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by
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Abstract. This paper presents a number of successive approximation algorithms

for the repeated two-person zero-sum game called Markov game using the cri­

terion of total expected discounted rewards. As Wessels [IZJ did for Markov

decision processes stopping times are introduced in order to simplify the

proofs. It is shown that each algorithm provides upper and lower bounds for

the value of the game and nearly optimal stationary strategies for both play-

ers.

I. Introduction and notations

We are concerned with a dynamic system with a finite state space S :=:= {I, ... ,N}.

The behaviour of the system is influenced by two players, PI and PZ' having

opposite aims. For each XES two finite nonempty sets of actions exist, one

for each player, denoted by Kx for PI and Lx for PZ'

At times t = O,I,Z, .•. both players select an action out of the set available

to them. As a joint result of the state x of the system and the two selected

actions, k for PI and ~ for PZ' the system moves to a new state y with pro­

bability p(ylx,k,~), I p(ylx,k,~) = 1, and PI will receive some (possibly
yES

negative) expected amount from Pz denoted by r(x,k,~).

As Zachrisson [15J did, we will call these two-person zero-sum games Markov

games. Most authors however, following Shapley [IOJ use the term stochastic

games.

function that specifies for each

the probabi li ty d (a Ix, n ,h ) that
n

be taken as a function of x,n and the history h . Byn
time n we mean the sequence hn = (xO,kO'~O, ... ,xn-I,kn-I'£n-l)

actions (hO is the empty sequence).

A strategy d for Pj(P Z) in this game ~s any

time t O,I,Z, •.. and for each state XES

action a c K (L ) willx x
the history h upto

n
of prior states and
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If all d(alx,n,h ) are independent of nand h the strategy is called sta-n n
tionary. A policy f(g) for P1(P 2) will be defined as any function such that

f(x)(g(x)) is a probability distribution on K (L ) for all XES. Thus a
x x

stationary strategy prescribes the same policy for each time t and we will

denote it by f(oo)(g(oo)). We will use the letters nand p to denote a strate­

gy for PI and P
2

respectively. In the following the symbols k, f and n will

be used for PI and the symbols Q., g and p for P2 only. We will consider the

discounted Markov game, i.e. we will discount future income at a rate B,

wi th 0 :::; B < 1.

Let V(n,p) denote the N-columnvector with x-th component equal to the total

expected discounted reward for PI when the game starts in state x, PI plays

strategy nand P2 plays p.

Shapley [10J has shown that this game has a value, denoted by the N-column

vector Vs and that both players have stationary optimal strategies, denoted
*(00) *(00).

by f and g , ~.e. Shapley has shown that

inf V(f*(oo) ,p) = V(f*(oo) ,g*(oo)) = vB = sup V(n,g*(oo))
p n

elements equal to unity:

for P2) will be called E-optimal if

E.e for all n), E 2 O. An O-op-

Let e denote the N-columnvector with all

e = (1, ... ,I)T. A strategy n for P
j

(p
E E

V(nE,p) 2 Vs - E.e for all p (V(n,PE) :::; VB +

timal strategy is called optimal.

We are looking for techniques for the solution (the determination of both

upper and lower bounds on vB and E-optimal strategies) of the discounted

Markov game. One method has been suggested by Hoffman and Karp [4J (their

algorithm was originally given for the Markov game with the average reward

per unit time criterion but can be applied for the discounted game as well).

Another method can be found in Pollatschek and Avi-Itzhak [8J. However, these

authors only prove convergence of their Newton-Raphson (Howard) technique

under very strong conditions.

In this report we will introduce stopping times as suggested by 'vessels [12J

for ~larkov decision processes in order to develop a number of successive ap­

proximation algorithms (section 2). This approach has also the advantage of

simplifying the proofs. In section 3 we show that a special class of stopp­

ing times generates algorithms providing upper and lower bounds on vB and

E-optimal strategies which are stationary.
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One of the algorithms we will obtain is the standard success~ve approximation

algorithm given by Mcqueen [6J for Markov decision processes. Some of the

other algorithms are presented for Markov decision processes by Hastings [2J,

Reetz [9J and Van Nunen [7J.

2. Stopping times

In this section we will use stopping times as Wessels [12J did for the dis­

counted Markov decision process and the results we obtain will be very simi­

lar.

00

Definition 1. A map T from S into the set of integers between 0 and 00 (bounds

included) is called a stopping time if and only if

+- 00

T (n) = B x S , with B c Sn+l

This means: if T(XO""'x,x 1"")
11 n+

T(XO""'x,y 1"") = n as well.n n+

n, then for all Yk E: S, k ?: n + 1,

Definition 2. A stopping time T ~s called nonzero if and only if T(a) > 0,
00

for each a E: S •

Let T be a stopping time and TI and p be arbitrary strategies, let XT be a

random variable denoting the state of the system at "time T" if T < 00 and

let XT := 1 if T = 00, and let Xo denote the starting state, the state of
/

the system at t = O. Now a notation will be introduced for the expected dis-

counted reward for PI if the Markov game will be terminated at "time T" with

PI obtaining a final payoff v(y) if X y, when Xo = x and strategies TI andT
P are used. By termination and "time T" we mean termination as soon as a

Definition 3. Let T be a stopping time and let TI and p be arbitrary strate-

. h 1 L () N. d . dbg~es, t en tle operator TI,P on ~ ~s ef~ne y
T

(L (TI,p)v) (x)
T

X,TI,pJ, X E: S

(where E denotes expectation and q is a random variab Ie denoting the reward
n

for PI at time n.)
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Definition 4. Let T be a stopping time, then the operator U on RN ~s defined
T

by

U v = sup inf L (n,p)v
T T

n P

where the sup inf is taken componentwise.

Theorem 1.

i) L (n,p) ~s a monotone mapping.
T

ii) L (n,p) is strictly contracting for nonzero T with respect to supnorm
T

in RN with contraction radius max E(ST I Xo = x,n,p).
XES

iii) U ~s a monotone mapping.
T

iv) U is strictly contracting for nonzero T with respect to supnorm in R
N

•
T

The contraction radius r of U satisfies
T T

r T ~ max sup sup E(ST I Xo = x,n,p)
XES n P

and

r, ~ max max{sup inf E(S' I XoXES n P
x, n ,p), in f s up E (S' I Xo = x, n ,P ) }.

n P

Proof. i) and iii) are obvious, and the proof of ii) ~s straightforward.

iv) For arbitrary v and w in R
N we have,

U vex) ~ U (w + II v - wile) (x)T ,
,-)

inf E[ L n S'(w(X) +l1v-wl1) I Xo x,n,p]sup 6 q + ~

n=O
n ,

n P

,-1
inf E[ I n + 6'w(X ) I Xo x,n,p] +~ sup S qn =

n=O
,

n P

+ sup sup E(ST I Xo
n P

x,n,p)1I v - wll

= U w(x) + sup sup E(6 T I XoT n P

Simi larly we show

U w(x) ~ U vex) + sup sup E(6' I Xo, ,
n p

x, n ,p)11 v - w II •

x,n,p)l1v - wll •
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Hence U ~s strictly contracting with respect to supnorm in ~N for all non­
T

zero T, and we have obtained an upper bound on r • The lower bound ~s found
T

by taking v = vO.e and w = a and considering the cases va + +00 and Vo + -oo.IJ

Remark 1. Counter examples can be constructed showing that r is neither ne­
T

cessarily equal to the lower bound nor necessarily equal to the upper bound

given in theorem 1 iv) (see Van der Wal [IIJ).

Shapley [10J has shown that the value of the game vs' which is obviously the

fixed point of the operator U with T = 00, is also equal to the fixed point
T

of the operator U with T = 1. As a consequence of theorem 1 iv) U has a un~-
T T

que fixed point for all nonzero T. Fortunately these fixed points are all

equal to vS. This is stated in the following theorem.

Theorem 2. UT has the unique fixed point Vs for any nonzero T.

Proof. U
T

show UTvB
tisfy

has a unique fixed point for any nonzero T thus we only have to

I . I . f*(oo) d *(00)
= vS. The va ue V s and the opt1ma strateg~es an g sa-

V(rr,g*(OO» ~ vB ~ V(f*(oo) ,g*(oo» ~ V(f*(oo) ,p)

With V(rr,p) = L _ (-rr,p)O it follows thatT=OO

for all rr and p •

inf LT=oo(£*(oo) ,p)O
p

= v =
S

*(00)sup L _ (rr,g )0.
T=OOrr

Now let PI use the fixed stationary strategy f*(oo). Then we obtain a Markov

decision process and we may apply theorem 3.Ic) in Wessels [I2J. There is

stated for any nonzero T

inf LT(f*(oo) ,p)inf LT=oo(£*Coo) ,p)O
p p

or

Similarly we find

sup LTCrr,g*(oo»vS vB.
TT

in£ LT=oo(f*(oo) ,p)O
p
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As a consequence we have

Vs for all nonzero '. o

Knowing that for nonzero, all U, have fixed point vs ' we are interested in

those operators U for which U v can be computed relatively easily. In ge-, ,
neral there will exist no stationary optimal strategies for a ",-step" Har-

kov game with payoff v E ~N. However, it turns out that for special stopping

times, we only need to consider stationary strategies.

Definition 5. A nonzero stopping time, is called transition memoryless if

and only if a subset T of 82 exists such that

Theorem 3. If , is nonzero and transition memoryless, then for any v E~N

stationary strategies f(oo) and g(OO) exist such that for all 'IT and p

Proof. We will define a new infinite horizon Markov game with S, the new

state space, being the union of two representations of S: S* := {x* I XES}

and S* := {x* I XES} and with Kx* := Kx* := Kx and Lx* := Lx* := Lx'

Furthermore, define for all x*'y* E S*' x*,y* E S*

p(x x ,k,9..) := I , rex ,k,9..) := ( I -S)v(x), k t: Kx' 9.. E L
* * * x

p (y * * p(Ylx,k,9..) if (x,y)x ,k,9..) := I T ,

p(y* * p (y Ix, k ,9.. ) if (x,y)x ,k,9..) .- E T ,

*rex ,k,9..) := r(x,k,9..), k E K , 9.. E L
x x

and for x,y E S: p(Ylx,k,9..) := 0 if not already defined otherwise. For the

Markov game defined above optimal stationary strategies exist (Shapley [10J).

h . * * .T e part of such a strategy, wh~ch concerns the states XES , const~tutes

a stationary optimal strategy for the ",-step" game with final payoff v.

Hence the theorem has been proved. o
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3. Successive approximation

In this section we show that each nonzero transition memoryless stopping time

generates a successive approximation algorithm.

Let T be a nonzero transition memoryless stopping time. Define the sequence

of vectors {v }oo 0 c lRN by
Ttn n=

v = 0
TtO

V
T tn

u V
T T, n-l ' n=lt 2 , ••••

be optimal strategies for the "T-step" game with final

A ~ a and b nT,n t T,n' Ttn T,n'

Let f(oo) and g(oo)
T,n T,n

payoff vI' n = 1,2, •••
T ,n-

Moreover, define 1,2, • •• by

AT,n .- min
XES

{v (x)
T ,n vT,n-l (x)}

~T n,

rX E[S' Xo
(00) g(oo)J if A < 0x, f ,T,n' T,n

a := x,g
(00) g(oo)JT,n min E[ST I Xo if A ~ 0= x, f ,

x,g Ttn' T,n

E[ST Xo
(00) g(oo)J if < 0

r
n = x, f , ]l ,

._ x,f T,n T,n
b .- (00) g(oo)JTtn E[ST I K

O
if 0max = x, f , ~T n ~ .

x,f T,n ,

Now we state the following theorem.

Theorem 4. For nonzero transition memoryless stopping times T the following

estimates hold:

a A b ~

i) v +
T,n T,n • e :s; Vs :s; v +

T,n T,n • e .T,n 1 - a T,n 1 - bT,n T,n

And for all n and p

V(f(oo) p)
a A

ii) ~ v +
T,n T,n

• e .T,n' T,n 1 - aT,n

V(n,g(oo»
b ~

iii) ~ v +
T,n T,n . e1 b .T,n T,n -

T,n
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Proof. We first show ii). Let g be an arbitrary policy. We have (by defini­

tion)

v C. v +
T,n T,n-l A e

t,n

and

L (f(oo) ,g(oo))(v _ + A e) (x) =
T T,n T,n 1 T,n

and by de~nition of a
T ,n

Hence

Therefore

c. v
T,n

p-I
+ (a + ••• + a )A e.T,n T,n T,n

V(f(oo) p)
T ,n' c. m~n

g

g

c. V
T ,n

a A
+ T,n T,n

1
• e- a

T,n

va c. V
'"' T,n

+
a AT,n T,n
I

. e
- a

T ,n

Similarly we show iii) and the second inequality in i). D
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Remark 2. These bounds are practically identical to those given by Wessels

and Van Nunen [13J for Markov decision processes.

Hinderer [3J has given many estimates for the special case T= I for finite

stage Markov decision processes. Some of these estimates may be extended for

infinite horizon Markov games.

Since

a A­T,n T,n
I - a

T ,n
and

b f1T,n T,n
I - b T,n

tend to zero if n tends to infinity, we can construct for nonzero transition

memoryless stopping times T an algorithm of the following form.

Algorithm (T).

STEP 0: Define v O(x) := 0 for x = I, ••. ,N. Select E > O.
T,

STEP I: Compute v := U v I for n = I, ••• ,M, where M is the smallestT,n T T,n-
integer with

b ).lT,n T,n
1 - b

T ,n

a A
T,n T,n :0;

1 - aT,n
E •

STEP 2: Find stationary strategies f(oo) and (00) satisfying for all rr and pT,M gT,M

(00)
L (rr,g M)v M I :0;T T, T,-

(00) (00)
L (f '1,g M)v M-lT T,L' T, T,

:0; L (f(oo) )
M,P v '1-1 •T T, T,L'

We now have quite a number of algorithms, however only a few of them are of

practical interest. Often the amount of work which has to be done in order

to compute v from v I will be tremendous.
T ,n T ,n-

However, there exist special nonzero transition memoryless stopping times,

for which, in order to compute v (x) from v I' it is only necessary toT,n T,n-
compare the (mixed) actions which may be taken in state x, and one does not

have to consider actions in other states.

We will give four of these algorithms which are already known from discounted

Markov decision processes.
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Algorithms.

i)

ii)

T ~ I. The standard successive approximation method with a = b = ST,n T,n
for all n. The estimates have been given for discounted Markov decision

processes by Macqueen [5J.
+ 00 IT (m) = {a E S 0'.0 > a I > ••• > a 1'0'. I::; a }. In this case v canm- m- m T ,n

be computed recursively by

v (x) = max min L
T,n f(x) g(x) kEK

x

Q,
g (x)[r(x,k,Q,) +

+ S L p(Ylx,k,l)v -I(y) + S I p(Ylx,k,Q,)v (y)J,T n T,n
y~x ' y<x

x = I, ••. ,N. Where fk(x) (gl(x» denotes the probability that action

k(Q,) will be selected in state x according to policy f(g).
+ co Iiii) T (m) = fa E S 0'.0 = 0'.1 = am-I ,am-I I: am}. Here vT,n is given by

v (x) = max m~nT,n f (x) g(x)

L fk(x) L 1g (x)[r(x,k,l)
kEK Q,EL

x x

.+ S L p(Ylx,k,l)v _I(y)]
~ T,nyrx

I - S L fk (x)
kEK

x

iv)

x = I, •• "N.

T+(m) = {a E SOO I 0'.0 2 0'.1 2 ••• 2 a ,a < a }. This algorithm is a
m-I m-l m

combination of the algorithms ii) and iii).

v is given by
T ,n

v (x)
T ,n max m~n L

f(x) g(x) kEK
x

1
g (x) •

• [r(x,k,Q,) + S L p(Ylx,k,l)v I(y) + S L p(Ylx,k,l)v (y)] •
T n- T n

y>x ' y<x '

• [I - S
1 -Ig (x)p(xlx,k.l)] •
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Algorithms ii), iii) and iv) were introduced for discounted Markov decision

processes by Van Nunen [7J inspired by algorithms of Hastings [2J (algorithm

ii» and Reetz [9J (algorithm iii». Van Nunen also shows that it is quite

difficult to compare these four algorithms, giving examples demonstrating

that the decision which algorithm should be prefered depends on the speci­

fic structure of the problem under consideration.

Remark 3. In the algorithm we suggest to execute STEP I until

b \lT,n T,n
I - b

T ,n

< 0

For algorithm i) this criterion ~s quite useful since a = b = B forT,n T,n
have to be computed, as for algorithms ii),all n. If however, a and b

T,n T'n
iii) and iv), it might be more sensible to use upper and lower bounds on

a and b • For instance in the algorithms ii), iii) and iv) we mightT,n T,n
replace a by B if A < 0 and by 0 if A ~ 0 and b by 0 if \lT,n T,n T,n T,n T,n
and by 8 if \l ~ O. We might also continue the execution of STEP I until

T ,n

It can be shown that (*) implies

b \lT,n T,n
I - b

T,n

a A
T.zn T,n ::;

I - a
T ,n

E: •

If in the case of algor.ithm iii) or iv) we have for all x, k and £

I B - Bcp(x x,k,£) ~ c > 0, we might replace a by I B if A < 0 and by 0 ifT,n - c T,n
A ~ 0, and b by 0 if \l < 0 and by (8 - Bc)/ (I-Be) if \l ?- O. NoteT,n T,n T,n T,n
that:

max E[ST I Xo = x, f(oo), g(oo)J ::;
x,f,g

2(I-c)8+(I-c)c.8 +•.

• • +
k k+l 8 - 8c

(1 - c)c 8 + ••• = I - 8e •

In this case we might also continue STEP until

max{ IA I,T,n
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Then one may show that after termination

b 11T,n T,n
1 - b

T ,n

a A
T,n Tpn ~ E:

1 - a
T ,n

will hold.

4. Some final remarks

p(Ylx,k,t) < 1 for all x,k,t and to use the criterion of total

we would encounter can be overcome by defining an

L
yES

rewards. The difficulties

We only considered the case of a discount factor 0 $ 6 < 1 and

L p(Ylx,k,t) = 1 for all x, k and t. Another approach could have been to
yES
demand

extra absorbing state 0 I- S with r(O,k,t) = 0 and defining

p(Olx,k,t) = 1 - L p(Ylx,k,t) •
yES

Furthermore we should redefine the stopping times on S := S u {a}. The opera­

tor Land U should work on ~N again (no extra component corresponding to
T T

state 0) and the expression E(ST I Xo x,n,p) should be replaced by

F(XT E: S I Xo = x,n,p) (the probability that the game has not yet been ab­

sorbed in state 0 at time T).

This approach can be used for the discounted game where the time between two

subsequent action points is not equal to unity but has a probability distri­

bution: the discounted semi-Markov game. In that case we may define

p , (y Ix, k ,t) : = p (y Ix,k , t) 6 (x ,y ,k , t) ,

where 6(x,y,k,t) denotes the expected discount factor when actions k and t

are taken in state x and the system moves to state y.

An interesting situation arises if in each state one of th e players has on­

ly one action available: the perfect information case. Then the amount of

work needed to compute v from v 1 becomes essentially the same as for
T,n T,n-

a Markov decision process of the same size. Another advantage is that we may

also use a suboptimality test as introduced by Macqueen [6J. This is shown

in [11]. For algorithm i) (T = 1) the test can be performed with hardly any

extra work.
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