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Abstract

This paper deals with the analysis of Hamiltonian Hopf bifurcations in 4-DOF sys-
tems defined by perturbed isotropic oscillators (1-1-1-1 resonance), in the presence
of two quadratic symmetries I1 and I2. The model is a generalization of the classi-
cal models obtained from regularized Kepler systems describing the parallel Stark
and Zeeman effects. After normalization the truncated normal form gives rise to
an integrable system which is analyzed using reduction to a one degree of freedom
system. The Hamiltonian Hopf bifurcations are found using the ‘geometric method’
set up by one of the authors.

1 Introduction

In this paper we will consider on R8 with the standard symplectic form the Hamiltonian
system with Hamiltonian

H = 1
2
(Q2

1 + Q2
2 + Q2

3 + Q2
4) + 1

2
ω2(q2

1 + q2
2 + q2

3 + q2
4)

+ ε
[
λ (q2

1 + q2
2 + q2

3 + q2
4)(−q2

1 − q2
2 + q2

3 + q2
4) (1)

+ 4 (q2
1 + q2

2 + q2
3 + q2

4){(q1q4 − q2q3)
2 + (q1q3 + q2q4)

2}] ,
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which admits the integrals

I1 = (q1Q2 −Q1q2) + (q3Q4 −Q3q4) , (2)

I2 = −(q1Q2 −Q1q2) + (q3Q4 −Q3q4) . (3)

We are interested in enlarging the studies done in relation to the 1-1-1 resonance in
[4, 9, 10, 11, 12, 13, 14, 15]. Especially we will determine te presence of Hamiltonian Hopf
bifurcations following the methods of [13, 14, 15].

In section 2 we will put the system (1) into normal form with respect to H2. After
truncation at order six this system is reduced with respect to the S1-action given by the
flow of the Hamiltonian vector field corresponding to H2. In 1970 Moser [21] showed that
the reduced phase space in this case will be CP3.

In section 3 a second reduction is performed with respect to the S1-action given by the
flow of the Hamiltonian vector field corresponding to I1. We show that the reduced phase
space is S2 × S2 which, when I1 = 0, is, with its Poisson structure, precisely the same as
the reduced phase space obtained for normalized perturbed Keplerian systems that have
been immersed in 4-D through the Kustaanheimo-Stiefel [17] or Moser [21] regularization
transformation [1, 19, 20, 2, 5, 6]. The Hamiltonian (1) is chosen in such a way that it
includes the parallel Stark-Zeeman Hamiltonians modeling the hydrogen atom.

In section 4 we will perform a further reduction with respect to the third integral I2

obtaining a one-degree-of-freedom sytem on a two dimensional reduced phase space.

In the final section we will show that Hamiltonian Hopf bifurcations are present by in-
vestigating the tangency of the level surfaces of the reduced Hamiltonian at the conic
singular points of the reduced phase space.

2 Normalization and reduction with respect to the

oscillatory symmetry.

Let us consider the system defined by (1).

There are 16 invariants for the action corresponding to H2:

π1 = Q2
1 + q2

1 , π2 = Q2
2 + q2

2 , π3 = Q2
3 + q2

3 ,

π4 = Q2
4 + q2

4 , π5 = Q1Q2 + q1q2 , π6 = Q1Q3 + q1q3 ,

π7 = Q1Q4 + q1q4 , π8 = Q2Q3 + q2q3 , π9 = Q2Q4 + q2q4 ,

π10 = Q3Q4 + q3q4 , π11 = −Q1q2 + q1Q2 , π12 = −Q1q3 + q1Q3 ,

π13 = −Q1q4 + q1Q4 , π14 = −Q2q3 + q2Q3 , π15 = −Q2q4 + q2Q4 ,

π16 = −Q3q4 + q3Q4 .
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These invariants can be easily derived using complex conjugate co-ordinates. The normal
form of H with respect to H2 can now be expressed in these invariants and are given by

H̄λ =
1

16
(λ (12 n (−π1 − π2 + π3 + π4) + 8 (π11 − π16) (π11 + π16)))

+
1

16
(n (−6 (π1 + π2 − π3 − π4)

2 + 16 (π7 − π8)
2 + 16 (π6 + π9)

2 − 16 (π13 − π14)
2

− 16 (π12 + π15)
2 − 8 (π11 − π16)

2 − 8 (π11 + π16)
2)) (4)

+
1

2
((π1 + π2 − π3 − π4) (π11 − π16) (π11 + π16))

The invariants are subjected to the following relations, defining the first reduced phase
space:

π1π2 = π2
5 + π2

11, π1π3 = π2
6 + π2

12, π1π4 = π2
7 + π2

13,
π2π3 = π2

8 + π2
14, π2π4 = π2

9 + π2
15, π3π4 = π2

10 + π2
16,

π1π8 = π5π6 + π11π12 π1π14 = π5π12 − π6π11

π1π9 = π5π7 + π11π13 π1π15 = π5π13 − π7π11

π1π10 = π6π7 + π12π13 π1π16 = π6π13 − π7π12

π2π6 = π5π8 − π11π14 π2π12 = π5π14 + π8π11

π2π7 = π5π9 − π11π15 π2π13 = π5π15 + π9π11

π2π10 = π8π9 + π14π15 π2π16 = π8π15 − π9π14

π3π5 = π6π8 + π12π14 π3π11 = π8π12 − π6π14

π3π7 = π6π10 − π12π16 π3π13 = π10π12 + π6π16

π3π9 = π8π10 − π14π16 π3π15 = π10π14 + π8π16

π4π5 = π7π9 + π13π15 π4π11 = π9π13 − π7π15

π4π6 = π7π10 + π13π16 π4π12 = π10π13 − π7π16

π4π8 = π9π10 + π15π16 π4π14 = π10π15 − π9π16

π5π10 = π7π8 + (π13π14 + π11π16) π10π11 + π5π16 = π8π13 − π7π14

π6π9 = π7π8 − (π13π14 − π12π15) π9π12 + π6π15 = π7π14 + π8π13

π1 + π2 + π3 + π4 = 2n

(5)

This provides an orbit mapping for the S1-action generated by H2

ρ1 : R8 → R16; (q1, q2, q3, q4, Q1, Q2, Q3, Q4) → (π1, · · · , π16)

The relations define a 6 dimensional reduced phase space in the target space of this
orbit mapping which is isomorphic to CP3. See [21], [3] for a presentation of the n
dimensional case. Because the reduction is regular the above relations define CP3 as a
smooth submanifold of R16.
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3 Reduction with respect to I1. The space S2
n+ζ×S2

n−ζ

To further reduce from CP3 to S2
n+ζ × S2

n−ζ one will have to fix I1 = ζ and divide out the
S1-action generated by I1. This can be done by expressing everything in the 8 invariants
of the I1-action on R8:

H2 = 1
2
(π1 + π2 + π3 + π4) , I1 = π11 + π16 ,

l1 = I2 = −π11 + π16 , l2 = π12 + π15 ,

l3 = −π13 + π14 , k1 = 1
2
(−π1 − π2 + π3 + π4) ,

k2 = −π7 + π8 , k3 = −π6 − π9 .

This provides an orbit mapping

ρ2 : R16 → R8; (π1, · · · , π16) → (k1, k2, k3, l1, l2, l3, H2, I1)

There are 2+2 relations defining the second reduced phase space:

k2
1 + k2

2 + k2
3 + l21 + l22 + l23 = H2

2 + I2
1 ,

k1l1 + k2l2 + k3l3 = H2I1 ,

I1 = ζ, H2 = n,

with n ≥ 0 and n ≥ ζ. Note that

H2 − I1 = 1
2

(
(q1 −Q2)

2 + (q2 + Q1)
2 + (q3 −Q4)

2 + (q4 + Q3)
2
) ≥ 0.

The relations define a 4 dimensional reduced phase space of (k1, k2, k3, l1, l2, l3)-space given
by

k2
1 + k2

2 + k2
3 + l21 + l22 + l23 = n2 + ζ2 ,

k1l1 + k2l2 + k3l3 = nζ ,

If we define coordinates (σ1, σ2, σ3, δ1, δ2, δ3) by σi = l1+k1 and δi = li−ki with i = 1, 2, 3,
then we have

σ2
1 + σ2

2 + σ2
3 = (n + ζ)2

δ2
1 + δ2

2 + δ2
3 = (n− ζ)2

Thus we see that the reduced phase space is isomorphic to S2
n+ζ × S2

n−ζ . The brackets
for the invariants (k1, k2, k3, l1, l2, l3) which define the Poisson structure on the orbit space
and the symplectic structure on the reduced phase space are given Table 1.

From (4) the twice reduced Hamiltonian, modulo constants, is given by

¯̄Hλ = λ(
3

2
nk1 − 1

2
ζl1) + n(−3

2
k2

1 + k2
2 + k2

3 −
1

2
l21 − l22 − l23) + ζk1l1. (6)
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{, } k1 k2 k3 l1 l2 l3

k1 0 −2l3 2l2 0 −2k3 2k2

k2 2l3 0 −2l1 2k3 0 −2k1

k3 −2l2 2l1 0 −2k2 2k1 0
l1 0 −2k3 2k2 0 −2l3 2l2
l2 2k3 0 −2k1 2l3 0 −2l1
l3 −2k2 2k1 0 −2l2 2l1 0

Table 1: The bracket relations for (k1, k2, k3, l1, l2, l3)

The reduced system is a two-degree-of-freedom system on a four-dimensional phase space.
In addition the system has remaining integral I2 = l1. We will reduce to a one-degree-of-
freedom system using the action generated by I2 which is now renamed as l1.

Note that when ζ = 0 the reduced phase space in the coordinates (σ, δ) is S2
n × S2

n.
Together with the Poisson bracket for σ and δ this is precisely the phase space which is
obtained for perturbed Keplerian systems [20], [2], [5].

4 Third reduction with respect to l1. The space Vn ζ a.

To further reduce from S2
n+ζ × S2

n−ζ to Vn ζ a one divides out the S1-action generated by
l1 and fixes l1 = a. The 8 invariants for the l1 action on R8 are:

H2 , I1 , I2 = l1 , K = k1 ,

X = 1
2
(k2

2 + k2
3) , Y = 1

2
(l22 + l23) , Z = k2l2 + k3l3 , S = k2l3 − k3l2 .

There are 3+3 relations defining the third reduced phase space:

K2 + 2X + l21 + 2Y = H2
2 + I2

1 ,

Kl1 + Z = H2I1,

4XY = Z2 + S2,

H2 = n, I1 = ζ, l1 = a.

However, it is more convenient to use the following invariants and relations

H2, I1, I2 = l1, K = k1, M = X + Y, N = X − Y, Z = k2l2 + k3l3, S = k2l3 − k3l2.
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{, } M N Z S K l1
M 0 4KS 0 −4KN 0 0
N −4KS 0 −4l1S −4(KM − l1Z) 4S 0
Z 0 4l1S 0 −4l1N 0 0
S 4KN 4(KM − l1Z) 4l1N 0 −4N 0
K 0 −4S 0 4N 0 0
l1 0 0 0 0 0 0

Table 2: The bracket relations for M, N, Z, S,K, l1.

With relations

K2 + l21 + 2M = H2
2 + I2

1 ,

Kl1 + Z = H2I1 ,

M2 −N2 = Z2 + S2 ,

l1 = a, I1 = ζ, H2 = n. (7)

This provides an orbit mapping

ρ2 : R8 → R8; (k1, k2, k3, l1, l2, l3, H2, I1) → (M,N, Z, S, K, l1, H2, I1)

The relations define a 2 dimensional reduced phase space of (M, N,Z, S, K, l1, H2, I1)-
space given by

K2 + 2M = n2 + ζ2 − a2 ,

aK + Z = nζ ,

M2 −N2 = Z2 + S2 . (8)

Consequently we may represent the third reduced phase space Vn ζ a in (K,N, S)-space by
the equation

(n2 + ζ2 − a2 −K2)2 − 4(nζ − aK)2 = 4N2 + 4S2. (9)

If we set

f(K) = (n2 +ζ2−a2−K2)2−4(nζ−aK)2 = [(n+ζ)2− (K +a)2][(n−ζ)2− (K−a)2],

then our reduced phase space is a surface of revolution obtained by rotating φ(K) =√
f(K) around the K-axis.

The Poisson structure for M,N, Z, S, K, l1 is given by Table 2. The Hamiltonian on the
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third reduced phase space (modulo constants) is:

H = 2nN +

(
3

2
nλ + aζ

)
K − 3

2
nK2 (10)

In (K,N, S)-space the energy surfaces are parabolic cylinders. The intersection with the
reduced phase space give the trajectories of the reduced system. Tangency with the reduce
phase spaces gives relative equilibria that generically will correspond to three dimensional
tori in the original phase space.

The reduced phase spaces as well as the Hamiltonian are invariant under the discrete
symmetry S → −S. Furthermore the reduced phase space is invariant under the discrete
symmetry N → −N . We choose not to further reduce our reduced phase space with
respect to these discrete symmetries like in [16] because the three dimensional picture
makes it easy to access information about the reduced orbits and this way one does not
introduce additional critical points (fixed points) which need special attention. We will
make use of the fact that all the critical point will be in the plane S = 0

Note that one can combine the three successive reductions into one. The composition
of the three orbit maps gives an orbit map from R8 → R8, which is an orbit map for
the three-torus action generated by the rotational flows of the three integrals H2, I1, I2,
which are independent and commute. Consequently the generic relative equilibrium (i.e.
stationary point on the reduced phase space) will correspond to a T 3. Due to the shape
of the reduced phase spaces the intersection of the Hamiltonian and these spaces will be
circles in general. Thus the generic fibre of the energy momentum map will be a T 4.
There will of course also be fibres that are a point (the origin which is a stationary point
of the original system and a fixed point for all circle symmetries), a circle (two of the
circle symmetries will have a fixed point) or a T 2 (one of the circle symmetries will have a
fixed point). The rank of the energy momentum map R8 → (H, H2, I1, I2) will correspond
to the dimension of the fibre.

The shape of the reduced phase space is determined by the positive part of f(K). f(K)
can be written as

f(K) = (K + n + ζ + a)(K − n− ζ + a)(K − n + ζ − a)(K + n− ζ − a),

thus, the four zeroes of f(K) are given by

K1 = −a− n− ζ , K2 = a + n− ζ , K3 = a− n + ζ , K4 = −a + n + ζ .

7
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Figure 1: Graph of f(K). From left to right: a 6= ζ 6= n, a = −ζ, a = ζ, a = ζ = 0

So f(K) is positive (or zero) in the subsequent intervals of K:

a > ζ, K ∈ [a− n + ζ,−a + n + ζ]

a < ζ, K ∈ [a− n + ζ, a + n− ζ]

a = ζ > 0, K ∈ [2ζ − n, n]

a = ζ < 0, K ∈ [−2ζ − n, n]

a = −ζ < 0, K ∈ [−n, n− 2ζ]

a = −ζ > 0, K ∈ [−n, n + 2ζ]

a = ζ = 0, K ∈ [−n, n]

(11)

a = ±n, K = ±ζ

ζ = ±n, K = ±a

|a| = | ± ζ| = n, K = ±n

a = ζ = n = 0, K = 0

See figure (1).

When we have a simple root of f(K) which belongs to one of the above intervals, we have
that the intersection of the reduced phase space with the K-axis is smooth. f(K) has
four different roots in the following two cases: (i) a 6= ζ and ζ, a 6= 0; (ii) a 6= ζ and ζ = 0
or a = 0. In these cases the reduced phase space is diffeomorphic to a sphere. A point on
this sphere corresponds to a three-torus in original phase space.

To find the the double zeroes of f(K) we compute the discriminant of f(K) = 0. It is

(a− n)2(a + n)2(a− ζ)2(a + ζ)2(n− ζ)2(n + ζ)2 .

Thus there are double zeroes at a = ±n, a = ±ζ and ζ = ±n. If we have just one double
zero the reduced phase space is a sphere with one cone-like singularity at the intersection
point given by the double root (a = ±ζ 6= 0). If we have two double zeroes the reduced
phase space is a sphere with two cone-like singularities at the intersection points given
by the double roots (a = ζ = 0). In the other cases the reduced phase space is just one
singular point. The singular points correspond to two-tori in original phase space.

Triple zeroes occur when |a| = |ζ| = n. The reduced phase space is just a point which
corresponds to a circle in original phase space.
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Figure 2: The thrice reduced phase space over the parameter space. K is the symmetry axis of
each surface.

Quadruple zeroes only occur when a = n = ζ = 0, which corresponds to the origin in
original phase space and is a stationary point. See figure 2. More details on this analysis
can be found in [7].

The cone-like singularities of the reduced phase space are candidates for the occurrence
of Hamiltonian Hopf bifurcations, therefore in the following we restrict ourselves to the
case a = ζ in which case we have a cone-like point at K = n.
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5 Hamiltonian Hopf bifurcations at K = n when a = ζ

Let us consider the vector field given by the second reduced hamiltonian ¯̄Hλ, that is the
vector field in the second reduced phase space, that is isomorphic to S2 × S2:

ṅ = 0,

k̇1 = 8 (k3 l2 − k2 l3) n,

k̇2 = l3 (−2 k1 n + 2 l1 ζ + 3 nλ)− k3 (6 l1 n + ζ (−2 k1 + λ)) ,

k̇3 = l2 (2 k1 n− 2 l1 ζ − 3 nλ) + k2 (6 l1 n + ζ (−2 k1 + λ)) ,

ζ̇ = 0,

l̇1 = 0,

l̇2 = −10 k1 k3 n + 2 l1 l3 n + 2 k3 l1 ζ + 2 k1 l3 ζ + 3 k3 nλ− l3 ζ λ,

l̇3 = −2 l1 (l2 n + k2 ζ) + 2 k1 (5 k2 n− l2 ζ)− 3 k2 nλ + l2 ζ λ}

On the second reduced phase space with coordinates {k1, k2, k3, l1, l2, l3}, consider the
point that corresponds to K = n, S = N = 0. This is the point {n, 0, 0, ζ, 0, 0}. The
linearization of the above vector field at this point is given by




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −ζ (4n + λ) 0 0 0 −∆1

0 0 ζ (4n + λ) 0 0 0 ∆1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −∆2 0 0 0 ζ (4n− λ)
0 0 ∆2 0 0 0 ζ (−4n + λ) 0




, (12)

with ∆1 = 2n2 − 3λn− 2ζ2 and ∆2 = 10n2 − 3λn− 2ζ2 . The eigenvalues are given by

±
√
−Θ± 2ζλ

√
Θ− ζ2λ2 (13)

with

Θ = 20 n4 − 36 λ n3 + (9 λ2 − 8 ζ2) n2 + 12 ζ2 λn + 4 ζ4. (14)

When Θ = 0 we have two purely imaginary eigenvalues

±iλζ (15)

10
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Figure 3: The bifurcation curve Θ = 0 in the (ζ, λ)-plane

If Θ < 0 we have two pairs of complex eigenvalues

±
√
−(Θ + λ2ζ2)± i 2λζ

√
|Θ|, (16)

and if Θ > 0 we have two pairs of imaginary eigenvalues

±
√
−(
√

Θ± λζ)2 (17)

So when we cross the bifurcation curve given given by Θ = 0 (see figure (3)) we are in
the scenario of a Hamiltonian Hopf bifurcation. This curve pulls into the origin if n goes
to zero.

The eigenvalue behavior becomes degenerate when ζ = 0, especially when one crosses
the bifurcation curve along the line ζ = 0. In this case the linearized system becomes
nilpotent if λ = 2

3
n and λ = 10

3
n. The eigenvalues go from a double pair of purely

imaginary eigenvalues through a quadruple zero eigenvalue to two pairs of real eigenvalues.
Because of the presence of the S1 symmetry corresponding to I2 this nevertheless gives
rise to a Hamiltonian Hopf bifurcation (see the remark in [13])because the nilpotent part
of the quadratic Hamiltonian can be embedded into a Lie algebra isomorphic to sl(2,R)
which commutes with the semisimple Hamiltonian generating the S1-symmetry. In this
case the singularity theory allows to obtain the standard form also. Note that the most
reduced standard form for the Hamiltonian representing a Hamiltonian Hopf bifurcation
obtained in [18] also has a purely nilpotent quadratic part. Remains to check the geometric
conditions necessary for the presence of a Hamiltonian Hopf bifurcation as formulated in
[13].

Consider

g(K) = 2N =
3

2
(K2 − λK)− a ζ

n
K +

h

n
.

representing the Hamiltonian energy in the (K, 2N)-plane. Furthermore consider

φ+(K) =
√

f(K) =
√

(n−K)2(n + K + 2ζ)(n + K − 2ζ) ,

11



and

φ−(K) = −
√

f(K) = −
√

(n−K)2(n + K + 2ζ)(n + K − 2ζ) .

representing the upper arc, respectively the lower arc, of the reduced phase space with
−n ≤ K ≤ n.

Note that we want the reduced phase space to have a cone-like singularity at K = n, that
is, a = ζ and Θ = 0. From Θ = 0 we obtain

λ = 2n− 2ζ2

3n
± 4

3

√
n2 − ζ2 .

Furthermore we want g to pass through (n, 0) which gives

h =
3

2
n3 + 2n2

√
n2 − ζ2 for λ = 2n− 2ζ2

3n
+

4

3

√
n2 − ζ2 ,

in which case we consider the upper half of the curve Θ = 0, and g is tangent to the upper
arc of the reduced phase space. Furthermore

h =
3

2
n3 − 2n2

√
n2 − ζ2 for λ = 2n− 2ζ2

3n
− 4

3

√
n2 − ζ2 ,

in which case we consider the lower half of the curve Θ = 0, and g is tangent to the lower
arc of the reduced phase space.

The first condition to check is wether the reduced energy surface moves in the right
way through the cone-like singularity of the reduced phase space. Actually this is a
transversality condition for the unfolding of the linear system. We have

d

dλ
g′λ(n) = −3

2
n

This is nonzero. Consequently the transversality condition is fulfilled.

The second condition is the nondegeneracy condition on the higher order terms of the
Hamiltonian. We have to check wether the Hamiltonian has second order contact with
the reduced phase space at the vertex of the cone and wether it is tangent to the cone
from the inside or the outside. Let

u+(K) = g(K)− φ+(K) and u−(K) = g(K)− φ−(K) .

We have

u′′+(n) = 3 +
2n√

n2 − ζ2
and u′′−(n) = 3− 2n√

n2 − ζ2
.

At the upper arc of the reduced phase space we will always have tangency from outside
the cone. Consequently we have a supercritical Hamiltonian Hopf bifurcation. At the
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lower arc of the reduced phase space we have quadratic tangency from inside the cone for
−
√

5
3

n < ζ <
√

5
3

n in which case we have a subcritical Hamiltonian Hopf bifurcation. For

−n ≤ ζ < −
√

5
3

n and
√

5
3

n < ζ ≤ n we have quadratic tangency from outside the cone

and a supercritical Hamiltonian Hopf bifurcation. At ζ = ±
√

5
3

n we have a degenerate
Hamiltonian Hopf bifurcation.

Along the curve Θ = 0 there is also a degeneracy at (ζ, λ) = (±n, 4
3
n). At these points

the reduced phase space reduces to a point.

These Hamiltonian Hopf bifurcations established for the truncated normalized system
will also be present in the original system 1 with possible higher order perturbations that
commute with I1 and I2. This is a consequence of the fact that the system 1 can be reduced
to a two-degree-of-freedom system using the integrals I1 and I2. The truncated normal
form of this system will then be the same as the one obtained above in the invariants
for the three-torus action, and will give rise to the same reduced one-degree-of-freedom
system. Consequently the arguments in [18] apply to the two-degree-of-freedom system
and consequently we have Hamiltonian Hopf bifurcations of three-tori emanating from a
family of two-tori.

Many other aspects of this system including the connection with perturbed Keplerian
systems will be considered in a forthcoming paper [8].
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