

On the asynchronous nature of communication in concurrent
logic languages : a fully abstract model based on sequences
Citation for published version (APA):
Boer, de, F. S., & Palamidessi, C. (1990). On the asynchronous nature of communication in concurrent logic
languages : a fully abstract model based on sequences. (Computing science notes; Vol. 9017). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/10001acd-d58b-49d5-a632-f36bd5125bac

On the asynchronous nature of communication
in concurrent logic languages: a fully abstract
model based on sequences

by

F.S. de Boer C. Palamidessi

90/17

October , 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

On the Asynchronous Nature of Communication in
Concurrent Logic Languages: a FUlly Abstract Model based

on Sequences *

Frank S. de Boerl and Catuscia Palamidessi2

lTechnische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2Dipartimento di Informatica, Universita di Pisa,
Corso Italia 40, 56125 Pisa, Italy

October 10, 1990

Abstract

The main contribution of this paper is to show that the nature of the communication mech
anism of concurrent logic languages is essentially different from imperative concurrent lan
guages. We show this by defining a compositional model based on sequences of input-output
substitutions. This is to be contrasted with the compositionality in languages like ecs and
TCSP, which requires more complicated structures, like trees and failure sets. Moreover, we
prove that this model is fully abstract, namely that the information encoded by these sequences
is necessary.

Regarding fully abstractness, our observation criterium consists of aU the possible finite
results, namely the computed answer substitution together with the termination mode (suc
cess, failure, or suspension). The operations we consider are parallel composition of goals
and disjoint union of programs. We define a compositional operational semantics delivering
sequences of input-output substitutions. Starting from this we obtain a fully abstract dena
tational semantics by requiring some closure conditions on sequences, that essentially model
the monotonic nature of communication in concurrent logic languages. The correctness of
this model is proved by refining the operational semantics in order to embody these closure
conditions.

Key words and phrases: operational semantics, denotational semantics, concurrent logic
languages, substitutions, sequences, compositionality fully abstractness.
1985 Mathematics Subject Classification: 68Q55, 68QIO.
1987 Computing Reviews Categories: D.1.3, D.3.1, F.1.2, F.3.2.

* Part of this work was supported by the ESPRIT BRA project "Intergration"

1

1 Introduction

Compositionality is considered one of the most desirable characteristics of a formal semantics, since
it provides a foundation of program verification and modular design. The difficulty in obtaining
this property depends upon the operators for composing programs, the behaviour we want to
describe (observables), and the degree of abstractness we want to reach. A compositional model is
called fully abstract (with respect to some operators and observables) if it identifies programs that
behave in the same way under all the possible contexts. A fully abstract model can be considered
to be the semantics of a language: all the other compositional semantics can be reduced to it
by abstracting from the redundant information. Fully abstractness is important, for instance, for
deciding correctness of program transformation techniques. If a fully abstract model distinguishes
the transformed program from the original one then the transformation is not correct (in the sense
that it does not preserve the same behaviour under composition).

In the field of logic languages there are basically two operators for composing programs: the
conjunction of goals and the union of clauses. The observables are usually related to the finite
result: success, failure, and computed answer substitutions. For Concurrent Logic Languages
compositionality has been studied mainly with respect to the conjunction of goals, whilst union of
clauses has been considered only in simple cases (union of disjoint programs [GCLSSS], and union of
nicely intersecting programs [GMSS9]). This is rather natural since in a concurrent framework the
main operation is the parallel composition of processes. On the other hand, the class of observables
has to be enriched by suspension (or deadlock).

The main problem of compositionality in concurrent languages is the description of deadlock
behaviour. For languages like CCS and TCSP it is well-known that sequences are not sufficient, and
that, on the other hand, trees contain too much control information to be fully abstract. In order to
abstract from redundant branching information encoded by the tree structure different approaches
have been proposed. The most well known consist of defining an appropriate equivalence relation
on trees (see, for instance, bisimulation [MilSO]), and of grouping the branching information in
failure sets [BHR84]. In general, failure set semantics is more abstract than bisimulation and it is
proved to be fully abstract in the case of TCSP.

Until now, with respect to compositionality, Concurrent Logic Languages have been regarded
just as a particular case of the classic paradigms. Therefore, the problem has been approached by
the standard methods. De Bakker and Kok ([dBKSS], [KokSS]) and De Boer et. aI. ([dBKPRS9a],
[dBKPRS9b]) use tree-like structures labeled with functions on substitutions. More simple tree
like structures, labeled by constraints, are used by Gabbrielli and Levi ([GL90]) and by Saraswat
and Rinard ([SR89]). In [GCLS88j and in [GMS89j the authors approach the problem of fully
abstractness by refining the failure set semantics of TCSP.

Let us try to argue why we think that Concurrent Logic Languages require a completely dif
ferent approach. The communication mechanism in Concurrent Logic Languages is based on the
production and consumption of bindings (substitutions) on shared variables. We can translate a
CCS process by interpreting the action a as the production of a binding on a variable :Co and the
complementary action a (in CCS parallel processes synchronize on complementary actions) as the
consumption of this binding. The main difference is that the behaviour of complementary actions
is not symmetrical as it is in CCS and in TCSP. Indeed, the production of a binding can always
proceed, whilst the consumption has to wait. In other terms, the communication mechanism of
concurrent logic languages is intrinsically asynchronous. The following example shows that this
leads to an essentially different deadlock behaviour 1.

Example 1.1 Let PI ::= iib+iic+iid and p, ::= iib+ii(c+d). The failure set semantics distinguishes
these two processes. Indeed, in case of synchronous communication, they behave differently under
the context P ::= arb + c). The process PI can deadlock, by choosing the third branch, whilst
P2 cannot. In the case of asynchronous communication however, both processes have the same

IThe tenn deadlock is used here with its classical meaning in the theory of concurrency. In concurrent logic pro
gramming, this kind of deadlock can correspond both to failure or to n"pen"ion (whilst, in the current terminology,
it is associated only to "u"pen.sion). In example 1.1 it correspond to "u"pen"ion.

2

deadlock behaviour. The process P2 can now deadlock by choosing the second branch, because p can
independently decide to produce b (after aJ. In the formalism of concurrent logic languages, this
example can be translated as follows (we use here the syntax of [GMS89j. ask(t = u) represents
the consumption of a substitution satisfying the equation t = 1.1, whilst tell(t = 1.1) represents the
production of the most general substitution satisfyingt = u, and I is the commit operator). Figure 1
illustrates this example.

{ PI(Xa, Xh, x" Xd): -ask(xa = a) I ask(xh = b)
PI(Xa,Xh,X"Xd): -ask(xa = a) I ask (x, = c)
PI(Xa,Xh,X"Xd): -ask(xa = a) I ask(xd = d) }

{ P2(Xa,Xh,X"Xd): -ask(xa =a) I ask(xh = b)
P2(Xa, Xh, x" Xd) : -ask(xa = a) I P3(X" Xd)
P3(X" Xd) : -ask(x, = c) I
P3(X" Xd) : -ask(xd = d) I }

{ p(xa, Xh, x" Xd) : -tell(xa = a) I p'(Xh, x,)
p'(Xh, x,): -tell(xh = b) I
p'(Xh, x,) : -tell(x, = c) I }

PI P2

ii

b d b

P

a

b c

ii

J

Figure 1: In logic programming PI and P2 cannot be distinguished by p.

This example indicates that in the asynchronous case the failure set semantics (at least as it is
defined in [BHR84]) is not abstract enough. The essence of this redundancy relies in the following
observation:

ExalllpJe 1.2 In the asynchronous case, PI ::= a(b+c) is equivalent to P2 ::= ab+ac under every
context. This is due to the fact that the choice present in PI does not depend upon the environment.
After the production of a, PI can proceed to produce either b or c in the same way as P2.

This example may induce one to believe that simple sequences of bindings are sufficient for
obtaining compositionality. However this is not true in general, because of the different behaviour
of the complementary (consuming) case. Consider the following example:

3

Example 1.3 The process PI ::= a(b+c) is not equivalent to P2 ::= ab+ac. They are distinguished
by the context P := ab (P2 can deadlock whilst PI cannot). This is due to the fact that the choice
present in PI does depend upon the environment. This dependency is, however, of a different nature
from the synchronous case, Here it is related only to the past behaviour of the environment, z.e.,
to the bindings that have already been produced.

This last remark indicates a possible way to solve the problem. Given a sequence of substitutions
representing the computation of a process with respect to an arbitrary environment, we add the
information about who is the producer of each substitution, the process or its environment. If
the substitution obtained from such a sequence does not provide the process with the necessary
information to proceed then it will deadlock assuming that the environment does not produce any
bindings anymore. The composition of different processes then simply amounts to verifying that
the assumptions made by one process about its environment are indeed validated by the other
processes.

We will show that we can describe compositionally the behaviour of a process by means of a
Plotkin-like transition system, labeled by input-output substitutions. The behaviour of the possible
environments are modeled by transitions labeled with input substitutions. This kind of transition
step does not occur in the usual transition system for CCS, and it allows here to obtain directly a
compositional operational semantics based on (sets of) sequences. These sequences are essentially
different from the scenarios of [Sar85], where input substitutions correspond to assumptions about
the environment which are necessary for the process to proceed. As a consequence, compositionality
is there obtained only for the success set. The input-output sequences we use have been introduced
in [GCLS88] as one component of the domain of the denotational semantics, the other ingredient
being the suspension set. Because of what is stated above, this first component would have already
been sufficient to define there a compositional (hence denotational) semantics.

The language described in [GCLS88] contains non-monotonic test predicates. However the real
intricacies of the asynchronous and declarative nature of communication in logic languages come
to surface in the monotonic case. Here even the sequences contain too much information about
the particular order of production of bindings, information that cannot be sensed by monotonic
contexts. This is mainly due to the fact that monotonic contexts cannot be specified to ask (only)
a specific amount of bindings, they can always proceed when more bindings are provided. We will
define therefore a refinement of the transition system, based on some additional steps that allow
to abstract from the particular order of productions by buffering them in a kind of active store.
Active is meant here in the sense that it can produce bindings itself. The monotonic case has also
been investigated in [GMS89]. However the model presented in that paper is based on a refinement
of failure set semantics, via some equivalence relation based on simulation of sequences.

In our paper we give a fully abstract semantics for a class of Flat Concurrent Logic Languages.
This class will be denoted by HC(A, T), where HC stands for Horn Clauses and A, T are param
eters which denote the set of primitives that can occur in the guards. We consider the following
possibilities: A = 0 or A = Ask, where

Ask = {ask(E) I E is a set of equations in the Herbrand universe}

and T = 0 or T = Tell, where

Tell = {tell(E) I E is a set of equations in the Herbrand universe}.

This class includes, for instance, Oc [Ilir87] (HC(0, 0)), Flat GHC [Ued88] (HC(Ask,0)), ccH
[GL90] and the language of [GMS89](HC(Ask, Tell)), that is a refined version of Flat CP [Sha89].
HC(A, T) can be seen as a particular instance of the cc/Herbrand framework [SR89]. For example,
HC(Ask, 0) corresponds to Eventual Herbrand and HC(Ask, Tell) corresponds to atomic Herbrand.

We are mainly concerned with the above three instances of HC(A, T). Observe that HC(0, 0) is
included in HC(Ask, 0) and HC(Ask, 0) is included in IIC(Ask, Tell). A model that is compositional
for a language is compositional also for the sublanguages, but not vice-versa. On the other side,
with respect to fully abstractness the situation is just the reverse. Therefore each case must be

4

considered separately. However we show that the fully abstract compositional model is the same
for all these languages.

The plan of the paper is the following: In the next section we introduce some basic notions.
In section 3 we give the syntax and an informal operational semantics of the class of languages
we study. Then we present a compositional semantics based on a Plotkin-like labeled transition
system. In the last section we present a refinement of this semantics which is fully abstract.

5

2 Preliminaries

In this section we briefly recall some basic notions and results about substitutions and unification.
We will use (mainly) the terminology of [Apt88], [Ll087], [LMM88], and [Ede85], to which we refer
for a more detailed presentation of these topics.

2.1 Substitutions

Let Var be a non empty set of variables, with typical elements X, y, z, ... , Let Cons be a set of
constructors, with typical elements a, h, c, . .. (constructors with 0 arguments, or constants), and
I, g, h, ... (constructors with one or more arguments). We assume the presence of at least one
constant.

The set Term, with typical elements t, U, •• 'J is the set of all the terms built on Var and on
Cons. Examples of terms are f(a), f(x), g(f(a) , f(x)), The set of variables occurring in t is
denoted by var(t).

The set of substitutions, Subst, with typical elements iJ, (7, •. 'J consists of all the mappings {)
from Var into Term such that the domain of 19, dome 19) = {x E Var I 19(x) of x}, is finite. We will
use the set-theoretic notation {xlt I x E dom(19) 1\ 19(x) = t} to represent 19.

The opplication t19 of 19 to t is defined as the term obtained by replacing each variable x in t by
19(x). The set ran(19) (range of 19) is defined as UXEdQm(O) var(19(x)). The substitution 19 is ground
iff rant 19) = 0.

The composition 1919' of 19 and 19' is defined by (1919')(x) = (19(x))19'. We recall that the com
position is associative, the empty substitution { is the neutral element, and, for each term t,
t(1919') = (t!9)19' holds. .

The restriction 19W of 19 to a set of variables V is the substitution 19W(x) = 19(x) for x E V and
19W(x) = x otherwise. We will abbreviate 19 lvar(A) to I)IA'

2.2 Unification

The notion of unification can be given, equivalently, either with respect to a set of sets of terms
[Ede85, Ll087], or with respect to a set of equations [LMM88, Apt88]. We choose the second
approach.

An equation is an expression of the form t = u, where t and u are terms. The set of sets of
equations, with typical element E, will be denoted by Eqn. A set of equations E is unifiable iff there
exists 19 such that for all t = u in E, t19 = u19 holds, where = is the syntactic identity on terms. 19
is then called an unifier of E. The set of all the unifiers of E will be denoted by unif(E). The set
of all the most general unifiers of E is given by mgu(E) = {19 E unif(E) 1'119' E unif(E). 19::; 19'}.
It is well known that all the most general unifiers of a set E are equivalent, and this explains why,
in the literature, we often find the terminology "the mgu of E".

Given a substitution 19 the associated set of equations will be denoted by £(19).

2.3 Constraints on the Herbrand Universe

A constraint system is essentially a system of partial information that supports the notion of
consistency and entailment. The notion of constraint was introduced in Logic Programming by
Jaffar and Lassez [JL87]. Maher [Mah87] suggested the use of constraints to model logically the
synchronisation and communication mechanisms of concurrent logic languages. We restrict here
to a particular class of constraints: the ask and tel/ constraints on the Herbrand universe [Sar89].
They are of the form ask(E) and tel/(E) respectively, where E is a set of equations. A constraint
of the form ask (E) or tel/(E) is solved by a substitution 19 if 19 = mgu(E).

We use the following notations: Ask = {ask(E) lEE Eqn} and Tel/ = {tel/(E) lEE Eqn}.

6

3 The class HC(A, T). Syntax and informal operational
semantics.

The (parametric) sets A and 7 specify the set of primitives used in the guards. We restrict here
to the following cases: A = 0 or A = Ask, and 7 = 0 or 7 = Tell.

Let Pred be a set of predicates, with typical elements p, q, r, The set Atom, with typical
elements A, B, H ... , is the set of all the atomic formulas built on Pred and on Term, and of the
primitives of the form tell(E). In the following, we use the abbreviations A, oX etc. to denote
conjunctions of atoms, variables etc.

A clause C of He(A, 7) is a formula of the form H - g) :g2/ E, where g) E A and g2 E 7. The
atom H is the head, g) :g2 is the guard and E, a multiset of atoms, is the body of the clause. A goal
statement G is a multiset of atoms A. The empty goal statement is denoted by D. A HC(A,7)
program P is a (finite) set of clauses. An atom A in a goal G is seen as an (AND-) process. If A
is of the form tell(E) then:

• if E is unifiable then A succeeds producing the substitution ii = mgu(E), and the remaining
goal G \ A is instantiated by ii.

• if E is not unifiable then A and the whole goal fails

If A is an atomic formula, its computation proceeds by looking for a candidate clause in W.

Definition 3.1 Let A be an atomic formula and let C == H - g) :g,/ E be a clause in P, renamed
in order to have no variables in common with A. Then the clause C

• is candidate if

1. 3mgu(H = A) = ii,
2. iilA = <

3. 3ii) such that 9, ii is solved by ii"

4· iillA = <,

5. 3ii 2 such that g2U is solved by ii" where 17 = iiii).

• suspends if (l) is satisfied but (2) is not satisfied, or (1), (2) and (3) are satisfied but (4) is
not satisfied.

• fails in all the other cases.

If there are candidate clauses, then the computation of A commits to one of them (i.e. no
backtracking will take place), A is replaced by Eu11 2 , and the rest of the goal is instantiated by
11,. If all the clauses for A fail, then A and the whole goal fail. If no clauses are candidate and at
least one clause suspends, then A suspends. A can be resumed when its arguments get bound by
other processes in the goal. If all the processes in the goal suspend, then the goal suspends.

7

4 A compositional operational semantics for HC(A, T).

To define the meaning of a goal in terms of its subgoals, we describe the behaviour of a goal as
a sequence of interactions with its environment. Interactions are modeled as input/output substi
tutions. An input substitution is provided by the environment, whereas an output substitution is
produced by the goal itself.

Definition 4.1

• The set 0/ input substitutions is Substl = {til I ti E Subst}.

• The set 0/ output substitutions is Substo = {ti° I ti E Subst}.

• The set o/input/output substitutions, with typical element ti', is SubstlO = SubstlUSubsto.

The operational semantics we define is based on a transition system T labeled on Subst 10. The
configurations of T are pairs consisting of a goal and an infinite set of fresh variables (representing
the variables still available for the renaming mechanism). To obtain a compositional operational
semantics we need a compositional renaming mechanism. We propose the following (formal) so
lution. Let Pit Var) be the set of all the infinite sets of variables. We assume the existence of a
partitioning function Part: Pit Var) ~ Pit Var) x Pit Var) such that

ltV EPi(Var) [(V" V,) = Part(V) =} (V,UV, <; V II V, nv, =0)]

and, moreover, we assume Part(V \ Z) = (V, \ Z, V, \ Z), where Part(V) = (V" V,). In this way
we can split the "available variables" among the subgoals so to avoid clash of variables among the
subcomputations.

Table 1 gives the rules for T describing the "successful" computation steps. We call them
computation rules.

Table 1: The Transition System T. Computation Rules

Cl (A, V) ~ (13o-ti, , W) if 3C E Pv [C is candidate] II W = V \ var(13o-ti,)

C2
.0

(teli(E), V) -> (0, V) if 3ti = mgu(E)

C3 (A, V) ~ (Ati, V) where A is either an atomic formula or tel/IE)

C4
- fJl - - f}t-

(A" V,) -> (B" W,) (A" V,) -> (B" W,) .' (A"A" V) -> (B"B" W, U W,)
where (V" V,) = Part(V)

The rule Cl describes the normal atomic reduction step. The symbols C,B,u, and t92 are the
ones of definition 3.1, whilst Pv denotes the program P renamed with the variables in V.

The rule C2 describes the output of the substitution satisfying an atom of the form teli(E).
Note that in the case of HC(A, 0) this is the only rule that allows to produce bindings on the
(shared) variables of the goal.

The rule C3 describes the input of a substitution produced by the external environment. Note
that t9 is any substitution, namely it represent a free assumption on the environment. In other
words, it does not depend upon what the goal needs to proceed, and whet,her or not it will fail after
this input. This is the point in which our transition system essentially differs from the semantics

8

described in [Sar85] and in [GMS89], and this is why our sequences contain information enough to
allow for compositionaiity.

Finally, C4 describes the transition of a goal in terms of the transitions of the subgoals. Note
that this is the rule that allows to check that the input assumptions really correspond to the
outputs done by the environment.

Table 2 and table 3 illustrate the rules for failure and suspension respectively. We need to
introduce in our configurations the symbols fail and susp, with the obvious meaning.

Table 2: The Transition System T. Failure Rules

Fl ° (A, V) -'--. (fail, V) ifVC E Pv [C fails]

F2
,0

(tel1(E), V) ----> (fail, V) if lJmgu(E)

F3
,0

(A, V) ----> (fail, V)
_ ,0

(A, B, V ----> (fail, V)
where A is either an atomic formula or tel1(E)

Table 3: The Transition System T. Suspension Rules

51
3C E Pv [C suspends]

,0
(A, V) ----> (susp, V) if 1\

VC E Pv [C is not candidate]

52 where (V" V,) = Part (V)

The operational semantics 0 based on this transition system T delivers sets of sequences s of
input/output substitutions, ended by a termination mode. We denote the set of these sequences
as Seq = SubstIO'.{ss,if,dd,.L}. The set SubstIO', with typical element c, denotes the sequences
of substitutions generated during the computation, whilst the symbols ss, if, and dd represent
the possible ways in which a process can terminate: success, failure and suspension (or deadlock)
respectively. Sequences ending in .L will denote unfinished computations. The symbol" will denote
an element ranging over the set {ss, if, dd, .L}.

We need first to introduce a technical notion: the restriction operator. Intuitively) this operator
restricts the substitutions in the sequences generated by a goal A to only those bindings which
affect the variables of A. This is not really necessary to achieve compositionality here) but it is
a step towards fully abstractness) since) intuitively) we must identify an those processes that only
differ for the assignments to the local variables (no contexts can distinguish them). Moreover) if
V is the set of local variables available for the computatio11 of A, we must abstract from all those
sequences that are of the form c.{)l.s such that {) introduces a variable in V that has not yet been
introduced by c.

Definition 4.2 (Restriction operator) Let A be a goal and let V E P.(Var). Then r..t,v
P(Seq) - P(Seq) is defined by

9

{Restrict..(s) Is E S /\ [s = d}l.'; =} var(d) n v ~ var(Ad,)]}

where {)c denotes the substitution obtained by composing all the elements of c: {})., = € and iJ q .c =
utJ c.

and

Restrict.. (a)
Restrict..(d[.s)

Restrict.. (dO .s)

=
=

a
d l . Restrict. •• (s)

{
d~. Restrict Ao (s)

Restrict" (s)
ifd l"",<
otherwise

We can now define the operational semantics.

Definition 4.3 (Operational Semantics) The operational semantics 0 : Goal ~ [Pi (Var) ~
Seq] is given by

O[D](V) = {c.O': a =1-,ss, and c contains only input substitutions}
OUail](V) =
O[susp](V)

{.L,if}
{.L, dd}

O[A](V) rA,v({d'.O[B](W) I (A, V) ~ (B, W)} u {.L})

Note that this definition is recursive. We consider CJ as the least fixpoint of the transformation
(continous on the domain PJ.(Seq), the set of subsets of Seq containing.L, ordered with respect to
set inclusion) associated with its defining equations.

From this operational semantics we obtain our observaflOll criterium as follows:

Definition 4.4 (0 bservables)

ObstA) = Resul(.;:(O[A](V»

where V is the set Var \ var(A), and

ResultA(S) = {(d'IA,a) I c.aES /\ cESubst'O /\ aE{ss,if,dd}}.

In the following, when V = Var \ var(A), we will write simply 0[.1] instead of O[A](V).
Note that in this definition we pick up the sequences entirely composed by output substitutions.

This amounts to require that each substitution we observe has been really produced. It is easy to
see that this notion of observables, based on T, correspond to the set of finite results (computed
answeer substitution, termination mode) that can be derived by the classical operational semantics
described in section 3.

To show the compositionality of the operational semantics we define the parallel composition
II. This operator, first introduced in [GCLS88], allows to combine sequences of input/output
substitutions that are equal at each point, apart from the labels, so modeling the interaction of
a process with its environment. It corresponds to apply iteratively the rule C4 of the transition
system T.

Definition 4.5 (Parallel composition operator) The partial operator II: Seq X Seq ~ Seq is
defined by

• 8, 1\ 8, = 8, II 8,
• a II ss = a

• a II if = if

• dd II dd = dd, .LII dd =.L

10

• 191.81 II 19'.82 = 19'.(sl II 82)

The natural exlension of lion sets will be still denoted by II.

The following result shows the compositionaiity of our operational semantics with respect to
goal conjunction. The compositionality with respect to the union of disjoint programs (or nicely
intersecting programs) is obviously given by the set union.

Theorem 4.6 (Compositionaiity of 0)

O[AI,A:,](V) = O[AJ](VI) II 0[A2](V2), where (VI, V2) = Part(V).

Proof
Notice that the parallel composition operator models consecutive applications of the rule C4 of
the transition system.

We end this section by noticing that 0 is also a denotational semantics, since it is compositional
and it is defined as the fixpoint of an (higher order) operator.

II

5 Fully abstract semantics for the languages of the class
HC(A, T).

The operational semantics defined in the previous section is not fully abstract, this is due mainly
to the fact that it enforces synchronization between the producer and the consumer. This syn
chronization consists in that a substitution produced by an atom has to be consumed at the same
time by the other atoms of the goal. To abstract from this phenomenon we will define some clo
sure conditions on sets of sequences of elementary substitutions. The fully abstract denotational
semantics 1) then will be based on the transition system T plus these closure conditions.

We first introduce the notion of an elementary substitution.

Definition 5.1 We denote by ESubst the set of all the elementary substitutions, namely the ones
ofthe form {x/t}. Moreover we define

• ESubst] = {111 111 E ESubst}

• ESubsto = {11° I 11 E ESubst}

• ESubstJO = ESubst] U ESubsto

• ESeq = ESubst;o.{ss,lf, dd, l.}

To decompose a substitution into elementary ooes we define

Definition 5.2 The function decomposition, Dec: SubstJO _ ESubst;o, is defined as follows

Dec({xl/t" ... ,xn/tn }') = {xl/t,}' ... {xn/tn }'

We next give the definition of the closure conditions.

Definition 5.3 Given an initial goal.4, a set of local variables V, we define ClosureA,v(S) to be
the minimal set that contains S and that is closed with respect to the conditions Pl·P6 of table 4.

Table 4: The closure conditions with respect to an initial goal A and set of local variables V

P3 c,.11f.Dec(11~).s E S =} c,.11,[mgu(f(112))Jf.Dec(11f)·s E S

P4 c,.11, [mgu(f(11 2))]ODec(11~).s E S =} c,.11{ .Dec(11i').s E S

P5 c:; c,.11r ... 11~.s E S =} c,.o-f ... o-~.s E S,
where Z, n var(c,) = 0, Z2 n var(c) = 0,
(11,···11m)var\Z, = (0-,. "00n)var\Z,,
for f = I: Zl and Z2 have no variables in common with V or .4,
for f = 0: Z" Z2 ~ V

P6 c.o E S =} c. l.E S where 0 E {ss, If, dd}

Here 11,[112] denotes the substitution {x/t11,: x/t E Ii,}. With respect to the rules P3 and
P4 we require that dom(mgu(f(11,))) ~ ran(11,). The first condition expresses that there is no

12

direction involved in the communication of substitutions, that is, a substitution produced can also
be consumed. The condition P2 expresses that a input substitution received after the production of
a substitution can also be received before. The following condition states that a input substitution
preceded by a output substitution can be produced when the environment provides the instantiated
output substitution. On the other hand the condition P4 expresses that when the environment
provides less information than the process is able to produce the additional information then can
be produced by the process itself. Condition P5 states that successive input (output) substitutions
can be replaced by a equivalent sequence of substitutions. This equivalence is defined in such a way
that local variables can be added and deleted. Here is the definition of the denotational semantics
D.

Definition 5.4 (The denotational semantics)

D[D](V)
D[tai/](V)
D[susp](V)

D[A](V)
D[.,41, .,4,](V)

{c.O': 0' =1-,ss, and c contains only input substitutions}
{1-,ff}

= {1-, dd}
- d t -= rA,v(ClosureA,v({Dec(d').DJB](W) I (A, V) ~ (B, W)} U {1-}»

= rA"A"V(Closurq"A,,v(D[Ad(vd II D[A,](V,»),
where (v", V,) = Parley)

13

6 The correctness of V

The first question is now the correctness of V, i.e., whether it distinguishes enough. In other
words, if two processes that have the same denotational semantics give also the same observables.
We show this by defining a transition system T', which adds to T some rules that model the
closure conditions. Essentially T' describes the asynchronous communication by the use of a
store of bindings. Substitutions produced are communicated to this store. The consumption of a
substitution then consists of retrieving this substitution from the store. The store is modeled by
adding to a goal constructs of the form store(E), which is to be interpreted as that the equation
E is present in the store.

Table 5: The Transition System T'. Additional computation Rules

C1 ° -(A, V) ~ (Bcr,store(E,cr), W) inC E Pv[Cis candidate] 1\ W = V \ var(Pv)

C2
,0

(tel/(E), V) -> (store(E), V)

C5 (p(t), V) ~ (p(z), store(z = t), V \ {z}) where z E V

C6 ° (store(Ed, ... store(Ern), V) ..:..... (store(ED, .. · store(E~), V\ Z) if

C7
dO

(store(x = t), V) _ (D, V) if iJ = mgu(x = t)

C8
- d O -

(A, V) - (B, W)
° (..4, V) ..:..... (store(&(iJ)), fJ, W)

[(El 1\ ... Ern)
{o}

3Z (E; 1\ ... E~)]
1\

Z<;;V

With respect to the transition system T' we modify the rule C1 so that the output substitution
of the guard is added to the store. Rule C2 is modified such that instead of producing the mgu
of a set of equations of a tel/ construct these equations are added to the store. In the rule C3 A
can now also be of the form store(E). It is important to note that the failure rules remain the
same, as a consequence inconsistencies in the store do not lead to failure. The rule C5 allows to
add information about the terms occurring in the goal to the store. The rule C6 describe how a
store can resolve itself into a equivalent one. The rule C7 describes the retrieval of a substitution
from the store. The last rule describes the partial consumption of substitutions, i.e., it allows the
retrieval of some information from the store by a single atom of a goal. We illustrate this by a
simple example.

Example 6.1 We show how to derive p(a),q(x), store(x = a) from the goal p(x), q(x), tell(x = a).
(As it plays no role in this example we forget about the set of fresh variables.)

,0
1. tell(x = a) -> store(x = a), by C2

,0
2. p(x), q(x), tell(x = a) -> p(x), q(x), store(x = a), from 1 by C3 and C4

{x/ala
3. store(x = a) -> D, by C7

14

{zja}O
4. p(x), store(x = a) _ pta), from 3 by C3 and C4

,0
5. p(x),store(x = a) _ p(a),store(x = a), from 4 by C8

,0
6. p(x), q(x), store(x = a) _ p(a),q(x), store(x = a), from 5 by C3 and C4.

This partial consumption may lead to additional failures, but these occur as inconsistencies in
the store, and are as such not visible in the final result.

Given this transition system T' we define 0' a follows:

Definition 6.2 We define

O'[A](V) = r';:,v({19 l .o'[ii](W): (A, V) ~ (ii,w)}u{.i: A ~ AtomsU Tell})

where the transtition relation is defined with respect to T'.

To prove the correctness of D we show that

Dec(O[A](V» ~ V[A](V) ~ O'[A](V)

and

Result(O[A](V» = Result(O'[AHV»

Therefore we obtain (by monotonicity of the operator Result)

Theorem 6.3 (Correctness of V) Result,;:(V[A](V)) = ObstA), with V = Var \ varIA)

We start with the proposition

Proposition 6.4 For every goal A and set V we have

Dec(O[AHV» ~ V[A](V)

Proof
Let <1> be a continous operator with its least fixed point DecoO (DecoO[A](V) = Dec(O[A](V»).
It suffices to prove that <1>(V) ~ V. We proceed by induction on the complexity of the goal A.

<1>(V)[A](V) =

_ d l -

Dec(rA,v({19 l .V[B](W) : (A, V) - (B, W)} U {.i})) =
_ ill -

rA,v({Dec{1?').V[B](W): (A, V) - (B, W)} U {.i}) ~

rA,v(ClosureA,v({Dec{1?').V[ii](W): (A, V) ~ (B, W}) U {.il» =

V[A](V)

And, for A = A" ..12 :

15

~(V)[A](V) =
_ _ t'J i -

Dee(r A,v({ 11'.V[B](W): (A,v) ~ (B, W)} U {.i})) =

_ _ IJl-
rA,v({Dee(I1').V[B](W): (A, V) -> (B, W)} U {.i}) =

rA,v({Dec(I1').rB,w (ClosureB,W (V[B,](Wd II V[B2](W2))): (A, V) ~ (B, W)} u {.i}) =
- - iJi-

rA,v({Dec(I1').ClosureB,w(V[BI](Wd II V[B2](W2)): (A, V) ~ (B, W)} U {.i}) ~

_ _ _ "l-
rA,v(ClosureA,v({Dee(I1').V[Bd(Wd II V[B2](W,): (A, V) -> (B, W)} U {.i})) =

_ _ _ {}l_

r A,v(ClosureA,V(r A,V({Dec(I1').V[B,](W,) II V[B,](W2): (A, V) -> (B, W)} U {.i}))) =

(

rA"v,({Dec(I1").VIBd(Wd: (A" V,) ~ (B" W,)} u {.i}))
rAv(ClosureAV II)c

" l - - (}l'J - -

rA"v,({Dec(11 '.V[B2](W,): (A2' V2) ~ (B2' W,)} U {.i})

r A,v(Closurq,v(V[A,](V,) II V[A,](V,))) =

V[A](V)

Here B" B2 = Band (W" W,) = Part(W). Some remarks are in order here:

1. The fourth equality holds because the operation TS W occurs in the scope of r A v and as
such it is not so difficult to see that it can be deleted. '

2. The first inclusion holds because W ~ V and V \ W = var(B) \ var(A).

3. The fifth equality holds because of the property r A,V(Closurq,v(X)) = r A,V(Closure A,V(r A,v (X))),
X arbitrary, which we leave the reader to verify.

4. The sixth equality holds because Part(V \ Z) = (V, \ Z, V2 \ Z), with (V" V2) = Part(V).
Furthermore we note that TA' A' V can be split ted into r A v and TA- v due to the renaming 1, 'J, , I 2, :2

mechanism.

To prove that for every goal A and set V we have that V[A](V) ~ O'[A](V) we have first to
verify that 0' satisfies the closure conditions.

Proposition 6.5 For every goal A and set V we have

rA v(Closurq v(O'[A](V))) = O'[A](V) , ,

Proof
It suffices to verify that the closure conditions are satisfied by the transition system T'. However
with respect to condition P5 we have to require for f = 0 that (11, ... 11m) = (17, .. . l7n) Var\Z, with
Z n var(c) = 0. So in this case we only allow the introduction of local variables. Deletion of local
variables is then taken care of by the restriction operator. Here we go.

PI This case follows from the observation that if

dO
(store(E), V} ~ (0, V)

16

with ii = mgu(E), then, identifying store(t = t) with 0, we have

.' (store(E), V) ~ (0, V)

P2 We have to consider the following cases corresponding to the computation rules:

Cl Let

(0 _ I'JI _
(A, V) ~ (Biioii" store(E,iioii,), W) ---> (Biioii, ii, store(E,iioii , ii), W)

where for H - ask(E,) : tel/(E,)IB we have

• iio = mgu(A, H), iiOIA = <

• ii, = mgu(E,iio), ii'IA = <

It follows that iio[ii] = mgu(Aii, H) and ii,[ii] = mgu(E, iio[ii]). Furthermore we (iio[ii])(ii, [ii]) =
(iioii,)[ii] (we may assume dome ii) n dome ii,) = 0 because sequences generated by sucb transitions
do not occur in the operational semantics, as defined by 0', of any goal). Furthermore we have
that E, (iioii,) [ii] = E2iioii,ii and B(iioii,)[ii] = Biioii,ii, so we conclude

{JI {o _

(A, V) ---> (Aii, V) ---> (Biiol1, 11, store(E2 110 11 , 11), W)

C2 Let

(0 I'JI

(tel/(E), V) ---> (store(E), V) ---> (store(E{}), V)

Obviously we then have

1')1 (0
(tel/(E), V) ---> (tel/(EI1), V) ---> (store(E{}), V)

C5 Let

fO 1')1
(p(t) , V) ~ (p(z),store(z=t), V\ {z}) ---> (p(z)l1,store(z = tl1), V\ {z})

It then follows that

{}I fO

(p(t) , V) ---> (p(t)11 , V) ~ (p(z)l1, store(z = tIJ), V \ {z})

C6 Let

fO I'JI
(store(E

"
... ,En), V) ---> (store(E;, ... , E:n), V\ Z) ---> (store(E; 11, ... , E:n 11), V\ Z)

where (E,II . .. 11 En) ¢} 3Z(E; II ... 11 E:n). It follows that (E,II . .. 11 En)11 ¢} 3Z(E; II ... 11 E:n)I1.
(Here we assume that 11 does not affect the local variables Z, this assumption being justified
because sequences generated by such transitions do not occur in the semantics, as defined by OJ,
of any goal.) So we have

I'JI fO
(store(E

"
... ,En), V) ---> (store(E, {}, ... ,En {}), V) ~ (store(E; 11, ... ,E;" 11), V \ Z)

C7 Next we consider:

17

where 1?1 = mgu(x = t). Without loss of generality we may assume that 1?1 = {x/t}, furthermore,
let 1?, = {y/t'}. As y E var(t) implies x ~ var(t') and x E var(t') implies y ~ var(t) we have
1?1(1?,[1?1])= 1?,(1?.[1?,]). Furthermore we have mgu(x1?, = t1?,) = 1?.[1?,J. SO we conclude

- f) I - f)tlf)~]O -
(A, store(x = t), V) 2, (A1?" store(x1?, = t1?,), V) ---> (A1?1(1?,[1?.]), V)

C8 Finally, the last case:

_ fO _ "r _
(A, store(x = t), V) ---> (Amgu(x = t), slore(x = I), V) ---> (Amgu(x = t)1?, store(x1? = t1?), V)

Let 1? = {y/t'} and z E V correspond to y. We have

_ {)I _ (0

(A, store(x = t), V) ---> (A1?, store(x{) = 11?), V) --->

- ~
(A[z/y]' slore(z = I', x[z/yJ = t[z/yJ), V \ {z}) --->

(A[z/yJmgu(x[z/yJ = t[z/yJ), store(z = t', x[z/yJ = l[z/yJ), V \ {z}) =

_ {z/t'}O
(Amgu(x, I)[z/y], store(z = t', x[z/yJ = t[z/yJ), V \ {z}) --->

(Amgu(x = t)1?, slore(x1? = t1?), V \ {z})

Note that in this case we have generated additionally a binding to a local variable. This however
does not matter as this binding can be deleted by the restriction operator. The main point is that
an input substitution made after an application of C8 can also be made before it.

This concludes the case of P2.

P3 Let

-)).~ - D"(.~) (-) (A,store(x=t,V --->(A1?1'V) ---> A1?11?"V

where 1?1 = mgu(x = t). Let 1? = mgu(t:({},)). Without loss of generality we may assume
that 1?1 = {x/t}. First we note that {}1{}' = (1?.[1?J)I1, (111?, = 11,). Furthermore we have that
1?, E mgu(t1? = t) = mgu(xI11[I1J = tl1.[1?J). So we conclude

- ddt9)I - Dec(d~o) -
(A, store(x = t), V) ---> (A{) 1 [I1J, store(tl1 = t), V} ---> (AI1 111" V)

P4 Let

(A, slore(x = t), V} D'j"t (A111 [11], V) D"i':") (A111 [I1J1?" V)

where 1? = mgu(t:(1?,). First we note that (1?.[I1J)1?, = 1?111, (1?11, = 1?). Again, without loss of
generality we assume that 111[I1J = mgu(x = t) = {x/t}. So for some t' we have 1?1 = {x/t'},with
t'l1 = t. From this we infer that 1?, E mgu(t' = t'1?) = mgu(xl11 = 11?.). We conclude

P5 First we treat the case e = I. Let

18

We have Al (1'11 ... 1'Im) = Am+1 (note that VI = ... = Vm). Furthermore by the restrictions on
the variables ZI and Z2 we have (ZI U Z2) n var(Ad = 0. Thus we have Am+! = Al (1'11 ... 1'Im) =
A , (1'I, ... 1'Imlvar\z, = A'(O"', ... O"n)Var\Z, = AI(O"I· .. O"n). Now let for 1:5 i < n: A: =
AI(O"I ... O".). We then have

Next we consider the case e = O. Let
_ {} 0 {} 0 _

(AI,vI) "" (Am+l , Vm +l)

Applying rule C6 and C8 we have

- fO- fO-

(AI, VJ) ~ (Am+l , store(£(1'Id,· .. ,£(1'Im)), Vm+l) ~ (Am+l , store (£(O"d, ... ,£(O"n)), V=+I)

By the restriction on the variables Z we may assume that Z n var(Am+d = 0. Furthermore we
have dom(1'I1 ... 1'Im) n var(Am+d = 0. So we infer Am+I(O"I ... O"n) = Am+,(O", ... O"nlvar\Z =
Am+1 (1'1, ... 1'Im) = Am +,. So applying rule C7 gives us

(Am+l , store(£(O"d, ... , £(O"n)), Vm+l) ~ (Am+" Vm+!)

where c ;:;:;; up .. ,(1':;.

Now we can prove the following theorem.

Theorem 6.6 For every goal A and set V we have

V[A](V) <; O'[A](V)

Proof
Let <I> be a continous operator with its least fixed point V. It suffices to show that for every

goal A and set V we have <I>(O')[A](V) <; O'[A](V). Using proposition 6.5 this is proved by a
straightforward induction on the goal A.

Finally we have to establish that for every goal A and set V we have ResuItA(O[A](V))
Result A(O'[A](V)). By proposition 6.4 and theorem 6.6 we have Result A(O[A](V)) <; Result A(O'[A](V)).
To relate T and T' we define a transition system T, which is obtained from T by introducing the
constructs of the form store(E) and adding the rule

0°
(store(E), V) ~ (0, V)

iJ ;:;:;; mgu(E). It is important to note that inconsistencies in the store do not lead to failures in this
extension of T. We have the following proposition about 1'.

Proposition 6.7 With respect l' we have that if

o
(A, store(E), V) ~. (B, W)

with (B, W) ~ (Jail, W) I (susp, W) 1(0, W) and B <; AtomsU Tell (B does not contain constructs
of the form store(E)), then there exists 1'10 = mgu(E) and 1'1, such that

_ (/1_

(A1'Io, V) ~. (B, W)

o
with 1'1 = 1'101'1,. (Here (A, V) ~. (B, W) is to be interpreted as there exists 1'1" ... , 1'In with

_ {Jt D d .. o-
1'1 = 1'1, ... 1'In and (A, V) ~ ... ~ (B, W).)

19

Proof
We proceed by induction on the length of the derivation in T. Let

{JIO ,," -

(A, store(E), V) ~ (A't?', store(Et?'), V')~· (B, W)

First we consider the case that for some A E A of the form tell(E') or store(E') we have
t?' = mgu(E'), and A' = A \ A. By the induction hypothesis we have for some t?i

_ (J~ _

(A't?'mgu(Et?'), V')~· (B, W)

with mgu(Et?')t?'1 = t?". But t?'mgu(Et?') = mgu(E)mgu(E'mgu(E)). This we can prove as
follows: first note that for idempotant substitutions t?1 and t?, such that dom(t?d n ran(t?,) = 0
we have t?1t?, = mgu(E(t?d U E(t?,)). We then have

mgu(E')mgu(Emgu(E')) =
mgu(E(mgu(E')) U E(mgu(Emgu(E')))
mgu(E' U Emgu(E'))
mgu(E' U E)
mgu(E U E'mgu(E))
mgu(E(mgu(E)) U E(mgu(E'mgu(E)))
mgu(E)mgu(E'mgu(E))

From the above we infer

_ (Jl _

(Amgu(E), V')~· (B, W)

where t?1 = mgu(E'mgu(E))t?i, and mgu(E)t?1 = t?'t?".

Next we have to consider the case that for some A E A there exists a candidate clause H -
ask(E1) : tell(E,)IB' such that t?' = mgu(E,uoud, where Uo = mgu(A, H) and UI = mgu(E1uo).
Given the following observations this case can be dealt with in a similar way as above: As 0"0 and
UI do not instantiate the variables of A we have for t?o = mgu(E)

Uo[t?o] = mgu(At?o, H) and udt?o] = mgu(E1uo[t?0]).

Furthermore as dom(t?o) n dom(ud = 0 we have uO[t?O](UI[t?O]) = (uoud[t?o] and E,uoO"It?o =
E,(O"oO"d[t?o]) (due to the renaming mechanism t?o does not affect the variables of E,).

Given the above proposition about the system T we can prove the following relation between the
sytem T and T'.

Proposition 6.8 If

• (A, V) ~. (B, W) in T'

with (B, W) ~ (Jail, W) I (susp, W) I (0, W) and B <; Atoms, then there exists a t?' such that

.' (A, V) -->. (B, W) in T

with t?;" = t?1". We remark that A may contain constructs of the form store(E).

Proof We proceed by induction on the length of the derivation in T'. We have to consider the
following cases:

Cl Let with respect to T'

20

o dO
(A, V) c... (AI, ... , li' u, ... , An, store(E,u), V) ~. (li, W)

where for some A E A = AI, ... , An there exists a candidate clause H - ask(El) : tell{E2)IB'
such that u = 11011 1, with

• 110 = mgu(A, H), I10IA = f
• 111 = mgu(Ell1o), I1llA = f
• 11, = mgu(E,u)

By the induction hypothesis we have in T
d'

(AI, . .. ,li'u, . .. , An, store(E2u), V) ~. eli, W)

with 19 IA I = 19,..4') where A' = All'" , 13'u, .. ' ,An! store(E2 u). Applying proposition 6.7 we have

in T
d"

(AI 11" ... ,li' ul1" ... , An 11" V) -' (li, W)

with 11' = 11,11". From this it is easy to obtain (in T)

_ iJ'lfJ"_
(A, V) ~. (B, W)

C2 Let (in T')

- fO " -
(A, V) ~ (AI, ... ,An, store(E), V)~' (B, W)

where A = AI, .. . , tel/(E), . .. , An. By the induction hypothesis we have (in T)

d'
(AI, ... , store(E), ... ,An, V) ~. eli, W)

with 111..1 = 111..1. Applying propostion 6.7 we have in T

d"
(AlI10, ... , Anl1o, V) ~. eli, W)

with 11' = 11011" and 110 = mgu(E). From this we obtain in T

(A, V) d2$" (B, W)

C5 Let (in T')

fO f} _

(A, V) ~ (Al, ... ,p(z), ... ,An,store(z=t), V\ {z})~' (B,W)

where pet) E A = AI, ... ,An. By the induction hypothesis we have (in T)

d'
(Al, ... ,p(z), ... ,store(z=t), V\ {z}) -' (li,W)

with 111..1' = 111..1" where A' = AI, ... ,p(z), ... ,An,store(z=t). Applying again propostion 6.7 we

have in T
d"

{A, V \ {z}) _. eli, W)

21

with d' = {z /t }d". From this we infer

"" (A, V) _. (B, W)

C6 Let (in T')

o " (A, store(EJ), ... , store(Ern), V) ~ (A, store(E;), ... , store(E~), V\ Z) _. (B, W)

where (EI A ... A Em) {o} 3Z(E; A ... A E~), Z C; V. By the induction hypothesis we have (in '1')

"' (..4, store(E;), ... , store(E~), V\ Z) _. (B, W)

with dlA' = d,A' (A' = A, store(E;), .. . , store(E~)). Applying propostion 6.7 (repeatedly) we have

in T

"" (Ado) _. (B, W)

with d' = dod" and do = mg.(ED .. . mgu(E~). Now, as (EI A ... A Em) {o} 3Z(E; A ... A E~), we
have mgu(Ed ... mgu(En) = (mgu(ED ... mgu(E~))var\z, Furthermore we have that variA) n
z = 0, so we obtain in t

_ dId" _
(A, store(EI), ... , store(Ern), V) _. (B, W)

with dId,;' = d lA , where d l = mgu(Ed ... mg.(Ern).

C7 Let (in T')

_ '110 _ t'J_
(A, store(x = t), V) --". (A" V) _. (B, W)

where do = mgu(x = t). Follows immediately from the induction hypothesis.

C8 Let (in T')

_ {o _ () _

(A, store(x = t), V) _ (A', store(x = t), V) _. (B, W)

where do = mgu(x = t) and A' = Ai, ... , A~, with A: = Ai or A: = Aida (A = AI, .. " An). By
the induction hypothesis we have in '1'

d'
(A',store(x=t), V) _. (B, W)

with dlA" = dlA" (A" = A', store(x = t)). Applying proposition 6.7 we have in '1'

d"
(Ado, V) _. (B, W)

with tJl = dot1". From this we obtain in t
d'

(A, store(x = t), V) _. (B, W)

N ow we can state the proposition

Proposition 6.9 We have

ResultA(O'[A]) C; Res.ItA([O[A])

Proof Straightforward, given proposition 6.8.

22

7 The full abstractness of V

In this section we prove the full abstractness of V with respect to our observation criterium. To
formulate the full abstractness of V we introduce the notion of an initialized program P; A. We
will write V[P; A] to make explicit that we consider V[A], the meaning of the goal A, with respect
to the program P.

In the following definition we give, given a sequence s and set of variables V, the construction
of a context, that is, an initialized program C(s, V) E HC(0,0), which will recognize the sequence
s. The set of variables V are supposed to denote the set of variables of the initial goal for which s
is a computation plus the varuables introduced by input substitutions of s.

Definition 1.1

• C(ss, V) = C(ff, V) = C(dd, V) = {}; 0

C(.L, V) = {};p

.• C({x;jt}iS,{Xl, ... ,Xn })=

{PO(Xl, ... ,xn) +- Xi ::;:: t, r(x!, ... ,Xi, ... , Xu)
r(Xl! ... J t, ... ,Xn) +- pI(Xl, ... , Xi-I, Xi+l,··· ,Xu)} U P;PO(Xl,. ", xn)

where C(s, {XII'" ,Xi-1! Xi+l, ... , Xn}) = P;Pl(Xl, ... , Xi-I, Xi+l,' .. , Xu) and Po is a new
predicate variable, not occurring in C(s, {Xl! . .. ,Xi-I, Xi+l, ... , Xu}). (Note that we assume
var(t) ~ {Xl, ... ,Xn }.)

• C({x;jt}OS,{Xl, ... ,Xn })=

{PO(Xl, ... , t, ... , Xn) +- Pl(Xl, . .. , Xi-I, Xi+l,··· ,xn,iI)} U P;PO(Xl 1 ' ••) xo)

where Ii = var(t) \ {Xl,.·. ,Xn },

C(C,{Xl, ..• ,Xi_l,Xi+l, ... ,Xn ,Y}) = P;Pl(Xl, ... ,Xi_l,Xi+l, ... ,Xn ,Y), and po lS a new
predicate variable, not occurring in C(c, {x!, ... , Zi-l, Xi+I, •.. ,xn,y}).

The following proposition essentially states that a context C(s, V) indeed recognizes the se
quence s. However, to state this proposition we need first to introduce the notion Visible (V, c)
which gives the set of variables which can be "reached" from the set of variables V by the sequence
c.

Definition 1.2 We define Visible(V, c) by induction on the length of c:

Visible(V, -X) = V
Visible(V,19'.c) Visible(V19, c)

where V19 = {var(19(x)): X E V}.

Proposition 1.3 For c'.o:' E V[C(c.<>, V)](W) such that

• Visible(V,c') = dom(19,,), the variables introduced by output substitutions of c do not occur
in W, and

• the variables introduced by input substitutions oj c' which are not visible in the resulting
substitution (they are not contained in var(V,j,,)) do not occur in e,

we have c' E Closurev,w(e). (Here e denotes the "mirror" of c: ,jI c = ,jOe and ,joe = ,jIe.)

23

Proof
We proceed by induction on the length of C. Let's go.

c = A: From 11"W = p(I1,W) and Visible(V,c') = dom(I1,,) it follows that c' = c.

c = {x/t}'c,: Let P,;p, = G(c,.a, V \ {x} u var(t)). We consider the cases f = I and f = 0
separately. (Note that for f = I we have var(t) <;; V.)

c = {x/t}Ic,: By the definition of the denotational semantics V we have

dE C/osureY,w(I1{ ... 11{.c~)

with 11, ... 11k (x) = tl1', t9iy = (11, ... 11.)W, and c\ .a' E V[P,; p,l1, ... 11.11'](W), for some W' <;;
W. First note that actually we have W' = W because all the variables of p, are instantiated.
Now let "" ... ,"m such that '" = {x/t} and (", ... "mlvar\Z, = (t9, ... 11m) Yar\Z, , where Z, <;;
var(t) \ V contains those variables bound by 11' and Z, = dom(I1, .. . 11m) \ V. Thus we have by
P5

t?{ ... t9'.c~ E Closurev,w(ui ... (J":n.c~).

Note that the sequence ,,{ ... u;".d, is well-defined because we may assume that Z, n var(c;) = 0.
This we can justify as follows: suppose first that z E Zl is introduced by an output substitution of
c~. So we then would have z E W which contradicts the assumption that the variables introduced
by output substitutions of c do not occur in W. Suppose then that z E Zl is introduced by a input
substitution of c~. As I1~W = I1,W' 11, ... 11k (x) = tl1', and c' E GlosureY,w(l1{ ... t9i.c\) we have
that z ~ var(VI1~). But variables introduced by input subsitutions of c' (and z is such a variable as
c' E Glosurey,w(I1{ .. . 11{.c',)) which are not contained in var(VI1~) do not occur in c (as z does).

Furthermore we note that the application of P5 is justified because the variables of Z, do not
occur in W as the variables introduced by output substitutions of c (thus introduced by input
substitutions of c) do not occur in W.

We have p,l1, ... 11.11' = PI'"~ ... "m (note that x ~ var(pIl). From this and c~ .a' E V[P,;p,I1, .. . I1kl1'](W)
we infer that

,,~ ,,;'.c',.,,/ E V[P,;p.](W).

Now we apply the induction hypothesis yielding

,,~ ,,;'.c; E Glosurey,w(c,)'

(it is not difficult to check that the conditions for applying the induction hypothesis are indeed
satisfied). We conclude

c' E Glosurey,w("f o-;'.c;}<;; Glosurev,w(c).

c = {x/t}Oc,: we distinguish the following three cases:

1. We have

c' E GlosureY,w(l1f·· . l1i·c;)

such that 11, ... 11 k (x) = tli', with {)' = (11, ... 11')1 dome .'), and c\ .a E V[P,; p,l1, ... 11.](W'),
for some W' ~ W. This case is treated in a similar way as above, making additionally use
ofP!.

2. We have

24

with 11.(x) =tll •... ll._. and o' •. a/ E V[P.;p.ll •... llo](W), for some W' ~ W, as above
we actually have W' = W. Let 11' = {x/t}. It then follows by successive applications of P2

Furthermore we have p.ll • ... 110 = p.ll.[l1'J ... 110_.[11'11 •... 110_2J. This we can prove as
follows:

(11 •... 110)lYarllx) =
11. [l1.J ... 110_. [l1.J =
11. [11'11.] ... 11, [11'11 •... 11;] ... 110-. [11'11 •... 110_ d =
11.[l1'J ... 11, [11'11 •... 11,_ d ... 110_ .[t?' t? ... t?0-2J

The last equation follows from the following observation: Let t?, = {y/t'}. Now, if x E
var(t') then y 1ft var(tt? ... t?,_.). From P. t? ... t? = P. t?.[t?'J ... t?_.[t?'t? ... t?-2J and
o' •. oi E V[P.; P. t? ... t?](W) we derive

t? WV ... t?_. [t?'t? ... 11.- 2V .c; .Ci' E V[P.; P.](W).

Now we apply the induction hypothesis (again, it is not difficult to verify that the conditions
for applying the induction hypothesis are satisfied) yielding

From which we derive

3. We have

c' E Closurev,w(t?{ ... t?~.Dec("o).c;)

with t? ... t?m(x) = tt?'" for some t?' such that t?' = (t? ... t?m)dQm(d') (note that dom(t? ... t?m)n
dom(,,) = 0). Furthermore, we have CJ.Ci E V[p.;P.t? ... t?m"](W'), for some W' ~ W
(again, we have actually W' = W). Let "., ... ,"0 such that cr. = {x/t} and " •... "." =
t? ... t?m'" We first show that

By P2 we have

,,~ ... ,,' '''.[''2 ... ".JO .Dee(oJ) .C; E Closure v, w(11? .11~ ... crt, .Dee("I) .c'd

Note that 11.["2 ... "oj = {x/W'}. Applying P3 gives us

Finally an application of P5 gives us

Next we observe that P. t? ... t?m" = P."2 .. . "m", from this and CJ.Ci E V[P.; P. t? ... llm"l1'](W')
we obtain

25

Applying the induction hypothesis (again, it is not difficult to verify that the conditions for
applying the induction hypothesis are indeed satisfied) gives us

u~ ... u{.Dec(ul).c', E Closurev,w'(c,).

From which we derive

c' E Closurev,w(uf.u~ ... urDec(ul).c~) s:; Closure(c).

Proposition 7.4 Ifc E ClosureA"v,(c') then <' E Closurq"v,«), where V,nv, = 0 and V,UV, =
Var.

Proof Straightforward induction by the number of applications of the closure conditions, making
use of the fact that the conditions mirror themselves in the following sense: if c is derived from c'
by an application of, say, PI then c' can be derived from c using PI again. In this way it is easy
to see that PI, P2 and PS mirror themselves. On the other hand, P3 and P4 mirror each other.

Finally, we can prove the main theorem:

Theorem 7.S (Full abstractness of V) For arbitrary initialized programs P,;A, and P,;A, if

then there exists a P; A, a distinguishing context, with no predicates in common with PI; Al and
P,; A" such that

Obs(PUP,;A,AtloF Obs(PUP,;A,A,).

Proof Suppose that V[P,;Ad(V) oF V[P,;A,](V), for some V. Without loss of generality we
may assume that var(A,) = var(A,). Let c.a E V[P,;Ad(V) \ V[P,;A,](V). Let W consist
of the variables of .AI and the variables introduced by input substitutions of c. Furthermore, let
P; A = G(c.a, W) and (W" W,) = Part(Var \ W). For arbitrary renaming p E V ~ W, we have
p(e).a' E V[P;A](W,) and p(c).a E V[P,;A,](W2)' where

a' = S8 if a E {ss, If, dd}
= If otherwise

So we have

p(Resultw(c.a II c.a')) E Resultw(V[P;A](W,) II V[P,;A,](W,))
= Resultw(V[P U P,; A, Ad)
= Obs(PUP,;A,A,)

Now suppose that for some p: V ~ W, we have p(Resultw(c.a II c.a')) E Obs(PUP,;A,A,). So
there exist c'.a E V[P,;A,](W,) and (f.a' E v[p;A](W,J such that p(Resultw(c.a II c.a')) =
Resultw(c'.a II c'.a'). Furthermore we may assume without loss of generality that the vari
ables introduced by input substitutions of cl which are not visible in the resulting substitution
(thatis, they do not occur in t9"lw) do not occur in p(c). It follows that t9"lw = t9p(nlw and

Visible(W,c') = dom(t9,,). By proposition 7.3 (note that c'.a' E V[C(p(c).a, W](W,J) we then
have that e' E Closurew,w, (p(c)). So by proposition 7.4 we derive p(c) E Closurew,w, (c'). So we
have p(c).a E V[P,;A,](W,). From which it is not difficult to deduce that c.a E V[P,;A,]{V),
contradicting our initial assumption.

26

8 Conclusion

We have studied in this paper the asynchronous nature of the communication in Concurrent Logic
Languages. We have shown that to obtain a fully abstract semantics for these languages a quite
different approach is required than for the imperative concurrent languages like CCS. One of the
main differences consist in the description of deadlock behaviour. In Concurrent Logic Languages
deadlock depends upon the past behaviour of a process, whereas in languages like CCS deadlock
essentially depends upon the current state of the system as described by the failure sets.

A future research topic consist of generalizing the result to Concurrent Constraint Programming
Languages. Another interesting line of research is to define a framework to study asynchronous
communication in a more abstract setting.

27

References

[Apt88] K.R. Apt. Introduction to logic programming (revised and extended version. Techni
cal Report CS-R8826, Centre for Mathematics and Computer Science, Amsterdam,
1988. To appear as a chapter in Handbook of Theoretical Computer Science, North
Holland (J. van Leeuwen, editor).

[BHR84] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential
processes. JACM, 31:499-560, 1984.

[dBK88] J.W. de Bakker and J.N. Kok. Uniform abstraction, atomicity and contractions in
the comparative semantics of concurrent prolog. In Proe. Fifth Generation Com
puter Systems, pages 347-355, Tokyo, Japan, 1988. Extended Abstract, full version
available as CWI report CS-8834. To appear on Theoretical Computer Science.

[dBKPR89a] F.s. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. Control flow versus
logic: a denotational and a dec1arative model for guarded horn clauses. In Proe.
of the Symposium on Mathematical Foundations of Computer Science, LNCS, pages
165-176, 1989.

[dBKPR89b] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. Semantic models for
a version of parlog. In G. Levi and M. Martelli, editors, Proc. of the Sixt Interna
tional Conference on Logic Programming, pages 621-636, Lisboa, 1989. MIT Press.
Extended version to appear in Theoretical Computer Science.

[Ede85] E. Eder. Properties of substitutions and unifications. Journal Symbolic Computation,
1:31-46,1985.

[GCLS88] R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. Fully abstract denotational
semantics for concurrent prolog. In Proe. of the Third IEEE Symposium on Logic In
Computer Science, pages 320-335, 1988.

[GL90] M. Gabbrielli and G. Levi. An unfolding reactive semantics for concurrent constraint
programming. Technical Report TR .. /90, Dipartimento di Informatica, Pisa, 1990.

[GMS89] H. Gaifman, M.J. Maher, and E. Shapiro. Rehactive behaviour semantics for con
current constraint logic languages. In Proe. of the North American Conference on
Logic Programming, 1989.

[Hir87]

[JL87]

[Kok88]

[Ll087]

[LMM88]

[Mah87]

M. Hirata. Parallel list processing language oc and its self-description. Computing
Software, 4(3):41-64, 1987. In Japanese.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. ACM Symp. on
Principles of Programming Languages, pages 111-119, 1987.

J.N. Kok. A compositional semantics for concurrent prolog. In R. Cori and M. Wirs
ing, editors, Proc. 5th Theoretical Aspects of Computer Science, number 294 in
LNCS, pages 373-388. Springer Verlag, 1988.

J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987. Second
edition.

J.-L. Lassez, M.J. Maher, and K. Marriot. Unification revisited. In J. Minker, editor,
Foundations of deductive databases and logic programming, Los Altos, 1988. Morgan
Kaufmann.

M. J. Maher. Logic semantics for a class of committed choice programs. In J.-L.
Lassez, editor, Proc. of the Fourth Int. Conference on Logic Programming, pages
877-893, Melbourne, 1987. MTI Press.

28

[MiI80]

[Sar85]

[Sar89]

[Sha89]

[SR89]

[Ued88]

R. Milner. A Calculus of Communicating Systems. Number 92 in LNCS. Springer
Verlag, New York, 1980.

V.A. Saraswat. Partial correctness semantics for cPt!' 1,&). In Proc. of the Con! on
Foundations of Software Computing and Theoretical Computer Science, number 206
in LNCS, pages 347-368, 1985.

V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, january
1989. To be published by MTI Press.

E.Y. Shapiro. The family of concurrent logic languages. ACM Computing Surveys,
21(3):412-510, 1989.

V.A. Saraswat and M. Rinard. Concurrent constraint programming. Technical re
port, Carnegie-Mellon University, 1989.

K. Ueda. Guarded horn clauses, a parallel logic programming language with the
concept of a guard. In M. Nivat and K. Fuchi, editors, Programming of Future
Generation Computers, pages 441-456, Amsterdam, 1988. North Holland.

29

	Abstract
	1. Introduction
	2. Preliminaries
	2.1 Substitutions
	2.2 Unification
	2.3 Constraints on the Herbrand Universe
	3. The class HC(A,T). Syntax and informal operational semantics.
	4. A compositional operational semantics for HC(A,T).
	5. Fully abstract semantics for the languages of the class HC(A,T).
	6. The correctness of D
	7. The full abstractness of D
	8. Conclusion
	References

