Diffuse cracking versus localised cracking. 

2.2.3.1 Diffuse cracking in continuum solid mechanics 

The overall non-linear material behaviour of concrete in the pre-peak region of the 
loading diagram due to diffuse cracking is usually modelled within the framework 
of the theory of elasto-plasticity or/and the theory of continuum damage mechanics. 

2.2.3.1 .1 Elasto-plasticity 

The basics of the classical theory of elasto-plasticity are explained in chapter 1. 
Although the theory is originally developed for metals, some distinct features may 
also be applicable to concrete behaviour. From a macroscopic point of view 
concrete also displays substantial non-linear stress-strain behaviour and significant 
plastic strain upon unloading. Although for concrete it is more appropriate to use 
the term "irreversible" strain, instead of plastic strain [Chen & Han 1988

]. The 
non-linearity due to the heterogeneous nature of the concrete composite is usually 
accounted for by defining strengthening laws based on internal state parameters and 
expanding stress-state bounding surfaces until the ultimate strength surface (figures 
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2.3 & 2.4) is reached. Realistic volumetric strain curves as depicted in figure 2.6 
may be achieved by variation of the dilatancy angle, which governs the direction of 
(non-associated) plastic flow. Examples of this modelling apr,roach can be found in 
Vermeer & de Borst 1984

, Faruque & Chang 1986
, Lin et al 19 7

, Ohtani & Chen 1988
, 

Pramono & Willam 1989
, Zaman et al 1993

, Etse & Willam 1994
, Meyer et al 1994

• 

The theory of elasto-plasticity may be formulated in strain space as well. The 
concept of a stress-state bounding surface then is replaced by an equivalent strain­
state bounding surface. Examples of such strain-space based elasto-plasticity 
models are described in Mizuno & Hatanaka 1992 and Pekau et al 1992

• 

2.2.3.1 .2 Continuum damage mechanics 

The theory of continuum damage mechanics is based on degradation of stiffness 
due to microcracking. The stiffness of concrete usually decreases with increasing 
strain. This sort of behaviour is considered to be the result of decreasing 'contact' 
area during loading due to the nucleation and growth of open microcracks. 
An ideal material model, for which all non-linear behaviour ori~inates from 
stiffness degradation due to microcracking, was proposed by Dougi11 1 76 and called 
a "progressively fracturing solid" (see figure 2.14.b). 
Mathematically, the formulation is closely related to elasto-plasticity [Carol et 
al 1994

]. Strains may be split in elastic strains and degrading strains. A loading 
function (or stress/ strain-state bounding surface) distinguishes elastic loading from 
loading where changes in stiffness occur. A strengthening/softening law based on 
internal state parameter(s) governs the evolution of the loading function. Yet, the 
designation of a 'flow' rule (direction of degrading strains) is not sufficient to 
define the evolution of the degradation model. A degradation rule for the secant 
stiffness (or compliance) tensor itself is needed. 
The stiffness degradation may directly be defined in terms of the evolution of the 
secant stiffness tensor itself. However, for a three-dimensional state of stress this 
involves evolution laws for 21 independent components of the (symmetric) 6x6 
secant stiffness tensor. Alternatively, it is reasonable to assume a reduced set of 
variables that fully characterize the internal state of microcracking or damage in the 
material, for which simple evolution laws can be postulated. In this case, the secant 
stiffness tensor is the product of the original stiffness tensor with the damage-effect 
tensor, representing the internal state of damage. In its most simple case this 
damage-effect tensor reduces to a single scalar and the stiffness tensor is obtained as 

S=(1-ro)S0 

In which ro (0 ~ ro ~ 1) is the damage effect parameter, S 0 is the elastic stiffness 
tensor and S is the secant stiffness tensor. 
The internal state of microcracking may be determined considering the 
microstructure of concrete. Analytical solutions for the effective (mean) elastic 
moduli - based on the microstructure of concrete - exist for idealized crack 
problems, e.g. for randomly distributed flat (not interacting) cracks in a 
homogeneous solid [Budiansky & O'Connell 1976

]. 
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The evolution of damage is the process of nucleation of new microcracks and 
growth of existing microcracks. The energy consumed on nucleation and growth of 
microcracks should balance the (strain)energy available from the intact continuum. 
Consequently, the process of stable (diffuse) microcracking depends on the stress 
state and the heterogeneity (presence of crack arrestors, like aggregates) of the 
concrete. 
Estimation of the cracking process is only correct when crack interaction is 
considered (including potential crack closure) and the effect of crack arrestors. 
Amongst others, such a micromechanical damage model was proposed by Ju & 
Lee I 991 and Lee & Ju 1991 . Yet, since the experimental determination of the precise 
statistics of microcracks is not possible, the only identifiable and measurable 
continuum damage parameter ts the macroscopic effective stiffness 
[Kr . . . 2000] 

aJClnOVlC . 

Using the macroscopic experimental observation of reduced stiffness, the evolution 
of damage can be calculated by tracking the movement of the loading function in its 
approach towards the bounding surface of ultimate strength [Baluch et al 2003]. The 
loading function may be formulated in stress space [e.g. Voyiadjis & Abu­
Lebdeh 1993], strain space [e.g. L0land 1980; Krajcinovic & Fonseka 198 ; Mazars & 
Lemaitre 1985] or in terms of free energy (energy that can be recovered upon 
unloading, i.e. elastic strain energy - corresponding to the current secant stiffness -
that is available for further microcracking) [e.g. Baluch et al 2003]. A set of 
experiments, selected a priori, may be simulated easily with accurate results. 
Yet, in order to have some predictive potential, such models - based on the 
technique of inverse modelling - also should incorporate essential physics of 
microcracking, such as crack closure, crack interaction and internal friction. 

2.2.3.1 .3 Coupling of elasto-plasticity and continuum damage mechanics 

Figure 2.14.c shows a material exhibiting both plastic deformation and stiffness 
degradation. This type of behaviour is apparent in the loading diagrams of concrete 
loaded in cyclic compression. A theory of elasto-plasticity coupled with continuum 
damage mechanics, called plastic-fracturing theory, was first proposed by Bazant & 
Kim 1979. 

(a) Elasto-Plastic Solid (b) Progressively Fracturing (c) Plastic-Fracturing Solid 
Solid 

Figure 2.14. Typical material behaviours [Chen & Han 1988
]. 
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The formulation of Bazant & Kim encounters some difficulties in the definition of 
the loading criterion because the plasticity criterion is specified in stress space while 
the damage criterion is specified in strain space. To avoid this problem, subsequent 
models have been formulated entirely in stress space [Yazdani & Schreyer 1990; 
Abu-Lebdeh & Voyiadjis 1993] or in strain space [Han & Chen 1986; Stevens & 
Liu 1992]. While continuum damage mechanics normally deals with decreasing 
stiffness in order to ensure positive energy dissipation during loading, the 
combination with elasto-plasticity also allows for treatment of stiffening effects. 
Stiffening as a result of volumetric compaction during triaxial compressive loading 
in the high confinement region is captured in this way by Burlion et al 1998. 

2.2.3.1.4 Heterogeneity 

Within the framework of continuum solid mechanics, the heterogeneity of the 
concrete composite is mostly accounted for by incorporating implicitly the most 
striking consequence of heterogeneity, i.e. the non-linearity of the material 
behaviour. This is accomplished by defining evolution laws for the stress/ strain­
state bounding surface in elasto-plasticity and loading functions in continuum 
damage mechanics. 
Heterogeneity may also be implemented directly. Stochastic approaches can be 
found in elasto-plasticity [Fafitis & Shah 1986] as well as in continuum damage 
models [Mazars & Lemaitre 1985; Breysse 1990; Carmeliet & Hens 1994]. Instead of 
assigning stochastic properties to certain material parameters, the heterogeneity of 
the concrete composite may also be accounted for by modelling concrete as a two­
phase composite of large aggregate grains embedded in a mortar matrix. As 
mentioned in section 2.2.1.2 most of these models allow discrete cracking at the 
ITZ between aggregate and mortar matrix. Cracking through the mortar matrix, on 
the other hand, often is allowed for through a continuum approach [Roelfstra et 
al1989; Stankowski 1990, 1992]. 

2.2.3.1.5 lsotropy/anisotropy 

Under the assumption that pre-load (shrinkage) cracks are orientated randomly, 
concrete may be regarded as an isotropic material prior to loading. Unlike shrinkage 
cracks, stress/strain-induced cracks during loading generally do have a certain 
preferred direction that causes a certain degree of anisotropy. The modelling 
approaches of 2.2.1 and 2.2.2 incorporate this effect naturally because the 
orientation of the crack is fixed in the finite element mesh. 
Continuum solid modelling does not incorporate stress/strain-induced anisotropy 
straightforwardly. Within the framework of elasto-plasticity, isotropic rules for 
strengthening/softening may be replaced by kinematic (or mixed) rules, i.e. the 
stress-state bounding surface does not expand/ shrink symmetrically around the 
hydrostatic axis, but (also) translates in a direction dependent on the current state of 
stress [Chen & Han 1988]. As for continuum damage mechanics, a scalar-valued 
damage effect parameter only is capable of 'memorizing' the extent of 
microcracking. Retaining also the direction of cracking would inevitably imply the 
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designation of additional internal state parameters, usually by replacing the damage­
effect scalar by a higher order damage-effect tensor. 
A physically appealing approach to account for stress-induced anisotropy is the 
geometric consideration of weak (continuous) planes. The normal and tangential 
stresses in such a plane are the resolved components of the macroscopic stress state. 
According to the first model in this category, the Fixed (smeared) Crack model, 
mode I cracking is initiated in a plane perpendicular to the maximum tensile stress, 
when the principal stress exceeds the uniaxial tensile strength of the continuum. 
Upon further loading a sudden stress drop [Rashid 1968

] or a strain softening law, 
analogous to the fictitious crack model, is applied for the tensile stress normal to the 
fixed (weak) plane. As no secondary cracking is allowed for in this concept, stresses 
may arise exceeding the tensile strength significantly upon rotation of the stress 
state. Various approaches were formulated in extending this concept to cope 
realistically with rotating stress states also. In the Rotating Crack model [Cope et 
al 1980

] the crack plane rotates so as to remain perpendicular to the maximum 
principal stress. Stress-induced anisotropy is however lost in this concept. Stress­
induced anisotro~y is retained in the Multiple Fixed Crack model [De Borst & 
Nauta 1985

; Rots 1 88
]. In this concept, the formation of secondary fixed crack(s) is 

allowed for when the principal stress has rotated beyond a certain threshold angle. 
The statically constrained Microplane model [Carol & Prat 1990

] and the Adaptive 
Fixed Crack model [Weihe et al 1998

] are extensions of the Multiple Fixed Crack 
model in the sense that they conceptually also allow for mode II or mixed mode 
crack initiation and that the latter allows initiation of secondary cracks, whenever 
the stress state in any plane exceeds the cracking criterion. 
The above 'weak plane' models aim at reproducing concrete behaviour with 
continuous planes of fracture. The material behaviour due to distributed 
microcracking is better refsroduced by the Microplane model with a kinematic 
constraint [Bazant & Oh 19 5

; Ba2ant & Prat 1988
]. In this concept, the strains at the 

(weak) micro-planes are the resolved components of the total macroscopic strain 
state. For each plane a constitutive law is applied, resulting in new normal and 
tangential micro-stresses. The macroscopic stress tensor is established through 
integration over the fixed set of microplanes in an energetically consistent manner. 
In a more recent version of the Microplane model [Ozbolt et al 2001

] the kinematic 
constraint has somewhat been released to account for the loss of continuity of the 
strain field for dominant tensile loads, i.e. continuous planes of fracture due to mode 
I cracking. 

2.2.3.2 Localisation of deformations in continuum solid mechanics 
As outlined in the previous section, besides pre-peak also post-peak non-linear 
material behaviour may be incorporated in a continuum mechanics based model by 
assigning a strain-softening law. However, unlike pre-peak strengthening, post-peak 
softening exhibits a strong dependence on the size of the finite elements. This is 
best explained by considering a one-dimensional strain-softening bar as depicted in 
figure 2.15. This bar may be divided in 5 or 15 (constant strain) elements. Under the 
assumption that the shaded elements are slightly weaker than the other elements, 
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softening will occur in these elements while the other elements are unloading. This 
kind of behaviour is similar to the localisation of deformations, as observed in 
experiments in the post-peak region. 
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Figure 2.15. (a) Strain-softening bar and stress-strain softening law. 
(b) Load displacement curves for two different element sizes. 

Comparing the overall load-deformation curves (figure 2.15.b), a striking difference 
is found between the bars with 5 elements and 15 elements. The hatched. area 
represents the total dissipated energy. It follows that the energy dissipation and 
brittleness of the bar are highly dependent on element size. More than that, the 
dissipated energy vanishes completely when the element size approaches to zero. 
Some kind of regularization technique is obviously required. Assuming that 
localisation always occurs in one element, conservation of energy dissipation is 
satisfied by considering the fracture energy as a material property, as proposed in 
the Crack Band model ofBazant & Oh 1983

. In this model, the fracture process zone 
is treated as a non-sharp-edged crack band of constant width we governed by a 
strain softening relation as depicted in figure 2.15.a. The inelastic (fracture) strain is 
integrated over the crack band width resulting in constant energy dissipation 
provided that the finite element width h equals the crack band width We. This theory 
is quite equivalent to the Fictitious Crack Model (section 2.2.1.2). The fracture 
energy GF corresponds now to the area under the stress-strain curve multiplied by 
the width of the crack band We. To allow for finite element sizes different from the 
crack band width, energy dissipation is conserved by enforcing the condition that 
the fracture energy in one element equals the fracture energy of the crack band, i.e. 
GF corresponds to the area under the stress-strain curve multiplied by the width of 
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the finite element h. Obviously, this requires f, or Eu in figure 2.15.a to be 
reformulated as effective material parameters dependent on the finite element 
width h. 
Although computationally very efficient, a drawback of the Crack Band model is 
that it may lead to spurious stress locking when the localisation band is not aligned 
with the mesh, i.e. when the crack band propagates through the mesh in a zig-zag 
manner. As it leaves the width of the localisation band unspecified, it also is 
impossible to determine how the fracture process zone width could vary during 
fracture growth. Theoretically, a more elegant approach is to introduce additional 
terms (or localisation limiters) in the continuum description representing the 
changes in the microstructure occurring during failure processes. 
Frequently applied in combination with the theory of continuum damage mechanics 
is the nonlocal theory [Pijaudier-Cabot & Bazant 1987

; Ozbolt & Bazant 1996
]. This 

concept deviates from the idea that the residual stress beyond peak load is 
exclusively a function of the inelastic strain in the material point itself. Instead, it 
postulates that the residual stress also depends on the inelastic strain in adjacent 
material points. Practically, this implies that the internal damage state in a material 
point is based on an average of the strain field in a neighbourhood of this material 
point. 
Alternatively, the gradient approach introduces spatial derivatives of the inelastic 
strain (or internal state parameters dependent on the inelastic strain). In the early 
model of Schreyer & Chen 1986 first order derivatives were used. Later, it was 
recognized [Miihlhaus & Aifantis 1991

; De Borst et al 1992
] that second order spatial 

derivatives better characterize the geometric nature of a localisation band. 
Less worked-out alternatives are the Cosserat extension of classical continua 
[M .. hlh 1986 D B 1991] d . d . f . u aus ; e orst an mtro uctwn o stram-rate dependency 
[Needleman 1988

; Sluys & De Borst 1991
]. The Cosserat theory introduces rotational 

degrees of freedom in the continuum description, based on the observation of 
distinct particle rotation in localised shear bands of non-cohesive granular materials 
[Bardet & Proubet 1992

]. 

The above extensions of the classical continuum theory all have in common that a 
certain internal length scale is introduced, which in fact regularizes the localisation 
process. From a computationally point of view, a major drawback of these 
approaches is the fact that in order to capture the localisation band properly, very 
small finite elements need to be foreseen at and near the localisation band. This 
implies that either a very fine mesh has to be generated at the start of the analysis, 
or that a sophisticated adaptive remeshing procedure has to be applied during the 
analysis. 
A promising development is the formulation of models that allow the introduction 
of displacement jumps in the conventional finite elements to reproduce the 
geometric nature of localised cracking [Klisinski et al 1991

; Larsson et al 1999; Wells 
et al 

2002
]. The crack path does not have to be known a priori and since the localised 

crack is situated in one finite element, these concepts allow the utilisation of coarse 
finite element meshes. Of course, attention should be paid to the continuity of the 
crack path across the finite element boundaries. 

CHAPTER3 

FUNDAMENTALS OF CONCRETE LOADED IN MULTIAXIAL 

COMPRESSION 

Research regarding the mechanical behaviour of concrete loaded in multiaxial 
compression is usually limited to a study of macroscopic quantities like overall 
stress-strain curves and localised macroscopic cracking. The basic 
physics/mechanics accounting for the specific characteristics of these macroscopic 
quantities are yet not very well understood. Due to the infinite number of potential 
triaxial loading cases, experimental test programs only can cover a very limited 
range of loading paths in the 3D stress (strain) space. Consequently, the 
applicability of numerical models - merely based on such test programs and 
developed without sufficient knowledge of the basic physics/mechanics underlying 
the observed macroscopic features - is not wider than its starting-basis i.e. restricted 
to the limited range of loading cases as carried out in the particular experimental 
test program. 
Development of a numerical model, being more generally applicable, therefore, 
should incorporate a sound knowledge of the basic physics/mechanics of concrete 
loaded in multiaxial compression. Here, it will be demonstrated that a classification 
of the observed physical/mechanical phenomena in experimental tests according to 
the frame as shown in figure 3.1, yields such a solid understanding of the 
significance of these phenomena, their interaction and the basic physics/mechanics 
underlying them. 

Stage I [ Stage 11 I Stag~ Ill I Stage IV 

Level 1 Mechanical behaviour 

Level2 I of concrete I 
Level3 loaded in multiaxial compression 

Figure 3.1. Frame for classifYing concrete mechanical behaviour. 

The frame of figure 3 .I distinguishes on the one hand three different scale levels of 
observation. These scale levels are explained in section 3.1. On the other hand a 
distinction is made between four typical stages in multiaxial compression tests. 
These typical stages are explained in section 3.2. This division is chosen because 
the macroscopically observed mechanical behaviour at each stage is typically 
characteristic. Furthermore, the consideration of multiple scale levels at each stage 
is essential. The complex macroscopic mechanical behaviour at each stage proves to 
be directly related to basic mechanisms taking place at lower scale levels. As a 
result, the generated classification provides a solid base for numerical modelling to 
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be valid and applicable much wider than the mere range of experimental tests 
carried out. 

3.1 Scale levels 

Mechanical phenomena, such as cracking, may be observed at different scale levels 
during experimental testing of concrete. These separate observations often provide a 
direct link between global stress-strain curves and the formation and growth of 
micro- and macrocracks. With this in mind Wittmann I987 proposed, on the basis of 
common practice in material science, a practical subdivision into three scale levels: 
• Micro level 
• Meso level 
• Macro level 

micro level macro level 

Figure 3.2. Scale levels for concrete. 

3.1.1 Micro level 
At this level the microstructure and the mechanical properties of the hardened 
cement paste are considered. These properties and the porosity of the microstructure 
are strongly affected by the interaction of the cement with water. 
The microstructure of the hardened cement paste in concrete is far from 
homogeneous. The most striking aspect in this respect is the existence of an 
interfacial transition zone (ITZ) between the aggregate grains and the bulk cement 
paste. Many researchers have reported the existence of this zone in normal strength 
Portland cement concrete and the concept is widely accepted. 
The microstructure of the ITZ differs considerably from that of the surrounding 
bulk cement paste [Larbi I

991
; de Rooij 1996

• 
2000

]. Figure 3.3 shows schematically the 
microstructural features of the ITZ and the surrounding bulk cement paste. At the 
surface of the aggregate grains a contact layer of about 2-3 ~m thickness exists, 
consisting mainly of calcium hydroxide (CH) crystals. Adjacent to this layer a thin 
film of calcium-silicate-hydrates (C-S-H) exists in the form of short fibres. On the 
other side of the contact layer a very porous zone exists. In this zone large panel­
shaped CH-crystals and clusters of ettringite needles often are found. The eH­
crystals in the ITZ have a preferential orientation perpendicular to the aggregate 
surface. This preferred orientation of the CH-crystals vanishes in the bulk cement 
paste microstructure. 
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aggregate 

interfacial transition zone 

Figure 3.3. Diagrammatic representation of the ITZ and bulk cement paste in 
concrete [de Rooij 1996

]. 

There is no clear evidence which mechanism(s) cause(s) the formation of the ITZ. 
The most reported mechanisms, however, are 'micro-bleeding', introducing an 
excess of water at the aggregate surface, and the 'wall effect', resulting in an 
inefficient packing of cement grains against the aggregate surface. Only recently, 
another phenomenon has been formulated as a possible cause for the formation of 
the ITZ [de Rooij I

996
]. This phenomenon, called syneresis, is the tendency of a gel 

to shrink spontaneously under the expulsion of pore liquid. If the cement paste is 
seen as a gel, this phenomenon could also occur in fresh concrete. The water is then 
being pressed out of the cement paste and accumulates around the aggregate grains, 
also resulting in water excess at the aggregate - cement paste interface. 
Concerning the mechanical properties of the cement paste, a distinction is made 
between two types of potential failure, i.e. (1) mode I I mixed mode microcracking 
inducing volumetric dilation and (2) pore collapse of the cement paste 
microstructure inducing volumetric contraction. 
As already pointed out in section 2.1 .2, the ITZ between the aggregate grain and the 
bulk cement paste can be considered as the weakest link in normal strength 
concrete. The density of pre-existing mode I I mixed mode microcracks in this zone 
is higher than in the bulk cement paste. These microcracks tend to run along the 
contact layer and along the cleavage (weak) planes of the calcium hydroxide (CH) 
crystals. 
Potential pore collapse of the microstructure in the high compressive loading regime 
is strongly related to the porosity of the material. At the micro level, the cement 
paste has a distinct porous structure. Figure 3.4 shows results of pore size 
measurements of cement paste and mortar obtained with the aid of a mercury 
intrusion porosimeter [Larbi I 99I]. It appears that the pore structure of plain cement 
paste (ale = 0) contains mainly pores with a radius between 0.01 and 0.07 ~m. 
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Figure 3.4 also shows that an increase in sand-cement ratio from 0 to 2 is 
accompanied by an increase of total porosity of about 60% of which the increase of 
larger pores (r > 0.1 Jlm) contribute to a large extent. This effect is likely to be the 
result of the formation of highly porous ITZs around the sand particles. 

Porosity - % (v /v of paste portion) 
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Figure 3.4. Cumulative pore size distribution of mortars plotted as volume 
percentage of cement paste portion in mortar (w/c = 0,40; age= 100 
days; ale = aggregate(sand)-cement ratio) [Larbi 1991

]. 

Studies using Scanning Electron Microscopy (SEM) combined with image analysis 
of backscattered electron (BSE) images frequently have reported higher proportions 
of larger ~ores (r > 0.1 ~m) in the ITZ than in the bulk cement paste [Scrivener & 
Nemati I

9 6
; Scrivener 19 9

]. These studies also indicate that the characteristics of the 
microstructure of the ITZ more properly are described in terms of gradients of 
microstructure perpendicular to the aggregate grain. The thickness of the ITZ may 
be appointed as the distance between aggregate grain and bulk cement paste (see 
figure 3.3) over which the microstructure significantly differs from that of the bulk 
cement paste. However, as elucidated by Diamond & Huang 2001

, it should be 
realised that the ITZ is highly heterogeneous itself and large variations in properties 
are found along the surface of the aggregate grains. 
Quantification of the dimensional proportions and the total porosity of bulk cement 
paste and ITZ is a difficult task considering the heterogeneity of the materiaL The 
thickness of the ITZ depends on the type of aggregate and cement used, the water­
cement (w/c) ratio of the mix, the age of the composite and the method used to 
estimate it. The reported thickness of the ITZs, which occupy 30 to 50% of the total 
volume of cement paste, usually ranges from 25 to 100 )liD with a typical thickness 
of 50 )liD [Larbi 1991

]. 

With respect to the porosity of the ITZ, SEM studies have reported pore contents (of 
pores with radius> 0,1)-lm) up to 30% within a few )liD proximity of the aggregates, 
while the porosity of the bulk cement paste is in the range of 5-15%. Based on 
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mercury intrusion porosimetry experimental data and on an analysis of perculation 
through a 3D mortar model, Bourdette et al 1995 computed the ITZ porosity and bulk 
cement paste porosity with pore radii down to 0,003 )liD. This study revealed ITZ 
porosity up to 50% (mean value over an assumed constant thickness of 30 Jlm) and 
a bulk cement paste porosity of about 20%. It is further noticed that the ITZ 
porosity decreases during the maturation of the material, presumably due to ongoing 
deposition of calcium hydroxide and hydration of anhydrous cement grains. 
With regard to the quantification of total porosity it should further be noted that the 
'total' porosity as extracted from mercury intrusion porosimetry experimental data 
represents a lower bound of the actual total porosity, because only the 
interconnected pores with a radius larger than 0,003 )liD are recorded. 

3.1.2 Meso level 
At the meso level, the heterogeneous structure of concrete - a composite of 
aggregate grains, hardened cement paste, large pores and pre-existing cracks - is 
taken into account. At this level the ITZs between the aggregate grains and the bulk 
cement paste are schematised as homogeneous (weak) layers around the aggregate 
grains with constant thickness. 
The mechanical behaviour of the composite at this level is determined by the 
mechanical properties of the individual constituents, i.e. the aggregate grains, the 
bulk cement paste and the ITZs. 

3.1.2.1 Mechanical properties of the constituents 
Natural aggregates are quite heterogeneous themselves; their mechanical properties 
can only be specified within a range. A typical value of Young's modulus of strong 
and dense aggregates such as river gravel - used in most mixes of normal strength 
concrete in practise - is about 60.000 MPa [Hirsch 1962

, Wittmann et al 1993
]. The 

order of magnitude of the strength of river gravel may be compared to the strength 
of granite, which is characterised by a Young's modulus of70.000-80.000 MPa and 
a compressive strength of about 180 MPa [Alexander 1993

, Caliskan et al 2002
] . 

The mechanical properties of plain cement paste (without aggregates) are strongly 
influenced by the type of cement, the age at testing (degree of hydration), the water­
cement (w/c) ratio, curing and the test setup. With this in mind, the stiffness and 
strength of cement paste out of ordinary Portland cement (age: 28 days or more, w/c 
ratio: 0,3-0,5) are typically within the ranges given in table 3.1. 

Table 3.1 Stiffness and strength of plain cement paste 

Young's modulus 
Compressive strength 
Direct tensile strength 

Flexural tensile stren th 

Re 

I) Hsu & Slate 1963
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2
) Alexander et al 1968

· 
3

) Bazant et al 1986 

4
) Hirsch 1962 Witt~ann et al 1993 Alexadder 1993 Yang 1998 
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The mechanical properties of the ITZ are obviously influenced by the properties of 
the aggregates (type, roughness, size) and the cement paste (type, age, w/c ratio) as 
well as the treatment of the concrete mix during manufacturing (vibration, curing). 
Van Mier & Vervuurt 1999 reviewed the issues regarding modelling and testing of the 
mechanical properties. They distinguished two strategies by which the properties of 
the ITZ may be determined. The first one involves scaling up of the ITZ to obtain 
specimens in which a macroscopic test is feasible to measure the properties of the 
ITZ. In these tests, composite specimens are prepared in which the cement paste is 
cast against a rock surface, which is usually polished. The second strategy is based 
on the concept of inverse modelling and involves testing of real concrete and 
simulation of the test by an appropriate numerical meso-level model. Knowing the 
properties of the aggregates and the bulk cement paste, the properties of the ITZ are 
calibrated so that the simulation corresponds to the experimental observations [e.g. 
Vervuurt 1997

]. 

The scaling up strategy provides direct test data. However, the prepared specimens 
are not similar to the ITZ as existent in real concrete. It is remarked that differences 
in surface texture and size of the aggregates and differences in the manufacturing 
process will undoubtedly affect the structure of the ITZ. The limitation of the 
inverse modelling strategy is that it relies heavily on the assumptions regarding the 
correctness of the simulation model used. 
In view of the above drawbacks on measuring mechanical properties of the ITZ, no 
quantitative results are reported here on the stiffness and strength of this zone. 
There exists, however, consensus among researchers, that - in normal strength 
concrete with strong and dense aggregates - the strength and stiffness of the ITZ are 
less than those of the surrounding bulk cement paste. 

3.1.2.2 Mechanical behaviour of the composite 
As explained in the preceding section, the aggregate grains are much stiffer than the 
surrounding cement paste in normal strength concrete. As a result these grains will 
act as stress concentrators during initial loading. The internal forces will mainly be 
transferred between the aggregate grains by the shortest connection through the 
cement paste, resulting in a highly heterogeneous stress state. Dantu 1957 and (later 
on) Swamy 1971 already observed such highly heterogeneous stress states performing 
uniaxial compressive tests on sliced concrete specimens using a reflective 
photoelastic technique. 
The heterogeneity of the stress state during initial loading is further enlarged by the 
presence of pre-existing cracks and large pores. As stated in section 2.2.1.1, large 
stress concentrations are found around voids and near crack tips in a homogeneous 
material. Although the increase in stress level is far less pronounced for a 
heterogeneous material - like concrete - than predicted by LEFM, the local stress 
level near voids and initial cracks can differ considerably from the overall stress 
level. 
The occurrence of tensile splitting cracks in uniaxial compression tests with little 
lateral boundary restraint (section 2.1.2.1) has frequently been attributed to the 
heterogeneity ofthe stress state [Reinhardt 1977

; Murakami & Ohtani 2000
]. Due to the 
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concentration of compressive forces between stiff aggregate grains (see figure 3.5), 
tensile stresses often arise even when the overall stress field is compressive. 

~ tensile splitting crack 

·--~ «··· tension 

/ compression 

Figure 3.5. Force transfer between aggregate grains in concrete. 

Horii & Nemat-Nasser 1985 suggested another potential cause of tensile splitting 
failure (section 2.1.2.1) by considering the heterogeneity of the stress field due to 
pre-existing cracks. By analysing an idealized brittle material with pre-existing 
inclined flaws loaded in compression, they showed that the local stress state at the 
tips of the pre-existing flaws encourage the formation of tensile splitting cracks. It 
was also shown that, with a suitable distribution of the pre-existing flaws, these 
'wing' -shaped cracks joined together forming a complete failure pattern. 
These studies demonstrate clearly the existence of tensile stresses in a uniaxial 
compressive (overall) stress field when the heterogeneity of the material is taken 
into account. Along with the sensitivity of concrete regarding mode I crack 
formation this may easily lead to the formation of tensile splitting cracks. 
Nevertheless, a complete failure pattern is only formed when the initiated splitting 
cracks grow in an inclined direction to pass through the compressive strut in figure 
3.5 or, in the case of pre-existing inclined cracks, when sliding along these pre­
existing cracks occurs. As pointed out also in section 2.1.2.1, in combination with 
tensile splitting also sliding along (newly formed or pre-existing) inclined cracks is 
necessary for complete failure of the specimen, implying that internal friction is a 
determinative factor in uniaxial compressive failure. 
To illustrate the formation of the - experimentally observed - tortuous crack 
patterns of combined mode I / mode II cracks in uniaxial compression, a generic 
representation of crack growth in a heterogeneous material such as concrete is 
explained below. 
In figure 3.6 a pre-existing or newly formed mode II crack is considered. This crack 
is inclined with respect to the direction of the (compressive) principal stress cr3• 

Crack growth is prevented when the crack tip meets an aggregate grain because the 
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strength of the aggregate grain is much higher than the strength of the surrounding 
cement paste. In such a case, three possible mechanisms for crack growth exist: 
1. Through the aggregate grain 
2. Around the aggregate grain (compressive side) 
3. Around the aggregate grain (tensile side) 
Considering the presence of local tensile stresses near the crack tip in uniaxial 
compression and the sensitivity of concrete regarding mode I crack formation, 
mechanism 3 will generally occur. 

Figure 3.6. Mechanisms for crack growth in concrete. 

While tensile splitting is abundant in uniaxial compression, concrete specimens 
failed in multiaxial compression show hardly any tensile splitting cracks. Instead, 
very pronounced inclined mode 11 cracking is observed, often passing straight 
through the aggregate grains [Van Geel I

998
]. Obviously, in these tests mechanism 1 

prevails. 
The absence of large tensile splitting cracks in multiaxial compression is often 
explained by pointing out that the confining stresses suppress the development of 
local tensile stresses induced by the heterogeneity of the concrete composite. 
However, this does not fully explain the absence of large tensile splitting cracks in 
multiaxial compression because close examination of the inclined crack bands does 
reveal the presence of small tensile splitting cracks along the inclined crack bands. 
Apparently, small-scale tensile splitting takes place but these cracks remain stable 
and limited in length. This kind of cracking may be viewed upon as secondary 
cracking, because - at ultimate failure - a primary continuous mode 11 crack is 
formed (see figure 3.7). 

(a) 

Figure 3.7. 
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Initial cracking Ultimate failure 
(b) 

(a) UV-photograph showing small-scale tensile splitting along a mode 
11 crack in a plane strain multiaxial compression test [Van Geel 1998

]. 

(b) Schematic ref.resentation of cracking mechanism [see also Van 
Mier & Vone99

]. 

Mechanism 1 

Figure 3.8. Local crack stresses in multiaxial compression. 

An explanation for the formation of continuous mode 11 cracks at ultimate failure in 
multiaxial compression, can be found considering figure 3.8. It shows that when the 
crack is not straight (mechanisms 2 & 3), the contact area of the crack will be 
reduced upon sliding. Consequently, both the axial and the lateral loading will be 
transferred through a considerably reduced contact area of the crack. It turns out 
that for mechanism 3 the local crack stresses in the main loading direction (vertical 
axis) are equal to those for mechanism 1. However, the local crack stresses in the 
minor loading direction are much greater (more compressive) for mechanism 3 than 
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for mechanism 1. As the strength of concrete is highly sensitive to the presence of 
lateral confinement (section 2.1.1.1.2), the local stress state of mechanism 1 is much 
more favourable for crack growth in multiaxial compression than the local stress 
state of mechanism 3. 
Another aspect of concrete failure - best explained on the meso level - is the 
observed shape of the descending branch of the loading curve during mode I crack 
growth in tensile tests, which is best typified by a steep part just beyond ultimate 
strength followed by a long shallow tail (figure 3.9). Whereas the (initial) steep part 
of the descending branch may be ascribed to opening of small isolated (ITZ) cracks 
in the fracture process zone, the shallow long tail of the descending branch has to be 
attributed to the formation of so-called crack interface grain bridges durin§ the 
development of a continuous crack profile through the specimen [Van Mier 199 ]. In 
this process, two overlapping crack tips approach each other, but coalescence seems 
prohibited due to the presence of the stiff aggregate grains in the crack path. In this 
way 'bridges' are created between the overlapping cracks with rather low (flexural) 
stiffness. 

UA 

opening of isolated 
(ITZ) cracks 

in fracture process zone 

-u 
overall response of tensile test 
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Figure 3.9. Mesa-mechanical behaviour of concrete loaded in tension. 

Overlapping cracks are also observed in compression. Stroeven 1973 reported already 
arrays of (micro) splitting cracks transforming in a continuous shear crack during 
subsequent loading in uniaxial compression and, as shown in figure 3.7, these 
overlapping splitting cracks exist also in multiaxial compression. Clearly, the 
existence of these arrays of small splitting cracks decreases the stiffness of the 
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structure to some extent. However, considering the small length of the splitting 
cracks, ductility induced by the formation of crack interface bridges between 
overlapping crack tips will be very limited in multiaxial compression. 

3.1.3 Macro level 
At the macro level concrete is considered a homogeneous material. Mechanical 
properties, such as uniaxial compressive or tensile stren~th, can be_ m~asured 
directly in standard tests at this level. The measured mechamcal properties m these 
tests are not only dependent on the concrete mix, but also on the age at loading, 
moisture content, temperature, loading rate and test setup. When the strengths for 
different concrete mixes are compared, these other influencing factors should be the 
same or at least similar, which clearly indicates the need for standard, well­
documented test procedures. 
With respect to the mechanical behaviour of multiaxially loaded concrete, an 
immense number of potential loading combinations and loading histories arises. 
Though the availability of well-documented test data is important here also, this is 
not sufficient to reveal all essential aspects of the mechanical behaviour of concrete 
loaded in multiaxial compression. In contrast with uniaxial compression, individual 
testing for every potential loading path in 3D stress space is unfeasible for 
multiaxial compression, so trends in mechanical behaviour have to be identified and 
thoroughly analysed in order to be able to extrapolate them to other loading paths. 
In chapter 2.1 a survey of experimental recordings at the macroscopic level has 
been given. From these macroscopic recordings, trends regarding ultimate strength 
and the shape of the cr-E curves can already be qualified. The shape of the triaxial 
strength envelope is found to be convex, highly sensitive to lateral confinement and 
open ended, i.e. no failure is found for high hydrostatic compression. Overall 
loading curves of concrete loaded in multiaxial compression show large pre-peak 
non-linearity and characteristic points on the curve of volumetric strain may be 
identified. Furthermore, a distinct shift from uniformly distributed deformations in 
the pre-peak region to highly localised deformations (macrocracks) in the post-peak 
region (figure 3.10) is common for concrete loaded in multiaxial compression. 
The macroscopically observed mechanical behaviour of concrete must be 
interpreted in terms of mechanisms acting at lower scale levels, i.e. the meso and 
the micro level. Coupling with these lower levels will certainly produce valuable 
information on the identification and quantification of trends observed at the macro 
level. In the next section of this chapter special attention is given to crack growth at 
the meso level. Much of the mechanical behaviour of normal strength concrete can 
be explained by its heterogeneous structure at this level. In some cases, however, an 
analysis at the meso level does not suffice. In these cases a further step back to the 
micro level is necessary in order to understand the observed macroscopic behaviour. 
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Figure 3.1 0. Evolution of macrocracks in multiaxial compression 
[Van Geel 1998

]. 
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3.2 Stages in crack formation 

This section describes concrete mechanical behaviour at several stages of multiaxial 
compressive loading. A subdivision into four stages is made with each stage having 
its own specific (macroscopic) mechanical behaviour. Figure 3.11 shows the load­
deformation curve of a typical multiaxial compression test (plane strain test: E2 = 0; 
cr

1 
= 0.15 cr3 [Van Geel 1998

]). The stages, as indicated in figure 3.11, are entitled: 
1. Linear elastic stage 
Il. Non-linear strengthening stage 
Ill. Around peak stress 
IV. Softening stage 
The transitions between these stages are not as abrupt as indicated in figure 3.11. In 
fact, the transition from one stage to the other develops very gradually. 

-200 

IV 

4 0 -2 -4 -6 
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Figure 3.11. Stages in typical multiaxial compressive loading. 

3.2.1 Linear elastic stage (/) 

During this stage, the increase in damage due to (micro) cracking is very small. As a 
result, the observed mechanical behaviour can be fairly well described by applying 
the classical theory of linear elasticity. The elastic properties of the concrete 
composite depend on the elastic properties of the separate components (aggregate 
grains and cement paste), the compaction of the concrete mixture during casting and 
the amount of pre-existing (ITZ) cracks. 
As stated in section 2.1.2.1, normal strength concrete contains a significant number 
of pre-existing cracks, i.e. cracks existing prior to the application of external loads. 
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Although a significant number of such ITZ cracks exist prior to loading, the growth 
of these pre-existing ITZ cracks and the formation of new ITZ cracks during initial 
loading is negligible, thus producing the nearly linear stage I of the load­
deformation curve. 

3.2.2 Non-linear strengthening stage (Il) 

According to macroscopic observations, the non-linear strengthening stage in a 
multiaxial compression test is characterised by a decrease of the slope in the loading 
diagram coupled with non-elastic volume compaction. The development of non­
elastic volumetric strain (total volumetric strain minus elastic volumetric strain) 
during the typical multiaxial compression test of figure 3.11 is displayed in figure 
3.12. 
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Figure 3.12. Non-elastic volumetric strain in a multiaxial compression test. 
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As the ITZ is the weakest link in normal strength concrete, it may be expected that 
the displayed macroscopic behaviour is a result of isolated crack formation in the 
ITZ. This assumption is supported by visual recordings of specimens loaded up to 
stage II in multiaxial compression. Up to this stage no (macroscopic) cracking 
occurs that can be seen with the naked eye. Moreover, no evident damage was 
visualised by Van Geel 1998 using a vacuum impregnation technique (figure 3.10.a). 
With this technique, specimens are impregnated with a fluorescent epoxy resin, 
which fills cracks in contact with the outer specimen surfaces. After hardening of 
the resin, the specimens are sawn into slices. By photographing these slices using 
ultraviolet light, internal cracks can be recorded. In this way only continuous crack 
patterns can be visualised, isolated microscopic or mesoscopic cracks remain 
invisible. As no continuous cracks could be visualised at stage II, the apparent 

r 
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non-linear behaviour is indeed most probably due to isolated crack formation in the 

ITZs. 
Nevertheless, the issue of the true nature of isolated crack formation in the ITZs 
remains. Basic crack behaviour like mesoscopic mode II or mode I failure along the 
ITZ results in an increase of non-elastic volumetric strain. Therefore, the displayed 
macroscopic behaviour must be caused primarily by another phenomenon. 
Consideration of the ITZ at the micro level reveals such a potential cause of the 
displayed macroscopic behaviour. In section 3 .1.1 it was explained that the porosity 
of the ITZ is very high and substantially higher than the porosity of the surrounding 
bulk cement paste and the non-porous aggregate grains. Due to its high porosity, 
pore collapse of the ITZ microstructure is likely to occur _in multiax~al compressive 
stress states, which may greatly account for the non-elastic compactwn observed at 
stage Il. 
Pore collapse only occurs in highly porous materials. During pore collapse the 
porosity of the ITZ decreases. At a certain level of low porosity, further pore 
collapse of the ITZ does not occur anymore and an increase of stiffness is the result. 
BaZant et al 1986 already observed this stiffening effect, by carrying out confined 
compression tests on small cylindrical specimens loaded up to 2068 MPa. They 
found indeed that after an initial decrease, the slope of the loading diagram 
continuously increases. 

ITZ bulk cement paste 
······ .. 

•. 

......... __.. 
\ 

Concrete composite Basic part Schematisation 

J 
'ITZ' springs 'Bulk cement paste' springs 

Figure 3.13. Mesoscopic 'spring' representation of concrete composite. 
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Though limited pore collapse may also occur within the bulk cement paste, it is 
assumed that only isolated crack formation in the ITZ around the aggregate grains 
occurs, and consequently, that the (macroscopic) strains at stage II are more or less 
uniformly distributed. Accordingly, the concrete composite at the meso level may 
be regarded as a system of springs connected in parallel and in series as shown in 
figure 3.13. 
Due to cracking (pore collapse within the ITZ, mode 1/II failure along the ITZ) the 
'ITZ' springs include irreversible deformations during stage 11, while the parallel 
connected 'bulk cement paste' springs retain their initial elastic behaviour. This 
combination of springs causes a branch with a positive inclination - yet 
considerably less than at the elastic stage - in the loading diagram. 
The mesoscopic spring representation is also a useful tool for interpreting the 
characteristic unloading/reloading behaviour at stage 11. Figure 3.14 shows the 
L VDT measurements for a cyclic plane strain multiaxial compression test 
performed by van Mier at Eindhoven University of Technology. 
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Figure 3.14. Loading diagram of the main loading axis in a typical cyclic 
multiaxial compression test [Van Mier 1984

]. 

According to figure 3.14 the unloading curve is characterised by an initial steep 
slope, which decreases considerably when a zero stress state is approached. For 
reloading, the opposite happens. 
The analogy with the mesoscopic spring representation, with irreversible 
deformations in the ITZ at stage II, is straightforward. At initial unloading the 
stresses in the entire spring system decrease according to initial elastic stiffness 
until the stresses in the ITZ - and consequently in the, in series connected, 
aggregate grains - become zero. At this point the stresses in the parallel-connected 
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'bulk cement paste' springs are not zero, because there are no irreversible 
deformations in these components. At further unloading the ITZ opens with no 
further decrease of stress, as no tensile stresses can be transferred across the crushed 
ITZ. Further decrease of stresses therefore will occur at the parallel-connected 'bulk 
cement paste' springs only, which results in a rather flat unloading branch (see 
figure 3.15). For reloading the opposite occurs. At first, stresses are solely built up 
at the parallel-connected bulk cement paste springs until the gaps at the ITZs are 
closed again. From then on, reloading of the entire system takes place and initial 
elastic stiffness is recovered. 
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Figure 3.15. Load cycle according to the mesoscopic spring representation. 
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Figure 3.16. Microscopic photograph of an 1TZ after loading ufs to stage 11 

and subsequent unloading [Van Gee/ & Bangers 1 97
]. 
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According to the assumed mechanical behaviour as outlined above, gaps at the ITZs 
(perpendicular to the main compressive loading direction) should be present after 
unloading a specimen previously loaded u~ to stage 11 in multiaxial compression. 
With this in mind Van Geel & Bongers 199 analysed the damage at the ITZs after 
unloading of specimens previously loaded up to stage 11, using microscopic 
photography. Unlike the vacuum impregnation technique discussed before, this 
technique enables to visualise isolated cracks also. These microscopic photographs 
showed indeed clear gaps - up to 50 J.lm - at the ITZs perpendicular to the main 
loading direction (black layer in figure 3.16). It should be noted that the recorded 
gaps at the ITZs are not likely due to micro-bleeding beneath the coarse aggregate 
grains in the fresh cement paste, as the casting direction does not coincide with the 
main loading direction but with the out-of-plane direction of figure 3.16. 

3.2.3 Around peak stress (Ill) 
At the macro level, stage Ill is characterised by reaching the ultimate strength and 
the early start of macroscopic (mode 11) cracks. A clear picture of the start of 
macroscopic cracking at this stage is given in figure 3.10.b. At the meso level this 
means that the isolated cracks at the ITZs - already present at stage 11 - become 
interconnected through the bulk cement paste. This crack joining mechanism results 
in a non-elastic increase of the concrete volume. A gradual shift is therefore taking 
place with respect to the gradient of the volumetric strain curve (see figure 3.12): 
from volumetric compaction to (incrementally) volumetric dilation. 
The ultimate strength in multiaxial compression in the first place is dependent on 
the concrete mix and the extent of confining pressure. Furthermore, the ultimate 
strength may be dependent on the loading path in 3-dimensional stress space, prior 
to reaching the ultimate strength envelope at a certain specific stress point. If such 
path dependency exists, ultimate strength envelopes such as depicted in section 
2.1.1 .1 are valid only for those loading paths - followed in the test series - on the 
basis of which the strength envelopes are constructed. 
Path dependency of tensile strength might be expected when multiaxial compressive 
loading at stage 11 precedes the execution of a uniaxial tensile test. As isolated 
mesoscopic cracking at the ITZs takes place at stage 11 of multiaxial compression, 
the local capacity for tensile force transfer across these mesoscopic cracks 
decreases. Consequently, the overall capacity for tensile force transfer will decrease 
as well. The existence of such a path dependency of tensile strength was clearly 
demonstrated by Lin et al 2002

• 

Based on the experimental observation that tensile splitting is abundant in uniaxial 
compression, similar effects are expected in the case of uniaxial compression. Van 
Geel 1998 investigated such an influence of multiaxial preloading on the ultimate 
strength in uniaxial compression. These results are displayed in figure 3.17. It 
appears that for uniaxial compression the ultimate strength clearly decreases with 
increasing multiaxial compressive preloading. 
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Figure 3.17. Ultimate strength in uniaxial compression with and without 
multiaxial compressive preloading [Van Geel

1998
]. 
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Figure 3.18. Ultimate strength in multiaxial compression with and without 
multiaxial compressive pre/oading [Van Gee/ 1998

]. 
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When multiaxial compressive preloading is followed by a multiaxial compressive 
test, inconsistent test results are reported in literature. As stated in section 2.1 .1.2, 
tests performed by Gerstle et al 1978

, Smith et al 1989 and Imran & Pantazopoulou 1996 

showed no evidence for path-dependency on the triaxial strength of concrete. On the 
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other hand, Kotsovos 1979 actually found the strength results somewhat dependent on 
the maximum achieved hydrostatic stress level during different loading paths. 
As the loading path variations in the pre-peak regime of the above test series were 
rather small, Van Geel 1998 investigated this phenomenon experimentally by testing 
several concrete cubes with substantial differences in multiaxial compressive 
preloading. After preloading, each specimen was loaded up to failure according to a 
multiaxial proportional loading path, the same for all tests (plain strain 
configuration with cr1 I cr3 = -0.051-l.O). All preloadings did not exceed stage II, so 
cracking was mainly restricted to the ITZ. Figure 3.18 shows the results of these 
multiaxial compression tests with and without preloading. A strong path­
dependency is observed. Moreover, while the uniaxial compressive strength 
decreases upon high preloading with high confinement (figure 3 .17), it appears that 
the multiaxial compressive strength increases upon similar preloadings. 
This phenomenon of strength increase upon high multiaxial compressive preloading 
with high confinement may be explained by considering the process of mesoscopic 
crack growth. As was stated in section 3.1.2.2, initial macroscopic cracking in 
multiaxial compression is characterised by the growth of ITZ cracks around the 
aggregate grains and the growth of these cracks through the bulk cement paste, 
according to mechanism 3 (see figure 3.6). Crack growth according to this 
mechanism leads to the concentration of forces in the 'contact area' of the crack 
(figure 3.8). Considering the fact that the strength of concrete is highly dependent 
on the presence of lateral confinement, the local stress state at the contact area of 
the crack - with increasing confinement upon further crack growth - becomes 
invariably less favourable for crack growth according to mechanism 3. Hence, a 
strengthening mechanism is induced. This mechanism of crack growth proceeds -
with invariably increasing load- until the crack grows fully around the 'locked' 
aggregate grain, or until failure through the aggregate grain occurs. Note that 
strengthening due to aggregate interlock, as described above, can only be supposed 
for brittle heterogeneous materials with strong inclusions, such as normal strength 
concrete, loaded in multiaxial compression. Accordingly, the influence of lateral 
confinement on strength will be substantially larger for the highly heterogeneous 
concrete composite than for its - more homogeneous - separate components. 
The extent of strengthening due to aggregate interlock, and consequently, the 
influence on strength oflateral confinement, depends on three factors: 
• The strength of the aggregate grains related to the strength of the ITZ and the 

bulk cement paste. 
• The size of the aggregate grains 
• The distance between the aggregate grains 
These factors are properties of the concrete mix. However, the distance between the 
aggregate grains depends not only on the mesostructure of the concrete mix prior to 
loading, but may change also during loading. As indicated in figure 3.19, 'contact 
areas ' of a potential macroscopic crack - defined as those areas where the opposite 
crack faces remain in contact during a sliding displacement - are situated at those 
locations where the local crack angle a is maximum. These locations correspond to 
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the regions where massive compressive pore collapse within the ITZs has occurred 
at stage II. 

----- pore collapse 
----------·· potential macro crack 

Figure 3.19. Designation of 'contact areas' along the crack path of a potential 
macro crack coinciding with regions of compressive pore collapse. 

Obviously, pore collapse within the ITZs at stage II reduces the distance between 
the aggregate grains at those locations where the crack faces remain actually in 
contact during a subsequent sliding displacement, inducing an increase of the 
maximum local crack angle a. Consequently, concentration of forces at the contact 
area results in a local stress state with a higher level of confinement ratio 
(cr/oc I cr/0 c), which is less favourable for crack growth. 
In this way, the occurrence of massive pore collapse at stage II from a preloading 
consequently may result indeed in a higher ultimate strength in multiaxial 
compression. It should be noted that the observed increase of multiaxial strength is 
limited to those cases where the macroscopic cracks mainly curve around the 
aggregate grains. Generally, this is observed for specimens loaded in multiaxial 
compression with low confinement. Macroscopic cracks in specimens loaded in 
multiaxial compression with high confinement show much more cracking straight 
through the aggregate grains. Apparently, in the region of high confinement the 
strength of the concrete is dominated by the strength of the aggregate grains and no 
substantial effect of preloading on multiaxial compressive strength is expected here. 
Having this in mind, the test results of Taliercio et al 1999 may better be understood. 
They performed a series of creep tests on concrete cylinders. After loading these 
cylinders in a triaxial cell to a certain hydrostatic stress level, the specimens were 
loaded along the deviatoric plane towards the compressive meridian. At 90 % of the 
deviatoric strength, the stress level was sustained for a maximum period of about 5 
days. After this period the specimens were reloaded to failure along the deviatoric 
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planes at various hydrostatic stress levels. For the reloading tests in the region of 
low confinement, a distinct increase of deviatoric strength with respect to the virgin 
loading (without sustained triaxial stresses) was found. However, the increase of 
deviatoric strength reduced for the reloading tests at higher hydrostatic stress levels 
(high confinement region). Assuming that deformations due to pore collapse 
increase in time upon sustained loading, these results appear consistent with the 
results of Van Geel. 

3.2.4 Softening stage (IV) 

At stage IV, decrease of strength and evolution of large macroscopic cracks (see 
figure 3.10.c-f) are observed at the macro level. The mechanical behaviour is 
determined by increasing deformations in the localised macroscopic cracks while 
the continuum in between these macroscopic cracks unloads. These phenomena are 
clearly shown in figure 3.20. This figure shows a plane strain multiaxial 
compression test ( cr1 / cr3 = -0.05/ -1.0). In this particular test, not only the overall 
stress-deformation behaviour was measured (L VDT' s ), but also the stress­
deformation behaviour of the continuum (strain gauges). By subtracting the 
averaged continuum stress-deformation behaviour from the overall stress­
deformation behaviour, the averaged stress-deformation behaviour of the localised 
macroscopic crack was obtained. 
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Figure 3.20. Continuum versus local behaviour [Van Geel 1998
]. 
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Hence, during stage IV the deformations are localised in macroscopic cracks. In 
section 1.1 it was already mentioned that localisation of deformations leads to a 
strong dependence of the load-deformation response on the geometry and boundary 
conditions of the concrete structure at hand. As a result, the load-deformation 
behaviour at stage IV cannot be evaluated apart from the geometry and boundary 
conditions of the structure/specimen. 
With identical geometry and boundary conditions and concrete mix, the shape of the 
overall a-u curves still may differ considerably depending on loading path and the 
extent of confining pressure. The development of volumetric deformation as 
depicted in figure 2.6 in chapter 2 shows the influence of the extent of confining 
pressure. It appears that - at the softening stage IV - the incremental dilation of the 
specimen (with respect to the volume at peak stress) is much more for low 
confining pressures than for high confining pressures. The observed magnitude of 
difference in dilation cannot be ascribed to the continuum behaviour of the 
specimens because the unloading branches of the continuum parts differ only 
slightly. Hence, the differences in dilation arise from the differences in mechanical 
behaviour of the macroscopic cracks. 
A variety of researchers have proposed models to describe the mechanical 
behaviour of a fully-grown - shear loaded - crack in concrete. Although a good 
agreement with experimental data is accomplished, empirical models such as the 
'rough crack model' of Bazant & Gambarova 1980

, provide little insight in the 
mechanics of the problem. More insight is provided by the so-called physical 
models, which consider the geometrical structure of a fully-grown crack at the meso 
level [Fardis & Buyukozturk 1979

; Walraven 1980
; Li et al 1989

; Divakar & Fafitis 1992
]. 

In these models, overall roughness of a crack is regarded as a superposition of 
'mesoscopic roughness', i.e. the roughness of a tortuous crack around interlocking 
aggregate grains discernible at the meso level (figure 3.21), and 'microscopic 
roughness', i.e. the roughness of the cement paste (bulk or ITZ) along the tortuous 
mesoscopic crack discernible at the micro level only. When a crack- as shown in 
figure 3.21 - is loaded in shear, sliding will occur. Because interlocking grains 
block this sliding deformation, contact points between the aggregate grains and the 
cement paste will be formed. Upon further sliding forces build up at these contact 
points until either: 
• The upper part overrides the interlocking aggregate grain of the lower part. In 

this case the local shear force at the contact point exceeds the resisting frictional 
force. This resisting frictional force is determined by the extent of microscopic 
roughness and the magnitude of the local normal compressive force at the 
contact point. 

• The cement paste crushes at the contact point. 
• The interlocking aggregate grain fractures. 
Which mechanism prevails in a particular situation depends on the properties of the 
concrete mix (local contact angle at the contact point, strength of the aggregate 
grains and the cement paste) and the compressive stress normal to the global 
direction of the macroscopic crack. This means that for very high confining 
pressures crushing of the cement paste or fracturing of the aggregate grains will 
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prevail, whereas for very low confining pressures overriding prevails. As the 
'overriding' mechanism is the only mechanism causing substantial crack dilation, 
macroscopic observation of decreasing crack dilation signifies increasing confining 
pressures. 

contact point with 
local contact angle 

Figure 3.21. Tortuous crack due to aggregate interlock [Walraven 1980]. 

At stage IV, the shape of the descending branch in the loading diagram of the main 
loading axis is highly dependent on the loading path also. Figure 3.22 shows the 
loading diagrams of three plane strain compression tests, each with a different 
loading path, but with identical test setup and concrete mix. It appears that the 
'ductility' of the softening branch increases when the direction of the loading path 
becomes more perpendicular to the (schematic) bounding envelope of ultimate 
strength. 
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Figure 3.22. Softening branches (b) of multiaxial plane strain compression tests (a) . 
(Proportional path: a1 / a3 = -0.15/-1.0 ). 
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For these tests, (schematic) bounding envelopes of ultimate and residual strength 
are constructed in figure 3.22.a. It can be seen that loading beyond ultimate strength 
along a 'deviatoric' stress path (perpendicular to the plane strain 'hydrostatic' axis) 
towards the envelope of residual strength leads to a small stress drop only, while a 
proportional stress pa~ leads ~o ~ very large s~ress drop. beyo~d ultimate ~trength. 
The residual strength m multiaxml compression tests IS mamly determmed by the 
capacity of transfer of shear forces across the fully-grown mode II cracks at large 
sliding displacements. At these large sliding displacements, no intact continuum 
junctions between the opposite crack faces exist anymore. The residual capacity of 
shear force transfer at large sliding displacements exclusively is based on internal 
friction. Worded differently, transfer of shear forces at large sliding displacements 
is possible due to aggregate interlock (mesoscopic roughness) and microscopic 
roughness of the crack only, provided that compressive forces exist normal to the 
crack. 
The gradual transition from ultimate to residual strength in multiaxial compression 
coincides with the growth of macroscopic cracks with increasing crack opening, as 
shown in figure 3.10.c-f. Although not visualised in figure 3.10, it should be 
emphasized that the concrete parts not divided by visible macroscopic cracks are 
heavily damaged also due to mesoscopic cracking at stage II and Ill. 
Basically, the (gradual) diminishing capacity of shear force transfer across the 
growing macroscopic cracks at stage IV can be explained by two phenomena: 
• Loss of cohesive strength, i.e. fracture of 'intact' concrete parts along the path of 

growing macroscopic cracks. 
• Decreasing frictional resistance against sliding due to decreasing roughness of 

the macroscopic crack. 
The first phenomenon causes highly brittle behaviour and produces a brittle 
softening branch as observed in tensile tests [Van Mier 1992

]. The softening branch 
in multiaxial compression tests is much more ductile. It seems therefore that the 
softening branch in these tests is mainly a result of decreasing frictional resistance 
against sliding. The loss of cohesive strength mainly occurs during the 
strengthening mechanisms involving mesoscopic cracking at stage II and Ill, 
discussed previously. 
As stated above, sliding along a macroscopic crack may involve several 
(mesoscopic) mechanisms: overriding, crushing of cement paste and aggregate 
fracture. In fact, all these mechanisms potentially may cause a reduction of 
roughness. During overriding, the local contact angle decreases at the contact areas 
of the crack, reducing mesoscopic roughness. Due to polishing of the contact area, 
also a reduction of microscopic roughness may be expected. Provided that 
aggregate fracture and/or cement paste crushing occur only at those aggregate 
grains with highest local contact angle, these mechanisms also may lead to a 
reduction of mesoscopic roughness, as overriding along the remaining part of the 
crack takes place at contact areas with lower local contact angles. 
Shortly, sliding along macroscopic cracks at stage IV involves a reduction of 
roughness, which is caused by a complex interaction of mechanisms acting at lower 
scale levels in the presence of compressive stresses normal to the crack direction. 
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CHAPTER4 

NUMERICAL MODELLING AT THE MESO LEVEL 

At a lower scale level than the macro level, concrete is a heterogeneous material. 
However, even at the macro level, it is nowadays well-known that numerical 
modelling can only be done properly if the specific properties of the meso- and 
microstructure of concrete are taken into account. The need for a localization 
limiter, i.e. an internal length scale as a measure of material heterogeneity in strain 
softening problems is here illustrative'. 
There are two fundamental ways of taking into account the heterogeneous meso­
and microstructure of concrete: 
• Explicit consideration of the geometrical features of the heterogeneous meso- or 

microstructure, e.g. by generating meso- or microscopic meshes in Finite 
Element computations. 

• Implicit consideration of the heterogeneous meso- and microstructure in the 
macroscopic constitutive (and possibly kinematic) equations. 

For structural engineering purposes, explicit consideration of the microstructure of 
concrete involves, even in a zD representation, great computational effort. 
Therefore, the heterogeneous microstructure is generally accounted for in an 
implicit way. Examples of models with explicit consideration of the mesostructure 
are given in section 2.2. Such models allow typical mesomechanical features - like 
crack interface bridging and aggregate interlock - to be reproduced by applying 
rather simple constitutive laws for the separate phases. 
Implicit consideration of the heterogeneous meso- and microstructure in the 
macroscopic constitutive (and possibly kinematic) equations is common practice in 
models based on continuum solid mechanics (section 2.2.3). Most of these models 
focus on the behaviour of concrete in tension. Extension of these constitutive 
models to simulate tensile, compressive as well as multiaxial compressive 
experiments often leads to complex formulations. Generally, this complexity leads 
to rather abstract considerations of the mesostructure of concrete and a clear 
physical meaning of material properties related to the mesostructure is often 
lacking. 
In this chapter, a method is pursued with both explicit and implicit consideration of 
the mesostructure of concrete. The proposed model will be entitled 'mesoscopic 
model'. This mesoscopic model is restricted to two dimensions (plane strain, plane 
stress). Although this restriction is quite severe when simulating concrete behaviour 
in general, it will be shown that quite reasonable results are obtained for simulations 
of uniaxial, biaxial (plane stress) and plane strain tensile or compressive 
experiments. 

1 
See section 2.2.3.2 
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4.1 Computational environment 

The computations are carried out using the computer code UDEC (Universal 
Distinct Element Code, Itasca Consulting Group 1993

). At Eindhoven University of 
Technology, Vonk 1992 also used this code in a previous Ph.D study on the present 
topic. By using the same computer code, basic elements of this research could be 
transferred easily to the present study. 
UDEC is based on the Distinct Element Method developed by Cundall 1971 and is 
mainly characterized by: 
1. A division of structures into blocks and contacts between these blocks 
2. Allowance of large displacements and rotations between blocks 
3. Automatic recognition of new contacts as the calculation progresses 
4. An explicit dynamic solution procedure 

4.1.1 Division into blocks and contacts 

In UDEC, a structure is split up into blocks by creating a continuous pattern of 
interfaces through the structure (see figure 4.1). The generated blocks may have any 
polygonal shape and represent the material volume of the structure. 

- contact 

Oblock 
/\ 

~'--... .. ~zone 

Figure 4.1. UDEC system of blocks (zones) and contacts. 

The blocks may be rigid, simply deformable or fully deformable. In the latter case a 
mesh of finite elements is generated, dividing the block in triangular constant strain 
elements (called zones in UDEC). 
If the corner of a block/zone (nearly) touches another block, a contact is created. 
Creation of these contacts may occur prior to the calculation but also during the 
calculation. 

4.1.2 Explicit finite difference solution scheme 

UDEC uses a dynamic explicit finite difference solution scheme, based on 
Newton's second law of motion and on the assumption that during one calculation 
cycle (time step) the influence of an incremental load or displacement on one 
element travels not further than its neighbouring elements. The velocities and 
accelerations are assumed to be constant within a single time step. 
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Application law of motion 

each element Application constitutive laws 
each time step L--------------' 

each element 
each time step 

Incremental displacements 

each element 
each time step 

Figure 4.2. Basic calculation cycle for the Distinct Element Method 
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Figure 4.2 shows the basic calculation cycle in UDEC. Each time step the law of 
motion is applied to each block (or zone) and the constitutive laws are applied to 
each element (blocks (zones) and contacts). 
Figure 4.3 shows a one-dimensional illustration of the calculation procedure in case 
of rigid blocks. At time t = 0 a force F is applied to block 1. Application of the law 
of motion results in an acceleration u = F/m of block 1. At the end of the time step 
M this results in a displacement increment !:lu (!:lu = it M = ~ u !:lP). Now the 
constitutive law for the contacts (assumed: elastic springs with stiffness k) is 
applied. According to this constitutive law the reaction forces in the springs are 
!:J.F = k !:lu. In the next time step the law of motion for block 1 and block 2 is solved, 
again taking these reaction forces into account. 
In this way, boundary information is transmitted through the structure. This explicit 
step-by-step solution scheme is only valid, however, in case of very small time 
steps. The critical time step is calculated by UDEC based on the speed of 
propagation of information through the structure. 
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Figure 4.3. Illustrative example of the calculation procedure ofUDEC (redrawn 
from Vone992

). 

Though the solution scheme of UDEC is dynamic, quasi static problems can also be 
solved. In this case the equations of motion are damped to reach a force equilibrium 
state as quickly as possible [Cundall 1982

]. 
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Due to the small time step needed in explicit methods in order to obtain numerical 
stability, these methods are- compared to implicit methods- not very effective if 
the structural behaviour is rather linear. However the method becomes competitive 
for highly non-linear problems and when there are changes in the connectivity of 
the elements. 
A major advantage with respect to the development of non-linear constitutive 
models is that - due to the very small time step in the explicit method - the internal 
state variables may be assumed constant during the time step. This usually implies 
great simplifications in the constitutive equations. 

4.2 Mesh generation 

For the generation of Finite Element meshes, resembling the mesostructure of 
concrete, a 2D mesh generation code has been written at Eindhoven University of 
Technology. This mesh generation code is adapted from a method used by Vonk 1992 

and is documented extensively in Bongers 1998
•. 

The generation procedure aims at generating a mesh of coarse aggregate grains 
randomly positioned in a matrix of mortar. First, a regular pattern of hexagonal 
shaped aggregate grains is generated (see figure 4.4). Subsequently this pattern is 
deformed in such a way that the generated grain structure resembles well the 
irregular distribution of the coarse aggregate grains in a cross section of a real 
concrete structure (see figure 4.5). 

-- ITZ interface 

·········· mortar interface 

Figure 4. 4. Regular pattern of aggregate grains in a mortar matrix. 

In the earlier work ofVonk 1992
, an analogous technique was adopted with potential 

discrete cracks being already explicitly present in the initial mesh in the form of 
interfaces. Two types of interfaces were distinguished: 
• ITZ interfaces, positioned around the coarse aggregate grains and representing 

the ITZ 
• mortar interfaces, connecting the ITZ interfaces in a logical and systematic 

manner 
As a result, interface patterns like the one in figure 4.6, were created. 
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Figure 4.5. (a) Cross section of a concrete cube (casted by Van Gee/ 
1998

). 

(b) Example of generated pattern of coarse aggregate grains. 

(a) (b) 

Figure 4.6. (a) Basic interface pattern and (b) randomly disturbed interface 
pattern [Vonti 992

]. 
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In the work ofVonk 1992 all potential cracking was restricted to these interfaces, the 
continuum remained linear elastic. Although this discrete crack approach fits very 
well within the computational strategy ofUDEC, it has some major drawbacks: 
• The direction of potential cracks through the mortar is fixed a priori 
• Cracking through the aggregate grains is not possible 
It depends on the properties of the concrete composite (maximum aggregate size) 
and the type of loading whether these drawbacks are significant or not. Failure of 
concrete loaded in tension or in uniaxial compression is characterized by very 
tortuous crack patterns through the ITZ and bulk cement paste. In these cases the 
drawbacks mentioned above are not very significant. In triaxial compression 
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however, failure of concrete is generally characterized by rather straight cracks 
frequently running through the aggregate grains. As a result of the above 
drawbacks, the procedure used by V onk is not capable of reproducing these straight 
cracks. In general, this leads to a significant overestimation of the strength of a 
structure loaded in triaxial compression. 
As the purpose of this work is to simulate concrete behaviour in triaxial 
compression, cracking in any direction and through any phase of the concrete 
material should be allowed for. This may be accomplished by (see also section 2.2): 
• Adopting a remeshing technique during the analysis, i.e. insertion of interface 

elements (discrete cracks) at the onset of cracking in a direction determined by 
the cracking criterion. 

• Allowing the introduction of arbitrarily located displacement jumps at the 
boundary of conventional finite elements to reproduce the geometric nature of 
localised cracking. 

• Incorporating the effects of cracking through a continuum element by 
distributing the crack displacements over a certain volume in order to produce 
crack strains and preserve the original continuity of the problem formulation 
(smeared cracking approach). 

The first two methods model cracks by introducing displacement discontinuities in 
the displacement field, which obviously approaches the geometric nature of 
cracking the most. Yet, the third method is much easier to implement in Finite 
Element calculations. Despite its limitations - as outlined in section 2.2.3 .2 - the 
smeared cracking approach is therefore adopted and that in its simplest form, i.e. the 
crack deformations are uniformly distributed over the element width. 
For parallel-connected systems, the combination of smeared and discrete cracking 
leads to displacement incompatibility. This is displayed in figure 4.7. Though the 
structure is loaded in pure tension, it will only fail if the interfaces 2 and 3 fail in 
pure shear. For a material like concrete, which is stronger in shear than in tension, 
the combination of smeared and discrete cracking will result in an overestimation of 
the failure load. This overestimation will be even more pronounced when also 
lateral compressive loading is present. 

t t t t t t t t t t t 
N Discrete Cracking M 

<1) <1) 

Smeared (..) 
I 

(..) Smeared 
Cracking ~ interface 1 I ~ Cracking <1) <1) 

.S i:: - r·-

Figure 4. 7. Displacement incompatibility for a combination of smeared and 
discrete cracking. 

t 

NUMERICAL MODELLING AT THE M ESO L EVEL 75 

As the combination of discrete and smeared cracking ends in non-realistic 
mechanical behaviour for (partly) parallel-connected systems, the present model 
allows only for smeared cracking. This implies that the ITZ and mortar interfaces 
(as shown in figure 4.4) do not represent any potential cracks, like they did in the 
work of Vonk. These interfaces now only divide the structure into (convex) blocks 
of mortar and coarse aggregates in order to create a realistic heterogeneous material 
representation. 

4.3 Constitutive theory (Stage I & 11) 

The development of a fundamental constitutive theory, which introduces the effects 
of cracking in the stress-strain relations of the continuum elements (mortar, coarse 
aggregate grains) of the mesh, is basically divided into two parts: 
• A constitutive theory describing the effects of micro-cracking, i.e. isolated 

micro-cracking within the ITZ. 
• A constitutive theory describing the effects of mesa-cracking, i.e. the formation 

of continuous cracks through ITZ, bulk cement paste and possibly aggregate 
grains. 

The distinction between micro- and meso-cracking is made because of the eminent 
difference in the scale of heterogeneity involved. At the meso level, the scale of 
heterogeneity of undamaged concrete is determined by the size of the aggregate 
grains. The size of micro-cracks within the ITZ does not exceed the size of the 
aggregate grains. As a result, this type of cracking does not affect the scale of 
heterogeneity of undamaged concrete. 
Meso-cracking, on the other hand, affects the scale of heterogeneity of undamaged 
concrete considerably. The meso-cracks run along many aggregate grains, the scale 
of heterogeneity is hence entirely determined by the size of these cracks. 
The constitutive theory for meso-cracking (at stage Ill and IV) is treated in chapter 
5. The constitutive theory for micro-cracking is treated in this section. 

4.3.1 The concept of a Representative Volume Element (RVE) 

The mesh layout consists of two phases, the coarse aggregate grains and the mortar 
matrix. The mortar is a homogenisation of the heterogeneous mesostructure of fine 
aggregate grains, bulk cement paste and ITZ. 
The averaging method used to establish this homogenisation of the heterogeneous 
mesostructure of fine aggregate grains, bulk cement paste and ITZ is based on the 
concept of a Representative Volume Element (RVE). The term RYE was first put 
forward by Hill 1963

• As continuum mechanics deals with idealized materials 
consisting of material points and material neighbourhoods, it assumes that the 
material distribution, the stresses and the strains are essentially uniform in the direct 
neighbourhood of the material points. However, at the lower (meso and micro) scale 
levels these quantities are, in general, not uniform at all. For such a heterogeneous 
micro(meso )structure, an RVE at a material point of a continuum mass is a material 
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volume that is statistically representative of the infinitesimal material 
neighbourhood of that material point. To be representative, the RYE should, for 
randomly ordered meso- or microstructures, include a very large number of such 
meso- or microheterogeneities. If the material has a periodic meso- or 
microstructure, the RYE can be reduced to one unit cell. 
In recent years, the RYE approach has among others been used by Chang 1993 for 
granular materials, by Onck et al 1997 for polycrystalline metals and by Smit 1998 for 
heterogeneous polymers. They used either an RYE of many microheterogeneities 
(Chang) or a unit cell for- assumed- periodic microstructures (Onck, Smit). In all 
cases the boundary conditions of the macroscopic element are applied to the RYE. 
Subsequently, using the Finite Element Method, the response of the RYE is 
calculated. This response is assumed to be representative of the whole macroscopic 
element. In this way, computer time is reduced considerably compared to Finite 
Element computations of the entire microstructure. 
Although the main objective of the RYE-approach is to gain computer time, the 
accuracy of the method should also be considered carefully. In this respect, the 
fundamentals on which an RYE should be based are provided by Nemat-Nasser and 
Hori 1993: 

'Perhaps one of the most vital decisions that the analyst makes is the definition of 
the R VE. An optimum choice would be one that includes the most dominant features 
that have first-order influence on the overall properties of interest and, at the same 
time, yields the simplest model. ' 
Consequently, the dominant features having a first-order influence on the 
mechanical behaviour of concrete in multiaxial compression have to be established. 
These features have been explained in chapter 3. Delimiting our analysis to the 
stages I and 11, the most dominant features are the elastic properties of the concrete 
composite (depending on the volume ratio's and the elastic properties of the 
separate components) and isolated crack formation in the ITZ. Taking the basic part 
of the concrete volume of figure 3.13 as an RYE in the form of a unit cell, then 
these most dominant features can be accounted for. 
The circular-shaped schematised unit cell as displayed in figure 3.13 produces 
isotropic behaviour. This corresponds with the initial behaviour of real concrete that 
- except for the influence of the casting direction - is more or less isotropic. 
Disregarding the influence of the casting direction, the initial isotropy of the 
concrete volume is thus accounted for by the circular-shaped unit cell. Although an 
assembly of circular shaped unit cells cannot fill the volume completely, this is not 
considered an essential drawback. The adopted circular-shaped RYE for the 
concrete mesostructure is not a unit cell in the sense that an assembly of such 
identical cells fills the material volume, but merely a representative shape of an 
assembly of irregularly shaped and sized cells. 
The circular cylinder displayed in figure 4.8 is hence the most simple model that 
accounts for the dominant features of concrete in multiaxial compression at stage I 
and 11 and is therefore taken as the RYE for normal strength concrete. 
With respect to the meshes described in section 4.2, the dimensions of the RYE for 
the coarse aggregate grains are given by 

R = I 
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R
2 

- R1 = average thickness of ITZ around coarse aggregate grains 

R
3 

- R2 = average thickness of bulk cement paste around coarse aggregate grains 

with 

Aagg = area of the block representing a coarse aggregate grain 
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The dimensions of the RYE for each mortar continuum element are determined by 
the properties of the concrete mix (except for the coarse aggregate grains), i.e. the 
average radius of the fine aggregate grains and the volume ratio of fine aggregate 
grains, bulk cement paste and ITZ. 

R
1 
= average radius of fine aggregate grains 

R2-R2 
2 I Vm 
R2 

I 
V fine 

agg 

R 2-R 2 
3 2 vbulk 

Rz 
I 

V fine 
agg 

Figure 4.8. RVEfor normal strength concrete. 

4.3.2 RVE calculation scheme 

Within ~h~ basic calculation cycle of UDEC (figure 4.2), the RYE-concept is used 
only Withm the procedure "application constitutive laws". For each continuum 
element UDEC provides macro-strain increments D.c.m and the initial macro-stress 
~tate .rl·~ - according to the global (x,y,z) coordin-;te system - as input for the 
onstJtutiVe laws (index m for macro). As output UDEC requests the final macro-
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stress state Q 1
'm. Figure 4.9 shows the RYE calculation scheme, which includes the 

effects of ITZ cracking and provides the requested final macro-stress state Q 1
'm. 

!l"f/oc = t!.E.xm 

!!.~foe = t!.E.y m 

Sf,:/oc = tlyxym 

Lvolume 
average 

a x l ,m = (Jxl ,/oc 

a /'m = Cf/'loc 
'l:xyl,m = ;;xyl,/oc 

Figure 4. 9. Overview of R VE calculation scheme. 

section 4.3.5 & 4.3.6 

Cracking in ITZ 

The RYE is loaded by the macro-strain increments d§.m provided by UDEC. From 
the definition of the RYE, the stresses and displacements at the outer boundary of 
the RYE must resemble the (uniform) macro-stress and displacement fields at the 
material point considered. As outlined in appendix A, these conditions can only be 
satisfied approximately along the outer boundary of the RYE. Worded differently, 
the local distributions of both incremental stresses and displacements at the outer 
boundary of the RYE can resemble the uniform macroscopic distributions only in 
an average sense. 
Generally, two bounds for the distribution of outer-boundary stresses and 
displacements may be indicated [Nemat-Nasser & Hori 1993

]. The first bound refers 
to the case that the distribution of outer-boundary 'strain' increments d§.loc (outer­
boundary displacements divided by the width of the RYE at a specific point on the 
outer boundary) equals the uniform distribution of the macro-strain increments. 
These conditions of constraint will be referred to as macro-strain conditions of 
constraint. The second bound refers to the case that the distribution of stress 
increments at the outer boundary of the RYE is uniform. These uniform stress 
conditions of constraint will be referred to as macro-stress conditions of constraint. 
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For linear elastic material behaviour, these bounds for the distribution of outer­
boundary stresses and displacements are given in appendix A. In this case and with 
the given macro-strain increments !:!gm, the true distribution of local incremental 
displacements at the outer boundary of the RYE may vary between the elastic 
macro-strain and the macro-stress distribution. When the material behaviour 
changes from elastic to elasto-plastic at stage II, the distribution of outer-boundary 
displacements may somewhat change. However, as the RYE is also representative 
at this stage, the distribution of outer-boundary displacements still has to resemble 
approximately the uniform macroscopic displacement field. It seems therefore 
legitimate to apply in this case the same procedure to determine the distribution of 
local outer-boundary incremental displacements as applied in the case of linear 
elastic material behaviour. 
The mechanical response of the RYE upon the imposed conditions of constraint 
may be computed by means of finite (or distinct) element computations. In the 
present approach, however, the response is computed analytically. In this way, 
again a considerable gain in computation time is accomplished. The procedure 
pursued is indicated in figure 4.9 and is explained below. 
According to the selected distribution of outer-boundary incremental displacements, 
a trial macro-stress state is computed by adding elastic macro-stress increments to 
the initial macro-stress state. To this end, effective elastic moduli for the RYE are 
determined in section 4.3 .3, establishing a linear relationship between the macro­
strain increments and the elastic macro-stress increments. 
At stage I and II, cracking is restricted to the ITZ. Hence, the local stresses within 
this zone have to be checked upon a certain cracking criterion. To this end, a stress­
based cracking criterion is developed in section 4.3.6. To check whether the local 
stress state at certain places in the ITZ violates this cracking criterion, local trial 
stress states are computed in an adequate number of points within the ITZ by adding 
elastic local stress increments to the initial local stress states (section 4.3.4). If a 
local trial stress state violates the cracking criterion, the local stress state in that 
point is corrected. These 'primary' stress corrections do not take into account any 
crack interaction effects. Such crack interaction effects are allowed for after 
calculation of all primary stress corrections within the ITZ. This results in 
secondary (minor) corrections of the local ITZ stress states (section 4.3 .7). 
Based on the computed stress corrections in the ITZ, section 4.3.5 shows how the 
local internal state variables (crack displacements) in the ITZ are computed and 
how the local stress corrections in the ITZ affect the stress state at the outer 
boundary of the RYE. Based on the obtained distribution of stress corrections at the 
outer boundary, the correction of the trial (elastic) macro-stress state is determined 
in section 4.3 .8. 

4.3.3 Effective elastic moduli for the R VE 

In literature, a wide range of models is presented for the determination of effective 
elastic properties of heterogeneous materials. The earliest and simplest models were 
based on the assumption that the material (in this case concrete) consists of two 
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phases: aggregate grains and cement paste. These early models involved simple 
mixing rules such as a volume-average of the stiffnesses [Yoigt 1889

] or a volume­
average of the compliances [Reuss 1929

]. Among others Hirsch 1962 suggested 
empirical expressions for the estimation of Young's modulus of mortar or concrete. 
More sophisticated models consider the cement paste as the connecting phase with 
disconnected ellipsoidal aggregate inclusions as the second phase. A review of these 
models is given by Nemat-Nasser and Hori 1993

• 

More recently, models incorporate the influence of the ITZ. In these models a three­
phase composite consisting of spherical aggregate grains, bulk cement paste and 
ITZ is modelled. Some of these models only use estimates of average stress and 
displacement field solutions [Yang 1998

, Lutz et al 1997
]. Other models are based on 

exact analytical solutions of the stress and displacement fields for distinct loading 
cases. Ramesh et al 1996 analysed the stress and displacement fields for an assembly 
of three composite spheres with a common centre embedded in an infinite 
equivalent homogeneous solid under hydrostatic and shear loading at infinity. This 
resulted in a rather simple solution for the overall bulk modulus whereas the 
solution for the overall shear modulus is very complicated. Zhao & Chen 1996

•
1998 

analysed a 2D (plane stress) assemblage of two aligned and eo-centred composite 
cylinders of circular cross sections embedded in an infinite solid of cement paste 
subjected to a uniaxial tensile stress at infinity (figure 4.1 0). 

X= -00 
y 

x=oo -- ---- bulk cement paste ---- ---- --- --- --
cro-- -cro 

X -- ---- ---- ---- ---- --- --
Figure 4.1 0. Model of microstructure of concrete [Zhao & Chen 1996

]. 

As the present RYE calculation scheme not only requires the effective elastic 
moduli but also the true stress distribution in the ITZ, a method is pursued 
resembling Zhao & Chen 1996

•
1998

. Yet instead of embedding the composite cylinders 
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of aggregate and ITZ in an infinite solid of cement paste, the stress/ displacement 
fields are solved analytically for the RYE as displayed in figure 4.8 for two 
elementary stress-strain states. This method yields linear equations for the effective 
elastic moduli and exact stress/ displacement fields in the ITZ for the considered 
stress-strain states (see appendix A). In section 4.3.4 it is shown that the elastic 
stress/ displacement distribution in the ITZ for an arbitrary stress-strain state may be 
computed by a linear combination of the elementary stress-strain states considered 
in appendix A. 
The expressions for the effective elastic moduli, derived in appendix A, are a 
function of the individual elastic moduli (E,v) and the radii R" R2 and R3• These 
expressions assume different Young's moduli, yet Poisson's ratio is equal for all 
phases. This assumption simplifies the expressions for the global moduli 
considerably and, whereas information about Young's modulus of the separate 
phases is scarce, little to nothing is known about Poisson's ratio of the separate 
phases. 
With the given expressions for the in-plane effective elastic moduli (~e , v,9) and 
the out-of-plane effective Young's modulus ~ , the in-plane macro-stresses and 
macro-strains in the global, Cartesian coordinate system (x,y,z) are related to one 
another through 

r
.:1crx •.m j r~ + G .:1cr e,m == K - G 

y 

.:1t xy e,m 0 
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and 

4.3.4 Elastic stress distribution in the ITZ 

(4.1) 

Computations involving the RYE-approach not only cover the elastic behaviour 
(stage I) of the material, but also isolated crack formation in the ITZ at stage Il. 
Isolated crack formation occurs when the ITZ stresses reach a certain critical value 
(see section 4.3.6). 
To check whether the ITZ stresses reach a critical value, 'trial' stress states in the 
ITZ are computed by adding elastic stress increments to the initial stress states. 
Obviously, this procedure requires the distribution of elastic stress increments in the 
ITZ. In appendix A, exact solutions for this distribution of stress increments are 
given for two elementary stress-strain states (figure 4.11) in cylindrical coordinates. 
Furthermore, a distinction is made between a macrostress approach (uniform stress 
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boundary conditions) and a macrostrain approach (uniform displacement boundary 
conditions). 

Elementary stress-strain state I 
Cartesian: cr1 (R) = cr3(R) = 1 

or E 1 (R) = E 3 (R) = 1 
cylindrical: cr/R) = 1 1:,6(R) = 0 

or u(R)=1 w(R)=O 

Elementary stress-strain state II 
Cartesian: cr1 (R) = 1 cr3 (R) = -1 

or E 1 (R) = 1 E 3 (R) = -1 
cylindrical: cr,(R) = sin29 1:,.6(R) = cos29 

or u (R) = sin29 w (R) = cos29 

Figure 4.11. Elementary stress-strain states in cylindrical and Cartesian 
coordinates. 

Converting the two elementary stress-strain states from cylindrical (r,9)-coordinates 
to Cartesian coordinates according to the principal 1 ,3-axes, results in simple, 
uniform distributions for these states. Furthermore it appears that any uniform 
macroscopic stress-strain state can be written as a linear combination of these two 
elementary states. 
Figure 4.12 shows the conversion from the cylindrical coordinate system to the 
Cartesian (1,2,3)-coordinate system oriented according to the principal directions, 
with the 2-axis in the out-of-plane direction. 
For elementary stress-strain state I (t,a = 0) this results in the following expressions: 

macrostress approach: macrostrain approach: 

F; = F, cos(~- e) u1 = u(R)cos( ~-e) 

F3 = F, sin(~- e) u3 = u(R)sin( ~-e) 

3"' 
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u(R) __ 

R R 

u(R) 1 
--=-

R R 

Fr = ar(R) Rde 
Fre = 1:,.6 (R) Rd9 

Figure 4.12. Conversion from cylindrical to Cartesian coordinates. 
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For elementary stress-strain state II (macrostress) the expressions for the principal 
macro-stresses are: 

F; = (sin 29co{ ~-e)+ cos29sin( ~-e) )Rde 

F3 = (sin29sin( ~-e) -cos29cos( ~-e) )Rd9 

o,·~ (•F,) ~sin29+cos29tan(~-e) 
cos --e Rde 

4 

cos29 
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With 

tan( ~-8) 1-sin28 

cos28 

1 1+sin28 

tan( ~-8) cos28 

this results in the following expressions for the principal macro-stresses 

Likewise, it can be derived that the elementary state II implies uniform macro­
strains in Cartesian 1,3-coordinates when the macrostrain approach is pursued. 

m 1 
E =-

I R 
m 1 

E3 =--
R 

To derive elastic ITZ stress increments f...Q e,ITZ in an arbitrary part of the ITZ - of 
_which the location is specified by the angle 8 - it is convenient to define a Cartesian 
coordinate system (n,t,z) with the n-axis coinciding with the r-axis at the above 
angle 8 (see figure 4.13). According to such a rotated (n,t,z) coordinate system, any 
vector of uniformly distributed elastic stress (or strain) increments at the outer 
boundary of the RYE can be written as a linear combination of the two elementary 
states above. 

macros tress 

approach: 

macros train 

approach: 

lf...crne,m(8)1 r11 r sin28 1 
f...cr/'m (8) = p 1 1 + p 11 -sin 28 

f...-rn/,m(8) 0 cos28 
(4.2) 

(I) (II) 

l f...Enm(8) 1 r11 r sin28 1 f...E
1
m(8) =E1 1 +Ell -sin28 

tt...Ynrm(8) 0 cos28 
(4.3) 

(I) (II) 

Figure 4.13 is a graphical representation of equation (4.2). The centre of Mohr's 
stress circle is determined by state I (multiplied by/). The radius is determined by 
the multiplication factor / 1 of state II and, finally, the arbitrarily oriented stress state 
[f...ane,m(8), f...cr/'m(8), Mnre,m(8)f is determined by the angle 28. 

CD 
N 

"' 0 
u 
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....... . .............................. j .............................. . 

pll sin29 
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RVE 

Figure 4.13. Linear combination of elementary stress-strain states I and If. 

According to the macrostress approach the quantities /, p 11 sin28 and / 1 cos28 are 
derived from the macro-streSS increments [f...ane,m, f...ate,m, f...'t"nt e,m ]Tat angle 8 using 
equation (4.2). 

PI =t{t...crne,m(8)+f...cr,"'m(8)l 

pll sin28 =t(t...crne,m(8)-f...cr,e,m(8) (4.4) 

pll COS 28 = f...'t" n,.,m (8) 

With equation (4.1) these quantities may also be derived from the macro-strain 
increments [ f...En m , f...Etm , f...y nt m] T at angle 8 

P1 
=K(f...Enm(8)+f...E1m(8)l 

p//sin28 =G(t...Enm(8)-f...E
1
m(8) (4.5) 

pu cos28 =Gf...yn,m(8) 

Following the macrostrain approach the quantities &
1
, &

11 sin28 and &
11 cos28 are 

derived directly from the macro-strain increments using equation ( 4.3). 

1/ =t(t...Enm(8)+f...E,m(8)l 

El/ sin28 =t(t:...Enm(S)-f...E/'(8) (4.6) 

Ell cos28 =1f...Ynrm(8) 

The elastic stresses in the ITZ for the elementary states I and II are given by 
equations (A.11 ), (A.19) and (A.27) in appendix A (j = 2 ). A linear combination of 
these elementary states yields the following expressions for the elastic stress 
increments, in cylindrical coordinates, at the centre line ( R0 = 1(R1 + R2 )) of an 

arbitrary part of the ITZ at angle 8: 
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macros tress 

approach: 

macros train 

approach: 

with 

'A/ = Az +2C 
r R 2 2 

0 

[

A2 ,C2 ~ J 
Appendix A: 

-Section A.2.2 

(4.7) 

(4.8) 

From (4.5), (4.6), (4.7) and (4.8) a linear relation is established between the (n,t,z) 
macro-strain increments and the elastic stress increments at the centreline of an 
arbitrary part of the ITZ at angle e. 

A/ K- ')./1')./I G 
r r 0 

')./ K +'Af1AIIG 9 9 0 (4.9) 

0 

According to equation (4.9), elastic stress increments can be computed in any point 
along the centreline of the ITZ. Nevertheless - to avoid excessive computations 
later on - the number of points along the centre line of the ITZ is limited to 12 (see 
figure 4.14). Due to the centre-symmetry of the RVE and its boundary conditions, 
this limits the directions e; to be considered to 6 (i = 1, ... ,6). It is assumed that this 
discretization of the RVE results in sufficiently accurate results. 
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To avoid any dependency of the results on the orientation of the RVE, the angle e; 
(with respect to the global y-axis) is chosen differently for every finite element in 
the structure to be analysed. In fact, a random distribution is applied in the range 
(0 .. . n/6). Correspondingly, the directions of the remaining ITZs are given by 

(i=2, ... ,6) 

y 

X 

n 

Figure 4.14. Discretization of R VE into 12 parts. 

A/ K -A/IAIIG 
r r 0 

A/ K +}./I AI! G 
9 9 0 

0 

( i = 1, .. . ,6) 
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4.3.5 Treatment of non-linear behaviour in the ITZ 

The trial stress state Q t.ITZ in each part of the ITZ - of which the location is specified 
by angle 8; - is computed according to 

QI,/7Z(8;) = Qo,Jn(8;) + L1Q•,/7Zc8;) 

When this trial stress state violates a certain cracking criterion, the stress state is 
corrected to a final stress state QI.ITZ in that particular part of the ITZ. 

Q
1m (8;) = Qt,/7Z (8;) + L1Qm (8;) 

This non-linear behaviour in parts of the ITZ leads to the local stress correction 
vector L1Q 112 (8;) at Ro, as well as the local incremental crack displacements 
Llg er (8;) at R0 and the local correction of the stress state L1Q (8;, R3) at the outer 
boundary R3 of pie-shaped parts of the RYE, as shown in figure 4.15.2 

n 

t~ 

Figure 4.15. Pie-shaped part of the RVE. 

To determine the local quantities Llg er (8;) and L1Q (8;, R3), a method is pursued 
based on similar elementary stress-strain states as considered in section 4.3.4 
(macrostress approach). However, instead of imposing a macroscopic stress state 
Qm [anm,a1m,tn1m]T as a condition of constraint, a 'displacement discontinuity' is 
introduced at the centreline R0 of the ITZ (ITZ crack). At the location of this 
displacement discontinuity, the local ITZ stress correction vector L1Q m (8) is 
imposed as a static condition of constraint. The relative incremental (crack) 
displacements at the centreline R0 of the ITZ are still unknown. During cracking 
within the ITZ the imposed macro-strain state S!m remains intact, i.e. at the outer 
boundary R3 zero-displacements apply as a kinematic condition of constraint. 

2 The overall correction of the trial stress state at the outer boundary R3 (h.Q'", see figure 4.9) is determined by 
averaging all local stress correction vectors Ag;(e;,R3). This operation is performed in sections 4.3.7 and 
4.3 .8. 
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Unlike the macroscopic stress state Qm, the combination of arbitrary local stress 
correction vectors along the ITZ (8~, ... ,8~) generally not represents a global 
uniform stress state in Cartesian coordinates. Hence, an analytical solution of the 
stress/displacement field is not available. A suitable approximation of the solution 
however may be found when it is hypothesized that the local incremental crack 
displacements Llg er (8;) and the local stress corrections L1Q (8;, R3) at the outer 
boundary of the RYE for a particular pie-shaped part with direction 8; are primarily 
determined by the local stress corrections L1Qm (8;) in the ITZ of the same pie­
shaped part. In this way, analytical solutions of global stress/displacement fields 
can be used to determine the local quantities Llg er (8;) and L1Q (8;, R3) in each 
individual pie-shaped part of the RYE. 

!la"(R0) = !l.cr/
17

(9;) , 
!la1 (R0) = Mfe112 (9~) - Global stress/displacement field, which is 
!lt"1(R0) = !lt,e112(9;) representative for hatched (pie-shaped) area 
u(R3) = w(R3) = 0 

n 

Figure 4.16. Global stress/displacement field representative of local 
stress/displacement field at angle ~· (~ of RVE is drawn). 

On the basis of this hypothesis, the local incremental crack displacements at Ro and 
the local stress corrections at the outer boundary R3 of each pie-shaped part can be 
found by imposing (1) the local ITZ stress correction Lla/12(8;) as an internal 
normal stress condition of constraint for the entire RYE in the direction normal to 
the considered part of the ITZ (n-axis in figure 4.1 6) and (2) the local ITZ stress 
correction L1t,l12(8;) as an internal shear stress condition of constraint for the entire 
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RYE in the direction tangential to the considered part of the ITZ (t-axis in figure 
4.16) 3• 

The minor influence of the stress corrections along the ITZ in the rest of the RYE is 
allowed for by calculating an averaged normal stress correction flcrr/TZ(8;) in the 
direction tangential to the considered part of the ITZ (t-axis in figure 4.16) and 
imposing this averaged stress component as an internal normal stress condition of 
constraint in !-direction. In this way, the global stress/displacement field in the 
(n,t,z) Cartesian coordinate system as shown in figure 4.16 is representative of the 
local stress/displacement field in the pie-shaped part at angle 8;. 

Figure 4.17. Average normal stress in tangential direction LJa/TZ(B1). 

This leaves the calculation of the (volume) averaged normal stress correction in the 
direction tangential to the considered pie-shaped part of the ITZ. In figure 4.17 the 
representative stress/displacement field is considered of a pie-shaped part of the 
RYE with orientation 8~. In this figure non-linear ITZ behaviour occurs, apart from 
the non-linear behaviour at 8~, only in one other part of the ITZ (at 8;). In this case, 
the averaged normal stress correction in tangential direction at 8~ is given b/ 

(fla /r\8;)sin(8;- 8;)- fl-rrem(8;)cos(8;- 8;))~ R0 
2 sin(8;- 8;) 

Scr
9 
m(8;) = 6 

j_rtR2 
2 0 

If non-linear behaviour occurs in an arbitrary number of parts along the ITZ (other 
than the non-linear behaviour at 8~), the expression becomes 

3 The hypothesis includes centre-symmetry of the non-linear behaviour in the ITZ. 
4 see also appendix A, section A.3.2.2 
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6 (flarlTZ (8:)sin(8:- 8;)- fl'tre/TZ(8: )cos(8:- 8;) )~ Ro 2 
Sin(8:- 8;) 

_JTZ *-" 6 ilae (8,)-~ trcRo2 

Recapitulating, a representative (global) stress/displacement field is assigned to 
each pie-shaped part of the RYE at angle 8; (i= 1, ... ,6). This stress/displacement 
field is based primarily on the local ITZ stress correction flQ1TZ(8;) and secondarily 
on an average of all other local ITZ stress corrections. By using the analytical 
solution of this representative stress/ displacement field, local crack displacements 
Ll!!c'(8;) at R0 and the local correction of the stress state flQ(8;,R3) at the outer 
boundary of the pie-shaped part at hand may be determined. 
As this procedure is repeated for all pie-shaped parts of the RYE (8~, ... ,8~), the 
distributions of both crack displacements (at R0) and stress corrections at the outer 
boundary R3 are generated along the entire circumference of the RYE. 

Finally, the stress-strain state according to the representative static condition of 
. !TZ* -!TZ* ITZ* · constramt [flan= fla, (8; ), fla1 = flaa (8; ), fl'tnr = fl-rra (8; )] can be wntten as a 

linear combination of two similar elementary stress-strain states as considered in 
section 4.3.4 (equation (4.2)) for each pie-shaped part of the RYE located at angle 
8;. However, the quantities/, pu sin28 and pu cos28 now are not derived from the 
macro-stress increments but from the ITZ stress corrections at angle 8; (compare 
with equation (4.4)). 

[p 11 = t(fla/rz(8;) + flcr/rz(8;)) 

[p 11 sin281 =t(flar1rz(8;)-flcr9
1
rz(8)) 

~11 COS 281 = fl'trelTZ (8;) 

} i = 1, ... ,6 (4.10) 

The computation of crack displacements (at R0) and outer-boundary stresses (at R 3) 

for these two elementary states is carried out below. 

4.3.5.1 Elementary state I - Stress/ displacement field 
The precise location of cracking within the ITZ is not necessarily the location where 
the elastic ITZ stresses are computed (R0). However, as the variation of elastic ITZ 
stresses over the thickness of the ITZ is very small, the stresses at the centreline of 
the ITZ are considered to be representative of the stress state within the entire ITZ. 
Likewise, the problem with respect to the location of cracking is simplified 
considerably by assuming the stress correction vector flQ ITZ and the elasto-plastic 
strains to be uniform over the thickness of the ITZ. According to this assumption 
the location of cracking does not have any influence on the computation of crack 
displacements and outer-boundary stresses. Accordingly, the ITZ stress correction 
vector is the same at both sides of the ITZ. With these static conditions of constraint 
and zero boundary displacements at the outer boundary of the RYE (R3), the 
stress/displacement fields of the RYE can be computed. 
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For elementary state I, the general elastic stress/displacement field of all phases of 
the RVE in cylindrical coordinates is described by equation (A.8) of appendix A. 

A 
()r =----z+2C 

r 

s9 = 
1 ~v(- ~ +2C(1-2v)) 

u = 
1 ~ v (-: + 2Cr(1- 2v)) 

(4.11) 

(4.12) 

displacement discontinuity 
with crack displacements: 

ucr and wcr 

w(R3) = 0 
u(R3) = 0 

note: 
p 1 as drawn acts on 
the aggregate grain and 
the bulk cement paste. 

Figure 4.18. Conditions of constraint for elementary state I. 

Applying the following conditions of constraint solves the constants of integration 
of the stress/ displacement field in the aggregate grain 

[
crr(RI )=PI 

crr(O):;e oo 

From this it follows that A = 0 and C = Yz /, which results in the following 
expressions for the normal strain in tangential direction and the normal 
displacement at R 1 
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(
f,.} = ~(1- 2v)) E9,1 E 

agg 

[ ').} = 1+v(1-2v)R) 
u,l E I 

agg 

Applying the following conditions of constraint solves the constants of integration 
of the stress/ displacement field in the bulk cement paste 

For elementary state I, this results in the following expressions for the outer­
boundary normal stress, the normal strain in tangential direction at R2 and the 
normal displacement at R2 

(
")._I _ 2R2 

2 
( 1- v) ) 

crr- R/(1-2v)+R/ 

[
AI = ~((1- 2v )(R2 

2
- R3 

2 
))) 

s9,2 E 2 ( ) 2 
bulk R3 1-2v +R2 

(
A1 = ~(R2 (1- 2v)(R2

2
- R3

2 

))] 

u,2 E 2 ( ) 2 
bulk R3 1 - 2v + R2 

The ITZ stresses and strains are assumed to be uniform over the ITZ. This is an 
approximation, so the equations (4.11) and (4.12) do not apply here. However, the 
(uniform) normal radial strain and the normal tangential stress/strain in the ITZ can 
be computed using the following simplified conditions of constraint 

r
c/rz =±(se (R1) + c9(RJ)= AI.eP

1 
( AI.e = ±(AI.e,1 + A1.e,2)) 

11Z I 
(Jr = p 

One additional condition of constraint is required to complete the boundary value 
problem. This condition of constraint depends on whether a plastic normal strain 
component in tangential direction is present or not. When no plastic normal strain 
component exists, the elastic normal strain component equals the total normal strain 
component in tangential direction. 

E p,/1Z _ 0 e,JTZ _ I1Z 
e - ~ E9 - E 9 
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Applying the equations of Hooke's law for plane strain (Appendix A: equation 
(A7)) yields for this case 

[
')/ =-1 ((1+v)(1-2v)_VA1 )) 
~ 1- E ~ 

V ITZ 

[
AJcrfJ =-1 (EirzA~a +v)) 

1-v 1+v 

With zero E/'ITZ, the crack displacements are given by 

When a plastic normal strain component in tangential direction is present, the 
(given) normal stress in tangential direction is imposed as a condition of constraint. 

pJTZ O ITZ • • Ea ' * ~ cra IS given 

Applying Hooke's law in this case yields 

er (~I ~I ~ ) I ~ !TZ 
U = A.u- A.crfJA.u,cra 'P + A.u,cracra (

A = - v ( 1 + v) (R - R )J 
u,cra E 2 I 

ITZ 

(
A = (1-v)(1+v)) 

ea,crfJ E 
ITZ 

p,JTZ ( ~I ~ ) I ~ ITZ 
Ea = - A.crfJA.ea,cra 'P + A.ea,cracra 

4.3.5.2 Elementary state 11- Stress/ displacement field 
For elementary state II the general elastic stress field of all phases of the RYE in 
cylindrical coordinates is described by equation (A.14) of appendix A. 

cr = -2B---- sm28 ( 
6C 4DJ . 

r r4 r2 

( 
2 6C 2DJ 'tra = -6Ar -2B+7+7 cos28 
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The displacement field is described by equation (A.15) of appendix A. 

_ (1+v)sin28(_ 4vAr 3 _ 2Br+ 2C + 4(1-v)DJ 
u- E r3 r 

= (l+v)cos28(_ 6Ar\l-iv)- 2Br- 2C + (2-4v)DJ 
w E r3 r 

The conditions of constraint for this loading case are indicated in figure 4.19. 

displacement discontinuity 
with crack displacements: 

ucr and wcr 

arCR1) = ar(RJ = p 11 sin28 
't,9(R1) = 't,9(R2)= p 11 cos28 

w(R3) = 0 
u(R3) = 0 

note: 
p 11 as drawn acts on 
the aggregate grain and 
the bulk cement paste. 

Figure 4.19. Conditions of constraint for elementary state 11. 
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Applying the following conditions of constraint solves the constants of integration 
of the equations describing the stress and displacement field of the aggregate grain 

ar(RJ= PII sin28 

'ra(R1)= pii cos28 

crr(O)::;=oo 
•ra(O)::;=oo 

From this it follows that A = C = D = 0 and B = -Yl pn, which results in the 
following expressions for the displacements and the normal strain in tangential 
direction at R 1 

[
A'J = (1+v)R1) 

u ,l £ 
agg 
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(
A,11 = (l+v)R1J 

w,l E 
agg 

(
"AJJ = -(l+v)J 

.e.t E 
agg 

The conditions of constraint for the bulk cement paste are 

[

crr(R2 )= pii sin28 

Tre(R2 )= p 11 cos28 

u(R3)=w(RJ=O 

A= (1-2 aJ PII 
R2 a3 

a 0 =(R/+R/(3-4v))R/ 

R/ + R3 
6 ( 3 - 4 V) 

at= 
ao 

2 2( 2 2) 2 _ 3R2 R3 R3 -R2 (
3 4 

)R2 a 2 - +a1 - v-
2 

ao R3 

a 3 = a 2 - 3 + 4a1 

This yields the following expressions for the outer-boundary stresses and the 
displacements and normal strain in tangential direction at R2 

cr (R ) = "AII pii sin 28 r 3 crr (

J.!l = a 2 _ 3R2 
4 

+ 4a1R2 
2

) 
crr 4 2 

aJ aJRJ a3R3 
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The elastic stress-strain field of the ITZ (uniform over r) is given by 

cr 1rz= l 1 sin28 
r 

!TZ = PJJ cos 28 'Ire 

!TZ = /.!1pJJ cos 28 Yre r 

97 

In case no plastic normal strain component in tangential direction is present 
(see,IIZ = s/n), applying Hooke's law for plane strain yields 

Br!TZ = "Al:rPII sin28 ("AI~ = 1 ~V ( (1 + v1~- 2v) v"A/:a)) 

cr/rz = "A~~PII sin 28 ("-~~a = _1_( EITZ"Al:a + v)) 
1-v 1+v 

With zero slJn, the expressions for the crack displacements are 

ucr = u(Rz)-u(R1)-c:/rz(R2 -R1) 

= "A1
: p 11 sin 28 

wcr= w(R2 )-w(R1)-yr/rz(R2 -R1 ) 

= "A1~p 11 cos28 

When a plastic normal strain component in tangential direction is present, the 
nonnal stress in tangential direction cr/TZ is imposed as a condition of constraint. 
Application of Hooke's law for plane strain gives 

er ( ~ 11 ~ If ~ ) If • 28 ~ ITZ 
U = l'.u -l'.aell.u,cra P Sln + ll.u,craO"a 

p,ITZ ( ~ 11 ~ ) JJ · 8 ITZ 8a = -~~.crall.ea,ae 'P sm2 +"-.a,aeO"a 

Wcr = "A1~p 11 
COS 28 

4.3.5.3 Stress/ displacement fields for arbitrary ITZ stress correction vectors 

For any angle 8;, the local stress correction vector at the outer-boundary of the RYE 
[Llo"r(8;,R3), LlT,9 (8;,R3)]T and the local incremental crack displacements at the 
centreline R0 of the ITZ [Lluc'(8;), Llwc'(8;)]T can be computed for an arbitrary ITZ 
stress correction vector [Llcr/TZ (8;), LlT,9

1rz (8;), Scr9ITZ(8;)]T by inserting equations 
(4.10) in the stress-strain-displacement expressions of the two elementary stress­
strain states derived in the preceding sections 4.3 .5.1 and 4.3.5.2. The following 
expressions for these quantities are achieved in this way. 
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at R3 rfw-r (8; ,RJ) = ( Af,r ; A!~r J!larnz(8) + e_Icrr ; A!~r J!lcrain(8) 

Lltra(8;,R3 ) = 1/: !ltranz(8;) 

In case no plastic normal strain component in tangential direction is present: 

Llcr/
77

(8) = ( Ai,a; A
1

~ Jlla/77(8;) + ( A~a; A
1

~a J!lcra177(8;) 

(4.13) 

(4.14) 

(4.15) 

[
!la a nz (8) = local ITZ normal stress correction in tangential direction l 
!la a nz (8) =global (averaged) ITZ normal stress correction in tangential direction 

In case a plastic normal strain component in tangential direction is present, the local 
normal stress correction in tangential direction Lla9

1n (8;) is taken as an additional 
condition of constraint. The expressions then become 

(4.16) 

in ITZ 

!le p.I
17(8*) = (- A

1

cra + A
1

~a A J!la 177(8~) + a I 2 Ea,cra r I 

( 4.17) +( Af,a -A~~ ]"'"' tn(8~) ~ ,.. 1rz(8.) 
2 

1\Ea,cra Llua 1 + 1\Ea,cra LlO"a ; 

4.3.6 Constitutive mode/for ITZ non-linear behaviour 

In section 4.3.5 an ITZ stress correction vector LlQ.m(8;) is introduced which is 
added to the 'trial' stress state Q un(8;) in case this trial stress state violates a 
certain cracking criterion. Based on this ITZ stress correction vector a framework is 
expounded that establishes linear relationships between, on the one hand, the local 
ITZ stress correction vector and, on the other hand, the local outer-boundary stress 
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correction and the local incremental crack displacements at the centre line of the ITZ 

at angle 8;. 
In this section a constitutive model is presented that provides the local ITZ stress 
correction vector in an arbitrary part of the ITZ at angle 8;, for several types of 
cracking in the ITZ. In chapter 3 is outlined that the macroscopic observed 
mechanical features at stage II of concrete in multiaxial compression can be 
explained by isolated crack formation in the ITZ, such as (microscopic) pore 
collapse possibly in combination with mesoscopic mode II or mode I cracking along 
the ITZ. These types of cracking all are incorporated in this constitutive model for 
ITZ non-linear material behaviour. 
The constitutive model is formulated according to the principles of classical elasto­
plasticity. If the elastic stress state in the ITZ falls outside the stress-state bounding 
surface, "yielding" is detected and the elastic (trial) stress state is put back onto the 
bounding surface. Expansion and/ or shrinkage of the bounding surface is governed 
by the introduction of internal state parameters. 
As the constitutive model is incorporated in the explicit solution procedure of the 
computer code UDEC, return mapping of the trial stress state onto the bounding 
surface may also occur explicitly, i.e. the assumption is made that the internal state 
parameters remain constant during the entire time step and are only updated at the 
beginning of each time step. Consequently, the shape and position of the stress-state 
bounding surface remains unaltered during one small time step. 

4.3.6.1 Mesoscopic mode I and mode 11 cracking along the ITZ 
Mesoscopic mode I and mode II cracking along the ITZ are captured by bounding 
the ITZ normal stresses in radial direction (ar) and the shear stresses in tangential 
direction (tre) by a linear Mohr-Coulomb type bounding surface (see figure 4.20), 
allowing mesoscopic interfacial cracking along the tangential 8* -direction of the 
ITZ. The stress-state bounding surface is determined by two parameters, the friction 
angle <!> and the tensile strength fr. 
Tensile (linear) softening is incorporated in the model by introducing a dependency 
between the parameter j; and the loading history through the internal state parameter 
Kt. The friction angle 4> probably also depends on the loading history. Experimental 
observations by Alexander 1971 show that at first slip the friction angle increases to 
some extent and decreases to a stationary level as slip proceeds. The observed 
variation of<!> however is small and, therefore, will have only a minor influence on 
the global behaviour of the RYE. As this influence is small and the model only aims 
at reproducing the most salient mechanical behaviour, the potential dependency of<!> 
on the loading history is disregarded. 

Mathematically, the stress-state bounding surface for mesoscopic mode I and mode 
Il cracking along the ITZ is expressed as 

.t;(Q172
, K1 )= l'tranzl- (1, ( K1)- a/rz )tan<!>= 0 
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The internal state parameter KI depends on the incremental crack opening !1ucr and 
crack sliding !1wcr displacements by 

y 

a,., u 

j, 

i 

---?KI 

Figure 4.20. Mohr-Coulomb stress-state bounding surface with tensile softening. 

Q.0.17Z(8) = initial stress state 
Q.'·m(e) = (elastic) trial stress state 
Q.I,m(e;) =final stress state 
~Q.112(8) = ITZ stress correction 

mode I/ 
crack sliding 

mixed mode 
crack opening/sliding 

model 
crack opening 

Figure 4.21. Return mapping of the (elastic) trial stress state. 
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The direction of return mapping of the trial stress state onto the bounding surface is 
determined by the direction of plastic flow, i.e. the ratio between incremental crack 
opening and crack sliding displacements. During mesoscopic mode I or mode II 
cracking along the ITZ no irreversible (plastic) normal strain component in 
tangential direction is present (E{JTZ = 0), so the crack displacements are given by 
equation (4.14) in section 4.3.5.3. According to this equation, there is a linear one­
to-one relation between the decrease of shear stress 11-rrl12 and incremental crack 
sliding displacement !1wcr, as well as a linear one-to-one relation between the 
decrease of normal stress !1cr/rz and incremental crack opening displacement !1ucr. 
In the compressive region (cr/12 < 0), pure mode II cracking is assumed with no 
dilatancy. In the tensile region (crrm > 0), mixed mode cracking occurs depending 
on the ratio between shear and normal tensile stress. The accompanying direction of 
return mapping is indicated in figure 4.21. 

4.3.6.2 Pore collapse 
As the thin contact layer between the aggregate grain and the rest of the ITZ (figure 
3.3 in section 3.1.1) is considered to be the weakest layer of the ITZ, mesoscopic 
mode I/II cracking is likely to occur along this layer. Because this layer is also the 
most porous one, compressive collapse of the pore structure of the ITZ will initiate 
here also. However, when pore collapse proceeds and the porosity in this layer 
decreases, the phenomenon of pore collapse will extend over the entire thickness of 
the ITZ. 
Microcracks involving pore collapse are not restricted to run along the tangential e*­
direction of the ITZ, but may run in any direction. This phenomenon is a distributed 
process and a continuum approach is therefore adopted. 
It is assumed that the stress-state bounding surface of the ITZ continuum resembles 
a straight Mohr-Coulomb bounding surface determined by two parameters, the 
cohesion (cpc) and the friction angle (<!>pc). When the local stress state- as indicated 
by Mohr's stress circle in figure 4.22 - violates this cracking criterion, the stress 
state represented by point A on Mohr's stress circle has to be put back onto the 
bounding surface. 
The mathematical formulation of the stress-state bounding surface for pore collapse 
follows from the comparison between the radius of Mohr's stress circle rM and the 
distance of CM perpendicular to the bounding surface as drawn in figure 4.22. 

with 
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Figure 4.22. Mohr's stress circle touching bounding suiface for pore collapse. 

As stated before, compressive collapse of the pore structure of the ITZ initiates in 
the thin, most porous, contact layer between the aggregate grain and the rest of the 
ITZ. When pore collapse proceeds, this type of failure will extend to the - less 
porous and hence stronger- outer layers of the ITZ. This implies that the resistance 
to subsequent pore collapse will increase during the process of pore collapse until 
the porosity has decreased to such a level that further pore collapse does not occur 
anymore. This happens in the present model when the plastic volumetric 
compaction K2 reaches a critical value K2,max· Beyond this critical level, the stress 
state in the ITZ is no longer bounded by a bounding surface for pore collapse. 
The strengthening effect during pore collapse may be allowed for by introducing 
cohesive and/or frictional strengthening, i.e. introducing a dependency between the 
parameters of the Mohr-Coulomb bounding surface, Cpc and/or <!>pc' and the plastic 
volumetric compaction K2. Such a strengthening law cannot be derived 
unambiguously, since the only obvious requirement for this law is that Cpc and/or <!>pc 

should increase during pore collapse. An appropriate strengthening law may 
however be obtained by comparing model simulations at stage 11 with 
(macroscopic) test results. In this way, satisfactory agreement with test results was 
achieved applying a strengthening law including only cohesive strengthening 
according to the following relationship: 

Cpc ( K2) = C pc,ini + ( C pc,end- Cpc,ini) y Kz 
Kz,max 

Kz,max =plastic volumetric compaction at maximum pore closure 

c pc,ini = cohesion at zero pore closure 

c pc,end = cohesion at maximum pore closure 
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The incremental plastic volumetric compaction is given by the sum of plastic 
normal strains in the ITZ. (The expressions for flucr and flelJTZ are given by 
equation (4.16) and (4.17) in section 4.3.5.3) 

ITZ ITZ flUcr fTZ 
A = !le p, + !le p, = + !le p, 
ilK2 r 9 R _ R 9 

2 l 

The final expression for the stress-state bounding surface for pore collapse is given 
below and is graphically illustrated by figure 4.23. 

( trz ) ( trz) . ..h [cpc(Kz) ( tTZ)~ 
fz Q ,Kz =rM Q - sm't'pc tan<J>pc CM Q )=0 

Figure 4.23. Expansion of bounding suifacefor pore collapse due to a decrease 
of porosity. 

The direction of return mapping of the trial stress state onto the bounding surface is 
determined by the direction of plastic flow. To this end a dilatancy angle for 
compressive pore collapse o/pc is introduced. According to the classical theory of 
elasto-plasticity, the relations between the principal plastic strain increments and 
'V pc are 

[
flel p,tTZ ] = flS [ 1( 1 +sin \jl pc)] 
L'1E p,trz • - .L (1- sin"' ) 

3 2 'I' pc 

with 

L'1E1 p,trz =maximum principal plastic strain increment 

L'1E/,trz =minimum principal plastic strain increment 

L'1S. =plastic multiplier 

(4.18) 
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The principal plastic strain increments are linked to the plastic strain increments in 
r- and e* -direction by 

,-1 p,JTZ = !(,-1 p,ITZ + ,-1 p,JTZ + '(,-1 p,JTZ _ ,-1 p,JTZ )2 + (,-1 p,ITZ)2) E, 2 Er Ee "\j Er Ee y re 

,-1 p,JTZ = !(,-1 p,ITZ + ,-1 p,JTZ _ '(,-1 p,ITZ _ ,-1 p,JTZ )2 + (,-1 p,ITZ)2) 
E3 2 Er Ee "\j Er Ee y re 

with 
A er 

i1E p,JTZ = _u_u_ 
r R2 -R, 

and 
A er 

~ p,JTZ __ u_w __ 
Yre - R -R 

2 I 

The expressions for L1E/'112
, L1ucr and L1wcr at angle e; are given by equation (4.16) 

and (4.17) in section 4.3.5.3. The (minor) influence of Sa01TZ, however, is not taken 
into account because this stress component is calculated as an average of the stress 
correction vectors along the entire ITZ. As the present constitutive law will be 
applied locally for a single small part of the ITZ at a certain angle e;, the value of 
Saenz is not known a priori. After application ofthe constitutive law for all parts of 

the ITZ, the influence of Sa0nz however will be allowed for (section 4.3.7). 

Disregarding the influence of L1ae1
TZ, the plastic strain increments in r- and e·­

direction are linked to the local ITZ stress corrections by 

r 
i1E/,JTZ 1 r')._sr,crr 
A p,JTZ ~ 
uEe = ""se,crr 
,-1 p,ITZ 0 

Yre 

with 

"-sr,cre 

"-.e,cre 

0 

1 ("-/+"All "A - u u 
sr,crr R -R 2 

2 I 

"-se,crr = 

"A ')._ = u,cre 
sr,cre R -R 

2 I 

"All 
"A = w 

r R
2 
-R

1 

( 4.19) 

In conformance with the theory of classical elasto-plasticity, the principal plastic 
strain increments due to compressive pore collapse coincide with the principal ITZ 
stresses, i.e. the axes of principal ITZ stresses do not rotate during return mapping. 
Accordingly, a stress point (crR ,0) can be indicated towards which the corrections of 
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all stress points on Mohr's stress circle do point (see figure 4.24). The components 
of the stress correction vector herewith are interrelated as follows 

Substituting these expressions into equation (4.18) results in a quadratic equation 

in O'R· 

with 

a, = (t._er ,crr + "-ee,crr )cr /,JTZ + (t._sr,cre + "-se,cre )cr et,ITZ 

a2 = ("-er,crr- "-ee,crr )cr/,ITZ + ("-.r,cre- "-se,cre)cre
1
,/TZ 

a3 = "-sr,crr + "-se,crr + "-sr,cre + "-se,cre 

a4 = "-er,crr- "-.e.crr + "-sr,cre - "-.e.cre 
~ t,ITZ 

as = ""r 're 

Figure 4.24. Return mapping with no rotation of axes of principal stress. 

Raising equation (4.20) to the square yields the following potential solutions 

a _ U 2a 4 sin 
2

\j/ pc- a 1a 3 ±sin \jl pc Ji5ii 
R- 2·2 2 

a 4 sm \jl pc- a 3 

(4.20) 
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with 

It appears that for physically acceptable values assigned to the elastic properties of 
the RYE, the determinant Det is always positive ( Ja3J > Ja4J ). In this way, two 
solutions for crR are generated. The correct solution for crR is that solution satisfying 
equation (4.20), and in case both solutions satisfy equation (4.20), that solution 
which produces the largest amount of plastic work5 

AWP- t,/7Z A p,ITZ( )+ t,/7ZA p,/7Z ( )-
Ll - cr, LlE,. cr R cr9 Llc9 cr R - max 

Having determined the location of crR, the 'trial' elastic stress state can be put back 
onto the stress-state bounding surface. Return mapping of stress point A gives 

1\ 
'tA (JA -(JR 

---* 11tA = c pc (Kz)-crA tan<j>pc -'tA 

'tA 'tA +(crA -crR)tan<l>pc 

with 

( 
I 17Z) ( I !7Z) • ,h cr A = C M Q · + r M Q • sm '!' pc 

( t,/7Z ) A. 't A = r M Q COS'!' pc 

Finally, the ITZ stress correction vector in r,e· -coordinates is given by 

By introducing the dilatancy angle for pore collapse o/pc• an additional material 
parameter is introduced that may influence the strengthening (or softening) 
behaviour of the RYE loaded in multiaxial compression. This becomes clear when 
compressive pore collapse is considered upon loading consisting of imposed 
deformations in radial and tangential direction, e.g. a (compressive) loading path6 

with Ee = -0.1 E,.. Such a loading path will induce strengthening behaviour when the 
ratio between the plastic strain in e• -direction and the plastic strain in r-direction 
El/ E/' is more (positive) than -0.1. On the other hand, softening occurs when the 
ratio is less than -0.1. Evidently, for each loading path of imposed deformations a 
critical value 'Vcrit can be indicated upon which the material behaviour changes from 
strengthening to softening. This is illustrated in figure 4.25. 

5 The plastic work in shear is equal for both solutions of crR 
6 In this example Poisson ' s ratio is more than 0.1 (v > 0.1 ). Hence, a loading path with s6 = -0.1 E, is 
multiaxial compressive in the elastic region ( cr6 < 0). 
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El 1 +simjl crit 

r.,P =-1+sin\jf . = -0.1 ~ o/cru = -55° 
crtt 

o/pc < o/crit 

Figure 4.25. Strengthening in case ~pc> 1/Fcrit and so'i:ening in case 11r < "' . 
'f'( 'J" rpc rent· 

4.3.6.3 Mesoscopic cracking along the ITZ or microscopic pore collapse? 

The ~tress ~ta~e in the I!Z i~ bounded by two bounding surfaces concerning the 
cracking cntena as descnbed m the preceding sections. If the trial stress state in the 
ITZ violates only one of these two failure criteria, the stress state is put back onto 
that particular bounding surface. However, when the ITZ trial stress state violates 
both cracking criteria, it is not evident which procedure should be pursued. 
This pro~lem is usually tackled by determining intersection point(s) of the bounding 
surfaces m stress space and defining the right bounding surface at either side of the 
inters~ction point(s). Obviously, this procedure can only be applied when both 
boundm~ surfaces are formulated in the same stress space. The bounding surfaces 
concemmg the cracking criteria as described in the preceding sections however are 
not form~lated in the same stress space. While the criterion of mi;roscopic ~ore 
collapse Is formulated in a 'continuum' stress space (in which Mohr's stress circle 
resembles_ the stress state in all planes with arbitrary orientation), the criterion of 
mesoscopic cracking along the ITZ is formulated in a 'single plane' stress space for 
a specific plane running along the tangential e• -direction (in which the stress state 
resembles a single point). 

The pro~lem is solved when the linear Mohr-Coulomb bounding surface for pore 
collapse IS transferred from the 'continuum' stress space to the ' single plane' stress 
s~ace ( cr" t,.e). After this transfer, the normal stress component in tangential e d. · 

- rrectwn cre is not considered anymore, i.e. the stress vector is reduced from 
three to only two components: cr,. and 1:,.8. To account for the influence of cr

8 
on the 

~hape of the bounding surface in the case of pore collapse, this stress component is 
mtroduced as an additional internal state parameter in the 'single plane' stress space 
(cr,., 't,.a). 

When the linear bounding surface for pore collapse is transferred from the 
'continuum' stress space to the 'single plane' stress space ( cr" t,.9), the shape 
changes into an ellipse. 
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-\ ITZ\ • 2 ~ (cpc(K2) 112 1 ( 112 112)~
2 

1 ( ITZ 112)2 _ O - t - sm ----cr - - cr - cr - - cr - cr -
re pc t "' e 2 r e 4 r e an 'I' pc 

with 

For several values of cr9ITZ, this elliptic bounding surface is drawn in figure 4.26. 

Figure 4.26. Bounding surfaces for pore collapse in the ( Cln r,e) stress-space for 

several values of rr/12
. 

The stress coordinates of the intersection point(s) I of the bounding surfaces for 
mesoscopic cracking along the ITZ and microscopic pore collapse are found by 
solving the following set of equations. 

J; (QITZ' Kl )= O 

( 
11Z 11Z) 

f2 Q 'K2 'cr e = 0 

The potential solutions of the resulting quadratic equation in cr/
12 

are 

m 112 2 /,* tan 2 ~ - c ~c sin~ pc ± .J Det 
cr r (I) = cr e + ----~'-------''-'----

2 tan 2 
"' + .l cos 

2 
"' 'I' 2 'I' pc 

with 
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Det = ( 4c~ (c~c - J;* sin~pc)- (J;* cos~PJJ tan 2 ~ + (c;J 
l = J;(K,)- Ge/1Z 

C~c = Cpc ( K 2 )cos~ pc- cr911Z sin ~pc 
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Zero, one or two solutions exist for the point of intersection, depending on the value 
of the determinant Det and the sign of tra

112(I) . These potential solutions are 
illustrated graphically in figure 4.27. 

2 points of intersection 

no points of intersection 
/-------~-*-~+ 

'""t ...... , Jc,pc 

~:::::2::~·· .. .... ··············· ··· .. ······· 
Det<O ''·, .... ·· ... 

'•, ······ ... ···· ... ·•· .... ·· ...•.. 
...___ _______ __;;;,;.~·.. ······ ... 

·· .... 
··· ... 

'1. n . 't, e I 

t 

:::::.~:: ....... . 

Det>O 

Det<O 

··· ..... . 

······ ... _ 

······· ... 
···· ... 

·· .. 

Figure 4.27. Potential intersection points of stress-state bounding surfaces. 

De.pending on the 'trial' stress state Qt.I12 and the solution of the intersection 
pomt(s).' the di~gram displayed in figure 4.28 shows which cracking criterion should 
b~ apphe?. Th1s procedure might not be very accurate for 'trial' stress states in the 
dtrect netghbourhood of the point of intersection. In those cases, the final stress 
stat IJ12 . h f: 11 . . e Q m1g t a outs1de the stress-state bounding surface that was not taken 
~~to .account. However, as this error will be corrected during the next time step and 

e hme steps are very small, the accuracy of the presented procedure suffices. 
Gen~rally /c.pc <fr <fr.pc• so mesoscopic cracking along the ITZ prevails in the 
tensile . and low compressive regime, while microscopic pore collapse is 
~redo~mant in the high compressive regime. This results in an overall stress-state 
oundmg surface as depicted in figure 4.29. 
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[ j, <fc.pc 1 yes 
) 

lno 

[ /,</,,pc 1 yes 
J 

lno 

r Det<O 
yes 

1 no 

[ O',.t,ITZ < a/TZ(J1) J 

lno 

[ a,t.ITZ > a/TZ(12) J 
I no 

J 

yes 

yes 

;; : mesoscopic cracking along the ITZ 
no 

ayn < a/TZ(l,) J 
yes 

;;_ : microscopic pore collapse 

Notes. 
/ 1 : potential solution with subtraction of VDet 
11 : potential solution with addition of VDet 

Figure 4.28. Flow chart for the determination of the 'true' cracking criterion. 

pore collapse 

1 
ill Ill Ell! 

mesoscopic 
mode 11 cracking 

..L 

Figure 4.29. Overall stress-state bounding surface. 

4.3.6.4 Crack closure 

mesoscopic 
mixed mode cracking 

J_ 

T 

During an unloading/reloading cycle in a multiaxial com~res~ion test,_ potential 
crack closure of open mode I cracks loaded in compresswn ts essentml. Crac_k 
modelling according to the theory of classical elasto-plasticity does not ca~ture this 
phenomenon sufficiently. Therefore, the classical theory is extended allowmg crack 
closure without built-up of compressive forces. 
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During tensile loading the (plastic) Crack Opening Displacement COD 7 is 
recorded. When the loading reverses from tensile to compressive, the constitutive 
model allows no compressive force transfer between the crack faces if the COD is 
positive. Consequently, no compressive forces will arise during crack closure while 
the COD decreases to zero. When the crack is fully closed (COD = 0), compressive 
forces will build up again as in the classical theory of elasto-plasticity (figure 4.30). 

aiTZ 
I' t funi 

{ 
lo 

'" I§ 
IG 

crack closure 
------7 u 

Figure 4.30. Crack opening/closure during load cycles in radial direction . 

4.3. 7 Crack interaction effects 

The computation of local ITZ stress correction vectors LlQ112(8;), as explained in the 
preceding section, does not include any crack interaction effects. Each local ITZ 
stress correction vector at a certain angle e; is computed assuming no plasticity in 
any other part of the ITZ. 
According to the equations derived in section 4.3.5.3, the incremental crack opening 
displacement !lucr(e;) (or !ls!,ITZ(8)) and- in the case of microscopic pore collapse 

- the local plastic normal strain in tangential direction Llcl,ITZ(e;), also depend on 
the averaged normal stress correction Llcrr/TZ(e;) in the tangential e* -direction of the 

considered part of the ITZ. After computation of the primary ITZ stress correction 
vectors LlQITZ(e;) in all parts around the RYE, !lcr9

1TZ(8;) can be calculated for each 
specific part. The influence of this averaged stress component is then allowed for by 
computing additional secondary ITZ stress corrections Ma,.ITZ(e;) and !l!lcrr/TZ(8;), 
with this averaged stress component and the computed incremental crack 
displacements (or plastic ITZ strains) as conditions of constraint. In case of 
mesoscopic cracking along the ITZ, these secondary ITZ stress corrections are 

7 
The COD equals exclusively the radial crack displacement ucr during mesoscopic mode I cracking along the 

ITZ. Potential (negative) radial crack displacement during pore collapse is not taken into account. 
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ililcr 112 (8~)=-(A~ -A~)ilcr m(8~) 
r I AI + AII e I 

u u 
(4.21) 

LlLlcrtz (8;) = ( AJcre ; AJ~e )LlLlcr /TZ (8;) + ( AJcre ; AJ~e )LlaeiTZ (8;) 

In case of microscopic pore collapse, the interrelation between the plastic normal 
strains and the primary ITZ normal stress corrections is given by equation ( 4.19). 
Considering ( 4.16) and ( 4.17), the interrelation between the (zero) secondary plastic 
normal strain increments and the secondary ITZ normal stress corrections becomes 

[
0] [Aer,crr 
0 - A.e,crr 

with 

1 (AJ -All A _ u u 
er,cre- R -R 2 2 I 

A.e,cre = 

Solving this set of equations yields identical expressions for the secondary ITZ 
stress corrections as given in equation (4.21). Obviously, in case of zero secondary 
plastic strains - i.e. elastic material behaviour - no distinction exists between the 
two crack mechanisms. 
Crack interaction effects also exist for the shear component of the ITZ stress 
correction vectors. Generally, the corrected ITZ shear stresses are not in 
equilibrium. In fact, a state of equilibrium is only reached if the addition of all shear 
stress correction vectors equals zero (figure 4.31 ). 

6 

Moment equilibrium: R0 L tnrl17(9~) = 0 
i = I 

Figure 4.31. Moment equilibrium in case of non-linear ITZ behaviour. 
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In case the primary shear stress correction vectors Ll'tre1TZ(8;) are not in equilibrium, 
the core of the RYE rotates within the outer layer of the RYE until a state of 
equilibrium is reached. As a result, a secondary ITZ shear stress correction M'trlrz, 
equal for all parts of the ITZ, is computed 

JTZ ~~ ITZ{ •) 
LlLl'tre = -6 frLl'tre \8; 

Finally, the final stress state is obtained - for each part of the ITZ at angle 8; - after 
applying both primary and secondary stress corrections 

O'I,ITZ (8;) = Qt,ITZ (8;) + LlQ112 (8) + LlLlQITZ (8) 

If cracking in the ITZ occurs, the primary ITZ stress corrections put the 'trial' stress 
state back onto the appropriate bounding surface. The addition of the secondary ITZ 
stress corrections causes the final ITZ stress state to deviate from this bounding 
surface. The algorithm therefore remains stable only when the secondary stress 
corrections remain small compared to the primary stress corrections. The numerical 
simulations with the model (section 4.4) show that this is indeed the case. 

4.3.8 Correction of trial macro stress state 

For each part of the ITZ at a specific angle 8;, the local stress corrections at the 
outer boundary of the RYE are determined with equation (4.13). Including the 
secondary stress corrections in the ITZs they now read 

!:J.cr r (8; ,R3) = ( AJcrr ; AI~r }Llcr r ITZ (8;) + LlLlcr / 12 (8;) )+ ( A~r ; AI~r )Lla/12 (8;) 

A (8* ) ~11( 112(8*) 112(8*)) Ll'tre i'R3 =A., Ll'tre i +LlLl'tre i 

Based on these local stress corrections at the outer boundary of the RYE, the 
correction of the trial macro-stress vector is determined by computing the volume 
average of these local stresses according to a rotated Cartesian (x ',y ',z )-coordinate 
system (with they '-axis aligned with 8~ = 8;- n/12). This procedure is indicated 
in figure 4.32. 
Further evaluation of the expressions for the (x ',y ',z) macro-stress corrections, as 
shown in figure 4.32, results in 

!:J.crx.m =}t( Llcrr(8;,R3 )sin
2
(8; -8~.) +Ll'tre(8; ,RJsin(8; -8~.)cos(8; -8~.)) 

!:J.cr/ =}t( ilcr,(8;,R3)cos
2
(8; -8:J -Ll't,e(8; ,R3)sin(8; -8:Jcos(8; -8~.)) 

Ll'tx'y'm =}t( Llcrr(8;,R3)sin(8; -8:Jcos(8; -8:Y.) -Ll't,e(8; ,R3)sin 2(8; -8:Y.)) 
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6 (t) 
LA; ~ay' 
i=1 

~cr/ = ...:_:.._6.,------

LA 
i = } I 

6 (t) 
L A;~ly'x' 
i=l 

~-y~' = --6;-----

LA 
i=l I 

y' 

y' 

x' 

x' 

note: A;= area of part i 

Figure 4.32. Determination of macro-stress corrections in the rotated (x',y',z)­
coordinate system. 
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In appendix B is outlined that when the ITZ shear stress corrections (and 
consequently the outer boundary shear stress corrections) are in moment 
equilibrium, the volume averaged macroscopic shear stresses ~t x'y'm and ~t y'x'm are 

equal to each other. As the ITZ shear corrections are forced to be in equilibrium 
from the addition of the secondary ITZ shear stress corrections, the above 
macroscopic shear stresses are identical. 

Finally, the results obtained in the rotated (x',y',z)-coordinate system have to be 
rotated back to the global (x,y,z)-coordinate system using the transformation law 

r 
m][ 29• ~cr x cos Y.Y' 

m • 2e· 
~crY == sm Y.Y ' 

~txym cose~.sine~. 

. 2e· sm yy' 

2 • 
cos eyy· 

-cose~. sin e:y' 

Adding these macro-stress corrections to the trial macro-stress state, the new macro­
stress state according to the non-rotated (x,y,z)-coordinate system is given by 

4.4 Performance of the numerical model 

The performance of the numerical model at stage I and II is illustrated by 
simulations of a series of multiaxial plane-strain compression tests performed by 
Van Geel 1998 at Eindhoven University of Technology. These proportional tests, with 
5 %, 10 %, 15 %, 25 % and 50% ratio between lateral and axial boundary forces, 
are performed on cubic specimens of 100x100x100 mm3

• The test set-up is 
displayed in figure 4.33. 
The tests are carried out with uniform boundary displacement of the loading platens. 
To reduce frictional forces at the boundary of the concrete specimen, the 
experiments of Van Geel are carried out with teflon layers between the loading 
platens and the specimen. These teflon layers are modelled by adding interface 
elements with low frictional restraint (tan~= 0.012) [Vonk 1992

] between the loading 
platens and the specimen. 
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steel loading platen f tejlon layer 

f 
Figure 4.33. Test set-up. 

The mesoscopic mesh for the concrete specimen is generated according to the 
procedure explained in section 4.2. Mesh generation is carried out in such a way 
that the grain pattern of a cross-section of the concrete cubes used by Van Geel is 
reproduced approximately, at least for the largest fraction of aggregate grains. The 
weight percentages of the concrete constituents, used by Van Geel, are listed in 
table 4.1. 

Table 4.1. Weight percentages of concrete constituents [Van Gee/ 1998
}. 

Constituents Normal Strength Concrete 
PC Cement Type B 15.8% 
Max. aggregate size 8mm 

(Rounded river gravel) 
Size distribution 5-8 mm 17.0% 

3-5mm 5.7% 
2-4mm 15.3% 
1-2mm 11.5% 

0.5-1 mm 11.5% 
0.2-0.63 mm 9.8% 
quartz sand 5.3% 

Water 8.1% 
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The total mass of the (wet) concrete cube is about 2.5 kg. The aggregate mass 
percentage is 76.1 %. This means that the total mass of the aggregate is about 1.9 
kg. With a density of the aggregates equal to 2800 kg/m3 (estimate), the total 
volume of the aggregate fraction equals: 1.9/2800 ~ 0.00068 m3

• 

To come to a representative cross section of a concrete cube with a certain grain 
distribution, a method is adopted presented by Walraven 1980

•
1981

• The method 
computes the total area of an arbitrary fraction of circular-shaped grains in a 
representative cross section out of a sphere-shaped grain distribution according to 
the Fuller grading-curve. As the grain distribution of Van Geel resembles the Fuller 
grading-curve quite well [Bangers 1997

' 
19983

], application of the method is permitted 
here. According to this method, the probability that an arbitrary point in a 
representative cross section is located within an intersection circle with diameter 
D <Do is given by 

P,(D <Do)= Pk 

.. . -0.0115(:
0 J

6 

-0.0045(~]
8 

-0.0025(~]
10 

max D max D max 

with 

Pk =ratio between the total volume of the aggregates and the concrete volume 

Dmax =diameter of the largest aggregate grain 

Application of this function, with Pk = 0.68 and Dmax= 8 mm., results in the grain 
distribution of a representative cross section as shown in table 4.2. 

Table 4.2. Grain distribution of a representative cross section of the concrete 
cubes casted by Van Gee/. 

Do Do,prev. Pc Pc Fraction (Do,prev < D <Do) in a cross 
[mm] [mm] (D<Do) (Do.orev<D <Do) section of 100 x 100 mm2 [mm2

] 

2 0 0.3643 0.3643 3643 (0.3643 X 100 X 1 00) 
3 2 0.4457 0.0814 814 (0.0814x 100x 100) 
5 3 0.5702 0.1245 1245 (0.1245x 100x 100) 
8 5 0.6800 0.1098 1098 (0.1098 X 100 X 100) 

The grain distribution in the generated mesh is listed in table 4.3. Comparison of the 
grain distributions of both the generated mesh and the representative cross section 
of the tested concrete cubes learns that most of the largest fraction is incorporated 
explicitly in the generated mesh. The remaining part of the aggregate grains will be 
accounted for implicitly by choosing properly the RYE-dimensions of the finest 
fraction. 
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Table 4.3. Area of grain fractions in the generated mesh. 

computed area in generated mesh r mml l 
Total of a22re2ate 2rains 

Fraction 8-16 mm 
Fraction 5-8 mm 
Fraction 3-5 mm 
Fraction 2-3 mm 
Fraction 0-2 mm 

1400 
0 

839 
492 
63 
6 

The RYE-dimensions of the explicit coarse aggregate grains are calculated 
according to section 4.3.1. The average thickness of the ITZ around these grains and 
the average thickness of the bulk cement paste layer are both estimated equal to 
150 j.lill. The total cross sectional area of the ITZ layers AJ;';rse and the bulk cement 
paste layers A~~;;:s• around the explicit coarse aggregate grains is interrelated by 
considering the average diameter of these grains 

n coarse = 839· 6.5 + 492 ·4+ 63. 2.5 + 6 = 5.42 mm. 
agg 1400 

Average RYE-dimensions for explicit coarse aggregate grains: 

RI coarse = 2.71mm. 
coarse ( lnz = 150 !-!ill) 

R2 = 2.86 mm.( ) 
coarse f bulk = 150 j.lill 

R3 =3.01mm. 

(R coarse )2 _ (R coarse )2 
A coarse -- 2 - - I - 1400 = 159 mm2 

ITZ - (RI coarse y 
(R coarse )2 _ (R coarse )2 

A coarse -- 3 - - 2 - 1400 = 168 mm2 
bulk - (RI coarse y 

The average diameter of the fine aggregate grains (mortar) is calculated by 
averaging the remainder of the aggregate grain fractions. 

Dfine _ (1098 -839 )· 6.5 + (1245 -492)· 4 + (814- 63 )· 2.5 + (3643- 6) 
agg - 6800 -1400 

=1.89mm. 

It is assumed that the ITZs occupy 40 % of the total volume of cement paste (see 
section 3.1.1). This implies that the ITZs occupy 1280 mm2 and the bulk cement 
paste occupies 1920 mm2 of the total cross sectional area of cement paste 
(1 0000 - 6800 = 3200 mm2

). After subtraction of the ITZ and bulk cement paste 
cross sectional areas around the explicit coarse aggregate grains, the cross sectional 
areas of the ITZ and bulk cement paste around the fine aggregate grains are 
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A{;;e = AITZ -AJ;';rse = 1280-159 = 1121mm2 

A~;;= Abulk- A~~;;:s• = 1920-168 = 1752 mm2 
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The RYE-dimensions for the fine aggregate grains (mortar) are determined by the 
cross sectional areas of the separate components 

With A~;· = Aagg- A~;;rse = 6800- 1400 = 5400 mm2
, this results in the following 

RYE-dimensions for the fine aggregate grains (mortar) 

R fine = 0.945 mm. 
I ( f = 93 llffi) 

R/ne = 1.038 mm. ITZ r 

fine ((bulk= 131 !-!ill) 
R3 = 1.169 mm. 

The thickness of the ITZ layer of the RYE (both for the coarse aggregate grains and 
the mortar) may seem somewhat too large considering the statements about this 
zone in section 3 .1.1. However, the cross sectional thickness of this layer does not 
resemble the 3-dimensional thickness of the layer perpendicular to the aggregate 
grain (see figure 4.34). The current 2-dimensional RYE can be interpreted as a 
representative cross section of a spherical 3-dimensional RYE. According to figure 
4.34 this apparently yields a larger thickness of the ITZ layer in a 2D-configuration 
than in a 3D-configuration. 

representative cross section 
tm20

: thickness ofiTZ in a 2D configuration 
tm30 : thickness ofiTZ in a 3D configuration 

Figure 4.34. Thickness of the IIZ layer in 2D and in JD. 
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Based on the properties of the concrete mix, used by Van Geel, the dimensions of 
the RVEs for the fine aggregate grains (mortar) and the explicit coarse aggregate 
grains are fixed. This leaves only the determination of the material properties of the 
separate phases. The material properties used in the simulations are listed in 
table 4.4. 
Young's modulus of the aggregate grains and the bulk cement paste are averages 
from experimental data listed in section 3 .1.2.1. Poisson' s ratio and Young's 
modulus of the ITZ are determined according to an inverse modelling strategy, i.e. a 
best fit of the overall elastic moduli (computed according to appendix A) with the 
experimental data of Van Geel is achieved by variation of these properties. 

Table 4.4. Input parameters. 

Distribution of outer boundary displacements of the RVE 
Y2 macro-stress + Y2 macro-strain 

RYE-dimensions Elastic properties 
Fine agg. I mortar Coarse aggregates Fine agg. I mortar Coarse aggregates 

(2-8mm) ( 2 - 8 mm) 
R1 = 0.945 mm. - Eagg = 70000 MPa Eagg = 65000 MPa 
Rz = 1.038 mm. Rz- R1 = 0.150 mm. Em= 10000 MPa Enz= 10000 MPa 
R3 = 1.169 mm. R3- Rz = 0.150 mm. Ebulk = 18000 MPa Ebulk = 18000 MPa 

V= 0.12 V= 0.12 

Mode 1/11 crackin~ alon~ the ITZ Pore collapse in ITZ 

<!>= 25° <J>pc = 0° Kz,max = 30% 
/t.ini = 4 MPa Cpc,ini = 15 MPa \jlpc = -60° 

K1 max = 0.005 mm. Cpc,end = 40.5 MPa 

Experimental data on the material properties for mesoscopic mode I/II cracking 
along the ITZ is scarce. The friction angle <1> = 25° resembles the stationary level 
after first slip reported by Alexander 1971 (see section 4.3.6.1). In conformity with 
the remarks regarding the tensile strength of the ITZ in section 3.1.2.1, the tensile 
strength.fr.ini of the ITZ is less than those values reported for the bulk cement paste. 
According to results obtained by Schlangen 1993 softening properties of the tensile 
strength are assumed to be very brittle. 
Regarding the phenomenon of microscopic pore collapse, there is some 
experimental data available on the porosity of the ITZ layer. Based on this data (see 
section 3.1.1), maximum volumetric compaction of 30% seems a proper choice. 
The remaining listed values are obtained by inverse modelling, i.e. a best fit with 
the observed macroscopic behaviour at stage II of the plane strain compression tests 
performed by Van Geel is achieved by variation of these material parameters for 
pore collapse. 
The computed results are displayed in figure 4.35, along with experimental data of 
Van Geel. From these results it is clear that the model is capable of simulating 
macroscopic characteristics, such as initial elastic behaviour at stage I and 
strengthening behaviour and non-elastic volume compaction at stage II, quite well 

NUMERICAL MODELLING AT THE MESO LEVEL 121 

for a large range of lateral confinement. The capability of the model to simulate the 
characteristic phenomenon of non-elastic volume compaction at stage II is also 
shown in figure 4.36. The experimental data of Van Geel is reproduced quite well, 
although the deviations become quite substantial for those tests with low 
confinement (~ = 0.05, 0.10, 0.15) way before ultimate strength is reached. This 
seems to indicate that the transition between stage II (volumetric contraction) and 
stage Ill (volumetric dilation) develops very gradually. 
Although the agreement with the experimental data of Van Geel is very close for 
the axial loading diagram, the computed lateral deformations differ somewhat more 
from the experimental data. The fact is that, for the low confinement tests, the 
lateral deformations are slightly overestimated at initial non-linearity. This indicates 
that, at this stage, mesoscopic mode I/II cracking along the ITZ (those parts with 
radius R0 pointing approximately in lateral direction) is more pronounced in the 
simulations than in the experiments. This corresponds with experimental 
observations from Alexander 1971 as explained in section 4.3.6.1. According to these 
observations, the friction angle <!> for mesoscopic mode II cracking is at first slip 
somewhat higher than its final stationary value. As the present model uses the final 
stationary value also at first slip, an overestimation of lateral deformation will be 
the result. However, as stated in section 4.3.6.1, the influence on the macroscopic 
behaviour is small and is therefore not included in the numerical model. 
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3.0 
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.-···· 
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...... .... .... ........... experiment (Van Gee!) 

__ A3=0.25 

.......... ··Jf3:0.15 

·· .. 

··. 

-1.0 -2 .0 -3 .0 -4.0 
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Figure 4.35. Model simulations of a test series of concrete loaded proportionally in 
multiaxial plane-strain compression. 
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Figure 4.36. Non-elastic volume compaction at stage II. 

Apart from these macroscopic characteristics, discussed in sections 3.2.1 and 3.2.2, 
also the unloading/reloading behaviour is mentioned as a typical macroscopic 
feature of concrete loaded in multiaxial compression at stage 11. The performance of 
the model for such loading conditions is displayed in figure 4.37. 
The unloading/reloading curves in figure 4.37 are quite realistic compared to those 
found by Van Mier (figure 3.14). Nevertheless, two differences may be pointed out. 
First of all, the model computations indicate that if unloading would be continued to 
a zero stress state, this would imply much more 'unloading' deformation than 
displayed by the experimental curves in figure 3.14. This discrepancy can be 
explained by the model assumption that potential cracking at stage 11 is limited to 
the ITZ. Still, as stated in the preceding section, substantial deviations between the 
simulations and the tests with low confinement indicate a very gradual transition 
between stage 11 and stage Ill . Ergo, (limited) cracking is likely to occur also in the 
bulk cement paste, long before ultimate strength is reached. 
The second difference, pointed out with regard to the observed unloading/reloading 
behaviour, is that initial reloading according to the model takes place with a lower 
stiffuess than initial reloading according to the experiment. Due to the fact that the 
model does not allow any compressive force transfer between crack faces in an 
open crack, open ITZ cracks are immediately closed at reloading, resulting in a 
lower initial reloading stiffness. Due to the irregular shape of the crack faces of ITZ 
mode I cracks, limited compressive force transfer through open cracks is likely to 
occur in the experiments, thus producing an initially more steep reloading branch. 

-250 

'<d 
~ -200 ._.. 

b 

-150 
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1.0 0.0 
u1 [mm] 

a 1 = 0.15a3 : monotonic loading 
G 1 = 0.15 a 3 : cyclic loading 

-1.0 -2.0 
u3 [mm] 

-3.0 

Figure 4.37. Model simulations for cyclic and monotonic loading. 
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Regarding the lack of mesoscopic experimental data for the determination of the 
numerical values of the input parameters for pore collapse (<!>pc ,Cpc, \If pc) as listed in 
table 4.4, a parameter study is carried out on these parameters. Figure 4.38 shows 
the influence of a variation of <!>pc on the macroscopic stress-displacement curves of 
three proportional tests (p = 0.05, 0.10 and 0.15). For the simulations with <!>pc= 15°, 
the value of Cpc,end is also adjusted just in order to obtain a close match with at least 
one ofthe experimental tests (13 = 0.05). 
Figures 4.39 and 4.40 show the influence of a variation of \If pc on the macroscopic 
curves of the three proportional tests. For \lfpc = -50° (figure 4.39) the value of Cpc,end 

is set equal to the value of Cpc,ini· Accordingly, no strengthening mechanism exists 
due to expansion of the pore collapse bounding surface. In this way, it is clearly 
indicated that a high (less negative) value of\lfpc involves a too steep branch at stage 
II of the axial loading diagram. On the other hand, figure 4.40 shows that for a low 
value of \lfpc (-80°) the degree of inclination of the ascending branch at stage II of 
the axial loading diagram becomes too low. 
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Figure 4.38. Variation of f/Jpc and Cpc,end· 
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Figure 4.39. Variation of If/pc (high value) and Cpc,end· 
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material parameters from table 4.4 
variation: \If pc = -80° 
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Figure 4.40. Variation of If/pc (low value). 
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Figure 4.41. Variation oflf/pc (low value), f/Jpc and Cpc,ini· 
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As a low dilation angle 'Jfpc involves a low degree of inclination of the loading 
branch at stage II and a high friction angle ~pc as well as a large expansion of the 
pore collapse bounding surface (cpc, end- Cpc,ini) involve a high degree of inclination 
of the loading branch at stage II, it is investigated whether such a combination of 
material parameters also results in a good correspondence with experimental data 
(like the simulations with material parameters from table 4.4). Figure 4.41 shows 
the computed results for such a combination of material parameters. From these 
results it appears that a high friction angle and a large expansion of the failure 
surface for pore collapse mainly induce a shift of the loading branch at stage II to a 
higher (more compressive) stress level. However, the inclination of the loading 
branch at stage II is hardly affected. 
With regard to the parameter study of the phenomenon of pore collapse, displayed 
in the figures 4.38 to 4.41, it appears that the dilatancy angle 'Jfpc and the friction 
angle ~pc are dominant parameters describing the shape of the loading curves 
qualitatively. Having determined the values of these parameters, the initial- and 
end-values of the cohesion Cpc can be chosen so that close quantitative agreement 
with experimental results is obtained. 
Besides the lack of mesoscopic experimental data for the numerical values of the 
input parameters for pore collapse, there is also no mesoscopic experimental data 
about the true distribution of displacements at the outer boundary of the R VE. 
Therefore, a parameter study is also carried out for this parameter. The influence of 
this parameter is best demonstrated by cyclic test simulations. Figure 4.42 shows 
the results of a simulation of a proportional (p = 0.15) cyclic test for a distribution 
of outer-boundary displacements according to the macro-stress approach, whereas 
figure 4.43 shows the results for a ratio of 75% macro-strain displacements and 
25% macro-stress displacements. Simulations with outer-boundary displacements 
distributed completely according to the macro-strain approach did not produce 
stable material behaviour, and therefore, are omitted from this analysis. 
The most striking difference between figures 4.42 and 4.43 concerns the model 
behaviour at the final stage of unloading. It turns out that for '1 00% macrostress' 
boundary displacements, the transition point between the initial - high stiffness -
branch of the unloading curve and the final - low stiffness - branch of the 
unloading curve is located at a higher (more compressive) stress level than for 
'25% macrostress/75% macrostrain' boundary displacements. Furthermore, the 
lateral deformations in the latter case increase exorbitantly at final unloading, a 
phenomenon which is not observed in the experiments of Van Mier. Based on these 
distinct features at the final stage of unloading, comparison between experimental 
data and computed model simulations indicates that the distribution of outer­
boundary displacements according to table 4.4 is a proper choice. A remark must be 
made, however, that the model assumes the same distribution of outer-boundary 
displacements throughout the entire simulation. Although this is a proper 
assumption in case of linear elastic material behaviour, it is questionable whether it 
still holds when the material behaviour of the RVE becomes elasto-plastic. As there 
is no data available on this aspect, further research on this topic is required. 

NUMERICAL MODELLING AT THE M ESO L EVEL 

1.0 0.0 
U1 (mm] 

cr1 = 0.15cr3 : cyclic loading 
- 100 % macrostress boundary displacements 

0 % macrostrain boundary displacements 

-1.0 -2.0 
U3 [mm] 

-3.0 

Figure 4.42. Variation of RVE boundary displacements (1). 
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Figure 4.43. Variation of RVE boundary displacements (2). 
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CHAPTERS 

NUMERICAL MODELLING OF STAGE Ill AND IV 
BEHAVIOUR 

In chapter 3, stage III is characterised by reaching the ultimate strength and the 
onset of mesoscopic cracking, i.e. crack propagation is taking place in the bulk 
cement paste starting from the ITZ cracks originated at stage 11. At stage IV, these 
mesoscopic cracks localise into large macroscopic cracks, forming a failure pattern. 
In section 4.3, a clear distinction is drawn between micro-cracking at stage 11 and 
mesa/macro-cracking at stage III and IV. This distinction is based on the eminent 
difference in the scale of heterogeneity involved. Whereas the scale of 
heterogeneity for micro-cracking is determined by the size of the aggregate grains, 
the scale of heterogeneity for meso- or macro-cracking is determined by the size of 
the cracks, running along a few (mesa-cracking) or many (macro-cracking) 
aggregate grains. This implies that for meso- and macro-cracking the RVE of figure 
4.8 is not applicable anymore. 

5.1 RVE for meso- and macro-cracking 

As it is stated in section 3.2.3, a strengthening mechanism exists during mesa­
cracking at stage III as a result of a redistribution of stresses along the curved crack. 
Growth of a newly formed mesoscopic crack around an 'interlocking' aggregate 
grain will in this case only occur at a higher stress-level. Yet, before reaching this 
higher stress-level, additional mesa-cracking will take place parallel to the first 
mesoscopic crack until also these cracks meet an 'interlocking' aggregate grain. In 
brief, due to the strengthening mechanism induced by aggregate interlock, a 
distributed pattern of parallel mesoscopic cracks will arise at stage Ill of concrete 
loaded in multiaxial compression. 
At stage IV, the stresses at the interlocked aggregate grains have reached a critical 
level. At this level, mesoscopic cracks will grow either around the aggregate grains 
or through the aggregate grains. In either case the capability of transferring stresses 
across the crack will decrease during further crack growth. During this softening 
process the mesoscopic cracks will localise into large macroscopic cracks forming a 
failure pattern. 
For a distributed pattern of parallel mesoscopic cracks a unit cell may be defined as 
indicated in figure 5.l.b. The crack spacing d between the mesoscopic cracks 
determines the size of the unit cell. In this case, the crack spacing is equal to the 
(average) size of the aggregate grains. For a localised macroscopic crack, a similar 
unit cell may be defined as indicated in figure 5.l.c. In this case the crack 
displacements of only one localised crack are, according to the smeared cracking 
approach, uniformly distributed over the width of the finite element. Consequently, 
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taking the thickness d of the unit cell for macroscopic cracking equal to the width of 
the finite element, is an appropriate choice. 

fmite element 

(a) 

strengthening 
mesoscopic cracking 

(b) 

softening 
macroscopic cracking 

(c) 

Figure 5.1. Unit cell for (b) mesoscopic and (c) macroscopic cracking. 

5.2 Incorporation in main calculation scheme 

The RYE-calculations for stage Ill and IV behaviour are incorporated in the main 
calculation scheme of figure 4.9. This results in the extended calculation scheme as 
displayed in figure 5.2. 
Within the second RYE-concept (RVE2 for stage Ill and IV behaviour), the 
heterogeneous concrete material around the potential meso/macro-crack is 
homogenised into an isotropic material displaying linear elastic behaviour. The 
elastic moduli for such a homogenised material are given by K and G in section 
4.3.3. With these effective elastic moduli and the macro-strain increments (provided 
by UDEC), the RVE2 elastic macro-stress increments 11Q.e, m are determined 
according to equation ( 4.1) in section 4.3.3 and added to the initial stress state g_0

·m. 

The stress state along the potential crack corresponds to the stress state given by a 
point on Mohr's stress circle in that particular direction (see section 1.2.1 ). This 
elastic stress state is treated as a trial stress state1 and it is checked whether this trial 
stress state violates a certain cracking criterion. If so, cracking occurs and a stress 
correction vector 11Q. is added to the trial stress state, producing a new - corrected -
stress state that does not violate the cracking criterion anymore. 
Based on this stress correction vector, the plastic part of the macro-strain increments 
is computed (smeared crack displacements) and subtracted from the total macro-

1 Generally, only macroscopic stress/ strain fields are considered in stage Ill/ IV RVE2 computations. 
Therefore, the index m (to indicate macroscopic stress/strain fields) is omitted. In the occasional event of 
local stress/strain states, the index Joc will be added. 
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strain increments. Finally, this results in a new vector of elastic macro-strain 
increments, which, together with the unaltered initial macro-stress state cr0·m serves 
as input for the stage I/II RVE1 calculations. - ' 
According to the calculation scheme of figure 5.2, the occurrence of meso/macro­
cracking (RVEz) is checked before the occurrence of micro-cracking (RVEI). In this 
way, potential meso/macro-cracking - which produces lower material strength than 
micro-cracking - will always prevail. This agrees with the fact that, in case of 
several potential failure mechanisms, nature always chooses for the one having the 
lowest strength. Nevertheless, the sequence of checking will be of minor importance 
in the case of computations with very small loading steps. In fact, reversing the 
checking sequence for various UDEC-calculations with the present model, did not 
have any noticeable effect on the results. 

0 xo,m 0 Yo,m "CxyO,m 

macro-strain increments: 

Figure 5.2. Main calculation scheme extended with RVE2 calculations. 
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5.3 Crack initiation criterion 

For a concrete material, a mesoscopic or macroscopic mode II crack may arise 
according to three basic mesoscopic mechanisms (section 3.2.4): overriding, 
aggregate fracture and cement paste crushing (figure 5.3). Overriding involves the 
initiation of a curved crack running solely through the cement paste, while 
aggregate fracture involves the initiation of a straight crack through both the 
aggregate grains and the cement paste. In normal strength concretes, with strong 
aggregates embedded in a matrix of (porous) cement paste, cement paste crushing 
postpones fracture of the aggregates while still a straight crack (with zero crack 
dilatancy) is initiated. As both aggregate fracture and cement paste crushing involve 
the initiation of a straight crack, both mechanisms will be represented by only one 
crack initiation criterion. 

overriding aggregate fracture cement paste crushing 

Figure 5.3. Basic mesoscopic cracking mechanisms. 

Whether a mesoscopic or macroscopic crack is actually initiated depends on the 
global stress state in the RYE. To check this stress state upon cracking, the concept 
of a stress-state bounding surface is employed. The bounding surfaces applied here 
for concrete crack initiation are based on the classical Mohr-Coulomb formulation 
for mode II cracking (see section 1.2.4). Appropriate bounding surfaces 
representing the initiation criterion of a straight crack running through cement paste 
onl/ as well as a straight crack incorporating also aggregate fracture and/or cement 
paste crushing are given in section 5.3.1. 
In normally compacted concretes, a crack - running through cement paste only -
cannot be straight, but has to curve around interlocking aggregate grains. The 
curvature of such a crack can be characterised by a material property !:la, which 
represents the maximum local deviation angle of the curved crack with respect to the 
global crack direction. Based on this material property, a stress-state bounding 
surface is derived in section 5.3.2 for initiation of a curved crack. In section 5.3.3 
the individual bounding surfaces are combined to one overall bounding surface, 
accounting for the initiation of cracks with an arbitrary mixture of curved cracking 
through cement paste, aggregate fracture and cement paste crushing. 

2 Potential cracking mechanism in concretes with a diluted distribution of aggregate grains 
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5.3.1 Straight crack running through cement paste or aggregate grains 

The - Mohr-Coulomb type - bounding surfaces applied for initiation of straight 
cracks running through cement paste only (dilute distribution of aggregate grains) 
and straight cracks in normally compacted concretes (aggregate fracture I cement 
paste crushing) are displayed in figure 5.4. 

h,cp 

Figure 5.4. Stress-state bounding surfaces representing initiation criteria of 
straight cracks. 

Each bounding surface is defined by two parameters, the friction angle <Pep and 
tensile strength/r.cp for cracking through cement paste and the friction angle <l>agg and 
cohesion Cagg for aggregate fracture/ cement paste crushing. 
The friction angle of a straight crack (at the meso-level) depends on the micro­
roughness of the crack. As a straight crack through cement paste will mostly run 
through the weakest zone of the cement paste, i.e. the thin contact layer between the 
aggregate grain and the rest of the ITZ, the friction angle of a straight meso- or 
macroscopic crack through cement paste will not deviate much from the friction 
angle <j> for mesoscopic cracking along the ITZ at stage II as discussed in section 
4.3.6.1. 
Observation of cracks through the aggregate grains in the experiments of V an Geel 
indicate that these cracks have very smooth surfaces, comparable with the (smooth) 
outer surface of an intact aggregate grain. Taking furthermore into consideration 
that the friction angle for mesoscopic cracking along the ITZ at stage II is mainly 
determined by the smooth outer surface of the aggregate grain, it is acceptable to 
assume that also the friction angle of a straight crack through an aggregate grain 
will not deviate much from the friction angle for mesoscopic cracking along the ITZ 
at stage IL 
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The mechanism of cement paste crushing is essentially identical to the mechanism 
of pore collapse as explained in section 4.3 .6.2. Best fit with experimental test data 
(section 4.4) was obtained for <\>pc= 0, i.e. with no influence of confinement on the 
maximum shear strength. To obtain the overall strength of the straight crack, the 
crushing (cohesive) strength must be added to the strength of the straight part of the 
crack through cement paste (as drawn in figure 5.3). This implies that the friction 
angle is only determined by the straight part of the crack through cement paste. The 
influence of potential cement paste crushing is allowed for only by the cohesion 
Cagg• which is either the aggregate cohesive strength or the crushing cohesive 
strength of the cement paste, whichever is the lowest. 
For reasons of simplicity, small deviations between the friction angles are neglected 
in the present model. Therefore, the friction angles of the crack types as discussed 
above are assumed to be equal. 

<l> cp = <l> agg =<!>(stage If) (5.1) 

5.3.2 Curved crack running through cement paste 
According to figure 5.4, a straight crack runs preferably through cement paste only 
instead of crossing (stronger) aggregate grains either by aggregate fracture or 
cement paste crushing. At least, if interlocking aggregate grains do not prevent the 
formation of such a straight crack, as in the case of normally compacted concrete. In 
such concrete the crack has to curve around the interlocking aggregate grains. 

(a) 

r······· .. :~~ 
~ .... 11 C> 

l'>ao;-;· ... ~· ~ 
"• J •, 0 ~ .. , ......... :::.·,_..~~r.·----

(b) 

Figure 5.5. Deviation angle of a regularly (a) and irregularly (b) curved crack. 

The curvature of the crack at the meso-level introduces an additional roughness to 
the crack, which may be characterised by a ma.:dmum mesoscopic deviation angle 
~a (figure 5.5). In case of a regularly curved crack, as shown in figure 5.5.a, the 
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crack is fully characterised by ~a. Cracks in concrete, however, are highly irregular 
and in that case, in addition to the maximum deviation angle ~a, also the 
irregularity of the crack must be quantified to characterise the crack completely. 
Slip along a regularly curved crack will only occur when the crack is fully 
developed, that is when the stress state has reached the initiation criterion of a 
straight crack through cement paste in the crack directions ranging from a-~a to 
a+~a. This criterion is graphically illustrated in figure 5.6 for the initiation of a 
curved mode 11 crack along a plane making an angle a with the minimum (most 
compressive) principal stress direction. According to this procedure, a new stress­
state bounding surface may be identified representing the initiation criterion of a 
regularly curved mode 11 crack through cement paste with a global crack angle a 
and a deviation angle ~a. 

0'3 

i !!!!!!!!!! 
:+; : 
:~·· .. ' !'>.a : .. . .. 01: 0 \. •• • crn: .. . . .. .. ..... ... .. .. 
.. t .. 
+ nt + 

tttttttttt 

ft.cp 

-a 

Figure 5. 6. Stress-state bounding surface for initiation of a regularly curved 
mode If crack through cement paste. 

The new stress-state bounding surface for initiation of a regularly curved mode 11 
crack is characterised by an increase of the friction angle with ~<l>cp· According to 
figure 5.6 this increase of the friction angle is determined by the magnitude of the 
overlap of Mohr's stress circle with regard to the bounding surface for a straight 
crack through cement paste. 

(p-l)r = rtan(2~a)tan~a 

1+ tan 2~a p 
1-tan 2~a 

tan~<l>cp =(p-l)tan<!>cp (5.2) 
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From figure 5.6 it can be seen that when the deviation angle ~a equals the global 
crack angle a, ~<Pep equals a too and Mohr's stress circle passes through the tensile 
strength ft.ep· In this case, the deviation angle at the right-hand side of the global 
crack direction a (~ar in figure 5.7) is no longer limited by the bounding surface. 
As a result, initiation of a crack is still possible for the same stress state, even when 
~a exceeds a. In this case, a mixed mode crack will be formed such that the 
addition of the left- and right-hand deviation angles (~a1 + ~ar) still equals the 
material property 2~a (see figure 5.7). Hence, the bounding surface for mode 11 
crack initiation does not expand when ~a is increased beyond a. In other words, 
~<Pep is bounded by a maximum value 

~<Pep max =a (5.3) 

~a1 =a cr 
~ar= 2~a- a 

Figure 5. 7. Cracking criterion when L1a exceeds the global crack angle a. 

The direction of the bounding surface according to the maximum friction angle, as 
defined in equation ( 5.3 ), coincides with the direction of the stress path of uniaxial 
compression in stress space (figure 5.8). This specific stress path appears to be a 
special stress path, not only with respect to crack initiation, but also with respect to 
the mechanical behaviour of the crack after initiation. This will be discussed further 
in section 5.4. 
To find the stress-state bounding surface for initiation of an irregularly curved 
crack, a similar approach is adopted as for initiation of a regularly curved crack. In 
this case the crack is subdivided into parts, each having a different deviation angle 
~a;. For each part, a local bounding surface is determined according to equations 
(5.2) and (5.3). A global bounding surface is derived next by averaging these local 
bounding surfaces. 
To illustrate this procedure, a number of bounding surfaces is drawn in figure 5.9, 
each belonging to a different part with a different local deviation angle ~a; of an 
irregularly curved crack. As the bounding surface for a regularly curved crack is 
defined by a maximum overlap of Mohr' s stress circle with respect to the bounding 
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surface of a straight crack, it seems logical to average the overlap p for an 
irregularly crack in order to come to an equivalent bounding surface - with an 
equivalent overlap p - for the entire crack (see figure 5.9). 

··· ... 
·················· ... 

-cr 

Figure 5.8. Maximum friction angle and stress path ofuniaxial compression. 
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_ ~Pk 
average overlap p = -*--1
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-cr 
p 

Figure 5. 9. Equivalent bounding surface for initiation of an irregularly curved 
mode 11 crack. 
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5.3.3 Overall bounding surface 
To account for both straight mode 11 cracking crossing aggregate grains and curved 
cracking through cement paste, the bounding surface of figure 5.4 and the 
equivalent bounding surface of figure 5.9 are combined to one bilinear overall 
bounding surface (see figure 5.1 0). 

J;,cp 

--- cr 

Figure 5.1 0. Construction of a bilinear overall bounding surface for mode 11 crack 
initiation. 

The sharp corner of such an overall bounding surface indicates a sudden transition 
from a curved crack running through cement paste around the aggregate grains to a 
completely straight crack through or crossing all interlocking aggregate grains 
(aggregate fracture or cement paste crushing). Such a sudden transition is not likely 
to occur. The bounding surface of figure 5.10 is based on averaging the local linear 
bounding surfaces of an irregularly curved crack through cement paste only. With 
respect to the construction of an overall bounding surface it is, however, more 
realistic to average the 'local' bilinear bounding surfaces instead. This procedure is 
shown in figure 5.11. In this figure a potential irregularly curved crack is considered 
with local deviation angles ranging from 15° to 30°. The bilinear bounding surfaces 
for crack initiation in each local part of the crack (part 1 to 4) are drawn in stress­
space. The overall bounding surface representing the initiation criterion of the entire 
crack may now be established as a curved surface, through continuously averaging 
the overlap p along the bounding surface representing the initiation criterion of a 
straight crack through cement paste. 
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J,,cp 

--- cr 
Figure 5.11. Construction of overall bounding surface for mode 11 crack initiation 

by averaging 'local' bilinear bounding surfaces. 

The curvilinear shape of the overall stress-state bounding surface as derived in 
figure 5.11 is not very convenient for computational purposes. Therefore, the 
curvilinear shape of figure 5.11 is approximated by a mathematical more convenient 
shape. 
The proposed shape consists of a linear part as well as a part of a circle (see figure 
5.12). The proposed simplified overall bounding surface is determined by two 
material parameters, the maximum deviation angle ~a - which determines ~~cp 
according to equation (5.2) and (5.3)- and the position of the linear part relative to 
the stress-state bounding surfaces for initiation of a straight crack through cement 
paste only and a straight crack crossing interlocking aggregate grains. This relative 
distance depends on the irregularity of the crack and decreases with increasing 
irregularity of the crack. 
For ordinary types of concrete mixes, the irregularity of a potential curved crack 
through cement paste will not vary much. Therefore, a fixed value is assigned to 
this material property. According to figure 5.12, the relative distance is 2/3. This 
value is also applied for the computations performed with the model at hand 
(section 5.7) and provides acceptable results. Moreover, the observed macroscopic 
mechanical behaviour is influenced only moderately upon variation of this 
parameter (section 5.7.6). 
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Figure 5.12. Simplification of overall stress-state bounding surface. 

Applying the value of 2/3, the linear part of the simplified overall bounding surface 
for mode II crack initiation is characterised by the friction angle <l>cp and the 
cohesion cini· 

(5.4) 

The coordinates of the point of contact P between the circular part of the bounding 
surface and the linear part of the bounding surface are 

cini - h ,cp tan( <I> cp + -t Ll<j> cp) 
crp= I 1 ) tan<J> cp - tan\<l>cp + 2 Ll<l>cp 

't P = C ini - cr P tan <I> cp 
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The coordinates of the centre of the circular part of the bounding surface are 

( 't P tan <l>cp- cr p )tan( <l>cp + Ll<j>cp ) + h ,cp tan <l>cp 
crc = tan<J>cp- tan(<l>cp + il<l>cp) 

(J C - h ,cp 

5.3.4 Potential crack directions 

Mode II cracking is triggered when the stresses in the potential global crack 
direction a reach the stress-state bounding surface as established in the preceding 
section. Referring to figure 1.13 (section 1.2.4), two other potential crack directions 
are also indicated with respect to the present cracking criterion in figure 5.13. 

mode If cracking 

(j3 

·· .. ·--. 
~E:J~cr, .. ... .. ... 
i i i t 

mode I cracking 
+ + + + 

+-DJ--+ +- -+- -+- -+- -+- --+ t t t t 

-cr 

.-·· 

(j3 ... -

:ta:cr, .. ... .. ... 
.. t t i ( 

.. -· 

Figure 5.13. Potential crack directions for mode I and mode If crack initiation. 
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Mode I cracking is triggered when the maximum principal stress cri exceeds the 
tensile strengthft.cp· However, due to the restriction- given in equation (5.3)- for 
the maximum friction angle, mode 11 cracking always occurs before the tensile 
strength is reached. So, when the tensile strength is set equal for all potential crack 
directions- as it is drawn in figure 5.13- mode I cracking will never occur. Due to 
the heterogeneous structure of concrete, however, the tensile strength is not equal 
for the different crack directions. For that matter, the maximum deviation angle Lla 
may also be different for different crack directions. Taking the heterogeneity into 
account, mode I as well as mode 11 cracking (a or -a) may occur depending on the 
stress state and the local distribution of material strength properties. 

5.3.5 Material parameters 

The stress-state bounding surface from the foregoing is characterised by four 
material parameters: 
1. Cohesive strength of a straight crack crossing interlocking aggregates Cagg 

2. Tensile strength of the cement pasteft,cp 
3. Friction angle of a straight crack <Pep(= <l>agg = <J> (stage If)) 
4. Maximum deviation angle for curved cracking around the aggregate grains Lla 
The friction angle of a straight crack depends on the type of aggregate. The 
cohesive strength of a straight crack crossing interlocking aggregate grains depends 
on the cohesive strength of the aggregates (aggregate fracture), but also on the 
(cohesive) strength of the cement paste (cement paste crushing). The tensile 
strength of the cement paste depends on the tensile strength of both the bulk cement 
paste and the ITZ. The maximum deviation angle for curved cracking around the 
aggregate grains depends on the degree of compaction. 
During stage 11 both the tensile strength of the ITZ and the degree of compaction are 
affected by progressive pore collapse and mode 1/11 cracking along the ITZ. This 
implies that mesoscopic/macroscopic crack initiation also depends on the amount of 
cracking during stage 11, in conformance with the observed path-dependency upon 
high multiaxial compressive preloading as outlined in section 3.2.3. 

Maximum deviation angle 
During compaction of the fresh concrete mix the distance between the aggregate 
grains decreases, resulting in a larger maximum deviation angle of a potential 
curved crack around the aggregate grains. So, prior to loading, the maximum 
deviation angle t:la0 is a property of the concrete mix. 
During stage 11, the distance between the aggregate grains decreases further as a 
result of pore collapse at the ITZ. This causes an increase of the maximum deviation 
angle. To quantify this phenomenon, the RYE1 - adopted for describing stage II 
behaviour- is displayed in figure 5.14. As a result of pore collapse, the shape of the 
RYE1 changes from circular to oval. According to figure 5.14, the increase of the 
deviation angle Ma is related to the impression u cr caused by pore collapse. 
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Figure 5. I 4. Increase of deviation angle due to pore collapse at stage 11. 

By adding the increase of the deviation angle to the maximum deviation angle of 
the virgin concrete, the total maximum deviation angle at the onset of potential 
mesoscopic or macroscopic cracking, is obtained. 

(5 .5) 

Tensile strength of the cement paste 
A curved crack through cement paste runs partly through the ITZ and partly through 
the bulk cement paste. The relative part running through the ITZ can be estimated 
by considering again the RYE1 (see figure 5.15). According to this figure, the 
relative ITZ part of a curved crack is 

£1TZ _ R1Lla+~R/ -R1

2 

£tot - R1Lla+~R/ -R1
2 

Based on the above equation, the relative ITZ length depends on the maximum 
deviation angle Lla. As the maximum deviation angle is dependent on the extent of 
pore collapse in the ITZ at stage 11, the relative ITZ length is also dependent on the 
extent of ITZ pore collapse at stage 11. However, more important is the fact that the 
tensile strength of the ITZ ftJTZ reduces substantially due to cracking in the ITZ at 
stage 11. 
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Figure 5.15. Relative 1TZ length of a curved crack. 

The tensile strength of the entire curved crack through cement paste is determined 
by averaging the tensile strength of the ITZ and the bulk cement paste according to 
their relative lengths. 

/r,cp = (;7Z JJ;,/7Z + (1- ~/7Z )J;,bulk 
tot tot 

(5.6) 

The tensile strength of the ITZ ft,JTZ in this equation is the average of the actual 
(reduced) tensile strengths of those parts of the ITZ located along the curved crack. 
Determination of the average tensile strength ft.cp according to the procedure 
outlined above applies for mode 11 crack initiation. For mode I crack initiation a 
somewhat different approach is adopted. The global mode I crack is subdivided into 
three local crack parts having each a different local stress state. At first, local crack 
initiation criteria are established for the local stress state. Subsequently, a global 
crack initiation criterion is achieved by averaging both the local stress states and the 
local crack initiation criteria. 
According to figure 5.16, a global mode I crack consists of local mode I crack parts 
as well as local mode 11 crack parts. It appears from figure 5.17 that the local mode 
11 crack parts through the ITZ and through the bulk cement paste are initiated -
along a deviation angle !1amodei- before the local maximum principal stress reaches 
the tensile strength of, respectively, the ITZ and the bulk cement paste. As indicated 
in figure 5.17, the initiation of a local mode 11 crack may be captured by introducing 
an equivalent tensile strength. This means that local mode 11 cracking is initiated 
when the local maximum principal stress reaches the equivalent tensile strength. 

fr.~~z =CM+ (!r,m- CM )sin<l>cp (J;,~h 2 0) 

fr.~~tk =CM+ (J;,butk- CM )sin<l>cp (J;,~~Ik 2 0) 
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Figure 5.16. Local crack modes for global mode I cracking. 
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Figure 5.17. Equivalent tensile strength for local mode If cracking. 
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Global mode I crack initiation is triggered when the global maximum principal 
stress a 1 exceeds an averaged (effective) tensile strength of the entire crack J;,;;d•I . 

I' mode I _ ( f_ 17Z J _!_ ( I' + I' eq ) + (1- f_ ITZ ) I' eq 
J r,cp - f_ 2 J r,JTZ J r,JTZ f_ J r,bulk 

tot tot 

(5.7) 

This equation holds the assumption that cracking through the bulk cement paste 
initiates locally in mode 11 and that cracking through the ITZ initiates half in mode I 
and half in mode 11. In fact, the relative amount of local mode I and mode 11 
cracking through the ITZ depends on the size of the aggregate grain and the 
thickness of the ITZ layer as can be concluded from figure 5.16. However, the 
relative amount of local mode I and mode 11 cracking also depends largely on the 
true shape of the aggregate grains. Since this has not been taken into account in 
figure 5.16 and to avoid a seeming accuracy, both tensile strengths of the ITZ are 
simply averaged in equation (5.7). 
Except for a stress state in which a 1 equals a3, the tensile strength for global mode I 
cracking is lower than the tensile strength for global mode 11 cracking. In stress 
space, this could be visualised by introducing a linear bounding surface that bounds 
the maximum principal stress. 

0" < I' mode l 
I- Jr,cp 

In other words, a tension cut-off criterion is introduced which resembles the 
classical Rankine bounding surface for mode I cracking (section 1.2.4). 

5.4 Mechanical behaviour of a crack after initiation 

In section 5.3 criteria are introduced for mesoscopic crack initiation in mode I as 
well as mode II. In this section, the model will be extended so as to incorporate also 
the behaviour of the crack after initiation. The important phenomena going along 
with this transition are analysed in the following: (5.4.1) behaviour of the crack 
upon rotation of the stress state, (5.4.2) the direction of plastic flow, or, the relation 
between crack sliding and opening displacements in relation to the stress state, 
(5.4.3) potential mode I crack closure, (5.4.4) implications due to a change from a 
rather homogeneous stress state prior to crack initiation to a very heterogeneous 
stress state after crack initiation and initial crack sliding and (5.4.5) material 
softening during subsequent crack deformations. 

5.4.1 Rotation of the stress state after crack initiation 
According to figure 5.13, a crack may be initiated along three potential crack 
directions. These crack directions are determined completely by the momentary 
stress state. After initiation, however, this stress state may rotate. In standard 
smeared crack analyses, three basic concepts are distinguished to deal with such a 

NUMERICAL MODELLING OF STAGE Ill AND !V B EHAVIOUR 147 

rotated stress state after crack initiation. These concepts are discussed shortly in 
section 2.2.3.1.5 and more elaborately in Rots 1988

• 

The most prominent feature of the first concept, the fixed smeared crack concept, is 
that after crack initiation the crack orientation remains fixed throughout the entire 
cracking process. This implies that when the stress state rotates after initiation, 
crack shear stresses will built up. However, after mode I crack initiation not only 
the normal stiffness of the smeared crack will decrease, but also the shear stiffness. 
Within the standard fixed smeared crack concept, this is generally included by 
introducing a shear retention factor. 
.All extension of the fixed smeared crack concept is the fixed multi-directional 
smeared crack concept. Within this concept multiple cracks in a limited number of 
fixed directions may be initiated. When the stress state rotates significantly, new 
mode I cracks will arise as soon as the tensile normal stress exceeds the tensile 
strength in a new fixed direction. 
The rotating smeared crack concept can be conceived as the limiting case of the 
fixed multi-directional smeared crack concept for an unlimited number of 
directions. In this case, the crack orientation eo-rotates with the axes of principal 
stress. Consequently, there is no need to reduce the smeared crack shear stiffness 
after crack initiation. Due to the co-axiality of principal stresses and crack 
orientation, the crack remains in mode I and no crack shear stresses will develop. In 
the rotating smeared crack concept no history of crack directions is kept in memory, 
all damage accumulated in the past is transferred to the new crack direction. 
Although these concepts (fixed, multi-directional and rotated smeared cracking) 
were intended only for mode I crack initiation in a model formulated according to 
the theory of continuum damage mechanics, the same basic principles can also be 
applied for mode I and mode 11 crack initiation in the model at hand formulated 
according to the theory of elasto-plasticity. 
For curved mode I fracture, in which crack sliding displacements are apparently 
present after initiation, Rots 1988 concluded that the fixed smeared crack concept 
with significant shear stiffness after initiation, produces far too stiff behaviour. Only 
the fixed smeared cracks with (almost) no shear stiffness and the rotating smeared 
cracks produced acceptable results. Based on these findings and because it results in 
a very simple model, the rotating smeared crack concept is adopted in the model at 
hand. By adopting the rotating smeared crack concept, checking the stress state 
upon mode I or mode 11 cracking after initiation can simply take place at the same 
stress points on Mohr' s stress circle as outlined in section 5.3 before initiation. 
Of course, the rotating smeared crack concept will produce less accurate results 
when the stress state rotates considerably after a lot of damage has been 
accumulated in the crack. In that case, the rotating crack concept will transfer all 
damage to the new preferential crack direction. In reality, this transfer of damage is 
unlikely to occur, and consequently, the bearing power of the structure will be 
underestimated. However, strongly rotating stress states are very exceptional in the 
field of structural engineering. Furthermore, eminent damage will always localise 
into a small zone of finite elements as a result of material softening. After a 
considerable rotation of the stress state, the preferential direction of such a 
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localisation zone will not coincide with the localisation zone already present in the 
mesh. Consequently, the influence of potential non-realistic damage transfer is 
limited to only the areas of intersection of existing and new localisation zones. 
Ergo, in the exceptional event of a strongly rotating stress state after considerable 
damage accumulation, the influence of potential non-realistic damage transfer will 
be limited to small isolated areas and will always lead to a safe approximation of the 
bearing power of the structure. 
Only one exception on applying the rotating smeared crack concept is made. If a 
crack has opened in mode I (figure 5.18.a), then no shear stress will be transferred 
across the crack during subsequent crack sliding until the crack faces are again in 
contact, i.e. the crack is closed (figure 5.18.b). Consequently, the stress state cannot 
rotate as long as the crack remains open. 
The inability of a stress state to rotate in case of an open crack is accounted for by 
adopting the fixed smeared crack concept with no shear capacity for as long as a 
(mode I) crack is open. At initiation, the direction of such a crack is stored in 
memory and subsequent opening and sliding crack displacements are only possible 
normal to and along the direction of the stored crack. As no shear stresses can be 
transferred across the stored open crack, rotation of the stress state is not possible 
until the crack closes. For such a closed crack, the rotating smeared crack concept is 
adopted and rotation of the stress state is again allowed for. 

2(1)>2(/Ht) 

tw t(,Hr) 

L 
1w 1<,+ru) 
n<,l• n(t + ru) 

'crack open' 
transfer of shear stresses not possible 

rotation of stress state not possible 
fixed crack direction 

(a) 

'crack closed' 
transfer of shear stresses possible 
rotation of stress state possible 

crack direction rotates with stress state 

(b) 

Figure 5.18. Rotation of the elastic (trial) stress state. Crack orientation before 
and after time step Lit in case of an open and a closed mode I crack. 
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5.4.2 Plastic crack deformations and return mapping of trial stress state 

When the trial stress state sl violates the bounding surface for crack initiation, 
cracking takes place and the stress state is put back onto the bounding surface. The 
direction of return mapping depends on the direction of plastic flow, which is 
different for mode I and mode II cracking. 

Mode II cracking 
According to the theory of elasto-plasticity described in section 1.2.3, the direction 
of plastic flow is governed by the dilatancy angle \jl according to 

~8~01 = Lly~ax sin \jl 

The dilatancy angle in this equation is strongly correlated with the maximum 
deviation angle ila, which was put forward in section 5.3 to represent the 
mesoscopic roughness of a curved crack running through cement paste. Yet - as 
indicated in figure 5.11 -a mode II crack does not only curve around interlocking 
aggregate grains, but also crosses interlocking aggregate grains by either aggregate 
fracture or cement paste crushing (with \jl = 0). The amount of aggregate fracture 
and/or cement paste crushing depends on the location of the macroscopic stress 
state in stress space and may substantially reduce crack dilatancy, hence 

\jl ::s; ~a (5.8) 

The elastic relation between the macro-stresses and the macro-strains is given by 
equation (4.1) in section 4.3.3. Applying this equation, return mapping of the trial 
stress state yields 

~CM = K~c~01 = K~y~ax sin \jl 

M =G~yP M max 

(5.9) 

The direction of return mapping is determined by the angle <Pep+ 8 in figure 5.19. 
According to this figure, the angle of return mapping is given by 

( ) 
ilCM+&Msin<J>cp Ksin\j/ 

tan 4> +8 = = +tan<!> 
cp MM cos <Pep G cos<J>cp cp 

The correction of the trial stress state (ilCM .~rM) can be determined by intersecting 
the direction of return mapping with the overall bounding surface. 
In case the direction of return mapping intersects the linear part of the bounding 
surface, the final stress state ( crn1

, •n/) is 
1 _ Cini - (cr n'- Tn,' tan( <Pep+ 0 ))tan<J>cp 

•.,- l+tan(<J>cp+o)tan<J>cp 

1 
cr 1 == cini -•nl 

n tan.h 'l'cp 
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ttttt( 

fr.cp 
-cr 

Figure 5.19. Return mapping of trial stress state in case of mode 11 cracking. 

In case the direction of return mapping intersects the circular part of the bounding 
surface, the final stress state follows from figure 5.20. 

The corrections of the radius and centre ofMohr's stress circle are 

According to equation (5.9), the plastic volumetric strain increment and the 
incremental maximum plastic shear deformation are given by 

!:iCM crnl- crnl_ (-rntl- -rn/)tan<J>cp 
!:ic P = --=- = ___:: _ __..:__..:....:.::...-':=,-----'-'----__::r_ 

vol K K 
I I 

/}. p = !:ir M = 'tnl - 'tnl 
Ymax G G .+. cos'+'cp 

Using equation (1.6) and (1.7), the incremental plastic crack strains in (n,t)­
coordinates finally become (note that !:ic

1 
P = 0) 
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p () n I - () n I - ( '"C n,' - '"C n/) tan<!> cp 
~E = ---'----'--'---::=----'-.......:....----""-

n K 

p - ( '"C n,' - '"C nl I) COS \jl 
~ Y nl - -'--'"--::=--'"'--L 

G cos<J> cp 
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(5.10) 

The incremental crack displacements are obtained by multiplying the crack strains 
with the unit cell width d (see figure 5.1 ). 

~u er = d !:ic n p 

~Wcr = d /:iy n/ 
(5.11) 

i 

ttttt( 

~ = arccos( :~ ) 
rad 

_ .. ·· 

Figure 5.20. Return mapping to circular part of bounding suiface. 

Mode I cracking 
As discussed in the preceding section, the fixed smeared crack concept is applied 
for open mode I cracks, whereas the rotating smeared crack concept is applied for 
mode I cracks that are closed. In the latter case, return mapping of the trial stress 
state simply consists of mapping the maximum principal stress back to the tensile 
strength. 
In case of an open crack the crack direction is fixed and - based on the strain 
increments - the trial stress state is calculated with respect to this direction. In 
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contrast to the rotating crack concept, the shear component of the trial stress state is 
not necessarily equal to zero for the fixed crack concept. The open crack is not able 
to transfer shear stresses and only limited normal tensile stresses, so the trial stress 
state in the fixed crack direction is mapped back to the linear bounding surface 
(cr. sJ;,;;del /\'tnt =0)asdepictedinfigure5.21(a). 

'tnl 'tnt 0"3 

i i 
er lllll 0 

return mapping 
§ 

to g),.. 

to (J: model 0) s· § cr .. 
return mapping t,cp ' (IQ :>;" ],.._ 

~ 
s· 

to (cr.' , 0) ("l 

(no shear capacity) (ant' 'tn/) (') t t t t t 

1 1 1 
~ (b 

(cr.',O) 
~ 

bounding surface J;model J; model 
t,cp -cr. t,cp -cr. 

(a) (b) 

Figure 5.21. Return mapping of the trial stress state in case of mode I cracking. 
(a) Open frxed' crack and (b) closed 'rotating' crack. 

The incremental plastic normal strain is both for the fixed smeared crack concept 
and the rotating smeared crack concept equal to 

0" I /'model 

~E p = ----'"-=--J--= 11 ·=cp,---

n K +G 
(5.12) 

The incremental plastic shear strain is zero for the rotating smeared crack concept. 
For an open fixed crack the incremental shear strain is given by 

(5.13) 

Just as for mode II cracking, the incremental crack displacements are obtained by 
multiplying the crack strains with the unit cell width d. 

~Ucr =d~E/ 

~Wcr = d~y./ 
(5.14) 

To determine whether a mode I crack is open or closed, the crack opening 
displacement COD of the mode I crack has to be calculated and stored into memory. 
When no crack sliding occurs, the increment of the COD equals the incremental 
normal crack displacement ;).,.z/', otherwise3 

3 Mode I cracking incorporates no aggregate fracture or cement paste crushing, so ljl equals !!.a. 
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(5.15) 

For mode I as well as mode II cracking, the corrected stress state Q
1 in (n,t,z)­

coordinates is finally computed as 

(5.16) 

5.4.3 Mode I crack closure 

According to the theory of classical elasto-plasticity, plastic deformations are not 
reversible. Consequently, closure of open mode I cracks in compression is not 
incorporated so far. To account for proper crack closure behaviour, the fixed 
smeared crack concept is extended with a crack closure criterion. 
According to the proposed fixed smeared crack concept, the crack direction is fixed 
as soon as a mode I crack opens. This concept is now extended by shrinking the 
stress-state bounding surface for that crack direction to the line-segment displayed 
in figure 5.22 ( 0 s cr. s J;,;;dei A 't., = 0 ), immediately after crack opening. 
Consequently, an open mode I crack is not able to transfer any shear or normal 
compressive forces (or normal tensile force beyond the tensile strength of the 
crack). When the trial crack normal stress crn1 changes from tensile to compressive, 
crack closure will take place without building up compressive forces. Crack closure 
will continue as long as the trial stress state remains compressive, until the crack is 
completely closed (COD is zero). From then on, the rotating crack concept is 
adopted, the bounding surface of figure 5.21(b) is restored and compressive force 
transfer is again allowed for. 

i allowable stress states (open crack) 
0 s cr. sft.~;del 
't.,= 0 

directi n of return mapping 

-cr. 

Figure 5.22. Return mapping of trial crack stresses (open mode I crack). 
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5.4.4 Implications due to redistribution of local stresses around the crack after 
initial (mode II) sliding 

As a result of the tortuous surface of a crack through cement paste at the meso-level 
(characterised by the maximum deviation angle Aa), sliding along such a crack in 
mode 11 will give rise to a highly heterogeneous stress state in the vicinity of the 
crack. The implications of this phenomenon are outlined in this section. In the first 
place, the distribution of local stresses in the vicinity of the crack, after initial 
sliding along a curved crack and after complete de-bonding between the opposite 
crack faces, is approximated. Due to this (first order or primary) redistribution of 
local stresses, the (macroscopic) stress-state bounding surface for curved cracking 
through cement paste changes. The new shape of this bounding surface after initial 
sliding and de-bonding is derived in section 5.4.4.1. 
In section 5.4.4.2, the plastic deformations during initial crack sliding are 
considered. This leads to the quantification of the amount of 'initial' crack sliding, 
during which the process of (primary) redistribution of local stresses takes place. 
Then, in section 5.4.4.3, straight cracking across interlocking aggregate grains is 
introduced. This results in the formulation of an overall bounding surface, 
accounting for both curved cracking through cement paste and straight cracking 
across interlocking aggregate grains, for stress states after initial crack sliding and 
after de-bonding. 
The transition of the overall bounding surface from crack initiation to the state after 
initial crack sliding and de-bonding incorporates two aspects: 
• Loss of tensile strength. The softening law for the tensile strength is treated in 

section 5.4.5.1. In this section, it is sufficient to state that such a softening law 
exists. 

• Material strengthening during initial crack sliding. 
In section 5.4.4.4, these two phenomena are decoupled and, as a result, a consistent 
material strengthening law during initial crack sliding is formulated. 

5.4.4.1 Bounding surface of a curved crack through cement paste after initial 
sliding and after de-bonding between the opposite crack faces 

During initial crack sliding and de-bonding, the stress state in the vicinity of the 
crack changes from rather homogeneous to highly heterogeneous. To illustrate the 
essence of this process of local stress redistribution, a regular sawtooth-shaped 
crack is considered. Figure 5.23.a shows such a crack of which, due to crack sliding, 
certain parts are unloading while other parts are loaded extra. This redistribution of 
local stresses continues until the unloading crack parts are stress free, and 
consequently, the load is fully concentrated at the remaining parts of the crack. An 
elementary crack part is considered in figure 5.23.b. Although the actual 
distribution of the local stresses will be quite non-uniform, an averaged unifonn 
distribution as depicted in figure 5.23.b is satisfactory to illustrate the essentials of 
local stress redistribution in multiaxial compression. 

l 

1 
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Figure 5.23. Redistribution of local stresses near a mode 11 crack. 
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The crack sliding displacement during the process of local stress redistribution is 
very small and therefore negligible with respect to the size of the sawtooth £. 
According to figure 5.23 .b the concentrated local stresses ( cr /oc , cr /oc ) at the vicinity 
of the crack can thus be related to the macroscopic stress state ( cr 1 , cr 3 ) - at an 
adequate distance from the crack- as follows 

£2-A£2 loc 

(JI = f (JI 

2 

The lengths introduced in the equations above are 

£1 = f sina 

£2 = £cosa 

A D - £ . ( A )- c(sinacosAa-cosasinAa) 
LV. 1 - sm a- Ll<X - ---'----------....!. 

2cosAa 2cosAa 

(5.17) 

(5 .18) 
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A ~ £ ( A ) £ (cos a cos Lla + sin a sin Lla) 
U .t = COS a- ua = ----'------------"-

2 2 cos Lla 2 cos Lla 

Entering these expressions for the lengths in the equations (5.17) and (5.18) results 
in the following relations between the macroscopic and local stresses. 

(5 .19) 

03 = (..!.. + ..!_ tantla)o/oc 
2 2 tana 

(5.20) 

The state after complete de-bonding is considered (!t,cp = 0 ), so only the 
combination of shear and normal compressive loading can be transferred across the 
crack. The question is now by which surface the macroscopic stress state ( o 1 , o 3 ) is 
bounded when the local concentrated stress state in the direction a + Lla is situated 
on the bounding surface for a straight crack through cement paste (see figure 5.24). 

i 

.CJ. ( = ~<J>~;· max = ~<J>m, max ) 

-o 

Figure 5.24. Rotation of bounding surface due to local concentration of loading. 

The relation between the centre and the radius of Mohr's stress circle for the 
concentrated local stress state, is according to section 5.3.2 

foe _ _ foe C foe · ,!.. 
rM - P M sm'l'ep 

with 

foe 1 + tan 2 Lla 
p =---=---

1- tan 2 Lla 

(_t; ,ep = 0) (5.21) 

(5.22) 

NUMERICAL MODELLING OF STAGE Ill AND !V B EHAVIOUR 157 

The expressions for the centre and the radius of Mohr's stress circle for the 
macroscopic stress state CM and rM, result from equation (5.19) and (5.20) 

( 
1 1 ) { foe foe ) 

CM+rM = 2-2tanatanLla \CM + rM 

_ ( 1 1 tan Lla) (c foe foe ) C -r - -+---- -r 
M M 2 2 tana M M 

Insertion of equation (5.21) and further elaboration gives 

CM=..!_CMfoe (oi +82) 
2 

rM =..!_CMfoe (o2 -o~) 
2 

with 

s: (1 foe . J.. )( 1 1 tanLla) u = +p sm'l' -+----
1 ep 2 2 tana 

82 = (1- pfoe sin<J>ep )(k -ktana tan Lla) 

The increase of the friction angle with respect to the macroscopic stress state is 
derived from equation (5.2) 

tanLl<j>m =(pm -1 )tan <Pep 

with (according to figure 5.24) 

m rM 
p = . 

-CM sm<J>ep 

Inserting the expressions for 81 and 82 gives 

2pfoe sin<J>ep + tanLla(-
1
-+ tan a+ pfoe sin<J>ep(-

1
- -tan a)) 

m tana tana 
p =~------------~----------------~----~--~ 

( 2 +tan Lla (-
1
-- tan a+ pfoe sin 4> ep (-

1
- +tan a))) sin 4> ep 

tana tana 

This expression contains the variables a as well as <Pep' which are related via 

1n-4>ep a=..::c.._ __ ....::!:._ 

2 

(5.23) 

(5.24) 

The following expressions can then be derived according to ordinary goniometry 
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1 2 
--+tana=---
tana cos<j>cp 

1 
---tana = 2tan<j>cp 
tan a 

This result greatly simplifies the expression for pm given in equation (5.24) 

ploc + tanlla( 
1 

. + ploc tan<j>cp l 
cos<J>cp sm<j>cp (5.25) 

pm - -----7'----'t-----'--------<-
- 1 + (l+p1oc)tanllatan<j>cp 

Inserting (5.25) in (5.23) gives after rewriting 

(p10c-1)tan<j>cp + tanlla 
tanll<j>m = 

1 + (l+ploc)tanllatan<j>cp 

Inserting equation (5.22) leads to 

(
_2_t_a_n-:2 2,--Ll_a_) tan <I> cp + tan Lla 
1- tan Lla 

tan Ll<j> m = = tan Lla 

1 + ( 
2 

2 ) tan Lla tan <I> cp 
1-tan Lla 

Hence, 

(Lla ~a) (5.26) 

Due to local stress concentration, the bounding surface thus rotates during initial 
cracking. It follows from the equations (5.26) and (5.2) that this rotation induces a 
strengthening mechanism as long as Lla does not exceed the global crack angle a. 
According to figure 5.7, the stress point at the local crack angle a+ Lla on Mohr's 
stress circle does not change for a deviation angle larger than a . Consequently, 
equation (5.3) also holds in the case oflocal stress concentration. 

(Lla >a) (5.27) 

The foregoing is valid for a regular sawtooth-shaped crack. Yet, for an irregularly 
curved crack through cement paste (as drawn in figure 5.5.b), a similar approach 
can be applied. In this case, concentration of loading takes place at the location 
where the local deviation angle is highest. Such concentration of loading is shown 
in figure 5.25. The model for a regular sawtooth-shaped crack applies for parts A1 
and A2 in this figure. Parts B and C are also unloaded. The average crack angle of 
these unloading parts equals the global crack angle a . Consequently, the local stress 
state in part A1 grows proportionally with ongoing unloading of parts B and C, 
travelling along the bounding surface for the local stress state (see figure 5.26). 
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Figure 5.25. Local concentration of loading near an irregularly curved crack. 
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Figure 5.26. Local stress state in Al due to unloading of parts A2, Band C. 
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As the local stress state in part A 1 remains located on the bounding surface for the 
local stress state, unloading of part B and C does not affect the position of the 
bounding surface for the macroscopic stress state. As a result, the position of the 
(macroscopic) stress-state bounding surface is determined by equations (5.26) and 
(5.27) with Lla being the maximum deviation angle. 

5.4.4.2 Plastic deformations during initial crack sliding 
Stress redistribution during initial sliding induces a strengthening mechanism. 
According to section 5.1, mesoscopic cracking takes place in this case and a unit 
cell must be considered with a width d equal to the average size of the aggregate 
grains. Mesoscopic cracking will proceed until no substantial redistribution of 
stresses takes place anymore. This brings up the question when the point of no 
further substantial stress redistribution will be reached. To this end, crack dilatancy 
during initial crack sliding is considered. 
As outlined in section 5.4.2, crack dilatancy depends on the location of the 
macroscopic stress state in stress space. Generally, this means that overriding will 
not occur along the maximum deviation angle Lla. On the contrary, potential 
aggregate fracture (and/ or cement paste crushing) takes place at those locations 
where the local crack deviation angle is highest (see figure 5.11 ). Ergo, for a certain 
macroscopic stress state, the dilatancy angle equals the maximum local deviation 
angle - denoted as Lla\j/ - at which overriding still occurs. In accordance with 
equation (5.8), this implies 

Lla"'(g:')~ Lla 

The actual value of Lla\j/ will be discussed more in detail in section 5.4.5.2. For the 
present purpose, it is sufficient to recognise that such a reduced deviation angle can 
be appointed for each arbitrary macroscopic stress state. In the following, the plastic 
deformations during initial crack sliding will be quantified at that part of the crack 
where overriding takes place along Lla\j/. To this end, a regular sawtooth-shaped 
crack- with deviation angle equal to Lla\j/- is considered in figure 5.27. 
During initial crack sliding, the continuum around crack part A2 (with direction 
a- ila\j/) unloads while the continuum around crack part Al (direction a+ Lla\j/) is 
loaded extra. During this process, unloading of the continuum will fill the gap at 
a - ila\j/ that would arise if cracking took place with no redistribution of stresses at 
all (see figure 5.27). The process of primary stress redistribution ends when crack 
part A2 is unloaded completely. At this point, a gap arises at crack part A2 and the 
crack starts to dilate. During the process of primary stress redistribution, no gap 
exists and when the macroscopic stress state remains unaltered, the total volume of 
the material does not change. 
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e~of: volumetric strain at crack opening (end of primary stress redistribution) 
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Figure 5.27. Deformations during initial sliding. 
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In case of a regular sawtooth-shaped crack, the dilatancy angle \jl remains constant 
during initial sliding and equals the reduced deviation angle Lla\j/. Disregarding the 
elastic volume change due to primary local stress redistribution and applying the 
theory of elasto-plasticity (as described in section 1.2.3), the volume around crack 
part A 1 increases according to 

()zP ==e P·'-s p, o ==J<ly PJtanLla 
vo/ vol vol nl \11 

with 

()y p == y p,l _ y p ,O 
nt nt nt 

Ep,O == y p,O == 0 
vol nt 

The maximum (negative) increase of stresses around crack part Al during primary 
stress redistribution can be derived from equation (5.19) and (5.20) 

() foe - foe - (1 +tan a tanilaljl J cr, - cr, - cr1 - cr, 
1- tan a tan Lla"' 

s: foe foe ( tan a - tan Lla J ucr3 == cr3 - cr3 == "' cr
3 tan a+ tan Lla"' 

This results in the following decrease of elastic volumetric strain 
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s: loc s: /oc 

0 e _ e,1 -Ee,O _ u0"1 + uO"z 
cvol - c vol vol -

2
K 

( 1+tanatan~a'~'J (tana-tan~a'l': 
a1+ 0"3 

1- tan a tan~a'~' tan a+ tan~a'l' 

2K 

During the primary stress redistribution process, the total volumetric strain is zero. 
Hence, we have 

As a result, the absolute value of the plastic shear strain at crack opening has the 
following value 

In case of a regular sawtooth-shaped crack, the total volumetric strain remains zero 
during initial mesoscopic mode ll cracking until the (absolute value of the) plastic 
shear strain reaches the value y nf' 1• From that moment on no primary redistribution 
of stresses takes place anymore and the volume increase is solely plastic. 

· p I' PI ~ cvol = y nt tan aljl 

The above is valid for a regular sawtooth-shaped crack. In case of an irregularly 
curved crack through cement paste, as depicted in figure 5.25, a somewhat different 
approach must be pursued. In this case, immediately after crack initiation, crack 
sliding will occur with zero dilatancy. At this stage, the crack is merely an assembly 
of sawteeth heaving each a different local deviation angle. For all these separate 
sawteeth, the regular sawtooth-shaped crack model applies (crack parts A2 unload; 
crack parts A1 are loaded extra). Yet, due to the heterogeneous structure of the 
mesoscopic crack and the heterogeneity of the stress state, certain isolated crack 
parts will be unloaded completely very soon after crack initiation. At that moment, 
the crack already slightly starts to dilate. During further sliding, more and more 
crack parts are unloaded completely and crack dilation becomes more and more 
pronounced. 
Capturing this phenomenon in a model based on the theory of elasto-plasticity, the 
development of the dilatancy angle \If will gradually change from zero to maximum 
dilatancy, instead of displaying a sudden jump at Ynf' 1 (see figure 5.28). 
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Figure 5.28. Development of dilatancy angle during mesoscopic cracking. 

~t is hypothesi~ed that the primary stress ~edistribution process during initial sliding, 
m case of an Irregularly curved crack with a gradually increasing dilatancy angle 
ends when the local stresses at crack part A2 (a - ~a ) are transferred to crack p ~ 
A1 (a+ ~?-ljl), with ~a'l' being the maximum local de:iation angle of that part oft~e 
crack_ that megularl!' _c~e~ t?rou~~ the cement paste. The plastic shear strain Ynf'2, 
defirung the end of mitial shdmg, IS m this case determined by the conditions 
'( p,l 

"'Jtan \jldy / = g•·;- c e,O + cp,2- cp,O = c e,2- ce,O + y p,2 tan Aa 
n vo vo/ vol vol vol vol nr il o/ 

0 (5.28) 

The. latter. co~dit!on accounts for the fact that the total amount of elastic volumetric 
stram.redistn?utwn ?oes not c~ange when applying a different evolution law for \If. 
If a h~early mcreasmg evolutiOn law is applied for the angle of dilatancy \If (as 
drawn m figure 5.28.b), then applying condition (5 .28) gives 
Y 

p ,2 ( J "' p 

J tan Yn~. 2 ~a'l' dyn/ = -yn/'1 tan~a'l' + Ynrp ,2 tan~a'l' 
0 Ynr 

or 

y p,z _ ~a'~' tan~a'~' 1 

"' - lnjcos~a j+~a tan~a Ynrp . ljl ljl ljl 

For numerical computations this relation might be approximated by 

p2 2sin~a 
Ynr ' = 'I' p,1 

A Ynr 
ua'l' (5.29) 

For _s1_11all deviation angles the error induced by the above approximation is 
;~;l~gible. Moreover, the erro~ i~ still very small for very large deviation angles. 

Instance, the error for a deviatiOn angle equal to 40° is still smaller than 1 %. 
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5.4.4.3 Extension to combined curved and straight cracking 
So far, only the consequences of primary stress redistribution during initial sliding 
have been illustrated for an irregularly curved crack through cement paste with zero 
tensile strength. In this section, the model will be extended to incorporate also 
potential crack sliding along a straight crack crossing interlocking aggregate grains 
(aggregate fracture and/or cement paste crushing). 
The direction of such a straight crack is equal to the global crack angle a ( <l>agg = <l>cp• 

section 5.3.1). In other words, the maximum local deviation angle equals zero for 
aggregate fracture and/or cement paste crushing. For such a crack, the phenomenon 
of local stress redistribution does not exist. Consequently, the bounding surface for 
initiation of a straight crack crossing aggregates is not affected during initial sliding. 
Having established the expression for the stress-state bounding surface of an 
irregularly curved crack running through cement paste as well as the expression for 
the stress-state bounding surface of a completely straight crack crossing all 
aggregate grains, the overall bounding surface for irregularly curved cracking 
through cement paste and straight cracking across the aggregate grains (after initial 
sliding and de-bonding between the opposite crack faces) is derived next. 
In section 5.4.4.1, it is explained that during primary stress redistribution, the load 
concentrates in the vicinity of the maximum deviation angle .1a. As a result, the 
local stress state changes according to figure 5.26. In this, the change of the local 
stress state at crack part A1 - due to unloading of crack part A2 - is solely 
determined by the magnitude of the maximum deviation angle .1a. Yet, the change 
of the local stress state at crack part A1- due to unloading of crack parts Band C­
depends on the relative length of crack part A (AI & A2) with respect to the entire 
crack length. For a regular sawtooth-shaped crack, the relative length equals 1 
while, for a very irregularly curved crack, the relative length will be close to zero. 
The change of the local stress state at crack part A1 due to unloading of crack parts 
B and C thus depends on the irregularity of the crack, which is - as stated in section 
5.3.3- implicitly taken as a fixed material property. 
Due to unloading of crack parts B and C during initial sliding, the local stress state 
at A 1 reaches the bounding surface for aggregate crack initiation before the 
macroscopic stress state reaches this bounding surface. Consequently, the overall 
(macroscopic) stress-state bounding surface - for combined curved and straight 
cracking - deviates further and further from the straight bounding surface for 
curved cracking through cement paste, when approaching the bounding surface for 
straight crack initiation. The result is a gradual transition between the stress-state 
bounding surface for curved cracking through cement paste (after initial sliding and 
de-bonding between the opposite crack faces) and the stress-state bounding surface 
for straight crack initiation across interlocking aggregate grains. 
With respect to this transition, two bounding conditions may be formulated. First of 
all, for macroscopic stress states close to zero, the local stress state at A 1 will not 
reach the bounding surface for straight crack initiation after unloading of crack parts 
B and C. Therefore, at the origin of stress space (cr;t) = (0,0), the friction angle of 
the overall stress-state bounding surface equals the friction angle of a curved crack 
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through cement paste. Secondly, the strengthening mechanism during initial sliding 
exists for all d~':i~tion . a~gles less than a. Consequently, the overall bounding 
surface - after mi~ial shdmg and de-bonding between the opposite crack faces _ 
~~~t _be located m stress space above the overall bounding surface for crack 
InitiatiOn. 

Based on the_se consi~erations, a circular transition is applied as drawn in figure 
5.29. Accor~mg to this figure, th~ overall bounding surface - after initial sliding 
an~ ~e-bondm? between the opposite crack faces - is completely determined by the 
existm? matenal p~rameters: th_e maximum deviation angle .1a, which equals .14>m 
accordmg to equatiOn (5.26) With a maximum of a the friction angle ,~. (= ,~. ) 

d h h · · ' 'l'cp 'l'agg an t e co esive strength cagg of a straight crack crossing interlocking aggregates. 
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- after initial sliding 
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Figure 5.29. O~e:all stress-state bounding surface (mode 11 cracking) after initial 
slzdmg and de-bonding between the opposite crack faces. 
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By choosing resembling mathematical representations for the stress-state bounding 
surfaces before and after initial sliding, representing the change of shape of the 
bounding surface during initial sliding is simply a matter of assigning ascending 
functions to the increase of the friction angle d<j> and the cohesion c (in case ft.cp is 
zero). 

d<j>(yn/) = d<j>cp + IYn:.J (d<J>"'- d<J>cJ (5.30) 
Ynt 

c(yn/)=cini+ IYn;J (cagg-cin;) 
Ynt 

(5.31) 

According to these functions, no difference exists between the stress-state bounding 
surfaces after initial sliding of a crack with da = a and a crack with da > a, 
because- according to equations (5.3) and (5.27)- the increase of the friction angle 
(d<J>cp as well as d<j>m) is bounded to the maximum value a. Considering a regularly 
curved crack, the local deviation angle da is the same along the entire crack. In that 
case, the shape of the bounding surface does indeed not change if da exceeds the 
global crack angle a (the shape is the bilinear bounding surface of figure 5.10 with 
d<j>cp equal to a). However, in the present model an irregularly curved crack is 
considered. Local deviation angles smaller than a are present along such a crack, 
even when the maximum deviation angle is larger than a. Due to the presence of 
these local crack parts (B and C), the length of crack part A is always less than the 
total crack length and, consequently, the overall bounding surface comprises a 
curvilinear transition between the bounding surfaces of a straight crack crossing 
interlocking aggregate grains and a curved crack running through cement paste. As 
this curvilinear transitional part of the bounding surface is governed by the amount 
of local crack parts with a local deviation angle less than a, this part of the 
bounding surface is still affected when the maximum deviation angle of the entire 
crack exceeds the global crack angle a. 
It is reasonable to assume that an irregularly curved crack, with a maximum 
deviation angle substantially higher than a, will include less crack parts -with local 
deviation angles smaller than a - than a crack with a maximum deviation angle 
equal to a. This results in a diminishing size of the curvilinear transitional part of 
the bounding surface when the maximum deviation angle of the entire crack 
increases beyond a. Ultimately, the curvilinear transitional part of the bounding 
surface will vanish completely when the maximum deviation angle becomes so 
large that even the smallest local deviation angle exceeds the global crack angle a. 
This phenomenon is introduced in the present model by introducing an additional 
linear part to the overall bounding surface in case the maximum deviation angle 
exceeds the global crack angle a. Figure 5.30 shows examples of the corresponding 
overall stress-state bounding surface when da is smaller or larger than a. 
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Figure 5.30. Stress-state bounding suiface: introduction of linear part OQ when 
Lla exceeds the global crack angle a. 

The length of OQ depends both on the maximum deviation angle da and the 
irregularity of the crack (distribution of local deviation angle along the crack). The 
irregularity of the crack is not specified explicitly, but is implicitly taken into 
account in the model. 

When the maximum deviation angle da exceeds the global crack angle a, the shape 
of the stress-state bounding surface does not change in the vicinity of the origin 0 
i.e.' ~<Pep = d<j>m = a. The stress-state bounding surface only expands away from th~ 
ongm 0 through equation (5.31) and through a gradual increase of the length of 
OQ during initial sliding until the final state as displayed in figure 5.30 is reached. 
Simulations (section 5.7) with the model show good results when the following 
expression is applied. 

~a< a: A ( P) 0 re/ Ynt = 

a < da ::; _
4
1 1t : A ( P) = [ da -a) I Y n/ I 

~ Y~ I p2 
41t-a Y~ ' 

with A P _I OQ(yn/)1 
ret(Ynt ) - I OR I 

(5.32) 
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5.4.4.4 Decoupling 'material strengthening during initial crack sliding' and 
'material softening as a result of de-bonding' 

Equation (5.26) applies when the opposite crack faces are de-bonded completely. In 
reality, this condition will be satisfied when crack sliding proceeds and - due to 
accumulating damage - the tensile strength reduces to zero (modelling of this 
process of material softening is treated in section 5.4.5). Consequently, the stress­
state bounding surface displayed in figure 5.29 (or 5.30) can be regarded as a limit 
case (after initial sliding and after the opposite crack faces are de-bonded 
completely). Additionally, the stress-state bounding surface displayed in figure 5.12 
is also a limit case (at crack initiation and before any crack sliding or de-bonding). 
These limit case stress-state bounding surfaces are shown in figure 5.31. 
In-between these limit cases, the stress-state bounding surface transforms gradually 
from the initial state (dotted line in figure 5.31) into the final state (solid line in 
figure 5.31 ). This leaves the issue of the transformation procedure. Because primary 
local stress redistribution during initial sliding and (gradual) de-bonding between 
the opposite crack faces do not necessarily occur simultaneously, these phenomena 
will be decoupled and treated separately. Transformation of the stress-state 
bounding surface due to only primary local stress redistribution (material 
strengthening) is treated in this section; transformation due to gradual de-bonding 
between the opposite crack faces (tensile softening) is treated in section 5.4.5. 

----- stress path of uniaxial compression 

··········· at crack initiation 

-- after initial sliding and de-bonding 

Figure 5.31. Bounding surfaces for two limit cases. 

-a 

The phenomenon of strengthening due to primary stress redistribution only takes 
place in multiaxial compression, i.e. when the maximum principal stress is 
compressive. In the limiting case of uniaxial compression (a 1 = 0), the local lateral 
stress cr/oc at crack part Al (figure 5.25) remains zero during initial sliding. Hence, 
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the local stress state at A1 does not rotate in stress space during initial sliding and, 
consequently, no material strengthening occurs. In the case of lateral tension 
( cr1 > 0), concentration oflateral forces would result in high lateral tensile stresses at 
crack part Al. These high tensile stresses cannot be transferred due to a limited 
tensile strength. Consequently, no concentration of lateral forces takes place in this 
case and no material strengthening occurs. 
In figure 5.31, the stress space is divided by the stress path ofuniaxial compression, 
characterised by the angle ~cp + a . If the stress point on Mohr' s stress circle 
(macroscopic stress state) according to the global crack direction a (or -a) is 
located at the right of this line, the maximum principal stress is positive (tensile). 
Conversely, when this stress point is located at the left of this line, the maximum 
principal stress is negative ( compressive ). 
Hence, with respect to material strengthening, only the part of the stress-state 
bounding surface at the left of the dividing line is relevant. 
The intersection point S of the initial stress-state bounding surface and the stress 
path of uniaxial compression (see figure 5.32) is a special point. This point is the 
most left point on the bounding surface that is not affected by primary local stress 
redistribution. As a consequence, the expanding part of the bounding surface (due to 
primary local stress redistribution) always has to start from point S and this point 
acts therefore as a rotation point during initial sliding (see figure 5.33). A practical 
way to model this transformation process is to introduce a fictitious tensile strength 
lrJic for the determination of the material parameters of the expanding bounding 
surface according to the equations (5.30), (5.31) and (5 .32). According to this 
approach, C;n;, OQ and OR are based on a fictitious tensile strength.frJic so as to force 
the bounding surface to pass through point S. 

··········· at crack initiation 

- · - ·- · during initial sliding and no de-bonding 

- after initial sliding and complete de-bonding 

Figure 5.32. Identification of fictitious tensile strength.frJic· 
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Figure 5.33. Material strengthening in the multiaxial compressive regime during 
initial sliding (decoupledfrom tensile softening). 

NUMERICAL MODELLING OF STAGE lii AND IV BEHAVIOUR 171 

This procedure goes hand-in-hand with section 5.4.5, i.e. tensile softening taking 
place simultaneously with material strengthening. In case tensile softening is 
introduced, the stress-state bounding surface without strengthening is not the initial 
bounding surface (at crack initiation), but it shrinks during progressive crack 
sliding. As a result of tensile softening, the rotation point S moves along the stress 
path of uniaxial compression towards zero. This moving stress-state bounding 
surface automatically starts from and ends in the appropriate stress-state bounding 
surfaces as displayed in figure 5.31, i.e. the limit cases "at crack initiation" and 
"after initial sliding and complete de-bonding ift.cp = 0)". 
Determination of the coordinates of the rotation pointS is indicated in figure 5.33 
and is analogous to the procedure of stress-state return mapping to a circular 
bounding surface (see figure 5.20) 

with 

crraAO) = ~(h,cp- crc(O)y + (rc(O)Y 

(-crc(O)sin(~cp+ a)--rc(O)cos(~cp+ a)J 
~ = arccos 

(J rad (0) 

The fictitious tensile strength ftflc during initial sliding is totally determined by the 
coordinates of the rotation point S, the increase of the friction angle Ll~ (Ynf), the 
cohesion c(ynf) and the relative length Arei(Ynf). 
According to figure 5.34, the radius of the circular part of the stress-state bounding 
surface- at an arbitrary stage Ynf of initial sliding- is given by 

P jQij (Jmrl-"-ret(Yn/)IORI) sinil~(Yn/) 
(Jrad(Ynt ) = ( ) ( ) 

tan !il~(Yn/) tan !il~(Yn/) sinil~(Yn/) 

_ c(y"/)cos~cp- ft.fic sin~cp- "-ret(Y/)(cagg cos~cp- ft.fic sin~cp) 
1-COS Ll~( Y n/) 

The stress coordinates of the centre C(ynf) of the circular part of the stress-state 
bounding surface are given by 

crc(y"/) = ft.fic -I OQjcos~,o'- crraAYn/)sin ~tot 
tc(yn/) =I 0Qisin~101 - crrad(Yn/)coS~101 
with 
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Figure 5.34. Determination of fictitious tensile strengthft.fie at an arbitrary stage 
rnf of initial sliding. 

The expressions for the centre and the radius of the circular part of the stress-state 
bounding surface are linearly dependent on - the only unknown - hJie· The equation 
of this circle reads 

(a-crc(Yn/)Y + (-r-'tc(Yn/)Y = (araAYn/)Y 

The rotation pointS lies on this circle too4
, hence 

(crs -ac(Yn/)Y + (-rs -'tc(Yn/)Y = (araAYn/)Y 

Inserting the above crc(ynf), -re (ynf) and O'rad(Ynf), results in a quadratic equation 
forft.fie 

a. (!;,fie y +b. !,,fie + c = 0 

4 The coordinates of stress pointS (crs, 'ts) are based on crc{O), 1:c{O) and crcad(O). For these quantities: see 
figure 5.12 and consecutive formulas. 
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with 

a= 1 + B2 
2 
+ 2B2 cos~tot + 2B1 sin~tot 

b=-2(crs +A2B2 +(B2as +A2 +B1 -rs)cos~tot+ (B1as +A1 -B2-rs)sin~toJ 
c = cr / + -r/ +A/+ 2(A2cr s + A1'ts )cos~tot + 2(A1a s- A2-rs )sin ~tot 

A 
c(yn/)-"-ret(Yn/)cagg ,!. 

1 = cos'l'c 
1- cos~~(y n/) P 

1- 'A ( p) 
B = ret Ynt sin~ 

I 1-cos~~(Yn/) cp 

A = "-ret(Yn/) c cos,!. 
2 • A,!.( p) agg 'l'cp 

Slllil'l' Ynt 

B = "-ret(Yn/) sin~ 
2 sin~~(Yn/) cp 

The right solution of this quadratic equation is 

-b-.Jb 2 -4ac 
J;,fic = 2a 

5.4.5 Introduction of softening behaviour 

173 

(5.33) 

According to the terminology regarding shrinkage of a stress-state bounding 
surface, described in section 1.2.4, three kinds of softening may be distinguished: 
frictional, cohesive and tensile softening. By adopting softening laws for certain 
material parameters (as discussed in section 5.3.5), these three kinds of softening 
behaviour may be introduced. 
The introduction of tensile softening is crucial for describing the decrease of 
material strength during mode I cracking in tensile tests. Therefore, tensile softening 
is accounted for by adopting a softening law for the tensile strengthft.ep· As outlined 
in section 3.2.4, the reduction of load bearing capacity at stage IV (softening stage) 
in multiaxial compression tests (mode II failure) may be ascribed to: 
• Fracture of 'intact' concrete parts along the crack path of the growing cracks, i.e. 

fracture of the cement paste (decrease offt,ep' i.e. tensile softening) or fracture of 
interlocking aggregate grains (decrease of Cagg' i.e. cohesive softening). 

• Reduction of mesoscopic roughness, i.e. reduction of maximum crack deviation 
angle ~a due to overriding of interlocking aggregate grains along a mode II 
crack (figure 5.35), aggregate fracture and/or crushing of the cement paste. 

• Reduction of microscopic roughness, i.e. reduction of the friction angle of a 
straight crack running through cement paste or aggregate grains due to polishing 
during crack sliding (reduction of ~ep, ~agg and/or ~(stage If)) 
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Reduction of mesoscopic as well as microscopic roughness may both account for 
frictional softening. As outlined in section 4.3.6.1, experimental observations by 
Alexander 1971 on the extent of polishing of the aggregate-cement interface during 
crack sliding, show only a small reduction of the microscopic roughness. In line 
with the assumption that the differences between the initial microscopic roughness 
of a crack running either through the ITZ, through the bulk cement paste or through 
an aggregate grain are small (section 5.3 .1; <Pep = <!>agg = <!>(stage 11)), also the 
differences in reduction of the microscopic roughness during crack sliding are 
assumed to be small. Ergo, to avoid unnecessary complexity of the model, reduction 
of the microscopic roughness is disregarded and frictional softening is only 
accounted for by applying a softening law for the mesoscopic roughness, i.e. the 
maximum deviation angle ~a. 

Figure 5.35. Decrease of maximum deviation angle due to overriding. 

5.4.5.1 Tensile softening 
In section 5.3.5, the tensile strength of the cement paste is determined for mode I 
U; ,;;'e1

) as well as mode II ifr.cp) crack initiation. During subsequent crack opening 
(or sliding), more and more bonds between the opposite crack faces will break and 
the capacity of the crack to transfer tensile forces gradually diminishes. 
Introducing a softening law for the tensile strength can quite easily incorporate such 
characteristics. For mode I cracking, softening laws have been proposed by many 
researchers (see for instance figure 2.10 [Hillerborg et al 1976

]). With respect to the 
formulation of a softening law, two essential criteria are pointed out: 
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• As a decrease of strength leads to localisation of deformations, a softening law 
should be based on fracture energy rather than on (smeared) crack strains. 
Otherwise, the results would inevitably become mesh dependent (section 
2.2.3 .2). 

• As outlined in section 3.1.2.2, the shape of the descending branch of the loading 
curve during mode I crack growth in tensile tests is best typified by a steep part 
just beyond ultimate strength followed by a long shallow tail. The (initial) steep 
part of the descending branch is ascribed to opening of small isolated (bond) 
cracks in the fracture process zone, whereas the shallow long tail of the 
descending branch is attributed to the formation of crack interface grain bridges 
during the development of a continuous crack profile through the specimen [Van 
Mier 1992]. 

This type of softening behaviour is well accounted for by applying a bilinear 
softenin~ law, which leads to good results in case of mode I cracking [Rots et 
al 

1985
'
198 

; Roelfstra & Sadouki 1986
; Carpinteri et al 1989

; Cotterell et al 1992; 

Guinea et a! 1 994
]. 

According to these criteria, a bilinear tensile softening law is adopted for mode I 
cracking (see figure 5.36). To account for a constant dissipation of fracture energy 
irrespective of the size of the finite elements, the internal state parameter governing 
tensile softening K1 is based on (smeared) crack strains multiplied by the width of 
the localisation zone, i.e. the crack displacements. 

't 

i 

-(J 

(a) 

I' model( ) 
Jt,cp Kl 

r mode/(0) 
lt,cp 

i 

(5.34) 

0.2 Kl ,max 

-KI 
(b) 

Figure 5.36. (a) Shrinkage of Rankine stress-state bounding surface during mode I 
cracking and (b) bilinear tensile softening law. 

With respect to tensile softening during mode II cracking in multiaxial (or uniaxial) 
compression, little is reported in literature. The same tensile softening law as for 
mode I cracking is adopted for the mode II tensile strength .ft.cp because of two 
reasons : 

• The descending branch of a loading curve in a multiaxial compression test does 
not show such a steep part just beyond ultimate strength as it is observed in 
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tensile tests (section 3.2.4). Ergo, a sudden decrease of bond strength between 
the opposite faces of a growing macrocrack (tensile softening) does not result _in 
a sudden decrease of overall strength. As outlined in section 5.4.4, matenal 
(tensile) softening goes along with material strengthening during initial sl_idi~g 
of a mode II crack. Such material strengthening is only present for multiaxial 
compressive stress states and evidently, given the ductility ob~erved in 
multiaxial compression tests on normal strength concrete, predommates the 
sudden decrease of bond strength at crack initiation. Note that substantial 
material strengthening during initial sliding is only expected for rough mode 1I 
cracks (see figure 5.37). Evidently, the maximum deviation angle at crack 
initiation is relatively large in normal strength concrete. 

················ ·· ··· crack initiation (~cp = 25°) --- after initial sliding and de-bonding 

J,,cp(O) 

-cr -cr 

(a) (b) 

Figure 5.37. Material strengthening/ tensile softening in case of (a) a small 
and (b) a large maximum deviation angle L1a. 

Due to the large roughness of mode Il cracks in normal strength concrete, ~he 
influence of tensile softening does not extend into in the multiaxial compressiVe 
regime in stress space. Consequently, the formulation of the tensile softening 
law does not have a large impact on the softening branch of normal strength 
concrete loaded in multiaxial (or uniaxial) compression. In this respect, it is 
justifiable to simply adopt the same tensile softening law as for mo~e I cra~k~ng. 

• In section 3.1.2.2 it is pointed out that arrays of small overlappmg (spbttm?) 
cracks are also observed along mode Il cracks in concrete specimens loaded m 
uniaxial and multiaxial compression. Like in mode I, the stiffness of the 
structure decreases to some extent due to these arrays of small overlapping 
cracks. Hence, a bilinear tensile softening law also applies during mode Il 

cracking. 

5.4.5.2 Cohesive and frictional softening 
As outlined in section 3.2.4 and figure 5.3, sliding along a macroscopic mode Il 
crack may involve several (mesoscopic) mechanisms: overriding, crushing of 
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cement paste and aggregate fracture. As explained further in this section, all these 
mechanisms involve a reduction of roughness (frictional softening) and/or a 
reduction of cohesive bond between the opposite crack faces of the potential mode 
Il crack (cohesive softening). 
To ac~ount for cohesive as well as frictional softening during mode Il cracking, 
softemng laws - based on the crack sliding displacement lwc'l as an internal state 
parameter - are incorporated for the aggregate cohesion cagg and the maximum 
crack deviation angle Lla. In this way, the stress-state bounding surface for mode II 
cracking shrinks during stage IV (softening stage) from a bounding surface of 
ultimate strength to a bounding surface of residual strength (crack with no bond 
strength and only microscopic roughness) as indicated in figure 5.38. Basically, this 
transition of the stress-state bounding surface resembles the transition from ultimate 
to residual strength as indicated in figure 3.22. 

-cr -cr 
(a) (b) 

Figure 5.38. (a) Cohesive softening and (b) frictional softening. 

With respect to macroscopic mode Il crack sliding during stage IV in multiaxial 
compression, a distinction can be made between two elementary mechanisms: 
1. Sliding along a curved crack around the aggregate grains 
2. Sliding along a straight crack through or crossing interlocking aggregate grains 
With respect to the basic mesoscopic cracking mechanisms as displayed in figure 
5.3, it is obvious that elementary mechanism 1 (curved cracking) involves 
overriding while elementary mechanism 2 (straight cracking) involves aggregate 
fracture. As indicated in figure 5.3, cement paste crushing postpones the formation 
of a crack through the aggregate grains. In other words, some ductility is introduced 
during sliding along a straight mode Il crack. 
Cement paste crushing only occurs in highly compressed porous zones. At stage IV, 
most of the internal pores of the cement paste are already closed due to extensive 
pore collapse during stage Il (non-linear strengthening stage). So, to allow for 
cement paste crushing, open space in the vicinity of the potential 'crushing zone' 
needs to be created during the process of macroscopic mode Il crack sliding itself. 
Although crushing of the cement paste during sliding along a straight crack creates 
some open space (see figure 5.3), much more open space is created (available for 
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deposit of cementitious material during cement paste crushing) when the crack 
dilates a little bit due to overriding at another location along the macro-crack. 
Overriding along a curved crack is the only mechanism producing substantial crack 
dilatancy. Figure 2.6 shows that crack dilatancy (volumetric expansion) is high for 
low levels of confinement, while it decreases drastically for high levels of 
confinement in triaxial compression tests. From this it can be concluded that 
elementary mechanism 1 (overriding along a curved crack) is predominant in 
uniaxial compression and triaxial compression with low confinement, while 
elementary mechanism 2 (aggregate fracture and cement paste crushing along a 
straight crack) is predominant in triaxial compression with high confinement. These 
areas in stress space are indicated in figure 5.39. For stress states in-between, 
cracking according to both elementary mechanisms occurs. 

i 

··· ... 

Figure 5.39. Areas in stress space with predominance of elementary mechanism 1 

and2. 

Elementary mechanism 1: Overriding along a curved crack 
Mode 11 crack sliding according to (exclusively) mechanism 1 takes place when the 
stress state is located in stress space in the low compressive region as indicated in 
figure 5.39. Figure 5.35 shows such mode II crack sliding along a regularly curved 
crack. It appears that after a certain amount of sliding, the value of /).a has 
decreased to zero. In case of a regularly curved crack, the magnitude of the crack 
sliding displacement wcr - for which /).a has decreased to zero - is of the order of 
magnitude of the diameter of the aggregate grains ( wcr = O(R3) ). 
Besides frictional softening (decrease of !),.a), mode II crack sliding according to 
mechanism 1 induces also cohesive softening (decrease of Cagg)· This is illustrated in 
figure 5.40.b by considering a crack, for which - after a certain amount of 
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"mech~nis~ 1" crack sliding - the (low confinement) stress state changes to a stress 
state with hi~h confinement. As a result, the crack sliding mechanism changes also 
from mechamsm 1 to mechanism 2 and either a straight crack (dotted line) develops 
through the aggregates or the cement paste crushes at the (local) contact areas of the 
dilated crack. At this point, the strength of the potential "mechanism 2" crack is 
lower tha~ in the original situation (before "mechanism 1" sliding), because both 
the potential crack area through the aggregates is reduced and the local contact 
areas are reduced. In other words, mode II crack sliding according to mechanism 1 
also underlies material softening for stress states with high confinement. The 
reduction of the aggregate crack area / cement paste crushing area of a potential 
"mechanism 2" straight crack is allowed for by introducing a softening law for ca . 
As indicated in figure 5.40, this softening law is similar to the softening law of!),.~, 
because after the same amount of "mechanism 1" sliding ( wcr = 2R3), both /).a and 
Cagg have decreased to zero. 

~C-(O)••mm 

w~ 
2R - lw'l 

C (wcr) = C (0) ---"3~__;. 
agg agg 2R 

potential "mechanism 2" crack 

0 

@ 

Figure 5.40. Cohesive softening during overriding along a regularly curved crack. 

Based on the foregoing, both cohesive and frictional softening are introduced in the 
model when ~ode II crack sliding takes place along a curved crack through cement 
paste (m.echamsm 1 ). In case of a regularly curved crack, the end of the softening 
process IS reached when the sliding displacement reaches a value of the order of 
m~g~itude of the diameter of the RVE1• This applies for both the cohesive and the 
fnctwnal softening process during mode 11 crack sliding according to mechanism 1. 
Th~ shape of the softening curve depends on the true shape of the curved crack 
whiCh in turn is dependent on the mutual positions of the aggregate grains. In th~ 
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absence of relevant data, a 'simple' linear shape of the softening curve for both 
cohesive and frictional softening has been chosen as indicated in figure 5.40.d. 
The above applies for a regularly curved crack. The structure of real concrete is, 
however, highly heterogeneous, and consequently, mode II macro cracking 
according to mechanism 1 results in a very irregularly curved crack shape. Such a 
crack curves around aggregate grains of different size. For such a heterogeneous 
structure, the diameter of the RVE1 is only an average of the distribution of the 
actual grain sizes. 

!la (wcr) 

!la (0) 

cagg(wCI) 

Cagg(O) 

r 

0 

-lwcrl 

Figure 5.41. Softening diagram in case of overriding along an irregularly curved 
crack around aggregate grains of two different sizes. 

Figure 5.41 shows an irregularly curved crack, curving around aggregate grains of 
two different sizes. Two meso-scale sub-levels may be indicated in this case: the 
sub-level of the large aggregate grains A and the sub-level of the fine aggregate 
grains B surrounding the large aggregate grains. It shows that the roughness due to 
the fine aggregate grains may be superimposed on the roughness due to the large 
aggregate grains Uust as the microscopic roughness is superimposed on the 
mesoscopic roughness). In this configuration, both ~a and Cagg decrease rapidly 
during initial sliding along the fine aggregate grains while simultaneously the crack 
dilates with ~a linearly decreasing from ~alarge + ~afine to ~alarge with increasing 
crack sliding up to a sliding displacement of the order of magnitude of the diameter 
of the fine aggregate grains 2R3,8 . During further sliding, the dilation of the crack is 
much more determined by the roughness on the sub-level of the large aggregate 
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grains. In the course of this process, both ~a and Cagg decrease slowly to zero with 
increasing crack sliding up to a sliding displacement of the order of magnitude of 
the diameter of the large aggregate grains 2R3.A. This kind of behaviour is well 
accounted for by adopting a bilinear overall softening diagram as displayed in 
figure 5.41. 
The main implications, due to an irregular crack shape along different sizes of 
aggregate grains, are accounted for by introducing a heterogeneity parameter 11· 
This parameter characterises the maximum aggregate grain size divided by the 
average aggregate grain size along the macrocrack. 

With the heterogeneity parameter 11, a bilinear softening law - similar to the one as 
displayed in figure 5.41 - may be formulated for different ratios between the 
maximum and average size of the aggregate grains. 

!la (w') 

!la (0) 

cagg(w') 

cagg(O) 

r 
6R3 

-lw'"l 
Figure 5.42. Influence of 1J on the shape of the softening diagram. 

(5.35) 

To show the influence of the heterogeneity parameter 11 on the shape of the 
softening diagram, equation (5.35) is graphically represented in figure 5.42 for three 
values of 11 5

. 

5 
The softening law for the cohesion Cagg is simply achieved by replacing .1.u in equation (5.35) by Cagg· 
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Elementary mechanism 2: Sliding along a straight crack with no dilation 
(aggregate fracture and cement paste crushing) 

Sliding along a straight crack involves fracture of the aggregate grains. 
Consequently, more brittle material behaviour is expected than in the case of 
elementary mechanism 1 (overriding along a curved crack). Nevertheless, some 
ductility may be introduced during sliding along a straight mode li crack due to 
cement paste crushing, which postpones the formation of a crack through the 
aggregate grains6 (figure 5.3). 
In this case, linear softening is incorporated by introducing a material softening 
parameter w:.x, defining the crack sliding displacement for which the cohesive 
strength Cagg has decreased to zero (see figure 5.43). 

ila (W'") 

ila (0) 

cagg(W'") 

Cagg(O) 

I 
-lw'l 

Figure 5.43. Softening diagram for crack sliding according to mechanism 2 

Linear softening for the aggregate cohesion is introduced to model progressive 
fracture of the aggregate grains. Within a heterogeneous material, such as concrete, 
the stresses will concentrate in the regions with highest stiffness. In reality, these are 
the regions with the highest grade of compaction. Due to these higher stress levels, 
cement paste crushing and (subsequent) aggregate fracture occur first in these 
regions. Further crack sliding leads to cement paste crushing and aggregate fracture 
in less compacted regions and so on. 
During progressive fracture of the aggregate grains, also the maximum deviation 
angle ~a decreases to zero. Local failure of an aggregate grain sets the local 
deviation angle to zero. This occurs in the region with the highest grade of 
compaction, i.e. where the local deviation angle is highest. Consequently, the 
maximum deviation angle ila diminishes simultaneously with the aggregate 
cohesion Cagg· 

6 The crushing strength of the cement paste is assumed to be less than the strength of the aggregate grains. 

NUMERICAL MODELLING OF STAGE Ill AND !V B EHAVIOUR 183 

Combined crack sliding according to mechanism 1 as well as mechanism 2 
Generally, crack sliding according to both mechanism 1 and mechanism 2 will 
occur along the macroscopic crack. The ratio between them depends on the location 
ofthe macroscopic stress state in stress space during crack sliding (see figure 5.39). 
To determine the ratio between both mechanisms for an arbitrary stress state, an 
equivalent fictitious regularly curved crack through cement paste is introduced for 
the actual stress state at a certain state of crack sliding. The stress-state bounding 
surface for such an equivalent fictitious curved crack is displayed in figure 5.447

. 

r 

··.:0····· .. 

·· .. 

-a 

Figure 5.44. Identification of the stress-state bounding surface of an equivalent 
fictitious regularly curved crack through cement paste. 

For both the actual crack and the equivalent fictitious crack the stress-state 
bounding surface travels through the actual macroscopic stress state at the initial 
state of crack sliding w cr,o (at beginning of loading (time) step), which practically 
resembles the trial stress stated (an1

, tn/) in the case of very small loading steps. 
Based on intended equivalence in crack dilatancy of both cracks, it is hypothesized 
that for the same state of stress, the reduced "overriding" local deviation angle 
~a~~1, w cr,o) of the actual crack equals the (constant) deviation angle ~CX.fic of the 
fictttwus crack. 
As outlined in section 5.4.4.2, overriding (mechanism 1) generally not occurs along 
the maxim~m deviation angle ~a, but along a reduced deviation angle ila'l'. At 
those locatwns where the local crack deviation angle exceeds ila'l', crack sliding 
accor?ing to mechanism 2 occurs (aggregate fracture and/or cement paste 
crushmg). For the actual crack, a linear distribution of the local crack deviation 

7Th . e tenstle strengthJ,.cp is assumed zero in figure 5.44. This simplifies the procedure considerably, while 
only a small error is made in the determination of ~<J!fic· 
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angle with respect to the crack length is assumed (figure 5.45). According to this 
assumption, the ratio of mechanism 1 crack sliding during the crack sliding 
increment Llwcr is simply derived as8

• 

A = £mechl [ilalji(Q',wcr,O);aLn _ [ilafic;aLn 

mechl £crack [ila( Wcr,O) ; a Lin - [ila( Wcr,O) ; a Lin 

with 

Amechl relative crack length- at crack sliding wcr,o- with crack sliding 
increment according to mechanism 1 (0 < Amechl < 1) 

~ 100 
~ 

0 
~alji(Q', w"'·0) ~a(wr·0) 

local deviation angle along crack length 

Figure 5.45. Cumulative distribution of local deviation angle along the crack 
length. 

(5 .36) 

As the relation between ila and il<j> of the actual crack changes during initial crack 
sliding (equations (5.2) and (5.26)), also the relation between Llafic and il<J>fic of the 
equivalent fictitious crack changes during initial crack sliding. 
At crack initiation, the equivalent deviation angle Llafic,l is related to il<J>fic according 
to equation (5.2). 

( ) 
2 tan 2 (ilafic ,l ) 1- cos( 2ilafic, l) 

tan il<j> fie = 2 ( ) tan 4> cp = ( ) tan 4> ep 
1- tan Llafie, l cos 2ilafie, l 

8 In consequence of equations (5.3) and (5.27), both !::.afic and !::.a(wcr,o) in equation (5.36) are limited to the 
global crack angle a . 
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or 

1 ( tan<j>c l ilafi 1 = - arccos P 
te, 2 tan(il<J>fie )+ tan<j>ep 

After initial crack sliding, the equivalent deviation angle Llafic,2 is related to il<J>fic 
according to equation (5.26). 

Llafie,2 = il<j> fie 

During initial crack sliding, ilafic changes linearly from Llafic,l to Llafic,2 (equation 
(5.30)). This leads to the following general relation between Llafic and L14>flc· 

ly PI< y p,2 . 
nt nl • 

p,
2 I PI I PI Ynr - Ynr Ynr 

ila - ila + ila --'fie - 'fie,! p,2 'fie,2 p,2 
Ynr Ynr (5.37) 

I PI> p,2 . Ynr -Ynr · 

With ilafic from equation (5.37) during a crack sliding increment Llwcr, the 
momentary value of Amech 1 during that crack sliding increment can be determined 
according to equation (5.36). 
In this equation, ila(wcr,o) is the maximum deviation angle- at the initial state of 
crack sliding wcr,o - according to the combi-frictional softening law for combined 
mechanism 1 and mechanism 2 crack sliding. This combi-frictional softening law­
as well as the combi-cohesive softening law - depends on the average value of 
Amech 1 during the formation history of the macrocrack

9 

Lla(wcr,o) = Imechl [ila(wcr,O )LEcH 1 + (1- ImechJ[ila(wcr,o )]MECH 2 

( er,O )-I r (wcr,O )~ + (1- I )re (wcr,O )~ 
C agg W - meeh I LC agg 1MECH 1 meeh I ~ agg 1MECH 2 

(5 .38) 

with 
~r , O 

Imeehl = lw!r.ol f "Amechldwcr (formation history of the macrocrack: 0 . . . wcr,o) 

[ila(wer,o )~ ·re (wer,o )~ softening law according to equation (5.35) 
'JMECH I ' ~ agg 1MECH I 

[ila(wer,o )~ ·re (wer,o )~ softening law according to figure 5.43 
1MECH 2 ' ~ agg 'jMECH 2 

With the derivation of the combi-frictional/cohesive softening laws, an additional 
internal state parameter xmeehl is introduced to quantify the relative average 
contribution of mechanism 1 and 2 crack sliding during the formation history of 
macrocracking. 

9 The average value of Amech 1 is based on the formation history of the macrocrack, so without the contribution 
ofl..mechl for the current sliding increment !::.wcr as computed in equation (5.36). 
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5.5 Localisation of deformations and smeared crack analysis 

At stage IV (softening stage), deformations localise in a few macrocracks while the 
continuum unloads (see section 3.2.4). To model such localised deformations, the 
concept of smeared cracking is adopted, i.e. the crack displacements are distributed 
over the width of one finite element. 
As outlined in section 2.2.3 .2, a drawback of the smeared cracking approach is that 
it may lead to spurious stress locking (as a fundamental consequence of finite 
element displacement compatibility) when the finite elements are not aligned with 
the crack path. With respect to mode I cracking, adopting the rotating crack concept 
partly remedies this shortcoming [Rots 1988

]. However, adoption of the rotating 
crack concept is not likely to improve significantly the softening characteristics of a 
localised mode 11 crack when the finite elements are not aligned with the crack path. 
In such case of non-alignment, the mode 11 crack band is likely to extend over more 
than one finite element. 
As outlined in section 4.2, the model computations are based on finite element 
meshes that are generated in a random way. The finite elements are consequently 
not aligned with the crack path of a potential mode 11 crack. Hence, the crack band 
is likely to extend over more than one finite element and the smeared crack results 
will invariably exhibit too little overall softening. This drawback of the smeared 
cracking approach with respect to mode 11 cracking may be remedied simply by 
implementing a more brittle softening law. Obviously, such a brittle softening law is 
not a true material property and results will be dependent on the geometry of the 
finite element mesh, i.e. the existence of preferential crack directions that are 
aligned with the finite element mesh. 
Nevertheless, because of the randomness of the finite element mesh, no preferential 
direction of a potential mode 11 crack exists. In such case, the combination of a (too) 
brittle softening law with a random finite element mesh may actually be qualified as 
a true material property. Because the smeared cracking approach is based on the 
size of the finite elements, the results are independent of the size of the finite 
elements, and, because the random finite element mesh inhabits no preferential 
crack direction, the results are also independent of the orientation of the (random) 
mesh. 
So, with the smeared cracking approach in combination with a random finite 
element mesh, localised mode 11 cracking will result in the formation of a crack 
band extending over multiple finite elements, irrespective of size and orientation of 
the finite elements. As the crack band extends over multiple finite elements while 
the material parameters w:.x and 11 (as defined in section 5.4.5.2) are based on a 
crack band width resembling the width of only one single finite element, realistic 
softening behaviour can only be realised by implementing a more brittle softening 
law (reduced value of w:ax and increased value ofT]). 
Apart from the issue of the alignment of the finite element mesh with a potential 
mode 11 macrocrack in smeared crack analysis, there is also the issue of the 
alignment of the actual macrocrack itself. This issue is treated in the next section. 
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5.5.1 Alignment of macroscopic cracks 

According to the present model formulation, mode 11 cracking may occur in two 
directions (crack angle a or -a). Initially, isolated cracking will occur along the 
(locally) weakest direction, which depends on the loading history. However, when 
the cracks start forming a localised shear band, mode 11 crack growth should only 
occur along the direction of the localised shear band (see figure 5.46). 
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Mode II crack initiation Formation of a localised shear band 

Figure 5.46. Mode 11 crack initiation and crack growth during the formation of a 
localised shear band. 

Upon failure of a concrete structure, a localised shear band will develop in a zone 
where - on the global level of the structure - the average strength is smallest. 
Propagation of an isolated - not aligned - mode 11 crack within such a localisation 
~one is prevented because such a crack is arrested at both crack tips by stronger, 
mtact material outside the localisation zone. Such crack arrest does not take place 
for cracks aligned with the localisation zone. So, in the actual concrete structure, 
cracks naturally propagate in the direction of the localisation zone. 
When the crack displacements are smeared out according to the principle of 
smeared cracking, the distinction between aligned crack displacements and not 
aligned crack displacements becomes however less transparent. To illustrate this, 
smeared crack displacements for cracking along a are compared with smeared 
crack displacements for cracking along -a. 
Transformation of smeared crack displacements - or plastic crack strains ( ~:: n P, y nt P) 
-from the first potential crack direction (-a) to the second potential crack direction 
(+a) yields (~::/[-a)= 0, no plastic strains in crack direction) 

cp g P 22 p 2 • 2 
n [+a]= n [-a]cos a+ynt [-a)cos asm a 

~::P ~::P · 22 P 2 · 2 
I [+a]= n [-a]Slll a-ynt [-a]COS aStn a 

Y./[+a] = -2E/[-a] cos2asin 2a + y ./[-a)(cos2 2a- sin 2 2a) 

(5 .39) 



188 CONCRETE BEHAVIOUR IN MUL T!AX!AL COMPRESSION - NUMERICAL MODELLING 

When an associated flow rule is adopted, i.e. 'I' = <l>cp, the following relation 
between the normal and shear crack strain is established (see section 1.2.3). 

EP -yP tan"' n [-a] - nt [-a] 'l'cp (5.40) 

According to figure 5.6 the crack angle a and the friction angle of a straight crack 
through cement paste <l>cp are interrelated by 

1 
tan<l>cp = -- (5.41) 

tan2a 

Inserting equation (5.40) and (5.41) into equation (5.39) results in the following 
plastic crack strains according to the local coordinate system of the second potential 
crack direction. 

EP _Ep 
n [+a] - n [-a] 

E1P[+a] = 0 

Y p - y p 
nt [+a]-- nt [-a] 

For associated flow, this means that mode li cracking in the first potential crack 
direction exactly yields the same plastic strains as mode II cracking in the second 
potential crack direction (see figure 5.47). 

t 1 1 1 1 1 l 

crack angle = -a t 1 1 1 1 1 j crack angle = a 

Figure 5.47. Mode 11 cracking according to two potential crack directions in 
case of associated flow (If/= r/Jcp)· 

Because of the similarity of plastic strains, crack arrest of not aligned mode II 
cracks will not take place in a natural way in case the smeared cracking principle is 
adopted in combination with an associated flow rule. Furthermore, if a non­
associated flow rule is adopted with only a small difference between the dilatancy 
angle 'I' and the friction angle of a straight crack through cement paste <l>cp' plastic 
straining will almost be similar and crack arrest of not aligned mode li cracks will 
not occur either. 
However, although the plastic strains are (almost) the same during mode II cracking 
along the first or second potential crack direction, there is a distinct difference in the 
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orientation of the finite element. This is indicated in figure 5.48. During the 
formation of a localisation band in the direction a, together with the evolution of 
plastic strains ( Yn/(+aJ, EnP[+a]) the element rotates in a clockwise direction. 
Conversely, when a localisation band evolves in the direction -a, the element 
rotates in a counter clockwise direction. 
In conclusion, a clockwise rotation of the finite element during loading clearly 
indicates the formation of a localisation band in the direction a, while a counter 
clockwise rotation of the finite element indicates the formation of a localisation 
band in the direction -a. So, provided that no large rotation of the whole structure 
takes place during loading, the direction of a potential localisation band (a or -a) 
can be traced easily by considering the angle of rotation of the finite element. 

rotation 

discrete cracking 

rotation 

I 

/tYnf(+) 

Figure 5.48. Rotation of finite element during localisation. 

The phenomenon of localisation of deformations only takes place in the case of 
material softening. In section 5.4.4 it is outlined that during initial sliding 
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( lYnfl < ynf'2 ) the material strengthens if the stress state is located in the light grey 
area of figure 5.31. Although some material strength parameters also slightly 
decrease during initial sliding as a result of the softening mechanisms as discussed 
in section 5.4.5, it is hypothesized that the amount of strengthening will always 
exceed the amount of softening as long as the stress state is located in the light grey 
area of figure 5.31 and IYnfl < Ynf' 2

• Hence, a check on the formation of a 
localisation band is only required when lYnfl > Ynf' 2

, or when the stress state is 
located in the dark grey area of figure 5.31. 
The rotation ROT of the finite element is regarded negative when it is in a clockwise 
direction and positive when it is in a counter clockwise direction. The plastic shear 
strain Ynf is regarded negative when cracking occurs along a and positive when 
cracking occurs along -a. According to this sign convention, a negative rotation 
(ROT< 0) indicates the formation of a localisation band along a. In this case, only 
cracking along a has to be considered. Conversely, if the rotation is positive 
(ROT> 0), only cracking along -a has to be considered. 
Taking into consideration the condition of crack alignment in the case of material 
softening, not only the trial stress state sl is computed based on the node 
displacements of the finite element (figure 5.2), but also the rotation ROT

1 
of the 

finite element. This rotation is considered to be a trial rotation, because part of it 
( If2/).ynf) may be due to the smearing out of the potential crack displacements. In 
analogy with the theory of plasticity, the latter part is named the plastic part of the 
rotation. To obtain the true (or final) rotation of the material continuum within the 
finite element, the plastic part has to be subtracted from the trial rotation. This 
procedure is illustrated in figure 5.49. 

check cracking along +a : 
""\ROT' < 0; 

~Q, ~E,"[+aJ • ~Ynf'[+a] 

lr 

final state 
trial state ) Q' =Q'+~Q 

( Q', ROT') ROT' =ROT'-.l..~y P 2 nt 

j 

check cracking along -a : 
--.{ ROT I> 0 }----.j 

~Q, ~E,/'[-a]' ~Ynf'[-a] 

Figure 5.49. Computing procedure in case of material softening. 
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5.6 Overview of computational procedure 

In sections 5.3, 5.4 and 5.5, the essential aspects with regard to mesoscopic/ 
macroscopic cracking at stage III/IV are outlined. In this section, these essential 
aspects are brought together into a consistent computational procedure applicable 
within the main calculation scheme as depicted in figure 5.2. This computational 
procedure is listed at the end of this section. 
Mesoscopic/macroscopic cracking at stage III/IV is checked for three potential 
crack directions (see figure 5.13). Crack stresses in each potential crack are 
obtained by rotating the stress state according to the global (x,y,z) coordinate system 
to the local (n,t,z) coordinate system of the crack. To distinguish specific crack 
quantities of each potential crack, such as crack stresses and internal state 
parameters, the crack angle (with respect to the maximum principal stress direction) 
is put between square brackets (subscript) behind the quantity. 
In accordance with figure 5.2, a trial (x,y,z) stress state Q 1 is computed based on the 
initial (x,y,z) stress state Qo,m and the (.x,y ,z) macro-strain increments /'),.~m, provided 
by UDEC. To allow for mode 11 crack alignment (section 5.5.1), also the 
(incremental) rotation of the element is considered. Subsequently, the trial stress 
state is checked upon mode I cracking (crack angle 0) and mode 11 cracking (crack 
angle +a or -a). To this end, stress-state bounding surfaces are constructed for both 
mode I and mode 11 cracking, based on the initial value (at the beginning of the 
calculation cycle or time step) of the internal state parameters. 
If the trial crack stress state Q1 

101 violates the mode I cracking criterion, Q1 
101 is put 

back onto the stress-state bounding surface for mode I cracking. The (x,y,z) plastic 
strain vector /).ff (mode I) is computed from the correction of the trial crack stress state 
and, finally, the internal state parameters for the mode I crack- K1 101 and COD 101 -

are updated. 
The final stress state after checking of mode I cracking Q

1 
101 is treated as a trial 

stress state for checking mode II cracking. Depending on the sign of the trial 
rotation of the element ROT1

, mode 11 cracking is checked along a crack angle +a 
or -a.. If the trial crack stress state Q

1 
[ ±aJ violates the mode 11 cracking criterion, 

d [±aJ is put back onto the stress-state bounding surface for mode 11 cracking, the 
( ) 1 t . · A .JJ (mode II) • d · x,y,z p as 1c stram vector Ll.lf IS compute and the mternal state parameters 
for the mode 11 crack- K, [ ±a]' w cr[±a]• xmechl [±a] and the element rotation ROT- are 
updated. 
In conformance with the main calculation scheme in figure 5.2, the plastic part of 
the (x,y,z) macro-strain increments due to mode I and/or mode 11 cracking at stage 
III/IV are subtracted from the (x,y,z) macro-strain increments /).§m as provided by 
UDEC. Together with the initial (x,y,z) stress vector Qo,m, this newly obtained vector 
?f (x,y,z) macro-strain increments (/'),.§m = /').~m - /).ff (mode I) - /).ff (mode II) ) serves as 
mput for the stage 1/11 RVE1 calculations. 



192 CONCRETE B EHAVIOUR IN M ULTIAXIAL COMPRESSION - NUMERICAL M ODELLING 

COMPUTATIONAL PROCEDURE 

FOR MESOSCOPIC/MACROSCOPIC CRACKING AT STAGE lll/IV 

JNPUT 

Initial (x,y,z) stress-state/(x,y,z) strain increments and element rotation 
Qo,m; ~§.m; MOT 

Initial value ofinternal state parameters 

ROT0 

0 COD 101 
cr,O . 'I 0 

W [±a]' "'mechl [±a] 
0 

Kl [O ;±a] 
Material parameters 

<l>cp' fr ,bulk' ~ao, cagg 

(mode I cracking) 

(mode II cracking) 

(mode I/II cracking) 

Softening laws: /, ,cp(KI); ~a(wc}; cagg (wc} 

TRIAL (x,y,z) STRESS-STATE AND ELEMENT ROTATION (elastic increments) 

Ql = QO,m + ~Qe,m (see chapter4, equation (4.1)) 

ROT1 = ROT0 + MOT 

CHECK MODE I CRACKING 

(Trial) crack stresses in mode I crack 

r 1 r 
2.. . 

2

e'' 2 e" . e"1r 'j cr n' [0] cos e[O] Sill [0] cos [0] Sill [0] cr X 

cr,'101 = sin 2 8~~1 cos 2 8~~1 -2cos8~~1 sin8~~1 cr/ 
.. •. •. •. 2e·· . 2e·· , 

't nr' [O] -COS 8[0] Sin 8[0] COS e[O] Sin 8[0] COS [0] -Sill [0] 't .ry 

( e" =angle between the x-axis and the maximum principal stress direction) [0] 

Actual value of material parameters (construction of stress-state bounding surface) 

/,mode l (0) according to equation (5 .7) 
t,cp I 0 

Apply tensile softening law (figure 5.36.b) ~/,,';dei= /, ,;;de (K1 101) 

Return mapping of trial stress state to stress-state bounding surface 

crn'101 >/,,;;dei ~Return mapping of Q 1 
[OJ according to figure 5.21 

COD 0
101 > 0 ~Return mapping of Q 1 

[OJ according to figure 5.22 

Increments o[plastic strains /crack displacements 

~.§.P according to equations (5.12) and (5.13) 

~u c', ~wcr according to equations (5.14) ( d according to figure 5 .1. c) 
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(. .. continuingfrom previous page) 

Plastic part of strain increments in (x,y.z) coordinate system 

r
~sx p(model)j r cos 2 8~~] sin 2 e;~l -2cose~~lsin8~~]1r~sn p j 
A p(modeiJ s1'n 28" cos 28

1
'0'1 

2cose" st'n8" A,. P uSY = [OJ [OJ [OJ u._, 
p(model) e" . e" e" . e" 2e·· . 2e·· .6. p ~y .ry COS [OJ Sill [OJ -COS [OJ Sill [OJ COS [OJ -Sill [OJ Y nt 

Final stress state 

g_\01 according to equation (5.16) 

Update internal state parameters 
I 0 A 

KI [0] = Kl [0] + uKI 

COD I [0] = COD 0
[0] + !J..COD 

(~K1 according to equation (5.34)) 

(!J..COD according to equation (5.15)) 

CHEcK MODE 11 CRACKING 

Choice oUvotential) crack direction (+a or -a) 

Crack direction according to figure 5.49 

(Trial) crack stresses in mode If crack 

r

crn' [±a]j r cos
2

(±a) 
t - • 2(+ ) cr, [±aJ - Sill _a 

'tn,'[±aJ -cos(±a)sin(±a) 

Actual value of material parameters 

~a(O) according to equation (5.5) 

/, ,cp(O) according to equation (5.6) 

cos 2 (±a) 

cos(±a)sin(±a) 

2 cos(±a) s~n(±a) 1 rcr n: [0]1 
-2cos(±a)sm(±a) cr, [OJ 

cos
2
(±a)-sin 2(±a) •n/[oJ 

Apply tensile softening law (figure 5.36.b) ~ /,,cp = /,,cp(K1°r±aJ) 

Apply combi-cohesive/frictional softening laws (equation (5.38)): 
• A _ A ( cr,O '\ 0 ) ua - ua w [±a]' "'mechl [±a] 
• _ ( cr,O 'I 0 ) 

cagg - cagg w [±a]' "'mechl [±a] 

Construction o[stress-state bounding surface 

~<l> cp and ~<!>m according to equations (5.2), (5.3), (5 .26) and (5 .27) 

~<j>(y "/), c(y "/)and A.,iY "/)according to equations (5.30), (5.31) and (5.32) with: 

( d according to figure 5 .1. b) 
cr ,O 

P W [±a] 
• Ynt =---

d 

• y "'p,z and ~aljl according to equations (5.29) and (5.37) 

(This implies a (simple) numerical iterative solution procedure) 

• C;n; according to equation (5.4) 

/, ,fie according to equation (5.33) 
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( ... continuingfrom previous page) 

Return mapping of trial stress state to stress-state bounding surface 

Dilatancy angle \jl according to figure 5.28.b 

If r:/ violates the mode II cracking criterion -[±et] 
~return mapping according to figure 5.19 or figure 5.20. 

Increments o[plastic strains /crack displacements 

!1.f/ according to equation (5.10) 

Material strengthening or softening? 
• IY PI < y P· 2 and cr1 is located in the light grey area of figure 5.31 

nt nt - -[±a] 

~ material strengthening 
• IY PI> y P· 2 or cr1 is located in the dark grey area of figure 5.31 

nt - nt - -[±a] 

~ material softening 
!-,.ucr, !-,.wcr according to equations (5.11) 

• Material strengthening ~ d according to figure 5.l.b 

• Material softening ~ d according to figure 5 .1.c 

Plas[~~:::l":'r" ,.,:;::F g/obol (x:~:::\t'd'•o" ~i:::~:::~ :~::l[~::: l 
y •• • •• •• • •• 2 •• • ze·· 11. p 

!1.r,/<moctelll cos8[±etlsm8l±etl -cos8[±etlsm8r±etl cos el±etl-sm [±etl Ynt 

with 

e;:et1 = e;~1 ±a 
Update internal state parameters 

1 _ o + A (!1.K1 according to equation (5.34)) 
K, [±et] - K, [±et] '-'KI 

er, I = Wcr,O + !-,.wcr w [±a ] [±et] 
- 0 er 0 A !-,. er 

- 1 Amechl [±et]. W , [±et] + mechl . W (Amechl according tO equation (5.36)) 
"-mechl [±et]= wcr,'r±et] 

OUJ'P'UT 

New (x,y.z) strain increments (input for stage 1/II calculations) 
!1.§,m = !1.§,m _ !-,.ff' (mode I) _ !-,.ff' (mode 11) 

Final value ofinternal state parameters 

ROT 1 

I 
COD roJ 

cr,l . I I 
W [±et]' mechl [±et] 

I 
Kl [O; +et] 

(mode I cracking) 

(mode II cracking) 

(mode I/II cracking) 
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5. 7 Performance of the numerical model 

5. 7.1 Mesh design 

The simulations - including stage III/IV behaviour - are carried out according to 
the test set-up given in figure 5.50.a. This test set-up is basically the same as used 
for the stage 1/II in section 4.4 (figure 4.33), except for the size of the loading 
platens. In this series of simulations of the experimental test program performed by 
Van Geel 1998

, the width of the loading platens is 90 mm instead of the actual width 
of 97 mm as applied in the experiments of Van Geel. 

(a) (b) 

Figure 5.50. (a) Test set-up and (b) mesh of finite elements (zones in UDEC). 

The dimensions of the loading platens are reduced, because potential localised 
cracking in macroscopic (mode II) cracks is modelled by smeared cracking. In the 
experiments, only a slight distance between the loading platens provides sufficient 
space for a mode II crack (with displacement discontinuity) to develop in the 
corners of the specimen. To prevent (partly) blocking of the development of the 
localisation zone, the gap between the loading platens should at least resemble the 
width of one finite element when the displacement discontinuity is modelled by a 
smeared crack. 
However, as outlined in section 5.5, in combination with a random finite element 
mesh, localised mode II cracking will result in the formation of a localisation zone 
extending over multiple finite elements. Hence, to allow the development of such a 
localisation zone, the minimum gap between the loading platens should be at least a 
few finite elements (zones in UDEC) wide (see figure 5.50.b). 
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5. 7.2 Discussion of material properties 

Numerical simulations of the test series performed by Van Geel, as demonstrated in 
the following sections, cover the whole load~g cu~e of concrete loaded .in 
multiaxial compression from stage I up to and mcludmg stage IV. The matenal 
properties herein of the stage 1/II constitutive ~~del are list.ed in tabl~ 4.4 and 
discussed in section 4.4. In this section, the addltwnal matenal properties of the 
stage III/IV constitutive model are discussed. These material properties, as used in 
the simulations, are listed in table 5.1. 

Table 5.1. Material properties (stage 111/1V constitutive model). 

Mode I cracking Mode 11 cracking 
Fine agg. I mortar Coarse aggregates Fine agg. I mortar Coarse aggregates 

( 2-8 mm) (2-8mm~ 

!,,bulk = 8 MPa !,,bulk = 8 MPa <I> = 25° cp <I> =25° cp 

Kl ,max = 0.05 mm. Kl,max = 0.05 mm. ~a 0 = 34.6° ~a 0 = 37° 

c = 30 MPa agg cagg = 37 MPa 

11 = 2 11 = 1 

w cr = 0.15 mm. 
max w:-., = 0.15 mm. 

Mode I cracking is mostly determined by two material properties, the tensile 
strength of the bulk cement paste 10 

J; ,bulk and the softening law of the tensile 
strength, which is established by KI,max· The displayed values of these material 
properties are obtained by inverse modelling of a uniaxial tensile test (~ee section 
5.7.3). The value of J; ,bulk may be compared to the direct or flexural tensile strength 
of plain cement paste as found in literature (table 3_. 1). Taking into c~nsideration the 
large scatter in these test results, a value of 8 MPa iS an adequate choice. . . 
In accordance with equation (5.1), the friction angle <P ep is equal to the fnctwn angle 
<P for cracking along the ITZ at stage 11. The crack deviation angle of the virgin 
concrete ~a and the aggregate/cement paste crushing cohesive strength c agg are 
fine-tuned b~ inverse modelling of strength results in a series of multiaxial 
compressive tests (section 5.7.3). A magnitude of ~a 0 in the order of 35° is 
realistic, considering the degree of compaction of the concrete (according to section 
4.4, the volume of the aggregate fraction is about 68% of the total concrete ~olume) 
and reviewing the heterogeneous structure of a true concrete cross sectwn (see 
figure 4.5(a)). . . 
The uniaxial compressive strength of the aggregates (estimated at 180 MPa. m 
section 3.1.2.1) gives an indication whether cagg represents the aggregate cohesive 
strength or the cement paste crushing cohesive strength. Assuming a straight Mohr-

10 According to equation (5.6), the overall tensile strength.fr.cp is also determined by the tensile strength of the 
ITZ J,,m, which is a material property of the stage I/II constitutive modeL 
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Coulomb strength envelope (with <P agg = 25°), the uniaxial compressive strength 
lc,agg and c agg are interrelated through 

c agg cos<Pagg = ± lc,agg (1- sin<Pagg ) 

With <P agg = 25° and lc,agg = 180 MPa, this results in a value of 57 MP a for the 
aggregate cohesive strength. From this, it seems that cagg in the model is more 
determined by the crushing strength of the cement paste, than the strength of the 
aggregate grains. This conclusion is also supported when the differences in strength 
between test-results of normal strength and high strength concrete are analysed in 
the experiments of Van Geel 1998

. For these different concrete mixtures, only the 
structure of the cement paste changes, the type of aggregate (rounded river gravel) 
is the same for both mixtures. Despite the use of the same type of aggregate, not 
only the uniaxial strength increases for the high strength concrete, but also the 
multiaxial compressive strength increases enormously (even in multiaxial 
compression tests with high confining pressures). This increase in multiaxial 
compressive strength can only be attributed to the improved (less porous) structure 
of the cement paste, thus increasing the crushing strength of the cement paste and 
not the aggregate cohesive strength. 
As outlined in section 5.5, the cohesive/frictional softening laws for mode II 
cracking have to be quite brittle in combination with a random finite element mesh. 
Due to the influence of the randomness of the mesh, the softening parameters TJ and 
w:.x can only be assessed indirectly. Therefore, the cohesive/frictional softening 
parameters TJ and w:.x are obtained by inverse modelling of the slope of the 
softening branch of the multiaxial compressive test (p = 0.10) as shown in figure 
5.51. Obviously, the appropriateness of this approach can only be demonstrated by 
the results of other test simulations with respect to stage IV behaviour (these are 
given in sections 5.7.3- 5.7.5). In line with the above, the chosen values of TJ and 
w:ax are discussed here only qualitatively. For the coarse aggregates (only a single 
grain), TJ equals I. The heterogeneity of the mortar with respect to grain sizes is 
accounted for by a larger value: TJ = 2. With respect to w:.x the dominancy of 
cement paste crushing is emphasised to account for a relatively large degree of 
ductility. 

5. 7.3 Simulations of proportional tests 

Figure 5.51 shows the results of the model simulations of a test series performed by 
Van Geel

1998 
with concrete cubes loaded proportionally in multiaxial plane-strain 

compression. This figure is similar to figure 4.35, but now with stage III and IV 
behaviour included in the simulations 11 • 

11 

Test simulations with very high lateral confinement (j3 = 0.25 and j3 = 0.5) are omitted because these 
experiments/simulations did not show any stage III/IV behaviour. 
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With regard to both the axial loading curves and lateral deflections, the 
experimental data of V an Geel is reproduced quite well by the model simulations. 
Having in mind that each loading configuration in the experimental test program 
consists of only one experiment, small deviations between experiments and 
simulations must be expected as a certain scatter in experimental test results is 
inevitable. 

-200 
---- simulation 
····· ··· ········ ·· ··· ·· experiment (Van Geel) 

6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0 

Figure 5.51. Model simulations of a test series of concrete loaded proportionally in 
multiaxial plane-strain compression. 

As stated in section 3.1.3, the deformational behaviour of concrete loaded in 
multiaxial compression is characterised by a distinct shift from uniformly 
distributed deformations in the pre-peak region to highly localised deformations 
(macrocracks) in the post-peak region. To illustrate the model performance in this 
respect, the evolution of macrocracks is indicated in figure 5.52 for a simulation of 
a typical multiaxial compressive test with~= 0.10 (the loading phases a, b, c and d 
are indicated in the axial loading curve of figure 5.51). In this figure, thicker lines at 
the centre of the finite elements indicate the crack sliding displacements. The 
orientation of the lines corresponds with the orientation of the crack and the 
(relative) length of the lines corresponds with the magnitude of the sliding 
displacement. 
The final failure pattern of the simulation (figure 5.52.d) corresponds well with the 
experimentally observed V-shaped crack pattern at failure as depicted in figure 
5.53. The evolution of macrocracks in the simulation may be compared to the 
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experimental results of figure 3.10. Although multiaxial compressive testing of 
concrete cubes and prisms results in different final failure patterns, the essence of 
the proc~ss - a ~istinct shi~ from uniformly distributed deformations in the pre­
peak regwn to h1ghly locahsed deformations in the post-peak region - is clearly 
demonstrated in the simulation. 

(b) 

(d) 

Figure 5.52. Evolution ofmacrocracks in simulation of multiaxial compressive test 
(fi= 0.10) 
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Figure 5.53. Ultraviolet photograph of the failure pattern of a 100 mm cube loaded 
in multiaxial plane strain compression (/3 = 0.10) [Van Geel

1998
] 

Figure 5.54 shows the failure patterns (at the end of the simulations) for all loading 
configurations (~==0; 0.05; 0.10; 0.15). It shows that all simulations of the multiaxial 
compression tests show the same V -shaped crack pattern at failure. This is in 
correspondence with the experiments. 
With respect to the simulation of the uniaxial compression test (~==0), some remarks 
have to be made. First of all, the length of the lines at the centre of the finite 
elements - in figure 5.54.a - do not correspond with the magnitude of the crack 
sliding displacement, but with the internal state parameter K[, which incorporates 
both crack sliding and crack opening displacements (equation (5.34)). This 
distinction is made in order to visualise not only mode ll cracking, but also potential 
mode I cracking (tensile splitting), which is reported frequently to affect the crack 
pattern at failure in uniaxial compression. 
With the visualisation of the internal state parameter K 1, figure 5.54.a shows that 
tensile splitting cracks are indeed present in the simulation. However, tensile 
splitting in the simulation is less abundant than observed in the uniaxial 
compression tests of Van Geel. In fact, this observation supports the model 
assumption that the stress path of uniaxial compression is highly critical with 
respect to lateral stresses ( compressive or tensile). In section 2.1.2.1, it is already 
stated that much controversy exist about the degree of mode I (axial splitting) and 
mode ll (inclined shear) cracking in uniaxial compression tests. Apparently, some 
lateral compression (or tension) is easily introduced at the specimen-loading platen 
interface. Although the frictional restraint of the interface used in the experiments of 
van Geel (teflon sheet with some grease added) is accounted for in the simulations 
by assigning a low frictional restraint (tan~ == 0.012) to this interface, this is only a 
rough estimate of the actual behaviour of the interface. 
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Anothe~ ~xplanation for the observed differences in the degree of tensile splitting 
may ongmate fr?m the 2D nature of the numerical model. Unlike the 2D nature of 
the V -shaped fatlu~e pattern observed in multiaxial plane-strain compression tests 
the nature ~f the failure pattern in uniaxial compression is highly 3D. This aspect i~ 
~ot tak.en mto account by the 2D model simulations. Due to this 3D-effect 
mterfenng mode 11 cracks are more likely to produce additional mode I cracking. ' 

uniaxial compression (13 = 0) multiaxial compression (13 = 0.05) 

multiaxial compression (13 = 0.10) multiaxial compression (13 = 0.15) 

Figure 5.54. Failure patterns at the end of the simulations. 

To illustrate ~he models ab.ility to simulate concrete structural behaviour in a wide 
~ange of loadmg .configuratiOns, also a uniaxial tensile test is simulated. The test set­
p (fig~re 5:55) IS taken from the test set-up as used by Van Geel 1998

• A notch of 5 
mm Wldt~ IS sawn at middle height of a 100 mm concrete cube. The remaining 
cross-sectiOn at the notch is 57x57 mm2

• 
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t t t t t t t 
steel loading platen 

u~ 

T 

~;~o::D 
F · 5 55 r 'niaxial tensile test: test set-up and final failure pattern. 1gure . . u, 

simulation 
experiments (Van Geel) 

Figure 5.56. Uniaxial tensile test: Loading curve. 
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With K 1 visualised, figure 5.55 (right part) shows a typical mode I failure pattern. It 
is noticed that the width of the crack band in mode I is substantially smaller than in 
mode 11. Apparently, adopting the rotating crack concept in mode I indeed (partly) 
remedies spurious stress locking when the finite elements are not aligned with the 
crack path (see section 5.5). 
The shaded area in figure 5.56 denotes the range of the experimental test results of 
Van Geel 1998

• The loading curve obtained in the simulation shows acceptable 
agreement with these experiments. The result shows a slight underestimation of the 
ductility of the structural response. This also might be explained by the 2D nature of 
the numerical model. As pointed out by Lilliu & Van Mier 2003

, taking into account 
the true three-dimensional nature of cracking in model simulations substantially 
enhances the ductility of the structural response in mode I testing (section 2.2.2.1 ). 

5. 7.4 Influence of loading path in stress space 
At stage IV, the shape of the descending branch in the loading diagram (with the 
main loading axis) is highly dependent on the loading path in stress space. In 
section 3.2.4), it is outlined that the ductility of the softening branch increases when 
the direction of the loading path inclines towards a 90 degrees angle with the 
(schematic) stress-state bounding surface of ultimate strength. In this way, the 
model results in figure 5.57 correspond well with the experimental test results as 
indicated in figure 3.22. 

-150 
cr3 

E2=0 ! 
crl-.o.-

i deviator\~---' 

-~---~:-~~--/ 
cons.~~~\ .. ··········· 
··········· 

-50 

6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 

u1 [mm] u3 [mm] 

Figure 5.57. Influence of loading path: model simulations with proportional 
(fJ = 0.1 0), constant and deviatoric loading paths. 



204 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION - NUMERICAL MODELLING 

Evidently, the combination of tensile, cohesive and frictional softening - as 
implemented in the model - captures properly the experimentally observed shift 
from the stress-state bounding surface of ultimate strength to the stress-state 
bounding surface of residual strength in multiaxial compression. 
Another important issue regarding loading path dependency is its potential 
influence on ultimate strength. In section 3.2.3, figures 3.17 and 3.18 illustrate such 
loading path dependency observed in the experiments of Van Geel. Comparison 
between the simulations (figures 5.58 and 5.59) and the experiments of Van Geel 
demonstrates that in the experiments as well as in the simulations a strong path­
dependency is observed. In both cases, the uniaxial compressive strength decreases 
upon high preloading with high confinement12 (figures 3.17 and 5.58), while the 
multiaxial compressive strength increases upon similar pre-loadings. Evidently, 
weakening due to accumulated damage at the ITZ at stage II is dominant in the 
uniaxial compressive loading regime, while strengthening due to pore collapse 
( compaction) is dominant in the multiaxial compressive loading regime. In addition, 
note that not only the loading path dependency on the ultimate strength is simulated 
well, but also the reduction of stiffness in the uniaxial compression tests and the 
reduction of ductility in the multiaxial compression tests upon high compressive 
pre-loading. 

-40 

-20 

-- Regular uniaxial test 

Uniaxial test after pre-loading 1 
(cr3 = -92 MPa; cr1 = -25 MPa; E 2 = 0) 

Uniaxial test after pre-loading 2 
(cr3 = -132 MPa; cr1 = -25 MPa; E2 = 0) 

0~----~------------~-----.------.-----.------.-----, 

0.0 -0.4 -0.8 

u3 [mm] 

-1.2 -1.6 

Figure 5.58. Simulations ofuniaxial compressive tests with multiaxial pre-loading. 

12 Due to the 2D-formulation of the model, the multiaxial compressive pre-loadings of the uniaxial 
compression test simulations are slightly different from the experiments. 
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-- Regular plane strain test 
( cr, I cr3 = -0.05 I -1.0) 
Plane strain test after pre-loading 1 
( cr3 = -92 MP a; cr 1 = -25 MPa; E2 = 0) 
Plane strain test after pre-loading 2 
(cr3 = -132 MPa; cr, = -25 MPa; E2 = 0) 

------- Plane strain test after pre-loading 3 
(cr3 = -192 MPa; cr1 =-50 MPa; E 2 = 0) 

4.0 3.0 2.0 1.0 

u1 [mm] 
0.0 -1.0 -2.0 -3.0 

u3 [mm] 

Figure 5.59. Simulations of proportional tests (fJ = 0.05) with multiaxial pre­
loading. 
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In addition to the loading path dependency tests above (with multiaxial compressive 
pre-l~ading), yan Geel 1998 also carried out some multiaxial compressive 
expenments With uniaxial compressive pre-loading. Results of these experiments 
are i_llustrated in ?gure 5.60. ~wo different uniaxial compressive pre-loadings are 
apphed; pre-loadmg 1 ends nght after peak stress, while pre-loading 2 extends 
considerably into the post-peak regime. It shows that the multiaxial plane strain 
com?ression ~est with 13 = 0.05 is hardly affected by uniaxial compressive pre­
loadmg 1, while the ultimate strength of the multiaxial plane strain compression test 
with_/3 = 0.~5 reduces only slightly when uniaxial compressive pre-loading 2 is 
ap~hed. Evidently, accumulating (macroscopic) damage inflicted in the post-peak 
regime of a uniaxial compression test has no significant influence on the ultimate 
strength in a multiaxial plane strain compression test. 
Figure 5.61 shows the loading curves obtained in the model simulations of the same 
mult_iaxial. c~mpressive test series with and without uniaxial compressive pre­
loadmgs Similar to those applied by Van Geel. The model simulations show the 
same _ten_dency as the experiments; the simulation with 13 = 0.05 is hardly affected 
b~ umaxml compressive pre-loading 1, while the ultimate strength of the simulation 
With_ 13 = 0.15 reduces only slightly when uniaxial compressive pre-loading 2 is 
applied. 
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Regular proportional plane strain tests 
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Plane strain test with cr1 I cr3 = -0.05 I -1.0 after uniaxial pre-loading 1 

Plane strain test with cr1 I cr3 = -0.15 I -1.0 after uniaxial pre-loading 2 
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Figure 5. 60. Plane strain tests after uniaxial compressive pre-loading 
[Van Geel 1998
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.· 
.. ····· 

2 0 

Regular proportional plane strain tests 

-2 -4 -6 

Plane strain test with cr1 I cr3 = -0.05 I -1.0 after uniaxial pre-loading 1 

Plane strain test with cr1 I cr3 = -0.15 I -1.0 after uniaxial pre-loading 2 

-40-
I 

I 
I 

I 
I 
I 

C? I 
~ I 

6 -20- I 
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~------End ofuniaxial pre-loading 1 

-----End ofuniaxial pre-loading 2 

I 
-0.5 
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Figure 5.61. Simulations of plane strain tests with uniaxial compressive 
pre-loading. 

5. 7.5 Influence of boundary conditions 

207 

In section 1.1, a distinction has been made between 'continuum' material behaviour 
-specifying the concrete behaviour at the loading stage before reaching the ultimate 
load-bearing capacity - and structural behaviour, which specifies best the concrete 
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behaviour at the loading stage after reaching the ultimate load-bearing capacity. 
After initiation of the macroscopic cracks at stage III, the concrete specimen can no 
longer be regarded as a continuum. Instead, the specimen becomes a structure 
consisting of uncracked elements divided by local fracture planes. The observed 
behaviour of such a structure during testing is a structural response rather than a 
material characteristic. The load application system (boundary conditions) is in fact 
part of this structure and the observed structural response at stage Ill and IV will be 
influenced by these boundary conditions. 
In this respect, it is generally known that frictional stresses between loading platens 
and specimen boundaries seriously affect the structural response of a concrete cube 
loaded in uniaxial compression. Dry steel loading platens, as used in standard 
uniaxial compression tests, introduce large frictional stresses at the specimen 
boundaries. These large frictional stresses prevent the specimen to deform laterally 
and consequently result in a considerable increase of ultimate strength and ductility. 
Figure 5.62 shows model simulations of uniaxial compression tests with loading 
platens of different frictional restraint. The frictional restraint of the (polished) dry 
steel loading platens is - in the simulations - accounted for by assigning a rather 
high frictional restraint (tan<J> = 0.13 [Vonk 1992

]) to the interface elements between 
the loading platens and the specimen. 

-60 

-40 

<? 
p.. 

6 
bM 

-20 

0.0 -0.4 -0.8 

---- simulation 
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Figure 5. 62. Influence of boundary friction on the loading curve of concrete loaded 
in uniaxial compression. 

The results in figure 5.62 demonstrate that the model simulations show the same 
tendency as the experiments of Van Geel; ultimate strength and ductility increase 
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substantially with increasing frictional boundary restraint. Although the simulations 
match the experiments quite well, the raise in ultimate strength in the simulations 
with dry steel loading platens is lower than in the experiments. This might be due to 
the assignment of a constant friction angle to the interface between the dry steel 
loading platen and the specimen. The value of tan<J> = 0.13 is taken from friction 
measurements performed by Vonk 1992 after 1.5 mm of sliding between the loading 
platen and the concrete specimen. In this work, it was also recognised that the 
friction angle at initial sliding tends to exceed the value of0.13 substantially, which 
- if incorporated in the simulation - certainly would have affected the ultimate 
strength. 
In the experimental research, Van Geel 1998 also investigated the influence of the 
geometrical layout of the loading platens. It was observed that in multiaxial 
compressive experiments, with standard layout of the loading platens as illustrated 
in figure 5.50, macroscopic cracks initiate consistently at the specimen corners (see 
figure 3.10). With cubic specimens such onset of macroscopic cracking ends in a 
typical V-shaped failure mode as illustrated in figure 5.53. 
Two reasons might be appointed to explain the consistent onset of macroscopic 
cracks at the specimen corners. First of all, stresses may concentrate at the corner of 
the specimen - being a geometrical singularity - at stage I / 11, which could create a 
local stress state more susceptible to the initiation of a macroscopic crack. The 
second reason relates to the geometrical layout of the loading platens. To avoid 
contact between the loading platens and the transfer of forces via these platens 
instead of via the concrete specimen, the loading platens are smaller than the cross­
sectional area of the specimen. This implies that everywhere along the boundary of 
the specimen local displacement jumps perpendicular to the boundary are prevented 
by the steel loading platens except at the specimen corners. Ergo, the corners of the 
specimen are the only locations at the specimen boundary where mode 11 cracking is 
not obstructed by the steel loading platens. 
From proportional multiaxial plane strain compressive experiments (p = 0.15) 
carried out with different geometrical layout of the loading platens (figure 5.63; 
right part), the second reason proves to be most important. Macroscopic cracks 
initiate consistently at those locations where mode 11 crack displacements are not 
obstructed by the steel loading platens. 
As illustrated in figure 5.63 (left part), the influence of the geometrical layout of the 
loading platens is confirmed by the model simulations13

. Nevertheless, some 
striking differences are found with respect to the degree of localisation 
(configuration (b) and the left branch of the V-shaped crack in configuration (a)) 
and the inclination of the mode 11 cracks (configuration (c)). These differences, 
which manifest themselves also in the loading curves (figure 5.64), most probably 
originate from the limitations of the smeared cracking method adopted to regularize 
localisation of deformations in combination with a randomised finite element mesh, 
as explained in section 5.5. 

13 To prevent (partly) blocking of the development of a mode II localisation zone, the gap between the 
loading platens is enlarged in all model simulations (see also section 5.7.1) 
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configuration (a) 

configuration (b) 

configuration (c) 

SIMULATIONS EXPERIMENTS 

Figure 5. 63. Failure patterns in simulations and experiments [Van Geel 1998
] with 

different configurations of loading platens. 

6.0 

/ 
/ 

6.0 

N UMERICAL MODELLING OF STAGE I1J AND !V BEHAVIOUR 

a)-----4 

I 
I 

I 
·· .. · I 

/ 

/ 
/ 

/ 

/ 

I 
I 

I 

4.0 2.0 
u1 [mm] 

I ,/ ..... _ .. 
_, . 

. / ..... -· / 

/ 
/ 

/ 

4.0 2.0 
u1 [mm] 

-80 

-40 

I 
I 
I 
I 
I 

0.0 

0.0 

/ .. ·'Ill 

/ I 
i I 

i I 
:' I 

; I 

..,--, 
··· . ./ I 
/ ···... I 

I 
I 

. I 
\ I 
\ I 
'. I 
\ I 
\1\ it 

:' I 
. I 
I 
I 
I 

EXPERIMENTS 

I 
I 
\ 
\ 

-2.0 -4.0 
u3 [mm] 

SIMULATIONS 

-2.0 -4.0 
u3 [mm] 

' ' ' ' 

.--·· 

' ', 

-6.0 

-6.0 

Figure 5. 64. Influence of different configurations of loading platens on the 
loading curve of concrete loaded proportionally (/3 = 0.15) in 
multiaxial plane-strain compression. 

211 



212 CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION - NUMERICAL MODELLING 

5. 7. 6 Parameter study 

To show the influence of the stage III/IV model parameters (listed in table 5.1), a 
parameter study is performed. The influence of variation of the model parameters is 
illustrated for three proportional plane strain tests with different levels of 
confinement, i.e. a uniaxial compression test m = 0) and two proportional multiaxial 
plane strain compression tests (~ = 0.05 and ~ = 0.15). The test set-up of these 
simulations is shown in figure 5.50. 
In this parameter study, only the model parameters for mode II cracking are 
considered (figures 5.65 through 5.69). For the model parameters of mode I 
cracking (ft.butk and K 1,maJ the results of the uniaxial tensile test as displayed in 
figures 5.55 and 5.56 are largely determinative. The parameter <l>cp is not included in 
the parameter study because this value is - by definition - equal to the friction angle 
ofmesoscopic cracking along the ITZ at stage II (equation (5.1)). 
In section 5.3.3, the parameter C;n; has been introduced, which sets the relative 
distance between the linear part of the stress-state bounding surfaces for initiation of 
a straight crack through cement paste only and a straight crack crossing interlocking 
aggregate grains. This relative distance depends on the irregularity of the crack, 
which has been assumed to be the same for ordinary types of concrete mixes. 
According to equation (5.4), a fixed value has been assigned to C;ni· The influence of 
this model assumption is also studied in this section (figure 5.65). 
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The results in figure 5.65 confirm the assumption in section 5.3.3 that the 
macroscopic mechanical behaviour is only moderately influenced upon variation of 
the (implicit) model parameter cini· A noticeable effect at stage Ill is only observed 
for multiaxial compressive testing with high confinement (~ = 0.15) when cini 

approaches Cagg· 

The model parameters Cagg and L1a0 both determine the shape of the overall stress­
state bounding surface of ultimate strength in the multiaxial compressive regime in 
stress space. This bounding surface is - in the low compressive regime - mainly 
determined by the value of L1a0, while the linear part in the high compressive region 
is solely determined by Cagg· This is reflected in the loading curves of the 
simulations displayed in figures 5.66 and 5.67; the ultimate strength of the 
multiaxial compressive test with high confinement (~ = 0.15) is mainly influenced 
by variation of Cagg, while the ultimate strength in uniaxial compression and 
multiaxial compression with low confinement (~ = 0.05) is more influenced by 
variation of Lla0• 

Figures 5.68 and 5.69 show the influence of the softening parameters w:ax and TJ on 
the loading curves. While TJ clearly determines the slope of the softening curve 
(stage IV) of the multiaxial compression tests, the brittleness induced by a low 
value of w:.x is apparently so high that it reduces the ultimate strength rather than 
the slope of the softening curve. Because the relative amount of macro cracking 
according to elementary mechanism 2 (aggregate fracture and/ or cement paste 
crushing; see section 5.4.5.2) increases with increasing confinement, this influence 
of w:.x appears best in the multiaxial compression test with~= 0.15. 
Even though the brittleness induced by a low value of w:.x reduces the ultimate 
strength, the (negative) slope of the softening branch of the loading curve does not 
increase. This seeming contradiction can be explained by the model theory outlined 
in section 5.4.5.2. In multiaxial compression tests with high confinement, the 
relative amount of macro cracking according to elementary mechanism 2 (aggregate 
fracture and/or cement paste crushing) is quite large at the initiation of macro 
cracking. However, during further crack sliding overriding along a curved crack 
(elementary mechanism 1) becomes more and more important because the 
roughness of the crack Lla(wc') decreases while the reduced deviation angle Lla'l' 
hardly changes in a proportional test (equation (5 .36)). Ergo, a low value of w:.x 
causes the roughness of the crack Lla(wc') to decrease rapidly during stage Ill, while 
later on- at stage IV- the dominant crack sliding mechanism changes to the (more 
ductile) elementary mechanism 1 (overriding along a curved crack). 
Unlike the softening branches of the loading curves of the multiaxial compression 
tests, the slope of the softening curve in uniaxial compression is hardly affected by 
either w:ax or TJ. This is not surprisingly, since - after tensile softening - the 
maximum slope of the overall stress-state bounding surface at the origin of stress 
space is limited to the stress-path of uniaxial compression (equations (5.3) and 
(5.27)). Unlike concrete in multiaxial compression, the softening curve of concrete 
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in uniaxial compression is much more influenced by its tensile softening properties 
(see figures 5.31 and 5.37.b). 

5. 7. 7 Discussion of results 

The results of the model simulations show a great applicability of the model in 3D 
stress space. Good agreement with experimental results is demonstrated over the 
full range of uniaxial tension, uniaxial compression up to multiaxial compression 
with high lateral confining pressures. The correspondence with experimental results 
not only concerns the similarity of the loading curve of the main loading axis, but 
also essential features like lateral deformations, crack growth and crack patterns at 
failure. Variations in boundary conditions (section 5.7.5) and in (pre- and post­
peak) loading paths in stress space (section 5.7.4)- both in the model simulations 
and the experiments - also have similar effects on the structural response of the 
concrete specimen. 
Furthermore, the model is based on a clear physical theory by taking into account 
the structure of concrete at the macro, meso and micro scale level. In conformance 
with the statements in section 3.1.3, trends in mechanical behaviour of concrete 
loaded in multiaxial compression are identified and thoroughly analysed. In this 
sense, the model answers to the main objective of this thesis as formulated in 
section 1.1: 
"The numerical model developed aimed from the beginning at simulating the 
experimental test program as close as possible, but also at predicting the true 
mechanical response of an arbitrary 2D structure subjected to an arbitrary loading 
path. From this point of view, it is essential that convincing physical explanations -
versus empirical formulations - should be found for the observed phenomena." 
Although the overall performance of the model satisfies the objectives ofthis thesis, 
correspondence with the experiments may still be enhanced in some areas. In 
particular, the transition between stage 11 and stage Ill behaviour incorporates an 
interesting phenomenon. When the loading curves in the main loading direction at 
stage Ill of the various multiaxial compression tests are analysed, two contradictory 
tendencies are observed: 
• The rounding of the loading curves of the model simulations of the proportional 

multiaxial compression tests (p = 0.05; 0.10; 0.15) around peak stress is 
consistently too sharp compared to the experiments (figure 5.51). 

• The rounding of the loading curves around peak stress of the proportional 
multiaxial compression tests (p = 0.05) after pre-loading with high confinement 
is not too sharp compared to the experiments, rather the opposite (figures 3.18 & 
5.59: pre-loadings 2 and 3). 

According to the model theory in section 5.4.4, the rounding of the loading curve 
around peak stress is determined by the process of local stress redistribution along 
the (macro) crack during initial crack sliding. Actually, the rounding of the loading 
curve around peak stress is determined by the plastic deformations during this 
process of local stress redistribution. According to equation (5.29), these plastic 
deformations are determined only by the macroscopic (trial) stress state Q

1
• This 
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implies that - due to the increase of ultimate strength - the plastic deformations 
around peak stress in the model simulations of the proportional multiaxial 
compression test (p = 0.05) after pre-loading with high confinement are even larger 
than in the ordinary proportional test with p = 0.05. This is in contradiction with the 
experimental observations. 
This seeming contradiction ensues from the assumption of linear elastic behaviour 
of the continuum during local stress redistribution at stage Ill, i.e. potential pore 
collapse at the ITZ during local stress redistribution is not taken into account in the 
stage III/IV (RVE2) model computations. During local stress redistribution, the load 
concentrates at those regions where the local deviation angle of the crack is highest. 
These are exactly the regions where pore collapse takes place at stage 11. This 
implies that when the load concentrates in these regions during stage Ill, substantial 
pore collapse will take place. However, as the model does not transfer this 
redistribution oflocal stresses to the RVE1 (only global unloading is considered as a 
result of plastic straining at stage III/IV), the occurrence of substantial pore collapse 
at stage Ill is not provided for by the model. 
The above implies that the model consistently underestimates the plastic 
deformations at stage Ill. At least, when stage Ill behaviour is preceded by stage 11 
behaviour. When stage Ill behaviour is preceded by stage I behaviour - as in the 
case of the proportional multiaxial compression tests (p = 0.05) after pre-loading 
with high confinement - the local stress state at the compressed ITZs is not likely to 
violate the pore collapse cracking criterion. Due to the pre-loading with high 
confmement, the critical stress level for pore collapse is raised considerably and -
consequently - the material behaviour of the continuum stays linear elastic, even 
after substantial concentration of loading. 
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CHAPTER6 

TOWARDS NUMERICAL MODELLING AT THE 

MACRO LEVEL 

The mesoscopic model - as outlined in chapter 4 and 5 - is a useful tool for small­
scale studies on structures subjected to multiaxial stress states, such as junctions of 
concrete members and introduction zones of concentrated loads (external loads, 
internal loads that may arise in anchorage zones of steel reinforcing bars, pre­
tensioning wires/strands or post-tensioning tendons). For large-scale studies, the 
mesoscopic model is not practical. Successful application of the model in large­
scale studies requires at least (1) a simplification of mesh generation and (2) the 
introduction of larger finite elements. 
Basically, complex mesh generation and the restriction of small finite element sizes 
are a result of modelling the mesoscopic structure of concrete explicitly. In order to 
simplify mesh generation, explicit modelling of the coarse aggregate grains (section 
4.4) may be omitted. In this way, only one homogeneous phase is generated with all 
aggregate grain fractions incorporated in the dimensions of the RYE 1• This 
simplifies mesh generation considerably although the generation of a randomised 
mesh is still required because the softening properties of the concrete material are 
based on such randomness (section 5.5). 
When the coarse aggregate grains are not modelled explicitly, the maximum size of 
the finite elements is no longer related to the size of the coarse aggregate grains. 
Consequently, the finite element size may be based on the macroscopic structure of 
concrete instead of its mesoscopic structure. Consistent with common practice, this 
enables the generation of rather coarse meshes with - where needed - local mesh 
refinement. Particular attention must be paid to those areas exhibiting (potential) 
macroscopic crack growth in mode II. The finite element size in such areas has to 
be in proportion to the size of the (potential) macrocracks so as to enable the 
formation of crack bands through multiple finite elements in a randomised mesh' . 

6.1 Implicit modelling of the coarse aggregate grains 

Without explicit modelling of the coarse aggregate grains, the RYE 1 and RYE2 

approaches are still applicable. To allow for similar material behaviour as in the 
mesoscopic layout, two aspects have to be considered carefully: 

1 By adopting the smeared crack approach, the constitutive model is based on crack displacements (or 
fracture energy) instead of crack strains. Consequently, the softening branch of the loading curve is not 
influenced substantially by the size of the finite elements within the crack band. Still, crack bands in mode !I 
must extend over multiple finite elements in a randomised mesh because the (mode !I) softening properties of 
the concrete material are based on such mesh configurations (section 5.5). 
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1. The coarse aggregate grains have to be incorporated in the dimensions of the 
RVE1• 

2. Heterogeneity, introduced by explicit modelling of stronger and stiffer coarse 
aggregate grains, has to be accounted for in a different way. 

6.1.1 Dimensions of the RVE1 

In a macroscopic layout, also the coarse aggregate grains are modelled implicitly. 
Consequently, all aggregate grain fractions (table 4.2) are taken into account for the 
determination of the dimensions of the R VE 1• This results in the following average 
diameter of the aggregate grains. 

D _1098·6.5+1245·4+814·2.5+3643·1 
agg- 6800 

=2.62mm. 

With the ITZs occupying 40 % of the total volume of cement paste (see section 
3.1.1), the ITZs occupy 1280 mm2 and the bulk cement paste occupies 1920 mm2 of 
the total cross sectional area of cement paste (10000- 6800 = 3200 mm2). The 
RVEt-dimensions are determined by the cross sectional areas of the separate 
components 

AITZ 1280 
--=--
Aagg 6800 

Abulk = 1920 
Aagg 6800 

R1 =1.310mm. 

R2 = 1.428 mm. 

R3 = 1.589 mm. 

6.1.2 Alternative way of introducing heterogeneity 

The mesoscopic model, as described in chapter 4 and 5, takes into account the 
effects of the heterogeneous mesostructure of concrete in two ways: 
• Implicitly: The geometry of the RVE1 is derived from the heterogeneous 

mesostructure of concrete; the crack initiation criterion for mesa-/macro­
cracking (section 5.3) is based on the heterogeneous mesostructure of concrete; 
a strengthening mechanism during initial crack sliding is introduced in the 
constitutive model (section 5.4.4), which is based on the mesoscopic geometry 
of a crack curving (irregularly) around interlocking aggregate grains; softening 
laws are introduced (section 5.4.5), which are also derived from basic crack 
mechanisms in the heterogeneous mesostructure of concrete. 

• Explicitly: The coarse aggregate grains - with different stiffness and strength -
are modelled explicitly in the finite element mesh. 

Given the relatively small differences in stiffness and strength between the mortar 
phase (fine aggregate grains) and the coarse aggregate grains (tables 4.4 and 5.1), 
the extra mesoscopic heterogeneity induced by explicit modelling of the coarse 
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aggregate grains in the finite element mesh seems of secondary importance 
compared with the implicit consideration of the heterogeneous mesostructure of 
concrete. Nevertheless, it is tried to approximate the performance of the mesoscopic 
model as close as possible in the macroscopic layout. Therefore, the extra 
heterogeneity of the mesoscopic model is accounted for by employing a stochastic 
approach instead, which still allows for varying material stiffness and strength 
throughout the concrete structure. By randomly distributing material stiffness and 
strength throughout the structure instead of explicitly modelling coarse aggregate 
grains, (random) mesh generation is simplified considerably. 
As outlined in section 2.2.1.2, stochastic modelling requires the size of the (finite) 
mesh elements to be sufficiently small with respect to the size of the structure to be 
analysed, so that the probabilistic analysis performed on the scale of the mesh 
elements is still representative of the true heterogeneous mesostructure of the 
concrete. In the present context, this is not a serious drawback, as mesh refinement 
is required anyway to allow mode II crack bands at stage Ill and IV to extend over 
multiple finite elements. 
To allow for varying material stiffness and strength throughout the concrete 
structure, three material properties are selected for stochastic modelling: 
• The radius of the aggregate grains R1: in this way, material stiffness is varied 

throughout the structure. 
• The maximum deviation angle ~a0 : in this way, material strength in the low 

compressive region is varied throughout the structure. 
• The cohesive strength cagg : in this way, material strength in the high 

compressive region is varied throughout the structure. 
Variation of material stiffness may be realized either by variation of the RVE1 

dimensions (Rr, R2, R 3) or by variation of the Young's moduli of the separate phases 
(Eagg' Errz, Ebuik) . Given the wide range in diameter of the aggregate grains in the 
concrete mix, variation of the RVE1 dimensions seems the most natural approach. 
Although it seems logical to vary the diameter of the aggregate grains according to 
the true grain distribution of a representative cross section of the concrete cubes as 
given in table 4.2, this would have no effect on the effective stiffness of the RVE 1 

when the ratios R2/R 1 and R3 /R 1 are kept constant. In fact, only the ratios of the 
radii determine the effective stiffness, the absolute value of the aggregate grain 
diameter is no part in this at all. Such a variation of the ratios R2/R 1 and R3 /Rr, can 
simply be realised by varying the radius of the aggregate grain R1 and keeping the 
thickness of the ITZ-layer R2- R 1 and the thickness of the bulk cement paste layer 
R3- R2 constant. It is emphasised that in this sense, no evident correlation exists 
between the true grain distribution and the variation of R1• 

In the mesoscopic layout, the mode I cracking parameters in table 5.1 are the same 
for both the coarse and the fine aggregate grains (mortar). Mode I strength variation 
manifests itself here in the differences in RVE1 dimensions between the coarse en 
fine aggregate grains. According to equation (5.7) in section 5.3.5, the dimensions 
of the RVE1 determine the length of the 'ITZ-part' of the mode I crack and with that 
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also the global mode I tensile strength. In the macroscopic layout, a similar effect is 
accomplished by the variation of the ratios R2/R 1 and R3 /R 1 as outlined above. 
With respect to mode II cracking, the material properties L1a 0 , cagg and lJ are varied 
in the mesoscopic layout. With respect to Lla 0 and cagg' therefore a similar variation 
is ~dopted in the I?acroscopic layout. As illustrated in the figures 5.66 and 5.67, 
ultimate strength m both the low compressive region and the high compressive 
region is varied throug~out the st~c~e. Variation of lJ affects the strength along 
large macrocracks dunng crack shdmg at stage IV. Such local redistribution of 
strength is not likely to affect substantially the global behaviour of the macrocrack. 
Therefore, stochastic variation of this parameter is not introduced in the 
macroscopic layout. 

A normal distribution with mean value f.l and standard deviation cr is assigned to the 
stochastic material properties Lla0 and cagg· Having in mind that with the variation 
of R, merely a variation of the ratios R2/R 1 and R3/R 1 is intended, also a normal 
distribution is assigned to R1 . A practical way, to generate random digits from such 
a normal distribution, is to use the random generator of a computer in combination 
with Monte Carlo Simulation [Kohlas 1972

]. Such a random generator generates a 
series of random digits xiJ from a uniform (or rectangular) distribution on the 
interval 0 < x < 1. With this series of random digits xiJ, a series of random digits y1 is 
generated according to 

j = 1,2 .. . 

With a sufficient number n of random digits xiJ, the generated series of random 
digits y1 will be normally distributed with mean value f.l = 0 and standard deviation 
cr = 1. According to Kohlas 1972

, a number n:::: 10 already produces a satisfactory 
approximation of the normal distribution. For computational convenience often a 
number n = 12 is chosen, which results in 

j = 1,2 ... 

Finally, a series of random digits z1 from a normal distribution with mean value f.l 
and standard deviation cr is generated according to 

zj =J.l+cryj 
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6.2 Performance of the model 

The test set-up for the test simulations in the macroscopic layout is equal to the test 
set-up of the mesoscopic model in figure 5.50 (with absence of the coarse aggregate 
grains) and is displayed in figure 6.1. In view of the small size of the specimen and 
the need to apply small finite elements to allow the formation of crack bands in the 
corners of the specimen (between the loading platens), the (randomised) finite 
element mesh is simply copied from the mesoscopic model. 
Notwithstanding the fact that the potency of 'simplified mesh generation' and 
'introduction of larger finite elements' is not expressed in this small-scale study, it 
must be emphasised that the omission of the coarse aggregate grains offers great 
opportunities in large-scale studies. Since the elaborate procedure of identifying 
groups of adjacent finite elements as 'coarse aggregate grains' has become 
redundant, also simple (standard) random mesh generators may be used, possibly in 
combination with standard mesh refinement techniques. 

(a) (b) 

Figure 6.1. (a) Test set-up and (b) mesh of finite elements. 

The material properties for the stage I/II and the stage III/IV constitutive model are 
listed in tables 6.1 and 6.2. Comparing the numerical values of the material 
properties in tables 6.1 and 6.2 with those in the mesoscopic layout (tables 4.4 and 
5.1 ), only small differences are observed. Obviously, the material properties of the 
(overall) concrete in the macroscopic layout are a certain average between the 
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material properties of the mortar and the material properties of the coarse aggregate 
grains in the mesoscopic layout. 

Table 6.1. Material properties (stage 1/II constitutive model). 

Distribution of outer boundary displacements of the RVE 

'li macro-stress + 'li macro-strain 

RYE-dimensions [mm] 

RI : ll = 1.31 0 

a= 0.2!.! 

R2 =RI +0.118 

R3 = R2 + 0.161 

Mode 1/11 cracking along the ITZ 

4> = 25° 

h,ini = 4 MPa 

KI,max = 0.005 mm. 

Elastic properties 

Eagg = 70000 MPa 

EITZ = 10000 MPa 

E bulk = 18000 MP a 

V= 0.12 

Pore collapse in ITZ 

Q> pc = Oo 

C pc,ini = 15 MPa 

C pc,end = 40.5 MPa 

K2,max = 30% 

\jf pc = -600 

Table 6.2. Material properties (stage III/IV constitutive model). 

Mode I cracking 

h ,bulk = 8 MPa 

KI,max = 0.05 mm. 

Mode 11 cracking 

w;-.x = 0.15 mm. 

~a 0 : ll = 35.5° 

a= 0.05 ll 

cagg : !.! = 32 MPa 

a= 0.05 ll 

In the macroscopic layout, only the proportional tests (see section 5.7.3) are 
simulated with the model. As the basics of the model in de macroscopic layout are 
similar to those of the mesoscopic model, it is assumed that this test series suffices 
to illustrate the performance of the model in the macroscopic layout. 
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6.2.1 Simulations of proportional tests 

Figure 6.2 shows the results of the model simulations - in the macroscopic layout­
of the test series performed by Van Geel 1998 with concrete cubes loaded 
proportionally in multiaxial plane-strain compression. Clearly, the correspondence 
with the experimental data of Van Geel is very similar to the results of the 
mesoscopic model (figure 5.51). 

-200 
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<e 

~ 
bM 

-100 

-50 

---- 'macroscopic' simulation 
··········· ·············· experiment (Van Gee!) 

6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5 .0 -6.0 
u3 [mm] 

Figure 6.2. Model simulations of a test series of concrete loaded proportionally in 
multiaxial plane-strain compression. 

Not only the loading curves, but also the final failure patterns of the model 
simulations in the macroscopic layout are very similar to the final failure patterns 
obtained with the mesoscopic model (figure 5.54) and in close agreement with the 
(V -shaped) crack patterns at failure observed in the experiments. Figure 6.3 shows 
the failure patterns (at the end of the simulations) for all loading configurations 
(~ = 0; 0.05; 0.10; 0.15) in the macroscopic layout. Figures 6.3 and 5.54 also show 
the apparent arbitrariness of the orientation of the V -shaped crack pattern (upright 
or upside down). While the orientation of the V -shaped crack pattern is upright in 
the simulations with the mesoscopic model (configurations ~ = 0.05 and ~ = 0.10 in 
figure 5.54), the orientation for the same loading configurations is reversed in the 
macroscopic layout. 
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uniaxial compression (~ = 0) multiaxial compression(~= 0.05) 

multiaxial compression(~= 0.10) multiaxial compression(~= 0.15) 

Figure 6.3. Failure patterns of the simulations in the macroscopic layout. 

To complete the comparison of the model in the macroscopic layout with the 
mesoscopic model, also the uniaxial tensile test is simulated in the macroscopic 
layout (figures 6.4 and 6.5). The test set-up in figure 6.4 is identical to the test 
set-up in figure 5.55 (simulation with mesoscopic model). It is shown that, also in 
the macroscopic layout, experimental test results of Van Geel are reproduced well 
with the model. Furthermore, very little difference is observed between the results 
of the simulations in the mesoscopic and the macroscopic layout. 
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Figure 6.4. Uniaxial tensile test: test set-up and final failure pattern. 

---- 'macroscopic' simulation 
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Figure 6.5. Uniaxial tensile test: Loading curve. 
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As illustr~ted in this section, _the differences between model performance in the 
mesoscop1c an~ the macrosc?p1c layout are negligible. Although only demonstrated 
for the proportiOnal test senes, it may be concluded that stochastic modeii1·n 

d " . 6 . . gas 
propos~ _I~ sectwn :I IS a proper alternative for the introduction of heterogeneity 
by exphc1t mcorporatwn of the coarse aggregate grains in the finite element mesh. 

CHAPTER 7 

CONCLUSIONS & RECOMMENDATIONS 

7.1 General conclusions 

The main objective of this research (set in chapter 1) is achieved, i.e. a 2D 
numerical model is developed, which is capable of providing accurate predictions of 
the mechanical response of multiaxial compressive tests in a 2D test lay-out. This is 
demonstrated by a wide range of accurate numerical simulations of multiaxial 
compressive tests from the extensive experimental test program performed by Van 
Geel 1998

, which was carried out in close cooperation with the present numerical 
research. 
Key element in the development of the numerical model is the subdivision of 
mechanical concrete behaviour in three different scales of observation and four 
typical stages (see chapter 3). Such a subdivision proves to be very practical to 
analyse the basic mechanics of the concrete material when loaded in multiaxial 
compression. 
Convincing physical explanations are found for the macroscopic mechanical 
behaviour of concrete, observed during multiaxial compressive testing, by 
considering relevant processes occurring at lower scale levels. This resulted in the 
evolution of constitutive laws based on these lower level processes, which prove to 
be adequate to simulate the macroscopic behaviour of concrete loaded in multiaxial 
compression as observed in experimental tests (sections 4.4 and 5.7.7). 
With the formulation of constitutive laws, based on convincing physical 
explanations (versus empirical formulations), together with adequate performance 
demonstrated for a wide range of tests in the multiaxial loading regime, the 
numerical model complies with two essential conditions for predicting the true 
mechanical response of an arbitrary 2D structure subjected to an arbitrary loading 
path. 

7.2 General recommendations 

Clearly, the mechanical behaviour of (parts of) concrete structures subjected to an 
arbitrary loading path in 3D stress space are best simulated by appropriate JD 
numerical models capable of handling arbitrary stresses and strains in 3D 
stress/ strain space. Therefore, it is recommended to extend the present 2D 
formulation of the model to three dimensions. To this end, no serious difficulties are 
expected for the extension of the RVE2 approach to three dimensions. This part of 
the model (stage III/IV) is exclusively based on the maximum and minimum 
principal stresses. So, the formation of a 2D-crack plane in a 3D-solid is basically 
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similar to the present 2D formulation (line crack in a 2D-plane). With respect to the 
RVE 1 approach, extension of the model to three dimensions requires extra 
investigations. To this end, the cylindrical shaped RYE has to be replaced by a 
multi-layered sphere. Although a linear elastic analytic solution of the stress/strain 
field exists for such a spherical RYE when uniform macro-stress (or macro-strain) 
boundary conditions (Cartesian coordinate system) are applied [Rutten 2003

], 

introducing proper non-linear ITZ material behaviour still remains a challenging 
issue. 
As outlined in chapter 6, the mesoscopic model is not well-suited for large-scale 
studies on structures subjected to multiaxial stress states. To speed up such 
computations, chapter 6 presents an alternative approach. Yet, as already indicated 
by the title of this chapter "Towards numerical modelling at the macro level", 
important steps still have to be taken to come to a computing method suitable for 
large-scale application in engineering practice. Most important herein is the 
numerical treatment of localisation of deformations. Even though the combination 
of smeared cracking and a random mesh with rather small finite elements suffices 
for small-scale analyses, the problem of localisation of deformations might be dealt 
with more elegantly through the utilisation of models that allow the introduction of 
displacement jumps in conventional finite elements, in order to reproduce the 
geometric nature oflocalised cracking as described in section 2.2.3.2. 

7.3 Conclusions/recommendations regarding stage 1/11 

The basics of the pre-peak mechanical behaviour of concrete loaded in multiaxial 
compression (stage I and 11), i.e. initial linear elasticity, non-elastic strengthening, 
non-elastic volume compaction and characteristic unloading/reloading cycles are 
simulated very well by the model. Hence, the simple RVE1-representation of normal 
strength concrete is well capable of capturing basic macroscopic mechanical 
behaviour when- at the lower scale levels - material non-linearity (cracking) is 
introduced that is based solely on simple Mohr-Coulomb type stress-state bounding 
surfaces. 
Although the overall performance of the RVE 1 model is satisfactory, further 
research is recommended on the following topics: 
• True distribution of RVE outer-boundary displacements. In chapter 4, two 

bounds are indicated for this distribution. These bounds are entitled 
'macrostrain' and 'macrostress ' boundaries. The model assumes a distribution of 
'50% macrostrain/50% macrostress' outer-boundary displacements, which is 
constant throughout the entire simulation. As outlined in section 4.4, this seems 
a proper assumption in case of linear elastic material behaviour. However, it is 
questionable whether this still holds when the material behaviour of the RYE, 
changes to elasto-plastic. It is recommended that valuable information in this 
should be gained through comparison with a small-scale meso-mechanical FEM 
model that incorporates explicit modelling of spherical aggregates and ITZs, as 
well as ITZ non-linearity. 
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• Treatment of non-linear material behaviour in the ITZ. The approach chosen in 
section 4.3 gives only an approximation of the true solution of the RVE1 

stress/displacement field. Due to the local crack criteria formulated in this 
approach, crack displacements are - in theory- allowed to develop considerable 
jumps along the ITZ. It could be argued whether the occurrence of such jumps is 
physically admissible. Ergo, it is worthwhile to consider alternative approaches 
also. 
For example, the incremental crack displacements along the ITZ could be 
enforced to be continuous in the form: 
L1uc'(9) = L' + L" sin29, L1wc'(9) = L" cos29 
For such (inner) boundary conditions, an analytical solution of the 
stress/displacement fields of the RVE1 can be found. The above boundary 
conditions could be referred to as macrostrain inner boundary conditions. 
Analogous with the application of outer boundary conditions, the inner 
boundary conditions could also be formulated as macrostress boundary 
conditions: 
L1a, 11Z(9) = p' + p" sin29, L1't,a 11Z(9) = p" cos29 
Of course, in case of pore collapse, analogous continuity of the plastic normal 
strain along the ITZ El.Irz(e) (or stress L1crt/rz(9)) should be enforced also. 
As a result, no storage of local stress states and local internal state variables is 
required, only storage of the global vectors. Conversely, simple local crack 
criteria do not suffice anymore. Instead, more complicated global crack criteria 
have to be derived from the local crack criteria as outlined in this thesis. 

• Pore collapse in the bulk cement paste. The RVE1 model allows no pore 
collapse in the bulk cement paste. Yet, in the high compressive region, limited 
pore collapse is likely to occur also in the bulk cement paste. Incorporation of 
this phenomenon is expected to improve model performance, especially with 
respect to the simulation of realistic 'unloading' deformations when unloading 
continues to a zero stress state. 

• Stiffness during crack closure. As outlined in section 4.4, improvement of model 
performance regarding unloading/reloading behaviour is expected by ascribing 
(limited) stiffness to a closing crack. 

7.4 Conclusions/recommendations regarding stage III/IV 

Also in these regimes (stage Ill 'around peak stress' and stage IV ' softening stage'), 
the model performance is adequate in simulating the basics of the mechanical 
behaviour of concrete loaded in multiaxial compression, i.e. prediction of ultimate 
strength, onset and growth of macroscopic cracks, gradual shift from volumetric 
compaction to volumetric dilation, path dependency of both ultimate strength and 
shape of the softening curve and strong dependence on actually applied boundary 
conditions. Hence, also the RVErrepresentation of normal strength concrete is well 
capable of capturing basic macroscopic mechanical behaviour when - at the lower 
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scale levels- material non-linearity (cracking) is introduced that is based solely on 
simple Mohr-Coulomb type stress-state bounding surfaces. 
With respect to the RVErrepresentation, further research is recommended on two 
topics: 
• Transition between stage 1/ and stage Ill behaviour. As stated in section 5.7.7, 

contradictory tendencies are observed with respect to the rounding of axial 
loading curves at ultimate strength in different tests. This seeming contradiction 
ensues from the assumption of linear elastic material behaviour of the continuum 
during local stress redistribution at stage Ill. Ergo, potential pore collapse at the 
ITZ during local stress redistribution is not taken into account in the stage III/IV 
RVE2 model computations. To improve the model performance with respect to 
this issue, it is recommended to analyse the mutual interference of RVE1 and 
RVE2 material behaviour during local stress redistribution at stage Ill. 

• 'True' softening laws for 1] and w,:.x. The cohesive/frictional softening laws 
have to be quite brittle in combination with a random finite element mesh to 
allow for proper softening behaviour (see section 5.5). Such softening laws 
reflect no 'true' material behaviour, irrespective of mesh geometry. To identify 
'true' softening laws for Y) and w,:•x' it is recommended to perform additional 
studies in which two separate analyses are carried out. 
The first analysis, with a random mesh, is carried out just to identifY the 
orientation of macrocracks. This result is used in the second analysis, i.e. an 
analysis is performed with alignment of the finite element mesh with potential 
macrocracks. Such a finite element mesh allows the development of localisation 
bands in mode II within the width of one finite element without the occurrence 
of spurious stress locking. Based on these analyses with mesh alignment, 'true' 
softening laws may be determined by inverse modelling techniques. 
Undoubtedly, such studies will reveal that crushing of cement paste (ductile 
mechanism) will predominate aggregate fracture (brittle mechanism) more than 
assumed in this research. 
Although the derivation of 'true' softening laws has little meaning in the present 
concept of the model (with smeared cracking in a randomised mesh), 
implementation of such 'true' softening laws is essential when the numerical 
treatment of localisation of deformations is dealt with more elegantly as 
proposed in section 7 .2. 
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APPENDIX A 

ELASTIC PROPERTIES OF THE RVE 

The effective elastic moduli of the RYE, in terms of an effective modulus of 
elasticity (E) and Poisson's ratio (v), can be determined by considering both the 
heterogeneous RYE and an equivalent homogeneous solid with an overall geometry 
identical to that of the RYE. By applying the same boundary conditions to the 
heterogeneous RYE as well as the homogeneous solid, and comparing the 
mechanical response to these boundary conditions, the effective elastic moduli of 
the RYE can be determined. 
Generally, the mechanical responses are not identical along the entire boundary. 
Only the average mechanical response of the homogeneous solid can be compared 
with the average mechanical response of the heterogeneous RYE. Here, two 
different approaches are pursued: 
l. The same stress boundary conditions to the RYE and the homogeneous solid are 

applied and the resulting average strains or boundary displacements are 
compared (macrostress prescribed approach). 

2. The same displacement boundary conditions are applied and the resulting 
average stresses are compared (macrostrain prescribed approach). 

The stress and displacement fields of the RYE are computed for two elementary 
loading cases (plane strain). Based on these solutions the effective elastic moduli of 
the RYE in plane strain are computed according to the macrostress as well as the 
macrostrain prescribed approach. 

A.l General equations in cylindrical coordinates 

0 
r = radius (OP) 

Figure A. I. Stresses and displacements in cylindrical coordinates. 

According to the notations displayed in figure A.l, the partial differential equation 
of compatibility of two-dimensional problems becomes 
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(A.1) 

wherefis the stress function as a function ofr and e. When body forces are zero the 
stresses in cylindrical coordinates take the form 

1 of 1 o2f 
a=--+--­

r r or r 2 oe2 

o2f 
Ga = orz 

• =-~(}_of) 
ra or roe 

(A.2) 

The strains are related to the radial displacement u and the tangential displacement 
why 

ou 
E =­

r or 

u 8w 
Ea=-+­

r roe 
ou 8w w 

Ya=-+--­
r roe or r 

A.2 Elementary state 1: 
Uniform radial boundary stress (or displacement) 

(A.3) 

In this case the stress function depends on r only and the mechanical response on 
the boundary of both the R VE and the homogeneous solid will take the form of a 
uniform radial stress distribution p (figure A.2). For convenience, a unit boundary 
stress (p = 1) may be considered 1• 

When the stress function depends on r only, equation (A.1) becomes 

(~+}_~J(o2f +}_ ofJ = o4f +'!:_ o3f _l_ ozf +_!_ 8J = 0 (A.4) 
or 2 r or or2 r or or4 r or3 r 2 or2 r3 or 

This ordinary differential equation can be reduced to a linear differential equation 
with constant coefficients by introducing a new variable t such that r = e1

• The 
general solution of equation (A.4) then becomes 

f=Alogr+Br 2 logr+Cr 2 +D (A.5) 

1 The magnitude of p is not of interest when comparing the stress/strain fields of the homogeneous 
and heterogeneous solids, provided that the boundary stress is equal on both solids. 
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t 
p 

\ ' I 

' /' 

......... 

- Era• Vra -

/ 
I 

Figure A.2. Homogeneous solid and heterogeneous RVE. 

For a uniform radial stress distribution, the stress components are 

ar =}_of=~ +B(1+2logr)+2C 
r or r 

o2f A 
cr9 =-2 =-2 +B(3+2logr)+2C 

or r 

'tra = 0 
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(A.6) 

Substituting now the expressions for the strain components (A.3) into the equations 
of Hooke's law for plane strain, 

(A.7) 

the following expressions for u and w are obtained. 

ou =Er= 
1 +v(~ +B(1-4v)+2B(1-2v)logr+2C(1-2v)) 

or E r 

u = 
1

; v (-: -Br + 2Br(I- 2v )logr+ 2C(1-2v )r )+ g(8) 

where g(8) is a function ofe only. 
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Ow =rEa - u = l +V (4Br (1- V))- g( 8) 
oe E 

w = 
1

; v ( 4Br(l-v)e)- fg(e)de + g,(r) 

where g 1(r) is a function of r only. Substituting the expressions for u and w in the 
expression for the shear strain in equation (A.3), we find 

_!_ og(e) + og,(r) +!Jg(e)de-!g,(r)=O 
roe or r r 
from which 

g( e)= H sine+ K cos e 

The constants F, K and H can be determined from the conditions of constraint. For 
the loading case considered these conditions are 

w=O Ow =0 
or 

for all e 

From this it follows that F = K = H = B = 0. The expressions for the radial and 
tangential stress components and the radial displacement now become 

A 
cr, =----z+ 2C 

r 

A 
cr8 =--+ 2C r2 

u = 
1
; v (- : + 2Cr( 1- 2v )) 

A.2.1 Homogeneous solid 

(A.8) 

As the stresses cannot become infinite when r approaches to zero, the constant A in 
equation (A.8) equals zero. As the radial stress at the boundary equals p, the 
constant C is equal to Yzp. The expressions for the stresses and displacement 
herewith read 

cr .(r) = cr 8 (r) = P 

u(r)= pr(l-v-2v2
) 

E 

Making a distinction between the elastic moduli in the out-of-plane direction 
(~, vz 1, vz2) and the elastic moduli in 8- or r-direction, the radial and out-of-plane 
normal strain components are given by 
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Because Poisson's ratio is identical for all layers of the RVE, the layers do not 
interact when a uniform normal strain in out-of-plane direction is imposed. 
Consequently,~ and vz 1 are given by 

E = E,R,
2 

+E,(R2 -RJ +E,(R3 -R2Y 
z R 2 

3 (A.9) 

Vzl =V 

From the set of equations above a new expression for u(r) is derived. 

(A.lO) 

A.2.2 Heterogeneous RVE 
For each of the three regions (1, 2 and 3) of the heterogeneous RVE (see figure 
A.2), different values are found for the constants A and C of the general equation of 
compatibility. This means that six constants are unknown: 

A 1,C1,A 2,C2 ,A 3,C3 

For region 1 the same argumentation applies as for the homogeneous solid, that the 
stresses cannot become infmite when r approaches zero. Therefore, A 1 equals zero. 
The other unknowns can be determined from the following conditions of constraint: 

cr,(RJ= p 

cr,(R2 ) 3 = cr,(R2 ) 2 

cr,(R,)2 =cr,(R,), 

u(R2 )3 = u(R2 )2 

u(R1 ) 2 = u(R, ), 

(Subscripts 1• 2, 3 refer to regions 1, 2 and 3 of the heterogeneous RVE) 

Inserting the expressions for the radial stresses and displacements (A.8) into the 
above conditions of constraint yields the following system of linear equations 
(Poisson's ratio is assumed equal for all three regions) 



250 APPENDIX A 

Solving this system of linear equations yields 

2 2 
C - R3 -ao2R2 

3
- 2(R/-R/) 

A1 ==0 

A - Uo2(aOI-l)R,2R22 
2- R2_R2 

2 I 

A == (a02 -l)R/R/ 
3 R2-R2 

3 2 

with 
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Inserting the above values into equation (A.8) yields the final expressions for the 
stress and displacement components 

j == 1,2,3 (A.ll) 

(j refers to the regions of the heterogeneous RYE) 

A.2.3 Determination of effective elastic moduli 

The effective Poisson's ratio in out-of-plane direction ( vz2 ) can be determined by 
comparing the average out-of-plane stress ( crz) of the RYE and the out-of-plane 
stress of the homogeneous solid with effective Poisson's ratio in out-of-plane 

direction 

2 - Ez 
crz == pvz2 E 

re 

(Homogeneous solid) 

2 2 2 2 R 
cr == 2pv ao,ao2R, +ao2 R2 -ao,R, +R3 -ao2 2 == 2pv (RVE) 

z R 2 
3 

It appears that in case Poisson's ratio is equal for all parts of the RYE, the effective 
Poisson's ratio in out-of-plane direction becomes 

- E,e 
V ==V-=-z2 E 

z 

(With Ez according to equation (A.9).) 

(A.12) 

Substitution of equation (A.l2) in (A.IO) results in the following expression for the 
radial displacement at the boundary of the homogeneous solid 

(
1-v 9 2v

2
) u(R3) == pR3 ~--=-

E,e Ez 
(Homogeneous solid) 

The radial displacement at the boundary of the RYE is given by equation (A .I I) 

with A j == A3 and Cj == C3 

l+v((l )R/(l-2a02 )+R/ _ ) u(R3) == pR3 -- -v 2 2 V 
E3 R3 -R2 

(RVE) 
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Comparing the radial displacement at the boundary of the homogeneous solid with 
the radial displacement at the boundary of the RVE leads to one linear relation 
between the effective in-plane elastic moduli (Ere, vre ). 

1-=.._vre = 2~2 
+ 1+v((1-v)R/(1-;a0z)

2
+R/ v) 

Era Ez E3 R3 -R2 
(A.l3) 

A.3 Elementary state 11: Sine curved radial boundary stress 

For elementary state I, the mechanical response of the homogeneous solid and the 
heterogeneous RYE are identical along the entire boundary. Consequently, the 
macrostress and macrostrain prescribed solutions are identical for this elementary 
state. This is not the case for the elementary state II considered in this section. For 
this loading configuration, the mechanical response of the homogeneous solid and 
the heterogeneous RYE can only be compared in an average sense. Hence, the 
macrostress and macrostrain prescribed approaches will result in different solutions. 
In section A.3 .1 the macros tress prescribed solution of the stress and displacement 
fields are determined. Combined with the solution for elementary state I, this results 
in unique expressions for the effective in-plane elastic moduli. In section A.3.2 the 
macrostrain prescribed solution is combined with the solution for elementary 
state I. This also results in unique- however different- expressions for the effective 
in-plane elastic moduli. In section A.3.3 both results will be compared upon a set of 
realistic input data for normal strength concrete. 

A.3.1 Macrostress prescribed approach 

A second relation between the effective in-plane elastic moduli is arrived at when a 
loading configuration as displayed in figure A.3 is considered. As the macrostress 
prescribed approach is pursued in this section, the boundary stresses of the 
homogeneous solid and the RVE are equal. For convenience, a sine curved 
boundary load with maximum magnitude of p = 1 may be considered. 

In this case the stress function f depends on r and 8 

f=cp(r)sin28 

The differential equation of compatibility (A.1) now becomes 

(~+_!_~_-±-J(o
2cp +_!_ ocp _ 4cpJ= o

4

cp +~ o3
cp _ _2_ o

2
cp +_2_ ocp =O 

or 2 r or r 2 or2 r or r 2 or4 r or3 r 2 or 2 r3 or 

Solving this equation in the same way, as done for the first elementary state, the 
following general solution for the stress function f is found 

f =( Ar
4 

+Br
2 

+ ~ +D }in28 

a r (R3) = p sin 28 
"tr8 (R3) = p COS 28 
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(p = 1) 
a r (R 3) = p sin 28 
"tre(R3) = p COS 28 
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Figure A.3. Sine curved boundary load for homogeneous solid and heterogeneous 
RVE (macrostress prescribed). 

The stress components are 

cr =_!_of+_.!._ o2f =(-2B- 6C- 4D)sin28 
r r or r 2 o82 r 4 r 2 

cr
8 
=--= 12Ar2 +2B+-4 sin28 

02

j ( 6C) 
or2 r 

(A.14) 

•re =-~(_!_ of)=(-6Ar
2 
-2B+ 

6<; + 
2~)cos28 

or roe r r 

Applying Hooke's law for plane strain (A.7), the following expressions for the 
radial and tangential displacements are found 

ou =E = (1+v)sin28(_ 12vAr2 _ 2B- 6C _ 4D(1-v)) 
or r E r 4 r 2 

u = (1 + v )sin28 (- 4vAr 3 _ 2Br+ 2C + 4(1-v )D)+ g(8) 
E r 3 r 

8w =rE -u= (l+v)sin28(12Ar3(l-1.v)+ 4Br+ 4C _ 4D(l-2v))-g(B) 
o8 8 E 

3 
r

3 
r 

w= (l+v)cos28(_ 6Ar3(l-1.v)- 2Br- 2C + 2(1-2v)D)- Jg(8)d8 +g
1
(r) 

E 3 r 3 r 

where g(8) is a function of 8 only and g 1 (r) is a function of r only. 
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As the lines e =-±nand e = ±n are axes of symmetry, the following conditions of 
constraint apply 

Ow ou 
w=-=-=0 for 8=-±n and 8=±n or oe 
From these conditions it follows that both g 1 (r) and g(8) are equal to zero. The 
expressions for the radial and tangential displacement consequently are 

_ (1+v)sin28( 4 A 3 2B 2C 4(1-v)D) u- - v r - r+-+~--'--

E r 3 r 

w= (1+v~os28( _ 6Ar3(l-fv)- 2Br- ~c; + (2-;v)D) 
(A.15) 

A.3.1.1 Homogeneous solid 
As infinite stresses are physically impossible, the constants C and D in the 
equations (A.14) and (A.15) are zero. The other constants can be determined from 
the following conditions of constraint 

crr(R3)= psin28 

'tre(R3)= pcos28 
Inserting the expressions for the stresses (A.14) yields 

-2B=p 

-6Ar2 -2B= p 

From this it can be concluded that B =- Yzp and A = 0. Inserting these values into 
(A.14) and (A.15) yields the final expressions for the stress and displacement fields. 

crr(r,e) = psin2e 

cre(r,e)= -psin28 

•re(r,e)= pcos28 

u(r,e)= p(1+v~)rsin28 (A.16) 

re 

w(r,e) p(1 + Vre)rcos28 
Ere 

A.3.1.2 Heterogeneous RVE 
For the heterogeneous RVE, twelve constants are unknown 

AI,BI,CI,l)I,A2,B2,C2,D2,A3,B3,C3,D3 

For zero r the stresses can not become infinite, so 

cl =lJI =O 
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The other unknowns are to be determined from the following conditions of 
constraint 

cr)RJ= psin28 

'tre(RJ= pcos28 

crr(R2)3 = crr(R2)2 

'tre (Rz)3 = 'tre (R2 )2 
u(R2 )3 = u(R2 )2 

w(R2 )3 = w(R2 )2 

crr(RI)2 = crr(RI)I 

'tre (RI )2 = 'tre (RI )I 

u(R1 ) 2 = u(R1 ) 1 

w(R1 ) 2 = w(R1 ) 1 

According to the first and the second condition of constraint the boundary stresses 
are equal to those of the homogeneous solid. When the expressions (A.14) and 
(A.15) are inserted into the above equations, the following system of linear 
equations is generated 

-2B - 6C3- 41)3 = p ) 
3 R4 R2 . 

3 3 (p = 1 in solving the linear system of equatwns) 
2 6C3 2D3 -6AR -2B +-+-=p 3 3 3 R4 R2 

3 3 

_
2

B _ 6C3 _ 4D3 =-2B _ 6C2 _ 4D2 

3 R4 R2 2 R4 R2 
2 2 2 2 

2 6C3 21)3 _ 2 _ 6C2 2D2 
- 6A3R2 - 2B3 + --4 + --2 - -6A2R2 2B2 + 4 + 2 

R2 R2 R2 R2 

1 ( 2 C3 2(1-v)1J3J 1 ( 2 C2 2(1-v)1J2J - -2vA R -B +-+ =- -2vA2R2 -B2 +-4 + 2 

E 3 2 3 R4 R2 E R R 3 2 2 2 2 2 

1 ( 2 C3 (1-2v)D3 J - -A
3
R2 (3-2v)-B3 --4 + 2 = 

E3 R2 R2 

_1 (-A R 2(3-2v)-B - C2 + (1-2v)D2J 
E 22 2 R4 R2 

2 2 2 
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Solving this system of linear equations results in the following solution of the 
unknown constants in the stress and displacement fields of region 3 and 2 2 

c
3 

= ~s + ~2~3 
2(~1~3 -~J 

D3 = -2~1c3 + ~2 

2C3 D 3 A=-+-
3 R 6 R 4 

3 3 

3C3 2D3 1 
B =------

3 R4 R2 2 
3 3 

A2 = 2rolc3 +riiD3 +r21 

1 1 
B2 = ro2c3 +-ri2D3 +-r22 

2 2 
1 1 

c2 = ro3c3 +-ri3D3 +-r23 
2 2 

D 2 =2r04C3 +r14D3 +r24 

With 

[ 
r23 ) E3 r21a6 + R/ + r24 

~2=--~--~--~~~--~--~ 

E{ ;,~ + 1) -E{r,u, + ::; + r,.) 

p, =E{ R> [ 4- 3~;}u, }EJ3r,R,' +I', -u,r,.) 

p, = E{ :,. [1- ~::) )+ E, ( 3r,.R,' + r" -u,r ~) 
~s = E2 + E3 ( 3r21R2 

2 
+ r22 - a7r24) 

(A.17) 

(A.18) 

2 The solution of the stress and displacement field of region I is not required in the scope of this 
thesis and is therefore omitted 

rOI =1.1:_ 
yl 

r04 = _1_ (a I - rOI (R2 6 + a3 )) 
ao 

2 
r02 = a4r04- 3RI rOI 

2 
ro3 =-RI r 04- a3ro1 

2 2 
ao =RI -R2 

R6 
a =-2--1 

I R6 
3 

2 R2 
[ 

4 ) a2 =R2 R/ -1 
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rll = '11.. 
yl 

rl4 =-1-(a2 -r~~(R26+a3)) 
ao 

2 
rl2 = a4rl4- 3RI rll 

2 
rl3 =-RI rl4- a3rll 

R1
6(3-4v)(E1 -E2 ) 

E 1 +E2 (3-4v) 

E1(3-4v)+E2 
a4 = 2 

RI (EI-E2) 

Y1 = (R/ +a3)(a4 +as)+ 3a{ R1
2 

+ ;
2

3
4) 

Y2 =a 1 (a 4 +as)+3a0[~-~) 
R3 R2 

Y3 = a 2(a4 +as)+ 4a0[~-~) 
R3 R2 

r = ao 21 
yl 
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r24 = _ _!_(R2 6 + aJ 
YI 

2 
r22 = a4r24- 3RI r21 

2 
r23 =-RI r24- a3r21 

a 6 =(3-4v)R2
4 

3-4v 
a7 =Ji2 

2 

Inserting the values of the integration constants into equations (A.14) and (A.15) 
yields the fmal expressions for the stress and displacement components 

( ) ( 
6C 4DJ cr, r,e = p -2B1 - r/ ----;1- sin28 

cr8 (r,8) = p[12A r 2 
+ 2B. + 

6
C:1 Jsin 28 

J J r 

( ) 
( 

2 6C1 2D1 J 
1:,8 r,e = p -6A r - 2B. +--

4
-+--

2
- cos28 

1 1 r r 
(A.19) 

1+v[ 2C. 4(1-v)D . ) u(r,8)= p-- -4vA .r 3 -2B
1
. r+-f+ 1 sin28 

E 1 r r 
J 

1+v( ) 2C (2-4v)DJ w(r,El)= p-- -6A.r3 (1-fv -2B r--f+ 1 cos28 
E . 1 1 r r 

J 

j= 2, 3 (A1 . .. D1 according to equations (A.l7) and (A.18)) 
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A.3.1.3 Determination of effective elastic moduli 

A se~ond relation between the i~-plane elastic moduli can be determined by 
equatmg the average normal strams in the principal stress directions of the 
homogeneous solid and the heterogeneous RYE. The Cartesian coordinate system 
of principal stresses is. rotated rr./4 radians with respect to the 8 = 0 axis (see figure 
A.4). Indeed, converswn of the boundary stress state in cylindrical coordinates to 
Cartesian coordinates leads to a simple uniformly distributed stress state with cr1 = p 
and cr3 =-p. Given the symmetry of the problem it suffices to consider the normal 
average strain in only one direction of principal stress. 
The average normal strain in !-direction (see figure A.4) is equal to the average 
boundary displacement in !-direction (u1) divided by the average length (l1). 

0 

Figure A.4. Computation of average normal strain in principal stress direction. 

n 

iil = ~3 ]uldx3 = ~3 _] (u(RJcos(~-8)+~R3 )sin(~-8))R3 cos(~-8)d8 
4 

n 

= _] (u(R3 )~+(l+sin28) -w(RJ~Hl-sin28))~Hl+sin28)d8 
4 
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With u(R
3
) = L' sin28 and w(R3) = L" cos28 this results in the following expression 

for the average displacement in !-direction. 

n 

u
1 

= ~ [ ( L' (sin 28 + sin 
2 

28 )+ L" cos 
2 

28 J d8 

4 
n 

= ~[ L'( 9-cos29-~cos29sin 29 )+ L"( 9 +~cos29sin29 )]', 

Inserting the expressions for L' and L" for the homoge~eous solid and t?e RYE 
(respectively, (A.16) and (A.19)) results in a second relatwn between the m-plane 

elastic moduli. 

l+vre _l+v(_ 3A R 2 _ 2B (3-4v)D3J --=----- 3 3 3+ 2 

Era E3 R3 

(A.20) 

Having established two independent mathematical relations [(A.13) and (A.20)] 
between the effective in-plane Young's modulus and Poisson's ratio, the final 
expressions for these quantities can now be calculated 

- 2 
E =-­

re 8 + 8 
I 2 

- 82-81 
V----
re-8+8 

I 2 

With 

8 =l+v((l-v)R/(1-2a.02 )+R/ -vJ + 2~
2 

I E R 2 -R 2 E 
3 3 2 z 

8 = l+v(-3A R 2 -2B + (3-4v)D3J 
2 E 3 3 3 R2 

3 3 

(A.21) 

( Ez according to equation (A.9); A3, B3, C3 and D3 according to equation (A.l7) ) 
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A.3.2 Macrostrain prescribed approach 

In this section the macrostrain prescribed approach is pursued, i.e. the boundary 
displacements of the homogeneous solid and the RYE are equal. This implies for 
the present loading configuration (elementary state 11) that the boundary stresses of 
the RYE are not equal to the boundary stresses of the homogeneous solid (see figure 
A.5). 
Instead of introducing the imposed displacement boundary conditions as shown in 
figure A.5 directly into the set of linear equations, a somewhat different approach is 
chosen. In order to keep the set of equations nearly similar to that obtained by the 
macrostress approach, the two imposed displacement conditions of constraint are 
replaced by four equivalent (mixed) conditions of constraint at the outer boundary. 

crr(R3)= psin28 } . 
) ( ) 

homogeneous sohd 
u(R3 =Lsin28 'treR3 =pcos28 

w(RJ=Lcos28 - crr(R3)= p'sin28 } 

( ) w( ) 
heterogeneous R VE 

u R3 = R3 tan28 

The second condition of constraint of the heterogeneous RYE relates the boundary 
displacements in the same way as in the case of the homogeneous solid. Hence, the 
boundary displacements of the homogeneous solid and the heterogeneous RYE can 
be set exactly the same by choosing a specific ratio between p and p'. By 
performing this operation in section A.3.2.2, the original conditions of constraint of 
equal displacements along the entire boundaries of the homogeneous solid and the 
heterogeneous RYE are satisfied. The required second relation between the 
effective in-plane elastic moduli is finally determined by comparing the average 
normal stresses of the homogeneous solid and the heterogeneous RYE in the 
direction of the principal strains. 

u (R3) = L sin29 
w(R3) = L cos29 

u (R3) = L sin29 
w(R3) = L cos29 

Figure A.5. Sine curved boundary displacement for homogeneous solid and 
heterogeneous RVE (macrostrain prescribed). 
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The general equations of section A.3.1 are valid for the macrostress prescribed 
approach as well as the macrostrain prescribed approach. This means that the 
expressions (A.16) for the homogeneous solid also apply for the macrostrain 
approach. 

sin28 

O"r -sin28 

O"e cos28 

'tre =p (1 + Vre)rsin28 (Homogeneous solid) 

u Ere 

w (1+Vre)rcos28 

Ere 

This leaves the determination of new expressions for the heterogeneous RYE, as 
these expressions change because of the introduction of mixed instead of pure stress 
conditions of constraint at the outer boundary. 

A.3.2.1 Heterogeneous RVE 

For the heterogeneous RYE, the first and second conditions of constraint at the 
outer boundary are different (conditions in section A.3.1.2) 

cr)R3)= psin28 ~ crr(RJ= p'sin28 

'tre(R3)= pcos28 ~ u(RJ= w(R3)tan28 

Inserting (A.14) and (A.15) into the above equations yields the following 
expressions 

- 2B3-
6~3 -

4~3 = p' (=1 in this section) 
r r 

2 2C3 D3 A3R3 (3-4v)+-4 +-2 =0 
R3 R3 

Solving the set of linear equations with this modification results in the following 
solution of the unknown constants in the stress and displacement fields of region 2 
and3. 

c
3 

= Ps +P2P3 
2(PrP3 -P4) 

D3 = -2PrC3 + P2 

A = 2C3 
3 

(3-4v)R3
6 

(A.22) 

(3-4v)R/ 
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Az = 2rol c3 + ri!D3 + r21 

1 1 
Bz =rozC3 +-ri2D3 +-rzz 

2 2 
1 1 

Cz =ro3c3 +-ri3D3 +-r23 
2 2 

(A.23) 

D2 = 2r 04 C3 + r 14D3 + r 24 

With 

} the same as in macrostress approach Y1···Y3 

ro1 ... r 04 ,rll ... rl4,r21 ... r24 
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A.3.2.2 Determination of effective elastic moduli 

For the macrostrain prescribed approach, the second relation between the in-plane 
elastic moduli can be determined by equating the average stresses and the exact 
boundary displacements of the homogeneous solid and the heterogeneous R VE. As 
the tangential boundary displacement relative to the radial boundary displacement is 
equal for both the R VE and the homogeneous solid, equating only the radial 
boundary displacements suffices. 

(1+vr9 ) R =(1+v)(_ 4vAR 3_ 2BR +2C3 + 4(1-v)D3), 
E P 3 E 3 3 3 3 R3 R P 

r9 3 3 3 
(A.24) 

The boundary stresses of the homogeneous solid and heterogeneous RVE are not 
exactly the same, but only in an average sense. The volume average of the normal 
stress in 1-direction (see figure A.4) is given by 

n 

4 J ( crr(RJco{~-8)+•r9 (RJsin(~-s))R/co{~-8)d8 
4 

--
4 

With crrCR3) = p'sin28 and •,a (R3) = p"cos28 this results in the following 
expression for the heterogeneous RVE. 

n 

cri=; f (p'(sin28+sin
2
28)+ p"cos

2
28 Jds 

4 

~-!;[p'( e-cos29-~cos29sin29) + p"( e +~cos2Bsin 2e )I 
1 =-(p' + p") 
2 

4 

For the homogeneous solid, the volume average of the normal stress in 1-direction 
equals p . Equating the average boundary stresses and inserting the expressions for 
the boundary stresses of the RVE, i.e. p' and p" (refer (A.14)), gives 

1 p =-(p' + p") 
2 

=(-3A R 
2
-2B- D3 )p' 3 3 3 R z 

3 

or (A.25) 
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Inserting equation (A.25) into equation (A.24) sets the required second relation 
between the in-plane elastic moduli 

[
- 4 A R 2 - 2B 2C3 4(1- V )D3) 

V 3 3 3+ 4 + 2 
l+vra (l+v) R3 R3 

Era = E3 [-3A R 2 -2B - D3) 
3 3 3 R 2 

3 

(A.26) 

Combining equation (A.26) with equation (A.l3), which applies for the macrostress 
approach as well as the macrostrain approach, finally sets the expressions for the 
effective in-plane Young's modulus and Poisson's ratio according to the 
macrostrain prescribed approach. 

- 2 
Ea=---

r 8, + 02 

- 02- o, 
V a=---

r 8, + 02 

Inserting the values of the integration constants- (A.22) and (A.23)- into equations 
(A.14) and (A.15) and making use of the above deduced relation betweenp' andp 
(A.25), the expressions for the stress and displacement components now read 

[ 

6C 4D l -2B. - --1 - --
1 

J 4 2 

crr(r,8)= p r r D sin28 
-3A R 

2 -2B --3 
3 3 3 R 2 

3 

[ 

6C l 12A1r 2 + 2B1 + -f 
cra(r,8)= p ~ sin28 

-3A R 2 -2B --3 
3 3 3 R 2 

3 

(A.27a) 
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[ 

6C 2D . l -6A.r2 -2B+--1 +--1 

) 
; ; r4 r2 

tra(r,e = p 
2 

D
3 

cos28 
- 3A3R3 - 2B3 - - 2 

R3 

[

-4vA r3 -2B r+-2CJ +~4(1----'-v)__:_Di l 
1 + v ; ; r3 r . u(r,e)= p- sm28 
E 2 D3 

J - 3A3R3 - 2B3 - -R-2 
3 

(A.27b) 

[ 

( ) 2C (2-4v)D . l 
1 

-6A r 3 1-fv -2B1 r--3-
1 + 1 

( ) + v 1 r r 28 w r,e = p-- cos 
E 2 D3 

J - 3A3R3 - 2B3 - -R-2 

3 

j= 2, 3 (A1 . .. D1 according to equations (A.22) and (A.23)) 

A.3.3 Comparison of results from the macros tress and macrostrain approach 

The in-plane effective elastic moduli are calculated for various combinations of 
aggregate, ITZ and bulk cement paste properties. This is done using both the 
macrostress and the macrostrain prescribed expressions for the effective elastic 
properties, as derived in this appendix. Table A.1 shows the results of these 
calculations for the RVE dimensions and elastic properties as derived in section 4.4, 
representing the concrete mix used in the experimental test program of Van Geel. In 
addition to these results, t\vo alternatives are considered with such modifications 
that the effective elastic moduli resemble those of the RVE for the fine aggregate 
grain fraction of the concrete mix of Van Geel. 
To compare the results of the macrostress and the macro~rain ai?_Proach, it is 
convenient to use the (plane strain) bulk and shear modulus (Kre and Gre) as elastic 
constants instead of Ere and Vre· The bulk modulus Kre is determined by elementary 
loading case I only and is therefore the same for the macrostress and the 
macrostrain approach. Hence, the difference between the macrostress and the 
macrostrain approach is entirely governed by just one constant, the shear modulus 
Gre, which is determined by elementary loading case 11. In the current plane strain 
configuration, the bulk and shear modulus are defined as: 

Era 

2(1-v -2v 2 ~aJ ra E 
z 
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- E G _ re 
re - 2(1 +V re) 

From tab~e A.l it appears that the deviations between the results from the 
macrostram and the macrostress approach for the shear mod 1 b w· h j( b · u us are a out 7% 
. It re emg the same for the macrostress and macrostrain a roach . . . 
m elastic behaviour are expected to be in the range 0 7 ot ( pp 1 ' fdev~atwns 
Hence th f:fl . 1 . - to mean va ue o 3 5 %) 

' e e ectlve e astlc properties do not depend much on thee t d" ' "b ." 
of the boundary loads of the RVE Th" . xac 1stn utlon 
behaviour the choice of ei . IS means that for hnear elastic material 
difference. ther the macrostress or macrostrain approach makes little 

Table A. I. Effective elastic moduli [MPa] 

Coarse ar!J!re~ates Fine af!.-;rref!ates Alternative 1 Alternative 2 
macro- macro- macro- macro- macro- macro- macro- macro-
stress strain stress strain stress strain stress strain 

Er£) 40740 41830 32130 33550 32080 33460 32040 33310 
-
vrfl 0.160 0.138 0.176 0.140 0.170 0.135 0.175 0.142 

Krf) 24890 24890 19950 19950 19820 19820 19850 19850 

~f) 17550 18380 13660 14720 13700 14750 13640 14580 

!1Gre 

Gre 
4.7% 7.8% 7,7% 6,9% 

Table A.2. Input properties for table A.l 

R 1 [mm] R2 [mm] R3 [mm] E1 [MPa] E2 [MPa] E3 [MPa] V 

Coarse aggregates 2.710 2.860 3.010 65000 10000 18000 0.12 
Fine aggregates 0.945 1.038 1.169 70000 10000 18000 0.12 

Alternative 1 0.945 1.038 1.169 61000 15000 15000 0.12 
Alternative 2 0.945 0.955 1.169 70000 2000 18000 0.12 

APPENDIXB 

EQUILIBRIUM OF THE RVE 

In appendix A, two elementary states of loading on the RVE are discussed. For 
these elementary states of loading, an analytical solution of the elastic 
stress/ displacement field is found by solving the equations of compatibility, the 
constitutive equations of linear elasticity and the equations of equilibrium. 
Though not explicitly cited in appendix A, these elementary states of loading satisfy 
an essential condition, i.e. the external loading on the R VE is in a state of 
equilibrium. Worded differently, the RVE does not move (translate or rotate) as a 
rigid body acted by these external forces . A state of equilibrium for the elementary 

states of loading is ensured because: 
1. The normal loading on the outer-boundary of the RVE is symmetrical with 

respect to the centre of the RVE, i.e. no residual force exists causing the RVE to 

translate. 
2. The integral of (tangential) shear loading along the outer-boundary of the RVE 

is equal to zero, i.e. no residual moment exists causing the RVE to rotate. 
As any loading path can be considered as a linear combination of the elementary 
states of loading (section 4.3.4), any linear elastic state of the RVE is in 

equilibrium. 
This changes when material non-linearity is introduced due to cracking in the ITZ. 
As outlined in section 4.3.5.3, ITZ cracking induces an arbitrary distribution of 
stresses along the centreline of the ITZ layer. In consequence of the conditions of 
equilibrium, there are some limits to the arbitrariness of these stresses. The first 
condition of equilibrium (no translation of the RVE) is satisfied, since the normal 
stresses along the centreline of the ITZ are still symmetrical with respect to the 
centre of the RVE. The second condition of moment equilibrium is not satisfied 
directly, but only after introducing secondary ITZ shear stress corrections (section 
4.3 .7). As a result of the introduction of secondary ITZ shear stress corrections, the 
summation of the local shear forces Fr9(9*) (see figure B.l) along the circumference 
of the outer-boundary at R

3 
is forced to be zero. Consequently, the cylindrical RVE 

is in moment equilibrium. 

If the loading on the outer boundary of the R VE is in moment equilibrium, the 
macroscopic representative stress state - as determined in section 4.3.8 by 
averaging the forces at the outer-boundary of the RVE - should be in moment 
equilibrium as well, i.e. T.xym = T.yxm · Hence, the condition of moment equilibrium 
sets requirements for the averaging procedure. In this appendix it will be outlined 
that the so-called volume-averaging procedure as applied throughout this thesis 

meets these requirements. 
The summation of the local shear forces along the circumference of the outer-
boundary at R

3 
is forced to be zero. This implies that for any set of boundary forces 
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CFn F,a) in an arbitrary point (denoted by e· = e;) of the outer-boundary of the 
RYE, always a shear force exists in another arbitrary point (denoted by e• = e;) that 
counterbalances the shear force Fra at e* = e;. Ergo, an arbitrary distribution of 
forces on the outer-boundary of the RYE, which is in moment equilibrium, may be 
represented as an assemblage of pairs of forces of which each single pair is in 
moment equilibrium. 

j r 

Figure B. I. R VE with arbitrary loading at the outer boundary. 

Such a pair of forces is depicted in figure B.2. The contribution of such a single pair 
of forces to the macroscopic shear stresses '[xy m and '[yx m is denoted by the volume­
averaged quantities /l.'[xy m and /).'[yxm· The averaging procedure is denoted as volume­
averaging, which means that the boundary stresses are weighted by that part of the 
volume they act upon 1• If boundary forces are considered, the weighted volume 
reduces to the distance of the point of action of the force perpendicular to a cross­
section through the centre of the RYE in either the global x- or y-direction, hence 
(see figure B.2) 

F l e· F l · e· R · e· F 2 e· F 2 • e· R · e· 
/).'[ m = r COS I - rO Sill I 3 Sill l + r COS 2 - r9 Sill 2 3 Sill 2 

xy l R 2 z-1t 3 

2 (F l e· · e· F 2 e· · e· F l • 
2 e· F 2 

• 
2 e· ) = 1tR3 r cos l sm l + r cos 2 sm 2 - re sm l - re sm 2 

1 Equations are given in section 4.3.8 and appendix A 

(B.l) 

•a) 

"' 0 
u 

~ 
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(B.2) 

moment equilibrium 
2 I 

F,a =- F,a 

•-racrosco'[JiC (volume averaged) shear stresses of the RVE loaded by Figure B.2. 1v.1• 

an arbitrary pair of balanced forces. 

· h 1·t F 2 = -F 1 (moment equilibrium) in equation (B.l) and Introducmg t e equa 1 y r9 rG 

equation (B.2) results in 

2 ( • 2 • . • 1 ( • 2 e· . 2 0• )~ /l.'[ m=-- F 1 cose;sin01 + Fr cos02 sm02 -Fra sm t -sm 2 
xy 1tR r 

3 
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A m 2 (F I n• · n• 2 • • 1 ( )iJ 
uTyx = rtR3 r cos ul sm ul + F,. cos82 sin 82 + F',.o \COS2 8~- cos2 e; J 

-- r COSu1 Sinu1 +F cos82sm8 -F sm28 -sm28 _ 2 (F I 0 • • 0 • 2 • • • 1 ( . • . • )~ 
rtR3 r 2 r9 I 2 

Hence, the contribution of a single arbitrary pair of (balanced) forces to the 
macroscopic stress state is in moment equilibrium 

(B.3) 

If equation (B.3) applies for a single pair of arbitrary balanced forces the equality 
between macroscopic (volume averaged) shear stresses must also ~pply to any 
assemblage of pairs of balanced forces. Hence 

for any loading on the outer boundary of the RYE, which is in moment equilibrium. 
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STELLINGEN 

behorende bij het proefschrift 

CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION- NUMERICAL MODELLING 

I. Bij het modelleren van mode Il scheuren in beton middels zgn. interface elementen dient ook de 
invloed van de tangentiele normaalspanning te worden meegenomen als additionele parameter. Dit 
komt voort uit het feit dat het scheuroppervlak in norm ale sterkte beton niet glad maar ruw is. 

2. Als de resultaten van computersimulaties niet overeenkomen met de theoretische verwachtingen, 
dan dient men zich ook te realiseren dat over de correctheid van software, in studies waar deze 
software norm aliter niet wordt gebruikt, grote twijfel kan bestaan. 

3. Een numeriek model is als een lange ketting: zo sterk als zijn zwakste schakel en bij te grote 
lengte bezwijkt hij onder zijn eigen gewicht. 

4. Het heelal is een verzameling van bolronde materie met een zeer losse pakking. In dit opzicht lijkt 
beton op het heelal, alleen dan op een ander schaalniveau en veel beter verdicht. 

5. De menselijke waameming is beperkt tot bepaalde schaalniveaus. Dientengevolge neemt de 
betrouwbaarheid van metingen aan het heelal sterk toe naarmate deze zich concentreren op lokale 
(aardse) eigenschappen, terwijl de betrouwbaarheid van metingen aan beton sterk toeneemt 
naarmate deze zich concentreren op globale eigenschappen. 

6. . .. Helaas is (gewapend) be ton een complex en eigenzinnig materiaal dat soms weigert zich te 
gedragen volgens de heersende regels der mechanica 1 

•• • 

Wetenschap dwingt ons tot het creeren van categorieen en regels. Beton deelt echter de menselijke 
eigenschap dat het zich niet altijd in een dergelijk keurslijflaat dwingen. 

7. Een simpele boodschap die goed klinkt wordt vaak (te) gemakkelijk voor waar gehouden (zonder 
de bronnen te controleren). Beoordeel dit proefschrift daarom niet uitsluitend op de figuren met de 
resultaten van de computer simulaties, maar controleer ook de theoretische afleidingen die hieraan 
ten grondslag liggen ... 

8. Om een betonconstructie winstgevend te kunnen verkopen, dient de constructie - in marketing 
term en - te zijn voorzien van 'toegevoegde waarde'. Aangezien de constructieve veiligheid 
tegenwoordig geen vanzelfsprekendheid meer is, dient de inbreng van een hoofdconstructeur dus 
als 'toegevoegde waarde' te worden gezien met een grote potentiele bijdrage aan de 
winstgevendheid van een project. 

9. Promoveren versterkt alsook verzwakt de onderzoeker. Hoe dit experiment verloopt hangt sterk af 
van de proefpersoon en de randvoorwaarden. Doe! van het experiment is te stoppen voordat de 
uiterste 'sterkte' wordt bereikt. 

10. Het innovatiegebied waar (nog) geen duidelijke markt voor is en waar ook de technologie nog 
voor ontwikkeld moet worden, wordt door innovatie managers ook we! als 'suicide area' of ' no-go 
area' aangeduid. Het betreden van dit risicogebied is vooralsnog voorbehouden aan (optimistische) 
junior onderzoekers. 

technologie ? r m- mm••••m•••••mmom "I Suicide area I 

L __________ ___.. • markt? 

11. Leidraad bij zowel het stimuleren van de ontwikkeling van een (gehandicapt) kind als bij het 
beoefenen van de wetenschap: 

Vorderingen gaan in kleine stapjes. Is de stap te groot om deze in een keer te zetten? Geef dan niet 
op, maar zoek steeds naar manieren om deze grote stap in kleinere (behapbare) stapjes op te delen. 
Het resultaat zal zich uiteindelijk in al zijn schoonheid openbaren. 

1 F .J. VECCHIO (200 1 ). Non-linear fmite element analysis of reinforced concrete: at the crossroads? Structural 
Concrete, 2 (4), pp. 201-212 



PROPOSITIONS 

with the PhD-thesis 

CONCRETE BEHAVIOUR IN MULTIAXIAL COMPRESSION- NUMERICAL MODELLING 

I. Modelling of mode 11 cracks in concrete by means of so-called interface elements also should 
incorporate the influence of the tangential normal stress as an additional parameter. This originates 
from the fact that the crack surface in normal strength concrete is not smooth but rough. 

2. If the results of computer simulations do not agree with the theoretical expectations, then one 
should also realise that the correctness of software, in analyses outside the normal scope of the 
software, could be highly questionable. 

3. A numerical model is like a long chain: as strong as its weakest link and if too long it breaks under 
its own weight. 

4. The universe is a very loose packed system of sphere-like material. In this sense concrete 
resembles the universe, yet on a different scale level and much better compacted. 

5. Human perception is restricted to certain scale levels. For that reason the reliability of 
measurements on the universe strongly increases when these are focused on local (down-to-earth) 
properties, whereas the reliability of concrete measurements strongly increases when these are 
focused on global properties. 

6. . . . Unfortunately, (reinforced) concrete is a complex and stubborn material that sometimes 
refuses to act according to accepted rules of mechanics 1 

••• 

Science forces us to create categories and rules. However, concrete shares the human characteristic 
of not always complying with such a straitjacket. 

7. A simple pleasing statement is often (too) easy taken for truth (without verification of the 
sources). Therefore, do not judge this thesis only by the figures with the results of the computer 
simulations, but also verity the theoretical derivations underlying them ... 

8. To lucratively sell a concrete structure, the structure has- in terms of marketing- to be equipped 
with 'added value'. Regarding the fact that nowadays structural safety cannot be taken for granted 
anymore, the contribution of a senior structural engineer has to be regarded as 'added value ' with a 
large potential contribution to the profit of a project. 

9. Ph.D. research strengthens as well as weakens the researcher. The way this experiment evolves 
strongly depends on the testee and the boundary conditions. Purpose of the experiment is to stop 
before reaching the ultimate 'strength'. 

10. That sector of potential innovations for which a distinct market is (as yet) lacking and the 
technology required still has to be developed as well, is- by innovation managers -often entitled 
as 'suicide area' or 'no-go area' . Entering this hazardous area is, as yet, reserved for (optimistic) 
junior researchers. 

technology? mmmm••••••••••••mmmmmmo l Suicide area I 

market? 

11. Guiding principle for both the education of a (disabled) child and the practice of science: 

Progress is made in small steps. Is the step too large to take it in one go? Do not give up, but keep 
searching for ways to split this large step into smaller (manageable) steps. Eventually, the result 
will reveal itself in all its beauty. 

1 F.J . VECCHIO (2001). Non-linear finite element analysis of reinforced concrete: at the crossroads? Structural 
Concrete, 2 (4), pp. 201-212 
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Concrete behaviour in multiaxial compression 
Numerical modelling 

The research presented comprises the development of a two­
dimensional (2D) numerical model, which is capable of providing 
reliable predictions of the mechanical response of multiaxial 
compressive tests on concrete specimens in a 2D test lay-out. 

The model has been based on sound physical/mechanical 
interpretation and explanation of the complex mechanical behaviour 
of concrete loaded in multiaxial compression. To establish such a 
basis, this behaviour was subdivided in two ways. On the one side, 
three scale levels of perception/observation were distinguished. 
On the other side, a distinction was made between four typical 
behavioural stages in multiaxial compression tests. 

The great differences in scale of heterogeneity of the concrete material 
between the pre-peak and the post-peak region of a multiaxial 
compression test could be captured well by the subdivision chosen. 
With respect to constitutive modelling, these differences required the 
formulation of two so-called 'Representative Volume Elements' (RVEs), 
a concept that accounts for the specific heterogeneity of concrete at 
the lower scale levels of observation. By choosing the geometrical 
shape of the RVEs rationally and with a thorough analysis of basic 
(crack) mechanics, straightforward 'low-scale' constitutive laws could 
be efficiently combined with sophisticated- physically appealing ­
'high-scale' constitutive laws, applicable both in the pre-peak and 
post-peak region. 

The 'mesoscopic model', consisting of the above RVE-formulations, is 
well suited for small-scale analyses of concrete structures subjected 
to multiaxial compression. For large-scale analyses, the mesoscopic 
model is less practical. To enhance the practicality and speed up 
computations, an adjusted approach is presented, entitled as 
'macroscopic model' . 

A wide range of accurate numerical simulations of multiaxial 
compressive tests illustrates the performance of both the mesoscopic 
and the macroscopic model. 
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