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Complexity of Preemptive Minsum Scheduling on

Unrelated Parallel Machines

René Sitters∗.

Abstract

We show that the problems of minimizing total completion time and of
minimizing the number of late jobs on unrelated parallel machines, when
preemption is allowed, are both NP-hard in the strong sense. The former
result settles a long-standing open question. A special case of the unre-
lated machine model is the identical machine model with the restriction
that a job can only be processed on a specific subset of the machines. We
show that in this model the problem of minimizing total completion time,
when preemption is allowed, can be solved in polynomial time by proving
that the use of preemption is redundant.

1 Introduction

Suppose that m machines Mi (i = 1, . . . ,m) have to process n jobs Jj (j =
1, . . . , n). Each job can be processed on any of the machines but it can only be
worked on by one machine at a time. Each machine can process at most one
job at a time. The time it takes to process job Jj completely on machine Mi

is given by a positive integer pij . Preemption is allowed, i.e., we may interrupt
the processing of a job, and continue it later on the same, or at any time on
another machine. We are interested in finding a schedule for which a certain
optimality criterion is met.

In this paper we consider two optimality criteria: minimizing the sum of
completion times

∑n
j=1 Cj , and minimizing the sum of unit penalties

∑n
j=1 Uj .

The completion time Cj of a job Jj is the last moment in time that it is pro-
cessed. If a job Jj has a given due date dj , that is, the moment in time by which
it should be completed, then we say the job is late if dj < Cj . The unit penalty
Uj is 1 if job Jj is late, and 0 otherwise.

With the two optimality criteria we have defined two scheduling problems.
In the notation introduced by Graham et al. [10] they are R|pmtn|

∑
Uj and

R|pmtn|
∑

Cj . The ‘R’ indicates that we have unrelated parallel machines, i.e.,
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no relation between the mn processing times pij is presumed. The number
of machines m is defined as part of the problem instance. If the number of
machines m is fixed, the notation ‘Rm’ is used. The acronym ‘pmtn’ indicates
that preemption is allowed. The third field indicates which optimality criterion
is used.

Lawler [15] proved that the problem P |pmtn|
∑

Uj , i.e., the problem of
minimizing the number of late jobs on identical parallel machines, is already
NP-hard in the ordinary sense. We say machines are identical if pi1 = pi2 =
. . . = pim for all i, 1 ≤ i ≤ n. Hence R|pmtn|

∑
Uj is NP-hard in the ordinary

sense as well. Du and Leung [5] show that the problem R|pmtn, rj |
∑

Uj , where
the given jobs have release dates, is strongly NP-hard.

We show that R|pmtn|
∑

Uj is NP-hard in the strong sense.
Little is known about the preemptive minimization of the sum of completion
times. If no preemption is allowed (R||

∑
Cj), an optimal schedule can be found

in polynomial time by solving a weighted matching problem (Horn [11], Bruno
et al. [4]). In the case of uniform parallel machines, Gonzalez [9] shows that
an optimal preemptive schedule can be found in polynomial time. We say that
the machines are uniform if pij = pj/si for given processing requirement pj of
job Jj , and speed si of machine Mi. The problem P2|pmtn, rj |

∑
Cj , is NP-

hard in the ordinary sense [6], and the problem P2|chains, pmtn|
∑

Cj , where
chainlike precedence relations between the jobs are added, is NP-hard in the
strong sense [7].

We show that the problem R|pmtn|
∑

Cj is NP-hard in the strong sense.
For almost all scheduling problems the preemptive version of the problem is
not harder to solve than the non-preemptive version. For at least two schedul-
ing problems this emperical law does not hold true. Brucker, Kravchenko, and
Sotskov [2] showed that the preemptive job shop scheduling problem with two
machines and three jobs (J2|n = 3, pmtn|Cmax) is NP-hard in the ordinary
sense. However, Kravchenko and Sotskov [13] show that the non-preemptive
version can be solved in O(r4) time, where r is the maximum number of oper-
ations of a job.

The other exception is that of finding an optimal preemptive schedule for
equal length jobs on identical parallel machines. The optimality criterion is the
sum of weighted lateness penalties. This problem (P |pj = p, pmtn|

∑
wjUj)

was proven to be NP-hard in the ordinary sense by Brucker and Kravchenko [1].
In the same paper they give a O(n log n) time algorithm for the non-preemptive
version. Recently they even proved strong NP-hardness for the preemptive
problem [3].

R|pmtn|
∑

Cj is the third problem type on this short list.
A special case of the unrelated machine model is the model in which each job
j has a fixed processing time pj but the job can only be processed on a job-
specific subset of the machines. So the processing time of job j on machine i
(pij) is either pj or infinite. We show that within this model the problem of
minimizing total completion time, when preemption is allowed, can be solved
in polynomial time by showing that the use of preemptions can not reduce the
optimal objective value.
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Table 1: Complexity status of some unrelated machine problems

R||
P

Cj O(n3) [4],[11] R|pmtn|
P

Cj NP-hard∗ [♦]

R||
P

Uj NP-hard∗ [8] R|pmtn|
P

Uj NP-hard∗ [♦]

R|pij ∈ {pj ,∞}|
P

Cj O(n3) [4],[11] R|pmtn, pij ∈ {pj ,∞}|
P

Cj O(n3) [♦]

R|pij ∈ {pj ,∞}|
P

Uj NP-hard∗ [8] R|pmtn, pij ∈ {pj ,∞}|
P

Uj NP-hard [15]

[♦] this paper,
* NP-hard in the strong sense.

The complexity of R|pmtn|
∑

Cj and R|pmtn|
∑

Uj is still open for a fixed
number of machines, even for m = 2. Another open question is whether either
of the problems P |pmtn|

∑
Uj and R|pmtn, pij ∈ {pj ,∞}|

∑
Uj is solvable in

pseudopolynomial time or NP-hard in the strong sense.

2 Minimizing the Number of Late Jobs

R|pmtn|
∑

Uj

Instance: A number α, a set {M1,M2, . . . ,Mm} of m unrelated machines, a set
{J1, J2, . . . , Jn} of n independent jobs, a set {pij | i = 1 . . .m, j = 1 . . . n} where
pij is the processing time of job Jj on machine Mi, and a due date dj for each
job Jj .
Question: Does there exist a preemptive schedule for which

∑n
j=1 Uj ≤ α?

It is not obvious this problem is in the class NP since we have to exclude the pos-
sibility that there is a schedule with a superpolynomial number of preemptions
that has a strictly smaller objective value than any schedule with a polynomial
number of preemptions. Lawler and Labetoulle [14] show that for any mono-
tone, non-decreasing objective function f(C1, C2, . . . , Cn), an optimal schedule
can be constructed by solving a linear program, if the completion times of the
jobs in an optimal schedule are given. The number of preemptions for this sched-
ule is O(m2n). Verifying the feasibility of a schedule with O(m2n) preemptions
requires polynomial time, and so R|pmtn|

∑
Uj is in NP.

We present a reduction from the 3-Dimensional Matching problem to
R|pmtn|

∑
Uj . The former was proven to be NP-complete by Karp [12].

3-Dimensional Matching (3DM)

Instance: Three sets U = {u1, . . . , um}, V = {v1, . . . , vm}, and W = {w1, . . . , wm},
and a subset S ⊂ U × V ×W of size n ≥ m.
Question: Does S contain a perfect matching, that is, a subset S′ of cardinality

3



m that covers every element in U ∪ V ∪W?

As a preliminary we define, for each instance of the 3DM problem, some special
sets of machines and jobs that we shall use in both NP-hardness proofs in this
paper.

Basic sets of machines and jobs

Given an instance of the 3DM problem we define one machine Ui for each ele-
ment ui of the set U . The set of these m machines is denoted by U as well. In
the same way we define the sets of machines V and W . We use the following
notation for the set S: S = {(uαj , vβj , wγj )| j = 1, . . . , n}. For each element
sj = (uαj , vβj , wγj ) of S we define one job which we denote by Jj . The set of
these n jobs is denoted by J . The processing time of these jobs is small on the
three machines that correspond to the related triple, and is large on all other
machines. To be specific: let sj = (uαj

, vβj
, wγj

) be an element of S, then the
processing time of job Jj is 3p on machine Uαj ,

3
2p on machine Vβj

, and p on
machine Wγj , where p ∈ R, p ≥ 2. The processing time is K on any of the
other 3m− 3 machines, where K ∈ R, K ≥ 6p. The numbers K and p will be
chosen appropriately in each of the two NP-hardness proofs.

We use the following terminology. We say that a machine is a ‘slow’ machine for
the job Jj if the processing time of job Jj is K on that machine. In any other
case we say that the machine is ‘fast’ for the job. The following lemma relates
the perfect 3-dimensional matching property with properties of the scheduling
instance given by the sets U,W,W and J .

Lemma 2.1 Let I be an instance of 3-DM and let the corresponding sets
U, V,W and J be described as above. If we add the restriction that none of the
V -machines can process a job before time t = 1 and none of the W -machines
can be used for processing before time t = 2, then for every preemptive schedule
the following holds:

(i) Cj ≥ p + 1 for any job Jj ∈ J ,

(ii) if there are m jobs for which Cj < (p + 1) + 1
6 , then I contains a perfect

matching.

Proof. (i) Schedule job Jj on machine Uαj
from t = 0 to t = 1, on machine Vβj

from t = 1 to t = 2, and on machine Wγj
from time t = 2 onwards. Scheduled

in this way Cj = p+1. Any other schedule will give a strictly larger completion
time.
(ii) Call the schedule of job Jj as described in (i), the optimal schedule of this
job. If I does not contain a perfect matching, it is impossible to schedule a
set of m jobs such that each job gets its optimal schedule. At least one job of
any set of m jobs must diverge from its optimal schedule for a total time of at
least 0.5, i.e., during this time that job is not processed on its fastest available
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machine. This will delay the best possible completion time for this job be by at
least 1

6 . 2

We will use this construction with the optimal schedule of the J-jobs to prove
Theorems 1 and 2. In the lemma we made the restriction that sets of machines
can only be used from some point in time onwards; in the NP-hardness proofs
we have to find a way to enforce this. It turns out that this is easy for the

∑
Uj

objective and more complicated for the
∑

Cj objective.

Theorem 1 R|pmtn|
∑

Uj is strongly NP-hard.

Proof. The problem is in the class NP as we already showed. To complete
the proof we reduce the 3-Dimensional Matching problem to R|pmtn|

∑
Uj .

Given an instance of 3-DM of size n and m, we will define a scheduling instance
containing a set of 3m machines and 2m+n jobs, and prove that a 3-dimensional
matching exists if and only if there exists a preemptive schedule for which the
number of late jobs does not exceed a certain value.

Let I be an instance of 3-DM with the notation as defined before. The
scheduling instance consists of the basic sets of machines U , V and W , and
the basic set of jobs J , and additionally we define the set A of jobs as follows.
For each machine of the set V we introduce one job with processing time 1 on
that specific machine, and with processing time K on any of the other 3m− 1
machines. The due date is 1 for all these jobs. For each machine of W we define
one job with processing time 2 on that specific machine, and with processing
time K on any of the other 3m−1 machines. The due date is 2 for all these jobs.
We define the set J of jobs related to S, with their processing times as before.
The due dates of these jobs are p+1. We choose the value p = 3m+3.

We claim that for any schedule, the number of late jobs is less than or equal
to n−m, if and only if a perfect matching exists. Notice that, since the number
of jobs is n + 2m, this is the same as claiming that the number of early jobs is
at least 3m if and only if a perfect matching exists.

If there exists a perfect matching, then it is possible to schedule the jobs
such that 3m jobs are early: Schedule the 2m A-jobs such that they are early
(there is only one way to do this), and give the m J-jobs that correspond to the
elements in the 3-dimensional matching, their optimal schedule as described in
the proof of Lemma 2.1.

Now observe that it is impossible to have more than m early J-jobs. For a
J-job to be early, it must be scheduled on its fast W -machine for a time of at
least p− 2. So if there are at least m + 1 early J-jobs, then the total processing
time required on the W -machines is at least (m + 1)(p− 2) = (m + 1)(3m + 1).
For any m this is strictly larger than m(3m + 4), which is the total available
processing time on the W -machines before the due date, t = 3m+4.

We conclude that if at least 3m jobs are early, then these jobs are the 2m
A-jobs and exactly m of the J-jobs. From Lemma 2.1(ii) it follows that in this
case a perfect matching exists. 2
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3 Minimizing the Sum of Completion Times

R|pmtn|
∑

Cj

Instance: A number α, a set {M1,M2, . . . ,Mm} of m unrelated machines, a set
{J1, J2, . . . , Jn} of n independent jobs, and a set {pij |i = 1 . . .m, j = 1 . . . n}
where pij is the processing time of job Jj on machine Mi.
Question: Does there exist a preemptive schedule for which

∑n
j=1 Cj ≤ α?

Theorem 2 R|pmtn|
∑

Cj is strongly NP-hard.

Proof. The membership of the class NP follows from the same arguments as
given for the problem R|pmtn|

∑
Uj .

To complete the proof we reduce 3-Dimensional Matching to R|pmtn|
∑

Cj .
Given an instance of the 3-DM problem we define an instance of a scheduling
problem and prove that a perfect matching exists if and only if there exists a
preemptive schedule for which the sum of completion times does not exceed a
certain value.

Let I be an instance of 3-DM with the notation as defined before. The
scheduling instance consists of the basic sets of machines U , V and W , and the
basic set of jobs J . Additionally we define one machine which we denote by Z.
The processing time on the Z-machine is p for any job from J . The value of p
is set to p = 2. The value of K (which was defined as the processing time on
slow machines) will be specified later. Besides the set J two more sets of jobs
are defined.

The second set of jobs is the set A which contains many jobs with a small
processing time. For each V -machine we define M A-jobs with processing time
1
M on that specific machine and processing time K on any other machine. The
value of M will be specified later. For each W -machine we define 2M A-jobs with
processing time 1

M on that specific machine and with processing time K on any
other machine. For the Z-machine we define 3M A-jobs with processing time
1
M on the Z-machine and processing time K on any of the other 3m machines.
The total number of jobs in A is (3m + 3)M . The A-jobs are meant to keep
the V -machines busy until time 1, the W -machines busy until time 2, and the
Z-machine busy until time 3.

The third and last set of jobs is B. For each U -machine we define 1
3 (n−m) B-

jobs with processing time 2n+4 on that specific machine, and processing time K
on any other machine. (Without loss of generality we may assume that 1

3 (n−m)
is integer.) For each V -machine we define 2

3 (n−m) B-jobs with processing time
2n + 4 on that specific machine and processing time K on any other machine.
For each W -machine we define (n−m) B-jobs with processing time 2n + 4 on
that specific machine and processing time K on any other machine. The B-
jobs are introduced to ensure that, in an optimal schedule, a limited part of the
J-jobs is scheduled on the U -, V -, and W -machines.
If a perfect matching exists then the jobs can be scheduled as shown in Fig. 1.
All A-jobs are scheduled on their fast machines such that their sum of completion
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Figure 1: Sketch of the schedule σ3DM .

times is minimized. There is only one way to do this. The n jobs from J that
correspond to the perfect matching are scheduled as in the proof of Lemma 2.1.
The completion time of these jobs is 3. All other J-jobs are scheduled after the
A-jobs on the Z-machine. Each B-job is scheduled on its (unique) fast machine.
The B-jobs are placed directly after the other jobs. This schedule is denoted
by σ3DM . The sum of completion times in σ3DM is denoted by Cσ3DM

. The
value of Cσ3DM

is clearly a polynomial in m,n,M and 1/M . The expression is
omitted here.

We use the notation Cσ̃(J̃) for the sum of completion times of the jobs in
a set J̃ in a schedule σ̃, and Cσ̃ for the sum of completion times of all jobs in
schedule σ̃.

We now show that if no perfect matching exists, then for any preemptive sched-
ule σ the total completion time is strictly larger than Cσ3DM

. In fact we will
show that Cσ ≥ Cσ3DM

+ 1
24 .

We introduce two restrictions to the scheduling problem.

• Restriction 1: No job may be processed on a slow machine.

• Restriction 2: All A-jobs have to be scheduled as in σ3DM .

With these two restriction we define three scheduling problems.

• Problem 1: The original problem with Restrictions 1 and 2.

• Problem 2: The original problem with Restriction 1.

• Problem 3: The original problem.
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For each of the three problems we will show a lower bound on the total com-
pletion time in case no perfect matching exists for the 3-DM instance I. The
essence of the reduction is contained in the proof for Problem l. It is intuitively
clear that a lower bound for Problem 2 or 3 can be made arbitrarily close to a
lower bound for Problem 1 for appropriately large values of M and K. We give
explicit values for the numbers M and K and prove that these values suffice,
i.e., we show that processing the A-jobs different or using slow machines will not
break the reduction. Notice that it is possible to improve the schedule σ3DM

by preempting jobs on slow machines!

Problem 1: Let σ be an optimal schedule for Problem 1. We will prove that
Cσ ≥ Cσ3DM

+ 1
6 . The fact that σ is optimal is important; we will use this

implicitly.
Let TUi (i = 1, . . . ,m) be the time that is spent on processing J-jobs on

machine Ui. Define TVi
, TWi

(i = 1, . . . ,m) and TZ in a similar way. Notice
that in schedule σ3DM we have TUi

= TVi
= TWi

= 1 and TZ = 2(n − m).
Notice that the J-jobs are the only jobs that can be scheduled on more than
one machine. Also notice that, by choosing the processing times of the B-jobs
large enough (2n + 4), the completion time of any J-job is strictly smaller than
the completion time of any B-job. (If all J-jobs are scheduled on the Z-machine,
then they are completed at time 2n+3). Now let B(Ui) (i = 1, . . . ,m) be the set
of B-jobs that have machine Ui as their fast machine. Define B(Vi) and B(Wi)
in a similar way. Now we compare, for each machine, the total completion time
of the B-jobs on that machine in schedule σ3DM with those in schedule σ and
obtain the following relation.

Cσ(B(Ui)) = Cσ3DM
(B(Ui)) + 1

3 (n−m)(TUi
− 1) i = 1, . . . ,m,

Cσ(B(Vi)) = Cσ3DM
(B(Vi)) + 2

3 (n−m)(TVi
− 1) i = 1, . . . ,m,

Cσ(B(Wi)) = Cσ3DM
(B(Wi)) + (n−m)(TUi − 1) i = 1, . . . ,m.

Combining the 3 equations above yields:

Cσ(B) = Cσ3DM
(B) + (n−m)

1
3

m∑
i=1

TUi +
2
3

m∑
j=i

TVi +
m∑

i=1

TWi − 2m

 .

We substitute the obvious relation

TZ = 2n− 1
3

m∑
i=1

TUi
− 2

3

m∑
i=1

TVi
−

m∑
i=1

TWi
,

and obtain an expression for the total completion time of the B-jobs:

Cσ(B) = Cσ3DM
(B) + (n−m) (2(n−m)− TZ) . (1)

Next we will deduce a lower bound on the total completion time of the
J-jobs. Let Cσ(J)1 be the sum of the m smallest completion times among
the J-jobs in the schedule σ, and let Cσ(J)2 be the sum of the n − m largest
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completion times among the J-jobs. In a similar way we define Cσ3DM
(J)1 and

Cσ3DM
(J)2.

Let c1 ≤ c2 ≤ . . . ≤ cn be an ordering of the completion times of the J-jobs
in σ. The largest completion time cn is at least 3+TZ , and the last but one is at
least 3+TZ −2, and so on. In general we have cj ≥ max{3+TZ −2(n− j) , 3}.
We obtain:

Cσ(J)2 =
∑n

j=m+1 cj

≥
∑n

j=m+1 (3 + TZ − 2(n− j))
=

∑n
j=m+1 (3 + 2(j −m) + TZ − 2(n−m))

= Cσ3DM
(J)2 + (TZ − 2(n−m))(n−m).

(2)

Combining equality (1) and inequality (2), and using Cσ3DM
(A) = Cσ(A) and

Cσ3DM
(J)1 = 3m we obtain

Cσ = Cσ(A) + Cσ(B) + Cσ(J)1 + Cσ(J)2
≥ Cσ3DM

(A) + Cσ3DM
(B) + Cσ(J)1 + Cσ3DM

(J)2
= Cσ3DM

− Cσ3DM
(J)1 + Cσ(J)1

= Cσ3DM
− 3m + Cσ(J)1.

From Lemma 2.1 we have Cσ(J)1 ≥ 3m + 1
6 , and therefore Cσ ≥ Cσ3DM

+ 1
6 .

Problem 2: Let σ be an optimal schedule for Problem 2. We will prove that Cσ ≥
Cσ3DM

+ 1
12 . The numbers M and K, introduced earlier, have not been specified

yet. We set M = (2m + 1)C∗(6C∗ + 1)2, where C∗ = Cσ3DM
(J) + Cσ3DM

(B),
and K = 48(2n + 4)NCσ3DM

, where N = n + 2m(n−m) + (3m + 3)M , which
is simply the total number of jobs. Notice that M and K are well-defined since
C∗ does not depend on M , and Cσ3DM

does not depend on K. We could have
chosen much smaller values for M and K. However, this would make it much
harder to verify the correctness of the reduction.

The sum of completion times of the A-jobs in σ is Cσ3DM
(A) if and only if

these jobs are scheduled as in σ3DM . Suppose now that some A-jobs are not
scheduled according to σ3DM . Let 1−δ(V1) be the time that machine V1 spends
on processing A-jobs between time t = 0 and t = 1. Let c1 ≤ c2 ≤ . . . ≤ cM be
an ordering of the completion times of the A-jobs on machine V1. The largest
completion time, cM , is at least 1 + δ(V1), and the largest but one is at least
1+δ(V1)− 1

M , and so on. Compared to the schedule σ3DM this will increase the
sum of completion times for the A-jobs by at least dδ(V1)Meδ(V1) ≥ δ(V1)

2
M .

Now let 1−δ(Vi), 1−δ(Wi), and 1−δ(Z) be the time that, respectively, machine
Vi, Wi, and Z spends on processing A-jobs between time t = 0 and respectively
t = 1, t = 2, and t = 3 (1 ≤ i ≤ m). Let δ = δ(V1)+ . . .+ δ(Vm)+ δ(W1)+ . . .+
δ(Wm)+δ(Z). For the total completion of the A-jobs we obtain

Cσ(A) ≥ Cσ3DM
(A) +

∑m
i=1 δ(Vi)2M +

∑m
i=1 δ(Wi)2M + δ(Z)2M

≥ Cσ3DM
(A) + δ2M/(2m + 1).

(3)
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If this δ � 1 time is used for processing a J-job, then at most a fraction
δ/2 of this job can be processed in this time. For B-jobs this fraction is even
smaller. Now consider the problem in which all processing times of J- and B-
jobs are multiplied by a factor 1− δ/2, slow machines may not be used, and the
machines from V , W and Z may not be used until time 1, 2 and 3 respectively.
From Problem 1 it follows that the sum of completion times of the J- and B-
jobs in this scaled problem, and thus also in the original problem, is at least
(1− 1

2δ)(C∗+ 1
6 ). Together with (3) this gives the following inequality.

Cσ ≥ Cσ3DM
(A) + δ2M/(2m + 1) + (1− 1

2
δ)(C∗ +

1
6
). (4)

If δ2M/(2m + 1) > C∗, then certainly Cσ ≥ Cσ3DM
+ 1

12 , and we are done.
So assume the opposite and substitute the value of M . This gives us δ ≤
(6C∗ + 1)−1. Next we substitute this value for δ in the last term of (4) and
again obtain the desired result:

Cσ ≥ Cσ3DM
(A) + δ2M/(2m + 1) + (1− 1

2 (6C∗ + 1)−1)(C∗ + 1
6 )

= Cσ3DM
(A) + δ2M/(2m + 1) + Cσ3DM

(J) + Cσ3DM
(B) + 1

12
> Cσ3DM

+ 1
12 .

Problem 3: Let σ be an optimal schedule for Problem 3. We will prove that
Cσ ≥ Cσ3DM

+ 1/24. Suppose that some parts of jobs are scheduled on slow
machines. The sum of the fractions of all jobs scheduled on slow machines
can not be more than Cσ3DM

/K since the total processing time of these jobs
would already exceed Cσ3DM

. From σ we define a new schedule in three steps.
First, remove all the work that is scheduled on slow machines. Secondly, shift
the remaining schedule to the right over a time 1/(24N). That is, all work is
postponed by 1/(24N). Thirdly, reschedule the removed work on fast machines
between t = 0 and t = 1/(24N). This is possible since the total processing time
of this work is at most (2m + 4)Cσ3DM

/K = 1/(24N) if completely scheduled
on fast machines. In this new schedule no job is scheduled on a slow machine,
and the increase in the total sum of completion times is at most 1/24. Using
the lower bound for Problem 2 we obtain

Cσ +
1
24

≥ Cσ3DM
+

1
12

⇒ Cσ ≥ Cσ3DM
+

1
24

.

We conclude that a perfect matching exists if and only if there exist a schedule
σ for which Cσ ≤ Cσ3DM

. 2

4 Identical machines with restricted availabil-
ity

A special case of the unrelated machine model is the model in which each job j
has a fixed processing time pj but the job can only be processed on a job-specific
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subset of the machines. So the processing time of job j on machine i (pij) is
either pj or infinite.

McNaughton proved already in 1959 that for identical machines there is no
preemptive schedule with a finite number of preemptions for which the total
completion time is strictly less than that of the optimal non-preemptive sched-
ule. As we mentioned earlier there is an optimal schedule with at most O(m2n)
preemptions [14], so McNaugthon’s restriction to a finite number of preemptions
may be removed. We generalize this theorem of McNaughton to the restricted
unrelated machine model.
R|pmtn, pij ∈ {pj ,∞}|

∑
Cj

Instance: A number α, a set {M1,M2, . . . ,Mm} of m parallel machines, a set
{J1, J2, . . . , Jn} of n independent jobs, a set {pj | j = 1 . . . n}, and a set of
subsets {Fj ⊆ {M1, . . . ,Mm} | j = 1 . . . n}. The processing time of job Jj on
machine Mi is pj if Mi ∈ Fj and is infinite if Mi /∈ Fj .
Question: Does there exist a preemptive schedule for which

∑n
j=1 Cj ≤ α?

Theorem 3 For the problem R|pmtn, pij ∈ {pj ,∞}|
∑

Cj there exists an op-
timal schedule that is non-preemptive.

Proof. Suppose the theorem is not true. Then there exists an instance with
the smallest number of jobs for which its optimal preemptive schedule has a
strictly smaller total completion time than any non-preemptive schedule. Let
this be instance I with m machines and n jobs. Let the feasible schedule σ∗ be
optimal among the non-preemptive schedules and let σ be a feasible schedule
with Cσ < Cσ∗ . Since we can assume that the number of preemption is finite
[14], we assume that σ has the smallest number of preemptions among all feasible
schedules σ for I for which Cσ < Cσ∗ .

Of course we may assume that all machines are used for processing in σ
since otherwise we simply delete an unused machine from the instance. Let Ti

(1 ≤ i ≤ m) be the latest moment at which machine i is processing a job. Let
this job be Ji and assume T1 ≤ · · · ≤ Tm. We distinguish between the case
that all jobs Ji (1 ≤ i ≤ m) are different and the case where at least two are
equal.

First assume that all jobs Ji (1 ≤ i ≤ m) are different. It is obvious that
Cσ(Ji) ≥ Ti and

∑m
i=1 Ti ≥

∑n
j=1 pj , hence

∑m
i=1 Cσ(Ji) ≥

∑n
j=1 pj . Define

the instance I ′ from I by removing the jobs J1, . . . , Jm from the instance. Now
we know that for this instance there exists an optimal schedule σ

′
that is non-

preemptive. From σ
′
we construct a non-preemptive schedule σ

′′
for I by simply

adding the job Ji at the end on machine i. Clearly σ
′
and σ

′′
do not have idle

time so
∑m

i=1 Cσ′′ (Ji) =
∑n

j=1 pj . Hence the total completion time for this
schedule is Cσ′′ = Cσ′ +

∑n
j=1 pj . Since σ

′
is optimal for I

′
, which contains

only a subset of the jobs of I, it also holds that Cσ ≥ Cσ′ +
∑m

i=1 Cσ(Ji) ≥ Cσ′′ .
Hence the total completion time of the non-preemptive schedule σ

′′
is at most

the total completion time of the schedule σ. We obtained a contradiction.
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Now assume that there are two jobs, Jj and Jk, 1 ≤ j < k ≤ m, that are
the same. We make a small change in the schedule as follows. Until time Tj

nothing changes and from time Tj job Jj is only processed on machine j. Note
that this reduces the number of preemptions of job j while its completion time
does not increase. For all other jobs the number of preemptions and completion
time remain the same. Again we obtain a contradiction. 2

Since the non-preemptive problem can be solved in O(n3) time even in the more
general case of unrelated machines [11],[4] we have the following corollary.

Corollary 4.1 The problem R|pmtn, pij ∈ {pj ,∞}|
∑

Cj can be solved in
O(n3) time.

McNaughton proved his theorem for identical machines also for the total weighted
completion time objective. So NP-harness of the preemptive problem P |pmtn|

∑
wjCj

follows from the NP-hardness of the non-preemptive problem P ||
∑

wjCj . It fol-
lows immediately that the two more general problems R|pij ∈ {pj ,∞}|

∑
wjCj

and R|pmtn, pij ∈ {pj ,∞}|
∑

wjCj are also NP-hard. However, it is not true
that preemption is redundant for these problems as illustrated by the next ex-
ample.

Example 4.1 We define an instance with two machines and three jobs. The
processing times are p11 = 1, p21 = ∞, p12 = ∞, p22 = 1, p13 = p23 = 2, and the
weights are w1 = w2 = 1, w3 = 2. Now job 1 starts at time 0 on machine 1, job
2 starts at time 1 on machine 2, and job 3 is scheduled from 0 to 1 on machine
2 and from 1 to 2 on machine 1. The total weighted completion time for this
schedule is 7. Any non-preemptive schedule has value at least 8. 2
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