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Chapter 1

Introduction: Concepts and
Models

In this chapter, we set the stage for the remainder of the thesis.
We introduce the concepts and the models that form the basis for
our contributions in this thesis. Three different concepts and as-
sociated streams of literature can be related to the content of this
thesis. These are hierarchical planning systems, lead time man-
agement, and clearing function. Within the context of hierarchical
planning systems we review and discuss three main approaches:
(1) Hierarchical production planning of Hax and Meal (1975), (2)
Goods flow and production unit control structure of Bertrand et al.
(1990), and (3) Organizational planning hierarchies of Schneeweiss
(1999). The research on lead time management is discussed from
various perspectives including due-date assignment, planned lead
times for order release planning, and workload control. Addition-
ally, we provide a detailed overview of the initial studies and the
recent improvements on the concept of clearing function. We dis-
cuss why clearing functions are important in modeling the dynamic
flow times at an aggregate planning level. We then introduce our
research questions and a brief description of our research method-
ology.

1.1 Problem Context

During the past few decades the concept of Supply Chain Management (SCM)
has become increasingly popular. The drastic changes in market structures,
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2 Introduction: Concepts and Models

geographical diversity in manufacturing and distribution of goods, and evo-
lutionary developments in information technology (IT) have helped the no-
tion of supply chain become the center of attraction in industry as well as in
academia. Simchi-Levi et al. (2003) defines SCM as ”a set of approaches uti-
lized to efficiently integrate suppliers, manufacturers, warehouses, and stores,
so that merchandise is produced and distributed at the right quantities, to the
right locations, and at the right time, in order to minimize systemwide costs
while satisfying service level requirements”. As this definition implies, SCM
is a very broad topic. The managerial issues described in this context can be
classified into three categories in terms of the scope and the type of problems
considered. These are:

Supply Chain Design: It refers to long-term strategic decisions such as the
location of factories and warehouses, transportation infrastructure, supplier
selection, etc. Supply chain design activities involve choosing what capabilities
along the value chain to invest in and develop internally and which to allocate
for development by external parties.

Supply Chain Coordination: It refers to the collaboration of mutually inde-
pendent parties along the supply chain to improve the coordination of their
activities as an attempt to increase joint benefits. Supply chain coordination
involves design of contracts between suppliers and buyers, as well as the in-
formation that is exchanged between them. Collaboration focuses on joint
planning, coordination, and process integration between suppliers, customers,
and other partners in a supply chain.

Supply Chain Operations: It addresses the problem of matching supply and
demand in terms of both volume and product-mix in the mid-term. The focus
is on allocating material and production resources through time and within
supply chain in order to meet customer needs. This means planning for the
right quantities of material to arrive at the right time and place to support
production and distribution. It also means maintaining appropriate levels of
raw material, work in process (WIP), and finished goods inventories in the
correct locations to meet market needs. In the short-term, detailed scheduling
of resources is required to meet production requirements. As the day-to-day
activities continue, the planning and control system must track the use of
resources and execution results to report on material consumption, capacity
utilization, completion of customer orders, and other important measures of
performance.

In this thesis, we focus our attention on planning problems related to sup-
ply chain operations because, most of the reviewing and updating activities
are done at this level of planning in the supply chain. Usually, design and
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coordination choices are rarely revised, and given these choices, the short to
mid-term demand or production variations are handled by appropriate revi-
sions in planning supply chain operations. The capability to recognize changes
in customer requirements and move them through the value chain is an impor-
tant dimension of a planning and control system. This requires the ability to
monitor system statuses, determine, transmit, revise, and coordinate require-
ments throughout the supply chain in a dynamic framework.

One response to increasing need for coordination and communication has been
the rapid deployment of IT applications, particularly Enterprise Resource
Planning (ERP) systems. The promise of ERP systems is to provide real-time
data availability for coordinated decision making in globally dispersed orga-
nizations. These systems are transactional, IT backbone systems that also
support various decision-making processes, such as inventory management,
production planning, forecasting, etc.

During the seventies and eighties OR applications led to the implementation of
tailor-made Decision Support Systems (DSS) for supply chains. The required
inputs were downloaded from ERP systems and the outputs were uploaded
again, either manually or using an IT interface. However, these DSS never
raised the same interest with top management as ERP systems. DSS are
widely spread across all business functions in particular as homemade spread-
sheet programs. The lack of attention of top management with respect to
DSS changed fundamentally in the early nineties when the notion of DSS was
replaced by the notion of Advanced Planning Systems (APS). One of the rea-
sons behind this development was, APS were introduced as standard software
applications that provide an integration of different decision making processes
among various business functions using real-time data from ERP systems. The
structural framework for APS is in general established along the principles of
hierarchical planning approach. Thus, it is a relevant topic to investigate the
performance of these systems in a dynamic framework. Hierarchical Planning
(HP) concepts have been developed and widely accepted both in industry and
in academia as a management philosophy to decompose a complex planning
problem into small and manageable subproblems while considering their in-
terdependencies and coordinating their decision outcomes.

It is very complicated to grasp all the interactions and dependencies between
different decision functions in the planning hierarchy and between different
stages in the supply chain considering all aspects of production processes,
market structure, product-mix, capacity allocation and etc. Thus, we resort
to a certain level of detail in modeling supply chain operations, which is made
explicit in the following section.
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1.2 System under Study

We consider a supply chain that is composed of several production phases and
stock points in a serial structure. An illustration for a two-stage system is
given in Figure 1.1. Each item produced within the supply chain is kept in a
certain stock point either to be used in further production steps or to satisfy
end-customer demand, which is stochastic in nature. The term production
unit refers to a production department, ”which on the short term is self-
contained with respect to the use of its resources, and which is responsible for
the production of a specific set of products (the production unit end-items)
from a specific set of materials and components (the production unit start-
items” (Bertrand et al. (1990)). We assume the flows of materials between
the production units and their stock points occur in batches, and there is an
ample supply of raw materials at the most upstream stage of the supply chain.

Figure 1.1: A two-stage serial supply chain.

Each stage of the supply chain consists of a production unit and two stock
points for the inventory of production unit start-items and of production unit
end-items respectively. The coupling between the downstream and upstream
stages is established by the inventory of intermediate items which are start-
items for a downstream stage (Stage 1 in Figure 1.1) and end-items for an
upstream stage (Stage 2 in Figure 1.1). For example, in Figure 1.1, PU1 pro-
duces to final product stock point SP1 from the intermediate item in stock
point SP2, which is produced by production unit PU2. Production units are
not necessarily situated in the same facility, and in fact, they may refer to dif-
ferent, geographically dispersed business units. The complete process that an
item experiences in its production unit is considered at an aggregate level such
that it is represented by a single stochastic process. The processing time of a
single production unit end-item is assumed to follow a stationary probability
distribution. In addition, production unit capacities are not flexible, and the
maximum long-term average throughput level of each production unit is fixed
to a nominal capacity.
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There is a positive duration of time between the moment that an order is
released to its production unit and that order is available in its stock point.
In practical situations, this duration is not fixed and depends on various im-
portant spatial or temporal system characteristics such as the level of process
uncertainty, the workload in the production unit and the size of the released
order. In this thesis, we define the term that refers to this duration of time as
order flow time or in short flow time.

In planning the release of orders, the flow time is represented by a parameter,
which has to be determined in advance of release decisions. This parameter is
referred to as planned lead time or in short lead time throughout the thesis.
In managing the supply chain of Figure 1.1, L2 refers to the planned duration
of time to produce a batch of intermediate items in PU2 and put into stock
point SP2. Similarly, L1 is the planned duration of time to produce a batch
of final products in PU1 and put into stock point SP1 to satisfy end-customer
demand.

Forecasted information is available for the future end-customer demand which
might change during time. The actual demand may be realized differently
from its forecasted value. The goal is to satisfy demand by keeping the total
costs as low as possible. Costs are generated by keeping finished items in stock
including the safety stock against demand and production uncertainties, and
also by keeping unfinished items as workload in the production units.

The major planning tasks in a supply chain as we have described here include
setting appropriate lead times, deciding on the optimal stock levels together
with the optimal usage of materials and resources, and detailed decisions on
scheduling of orders released at each stage. Considering all these aspects in a
single decision model is not feasible due to huge data processing requirements,
even for the simplest case. An HP model is provided by separately considering
lead time setting, order release planning, and order scheduling decisions. In
the following, we describe the role of each decision function into further detail,
and also provide a dynamic framework of planning hierarchies.

Planning Hierarchy

The planning hierarchy modeled in this thesis consists of three separate deci-
sion levels: tactical planning level, operational planning level, and operational
scheduling level. The lead times are determined at the tactical planning level.
This decision function is necessary to instruct the lower level decision models
about the time it takes for an order to traverse a production unit. The lead
times, exogenous to the operational planning and scheduling levels, are used
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in releasing orders and balancing inventory for the expected demand, and in
determining the due-dates of the released orders. The lead times are set as
integer multiples of a period. A period is a prespecified duration of time for
which basic input/output rates (i.e., demand and production rates) are defined
for all stages of the supply chain. This implies both the operational planning
and the operational scheduling levels use identical periods in their models.
The method of rolling horizons is applied in order to account for uncertainties
in the production and demand processes, and to update planned lead times at
each replanning opportunity.

The planned lead times may be determined in a decentralized manner con-
sidering each stage independently. This refers to the case that the planned
lead times of the items produced in a certain production unit depend only
on the information status of that production unit only. Setting planned lead
times based on the workload of the production unit or based on the recent
occurrences of flow times in that production unit are some examples of this
approach. The planned lead times may also be determined in a centralized
manner considering the interaction between successive stages.

The operational planning level is modeled within the context of Supply Chain
Operations Planning (SCOP) as defined in De Kok and Fransoo (2003). Thus,
the term SCOP level is used as an alternative to the term operational planning
level in many places throughout the thesis. ”The objective of SCOP is to
coordinate the release of materials and resources in the supply network under
consideration such that customer service constraints are met at minimal cost”
(De Kok and Fransoo (2003)). In accordance to its formal definition, various
SCOP models are considered in this thesis. Basically, our SCOP models are
Mathematical Programming (MP) formulations, where the planning is done
periodically for a specified number of periods in the planning horizon. Figure
1.2 provides a meta-model of our SCOP formulation.

In accordance with the rolling horizons method, only the first period’s planning
decisions are instructed to the operational scheduling level. At this level,
detailed, execution related decisions are made in a decentralized manner for
each stage of the supply chain. The concern is no longer the planning of
material flow between stages, but the scheduling of released orders at each
stage and planning the usage of materials at each production unit.

As time proceeds, the result of the execution together with the effects of
random events that occurred during the previous period is feedback to the
planning system, and the previous plans together with the planned lead times
are revised based on the changed information status. Although the method
of rolling horizons may result in suboptimal decision making, it is very rele-



1.2. System under Study 7

Figure 1.2: The SCOP meta-model.

vant from a real life perspective. It is a common planning strategy employed
in various ways within commercial planning and scheduling software mainly
utilizing Material Requirements Planning (MRP) or Manufacturing Resources
Planning (MRPII) concepts (cf. Vollmann et al. (1997)). The model for deci-
sion making process is different in each chapter of the thesis, and is therefore
described separately where appropriate. However, the plan-execute-feedback-
(re)plan cycle is common in all chapters, and is used at different decision levels
for updating purposes. This approach leads us to a dynamic framework for
hierarchical planning systems, as illustrated in Figure 1.3. It is based on a
simple hierarchical structure of two decision levels (top level instructing the
bottom level), and is also applicable for general structures. Dynamic refers to
the fact that the planning process is described as a series of decisions taken in
consecutive planning cycles in time, and planning parameters (e.g., planned
lead times) are subject to change during the course of time. Accordingly, the
performance evaluation is conducted in a dynamic setting. The performance
of the planning decisions given for a single problem instance is not only eval-
uated based on the available information at the time of decision, but based
on their effects on the actual system status changing through time, which is
unknown at the time of decision.

In Figure 1.3, the parameters of each decision model at each level of the
planning hierarchy are subject to changes between the replanning instances t
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Figure 1.3: Dynamic framework of hierarchical planning.

and t′ with t′ > t. The level of change in a certain parameter depends on the
initial system status at time t and on the response to the events that have
occurred during period t − t′. For example, we may consider updating the
parameters for capacity or processing times at an aggregate planning level in
response to machine failures in the shop floor.

In this thesis, we aim to shed light on the evaluation of this dynamic framework
through scientific results gathered from experimental and analytical studies.
Specifically, we want to provide insights into the performance of hierarchical
planning systems in coordinating supply chain operations with dynamic lead
times. The performance is measured along two perspectives:

• External Performance: Expressed in terms of average (periodic) costs such
that a predefined customer service level is met.

• Internal Performance: Expressed in terms of the level of consistency be-
tween the higher and lower level decision functions. In particular, it refers
to the deviation of the actual delivery dates of the released orders from
their planned delivery dates.

The external performance measures are typical ways to evaluate the system
in relation to the cost minimization or profit maximization objectives. The
internal performance measures are relatively less visible, but at the same time,
they are interesting and relevant in evaluating the level of integration between
the coordination decisions made at a higher planning level and the execution
decisions made at a lower planning level. In many respects, the internal per-
formance measures are relevant tools in understanding the reasons behind the
changes in the external performance.
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1.3 Related Literature

Three different lines of research can be distinguished within the context of this
thesis. These are hierarchical planning in relation to the planning framework
presented in the previous section, lead time management in relation to up-
dating the planned lead times, and clearing function in relation to modeling
the stochastic production processes at an aggregate planning level. They are
reviewed separately in the following sections.

1.3.1 Hierarchical Planning

Hierarchical planning has been a predominant mode for production planning
both in academic research and in industrial practice. It is a management phi-
losophy that is based on the decomposition of a large complex planning prob-
lem into small and manageable sub-problems. The decision making process in
industrial organizations, in general, is modeled as a network of sub-processes
with a hierarchically coordinated flow of information in between the processes.
From a real-life perspective, it is very relevant to understand and analyze the
industrial problems together with their hierarchical interactions.

A vast amount of research has been produced in the context of hierarchical
planning. Among these, Anthony (1965) provided the first comprehensive
view on the hierarchical framework for organizational decision making with
generic descriptions of strategic, tactical and operational level planning prob-
lems. This three-level hierarchical framework has been cited as Anthony’s
Taxonomy by many researchers. The computational efficiency introduced by
the hierarchical decomposition approach has promoted the use of management
science tools for planning large complex organizations. Inspired by the decom-
position algorithm of Dantzig and Wolfe (1963) for solving linear programming
problems, Ruefli (1971) proposed a generalized goal decomposition model to
represent decision making in a three-level hierarchical organization. Similar to
Anthony’s Taxonomy, these decision levels are identified as central unit, man-
agement unit, and operating unit. The central unit coordinates lower level
management units by setting goals. Each management unit solves a resource
allocation problem based on goals, and provides feedbacks of shadow prices to
the central unit so that the latter can evaluate and improve its goal setting
policies. Operating units are responsible for generating alternative activity
levels for a given resource allocation, and feeds them back to the management
units to re-evaluate their decisions. Different from the previous decomposition
models, Ruefli’s formulation includes the effects of organization structure on
the solution, thus, extends the application area of decomposition techniques
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to include industrial problems.

Although the studies of Anthony and Ruefli emphasized the organizational and
algorithmic insights behind the hierarchical approach, Hax and Meal (1975)
are the first to give a formal hierarchical planning model and to implement it
in a complex production planning and scheduling situation. Thus, the term
Hierarchical Production Planning (HPP) is generally attributed to their mod-
eling approach. A three level product structure is introduced, where item
refers to an individual stock keeping unit, and items sharing common tool-
ing and setup characteristics are aggregated to the same family, and families
sharing common production rates and inventory costs are grouped into the
same type. Aggregate plans are generated at the product type level, and
based on the seasonal stock accumulation of each product type, family run
quantities are determined for a shorter time frame, and lastly, the family pro-
duction run quantities are allocated among the items by equalizing run-out
times of individual items. The basic benefits of such a product structure are
that demand forecasts are more accurate at the aggregate level and the joint
scheduling of items sharing the common setup generates smoother production
with fewer disruptions. In addition, there is the reduction in computational
and data gathering time introduced by the hierarchical planning methodology.
Following the analytical framework of Hax and Meal (1975), the majority of
the studies in this area are concentrated on the design of decision models at
different levels and developing perfect aggregation-disaggregation algorithms.
Perfect aggregation refers to the cases where any aggregate plan on product
groups and machine groups can be disaggregated to a detailed plan on individ-
ual items and machines (Axsäter (1981)). In Bitran and Hax (1977), the HPP
methodology of Hax and Meal (1975) is further developed by introducing the
concept of effective demands to satisfy the feasibility of aggregate plans. The
approach in this paper is referred to as Regular Knapsack Method (RKM), due
to the fact that the family and item disaggregation subsystems are both repre-
sented by means of knapsack problems. Various exact and heuristic techniques
on the disaggregation problems have been developed in the HPP literature.
Examples include Graves (1982) using a lagrangean heuristic, Ari and Axsäter
(1988) using dynamic programming, and Leong et al. (1989) using a weighted
goal programming approach.

Bertrand et al. (1990) developed a HP framework by separating out semi-
autonomous production units in a multi-stage production-inventory system,
and introducing the concept of Goods Flow Control (GFC) function. Employ-
ing a centralized approach over the entire supply chain, this decision function
is responsible for the mutual coordination of the outputs of production units
as well as on-time demand satisfaction. Given the operating targets set by
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the GFC function, each production unit is then modeled separately. The be-
havior of a production unit as seen from a goods flow perspective is described
by the so called operational characteristics, which we specify by the concept
of clearing function in this thesis. The concepts used in this approach are
partly based on certain concepts from MRPII (cf. Bertrand and Wijngaard
(1985)), and have led to a considerable amount of academic research (e.g.,
Fransoo et al. (1995), Zäpfel (1996), Raaymakers et al. (2000), and Negen-
man (2000)). The framework is further enhanced by De Kok and Fransoo
(2003) in a more detailed way by including the concept of effectuation lead
times. The effectuation lead time is defined by the duration of time it takes
to implement a decision. In our case, the effectuation lead time is represented
by the order flow time; any released order can be effectuated at the end of its
flow time.

More recently, Schneeweiss (1999) introduced the concept of organizational
planning hierarchies by emphasizing two important issues: information asym-
metry and goal asymmetry. Information asymmetry refers to the assumption
that different hierarchical levels possess different information states, and goal
asymmetry refers to the case that different hierarchical levels have different,
even conflicting, objectives. De Kok and Fransoo (2003) raises the discussion
that the existence of effectuation lead times is the primary cause of informa-
tion asymmetry. The concept of anticipation has been developed explicitly in
order to take into account the possible outcomes of the influences between dif-
ferent hierarchical levels (cf. Schneeweiss and Schröder (1992), and Schneeweiss
(1995)). Two main types of anticipation can be distinguished: reactive and
non-reactive anticipation. The reactive anticipation considers a possible reac-
tion of the bottom level to the top level’s instructions, whereas the non-reactive
anticipation assumes no specific reaction. The reactive anticipation can be fur-
ther classified as explicit and exact, explicit and approximate, and implicit in
terms of the degree with which the bottom level model is represented at the
top level model.

Schneeweiss (1999) developed a general framework that HPP models can be
considered as a subclass of this framework. HPP models, being mainly capac-
ity oriented, aims at achieving feasible production plans at the item level. In
that respect, GFC models may be considered as an extension to the models
at the lowest level of HPP framework. Bertrand et al. (1990) developed a
material oriented approach where capacity is modeled in further detail than it
is in HPP models, considering stochastic events at each stage of production.

The hierarchical approach presented in this thesis fits in the framework of
Bertrand et al. (1990) and Schneeweiss (1999). This is due to our perspective
of planning supply chain operations and modeling the dynamic framework
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described in the previous section. At an aggregate level, we concentrate on the
coordination of material flow decisions in a multi-stage production-distribution
network with emphasis on modeling with dynamic planned lead times, and at
a detailed level, we model order scheduling and shop loading decisions.

In practice, examples of HP application are found in various APS software. A
discussion about these systems deserves attention as it is related to possible
application areas of our findings in this thesis.

Advanced Planning Systems

In a recent industry report by Gartner (2006) it is stated that the market
for Supply Chain Planning (SCP) grew by approximately US$40 million to a
total of approximately US$741 million in 2005. In 2006, it is forecasted to
grow to approximately US$784 million. A supply chain planning suite is an
integration of various software modules covering a wide range of applications
including supply chain network design and collaboration, capacity and mate-
rial planning, demand planning, transportation planning, and manufacturing
planning and scheduling.

Software vendors such as SAP, J.D. Edwards, I2, Quintiq, and others are now
releasing new products under the name APS for coordinating flows, exploiting
bottlenecks, keeping due-dates and achieving realistic Available to Promise
(ATP) records within complex supply chains. The structure and capabilities
of each module may vary from one vendor to another, however, the basic
structure of APS can be best described by a hierarchical integration of software
modules based on the supply chain process that each module plans and its
planning horizon. An illustration is provided in Figure 1.4.

APS employ decision support through sophisticated mathematical algorithms
(e.g., genetic algorithms, linear programming, etc.) to provide (near) optimal
solutions to the supply chain planning problems jointly considering various op-
erating constraints of each supply chain process. Today, in most firms, ERP
systems being used for bookkeeping and order processing have been supple-
mented by APS. This integration provides new challenges and opportunities
in the way real-time data availability is used in improving the decision support
function of these systems. Any change on the information status may influ-
ence the decision outcomes of one or more planning modules, which are then
distributed to other planning modules through various coupling mechanisms.

The contents of this thesis may be related to cover Master Planning and
Production Planning and Scheduling modules of APS. Master Plan-
ning is responsible for the coordination of material flow due to procurement,
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Figure 1.4: Software modules covering APS (Meyr et al. (2000b)).

production and distribution activities in the mid-term horizon. Furthermore,
master production scheduling is also supported by considering the final prod-
uct demands. Production Planning and Scheduling is usually covered
by a single software module (Meyr et al. (2000b)). The responsibilities at
this level are related to lot sizing, scheduling and shop floor control activities
in order to satisfy the production outputs planned by the Master Planning
level.

1.3.2 Lead Time Management

Lead time management is a very broad field. Three related lines of research
may be classified in this field: (1) due-date assignment associated with the
existence of internal due-dates, (2) setting planned lead times in planning
periodic order releases for a make-to-stock situation, and (3) workload control
to satisfy fixed planned lead times.

The research on due-date assignment has mainly evolved by considering in-
dividual orders of a job-shop in a make-to-order environment. The earliest
models are presented by Conway et al. (1967), which is then followed by
many others in various directions. In assigning due-dates to a specific order i,
the fundamental relationship is

di = ri + ai,

where ri is the release time of order i, ai is the total allowance for the flow
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time of order i in the shop, and di is the due-date of order i. Given any
pair of these three variables, the third one can be determined. The due-date
assignment problems are generally described by finding a realistic di, through
an estimation of the flow time by ai, given the release time ri. The key
performance indicators are related to the mean, variance or the maximum of
earliness, tardiness, lateness, and planned lead times of the orders. Earliness
refers to the amount of time that an order is delivered earlier than planned,
tardiness refers to the amount of time that an order is delivered later than
planned, and lateness refers to both.

The critical question here is how to predict the individual order flow times
accurately. This is not an easy task. The actual flow times are shown to be de-
pendent on various system characteristics including order mix, lot sizes, work-
load levels, machine utilization, setup times, and etc (see Karmarkar (1987),
and Karmarkar (1993) for a detailed discussion on these issues). Thus, one
has to rely on approximate algorithms. The first rules for due-date assign-
ment are introduced by Conway et al. (1967), and are generally based on
order characteristics. These are: Constant Allowance (CON); lead times of all
orders are set to the same constant parameter, Total Work Content (TWK);
the lead time of an order is set in proportion to the total processing time of
the order, and Number of Operations (NOP); the lead time of an order is in
direct proportion to the number of operations on its routing. Separately, Pro-
cessing Plus Waiting Time (PPW) has also been used as a linear combination
of TWK and NOP rules (e.g., Kanet (1986), and Enns (1995)).

This research line has been further developed by Bertrand (1983) who consid-
ered the dependency of flow times on the workload and the machine capacity
in the shop. Based on the idea of workload dependency new rules have been
added to the previous list, such as Jobs in Queue (JIQ); the flow time of
an order is estimated based on a proportion of the total number of orders
in queue on its routing (Chang (1994)). Various techniques have been made
available to the research community targeting different aspects of the problem.
Examples include Vig and Dooley (1991) in estimating flow times based on a
sampling of the flow times of the recently completed orders, Enns (1995) using
queueing theory in predicting flow times and controlling tardiness, Hopp and
Sturgis (2000) in quoting due-dates to achieve a target percentage of orders
completed on-time, and Van Ooijen and Bertrand (2001) in considering the
trade-off between the length of the quoted lead times and the delivery relia-
bility from an economic perspective. The common methodology is to consider
the assigned due-dates independent of the scheduling mechanism (due to com-
plexity problems), and perform some sensitivity analysis based on simulation.
Zijm and Buitenhek (1996) are the first to integrate due-date assignment with
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scheduling (Shifting Bottleneck Method). Building on the queueing constructs
established by Karmarkar et al. (1985) and Karmarkar (1987), they proposed
a hierarchically structured algorithm iterating between lead time setting and
machine scheduling phases until a desired convergence measure is achieved.

The literature on setting planned lead times associated with order release
planning is less developed. The traditional approach is to consider planned
lead times as fixed inputs, exogenous to the planning system. It is assumed
that the planned lead times are set based on some management intuition or
experience and the flow times follow this intuition. The MRP logic is based
on this assumption of exogenous lead times. The concept of exogenous lead
times is further analyzed by De Kok and Fransoo (2003), and by Spitter et al.
(2005a) and Spitter et al. (2005b) within the context of planning supply
chain operations with capacity constraints. The majority of the studies on
lead time setting approach the problem from a static view, and strive to find
fixed planned lead times that best fit a stationary situation (e.g., Yano (1987),
Molinder (1997), and Enns (2001)), mostly in an MRP context. Hoyt (1978) is
the first to criticize the fixed lead times and argue that the lead times should be
dynamic, in a sense that they reflect the dynamic operational characteristics of
a production process, in particular, by looking at the average queue length and
the average output realized recently. This discussion is further enhanced by
Kanet in a series of papers; he first investigated the various effects lead times
have on a multi-stage production-inventory system (Kanet (1982)), then he
emphasized the favorable results in terms of order tardiness achieved by TWK
rule (Kanet (1986)). Since then, the research on dynamic planned lead times
for supply chain situations has not attracted much attention. Recently, Enns
and Suwanruji (2004) modeled exponentially smoothed lead times in a two-
stage Distribution Requirements Planning (DRP) system, and by simulation,
showed the sensitivity of the system to safety lead time factors and lot-sizing
choices.

Although they consider different problems at different aggregation levels, the
studies we have mentioned thus far discuss the management of lead times from
a forecasting perspective with the emphasis on minimizing the impact of the
forecasting errors. Another approach is to control the actual flow times in
a way to match pre-determined norms (in specific planned lead times). The
main motivation comes from the fact that the actual flow times largely depend
on the total workload in the manufacturing centers, and one who can control
the workload can also control the flow times. Based on this observation, a
technique called Input/Output control (Wight (1970)) has become popular.
The idea is, roughly, to keep the amount of workload at a constant level by
controlling the work order releases to a manufacturing center, which has led
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to a wide stream of research (e.g., Bertrand and Wortmann (1981), Bechte
(1988), Kingsman et al. (1989), and Land and Gaalman (1998)). Success sto-
ries using this techniques have been reported both in industry and in academic
studies (Hopp and Spearman (2000)). On the other hand, a major weakness
has been reported in causing long delays for the orders waiting to be released
(Tatsiopoulos and Kingsman (1983), and Zijm and Buitenhek (1996)). Al-
though the average and the variability of the time that orders spend in a shop
floor can be reduced significantly, the total manufacturing flow time as seen
from a higher-level order release perspective may still possess a high level of
variability.

Thus, the variability in order flow times are in most cases unavoidable, and
it is still an important challenge to incorporate this variability in planning
decisions. In this thesis, we aim to model dynamic planned lead times and
evaluate their performance. Planned lead times are updated at every replan-
ning opportunity depending on the levels of changes in the system status.
In doing so, both forecasting methodology (e.g., exponential smoothing, and
JIQ) and a (limited) control approach is employed.

1.3.3 Clearing Function

The idea of clearing was first deployed by Graves (1986), and has been more
specifically defined in Karmarkar (1989) (see Karmarkar (1993) for an exten-
sive discussion). The clearing function is based on the fact that production
output is a function of workload, and it relates the total workload of a shop
floor to the anticipated flow time of the next job to be released. Examples of
clearing functions used in the literature are illustrated in Figure 1.5.

The clearing function of Graves (1986) indicates that the amount produced is
a constant proportion of WIP, Throughput = tan(σ) · WIP. It is represented
by the Fixed Lead Time function in Figure 1.5. It assumes infinite nominal ca-
pacity and a fixed lead time independent of the WIP level. The fixed planned
lead time considered in Graves’ model is used in a way to smooth the produc-
tion output per period. This is different from the way that planned lead times
are used in classical MRP systems, where the variability in planned order re-
leases is directly carried onto the manufacturer’s planned output process. The
Fixed Capacity function reveals the assumption that the throughput is inde-
pendent of the WIP level, and is bounded by a rigid nominal capacity, μ, (e.g.,
Billington et al. (1983), Chung and Krajewski (1984), and Voß and Woodruff
(2003)). A typical approach is employed by combining the Fixed Lead Time
and the Fixed Capacity functions, where the throughput is limited according
to the available WIP up to a certain level, and beyond that level, it is fixed
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Figure 1.5: Examples of clearing functions (Karmarkar (1989)).

to the nominal production rate implying a finite capacity (e.g., Hackman and
Leachman (1989), and Spitter et al. (2005b)). The Saturating function im-
plies the dynamic behavior of the throughput due to the congestion effect of
increasing WIP in the system. It has been derived initially from steady-state
queuing constructs (Karmarkar (1989)).

Experimentations with saturating clearing functions based on the theory of
steady-state queueing systems have been reported by Zäpfel and Missbauer
(1993) in designing efficient workload control systems, by Asmundsson et al.
(2003) and Asmundsson et al. (2004) in improving mathematical program-
ming techniques for aggregate production planning, and by Hwang and Uzsoy
(2005) in developing lot sizing models with setup times. Such a non-linear and
concave shape for the clearing of WIP is also approximated by Asmundsson
et al. (2006) and Armbruster et al. (2004) by fitting the curve to the ex-
perimental results from simulations of practical manufacturing settings. Miss-
bauer (2002) elaborates the saturating function of Karmarkar (1989), and
shows some limitations of stationary models especially under time-varying de-
mand. It has been argued that transient analysis of queueing networks should
be used to develop more precise models of the dynamic behavior of the pro-
duction units (see Missbauer (2006) for a recent discussion). Additionally,
Riaño (2002) models the cumulative output of a production process in terms
of the sum of weighted transformations of the previous inputs to the produc-
tion process. The transformation function is linear in nature with the weights
computed based on an assumed knowledge over a flow time probability distri-
bution.
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The concept of clearing function is extensively investigated in this thesis. It
is used for anticipation purposes so that models of the behaviors of the pro-
duction processes controlled by the operational scheduling level present in
higher decision levels in terms of predicting the relevant performance indica-
tors such as work-in-process, flow times, etc. We utilize clearing function as a
non-reactive anticipation.

1.4 Motivation of the Research

1.4.1 Practical Motivation

From the perspective of practical importance, the research conducted in this
thesis is highly relevant for three groups in society: problem owners, software
developers, and software implementers.

To the problem owners, the design of supply chain planning hierarchies is
highly relevant, and is still largely built on experience and aspect knowledge.
The existence of a dynamic framework with update of the state information
and accordingly with revisions of planning parameters has not been consid-
ered. In relation to rolling horizons, very limited updating activities are put
into design, and the configuration of different decision functions is mainly per-
formed in a static setting. However, the performance of hierarchical planning
systems is largely dependent on parameters such as the frequency of updating
that can be evaluated in a dynamic setting. It relates to the sensitivity of the
planning system to the changes in the supply chain status. This thesis provides
relevant insights that can be translated into direct assistance when redesigning
or reconfiguring hierarchical planning systems in a dynamic setting.

To the software developers, the design of APS is largely directed by theoretical
insights on hierarchical planning systems (Zoryk-Schalla (2001)). The current
state of the art in APS shows the integration of various software modules based
on deterministic optimization algorithms both for high level master planning
and for low level production planning and scheduling problems. Stochastic
models that explicitly incorporate demand or process uncertainties within the
performance measurement (e.g., models based on queueing networks) are ab-
sent in APS to date. This thesis provides insights related to modeling the pro-
cess uncertainty at the master planning level. Although each software module
within APS is in itself well-developed, design related issues with regard to the
interaction between different modules has to be investigated further with pos-
sible improvement alternatives. A number of current paradigms in the theory
on hierarchical planning systems (e.g., issues related to anticipation or cou-
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pling) need to be researched further especially to get insight into the dynamic
performance of these systems. This thesis provides results that can be used
as a tool in designing APS.

Data integration between various modules is supported by advanced informa-
tion technologies, and it is claimed that any new information generated by a
module can be automatically transferred to other modules as an input (Meyr
et al. (2000a)). An important question is to what extent all this information
should be used to update plans and planning parameters. Implementation
success of APS is highly influenced by the correct parameter setting, such as
replanning or updating frequencies. Frequent updating may help being re-
sponsive to changing information statuses but at the same time, may cause
stability problems in decision-making. In this respect, this thesis provides
further insights to assist consultants with successful implementations of APS.

1.4.2 Theoretical Motivation

Although there has been a tremendous interest on hierarchical planning sys-
tems for decades, the research on the dynamic performance of such systems
is quite scarce. The dynamic framework of planning hierarchies as it is illus-
trated in Figure 1.3 has not attracted much attention in the research com-
munity. Although the actual implementation may occur in a variety of ways,
plan-execute-feedback-(re)plan cycle remains as a common strategy in imple-
menting various production planning tools, which has not been evaluated in a
hierarchical context.

There have been a few studies that are mainly focused on determining the
planning horizons at different hierarchical levels in a rolling horizon setting
(e.g., Chung and Krajewski (1986), Chung et al. (1988), and Rohde and
Wagner (2000)). These studies emphasize the problems in fine-tuning the
higher and lower level planning horizons associated with the implementation of
rolling horizons. Mainly based on HPP methodology, they consider aggregate
capacity planning at a higher level and final product master scheduling at a
lower level. Fixed planned lead times are applied in a purely deterministic
environment, and their models are not extendable to multi-stage supply chain
situations.

In traditional hierarchical planning systems based on mathematical program-
ming models applied in a rolling horizon setting, planning parameters are not
subject to change in consecutive replanning opportunities. On the other hand,
today’s manufacturing organizations are confronted with a high degree of un-
certainty in their operations as a result of highly dynamic market conditions,
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and there is a need to facilitate a dynamic and adaptive hierarchical planning
framework. In McKay et al. (1995), it is clearly stated that there has been
an absence of a critical discussion that deals with the underlying assump-
tions, implications, and limitations of the HPP paradigm. Additionally, Zijm
(2000) criticizes HPP systems by emphasizing drawbacks such as the com-
plexities arising in multi-stage production/inventory structures and the fact
that uncertainty at various levels is not incorporated systematically. Such a
discussion has been initiated and carried over by a few studies (Bertrand et al.
(1990), and Schneeweiss (1999)) in a rather conceptual manner, and there is
still a lack of formal analysis through numerical and analytical findings. The
research conducted in this thesis aims to fill in this gap in the hierarchical
planning literature.

The dynamic due-date setting literature includes many examples of elegant
techniques in improving the forecast accuracy of order flow times. However,
the emphasis has been on the detailed shop floor control activities; the planned
lead times determined for every order are used in scheduling orders in a job
shop. The multi-level decision hierarchy is ignored through the assumption
that the orders are created by an order generation process external to the sys-
tem under study. Besides, from a supply chain perspective, a single production
unit is considered independent of other upstream and downstream entities in
the network. However, the concept of internal due-dates is generally attributed
to the existence of different interacting units within the production network
(Conway et al. (1967)). In this way, the arrival and departure of orders at
different units can be synchronized by a higher level planning mechanism.
The studies on such order release mechanisms on the other hand employ fixed
planned lead times (De Kok and Fransoo (2003)). One of the objectives of
this thesis is to provide a hierarchical framework by which dynamic planned
lead times that are both cost effective and close to the actual flow times can
be determined.

There has been a growing awareness in the past few years on various modeling
techniques in terms of representing the operational characteristics of produc-
tion processes at an aggregate planning level. All of the research presented
in this line evaluate various approaches in modeling clearing functions for a
single-stage manufacturing company. None of the studies explicitly considers
the planned lead time in coordinating the order releases in successive stages of
the supply chain. There has been a lack of formal analysis in evaluating var-
ious impacts that different clearing functions may have on the order delivery
performances, and the resulting cost terms. Filling in this gap is one of the
motivations of this thesis.
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1.5 Research Questions

The research presented in this thesis aims to contribute to the area of devel-
oping supply chain planning tools with dynamic planned lead times, and to
provide assistance in understanding various impacts that dynamic lead times
may have on the performance. In achieving this objective the following ques-
tions are posed in this thesis:

1. What are the performance consequences of updating planned lead times?

2. How should planned lead times be updated in an effective way?

3. What is the impact of the frequency of updating lead times on the perfor-
mance?

4. What is the impact of the hierarchical coupling mechanism and the level of
anticipation on the performance?

5. What is the impact of the uncertainty and the utilization level on the per-
formance?

Updating lead times is a means of disturbing (for the purpose of being flexible)
the planning system that is thought to be not realistic anymore. It may have
favorable effects as well as drawbacks, which require in-depth analysis. Our
first research question is related to this problem. Such an analysis is expected
to provide insights into developing effective algorithms in updating planned
lead times, and leads us to pose the second research question. The performance
of the system is expected to depend on various implementation and design
related issues targeted by our third and forth research questions, and also
environmental issues related to demand uncertainty and the level of demand
that are targeted by the fifth research question.

1.6 Research Methodology

The research questions that we raise in the previous section are addressed
in different ways in different chapters of this thesis. Mainly, the research is
conducted using computer simulation because, the models we consider require
a complex analysis that is not computationally efficient, if not feasible, when
it is tackled analytically.

The models for multi-echelon production-inventory systems are generally con-
sidered as complex in terms of their analytical tractability. One usually cannot
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expect to find closed form analytical results unless some simplifying assump-
tions are made (e.g., Clark and Scarf (1960), and Diks and De Kok (1998)).
Incorporating dynamic planned lead times with capacitated production units
further increases the problem complexity. Experimental results gathered from
computer simulation provide valuable insights towards a formal understanding
of such complex systems.

The following steps are employed in structuring our experimental studies.
Firstly, a sufficient level of detail in modeling the physical production and
distribution system is identified according to our specific research questions
targeted in each chapter. Then, a hierarchical structure with proper linkages
between its levels are determined by putting emphasis on the flow of infor-
mation within the planning hierarchy. Update policies depending on the level
of reaction to the status feedback from the execution systems are determined.
The specific decision functions, the inputs and outputs, and the roles of each
level are modeled. High levels of variability and uncertainty are considered
both in demand and production processes, and the decision making instances
are assigned to specific points in time. In order to guarantee a certain ser-
vice level for each simulation, an initial run is taken with safety stock equal
to zero, then the safety stock adjustment procedure, described in the Ap-
pendix of Chapter 2, is employed. The experimental design is set up based on
the specific research questions targeted at each chapter, and along the com-
mon standards of experimental design for simulation (e.g., Kleijnen and van
Groenendaal (1992), and Law and Kelton (2000)). A full factorial design is
employed, in order to take into account the effects of each factor separately.

In addition to the simulation studies, we also employ an analytic approach
to arrive at closed form results for a described phenomenon. It is based on
modeling a production system as a Markov process where our assumption of
periodic order releases is replaced by a continuous stream of order generating
process. Although a few restrictive assumptions are made to provide brevity in
the solutions, strong analytical relationships are established. A certain aspect
of updating planned lead times is evaluated. The higher level order release
mechanism is formulated by a function of the planned lead time in a rather
abstract manner. But, at the same time, it follows the order release dynamics
as in the periodic linear programming formulations. The resulting queueing
system is modeled by a two-dimensional Quasi-Birth-and-Death (QBD) pro-
cess, and it is solved using the matrix geometric techniques of Neuts (1981).
In generating an explicit rate matrix for the QBD, the results of Ramaswami
and Latouche (1986) are applied.
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1.7 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 is devoted to
understanding the effects that dynamic planned lead times have in planning
the operations of a multi-stage supply chain. Numerical insights have been
gathered through simulation experiments with emphasis on the update fre-
quency, and the anticipation level at the SCOP function. An earlier version
of this paper has appeared as Selçuk et al. (2006a).

In Chapter 3, the insights presented in Chapter 2, and the phenomenon of
lead time syndrome are modeled and analyzed explicitly. The problem space
is reduced to a single production unit with continuous release of orders based
on a specific relation to the planned lead time. The drawbacks of updating
the lead time are analyzed in depth considering the stability and the relevant
performance metrics of the system. This chapter is an extension to Selçuk
et al. (2006b).

In Chapter 4, we discuss using the clearing function concept in modeling the
production process at an order release planning level. The orders are released
and scheduled according to their planned lead times, and the evaluation of var-
ious types of clearing functions are done in a hierarchical context. In addition
to the existing ones, a short-term clearing function based on the probabilistic
behavior of the production process is considered. The content of this chapter
has been presented in Selçuk et al. (2006d).

In Chapter 5, a load dependent lead time update procedure is developed and
tested in various settings. The concept of clearing function is embedded into
the lead time update procedure. Dynamic and fixed planned lead times are
evaluated with emphasis on both the detailed modeling of the clearing behavior
and the coupling mechanism within the planning hierarchy. This chapter is
based on Selçuk et al. (2006c).

Finally, in Chapter 6, we summarize the main contributions of this thesis. In
addition, we discuss some directions for further research on the topics covered
in this thesis.





Chapter 2

Updating Lead Times in
Hierarchical Planning
Systems

This chapter is devoted to exploring the opportunities and draw-
backs in updating the planned lead times of a multi-stage serial
supply chain within a hierarchical planning context. The decision
hierarchy, from top to bottom, is composed of lead time setting,
operational planning (SCOP), and operational scheduling levels.
The planned lead times are determined by exponentially smooth-
ing the previously realized order flow times. Optimal order release
decisions are given through a mixed-integer programming formu-
lation at the SCOP level. The objective is to minimize the total
inventory costs with a given safety stock level. Orders are then
scheduled independently for each production unit in the supply
chain. The method of rolling horizons is used to gather data for
anticipation and updating purposes.

2.1 Introduction

The majority of the established and widely accepted systems (e.g., MRPII,
DRP, and JIT) to manage and control planning activities in a production and
distribution environment require an almost perfect environment such as highly
reliable manufacturers, deterministic demand, and order flow times that are
independent of both workload and order-mix. The planning parameters are
usually set according to a priori simulation results, management intuition, or
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experience. However, it is practically not possible to accurately determine the
parameters related to the physical flow of goods within the supply chain, such
as the planned lead times. A planned lead time that is set by the management
long time ago may not be a valid representation anymore, since order-mix,
demand, workload levels, and manufacturing technology are all subject to
changes and uncertainties in today’s dynamic environment.

In real life, perfect information on the characteristics of the system uncer-
tainty (explicit models for probability distributions) is generally not available,
forcing the planner towards being more reactive than pro-active. One obvi-
ous, and most popular, way of dealing with uncertainty in a reactive way is
to apply a rolling horizon method such that the earlier plans may be revisited
and changed in response to unexpected alterations in operating and market
conditions. Instead of just applying the same routine procedures with fixed
parameters to changed demand forecasts and inventory records, one can also
benefit from rolling horizons through elaborating the historical data, and up-
dating planning parameters such as the planned lead times. Planned lead
times play a crucial role in managing the flows of materials, especially in
multi-stage production/distribution systems, by influencing the order release
decisions given at the SCOP level. Therefore, it is important to establish a
certain level of consistency between the planned lead times and the flow times
realized as a consequence of order release and scheduling decisions.

However, the effect of limited production capacities and uncertainty inherent
in the operating environment on the current and the future schedules may
not be anticipated at a higher planning level, yielding increased nervousness
due to updating the lead times. We expect as the planned lead times are
increased, orders are released earlier in larger quantities, and vice-versa if the
planned lead times are decreased. In other words, the order(s) planned to
be released in a following period are rescheduled and added onto the current
period’s order in order to prevent the stock-outs that may be caused by longer
lead times. This may generate further increase in the planned lead times in the
future. In case of a decrease in the planned lead time, the order(s) scheduled
to be released in the current period are postponed to later periods to deplete
the excess inventory in pipeline caused by shortened lead times. This may
generate further decrease in the planned lead times in the future. Such a cyclic
relationship between order sizes and dynamic lead times has been conceptually
described as lead time syndrome by Mather and Plossl (1978) but, the formal
analysis of the phenomenon has not been conducted.

This type of cyclic interactions may in general be considered within the con-
text of information-feedback systems, which has been extensively studied in
Forrester (1980). An information-feedback system refers to situations where
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information on environmental status leads to a decision that results in ac-
tion which affects the environment, and thereby influences future decisions.
Information-feedback systems are not necessarily well behaved. ”In fact, a
complex information-feedback system designed by happenstance or in accor-
dance with what may be intuitively obvious will usually be unstable and in-
effective” (Forrester (1980)). There has been a lack of formal analysis on the
application of these systems in planning and controlling production-inventory
situations.

In this chapter, our primary concern is to provide qualitative insights into
how updating the lead times at every replanning epoch in a rolling horizon
may affect the performance of a hierarchical planning system for a multi-stage,
multi-product serial supply chain situation (see Figure 1.1). The production
processes and the final product demands are subject to uncertainty yielding
variable workload levels at the production units, and variable inventory levels
at the stock points. The planned lead times are updated using exponential
smoothing technique over the past realizations of order flow times. In addition
to the hierarchical structure with dynamic planned lead times, the supply
chain interaction, specifically the dependence of downstream order releases
on upstream inventory levels, adds further complexity and opportunities for
further insights.

Considerable research has been conducted on the analysis of manufacturing
flow times (e.g., Karmarkar (1987), Zijm and Buitenhek (1996), and Lambrecht
and Vandaele (1996)). Insights gathered from these studies emphasize the cor-
relation between the actual workloads and the flow times that can be realized
under a limited capacity flexibility. A first study on dynamic lead times in an
MRP context is Hoyt (1978) who suggested the planned lead times be based on
the historical averages of work-center queue sizes and throughput levels. The
shop order start date is then determined by offsetting the dynamic lead times,
ignoring their effects on order release mechanism. In a more recent study, Vig
and Dooley (1991) demonstrated that the flow times from recently completed
jobs provide very useful information for internally setting due-dates in a job-
shop environment. Our approach is close to Enns and Suwanruji (2004) who
adjusted the planned lead times using exponentially smoothed order flow times
in a serial supply chain managed by a DRP system, and concentrated mainly
on the safety lead time factors and lot sizing approaches in their experimental
design. They ignored the nervousness in order release decisions created by
updating the planned lead times, and fixed lead times were not considered
in their experiments. Insights into the relative effects of dynamic lead times
with respect to the fixed lead times based on the hierarchical context and the
parameters related to the dynamic framework such as the update frequency
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are still missing. The purpose of this chapter is to fill in this gap through
numerical results obtained by simulation.

2.2 Planning Hierarchy

The planning hierarchy with flows of information in between different decision
levels is illustrated in Figure 2.1. At the tactical planning level, the lead
times are updated applying the exponential smoothing technique based on
the history of order flow times. As it is mentioned in the previous section,
using historical averages has intuitively been accepted as a relevant technique
in estimating the flow times, and given that the flow times follow a stationary
distribution, exponential smoothing is expected to perform well. In our case,
we consider stationary demand and production processes. Thus, we expect
that the time-series of flow times deviate around a single mean. Only the final
product lead times are updated for clarity in the analysis. Final product lead
times are influential on the safety stocks, which affect the total costs.

The planned lead times are given to the SCOP and the operational scheduling
levels for further, more detailed planning. At the SCOP level, a Mixed-Integer
Programming (MIP) formulation is solved to determine the optimal quan-
tity of order releases for each item given the current state of inventory levels
and the demand forecasts. MIP formulations are proven to be efficient tools
in modeling material flow together with capacity utilization decisions (e.g.,
Billington et al. (1983), and Spitter et al. (2005a)). With the existence of
positive planned lead times, the order release decisions are given to satisfy the
periodic demand forecasts in a time-phased approach.

At the operational scheduling level, detailed production schedules are deter-
mined for each production unit in a decentralized manner according to First-
Come-First-Serve (FCFS) strategy. The sizes of the released orders together
with their delivery schedules constitute the finalized set of decisions and are
given to the execution system such as ERP and Manufacturing Execution Sys-
tems (MES).

The circled numbers, in accordance with the sequential process of hierarchical
decision making, indicate the sequence of information flow within the plan-
ning system. Data set (1) refers to the external input to the planning system
including status information and performance outputs from the production
units and the stock points and the future demand forecasts. The schedule
of currently open orders has to be updated in accordance to the capacity re-
strictions so that the operational limitations of the production units can be
represented realistically at the SCOP level. The updated schedule is feedfor-
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Figure 2.1: Hierarchical planning system.

ward to the SCOP level within data set (2) together with the planned lead
times coming from the tactical planning level. This schedule represents the
expected delivery date of previously released orders, and is used in releasing
new orders and planning inventory at the SCOP level. Data set (3) is com-
posed of the size of the orders released at the start of the current period which
are then scheduled in the lower level and finalized within data set (4). With
respect to the dynamic framework, data set (1) indicates the feedback from
the environment, which influences the decision outcomes within the planning
hierarchy.

The static model parameters and the index variables used in the formulations
throughout this chapter are as follows:

N = Set of items produced and distributed in the supply chain.
i, j = Item indexes, i, j = 1, . . . , n.
aij = Quantity of item i ∈ N needed to produce a unit of item j ∈ N .
xi = Unit order lot-size of item i ∈ N .
τ i = Processing time for the unit order lot-size of item i ∈ N .

Ne = Set of final products, Ne = {i; aij = 0,∀j ∈ N}.
u = Production unit index, u = 1, . . . , m.

Su = Set of items produced in production unit u, u = 1, . . . , m.
Cu = Total capacity of production unit u measured in terms of time-units

available for production during a period, u = 1, . . . , m.
T = Forecast horizon for the final product demands.
t = Period index, t = −∞, . . . , T − 1.

We assume the orders are released in integer multiples of a fixed lot size.
From a practical perspective these lots sizes may stem from the transportation
capacities per truck in a full truck load system, such that the order size refers to
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the number of truck loads to be transported from a production unit to a stock
point. Existence of such flow restrictions motivates differentiation between
production of items and delivery of orders to stock points. The planning
horizon T is determined so that the cumulative lead time throughout the
supply chain does not exceed T . We also assume T is long enough to capture
the variability in the planned lead times, which motivates us in setting a
practical upper bound for each planned lead time. This is explained in the
next section. The period index is used for both decision making about future
and incorporate previous decisions into the model. t < 0 refers to the past
periods, t = 0 is the current period, and t > 0 refers to the future periods.

The dynamic inputs to the planning system are revised at every replanning
opportunity. They include

Di(t) = Demand forecasts for final products i ∈ Ne in period t > 0.
Ii(0) = Current net inventory level (on-hand minus backorders) of item i ∈ N .
Qi(t) = The size of an order for item i ∈ N that were released in a past

period t < 0, and not yet finished.
Q̃i(t) = Total number of unit lot-sizes of item i ∈ N that have been released

previously and scheduled to be delivered at the start of period t > 0.
Zi(t) = Actual throughput quantity (number of unit lot-size) of item i ∈ N

in period t < 0.

The schedule for the open orders, represented by the term Q̃i(t) for t > 0,
is subject to change by the operational scheduling level depending on the
capacity restrictions and the workload status of the production units. The new
schedule and the resulting delivery quantities denoted by Q̂i(t), is feedforward
to the operational planning level as inputs.

2.2.1 Dynamic Planned Lead Time Setting

A logical requirement is that the planned lead times of items produced in a
certain production unit should be long enough to capture the current work-
in-process in that production unit. Let us define Lmin

i as the lower-bound for
the planned lead time of item i ∈ Ne. Given that i ∈ Su,

Lmin
i =

⎡⎢⎢⎢
∑
j∈Su

Bj(0)/Cu

⎤⎥⎥⎥ ,

where Bj(0) denotes the current work backlog due to the released orders for
item j ∈ Su in production unit u measured in terms of time-units, and is
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computed by

Bj(0) = τ j ·
( −1∑

s=−∞
(Qj(s) − Zj(s))

)
.

In addition, an upper-bound for the lead time of an item i ∈ Ne is given as the
planning horizon minus the sum of the lead times of its upstream items. In a
two-stage serial system with j ∈ N \Ne upstream to i ∈ Ne, the upper-bound
for the lead time of item i is

Lmax
i = T − 1 − Lj .

Let us denote the flow time of the kth completed order of item i in the previous
period by F

(k)
i,−1. Although the actual completion time of any order can be any

duration, the flow times are expressed in terms of integer multiple of periods
because, the orders are released at the start of a period and delivered at the
end. According to the exponential smoothing of the flow times of previously
completed orders, the current estimate of the order flow time of item i is

F̂i,0 = (1 − ζ)χi · F̂i,−1 + ζ ·
χi∑

k=1

(1 − ζ)χi−k · F (k)
i,−1, (2.1)

where F̂i,−1 denotes the estimated order flow time for item i at the start of
the previous period, χi is the total number of orders of item i completed and
delivered in the previous period, and ζ is the smoothing constant that indicates
the weight given to the latest occurrences of the order flow times. It should
be noted that F̂i,−1 is not an integer, and χi is not too large. The former is
necessary for smoothing, and the latter is necessary so that the first term on
the right-hand-side of Equation (2.1) does not become zero.

Then, the planned lead time of item i ∈ Ne is expressed as integer multiple of
periods, and it is given by

Li = min
{

Lmax
i , max

{
Lmin

i ,
⌈
F̂i,0 − 0.5

⌉}}
.

The value of ζ implicitly provides the frequency at which the lead times are
updated. This is basically due to the fact that planned lead times are expressed
as integer multiple of periods. Let us consider an example to clarify this
statement. Consider that Li = F̂i,0 = 1, and we face order flow times of two
periods for item i in each of the following five periods. Then, for ζ = 0.5 one
unit increase in the planned lead time of item i occurs at the end of period
1, and for ζ = 0.2 one unit increase in the planned lead time of item i occurs



32 Updating Lead Times in Hierarchical Planning Systems

at the end of period 3, implying that the lead time of item i is updated less
frequently than the case with ζ = 0.5.

Exponential smoothing method provides a relevant flexibility through param-
eter ζ in modeling the response to the realized flow times. Besides, it is a
relevant approach in forecasting flow times due to a high level of correlation
between the flow times of consecutive orders especially when the scheduling
discipline is FCFS.

2.2.2 SCOP

The objective of the SCOP formulation is to minimize the total inventory
costs and the penalty costs for the final product shortages over the planning
horizon, where the delivery of order releases are scheduled according to the
planned lead times (already determined at the tactical level). An order that
is released now is assumed to be available in its stock point after a duration
of its planned lead time.

The production units are assumed to have fixed capacities with linear capacity
consumption rate per unit lot-size processed. The available capacity levels in
the latter periods are anticipated based on the past throughput performance
of the production units. It is intuitively clear that a reliable planning system
does not load the production units more than they can produce within the
given planned lead times. Thus a lead time dependent workload control rule
is applied; the total workload planned for a certain production unit is limited
in a way to satisfy the planned lead times of the items produced in that
production unit.

The cost parameters are

hi = Unit holding cost of item i ∈ N in the inventory for one period.
Mi = Unit penalty cost of having shortage for the final product i ∈ Ne in one

period.

Mi is set so high that the system always targets a nonnegative net inventory
level for item i ∈ Ne.

The non-negative decision variables are defined as follows:

I+
i (t) = On-hand inventory of item i ∈ N at the start of period t, t = 1, . . . , T .

I−i (t) = Shortage level of final product i ∈ Ne at the start of period t,
t = 1, . . . , T .

Qi(t) = Number of unit order lot-size of item i ∈ N released at the start of
period t, t = 0, . . . , T − 1.

Ui(t) = Resource utilized for item i ∈ N in period t, t = 0, . . . , T − 2.
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The term Ui(t) provides the planned duration in a period that is allocated for
the production of item i ∈ N in period t. We additionally note that the inter-
mediate items do not have external, independent demands, and their depen-
dent demands cannot be recorded as backorders for later periods. Therefore,
I−i (t) = 0 and Di(t) = 0, for all i ∈ N \ Ne and t = 0, . . . , T − 1.

The SCOP formulation is as follows:

Min.
n∑

i=1

T∑
t=1

(
hi · I+

i (t) + Mi · I−i (t)
)

(2.2)

s.t.

I+
i (t + 1) − I−i (t + 1) = Ii(0) +

t∑
s=1

Q̂i(s) · xi +
t∑

s=Li

Qi(s − Li) · xi

−
t∑

s=0

Di(s) −
t∑

s=0

n∑
j=1

aij · Qj(s) · xj , i ∈ N, t = 1, . . . , T − 1 (2.3)

t∑
s=0

Ui(s) ≤ Bi(0) +
t∑

s=0

τ i · Qi(s), i ∈ N, t = 0, . . . , T − 2 (2.4)

Bi(0) +
t∑

s=0

τ i · Qi(s) ≤
t+Li−1∑

s=0

Ui(s), i ∈ N, t = 0, . . . , T − Li − 1 (2.5)∑
i∈Su

Ui(t) ≤ Cu, u = 1, . . . , m, t = 0, . . . , T − 2 (2.6)

Constraint set (2.3) balances the material flow between consecutive planning
periods. Constraint set (2.4) imposes the input-output relationship for the
production units. The cumulative amount of resource allocated for the pro-
duction of a certain item cannot be larger than the resource requirement of
cumulative quantity released for that item. Constraint set (2.5) ensures that
any release will be produced within its given planned lead time. Finally, con-
straint set (2.6) sets capacity restrictions for each production unit.

Ignoring constraint sets (2.4) through (2.6) generates a formulation for a DRP
system. Having Mi >> hi implies that the order release decisions are driven
by demand forecasts and material availability. So, the objective is to keep as
low inventory as possible while avoiding backorders, which yields a compact
expression for the optimal order release decisions for the first period. Given
that item j ∈ Ne is produced from item i ∈ N\Ne, the order release for item
j in the current period is formulated by

Qj(0) = min

{
Ii(0)

ai,j · xj
,

(∑Lj

s=0 Dj(s) − IPj(0)
xj

)+}
,
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where IPj(0) is the current inventory position of item j just before the order
for item j is released. It is the current net inventory level of item j plus the
total quantity of item j that have been in process in its production unit. When
the inventory for item i is not large enough, the amount of forecasted shortage
for item j,

∑Lj

s=0 Dj(s) − IPj(0) − Ii(0)
ai,j

, is transferred to the next periods’
releases to avoid future projected stock-outs. When there is an ample stock
of item i, then the release decisions for item j follow a periodic review base-
stock policy with the base-stock level equal to the total forecasted demand
during the planned lead time plus the review period. The safety stock is taken
az zero as in the SCOP formulation of (2.2)-(2.6). For brevity we relax the
assumption that Qj(0) is integer.

In Lambrecht et al. (1984) and Buzacott et al. (1992), it has already been
shown that MRP systems used for control of production release and parts
ordering in manufacturing are equivalent to somewhat generalized base-stock
systems, with the key difference being that MRP systems make decisions at
each level using an echelon target stock that includes a forecast of future final
demand. A similar approach can also be used for the description of DRP logic
in continuous time. This will provide us some preliminary insights into the
impacts of updating the lead times on the order release decisions.

A Continuous Time Analysis of DRP Logic

In this section, we concentrate on a two-stage structure with items i and j
as the upstream and downstream items respectively. It is also assumed that
the inventory position of an item is always less than or equal to the expected
demand during its lead time. It should be clear throughout the text that
this assumption eases the presentation and does not restrict the results. The
following analysis can also be applied to serial supply chains of various sizes.

Assuming that the review period is indefinitely small we can carry our dis-
cussion about DRP onto the continuous space. Let us define λi(t) and λj(t)
as the expected release rates of unit lot-sizes of items i and j respectively at
time t ≥ 0. They are the continuous time equivalent of Qi(t) and Qj(t). The
expected total demand for item j during a period of time between now and
a future time t > 0 is denoted by dj(0, t), and dj(t) is the expected demand
rate for item j at time t > 0. Then,

λj(0) = min
{

Ii(0)
ai,j · xj

, λ∗
j (0)
}

, (2.7)

where λ∗
j (0) is the release rate of item j given that there are infinitely many
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item i in stock,

λ∗
j (0) =

dj(0, Lj) − IPj(0)
xj

. (2.8)

Considering that there is no shortage for the raw material of item i, the order
releases for item i are λi(t) = λ∗

i (t) for all t ≥ 0. The shortage in the stock of
item i creates a transient effect on the release of item j with λj(0) < λ∗

j (0).
Due to the ample supply assumption at the upstream stage, it is expected that
this effect lasts for at most Li duration of time,∫ Li

0
λj(t)dt =

∫ Li

0
λ∗

j (t)dt.

Thus, we can identify a time-point 0+ ≤ Li such that λj(t) = λ∗
j (t) for all

t ≥ 0+.

Consider that after an expected release of order for item j at time t ≥ 0+ the
next order is expected to be released at time t + Δt. Then,

λj(t + Δt) · xj = dj(t + Δt, t + Δt + Lj) − IPj(t + Δt)
= dj(t + Δt, t + Δt + Lj) − (dj(t, t + Lj) − dj(t, t + Δt))
= dj(t + Lj , t + Lj + Δt),

which yields

lim
Δt→0

λj(t + Δt) = λj(t) =
dj(t + Lj)

xj
, t ≥ 0+. (2.9)

As a result, it is shown that the release rates for item j at time t ≥ 0+ as given
at time zero chase the demand rates with a time lag equal to the planned lead
time of item j. We call these as the expected steady-state release rates.

Equations (2.8) and (2.9) demonstrate the fact that a change in the lead time
of item j at time t = 0 creates a significant transient effect in the release rate
of item j, and the effect on the expected steady-state release rates depends on
the stationarity of the assumed demand process. When Lj is changed by ΔLj

then λ∗
j (0) is changed by

Δλ∗
j (0) =

dj(Lj , Lj + ΔLj)
xj

.

We note that dj(Lj , Lj +ΔLj) = −dj(Lj +ΔLj , Lj) for ΔLj < 0. The change
in the expected steady-state release rate of item j at time t ≥ 0+ is

Δλ∗
j (t) =

dj(t + Lj + ΔLj) − dj(t + Lj)
xj

, t ≥ 0+.
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Given that the demand for item j has a stationary distribution with a fixed
mean, dj(t) = d, then the effects of updating the lead time of item j are
formulated as

Δλ∗
j (0) =

ΔLj · d
xj

, (2.10)

Δλ∗
j (t) = 0, t ≥ 0+. (2.11)

From Equation (2.7) it is understood that, in a multi-stage structure, depen-
dence of the downstream item release on the upstream item availability in
stock generates a smoothing effect when the lead time is increased. Instead
of releasing the total effect of lead time increase (see Equation (2.10)), only a
portion of it is released based on Ii(0), and the rest is carried onto the next re-
leases in 0 < t ≤ 0+. Equation (2.11) indicates that, for a stationary demand
process, the lead time update effect is only transient. However, this is based
on the assumption that the lead time is fixed during the rest of the time.

The release rate for item i at time zero depends on the expected release rates
of its downstream item j. That is,

λ∗
i (0) =

λ∗
j (0, Li) · ai,j · xj − IPi(0)

xi
,

which is rewritten by

λ∗
i (0) =

dj(0, Li + Lj) · ai,j − IPj(0) · ai,j − IPi(0)
xi

. (2.12)

The term dj(0, Li + Lj) · ai,j is the total estimated demand for item j, ex-
pressed in terms of units of upstream item i, during a period of cumulative
supply chain lead time. Similarly, IPj(0) · ai,j is the downstream item inven-
tory position at time zero expressed in terms of units of item i. Equation
(2.12) clearly states that the release rate of the upstream item i is given ac-
cording to a generalized base-stock policy such that the echelon target stock
for item i is the total expected final product demand, in terms of units of item
i, during the cumulative echelon lead time of Li + Lj . As a result, a change
in the planned lead time of the downstream item j has a direct effect on the
release pattern of the upstream item i.

2.2.3 Released Order Scheduling

The planned lead times used for scheduling purposes are provided by the tac-
tical level, and the solution of the SCOP formulation provides the optimal
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order releases for every item over the entire planning horizon. Due to the
rolling horizons method, only the first planning period’s ordering decisions are
passed to the operational scheduling level. Order crossovers are not allowed,
which means orders are processed in accordance to the FCFS strategy. How-
ever, between the orders released in the same period a random selection rule
is applied in determining their production sequences.

Lot-for-lot lot-sizing strategy is applied at the production units. In addition,
lot splitting is not allowed, that is, the items produced within an order are
not sent to the corresponding stock point until the entire production lot has
been processed. This is done in order to be consistent with the material flow
assumption (constraint set (2.3)) applied at the operational planning level.

At each replanning opportunity new state information from the execution
system may result in a change in the schedule of open orders at each production
unit in accordance with the capacity restrictions. The new schedules, corrected
according to the new status, are then feedforward to the operational planning
level as inputs. The idea is to feed the SCOP model with realistic schedules so
that capacity restrictions can be anticipated effectively in making new order
release decisions. This role for the operational scheduling level can only be
identified in a dynamic framework.

For every item i ∈ Su, the schedules for open orders are updated according to
the following procedure based on the current workload in the production unit.

1. Set the latest expected completion time of all open orders in production
unit u as tc = min{t; t · Cu ≥∑j∈Su

Bj(0)}. Go to Step 2.

2. For all i ∈ Su, set Q̂i(tc) =
∑T−1

s=tc+1 Q̃i(s), and Q̂i(t) = Q̃i(t) for t ≤ tc. Go
to Step 3.

3. For all i ∈ Su, set Q̂i(1) =
∑0

s=−∞ Q̃i(s). Stop.

The logic behind this procedure is to reschedule all the orders ahead of their
planned schedules to their latest expected completion time, and to reschedule
all the currently late orders to the end of the current period. The former
is done in Step 2 of the procedure, and the latter is done in Step 3 of the
procedure. The schedule for the set of orders that does not fit into one of
these cases is kept unchanged. Note that tc = Lmin

i , which directly implies
that order crossovers are avoided through the schedule updates before making
new release decisions at the operational planning level.



38 Updating Lead Times in Hierarchical Planning Systems

2.3 Simulation Experiments

2.3.1 Setting

A serial supply chain is considered. There are two final products produced
from two separate intermediate items, and each unit of a final product re-
quires one unit of its intermediate item, N = {1, 2, 3, 4}, Ne = {1, 2}, a3,1 = 1,
a3,2 = 0, a4,1 = 0, a4,2 = 1. Items sharing common resources interfere causing
a high level of variability in order flow times, which motivates using dynamic
planned lead times. To keep the complexity at a reasonable level, the produc-
tion units both for the intermediate and for the final production stages are
assumed to possess identical capacities. The available capacity per period for
each of the production units is Cu = 100 time-units/period, u = 1, 2. Figure
2.2 provides an illustration of the product and process structure.

Figure 2.2: The product and process structure of two-stage serial supply chain.

The unit lot-sizes are identical, xi = 50, for all i ∈ N . The processing time
per unit lot-size follows an exponential distribution with mean τ i = 50 time-
units, i ∈ N . At this point, it is important to restate that the detailed
production process characteristics are not modeled. Considering complex flow
of material within the shop floor, machine breakdowns, maintenance, etc.,
a highly variable production process may become realistic. Given that the
average demand rates for the final products are identical, then the utilization
of each production unit is shared identically between the items produced in
that unit. Demand forecasts throughout the entire planning horizon are kept
at a fixed level equal to the mean demand. A 90% utilization is set for each
production unit, thus Di(t) = 45 units/period, for all i ∈ Ne. However, the
actual demand may as well deviate from the forecast.

The planned lead times for the intermediate items are considered as static
parameters. Preliminary experiments showed that the average flow times are
realized close to two periods, and with an additional one period of safety lead
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time, the system performs reasonably well. Therefore, the fixed lead times
through PU1 and PU2 are set equal to three periods. The cost parameters are
taken as follows: h3 = h4 = 1.0 and h1 = h2 = 1.5. The total costs presented
in the results are computed disregarding the penalty costs of shortages.

The initial planned lead times for the final products are set equal to three
periods. The initial backorders for all final products are set to zero and the
initial inventories of the final products are equal to the average demand during
the initial planned lead time in order to shorten the warm-up period in the
simulation. In a similar manner, the initial inventories for an intermediate
item is equal to the initial planned lead time for that item multiplied by the
unit lot-size of its final product. The production units are initially considered
as empty.

2.3.2 Design

Different aspects of the problem have been considered in designing our exper-
iments. We mainly concentrate on the evaluation of dynamic planned lead
times with respect to fixed planned lead times. Additionally, we consider
aspects regarding the supply characteristics, the decision functions in the hi-
erarchy, the update frequency, and the demand uncertainty. The list of design
factors and their corresponding levels of treatment in the experiments are
given in Table 2.1.

Table 2.1: Experimental design factors.

Factors Treatments Number of Treatments

Lead Time, Li, i ∈ Ne 3, dynamic 2
Intermediate Stock, SPi, i ∈ N\Ne ∞, < ∞ 2

Operational Planning Model SCOP, DRP 2
SCV of Demand, SCVD 0.25 (low), 0.50 (high) 2
Smoothing Parameter, ζ 0.10 (low), 0.50 (high) 2

The concept of planned lead time especially plays a crucial role in multi-
stage systems, such that the upstream stage deliveries have an effect on the
downstream order releases. To evaluate the significance of such a supply chain
effect two different situations are evaluated. SPi = ∞, for i ∈ N\Ne, refers
to the situation where the production of final products does not starve due
to shortages of upstream intermediate items. It simply refers to a single-
stage structure with ample supply of raw materials. Differently, SPi < ∞,
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for i ∈ N\Ne, refers to the situation where the upstream material availability
plays a role in limiting the order releases for the downstream items. As also
implied by Equation (2.7), we expect that such a supply chain effect would be
significant in determining the performance with dynamic lead times.

The role of the planned lead times depends on the extent to which the oper-
ational limitations of the production units are anticipated at the operational
planning level. Absence of anticipation on the production capacities leads to
a DRP approach where the order sizes depend only on the demand forecasts
and the current inventory position. Under the DRP approach, planned lead
times determine the probability that an order will be available at the due-date
established by the planning system (cf. Enns and Suwanruji (2004)). Short
planned lead times decrease the delivery performance due to tardy orders. On
the other hand, long lead times cause excessive inventory carried in the sup-
ply chain. SCOP implies more anticipation on the operational limitations of
the production units, and applies a control mechanism to avoid unattainable
order releases. Therefore, shorter planned lead times cause order deliveries
become more reliable due to more strict workload limitations. However, we
expect to see large variations in the inventory levels because of the additional
delays in transferring demands as workloads to the production units. Thus,
different operational interactions are in charge depending on what kind of an
operational planning model we apply, and its effects on the performance of
dynamic planned lead times are worth analyzing.

The frequency of updating is also an important design issue in dynamic sys-
tems. In this chapter, this is included in the experiments via the smoothing
constant ζ. Since the planned lead times are integer valued, a low value of ζ
results in a low frequency of update, and a high value of ζ results in a high
frequency of update. Usually, a significant change in the update frequency
is not possible within a certain range of ζ values. The ζ values of 0.10 and
0.50 in Table 2.1 are respectively chosen as representatives of a low frequency
range and a high frequency range.

In addition to such design related issues, the level of uncertainty in demand
is considered such that both of the final products possess identical demand
processes following a Gamma distribution. The squared coefficient of variation
in the actual demand can be either low, SCVD = 0.25, or high, SCVD = 0.50.
The low variation is modeled by a Gamma(4, 45/4) distribution, and the high
variation is modeled by a Gamma(2, 45/2) distribution.

A full factorial design is employed where a total of 24 different experimental
treatments are simulated in 15 repetitions, each during 5250 periods. Each
replication is performed with different random number streams and the same
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set of random number streams is used between different treatments. The data
for the first 250 periods is discarded as part of a warm-up duration. Welch’s
procedure (see Law and Kelton (2000) for a complete description) is applied
to compute the warm-up duration.

2.3.3 Results

We are mainly interested in the external and the internal performance mea-
sures. The external measures are related to the final product demand satis-
faction such as the safety stock levels and the total inventory holding cost in
order to guarantee a certain service level, such as the final product demand
fill rate. The target fill rate is set equal to 98% for each final product. For
each setting an initial simulation run is taken with safety stock levels equal to
zero (see SCOP formulation in Section 2.2.2), then the safety stock adjustment
procedure in the Appendix of this chapter is applied in order to set the fill
rates at the desired level. The internal performance measures are related to
the delivery of the released orders, such as the average flow times, the forecast
error of the planned lead times, and the percentage of orders that are tardy.
In this way, we will be able to derive relationships between updating the lead
times, the inner dynamics of the planning system, and their cost implications.
The forecast error in the planned lead times is modeled as the mean squared
deviation of the planned lead times from the order flow times.

Tables 2.2 and 2.3 provide the performance measures in terms of the relative
increase caused by updating the lead times respectively for situations with
SCVD = 0.25 and SCVD = 0.50. We use the following abbreviations in this
section in interpreting the simulation results.

SS% = Percentage increase in the sum of the safety stocks of two final
products due to updating the lead times.

TC% = Percentage increase in the total cost due to updating the lead times.
L% = Percentage increase in the average planned lead times of the orders

for the final products due to updating the lead times.
F% = Percentage increase in the average flow times of the orders for the

final products due to updating the lead times.
ΔL% = Percentage increase in the forecast error of the planned lead times of

the final products due to updating the lead times.
ΔΠ = Difference in the percentage of tardy orders for final products between

the static and the dynamic cases.

We consider the static case as a base case, and evaluate the performance of
the dynamic lead times with changing update frequencies in comparison to
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the base case. The values with ”†” refer to the cases where we can reject the
hypothesis that the dynamic and the static case values are different according
to a 95% confidence level.

Table 2.2: The relative performance of the dynamic lead times over the static
lead times, SCVD = 0.25.

SPi < ∞, i ∈ N\Ne SPi = ∞, i ∈ N\Ne

SCOP DRP SCOP DRP
ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5

SS% 25.07 36.26 25.79 45.98 48.97 77.25 39.16 71.10

TC% 3.64 1.75† 5.72 5.10 7.13 9.75 11.22 12.45

L% −3.86 0.21† 5.33 7.20 −3.94 4.09 12.59 19.32
F% 5.45 21.04 11.93 26.01 6.92 29.46 21.76 45.82

ΔL% −12.65 −20.28 1.56 −15.05 −14.15 −19.24 17.76 0.64
ΔΠ 2.47 4.36 0.89 2.89 2.91 5.05 1.68 4.59

Table 2.3: The relative performance of the dynamic lead times over the static
lead times, SCVD = 0.50.

SPi < ∞, i ∈ N\Ne SPi = ∞, i ∈ N\Ne

SCOP DRP SCOP DRP
ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5 ζ = 0.1 ζ = 0.5

SS% 6.30 13.91 4.61 20.62 15.19 33.26 7.87 30.01

TC% 1.07† 0.45† 2.58 5.16 4.46 8.71 8.81 12.75

L% −0.27† 3.58 12.47 14.63 0.25† 9.14 26.32 35.30
F% 5.15 20.23 11.39 26.11 7.13 30.61 26.65 55.80

ΔL% −2.86 −10.07 10.05 −6.85 −2.45 −6.80 44.36 24.43
ΔΠ 1.63 3.85 −1.37 1.12 2.03 4.57 −1.03 3.13

One obvious result is that, in all settings, the dynamic lead times increase the
total cost of the supply chain. In a situation with limited supply from the
upstream stage, when the order releases are controlled via the SCOP model,
the increase in the total cost mostly fails to be significant. In all other cases,
there is a significant increase up to almost 13%. This result supports our
intuition stated in Section 2.1. Taking periodic feedbacks of realized order flow
times and then updating the planned lead times in order to keep them as close
as possible to the flow times generates worse performance. During an inventory
shortage period, backorders are increased further due to longer order flow times
because, they increase the congestion and delay the planned deliveries. When
the shortage period is over, the inventory is increased extensively because,
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the pipeline has already been filled up with large orders due to long planned
lead times. Updating the lead times creates increased variations in inventory
levels, which increases the holding costs. An illustration of this phenomenon
is provided in Figure 2.3 for a single final product. I(V L) and I refer to
the on-hand inventory levels with dynamic and fixed lead times respectively.
Their values are smoothed for illustration purposes. V L denotes the dynamic
planned lead time values of that final product.

Figure 2.3: High inventory variation caused by dynamic planned lead times.

There is a severe temporary supply shortage between approximately 100th and
150th periods, which yields increased lead times and in turn increased order
flow times. After the 150th period, what is put into the pipeline started to be
delivered more quickly yielding an increase in the inventory level. When one
looks at the behavior of inventory levels between the 100th and 200th periods,
I(V L) oscillates in much larger amplitude than I does. This phenomenon is
simply due to the fact that the correlation between planned lead times and
order flow times cannot be modeled at the order release planning level. The
simulation results indicate a strong correlation between these two factors with
a correlation coefficient that is always greater than 0.97. Long order flow times
trigger further increase in planned lead times yielding an uncontrolled situation
in updating the lead times. Starting from a level of two periods at period 130,
the planned lead time increases steadily and steeply and reaches its maximum
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limit at period 150. Further (analytical) analysis of this phenomenon is carried
out for a simpler setting in Chapter 3 of this thesis.

Tables 2.2 and 2.3 provide various insights into the effects of updating the
planned lead times in a multi-stage production-distribution environment. As
the system is controlled by the DRP approach, TC% and ΔL% become sig-
nificantly larger than those under SCOP. This means updating the lead times
is more degrading in terms of the cost performance and the consistency of the
planned delivery schedules under DRP than it is under SCOP. This is because,
SCOP has more detailed anticipation about the operational characteristics of
the production units (specifically about attainable workload levels) when com-
pared to DRP, which disregards capacity. This causes the order releases to
have more erratic pattern as the lead times are updated under DRP because,
limitations on workload levels in the SCOP formulation smooth the effects
of dynamic lead times. Especially under high demand variability and with
limited upstream supply, TC% fails to be significant when the SCOP formula-
tion is applied. Additionally, the decreased forecast errors in these cases even
suggests SCOP together with the dynamic planned lead times as a favorable
planning tool.

Another interesting result is that both L% and ΔΠ are positive under DRP
(except the cases with SCVD = 0.50 and ζ = 0.1), which seems to contradict
the intuition that delivery becomes more reliable with longer planned lead
times. The fundamental assumption behind this intuition is the independence
of the release mechanism from the changed lead times, which is violated in
our study due to the hierarchical nature of decision making.

More safety stock is needed in order to satisfy the target fill rate when ζ is
increased from 0.1 to 0.5, since the amplification in order sizes is stronger
with more frequent updates during temporary shortage periods. In a DRP
managed environment, SS% almost doubles under SCVD = 0.25 and increases
almost 4 times under SCVD = 0.50 with more frequent updating. When the
SCOP formulation is applied, the system is less sensitive to higher update
frequency than it is when DRP is applied. L% and F% increase significantly
with the update frequency because, frequent updating imposes larger variance
in the ordering pattern. Since the flow times of successive orders are highly
correlated, an increased smoothing constant improves the forecast accuracy,
ΔL%. This is because, more weight is given to the latest occurrences of order
flow times when ζ is larger. On the other hand, ΔΠ increases significantly with
more frequent updating due to the amplification effect in the order releases
during the shortage periods. These two effects play contradictory roles in
determining the total average inventory kept in the system, because larger ΔΠ
implies larger safety stocks, whereas smaller ΔL% implies less excess stocks.
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Therefore, the effect of update frequency on the total costs is not very obvious,
especially for situations with limited supply of intermediate items. When there
is unlimited availability of intermediate items, the erratic behavior becomes
more significant, and higher update frequency yields more costly planning
outputs.

The interdependencies between the downstream and the upstream order re-
leases, together with the effect of updating the lead times have been formulated
in Equations (2.10) and (2.12) for a DRP managed environment. The simula-
tion results are in line with the intuition gathered from this formal analysis.
All of the performance measures degrade when the final product order releases
are planned with the assumption of infinite supply of intermediate items. This
reveals the idea that in a situation with increased variability it is favorable to
smooth the erratic planning outputs either through intelligent tools such as
SCOP or naturally through the multi-stage structure of the supply chain.

2.4 Conclusion

In this chapter we have provided various insights into the application of dy-
namic planned lead times in managing the material flow within a two-stage
serial supply chain. Our purpose was to provide simulation results that would
yield a better understanding of the inner dynamics of updating the planned
lead times used in a hierarchical planning system. The results can be ana-
lyzed from different angles including the supply chain structure, hierarchical
anticipation, and the update frequency. In this chapter, we have shown the
following:

• Updating the lead times in response to the latest occurrences of order flow
times generates erratic order releases and large variations in inventory levels.

• The degrading effects of dynamic lead times can be smoothed by improving
the anticipation, at the operational planning level, on the operational limi-
tations of the production units. Ignoring capacity causes worse performance
of dynamic lead times.

• A higher frequency of updating the lead times decreases the deviation of
flow times form the lead times but, increases the nervousness in the delivery
schedules, and the percentage of tardy orders increases.

• The specific supply chain structure is very significant in determining the
relative performance of using dynamic planned lead times. Upstream in-
ventory smoothes the downstream variability in order releases.
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Through our findings from the simulation experiments performed in this chap-
ter, we have identified interesting research questions that are worth to be stud-
ied. First of all, the erratic order release phenomenon due to updating the lead
times should be analyzed in-depth with analytical results. This may help in
stronger understanding of the results we have described in this chapter. The
level of anticipation at the operational planning level, and its impacts on the
external and the internal performance measures need to be analyzed further
with more detailed anticipation functions. Although our findings in this chap-
ter do not support the use of dynamic planned lead times, it is still intuitively
appealing that a responsive planning mechanism needs to be developed in or-
der to better manage the supply chains. These issues are the topics covered
in the following chapters of this thesis.



Appendix to Chapter 2 47

Appendix to Chapter 2

Safety Stock Adjustment Procedure

The safety stock adjustment procedure applied in this thesis is adapted from
Kohler-Gudum and De Kok (2001). This procedure enables the determina-
tion of safety stocks that ensure target service levels in simulation studies of
inventory systems. Various kinds of service measures have been considered
in Kohler-Gudum and De Kok (2001). The procedure we applied is based on
demand fill rate measure; the fraction of demand satisfied directly from stock.

Let SS0 denote the initial choice of the safety stock, and Ψe(SS0) is the (em-
pirical) variable for the net stock at the end of a period based on the simulation
of the system with the safety stock SS0. Similarly, Ψb(SS0) denotes the net
stock at the beginning of an arbitrary period, immediately after (possible)
arrival of a replenishment. In order to determine the relevant probability dis-
tributions, define ψ0 and ψK respectively as the minimum and the maximum
recorded net stock value for Ψe(SS0) during the simulation. The intermediate
values can then be determined by

ψk = ψ0 +
k

K
(ψK − ψ0) , k = 1, . . . , K − 1

where K+1 is a chosen number of probabilities for the distribution of Ψe(SS0).
In our case, K = ψK − ψ0 so that all the integer values between ψ0 and ψK

are considered in the distribution.

Let us define yk = Pr {Ψe(SS0) ≤ ψk}, and zk = Pr {Ψb(SS0) ≤ ψk}. Accord-
ingly, the average backorder level, B̄(ψk), depending on a safety stock adjust-
ment quantity of ψk is computed by

B̄(ψk) =
k−1∑
j=0

(yj − zj), k = 1, . . . , K − 1.

Define ψs∗ as the adjustment quantity that guarantees the target fill rate
s∗, 0 ≤ s∗ ≤ 1. Then, (1 − s∗)D̄ = B̄(ψs∗), where D̄ denotes the aver-
age demand per period. From yk and zk values we must find ψs such that
B̄(ψs−1) ≤ (1 − s∗)D̄ ≤ B̄(ψs). Consequently, ψs∗ can be found by linear in-
terpolation:

ψs∗ =

(
(1 − s∗)D̄ − B̄(ψs−1)

)
ψs +

(
B̄(ψs) − (1 − s∗)D̄

)
ψs−1

B̄(ψs) − B̄(ψs−1)
,

and the new safety stock value is SS∗ = SS0 − ψs∗ . The simulation repeated
with SS∗ gives us a demand fill rate of s∗.





Chapter 3

Lead Time Syndrome:
Formulation and Analysis

Updating planned lead times in response to changing workload
levels leads to erratic ordering behavior, resulting in even larger
variability in work-in-process and flow times. This phenomenon
is called the lead time syndrome. Although it has been concep-
tually defined and intuitively accepted, formal analysis has not
been conducted in any prior study. The objective of this chapter
is to provide a clearer and more formal understanding of this phe-
nomenon by enriching our numerical findings in Chapter 2 through
analytical results. A single-stage, single-item produce-to-order sit-
uation is considered with the order releases sensitive to the planned
lead time. The situation is modeled by a two-dimensional Markov
process that is solved by using the matrix-geometric methods. An-
alytical results on the utilization level and the variability in the
system are presented in relation to various design parameters.

3.1 Introduction

Since Conway et al. (1967) the problem of lead time setting, mainly for make-
to-order situations, has attracted much attention. This is due to the fact that
the lead time is a fixed planning parameter that refers to a dynamic and
uncertain frame on a continuous time axis. Numerous techniques have been
developed of which the most popular ones utilize order characteristics together
with dynamic shop-load information. The majority of the studies in this line
(e.g., Wein (1991), Enns (1995), and Hopp and Sturgis (2000)) are conducted
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in a make-to-order job-shop environment to set lead times for externally gen-
erated orders according to service-related performance measures such as the
length of the lead time, tardiness, earliness, etc. One of the basic assumptions
is that the order characteristics are determined externally and independent
from the planned lead time, which generally holds true for engineer-to-order
situations. However, for example in batch processing industries where orders
are released and processed in large batches of production items, the orders
are generally released according to some anticipated knowledge on the total
demand levels during the planned lead times. In a multi-stage production-
inventory system, one would expect that the planned lead times are used for
coordination purposes between stages. In the previous chapter, we have illus-
trated the erratic order release patterns for such a situation where the planned
lead times are based on the exponential smoothing of the order flow times.

Mather and Plossl (1978) are the first to describe the lead time syndrome as
a vicious cycle between lead time update and order release decisions. It is
argued that closing the gap between the lead time and the order flow times
by updating the lead time results in uncontrolled order release pattern. As
the lead time gets longer, orders must be released earlier to cover increased
expected demand during the longer lead time, leading to longer queues of pro-
duction backlog and thus, flow times get longer, which causes again a longer
lead time. It results from the fact that in releasing the orders, the dynamic
effect on future lead times and on future orders is ignored. It is suggested
that the lead time syndrome causes instability, and should be avoided. This
reasoning has become one of the main arguments for controlling flow times
within predetermined norms instead of forecasting them (e.g., Plossl (1988),
Kingsman et al. (1989), Zäpfel and Missbauer (1993), and Breithaupt et al.
(2002)). However, an important issue that needs to be clarified at this point is
that Mather and Plossl (1978) and their followers described this phenomenon
in a very general view only conceptually without a clear evidence of its ex-
istence and without any formal results. The simulation results in Chapter 2
indicate the existence of this phenomenon especially when the orders are re-
leased by a DRP system. In this chapter, we provide analytical results on the
consequences of this phenomenon in a simpler setting.

The lead time syndrome is becoming increasingly relevant due to the oppor-
tunities of frequent information exchange enabled by recent advances in data
processing and storage technologies. Ubiquitous information such as inventory
levels, work-in-process, and shop conditions at various stages of a supply chain
may continuously be available to update planning parameters. An important
question is to what extent all this information should be used to update plans
and planning parameters. Insights, based on the lead time syndrome, would
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suggest to make limited use of these updating capabilities due to the increased
variability in the order releases in response to the operational changes.

Based on the insights gathered from the previous chapter, let us describe the
lead time syndrome by a simple example. Consider a production unit and a
downstream stock point where the orders for a single item are released based on
the DRP logic with ample supply of raw materials. An illustration of the lead
time syndrome is provided in Table 3.1 for a duration of 12 periods. In each
period, the following sequence of events occurs: the lead time is set, the order
for that period is released, produced items are delivered to the stock point, and
demand is realized. The downstream customer demand is deterministic with
a fixed level of 3 units/period, and the periodic production may vary with
an expected quantity of 3 units/period. Without loss of generality, assume
the initial lead time is two periods with zero on-hand inventory and with a
total workload of six units, which together imply that an order of 3 units
puts the DRP system in balance. Therefore, as Equation (2.9) suggests in a
continuous time frame, orders of sizes equal to the level-demand are released
in each period in the static case. In the dynamic case, the lead time is set as
the minimum number of periods within which the total workload is expected
to be finished. Orders are released to raise the inventory position up to a level
equal to the expected demand during a duration of planned lead time plus one
period.

Table 3.1: Order lead time sheet.

Period Workload Inventory Lead Time Order Production

1 6 0 2 3 3
2 6 0 2 3 0
3 9 -3 3 6 3
4 12 -3 4 6 3
5 15 -3 5 6 3
6 18 -3 6 6 6
7 18 0 6 3 6
8 15 3 5 0 3
9 12 3 4 0 3
10 9 3 3 0 3
11 6 3 2 0 0
12 6 0 2 3 3

In period 1, the production unit finishes three units, and with a lead time of
two periods, receives three units of order, while keeping the total workload
at six units. In period 2, production cannot occur due to some temporary
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breakdowns, and the total workload increases to nine units. Therefore, the
lead time is increased to three periods. The order in period 3 now includes the
static case order plus an additional period’s demand, adding up to six units,
thereby increasing the total workload to 12 units. As a result, the lead time
is increased to four periods, and in period 4 an order of six units is placed
again. The vicious cycle continues, and in period 6 the lead time is increased
to six periods, and the workload to 18 units. In this period the production
unit works faster and produces 6 units. Thus, the lead time is not changed in
period 7 and a static order of 3 units is placed. The production goes faster
again in period 7, decreasing the workload to 15 units and the lead time to
five periods in period 8. The new order now includes the static order minus
the excess of one period demand, which results in the cancelation of the static
order. This causes a further decrease in the workload and therefore in the lead
time. The cyclic effect continues, and in week 11, the lead time becomes two
periods again.

From Table 3.1, one should notice that, although there is a fixed and deter-
ministic demand each period, starting from a balanced DRP, a temporary
(one period) shortage of 3 units in the production leads to the workload level
to increase from 6 units to 18 units within 4 periods. Again starting from a
balanced DRP, a temporary (one period) increase of 3 units in the production
quantity leads to the workload level to decrease from 18 units to 6 units within
4 periods. In short, the deviation in the production quantities is amplified and
carried onwards the workload levels through erratic order releases caused by
updating the lead time. This behavior seems quite arbitrary for a rational
planner but, the phenomenon is generally considered to be a relevant problem
in real life decision support systems (cf. IBM (1972)). As they have been out-
lined by the example in Table 3.1, the basic dynamics of this behavior stems
from the presence of inter-dependent activities being reactive with improper
anticipation to the changes in each other. Economics studies based on some
specific cases of producers’ and consumers’ behaviors in response to the chang-
ing expectations on future market conditions have reported the existence of
similar phenomenons (e.g., the pig-cycle in Coase and Fowler (1937)).

In this chapter, our objective is to provide formal insights into the various
effects of the lead time syndrome on the production unit that faces a random
ordering pattern. As it is shown by the example in Table 3.1, lead time syn-
drome has a significant effect on the workload level, and an explicit model
of this phenomenon may yield interesting results about some related perfor-
mance measures such as utilization, flow times, and etc. At the production
unit level, the process can be considered as a single-stage single-item produce-
to-order situation where the orders are released sensitive to the planned lead
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time. In order to avoid the curse of dimensionality, we assume that the sta-
tus information downstream to the production unit is invisible to the order
generating process. That is, order releases simply chase the demand in ad-
dition to responding to the changes in the planned lead time. Deviations in
the on-hand inventory kept in various downstream or upstream stages of the
supply chain are not considered. For example, consider a production unit with
ample supply of raw materials where the production orders are released based
on the point-of-sale transactions. For each unit lot-size of realized demand an
order of equal size is released, and the order size is adjusted in response to
the change in the planned lead time such that one period increase/decrease in
the planned lead time generates a fixed increase/decrease in the order size. In
Table 3.1, ignoring the inventory levels and releasing the orders in this manner
does not make any differences on the workload levels and on the order release
pattern. Therefore, the simplified problem setting is a realistic representation
to evaluate the consequences of the lead time syndrome from the production
unit control perspective. Analytical results are then provided for two issues
raised by the lead time syndrome:

• How is the stability of the production unit affected when the lead time is
updated?

• What is the effect of the update frequency on the performance of the pro-
duction unit?

3.2 Problem Setting

We model a single-stage single-item produce-to-order situation. Under static
conditions, orders of unit lot-size are placed according to a Poisson process
with rate λ. Due to updating the lead time, orders can be released in multiple
number of unit lot-sizes. During the rest of this chapter, each unit lot-size
is referred to as a single job in the queueing system (production unit), which
is composed of a single queue to backlog the released jobs and a single shop
that actually processes the jobs. w denotes the number of jobs being processed
(WIP) in the shop, and the total workload is ŵ = w + b, where b is the number
of jobs waiting in the production backlog to be loaded to the shop floor. There
is a WIP limit, w̄, that indicates the size and the speed of the shop floor with
respect to a single job. The shop is assumed to handle at most w̄ jobs at
the same time, and when the shop is totally loaded, arriving jobs are put in
the backlog queue, and loaded to the shop each time a job is completed and
leaves the shop. The backlog queue is modeled as a single-server system with
FCFS processing discipline. The shop is considered as a single entity where
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the WIP can be cleared within exponentially distributed time intervals with
rate μ. An illustration of our queueing system is given in Figure 3.1. The
following examples may further clarify the situation.

Example 3.1 The shop has a single machine that operates with exponentially
distributed processing times with rate μ jobs/time-unit. There is a buffer in
front of the machine that can store at most w̄ − 1 jobs at the same time. �

Example 3.2 The shop has multiple manufacturing centers. Jobs can follow
different routes in the shop. The possibility that different jobs interfere (se-
tups, processor sharing, etc.) with each other depends on the WIP level in the
shop. Each job is processed fast when the WIP level is low and vice-versa.
Jobs are processed in parallel with independent, identically distributed expo-
nential processing times with mean w/μ time-units. Since the minimum of the
exponentials is also exponential with rate equal to the sum of the rates, the
overall processing rate is μ jobs/time-unit irrespective of the WIP level in the
shop. �

Figure 3.1: Single-server queueing system with dynamic lead time.

Figure 3.1 provides the coupling mechanism between the planning system and
the physical situation. The flow of information is represented by dashed lines,
and the solid lines refer to the physical flow of goods. The planning system
is responsible for determining the number of jobs released and the production
authorization of the jobs in the backlog queue with the existence of continuous
feedback about the status information to update the planned lead time.

The planned lead time is determined based on the expected flow time of the
last job currently residing in the backlog. When the backlog queue is empty,
ŵ ≤ w̄, the lead time is set to a fixed level, Lmin, referring to the minimum
estimated flow time. When there are jobs waiting in the backlog, then an
estimate of the waiting time in the backlog is added to Lmin. From the mem-
oryless property of exponential processing times it is straightforward that, at
any point in time, the expected duration of time to clear b jobs through the
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production process is b/μ. Here, the lead time is determined based on a logic
similar to those procedures that have been widely applied in the literature
such as TWK, and JIQ (e.g., Conway et al. (1967), Kanet (1986), Vig and
Dooley (1991), and Chang (1994)). The waiting time is set by a management
constant multiplied by the term, b/μ. Since μ is constant, without loss of
generality, we can write the lead time as a function of the total workload level
as follows:

L = Lmin + �α · b�,

where α is a management constant, and the lead time is an integer. In words,
the lead time is based on the management perceptions on the range of the
number of jobs that can be cleared in a certain time frame. Implicitly, α
refers to the update frequency. For greater α, the lead time is updated more
frequently, and for smaller α, the lead time is updated less frequently. We de-
fine the reciprocal of the update frequency, r = 1/α, as the amount of increase
or decrease in the number of jobs in the backlog, b, in order to have one unit
of increase or decrease in the lead time respectively. The update parameter r
is used for modeling purposes, and is integer valued. Each time a change is
triggered in the planned lead time, it is for one unit. Accordingly, the update
parameter r has to be greater than or equal to two. This is also intuitively
clear because, usually, the backlog level needs to be changed by more than one
job in order to consider a change in the lead time.

In a realistic setting, although the planning process is a very complex task in-
cluding human intervention, the underlying relationship as has been described
in Section 3.1 and in Chapter 2 still remains valid. Depending on the situation,
the degree of the reaction to the change in the lead time may vary. As the
insight provided by Equation (2.10), the response to the change in the lead
time depends on the traffic intensity, λ. In a general view, we can model the
response through two different decision functions: h+(λ) and h−(λ). When
the lead time is increased, additional h+(λ) units are ordered, and when there
is a decrease in the lead time, excess h−(λ) units waiting in the production
backlog are canceled. From the perspective of the production unit the jobs are
canceled, but from the systems perspective the jobs do not disappear but are
suspended from the production backlog until the time new orders are released.
Given that the change in the lead time is limited to at most one period, Equa-
tion (2.10) implies h+(λ) = h−(λ) = λ. However, due to the various factors in
the planning process, the response can be different. For example, the planner
may anticipate a trendy increase/decrease in the lead time and over-reacts by
setting h+(λ) > λ, and h−(λ) > λ. On the other hand, the planner may re-
act to dampen the variability, and smoothes the production orders by setting
h+(λ) < λ, and h−(λ) < λ. In this study, for modeling purposes, the response
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to the change in the lead time is assumed as follows:

h+(λ) =

{
1, with probabilityβ

0, with probability 1 − β

and

h−(λ) =

{
1, with probability γ

0, with probability 1 − γ

Considering the lead time is only increased or decreased by one period, the
change in the order size is limited to one job. We fix the response function
independent of the traffic intensity. This is based on the practical intuition
that planners apply simple and similar procedures to the same events instead of
solving complex decision functions. Besides, the degree to which one is reactive
to the change in the lead time is incorporated into our model. For greater β
and γ values, it is assumed that the planning system is highly sensitive to the
change in the planned lead time, and for smaller β and γ values the response
is smoothed. β = γ = 0 implies the non-reactive case that the system never
responds to the change in the planned lead time, and β = γ = 1.0 implies
the full-reactive case that the system always responds to the change in the
planned lead time. In a practical setting, such as the DRP formulation in the
previous chapter, the response function is generally expected to be symmetric
with some positive response probability, β = γ > 0. In the following analysis,
we consider a generalized formulation including response functions that may
both be symmetric and asymmetric.

3.3 Markov Process

3.3.1 Description

Define ŵ(t) and b(t) as the total number of jobs in the system and the num-
ber of jobs in the backlog at time t respectively. We model this queue-
ing system as a two-dimensional Markov process defined by {Xr(t), t ≥ 0},
Xr(t) = (ŵ(t), Lr(t)), where Lr(t) = Lmin + � b(t)

r � is the lead time set accord-
ing to the update parameter r. We use r as a subscript because it determines
the characteristics of the process. In this Markov process, an arrival refers to
a release of a job by the planning system, and a departure refers to a comple-
tion of a job in process in the shop. When b(t) = r · (Lr(t) − Lmin) + r − 1, an
arrival triggers an increase in the lead time and an additional job is ordered
immediately with probability β. When b(t) = r · (Lr(t) − Lmin), a departure
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triggers a decrease in the lead time and a job in the production backlog is can-
celed immediately with probability γ. As long as b(t) remains in between, the
system behaves as an ordinary Mλ|Mμ|1 system. The length of the Mλ|Mμ|1
region (consisting of r states) is short for frequently updated lead times and
long for less frequently updated lead times. An illustration of the process
{Xr(t), t ≥ 0} with r = 4 is provided in Figure 3.2.

Figure 3.2: Transition rate diagram for the process {X4(t), t ≥ 0}.

The process has a QBD structure in the diagonal direction of the (ŵ(t), Lr(t))
coordinates. For the brevity of the presentation, we decompose the overall pro-
cess into two adjoint parts. The first part is composed of the state space with
ŵ(t) < w̄ and Lr(t) = Lmin. We denote this process by {N(t), t ≥ 0}, where
N(t) = ŵ(t) < w̄ is the number orders being processed in the shop. The second
part of the process is a QBD and defined by {Yr(t), t ≥ 0}, Yr(t) = (L̂r(t), b̂r(t)),
L̂r(t) = Lr(t) − Lmin, and b̂r(t) = b(t) − rL̂r(t). Accordingly, level l of this
QBD process is composed of r states with state space as

{(l, 0), (l, 1), . . . , (l, r − 2), (l, r − 1)} , l = 0, 1, . . .

The transition rate diagram of Figure 3.2 can be transformed into a simpler
representation as provided in Figure 3.3.

Throughout the rest of this chapter, we will mainly concentrate on the ex-
plicit solution of the QBD process {Yr(t), t ≥ 0} and use {N(t), t ≥ 0} in
the normalization equations. To conveniently describe the infinitesimal gen-
erator of the process, {Yr(t), t ≥ 0}, we employ the following notation for
r-dimensional square matrices. We denote the identity matrix as I(r), the right
and left shift matrices as T

(r)
R and T

(r)
L respectively. So,

(
T

(r)
R

)
i,j

= δi+1,j and
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Figure 3.3: Transition rate diagram for the processes {N(t), t ≥ 0} and
{Y4(t), t ≥ 0}.

(
T

(r)
L

)
i+1,j

= δi,j for i, j = 0, 1, . . . , r − 1, where δi,j denotes the Kronecker

delta. Furthermore, we define the r-dimensional unit column-vector on the
kth coordinate by e

(r)
k , k = 0, 1, . . . , r − 1. Given that the states are in lexico-

graphic order, the generator Q(r) of {Yr(t), t ≥ 0} is

Q(r) =

⎡⎢⎢⎢⎢⎢⎢⎣
B

(r)
0 A

(r)
0 0 0 · · ·

A
(r)
2 A

(r)
1 A

(r)
0 0 · · ·

0 A
(r)
2 A

(r)
1 A

(r)
0 · · ·

0 0 A
(r)
2 A

(r)
1 · · ·

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎦ .

Q(r) is partitioned into r-dimensional square matrices that provide the tran-
sition rates between and within the levels of the QBD process. B

(r)
0 provides

the transition rates between the states of level 0. A
(r)
0 is the transition rate

matrix from level l to level l + 1, l = 0, 1, . . .. Similarly, A
(r)
2 is the transition

rate matrix from level l to level l − 1, and A
(r)
1 provides the transition rates
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within level l, l = 1, 2, . . .. We represent these matrices as follows:

A
(r)
0 = λe

(r)
r−1

(
(1 − β)e(r)

0 + βe
(r)
1

)T
,

A
(r)
1 = λT

(r)
R + μT

(r)
L − (λ + μ)I(r),

A
(r)
2 = μe

(r)
0

(
γe

(r)
r−2 + (1 − γ)e(r)

r−1

)T
,

B
(r)
0 = A

(r)
1 + μe

(r)
0

(
e
(r)
0

)T
.

3.3.2 The Golden Ratio of Stability

Theoretically, for w̄ → ∞ or r → ∞ the lead time is never updated, and the
stability condition is λ/μ < 1. We define

ρ = λ/μ

throughout the rest of this chapter. It is the utilization of the shop floor in
the static case.

For finite update parameter, r, and finite WIP limit, w̄, the stability condition
of the QBD process, {Yr(t), t ≥ 0}, can be derived from Neuts’ mean drift
condition (cf. Neuts (1981)). The Markov process defined by the generator
Q(r) is ergodic (stable) if and only if

π(r)A
(r)
0 e(r) < π(r)A

(r)
2 e(r), (3.1)

where e(r) is the r-dimensional column vector of ones, and the r-dimensional
row vector π(r) =

(
π

(r)
0 , π

(r)
1 , . . . , π

(r)
r−1

)
is the steady-state probability vector

of the Markov process with generator A(r) = A
(r)
0 + A

(r)
1 + A

(r)
2 . So,

π(r)A(r) = 0(r), π(r)e(r) = 1,

where 0(r) is the r-dimensional row vector of zeros.

Condition (3.1) has an intuitive interpretation. The generator A(r) describes
the behavior of the Markov process {Yr(t), t ≥ 0} in the vertical direction,
b̂r(t). Weighted by the steady state probabilities in the vertical direction, if
the mean drift to the left, π(r)A

(r)
2 e(r), is greater than the mean drift to the

right, π(r)A
(r)
0 e(r), then the process is stable. Condition (3.1) reduces to

π
(r)
r−1

π
(r)
0

· ρ < 1. (3.2)
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In order to explicitly determine the stability condition (3.2) for every update
parameter r, we need to have a detailed look at the Markov process defined
by the generator A(r). It has r states, and its transition rate diagram is given
in Figure 3.4. Utilizing the global balance principle, we can formulate the
stability condition of {Yr(t), t ≥ 0} as in the following theorem:

Theorem 3.1 For every update parameter r = 2, 3, . . ., the Markov process
defined by {Yr(t), t ≥ 0} is stable if the following condition holds:

ρr + βρr−1 − γρ < 1. (3.3)

Proof See the Appendix at the end of this chapter.

Figure 3.4: Transition rate diagram for the Markov process with generator
A(r).

Condition (3.3) provides us with a polynomial function of degree r to determine
the stability condition, and solving that polynomial is a very complex task for
r > 3. However, we can characterize the stability condition by looking at
monotonicity properties of the stability function,

s(ρ, r, β, γ) = ρr + βρr−1 − γρ − 1.

Condition (3.3) can be rewritten as s(ρ, r, β, γ) < 0, through which the fol-
lowing corollary can be derived from Theorem 3.1:

Corollary 3.1 The stability condition of the process {Yr(t), t ≥ 0} can be
rewritten as

ρ < ρ∗,
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where ρ∗ is the unique positive root of s(ρ, r, β, γ) for given r, β, and γ values,
and is bounded by the golden range;

Φ − 1 ≤ ρ∗ ≤ Φ, Φ =
1 +

√
5

2
.

Proof See the Appendix at the end of this chapter.

The range of values that ρ∗ can take is named as golden range after the golden
ratio, Φ ≈ 1.618033989, a well-known irrational number in mathematics. The
golden ratio (also known as divine proportion or mean and extreme ratio) has
its roots defined by Euclid ca. 300 B.C. (cf. WolframMathWorld (2007)).
A line segment is said to be divided into its mean and extreme ratios if the
whole segment is to the bigger segment as the bigger segment is to the smaller
segment (see Figure 3.5).

Figure 3.5: Mean and extreme ratios of a line segment of length a + c.

The golden ratio has been referred quite frequently in explaining the structure
of certain historical and artistic figures such as the Great Pyramid of Giza, and
the Da Vinci paintings (cf. Livio (2002)). Surprisingly, it is also used in this
thesis in formulating the stability condition of the QBD process {Yr(t), t ≥ 0}.
Furthermore, the golden range of stability can be divided into its mean and
extreme ratios at point ρ∗ = 1. This partition generates two separate regions
that emphasize different aspects of stability caused by dynamic planned lead
times. Φ − 1 ≤ ρ∗ < 1 indicates the situation that updating the lead time
causes increased congestion in the production unit, and 1 < ρ∗ ≤ Φ indicates
the situation that updating the lead time causes decreased congestion in the
production unit.

Corollary 3.1 implies that the stability condition becomes tighter as ρ∗ de-
creases and looser as ρ∗ increases. The range with which the utilization level
in the static case is increased without causing instability at the production
unit in the dynamic case is smaller as the stability condition is tighter, and
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bigger as the stability condition is looser. ρ∗ depends on the design variables
β, γ, and r. For β = γ it is obvious that ρ∗ = 1 independent of the update
parameter r, which insights into the fact that the stability of the system is
always retained as long as the response function is indifferent between an in-
crease and a decrease in the planned lead time. An intuitive explanation is
that the increase in the total workload due to placing additional orders in
response to the increased lead time is balanced by the decrease in the total
workload due to the order cancelations in response to the decreased lead time.
The frequency of updating the lead time varies depending on the choice of
the update parameter r (α = 1/r) but, the rates of order addition and order
cancelation stay balanced in the long-run. Therefore, the stability is retained.
The first order derivative of s(ρ, r, β, γ) in β implies that as β is increased
the stability condition becomes tighter. This is because, as β is increased, on
average more jobs are released to the production unit. On the other hand,
as γ is increased the stability condition becomes looser because of the greater
number of job cancelations.

3.3.3 Steady-State Distribution

For the derivations done throughout the rest of this chapter we assume the
queueing system is stable. That is, ρr + βρr−1 − γρ < 1.

Let zn, be the steady state probability that the process {N(t), t ≥ 0} is in
state ŵ(t) = n.

zn = z0ρ
n, n = 0, 1, . . . , w̄ − 1.

Let p
(r)
l denote the vector of equilibrium probabilities for the level l of the

QBD process {Yr(t), t ≥ 0}. So,

p
(r)
l =

(
p(r)(l, 0), p(r)(l, 1), . . . , p(r)(l, r − 2), p(r)(l, r − 1)

)
, l = 0, 1, . . . ,

where p(r)(l, j) is the steady state probability that the QBD process is in state
(l, j). The equilibrium equations for this process are

p
(r)
0 B

(r)
0 + p

(r)
1 A

(r)
2 = 0(r), (3.4)

p
(r)
l−1A

(r)
0 + p

(r)
l A

(r)
1 + p

(r)
l+1A

(r)
2 = 0(r), l = 1, 2, . . . . (3.5)

The coupling relation between the processes {N(t), t ≥ 0} and {Yr(t), t ≥ 0}
is given by

p(r)(0, 0) = z0ρ
w̄, (3.6)
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which yields the normalization equation,

p(r)(0, 0)(1 − ρw̄)
ρw̄(1 − ρ)

+
∞∑
l=0

p
(r)
l e(r) = 1. (3.7)

Given that the Markov process with generator Q(r) is ergodic, the equilibrium
probability vectors are determined by deploying the matrix-geometric form,

p
(r)
l = p

(r)
0

(
R(r)

)l
, l = 0, 1, . . . ,

where the r-dimensional rate matrix R(r) is the minimal-nonnegative solution
of the matrix-quadratic equation,

A
(r)
0 + R(r)A

(r)
1 +

(
R(r)

)2
A

(r)
2 = 0(r)×(r). (3.8)

Matrix geometric methods, initiated by Neuts (1981), serve as a powerful
framework to analyze and (approximately) solve large classes of stochastic
processes of M |G|1 type in a unified manner. In order to solve for the steady
state properties of the process, one should determine the rate matrix R(r) that
solves Equation (3.8). The problem of finding an explicit rate matrix is still a
developing research area. Structural results have been provided in Ramaswami
and Latouche (1986) for the QBD processes with transition matrices of rank
1. Van Leeuwaarden and Winands (2005) describe a class of QBD processes
for which an explicit rate matrix can be found. Based on the results of Ra-
maswami and Latouche (1986), we provide an explicit solution for the rate
matrix R(r) of the QBD process {Yr(t), t ≥ 0} for every update parameter, r.
It is given in the following theorem:

Theorem 3.2 Given the Markov process with generator Q(r) is ergodic, the
rate matrix R(r) that exactly solves the matrix quadratic equation (3.8) for
every r = 2, 3, . . . is given by

R(r) =

⎡⎢⎢⎢⎢⎢⎣
0(r)

0(r)

...
0(r)

R
(r)
r−1

⎤⎥⎥⎥⎥⎥⎦ , (3.9)

where

R
(r)
r−1 =

(
ρ, ρ(ρ + β), ρ2(ρ + β), . . . , ρr−2(ρ + β),

ρr−1(ρ + β)
1 + γρ

)
. (3.10)
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Proof See the Appendix at the end of this chapter.

In order to solve {Yr(t), t ≥ 0} we need to derive p
(r)
0 from the equilibrium

equation (3.4) and the normalization equation (3.7). Using the explicit ex-
pression for the rate matrix and the matrix-geometric form, the equilibrium
equation (3.4) is rewritten as

λp
(r)
0 T

(r)
R + μp

(r)
0 T

(r)
L − (λ + μ)p(r)

0 + μp(r)(0, 0)
(
e
(r)
0

)T
+

λp(r)(0, r − 1)
(
γe

(r)
r−2 + (1 − γ)e(r)

r−1

)T
= 0(r).

Solving this system of linear equations we get

p(r)(0, j) = p(r)(0, 0)ρj , j = 0, . . . , r − 2, (3.11)

p(r)(0, r − 1) = p(r)(0, 0) · ρr−1

1 + γρ
. (3.12)

Let us rewrite the term
∑∞

l=0 p
(r)
l e(r) in the normalization equation (3.7) as

∞∑
l=0

p
(r)
l e(r) = p

(r)
0

(
I(r) + R(r) +

(
R(r)

)2
+ · · ·

)
e(r).

Since the rate matrix R(r) has rows of zero except the last one, the power
matrices of R(r) can be expressed as:(

R(r)
)l

=
(
R

(r)
r−1,r−1

)l−1
R(r),

R
(r)
r−1,r−1 =

ρr−1(ρ + β)
1 + γρ

.

The lower diagonal structure of R(r) allows us to directly see that its largest
eigenvalue is η = R

(r)
r−1,r−1. The stability of the QBD process directly implies

that η < 1. Then,
∞∑
l=0

p
(r)
l e(r) = p

(r)
0

(
I(r) +

R(r)

1 − η

)
e(r), (3.13)

where the term
(
I(r) + R(r)

1−η

)
e(r) is an r-dimensional column vector of ones

except the last row being equal to 1 +
R

(r)
r−1e(r)

1−η . Employing the explicit expres-

sion of R
(r)
r−1 provided in Equation (3.10),

1 +
R

(r)
r−1e

(r)

1 − η
=

(1 + βρ) − ρr−1(ρ + β)
(1 − ρ)(1 − η)

. (3.14)
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This result, together with our findings in Equations (3.11) and (3.12) to rep-
resent p

(r)
0 in Equation (3.13), provides us with

∞∑
l=0

p
(r)
l e(r) =

p(r)(0, 0)
1 − ρ

(
1 +

ρr(β − γ)
(1 + γρ)(1 − η)

)
.

Then, the normalization equation (3.7) is rewritten as

p(r)(0, 0)
1 − ρ

(
1
ρw̄

+
ρr(β − γ)

(1 + γρ)(1 − η)

)
= 1, (3.15)

which provides interesting insights into the utilization of the production unit
depending on how the lead time is updated. For this purpose, let us define

κ =
ρr(β − γ)

(1 + γρ) − ρr−1(ρ + β)

as the utilization effect due to updating the lead time. Then, by finding
p(r)(0, 0) from Equation (3.15) and using it in the coupling relation defined in
Equation (3.6), the utilization of the production unit with the dynamic lead
time is given by

ν = ρ · 1 + ρw̄−1κ

1 + ρw̄κ
. (3.16)

From the stability condition, the denominator of κ is always positive. Thus,
the sign of β − γ determines the sign of κ. This means that the utilization
effect, κ, indicates the way that the planning system reacts to changes in the
planned lead time, which affects the utilization level in the dynamic case. From
Equation (3.16), it is obvious that for a symmetric response function, β = γ
or κ = 0, the utilization level in the static case is retained, ν = ρ. This result
is consistent with the stability condition presented in the previous section.
Furthermore, if there is a positive utilization effect, κ > 0 or β > γ, then the
production unit is utilized more than it is in the static case, yielding ν > ρ.
This means that the output rate in the dynamic case is bigger than the output
rate in the static case. From a practical perspective, the planning system is
kept more responsive to an increase in the planned lead time, and the work-
load in the production unit is kept at higher levels in order to safeguard the
pipeline against increased delivery duration. However, this generates excess
production, which can be tackled in different ways such as secondary markets,
salvage, and etc. If there is a negative utilization effect, κ < 0 or β < γ, then
the production unit is less busy than it is in the static case, yielding ν < ρ.
This means that the output rate in the dynamic case is less than the output
rate in the static case. From a practical perspective, the planning system is
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kept more responsive to a decrease in the planned lead time, and the strat-
egy is to avoid unnecessary workload with respect to the anticipated delivery
duration. This strategy causes production lacking behind the demand, which
can be tackled by supply channels external to the production unit. Consid-
ering external supply or secondary markets adds further dimensions to our
discussion about the lead time syndrome, and is an interesting future research
direction.

The design variables β, γ, and r are related to the characteristics of the dy-
namic case in a way that they model the frequency with which the lead time is
updated and the sensitivity of the planning system to this change. The utiliza-
tion level in the dynamic case behaves differently depending on the changes
made in β, γ or r. The following proposition summarizes the relationships
between the utilization level and these variables.

Proposition 3.1 Keeping all other variables fixed, the utilization of the pro-
duction unit in the dynamic case changes depending on the variables β, γ, and
r as follows:

• ν increases as β is increased.

• ν decreases as γ is increased.

• For β > γ, ν increases for increasing frequencies of updating.

• For γ > β, ν decreases for increasing frequencies of updating.

Proof See the Appendix at the end of this chapter.

Proposition 3.1 provides some of the intuitive insights on the effects of updat-
ing the planned lead time. As the planning system becomes more inclined to
add a job in response to an increase in the lead time, through higher β values,
then the utilization level increases. On the other hand, as the planning system
becomes more inclined to cancel a job in response to a decrease in the lead
time, through higher γ values, then the utilization level decreases. The effect
of update frequency on the utilization level depends on which type of incli-
nation is stronger over the other. Our results here are complementary to our
previous discussion about the utilization effect κ. When the system operates
with a positive utilization effect, β > γ, then the congestion effect of updating
the lead time increases with the update frequency. When the system operates
with a negative utilization effect, γ > β, updating the lead time lessens the
congestion in the production unit with a higher degree as the update frequency
increases.
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In the following section, we provide further analytical results about the rela-
tionship between the update frequency and the performance of the production
unit. Throughout the rest of this chapter we assume β = γ. Thus, the static
case utilization is retained in the dynamic case. We also replace γ with β for
brevity in the formulations.

3.4 Performance Evaluation

The key performance indicators of the production unit are related to the cost
performance, the delivery performance, and the nervousness created in the
planning system. Analytical results are provided mainly concentrated on the
frequency of updating the lead time and the level of being reactive to the
changes in the lead time. To avoid intricacy in the notations and the analysis,
we should note that the parameter r refers to the reciprocal of the update
frequency α.

It has already been mentioned that having β = γ, the dynamic utilization level
is kept equal to the static utilization level. Therefore, keeping large number
of jobs as workload introduces inefficiency, and increased costs are incurred
due to material handling, inventory holding and etc. Maintaining a utilization
level of ρ implies that the average number of jobs in process are the same both
in the static and the dynamic situations. Thus, our attention is on the average
number of jobs in the backlog. Let B(r) denote the random variable for the
backlog level with the probability mass function

Pr{B(r) = n} =

⎧⎪⎪⎨⎪⎪⎩
∑w̄−1

j=0 zj + p(r)(0, 0), n = 0
p(r)(0, j), n = j, j = 1, 2, . . . , r − 1
p(r)(l, j), n = rl + j, l = 1, 2, . . . ,

j = 0, 1, . . . , r − 1

The larger the backlog level is, the higher the costs of the production unit
are. Using the explicit derivations that are provided in the previous section
we formulate the relationship between the static and the dynamic case average
backlog levels as in the following proposition:

Proposition 3.2 The average number of jobs in the production backlog in the
dynamic case is always larger than it is in the static case, and it is given by

E (B(r)) = E (B(∞)) (1 + θ), (3.17)

where the average backlog level in the static case is E (B(∞)) = ρw̄+1

1−ρ , and

θ =
2βρr−1(1 − ρ)

1 + βρ − ρr−1(ρ + β)
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is a monotonically increasing function of the update frequency α = 1/r and
the response probability β.

Proof See the Appendix at the end of this chapter.

Proposition 3.2 has an intuitively appealing interpretation. We identify that
updating the lead time increases the long-term average backlog level by a
multiplicative term, which is a function of the utilization level, the update
frequency and the response probability. When the lead time is increased, ad-
ditional jobs are released increasing the backlog status until the lead time is
decreased. In the long run, the number of jobs added due to the lead time
increase is equal to the number of jobs canceled due to the lead time decrease.
On average, the number of jobs kept in the backlog queue increases although
the utilization of the production unit does not change. It is a fundamental
intuition from Hopp and Spearman (2000) that inefficient increase in conges-
tion is undesirable due to the increase in order processing, material handling,
and inventory holding costs. Considering these costs that are related to keep-
ing workload in the production unit and ignoring all other cost terms such as
those related to due-date performance of orders, we can state that the static
lead time policy or the non-reactive case yields the lowest cost situation. As
the system becomes more reactive or sensitive to the changes in the workload
level through higher response probability or update frequency, more workload
is generated.

Figure 3.6: θ vs. ρ for r = 2, 3, 4, 5 and β = 1.

Figure 3.6 and 3.7 illustrate the level of increase in the average number of jobs
in the backlog for different update frequencies as a function of utilization and
response probability respectively. For the highest update frequency, α = 1/2,
and the highest response probability, β = 1, when the utilization level is close
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Figure 3.7: θ vs. β for r = 2, 3, 4, 5 and ρ = 0.90.

to 1, the backlog level becomes twice as much as it is when the lead time is
fixed. As the update frequency decreases, the level of increase in the average
production backlog significantly decreases. A similar relationship also holds
between the backlog level and the response probability. As long as there is
a response to the change in the lead time with β > 0, then there is always
an increase in the average backlog level. In addition, the value of θ is more
sensitive to the value of β when the lead time is updated more frequently.

In addition, the delivery performances of the jobs are evaluated by consider-
ing the actual durations of time that the processed jobs spend between the
moment that they are released and the moment that they are completed. The
random variable for the job flow time is denoted by C(r), and it is the flow
time of a finished job (not canceled). As the average workload level increases
in a dynamic case, we would also expect to see on average longer flow times.
For the full-reactive case, β = 1, the result is even stronger as provided in the
following proposition:

Proposition 3.3 Given that only the last job in the backlog queue can be
canceled, the flow time of a processed job in the dynamic case is stochastically
greater than or equal to the flow time of a job in the static case.

Pr {C(r) ≥ l} ≥ Pr {C(∞) ≥ l} ,

where C(∞) denotes the random variable for the flow time of a job in the
static case.
Proof See the Appendix at the end of this chapter.
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This result is related to the increased variability in the release pattern of jobs
created by updating the lead time. When the lead time is updated, jobs are
released earlier than they would be in the static case. Some of the jobs are
canceled. However, the net input rate does not differ from the static case,
and on average, jobs spend more time in the system causing worse delivery
performance for the downstream customers/processes. Further, Proposition
3.3 implies that a certain (i.e. 90th) percentile of the flow time distribution
of the completed jobs in the dynamic case is greater than or equal to it is
in the static case. Thus, the service level in terms of the percentage of jobs
completed in a certain time frame will never improve once the planned lead
time is updated.

In Chapter 2, it has already been presented that updating the lead times
generates nervousness in planning decisions upstream through the supply chain
(see Equations (2.10) and (2.12)). Therefore, it is worthwhile to see how the
distribution characteristics of the dynamic planned lead time changes. For
this purpose, L(r) is defined as the random variable for the dynamic planned
lead time with the probability mass function

Pr{L(r) = Lmin + n} =

{ ∑w̄−1
j=0 zj +

∑r−1
j=0 p(r)(0, j), n = 0∑r−1

j=0 p(r)(l, j), n = l, l = 1, 2, . . . ,

A long and highly variable planned lead time implies increased nervousness in
planning and large pipeline inventories. The expected planned lead time and
its coefficient of variation are derived based on the updating characteristics as
follows:

Proposition 3.4 The average and the coefficient of variation of the dynamic
planned lead time are respectively given by

E (L(r)) = Lmin + ξ, (3.18)

CV (L(r)) =

√
ξ
(

1+βρ+ρr−1(ρ+β)
1+βρ−ρr−1(ρ+β)

− ξ
)

Lmin + ξ
, (3.19)

where

ξ =
(1 + β)ρr−1ρw̄+1

1 + βρ − ρr−1(ρ + β)

is a monotonically increasing function of the update frequency α = 1/r and
the response probability β.

Proof See the Appendix at the end of this chapter.
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As a result, the average planned lead time monotonically increases with the
update frequency and the response probability. It should be noted that for
very large Lmin, updating the lead time does not have significant impacts on
E (L(r)) or CV (L(r)).

The variation in the planned lead time depends on the variables such as Lmin

and w̄. For a specific situation with Lmin = 1 and w̄ = 1, CV (L(r)) is depicted
with respect to ρ and β respectively in Figures 3.8 and 3.9 for different update
frequencies.

Figure 3.8: CV (L(r)) vs. ρ for r = 2, 3, 4, 5 and β = 1.

Figure 3.9: CV (L(r)) vs. β for r = 2, 3, 4, 5 and ρ = 0.75.
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Figure 3.8 shows that, for β = 1, Lmin = 1, w̄ = 1, and for a given update
frequency, CV (L(r)) increases as ρ increases, and asymptotically reaches the
value of

√
2 as ρ approaches to 1. For a given ρ, CV (L(r)) increases as the

lead time is updated more frequently. However the relative effect of the update
frequency depends on the value of ρ. The update frequency is much influential
for moderate values of ρ, i.e. 0.5 ≤ ρ ≤ 0.8. One may be interested in identify-
ing the range of utilization levels for which there is a high level of variability,
i.e. CV (L(r)) ≥ 1, for a given update frequency and response probability. In
that respect, for the full reactive case, β = 1, the high variability range is
0.66 < ρ < 1.00 for α = 1/2, 0.82 < ρ < 1.00 for α = 1/3, 0.88 < ρ < 1.00 for
α = 1/4, and 0.91 < ρ < 1.00 for α = 1/5. Thus, in case one prefers to operate
with dynamic planned lead times but at the same time keep CV (L(r)) less
than one, when for example ρ = 0.85, then the update frequency must be kept
less than 1/3.

Figure 3.9 implies that, for a given update frequency, CV (L(r)) increases as
the response probability increases. In addition, CV (L(r)) is more sensitive to
the response probability as the update frequency increases. For example, when
ρ = 0.75, CV (L(r)) ranges between 0.81 and 1.07 for α = 1/2, and between
0.46 and 0.54 for α = 1/5.

3.5 Conclusion

In this chapter, we have modeled a situation known as the lead time syndrome
using constructs from queueing theory. This chapter has been motivated by
the lack of analytical analysis about a production system facing erratic order
releases in response to changing planned lead times. Explicit results on the
stability condition and the performance evaluation of such a system have been
provided, and the following insights have been derived:

• If the reactions to the increase and to the decrease in the planned lead time
are identical, then the static utilization level is retained in the dynamic case,
and the stability condition is ρ < 1 irrespective of the update frequency.

• The term utilization effect, κ, has been defined to represent the effects
of response probabilities β and γ on the utilization level. The utilization
increases as β becomes higher, and decreases as γ becomes higher.

Given that the production unit have the same utilization level both in the
static and the dynamic cases,
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• Updating the lead time increases the average number of jobs waiting in the
production backlog. The level of increase is bigger for higher utilization
level or higher update frequency.

• Updating the lead time causes the processed jobs to spend longer durations
of time in the system.

• The variation in the dynamic planned lead time increases with the update
frequency except at the utilization boundaries, the lead time variation is
insensitive to the update frequency.

• Higher response probability yields higher variation in the planned lead time.

The strength of our analysis lies in the modeling of the update frequency
and the response function, which are relevant design parameters for dynamic,
adaptive planning systems. Some of the results of this chapter support some
of the conclusions of Chapter 2 such as erratic order release pattern, and its
increasing effects with increasing frequency of updating. Differently, due-date
performances of the dynamic planned lead time are not considered in this
chapter.

The analysis and the results provided in this chapter promote further im-
provements in modeling and understanding dynamic, adaptive systems. The
performance of different update policies can be evaluated under different as-
sumptions on ordering behavior. In addition, the analysis for non-stationary
demand conditions is an interesting research direction. It is also promising to
extend the analysis considering multiple-stages of the supply chain including
the downstream/upstream stock points and production units.
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Appendix to Chapter 3

Proof of Theorem 3.1

For r = 2, the flow from state 0 to state 1 is equal to the flow from state 1 to
state 0.

π
(2)
0 (1 + ρ − γ) = π

(2)
1 (1 + ρ − βρ) . (3.20)

For r = 3, the balance equations between states 0 and 1, and between states
1 and 2 yield

(1 + ρ)π(3)
0 = (1 − β)ρπ

(3)
2 + π

(3)
1 ,

(1 + ρ)π(3)
2 = ρπ

(3)
1 + (1 − γ)π(3)

0 .

Then,
π

(3)
0

(
1 + ρ + ρ2 − γ

)
= π

(3)
2

(
1 + ρ + ρ2 − βρ2

)
. (3.21)

For r = 4, . . . we obtain, by balancing the flow out and into the set {0, . . . , k},
k = 0, . . . , r − 2,

(1 + ρ)π(r)
0 = (1 − β)ρπ

(r)
r−1 + π

(r)
1 ,

(1 + ρ)π(r)
r−1 = ρπ

(r)
r−2 + (1 − γ)π(r)

0 ,

π
(r)
k = π

(r)
1 ρk−1 + π

(r)
0

k−2∑
j=0

ρj − π
(r)
r−1

k−1∑
j=1

ρj , k = 2, . . . , r − 2.

Hence,

π
(r)
0

⎛⎝r−1∑
j=0

ρj − γ

⎞⎠ = π
(r)
r−1

⎛⎝r−1∑
j=0

ρj − βρr−1

⎞⎠ . (3.22)

Equations (3.20), (3.21) and (3.22) together with Condition (3.2) show that
the system is stable for every r = 2, 3, . . . as long as the following condition
holds:

ρr + βρr−1 − γρ < 1.

This completes the proof of Theorem 3.1.

Proof of Corollary 3.1

The monotonicity properties of the stability function with respect to ρ should
be investigated. The first and the second order partial derivatives with respect
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to ρ are

∂

∂(ρ)
s(ρ, r, β, γ) = rρr−1 + (r − 1)βρr−2 − γ,

∂2

∂(ρ)2
s(ρ, r, β, γ) = r(r − 1)ρr−2 + (r − 1)(r − 2)βρr−3 > 0,

which imply that the stability function is strictly convex in ρ, and the first
order partial derivative of the stability function with respect to ρ is monoton-
ically increasing. In detail, we are interested in the domain ρ > 0. From the
definitions of r, β and γ, it follows that

s(0, r, β, γ) < 0,

∂

∂(ρ)
s(ρ, r, β, γ)

∣∣∣
ρ=0

≤ 0,

∂

∂(ρ)
s(ρ, r, β, γ)

∣∣∣
ρ=1

> 0.

Together with the convexity of s(ρ, r, β, γ) with respect to ρ, this set of in-
equalities implies that the stability function s(ρ, r, β, γ) has a single root ρ∗

that is greater than zero, and for 0 < ρ < ρ∗, s(ρ) < 0.

The partial derivatives of s(ρ, r, β, γ) with respect to β, γ, and r are respec-
tively given by

∂

∂(β)
s(ρ, r, β, γ) = ρr−1,

∂

∂(γ)
s(ρ, r, β, γ) = −ρ,

∂

∂(r)
s(ρ, r, β, γ) = ρr−1(ρ + β) ln ρ.

The stability function is monotonically increasing with β and decreasing with
γ, which implies that, due to the convex stability function, ρ∗ is monotonically
decreasing with β and increasing with γ. s(ρ, r, β, γ) is also decreasing with
r for ρ < 1, and increasing with r for ρ > 1. As a result, the minimum level of
ρ∗ is achieved when β = 1, γ = 0 and r = 2 by solving ρ2 + ρ − 1 = 0. Then,

ρ∗ ≥
√

5 − 1
2

. (3.23)

Similarly, the maximum level of ρ∗ is found when β = 0, γ = 1 and r = 2 by
solving ρ2 − ρ − 1 = 0. Then,

ρ∗ ≤ 1 +
√

5
2

. (3.24)
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Knowing that Φ = 1+
√

5
2 , Conditions (3.23) and (3.24) prove Corollary 3.1.

Proof of Theorem 3.2

We apply the results of Ramaswami and Latouche (1986), and derive explicit
solutions using matrix algebra. Given the Markov process with generator
Q(r) is ergodic, the rate matrix R(r) that exactly solves the matrix quadratic
equation (3.8) is given by

R(r) = −A
(r)
0

(
A

(r)
1 + A

(r)
0 e(r)

(
γe

(r)
r−2 + (1 − γ)e(r)

r−1

)T
)−1

. (3.25)

The structure of A
(r)
0 allows us to describe the rate matrix in more detail.

Firstly, let us define the r-dimensional square matrix

A
(r)
3 = A

(r)
1 + A

(r)
0 e(r)

(
γe

(r)
r−2 + (1 − γ)e(r)

r−1

)T
.

Then, R(r) has rows of zero except the last one, and its last row can be derived

from a linear combination of the first and the second rows of
(
A

(r)
3

)−1
. Let us

define
(
a

(r)
3(0)

)−1
and

(
a

(r)
3(1)

)−1
as the first and the second rows of the matrix(

A
(r)
3

)−1
respectively. Similarly, R

(r)
r−1 is the last row of the rate matrix R(r).

Then,

R
(r)
r−1 = −λ

(
(1 − β)

(
a

(r)
3(0)

)−1
+ β

(
a

(r)
3(1)

)−1
)

. (3.26)

The explicit structure of A
(r)
3 can be written as follows:(

A
(r)
3

)
i,i

= −(λ + μ), i = 0, . . . , r − 2,(
A

(r)
3

)
i,i+1

= λ, i = 0, . . . , r − 2,(
A

(r)
3

)
i,i−1

= μ, i = 1, . . . , r − 2,(
A

(r)
3

)
r−1,r−2

= (γλ + μ),(
A

(r)
3

)
r−1,r−1

= − (γλ + μ) ,

and all other elements of A
(r)
3 are zero.

(
a

(r)
3(0)

)−1
and

(
a

(r)
3(1)

)−1
solve the
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following matrix equations:

(
A

(r)
3

)T
((

a
(r)
3(0)

)−1
)T

= e
(r)
0 ,(

A
(r)
3

)T
((

a
(r)
3(1)

)−1
)T

= e
(r)
1 .

By exploiting the tri-diagonal structure of A
(r)
3 we find

(
a

(r)
3(0)

)−1
= −

(
1
μ

,
ρ

μ
,

ρ2

μ
, . . . ,

ρr−2

μ
,

ρr−1

γλ + μ

)
,(

a
(r)
3(1)

)−1
= −

(
1
μ

,
(1 + ρ)

μ
,

ρ(1 + ρ)
μ

, . . . ,
ρr−3(1 + ρ)

μ
,

ρr−2(1 + ρ)
γλ + μ

)
.

Consequently, together with Equation (3.26), this derivation yields

R
(r)
r−1 =

(
ρ, ρ(ρ + β), ρ2(ρ + β), . . . , ρr−2(ρ + β),

ρr−1(ρ + β)
1 + ργ

)
.

This completes the proof of Theorem 3.2.

Proof of Proposition 3.1

From calculus it is straight forward that

∂

∂(β)
ν =

∂

∂(κ)
ν · ∂

∂(β)
κ, (3.27)

and the same holds for partial derivatives of ν with respect to γ or r. Therefore,
for any given ρ and w̄, the utilization in the dynamic case can be characterized
by looking at the behavior of the utilization effect κ and the first order partial
derivative of ν with respect to κ, which is given by

∂

∂(κ)
ν =

ρw̄(1 − ρ)
(1 + ρw̄κ)2

.

Then, the following properties of ν with respect to κ can be derived:

∂

∂(κ)
ν > 0 for ρ < 1, (3.28)

∂

∂(κ)
ν < 0 for ρ > 1. (3.29)
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The behavior of κ with respect to β, γ and r can be formulated as follows:

∂

∂(β)
κ =

ρr(1 − ρr) + γρr+1(1 − ρr−2)
((1 + γρ) − ρr−1(ρ + β))2

,

∂

∂(γ)
κ =

−ρr(1 − ρr) − βρr+1(1 − ρr−2)
((1 + γρ) − ρr−1(ρ + β))2

,

∂

∂(r)
κ =

(β − γ)ρr ln(ρ)(1 + γρ)
((1 + γρ) − ρr−1(ρ + β))2

.

Hence,
∂

∂(β)
κ > 0 for ρ < 1 ,

∂

∂(β)
κ < 0 for ρ > 1,

∂

∂(γ)
κ < 0 for ρ < 1 ,

∂

∂(γ)
κ > 0 for ρ > 1,

∂

∂(r)
κ > 0 for γ > β and ρ < 1 ,

∂

∂(r)
κ < 0 for γ > β and ρ > 1,

∂

∂(r)
κ < 0 forβ > γ and ρ < 1 ,

∂

∂(r)
κ > 0 for β > γ and ρ > 1.

Applying these results together with Properties (3.28) and (3.29) in Equation
(3.27) yields

∂

∂(β)
ν > 0 for ρ < 1 or ρ > 1, (3.30)

∂

∂(γ)
ν < 0 for ρ < 1 or ρ > 1, (3.31)

∂

∂(r)
ν > 0 for γ > β and for (ρ < 1 or ρ > 1), (3.32)

∂

∂(r)
ν < 0 forβ > γ and for (ρ < 1 or ρ > 1). (3.33)

For ρ = 1, we apply L’Hôpital’s rule to Equation (3.27), and derive the fol-
lowing results:

lim
ρ→1

∂

∂(β)
ν =

r + γ(r − 2)((
∂

∂(ρ)κ − w̄
)

(γ − β)
)2 ,

lim
ρ→1

∂

∂(γ)
ν =

−r − β(r − 2)((
∂

∂(ρ)κ − w̄
)

(γ − β)
)2 ,

lim
ρ→1

∂

∂(r)
ν =

(γ − β)(1 + γ)((
∂

∂(ρ)κ − w̄
)

(γ − β)
)2 ,
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which yield

lim
ρ→1

∂

∂(β)
ν > 0, (3.34)

lim
ρ→1

∂

∂(γ)
ν < 0, (3.35)

lim
ρ→1

∂

∂(r)
ν > 0 for γ > β, (3.36)

lim
ρ→1

∂

∂(r)
ν < 0 forβ > γ. (3.37)

Properties (3.30) through (3.33) together with Properties (3.34) through (3.37)
imply the following insights: (1) Utilization increases as β increases, (2) uti-
lization decreases as γ increases, (3) For γ > β, utilization decreases as the
lead time is updated more frequently, (4) For β > γ, utilization increases with
the update frequency.

This completes the proof of Proposition 3.1.

Proof of Proposition 3.2

The expected number of jobs in the backlog is given by

E (B(r)) =
∞∑
l=0

r−1∑
j=0

(rl + j)p(r)(l, j)

= r
∞∑
l=1

lp
(r)
l e(r) +

r−1∑
j=1

j
∞∑
l=0

p
(r)
l e

(r)
j ,

and using the derivation in Equation (3.13) together with the explicit form of
p
(r)
0 given in Equations (3.11) and (3.12), E (B(r)) can be further simplified

as

E (B(r)) =
rp

(r)
0 R(r)e(r)

(1 − η)2
+

r−1∑
j=1

jp
(r)
0

(
I(r) +

R(r)

1 − η

)
e
(r)
j . (3.38)

Let us denote the first and the second terms on the right-hand-side of Equation
(3.38) by B

(1)
r and B

(2)
r respectively. We first write B

(1)
r in its explicit form,

and then, write B
(2)
r similarly in order to provide an explicit expression for

E (B(r)).
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Solving the normalization equation (3.15) for p(r)(0, 0) and using it to express
p
(r)
0 from Equations (3.11) and (3.12), we get

p
(r)
0 = (1 − ρ)ρw̄

(
1, ρ, ρ2, . . . , ρr−2,

ρr−1

1 + βρ

)
. (3.39)

Besides, the expression for the rate matrix in Equations (3.9) and (3.10) im-
plies that the term R(r)e(r)

1−η is an r-dimensional column vector of zeros except

the last row being equal to (1+β)ρ
1−ρ . This, together with the explicit form of

p
(r)
0 in Equation (3.39), provides B

(1)
r as

B(1)
r =

(1 + β)rρw̄+1ρr−1

1 + βρ − ρr−1(ρ + β)
. (3.40)

Elaborating the explicit form of p
(r)
0 and the r-dimensional square matrix

I(r) + R(r)

1−η , B
(2)
r is rewritten as

B(2)
r = (1 − ρ)ρw̄

⎛⎝ 1
1 − η

r−2∑
j=1

jρj +
(r − 1)ρr−1

(1 + βρ)(1 − η)

⎞⎠ .

Further simplification yields

Br(2) =
ρw̄+1(1 + βρ)(1 − ρr−1)

(1 − ρ)(1 + βρ − ρr−1(ρ + β))
− (1 + β)(r − 1)ρw̄+1ρr−1

1 + βρ − ρr−1(ρ + β)
. (3.41)

Then, the average number of jobs in the backlog, given in Equation (3.38),
can be written explicitly by

E (B(r)) =
ρw̄+1

1 − ρ

(
1 +

2βρr−1(1 − ρ)
1 + βρ − ρr−1(ρ + β)

)
. (3.42)

Let us define

θ =
2βρr−1(1 − ρ)

1 + βρ − ρr−1(ρ + β)
.

In order to characterize how the average backlog level changes with the update
frequency α = 1/r and the response probability β, it is sufficient that we take
the partial derivatives of θ with respect to β and r.

∂

∂(β)
θ =

2(1 − ρ)ρr−1(1 − ρr)
(1 + βρ − ρr−1(ρ + β))2

, (3.43)

∂

∂(r)
θ =

2β(1 − ρ)ρr−1 ln(ρ)(1 + βρ)
(1 + βρ − ρr−1(ρ + β))2

. (3.44)
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From Equation (3.43) it is straightforward that θ is monotonically increasing
with β for all 0 ≤ β ≤ 1. Although the function θ is defined on the discrete
domain of r = 2, 3, . . ., the monotonicity property, on the continuous domain
of r, implied by Equation (3.44), ∂

∂(r)θ < 0 for all r, is sufficient to state that
θ is monotonically increasing as r decreases. This result directly implies that
θ is monotonically increasing with the update frequency α = 1/r. Together
with Equation (3.42) this completes the proof of Proposition 3.2.

Proof of Proposition 3.3

We prove by keeping track of a sample path of arrivals and departures for
both the static and the dynamic cases, and then, by applying induction. In
the static case, assume that jobs arrive and are processed according to the
following sequence:(

t
(s)
1 , c

(s)
1

)
,
(
t
(s)
2 , c

(s)
2

)
, . . . ,

(
t
(s)
k , c

(s)
k

)
. . . ,

which means kth job arrives at time t
(s)
k and is completed at time c

(s)
k yielding a

flow time f
(s)
k = c

(s)
k − t

(s)
k . In the dynamic case, t

(d)
k refers to the arrival time

of the kth processed job, and similarly, c
(d)
k and f

(d)
k refer to the completion

time and the flow time of the kth processed job respectively. It is crucial to note
that, in the dynamic case, some of the jobs are canceled and not processed,
and the cancelation policy is always cancel the last job in the backlog queue.

From the transition rate diagram in Figure 3.2 it is obvious that along a sample
path of w(t) ≤ w̄ + r − 1 for all t, where the lead time is never updated, the
dynamic and the static cases are identical.

C(r) = C(∞) if w(t) ≤ w̄ + r − 1 for all t. (3.45)

Let t0 be any point in time, where there are p0 jobs that are already processed
in both cases. Assume there are k jobs in the static system, and the lead time
of the dynamic system is Lmin + l. Then, there are k + l jobs in the dynamic
system, and at most l of these jobs can be canceled. Due to the sample path
of arrivals, the arrival time of the last job in the static case is equal to the
arrival time of the last job in the dynamic case. Because of the fact that jobs
are sequenced in the queue according to the FCFS discipline in both cases,
the following relationship holds for the jth processed job after t0, j ≤ k:

t
(d)
j+p0

≤ t
(s)
j+p0

, (3.46)

c
(d)
j+p0

= c
(s)
j+p0

= t0 + τ(p0, j), (3.47)
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where τ(p0, j) is the total processing time of j consecutive jobs, given that
there are currently p0 jobs already processed so far. Due to the sample path
of processing times, this term is equal in both the dynamic and the static
cases. Equations (3.46) and (3.47) directly imply the following fact about flow
times of the (j + p0)th processed jobs in the dynamic and the static cases:

f
(d)
j+p0

=
(
c
(d)
j+p0

− t
(d)
j+p0

)
≥
(
c
(s)
j+p0

− t
(s)
j+p0

)
= f

(s)
j+p0

. (3.48)

We can now prove by induction that if there exists p0 number of jobs processed
till time t0 for which Proposition 3.3 is true, then, according to Equation (3.48),
Proposition 3.3 does also hold for all the jobs processed after t0. Assuming
that the shop is initially empty, Equation (3.45) implies that the flow times
of the processed jobs in the static case are identical to the flow times of the
processed jobs in the dynamic case until the lead time is first updated at state
w(t) = w̄ + r − 1. This provides a starting condition for p0 in Equation (3.48).
As a consequence, for any given sample path of arrivals and processing times
of jobs, the flow time of the jth processed job in the dynamic case is greater
than or equal to the flow time of the jth processed job in the static case, for
any j. This yields

Pr {C(r) ≥ l} ≥ Pr {C(∞) ≥ l} .

This completes the proof of Proposition 3.3.

Proof of Proposition 3.4

Using the explicit derivation of the rate matrix in Equations (3.9) and (3.10),
and p

(r)
0 given in Equations (3.11) and (3.12), the probability mass function

of the planned lead time is given by

Pr {L(r) = Lmin + l} =

{
1 − (1+β)ρr−1ρw̄+1

1+βρ , l = 0
(1+β)ρr−1ρw̄+1

1+βρ · (1 − η)(η)l−1, l = 1, 2, . . . .

Then, the dynamic planned lead time can be expressed as Lmin plus a random
variable of which the probability distribution is based on the update strategy
and the system characteristics. L(r) is rewritten in terms of its distribution
characteristics as follows:

L(r) = Lmin +

{
0, with probability 1 − (1+β)ρr−1ρw̄+1

1+βρ

1 + L̃r, with probability (1+β)ρr−1ρw̄+1

1+βρ
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where the random variable L̃r has a geometric distribution with parameter η.
It should be noted that η is the largest eigenvalue of the rate matrix R(r).

Pr
{

L̃r = l
}

= (1 − η)ηl, l = 0, 1, . . . .

Consequently, the average lead time is given by

E (L(r)) = Lmin +
(1 + β)ρr−1ρw̄+1

1 + βρ
·
(
1 + E

(
L̃r

))
= Lmin +

(1 + β)ρr−1ρw̄+1

1 + βρ − ρr−1(ρ + β)
. (3.49)

Similarly, using the moments of the geometric random variable L̃r, we solve
for the second moment of L(r). From Equation (3.49), it is stated that the
distribution of the dynamic planned lead time changes according to the term

ξ =
(1 + β)ρr−1ρw̄+1

1 + βρ − ρr−1(ρ + β)
.

Then,

E
(
L2(r)

)
= L2

min(1 − ξ(1 − η)) + ξ(1 − η)E
((

Lmin + 1 + L̃r

)2
)

= L2
min + (2Lmin + 1)ξ +

2ξη

1 − η
,

which simplifies to

E
(
L2(r)

)
= L2

min + ξ

(
2Lmin +

1 + η

1 − η

)
. (3.50)

From the derivations of E (L(r)) and E
(
L2(r)

)
in Equations (3.49) and (3.50),

the coefficient of variation of the dynamic planned lead time is directly written
by

CV (L(r)) =

√
ξ
(

1+βρ+ρr−1(ρ+β)
1+βρ−ρr−1(ρ+β)

− ξ
)

Lmin + ξ
. (3.51)

In addition,

∂

∂(β)
ξ =

ρw̄+r
(
1 + ρr−1

)
(1 − ρ)

(1 + βρ − ρr−1(ρ + β))2
,

∂

∂(r)
ξ =

(1 + β)ρw̄+r(1 + βρ) ln(ρ)
(1 + βρ − ρr−1(ρ + β))2

provide the fact that for ρ < 1, ∂
∂(β)ξ > 0 for all β, and ∂

∂(r)ξ < 0 for all r.
Together with Equations (3.49) and (3.51), this completes the proof of Propo-
sition 3.4.





Chapter 4

WIP Clearing in Supply
Chain Operations Planning

In this chapter, we provide insights into the effectiveness of the
clearing function concept in a hierarchical planning context. The
clearing function is a mathematical representation of the relation
between WIP and throughput of a production process, and it is
used to anticipate the flow times of planned order releases, which
are subject to uncertainties. The SCOP formulation of Chapter
2 is modified to include the WIP and the clearing function for a
single-item produced in a production unit and kept in a stock point
facing a stochastic non-stationary demand. At the SCOP level,
the delivery schedules of the orders are determined through fixed
planned lead times, and capacity loading decisions are separated
from order release decisions in a way to plan for on-time deliveries.
Early or late deliveries of the orders, which significantly affect
the inventory costs, have not been considered explicitly by the
previous studies on clearing functions. In this chapter, clearing
functions arising from different modeling approaches are tested by
simulation based on the quality of the plans in terms of the total
cost and the level of operational consistency. The results indicate
that modeling the clearing of WIP should be based on the short-
term operational dynamics of the production unit.

85
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4.1 Introduction

A model of a production process is embedded in each planning and scheduling
tool. It is a mathematical representation of the set of technologically feasi-
ble operations within the production process. However, only a very narrow
range of models of production has been considered in the context of SCOP.
Traditional MP models assume fixed production capacity with zero or fixed
flow times, and avoid considering the effect of WIP levels on shop conges-
tion, throughput, and accordingly on order flow times (e.g., Billington et al.
(1983), Shapiro (1993), and MRPII formulations in Voß and Woodruff (2003)).
Recently, Spitter et al. (2005a) decomposed the production of orders over mul-
tiple periods during a fixed planned lead time, assuming no modeled relation
between throughput and WIP levels. From queuing theory (Little’s law), it
is well known that the flow times and the throughput levels depend on the
loading of the shop floor. It can therefore be argued that the production
model used in SCOP should be based on actual queuing characteristics of the
shop floor. This follows the line of reasoning proposed by Karmarkar (1987),
and Hopp and Spearman (2000). These studies are based on the long-term
relationships assuming stationary conditions, and do not explicitly model or
recognize a higher-level order release mechanism. In this chapter, we are
particularly interested in the interaction between the timings and the sizes
of the release decisions and the operational execution in the shop floor, and
the consequences of this interaction on the system performance. We concen-
trate on the consistency of generated plans with their actual executions. At
the SCOP level, release decisions are given in anticipation of the short-term
performance of the production processes in terms of the interaction between
capacity loading, throughput and the flow times. This interaction is modeled
through the concept of the clearing of WIP during each period. In a dynamic
framework, the status information about the workload levels can be utilized
through clearing functions at the SCOP level to anticipate dynamic flow times
of order releases.

First initiated by Graves (1986), there has been a growing interest on the use
of clearing functions in deterministic aggregate production planning models
(see Pahl et al. (2005) for an overview of the literature on clearing functions).
Most of the studies on clearing functions follow the line of reasoning of Hopp
and Spearman (2000), and model the clearing functions based on the steady-
state queueing constructs. We refer to Section 1.3.3 of this thesis for a brief
discussion about a list of various studies on clearing functions. Although all
of these studies have contributed to the development of the general framework
for modeling production (see Hackman and Leachman (1989) for a detailed
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discussion), the concept of planned lead times was not considered in their
models. The planned lead times are crucial in planning production of batches
and inventory of items among various stages within a supply chain. Thus, it is
worthwhile to do research on the use of clearing functions in coordinating the
flow of material between a production unit and a stock point within a supply
chain context.

In this chapter, we consider a two-level decision hierarchy, where orders and
raw materials are released to the production unit by the SCOP level, and the
released orders are scheduled both according to their planned lead times and
the capacity restrictions by the operational scheduling level. Our objective is
two-fold. Firstly, we want to provide a hierarchical framework for planning
supply chain operations, where the concept of clearing is used to plan and
control WIP levels in a way to achieve consistent plans in terms of the actual
delivery schedule versus the planned schedule. Our study is different from
the previous studies on clearing functions because, we explicitly consider the
concept of planned lead time in the model so that the delivery performance of
the released orders and its consequences can be measured effectively. Accord-
ingly, our framework can be extended to model more complex supply chain
situations. Separate production units in a supply chain are coordinated by
the release of orders and their planned lead times. The level of consistency
between the planning and the execution plays an important role in the perfor-
mance of such systems. To our knowledge there is no literature on this aspect
of consistency; some results based on experimental data have already been
presented in Asmundsson et al. (2006) on the level of fit between the approxi-
mated clearing function and the actual clearing behavior, however, their study
is not conducted in a hierarchical planning system with planned lead times.
Secondly, it is not obvious what type of a model should form the basis of the
clearing function. We develop an alternative approach in which we define the
throughput quantity as a random variable with the probability distribution
based on the available WIP during a period and the short-term probabilistic
behavior of the shop floor. We test the performance of the established clear-
ing functions (see Figure 1.5) and this alternative in various settings using the
simulation of a single-stage, single-product supply chain.

4.2 Problem Definition and Modeling

We consider a production unit with uncertainty in its operations and a down-
stream stock point that sees a non-stationary stochastic demand for a single
product. Unmet demand is satisfied through backorders. The orders are re-
leased in batches and sent to the stock point in batches, facilitating the need
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to keep finished items inventory by the production unit. This inventory is
denoted by the term finished WIP to differentiate it both from the unfinished
items waiting to be processed in the shop (WIP) and the finished products
in the stock point. The order releases are aimed at the satisfaction of the
forecasted demand with a time lag equal to the planned lead time. Separately,
the capacity loading decisions, for a given clearing function, are responsible for
planning periodic throughput levels such that the orders can be delivered on
time. It is assumed that the production unit has ample stock of raw materials
and the transportation times between the raw material stock point and the
production unit and between the production unit and the finished item stock
point are negligible. This is because, we want to concentrate on the analy-
sis of the clearing functions that model the characteristics of the production
process. The flow time of an order consists of the waiting time and the batch
processing time that elapse in the production unit.

The planning is done in a periodic review setting for a certain planning horizon,
and at the start of each period, the method of rolling horizons is applied to
replan according to the random deviations due to stochastic production and
demand processes. Between each consecutive planning the following sequence
of events occurs: an order is released and scheduled among the previously
released orders, and a planned quantity of work is loaded to the production
unit as WIP at the start of the period, actual demand and throughput are
realized, and finished orders are sent to the stock point at the end of the
period. The status information of the production unit and the stock point is
updated, and given these inputs, replanning is done starting from the next
period.

The overall planning process consists of two hierarchical levels as illustrated
in Figure 4.1. At the operational planning level, a multi-period single-product
SCOP problem is solved for a predetermined number of periods. A linear
programming formulation is used to determine optimal capacity loading and
order release decisions. SCOP anticipates the expected throughput in a period
based on the WIP level to be loaded to the shop floor at the start of that
period. The size and the release time of each order can then be determined
according to the planned lead time and the anticipated throughput quantities.
At this point, for the sake of clarity, one should note that the production unit
does not face a continuous arrival of work during each period, but all the WIP
planned for a period is made available at the start of the period1. As outcome
of the SCOP level, the order release for the first period in the planning horizon
is given to the lower decision level for detailed scheduling together with the
currently open orders. The capacity loading decision for the first period is

1This assumption on the release of raw materials is also utilized in Graves (1986).
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Figure 4.1: Planning system, information flow and decision hierarchy.

considered as part of the detailed production plan, and is directly instructed
to the execution systems.

At the operational scheduling level, given the planned lead time and the re-
lease dates of the orders, the delivery schedule is planned according to the
FCFS strategy. We provide a decomposition of the planning decisions on ma-
terial flow and capacity from the execution decisions on finalized orders. Key
argument for this hierarchical decomposition is that the lower level’s actual
execution generally differs from the planned outcome, which also motivates us
to replan through rolling horizons. This aspect is ignored in the static models,
and drives the need to adjust the current delivery schedule in response to the
infeasible capacity requirements. The new schedule is then feedforward to the
operational planning level.

The circled numbers in Figure 4.1 refer to the sequence of information flow in
the planning system. Data set (1) refers to the input to the planning system
regarding the statuses of the production unit and the stock point together
with the demand forecasts. The operational scheduling level performs a check
on the achievable delivery schedules of the open orders, and updates the cur-
rent schedule if necessary. The updated schedule (given by the data set (2))
is feedforward to the SCOP level, and is used by the SCOP formulation in
deciding the timings and the sizes of new order releases. Data set (3) refers to
the first period’s order release, which is then added to the end of the current
delivery sequence by the lower level according to FCFS. The delivery schedule
including the newly released order and the amount of WIP to be loaded to
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the shop are finalized decisions, and are given to the execution systems such
as ERP, and MES within data set (4).

4.2.1 Clearing Functions

The clearing function is an approximate representation of the production pro-
cess at an aggregate level of modeling. Although the underlying modeling as-
sumptions may differ between different types of clearing functions, the clearing
function gives the expected level of throughput to be realized during a period
as a function of the available WIP during that period. In this chapter, there
are four different clearing functions modeled and examined in terms of their
relative effects on the cost and the delivery performance. These are:

1. The traditional model with the assumption that WIP can be cleared with
the nominal production rate. We abbreviate it as ”Traditional Linear” (TL)
function, since it is used in the majority of production planning models.

2. The fixed lead time fixed capacity model where the clearing is proportional
to the planned lead time, and is bounded by the nominal production rate.
We abbreviate it as ”Capacitated Fixed Lead Time” (CFL) function.

3. The long-term clearing function based on the steady state queueing con-
structs. It is abbreviated as ”Long-Term Nonlinear” (LTN) function.

4. The short-term clearing function based on the short-term probabilistic be-
havior of the shop. We abbreviate it as ”Short-Term Nonlinear” (STN)
function.

In the following, the mathematical representations of these clearing functions
are provided. Although the underlying modeling assumptions may be dif-
ferent, all clearing functions are defined in the discrete-time domain. Thus, a
common notation is used irrespective of the basis that forms the clearing func-
tion. w is defined as the available WIP level during a period, and p = f(w)
is the total expected throughput quantity measured in number of items pro-
duced during that period with a nominal average value of μ items per period,
where f(w) denotes the clearing function. d refers to the demand rate per
period, and in the long-run, throughput rate must be equal to the demand
rate. The term period refers to some fixed duration of time within which the
basic input/output parameters of the system are defined such as the demand
and the throughput rates, and it is identical for all clearing functions.

The TL and CFL clearing functions are both based on a deterministic view over
the production process. TL assumes immediate production of what is available



4.2. Problem Definition and Modeling 91

in the shop bounded by the nominal production rate. In other words, a SCOP
model without a decomposition of order release decisions from the capacity
loading decisions and with TL used to model the production process becomes
very similar to the MRP and MRPII formulations of Voß and Woodruff (2003)
with the exception that the production output is partly smoothed through the
nominal production rate. In an environment where the capacity is infinitely
large relative to the sizes of the order releases, such a formulation indicates
immediate production of order releases with an independent time-lag after
the production till the order becomes ready for demand consumption. The
formulation of TL is given by

TL: f(w) =

{
w if w ≤ μ

μ otherwise
(4.1)

The CFL clearing function is similar to the TL clearing function in a way that
a deterministic production rate is assumed that is linearly dependent on the
WIP level, and is bounded by the nominal production rate μ. Differently, a
smoother production output is considered based on the planned lead time in
the same manner as in Graves (1986). The CFL formulation is

CFL: f(w) =

{
w/L if w ≤ μL

μ otherwise
(4.2)

When the formulation is carried over a continuous-time domain, for example
in deriving LTN , w refers to the average WIP level and p refers to the average
throughput level per period. As also noted in Hackman and Leachman (1989)
for a general framework, in a discrete-time production model, each rate-based
flow is a step function, constant in each period.

For LTN, the production process is modeled as an M |G|1 queue where or-
ders arrive in batches of size x according to exponential inter-arrival times
with mean 1/λ period. Items are processed in exponentially distributed pro-
cessing times with rate μ yielding Erlang(x, μ) distributed processing time
for each batch. It is important to note that the items arrive in batches but
processed individually, and the clearing functions in this chapter express the
throughput-WIP relationship in terms of items. Thus, the derivation of LTN
in this chapter shows slight differences from the clearing functions in the pre-
vious studies utilizing long-term queueing constructs (e.g., Hwang and Uzsoy
(2005)). We should also note that the exponential arrival process with fixed
batch sizes is an approximation on the real arrival process, where batches of
(possibly) different sizes are released according to a process that may (not)
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show an exponential pattern. Intuitively, the actual release pattern does de-
pend on the specific clearing function used in the SCOP model, which in turn
depends on some approximation of the actual release pattern. Analyzing this
cyclic structure is a complex task. It is not in the scope of this chapter, but
remains as an interesting direction for future research.

From Little’s law we have the fundamental relationship, p = w/Fitem, where
Fitem is the average flow time per item in the batch. Let us define the time
it takes to process an item starting from the first in the batch as batch-item
processing time. The batch-item processing time of an item depends on the po-
sition of that item in the batch, and, as mentioned in Lambrecht and Vandaele
(1996), the average batch-item processing time in a batch of size x can be de-
fined as PTitem = (x + 1)/2μ. From Polaczek-Khinchine mean-value formula
for M |G|1 systems the average waiting time for each batch is given by

WTbatch =
λx(x + 1)
2μ(μ − λx)

The waiting time of an item in the batch before a batch starts to be processed
is equal to the waiting time of the batch itself. Then,

Fitem = WTbatch + PTitem =
x + 1

2(μ − λx)
.

The arrival rate of the batches can be rewritten by λ = p/x. Then, from
Little’s law,

p =
w

Fitem
=

2w(μ − p)
x + 1

Solving this equation for p, and assuming a batch size equal to the average de-
mand rate of d, the following formulation for the long-term nonlinear clearing
function can be derived:

LTN : f(w) =
2μw

2w + d + 1
. (4.3)

This approximation can also be proved by solving an Mλ|Mμ|1 system with
bulk arrivals of size d. Given that the batch size is one, d = 1, then LTN
becomes identical to the clearing function in Karmarkar (1989). Equation
(4.3) directly implies that, for any given positive μ and d, LTN is increasing
and concave for w ≥ 0.

The LTN clearing function is insightful in modeling the nonlinearity in the
production process. However, it generates some conceptual inconsistencies
when used in an aggregate production planning problem involving a limited
planning horizon and the planning periods that are mainly characterized by
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the starting and the ending statuses. The exact continuous-time formulation
in Equation (4.3) is based on the long-term averages, and becomes an approxi-
mation in a periodic planning environment. The throughput is a step function
in time. Its rate is determined based on the starting WIP level, and is consid-
ered as fixed during a single period. One may criticize this approximation by
stating that LTN yields a throughput level that is greater than the WIP level
for some cases such as when w < μ − (d + 1)/2, and the nominal throughput
rate is only achieved with a very high WIP level causing the planning system
to load the shop by a large amount of work during shortage periods. In an
environment with expensive materials, the latter may be very costly. As an
alternative to LTN, the clearing function may also be based on the short-term
(periodic) probabilistic analysis of the throughput rate of the shop given the
WIP level at the start of a planning period.

The STN clearing function refers to such a model of production emphasizing
the short-term behavior of the production process between consecutive work
release (arrival) opportunities, and it does not consider the average behavior
driven by multiple number of work releases (arrivals) to the production system.
The distribution of throughput probabilities in a period is dependent on the
WIP level at the start of the period because, a throughput quantity greater
than the total quantity of items in process is not possible. Given a WIP
level of w available during a period, let us denote the random variable for
the throughput level in that period as Pw. Following the previously defined
terminology, the expected throughput in a period with a WIP level of w is

p =
w∑

k=1

kPr {Pw = k} .

Rewriting this equation yields

p = w −
w−1∑
k=0

(w − k)Pr {Pw = k} ,

and with further simplification by replacing the term 1 −∑k−1
j=0 Pr {Pw = j}

in the above formulation with Pr {Pk = k}, for k = 1, 2, . . . , w, the short-term
nonlinear clearing function is derived as follows:

STN : f(w) =
w∑

k=1

Pr {Pk = k} . (4.4)

Equation (4.4) is applicable for any assumption on the distribution of process-
ing times. In this chapter, we assume exponential processing times with rate
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μ. Then, the probability that all items are cleared in a single period is

Pr {Pw = w} = 1 −
w−1∑
k=0

e−μ · μk

k!
.

When w → ∞, Pw becomes identical to a Poisson random variable with mean
μ. So, both LTN and STN asymptotically approach to the nominal produc-
tion rate as w → ∞. However, STN approaches to μ more quickly then LTN
does, and this makes an obvious distinction in the output of the SCOP model.

The clearing representation in Equation (4.4) is conceptually robust, since the
linear clearing functions can also be modeled by this representation. Consider
an uncapacitated situation with the assumption that what is put in the shop
can immediately be produced, Pr {Pw = w} = 1, then STN yields f(w) = w
for all w. In addition, the CFL clearing function can be modeled by set-
ting Pr {Pw = w} = 1/L for w ≤ Lμ and Pr {Pw = w} = 0 for w > Lμ. From
Equation (4.4), it directly follows that STN is an increasing and concave func-
tion for w ≥ 0.

Figure 4.2: Lead time regions of a clearing function.

In the SCOP formulation, a piecewise-linear approximation of the clearing
function is employed. For this purpose, we define lead time regions in the
domain of the clearing function. An illustration is given in Figure 4.2 for
an arbitrary nonlinear and concave clearing function, which is partitioned by
L = l lines that cut the clearing function at points (ml, kl), kl = ml/l. Hence,
the clearing function is partitioned into different WIP ranges and correspond-
ing throughput ranges. WIP levels up to m1 can be cleared in a single period
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indicating L = 1 region. If the WIP level is between ml−1 and ml, then the
throughput level ranges between kl−1 = ml−1/(l − 1) and kl = ml/l implying
a flow time of l periods. An intuitive approximation for a nonlinear clearing
function is to assume that the clearing is linear between lead time shift points,
and its slope differs between different lead time regions due to the concavity
of the clearing function. The reason behind this intuition is that the clear-
ing function reveals a fixed flow time independent of the WIP level once the
production unit operates within a WIP range of a certain lead time region.

For STN and LTN, the nominal production rate, μ, may never be reached.
We assume the clearing function achieves its nominal production rate when
the slope of the piecewise-linear approximation falls at or below 0.01.

The piecewise-linear approximation for a nonlinear clearing function is formal-
ized as in the following equation, assuming that the production unit reaches its
nominal throughput rate at w = mμ, and the lead time regions up to L = lmax

cover all clearing function.

f(w) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w, w ≤ m1

k1 + k2−k1
m2−m1

· (w − m1), m1 < w ≤ m2

...
...

klmax−1 + μ−klmax−1

mμ−mlmax−1
· (w − mlmax−1), mlmax−1 < w ≤ mμ

μ, mμ < w

(4.5)

4.2.2 SCOP

At the SCOP level, operational planning is done in terms of releasing the or-
ders and planning the throughput levels to satisfy the planned order releases
on time in such a way that the forecasted demand is met by holding minimum
amount of material both in the production unit and in the stock point. In the
formulations used in this section, t = 0 denotes the current planning period,
and f(·) indicates a piecewise-linear clearing function. The static exogenous
parameters of the SCOP model are defined as follows:
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hf = Per unit, per period cost of holding finished item inventory at the stock
point.

hw = Per unit, per period cost of holding WIP at the production unit.
ĥf = Per unit, per period cost of holding finished WIP at the production unit.
M = Per unit, per period penalty cost for the inventory shortage at the stock

point.
μ = Nominal production rate of the production unit.
L = Planned order lead time.
T = Planning horizon.

The dynamic exogenous inputs to the SCOP model are updated at every
replanning opportunity. These constitute the demand forecasts, the status
information about the production unit and the stock point, and a capacity
feasible delivery schedule from the operational scheduling level. They are

D(t) = Forecasted demand for period t, t = 0, . . . , T − 1.
Q̂(t) = Total quantity, among the currently open orders, scheduled for receipt

at the stock point at the start of period t, t = 1, . . . , L.
I+(0) = Current on-hand inventory level at the stock point.
I−(0) = Current backorder level at the stock point.
W (0) = Current WIP level at the production unit.
Î(0) = Current finished WIP level at the production unit.

The decision variables include the system variables such as the on-hand inven-
tory level at the stock point, WIP and finished WIP levels at the production
unit, and the planned throughput quantity. The variables that are not exe-
cuted but used in the plan for evaluation and anticipation purposes are

I+(t) = Inventory on-hand at the stock point at the start of period t, just
before the orders scheduled for period t are received, t = 1, . . . , T .

I−(t) = Backorder level at the stock point at the start of period t, just before
the orders scheduled for period t are received, t = 1, . . . , T .

W (t) = WIP level at the production unit at the start of period t, just before
the release of additional WIP into the shop, t = 1, . . . , T − 1.

Î(t) = Finished WIP level at the production unit at the start of period t,
just after the orders scheduled for period t are sent to the stock point,
t = 1, . . . , T − 1.

P (t) = Planned throughput level in period t, t = 0, . . . , T − 2.

The executable decisions are the order release and the capacity loading deci-
sions, which are denoted by

Q(t) = The size of the order to be released at the start of period t,
t = 0, . . . , T − L − 1.
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R(t) = Amount of additional WIP to be loaded to the production unit at the
start of period t, t = 0, . . . , T − 2.

The SCOP problem is modeled by the following linear programming formu-
lation. It should be noted that all the constants and the variables in this
formulation are nonnegative. For t < L, the order release variables Q(t − L)
are set to zero because, the decisions at time zero are limited to future order
releases.

Min.
T∑

t=1

(
hf · I+(t) + M · I−(t)

)
+

T−1∑
t=1

(
hw · W (t) + ĥf · Î(t)

)
(4.6)

s.t.

I+(t + 1) − I−(t + 1) = I+(t) − I−(t) + Q(t − L) + Q̂(t) − D(t),
t = 0, . . . , T − 1 (4.7)
W (t + 1) = W (t) + R(t) − P (t), t = 0, . . . , T − 2 (4.8)
P (t) ≤ f (W (t) + R(t)) , t = 0, . . . , T − 2 (4.9)

Î(t + 1) = Î(t) + P (t) − Q(t + 1 − L) − Q̂(t + 1), t = 0, . . . , T − 2 (4.10)

Constraint set (4.7) defines the balance of inventory at the stock point between
consecutive planning periods using information on the current schedule and
assuming that the order released at the start of period k will be available at
the stock point at the start of period k + L. Constraint set (4.8) determines
the WIP balance, where WIP is increased by the amount of work loaded
to the shop and decreased by the throughput. Constraint set (4.9) provides
the throughput and capacity loading relationship according to a piecewise-
linear and concave clearing function. The finished WIP balance equations
are modeled in constraint set (4.10), which implies that each order has to be
finished and shipped to the stock point within its planned lead time. It also
indicates, by the term Q̂(t + 1), that the schedule that is feedforward from
the operational scheduling level must be met. It is important to note that
this formulation for the SCOP is based on a safety stock level of zero. A
safety stock adjustment procedure to guarantee a certain demand fill rate in
our simulation models has been provided in the Appendix of Chapter 2.

If we ignore the finished item inventory holding cost and the shortage cost
in the objective function and the constraint set (4.7), the resulting formula-
tion is very similar to the aggregate production planning models presented in
Karmarkar (1989), Asmundsson et al. (2003) and Asmundsson et al. (2004),
where the term in constraint set (4.10), Q(t + 1 − L) + Q̂(t + 1), can be con-
sidered as an exogenous demand for period t.
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As the concept of clearing implies, the throughput in a period is a function of
the total WIP level at the start of that period. The capacity loading decisions
are driven by the desired level of throughput quantities because, as formulated
in constraint set (4.9), R(t) determines the range in which P (t) can be planned.
It is obvious from the SCOP formulation that additional WIP loaded to the
production unit each period increases the total costs. Thus, for a desired
throughput level of P (t) > f (W (t)), R(t) is decided such that

P (t) = f (W (t) + R(t)) , t = 0, . . . , T − 2,

and for a desired throughput level of P (t) ≤ f (W (t)), R(t) = 0. In other
words, the SCOP model loads the capacity by the exact quantity that would
increase the throughput to a desired level, and if the throughput needs not be
increased, then no additional WIP is loaded to the production unit.

4.2.3 Scheduling and Rescheduling

At the start of the current planning period, t = 0, Q(0) is released to the
scheduling level from the SCOP level. At the scheduling level, decisions re-
garding the immediate execution of the past and the current order releases are
provided. Thus the notation changes slightly in this section compared to the
notation in the SCOP model. Given the current sequence of the open orders,{

(q1, d̂d1), . . . , (qK , d̂dK)
}

, as planned by the scheduling level where the order

quantities, qi’s, are coupled with their planned delivery dates, d̂di’s, the newly
released order is added at the end of the sequence, (qK+1, d̂dK+1) = (Q(0), L).
Then the new schedule is instructed to the execution systems. In a static
framework, this is an implementation of the FCFS dispatching rule. However,
in a dynamic framework that includes the plan-execute-(re)plan cycle, due to
the stochastic nature of the production process, the actual throughput quan-
tities may deviate from their planned values. As a result, there is a need to
update the active schedules at each replanning according to the capacity con-
siderations. A feasible delivery schedule has to be input to the top-level SCOP
model from the bottom-level scheduling model at each replanning opportunity.
For this purpose, a schedule update heuristic is applied.

Given that an arbitrary order is expected to be late, the heuristic finds the
earliest period by which the order is expected to be finished and sent to
the stock point. Let us define the current schedule of the open orders in
the production unit, provided by the execution system to the scheduling
level by the set X̃ =

{
(q1, d̃d1), . . . , (qK , d̃dK)

}
. Due to the FCFS rule,

d̃d1 ≤ d̃d2 ≤ . . . ≤ d̃dK . For brevity, assign d̃di = 1 if the order (qi, d̃di) is
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already late at the start of the current period t = 0. An arbitrary order
(qi, d̃di) ∈ X̃ is expected to be late if and only if

Î(0) + d̃diμ −
i−1∑
j=1

qj < qi.

We denote the set of late orders as X̃late. The new schedule is determined
according to the following rule for all (qi, d̃di) ∈ X̃late:

d̂di = min
s=0,1,...

⎧⎨⎩d̃di + s : Î(0) + (d̃di + s)μ −
i−1∑
j=1

qj ≥ qi

⎫⎬⎭ , (4.11)

where d̂di is the period by which order (qi, d̃di) is scheduled for receipt in
the stock point after updating the current schedule. For (qi, d̃di) ∈ X̃ \ X̃late,
d̂di = d̃di. The new schedule, X̂ =

{
(q1, d̂d1), . . . , (qK , d̂dK)

}
, is then embed-

ded in the SCOP model as an input.

Q̂(t) =
k∑

j=1

1(d̂dj = t)qj , t = 1, 2, . . . , L,

where the indicator function 1(d̂di = t) is equal to 1 if d̂dj = t, and 0 other-
wise. The updated schedule has to be consistent with the FCFS scheduling
discipline, and avoids order crossings as given in the following proposition:

Proposition 4.1 The FCFS rule applies for any given pair of consecutive
orders in X̂. Given (qi, d̂di) ∈ X̂ and (qi+1, d̂di+1) ∈ X̂,

d̂di ≤ d̂di+1,

and the scheduled delivery duration does not exceed the planned lead time for
any given order in X̂. Given (qi, d̂di) ∈ X̂,

d̂di ≤ L

Proof See the Appendix at the end of this chapter.

Proposition 4.1 is important for our dynamic hierarchical planning framework
because, it reveals the fact that the SCOP models in successive replanning
opportunities are conceptually consistent. This is achieved by feedforwarding
the status information as seen by the operational scheduling level to the SCOP
level.
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4.3 Simulation Experiments

4.3.1 Setting

The production process is considered as a single entity with an exponentially
distributed processing time per item. It may consist of a single machine or a
complex manufacturing center where the transformation time of WIP into final
products is exponentially distributed. Our motivation in aggregating a com-
plex manufacturing center into a single entity stems from the fact that clearing
functions are originally defined based on an aggregate approach to the pro-
duction process. The processing rate is 20 items/period, μ = 20. The demand
forecasts, D(t), t = 0, 1, . . . , T − 1, are generated from a Gamma distribution
with mean d, and squared coefficient of variation 0.5, revealing an average
utilization level of ρ = d/μ. The planning horizon is T = 10 periods. The cost
parameters are hf = 1.25, hfw = 1.20, and hw = 1.00. ”Today, direct labor
constitutes less than 15% of the cost of most products” (cf. Hopp and Spear-
man (2000)), and material holding costs have the lion’s share in this figure.
In addition, holding high WIP requires large space in the shop floor, incorpo-
rating handling and spacing costs additional to the material costs. Therefore,
the WIP holding costs and the final product holding costs are chosen close to
each other. Each simulation run starts with initial conditions: I+(0) = Ld,
I−(0) = 0, W (0) = 0, and Î(0) = 0. That is, the shop is empty and there are
enough items in the inventory for the demand during the planned lead time.

The TL and CFL clearing functions are modeled as defined in Equations (4.1)
and (4.2). The piecewise-linear approximation of the STN clearing function
is based on Equation (4.5), and is modeled as follows:

STN : f(w) =

⎧⎪⎨⎪⎩
w, w ≤ 9
5.04 + 0.44w, 9 ≤ w ≤ 34
20, 34 ≤ w

(4.12)

In STN, 100% productivity is disturbed starting from a workload level of 9
items, and the nominal throughput rate, 20 items/period, is reached when
there are 34 items in process. For LTN we use d = 17 in Equation (4.3). It as-
sumes higher (or equal) productivity than STN does for low levels of workload,
w ≤ 16, and quickly degrades in productivity as the shop congestion increases.
The nominal throughput rate achieved by LTN, 18.71 items/period, is less than
that of STN. The piecewise-linear approximation of the LTN clearing function
is based on Equation (4.5), and is given by
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LTN : f(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w, w ≤ 11
8.53 + 0.225w, 11 ≤ w ≤ 31
13.18 + 0.075w, 31 ≤ w ≤ 51
15.09 + 0.038w, 51 ≤ w ≤ 71
16.15 + 0.023w, 71 ≤ w ≤ 91
16.84 + 0.015w, 91 ≤ w ≤ 111
17.31 + 0.011w, 111 ≤ w ≤ 131
18.71, 131 ≤ w

(4.13)

The SCOP formulation together with the specific shape of the clearing function
used in the formulation implies that WIP is bounded by the level

Wmax = min{w : f(w) = μ′}

because, increasing the WIP further does not add to the planned throughput
quantities but increases the cost. Here, μ′ is the nominal throughput rate
indicated by the clearing function, which may be less than the theoretical
maximum. For TL, Wmax = 20, for CFL, Wmax = 20L, for LTN, Wmax = 131,
and for STN, Wmax = 34. One would expect the higher the Wmax is, the
higher the WIP costs are, but at the same time, the lower the Wmax is, the
more likely the shop becomes idle during a period increasing the possibility of
late deliveries in the next periods.

4.3.2 Design

In addition to the type of the clearing function used in the SCOP model, we
provide environmental factors such as demand uncertainty and utilization in
the design of experiments. The demand uncertainty is modeled by a percent
deviation from the forecasted demand. If the forecasted demand for a period
is d̂, the actual demand, for the same period, with 40% deviation is generated
from a Uniform(0.60d̂, 1.40d̂) distribution, and with 80% deviation is gener-
ated from a Uniform(0.20d̂, 1.80d̂) distribution. The utilization is changed via
changing the demand levels. Given the fixed value of μ = 20, 80% utilization
is achieved by setting d = 16, and 90% utilization is achieved by d = 18. Dif-
ferent planned lead times are also considered. The planned lead time can be
either short, L = 3 periods, or long, L = 5 periods. These values are generated
by rounding the mean flow time found from Polaczek-Khinchine mean value
formula for an M |G|1 system with batch processing under utilization levels of
0.80 and 0.90 respectively. Table 4.1 provides the design of experiments.
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Table 4.1: Experimental design.

Factors Treatments Number of Treatments

Clearing function CFL, LTN, STN, TL 4
Demand uncertainty, UD 40%, 80% 2

Utilization, ρ 0.80, 0.90 2
Planned lead time, L 3 periods, 5 periods 2

In total, there are 32 different combinations of experimental variables, and
for each of them, we have a simulation run-length of 5460 periods. The du-
ration that consists of the first 260 periods is used as the warm-up duration.
Welch’s procedure (see Law and Kelton (2000) for a complete description) is
applied to approximate the warm-up duration for the output of each simu-
lation. Each simulation with a given set of treatments is replicated 15 times
using a different random number stream at each replication. Between different
sets of replications the same set of random number streams are implemented.
The experiments are performed using QUINTIQ 3.1.0.10 (see Quintiq (2007)
for further detail) in simulating the production unit and the stock point, and
CPLEX in solving the SCOP formulation.

4.3.3 Results

We are interested in two significant performance measures: the average pe-
riodic cost given that a target level of demand fill rate is satisfied, and the
consistency of the planned schedule with the actual delivery of orders. The
target fill rate is 98%. After each simulation run, with the safety stock equal
to zero, the safety stock is adjusted according to the procedure described in
the Appendix of Chapter 2, in a way to guarantee the target fill rate. Then,
the simulation is repeated with the new safety stock.

In accordance with our objective in this chapter, the simulation results are
interpreted by looking at the relative performance of different clearing func-
tions. The lowest value of each performance criterion among different clearing
functions is boldface, and pairwise comparisons are performed between dif-
ferent clearing functions keeping every other experimental factor fixed. The
sign ”†” refers to the absence of statistical difference between the results of
different clearing functions with 95% confidence level.

Tables 4.2 and 4.3 provide the results related to the total average cost, respec-
tively with the planned lead times of L = 3 and L = 5 periods. The abbrevi-
ations for the cost related performance measures are
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TC = Total average cost per period.
I+ = The average on-hand inventory at the stock point.

FW = The average finished WIP at the production unit.
W = The average WIP level.
SS = The safety stock level that satisfies 98% fill rate.

The total cost is calculated as follows:

TC = hfI+ + ĥfFW + hwW.

Table 4.2: Cost performance of the clearing functions, L = 3 periods.

UD = 40% UD = 80%
CFL LTN STN TL CFL LTN STN TL

SS 41.0 25.1 46.7 94.1 70.7 55.6 76.7 142.8
ρ I+ 44.5† 34.6 45.4† 79.5 71.5† 63.6 72.4† 120.0
� FW 10.3 10.7 8.6 8.0 11.0 12.0 9.0 8.4

0.80 W 15.1 23.5 5.3 0.9 17.4 33.3 5.9 0.9
TC 83.0 79.5 72.3 109.8 120.0 127.3 107.2 161.0
SS 97.3 83.0 103.0 348.6 155.1 143.1 163.3 453.3

ρ I+ 92.9† 88.0 93.5† 261.6 142.0† 140.5† 144.7† 327.9
� FW 11.2 12.2 10.0† 9.9† 11.6 13.3 10.2 10.1

0.90 W 22.4 47.6 7.8 1.2 24.5 56.8 8.4 1.2
TC 152.0 172.3 136.6 340.0 215.9 248.3 201.5 423.2

Table 4.3: Cost performance of the clearing functions, L = 5 periods.

UD = 40% UD = 80%
CFL LTN STN TL CFL LTN STN TL

SS 37.9 25.3 47.7 94.7 67.3 57.1 76.7 143.1
ρ I+ 46.8† 35.2 46.5† 79.4 75.3† 66.0 73.6† 120.6
� FW 10.7 10.1 8.7 8.2 11.7 10.9 9.3 8.7

0.80 W 30.1 21.6 4.9 0.9 33.8 29.0 5.5 0.9
TC 101.5 77.7 73.5 109.9 142.0 124.6 108.6 162.2
SS 95.7 85.6 104.1 348.6 152.0 144.1 163.5 453.0

ρ I+ 96.3† 90.9 94.7† 260.7 146.0† 142.7† 146.2† 328.3
� FW 11.6 11.5 10.1 10.2 12.3 12.0 10.1† 10.5†

0.90 W 44.2† 45.6† 7.4 1.2 47.8 53.5 8.0 1.2
TC 178.5 173.1 137.9 339.3 245.1† 246.3† 203.3 424.1

These cost terms are more meaningful when considered together with the
actual delivery performance of the released orders. It is usually difficult to
explain the differences between different clearing functions if the delivery per-
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formance is ignored in the analysis. The results for the delivery performance
under different clearing functions are provided in Tables 4.4 and 4.5 with the
planned lead times of L = 3 and L = 5 periods respectively. The following
abbreviations are used in these tables.

AF = The average actual order flow time.
CVF = The coefficient of variation in the flow times.

ΔL = The mean squared deviation of actual flow times from the planned
lead time.

Π = The percentage of tardy orders.

Table 4.4: Delivery performance of the clearing functions, L = 3 periods.

UD = 40% UD = 80%
CFL LTN STN TL CFL LTN STN TL

ρ AF 2.52 2.29 2.88 3.30 2.58 2.28 2.93 3.39
� CVF 0.30 0.34 0.20 0.18 0.31 0.36 0.21 0.18

0.80 ΔL 0.80 1.12 0.35 0.44 0.80 1.20 0.37 0.51
Π 4.87 1.17 9.16 35.72 7.62 2.38 12.18 43.09

ρ AF 2.64 2.28 2.92 3.57 2.76 2.35 2.98 3.62
� CVF 0.30 0.37 0.22 0.16 0.30 0.37 0.22 0.15

0.90 ΔL 0.74 1.23 0.43 0.66 0.73 1.19 0.43 0.69
Π 10.06 3.48 14.01 60.41 14.64 5.24 17.42 64.50

Table 4.5: Delivery performance of the clearing functions, L = 5 periods.

UD = 40% UD = 80%
CFL LTN STN TL CFL LTN STN TL

ρ AF 4.11 4.26 4.88 5.37 4.10 4.24 4.89 5.47
� CVF 0.26 0.20 0.12 0.12 0.29 0.22 0.13 0.12

0.80 ΔL 1.88 1.29 0.38 0.54 2.18 1.42 0.43 0.65
Π 3.53 1.00 9.48 41.59 5.30 1.75 11.71 49.81

ρ AF 4.35 4.23 4.90 5.71 4.38 4.27 4.94 5.76
� CVF 0.24 0.21 0.14 0.10 0.26 0.23 0.14 0.09

0.90 ΔL 1.47 1.42 0.46 0.82 1.65 1.48 0.49 0.87
Π 8.32 2.74 13.98 72.11 10.52 3.94 16.44 76.76

The clearing function has a significant effect on both the external and the
internal performance measures. About 55% improvement in the total periodic
cost is possible by employing different clearing functions in the SCOP model,
and the consistency of the planned schedule can be improved significantly.
Recall from the previous sections that orders are released to the production
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unit and received by the stock point in batches of various sizes, and the demand
is moderately variable. Thus one would expect that both ΔL and Π have
significant impacts on TC.

The effect of TL especially on Π, and therefore on SS is very adverse. TL
supports late production because it assumes that a high level of WIP can be
cleared shortly. When the operational execution in the shop is not in line
with this assumption, the number of tardy orders increases significantly, and
the system has to hold a high SS to compensate for large backorders. As a
result, we see a very high I+, and consequently a high total cost. Especially
under high utilization the effects are stronger. The average WIP level is the
lowest under TL because, capacity loading is kept low due to the assumption
of high productivity. The TL function implies that the amount of WIP to be
loaded to the production unit at the start of a period is equal to the planned
throughput increase in that period. Thus, random shortages in the production
process significantly affect the actual delivery of released orders, and the stock
point suffers from high backorders leading to a very high SS.

TL generates the longest average flow time in all cases, and it is greater than
the planned lead time. On the other hand, the deviation from the planned
schedule in terms of ΔL when TL is applied is smaller than ΔL of CFL or
of LTN. However, this does not generate better cost performance due to the
high number of late order deliveries. Under high utilization, over 60% of the
orders are delivered late. So, the level of consistency should be considered as
a joint effect of Π and ΔL.

From that point of view we can see a clear distinction between STN and TL,
such that both Π and ΔL of STN are smaller than those of TL. As a result,
STN outperforms TL with an improvement of 33% up to 62% in TC. STN
assumes a lower productivity than TL does, and loads the capacity earlier
resulting in decreased flow times. Having the flow times closer to the planned
lead times and significantly decreased Π, STN provides a better coordination
of the material flow between the production unit and the stock point than TL
does.

CFL assumes a lower productivity than STN does, and provides lower Π.
However, earlier than planned delivery of the production orders increases ΔL.
Besides, the variation in the flow times is higher than that of STN. An ap-
pealing result is that the differences between I+ of CFL, and I+ of STN are
insignificant in all cases. Although STN has a higher SS and Π, improved
consistency and reliability in the planned lead times provide better planning
of the final product inventory at the stock point. WIP levels can be decreased
drastically, and a lower TC is achieved with STN in all cases.
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Similar to CFL, LTN can be mainly characterized by the early delivery of the
released orders. Since the utilization is kept at moderately high values (above
80%) LTN loads the shop early and in large quantities in order to achieve a
certain planned throughput level. As a consequence, in most of the cases LTN
provides the smallest AF. This results in the lowest SS and I+ with LTN in
all cases. However, with drastically decreased WIP levels, STN provides the
lowest cost solution in all cases.

In addition, the performance of LTN is more sensitive to the environmen-
tal factors. LTN over-reacts to the increased uncertainty and the utilization
causing increased TC. Under ρ = 0.80, (Table 4.2 and 4.3), I+ of LTN almost
doubles, and W of LTN increases by about 50% when the demand uncertainty
increases from 40% to 80%. Under the same conditions, I+ of STN increases
by about 60%, and W of STN increases by about 10%. Similarly, when the
utilization is increased from 0.80 to 0.90, I+ of LTN increases by about 150%,
and W of LTN increases by about 100%, while I+ of STN increases by about
100%, and W of STN increases by about 50%. This relatively robust be-
havior of STN under changing environmental factors is due to the fact that
CVF and ΔL of STN are always less than those of LTN. That is, both the
variability and the unpredictability of the delivery schedules are less severe
with STN. Thus, the system is less vulnerable to the environmental changes.
For ρ = 0.90 and UD = 80%, both STN and LTN satisfy the same fill rate
with insignificantly different I+ levels, where, with its much lower WIP level,
STN outperforms LTN. To sum up, STN ensures a better coordination be-
tween capacity loading and order release decisions. This results in improved
cost performance especially under high demand uncertainty or high utilization
levels.

Since the structure of CFL depends on the planned lead time, its performance
differs significantly between L = 3 and L = 5. So, it becomes more crucial to
choose the right planned lead time when CFL is deployed for the SCOP model.
CFL with L = 5 provides I+ and FW close to those of CFL with L = 3 but,
it causes much higher WIP. It generates unnecessary build up of WIP that
suggests us to model the production process using more optimistic clearing
functions, i.e. CFL with L = 3 outperforms CFL with L = 5. However, very
optimistic models such as TL (CFL with L = 1) also perform badly. We see
that the STN clearing function provides a good reference point between the
optimistic and the pessimistic production models. This can also be seen when
one looks at the average order flow times; AF of STN is always larger than
AF of CFL and smaller than AF of TL, and is closer to the planned lead time.

Since the throughput quantities per period are planned at the SCOP level
according to the lead time, an increase in the lead time yields an increase in the
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actual order flow times. In addition, Tables 4.4 and 4.5 provide an interesting
result that as the lead time increases then the production of the released
orders are spread through a bigger number of periods. Thus, the coefficient of
variation in the actual order flow times decreases due to the rolling horizons
method applied at each replanning opportunity. In relation to the decrease in
CVF, more orders are delivered early for a clearing function with a pessimistic
approach such as CFL and LTN, and more orders are delivered late for a
clearing function with an optimistic approach such as TL. In that respect,
STN provides a relatively robust behavior such that ΔL and Π change very
slightly under different planned lead times.

4.4 Conclusion

In this chapter, we have provided a planning framework for supply chain op-
erations planning where the capacity loading decisions are decomposed from
the order releases so that the throughput during the planned lead time can
be determined to meet the planned delivery schedule. The throughput perfor-
mance of the system is planned by modeling the production process through
the clearing function. Our research question has been: what is the appropriate
form of such a clearing function for the best performance of the SCOP model.
We have shown that:

• The shape of the clearing function plays an important role in the completion
time of orders. There is a tradeoff between loading the shop early with high
WIP levels and forcing the system to deliver the orders earlier than planned
and keeping low WIP in the shop but experiencing increased number of late
deliveries.

• The consistency of the actual production schedule to the planned schedule
improves the cost performance of the system.

• Deploying a production model based on the short-term probabilistic perfor-
mance of the shop provides the best results in terms of the average periodic
cost and robustness by achieving coordinated capacity loading and order
release decisions.

Although, STN provides the best performance results in terms of the total
cost and the lead time error, the tradeoff between STN and LTN with respect
to the deviation of the actual flow times from the planned lead time and the
percentage of orders that are tardy should be put into perspective. With
STN, the squared deviation of the actual flow times from the planned lead
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time is the lowest while, the number of jobs that are tardy is the lowest
with LTN. This tradeoff between tardy deliveries and consistent deliveries,
especially considering general cost parameters, is an interesting subject for
future research.

With STN, we would also expect to see an improved performance especially
for multi-stage, multi-item production-distribution situations due to a better
coordination of the material flow between the successive stages of the sup-
ply chain. The structure of the supply chain plays an important role. The
performance evaluation for more complex structures is therefore an interest-
ing subject for future research. The complexity can be further increased by
considering detailed shop structures such as multi-resource flow shops or job
shops. In these cases, modeling the clearing function becomes a technical
challenge.

In addition to the performance related issues, especially through STN, more
detailed discussions on modeling the clearing behavior can be initiated. For
example, instead of a mean value approach, the approximated distribution
characteristics of the throughput depending on the WIP level can be incorpo-
rated into the clearing function. In that respect, the STN clearing function
can be elaborated in such a way that it relates the WIP level to a throughput
level with a certain probability of occurrence.

In the next chapter, we will see how a clearing function may be used to update
the planned lead times of a multi-stage serial production-inventory situation.
Modeling the clearing function will be analyzed further based on a specific
parameter that determines the piecewise-linear shape in detail.
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Appendix to Chapter 4

Proof of Proposition 4.1

Let us define Î∗(d̃di) = Î(0) + d̃diμ −∑i−1
j=1 qj . The schedule update heuristic

partitions the set X̃ into two disjoint subsets: the subset of orders that are
rescheduled, X̃late, and the subset of orders that are not rescheduled, X̃ \ X̃late.
We consider two cases:

Case 1: (qi, d̃di) ∈ X̃late and (qi+1, d̃di+1) ∈ X̃ \ X̃late:

From the definition of the subset X̃late the following conditions are determined:
Î∗(d̃di) < qi and Î∗(d̃di+1) ≥ qi+1. Accordingly,

Î∗(d̃di+1) = Î∗(d̃di) + (d̃di+1 − d̃di)μ − qi

≥ qi+1,

which directly implies

Î∗(d̃di) + (d̃di+1 − d̃di)μ ≥ qi.

Then, the following relationship holds true due to Equation (4.11).

d̂di ≤ d̃di+1 (4.14)

Case 2: (qi, d̃di) ∈ X̃late and (qi+1, d̃di+1) ∈ X̃late:

By the definition of the subset X̃late, Î∗(d̃di) < qi. From Equation (4.11),

Î(0) + d̂di+1μ −
i∑

j=1

qj ≥ qi+1,

which implies
Î∗(d̃di) + (d̂di+1 − d̃di)μ − qi ≥ qi+1.

From Equation (4.11), this automatically satisfies the fact that

d̂di ≤ d̂di+1, (4.15)

For the case with (qi, d̃di) ∈ X̃ \ X̃late and (qi+1, d̃di+1) ∈ X̃late, and the case
with (qi, d̃di) ∈ X̃ \ X̃late and (qi+1, d̃di+1) ∈ X̃ \ X̃late, Proposition 4.1 is sat-
isfied directly from the definitions of X̃ and X̃late.
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The proof of our proposition about order crossovers is done by induction.
From constraint sets (4.9) and (4.10) it is obvious that

∑L
t=1 Q̂(t) ≤ Î(0) + Lμ.

Given that X̃late = ∅, this directly implies

k∑
j=1

qj ≤ Î(0) + Lμ. (4.16)

During the current period the worst case throughput is zero, which causes, in
the next replanning, some of the orders to become late. However, Equation
(4.16) still holds, and from Equation (4.11), it is directly given that

d̂dk ≤ L. (4.17)

The production unit is assumed to be initially empty, yielding X̃late = ∅ at the
start of the simulation. Therefore, Condition (4.17) holds true during the rest
of the simulation. Together with Conditions (4.14) and (4.15), this completes
the proof of Proposition 4.1.



Chapter 5

An Effective Approach for
Updating Lead Times

In this chapter, we provide insights into the effectiveness of up-
dating the lead times of a supply chain in a hierarchical planning
context using the clearing function concept. A two-stage serial
supply chain is considered with each stage responsible to produce
a single item. Orders are released by a SCOP model such that
delivery schedules are determined through planned lead times.
Capacity loading decisions are separated from order release de-
cisions, and depend on the hierarchical coupling mechanism. The
planning system is implemented in a rolling horizon setting such
that the lead times are updated according to the current workload
status and the anticipated future production requirements. Simu-
lation experiments are performed for different demand conditions
under changing clearing structure and hierarchical coupling. The
results indicate that, in conjunction with the concept of clearing,
updating the lead times provides the flexibility under fluctuating
demand conditions, and generates less costly solutions. At the
same time, the nervousness in the planning system due to the dy-
namic planned lead times is kept under control, and the lead time
syndrome is avoided.

5.1 Introduction

In Chapters 2 and 3, it was shown from various perspectives that updating
the lead times in planning and coordinating the flow of materials in a supply
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chain is a challenging task. Naive approaches based on exponential smooth-
ing of realized order flow times, or simple workload dependent rules such as
TWK and JIQ do not work for stationary situations with considerable uncer-
tainty in the environment. In a hierarchical planning system employed in a
dynamic setting, planned lead times that are updated at a higher-level and
used to release the orders at a lower-level may cause erratic order releases and
increased congestion in the production unit. This phenomenon, identified as
the lead time syndrome, suggests the use of fixed planned lead times both in
commercial advanced planning systems and in theoretical studies to manage
production and plan inventory in a supply chain (e.g., Stadtler and Kilger
(2000), Spitter et al. (2005a), and De Kok and Fransoo (2003)). On the other
hand, ”a major drawback of a fixed planned lead time is the ignorance of the
correlation between actual workloads and the flow times that can be realized
under a limited capacity flexibility” (Zijm and Buitenhek (1996)).

In this chapter, our objective is to challenge the fixed lead time assumption
through developing a lead time update procedure that provides the flexibil-
ity to respond to structural changes in environmental conditions (e.g., non-
stationary demand with seasonal fluctuations), and increases the efficiency of
the material flow decisions among the supply chain. We aim to provide an
answer to our second research question by also considering the issues raised
by the fourth and the fifth research questions in the analysis. In particular,
we want to show an effective way of updating planned lead times of a supply
chain. In doing so, we want to provide performance evaluation results based on
(1) the coupling mechanism between different decision levels of the planning
hierarchy, (2) the detailed approach to anticipate throughput performance of
the production units, and (3) the demand uncertainty.

The clearing function concept is used as the basis for updating the lead times
and for controlling the workload at various stages in the supply chain. As
discussed in the previous chapter, the clearing function provides an abstract
representation of the relationship between the expected throughput during a
period and the WIP available in that period. Our lead time update procedure
basically associates throughput ranges for different lead times, and matches
them with the anticipated future production requirements in the planning
horizon. The idea is to have the planned lead times short during the periods
of low demand, and long during the periods of high demand by explicitly con-
sidering the periods at which stock-outs are expected to occur. The low and
high demand periods may both occur due to the stochastic behavior of the
production processes and due to forecast errors. For example, production be-
ing faster than planned or actual demand being lower than forecasted demand
decrease the production requirements for the next periods, and vice versa. In
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addition, new forecasted demand is included at the end of the planning hori-
zon. Thus, both the demand seasonality and the uncertainty in the system
provide motivation to vary the planned lead times.

In addition, we propose a detailed method for modeling the clearing function
using a piecewise-linear representation. Such a detailed method is absent in
the previous studies on clearing functions (e.g., Missbauer (2002), Asmunds-
son et al. (2003), Asmundsson et al. (2004), Armbruster et al. (2004), Hwang
and Uzsoy (2005) and Asmundsson et al. (2006)). We identify a parameter to
indicate a service measure for the production unit’s throughput performance,
and specify the clearing function based on that parameter. In general, the
clearing of WIP is based on the short-term behavior of the production pro-
cesses, and design choices on specific shape related issues are considered in
relation to the dynamic lead times.

The planning process takes place in a hierarchical setting. The orders are
released throughout the complete supply chain in a centralized approach ac-
cording to the given planned lead times (set at the higher level) and the
demand forecasts. At the lower planning level, detailed schedules and capac-
ity loading decisions are determined for each production unit separately. In
determining how the capacity is going to be loaded, the coupling mechanism
between the SCOP and the operational scheduling levels plays a significant
role. It indicates the level of aggregation considered at the SCOP level, and
raises the question to which extent outcomes of the SCOP model should in-
fluence detailed capacity loading decisions. In De Kok and Fransoo (2003),
it is mentioned that both order release and periodic production decisions are
instructed to a lower level for execution in a purely deterministic environment.
In this chapter, through simulation, we extend their analysis and provide in-
sights into the effects of loose and tight coupling in a dynamic framework with
stochastic demand and production processes.

A two-stage serial supply chain facing a stochastic final product demand is
considered. The demand level changes dynamically. Each stage consists of a
single production unit with stochastic processing times and a stock point to
keep the finished items for downstream demand satisfaction (see Figure 1.1
for an illustration). We assume single item production at each stage, and
there is an ample supply of raw materials at the upstream stage of the supply
chain. The order release and capacity loading decisions are given periodically.
Time-phased order releases are planned to meet future forecasted demand,
and capacity is loaded with material to meet planned schedule of the released
orders. In doing so, the clearing function concept plays an important role in
anticipating the throughput performance of the production units.
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5.2 Clearing Function

The periodic throughput quantity Pw is a positive random variable and de-
pends on the available WIP level w. The clearing function, f(w) = E (Pw),
formulates the expected throughput in a period as a function of w. Let us
define P∞ as the random variable for the amount of throughput in a period
under the assumption that the shop is loaded with an infinitely large quantity
of WIP. We assume the information on the distribution characteristics of P∞
is given. Say g(·) and G(·) respectively refer to the probability density func-
tion and the cumulative distribution function of P∞, and E (P∞) = μ refers
to the nominal throughput rate. Then, it follows from standard probability
theory that Pr {Pw = w} = 1 − G(w). From the general representation of the
STN clearing function in Equation (4.4), the clearing function we use in this
chapter is written by

f(w) =
w∑

k=1

(1 − G(k)) . (5.1)

Theoretically, given that there does not exist a finite k such that G(k) = 1,
a nonlinear clearing function as given in Equation (5.1) never reaches the
nominal rate. In this chapter, as it has been done in Chapter 4, a finite
WIP level for the nominal throughput rate is provided for experimental and
practical purposes by rounding the value of the clearing function from the
second decimal digit. Let us define w(μ) as the WIP level where the clearing
function approximately reaches the nominal rate μ.

w(μ) = min {w : f(w) ≈ μ} .

The point
(
w(μ), μ

)
becomes one of the breakpoints in a piecewise-linear ap-

proximation of the clearing function.

Finding a piecewise-linear approximation of the clearing function is an interest-
ing topic that requires a detailed discussion. Because, when implementing in a
linear programming formulation, the clearing function is generally transformed
into its piecewise-linear approximation (cf. Missbauer (2002), and Asmundsson
et al. (2003)) as if it is a standard procedure, and alternative detailed aspects
of this transformation have been ignored. In this chapter, we are concerned
with modeling a piecewise-linear representation of the clearing function from
a design perspective. We expect that the design choices in this approximation
are very relevant in terms of determining the performance of the planning sys-
tem. As a means of incorporating this aspect of the clearing function to our
model, let us define a parameter ε such that 0 ≤ ε ≤ 1. Associated with ε, a
certain WIP level

wε = G−1(ε)



5.2. Clearing Function 115

is defined, implying that ε provides a service level measure for the clearing of
the available WIP in the production unit. Given that the production unit is
loaded by a WIP level w ≤ wε, then the production unit is able to clear all the
available WIP in the current period by at least 1 − ε probability. A 2-slope
approximation of the clearing function is derived with breakpoints at (0, 0),
(wε, wε), and

(
w(μ), μ

)
. Accordingly, wε can be defined as the anticipated

level of WIP above which the production unit is considered to operate with less
than 100% productivity. By productivity we mean the level of increase in the
expected throughput level relative to one unit of increase in the available WIP
level. 100% productivity refers to a one-to-one correspondence. According to
these definitions, the piecewise-linear approximation of the clearing function
can be formulated as follows:

f(w) ≈

⎧⎪⎨⎪⎩
w, w ≤ wε

wε + μ−wε

w(μ)−wε
· (w − wε), wε < w ≤ w(μ)

μ, w(μ) ≤ w

(5.2)

Figure 5.1 illustrates an example of a nonlinear, concave clearing function
together with its piecewise-linear approximations for different ε values. It is
seen that ε is a means of modeling different approaches in approximating the
clearing function.

Figure 5.1: A nonlinear clearing function, and its piecewise-linear approxima-
tions for ε = 0.05, 0.20.

For small ε a tight service is required from the production unit, and for large
ε a relaxed service is allowed. As ε is getting larger, a more optimistic ap-
proach is applied in modeling the production process such that the production
unit is assumed to be capable of finishing a (relatively) large amount of WIP
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in a single period. As ε becomes smaller, a more conservative approach is
implemented against the uncertainties in the production.

In the rest of this chapter, the term clearing function refers to the piecewise-
linear representation. For brevity, we consider 2-slope representations like the
ones in Figure 5.1. For STN clearing functions, a 2-slope representation is a
reasonable approximation because, generally, the nominal throughput rate is
achieved before the WIP level reaches to 2μ. For such cases, the piecewise-
linear approximation given in Equation (4.5) becomes a special case (with a
certain ε) of the one in Equation (5.2). One may need more slopes if the pro-
duction process is highly variable, such that P∞ has a coefficient of variation
bigger than one.

5.3 Planning System

We decompose the planning system into three hierarchically coordinated de-
cision levels: the tactical planning level, the SCOP level, and the operational
scheduling level. The tactical level is responsible for setting the planned lead
times. The planned lead times can be static (the lead times are not sub-
ject to change) or dynamic depending on the current workload status of the
production units and the expected future production requirements. Clearing
function for each production unit is used to determine the throughput ranges
for different planned lead times. At the SCOP level a centralized approach is
applied, where planning decisions on the flow of materials between consecu-
tive production units and the stock points in the supply chain are made. In
doing so, forecasted information on the final product demand levels, status
information about the workloads of production units and stock levels are uti-
lized, in addition to the planned lead times instructed by the tactical level.
The decisions made at this level are periodic order release quantities and the
production levels, which are determined based on the clearing function for
each production unit. The method of rolling horizons is applied, where only
the first period’s decisions are given to the scheduling level. Given the or-
der releases, their planned lead times, and the target throughput quantity
for the current period, the planning is done in a decentralized manner at the
operational scheduling level considering each production unit separately. The
delivery schedules are determined according to the given planned lead times.
The capacity loading levels for the current period are determined through the
clearing function and the coupling mechanism between the SCOP and the op-
erational scheduling levels. It should be noted that the same clearing function
for a production unit is used at all levels of the planning hierarchy. Figure 5.2
illustrates the planning framework with flows of information in between the
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decision levels.

Figure 5.2: Hierarchical planning framework.

The circled numbers refer to the sequence of the information flow in the plan-
ning system. Data set (1) refers to the input data exogenous to the planning
system, and includes exogenous demand information and the current status
information of the production units and the stock points. In accordance with
the hierarchical approach, a sequential decision making process starts from the
upmost level. Data set (2) refers to the planned lead times set by the tactical
level and instructed to the lower levels. Data set (3) provides the delivery
schedule adjusted by the scheduling level in response to the capacity restric-
tions. The SCOP model provides the order releases and the production targets
of each production unit for the current period in data set (4). Finally, data
set (5) refers to the executable outcome of the planning system including the
planned delivery schedules and the capacity loading levels for each production
unit.

The index variables and the static parameters are determined a priori and do
not change in time. They are
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N = Set of items produced in the supply chain.
Ne = Set of final products, Ne ⊂ N
i, j = Item indexes, i, j = 1, . . . , n.
aij = Number of units of item i needed to produce one unit of item j.
μi = Nominal production rate for item i ∈ N .

fi(·) = Clearing function for item i ∈ N .
T = Forecast horizon for the final products.
t = Period index, t = 0, . . . , T − 1.

The dynamic inputs are time-varying and depend on the previous decisions
as well as on the uncertainty in the production and the demand processes.
The current period is denoted as t = 0. The dynamic inputs to the planning
system are

Di(t) = Forecast demand of the final product i ∈ Ne for period t,
t = 0, . . . , T − 1.

Ii(0) = Current net inventory level, on-hand inventory minus backorders,
of item i ∈ N .

IPi(0) = Current inventory position, net inventory plus pipeline inventory,
of item i ∈ N .

Ŵi(0) = Current workload level at the production unit of item i ∈ N . The
total quantity of item i that has been ordered, but not yet produced.

Îi(0) = Amount of finished item i ∈ N currently waiting in the production
unit, Îi(0) = IPi(0) − Ii(0) − Ŵi(0).

These static and the dynamic inputs do not change between different decision
levels of the planning hierarchy. These are the constants and the variables that
are part of the spatial and the temporal characteristics of the physical system,
and are not considered as part of an aggregation-disaggregation scheme in the
planning system.

The schedule for the open orders is not considered in the above list because,
the same schedule update procedure as in Chapter 4 has been utilized in this
chapter. Thus, discussion on updating the schedules has been omitted here.
In the following subsections, detailed models for the decision levels of the
hierarchy are provided. The inputs and the decision variables specific to each
level are defined separately in each subsection.

5.3.1 Lead Time Setting

Lead times are determined based on the anticipated operational dynamics
and the future production requirements of each production unit separately.
First of all, let us denote Li as the decision variable for the planned lead time
of item i ∈ N . As shown in the planning hierarchy of Figure 5.2, the lead
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times are exogenous to the SCOP problem. This is in line with the discussion
about planned lead times in De Kok and Fransoo (2003). Given the fact
that flow times are related to resource utilization, De Kok and Fransoo (2003)
point out that the actual choice of Li should be consistent with the resource
availability and resource requirements that can be derived from the Bill-of-
Processes (BOP) and the independent demand characteristics. The procedure
for updating the lead times presented in this section is a formalization of this
idea in a dynamic framework.

In releasing the orders, a lead time dependent workload control rule is applied
for each production unit. The total workload of a production unit cannot
exceed the maximum level that it can produce within the given planned lead
time. Here, the workload is measured in terms of the number of items released
but not yet produced. Given the lead time Li = l, this workload limit is
defined as ϑi(l), and yields the concept of lead time dependent throughput rate
formulated by the clearing function,

μi(l) = fi (ϑi(l)) = ϑi(l)/l.

This concept is one of the fundamental constructs that we use in setting the
lead times dynamically.

In addition, the latest stock-out period is defined for each planned lead time of
a certain item. It is the latest period within the planning horizon, T , at which
a stock-out for that item is anticipated given the current net stock, demand
forecasts and the planned lead time. It provides the time range within the
planning horizon during which the inventory of that item is prone to stock-
outs due to cumulative throughput (based on μi(l)) lacking behind cumulative
requirements. An illustration of the latest stock-out period is given in Figure
5.3, where it is expected to occur at period 6. There may be stock-out or
non-stock-out periods before the latest stock-out period as seen in Figure
5.3. The latest stock-out period reveals the duration of imbalance between
the cumulative production and the cumulative requirement for an item. For
algorithmic purposes, if no stock-out is expected to occur during the planning
horizon, the latest stock-out period is set to zero.

The objective of the lead time setting procedure is to decide on a planned
lead time for each item that minimizes the backorder level at the minimum
latest stock-out period within the planning horizon. The logic behind this
procedure stems from the fact that the earlier is the latest stock-out period,
the smaller is the imbalance between supply and demand. Given that the
stock-out cannot be avoided, then it is best to have as low backorders as
possible. In a capacitated production-inventory situation, anticipated future
stock-outs can be avoided by increasing the throughput levels. On the other
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Figure 5.3: An example for the latest stock-out period of an item.

hand, the higher the throughput is, the higher the workload level is. Thus,
it is favorable, in terms of decreasing the material holding costs, to hold low
workload in the production units and produce less in case of no backorders
and excess inventories.

Backorders for the final products are clearly defined. However, there is no
record of backorders for the intermediate items. In this chapter, similar to
our analysis of the DRP model in Chapter 2, a backorder for an intermediate
item can be defined as the quantity demanded by a downstream production
unit but cannot be satisfied and hence, carried onto the next periods’ require-
ments hidden within the SCOP model. A similar argument has been raised in
analyzing MRP systems by Buzacott et al. (1992).

The lead time setting procedure utilizes the tradeoff between short and long
planned lead times that can be observed in a batch production system under
limited capacity. Increasing the lead times may help avoid future stock-outs
through increasing the workload levels and thus increasing the throughput
levels but at the same time, it causes postponement in the delivery of the
next order to be released, which may increase backorders in the early periods
of the planning horizon. This relationship is formulated during the rest of
this section considering the dependency between the consecutive stages in the
supply chain together with a lower limit on the planned lead times depending
on the current workload status at each production unit.

Based on Ŵi(0) the minimum acceptable lead time for item i is defined be-
cause, the lead time should be long enough to clear the current backlog of
orders on time, and the lead time is always greater than or equal to one pe-
riod. The lower bound for the lead time of item i is denoted as Lmin

i , and is
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given by
Lmin

i = min
{

l; Ŵi(0) ≤ ϑi(l)
}

.

Let D̂i(t) denote the net requirement of item i in period t. It is the quantity of
item i required to be available at the start of period t that cannot be satisfied
from the initial available stock of finished items. Since the effects of the past
occurrences have already been included in the current state information, we
assume that D̂i(−1) = 0. For i ∈ Ne, the net requirements are determined
through independent demand forecasts as follows:

D̂i(t) =

{
max

{
0,
∑t

k=0 Di(k) −
(
IPi(0) − Ŵi(0)

)}
, if D̂i(t − 1) = 0

Di(t), otherwise
(5.3)

For the intermediate items, i ∈ N\Ne, the production requirements are driven
by the orders released by the downstream stages. As a result, their planning
horizons change due to the changing planned lead times of their downstream
items. If component i is only consumed for the production of item j, then
Tj − Lj − 1 is the last period where the dependent demand information for
item i is available because, the order releases of item j further into the future
are not visible yet. As a result, the planning horizons are defined by

Ti =

{
maxj∈N {Tj − Lj ; aij > 0} , i ∈ N\Ne

T, i ∈ Ne

The logic in computing Ti’s is motivated by the time-phased order point ap-
proach in DRP systems. The release time of an order for a specific item is
offset according to the planned lead time of that item, and that order is ac-
counted for the gross requirements of its intermediate items at that release
period. Exploiting the DRP approach further, the lead times in successive
stages are determined sequentially, starting from the final products and then
proceeding to the intermediate items.

Let us denote ts,i(l) as the latest stock-out period under the lead time l for
item i. It is determined through the current inventory position and the lead
time dependent throughput rate of item i.

ts,i(l) = max

⎧⎨⎩ max
{

t; Ŵi(0) <
∑t

k=0 D̂i(k), t = Lmin
i , . . . , l − 1

}
,

max
{

t; t · μi(l) <
∑t

k=0 D̂i(k), t = l, . . . , Ti − 1
} ⎫⎬⎭

(5.4)
As we pointed out previously, in case no stock-out is detected within the
planning horizon, then ts,i(l) = 0. The first term within the outer brackets
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in Equation (5.4) considers the anticipated stock-outs before the lead time.
It is a consequence of the previously occurred random deviations in demand
forecasts or throughput quantities. The current workload, Ŵi(0), is planned to

be processed by the start of period Lmin
i . If Ŵi(0) <

∑Lmin
i

k=0 D̂i(k), then a stock-
out at the end of period Lmin

i is anticipated. There are no deliveries scheduled
between the end of period Lmin

i and the start of period l − 1. Therefore, if
there is a stock-out planned before the lead time, the latest stock-out occurs
at the end of period l − 1. The second term within the outer brackets in
Equation (5.4) considers the anticipated stock-outs after the lead time. It
is a consequence of the cumulative planned throughput lacking behind the
cumulative net requirements. Let us formulate the minimum latest stock-out
period for item i as

t∗s,i = min
Lmin

i ≤l
{ts,i(l)} ,

and the set of lead times that yields t∗s,i as the latest stock-out period is given

by S∗
i =

{
l; ts,i(l) = t∗s,i

}
.

Let us denote bi

(
t∗s,i, l

)
as the backorder level of item i at the end of period

t∗s,i under lead time l. Then, Li is given by

Li = arg min
l∈S∗

i

{
bi

(
t∗s,i, l

)}
, (5.5)

Given that t∗s,i ≥ 1,

bi

(
t∗s,i, l

)
=

{∑t∗s,i

k=0 D̂i(k) − Ŵi(0), if t∗s,i < l∑t∗s,i

k=0 D̂i(k) − t∗s,i · μi(l), otherwise
(5.6)

and for t∗s,i = 0, bi

(
t∗s,i, l

)
= 0. It should be noted that the backorders

in Equation 5.6 are computed according to the throughput levels and not
according to time-phased order releases. The ties in Equation (5.5) are broken
by setting Li = min{l; l ∈ S∗

i }. In such a case, operating with shorter planned
lead times decreases the total workload and the inventory in the system.

The set S∗
i can be decomposed into two mutually exclusive subsets. These are

S∗
i

(
> t∗s,i

)
=
{

l; l > t∗s,i
}

and S∗
i

(
≤ t∗s,i

)
=
{

l; l ≤ t∗s,i
}

. This decomposition
can be used to characterize Li as defined in Equation (5.5). Using the definition
for the latest stock-out period and the backorder formulation in Equation (5.6),
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we can state the following:

Li =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min{l; l ∈ S∗

i }, if S∗
i

(
≤ t∗s,i

)
= ∅

max{l; l ∈ S∗
i }, if S∗

i

(
> t∗s,i

)
= ∅

max
{

l; l ∈ S∗
i

(
≤ t∗s,i

)}
, if S∗

i

(
≤ t∗s,i

)
�= ∅ andS∗

i

(
> t∗s,i

)
�= ∅

The first property implies the case that the latest stock-out is expected to occur
at a period earlier than the planned lead times. Then the backorder level at
the end of the latest stock-out period cannot be influenced by changing the
planned lead time. Ties occur in solving Equation (5.5), which are broken by
choosing the minimum lead time in the set. The second property emphasizes
the other side of the coin. If the latest stock-out is expected to happen later
than the lead times, then the backorder level can be minimized by operating
with longer lead times and thus larger throughput rates. The last property
stems from the fact that for t ≥ l and l ≥ Lmin

i , t · μi(l) ≥ Ŵi(0) and from the
concavity of the clearing function.

In a multi-stage production-distribution situation, lead times are first deter-
mined for the most downstream stage. The planned lead time for an item
provides information about the expected order releases for that item within
the current planning horizon. This information is utilized to determine the
lead time of an intermediate item at an immediate upstream stage in the
supply chain.

Let us denote Rj(t) as the expected order release quantity for item j ∈ Ne in
period t, t = 0, . . . , Tj − Lj − 1. Rj(t) depends on the latest stock-out period
for item j such that

if t∗s,j < Lj , then

Rj(0) =
Lj∑

k=0

D̂j(k) − Ŵj(0),

Rj(t) = D̂j(t + Lj), t = 1, . . . , Tj − Lj − 1,

if t∗s,j ≥ Lj , then

Rj(0) = ϑj (Lj) − Ŵj(0),
Rj(t) = μj (Lj) , t = 1, . . . , t∗s,j − Lj ,

Rj

(
t∗s,j − Lj + 1

)
= D̂j

(
t∗s,j + 1

)
+ bj

(
t∗s,j , Lj

)
,

Rj(t) = D̂j(t + Lj), t = t∗s,j − Lj + 2, . . . , Tj − Lj − 1,
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Then, for each i ∈ N\Ne, the net requirements per period are computed by
having Di(t) =

∑
j∈Ne

aijRj(t) in Equation (5.3), and their planned lead times
are determined accordingly.

An initial condition that has to be satisfied in determining the planned lead
times is that the planning horizon T must always be greater than the cumu-
lative supply chain lead time. An upper bound for the planned lead times
may be necessary to decide on a feasible length of the planning horizon. The
lead time setting algorithm in Equation (5.5) yields an upper bound for the
planned lead times depending on the clearing function. Given that the nomi-
nal throughput rate is reached, further increasing the lead time does not yield
an improvement in the periodic throughput but increases the backorder levels
due to postponed deliveries, and also the workload levels are increased due to
early release of orders. The upper bound for the lead time is given by

Lmax
i = min {l; μi(l) = μi} .

5.3.2 SCOP

In the SCOP model, inventory levels are planned to minimize total material
holding and penalty costs subject to capacity and workload constraints. The
costs are incurred according to the amount of material waiting in the produc-
tion units or in the stock points of the supply chain. In addition, penalty costs
for the final product shortages are incurred, which are set so high that the sys-
tem always targets a nonnegative net inventory level for these items. This is
also equivalent to operating under zero safety stock. The cost coefficients are
described as follows:

h
(f)
i = Per unit, per period cost of holding finished item i ∈ N either in the

stock point or in the production unit.
h

(w)
i = Per unit, per period cost of holding unfinished item i ∈ N either being

processed in the shop or waiting to be processed in front of the shop.
Mi = Unit penalty cost for the final product inventory shortage, i ∈ Ne.

The schedule for the previously released orders is feedforward by the schedul-
ing system to the SCOP model. Q̂i(t) indicates the total quantity of item i
previously released and scheduled to be received at its stock point at the start
of period t. The decision variables for the stock and the workload levels in the
SCOP model are
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I+
i (t) = Inventory on-hand of item i ∈ N at the start of period t, just before

the order scheduled for period t is received, t = 1, . . . , Ti.
I−i (t) = Backorder level of final product i ∈ Ne at the start of period t, just

before the order scheduled for period t is received, t = 1, . . . , Ti.
Ŵi(t) = Total workload level of item i ∈ N at the start of period t, just before

the release of orders, t = 1, . . . , Ti − 1.
Î+
i (t) = Level of finished item i ∈ N at the start of period t waiting in the

production unit to be sent to its stock point, t = 1, . . . , Ti − 1.

The decision variables for the flow of material between successive stages and
for the utilization of each production unit are

Qi(t) = The size of the order to be released for item i ∈ N at the start of
period t, t = 0, . . . , Ti − Li − 1.

Pi(t) = Planned production quantity of item i ∈ N in period t,
t = 0, . . . , Ti − 2.

All the variables and the parameters defined above are nonnegative. The
SCOP problem is modeled by the following linear programming formulation:

Min.
∑
i∈N

Ti∑
t=1

[
h

(f)
i · I+

i (t) + Mi · I−i (t)
]

+
∑
i∈N

Ti−1∑
t=1

[
h

(w)
i · Ŵi(t) + h

(f)
i · Î+

i (t)
]

subject to

I+
i (t + 1) − I−i (t + 1) = Ii(0) +

t∑
k=Li

Qi(k − Li) +
t∑

k=1

Q̂i(k) −
t∑

k=0

Di(k)

−
t∑

k=0

aijQj(k), i ∈ N, t = 0, . . . , Ti − 1 (5.7)

Ŵi(t + 1) = Ŵi(0) +
t∑

k=0

Qi(k) −
t∑

k=0

Pi(k), i ∈ N, t = 0, . . . , Ti − 2 (5.8)

Ŵi(0) +
t∑

k=0

Qi(k) ≤
t+Li−1∑

k=0

Pi(k), i ∈ N, t = 0, . . . , Ti − Li − 1 (5.9)

Pi(t) ≤ fi

(
Ŵi(t) + Qi(t)

)
, i ∈ N, t = 0, . . . , Ti − Li − 1 (5.10)

Pi(t) ≤ μi (Li) , i ∈ N, t = Ti − Li, . . . , Ti − 2 (5.11)

Î+
i (t + 1) = Îi(0) +

t∑
k=0

Pi(k) −
t+1∑

k=Li

Qi(k − Li) −
t+1∑
k=1

Q̂i(k), i ∈ N,

t = 0, . . . , Ti − 2 (5.12)
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Constraint set (5.7) stipulates that for each item, the net inventory at the
start of period t + 1 is equal to the current net inventory plus the cumulative
delivered orders by period t minus the cumulative exogenous and endogenous
demand up to and including period t. Constraint set (5.8) indicates that
the total workload at a production unit increases with released orders and
decreases with produced items. Constraint set (5.9) provides the workload
limitation for each production unit according to the planned lead times. The
total workload at the start of a period in a production unit cannot be greater
than the total amount that the production unit can clear within the given
planned lead time. Constraint set (5.10) stipulates that the production process
is modeled through a piecewise-linear and concave clearing function. Since the
order releases in periods beyond Ti − Li − 1 are not visible yet at t = 0, the
planned production quantities are limited by μi (Li) in these periods. This is
given by constraint set (5.11). Constraint set (5.12) indicates that the finished
items have to wait in the production unit before the whole released order has
been processed and sent to its stock point.

Due to inherent uncertainties in the production processes, a certain amount
of workload may be carried over the next replanning. In addition, material
shortages may occur causing insufficient loading of the production unit and a
decline in the throughput levels. This yields the constraint set (5.12) to become
infeasible. In that case, the SCOP formulation is relaxed by replacing Î+

i (t+1)
on the left-hand-side of the constraint set (5.12) by Î+

i (t + 1) − Î−i (t + 1),
Î−i (t + 1) ≥ 0. In addition, the term

∑
i∈N

∑T−1
t=1 Mi · Î−i (t) is added to the

objective function in order to limit the situation to be temporary. Thus, at the
SCOP level, infeasible material flows are temporarily allowed till the feasibility
is reaffirmed in the next replanning opportunities. We expect this adjustment
does not significantly affect the simulation results because, the system strives
to return to feasible conditions as soon as possible due to very large penalty
costs in the objective function.

For each planning cycle in a rolling horizon, only the first period’s planning de-
cisions, Qi(0) and Pi(0) for every i ∈ N , are given to the operational scheduling
level. At this level, the planning is done in a decentralized manner separately
for each production unit.

5.3.3 Capacity Loading

The finalized production orders are processed according to the FCFS discipline
at each production unit. The operational scheduling level is responsible for
capacity loading decisions (the amount of WIP that is going to be loaded to
the shop) and the planned delivery schedule according to the given planned
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lead times and the capacity restrictions. The rescheduling for the released
orders of each production unit is done in the same manner as described in
Section 4.2.3 with the term μ replaced by the term μi (Li).

Let us define Wi(0) as the current WIP for item i in its production unit, and
Vi(0) as the decision variable for the amount of additional WIP to be released
to the production unit in the current period for the production of item i. Only
the first planning period’s capacity loading decisions are considered because,
the order releases and the production targets for the following periods are not
instructed from the SCOP level yet, due to the application of rolling horizons.
A feasible Vi(0) must satisfy the following conditions:

Wi(0) + Vi(0) ≤ Ŵi(0) + Qi(0) (5.13)
Pi(0) ≤ fi (Wi(0) + Vi(0)) (5.14)

The decision variables Pi(t) of the SCOP model may be interpreted differ-
ently depending on the level of aggregation assumed at the operational plan-
ning level. One interpretation is that these production decisions are parts
of the detailed production plan, and the instruction Pi(0) should be trans-
ferred to the lower level as a targeted quantity. Another interpretation is that
these production decisions are parts of aggregate capacity check in determin-
ing achievable order releases at the SCOP level. Consequently, they should
be ignored at a lower level operational scheduling and capacity loading model.
This discussion on the level of aggregation at the SCOP level yields two types
of coupling mechanism distinguished between the operational scheduling and
the SCOP levels. These are tight coupling and loose coupling. The capacity
loading decisions, Vi(0), are given based on the coupling mechanism. In the
following, we will first derive Vi(0) under tight coupling.

At each production unit, the local costs are considered such as the cost of pro-
ducing plus the end-of-period costs of holding unfinished items as workload
and holding finished items due to excess production over the target quan-
tity, Pi(0). The expected production quantity is computed from the clearing
function. The unit production cost is denoted by ci. The costs of holding
unfinished items as workload and finished items as excess production are de-
termined based on the given probability distribution for P∞. The objective
of the operational scheduling and capacity loading model is to minimize the
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total cost function,

TC = ci · fi (Wi(0) + Vi(0)) +

h
(w)
i ·

∫ Wi(0)+Vi(0)

0

(
Ŵi(0) + Qi(0) − x

)
g(x)dx+

h
(w)
i ·

(
Ŵi(0) + Qi(0) − Wi(0) − Vi(0)

)
· (1 − G (Wi(0) + Vi(0))) +

h
(f)
i ·

∫ Wi(0)+Vi(0)

Pi(0)
(x − Pi(0)) g(x)dx+

h
(f)
i · (Wi(0) + Vi(0) − Pi(0)) · (1 − G (Wi(0) + Vi(0))) (5.15)

subject to (5.13) and (5.14). The first term in Equation (5.15) represents the
total cost of production during the current period. The second and the third
terms are related to holding workload at the end of the current period after
the production is realized. The forth and the fifth terms are associated with
the cost of holding finished items due to excess production over the target
quantity.

The first order partial derivative of TC with respect to Vi(0) is

∂

∂ (Vi(0))
TC = ci · ∂

∂ (Vi(0))
fi (Wi(0) + Vi(0)) +(

h
(f)
i − h

(w)
i

)
· (1 − G (Wi(0) + Vi(0))) .

One should note that the clearing function fi(·) is a monotonically increasing
and concave function, and h

(f)
i ≥ h

(w)
i . As a result, the total cost function

monotonically decreases as Vi(0) decreases, ∂
∂(Vi(0))TC ≥ 0 for all Vi(0) ≥ 0.

Let us denote V ∗
i (0) as the optimum capacity loading decision for item i in

the current period, and f−1
i (·) as the inverse of the clearing function for item

i. Then, from the monotonicity property of the total cost function and from
Condition (5.14), the optimal capacity loading decision for item i in the current
period under tight coupling is given by

V ∗
i (0) = max

{
f−1

i (Pi(0)) − Wi(0), 0
}

. (5.16)

Another approach in loading the capacity ignores the production decisions
made at a higher operational planning level. This refers to loose coupling;
the released orders are immediately loaded to the shop floor regardless of the
target production decisions made by the SCOP level. That is,

V ∗
i (0) = Qi(0). (5.17)
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In such a case, the WIP level in a production unit is always equal to the
workload of that production unit.

The planned delivery schedule of the released orders and V ∗
i (0) are the final

outcomes of the planning system and are given to the execution systems such
as ERP or MES.

5.4 Preliminary Analysis under Deterministic As-
sumptions

In this section, we provide insights into updating the lead times in a dynamic
and deterministic environment. Our purpose here is to explicitly see the ef-
fects of updating the lead times on the release pattern within the supply chain
exempt from some random events in the system. We consider a two-stage se-
rial supply chain structure with identical production units. Each production
unit operates with a nominal production rate of 10 units/period for a single
item. The clearing function is provided with ε = 0.05 under the assumption
that P∞ follows from a Gamma distribution with coefficient of variation 0.25.
It is assumed that the models of the production processes are exact; the quan-
tity implied by the clearing behavior is actually produced at each production
unit. Final product demand fluctuates in a seasonal manner between levels 6
units/period and 9 units/period as seen in Figure 5.4, and each season lasts for
25 periods. The illustrations in this section are provided for a duration of 100
periods of simulation considering two consecutive seasonal cycles. The fixed
lead times are set to two periods for both stages. The following abbreviations
are used with k = 1, 2 respectively indicating the downstream and upstream
stages of the supply chain:

V Lk = Dynamic planned lead time for stage k of the supply chain.
Ik = Net inventory level at stock point of stage k under static lead times.

I
(V L)
k = Net inventory level at stock point of stage k under dynamic lead

times.
Ŵk = Workload level at production unit of stage k under static lead times.

Ŵ
(V L)
k = Workload level at production unit of stage k under dynamic lead

times.

Figure 5.4 illustrates the fluctuating demand and the flow times of the released
orders for the final product in a static planning framework with loose hierar-
chical coupling. The figure simply tells us that, although the planned lead
times are fixed, the flow times are actually fluctuating with the changing mar-
ket conditions. The purpose of updating the lead times should be keeping the
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Figure 5.4: Fluctuating demand and flow times of the final product in the
static case.

planning system responsive to the dynamic conditions such that the dynamic
flow times are represented at the planning level. However, being responsive at
the same time yields increased variability.

(a) Loose coupling. (b) Tight coupling.

Figure 5.5: Total workload levels at the downstream production unit for static
and dynamic cases.

Figures 5.5(a) and 5.5(b) show the variation in the workload level of the down-
stream production unit in the static and the dynamic cases (the figures for the
upstream production unit are very similar to these figures). A large increase
in the workload is experienced when the lead time is increased, and vice versa.
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This is due to the fact that as the lead time is increased the system strives to
balance the pipeline inventory with the increased demand during the planned
lead time, and large orders are released at both stages. Figure 5.5(a) insights
that the dynamic case responds more quickly to the changing demand lev-
els (the workload is increased earlier, and the steady state is reached earlier)
with the expense of increased costs of holding larger amount of workload in
the production unit. Under tight coupling the capacity loading decisions are
given in a way to realize the planned delivery schedules. That is, if the work-
load is small and the orders have long lead times, then the production can
be delayed in order to decrease the finished item holding costs at the SCOP
level. Therefore, as Figure 5.5(b) implies, the system with tight coupling has
to hold larger workload in the production unit in both the dynamic and the
static cases as compared to the cases with loose coupling. The effect is stronger
for static lead times. Especially during low-demand season, the system holds
larger workload due to early order release and postponed production when the
lead time is static. In the dynamic case, the system responses to low demand
by decreasing the planned lead times. Thus, the workload is decreased.

(a) Loose coupling. (b) Tight coupling.

Figure 5.6: Downstream inventory levels for the static and the dynamic cases.

Figures 5.6(a) and 5.6(b) show the net inventory levels of the downstream
stage under loose and tight coupling respectively. The dynamic lead times
follow a seasonal cycle in accordance with the demand, and the inventory
levels follow a repeating, characteristic pattern for each cycle. For example,
when the demand level is low, static lead times generate larger inventory
levels due to early delivery of orders under loose coupling. This pattern is
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(a) Loose coupling. (b) Tight coupling.

Figure 5.7: Upstream inventory levels for the static and the dynamic cases.

changed to a consistent inventory level of zero under tight coupling because,
the delivery schedules planned by the SCOP level are executed exactly by
the lower level. In the dynamic case, backorders are realized when the lead
times are increased because, the demand for the early period(s) cannot be
satisfied due to the extended delivery dates. This situation lasts only for a
short duration after which the inventory level returns to its steady state. A
relatively longer stock-out duration is seen under tight coupling as compared
to the one under loose coupling.

Similarly, Figures 5.7(a) and 5.7(b) illustrate the inventory levels of the up-
stream stage respectively for situations with loose and tight coupling. In the
static case, the upstream inventory follows a pattern similar to that of down-
stream inventory. In the dynamic case, an increase in the inventory level of
the upstream stock point is seen when the lead time of the downstream stage
is decreased. This occurs because, a decrease in the downstream planned lead
time generates the effect that some of the intermediate items kept in stock
are no longer necessary. The amount of intermediate items that is previously
planned to be used for production in the downstream stage is decreased caus-
ing a temporary excess inventory in the upstream stock point.

To sum up, the basic insights from this preliminary analysis are:

1. Updating the lead times keeps the system responsive to structural changes
in the demand level.

2. The type of coupling between the SCOP and the operational scheduling
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levels significantly affects the supply chain performance.

3. An increase in the lead times causes temporary backorders, and the effect
is stronger under tight coupling.

In the following section, we conduct simulation experiments under uncertain
demand and production process conditions. We provide a more extensive and
statistical analysis on the issues discussed in this section. Furthermore, we
investigate the other interesting aspects of the planning system such as the
effects of the clearing function parameter ε.

5.5 Simulation Experiments

5.5.1 Setting

The following system characteristics are not subject to change in our simula-
tion experiments.

• Each production unit is assigned to produce a single item, and demands for
the intermediate items originate only from the downstream order releases.

• The upstream and the downstream production units are assumed to have in-
dependent identically distributed processing times. Thus, the performance
of the upstream and the downstream stages for changing design parame-
ters can be evaluated independent of the specific process characteristics but
based on the interaction between each other.

• The clearing representations for both production units are identical, and
are derived from the assumption that P∞ is Gamma distributed with mean
100 items/period and coefficient of variation 0.25. Accordingly, Lmax

i = 2
periods for i = 1, 2.

• The demand for the final product is seasonal with low season represented
by a mean level of 60 items/period, and the high season is represented by a
mean level of 90 items/period. Thus, in the long run, the production units
are subject to 75% utilization.

• The final product demand forecasts are sampled from a Gamma distribution
with coefficient of variation 0.50. Distribution mean changes between high
and low seasons.

• Each season lasts for 25 periods.
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• The forecast horizon for the final product demand is T = 15 periods. Given
Lmax

i = 2 periods for i = 1, 2, the planning horizon is longer than the cu-
mulative lead time.

• The target fill rate for the final product demand is 98%.

• The cost parameters are: h
(w)
2 = 1.0 per unit per period, h

(f)
2 = 1.2 per unit

per period, h
(w)
1 = 1.5 per unit per period, h

(f)
1 = 1.8 per unit per period.

5.5.2 Design

There are three important design factors that we wish to evaluate in this study.
These are related to the hierarchical planning structure, the clearing function
model, and the level of responsiveness to changing market and shop conditions.
We model these issues respectively through the coupling mechanism between
the SCOP and the operational scheduling levels, the choice of ε in modeling
the clearing behavior of the production processes, and whether or not the
lead times are updated in response to changing inputs to the planning system.
First of all, the coupling mechanism indicates the level of aggregation assumed
at different levels of the planning hierarchy. We believe the performance of a
hierarchical planning system depends on the extent with which the decision
outcome of a higher level model is influential on a lower level model. Secondly,
clearing function is a means of anticipating the operational characteristics of
each production unit at a higher operational planning level. It is important to
discuss the design related issues based on a well-defined parameter such as ε,
to exclusively evaluate the impact of different anticipation approaches. These
two issues are related to our fourth research question. Finally, we would like
to investigate how good is our lead time setting procedure, which is related to
the first and the second research questions.

The coupling mechanism can be tight or loose depending on how the capacity
loading decisions are given at the operational scheduling level. Tight coupling
indicates that the capacity loading decisions are given in accordance with the
production targets set by the SCOP level so that the actual delivery schedule
is kept close to the planned schedule. Loose coupling refers to an approach
that immediately introduces the released orders into the shop, regardless of
their planned schedules. Tight and loose coupling are respectively formulated
in Equations (5.16)and (5.17).

Recent studies on clearing functions have mainly focused on the general struc-
ture of clearing whether through long-term steady state or short-term analysis.
However, given the general structure, the design issues related to the detailed
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modeling of a clearing function have not been considered thus far. For this
purpose, we introduce the parameter ε in modeling a piecewise-linear clearing
function such that ε refers to an internal service requirement for the produc-
tion process. For small ε a tight service is assumed such that the aim is to
avoid late delivery of orders, and for large ε an optimistic approach is employed
such that the aim is to avoid early deliveries. ε also plays a significant role in
our lead time setting procedure, such that large ε supports shorter planned
lead times and vice versa.

In addition to such design related issues, demand uncertainty is also con-
sidered. It is the percentage of deviation of the realized demand from the
forecasted demand, and low and high uncertainty levels are respectively mod-
eled through 0% and 50% deviation. 0% deviation refers to the deterministic
demand case, and 50% deviation refers to the case that the actual demand in
a period is generated from a Uniform(0.50d̂, 1.50d̂) distribution where d̂ refers
to the forecasted demand for that period. Thus, the actual demand values do
not follow a stationary pattern between consecutive periods.

Table 5.1: Experimental design.

Factors Treatments Number of Treatments

Hierarchical coupling Loose, Tight 2
Lead time strategy Static (L = 2), Dynamic (L = 1, 2) 2

Clearing parameter, ε 0.05, 0.20 2
Demand uncertainty, UD 0%, 50% 2

The list of all design factors are provided in Table 5.1. There are in total
16 different treatments, and the simulation for each treatment is performed
with 15 replications using different random number streams between each
replication. Between different treatments the same set of random number
streams (see Law and Kelton (2000)) are implemented. Each simulation is
performed for 7750 periods where the first 250 periods are considered as warm-
up duration. The experiments are performed using QUINTIQ 3.1.0.10 (see
Quintiq (2007) for detail) together with the CPLEX software used to solve
the SCOP formulation.

Based on the intuition gathered from the preliminary analysis in Section 5.4
the following hypotheses on the performance of various design factors are de-
veloped:
Hypothesis 1 Updating the lead times increases the safety stock required to
guarantee the target final product demand fill rate as compared to the case with
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static lead times.

Updating the lead times generates nervousness by changing the delivery de-
cisions made in successive epochs. When the lead time is increased from one
period to two periods, the previously planned order to be released now and
delivered at the end of the current period has to be postponed. This may yield
increased backorders and thus, increased safety stock is needed to avoid this.

The logic behind updating the lead times is to plan the order releases on time
so that the forecasted demand can be met by keeping the lowest amount of
material both in the stock points and in the production units. Although the
safety stock is increased, the total amount of material kept in the supply chain
is expected to be decreased by better management of total workload levels and
items in stock.

Hypothesis 2 Updating the lead times decreases the total amount of material
kept in the supply chain.

Given that the planned lead time is greater than or equal to one period, tight
coupling tends to keep the throughput levels relatively low by postponing
production of items scheduled to be delivered in future periods. As implied by
Figures 5.5(a) and 5.5(b), tight coupling is expected to increase the workload
levels throughout the supply chain. In addition, with stochastic production
processes, tight coupling may generate severe increases in the percentage of
tardy orders. Thus, one would expect increased safety stock levels under tight
coupling.

Hypothesis 3 Tight hierarchical coupling increases the total amount of ma-
terial kept in the supply chain.

Modeling the clearing function with a large ε generates planned throughput
quantities that may not be easily satisfied, which may cause late deliveries of
the released orders. In addition, our lead time update procedure implies that
a large ε may cause shorter lead times be planned at the tactical planning
level.

Hypothesis 4 Modeling the clearing function with a large ε value increases
the percentage of orders that are tardy.

In the following subsection, Hypotheses (1)-(4) are tested through statistical
analysis of the simulation results.

5.5.3 Results

The measures of performance we are interested in are basically related to the
coordination of material flow within the supply chain that generates costs
(external performance), and the level of consistency between the outcomes
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of different hierarchical decision levels (internal performance). The following
abbreviations are used in this section to represent various simulation outputs.
k = 1 and k = 2 respectively refers to the downstream and the upstream stages
of the supply chain.

SS = Safety stock level that satisfies the desired 98% fill rate for the final
product demand.

I+
k = Average amount of finished items kept in the stock point or in the

production unit of stage k.
Ŵk = Average workload level in the production unit of stage k.

TCk = Total inventory holding cost at stage k of the supply chain,
TCk = h

(f)
k I+

k + h
(w)
k Ŵk.

TC = Total inventory holding cost of the supply chain, TC =
∑2

k=1 TCk.
EI = Average highest-echelon inventory position of the supply chain,

EI =
∑2

k=1

(
I+
k + Ŵk

)
.

For each different simulation, an initial run is taken with safety stock equal to
zero. Then, SS is found by applying the safety stock adjustment procedure
described in the Appendix of Chapter 2, and the simulation is repeated with
SS as the new safety stock. EI is the average amount of material periodically
kept in the supply chain, either as a workload or as a finished item, and relates
to the total cost of the supply chain.

The other performance measures are related to the delivery of released orders.
They are

Lk = Average lead time planned for the delivery of orders at stage k of the
supply chain.

Fk = Average flow time of the orders at stage k of the supply chain.
ΔLk = Average squared deviation of the flow times from the planned lead

times at stage k of the supply chain.
Πk = Average percentage of orders that are tardy at stage k of the supply

chain.

We define the term ΔLk as the lead time error, since it reflects the level of
inconsistency between the outcome of the SCOP model and the result of the
capacity loading decisions at the operational scheduling level.

Summarized simulation outputs are presented in Tables 5.3 and 5.4 in the Ap-
pendix of this chapter. Table 5.3 presents the performance measures, and their
95% confidence intervals, related to the total cost of the supply chain. Table
5.4 presents the performance measures, and their 95% confidence intervals, re-
lated to the delivery of the released orders. The results for the statistical tests
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on these sets of simulation outputs are provided in Tables 5.5, 5.6, and 5.7 in
the Appendix of this chapter. Pairwise comparisons between different simula-
tion outputs are performed based on a t-distribution test (see Law and Kelton
(2000) for detail). Superscripts of ”�” and ”�” respectively indicate a 95%
and a 99% confidence level in the rejection of the hypothesis that the outputs
have the same distribution mean. In order to perform a reliable statistical sig-
nificance test, the corresponding sets of data should be closely correlated with
each other. The following abbreviations are used in the statistical analysis of
the simulation outputs:

cc = Correlation coefficient between the data sets that are going to be
compared to each other.

t-Stat = The corresponding t statistics value as a result of the t-test.
Δ%V L = The percentage of decrease in the corresponding performance

measure due to updating the lead times.
Δ%loose = The percentage of decrease in the corresponding performance

measure due to loose coupling.
Δ%ε = The percentage of decrease in the corresponding performance

measure due to modeling the clearing function with ε = 0.05.

The greater the t-Stat is, the larger the confidence level is that the two data
sets are coming from a distribution with different means.

Table 5.2: Coefficients of correlation between EI and TC, and Π1 and TC.

UD = 0%
Loose Tight

ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20
L = 2 EI − TC 0.99 0.99 0.99 0.99

Π1 − TC 0.16 0.22 0.00 0.01
L = 1, 2 EI − TC 0.99 0.99 0.99 0.99

Π1 − TC 0.15 0.32 −0.20 0.09
UD = 50%

Loose Tight
ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20

L = 2 EI − TC 0.99 0.99 0.99 0.99
Π1 − TC −0.15 −0.12 −0.21 −0.37

L = 1, 2 EI − TC 0.99 0.99 0.99 0.99
Π1 − TC 0.07 −0.16 −0.21 0.33

It is important to note that there is a very high positive correlation between the
highest-echelon inventory position and the total periodic cost incurred in the
supply chain (see Table 5.2). This means, in order to achieve an improvement
in the total cost one should concentrate on keeping less workload and less
finished items in the supply chain without sacrificing from the service level.
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This also implies that the relative behavior of the total cost term between
different cases is not very sensitive to changes in the unit cost parameters. In
addition, Table 5.2 shows that there is not an obvious correlation between the
percentage of orders that are tardy and the total cost of the supply chain. This
reveals the idea that the cost increasing effects of tardy orders are compensated
by other factors such as improved coordination of supply chain inventories in
accordance with changing demand.

Updating the lead times increases the safety stock, but only when a large ε is
used to model the clearing function. That is, Hypothesis 1 holds for large ε.
The t-Stat values for ε = 0.05 (see Table 5.5 in the Appendix of this chapter)
are all very close to zero yielding the argument that we cannot reject the idea
that the dynamic and the static case SS values have identical means. Under
ε = 0.20, we can state that the lead time update increases the safety stock.
The increase ranges from 5% to 15%. As the demand uncertainty increases or
as the hierarchical coupling becomes tight, the percentage of increase becomes
(relatively) less. An illustration of the SS values (in terms of the percentage
deviation from the minimum) is given in Figure 5.8 for UD = 0%. The mini-
mum SS value is achieved with loose coupling, ε = 0.05, and with fixed lead
times. A maximum of about 50% increase in the safety stock is seen when
coupling is tight, ε = 0.20, and the lead times are dynamic.

As shown in Table 5.5 in the Appendix of this chapter, Hypothesis 2 holds for
all cases. For the cases with tight coupling and ε = 0.20, the differences in TC
are not large but still at a reasonable level. The highest improvement of the
dynamic system is achieved for ε = 0.05 under loose coupling with UD = 0%
(see also Figure 5.8). As the coupling mechanism becomes tight the per-
centage of improvement in TC by updating the lead times decreases. Tight
coupling apparently increases the deteriorating effects of schedule changes on
the backorders in the dynamic case.

Another interesting result revealed by Figure 5.8 is that the decrease in TC is
still maintained when SS increases significantly with dynamic lead times, i.e.
the case with ε = 0.20. It gives the insight that although the nervousness in the
schedules and thus the variability in the final product stock levels are increased,
updating the lead times may still decrease the costs by better managing the
workload levels and keeping the planned delivery schedules realistic. A further
analysis on this issue should take into account the value adding structure
among the supply chain, which we believe is an interesting topic for future
research.

Under loose coupling, orders are introduced to the shop immediately after
they are released, whereas under tight coupling, capacity loading decisions
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Figure 5.8: SS and TC values with respect to their minimums, UD = 0%.

are given in a way to realize the planned deliveries. Although tight coupling
generates consistent planning outcomes, through reduced lead time errors,
the deterministic point-of-view of the SCOP model is carried onto the actual
execution of the orders through lower level capacity loading decisions. As a
result, the number of orders that are tardy increases substantially, and higher
final product inventory is kept due to significantly increased safety stock levels.
Despite the decrease in the upstream item inventory level, we can state that the
total amount of material kept in the supply chain increases, and the total cost
increases under tight coupling as illustrated by Figure 5.8. Thus, our claim in
Hypothesis 3 is supported. Table 5.6 in the Appendix of this chapter provides
the levels of improvements in EI and TC achieved due to loose coupling
between the SCOP and the operational scheduling levels. The difference is
greater in the dynamic case than it is in the static case, and it is smaller
under higher demand uncertainty. Loose coupling generates a safety factor
against the random deviations in the stock levels by releasing and producing
the orders earlier, which may become more important for the dynamic case by
smoothing the effects of schedule changes due to dynamically changing lead
times. As it is expected, the choice of ε plays a crucial role in determining the
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relative performance of tight and loose coupling. The tight coupling generates
higher costs as compared to the loose coupling when a larger ε is applied for
the clearing function. Loose coupling is most preferable when the lead times
are updated under UD = 0% and ε = 0.20. It is the situation where the effect
of schedule nervousness can be smoothed mostly through early production and
delivery of orders.

The value of ε indicates a manufacturing service level whether a target pro-
duction quantity in a period can be met or not. Table 5.7 in the Appendix of
this chapter provides the statistical results for the relative effect of different
ε values. A low ε value causes easily achievable periodic production levels be
planned at the SCOP level. Hypothesis 4 holds for almost all cases, except
the case with loose coupling and fixed lead times, where we expect ε does not
play any significant role at the operational scheduling level. Decreasing ε de-
creases the percentage of tardy orders by up to 7.73%. In the static case, ε is
mainly effective in determining the periodic production quantities. Thus, the
choice of ε in the static case is more important when there is tight coupling as
compared to the situation with loose coupling situation. SS and TC values
for different ε’s in Figure 5.8 supports this intuition. In the dynamic case, ε
plays a more important role by affecting the average planned lead times in
addition to the capacity loading decisions. The planned lead times decrease
as ε gets larger, and vice versa. The distribution of planned lead times is most
effective under loose coupling in determining the delivery performance. Thus,
low ε yields the biggest improvement on Π1 under dynamic lead times in a
planning system with loose coupling. In a dynamic system, the improvement
by low ε on Π1 decreases as the coupling becomes tight and as the demand
uncertainty increases.

As we can see in Table 5.2, the percentage of tardy deliveries is by itself not
a significant factor in determining the total cost of the supply chain. Thus,
in assessing the cost effects of a design variable, we should look at how the
workload and the finished items inventory changes. We see that the value of ε
does not play any significant role on TC in the static case under loose coupling.
This is intuitive from the fact that in such a case, the effects of ε on the
planned lead times and on the capacity loading levels are not transferred to the
executable decisions. Under tight coupling, large ε supports the production be
postponed to later periods for orders with long lead times causing an increase
in the average workload levels. As a result, in the static case with tight
coupling, a low ε value is preferable in terms of the total supply chain costs.
In the dynamic case, the highest improvement with low ε is 4.73%, and it is
achieved under tight coupling with UD = 0%. As the coupling becomes loose
or the demand uncertainty increases, the level of improvement in TC by low
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ε decreases. For UD = 50% and under loose coupling, the choice of ε fails to
generate a significant difference between the TC performances.

Figure 5.9: L1 and F1 values under UD = 0%.

One of the main characteristics of the dynamic case is that the coupling be-
tween the SCOP and the operational scheduling levels is already maintained by
fine-tuning demand and supply through updating the lead times at a higher
tactical level. By means of updating the lead times, the planned delivery
schedule of order releases is kept responsive to the anticipated production re-
quirements. If the requirements are smaller than a certain level, then shorter
lead times are planned for smaller order sizes, which are expected to be deliv-
ered shortly. Similarly, longer lead times are planned for larger orders. Thus,
a considerable improvement in the consistency between the planned lead times
and the flow times is achieved. This can be seen in Figure 5.9 where we il-
lustrate the average planned lead times and the average order flow times of
the final product for the deterministic demand situation. As one applies tight
coupling in the dynamic case, then the lead times and the flow times are ex-
pected to become longer. This is due to the increased workload levels under
tight coupling. When the lead times are fixed, tight coupling is more effective
in terms of decreasing ΔLk as compared to its effect in the dynamic case.
This is done by increasing the order flow times, since the planned lead times
are fixed. The use of dynamic planned lead times generates increased flow
times as compared to the static case when the coupling is loose. This is due to
the increased variability in the order sizes caused by the dynamic lead times.
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However, under tight coupling, the dynamic lead times have a reverse effect
that the flow times are shortened due to the decreased planned lead times as
compared to the static case.

In addition, tight coupling diminishes the difference between the static and the
dynamic cases in terms of the lead time error. Apparently, tight coupling aims
at realizing the delivery schedules as determined by the SCOP level whether
the lead times are fixed or not. The sensitivity of the lead time error on the
choice of the clearing parameter ε increases as one moves up in the supply
chain (see Table 5.4 in the Appendix of this chapter). This is due to the
smoothing effect of the upstream inventory on the downstream order releases
and due to the increased variability in the upstream order releases in response
to updating the downstream lead times. These insights are also supported by
the results provided in Section 2.2.2.

5.6 Conclusion

The contributions of this chapter can be discussed in various directions. First
of all, we have provided an effective procedure to set the planned lead times
of a supply chain operations planning system. The procedure has been de-
scribed in a general framework, and applied for a two-stage, two-item serial
structure. The concept of clearing function has been used as a basis in up-
dating the planned lead times. Thus, our second contribution is related to
this stream of literature. We have introduced the clearing parameter ε in ap-
proximating the clearing function. The results show various insights related
to high or low values of ε. Finally, we have contributed to the hierarchical
planning literature by modeling loose and tight coupling between the SCOP
and the operational scheduling levels. The results indicate that for situations
with stochastic production processes and with stochastic demand, the loose
coupling is favored over the tight coupling. The deterministic point of view at
a higher SCOP level should not be carried onto the execution related decisions
at a lower scheduling level. Our results in this chapter provide an extensive
discussion on the scope and the range of instructions from a higher decision
level to a lower decision level in the planning hierarchy.

The lead time update procedure described in this section can be applied to
general supply chain settings including more than two stages and complex
(convergent, divergent or mixed) product structures. The main idea is to start
from the top of the BOM and consider each level separately by making the
necessary substitutions as we have described in this chapter. For divergent
situations, the procedure may be applied without structural changes since
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each downstream item is associated to a single upstream item and the de-
mand explosion upstream through the supply chain can be easily traced. For
convergent situations, there is a positive correlation between the production
requirements of the upstream items that are used by the same downstream
item. Thus, a procedure for updating the lead times of a convergent sup-
ply chain may additionally have to consider this important aspect of demand
explosion.

Therefore, an immediate direction for further research is to update the planned
lead times for more complex production-distribution structures. The demand
seasonality remains to be an important system characteristic for such an at-
tempt, and the derivation of the clearing behavior for multi-item production
is still a complex task. In terms of modeling the clearing behavior, the rela-
tionship between the clearing parameter ε and the delivery reliability should
be further analyzed by concentrating on the interaction between the clearing
function and the order release pattern.



Appendix to Chapter 5 145

Appendix to Chapter 5

Table 5.3: Cost performance.

Loose Coupling
ε = 0.05 ε = 0.20

L = 2 L = 1, 2 L = 2 L = 1, 2
SS 232.5 ± 5.6 233.2 ± 5.5 233.9 ± 6.1 269.8 ± 5.8

I+
1 268.4 ± 5.0 253.1 ± 5.1 268.6 ± 5.6 255.5 ± 4.9

W1 27.5 ± 0.5 29.8 ± 05 27.1 ± 0.5 36.3 ± 0.5
UD TC1 524.3 ± 9.2 500.2 ± 9.3 524.2 ± 10.2 514.4 ± 9.2

� I+
2 61.9 ± 02 50.2 ± 0.4 62.6 ± 0.2 46.8 ± 0.4

0% W2 22.3 ± 03 24.0 ± 0.3 21.9 ± 0.3 26.6 ± 0.3
TC2 96.6 ± 03 84.3 ± 0.4 97.1 ± 0.4 82.7 ± 0.5
EI 380.1 ± 5.2 357.1 ± 5.4 380.3 ± 5.8 365.2 ± 5.3
TC 620.9 ± 9.3 584.5 ± 9.5 621.3 ± 10.3 597.1 ± 9.4
SS 341.6 ± 9.6 342.5 ± 9.7 345.8 ± 10.5 372.3 ± 10.0

I+
1 359.6 ± 9.0 343.6 ± 9.1 361.9 ± 9.9 339.8 ± 9.3

W1 30.6 ± 0.5 34.2 ± 0.5 30.2 ± 0.5 39.9 ± 0.4
UD TC1 693.2 ± 16.2 669.8 ± 16.4 696.8 ± 17.9 671.6 ± 16.8

� I+
2 65.3 ± 0.2 60.7 ± 0.3 66.1 ± 0.3 56.8 ± 0.5

50% W2 24.5 ± 0.4 28.3 ± 0.4 24.3 ± 0.4 30.3 ± 0.4
TC2 102.9 ± 0.4 101.2 ± 0.5 103.6 ± 0.4 98.5 ± 0.7
EI 480.0 ± 9.1 466.9 ± 9.2 482.5 ± 9.9 466.9 ± 9.4
TC 796.1 ± 16.3 771.1 ± 16.5 800.4 ± 17.9 770.1 ± 16.9

Tight Coupling
ε = 0.05 ε = 0.20

L = 2 L = 1, 2 L = 2 L = 1, 2
SS 310.3 ± 8.7 310.9 ± 8.1 327.2 ± 8.8 362.7 ± 8.3

I+
1 299.7 ± 7.9 297.0 ± 7.4 305.3 ± 8.0 315.9 ± 7.3

W1 48.8 ± 0.2 41.3 ± 0.3 53.4 ± 0.3 41.5 ± 0.4
UD TC1 612.6 ± 14.0 596.4 ± 13.3 629.6 ± 14.3 630.9 ± 13.3

� I+
2 35.6 ± 0.2 37.7 ± 0.3 34.5 ± 0.2 37.9 ± 0.2

0% W2 63.0 ± 0.3 54.1 ± 0.3 67.5 ± 0.2 53.9 ± 0.5
TC2 105.7 ± 0.4 99.3 ± 0.5 109.0 ± 0.4 99.3 ± 0.7
EI 447.0 ± 7.9 430.0 ± 7.6 460.7 ± 8.0 449.2 ± 7.7
TC 718.3 ± 14.1 695.8 ± 13.5 738.6 ± 14.4 730.3 ± 13.6
SS 425.7 ± 11.6 426.3 ± 11.1 444.8 ± 10.4 468.8 ± 11.9

I+
1 394.4 ± 10.5 390.3 ± 10.2 401.2 ± 9.6 402.8 ± 10.8

W1 48.3 ± 0.2 44.3 ± 0.3 52.9 ± 0.2 44.3 ± 0.4
UD TC1 782.5 ± 18.8 769.0 ± 18.3 801.6 ± 17.2 791.5 ± 19.3

� I+
2 43.0 ± 0.2 46.3 ± 0.2 41.8 ± 0.2 45.3 ± 0.3

50% W2 64.0 ± 0.3 59.3 ± 0.4 68.5 ± 0.3 59.2 ± 0.5
TC2 115.6 ± 0.5 114.9 ± 0.6 118.6 ± 0.4 113.5 ± 0.6
EI 549.8 ± 10.5 540.2 ± 10.2 564.4 ± 9.6 551.6 ± 10.8
TC 898.1 ± 18.9 883.9 ± 18.4 920.2 ± 17.3 905.0 ± 19.3
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Table 5.4: Delivery performance.

Loose Coupling
ε = 0.05 ε = 0.20

L = 2 L = 1, 2 L = 2 L = 1, 2
L1 2.00 ± 0.00 1.77 ± 0.00 2.00 ± 0.00 1.66 ± 0.01
F1 1.56 ± 0.01 1.62 ± 0.01 1.56 ± 0.01 1.73 ± 0.01

ΔL1 0.63 ± 0.00 0.38 ± 0.00 0.64 ± 0.00 0.31 ± 0.00
UD Π1 9.50 ± 0.34 11.54 ± 0.33 9.61 ± 0.33 19.27 ± 0.37
� L2 2.00 ± 0.00 1.71 ± 0.00 2.00 ± 0.00 1.54 ± 0.01

0% F2 1.51 ± 0.01 1.54 ± 0.00 1.50 ± 0.01 1.59 ± 0.00
ΔL2 0.61 ± 0.00 0.32 ± 0.00 0.62 ± 0.00 0.24 ± 0.00
Π2 5.81 ± 0.16 7.66 ± 0.15 5.91 ± 0.16 14.19 ± 0.25
L1 2.00 ± 0.00 1.86 ± 0.00 2.00 ± 0.00 1.74 ± 0.00
F1 1.63 ± 0.01 1.72 ± 0.01 1.63 ± 0.01 1.80 ± 0.01

ΔL1 0.59 ± 0.00 0.42 ± 0.00 0.60 ± 0.00 0.34 ± 0.00
UD Π1 10.97 ± 0.32 13.23 ± 0.30 11.21 ± 0.34 19.87 ± 0.28
� L2 2.00 ± 0.00 1.80 ± 0.00 2.00 ± 0.00 1.63 ± 0.01

50% F2 1.55 ± 0.01 1.64 ± 0.01 1.55 ± 0.01 1.66 ± 0.01
ΔL2 0.58 ± 0.00 0.34 ± 0.00 0.59 ± 0.00 0.26 ± 0.00
Π2 6.79 ± 0.21 8.85 ± 0.21 7.07 ± 0.20 14.21 ± 0.25

Tight Coupling
ε = 0.05 ε = 0.20

L = 2 L = 1, 2 L = 2 L = 1, 2
L1 2.00 ± 0.00 1.83 ± 0.00 2.00 ± 0.00 1.72 ± 0.00
F1 2.04 ± 0.00 1.87 ± 0.00 2.10 ± 0.00 1.86 ± 0.01

ΔL1 0.22 ± 0.00 0.22 ± 0.00 0.23 ± 0.00 0.25 ± 0.00
UD Π1 12.80 ± 0.20 13.36 ± 0.26 16.35 ± 0.31 18.94 ± 0.30
� L2 2.00 ± 0.00 1.80 ± 0.00 2.00 ± 0.00 1.67 ± 0.01

0% F2 2.17 ± 0.00 1.99 ± 0.00 2.21 ± 0.00 1.95 ± 0.01
ΔL2 0.23 ± 0.00 0.23 ± 0.00 0.27 ± 0.00 0.31 ± 0.00
Π2 19.60 ± 0.20 20.88 ± 0.22 23.72 ± 0.26 29.18 ± 0.29
L1 2.00 ± 0.00 1.91 ± 0.00 2.00 ± 0.00 1.79 ± 0.01
F1 2.03 ± 0.00 1.95 ± 0.00 2.10 ± 0.00 1.92 ± 0.01

ΔL1 0.24 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.26 ± 0.00
UD Π1 13.65 ± 0.23 14.41 ± 0.22 17.01 ± 0.30 19.29 ± 0.28
� L2 2.00 ± 0.00 1.88 ± 0.00 2.00 ± 0.00 1.75 ± 0.01

50% F2 2.19 ± 0.00 2.09 ± 0.01 2.24 ± 0.00 2.05 ± 0.01
ΔL2 0.25 ± 0.00 0.27 ± 0.00 0.29 ± 0.00 0.33 ± 0.00
Π2 21.92 ± 0.35 23.69 ± 0.35 26.15 ± 0.29 30.76 ± 0.32
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Table 5.5: Statistical significance tests for the static and the dynamic case SS,
EI and TC values.

SS
UD = 0% UD = 50%

Loose Tight Loose Tight
ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20

cc 0.96 0.73 0.95 0.91 0.97 0.92 0.97 0.91
Δ%V L −0.32 −15.33� −0.19 −10.84� −0.25 −7.65� −0.13 −5.40�
t-Stat 0.79 13.82 0.37 16.37 0.63 10.80 0.35 8.03

EI
UD = 0% UD = 50%

Loose Tight Loose Tight
ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20

cc 0.96 0.77 0.95 0.91 0.97 0.92 0.97 0.89
Δ%V L 6.04� 3.97� 3.81� 2.50� 2.74� 3.24� 1.75� 2.27�
t-Stat 25.40 6.73 11.41 5.89 10.10 6.77 6.76 4.40

TC
UD = 0% UD = 50%

Loose Tight Loose Tight
ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20

cc 0.96 0.76 0.95 0.91 0.97 0.92 0.97 0.89
Δ%V L 5.86� 3.89� 3.14� 1.13� 3.15� 3.79� 1.59� 1.65�

t-Stat 22.77 5.99 8.54 2.38 10.67 7.33 5.58 2.93

Table 5.6: Statistical significance tests between loose and tight coupling for
EI and TC values.

UD = 0% UD = 50%
ε = 0.05 ε = 0.20 ε = 0.05 ε = 0.20

L = 2 L = 1, 2 L = 2 L = 1, 2 L = 2 L = 1, 2 L = 2 L = 1, 2
cc 0.82 0.89 0.76 0.83 0.94 0.95 0.93 0.79

EI Δ%loose 14.97� 16.95� 17.46� 18.70� 12.69� 13.57� 14.51� 15.36�
t-Stat 24.33 33.44 26.16 32.34 31.55 38.96 37.98 21.77

cc 0.82 0.88 0.76 0.83 0.94 0.95 0.93 0.79
TC Δ%loose 13.55� 15.98� 15.88� 18.24� 11.36� 12.76� 13.02� 14.91�

t-Stat 19.77 28.19 21.23 28.71 25.67 33.62 30.48 19.39
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Table 5.7: Statistical significance tests between low and high ε for Π1 and TC
values.

UD = 0% UD = 50%
Loose Tight Loose Tight

L = 2 L = 1, 2 L = 2 L = 1, 2 L = 2 L = 1, 2 L = 2 L = 1, 2
cc 0.94 0.67 0.68 0.71 0.93 0.77 0.81 0.68

Π1 Δ%ε 0.11 7.73� 3.55� 5.58� 0.24� 6.64� 3.36� 4.88�
t-Stat 1.72 45.22 26.49 43.66 3.22 56.55 32.43 39.68

cc 0.94 0.86 0.89 0.91 0.97 0.89 0.86 0.89
TC Δ%ε 0.05 2.10� 2.75� 4.73� 0.53 −0.13 2.40� 2.34�

t-Stat 0.16 4.25 5.05 10.41 1.54 0.22 3.84 4.08



Chapter 6

Conclusion and Future
Research

The main topic of this thesis has been to evaluate the dynamic performance of
hierarchical planning systems with the emphasis on modeling and evaluation
of dynamic planned lead times. The method of rolling horizons is at the
core of our applied methodology because, it is very relevant from a real life
perspective, and it is a common planning methodology to deal with stochastic
events in a periodic planning environment. We have used it in fine-tuning the
outcomes of different planning levels and for implementing the relevant update
activities.

Discussion on the limitations of the traditional HPP methodology has been
carried over and comprehensive frameworks have been introduced in a concep-
tual manner by a few studies (e.g., Bertrand et al. (1990), and Schneeweiss
(1999)). In this thesis, we have extended those discussions, to a certain de-
gree, from a conceptual framework towards a more explicit framework consid-
ering issues related to implementation such as application of rolling horizons,
feedback of status information and updating of parameters, and the coupling
mechanism between different levels.

We have related our models and methodology to the design and implementa-
tion of commercial APS software. Thus, the insights we have delivered as part
of the contributions of this thesis are relevant inputs in configuring real-life
APS applications. These systems are supported by an advanced information
technology backbone, and it is claimed that any new information generated
by a planning module within APS can be automatically transferred to other
modules as an input. We wanted to extend the discussion further by posing
the question to what extent all the available information should be used to
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update plans and planning parameters.

The research conducted in this thesis can be separated into two related in-
terests, which are also associated respectively to our first and second research
questions. Firstly, we were interested in describing the performance conse-
quences of updating the planned lead times through experimental and ana-
lytical findings. Secondly, motivated by the common intuition that uncer-
tainty and workload levels are important determinants of actual flow times,
we were interested in developing an effective way of updating the lead times.
In conducting these studies, important design factors such as the frequency
of updating, the coupling mechanism, and the level of anticipation have to
be considered together with various environmental factors such as demand
uncertainty and utilization levels.

In the following, we briefly present our findings and discuss about further
research directions that would be initiated from this thesis.

6.1 Order Release Variability and Dynamic Lead
Times

Our attempts in understanding and describing the operational dynamics of
updating the planned lead times have resulted in a simulation study and an
analytical study that is based on queueing theory. We have employed naive
update procedures such as determining the lead times based on exponential
smoothing of order flow times, or based on the total number of orders waiting
in the production backlog. Through simulation we have shown that

• Common methods of updating the lead times generate erratic order releases
and large variation in inventory levels.

• More frequent updates or ignoring capacity constraints increase the deteri-
orating effect of dynamic planned lead times.

Although improved forecast accuracy is achieved by frequently updating the
lead times, the inherent variability in the order generating process is further
amplified through dynamic planned lead times. This phenomenon has concep-
tually been defined as the lead time syndrome in the literature. We wanted to
further analyze this phenomenon because, it has revealed an interesting cyclic
interaction between separate decision levels that can only be observed in a
dynamic setting through plan-execute-feedback-(re)plan cycles. For this pur-
pose, we have modeled a simplified situation by concentrating on the status
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of a single production unit. We have used analytic queueing constructs, and
derived the following insights:

• Updating the lead times increases the size of the production backlog, and
order flow times get longer.

• For a symmetric response function the utilization level in the static case is
retained in the dynamic case.

• The effect of updating the lead times increases with the update frequency
or with the utilization level.

We have shown that a multi-dimensional queueing model can be used to ana-
lyze planning systems with dynamic planned lead times, with one dimension
being the planned lead time and the other dimension being the backlog level
that changes depending on the lead time and on the stochastic behavior of the
system itself. This methodology can be extended to general settings to ana-
lyze planning systems in a plan-execute-feedback-(re)plan framework, where
the control parameter and the dependent variable may be observed simultane-
ously. However, one should overcome the challenge of finding an explicit rate
matrix for the matrix geometric representation in order to achieve closed form
solutions. The current state of the literature presents working techniques for
a limited class of QBD processes (see Ramaswami and Latouche (1986), and
Van Leeuwaarden and Winands (2005) for some examples).

In the studies we have conducted within the context of erratic orders releases
caused by dynamic lead times, the modeled situation is characterized by sta-
tionary demand and production processes where updating the planned lead
times is performed in response to random deviations in the system status.

Steady-state analysis of stationary situations are useful in characterizing the
performance consequences of various changes in the configuration of the plan-
ning system. In that respect, since we are generally interested in planning
supply chains, there are some interesting extensions to our models. First of
all, we have limited the explicit analysis of the lead time syndrome to the
workload level of the production unit. Our queueing model may be extended
to include inventory levels, and possibly relating the analysis to safety stock
calculations. In this way, the phenomenon of lead time syndrome can be de-
scribed in terms of its effects on the safety stocks.

Furthermore, considering that the consistency between the planned and the
actual delivery of orders can be improved by updating the lead times, there
occurs a tradeoff between improved service to downstream stages and increased
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variability in upstream operations. It is an interesting future research direction
to perform an in-depth analysis of this tradeoff (or to see if it really exists),
and interesting research questions may be raised such as at what stage of the
supply chain it is most effective to update the planned lead times. Especially,
the supply chain structure (convergent, divergent, or serial) or the value adding
structure within the supply chain play crucial roles in improving the discussion
on these issues.

6.2 Clearing Functions and Dynamic Lead Times

Zijm and Buitenhek (1996) pointed out an important limitation of static sys-
tems by saying that ”a major drawback of a fixed planned lead time is the
ignorance of the correlation between the actual workloads and the flow times
that can be realized under a limited capacity flexibility”. Considering different
levels within the planning hierarchy, we have discussed about how to model
the relation between workloads and flow times at an aggregate operational
planning level. The concept of clearing function has been defined in the lit-
erature for this purpose, mainly concentrating on the analysis of single-stage
manufacturing situations. We have extended the analysis to consider supply
chain situations with emphasis on the concept of planned lead times and the
associated order flow times. In addition, we have introduced a clearing func-
tion that is based on the short-term probabilistic analysis of the production
unit. We have argued that the clearing behavior, as an anticipation on the
operational dynamics of the production processes, modeled at a higher plan-
ning level should be based on a probability distribution determined jointly
by that level’s decision outcomes and the operational characteristics of lower
level execution systems. Through simulation we have tested and compared
the short-term clearing function with the established clearing functions in the
literature. We have shown that

• The shape of the clearing function is an important factor that affects the
consistency of the planned schedules with their executions.

• Applying a clearing function that is based on the short-term probabilistic
analysis improves the coordination of capacity loading and order release
decisions.

Our analysis on different clearing functions has revealed an interesting result
that there is a tradeoff between loading the production unit early with high
WIP levels causing early delivery of orders and keeping low WIP in the shop
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causing increased number of late deliveries. It is an interesting future research
direction to further analyze this tradeoff by considering the value adding struc-
ture of the supply chain. In conducting such an analysis it may be fruitful
to discuss the impact of the detailed clearing function shape instead of the
underlying modeling assumptions of the clearing function.

In addition, we have ignored the delay between the time that the production
unit is loaded with newly released raw materials and the time its effect on
the throughput level is actually realized. We have assumed that the capacity
loading decisions are effectuated within the period that they are given. An
extension to the established models may include a positive time-delay between
the moment that the production unit is loaded with raw materials and the
moment that its effect on the production output is realized. Such an analysis
would require considering detailed shop floor structures such as dedicated flow
lines with a number of bottleneck stations or dynamic job shops. Models of
clearing functions incorporating such detailed manufacturing situations have
not been available in the literature yet.

In developing an effective procedure to update the planned lead times, we
have utilized the idea that the clearing function is a useful tool in establish-
ing the correlation between workloads and flow times at a tactical planning
level. Our procedure is mainly based on the concept of lead time dependent
throughput rates (derived from a clearing function) and the concept of latest
stock-out period within the planning horizon. Simulation experiments have
been performed under non-stationary seasonal demand conditions. We have
shown that the proposed model is an effective way of responding to structural
changes in environmental conditions, and the performance depends on design
choices in configuring the planning hierarchy such as the specific shape of the
clearing function (through clearing parameter ε), and the coupling mechanism
between the operational planning and the capacity loading levels. We have
found the following:

• Updating the planned lead times by our procedure decreases the total
amount of material kept in the system. The dynamic lead times are less
effective when ε = 0.20 as compared to the case when ε = 0.05.

• Modeling the clearing function with ε = 0.20 increases the percentage of
tardy orders and decreases the average planned lead time as compared to
the case with ε = 0.05.

• Loose coupling is more effective than tight coupling in terms of decreased
safety stock levels and decreased tardy deliveries.

• Dynamic lead times are more effective under loose hierarchical coupling.
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The concept of hierarchical coupling plays a crucial role in designing planning
hierarchies because, it indicates the level of aggregation assumed at different
levels of the hierarchy. Hax and Meal (1975) modeled it by predefined aggre-
gation levels under deterministic assumptions. Since then, there have not been
more explicit discussions on this issue, especially for situations with stochastic
demand and production processes. In this thesis, we have included a certain
degree of flexibility in modeling the coupling mechanism between the opera-
tional planning and the capacity loading levels. We have shown that the effect
of hierarchical coupling on the system performance is not trivial, and further
formal analysis of this concept needs to be conducted. Traditional HPP mod-
els based on static performance evaluation (the result of the hierarchical plan-
ning system is compared to the result of the corresponding monolithic model)
suggest maintaining tight coupling. Our results suggest that loose coupling
should be applied when the performance is evaluated in a dynamic setting,
and when one assumes that demand and production processes are stochastic.
A combination of loose coupling and dynamically adjusting the planned lead
times performs best.

We have to indicate that the lead time setting procedure we have established
may not be the best possible technique, and there are future research oppor-
tunities to challenge our procedure. One alternative maybe to anticipate the
future workload levels through the probability distribution of demand and up-
date the probability distribution of demand periodically, and accordingly set
the planned lead times that best fit the given demand distribution and the
anticipated future workload levels.

Our discussion on the clearing parameter ε adds a new dimension to the current
literature on clearing functions that the problem of modeling the clearing
behavior is not only an issue related to the representation but also, it can be
considered as a design problem based on a given choice of parameter ε. In this
way, we can further enhance the discussion about ”realistic” clearing functions
towards ”optimal” clearing functions. In specific, as a future research question
we may ask, what is the value of the clearing parameter ε that provides the
lowest cost solution to a supply chain operations planning problem with given
cost parameters, lead times, and demand distribution. There are available
techniques such as simulation based optimization that may be used to tackle
such questions.

To sum up, this thesis contributes to the development of planning hierar-
chies evaluated and modeled in a dynamic framework. Our emphasis has been
on periodically updated planned lead times in a rolling horizon setting. In
this thesis, we have provided numerical insights both from analytical mod-
els and from simulation experiments to better understand the performance
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consequences of dynamic planned lead times and to pursue effective ways of
updating them. One may consider the content of this thesis as a set of initial
studies about an interesting, yet evolving and a challenging research topic.
This is about managing supply chain operations through dynamic and adap-
tive decision tools.

Planning and controlling supply chains is a complex task, and the development
of APS supported by advanced IT infrastructures has been directed to help
the practitioners make their decisions. There is a continuous change in market
requirements and operating conditions, and one has the possibility to adapt
APS using the data available from ERP systems. This brings forward new
challenges and opportunities in the design and implementation of APS in a
dynamic framework. This thesis provides formal results that are helpful in the
evaluation and development of new techniques to be used in configuring and
implementing adaptive APS in a rolling horizon setting.
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Glossary

APS : Advanced Planning Systems
ATP : Available to Promise
BOM : Bill of Materials
BOP : Bill of Processes
CFL : Capacitated Fixed Lead Time
CON : Constant Allowance
DRP : Distribution Requirements Planning
DSS : Decision Support Systems
ERP : Enterprise Resources Planning
FCFS : First Come First Serve
GFC : Goods Flow Control
HP : Hierarchical Planning
HPP : Hierarchical Production Planning
JIQ : Jobs in Queue
JIT : Just in Time
LTN : Long-Term Nonlinear
MES : Manufacturing Execution Systems
MIP : Mixed-Integer Programming
MP : Mathematical Programming
MRP : Material Requirements Planning
MRPII : Manufacturing Resources Planning
NOP : Number of Operations
QBD : Quasi Birth and Death
PPW : Processing Plus Waiting Time
RKM : Regular Knapsack Method
SCM : Supply Chain Management
SCOP : Supply Chain Operations Planning
SCP : Supply Chain Planning
STN : Short-Term Nonlinear
TL : Traditional Linear
TWK : Total Work Content
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Summary

Dynamic Performance of Hierarchical Planning Systems:
Modeling and Evaluation with Dynamic Planned Lead Times

Within the last few decades, supply chain practitioners have faced major chal-
lenges in planning manufacturing and logistics operations that are confronted
with a high degree of uncertainty as a result of highly dynamic market condi-
tions. At the same time, there has been a growing awareness on the potential
applications of rapid advances in data processing and communication technol-
ogy. As a result, the attention for new concepts and solution methodologies
has increased not only in business management but also in scientific com-
munity. Integration of various business units and improved coordination of
material and information flows along the supply chain have become essential
for the companies to stay competitive in the market. In response to these
conceptual requirements, advanced planning systems have been introduced,
which are constructed along the principles of hierarchical planning.

Hierarchical planning has been a predominant mode for production planning
both in academic research and in industrial practice. It is a management
philosophy that is based on the decomposition of a large complex planning
problem into small and manageable subproblems. Since the late seventies,
the research on hierarchical planning has evolved in various directions mainly
concentrating on perfect aggregation and disaggregation issues, and the ef-
ficiency of hierarchical decomposition with respect to monolithic models in
static (mostly deterministic) settings. There have been recent conceptual ad-
vances emphasizing the coordination of different production units and different
decision functions both from a material flow and from an information flow per-
spective. However, the research on the dynamic performance of hierarchical
planning systems is quite scarce.

The word dynamic refers to plan-execute-feedback-(re)plan cycle. That is, the
planning process is described as a series of decisions taken consecutively in
time, and additionally, the planning parameters are subject to changes during
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the course of time. Accordingly, the performance evaluation is conducted in
a dynamic setting. The performance of the planning decisions given for a
single problem instance is not only evaluated based on the status information
at the time of decision, but based on their effects on the actual system status
changing through time, about which exact information is not available at
the time of decision. This aspect becomes essential if there is considerable
variability and uncertainty in the demand and production processes. From a
practical point of view, rolling horizons are used to keep the system status
up-to-date. For an APS that is based on data from an ERP system, all the
relevant information e.g. stocks, work-in-process, etc. that is needed to update
the plan is continuously available.

There is a positive duration of time between the moment that an order is
released to its production unit and that order is available in its stock point,
which is referred to as flow time. In planning the release of orders, the flow
time is represented by a parameter, which is referred to as planned lead time.
In coordinating the flow of materials in a supply chain, planned lead times are
indispensable. The traditional approach is to consider the planned lead times
as fixed inputs, exogenous to the planning system. However, flow times are
generally not fixed, and depend on various factors such as the level of process
uncertainty, the workloads in the production units, capacity flexibility, and the
sizes of the released orders. It can therefore be argued that status feedback
can be used to anticipate the flow times of order releases. It is interesting to
consider updating the planned lead times regularly in order to represent the
dynamic characteristics of flow times in the planning system.

In this thesis, our objective is to shed some formal light on the dynamic perfor-
mance of hierarchical planning systems, where our focus is on the coordination
of the flow of materials in a supply chain using dynamic planned lead times.
The hierarchical planning systems constructed in this thesis are mainly com-
posed of three different decision levels:

• Tactical Planning : Planned lead times for each item are determined at this
level as integer multiples of a period.

• Operational Planning : An MP formulation is provided to decide on peri-
odic order releases, production quantities, and stock levels for each item
to satisfy periodic demand forecasts. The objective is to minimize mate-
rial holding costs given that a target service level (e.g., demand fill rate) is
achieved.

• Operational Scheduling : Detailed, execution related decisions such as sched-
ule of released orders at each production unit based on the given planned
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lead times, and quantities of materials to be loaded to the shop floor at
each production unit are given in a decentralized manner.

The performance is measured along two lines:

• External : Expressed in terms of the average (periodic) costs such that a
predefined customer service level is met.

• Internal : Measures the level of consistency between the higher and the
lower level planning outcomes.

Related to the use of status feedback and the integration of different decision
levels within the planning hierarchy, three different factors that determine the
dynamic performance are considered. These are:

• The frequency of updating the planned lead times.

• Anticipation on the characteristics of the production processes, which are
controlled by lower level planning decisions.

• The type of coupling between the higher and the lower level decision models
in the planning hierarchy.

In the thesis, we first describe the performance consequences of updating the
planned lead times. Then, we model dynamic planned lead times such that the
relationship between workload levels, throughput quantities, and flow times
is considered to realize effectiveness in the flow of materials within a supply
chain.

As a first step, using simulation, we show the effects of updating the planned
lead times in a multi-stage production-inventory situation. A two-stage serial
supply chain is considered, where only the final product planned lead times are
updated based on exponentially smoothed averages of the history of actual flow
times. Exponential smoothing is considered as a relevant method in estimating
the flow times due to a high level of correlation between the flow times of
consecutive orders especially when the scheduling discipline is FCFS. Our
results indicate that frequently updating the planned lead times leads to erratic
order releases with large variation in inventory levels and very long planned
lead times. This phenomenon has conceptually been defined as lead time
syndrome in the literature, and we provide a formal analysis concentrating on
the update frequency and the anticipation on production capacity.

We enhance the discussion on the lead time syndrome by providing an ana-
lytical evaluation of the phenomenon. A single-stage, single-item produce-to-
order situation is considered with the order releases sensitive to the planned
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lead time, which is determined according to the number of jobs present in the
system. The situation is modeled by a two-dimensional Markov process that
is solved by using the matrix-geometric methods. Analytical results on the
utilization level and the variability in the system are presented in relation to
various design parameters such as the update frequency, and the degree with
which the planning system responds to changes in the planned lead time. We
have achieved closed form solutions yielding insights that the static utiliza-
tion level is retained in the dynamic case irrespective of the update frequency
when the response function is symmetric, the average backlog size is bigger
for higher update frequencies, and on average, jobs spend more time in the
system in the dynamic case.

It is shown that updating the planned lead times in planning and coordi-
nating the flow of materials in a supply chain is a challenging task. Naive
approaches based on exponential smoothing of realized order flow times, or
simple workload dependent rules do not work. In a hierarchical planning sys-
tem employed in a dynamic setting, the planned lead times that are updated
at a higher-level and used to release the orders at a lower-level may cause
erratic order releases and increased congestion in the production unit. Thus,
there is need for developing more advanced tools to consider the dynamic be-
havior of production processes in releasing the orders. For this purpose, we
use the concept of clearing function to anticipate the flow times of planned
order releases, and determine appropriate production quantities at the opera-
tional planning level. We first provide a detailed understanding on the relative
effects of different clearing functions when the planned lead times are fixed.
A single-item produced in a production unit and kept in a stock point facing
a stochastic non-stationary demand is considered. Using simulation, clearing
functions arising from different modeling approaches are tested based on the
internal and the external performance measures. The results indicate that
modeling the clearing of WIP should be based on the short-term operational
dynamics of the production unit.

Following, we provide insights into the effectiveness of updating the planned
lead times of a supply chain in a hierarchical planning context using the clear-
ing function concept. A two-stage serial supply chain is considered, where
the capacity loading decisions are separated from the order release decisions,
and depend on the hierarchical coupling mechanism. Final product demand is
non-stationary, and follows a seasonal pattern. A parameter ε is introduced in
modeling a piecewise-linear approximation of the clearing function. Through
ε, various anticipation approaches on the production processes can be imple-
mented. Simulation experiments are performed for dynamic and fixed planned
lead times under changing demand uncertainty, clearing structure and hier-
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archical coupling. The results indicate that, in conjunction with the concept
of clearing, updating the planned lead times provides the flexibility under
fluctuating demand conditions, and generates less costly solutions.

The results presented throughout the thesis indicate the need for further re-
search about planning supply chain operations through dynamic and adap-
tive decision tools. We suggest some ideas for future research topics such as
extending the analysis on the lead time syndrome to multi-stage production-
inventory situations, enhancing the discussion on realistic clearing functions
towards optimal clearing functions by further elaboration of the parameter ε,
and developing more efficient updating procedures for planned lead times.





Samenvatting

Dynamische Prestatie van Hiërarchische Planning Systemen:
Modellering en Evaluatie met Dynamische Geplande Doorlooptijden

In de laatste decennia worden eigenaren van logistieke ketens geconfronteerd
met grote uitdagingen in productieplanning. Logistieke operaties worden in
toenemende mate gekarakteriseerd door een hoge mate van onzekerheid die
het gevolg is van dynamische marktcondities. Tegelijkertijd is er een groeiend
bewustzijn van de potentile toepassing in de logistiek van de snelle vooruit-
gang in dataverwerking en communicatietechnologie. Het gevolg is dat de
aandacht voor nieuwe planningsconcepten en oplossingsmethodieken sterk zijn
toegenomen, niet alleen in het bedrijfsleven, maar ook in de wetenschappeli-
jke wereld. Integratie van verschillende business units en verbeterde materi-
aalcoördinatie en informatiestromen langs de logistieke keten is voor bedrijven
essentieel geworden om in de markt concurrerend te blijven. Als antwoord op
deze conceptuele eisen zijn geavanceerde planningssystemen (Advanced Plan-
ning Systems - APS) ontwikkeld op basis van de principes van hiërarchische
productieplanning.

Hiërarchische productieplanning is een planningsconcept dat zowel in het weten-
schappelijk onderzoek als in de bedrijfspraktijk op grote schaal wordt toegepast.
De gedachte is dat grote complexe planningsproblemen worden gedecomponeerd
in kleinere beheersbare subproblemen. Sinds het eind van de jaren zeventig
heeft het onderzoek over hiërarchische productieplanning zich met name op
technische zaken geconcentreerd, zoals het perfect aggregeren en disaggregeren,
en de efficiëntie van gedecomponeerde modellen ten opzichte van monolithis-
che modellen in statische (en meestal deterministische) situaties. Meer recent
is er vooruitgang bereikt in vraagstukken die de coördinatie van verschillende
productie-eenheden en verschillende beslissingsfuncties bestuderen, zowel va-
nuit het perspectief van de goederenstroom als de informatiestroom.

Het woord dynamisch refereert naar een plan-uitvoer-terugkoppeling-(her)plan
cyclus. Daarbij is het planningproces beschreven als een serie, in tijd achtereen-
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volgende, beslissingen. De planningsparameters zijn onderhevig aan veran-
deringen. Vandaar dat de prestatie-evaluatie in een dynamische setting dient
plaats te vinden. De prestatie van planningsbeslissingen voor een enkel prob-
leemgeval is niet alleen geëvalueerd op basis van de toestandsinformatie op
het moment van de beslissing, maar ook op basis van het effect op de feitelijke
systeemtoestand die continu verandert en waarover geen exacte informatie
beschikbaar is op het beslissingsmoment. Dit aspect is met namen belangrijk
is situaties waarin de vraag en de productieprocessen gekarakteriseerd worden
door onzekerheid. Wanneer er onderzekerheid in de omgeving is, wordt er in de
bedrijfspraktijk meestal een rollende horizon gebruikt om de systeemtoestand
up-to-date te houden. Voor een Advanced Planning Systeem dat gekoppeld is
aan de data uit een ERP-systeem is alle relevante informatie (bijv. voorraden,
onderhanden werk, etc.) die nodig zijn om het plan te herzien min of meer
continu beschikbaar.

Er is een positieve tijdsduur tussen het moment dat een order is vrijgegeven
naar de productie-eenheid en het moment waarop die order beschikbaar is
in het voorraadpunt; deze tijd noemen we flow time. Bij het plannen van
ordervrijgave wordt de flow time weergegeven als een besturingsparameter;
deze besturingsparameter noemen we planned lead time (geplande doorloop-
tijd). Bij het coördineren van de materiaalstroom in een logistieke keten zijn
geplande doorlooptijden onmisbaar. Traditioneel worden de geplande door-
looptijden gezien als vaste invoerwaarden, exogeen aan het planningssysteem.
Echter, flow times hebben geen vaste waarde en zijn afhankelijk van ver-
schillende factoren zoals de mate van procesonzekerheid, de werklast in de
productie-eenheden en de grootte van de vrijgegeven orders. Er kunnen dus
argumenten bestaan om status feedback te gebruiken om te anticiperen wat
de flow time zal zijn van nog vrij te geven orders. Daarnaast is het boven-
dien interessant om te bezien of de geplande doorlooptijden regelmatig kunnen
worden herzien teneinde de dynamische eigenschappen van de flow time in het
planningssysteem te modelleren.

De doelstelling van dit proefschrift is om een formele analyse te maken van
de dynamische prestatie van hiërarchische planningssystemen. Daarbij ligt
de nadruk op de coördinatie van de materiaalstroom in een logistieke keten,
gebruik makend van dynamische geplande doorlooptijden. De hiërarchische
planningssystemen die in dit proefschrift geanalyseerd worden, zijn opgebouwd
uit drie verschillende beslissingsniveaus:

• Tactische planning : Geplande doorlooptijden worden op dit beslissingsniveau
voor elk item bepaald (in een geheeltallig aantal tijdsperioden).

• Operationele planning : Een mathematisch-programmeringsformulering is
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opgesteld om te beslissen over periodieke ordervrijgaven, productiehoeveel-
heden en voorraadniveaus voor elk item om aan periodieke voorspellingen
van de vraag te voldoen. De doelstelling is om voorraadkosten te mini-
maliseren gegeven dat een bepaalde service niveau behaald wordt.

• Operationele scheduling : Gedetailleerde, uitvoeringsgerelateerde beslissin-
gen, zoals het plannen van vrijgegeven orders bij elke productie-eenheid;
dit is gebaseerd is op de reeds op het tactische niveau vastgestelde geplande
doorlooptijden en de op operationele planningsniveau vastgestelde mate-
riaalhoeveelheden die vrijgegeven worden naar de productievloer. Deze
vrijgave gebeurt gedecentraliseerd voor elke productie-eenheid.

De prestatie wordt volgens twee lijnen gemeten:

• Extern: Uitgedrukt in termen van de gemiddelde (periodieke) kosten zo-
danig dat een van te voren vastgestelde leverbetrouwbaarheid wordt be-
haald.

• Intern: De mate van consistentie tussen het hogere en lagere planningsniveau
resultaat.

In verband met het gebruik van terugkoppeling van toestandsinformatie en de
integratie van verschillende beslissingsniveaus binnen de planningshiërarchie
worden drie verschillende factoren in beschouwing genomen die de dynamische
prestatie benvloeden. Deze factoren zijn:

• De frequentie van het herzien van de doorlooptijden.

• Anticipatie op de karakteristieken van de productieprocessen die beheerst
worden door planningsbeslissingen op een lager niveau.

• Het type van koppeling tussen het hogere en lagere niveau beslissingsmod-
ellen in de planningshiërarchie.

In het proefschrift beschrijven we eerst de gevolgen van het updaten van de ge-
plande doorlooptijden. Daarna modelleren we dynamische geplande doorloop-
tijden zodanig dat de relatie tussen de bezettingsgraden, doorzethoeveelheden
en de flow times wordt meegenomen om tot een betere prestatie te komen van
de materiaalstroom.

Als een eerste stap, gebruik makend van simulatie, laten we de effecten zien
van het updaten van de geplande doorlooptijden in een meerniveau productie-
voorraadsituatie. Een twee-niveau seriële logistieke keten wordt in beschouwing
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genomen, waarbij alleen de geplande doorlooptijden van het eindproduct wor-
den herzien op basis van exponentieel gedempte gemiddeldes van historische
gerealiseerde flow times. We gebruiken exponential smoothing om de flow
times te schatten omdat er een sterke correlatie bestaat tussen de flow times
van opeenvolgende orders, vooral indien de orders volgens FCFS worden ge-
pland. Onze resultaten wijzen erop dat frequente herziening van geplande
doorlooptijden leidt tot onregelmatige ordervrijgaven met hoge variatie van
voorraadniveaus en hele lange geplande doorlooptijden. Dit fenomeen wordt
in de literatuur conceptueel gedefinieerd als doorlooptijdsyndroom, en we geven
een formele analyse die zich concentreert op de frequentie van herziening en
het anticiperen op productiecapaciteit.

We breiden de discussie over het doorlooptijdsyndroom uit met een analytische
evaluatie van het verschijnsel. Een één-niveau, één-item productie op order sit-
uatie is beschouwd waarbij de ordervrijgave gevoelig is voor de geplande door-
looptijd. De situatie is gemodelleerd aan de hand van een twee-dimensionaal
Markov-proces dat opgelost is door gebruik te maken van matrix-geometrische
methoden. Analytische resultaten van de bezettingsgraad en de variabiliteit in
het systeem worden gepresenteerd in relatie tot verschillende ontwerpparam-
eters zoals de herzieningsfrequentie en de mate waarin het planningssysteem
reageert op veranderingen in de geplande doorlooptijd. We bereiken oplossin-
gen in gesloten vorm die laten zien dat de bezettingsgraad wordt gehandhaafd
in een dynamische situatie onafhankelijk van de herzieningsfrequentie wanneer
de responsfunctie symmetrisch is, dat de gemiddelde orderachterstand groter
wordt voor hogere herzieningsfrequenties, en dat gemiddeld orders langer in
het systeem verblijven in de dynamische situatie.

We laten zien dat het updaten van de geplande doorlooptijden in het plannen
en coordineren van de materiaalstroom in een logistieke keten een lastige taak
is. Näıeve benaderingen die zijn gebaseerd op het exponentieel dempen van ge-
realiseerde order flow times, of eenvoudige werklastafhankelijke regels werken
niet. In een hiërarchisch planningssysteem onder dynamische omstandigheden
kunnen de geplande doorlooptijden die op een hoger niveau worden gewijzigd
en worden gebruikt om op een lager niveau de vrijgave te regelen, leiden tot
zeer onregelmatige ordervrijgaves en toenemende congestie op de werkvloer.
Er is dus een noodzaak tot het ontwikkelen van meer geavanceerde hulpmid-
delen die het dynamische gedrag van productieprocessen meenemen bij de
ordervrijgavebeslissing. Hiertoe gebruiken we het clearing function concept
om op de flow times van de geplande ordervrijgaves te anticiperen, en om de
goede productiehoeveelheden op het operationele niveau vast te stellen. Hier-
bij geven we initieel inzicht in het effect van verschillende clearing functions bij
vaste geplande doorlooptijden. We beschouwen een enkel item geproduceerd
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in een productie-eenheid en op voorraad gehouden in een voorraadpunt dat
onderhavig is aan stochastische niet-stationaire vraag. Gebruikmakend van
simulaties zijn clearing functions getest op basis van de interne en externe
prestatiematen die verschijnen vanuit verschillende modelleringmethodieken.
De resultaten wijzen erop dat modellering van de clearing van onderhanden
werk gebaseerd moet zijn op de korte termijn operationele dynamiek van de
productie-eenheid.

Aansluitend verschaffen we inzichten in de effectiviteit van herziening van de
geplande doorlooptijden van een logistieke keten in een hiërarchische plan-
ningscontext, daarbij gebruikmakend van het clearing function concept. Een
twee-niveau seriële logistieke keten is in beschouwing genomen waar de ca-
paciteitsbeladingsbeslissingen onderscheiden worden van ordervrijgavebeslissin-
gen en afhankelijk zijn van het hiërarchische koppelingsmechanisme. Eindpro-
ductvraag is niet stationair en heeft een seizoenspatroon. De parameter ε is
gëıntroduceerd in het modelleren van een piecewise lineaire benadering van
de clearing function. Door ε kunnen verschillende anticipatie-methodieken
voor productieprocessen worden gëımplementeerd. Simulatie-experimenten
zijn uitgevoerd voor dynamische en vaste geplande doorlooptijden onder ve-
randerende vraagonzekerheid, clearing structuur en mate van hiërarchische
koppeling. De resultaten wijzen erop dat in combinatie met het concept van
clearing, herziening van de geplande doorlooptijden flexibiliteit verschaft onder
fluctuerende vraagcondities en minder kostbare oplossingen genereert.

Onze resultaten geven de noodzaak aan van additioneel onderzoek over oper-
ationele planning van logistieke ketens door dynamische en adaptieve besliss-
ingsgereedschappen. We suggereren enige ideeën voor verder onderzoek zoals
de uitbreiding van de analyse van het doorlooptijdsyndroom naar meer-niveau
productie-voorraad situaties, versterking van de discussie over realistische clear-
ing functions naar optimale clearing functions door verdere uitwerking van de
parameter ε en ontwikkeling van herzieningsprocedures.
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