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1. Introduction

We consider drift-diffusion models of the following type:

Find U E H1(O) such that

-div (Vu +u V"p) + cu =/ in n C JR2

(1.1)
fo C 80.u=g on

8u 8"p
f 1 =8n\fo-+u-=o on

8n 8n

We assume that /,g,,,p and c are given functions, with c ~ o. The current J
is defined by J = Vu +u V"p.
An important application of these equations is in the field of semiconductor de­
vice simulation (then IIV1/J11 extremely large in part of the domain). Recently
in [5, 6, 8] Brezzi, Marini, Pietra introduced a two-dimensional exponential
fitting method for the discretization of (1.1). The method, which results in a
linear system with an M -matrix, has nice features such as current conserva­
tion and good approximation of sharp shapes. The method is derived by using
the Slotboom variable, a mixed finite element scheme and Lagrange multipli­
ers. For the case c == 0 the well-known Raviart-Thomas mixed finite element
scheme is used (see [5, 6]). For the situation c ;/= 0 new mixed finite element
schemes are introduced in [7, 8].
It is well-known that multigrid methods can be very efficient for solving the
large sparse systems which result from the discretization of elliptic boundary
value problems. In the situation here there is no "standard" multigrid method
which can be used. In [9] we introduced a multigrid method for the discretized
problem (1.1) if c == o. This method is based on a connection between the
discretization resulting from the 2D exponential fitting method and a suitable
nonconforming linear finite element discretization. In this paper we show that
such a connection also exists for the situation c =1= 0 (in which the exponential
fitting method is essentially different compared with c == 0). As in [9] this then
leads to a reasonable multigrid method. We describe the resulting algorithm
and present some numerical results.

lTechnische Universiteit Eindhoven, Faculteit Wiskunde en Informatica, Postbus 513,
NL-5600 MB Eindhoven, Nederland.
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2. Mixed finite element scheme

We start with summarizing some results from [8]. An analysis of properties of
the discretization and error estimates can be found in [7,8].

Using the Slotboom variable p := e'" u we can rewrite (1.1) as follows

Find u E HI(n) such that

-div (e-'" V p) + ce-'" p = f in n
(2.1)

p = X:= e'" 9 f oon

ap
fl .-=0 on

an

DEFINITIONS 2.2. For ease we assume that n is a polygonal domain. Let
{Tleh~o be a regular sequence of decompositions of n into triangles T. Let
Ele be the set of edges of Tie, and Ele = {eihe[ou[ with 10 the index set of
edges ei C f o and I the index set of edges ei C fi\fo. Midpoints of edges are
denoted by mi.

For T E Tie let ~(T) = span {( ~ ), ( ~ ), T*} with T* a given polynomial

vector which will be specified below. The finite element spaces are defined as
follows:

Vie = {T E (L2(0»2 ITIT E ~(T) for all T E Tie} ,

Wle = {'P E L2(0) I 'PIT E poeT) for all T E Tie}, and for (E L2(fo)

AIe,C = {IL E L2(EIe) I ILle E Po(e) for all e E EIe, J(IL - Ods = 0 'Vi E Io} .
e.

For h E L2(A) we use the notation lilA = ~ J hex) dx (e.g. e1PIT =
A

~ J e"'(X) dx). For a given triangle T let Vmax and Vmin be the vertices
T

of T where 'I/J assumes a maximum and minimum value respectively, and let
Vmed be the third vertex; the edge connecting Vmax an Vmed is denoted bye.

In the discretization on level k (d. (2.3) below) we assume that 1/J is piecewise
linear on Tie and c is piecewise constant on Tie. The mixed-hybrid discretiza­
tion of (2.1) is
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(2.3)

L / e1/J 1T JIe • T dx - L / div T Pie dx +L / Ale T . n ds = 0 VT E Vie
TT TT T M

L/divJlecpdx+ L/ c(e1P le)-l plecp dx= / fcpdx VcpE Wle
T T T T 0

L / It J Ie • n ds = 0 V It E Ale,o .
TaT

The Lagrange multiplier Ale can be used as an approximation of P at the
interelements (cf. [1], [7]).

for the edges e of T with e -I e/ T' nds = 0
e

T1 dx = / T2 dx = 0 .

Tl, T2 E P1(T)

/ T' nds = lei,
e

(2.6) /
T T

In the linear system associated with (2.3) the unknowns corresponding to JIe

and Pie can be eliminated by static condensation. This leads to a final system
acting on the unknown Ale only, with a symmetric positive definite M-matrix,
provided the triangulation is of weakly acute type.
Below in Lemma 2.8 we show how this final problem for Ale can be formulated
in a variational form. We first introduce some notation.

CHOICE OF T*. The choice of T* in I;(T) is crucial. In the classical Raviart­

Thomas space, that can be used if c == 0, one takes T* = ( ; ). In [8] two

examples for a T* which is suitable for the situation c ~ 0 are considered.
Here we restrict ourselves to the first example. In this example one takes
T* = (T;, T;) as the element of minimum norm among all T = (T1' T2) which
satisfy
(2.4)

(2.5)

DEFINITIONS 2.7. Let 0T:= rh J(T;)2 + (T;)2 dx and
T

13T = [1 + QTcIT(e1PIT) (e1/Jle)-1IT\2Iel-2]-1. We define symmetric bilinear
forms ble, Cle and a linear functional Fie on L2(EIe) as follows:

ble (A, It) = L (ITI e1/J 1T)-1 / An ds . / It n ds
T 8T 8T

CIe(A,It) = L 13T!Tllel-2 c\T(e1P le)-1 / AT*' nds / ItT*' nds
T aT 8T

Fie (It ) = L liT 13T ITllel-1
/ It T*' n ds .

T 8T
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LEMMA 2.8. The solution Ale of (2.3) is also the unique solution of the follow­
ing problem

{

Find Ale E AIe,'X such that
(2.9)

ble(AIe,J.l) +CIe(AIe,J.l) = FIe(J.l) for all J.l E Ale,o •

Proof. First note that ble + Cle is positive definite on AIe,o, so there is a unique
solution of (2.9). Now we show that the unique solution Ale of (2.3) satisfies
ble(AIe,J.l) + CIe(AIe,J.l) = FIe(f..L) for all J.l E AIe,o,
Let JIe, Pie, Ale be the solution of (2.3). Take T E Tie. Now write JlelT =

( 1 ) ( 0 ) * (0) (1). (0) (°1 ) (1) *01 0 +°2 1 +oa T =:JIe +JIe wlthJIe = 02 ,JIe =Oa T .

The first equation of (2.3) with T = ( ~ ) (on T) yields

e1/J 1T! J~O) . ( ~ ) dx + e1/J 1T ! J~I) . ( ~ ) dx +! Ale ( ~ ) . n ds = 0 .
T T n

Using (2.6) we get

e1/JITITIJiO). (~) = - ! Ale (~) ·nds,
aT

so JiO). ( ~ ) = -(ITI e1/JIT)-1 ! Ale ( ~ ) . nds .

aT

Combining this with the analogous result for T = ( ~ ) yields

(a) JiO) = -(ITI etPlT)-1 ! Ale nds .

aT

Now in the first equation of (2.3) we take T = T* (on T). Then we get:

e1/JIT{OI!r; dx+02 ! r; dx+oa! T*'T* dX}-PleIT!T*.nds+! AleT*·nds = 0

T T T 8T 8T

and thus

(b) e1/J 1T 0T ITI 03 - lei PIeIT = - ! Ale T*' n ds (use (2.5), (2.6), 2.7 ).
aT

In the second equation of (2.3) we take <p == 1 (on T); this yields:
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I div(J~O) + J~l») dx +I c(e"'li)-l Pie dx = ITlliT
T T

and thus as I T'"· n ds + ITI CIT(e"'li)-l PIeIT = ITlliT .
aT

Using (2.5) this results in

The equations in (b) and (c) together form a nonsingular system for the un­
knowns as and PIe\T' Solving this system yields

03 = .BT lel-1 ITI {liT - lel-1 CIT(e"'li)-l I Ale T'"· nds} =: a;
aT

and thus

(d) J~l)=O;T'".

Now take a Jl E AIe,o, The third equation of (2.3) combined with (a) and (d)
yields

- L: I Jl(ITle"'IT)-l I Alends·nds+ L: I Jlo;T'".nds = O.
TaT aT TaT

SoL: (ITle"'IT)-l I Alends·1 Jlnds-L: 0;1 JlT'"·nds=O
T aT aT T 8T

and thus ble(>'Ie,Jl) - L: 0; I JlT'"· nds = 0 (use 2.7) .
T aT

Using the definition of a; we get

- 2: 0; I Jl T'"· n ds = - L: .BT lel-1ITlliT I Jl T'"· n ds
T 8T T 8T

+2: .BTITlle\-2 cIT(e"'li)-1 I AleT'"·nds I JlT'"·nds
T aT aT

= - FIe(Jl) + ele( Ale, Jl) .

o

The Lagrange multiplier Ale is an approximation of P = e'" u and is not suited
for actual computation if the range of 'If; is large (which often happens in semi­
conductor problems); moreover we are interested in approximating u instead
of p. So we rescale Ale to get an approximation file of u (at the interelements).
We define the isomorphism Qk : AIe,9 ~ AIe.x (g,X as in (2.1» as follows:
Take Jl E Ak,9' then:
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for e C f o (QIe J-l}j.. =&
for e C fi\fo (QleJ-l)le = e"'leJ-lle .

Using this isomorphism we can rewrite (2.9) as follows

{

Find flit. E AIt.,9 such that
(2.10)

ble(Qlcflle,J-l) +cle(Qleflle,J-l) = FIc(J-l) for all J-l E Ale,o .

The problem (2.10) is the final one, which we actually want to solve.
Rewriting (2.10) as a matrix-vector problem using the standard basis {J-lihE1ouI
of Ale := {J-l E L2(EIe) I J-lle E Po(e) for all e E EIe} (d. 2.2 for /0'/)
yields the following system of equations for the unknowns {ai}iEI with fllc =
EiEI ai J-li +EiElo !lIe; J-li:

(2.11) L {ble(QleJ-lj,J-li) +CIe(QIcJ-lj,J-li)} aj =
iEI

- L {ble(QIt.J-li,J-li) +CIe(QleJ-lj,J-li)} !lIe; +FIe(J-lo) for iE/ .
iElo

REMARK 2.12. For the local stiffness matrix mT; corresponding to (2.11) we
take a triangle T and number its edges ell e2, es such that e1 = e (d. 2.2);
the corresponding unit outward normals are denoted by n(i) (i = 1,2,3) and
Iii) := leil n(i). Then mT; = bleIT(QleJ-lj,J-li) +CleIT(QleJ-li,J-li) (i,j E {1,2,3}).
And

bleIT(QleJ-li,J-li) = (ITle"'IT)-l ! e"'le;J-linds.! J-linds
aT aT

= (e"'IT )-1 e"'lej v(i) . v(i) / ITI ,

CleIT(QleJ-li,J-li) =.8TjTllell-2C\T(e"'lel)-1 ! e"'le;J-liT*.nds ! J-liT*·nds
aT aT

= .8T ITllell-2 cIT(e"'lel)-l e"'lej ! T*' n(j) ds ! T*' n(i) ds
ej ei

__ { .8T ITI CIT if i = j = 1
(use (2.5)) .

o otherwise

These formulas for the local stiffness matrix can also be found in [8]. If the tri­
angulation is of weakly acute type, then the resulting (nonsymmetric) stiffness
matrix is an M-matrix.

6



3. Connection with nonconforming finite elements

The natural procedure of §2 led to the matrix-vector problem in (2.11). In
this section we show that the same system (2.11) results from the following
procedure: We consider the original problem (1.1) in variational formulation
(find u E H: (n) such that J e-'" V (e'" u) . V v dx +JC u v dx = J 1v dx for

n n n
all v E HJ(n) ) and use a (seemingly unnatural) modified discretization in
the nonconforming PI Crouzeix-Raviart finite element space. This modified
discretization is described in Lemma 3.2 and Remark 3.5 below. In §4 we use
this connection with nonconforming finite elements to make a multigrid solver
for (2.11).

DEFINITIONS 3.1. The Crouzeix-Raviart (PI) space corresponding to Tic is
given by Sic = {v E L2(n) I vlT is linear for all T E Tic, v is continuous at
midpoints of edges}. The standard basis of Sic is denoted by {!Pi}ie1oul (I,/o
as in 2.2). For ( E L2(fo) we define Sic" = {v E Sic I v(mi) = (Ie, for all
i E fo}.
We define the linear operator Ric : Sic - Sic by RIc(E (}:i !Pi) = E (}:i e"'le, !Pi·
For a given T the midpoint of edge e (cr. 2.2) is denoted by m.
On a triangle T we define the quadrature rule J(T for approximating J q(x) dx

T
by J(T(q) = ITI q(rh).

LEMMA 3.2. Consider the following problem (with I,g as in (1.1»)

{

Find i]1e E S1e,g such that for all !P E SIc,O

(3.3) _ _
~!(e"'IT )-1 V(RIc i]1e) . V cp dx +~ fJT J(T(ci]Ic!p) = ~ fJT J(T(fIT cp) •
T T T T

Write i]1e = Eiel (}:i CPi +Eielo 91ej !Pi· Taking cP = !Pi (i E 1) in (3.3) re­
sults in a system of equations for the unknowns {(}:i hel that is given in (2.11) .

Proof· Use the notation a1e(17,!p) = I: ! (e"'IT)-l V 17' V!p dx, d1e(17,!p) =
T T

I: fJTJ(T(C17'P)· Taking <P = !Pi in (3.3) yields
T

(3.4) I: {a/c(RIc 'Pj, 'Pi) + dlc(<Pi, 'Pi)} (}:i =
iel

- I: {alc(R/c 'Pi, !Pi) + die (<Pi, <Pi)} 91ej +I: fJT J(T(!IT 'Pi) .
ielo T

By comparing (3.4) with (2.11) it follows that we only have to show:
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(c) F1e(JLi) = L f3TKT(!ITepi).
T

Using the definitions and checking per triangle it follows that it is sufficient
to prove

(a') IT\-l / JLjnds./ JLinds= / Vepj·Vepidx

aT aT T

(b') lel-2 (e\b'i)-l (e\b 1ej ) / JLj r*· nds / JLi r*· n ds = epj(m) epi(m)
aT aT

(c') lel-1
/ JLir*·nds=epi(m).

aT
We only have to consider T, i, j with ei CaT, ej C aT. We use the notation
v(1e) := le1e1 n(1e), k E {i,j}. One easily verifies that V(epjIT) = ITI-1 v(j)

holds. Both sides of (a') are equal to ITI-1 v(j) . v(i), so (a') holds. With re­
spect to (b') and (c') note that epi(m) = 1 if ei = eand epi(m) = 0 otherwise.
Also J JLi r*' n ds = leil if ei =eand J JLi r*' n ds = 0 otherwise (use (2.5)).

aT aT
So both sides of (b') are equal to 1 if ei = ej =eand 0 otherwise. Both sides
of (c') are equal to 1 if ei = e and 0 otherwise. 0

REMARK 3.5. In the continuous variational problem we have the bilinear
form (u,v) -+ J e-\b V(e\b u). Vvdx +J cuvdx and the right hand side

o 0
functional v -+ J f v dx. From Lemma 3.2 it follows that the system (2.11)

o
results from a discretization in the Crouzeix-Raviart (PI) space with the fol-
lowing modifications:

(1) in J e-\b V (e\b u) . V v dx the function e-\b is replaced by its harmonic
T

average (e\b IT )-1 and e\b u = I:i Qi e\b epi is replaced by I:i Qi e\b 1ei epi.

(2) J c u v dx is replaced by f3T KT(C U v) j so the integral over T is replaced
T
by the quadrature rule KT and there is an artificial perturbation due to
f3T (note that f3T - 1 = O(ITI) ).

(3) J fvdx is replaced by f3TKT(!ITV) (ef. (2».
T
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4. Multigrid method

Through the equivalence between (2.11) and (3.3) we are led to multigrid
methods for nonconforming finite elements (as in [2], [3,4]) for solving the sys­
tem (2.11). Here we only very briefly discuss the components of the multigrid
method we use. A more comprehensive explanation can be found in [9].

We assume a regular sequence of triangulations {Tlch>o in which Tic is ob-
~tained from TIc-I by connecting the midpoints of the edges in the triangles of
Tic-I. We assume that To is of weakly acute type. In the experiments in §5
we have n = [0,1] X [0,:1.] and we use only right isosceles triangles.
For coarse grid approximation we use the stiffness matrix induced by the dis­
cretization (3.3) on the coarse grid.
We use a prolongation Pic: Sic-I,D ~ SIc,O as in [2]: For Pic we take the or­
thogonal projection w.r.t. the L2-inner product of Sic-I,D on SIc,O. For this Pic
formulas suited for computation can be found in [2].
For smoothing, in the situation where we have a triangulation with right isosce­
les triangles, we use a variant of Gauss-Seidel as explained in [9]. This variant
resembles a collective Gauss-Seidel smoother in which an unknown on a di­
agonal line is relaxed together with its four neighbouring unknowns (with
relatively low costs because in part of the unknowns we only have three point
difference stars).
The multigrid algorithm we use is described in [2], [9]. The algorithm is very
similar to the standard multigrid algorithm. The only difference is that due to
the nonconforming spaces we use the prolongation Pic in the coarse grid correc­
tion. The structure of the coarse grid problem is as follows: Find uk-l E Sic-I,D

such that alc-l (uk_I' <p) = flc( Pic <p) - a/c(UIc, Pic <p) for all <p E Sic-I,D.

5. Numerical results

In this section we show results of the multigrid method of §4 applied to two
model problems. We use n = [0,1] x [0,1] and uniform triangulations with
right isosceles triangles. The meshwidth (= half of the length of the shortest
edge of a triangle) is denoted by h. We use a coarsest grid with h = !. On the
finest grid we have kmax and hrnin related by httUn = 2-(2+km~). We always
use one pre- and one post-smoothing. The number of coarse grid corrections
is denoted by J.L (J.L = 0: no coarse grid corrections; J.L = 1: V-cycle; J.L = 2:
W-cyc1e).
We measure the performance of a method by way of the average reduction
factor (arf) which results by taking an arbitrary starting vector and then
computing the geometric mean of the norm reductions of the defect in a (suf­
ficiently large) number of iterations.

If "p == c == °in (1.1) the linear system (2.11) we have to solve corresponds
to a modified nonconforming finite element discretization of the Poisson equa­
tion (cf. (3.3)). Our algorithm (for the case J.L = 2, f o = an) with kmax =
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1,2,3,4,5 then has average reduction factors of 0.0043, 0.026, 0.058, 0.067,
0.068 respectively.

EXPERIMENT 1. We consider a model problem from [8], however with less
convection (then diffusion also plays a role for realistic h).
We take 'l/J such that V'l/J = -20(1,0.5) on n, f == 0, and c == 1010 in the
quarter of the circle centered in (1,0) and with radius 0.5, c == 0 elsewhere.
ro = an and on r o u(x, y) = 0 if (x = 1) or ((y = 0) and (x ~ 0.5)) and
u(x, y) = 1 elsewhere. The solution for h = 2-6 is represented on a 32 X 32
grid in Fig. 1. The averat?;e reduction factors for varying kmax and J.t are given
in Fig. 2.

o 0.2 0.4 0.6 0.8 1

Figure 1 Figure 2

EXPERIMENT 2. We consider a model problem with IIV'l/J11 very large in part
of the domain and c very large in (another) part of the domain (d. [9] for

results if c == 0 in n). For the function 'l/J we define p := ((x - 1)2 +(y -1)2)~,

'l/Jo(p) := 0 if 0 ~ p ~ 0.8, 'l/Jo(p):= p - 0.8 if 0.8 ~ p ~ 0.9, 'l/Jo(p) = 0.1
if p ~ 0.9, and we take 'l/J = 103 'l/Jo (so IIV'l/J(p)1I2 = 0 if 0 < p < 0.8 or
0.9 < p < 1 and IIV'l/J(p)1I2 = 103 if 0.8 < p < 0.9). We take f == 0, and
c(x,y) = 106 if 3x - 5y ~ 0, c(x,y) = 0 elsewhere. r1 = {(x,y) I ((x = 1)
and (y ~ 0.5)) or ((y = 1) and (x ~ 0.5))}; on f o we have u(x, y) = 0 if x = 0
or y = 0 and u(x, y) = 1 elsewhere. The solution for h = 2-6 is represented
on a 32 X 32 grid in Fig. 3. The average reduction factors for varying kmax
and J.t are given in Fig. 4.
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