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Chapter 1

Introduction

1.1 Problem definition

Understanding the principles of mixing of viscous fluids becomes increasingly more import-
ant since more stringent requirements are demanded from the properties of (bio–)polymer
blends and food. When the principles of mixing are understood, it will be possible to design
better mixers by numerically evaluating the influence of changes in mixing protocols, screw
configurations or mixer geometries.

To study mixing behaviour various techniques have been proposed: residence time and
strain distribution by Tadmor & Gogos (1979), Hobbs & Muzzio (1997), Poincaré maps by
Ottino (1989), Ling (1994), Jana et al. (1994b), manifold and periodic point analysis by Ottino (1989),
Franjione et al. (1989), Franjione & Ottino (1992), Meleshko & Peters (1996), Anderson et al. (1999)
and interface tracking techniques by Noh & Woodward (1976), Hirt & Nichols (1981), Avalosse & Crochet (1997a),
Avalosse & Crochet (1997b), Rudman (1997), Galaktionov et al. (2000b). Most of these tech-
niques are of an indirect nature, i.e. the boundary between two fluids needs to be reconstruc-
ted from related properties such as traced labels or concentration. In other cases the size
or structure of manifolds is regarded as a measure of mixing performance. Optimization of
mixing processes can only be solved by using direct techniques (Souvaliotis et al., 1995), that
give the instantaneous state of a mixture in terms of relevant quantities as concentration dis-
tribution and morphology. At the macro scale, the smallest object of interest is a subdomain
and the largest is the entire mixture. The smallest subdomain size should be chosen such that
the relevant quantities for the mixture can be described.

In optimization of mixing flows, parameters of the flow have to be adapted and the ana-
lysis needs to be repeated. Since optimization generally requires numerous analyses, the
methods listed above are not efficient, or even useless, and an improved, more engineering,
method to evaluate mixing behaviour is required.

The question on how to determine mixing performance concentrates on what to do after a
velocity field for a particular flow is obtained. How can this velocity field be used to analyse
a number of different mixing protocols or geometries? Is it possible to regard a mixing
operation as a transformation from one state to the next, as e.g. is the case with the bakers
transformation, which is a repetition of stretching and folding (see figure 1.1). Following
this line of thinking, solving complex mixing problems implies, as a first step, being able
to break down a mixing flow into a number of independent flow domains or flow situations.
Accordingly, these independent situations need to be analysed separately in such a way that
they can be combined at a later stage. If it is, subsequently, possible to break down the mixing
problem in a number of smaller problems, and a transformation can be determined for each
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stretching cutting
& stacking

stretching cutting
& stacking

stretching folding stretching folding stretching

Fig. 1.1: Two schematic representations of the bakers transformation. The top figure illustrates a
stretching–cutting–stacking sequence which yields 2n+1 layers after n operations; the bottom
figure illustrates a stretch–and–fold sequence which yields 2n + 1 layers after n operations.

of the smaller problems, then the analysis of the mixing behaviour of the entire problem may
become easier.

Based upon these considerations, the mapping method has been developed. This method
describes the transformation (map) from one state of the mixture to the next. This trans-
formation will be different for different mixing elements or flows, but once computed for
different elements of e.g. an extruder, they can be combined in arbitrary order to investigate
the influence of different mixing protocols or different screw configurations on mixing be-
haviour. A similar, but rather restrictive approach applied to the most simple problem, that
of the bakers transformation, was used by Spencer & Wiley (1951) and describes a discrete
map of the flow domain over some time-span. Methods like these have recently become at-
tractive due to development of accurate adaptive tracking methods (Galaktionov et al. (1997),
Galaktionov et al. (2000b)) and the availability of powerful computational resources.

1.2 Current methods and their shortcomings

Methods used to analyse mixing start by determining the velocity field. Once the velocity
field is acquired, a number of different approaches are used. The simplest method tracks
a cluster of initially closely spaced particles. After tracking these particles for an amount
of time, the spatial distribution is studied (Carey & Shen (1995), Hutchinson et al. (1999)).
This procedure is easy to implement and gives an indication how particles are spread through
the geometry. However, these particles are passive and infinitely small and, therefore, give
no indication how much fluid is convected or how the material has stretched. The final dis-
tribution is completely determined by the initial location of the cluster, but most important,
however, is that spreading of particles is, in principle, not a good measure of mixing since no
information on the distribution of actual fluid is computed.

To overcome the problem of infinitesimal small particles, the particle tracking method can
be adapted to a boundary tracking method (Noh & Woodward (1976), Hirt & Nichols (1981),
Avalosse & Crochet (1997a), Avalosse & Crochet (1997b), Rudman (1997), Galaktionov et al. (1999)).
In this case the boundary of an arbitrary blob (area in two dimensions, volume in three dimen-
sions) is tracked. Adaptive tracking is required when points describing the boundary become
separated too far or the angle between three points becomes too small (e.g. in folds); points
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E0

E3

H0

H3

Fig. 1.2: Dependence of the initial location of marker fluid on the mixing behaviour in the flow. Blob
E0 is located in the neighbourhood of an elliptic point and after three periods is spread as
indicated by E3. Blob H0 is located near a hyperbolic point, and after three periods is spread
much more through the cavity as indicated by H3.

are added in between at an earlier time-level, in order to maintain accuracy. This approach
results in a description of the actual material distribution. However, the results are still largely
dependent on the initial location of the blob (see figure 1.2). Also, tracking a boundary for a
larger time is computationally expensive, in time as well as memory, and gradually becomes
impossible given the exponential increase in surface area as obtained in the chaotic flows that
characterize good mixing processes.

It is well agreed upon that the introduction of periodicity in a flow can cause the flow to
behave chaotically ((Ottino, 1989), Ottino et al. (1992), Aref & El Naschie (1995)). Introdu-
cing chaos into a system in general results in a better mixing performance since areas of fluid
are stretched and folded repeatedly. This stretching and folding occurs under the influence
of periodic points, i.e. points in the fluid that return to their initial location after exactly n
periods (n ∈ IN). These nth order periodic points can be either of an elliptic, hyperbolic
or parabolic nature. Elliptic periodic points are present within ‘islands’: areas of fluid that
rotate around the elliptic point and slightly deform, but are surrounded by a boundary over
which no fluid is exchanged. Hyperbolic periodic points are located in unstable regions of the
flow: an area of fluid located around a hyperbolic point is exponentially stretched. Parabolic
periodic points are the degenerate case, and are, if at all, found in two-dimensional flows only
on the boundaries of the flow domain, whereas in three-dimensional flows they also exist on
periodic lines where the nature of the points on that line changes from hyperbolic to elliptic.

Since periodic points clearly influence the mixing behaviour of a flow, locating and clas-
sifying them will help in understanding and evaluating the mixing efficiency of a flow. How-
ever, this is a laborious endeavour, unless, as shown by Meleshko & Peters (1996) for the two-
dimensional case and Anderson et al. (1999) for the three-dimensional case of a lid-driven
cavity, some kind of symmetry of the flow field can be used.

A simpler means to get an impression of the chaotic behaviour of a mixing flow (or
periodic phenomena in general), is the Poincaré method. This method tracks a small number
of points in a periodic flow and records their position after every period. These positions are
cumulatively plotted in a Poincaré map. This map shows the presence and size of unmixed
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Fig. 1.3: Schematic diagram and working principle of the multiflux static mixer. The multiflux static
mixer mimics the bakers transformation by continuously stretching, cutting and stacking al-
ternating layers of fluid.

and well-mixed regions in the mixing flow. The disadvantage of the method is that it shows
the long-term behaviour of the flow, that is often not reached in practice. Another drawback
is that it is not well suited for open flows, although it is applicable as shown by Ottino (1989).

1.3 Approach to solve complex mixing problems

Comparing mixing devices requires that the quality of the resulting mixture can be quantified.
Although in most cases the eye is a good sensor to determine the state of the mixture, it does
not return a single value (or small set of values) that allows for comparison with other mix-
tures that are seemingly equally well mixed. Consequently, automated searching for a (local)
maximum in mixing quality is not possible if the mixing quality is not quantified. A num-
ber of mixing measures have been proposed by e.g. Danckwerts (1952), Danckwerts (1953),
Welander (1955), Tucker (1981), Tucker (1991). The measure to choose strongly depends
on the requirements like e.g. the total the interface created, the importance of the maximum
thickness of striations, or the size of unmixed regions. The variance of the concentration of
one fluid in the other may be of most interest; if so, what should be the size of the sampling
area or volume?

1.4 Lay-out of this thesis

In chapter 2 the different methods to analyse mixing behaviour are introduced. To this pur-
pose, a two-dimensional prototype mixing flow is examined. This problem is based upon the
well-known lid-driven cavity flow as introduced by Chien et al. (1986). On the basis of this
time-periodic problem, classical methods are applied, and the mapping method is introduced
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and validated. The results of the different methods are, finally, compared with experimental
data.

Next, in chapter 3, the two-dimensional method will be extended to a three-dimensional,
time-periodic, prototype flow: the lid-driven cubic cavity flow. Accurate boundary tracking
methods (Galaktionov et al. (1997), Galaktionov et al. (2000b)) are applied and the results
are compared with the results of the mapping method and experimental data.

In chapter 4, the focus is on industrially more relevant, spatially periodic flows, notably
the multiflux static mixer (Sluijters, 1965). This mixer is used to create thin, alternating layers
of polymer materials, and is constructed from a stacked array of channels that closely imitate
the bakers transformation (see figure 1.3). In this static mixer, the flow is largely determined
by the pressure distribution over the elements. In order to optimize for layer thickness, a num-
ber of variations on the original design have been proposed by van der Hoeven et al. (2000).
The influence of these adjustments on layer thickness and residence time distribution is in-
vestigated using the mapping method. Using the mapping method, the layer distribution and
residence time distribution are analysed for a number of stacked elements. Sofar, no other
numerical simulations are known that are able to predict residence time and concentration
distribution for more than two elements.

In chapter 5 the last, spatially periodic, mixing device considered is the co-rotating twin-
screw extruder. The transport section of a twin screw extruder will be analysed to show that
the mapping method is able to handle complex geometries in dynamic mixers.

Finally, in chapter 6, conclusions and recommendations for future research are discussed.
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Chapter 2

Two-dimensional time-periodic prototype flows∗

2.1 Introduction

In order to gain understanding in mixing behaviour in laminar flows, a two-dimensional pro-
totype flow is examined. This flow, a lid-driven cavity flow, has already been investigated ex-
tensively by a number of groups (Chien et al. (1986), Leong & Ottino (1990), Jana et al. (1994a),
Chella & Viñals (1996)). This flow can be seen as a two-dimensional representation of the
flow in a single screw extruder. The properties of the cavity used are shown in figure 2.1.

In the test case of the lid-driven cavity flow the Stokes approximation is valid since inertial
forces can be neglected with respect to viscous contributions. The length-to-width ratio of
the cavity is 1.67 in accordance with Leong & Ottino (1989). Flow is induced by motion of
the top or bottom wall of the cavity; the side walls are fixed (figure 2.1).

To create a chaotic flow, the top wall (T) and bottom wall (B) of the cavity move alternat-
ingly with equal displacement; the top wall from left to right and the bottom wall from right
to left (the TB protocol). Two parameters governing the mixing performance in this cavity
are the number of wall movements n and the dimensionless displacement D that is defined
as:

D = 1

2L

∫ Tp

0
(vT (t)+ vB(t)) dt, (2.1)

where vT (t) and vB(t) are the velocity of top and bottom wall, Tp is the period time and L is
the half length of the cavity. For all protocols in this thesis, the displacement of the top wall
is equal to the displacement of the bottom wall.

This particular flow protocol is well examined, both experimentally and numerically, by
the aforementioned authors. To describe the Newtonian velocity field, an accurate semi-
analytical solution (Meleshko, 1994) is used. Periodic points, which are a key item to evaluate
the mixing abilities of the flow have been found (Meleshko & Peters, 1996).

First, the Poincaré method and adaptive boundary tracking will be shortly discussed, and
some typical results will be shown. Then, the mapping method will be introduced and results
from the techniques mentioned will be compared to results of the mapping method to validate
the technique.

∗ This chapter is largely based on: Analyzing Fluid Mixing in Periodic Flows by Distribution Matrices: The
Mapping Method, PETER G. M. KRUIJT, OLEKSIY S. GALAKTIONOV, PATRICK D. ANDERSON, GERRIT W. M.
PETERS, and HAN E. H. MEIJER, submitted to AIChE Journal.
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Fig. 2.1: Dimensions of the cavity and indication of positive and negative directions for wall velocities.

2.2 Poincaré methods

The Poincaré method is an easy to implement tool to investigate the long term chaotic be-
haviour of a periodic phenomenon or dynamical system. First, a number of random initial
realizations in phase-space is chosen. They are then tracked for one period, and their new
position in phase-space is recorded. This procedure is repeated for a large number of periods
(typically � 1000). The realizations are then plotted as points in a phase-space diagram,
which shows chaotic and regular regions.

In the case of periodic flows, the dynamical system is the flow itself, the phase-space is the
flow domain, and the realizations are arbitrary locations within the flow domain. The regular
areas indicate the regions (or islands) around an elliptic point. The irregular or chaotic areas
indicate the regions where hyperbolic periodic points exist. The method does not indicate the
number and exact location of the periodic points, it merely indicates the region in which they
are located, and hence the size of their influence upon the flow. For a Newtonian fluid in a
lid driven cavity flow, where the TB protocol is applied with D = 8.0, the Poincaré map, is
depicted in figure 2.2.

Fig. 2.2: Poincaré map for a TB protocol with D = 8.0 clearly showing islands in the periodic flow.
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Fig. 2.3: The deformed blob after 5 periods of motion (TB protocol); the grey area around (x, y) =
(1.15, 0) indicates the initial blob.

Since the points in the Poincaré map do not represent a material volume or area, it is not
easy to draw conclusions as to where fluid is moving. Although it is clear that fluid in the
chaotic region is spread throughout the cavity, the actual concentration of e.g. a dye in the
fluid is not (directly) related to the amount of realizations in that area.

2.3 Adaptive boundary tracking

To be able to predict the actual spreading of material through the cavity better, the boundary of
a pre-determined region� with boundary � in the flow domain can be marked, and nodes on
the circumference of this region can be tracked in time for a number of periods. This may give
an indication of the stretching of the marked fluid and the concentration distribution in the
flow domain. However, since time-periodic flows in general display chaotic behaviour, points
initially very close together may end up on opposite parts of the flow domain. Since it may
not be possible to determine beforehand which part of the boundary is extensively stretched,
and which part remains almost undeformed (or is even contracted), it is not efficient to start
with a large number of equidistantly spaced nodes describing the boundary of the domain.

In order to circumvent this problem, a relatively small amount of markers (nodes) de-
scribing the circumference � of the marked area � is used. During the course of tracking,
nodes are inserted in between adjacent nodes where either the distance has grown beyond a
certain limit (l1c or l2c; see appendix B equations B.1 and B.2), or when the angle formed by
three consecutive nodes is smaller than a critical αc (equation B.4). In case of incompressible
fluids, a domain� should be area conserving, and the error ε can be estimated by:

ε =
∣∣∣∫�|t=t0

dA − ∫�|t=t0+
t
dA
∣∣∣∫

�|t=t0
dA

. (2.2)

If the area conservation is not within certain limits, the values for l1c and l2c have to be
adapted.

The adaptive tracking method can be very accurate, as is shown in figure 2.3. This figure
shows the advection of a blob (indicated by the grey circle) with radius r = 0.10 around
the location (x, y) = (1.15, 0), where a hyperbolic point is present. The dimensions of the
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cavity are 3.34 by 2, with the location of the origin in the centre of the cavity. The initial
blob is advected for five periods with a dimensionless displacement D of 6.25. The error
in area conservation for this computation with 20 points initially describing the boundary,
l1c = 10−4, l2c = 10−2 and αc = 2

3π was 0.4% (equation 2.2); the boundary is stretched
approximately 1.5 × 103 times (figure 2.3).

In chaotic flows, the length of the boundary can increase exponentially (Ottino (1989),
Muzzio et al. (1992)), and therefore the number of nodes will also increase exponentially if
an accurate description of the boundary has to be maintained. Therefore, although accurate,
this method is computationally expensive for analysis of even a relatively small number of
periods, or flows where stretching of the boundary is extremely non-uniform, and becomes
infeasible for large numbers of periods. Furthermore, if the initial location of the area to be
tracked or the mixing protocol is changed, the analysis needs to be repeated.

2.4 Mapping approach

The mapping method describes the transport of a conservative quantity from one state to
another by means of a so called mapping matrix. In this thesis the mapping matrix will
describe the transport of fluid from one point in time to the next (closed flows), or from one
cross-section to the next (open flows).

2.4.1 Basics of the mapping method

The method proposed subdivides an arbitrary domain � into (a large number n of) subdo-
mains �i with boundaries �i . The boundaries of all subdomains are tracked from t = t0
to t = t0 + 
t . These computations are expensive, but need to be performed only once for
every geometry and are highly parallelisable (Geist et al. (1994), Galaktionov et al. (1997))
since there is no interdependence between domain tracking computations. A distribution or

j

i

Φ i j


t

Fig. 2.4: Schematic representation of subdomain advection and determination of the coefficient Φi j ;
Φi j is the part of the area of �i that is advected to � j
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mapping matrix Φ is computed where Φi j contains the fraction of subdomain � j at t = t0
that is tracked to t = t0 +
t and found in the domain �i as it existed at t = t0 (figure 2.4):

Φi j =
∫
� j |t=t0+
t

⋂
�i |t=t0

dA

/∫
� j |t=t0

dA. (2.3)

The mapping matrix Φ has the following properties:

• The amount of fluid transported from a subdomain j equals the area A j of the subdo-
main (conservation of mass). This implies:

n∑
i=1

Φi j = 1. (2.4)

• The amount of fluid transported to a subdomain i equals the area Ai of the subdomain
(again: conservation of mass). Thus:

n∑
j=1

Φi j A j = Ai . (2.5)

• Φ is sparse since, in a relatively limited time span
t , fluid from one subdomain at the
beginning or entrance of the flow, is transported to only a limited number of subdo-
mains at the next time level (this allows for compact storage in computations).

In general, the interval 
t does not span an entire period. If optimization of a mixing
protocol is required, and this includes the effect of the length of the period, then the minimum
step size to compute a mapping matrix should be equal to the minimum step size that is used
for varying the period time. Combination of maps with different time intervals 
ti can be
used to create the map ΦT for some period time T :

ΦT =
k∏

i=1

Φ
ti where:
k∑

i=1


ti = T . (2.6)

However, in general ΦT is less sparse than Φ
ti . When Φ is computed, a quantity that
is related to the subdomains can be mapped. The chosen quantity should not influence the
flow field, or its influence should at least be negligible, since otherwise the map itself would
change. The method assumes a uniform distribution of the chosen quantity over an initial sub-
domain. This introduces a systematic error in the method: separate contributions of different
subdomains at t = t0 to a certain subdomain at t = t0 +
t are averaged in that subdomain.
Since the state after one map defines the new state for the next map, this error propagates as
is schematically shown in figure 2.5. However, it will be shown that if the subdomains are
small enough, the method still provides valuable results.

The most apparent quantity to be mapped is the locally averaged concentration Ci , or
coarse grain density (Welander, 1955), of a marker fluid in �i . Thus, for every �i in �
the initial concentration Ci is stored in a column C(0). Now, the concentration distribution
C(nt
t) at nt ×
t could be computed by C(nt
t) = Φ

nt

t C

(0), provided that the map Φ
t is
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�i

advection

� j

�i

redistribution

�i

map

� j

�k �k

Fig. 2.5: The diffusive error made by the mapping method: suppose that the top half of domain �i with
concentration 1, would be advected to subdomain �k and the bottom part, with concentration
0, in subdomain � j as shown on the left. Using the mapping method, the concentration will
be locally averaged before it is mapped to subdomains � j and �k as shown on the right.

the same for every consecutive
t (repetitive mixing). Spencer & Wiley (1951) already sug-
gested, in a similar approach for very simple transformations, to analyse mixing behaviour by
studying the properties of Φn . Where Φ will generally be a sparse matrix, Φn will generally
be dense, since fluid from an initial subdomain will finally be advected throughout the flow
domain. This makes studying the properties of Φn both unattractive and even impossible for
efficient three-dimensional exponential mixing flows. Therefore, instead of investigating Φn ,
e.g. C(n) could be investigated. C(n) is computed by the sequence for i = 1 to n:

C (i) = Φ · C(i−1). (2.7)

This procedure does not change the matrix Φ and is, therefore, much cheaper, both in number
of operations as well as in the computer memory needed, than computing Φn . A disadvantage
is, of course, the (artificial) diffusion introduced by subdomain-averaging, which occurs in
every mapping step and can only be decreased by decreasing the number of mapping steps,
thus increasing the time-span of the map. This essential disadvantage of a large number of
subsequent mapping steps requires a balance between the length of the elementary time step

t and the number of steps n to span the total mixing time n
t .

An example of how the boundaries �i deform for a time-periodic prototype flow like
the lid-driven cavity as they are advected during a time step 
t of the flow is shown in
figure 2.6. The figure shows the deformation of the subdomains due to fluid flow induced

(a) (b)

Fig. 2.6: Coarse mesh subdomain advection in a lid driven cavity flow. a) Initial subdomain distribution
(25 × 15 grid) and b) deformed grid after a displacement of D = 2.
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a

b

cA

(a) Mapping (b) Poincaré

Fig. 2.7: a) Concentration distribution after 20 periods (alternatingly moving the top wall T and bottom
wall B) with D = 8 and n = 40; initially the right half of the cavity was black, the left
half white. The islands are marked by additional contours. b) Poincaré map to show the
correspondence in the location of the island. The three third order islands are visible with both
techniques.

by a displacement of the top wall of twice its length. Note that this figure serves only as an
illustration. Actual analyses are computed with a two to five orders of magnitude finer grid
(200 × 120, 400 × 240 or 800 × 480 subdomains).

2.4.2 Comparison of mapping with traditional methods

To show the advantages of the mapping method it will be compared to the Poincaré method
and the tracking method. In figure 2.7 results of the mapping method are compared to results
of the Poincaré method for D = 8. The results of the mapping method were obtained by col-
ouring the right half of the cavity black (C = 1) and mapping this concentration distribution
for twenty periods. The size of the large central island is readily recognized. Also, the three
smaller islands (a,b,c) around the first island (A) are found as well. In contrast to Poincaré
sections, mapping allows for the determination of the order of the periodic points: island A
is of order 1; islands a, b, and c are of order three and rotate counterclockwise (which can
be deduced from the grey level of the islands). Notice that the structure (striations) in the
concentration distribution is still distinguishable after 20 mapped periods, despite the diffus-
ive character of this method. The influence of the grid-size on the diffusive error is shown in
figure 2.8. It is clear that with increasing resolution the tracked pattern as shown in figure 2.3
is restored better. However, one should also keep in mind that the resolution need not be as
high as possible, but that it should be chosen in accordance with the physical size of the flow
domain and the phenomena one is interested in.

The mapping technique is, by its nature, less accurate than the adaptive contour track-
ing technique. This does not imply any serious limitations, as will be shown by comparing
both methods for a limited number of periods (due to limitations of the contour tracking
technique).

The mapping method is compared to the tracking method for three to five periods. The
initial and final situations as obtained by the tracking method are shown in figure 2.3. To
compare tracking and mapping, the coarse grain intensity of segregation is applied to both
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25 × 15 50 × 30 100 × 60

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

200 × 120 400 × 240 800 × 480

Fig. 2.8: Concentration distribution after 5 periods, obtained by mapping from 1-period distribution
(computed using adaptive front tracking and discretized) with different resolutions.

techniques. The results of the tracking method are discretized on the same grid as the mapping
method (see figure 2.9).

In case of the tracking method, the discrete intensity of segregation, Id (see appendix A) is
computed after five periods by discretizing the tracked boundary of the dyed area, as shown
in figure 2.3, on the grid on which the corresponding mapping matrix was computed. For
the mapping method, the contour of the dyed area was tracked for one period, discretized,
and then mapped to five periods. As indicated in table 2.1 the accuracy is apparently only
moderate, and worse for the larger domain sizes, which was to be expected given the artifi-
cially induced diffusion. Assuming that due to diffusion only the neighbouring subdomains
are affected, one subdomain would affect eight neighbours (and vice versa). Since with the
tracking method no neighbouring subdomains are affected, the discretization grid for the
tracking method can be nine times larger than for mapping, or alternatively, mapping needs a
nine times finer gridsize in order to obtain the same value for the intensity of segregation. If
table 2.1 is more closely regarded, it is evident that the values for the intensity of segregation
for the tracked grids at 100 × 60 and 200 × 120 are close to the values obtained by mapping
on 300 × 180 and 600 × 360 grids, respectively. Their ratio equals 1.0 in both cases. A better
comparison is shown in figure 2.10. The values for the intensity of segregation computed by
mapping and tracking are plot as a function of the number of subdivisions along the x-axis.
The ratio of the slopes of the fitted lines through the datapoints is 7.5. This indicates that in
order to obtain the same values for the intensity of segregation using the mapping method,
the resolution of the grid should be 2.7 times higher than for the tracking method. This value,
however, will be different for a different type of flow.
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Fig. 2.9: Comparison of the discretized concentration distribution for the tracking method and the map-
ping method on a 800 × 480 grid (initial location of the blob is shown in Figure 2.3).

2.5 Long term mixing behaviour; optimization

he mapping method is a flexible tool for optimizing mixing, since it allows the incorporation
of variations on an existing mixing protocol, without having to recompute the entire protocol
adapted repeatedly. As an illustration, two parameters of the cavity flow are varied: the
dimensionless displacement D and the number of wall movements n; the product of which
is proportional to energy input. Different protocols are compared by changing the order of
consecutive mappings.

Five different protocols are investigated. In protocol A only the top wall moves, avoid-
ing periodicity in the flow. In protocol B the top wall (T) and bottom wall (B) move al-
ternatingly. Protocols C and D are variations on protocol B proposed by Ottino (1989),
Franjione et al. (1989), Jana et al. (1994a), Aref & El Naschie (1995) to reduce the regular-
ity of the protocol, thus decreasing the size of regions around elliptic points (symmetry break-
ing protocols). Protocol E is a variation of protocol B where a finite wall length is taken into
account and the direction of the wall motion is changed.

In first instance, for all these protocols the concentration distribution is computed with
only two mapping matrices: Φ D=2 and ΦD=4 (movement of the top wall only). Since the
geometry is symmetric, the map for a movement of the bottom wall is the same as for the
top wall, but rotated (x and y values multiplied by −1 in the coordinate system of figure
2.1). Wall movement in the opposite direction and movement of the opposite wall, can be
computed by mirroring (multiplying the x and/or y-coordinate by −1 in the coordinate system
of figure 2.3). This prevents that extra matrices need to be computed and stored. Results are
shown in figures 2.11a and 2.11b; for all concentration distribution plots the energy input
(n · D) is constant.

Figure 2.11 clearly shows different mixing behaviour for the different protocols and dif-
ferent values for D and n. From figure 2.11a it could be suggested that simply increasing
D at the cost of n is beneficial for the mixing performance. This is not the case, however,
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Tab. 2.1: Intensity of segregation after five periods for the mapped and tracked method.
Grid size tracked mapped ratio

25 × 15 5.906 · 10−3 1.413 · 10−3 4.18
50 × 30 1.089 · 10−2 3.413 · 10−3 3.19

100 × 60 1.992 · 10−2 7.195 · 10−3 2.77

200 × 120 3.823 · 10−2 1.347 · 10−2 2.84

300 × 180 5.538 · 10−2 2.011 · 10−2 2.75
400 × 240 7.065 · 10−2 2.740 · 10−2 2.58

600 × 360 9.883 · 10−2 3.823 · 10−2 2.59
800 × 480 1.257 · 10−1 5.055 · 10−2 2.49

since when the parameter D is increased further (figure 2.11b), all protocols become similar
to protocol A (only the top wall moving, no periodicity) and the intensity of segregation in-
creases. Apparently (and naturally), there is an optimum value for D and n, since both large
D as well as large n yield laminar mixing.

The mixing properties for the five different protocols are now investigated in more detail,
with D varied between 0.25 and 64.0, in steps of 0.25, and n between 1 and 64 using just five
maps for different values of D. The first four maps (for D = 0.25, D = 0.5, D = 1.0 and
D = 2.0) were computed while integrating to D = 4.0, thus computing the five maps in a
single run. This run was computed using 50 personal computers in parallel during 16 hours.
The mapping matrices were then extracted from the tracked grids (see figures 2.4 and 2.6)
which took 2 hours on the same set of computers.

The resulting maps are applied to the concentration column C to determine the concen-
tration distribution. If e.g. the concentration distribution C(5.25) for D = 5.25 is required, it
is computed by:

C(5.25) = Φ4(Φ1(Φ0.25C(0))). (2.8)

Computing the concentration distribution by matrix column multiplication requires less than
a second on a single machine for each mapping operation.

A two-dimensional, stationary Stokes flow will not be chaotic. Therefore mixing will be
linear, and will only depend on the amount of energy used. The efficiency plot for protocol A
(see figure 2.12) shows this: the lines where intensity of segregation is constant have the same
hyperbolic shape as the lines where energy input is constant. This figure also shows the influ-
ence of consecutive mappings: the lines of constant intensity of segregation are jagged with
an increasing amplitude for an increasing number of mapping operations, which is explained
by the fact that e.g. a D of 8.0 is reached with two mappings (Φ4(Φ4C(0))), whereas a D of
7.75 is computed with five mappings (Φ4(Φ2(Φ1(Φ0.5(Φ0.25C(0)))))). Since every mapping
step introduces diffusion into the system, the calculated intensity of segregation decreases if
more mappings are needed.

Figure 2.13 shows plots of the intensity of segregation (equation A.2, appendix A) as a
function of D and n for protocols B through E. Black indicates a bad mixture (i.e. Id = 1),
white indicates a good mixture (i.e. Id = 0). All plots clearly show values for D where
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Fig. 2.10: Intensity of segregation after five periods for the mapped and the tracked method as a function
of the gridsize.

the intensity of segregation of the mixture only slowly changes with changing n (the grey
streaks), while for other values of D just a slight change in its value results in a stepwise
improved mixture, often with less energy input (the white areas). The plots also indicate
where a slight variation in process parameters can have a large effect on the resulting quality
of the mixture. The spacing of the streaks in the direction of D is nearly equidistant. This
is explained by the presence of elliptic periodic points. Some of the elliptic points that occur
for a certain value of D, will also occur for multiples of D. If the region of influence (island)
of such an elliptic periodic point is large, the intensity of segregation will be large.

The mapping method is the only method known sofar that can straightforwardly be used to
show the dependence of mixing quality on process parameters. Computation of the efficiency
plots as shown in figures 2.12 and 2.13 requires approximately 150.000 mappings and takes
about 3 hours on a personal computer.

The different protocols can also be compared mutually and the more sophisticated proto-
cols implement that symmetry breaking (like protocols C and D) yield more efficient mixing.
Protocol B in particular shows the worst overall mixing efficiency of all periodic flows: a
relatively high value for D (larger than 15) is needed in order to reach a good mixture qual-
ity. Remarkable is that the horizontal ‘spikes’ in the diagrams that indicate bad mixing are
located at the same values for D and that only their width and length are influenced by the
protocol.

For the scale of segregation (equation A.10, appendix A) similar diagrams can be con-
structed (figure 2.14). These plots appear similar to the plots of Id as a function of n and D.
However, there are some noticeable differences. From the wider (in the direction of the D
axis) and longer (in the direction of the n axis) dark streaks in this figure it follows that the
periodicity in the concentration distribution of the mixtures exists for a longer time span (the
number of wall movements) and is less sensitive to the displacement D. This also indicates
that the mapping method is able to preserve the structure (striations) of the mixture.
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64 steps, D=2 32 steps, D=4 16 steps, D=8

Protocol A: TTTT TTTT TTTT TTTT

I = 0.203, S̄ = 1.70 I = 0.254, S̄ = 1.12 I = 0.254∗, S̄ = 1.12

Protocol B: TBTB TBTB TBTB TBTB

I = 0.455, S̄ = 0.51 I = 0.349, S̄ = 0.43 I = 0.133, S̄ = 1.08

Protocol C: TBTB BTBT TBTB BTBT

I = 0.276, S̄ = 0.91 I = 0.067, S̄ = 3.36 I = 0.047, S̄ = 4.32

Protocol D: TBBT BTTB BTTB TBBT

I = 0.202, S̄ = 1.72 I = 0.046, S̄ = 4.21 I = 0.013, S̄ = 15.50

Protocol E: TB–T–B TB–T–B TB–T–B TB–T–B

I = 0.356, S̄ = 0.40 I = 0.066, S̄ = 2.16 I = 0.008, S̄ = 26.50

Fig. 2.11: (a) Results of dye advection using different protocols with the same energy input. All com-
putations were done using pre-computed mappings for D = 2 and D = 4. Initially dyed
fluid completely fills the right half of the cavity. The computed intensity of segregation is
stated under each image. ∗) As for D = 4, the mappings with D = 8, D = 16, D = 32 and
D = 64 were performed as a number of consecutive mappings with D = 4. (S̄ = S · 104).
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8 steps, D=16 4 steps, D=32 2 steps, D=64

Protocol A: TTTT TTTT TTTT TTTT

I = 0.254∗, S̄ = 1.12 I = 0.254∗, S̄ = 1.12 I = 0.254∗, S̄ = 1.12

Protocol B: TBTB TBTB TBTB TBTB

I = 0.008, S̄ = 24.80 I = 0.041, S̄ = 6.20 I = 0.137, S̄ = 1.92

Protocol C: TBTB BTBT TBTB BTBT

I = 0.019, S̄ = 7.23 I = 0.041, S̄ = 6.20 I = 0.137, S̄ = 1.92

Protocol D: TBBT BTTB BTTB TBBT

I = 0.028, S̄ = 8.20 I = 0.092, S̄ = 2.30 I = 0.137, S̄ = 1.92

Protocol E: TB–T–B TB–T–B TB–T–B TB–T–B

I = 0.009, S̄ = 26.70 I = 0.041, S̄ = 6.47 I = 0.137, S̄ = 1.92

Fig. 2.11: (b) Figure 2.11a continued.
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Fig. 2.12: Intensity of segregation Id as a function of number of wall movements n and dimensionless
displacement D. Protocol A shows the error due to numerical diffusion of the mapping
method. The only independent parameter is the product n · D (energy). The iso-energy
lines (· · ·) should therefore have the same hyperbolic shape as the iso-intensity of segregation
lines (—).

2.6 Mapping of morphology

The accuracy of the mapping method is determined by the resolution of the spatial discretiz-
ation of the mapping grid. However, morphology development mostly takes place on a finer
level. In order to incorporate morphology into the mapping method, a quantity needs to be de-
rived that describes properties of the morphology and can also be mapped. The area tensor is
such a quantity (Wetzel & Tucker (1997), Wetzel & Tucker (1999a), Wetzel & Tucker (1999b),
Galaktionov et al. (2000a)). The area tensor is defined as:

A = 1

V

∫
�

nnd� (2.9)

with n a unit normal vector on the interface between two components �. The components
of A have units of interfacial area per volume in three dimensions and units of interfacial
length per area in two dimensions. The trace of the area tensor (trA) is equal to the total
interfacial area in the averaging volume, the eigenvalues and eigenvectors are measures for
the orientation and type of microstructure. Some typical examples, further details on the area
tensor and its implementation are given in appendices C and D. The area tensor is not just
mapped, but also transformed (taking into account the deformation of a subdomain during
one mapping step).

In a simple shear flow, the interfacial area will increase linearly in time. Therefore, also
the trace of the area tensor will increase linearly. For chaotic flows, the interfacial areas in
some parts of the domain increase exponentially in time, therefore, also the also the trace
of the area tensor increases exponentially. It is beyond the scope of this thesis to give a
full treatment and analysis of the area tensor, and therefore only an example is given to
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Protocol C (TBTB BTBT)
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Protocol D (TBBT BTTB BTTB TBBT)
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Protocol E (TB−T−B)
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Fig. 2.13: Intensity of segregation plots for four different protocols. The dotted lines (· · ·) indicate lines
of constant energy, the drawn lines (—) indicate lines of constant intensity of segregation.

demonstrate the strength of the method. Figure 2.15 shows the results of mapping the area
tensor on a domain of 200 × 120 subdomains comparing them to maps of concentration.

The figure clearly shows that information about interface is clearly preserved when the
concentration distribution has almost evened out. Also, the self similar nature of the plots of
trA is shown in this figure. The plot in figure 2.15b closely resembles those of figure 2.15d
and f. The major difference is in the greyscale of the figures. It clearly indicates that the
growth of interfacial are is exponential with the number of periods.
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Fig. 2.14: Plot of the scale of segregation as function of D and n for protocol B (left) and protocol D
(right).

2.7 Conclusions and discussion

The mapping method is an efficient method to analyse mixing protocols and geometries.
Most computation time is consumed by tracking the boundaries of the subdomains and is
mainly determined by the coarseness of the grid chosen, the accuracy of the description of
the boundaries of the subdomains required and the time for which these boundaries have to be
tracked. However, once these mapping matrices are determined, analysis of arbitrary mixing
protocols that can be constructed from these matrices can be computed within seconds.

The efficiency of the mapping method lies in the feature that parameter variations can be
made and investigated easily. It thus leads to a better understanding of the mixing proper-
ties of a flow and the influence of variation of its mixing parameters. Most of the results of
other methods (Poincaré sections, manifold analysis, periodic point location and classifica-
tion) can also be obtained using the mapping method. The decrease in accuracy caused by
diffusive errors in the mapping method is clearly compensated for by its flexibility: on one
hand the mapping method keeps track of information concerning the actual distribution of
dyed fluid, in contrast to e.g. the Poincaré method in which points have no physical size. On
the other hand, in contrast to application of boundary tracking methods the investigation of
higher numbers of periods (> 10) and different initial dye shapes and position is possible by
applying the mapping method. Further, as clearly demonstrated, once a set of distribution
matrices is computed, they can be used to compute a range of different protocols with differ-
ent parameters, allowing for an optimization of the mixing protocol. Finally, once a mixing
protocol is chosen, the mapping method can be used to compute efficiency plots that indicate
for which set of process parameters mixing is good and insensitive to disturbances of those
process parameters.

Most results presented in this chapter refer to mapping concentration. However, other
measures can also be mapped. As an example, results for mapping the area tensor, repres-
enting interfacial area, are also given. Another example of a quantity that can be mapped is
residence time. This is only useful in mixing flows with open domains and thus will be dealt
with in chapters 4 and 5.
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Fig. 2.15: Evolution of concentration (left) and trace of the area tensor (right) distributions in the flow
described by protocol TB with dimensionless displacement D = 16. Marker fluid initially
fills the left half of the cavity. The results are shown after 2, 4, and 8 periods of the flow on a
200 × 120 grid.
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Chapter 3

Three-dimensional time-periodic prototype flows∗

3.1 Introduction

Mixing analysis of three-dimensional flows introduces a number of complications. The Poin-
caré method e.g. would need to be adapted in a way to show the distribution of points in slices
of the domain considered. Also, once done, as indicated in chapter 2, the Poincaré method
does not give information on the actual distribution of fluid in a layer and will always give an
asymptotical situation. On the other hand, volume tracking is more complicated compared
to the two-dimensional case, since points to be tracked are multiply-connected instead of
singly-connected, as was the case in two-dimensional boundary tracking. This poses prob-
lems for the description of the volume surface, but even more so for the adaptive refinement
of the surface. Front capturing techniques or volume of fluids methods may be more readily
available or easier to implement, however, like boundary tracking they need to be repeated
for every change in mixing protocol.

Therefore, the mapping method introduced in chapter 2 will be extended to three dimen-
sions. The problems of volume description and refinement, consequently, need to be tackled
(see appendix B). The three-dimensional mapping approach will be tested on a second pro-
totype mixing flow which is closely related to the two-dimensional cavity flow discussed in
chapter 2: a cubic domain (box) with four stationary walls and two oppositely placed sliding
walls (see figure 3.1). It will be shown that by adapting the intensity of segregation to three
dimensions (see appendix A), the mapping method can also be used to compare the efficiency
of protocols in 3D.

3.2 Computational method and boundary conditions

In order to investigate three-dimensional mapping, the prototype mixing flow in two di-
mensions, the lid-driven cavity, is extended to three dimensions (Galaktionov et al. (1997),
Anderson et al. (1999)). The domain is defined as −1 ≤ x, y, z ≤ 1 in dimensionless co-
ordinates. The resulting lid-driven cubic cavity has two opposing walls (front, y = −1, and
back, y = 1) that can move freely in their xz-plane. All other walls are fixed. Figure 3.1
shows the possible movements of the front and back wall as well as the notations used to
define them and the same notation is used to define the corresponding mappings. Motion of
the front and back wall are indicated by ‘F’ and ‘B’, respectively; the subscripts l, r , u and d

∗ This chapter is largely based on: A mapping approach for 3D distributive mixing analysis, O.S. GALAKTIONOV,
P.D. ANDERSON, P.G.M. KRUIJT, G.W.M. PETERS, and H.E.H. MEIJER, accepted by Computers and Fluids,
2000.
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Fig. 3.1: Prototype mixing flow in a cubic cavity with moving front and back walls.

indicate the direction of the movement (to the left and right, up or down, respectively). This
relatively simple geometry allows for accurate numerical solutions and forms a convenient
model for testing the techniques designed to study three-dimensional laminar time-periodic
distributive mixing in general.

The flow in the cavity is described by the Stokes equations:{ −η
u + ∇ p = 0
∇ · u = 0

(3.1)

where u = (u, v,w)T is the velocity, p the pressure and η the dynamic viscosity of the fluid.
For all walls homogeneous Dirichlet boundary conditions are imposed, except for the front
wall where the condition u = 1, v = 0, w = 0 is prescribed (thus the velocity field for Fr is
obtained). The numerical solution of (3.1) is performed by a projection method that decouples
the pressure p and velocity u (Timmermans et al., 1996). A spectral element approximation
(Maday & Patera (1989), Anderson (1999)) is used for the spatial discretization and gives an
accurate approximation of the velocity field. The cavity is subdivided into 15 × 15 × 15 sixth
order spectral elements, leading to totally 753,571 nodal points and a system with 2,868,477
degrees of freedom. The resulting system of equations is solved using a conjugate gradient
solver with a finite element preconditioner (Anderson, 1999).

Since Stokes flow is considered and the flow domain is symmetric, the velocity field needs
to be computed for only one type of wall motion (in this case Fr is chosen). The velocity
fields for all other wall motions indicated in figure 3.1 can be obtained by simple coordinate
transformations.

3.3 Three-dimensional mapping approach

Although the flow in a cubic cavity is well-defined, due to singularities in the boundary
conditions on the edges of the moving walls high gradients in the velocity field exist locally.
In order to reduce the computational cost of tracking, not the entire domain is divided into
subdomains to be tracked for mapping. Instead this domain was reduced by considering only
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Tab. 3.1: Size and sparsity of the mapping matrices computed for two different spatial resolutions and
different dimensional displacements.

resolution 50 × 50 × 50 100 × 100 × 100
displacement D = 1 D = 2 D = 4 D = 2

# subdomains 125,000 + 1 1,000,000 + 1
# matrix elements ≈ 1.56 × 1010 ≈ 1012

# non-zero elements 1,186,037 1,293,581 1,587,199 10,468,501
matrix density 0.0076% 0.0083% 0.0102% 0.0011%

the inner part −0.95 ≤ x, y, z ≤ 0.95, of the cavity and was subdivided into a regular array of
cubic subdomains. The remaining part of the cavity is accounted for as one single subdomain.

Mapping matrices are computed on two different spatial resolutions: 50 × 50 × 50 and
100 × 100 × 100. As mapping in essence comes down to tracking the boundary of a large
number of subdomains, the computation of the individual entries in the mapping matrices was
performed in parallel using PVM based algorithms (Geist et al., 1994). Since the number of
nodes needed to describe all deformed boundaries is too large to store into computer memory,
the deformation of a particular subdomain is computed entirely by one slave process. This
slave process also determines the volumes of intersections with the initial subdomains and
returns the non-zero elements of the mapping matrix to the master program that assembles
the mapping matrix. This individual tracking of boxes increases the processor-time for the
total computation since almost all lines are tracked twice. However, the approach allows
the computation of the mapping matrix with good accuracy, without running into memory
problems.

As Stokes flow is assumed, the deformation of the subdomain boundaries is completely
defined by the dimensionless displacement of the wall D, defined here as the wall displace-
ment divided by half the cavity edge length. For the low spatial resolution (50 × 50 × 50) the
mapping matrices were computed for three different wall displacements D = 1, D = 2 and
D = 4; for the finer resolution (100 × 100 × 100) only the matrix for D = 2 was computed
due to the higher computational costs. In all cases only the boundaries of the subdomains in
the lower half (z < 0) of the cavity were tracked, and symmetry of the flow around z = 0
plane was used to obtain the deformation of the subdomains from the upper part.

Only the mapping matrices corresponding to the movement Fr are computed. Mappings
for all other motions are obtained by using the symmetry of the velocity field and flow do-
main. For example the mapping Fl can be presented as Sx Fl Sx , where Sx is the symmetry
operator Sx(x, y, z) = (−x, y, z). Similar transformations yield all other types of wall mo-
tion considered here.

The data on the computed mapping matrices are summarized in table 3.1 from which it
is obvious that the mapping matrices are very sparse. Since the full matrix for the higher
resolution grid would already contain 1012 elements, of which less than 0.0011% are non-
zero, it is clear that a compact storage algorithm has to be used.

Although computation of the mapping matrix in three dimensions is computationally ex-
pensive due to tracking of a large amount of nodal points needed for an accurate boundary
description of the deformed subdomains, it has to be computed only once. The matrix-vector
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(a) (b) (c)

Fig. 3.2: Comparison of front tracking and mapping results after one cycle of the Fr Bu Fl Bd protocol
with dimensionless displacement D = 4: a) initial test volume; b) results of adaptive front
tracking; c) interface shape recovered from the mapping results (100 × 100 × 100 resolution).

multiplications used to determine concentration distributions, on the other hand, are com-
puted within a second computing time, and need to be repeated many times in order to eval-
uate the mixing efficiency in time and for various protocols.

3.4 Verification

Validation of the mapping technique in three dimensions is done by comparing the results of
the mapping technique with those of front-tracking. Due to limitations of the front tracking
technique, the volume is tracked for a limited number of steps.

A cubic-shaped volume of marker fluid is positioned in the centre of the cavity (see fig-
ure 3.2a). Inside this volume the concentration is set to 1, outside to 0.

This pattern was advected for one period in a four-step protocol described by Fr Bu Fl Bd

and D = 4 for every step. The result of adaptive front tracking is presented in figure 3.2b.
The result from the mapping technique was obtained on the higher resolution grid with a
total of eight mapping operations (since only a mapping matrix for D = 2 is available).
The resulting concentration distribution is regarded as voxel data, i.e. the local concentration
value was attributed to a cube with the size of a subdomain. The boundary of the marker fluid
in figure 3.2c is visualized by plotting the iso-concentration surface at a level of c = 0.5.
This explains why the tip of fluid in the upper right corner of figure 3.2b is larger than in
figure 3.2c. The layer of fluid is so thin that less than 50% of the domain is filled.

The surface shape recovered from the mapping results is in good agreement with the res-
ults of adaptive front tracking. Minor differences, as e.g. loss of sharpness of the edges can be
observed. It should be noted that the reconstruction of the interface shape from the concen-
tration distribution (obtained via mapping) is directly related to front capturing techniques.
Interface reconstruction for stronger deformations is an involving problem (Qu & Li (1996),
Rudman (1997)).
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(a) (b)

Fig. 3.3: a) Cross-sections on which concentration distribution is displayed; b) initial concentration
distribution.

3.5 Results

The mixing patterns are presented by displaying the concentration distribution on selected
planes in the cavity as shown in figure 3.3a. The initial concentration distribution is shown
in figure 3.3b, and can be characterized as:{

c = 1 for y ≤ 0
c = 0 for y > 0

. (3.2)

3.5.1 Influence of spatial discretization

The influence of spatial resolution on concentration distribution is shown in figure 3.4. In
both cases an eight step protocol (Fr Bl Fl Br Fd Bu Fu Bd with D = 8) is applied to the
initial distribution shown in figure 3.3b. For the lower spatial resolution this resulted in 16
mapping operations with D = 4, for the higher resolution 32 mapping operations with D = 2
were used since only one mapping matrix (for D = 2) was available. Although twice more
mapping operations were needed for the high resolution results, the image shows more detail.
Since the region near the cavity walls is taken into account as one large subdomain, these
subdomains show up as having a uniform grey colour in the plots since all contributions to
this subdomain are averaged too. As this subdomain also contributes to other subdomains in
the cavity, the subdomains that get a large contribution from the outer subdomain tend to get
an average concentration rapidly. This effect is apparent in the left bottom part of the cavity.

The quality of the mixture is characterized by the intensity of segregation I . The value
of I is influenced by two mechanisms: the actual mixing process (striation thickness) and
errors due to averaging over subdomains (see figure 2.5). Finer spatial resolutions reduce the
numerical errors (see figure 3.4). Notice that if the subdomain size decreases due to the higher
resolution, the value of I increases since the averaging volume decreases and less diffusion
occurs. Therefore, the magnitude of I by itself is not a reliable quantitative value to describe
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50 × 50 × 50, I = 0.051 100 × 100 × 100, I = 0.082

Fig. 3.4: Dependence of the computed mixing pattern on spatial resolution after eight steps of the pro-
tocol Fr Bl Fl Br Fd Bu Fu Bd with D = 8. For low resolution (left picture) 16 mappings with
D = 4 were performed; for high resolution (right) – 32 mappings with D = 2.

the quality of the mixture (see also table 2.1). It is, however, useful to qualitatively compare
mixtures obtained by different protocols on the same spatial discretization.

Intensity of segregation as a function of the number of steps for three different mixing
protocols and for two different spatial resolutions is shown in figure 3.5. The figure clearly
shows that mapping with different resolutions produces different values of I , as the numer-
ical diffusion is stronger for the mappings with the lower spatial resolution as averaging is
performed on larger volumes. More important, however, is that the results obtained on both
discretizations show the same trend and lead to the same conclusions concerning the relative
efficiency of different mixing protocols. For better comparison, the intensity of segregation
for the results computed using high resolution mappings were also evaluated using the low
resolution grid, thus reducing the effect averaging on smaller volumes has on I . Due to extra
averaging (in groups of 2×2×2 neighbouring subdomains), the resulting intensity of segreg-
ation (indicated by dashed lines) is lowered. Because this extra averaging is only performed
once (after the last mapping) instead of after every mapping operation, the result is better than
for the low resolution mapping.

Another result apparent in figure 3.5 is that the computed intensity of segregation reaches
a certain minimal level (observed here for the 8-step protocol) and then oscillates around that
level. These oscillations may result from concentration fluctuations caused by errors in the
values of the mapping matrix coefficients and impose the limit to which mapping simulations
are useful. For a finer resolution a lower level of I can be achieved. Therefore, for all
subsequent analyses the resolution 100 × 100 × 100 is used.
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Fig. 3.5: Intensity of segregation for different mixing protocols with D = 8. The upper group of lines
correspond to constant movement of the front wall to the right (Fr Fr . . .), 4-step protocol is
Fr Bu Fl Bd , 8-step protocol is Fr Bl Fl Br Fd Bu Fu Bd . Dashed lines indicate results computed
using high resolution mapping but with intensity of segregation estimated on the low resolution
grid.

3.5.2 Comparison of mixing protocols

Combining the mapping technique with the use of a quantitative criterion (here the intensity
of segregation I ) gives a possibility to compare the mixing efficiency of different protocols.
For protocols with the same energy input (in this case proportional to the sum of the wall
displacements), the rate of the decrease of the intensity of segregation with the number of
steps serves as a measure of the mixing efficiency. In figure 3.5 the evolution of the intensity
of segregation is compared for three different protocols. The steady motion of a single wall
does not produce efficient mixing, as spreading of material in this case is linear in time (no
periodicity and hence no chaos). Therefore, the decrease in I is slowest in this case (see
figure 3.5). The two time-periodic protocols, shown in the same plot demonstrate a better
efficiency.

Figure 3.6 shows cross-sections (as defined in figure 3.3a) through the mixing patterns ob-
tained by different time-periodic protocols with the same dimensionless displacement (D =
8). In all cases, eight steps of the protocol are performed (n = 8), thus the energy input is the
same for all protocols. The two-step protocol Fr Bd (figure 3.6a), in which the walls move
in just one direction, is one of the simplest, three-dimensional mixing protocols in the cavity
under consideration.

In the following analysis, protocols are restricted such that the total displacement of the
individual front and back wall are zero after one period. These protocols are of interest be-
cause of their easier experimental feasibility: moving walls can be made of rigid transparent
plates instead of closed belts, providing better optical access from different viewpoints. One
of the simplest protocols adhering to this extra condition is the four-step protocol Fr Bu Fl Bd ,
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shown in figure 3.6b; each moving wall slides only along one axis, but the direction of its
motion is altered every step. This protocol, however, is less efficient than the two-step pro-
tocol Fr Bd (see figure 3.6a, I = 0.098). After eight steps the intensity of segregation is still
almost twice as large (I = 0.189). Note that the intensity of segregation is computed over
the entire flow domain, not only at the cross-sections shown in the pictures.

To improve the mixing efficiency, symmetry breaking techniques can be used (Franjione et al., 1989).
The protocol Fr Bu Fl Bd Fd Bl Fu Br (figure 3.6c) is such a symmetry breaking protocol and is
obtained by first performing one cycle of the four-step protocol and then repeating a similar
sequence of wall motions rotated by 90◦. This indeed improves the mixing performance a
bit (I has somewhat decreased — see figure 3.6c, I = 0.169), but still does not bring it to
the level of the simple two-step protocol. Using the experience obtained from studying two-
dimensional mixing in a rectangular cavity, more efficient protocols can be constructed. In
the eight-step protocol Fr Bl Fl Br Fd Bu Fu Bd (figure 3.6d) the first four steps are similar to
protocol E for the two-dimensional cavity (see section 2.5), which was found to be efficient in
that case. Next, a similar sequence of wall motions is performed in z direction. The resulting
protocol is slightly more efficient than the two-step protocol: the intensity of segregation has
decreased (see figure 3.6d, I = 0.082).

The mapping technique is an efficient tool to optimize the parameters of the chosen pro-
tocol. The mixing efficiency of the protocols in the three-dimensional system under study
strongly depends on the dimensionless displacement. If the energy input for a particular mix-
ing protocol is fixed (i.e. n × D is constant), an optimal dimensionless displacement will
produce a more uniform mixture. To illustrate this, figure 3.7 shows the results of a mixture
obtained by the protocol Fr Bl Fl Br Fd Bu Fu Bd for four different cases with D = 2, 4, 8, 16
and number of steps n = 64, 32, 16, 8, respectively. In addition to the intensity of segreg-
ation, the minimal and maximal concentration in the flow domain are given. A non-linear
greyscale is used to increase the image contrast and to reveal the striation patterns.

As expected from the two-dimensional case, the flow with the D = 2 does not produce
a good mixture: the intensity of segregation is still rather high after 64 steps. Large non-
mixed zones are clearly visible and their presence is also indicated by the extreme minimal
and maximal values of concentration. When the same mixing protocol is used with a two
times larger displacement (D = 4), the intensity of segregation decreases and the range of
concentration values narrows. The quality of the mixture further increases for D = 8: the
intensity of segregation is over 58 times smaller than in the case of D = 2. For higher
displacements the mixture quality decreases again (cf. section 2.5). It is noteworthy that even
for the well mixed patterns the lamellar structure is still clearly visible.

Figure 3.8 shows the evolution of the intensity of segregation for the flows presented in
figure 3.7 (where only final results are shown). The intensity of segregation is plotted versus
total wall displacement, which serves as a measure of the work done on mixing. It is clearly
seen that an optimum can be found and the intensity of segregation decreases fastest for the
flow with dimensionless displacement D = 8. This tendency already becomes clear after one
complete cycle of this protocol is performed (total wall displacement equals 64).

Each of the mapping simulations, results of which are presented in figure 3.7, took ap-
proximately 4 minutes (on average about 3 seconds per mapping operation). Thus, the map-
ping approach offers a computationally inexpensive tool for mixing simulations, once the
mapping matrix is constructed.
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(a) (Fr Bd)× 4, I = 0.098 (b) (Fr Bu Fl Bd)× 2, I = 0.189

(c) Fr Bu Fl Bd Fd Bl Fu Br , I = 0.169 (d) Fr Bl Fl Br Fd Bu Fu Bd , I = 0.082

Fig. 3.6: Comparison of different protocols with equal energy input. In all cases eight steps (wall move-
ments) with dimensionless displacement D = 8 were performed. The protocol and resulting
discrete intensity of segregation I are stated under each image.
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n = 64, D = 2,
0.002 < c < 0.981, I = 0.1037

n = 32, D = 4,
0.185 < c < 0.728, I = 0.0154

n = 16, D = 8,
0.183 < c < 0.715, I = 0.0018

n = 8, D = 16,
0.180 < c < 0.689, I = 0.0029

Fig. 3.7: Dependence of the mixing efficiency of the protocol Fr Bl Fl Br Fd Bu Fu Bd on the dimension-
less displacement. The energy input in all cases is the same Number of steps n, dimensionless
displacement D, range of the concentration c and intensity of segregation I are stated under
each image.
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Fig. 3.8: Intensity of segregation vs cumulative wall displacement for protocol Fr Bl Fl Br Fd Bu Fu Bd
with different dimensionless displacement D. The same four cases as in figure 3.7 are con-
sidered.

3.6 Conclusions and discussion

A mapping approach for analysing three-dimensional laminar distributive mixing has been
developed. This method is an extension of the two-dimensional technique. It offers a fast
and efficient way to predict long-term mixing and to compare different mixing protocols.
The method requires extensive computations to create the mapping matrices that describe
the mappings, but such computations are only performed once and strongly benefit from
parallelization. Once the mapping matrices are computed, they can easily be used to construct
different mixing protocols, which is not computationally expensive.

A relatively simple prototype mixing flow in a cubic domain is used to test the mapping
approach for three-dimensional mixing simulations. The reliability of the technique was
confirmed by comparison with the results of adaptive front tracking for a small number of
cycles. The interface shape recovered from the mapping results closely matches the surface
of the same initial volume of marker fluid that was explicitly tracked in the flow. Comparison
of the results obtained using mappings with different spatial resolution shows that a finer
spatial discretization is more important than larger time steps that reduce total number of
mappings. It is demonstrated that the mapping technique can be used to compare the mixing
efficiency of different protocols. Intensity of segregation is used to characterize the overall
degree of mixing. Although this parameter depends on the spatial resolution, the comparative
results and revealed trends are similar for different resolutions. Thus, this mixing measure is
reliable to use for comparison of mixing protocols. The mapping method can also be used to
adjust the parameters of the selected flow protocol to achieve optimal mixing with the same
energy input. Moreover, the mapping technique is general and can be applied for studying
fluid mixing in systems with more complex geometries, which will be demonstrated in the
next chapters.
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Chapter 4

Three-dimensional space-periodic flows in static
devices

4.1 Introduction; the multiflux static mixer

The multiflux static mixer, described by Sluijters (1965), is an example of a three-dimensional
space-periodic flow. This mixer is a static mixing device commonly used in industry that
closely mimics the bakers transformation, as schematically shown in figure 1.1, chapter 1.
An element of the multiflux mixer (see figure 4.1) comprises two flow channels that first
narrow in one direction and then expand in the other direction. The next element is placed
in such a way that the fluid flow is first cut before it is contracted again (the orientation of
the compressive part of all elements is always the same). In order to prevent a preferential
channel for the fluid, the elements are alternatingly stacked in a clockwise/counterclockwise
orientation of the channels. If only clockwise or counterclockwise elements would be used
(figure 4.1c), the fluid would essentially flow through two square pipes.

x

y

z

(a) (b) (c)

Fig. 4.1: a) Dimensions of a single multiflux mixer element; two multiflux static mixer configurations:
b) alternatingly stacked elements; c) identically stacked elements; the preferential channel is
clearly visible.

The multiflux mixer is ideal for mixing two fluids that have a similar rheological beha-
viour. In each element the number of layers is doubled, and, as the device has no moving
parts, it is not sensitive to wear and can be incorporated into existing piping. Due to the non-
uniform velocity profile, however, the formed layers are not of equal thickness. Also, the
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(a)

sharper edges

sharper edges
decreased slope

decreased slope

(b)

Fig. 4.2: a) Conventional multiflux element; b) improved versions of the multiflux element, the dashed
lines indicate the geometry of the second improved geometry.

influence of the velocity field on residence time distribution is of importance when degrading
or reacting polymers are regarded. By using the mapping method the layer thickness and res-
idence time distribution are investigated for three configurations: the original configuration
as reported by Sluijters (1965) (see figure 4.2a), an improved configuration as proposed by
van der Hoeven et al. (2000) (see figure 4.2b), and a second, further, improved model, that
has sharper leading and trailing edges on the flow dividers and has a decreased slope towards
the contraction (the dashed lines in figure 4.2b). The general dimensions of the conventional
mixer element are shown in figure 4.1a. Width and depth of the improved geometries are
equal to those of the conventional geometry; the height has been increased by a factor three.
The improved mixer elements should perform better in terms of layer thickness distribution
and edge distortions, although at the cost of a higher pressure drop over an element due to
their increased length.

According to Moffatt (1964), the critical angle for the formation of corner eddies (or
effectively stagnation zones) is approximately 146◦. Therefore, for the third geometry invest-
igated the angle of the mixing element is increased from 135◦ to 153◦ (153◦ ≈ arctan 2+90◦:
the tapered side has been made twice longer). This change, along with the sharpened divider
edges should reduce the inhomogeneities in the layer thickness, but it is obvious that it also
further increases the pressure drop over the element since the hydraulic resistance increases.

4.2 Computational method and boundary conditions

The velocity field in the multiflux static mixers has been analysed using a spectral element
method (Maday & Patera (1989), Timmermans et al. (1996), Anderson (1999)). The partic-
ular implementation used decouples the three velocity components and the pressure. The
system is solved by an iterative solution algorithm that applies a low order, finite element,
preconditioner. This is of particular interest for the types of geometry under investigation
since the total number of degrees of freedom is too high to use explicit solver algorithms
like LU or Choleski decomposition (see table 4.1 for details). The iterative solver does not
require that the full spectral element system matrix has to be stored, since only matrix vector
multiplications on element level are required.

On all walls homogeneous Dirichlet boundary conditions were imposed. At the exit the
pressure p = 0 was prescribed. At the entrance, a fully developed flow for a rectangular duct
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Tab. 4.1: Properties of the multiflux spectral element problem.

conventional improved 1 improved 2

# spectral elements 742 952 640
order 10 10 10
# finite elements 742,000 952,000 640,000
# nodes 792,974 1,003,158 678,880
# velocity unknowns 2,080,920 2,710,028 1,809,248
# pressure unknowns 786,132 998,496 675,478
# unknowns (total) 2,867,052 3,708,524 2,484,726

was enforced. The velocity in z-direction, uz , for a rectangular section of dimension 2b × 2a
with −a ≤ x ≤ a and −b ≤ y ≤ b is given by Ward-Smith (1980):

uz(x, y) = − 1

2µ

d p̂

dx

[
b2 − y2 − 4

b

∞∑
n=0

(−1)n

N3
n

cosh Nn x

cosh Nna
cos Nn y

]
. (4.1)

The volumetric flow rate Q is given by:

Q = 4abU = − 1

µ

d p̂

dx

[
4

3
ab3 − 8

b

∞∑
n=0

tanh Nna

N5
n

]
, (4.2)

with

Nn = (2n + 1)π

2b
. (4.3)

The average inflow velocity U was set to 1.0. Of equations 4.1 and 4.2 ten terms were
computed. The break-off error is of order 10−3.

4.3 Determination of the mapping matrix

Since the multiflux static mixer consists of two identical channels, only one channel needs to
be computed to determine the mapping matrix. The mixer clearly is a space-periodic mixer,
therefore mapping is computed from one cross-section to the next, so subdomains are defined
on the cross-section at the entrance of an element. Since it is unknown beforehand at what
time te a particle crosses a cross-section at z = ze, it is advantageous to integrate over z
instead of t , since ze is determined by the length of a channel. This is realized by applying
the following substitution:∫ te

t=t0
udt =

∫ te

t=t0
u

uz

uz
dt =

∫ te

t=t0

u
uz

dz

dt
dt =

∫ ze

z=z0

u
uz

dz. (4.4)

Similarly, the residence (or travel) time for a tracer from one cross-section to the next, can be
determined by:∫ te

t=t0
dt =

∫ te

t=t0

1

uz

dz

dt
dt =

∫ ze

z=z0

1

uz
dz. (4.5)
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Touching boundary

Divider wall

Tracked subdomain

Symmetry

Fig. 4.3: Schematic representation of the subdomains in a cross section of the multiflux mixer. The grey
subdomains are not tracked (on the divider walls), the unmarked subdomains are not tracked
but symmetry conditions are used. The subdomains indicated with ◦ are extrapolated from the
tracked subdomains indicated with •.

These substitutions are allowed as long as uz ≥ 0. Since on the boundaries uz = 0, subdo-
mains with edges on these boundaries were not tracked. Also, since uz reaches 0 near the
divider walls (the walls that ‘cut’ the flow), the subdomains were tracked to a height 0.05
upstream of the actual divider wall (at most 0.4% of the element height).

The residence time of tracer particles is computed using equation 4.5. This results in
one residence time per node on the tracked boundary of a subdomain. The number of nodes
on the boundary of a subdomain depends on the deformation of the subdomain. Since only a
fixed number of properties per subdomain can be mapped, the different residence times of the
tracers on the boundary need to be averaged. A subdomain is described by a closed boundary
with Nt tracers with coordinates xi and residence times Ti . Tracer Nt +1 is identical to tracer
1. The total length L of the boundary of the subdomain is:

L =
N∑

i=1

‖xi+1 − xi‖. (4.6)

The average residence time T̄k of subdomain k is now defined as:

T̄k = 1

2L

N∑
i=1

(‖xi+1 − xi‖) (Ti + Ti+1) . (4.7)

The average residence times for the subdomains are stored in a residence time column T̄ (0).
Since time is an additive property of the flow, the mapping operation becomes:

T̄ i+1 = Φ ·
(

T̄ (i) + T̄ (0)
)
. (4.8)

The cross-section has been subdivided in a grid of 130×130 subdomains. Not all of these
subdomains are tracked (see the schematic representation in figure 4.3; the subdomains shown
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Fig. 4.4: Extrapolation of untracked subdomains. The centre of gravity of the domains indicated with •
is determined by means of equation 4.9. These points are use to extrapolate the position of the
centre of gravity from the subdomains on the boundary (indicated with ◦).

here are just an indication, the actual grid is finer). The subdomains that lie on the divider wall
(grey in the figure), are marked not to be tracked, as are the subdomains that have a common
boundary with these divider walls or the outer walls (◦ in the figure). Further, due to the
aforementioned pointwise symmetry with respect to the centre of the element, only one half
of the remaining subdomains is tracked (the subdomains marked by •). The contributions of
the unmarked subdomains to the mapping matrix can be found using this symmetry.

The subdomains that were not tracked can be handled in two different ways: they can
all be regarded as one large reservoir with an average concentration or their contribution can
be estimated from the deficit of subdomains in their neighbourhood. The first method leads
to a large grey area near the walls of the multiflux mixer, that tends to grow every mapping.
The second method gives an estimation for the contributions to the mapping matrix of the
subdomains near the wall. Although still not very accurate, the prescribed concentrations are
expected to be more accurate than the average concentration prescribed in the first approach
and, therefore, the second method will influence the concentration distribution less.

In order to determine the approximate mapping coefficients Φi j of the subdomains near
the boundary, the centre of gravity of all tracked subdomains is determined (see figure 4.4).
Since the boundary description of the subdomains is not retained, the centre of gravity x̄∗

i of
tracked subdomain i is estimated using the mapping matrix Φ by:

x̄∗
i =

N∑
j=1

Φi j x̄ j , (4.9)

that is, for every subdomain j that subdomain i has donated fluid to, the centre of gravity of
x̄ j of that subdomain is weighted with the fraction of fluid in that subdomain that originated
from domain i . Then, for every subdomain that is in the flow domain but has not been
tracked (indicated with ◦ in figure 4.3), its centre of gravity is extrapolated linearly from its
adjacent domains (see figure 4.4). Of the subdomains that received a contribution less than
80% from donor subdomains, the nearest centre of gravity of an extrapolated subdomain is
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determined (extrapolated by means of equation 4.9). The deficit of the acceptor domain is
accredited to the donor domain the extrapolated centre of gravity belongs to. In first instance,
extrapolation is performed using tracked subdomains only. For any untracked subdomains
left, the extrapolated subdomains are used. This approach is used to compute the results
presented in the next section.

4.4 Results

For each of the three mixer geometries, a different mapping matrix was needed, since the
changes in geometry substantially changed the velocity field in the mixer channels and hence
the coefficients in the mapping matrices. Still, only one mapping matrix per geometry is
needed to determine the influence on the layer thickness distribution and residence time dis-
tribution after a number of elements. The accuracy of the striation thickness that can be visu-
alized by the mapping method is determined by the resolution of the subdomain grid, and is
independent of the size and order of the spectral elements used for the velocity computations,
provided that the velocity approximation is accurate enough.

In figure 4.5 the concentration distribution for the three different geometries is shown after
the first through the fifth element. Initially the left part of the mixer was filled with black fluid
and the right part with white fluid. The mixer channels first contract in the x-direction and
then expand in the y-direction.

The top row of figure 4.5 already clearly shows the difference between the conventional
and the improved geometries. In case of the conventional geometry, the flow is not split
into two equal parts, but is roughly divided 64%/36% (averaged over the channel width).
This is in agreement with the experimental results presented by van der Hoeven et al. (2000).
The first adapted geometry has a black/white ratio of approximately 53%/47%, the second
of 52%/48%,. The top left figure also shows that the cut is not optimal: on the horizontal
walls the fluids start to ‘curl’. This already happens at an early stage, and since the effect is
cumulative, the layers get a rather irregular shape. After five elements of the conventional
multiflux mixer it is evident that the layer thickness distribution is far from ideal with respect
to the homogeneity of the layers. A large amount of fluid is still located near the outer walls.

Also, the first improved mixer suffers from the edge curling, but it starts at the second
mixing element and is less pronounced, although after the fourth element the white fluid
nearly touches the left wall in the lower left channel. The second improved geometry suffers
less from edge curling, especially near the divider walls. This result is expected since the
divider walls do not form as big a barrier as in the conventional and first improved mixer.
However, as the contribution to the subdomains near the walls is extrapolated, the curling
of the layers can only be regarded as an indication of what might occur. In both improved
geometries, the layers grow thicker more gradually from the centre of the channel to the walls
and the layer thickness distribution in the mixer is more homogeneous. Since the outflux
determines the actual layer thickness distribution, the gradual increase of layer thickness
inside the mixer element is not unwanted: the flux in regions near the walls is lower and
therefore the layers need to be thicker in order to realize a comparable total ‘flux per layer’.

Residence time, or more specific, residence time distribution, is of importance when de-
gradation or chemical reactions between the two components occur. In figure 4.6 the logar-
ithm of the residence time is shown. The residence time is averaged over −6.5 < y < 0.5. In
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Fig. 4.5: Concentration distributions on cross-sections in the different multiflux mixers.
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Fig. 4.6: Residence time distribution in the three different multiflux geometries. Mean residence times
are plotted after: a) the first, third and fifth element b) the second and fourth element (from
bottom to top). The average is taken over −6.5 < y < 0.5.

x-direction the residence time is as would be expected from a laminar flow through a channel:
high near the walls and decreasing towards the centre of the flow. Obviously, the smallest res-
idence times are realized by the conventional mixer. However, the highest residence times in
the conventional mixer are in the same range as those of the three times longer and improved
elements. Although the actual highest residence time is infinite due to the no-slip conditions
on the wall, this means that the fluid flow near the walls stagnates more in the conventional
geometry. This also explains why the fluid flow is not cut into two layers of more or less
equal thickness. This can also be observed by regarding the residence time distributions after
one conventional element (bottom solid lines in figure 4.6): the residence times in the fluid
closest to the outer walls are higher than those of the fluid near the inner (divider) wall.

4.5 Conclusions and discussion

In this chapter the application of the mapping method on three-dimensional space-periodic
flows is discussed. It has been shown that by using a space-periodic approach, concentra-
tion and residence time distributions can be easily obtained. The main advantage is that the
mapping matrix only needs to be computed for one element in order to determine the concen-
tration or residence time distribution after a number of elements. It is demonstrated that the
mapping method can be used to improve the design of a static mixer element in terms of final
layer distribution. Using explicit boundary tracking or volume of fluids methods five elements
would need to be modelled and computed for the results shown in this chapter, which, at the
moment, is prohibitively expensive in terms of computer resources. In the case of volume
of fluids methods, the obtainable layer thickness is determined by the order of the elements
and the spatial discretization of the fluid domain, which is identical to the discretization for
computation of the velocity field. Further, these methods require long simulated tracking
times in order to reach a state where the boundaries of the tracked layers (nearly) touch. This
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problem is solved by the mapping method. If the layer thickness distribution needs to be
computed beyond the resolution of the mapping grid, the mapping method may be extended
with mapping of the area tensor (see chapter 2 and appendices C and D). The area tensor will
indicate the interfacial area in a subdomain, and since the size of the subdomain is known, it
will be a measure for the number of layers inside the subdomain.

The mapping method benefitted from the possibility to track particles in the z domain
instead of the t domain. It reduced the efforts to track from one z-level to the next, without
additional checking whether particles had crossed the end level (the minimum level needed
to compute the mapping matrix for one element). Explicit boundary tracking methods can
also benefit from this transformation in order to investigate layer thickness distribution at a
particular level.

To determine the effects near the wall, the coefficients of the mapping matrix that were
linked to subdomains near the wall, had to be extrapolated. This extrapolation has been
performed by extrapolating the centres of gravity from subdomains near the untracked sub-
domain. Since at the time of computing those centres, the boundaries of the individual sub-
domains were not available anymore, the centre of gravity of a subdomain was estimated by
taking a weighted average over the centres of gravity of the (initial) subdomains it effected.
The accuracy of the extrapolation can be improved by determining the centre of gravity of
tracked subdomains at the time where the boundary of that subdomain is still known, i.e. in
the slave routine of the tracking program.

The mapping method for this type of mixer is restricted to the case where the two fluids
have a similar rheological behaviour. If the flow of two rheologically different fluids needs
to be simulated, the mapping method will not be a proper choice, since the velocity field
will change from one mixer element to another. In that case, explicit boundary tracking and
volume of fluids methods will possibly be better choices, although at the moment not feasible
for the number of mixing elements considered here.
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Chapter 5

Three-dimensional periodic flows in dynamic devices

5.1 Introduction; co-rotating twin screw extruders

The most commonly used mixing device in polymer processing is the closely intermeshing,
co-rotating twin screw extruder. Although in essence simply a polymer melting and transport
device, its screws are constructed in a modular way in order to create different screw geo-
metries to increase mixing performance. Some common elements are shown in figure 5.1.
In general, a screw consists of a long transport part followed by a kneading section, where
the polymer granulate is molten. Subsequently, alternating transport and kneading sections
are created where additives are mixed in, blending takes place and, finally, the polymer melt
is degassed (vented). Since co-rotating twin screw extruders are starved-fed (less polymer
granulate is metered into the extruder than theoretically could be transported) the kneading
screw sections will only be partially filled, which has a negative effect on the efficiency. To
keep the subsequent sections filled, neutral and counter-conveying (negative) kneading sec-
tions are applied, as well as the more effective, and thus generally shorter, counter-conveying
elements. The typical combination of transport, kneading, and counter-conveying elements
is repeated along the screw axis when additives are fed and mixed into the melt (by e.g. a
sidefeeder) and when composition and temperature-homogeneity is being improved.

Fig. 5.1: Basic types of twin screw extruder elements. From left to right: conveying element, counter
conveying element, conveying kneading section, neutral kneading section and counter convey-
ing kneading section.

In this chapter, as a further development of the mapping method and an example of the
analysis of real mixing devices, the mixing performance of the transport elements of a closely
intermeshing, thus self-wiping, co-rotating twin screw extruder will be studied. An adapted
form of the mapping method is used, where a mapping matrix works sequentially on only a
part of e.g. the concentration distribution column for the entire extruder.

To analyse mixing behaviour in more complex, dynamic mixers, up to now, mixing stud-
ies in dynamic devices are based on relatively straightforward analyses of the flow field
((Szydlowski & White, 1988), Yang & Manas-Zloczower (1992)) studying the complex ve-
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Fig. 5.2: Space-periodicity in a twin screw extruder, the cross-sections A–A, B–B and C–C are all
similar.

locity and pressure gradients in detail. More elaborate mixing analysis of dynamic mixers
used the evolution of the distance between two initially close particles (Wong & Manas-Zloczower, 1994),
the correlation between particles and concentration of particles initially gathered as clusters
(Yang & Manas-Zloczower (1994), Funatsu et al. (1999)), or particle position history or mix-
ing index (Hutchinson et al., 1999). These methods, however, constitute the same drawbacks
as discussed in previous chapters: tracked particles are infinitesimal, they do not represent a
volume and, since mixing in well-designed mixers typically is of a chaotic nature, therefore
are of limited use to investigate concentration distributions.

5.2 Time– and space-periodicity

The elements of a twin screw extruder can be regarded as space as well as time-periodic.
It is space-periodic in the sense that cross-sections perpendicular to the screw axes repeat
after some distance (determining the spatial period) along the axis (i.e. the orientation of
the screws is identical compared to a previous cross-section, see figure 5.2). For transport or
counter-conveying elements, this distance is determined by the pitch angle of the screw. The
extruder is time-periodic in the sense that after each revolution, the screw is back in its initial
position. In figure 5.3 the time-periodicity is illustrated; after one rotation ( t

TP
= 1; TP is the

time needed for one full rotation of the screws), the screw is back in its original position. For
a screw element with two lobes, an identical orientation is also reached after a half rotation
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Fig. 5.3: Time-periodicity of a twin screw extruder.

( t
TP

= 1
2 ), however, an entire screw may also contain single and three lobe elements that have

an equal cross-section after a full and a third rotation, respectively.
The manner in which the screw is regarded determines how the mapping matrix needs

to be computed and what data can be retrieved. When regarded from a time-periodic point
of view, data are available along the entire screw. This makes it possible to study the mix-
ing quality along the screw as well as the progression of fluid through the extruder in time.
However, this is only possible for some discrete orientations of the screw. In this case, the
number of screw orientations constitutes the computing effort. The space is divided in a grid
of cells with a certain volume. The coefficients of the mapping matrix are determined by
intersections of the deformed cells with the initial cells. In this case, the time 
t spanned
by the mapping matrix, is the time needed for a screw rotation and of no further physical
meaning. The time-periodic approach describes the concentration distribution of the entire
screw in one concentration column.

From a space-periodic point of view, only data at certain cross-sections can be obtained
(see chapter 4), and, since the screws are rotating, these data are a function of the orientation
of the screw. The intersections that determine the coefficients in the mapping matrix need to
be determined in a space spanned by the x– and y-coordinate of the tracer particles as well as
the orientation of the screw at the time the particle reached the cross-section. In this case the
distance between two cross-sections 
z is constant per mapping matrix, and it is possible to
determine the average, minimum and maximum residence time of fluid passing through the
cross-section. The mixing quality can also be determined at these cross-sections. The number
of cross-sections per element constitutes the computing effort. In the space-periodic approach
concentration (or any other quantity that can be mapped) is mapped from one cross-section to
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the next. It therefore does not describe the concentration distribution along the entire screw.
Instead it gives the concentration distribution at a cross-section for all possible orientations
of the screws in that cross-section.

Space-periodic mapping is more expensive in terms of computing time than time-periodic
mapping. In time-periodic mapping, volumes are deformed during a fixed amount of time.
In space-periodic mapping, tracers are followed from one cross-section to the next, for a
number of different screw orientations. The time tracers need to travel that distance is not
known beforehand. Since backflow occurs near the edges of the screws, variable substitution
as used in chapter 4.3 is not possible. This means that tracers have to be tracked in time.
Tracers near the barrel wall or near the screws travel slowly with respect to tracers near the
centres of the channel. The deformations of the mapping grid will, therefore, be larger than
in the time-periodic approach. Consequently, more tracers need to be tracked, increasing the
computational cost. Furthermore, determination of intersections from the tracked grid with
the initial grid will also become more computationally expensive. As a consequence, the
time-periodic approach is followed.

5.3 Geometry of the screw

A number of different descriptions for the screw geometry of co-rotating twin screw extruders
exist ((Booy, 1978), Booy (1980), Chen & White (1994), Potente et al. (1994)). Here, a slightly
adapted version of the description for a self-wiping profile provided by Chen & White (1994)
is used:

l(θ) =




RS(ρc − 1) 0 ≤ θ ≤ α
2

RS

[√
ρ2

c − sin2(θ − α
2 )− cos(θ − α

2 )

]
α
2 ≤ θ ≤ α

2 + 2ψ

RS
α
2 + 2ψ ≤ θ ≤ π

NT

(5.1)

where l(θ) is the distance from the centre to the edge of the screw (see table 5.1 and figure 5.4
for other properties and values of the parameters). The geometrical relations of the parameters
are:

ρc = CL

RS
, (5.2)

ψ = arccos(ρc/2), (5.3)

α = π

NT
− 2ψ. (5.4)

For all basic screw types, shown in figure 5.1, the cross-section is identical and only the
pitch is varied. The transport screw analysed in this chapter was modelled after the screws of
a Werner & Pfleiderer (W&P ZSK-25) laboratory extruder.

5.4 Computational method and boundary conditions

Several techniques exist to determine the flow field in complex geometries numerically. An
elegant method that reduces the difficulty of creating complex volume meshes is the fictitious
domain method (Glowinski et al. (1994a), Glowinski et al. (1994b), Bertrand et al. (1997),
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Tab. 5.1: Screw geometry parameters.
parameter value

Screw radius RS 12.50 [mm]
Screw centre distance CL 20.85 [mm]
Clearance δ0 0.20 [mm]
Number of lobs NT 2 [–]
Pitch p 24.00 [mm]

α

α

2ψ

CL

RS

l(θ) δ0

ω

�γ

�

Fig. 5.4: Profile of a self-wiping screw pair.

van Rens (1999)). The spatially discretized computational domain consists of a flow domain
� with boundary �. Inside this domain is a fictitious domain ω with boundary γ (see fig-
ure 5.4). The flow is considered to be isothermal, laminar and inertia effects are neglected. It
is described by the Stokes and continuity equations:

η
u − ∇ p = 0 in �\ω̄, (5.5)

∇ · u = 0 in �\ω̄, (5.6)

where ω̄ is the closure of ω (ω ∪ γ ). The main mesh describes the full internal (‘eight-
shaped’) domain � of the extruder with boundary �. A description of the screw ω with
boundary γ is then provided and Dirichlet boundary conditions are imposed on the surfaces.
The boundary conditions on γ are incorporated in the finite element analysis via Lagrange
multipliers. The finite element discretization and surface description of the screw are shown
separately in figure 5.5. The flow domain is subdivided in eighty layers of approximately
9000 first order P+

1 P1 MINI elements (van Rens, 1999) per level. Three extruder transport
element pairs were modelled of which the middle pair is used to compute the mapping matrix
in order to exclude effects due to in– and outflow (see figure 5.5c).

Only fully filled screw parts are considered (no air or second fluid phase is present). The
flux is chosen such that the extruder is starved (such that pressure is built-up and a pressure
flow is generated). In order to determine a realistic flux, the coefficient of fill is chosen to
be 40%, a practical value that guarantees sensible drag and pressure flows in the fully filled
sections of the screw. An angular velocity of the screws of π [rad/s] (30 rpm) is imposed on
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Fig. 5.5: a) Finite element discretization of the flow domain � with boundary � and b) surface descrip-
tion γ of the screw c) schematic representation of the mapping domain, the box around the
middle element is subdivided into 184 × 100 subdomains.

the screws (γ ). This velocity may seem rather low, however, since a stationary Newtonian
Stokes flow is regarded, the velocity field of the fluid scales proportionally with the velocity
of the screws. A free exit flow and a plug entrance flow is enforced.

Since the tracking computations are performed in the second screw element, the plug flow
assumption will not influence the results of the tracking computations. With these assump-
tions and values of the quantities given in the previous section and table 5.1, and by using the
results of Meijer & Elemans (1988), Meijer & Elemans (1990), Elemans & Meijer (1990), an
entrance velocity uz of 0.3 [mm/s] is derived.

5.5 Determination of the mapping matrix

The two-lobe screw elements and the extruder domain considered are clearly symmetric,
thus only a 90◦ rotation of the screws needs to be computed for mapping. Furthermore, since
Stokes flow is assumed and inertia effects are neglected, the velocity field will be quasi-static.
This simplification is used to take the rotation of the screws into account. The rotation φt (t)
of the screws is equal to ωs t (ωs is the angular velocity of the screws). The screw flight has a
pitch p, thus the screw profile rotates 180◦ around the screw axis in p

NT
. The orientation of

the screw profile φs(z) is then equal to NT πz
p . Setting φt = φs gives the relation between t

and z for the transport screw element. Thus, a velocity field needs to be computed for only
one screw orientation, from which the velocity fields at all other screw orientations can be
easily derived.

The grid used to compute the mapping matrix consists of 184 × 100 × 48 subdomains.
From the 48 layers in height, only 24 have actually been computed; by making further use of
rotational symmetry around the z-axis, the entries in the mapping matrix for the top 24 layers
were filled using the results of the computations for the bottom 24 layers. The properties of
the matrix are shown in table 5.2.

The subdomains that fall entirely outside the flow domain (barrel) or inside one of the two
screws are ignored for the computations. The nodes of subdomains that are partly outside or
on the boundary of the flow domain are translated slightly into the flow (0.05 mm), since the
boundaries of the flow domain are first order approximations of the actual curved boundaries,
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Fig. 5.6: Symmetry in a transport element. The bottom cross-section is similar to the top cross-section
rotated over 180◦.

Tab. 5.2: Properties of the transport screw mapping matrix.
property value

nx × ny × nz 184 × 100 × 48
# subdomains 883,200
Full matrix size 1, 766, 400 × 883, 200

(≈ 1.56 × 1012)
non-zero elements 13, 011, 100
matrix density 8.34 × 10−6

and otherwise it is not guaranteed that the points are actually located inside the discretized
flow domain. Since the velocity field was approximated by linear elements, and due to errors
in tracking, the volume conservation error εV , defined as

εV = |V0 − Vtracked|
Vbox

(5.7)

where Vbox is the volume of an uncollapsed subdomain, V0 is the volume of the collapsed
subdomain, and Vtracked is the volume of the tracked subdomain, has been large: in one par-
ticular case εV = 100. These large deviations mainly occurred with collapsed, and thus very
small, subdomains near the barrel wall or the screw surface. Especially subdomains that were
on one of the screw surfaces and were scraped off during motion by the other screw suffered
from very poor volume conservation. This effect is amplified because a small extra velocity
was prescribed to tracers that during integration got located outside the barrel wall or inside
one of the screws. This extra velocity was in the direction of the flow domain, but it violates
mass conservation: the velocity field is no longer divergence free. However, as shown in
figure 5.7a, the number of subdomains with a large error is small. Of all tracked subdomains,
4.2% have an error larger than 100%, responsible for 4.6% of the total fluid volume (see
figure 5.7b). In total the volume of the tracked elements was 4% larger than the volume of
the initial grid.

In an extruder transport takes place from one screw element to another, i.e. the flow is
open. This means that in order to determine the mapping matrix for a screw element, also
transport from that element to other elements needs to be described. Assuming that no net
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Fig. 5.7: a) Volume concentration error, the logarithm of the error is plotted. b) Fraction of total volume
occupied by boxes with indicated error or larger.

A

A’
B

B’

Fig. 5.8: Schematic representation of contribution to Φs and Φn .

backflow is present during the period for which the mapping matrix is computed and only
transport of fluid to the element itself or to the next one occurs, the mapping matrix Φ for
a screw element discretized by ns(= nx · ny · nz) subdomains is of size 2ns × ns . In this
case Φ can be split into two parts: Φs that describes the transport of fluid from the element
regarded to itself, and Φn that describes the transport of fluid from the element regarded to
the next element. This is demonstrated in figure 5.8. The initial subdomain indicated by
A is advected to A′ after one revolution. The advected subdomain A′ is still located in the
same extruder element as it was initially located in. Therefore, A′ will only contribute to
matrix Φs . Subdomain B on the other hand, is also partly advected to the next extruder
element. The contribution of B will therefore be to both Φs and Φn . If a net backflow is
present, or transport of tracers spans more than two elements, submatrices will also need
to be computed to take these parts into account, and the mapping matrix Φ will look like
[Φb,Φs,Φn,Φn+1]T instead of [Φs ,Φn]T where Φb is the part that describes the backflow
from an element to the previous element, and Φn+1 describes the transport from an element
to the element after the next element.

In the cases presented here, Φ is computed for a quarter rotation. By reordering the
concentration column C using the symmetry of the screws and flow domain, the mapping for
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Fig. 5.9: Determination of point of entry and residence time in the extruder for a particle that is trans-
ported from one element to the next.

the next quarter rotation can be applied. For the two-lobe profile considered, the screws are in
an identical position with respect to their initial position after half a rotation (see figure 5.3).

Since a mapping operation describes the transport of fluid during a certain finite rotation,
special care has to be taken to prescribe inflow of fluid. For most of the results presented in
this chapter, it is assumed that two differently coloured materials are fed into the extruder; one
colour is fed into the left part of the extruder, the other through the right part. We therefore
need to know through which half of the extruder the contributions to the matrix Φn entered.
This is computed by placing a cube of 10 × 10 × 10 equidistantly spaced tracers into a
subdomain that received a contribution from the previous element. These tracers are tracked
back in time until they pass the boundary z = 0 at position p and time tp (see figure 5.9).
From that point p, a constant uz (the velocity along the extruder axis) is prescribed and both
ux and uy are set to zero. After tracking the tracers back for a quarter period (the period
for which the mapping matrix is computed), it is known which tracer passed through which
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Fig. 5.10: a) Computed part of a screw and b) the resulting matrix-vector multiplication schematically
shown.

half of the extruder entrance (since the x and y components of point p have not changed), as
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well as the time at which it passed (which is derived from its position in front of the entrance:
tp = 
l/uz). Two ‘inflow concentration’ columns Cin are created, one for contributions to the
screw element that originated from the left half of the entrance, and one for contributions that
originated from the right half. The value of the concentration contributions is set proportional
to the relative amount of tracers that travelled through the corresponding half of the entrance.

The concentration distribution in any part of the screw is now computed as follows: two
concentration columns C and C∗ are created with length (ne + 1) · (nx · ny · nz) where
ne is the number of screw elements that need to be analysed. Then mapping is applied as
schematically indicated in figure 5.10b. Before performing mapping on column C , the part
of it corresponding to the exit element (ne + 1) is set to zero. This offers the possibility to
study the outflow in time (the residence time distribution curves discussed later). That part of
column C in figure 5.10b that is indicated by a dashed line is related to the exit element and
therefore need not be part of the matrix-vector multiplications. Computationally it may be
more efficient to regard C∗ and C as one column, especially if the number of screw elements
grows large. In that case, mapping is applied starting from the last element and working
towards the entry element, since a mapping operation on screw element i influences element
i as well as i + 1. After all matrix-vector multiplications are performed, the inflow (Cin) is
added to the entry element (see figure 5.10).

5.6 Results

Using the geometry and boundary conditions as described in the previous sections, a mapping
matrix Φ is computed for a 90◦ rotation of the screws and extended to a full 360◦ rotation
via application of the symmetry properties as previously discussed. The extruder is entirely
filled with white fluid. At t = 0 the left channel is fed with blue fluid, the right channel with
yellow fluid (configuration and legend are shown in figure 5.11). Four elements are mapped
(plus an exit element). In figure 5.13 cross-sections along the z-axis are shown for 0.5–6.0
rotations. This figure shows how the white fluid is being forced out and how blue and yellow
fluid fill the channels in time. For more complex geometries, this method is able to detect
‘dead zones’, i.e. regions in the geometry that are not emptied.

Figure 5.12 shows the concentration distribution in four cross-sections (as indicated in
figure 5.11 by red lines) at different times, but with identical orientation. It is clear that a
stationary distribution is obtained within a few rotations for the first slice, but that changes
still occur for the top two slices (for z

D = 1 3
8 after 4 rotations and for z

D = 1 7
8 after 5.5

rotations). This indicates that the residence time distribution may not be optimal and should
be looked into more closely. This will be discussed later.

Since the function of an extruder is not just to melt and transport polymer, but also to
homogenize and mix it, a mixing measure is needed to investigate the mixing properties.
Therefore, the intensity of segregation of each slice (a single layer of initial subdomains
in the x– y-plane) is computed after 50 screw rotations, thus enforcing a steady state with
respect to the concentration distribution. The result is shown in figure 5.14. It is clear that
the intensity of segregation decreases with increasing z. After six elements the intensity of
segregation starts to oscillate. This is partly caused by the limited resolution of the mapping
matrix, used in these preliminary computations. However, the oscillations may also indicate
a repeating pattern in the concentration distribution due to the periodicity of the screw. The
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Fig. 5.11: a) Part of twin screw extruder screw that is analysed. The red lines indicate the levels where
the cross-sections are shown in later figures. b) Legend of concentration distributions.

plot also indicates that intensity of segregation determined as an average on a screw element
(thick line) still decreases after the sixth element, albeit more slowly. This decrease, however,
may be a result of the inaccuracies (the ‘numerical diffusion’) of the mapping method.

To further investigate the oscillating behaviour of the intensity of segregation as well as
the influence of the initial concentration distribution, an infinitely long extruder is modelled.
This infinitely long extruder is created by regarding only a single transport element and pre-
scribing the outflow it generates back to its entrance (C∗ = Φs · C + Φn · C). The different
initial distributions considered are alternating clusters of subdomains on the mapping grid
with concentration set to 1 or 0 (three-dimensional checkerboard patterns with maximal in-
tensity of segregation, see figure 5.15). The size of the clusters is varied. Since the domain
is discretized on a 184 × 100 × 48 grid, a checkerboard size of 100 means that the domain
is divided into four regions of 92 × 50 × 48 that have an alternating concentration (initially
the concentration does not vary along the extruder axis in this case). Results are shown in
figure 5.16a and b.

The oscillating behaviour of the intensity of segregation is nearly independent of the
initial concentration distribution. The mean level for the coarse pattern is slightly higher than
for the fine pattern, but this can be explained by the fact that the fine pattern constitutes an
ideally premixed concentration distribution. The lines for the other checkerboard patterns
investigated were positioned between the top two lines shown in figure 5.16a. It is also
obvious that the pattern repeats after 24 slices. This is due to the symmetry conditions used,
where the entries in the mapping matrix for the top 24 levels were taken from the bottom
24 levels. The dashed line in figure 5.16 results from 200 mapping steps where an ideal
initial concentration distribution is used (C = 1

2 for all subdomains). The fact that this line
resembles the other two lines indicates that the oscillating behaviour is caused by the mapping
matrix; ideally, the intensity of segregation for the ideal initial concentration distribution



58 Chapter 5. Three-dimensional periodic flows in dynamic devices

z D
=

1
7 8

z D
=

1
3 8

z D
=

7 8
z D

=
3 8

0.
5

ro
ta

tio
ns

1.
0

ro
ta

tio
n

1.
5

ro
ta

tio
ns

2.
0

ro
ta

tio
ns

2.
5

ro
ta

tio
ns

3.
0

ro
ta

tio
ns

Fig. 5.12: (a) Concentration distribution at various cross-sections along the extruder.
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Fig. 5.12: (b) Figure 5.12a continued.
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Filling of extruder by two differently coloured materials

0.5 rotations 1.0 rotation 1.5 rotations

2.0 rotations 2.5 rotations 3.0 rotations

3.5 rotations 4.0 rotations 4.5 rotations

5.0 rotations 5.5 rotations 6.0 rotations

Fig. 5.13: Concentration distribution in the transport section of a twin screw extruder. The figures
illustrate the ‘filling’ of the extruder.
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Fig. 5.14: Intensity of segregation along the extruder. The thin line indicates the intensity of segrega-
tion per layer of subdomains; the thick line indicates the intensity of segregation per screw
element.
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Fig. 5.15: Different checkerboard sizes used for dependence of mixing quality on initial concentration
distribution.
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Fig. 5.16: a) Intensity of segregation per slice of an extruder element for two different checkerboard
sizes after 25 screw rotations, the dashed line (asymptotic) results from 200 mapping steps
with an ideal initial concentration distribution (C = 1

2 for all subdomains); b) Evolution of
the intensity of segregation for differently sized initial checkerboard clusters.

should stay equal to zero. However, due to errors in the coefficients of the mapping matrix
caused by volume conservation errors, fluid gets ‘demixed’ and the average concentration
in a subdomain starts to differ from the initial average concentration. These errors result in
under– or overfilled subdomains, hence the deviation from the average initial concentration.
These deviations influence the local concentration and, therefore, the intensity of segregation.

Figure 5.16b shows the evolution of the intensity of segregation, determined over the
entire element, for a number of initial concentration distributions. The intensity of segreg-
ation decreases fastest for the initial checkerboard pattern with cluster size 1. The rate of
decrease diminishes with increasing initial cluster size. This behaviour is expected. The size
1 checkerboard pattern represents an almost ideally premixed mixture. After only a few ro-
tations, the mixture will be ideally mixed with regard to the subdomain size considered. For
increasing cluster size, the system will be increasingly worse premixed. It therefore will take
increasingly more screw rotations to reach the near horizontal plateau in figure 5.16b.

As already indicated, another important issue when dealing with extruders is the resid-
ence time distribution over a cross-section or at the exit, especially when reactive systems
are considered or when degradation of the transported fluid is an issue. The residence time
distribution is also computed using the mapping matrix. First the domains in element 1 are
identified that have passed the entrance of the element. From these subdomains the aver-
age residence time t̄ is computed and stored in an average residence time column. Now the
average residence time for subdomain i can be computed by:

t̄i =
∑

j

Φi j (t̄i +
t) (5.8)

where 
t is the elapsed (physical) time per mapping operation and Φi j the mapping coeffi-
cient describing the volume contribution from subdomain j to subdomain i . The residence
time t is made dimensionless by scaling with the time needed for one full revolution of the
screws: t ′ = t/(2πω).
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Fig. 5.17: Dimensionless residence time (screw rotations) in the transport part of a twin screw extruder.
The drawn white and black lines correspond with a dimensionless residence time of 2 and 4,
respectively.

For the transport elements the average (dimensionless) time distribution is shown in fig-
ure 5.17. It is obvious that large differences occur in a cross-section. Although the screws
are supposed to be self-wiping, the largest residence times are on the screws. This is caused
by the fact that screws are ‘wiped’ only once each rotation by a point contact while, with a
two-lobe screw, the walls are wiped twice per rotation by a line contact.

A conventional way to measure residence time distribution is to add tracers (of e.g. TiO2)
during a short period to the extruder, a so-called pulse-feed. At the exit samples of polymer
are collected and the amount of TiO2 is measured. Using the mapping method, a similar sim-
ulation is performed with the four screw element. Tracer material is injected into the screw
during one rotation. Each mapping step, the amount of tracer material found in the exit ele-
ment (element 5) is summed and plotted. The result is shown in figure 5.18a. The cumulative
output is shown in figure 5.18b. Due to computational errors (both in the computation of the
velocity field as well as errors in determination of the coefficients for the mapping matrix),
5% of the fluid was ‘lost’. The results in figure 5.18 are scaled on the amount of fluid in the
screw plus the total amount of fluid that has already exited. The first tracer material exits the
extruder after four rotations (as may be expected since four elements are regarded). A large
amount (66%) has already left the extruder after 6.5 rotations. However, 13 screw revolutions
are needed to get 95% output and 19 screw revolutions to get 99.5% output.

5.7 Conclusions and discussion

It is shown that the mapping method is a suitable method for the analysis of dynamic, periodic
devices. It is capable of determining concentration distributions and corresponding mixing
measures (like the intensity of segregation) as well as average residence time. Moreover, it
has been shown how residence time distributions can be mapped and give expected results.
Although only transport elements have been regarded up to now, it should be obvious that the
method is not limited to the analysis of only one type of element: combinations of elements
can be analysed as soon as mapping matrices for these elements are available. In that case not
only the mapping matrix for that particular element needs to be computed, but also one for



64 Chapter 5. Three-dimensional periodic flows in dynamic devices

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

tr
ac

er
fr

ac
tio

n
at

ex
it

screw rotations

(a)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cu
m

ul
at

iv
e

tr
ac

er
fr

ac
tio

n
at

ex
it

screw rotations

(b)

Fig. 5.18: a) Output and b) cumulative output (or residence time distribution) for a four element screw
part.

a transition element (e.g. from transport to kneading) since in general the influence of these
transitions on the velocity field will not be negligible.

Further, it has been shown that with the computation of a mapping matrix for only
one transport element, a screw built of a number of those elements can be analysed. This
shows that once a ‘building box’ of mapping matrices for various screw elements is com-
puted, different screw arrangements can easily be analysed on overall mixing performance
and residence time distribution. The mapping method allows one to analyse any order of
screw elements. This implies that extra care has to be taken that the resulting screw ar-
rangement is feasible (i.e. the pressure along the screw should not be negative). There-
fore the mapping method has to be combined with an overall analysis like those shown by
Meijer & Elemans (1988), Meijer & Elemans (1990), Elemans & Meijer (1990).

The oscillations that occur in the intensity of segregation plot (figure 5.14) result from
volume conservation errors in the mapping matrix. In order to decrease these errors, the
computation of the mapping matrix needs to be improved. Since the velocity field was com-
puted using first order elements, improvement can be made by using higher order methods.
This will also have a positive effect on the discretization of the curved boundaries � and γ .

Another improvement that can be made is to make the grid used to compute the mapping
matrix more conforming to the geometry. In that case better subdivision is created since
there will be less distorted elements. The determination of the intersection between tracked
and initial subdomains will become more involving since boundaries of both domains can be
curved.

The time-periodic approach followed in this chapter gives an indication of concentration
and residence time distribution along the entire part of the screw section modelled. However,
it does this only for fixed orientations of the screws, and does not give a time average of
concentration or residence time distribution in a cross-section of the screw. As noted earlier,
this is not a source of grave errors if one considers that the residence time distribution per slice
will not differ greatly. For the time periodic approach the entire screw needs to be modelled.
As a result concentration and residence time distribution are known for the entire screw.
The space-periodic approach would map cross-section to cross-section, thereby reducing the
mapping operation by the simpler matrix-vector multiplication used in the previous chapters
instead of the one shown in figure 5.10. The space-periodic approach will also give a better
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average of concentration and residence time distribution in cross-sections of the extruder. A
further advantage is that the space-periodic approach resembles the actual assembly of a pair
of extruder screws; as a screw is assembled from metering zone to exit, so can the mapping
order be assembled and the influence of a particular element or combination of elements on
properties of the mixture can be evaluated instantaneously.

An obvious disadvantage of the space-periodic approach is that the deforming subdo-
mains are not volume conserving, which complicates error estimation. Another drawback of
the space-periodic approach is that mapping other quantities, as e.g. morphology by using the
area tensor (see Wetzel & Tucker (1997); this thesis chapter 2.6), becomes more complicated
due to differences in ‘tracked’ time.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The mapping method presented in this thesis has proven to be a useful tool to analyse mixing
behaviour in different geometries. It is based on subdividing the flow domain in a large
number of subdomains. The boundaries of these subdomains are tracked for a period of
time or space. The tracked subdomains are compared with the initial subdomains, and a
mapping or transport matrix is compiled that indicates how much fluid from one subdomain
is advected to another subdomain. The evolution of, for example, concentration distribution
now has been simplified to straightforward matrix-vector multiplications. During tracking
also other quantities relevant for mixing can be computed as for example residence time,
exerted shear and elongation. This facilitates tracking structure development via for instance
the use of the area tensor.

The computation of the mapping matrix (or a set of matrices) is relatively expensive.
However, once a mapping matrix is compiled it can be used to investigate the flow under con-
sideration with added flexibility: changes in mixing protocol do not require new computation
of the mapping matrix but simply change the number and sequence of mapping operations
and manipulation of the elements in the column.

Using a set of mapping matrices it has been shown that concentration distributions for a
number of geometries can easily be obtained. Applying mixing measures to these concentra-
tion distributions, the quality of the mixture can be quantified. This quantification allows for
automated comparison between different concentration distributions, and, therefore, can be
used to optimize mixing protocols. The mapping method is essential in this case, because the
computation of concentration distribution is fast. Conventional methods as for example the
Poincaré method would need a more extensive recalculation.

With respect to conventional methods, the mapping method has the advantage that it
describes the transport of actual amounts of fluid, whereas some of the conventional methods
describe the transport of particles. These particles have no physical size and therefore can
give only an indication of how fluid spreads through a domain. Especially in the case where
chaotic advection is involved, the results of these methods with respect to the actual presence
of fluid are open for discussion.

Mapping can only be applied to mixing flows where the mixing itself does not influence
the rheology of the flow, since changes in rheology will change the velocity and therefore
the mapping matrix. However, mapping is not restricted to Newtonian fluids. Also more
complex, non-Newtonian, fluids can be analysed. In this case a mapping matrix needs to be
computed that describes the transition from inflow to fully developed flow, much like in the
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case of different twin screw extruder elements, where a mapping matrix needs to be computed
for each transition from one type of element to another type of element.

The accuracy of the mapping matrix is determined by the accuracy of the computed ve-
locity field, the accuracy of the tracking routines, as well as the accuracy of the boundary
description of the tracked subdomain. The accuracy of the mapping operations are further
determined by the size of the subdomains and the number of mapping operations performed.
It therefore may be advantageous to compute a set of mapping matrices that describe the
same type of motion, but span different intervals (in time or space). This will reduce the
diffusion by mapping for a particular examined interval, since less mapping operations need
to be made.

Although in this thesis primarily concentration and residence time are mapped, it should
be repeated that these are not the only quantities that can be mapped. Other quantities, as e.g.
the area tensor, which is related to interfacial area, can be mapped as shown in chapter 2.

The flexibility of the mapping method and the speed of the mapping operations make it a
useful tool to investigate the efficiency of mixing flows. The mapping method can be used to
create efficiency diagrams that indicate for what set of parameters mixing will be inefficient
and for what set it will be efficient. These plots also indicate what the effect of small changes
in process parameters will be on the mixture.

6.2 Recommendations

In order to make effective use of the mapping method, the result of a set of mapping oper-
ations should ideally be one number that indicates the property of interest of the resulting
mixture. In this thesis the intensity of segregation has been chosen as mixture quality indic-
ator. However, the quality of a mixture can depend on different properties of the mixture. In
case of intensity of segregation, the deviation of the mean concentration of all subdomains in
the flow domain is regarded. However, one might not only be interested in this deviation, but
also in the number and size of islands that have a deviation larger than a certain maximum.
In this case other mixing measures need to be applied, such as scale of segregation. It will be
useful when mixing measures are further studied if, at the same time, it can be indicated what
property of the mixture they describe. It is impossible to derive a single mixing measure that
describes a mixture in a sense that all important properties are designated. Depending on the
particular application, one or more mixing measures need to be chosen and evaluated. These
mixing measures should be charted and implemented into the mapping method.

As mentioned in the previous section, it is possible to map other quantities then concentra-
tion and average residence time. Especially morphology is an interesting property. Morpho-
logy can be mapped using the area tensor, as has been shown by Galaktionov et al. (2000a).
Since the area tensor in principle can describe morphology in three dimensions, it can (and
should) also be used when industrial mixers are regarded.

The most expensive part of the mapping method is the determination of the mapping
matrix. This is mainly caused by the extensive boundary tracking involved to determine the
coefficients in the mapping matrix. This part is easily parallelized, and, since all tracking
computations are independent of each other, parallel computation scales extremely well with
the number of processors. Nevertheless, computations in complex geometries still use huge
amounts of computer time. This may be improved by using more efficient tracking and
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interpolation algorithms.
The origin of the oscillations in the intensity of segregation for the twin screw extruder

transport element are caused by errors in the velocity field computed by a first order fictitious
domain method. Therefore the accuracy of the velocity field needs to be improved. This
can be done by increasing the order of the finite elements used, or by using high order spec-
tral elements. Spectral elements are preferred, however, fictitious domain methods combined
with spectral elements have not been reported yet. Other methods, like the pseudo concentra-
tion method, may need to be applied. Most ideal from a computational point of view would
be to only mesh the actual fluid domain, however, creating the meshes needed in this case is
far from trivial (see e.g. van Rens, 1999).

Also, the subdomain division for the determination of the mapping matrix may be im-
proved. Currently, the subdomain division is rectangular. In case of curved geometries, an
adapted subdomain boundary, more conforming to the shape of the mixer, may be used to
create a better subdivision: less distorted elements or subdomains with a very small volume
relative to other subdomains. However, the determination of the intersection of tracked and
initial subdomains becomes more expensive since the intersection with curved surfaces needs
to be computed.

Since a number of industrial mixers can be regarded in a time-periodic as well as a space-
periodic manner, it should be investigated in more detail what the advantages and disadvant-
ages of both manners are. The time-periodic approach for the twin screw extruder imposes
that the entire fluid domain needs to subdivided into subdomains. A space-periodic approach
would in this case map from cross-section to cross-section, reducing the total number of sub-
domains that need to be mapped. The space-periodic approach also is more flexible, since
the screw geometry can be adapted from one map to the next, whereas with a time-periodic
approach, first an entire screw needs to be assembled. Disadvantages of a space-periodic ap-
proach are that interpretation of data becomes less trivial since not all subdomains will cross
a cross-section at the same time, and, since the domain is constantly changing, the shape
of the tracked subdomains will be difficult to interpret. Mapping of quantities other than
concentration and residence time, may also become more involved.
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Appendix A

Mixing measures

To quantitatively compare mixing protocols, mixing measures need to be defined. Relevant
mixing measures are usually functions of moments of the concentration distribution. Here,
the intensity of segregation I and the scale of segregation S are chosen.

Intensity of Segregation

The intensity of segregation is a second moment statistic (variance) of the concentration dis-
tribution. It can be calculated as follows: first define the averaging operator 〈 f (x)〉� over the
domain � as:

〈 f (x)〉� =
∫
� f (x)dA∫
� dA

. (A.1)

Intensity of segregation is a measure of the deviation of the local concentration from the ideal
situation (i.e. when the mixture is homogeneous). The intensity of segregation is defined as,
Danckwerts (1952):

I = σ 2
c

c̄(1 − c̄)
with c̄ = 〈c(x)〉�, (A.2)

where σ 2
c is the variance in concentration over the entire domain �:

σ 2
c = 〈(c(x)− c̄)2〉�, (A.3)

and c(x) is the concentration in a point x in the domain.
When no diffusion is assumed, c(x) will either be 1 or 0. Therefore I will always be

equal to 1, independent of the distribution. To avoid this situation, the coarse grain density
Ci (Welander, 1955) on a finite subdomain�i is defined:

Ci = 〈c(x)〉�i . (A.4)

Coarse grain density can take values between, and including, 0 and 1. The domains �i are
chosen identical to the domains in the discretization for the mapping method. Equation (A.2)
can be rewritten in a discrete form using equation (A.4) as:

Id = 1

A�

N∑
i=1

(Ci − C̄)2

C̄(1 − C̄)
A�i with C̄ = c̄, (A.5)

in which A� and A�i represent the area of the flow domain and a subdomain, respectively,
and N is thew number of subdomains. Using this definition, the intensity of segregation (or
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sample variance) changes when a mixing protocol is applied. The top limiting value (worst
case) for Id is 1 when all �i have a coarse grain density of either one of two discrete values
(the boundary of the dyed area is coinciding with the boundaries of the subdomains). In the
ideal case Id = 0 since Ci = c̄ in all �i . Note that Id depends on the size of the domains
�i . This means that the subdomain size should be chosen according to the level of interest;
if striations in the mixture of a certain size are critical for the mixture and thus must be
visualized, the subdomain size should be chosen accordingly.

For three-dimensional analysis, the definition for the discrete intensity of segregation Id

is adapted to:

Id = 1

c̄(1 − c̄)

1

V

N∑
i=1

(ci − c̄)2vi , (A.6)

and the average concentration c̄ is:

c̄ = 1

V

N∑
i=1

civi , (A.7)

where ci is the concentration of marker fluid in subdomain i and vi is the volume of that
subdomain. The volume V is:

V =
N∑

i=1

vi . (A.8)

If all subdomains have the same volume vi this simplifies to:

Id = 1

c̄(1 − c̄)

1

N

N∑
i=1

(ci − c̄)2, with c̄ = 1

N

N∑
i=1

ci . (A.9)

Scale of Segregation

The scale of segregation is another second moment statistic of the concentration distribution.
This measure indicates whether large unmixed regions in the mixture are present and whether
a periodicity in the concentration distribution exists. The scale of segregation was defined by
Danckwerts (1952) as a functional of the correlation function:

S =
∫ ∞

0

∫ ∞

0
ρ(r)dr, (A.10)

with the correlation function ρ(r):

ρ(r) = 〈(c(x)− c̄) (c(x + r)− c̄)〉�
σ 2

c
with: r = 
x. (A.11)

This indicates that ρ(0) = 1 since numerator and denominator then are equal. The cor-
relation function can be regarded as the auto-convolution of (c(x)− c̄). The correlation
function ρ(r) can have any value from 0 to 1, unless some form of long-range segregation
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Fig. A.1: Difference between scale of segregation S and intensity of segregation I (cf.
Mohr et al., 1957).

(periodicity) in the mixture is present. In that case ρ(r) can range from −1 to 1. This in-
dicates that S according to (A.10) can be small, although the mixture is bad. In the paper of
Danckwerts (1952), it was assumed that this long range periodicity is not present. When dif-
fusive mixtures (0 ≤ c ≤ 1) are studied, the ideal situation is reached when C(x) = C̄ ∀x∈�.
Then the correlation function will be equal to 0 in its entire domain. Consequently, the best
possible diffuse mixture in the sense of scale of segregation occurs when S = 1 ∧ I = 0.

When the concentration distribution is discretized similar as for the determination of
the discrete intensity of segregation, the correlation function is easiest computed via a two-
dimensional fast Fourier transform (Tucker, 1991).

The difference between scale and intensity of segregation is shown schematically in figure
A.1. Scale of segregation gives an indication of large scale structures in the mixture. The size
of the variations (in concentration) is not influencing the value for S, just the fact that there
are variations. For the intensity of segregation the opposite is true; it does not matter how
fluid is distributed, only the deviation of the average concentration influences the value of I .



74 Appendix A. Mixing measures



Appendix B

Boundary and surface tracking

B.1 Adaptive boundary tracking in two dimensions

Since in chaotic flows the deformation of a boundary is not homogeneous a huge number of
equidistant points would be needed to describe a chaotically stretched boundary reasonably.
Still then, points would eventually be very closely spaced in one part of the boundary, and
large gaps would fall between points on another part of the boundary. In order to circumvent
this problem, a relatively small amount of markers (nodes) describing the circumference �
of the marked area � is started with. During the course of tracking, nodes are inserted in
between nodes where either the distance has grown beyond a certain limit, or when the angle
formed by three consecutive nodes is smaller than a critical one, according to the following
criteria (Galaktionov et al., 2000b):

l < l1c , A (B.1)

l < l2c if αi < αc ∨ αi−1 < αc (l2c < l1c), (B.2)

with:

l = ||xi−1 − xi ||, (B.3)

αi = arccos

(
(xi−1 − xi ) · (xi+1 − xi )

||xi−1 − xi || ||xi+1 − xi ||
)
, (B.4)

where l is the distance between two adjacent nodes, α and αc the angle and minimum angle
between two adjacent edges and l1c and l2c the preset maximum lengths in straight and curved
regions of the boundary, respectively. If conditions (B.1) and (B.2) are not satisfied, the edge
between xi−1 and xi is split into two parts and a new node is inserted. Nodes are inserted at
an earlier configuration since, in particular in the neighbourhood of hyperbolic points, results
can be drastically influenced by interpolation errors. The procedure is repeated for the newly
created edges.

B.2 Adaptive boundary tracking in three dimensions

To accurately track the boundary (surface) of an arbitrary three-dimensional volume an ad-
aptive scheme is required since the volume boundaries will become very distorted in efficient
mixers. The internal representation of the surface description should therefore allow for easy
addition of nodes, edges and triangles, as well as topological changes. Furthermore, the in-
ternal structure should be such that intersections with (arbitrary) planes or volumes can be
obtained without reshuffling of data.
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Fig. B.1: Three ways used to refine triangles (indicated by triangle 1, 2 and 3). (a) unrefined state; (b)
new nodes are added in the centres of edges that are too long; (c) existing edges are split and
new edges are created; (d) the refined mesh.

The surface description is created by triangulation. The internal bookkeeping is much
like the AVS UCD (Unstructured Cell Data) structure (Advanced Visual Systems Inc., 1992):
a list of points with their x , y and z coordinates, a list of edges connecting two points, and
a list of triangles determined by edge numbers. This structure makes arbitrary refinement of
the surface possible. Consider the three triangles in figure B.1a. First the length off all edges
is computed and compared to a preset maximum length. If the length of an edge exceeds
this maximum length, the edge is marked for splitting and a new point is added to list of
coordinates (see figure B.1b). Then, the tagged edges are split into two pieces. A new edge
(dashed lines) is added to the list of edges, and the original edge is updated. To refine the
triangles, the number of edges marked for refinement on the triangles are regarded. In case of
one marked edge, the triangle is refined by adding an edge from the new point to the opposite
angle. In case of two marked edges, an edge is added between the two new nodes and one of
the new nodes and its opposing angle. In case of three tagged edges, edges will only be added
between the new nodes (see figure B.1c). Figure B.1d shows the refined results. When the
deformation of the triangle is large, this process might need to be repeated a number of times.
In highly curved regions, triangles are refined further. Curvature of the boundary is detected
by computing the normals on two adjacent triangles. If the angle between the two normals is
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Fig. B.2: Improving triangle quality and reducing edge length by ‘flipping’ the common edge

larger than a maximum angle αmax, the maximum length of an edge of the regarded triangles
is decreased.

Especially in shearing regions, triangles can get very extended and triangle quality deteri-
orates. Triangle quality Q
 is here defined as:

Q
 = A
 · (S
)−2

A
,perfect · (S
,perfect)−2
, (B.5)

where A
 and S
 are the area and circumference of the triangle, respectively. The denomin-
ator represents the ratio of area over circumference for a perfect triangle ( 1

36

√
2) and is used

to normalize the triangle quality. As long as two triangles with a common edge are (nearly) in
the same plane, the quality of the triangle may be improved by ‘flipping’ (see figure B.2. The
common edge is removed and is replaced by an edge that connects the two most blunt angles.
Flipping is not just performed to acquire a ‘better shaped triangle’; the longest common edge
of two triangles will be replaced by a shorter one, thus saving on tracking additional nodes
that would otherwise have been introduced by refinement of the long edge. Although the flip-
ping procedure improves the quality of the triangles and reduces the number of nodes to be
tracked, it is obvious that it violates volume conservation of the entire structure, since locally
the surface changes from convex to concave or vice versa. Therefore, flipping can only be
applied when the normals n1 and n2 of the two triangles have (nearly) the same direction.

B.3 Determination of intersecting areas and volumes

For the mapping method it is crucial to determine the intersection of an arbitrary tracked
volume with an (arbitrary) reference volume. In this work, however, only intersections of
arbitrary volumes with volumes bounded by planes with constant x , y or z coordinates are
computed. Figure B.3 shows the procedure of determining the intersecting area in two dimen-
sions. Given the boundaries�1 and �2 of an undeformed and deformed subdomain boundary,
first the intersections of the edges of �1 with �2 are determined. These extra nodes (indicated
with ◦) are added to the description of �2. Then the nodes outside the domain enclosed by
�1 are projected onto it, and care is taken that no extra intersections are generated: if an edge
crosses the extensions of the undeformed subdomain (indicated by the dash-dotted lines), it
is projected to the nearest corner on the subdomain.

The area of the surface is then calculated by computing:

A = 1

2

N∑
n=1

2∑
i, j=1

εi j x (n)i y(n)j . (B.6)
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Fig. B.3: Determination of the area of intersection between an undeformed subdomain �1 and a de-
formed subdomain �2. a) Domains �1 and �2; b) extra nodes added to �2 indicated by ◦; c)
resulting domain �′

2 after projection of nodes outside the domain enclosed by �1.
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where the first sum is the sum over all edges and the second sum is over the vertices of the
corresponding edge. The components of εi j are defined as:

εi j =



0 if i = j
+1 if i = 1 ∧ j = 2
−1 if i = 2 ∧ j = 1

. (B.7)

The procedure in three dimensions is similar to that in two dimensions. The surface grid
is refined according to the extra nodes inserted; extra triangles are created in order to maintain
integrity of the surface description. The surface that results is identical in shape, however,
individual triangles do not cross the boundaries of the undeformed subdomain anymore. The
nodes outside the undeformed subdomain are again projected onto it. The volume remaining
is the intersection between the deformed and undeformed subdomain. For clockwise num-
bering (looking from the side of the outer normal), the volume enclosed by the surface that
consists of triangles can be computed using simple formula:

V = −1

6

N∑
n=1

3∑
i, j,k=1

εi j k x (n)i y(n)j z(n)k . (B.8)

The first sum is over all N triangular elements of the surface, where x (n)i , y(n)j and z(n)k are the
coordinates of the vertices numbered respectively i , j and k in subdomain number n. This
formula assumes that the nodal points in each triangle are numbered clockwise, looking from
the side of the outer normal to the surface. In equation (B.8) εi j k are the components of the
Levi-Civita tensor defined as:

εi j k =



0 if i = j ∨ j = k ∨ i = k
+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3).

(B.9)

Formula (B.8) is exact for a volume enclosed by a surface composed of triangles.
For more complex shape of the undeformed subdomains (other than brick-shaped) more

complicated technique must be used (based on subdivision of the undeformed subdomain
into set of tetrahedra and computing the intersection with each of them). For the rectangular
subdomains, however, the described above technique is rather fast and reliable.

Before using the algorithm outlined above, the list of undeformed subdomains with pos-
sible intersections is formed (using coordinates of the nodal points of the deformed surface).
This reduces the processor time necessary to compute the elements of the mapping matrix
by a few orders of magnitude, since in the given example the average deformed subdomain
intersects with less than 12 initial subdomains (out of 106 boxes used to discretize the flow
domains in chapters 3 and 5 for mapping).
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Appendix C

Area tensor

Laminar mixing of two liquids is generally performed to homogenize the mixture. Since a
good mixing flows creates these desired very small droplets or striations, it is not possible
to track these individual details. The area tensor (Wetzel & Tucker, 1997) describes the local
morphology of a mixture in terms of size, shape and orientation of one fluid in another. It
tracks the amount and orientation of the interface between the two liquids.

If a small averaging volume V with interfacial area � is considered, the (second order)
area tensor is defined as:

A = 1

V

∫
�

nnd� (C.1)

with n a unit normal vector on the interface �. The components of A have units of interfacial
area per volume in three dimensions and units of interfacial length per area in two dimensions.
The trace of the area tensor (trA) is equal to the total interfacial area SV in the averaging
volume.

For passive mixing, d� deforms affinely with the material. The evolution of A can then
be written as:

Ȧ = −LT · A − A · L + L : A (C.2)

where the dot represents a material derivative, L the velocity gradient tensor and A is the
fourth order area tensor, which is defined as:

A = 1

V

∫
�

nnnnd�. (C.3)

This fourth order area tensor is not calculated explicitly, but is approximated by a closure
approximation. Two such closures are given by Wetzel & Tucker (1999a).

In mapping, time steps are generally large. Thus, the differential equation C.2 is not
suitable. The deformation between the initial subdomain �0

i and the deformed subdomain
�i can be described by the deformation gradient tensor:

F = ∂x
∂x0 , (C.4)

where x0 are material coordinates associated with the spatial coordinates x in the reference
configuration. It is assumed that F is uniform over �0

i .
If n0 is the unit normal vector to the interface d�0 in the reference condition, then the

transformations of n0 and d�0 can be described as (Wetzel & Tucker (1999a), Wetzel & Tucker (1999b)):

d�

d�0 = det F
√(

FT · F
)−1 : n0n0, (C.5)
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Tab. C.1: Three microstructures and corresponding area tensors
Geometry A

Spherical SV


 1

3 0 0
0 1

3 0
0 0 1

3




Cylindrical SV


 1

2 0 0
0 1

2 0
0 0 0




Lamellar SV


 1 0 0

0 0 0
0 0 0




n =
(

F−1)T · n0√(
FT · F

)−1 : n0n0
. (C.6)

Substituting these into equation (C.1) gives

A = (det F)
(

F−1
)T ·


 1

V

∫
�

n0n0√(
FT · F

)−1 : n0n0
d�0


 · F−1. (C.7)

The right-hand side of this equation cannot be manipulated to contain only F and the area
tensor in the reference state A0, hence there is no universal relationship of the type we seek.
Instead, some approximation is essential.

The approximation used is based on the same idea as the rational ellipsoidal closure
(Wetzel & Tucker, 1999a): to any area tensor A and second-phase volume fraction φ, there
corresponds a unique set of identical ellipsoidal droplets. The size, shape and orientation of
the droplets can be characterized by a droplet shape tensor G (Wetzel & Tucker, 1999b). This
is defined such that, if the centre of the droplet is at the origin, points on the droplet surface
satisfy the equation

x · G · x = 1. (C.8)

To obtain the transformation law for G under finite strain we first note that in the reference
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configuration the points on the droplet surface satisfy

x0 · G0 · x0 = 1. (C.9)

Using equation (C.4) to replace x0 by x, we have, in the deformed configuration,

x ·
(
(F−1)T · G0 · F−1

)
· x = 1. (C.10)

Comparing this to equation (C.8) we see that the term in parentheses equals G, so the finite-
strain transformation rule is simply

G = (F−1)T · G0 · F−1. (C.11)

Our route for transforming the area tensor under finite strain is to convert the initial area
tensor A0 to an equivalent droplet shape tensor G0, find G in the deformed state using equa-
tion (C.11), and then transform G back to find the deformed-state area tensor A. As a nota-
tional convenience we write this transformation as

A = A0 ⊗ F−1. (C.12)

For the conversion between the area tensor A and the droplet shape tensor G, one is referred
to Galaktionov et al. (2000a) or appendix D.

In the extended mapping method, the subdomain volume �i serves as the averaging
volume for the area tensor. For subdomain i the associated area tensor is

Ai = 1

�i

∫
�i

nn d�. (C.13)

Here �i is the interfacial surface lying within �i . Because �i is explicitly chosen and has
finite volume, the subdomain area tensor Ai is a coarse-grain variable, like Ci .

For each non-zero entry Φ i j in the mapping matrix, we compute an inverse deformation
gradient tensor F−1

i j . This is evaluated at the centroid of � j |tk+1 ∩ �i |tk , the intersection
between the deformed subdomain j and the undeformed subdomain i . This computation is
carried out off-line, at the same time the mapping matrix Φ is being computed, and the results
are stored for later use.

The extended mapping method updates the area tensor at each time step according to

Ak+1
i =

N∑
j=1

Φ i j

(
Ak

j ⊗ F−1
i j

)
. (C.14)

That is, the area tensor in any subdomain at time k + 1 is the sum of contributions from
all donor subdomains, after the donor tensors from time k have been transformed by the
appropriate deformation gradients. Equations (C.14) and (2.7) constitute one step of the
extended mapping method.

The extended mapping method takes advantage of a key characteristic of the area tensor:
it is additive. More precisely, if a domain� is the union of two non-overlapping subdomains
�1 and �2, and if the area tensors associated with the subdomains are A1 and A2, then the
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area tensor for the whole domain is

A = 1

�

∫
�

nn d�

= 1

�1 +�2

[∫
�1

nn d�1 +
∫
�2

nn d�2

]

=
(

�1

�1 +�2

)
A1 +

(
�2

�1 +�2

)
A2. (C.15)

That is, the area tensor for any domain is the sum of the area tensors its subdomains, weighted
by the fraction of volume they occupy. This property of the area tensor allows us to sum
the contributions from the donor subdomains in equation (C.14). Other microstructural
descriptors, such as the droplet shape tensor G, do not have this additive property, and cannot
be used in the same way.
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Converting between area tensors and droplet shape
tensors∗

To transform the area tensor under finite strain, we must convert from the area tensor to the
shape tensor for equivalent ellipsoidal droplets, and back again. This appendix shows the
details of that conversion.

With the area tensor, the length scale of the microstructure is determined by the trace of
the tensor, which equals the interfacial area per unit volume SV . The ‘shape’ of the tensor is
described by the normalized area tensor Â, defined as

Â ≡ A
SV
. (D.1)

The droplet shape tensor G, defined in equation (C.8), describes the shape and size of
identical ellipsoidal droplets. Initially we choose coordinate axes that coincide with the sym-
metry axes of the ellipsoid. These are the eigenvectors of the tensor G. Let the semi-axes of
the droplet be a, b, and c, with a ≥ b ≥ c. We number the axes so that the droplet shape
tensor is

G =

 1/c2 0 0

0 1/b2 0
0 0 1/a2


 . (D.2)

The shape of the droplet is described by the two axis ratios

C = c

a
D = c

b
. (D.3)

Note that both C and D ∈ [0, 1]. Once C and D are known, the droplet size is determined by
specifying c.

One can establish the correspondence between A and G for ellipsoidal droplets by eval-
uating the integral in equation (C.1) over the surface of an ellipsoid. The two tensors are
coaxial, so if the shape tensor is diagonal as in equation (D.2), the area tensor will also be
diagonal.

The normalized area tensor Â depends only on the axis ratios C and D, and the exact
relationships have been derived by Wetzel & Tucker (1999a) and Wetzel & Tucker (1999b).

∗ This appendix is only enclosed for completeness. It is identical to Appendix C of A Global, Multi-Scale Simu-
lation of Laminar Fluid Mixing: The Extended Mapping Method, O. S. GALAKTIONOV, P. D. ANDERSON, G. W.
M. PETERS AND C. L. TUCKER, submitted to International Journal of Multiphase Flow and temporarily available
from http://polypro.me.uiuc.edu/online.html
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They are

Â11 = 1

1 − D2

E(θ, k)− D2 F(θ, k)

(1 − C2)E(θ, k)+ C2 F(θ, k)+ C D
√

1 − C2
, (D.4)

Â22 = D2

D2 − C2

D2−C2

1−D2 F(θ, k)− D2 1−C2

1−D2 E(θ, k)+ C D
√

1 − C2

(1 − C2)E(θ, k)+ C2 F(θ, k)+ C D
√

1 − C2
, (D.5)

Â33 = C2

D2 − C2

C2 E(θ, k)+ (D2 − C2)F(θ, k)− C D
√

1 − C2

(1 − C2)E(θ, k)+ C2 F(θ, k)+ C D
√

1 − C2
, (D.6)

where F(θ, k) and E(θ, k) are the Legendre elliptic integrals of the first and second kind,
respectively (Gradshteyn & Ryzhik, 1994), and k and θ are

k =
√

1 − D2

1 − C2 θ = cos−1(C). (D.7)

These exact relationships cannot be inverted analytically, and an iterative numerical proced-
ure is required. As an alternative, Wetzel & Tucker (1999a) found that these relationships are
well approximated by

C ∼=
(

Â33

Â11

)α
D ∼=

(
Â22

Â11

)α
, (D.8)

with α = 0.5977. The semi-axis ratio values from this approximation are exact for the
limiting cases of uniaxial, biaxial, and isotropic tensors, and they fall within 0.04 of the exact
values for all other ellipsoidal shapes. Equations (D.8) can be inverted analytically, to give

Â11 ∼= 1( c
a

)1/α + ( c
b

)1/α + ( c
c

)1/α = 1

(C)1/α + (D)1/α + 1
, (D.9)

Â22 ∼= 1( b
a

)1/α + ( b
b

)1/α + ( b
c

)1/α = 1( C
D

)1/α + 1 +
(

1
D

)1/α
, (D.10)

Â33 ∼= 1( a
a

)1/α + ( a
b

)1/α + ( a
c

)1/α = 1 − Â11 − Â22. (D.11)

This is the form used for the calculations in this paper. By definition Â11 + Â22 + Â33 = 1,
so there are only two independent eigenvalues of the normalized area tensor. Either equa-
tions (D.4)–(D.6) or equations (D.8)–(D.11) provide the mapping between the axis ratios C
and D and these two components.

To complete the relationship, we must also relate the ‘sizes’ of the two tensors. This is
determined from the surface area to volume ratio. The volume of the ellipsoid is

Ve = 4

3
πabc, (D.12)
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while its exact surface area is

Se = 2πc2

(
1 +

√
1 − C2

C D
E(θ, k)+ C

D
√

1 − C2
F(θ, k)

)
. (D.13)

A convenient approximation to the surface area that avoids the elliptic integral functions F
and E is (Lehmer, 1950)

Se ∼= 4πab


2

5

C + D + 1

3
+ 3

5

√
C2 + D2 + 1

3


 . (D.14)

If the ellipsoidal droplets occupy a fraction φ of the mixture volume, then their surface area
per unit total volume is

SV = φSe

Ve
. (D.15)

Substituting the exact area formula (D.13) and the volume (D.12), we find

SV = 3φc

2ab

[
1 +

√
1 − C2

C D
E(θ, k)+ C

D
√

1 − C2
F(θ, k)

]
. (D.16)

For numerical calculations it is useful to rearrange this formula as

SV = 3φ

2c

[
C D +

√
1 − C2 E(θ, k)+ C2

√
1 − C2

F(θ, k)

]
. (D.17)

This handles the case where a → ∞ and C → 0 smoothly, and also has no problems if in
addition b → ∞ and D → 0.

Alternately, one can use the approximate area formula (D.14), in which case

SV ∼= φ

c

[
2

5
(C + D + 1)+ 3

5

√
3(C2 + D2 + 1)

]
. (D.18)

In either case we have a direct relationship between SV and c.
We now have all the pieces needed transform between the area tensor and the droplet

shape tensor. To go from G to A the algorithm is:

1. Find the eigenvalues and eigenvectors of G. The eigenvalues give a, b, and c accord-
ing to equation (D.2). Normalize the eigenvectors and use them to form the rotation
matrix R between the principal axes and the laboratory axes. Compute C and D from
equation (D.3).

2. Determine the principal components of the normalized area tensor Â, using either the
exact relations (D.4)–(D.6) or the approximate relations (D.9)-(-D.11).

3. Determine SV using either the exact formula (D.16) or the approximate formula (D.18).

4. Compute the area tensor in its principal coordinates using equation (D.1), i.e. A =
SV Â.
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5. Use R from the first step to rotate A back to the laboratory axis system.

The reverse transformation, from A to G, follows a similar pattern. If the exact shape for-
mulae (D.4)–(D.6) are used, then an iterative numerical procedure is required to find C and
D. The approximate formulae can be used to provide a close initial guess, after which a
Newton-Raphson iteration should converge without difficulty.
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Samenvatting

Dit proefschrift betreft de analyse van laminair mengen. Mengen komt zowel voor in de
industrie als in het huishouden. Mengen in de industrie behelst onder andere toepassingen in
polymer blends, fabricage van verf en inkt en in de bereiding van voedsel. In het huishouden
komen we laminair mengen tegen bij het maken van deeg voor brood of cake, het bereiden
van sauzen, gedurende het koken en in het roeren van stroop of honing in yoghurt.

Mengen is zo alledaags dat het zonder nadenken wordt gedaan. Desondanks ondervindt
de industrie moeilijkheden die om een beter begrip van mengprocessen vragen. Productie-
snelheden worden opgevoerd, er worden andere materialen verwerkt die temperatuurgevoelig
zijn en degraderen, terwijl ook de productievolumes verhoogd worden, zodat er steeds min-
der tijd overblijft om goed te mengen. Daarnaast worden de eisen die gesteld worden aan het
uiteindelijke product steeds hoger. Bovenstaande argumentatie vormt de voornaamste reden
waarom analyse van mengen van belang is.

Wanneer we ons beperken tot die gevallen waarbij de reologie van het mengsel niet ver-
andert door het mengen, begint de analyse van het mengen daar waar de analyse van het
snelheidsveld in een menger ophoudt. Zelfs voor de complexe vormen in de mengers die in
de praktijk gebruikt worden kan dit snelheidsveld tegenwoordig met grote nauwkeurigheid
numeriek bepaald worden. Alle bestaande methoden om menggedrag numeriek te analyseren
maken gebruik van technieken om deeltjes in de tijd te volgen. Klassieke methoden, zoals
bijvoorbeeld de Poincaré methode, volgen in het algemeen een beperkt aantal kleine deeltjes
die geen fysieke afmetingen hebben. Wanneer de deeltjes wel een grootte hebben, zoals bij-
voorbeeld bij het volgen van randen van oppervlaktes of volumes (blobs), dan is het resultaat
vrijwel altijd afhankelijk van de beginpositie van de blob, alsmede van de grootte en vorm
van die blob. Wanneer men te maken heeft met een redelijk efficiënte menger, zal het aantal
punten dat nodig is om de rand van een blob te beschrijven, exponentieel toenemen. Het
volgen van de rand voor langere tijd is dus duur in termen van computertijd en computer-
geheugen en wordt, ondanks toepassing van adaptieve technieken, bij exponentiële toename
van de lengte van de rand, al na geringe (meng-)tijd onmogelijk. Als vervolgens wijzigingen
worden aangebracht in de geometrie of het mengprotocol, dient de gehele analyse herhaald
te worden. Het behoeft geen betoog dat het optimaliseren van mengers op deze wijze geen
haalbare zaak is.

De ‘afbeeldingen–’ of mapping-methode die in dit proefschrift beschreven wordt verschilt
niet van de klassieke methode in zoverre dat ook deze methode gebruik maakt van technieken
om deeltjes te volgen. Echter, in plaats van analyse van de verspreiding van losse deeltjes in
de vloeistofstroom of het volgen van de rand van een enkele blob na te streven, berekent de
methode het transport van vloeistof (of een andere behoudende of additieve grootheid zoals
verblijftijd of de grootte van het oppervlak tussen twee vloeistoffen) gedurende een beperkte
mengtijd. De totale mengtijd wortd daartoe opgedeeld in een (groot) aantal karakteristieke
deelmengtijden. Het te analyseren mengdomein wordt opgedeeld in een groot aantal subdo-
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meintjes. De randen van deze subdomeintjes worden gedurende een (deel van de) periode
van de stroming gevolgd. Hierbij hoeft geen onderscheid gemaakt te worden tussen tijd– of
plaatsperiodieke stromingen. Vervolgens wordt van elk gevolgd subdomeintje bepaald welke
originele subdomeintjes het doorsnijdt. De grootte van deze doorsnijding wordt opgeslagen
in een transport-matrix. Deze matrix beschrijft dus hoeveel vloeistof er van een subdomein er
na verloop van een bepaalde tijd in andere subdomeintjes terecht komt. Gebruikmakend van
deze afbeeldingen-methode kan bijvoorbeeld de invloed van de initiële plaats van een blob
op de uiteindelijke verspreiding van die blob eenvoudig berekend worden aangezien deze be-
rekening gereduceerd is tot een eenvoudige (ijle) matrix–vector vermenigvuldiging. Door de
matrix–vector vermenigvuldiging nu een (eventueel groot) aantal keer achtereen te herhalen,
wordt het mengproces gemodelleerd.

De gepresenteerde afbeeldingen-methode laat een aantal bezwaren van klassieke metho-
des links liggen. Het belangrijkste voordeel bestaat eruit dat niet elke wijziging in protocol
of geometrie een volledig nieuwe analyse vergt. Omdat de afbeeldingen-methode een ‘line-
aire’ methode is, kan het stroomdomein opgedeeld worden in een aantal kleinere domeinen
die onafhankelijk van elkaar geanalyseerd kunnen worden. Deze afzonderlijk geanalyseerde
functionele eenheden kunnen dan later gecombineerd worden om het volledige domein, en
variaties daarop, te analyseren. Dit maakt de methode met name geschikt voor bijvoorbeeld
de analyse van extruder-schroeven. De afzonderlijke delen van een extruderschroef kunnen
apart geanalyseerd worden en vervolgens in verschillende schroefontwerpen gecombineerd
worden zodat de werking van de gehele schroef beschouwd kan worden.

Dit proefschrift introduceert de afbeeldingen-methode aan de hand van een eenvoudige
twee-dimensionale tijdperiodieke prototype-stroming: die van een caviteit waarvan twee te-
genoverliggende wanden onafhankelijk van elkaar bewogen kunnen worden en zo een stro-
ming in de caviteit teweegbrengen. Deze stroming wordt al geruime tijd onderzocht en dit
geeft de mogelijkheid de resultaten te vergelijken met eerder werk. Om de toepasbaarheid uit
te breiden naar drie dimensies is een tweede prototype-stroming onderzocht door de twee-
dimensionale caviteit-stroming uit te breiden naar drie dimensies: een kubus waarvan twee
tegenoverliggende vlakken onafhankelijk van elkaar kunnen bewegen. De eerste stap die
gemaakt is naar industriële mengers betreft de analyse van de plaats-periodieke multiflux sta-
tische menger. Tenslotte wordt het transport-element van een gelijkdraaiende dubbelschroef-
extruder geanalyseerd.



Summary

In this thesis the issue of mixing analysis is addressed. Mixing is found in industrial and
domestic practice. Examples of the first include applications in polymer reaction engineering,
polymer blending, food manufacturing, paint and ink preparations, while those of the second
are involved in preparing dough for baking cake or bread, in mixing of sauces and in cooking,
up to the stirring of syrup in yoghurt.

Mixing has become such an integral part of everyday life, that it is performed without
thought. However, in industry, it has become clear that mixing needs to be better understood.
Residence times are continuously decreasing in order to be able to also process temperature
sensitive materials and to reach a higher production volume with imposed properties of the
resulting product, despite the complexity caused by the choice of the individual constituents.
The time allowed to find the proper mixing actions has become increasingly smaller, the
demands are increasingly more severe.

Restricting to those cases where rheology is not changed through the mixing action, ana-
lysis of mixing starts where the computation of velocity fields ends (even in complex geomet-
ries as generally involved in practical mixers). Once an accurate velocity field is obtained,
it can be used to investigate the mixing properties of the flow at hand. Methods applied to
analyse mixing without exception use some kind of particle tracking technique. Classical
methods, as e.g. the Poincaré method, usually only track infinitely small particles, with no
physical size attached. When a physical size is attached, as e.g. boundary or volume tracking
techniques, the results with respect to mixing quality tend to strongly depend on the location
initially chosen and on the size of the area or volume of the traced blob. In the case of ef-
ficient (chaotic) mixing, the length of the boundary of this blob will increase exponentially,
as will the number of markers to adequately describe the boundary. To track these boundar-
ies for longer times is expensive in time as well as computer memory. Furthermore, when
changes are made to the geometry or mixing protocol, analyses need to be repeated over and
over again. Using such an approach, optimization in complex geometries is thus practically
impossible.

The mapping method presented in this thesis is not different from the classical methods in
the sense that it also uses particle tracking. However, instead of analysing the distribution of
individual particles or a boundary of a two– or three-dimensional blob, the mapping method
gives an approximate description of the transport of fluid or any other conservative or additive
quantity (as e.g. residence time or interfacial area). This is realized by subdividing the flow
domain into a number of subdomains. The boundaries of these subdomains are tracked for
(a part of) a period of a flow. Both time and spatially periodic flows can be used. The
intersection of the tracked subdomains with the initial subdomains is computed and stored in
a transport matrix. This transport matrix identifies how much fluid flows from one subdomain
to another during a pre-determined interval in time or space. Using this (mapping) matrix,
the dependence of e.g. the final dye distribution on the initial dye distribution can easily be
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computed, since it has been reduced to a (sparse) matrix–vector multiplication.
This mapping method overcomes a number of drawbacks of classical methods. Most

important is the possibility to re-use the results of earlier computations: not every change
in protocol or geometry requires a completely new analysis. Since the mapping method
presented is a ‘linear’ method, the flow domain can be subdivided into a number of functional
units, that can be analysed piecewise. The independent analyses can later be combined to
analyse the entire flow domain, and variations upon it. This makes the method extremely
useful for mixing devices as e.g. extruders. The separate screw-elements can be analysed
independently, and afterwards combined into different screw designs, so the overall mixing
performance of the screw can be analysed.

This thesis introduces the mapping method by means of a simple two-dimensional, time-
periodic, lid-driven, cavity flow. This flow is well studied and offers possibilities to verify
results in a number of ways. Extension of the applicability of the method towards flows in
three dimensions is realized by investigating its potential via computations and verifications
in a three-dimensional, lid-driven, time-periodic cavity flow. The first step towards indus-
trial, spatially periodic, mixers is made by analysing the multiflux static mixer. Finally the
transport element of the co-rotating twin screw extruder is analysed.
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Stellingen

behorende bij het proefschrift

Analysis and Optimization of
Laminar Mixing Flows

Design, Development and Application
of the Mapping Method

1. De methode voor de analyse van menging zoals voorgesteld door Spencer en Wiley
(1951) heeft haar merites, maar is voor de analyse van industriële mengers nog steeds
ongeschikt door de grote hoeveelheid benodigd computergeheugen. De mapping me-
thode gepresenteerd in dit proefschrift gaat weliswaar terug naar dezelfde basisge-
dachte, maar heeft de genoemde beperking niet, en geeft de mogelijkheid tot opti-
malisatie.

• SPENCER, R. S. & WILEY, R. M. 1951 The mixing of very viscous liquids.
Journal of Colloid Science 6, 133–145.

• Dit proefschrift.

2. Bestaande technieken voor de analyse van menging maken veelal gebruik van de dis-
tributie van een eindig aantal infinitesimale tracers. Daar deze tracers geen fysische
dimensies bezitten is de interpretatie van de resultaten verkregen door toepassing van
deze technieken een hachelijke zaak. Het volgen van gebieden met een eindige grootte
verdient daarom de voorkeur. Dat dit een wezenlijk verschil is wordt onvoldoende
onderkend.

• Dit proefschrift, Hoofdstuk 2.

3. Ervan uitgaande dat de meeste mengprocessen intrinsiek herhalend zijn (en dus pe-
riodiek), moet de berekening van één periode voldoende zijn voor de analyse van de
mengwerking van een menger. Dit kan leiden tot een reductie van de rekentijd. Daar
één periode vaak nog uit een combinatie van gelijksoortige operaties bestaat kan de
rekentijd verder worden teruggebracht door slechts de effecten van één operatie te be-
rekenen.

• Dit proefschrift, Hoofdstuk 2 en 3.

i



4. De mogelijkheid een mengproces te reduceren tot een beperkt aantal discrete hande-
lingen is essentieel voor optimalisatie van het mengproces. Door de beschrijving van
het transport van vloeistof tijdens een dergelijke handeling terug te brengen tot een
matrix–vector vermenigvuldiging, is optimalisatie van complexe mengers ook reali-
seerbaar geworden.

• Dit proefschrift.

5. Kwalificatie van menging met behulp van mengmaten is alleen zinnig wanneer men
kan definiëren wat voor het mengsel onder beschouwing van wezenlijk belang is. Het
zoeken naar één mengmaat die in alle gevallen voldoet is daarom dan ook verspilde
moeite.

• MOHR, W. D., SAXTON, R. L. & JEPSON, C. H. 1957 Mixing in laminar flows.
Industrial and Engineering Chemistry 49 (11), 1855–1856.

• DANCKWERTS, P. V. 1952 The definition and measurement of some characteris-
tics of mixtures. Applied Scientific Research Section A 3, 279–296.

6. Vaak is bepaling van het snelheidsveld het einde van een numerieke analyse. Bij men-
gen is het pas het begin.

7. Veel numeriek werk is heden ten dage experimenteel van aard.

8. Het laten vervallen van de voorgestelde HTML 3.0 standaard waarin de mogelijkheid
tot het weergeven van formules door browsers werd beschreven geeft enerzijds weer dat
de correcte weergave van formules niet eenvoudig is, maar anderzijds ook dat ‘het web’
steeds meer het domein van de commercie wordt dan van de wetenschap. De moeizame
totstandkoming van MathML (Mathematical Markup Language) en de ondersteuning
daarvan door moderne browsers onderstreept dit.

• HyperText Markup Language Specification Version 3.0.
http://www.w3.org/MarkUp/html3/maths.html.

• HTML 3.2 Reference Specification.
http://www.w3.org/TR/REC-html32.html.

9. De uitwisselbaarheid van Word-documenten wordt beperkt door zowel versienummer
als taalgebied, ook wanneer het documenten met slechts engelse tekst betreft. Wanneer
figuren of formules in het document aanwezig zijn vermindert de uitwisselbaarheid
dramatisch.

• Proceedings of the Fifteenth Annual Meeting of the Polymer Processing Society
ed. P. G. M. Kruijt & P. D. Anderson (on CD-ROM).

10. Parallel rekenen kan de kloktijd van een simulatie bijzonder verkorten. Dit heeft echter
geen relatie met de promotieduur.

• Dit proefschrift, pag. 101.

Peter Kruijt,
Eindhoven 5 september 2000.
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