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Random subgraphs of finite graphs:
II. The lace expansion and the triangle condition

Christian Borgs∗ Jennifer T. Chayes∗ Remco van der Hofstad†

Gordon Slade‡ Joel Spencer§

May 6, 2003

Abstract

In a previous paper, we defined a version of the percolation triangle condition that is
suitable for the analysis of bond percolation on a finite connected transitive graph, and
showed that this triangle condition implies that the percolation phase transition has many
features in common with the phase transition on the complete graph. In this paper, we use
a new and simplified approach to the lace expansion to prove quite generally that for finite
graphs that are tori the triangle condition for percolation is implied by a certain triangle
condition for simple random walks on the graph.

The latter is readily verified for several graphs with vertex set {0, 1, . . . , r−1}n, including
the n-cube, the n-dimensional torus with nearest-neighbor bonds with n large and fixed, and
the n-dimensional torus with spread-out (long range) bonds with n > 6 fixed. The conclusions
of our previous paper thus apply to the percolation phase transition for each of the above
examples.

1 Introduction and results

1.1 Introduction

The percolation phase transition on the complete graph is well understood and forms a central
part of modern graph theory [4, 6, 20]. In the language of mathematical physics, the phase
transition is mean-field. It can be expected that the percolation phase transition on many other
high-dimensional finite graphs will be similar to that for the complete graph. In other words,
mean-field behaviour will apply much more generally.
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In a previous paper [7], we introduced the finite-graph triangle condition, and proved that it is a
sufficient condition for several aspects of the phase transition on a finite connected transitive graph
to be mean-field. This triangle condition is an adaptation of the well-known triangle condition of
Aizenman and Newman [3] for infinite graphs. In this paper, we verify the finite-graph triangle
condition for a class of graphs with the structure of high-dimensional tori. Examples include the
n-cube, the Hamming cube and periodic approximations to Zn for large n.

Our proof of the triangle condition is based on an adaptation of the percolation lace expansion
of Hara and Slade [13] from Zn to finite tori. We use the same expansion as [13] but our proof of
convergence of the expansion is new and improved. This is the first time that the lace expansion
has been applied in a setting where finite-size scaling plays a role. An advance in our application
of the lace expansion is that we prove a general theorem that the percolation triangle condition on
a finite torus is a consequence of a corresponding condition for random walks on the torus. Thus
we are able to verify the percolation triangle condition for our examples by a relatively simple
analysis of random walks on these graphs.

1.2 The triangle condition on infinite graphs

Let V be a finite or infinite set and let B be a subset of the set of all two-element subsets {x, y} ⊂ V.
Then G = (V,B) is a finite or infinite graph with vertex set V and bond (or edge) set B. The
degree of a vertex x ∈ V is defined to be the number of edges containing x. A bijective map
ϕ : V → V is called a graph-isomorphism if {ϕ(x), ϕ(y)} ∈ B whenever {x, y} ∈ B. We say that
G is transitive if for each pair x, y ∈ V there is a graph-isomorphism ϕ with ϕ(x) = y. We will
always assume that G is connected and transitive, and denote the common degree of each vertex
by Ω.

We consider percolation on G. That is, we associate independent Bernoulli random variables
to the edges, taking the value “occupied” with probability p and “vacant” with probability 1− p,
where p ∈ [0, 1] is a parameter. Let x↔ y denote the event that vertices x and y are connected by
a path in G consisting of occupied bonds, and let C(x) = {y ∈ V : x ↔ y} denote the connected
cluster of x. Let

τp(x, y) = Pp(x↔ y) (1.1)

denote the two-point function and define the susceptibility by

χ(p) = Ep|C(0)|. (1.2)

For many infinite graphs, such as Zn with n ≥ 2, or for a regular tree with degree at least three,
there is a pc = pc(G) ∈ (0, 1) such that

pc(G) = sup{p : χ(p) <∞} = inf{p : Pp(|C(0)| =∞) > 0}. (1.3)

Thus χ(p) < ∞ if and only if p < pc, Pp(|C(0)| = ∞) > 0 if p > pc, and Pp(|C(0)| = ∞) = 0 for
p < pc. The equality of the infimum and supremum of (1.3) is a theorem of [2, 22].

Percolation on a tree is well understood [10, Chapter 10], and infinite graphs whose percolation
phase transition is analogous to the transition on a tree are said to exhibit mean-field behaviour.
In 1984, Aizenman and Newman [3] introduced the triangle condition as a sufficient condition for
mean-field behaviour. The triangle condition is defined in terms of the triangle diagram

∇p(x, y) =
∑

w,z∈V

τp(x, w)τp(w, z)τp(z, y), (1.4)
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and states that for all x ∈ V

∇pc(x, x) <∞. (1.5)

It is predicted that the triangle condition on Zn holds for all n > 6. Aizenman and Newman used
a differential inequality for χ(p) to show that the triangle condition implies that

χ(p) = Θ((pc − p)−γ) uniformly in p < pc, (1.6)

with γ = 1, and Nguyen [23] extended this to show that

Ep[|C(0)|t+1]

E[|C(0)|t] = Θ((pc − p)−∆t+1) uniformly in p < pc, (1.7)

with ∆t+1 = 2 for t = 1, 2, 3, . . .. Subsequently, Barsky and Aizenman [5] showed, in particular,
that the triangle condition also implies that the percolation probability obeys

Pp(|C(0)| =∞) = Θ((p− pc)
β̂) uniformly in p ≥ pc, (1.8)

with β̂ = 1.
In 1990, Hara and Slade established the triangle condition for nearest-neighbor bond percolation

on Zn for large n (it is now known that n ≥ 19 is large enough), and for a wide class of long-range
models, called spread-out models, for n > 6 [13, 14]. Their proof of the triangle condition was
based on the lace expansion, an adaptation of an expansion introduced in 1985 by D.C. Brydges
and T. Spencer [9] to study the self-avoiding walk in high dimensions. Since the late 1980s, lace
expansion methods have been used to derive detailed estimates on the critical behaviour of several
models in high dimensions; see [14, 21, 25] for reviews. Recent extensions of the lace expansion
for percolation can be found in [12, 16].

1.3 The triangle condition on finite graphs

On a finite graph, |C(0)| ≤ |V| < ∞. Thus, there cannot be a phase transition characterized by
divergence to infinity of the susceptibility or existence of an infinite cluster. Instead, the phase
transition takes place in a small window of p values, below which clusters are typically small in
size and above which a single giant cluster coexists with many relatively small clusters. The basic
example is the phase transition on the complete graph.

Let G be a connected transitive finite graph, let V = |V| < ∞ denote its number of vertices,
and let Ω denote the common degree of these vertices. The susceptibility χ(p) = Ep|C(0)| is an
increasing function of p, with χ(0) = 1 and χ(1) = V . In [7], we defined the critical threshold
pc = pc(G) to be the unique solution to the equation

χ(pc(G)) = λV 1/3, (1.9)

where λ is a fixed small parameter. The flexibility in the choice of λ in (1.9) is connected with the
fact that the phase transition in a finite system is smeared out over a window rather than occurring
at a sharply defined threshold, and any value in the window could be chosen as a threshold.

On a finite graph, the triangle diagram (1.4) is bounded above by V 2, and thus (1.5) is satisfied
trivially. In [7], we defined the triangle condition for a finite graph to be the statement that

∇pc(G)(x, y) ≤ δx,y + a0, (1.10)
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where a0 is sufficiently small. In particular, (1.10) implies that ∇pc(G)(x, y) is uniformly bounded
as V →∞. In addition, we defined the stronger triangle condition to be the statement that there
are constants K1, K2 such that for p ≤ pc(G)

∇p(x, y) ≤ δx,y +K1Ω−1 +K2
χ3(p)

V
. (1.11)

Note that (1.10) is a consequence of (1.11), provided Ω is sufficiently large and λ is sufficiently
small. Moreover, since

∑

y∇pc(x, y) = χ3(pc) = λ3V , (1.10) implies that λ3 ≤ V −1 + a0 and hence
λ must be taken to be small for the triangle condition to hold.

As described in more detail below, we showed in [7] that the triangle condition (1.10) implies
that the percolation phase transition on a finite graph shares many features with the transition
on the complete graph. In this paper, we prove (1.11) and hence (1.10) for several finite graphs,
assuming that λ is a sufficiently small constant. These graphs all have vertex set V = {0, 1, . . . , r−
1}n for some r ≥ 2 and n ≥ 1, with periodic boundary conditions. We consider various edge sets.

1.4 Periodic tori

There are three levels of generality that we will use. First, we use G to denote a finite connected
transitive graph of degree Ω. Our derivation of the lace expansion, and much of the diagrammatic
estimation of the lace expansion, is valid for general G. Second, for our analysis of the lace
expansion, we restrict G to have the vertex set of the torus T = Tr,n = (Zr)

n, where Zr denotes
the integers modulo r, for r = 2, 3, . . .. The torus Tr,n is an additive group under coordinate-wise
addition modulo r, with volume V = rn. We allow any edge set for the torus that respects the
symmetries of translation and x 7→ −x reflections. That is, we assume that the edge set is such
that {0, x} is an edge if and only if {y, y ± x} is an edge for any vertex y. Third, we will verify
the stronger percolation triangle condition (1.11) for the following specific edge sets:

1. The narrow torus: an edge joins vertices that differ by 1 (modulo r) in exactly one component,
for r ≥ 2 fixed and n→∞. For r = 2, this is the n-cube. Here Ω = 2n for r ≥ 3 and Ω = n
for r = 2.

2. The Hamming torus: an edge joins vertices that differ in exactly one component, again with
the periodic boundary condition, for r ≥ 2 fixed and n→∞. Here Ω = (r − 1)n.

3. The wide torus in high dimensions: the same edge set as the narrow torus but now n is large
and fixed and we study the limit r →∞ to approximate Zn. Here Ω = 2n.

4. The wide spread-out torus in dimensions n > 6: an edge joins vertices x = (x1, . . . , xn) and
y = (y1, . . . , yn) if 0 < maxi=1,...,n |xi − yi| ≤ L (with periodic boundary conditions) with
n > 6 fixed, L large and fixed, in the limit r → ∞ to approximate range-L percolation on
Zn. Here Ω = [(2L+ 1)n − 1] for r large compared to L.

1.5 Fourier analysis on a torus

Our method relies heavily on Fourier analysis. Fourier analysis on the torus Tr,n is a special case
of a more general theory of Fourier analysis on abelian groups. Let G be a finite abelian group,
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with group operation denoted +. A character is a homomorphism χ : G → C of G into the
multiplicative group of non-zero complex numbers, i.e., for all a, b ∈ G we have

χ(a + b) = χ(a)χ(b). (1.12)

Let 1 ∈ G denote the identity element. The order of any element of G divides |G|, and hence
χ(a)|G| = χ(a|G|) = χ(1) = 1 for every a ∈ G. Therefore, χ maps into the |G| roots of unity.
The set Ĝ of characters is again an abelian group under the operation (χψ)(a) = χ(a)ψ(a). The
Fourier transform of a function f : G→ C is the function f : Ĝ→ C defined by

f̂(χ) =
∑

a∈G

χ(a)f(a), (1.13)

and the Fourier inversion formula is

f(a) =
1

|G|
∑

χ∈Ĝ

f̂(χ)χ(a). (1.14)

The convolution of functions f, g on G is defined by

(f ∗ g)(a) =
∑

b∈G

f(b)g(a− b), (1.15)

and the Fourier transform of a convolution is the product of the Fourier transforms:

f̂ ∗ g = f̂ ĝ. (1.16)

We now take G = Tr,n, where the group action is addition modulo r. The group T̂r,n of
characters is generated by χ(j)(x) = e2πixj/r (j = 1, . . . , n), and hence is isomorphic to Tr,n. For

convenience, we may equivalently regard T̂r,n as the group T∗
r,n = 2π

r
Tr,n. This identification

is made explicit by the isomorphism k 7→ χk of T∗
r,n onto T̂r,n, where χk(x) = eik·x with the

dot product defined by k · x =
∑n

j=1 kjxj. We will always identify the dual torus as T∗
r,n =

2π
r
{−b r−1

2
c, . . . , d r−1

2
e}n, so that each component of k ∈ T∗

r,n is between −π and π. The reason
for this identification is that the point k = 0 plays a special role, and we do not want to see it
mirrored at the point (2π, . . . , 2π). The Fourier transform of f : Tr,n → C can be written as

f̂(k) =
∑

x∈Tr,n

f(x)eik·x (k ∈ T∗
r,n), (1.17)

with the inverse Fourier transform given by

f(x) =
1

V

∑

k∈T∗
r,n

f̂(k)e−ik·x. (1.18)

1.6 The triangle diagram in Fourier form

It is convenient to regard the two-point function or triangle diagram as a function of a single
variable, e.g., τp(x, y) = τp(y − x). With this identification,

τ̂p(k) =
∑

x∈Tr,n

τp(0, x)eik·x, (1.19)
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where 0 denotes the origin of Tr,n. It is shown in [3] that τ̂p(k) ≥ 0 for all k ∈ T∗
r,n. The expected

cluster size and two-point function are related by

χ(p) = Ep|C(0)| =
∑

x∈Tr,n

EpI[x ∈ C(0)] =
∑

x∈Tr,n

τp(0, x) = τ̂p(0), (1.20)

where I[E] denotes the indicator function for the event E. In particular,

τ̂pc(0) = χ(pc) = λV 1/3. (1.21)

Recalling (1.15), the triangle diagram (1.4) can be written as

∇p(x, y) = (τp ∗ τp ∗ τp)(y − x). (1.22)

By (1.16) and (1.18), this implies that ∇̂p(k) = τ̂p(k)3 and

∇p(x, y) =
1

V

∑

k∈T∗

r,n

∇̂p(k)e−ik·(y−x) =
1

V

∑

k∈T∗

r,n

τ̂p(k)3e−ik·(y−x). (1.23)

By (1.21), the contribution to the right side of (1.23) due to the term k = 0 is V −1λ3V = λ3.

1.7 Main results

1.7.1 The random walk triangle condition

For x, y ∈ Tr,n, let

D(x, y) = D(y − x) =
1

Ω
I[{x, y} ∈ B], (1.24)

where B denotes a particular choice of edge set for the torus. As in Section 1.4, we assume that B

is symmetric under translations and under x 7→ −x reflections. Thus D(x) represents the 1-step
transition probability for a random walk to step from 0 to a neighbor x. We make the following
assumptions on D, which can be regarded as assumptions on the edge set B.

Assumption 1.1. There exists β > 0 such that

max
x∈Tr,n

D(x) ≤ β (1.25)

and
1

V

∑

k∈T∗

r,n:k 6=0

D̂(k)2

[1− D̂(k)]3
≤ β. (1.26)

The assumption (1.25) is straightforward. As we will discuss in more detail in Section 2, the
critical two-point function for random walks is [1 − D̂(k)]−1, and comparing with the right side
of (1.23), the assumption (1.26) can be interpreted as a kind of generalized triangle condition for
random walks. For any D defined by (1.24), (1.25) implies that β ≥ Ω−1 ≥ V −1. We will require
below that β be small.

Random walks on each of the four tori listed in Section 1.4 obeys Assumption 1.1 with β
proportional to Ω−1, as the following proposition shows. The proof of the proposition is given in
Section 2.
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Proposition 1.2. There is a constant a > 0, which remains fixed as the volume V = rn goes to
infinity, such that random walks on each of the four tori listed in Section 1.4 obey Assumption 1.1,
with β = an−1 for the narrow torus, the Hamming torus and the wide torus in high dimensions,
and with β = aL−n for the wide spread-out torus in dimensions n > 6.

1.7.2 The triangle condition and its consequences

Our main result is that if Assumption 1.1 holds with appropriately small parameters, then the
percolation triangle condition holds. By Proposition 1.2, this establishes the triangle condition for
the four tori listed in Section 1.1.

Theorem 1.3 (The triangle condition). Consider the torus Tr,n with edge set such that {0, x}
is an edge if and only if {y, y ± x} is an edge for any vertex y. If Assumption 1.1 holds and if
λ3∨β is sufficiently small, then there are constants K1, K2 such that the stronger triangle condition
(1.11) holds in the form

∇pc(x, y) = δx,y +K1β +K2
χ3(p)

V
. (1.27)

This establishes (1.11) for our four tori, since β is proportional to Ω−1 in Proposition 1.2. It
follows that the various consequences of the triangle condition established in [7] hold for these four
tori. We now summarize these consequences in this context. In the following discussion, the “four
tori” are the four tori listed in Section 1.4, in the limits r → ∞ or n → ∞ as indicated there.
Also, we assume throughout the discussion that λ is chosen sufficiently small and V sufficiently
large that the results of [7] apply. In particular, we assume that λV 1/3 is bounded below by a large
positive constant, as required in [7, Theorems 1.2–1.4]. Note that if λ is a fixed positive constant
then this condition merely states that V is large. We write |C(x)| for the number of vertices in
the cluster of x, let Cmax denote a cluster of maximal size, and let

|Cmax| = max{|C(x)| : x ∈ V}. (1.28)

The asymptotic behaviour of the critical value pc is given in [7, Theorem 1.5] as follows.

Theorem 1.4 (Critical threshold). For the four tori,

pc =
1

Ω

[

1 +O(Ω−1) +O(λ−1V −1/3)
]

. (1.29)

For the subcritical phase, the following results are consequences of [7, Theorems 1.2, 1.5]. A
version of (1.30) valid for all p ≤ pc is given in [7, Theorem 1.5]; see (6.1) below.

Theorem 1.5 (Subcritical phase). Let p = pc−Ω−1ε with ε ≥ 0. For the four tori, the following
hold.
i) If ελV 1/3 → 0 as V →∞, then as V →∞,

χ(p) =
1

ε
[1 + o(1)]. (1.30)

ii) For all ε ≥ 0,

10−4χ2(p) ≤ Ep

(

|Cmax|
)

≤ 2χ2(p) log(V/χ3(p)), (1.31)
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Pp

(

|Cmax| ≤ 2χ2(p) log(V/χ3(p))
)

≥ 1−
√
e

[2 log(V/χ3(p))]3/2
, (1.32)

and, for ω ≥ 1,

Pp

(

|Cmax| ≥
χ2(p)

3600ω

)

≥
(

1 +
36χ3(p)

ωV

)−1

. (1.33)

Inside a scaling window of width proportional to V −1/3, the following results are consequences
of [7, Theorem 1.3].

Theorem 1.6 (Scaling Window). Fix Λ < ∞. Let p = pc + Ω−1ε with |ε| ≤ ΛV −1/3. Then
there exist constants b1, . . . , b8 such that the following hold.
i) If k ≤ b1V

2/3, then
b2√
k
≤ P≥k(p) ≤ b3√

k
. (1.34)

ii)

b4V
2/3 ≤ Ep

[

|Cmax|
]

≤ b5V
2/3 (1.35)

and, if ω ≥ 1, then

Pp

(

ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3
)

≥ 1− b6
ω
. (1.36)

iii)
b7V

1/3 ≤ χ(p) ≤ b8V
1/3. (1.37)

In the above statements, the constants b2 and b3 can be chosen independent of λ and Λ, the constants
b5 and b8 depend on Λ and not λ, and the constants b1, b4, b6 and b7 depend on both λ and Λ.

For the supercritical phase, the following results are consequences of [7, Theorem 1.4].

Theorem 1.7 (Supercritical phase). Let p = pc + εΩ−1 with ε ≥ 0.

i)
Ep(|Cmax|) ≤ 21εV + 7V 2/3, (1.38)

and, for all ω > 0,

Pp

(

|Cmax| ≤ ω(V 2/3 + εV )
)

≥ 1− 21

ω
. (1.39)

ii)
χ(p) ≤ 81(V 1/3 + ε2V ). (1.40)

Theorem 1.7 provides upper bounds on the size of clusters in the supercritical phase. To see
that a phase transition occurs at pc, one wants a lower bound. We have not proved a lower bound
at the level of generality of all four tori, but we have obtained a lower bound for the case of
the n-cube T2,n = {0, 1}n. This is the content of the following theorem, which is proved in [8,
Theorem 1.5]. The statement that En occurs a.a.s. means that limn→∞ P(En) = 0.

Theorem 1.8 (Supercritical phase for the n-cube). Let G = T2,n, let λ be sufficiently small,

and let p = pc + εn−1. There are constants c1, c2 such that for all e−c1n1/3 ≤ ε ≤ 1,

|Cmax| ≥ c2ε2
n a.a.s. as n→∞, (1.41)

χ(p) ≥ [1 + o(1)](c2ε)
22n as n→∞. (1.42)
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1.8 Discussion

1.8.1 Restriction to high dimensional graphs

Our results show that the phase transition for percolation on general random graphs obeying the
triangle condition shares several features with the phase transition for the random graph. The
mean-field behaviour of the random graph is expected to apply only to graphs that are in some
sense high-dimensional, and our entire approach is restricted to high dimensional graphs. As
discussed in [7, Section 3.4.2], we do not expect the definition (1.9) of the critical threshold to be
correct for finite approximations to low-dimensional graphs, such as Zn for n < 6. Neither do we
expect the triangle condition to be relevant in low dimensions.

1.8.2 The lace expansion

There are two steps in applying the lace expansion: derivation of the expansion, and a proof of
convergence. The derivation of the lace expansion in [13] applies immediately to transitive finite
graphs, as only translation invariance is needed to derive the expansion. Our proof of convergence
of the expansion uses the group structure of the torus for Fourier analysis, as well as the x 7→ −x
symmetry of the torus. The proof is an adaptation of the original convergence proof of [13], but
is conceptually simpler and the idea of basing the proof on Assumption 1.1 is new. In addition,
we benefit from working on a finite set where Fourier integrals are simply finite sums.

Since every finite abelian group is a direct product of cylic groups, our restriction to the torus
actually covers all abelian groups, apart from the fact that we consider constant widths in all
directions. It would be straightforward to generalize our results to tori with different widths in
different directions. This leaves open the case of more general graphs and non-abelian groups, which
would require a replacement for both the x 7→ −x symmetry of the torus and the commutative
law.

1.8.3 Bulk versus periodic boundary conditions

A natural question for Zn is the following. For p = pc(Z
n), consider the restriction of percolation

configurations to a large box of side r, centered at the origin. How large is the largest cluster in
the box, as r →∞? The combined results of Aizenman [1] and Hara, van der Hofstad and Slade
[12] show that for spread-out models with n > 6 the largest cluster has size of order r4, and there
are order rd−6 clusters of this size. For the nearest-neighbor model in dimensions n� 6, the same
results follow from the combined results of [1] and Hara [11]. These results apply under the bulk
boundary condition, in which the clusters in the box are defined to be the intersection of the box
with clusters in the infinite lattice (and thus clusters in the box need not be connected within
the box). In terms of the volume V = rn of the box, the largest cluster at pc(Z

n) therefore has
size V 4/n. Aizenman [1] raised the interesting question whether the r4 = V 4/n would change to
r2n/3 = V 2/3 if the periodic boundary condition is used instead of the the bulk boundary condition.

Theorem 1.6 shows that for p within a scaling window of width proportional to V −1/3, centered
at pc(Tr,n), the largest cluster is of size V 2/3 both for the sufficiently spread-out model with n > 6
and the nearest-neighbor model with n sufficiently large. An affirmative answer to Aizenman’s
question would then follow if we knew that pc(Z

d) were within this scaling window. It would be
interesting to investigate this further.
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1.9 Organization

The remainder of this paper is organized as follows. In Section 2, we analyse random walks on
a torus and verify Assumption 1.1 for the four tori listed in Section 1.4. In Section 3, we give a
self-contained derivation of the lace expansion. In Section 4, we estimate the Feynman diagrams
that arise in the lace expansion. The results of Sections 3 apply on an arbitrary transitive graph
G (finite or infinite). Parts of Section 4 also apply in this general context, but in Section 4.2
we will specialize to Tr,n. In Section 5, we analyse the lace expansion on an arbitrary torus that
obeys Assumption 1.1, thereby proving Theorem 1.3. Finally, in Section 6, we establish a detailed
relation between the Fourier transforms of the two-point functions for percolation and random
walks.

2 Proof of Proposition 1.2

2.1 The random walk two-point function

Consider a random walk on Tr,n where the transition probability for a step from x to y is equal
to D(x, y), with D given by (1.24). We assume that the edge set of the torus is invariant under
translations and x 7→ −x reflections. The two-point function for the random walk is defined by

Cµ(0, x) =
∑

ω:0→x

µ|ω|, (2.1)

where 0 ≤ µ < Ω−1, the sum is over all random walks ω from 0 to x that take any number of steps
|ω|, and the “zero-step” walk contributes δ0,x. This is well-defined, because the fact that there are
Ωm nearest-neighbor random walks of length m starting from the origin implies that

Cµ(0, x) ≤
∑

x∈Tr,n

Cµ(0, x) =
∞
∑

m=0

Ωmµm =
1

1− µΩ
(µ < Ω−1), (2.2)

i.e., the corresponding susceptibility
∑

x∈Tr,n
Cµ(0, x) is finite. Probabilistically, C1/Ω(0, x) repre-

sents the expected number of visits to x for an infinite random walk starting at 0. Since the torus
is finite, the random walk is recurrent, and hence C1/Ω(0, x) is infinite for all x. We therefore must
keep µ < Ω−1 when dealing with Cµ(0, x). The value µ = Ω−1 plays the role of the critical point
for random walks.

Using translation invariance, we can write Cµ(x, y) = Cµ(y − x). By conditioning on the first
step, we see that the two-point function obeys the convolution equation

Cµ(x) = δ0,x + µΩ(D ∗ Cµ)(x). (2.3)

Taking the Fourier transform of (2.3) gives Ĉµ(k) = 1 + µΩD̂(k)Ĉµ(k) and hence

Ĉµ(k) =
1

1− µΩD̂(k)
. (2.4)

Note that Ĉµ(0) < ∞ for µ < Ω−1 but Ĉ1/Ω(0) = ∞. Although C1/Ω(x) is infinite, the formula

(2.4) does not diverge for µ = Ω−1 for all k for which D̂(k) 6= 1. Apart from any such singular
points (usually arising only for k = 0), the expression Ĉ1(k) = [1 − D̂(k)]−1 is finite. The factor
[1 − D̂(k)]−3 that appears in (1.26) is thus the same as Ĉ1(k)3. Comparing with (1.23), we see
that (1.26) is closely related to a triangle condition for random walks.
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2.2 Random walk estimates

In this section we prove Proposition 1.2, which for convenience we restate as Proposition 2.1.

Proposition 2.1. There is a constant a > 0, which remains fixed as the volume V = rn goes to
infinity, such that random walks on each of the four tori listed in Section 1.4 obey Assumption 1.1,
with β = an−1 for the narrow torus, the Hamming torus and the wide torus in high dimensions,
and with β = aL−n for the wide spread-out torus in dimensions n > 6.

The proof is given throughout the remainder of Section 2.2. We first note that (1.25) is trivial
since the maximal value of D(x) is Ω−1 and this is less than β = aΩ−1 provided a ≥ 1. We verify
the substantial assumption (1.26) below.

2.2.1 The random walk triangle condition (1.26)

For k ∈ T∗
r,n = 2π

r
{−b r−1

2
c, . . . , d r−1

2
e}n, we define

|k|2 =
n
∑

i=1

k2
i . (2.5)

The narrow and Hamming tori. Here r is fixed and n→∞. We first claim that

1

V

∑

k∈T∗
r,n

D̂(k)2i ≤ ai

ni
(i = 1, 2, 3, . . .), (2.6)

where ai depends on r for the Hamming torus. To prove (2.6), we observe that the left side is equal
to the probability that a random walk on Tr,n that starts at the origin returns to the origin after 2i
steps. This probability is equal to Ω−2i times the number of walks that make the transition from
0 to 0 in 2i steps. The number of such walks is bounded above by Ωi (counting all possibilities for
the first i steps) times a factor bi which counts the maximal number of ways that a random walk
can return to the origin from a vertex reachable in i steps. The latter depends on i, and depends
on r for the Hamming torus, but it does not depend on n (the return walk must remain in an
i-dimensional subgraph). This proves (2.6).

We will also use elementary infrared bounds. By the symmetry of D,

D̂(k) =
∑

x∈Tr,n

D(x) cos(k · x). (2.7)

For the narrow or wide torus, this gives

D̂(k) =
1

n

n
∑

j=1

cos kj. (2.8)

Since 1− cos t ≥ 2π−2t2 for |t| ≤ π, this implies that

1− D̂(k) =
1

n

n
∑

j=1

(1− cos kj) ≥
2

π2

|k|2
n
. (2.9)
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For the Hamming torus, we have

1− D̂(k) =
∑

x∈Tr,n

D(x)[1− cos(k · x)]

≥ 1

(r − 1)n

∑

x:|x|=1

[1− cos(k · x)] ≥ 1

r − 1

2

π2

|k|2
n
, (2.10)

applying (2.9) in the last step. We combine (2.9)–(2.10) by setting η = 2
π2 for the narrow (or wide)

torus and η = 1
r−1

2
π2 for the Hamming torus, obtaining the infrared bound

1− D̂(k) ≥ η
|k|2
n
. (2.11)

in either case.
By (2.6) and the Cauchy–Schwarz inequality,

1

V

∑

k∈T∗

r,n:k 6=0

D̂(k)2i

[1− D̂(k)]3
≤ a

1/2
2i

ni





∑

k∈T∗

r,n:k 6=0

1

[1− D̂(k)]6





1/2

. (2.12)

It suffices to show that the sum on the right side of (2.12) is bounded uniformly in n. For this, we
fix an ε > 0 and divide the sum according to whether |k|2 ≤ εn or |k|2 > εn. It follows from (2.11)
that the contribution to the sum due to |k|2 > εn is bounded by a constant depending on ε.

On the other hand, by (2.11),

1

V

∑

k∈T∗

r,n:k 6=0, |k|2≤εn

1

[1− D̂(k)]6
≤ n6

η6

1

V

∑

k∈T∗

r,n:k 6=0, |k|2≤εn

1

|k|12 . (2.13)

By the Cauchy–Schwarz inequality, |k|2 ≥ n−1‖k‖21 ≥ n−1m(k)2, where m(k) denotes the number
of nonzero components of k. Therefore,

1

V

∑

k∈T∗
r,n:k 6=0, |k|2≤εn

1

[1− D̂(k)]6
≤ n12

η6

1

rn

r2εn
∑

m=1

(

n

m

)

(r − 1)m 1

m12
. (2.14)

In (2.14), the binomial coefficient counts the number of ways to choose m nonzero components from
n, the factor (r− 1)m counts the number of values that each nonzero component can assume, and
the upper limit of summation reflects the fact that there cannot be more than r2(2π)−2εn ≤ r2εn
nonzero components when |k|2 ≤ εn. The right side of (2.14) is at most

n12

η6

r2εn
∑

m=1

(

n

m

)

(

1− 1

r

)m(1

r

)n−m ≤ n12

η6
P(X ≤ r2εn), (2.15)

where X is a binomial random variable with parameters (n, 1 − r−1). Since E[X] = n(1 − r−1),
the right side of (2.15) is exponentially small in n if we choose ε < r−2(1− r−1), by standard large
deviation bounds.
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The wide torus. Here n is large but fixed and r →∞. The proof of (2.6) applies without change
in this case, with ai independent of r. Therefore (2.12) also applies, and it suffices to show that

1

V

∑

k∈T∗
r,n:k 6=0

1

[1− D̂(k)]6
(2.16)

is bounded uniformly in large n and large r. Apart from the missing term k = 0, (2.16) is a
Riemann sum approximation to the integral

∫

[−π,π]n

1

[1− D̂(k)]6
dnk

(2π)n
, (2.17)

which is finite for n > 12 by (2.11). We prove that (2.16) converges to the improper integral (2.17),
using the dominated convergence theorem as follows.

Let B(0, r) = (−π
r
, π

r
]n ⊂ Rn. For each k ∈ (−π, π]n there is a unique kr ∈ T∗

r,n such that
k ∈ kr +B(0, r) and we define

D̂r(k) =







D̂(kr) (kr 6= 0)

∞ (kr = 0).
(2.18)

(The term kr = 0 has been singled out here because it is not included in the sum (2.16).) Thus
D̂r(k) is constant on the cubes kr + B(0, r) for kr ∈ T∗

r,n, the identity V |B(0, r)| = (2π)n holds,
and

1

V

∑

k∈T∗
r,n:k 6=0

1

[1− D̂(k)]6
=
∫

[−π,π]n

1

[1− D̂r(k)]6
dnk

(2π)n
. (2.19)

The function [1− D̂r(k)]−6 converges pointwise to [1− D̂(k)]−6 for k 6= 0 and to 0 for k 6= 0. Also,
by the infrared bound (2.11),

1

[1− D̂(kr)]6
≤ n6

η6|kr|12
(2.20)

for every nonzero kr ∈ T∗
r,n. For each nonzero kr ∈ T∗

r,n and k ∈ kr +B(0, r), we have ‖kr‖∞ ≥ 2π
r

and ‖k − kr‖∞ ≤ π
r
, so that ‖kr‖∞ ≥ 2

3
‖k‖∞. This implies that |kr|2 ≥ ‖kr‖2∞ ≥ 4

9
‖k‖2∞ ≥ 4

9n
|k|2.

Therefore, for every k ∈ (−π, π]n,

1

[1− D̂r(k)]6
≤
(9

4

)6 n12

η6|k|12 , (2.21)

which is integrable when n > 12. Therefore, by dominated convergence, (2.16) converges to (2.17)
as r → ∞, and thus is bounded by twice the integral (2.17) for r sufficiently large depending on
n.

Moreover, the integral (2.17) is bounded uniformly in n ≥ 13, by the following argument. For
A > 0 and m ≥ 1,

1

Am
=

1

(m− 1)!

∫ ∞

0
tm−1e−tAdt. (2.22)

Hence, by (2.8),
∫

[−π,π]n

1

[1− D̂(k)]6
dnk

(2π)n
=

1

5!

∫ ∞

0
dt t5

( ∫ π

−π
e−tn−1(1−cos θ) dθ

2π

)n

. (2.23)
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The right side is non-increasing in n, since ‖f‖p ≤ ‖f‖q for 0 < p ≤ q ≤ ∞ on a probability space.

The wide spread-out torus. Now n > 6 is fixed, L is fixed and large, and r → ∞. We first note
that D̂(k) does not depend on r if r is large compared to L. Thus, we can apply bounds on D̂(k)
with D(x) regarded as the step distribution of a random walk on Zn. The latter is analysed in
[18, Appendix A], where it is shown that there is an η depending only on n such that the infrared
bound

1− D̂(k) ≥ η
(

1 ∧ L
2|k|2
n

)

(2.24)

holds for all k ∈ T∗
r,n,

By a Riemann sum argument similar to that used above,

1

V

∑

k∈T∗
r,n:k 6=0

|D̂(k)|2
[1− D̂(k)]3

≤ 2
∫

[−π,π]n

|D̂(k)|2
[1− D̂(k)]3

dnk

(2π)n
, (2.25)

for r sufficiently large depending on L, n. We bound this integral by considering separately the
regions where |k|2 ≥ nL−2 and |k|2 ≤ nL−2.

For the contribution to the integral on the right side of (2.25) due to |k|2 ≥ nL−2, we use (2.24)
to obtain

∫

k∈[−π,π]n:|k|2≥ n
L2

|D̂(k)|2
[1− D̂(k)]3

dnk

(2π)n
≤ η−3

∫

[−π,π]n
|D̂(k)|2 dnk

(2π)n
= η−3Ω−1. (2.26)

Here, we used the fact that the middle integral is the probability that the spread-out random
walk returns to its starting vertex after two steps, which equals Ω−1. For the contribution to the
integral in (2.25) due to |k|2 ≤ nL−2, we use (2.24) and |D̂(k)|2 ≤ 1 to obtain

∫

|k|2≤ n
L2

|D̂(k)|2
[1− D̂(k)]3

dnk

(2π)n
≤
( n

ηL2

)3
∫

|k|2≤ n
L2

1

|k|6
dnk

(2π)n
= Cn,ηL

−n. (2.27)

Summing the two contributions yields (1.26).

2.2.2 A consequence of Assumption 1.1

Finally, we note for future reference that (1.26) implies that

1

V

∑

k∈T∗

r,n:k 6=0

1

[1− D̂(k)]3
≤ 1 + 6β. (2.28)

To see this, we use the identity

1

[1− D̂]3
= 1 + 3D̂ +

3D̂2

1− D̂
+

2D̂2

[1− D̂]2
+

D̂2

[1− D̂]3
, (2.29)

and note that the sum of the last three terms on the right side is at most 6D̂2[1− D̂]−3, and their
normalized sum over k is thus at most 6β, by (1.26). Since the normalized sum over all k ∈ Tr,n

of 3D̂(k) is 3D(0) = 0, its sum over nonzero k is −3V −1 < 0. This proves (2.28).
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0

x 0 x

Figure 1: A percolation cluster with a string of 8 sausages joining 0 to x, and a schematic repre-
sentation of the string. The 7 pivotal bonds are shown in bold.

3 The lace expansion

We begin in Section 3.1 with a brief overview of the lace expansion, and then give a self-contained
and detailed derivation of the expansion in Section 3.2.

The term “lace” was used by Brydges and Spencer [9] for a certain graphical construction that
arose in the expansion they invented to study the self-avoiding walk. Although the lace expansion
for percolation evolved from the expansion for the self-avoiding walk, this graphical construction
does not occur for percolation, and so the term “lace” expansion is a misnomer in the percolation
context. However, the name has stuck for historical reasons.

3.1 Overview of the lace expansion

In this section, we give a brief introduction to the lace expansion, with an indication of how it is
used to prove the triangle condition of Theorem 1.3. Since the analysis will involve the Fourier
transform, we restrict attention here to percolation on the narrow torus Tr,n, with r ≥ 2 and n
large. Each vertex has degree Ω = 2n for r ≥ 3 and Ω = n for r = 2. However, in Section 3.2 the
expansion will be derived on an arbitrary transitive graph G.

For p = Ω−1, the probability that the origin is in a cycle of length 4 is bounded above by
Ω2Ω−4 = Ω−2. Larger cycles are more unlikely. This suggests that in a typical percolation
configuration connecting 0 and x, the backbone for the connection is a random walk path with
few cycles. Thus it makes sense to attempt to relate τp(x) to the two-point function for random
walks.

Although unlikely, cycles do exist in percolation clusters, and due to cycles the percolation
critical threshold is shifted from the tree critical value (Ω−1)−1 to pc(G). It is therefore necessary
to take the cycles seriously into account. Given a percolation cluster containing 0 and x, we call
any bond whose removal would disconnect 0 from x a pivotal bond. The connected components
that remain after removing all pivotal bonds are called sausages. A sausage may contain a cycle
that gives alternate paths from 0 to x, as in the second sausage of Figure 1, but this is the unlikely
case.

Since they are separated by at least one pivotal bond by definition, no two sausages can have
a common vertex. Thus the sausages are constrained to be mutually avoiding. However, this is a
weak constraint, since sausage intersections require a cycle, and cycles are unlikely. This makes it
reasonable to attempt to apply an inclusion-exclusion analysis, where the connection from 0 to x
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is treated as a random walk taking independent steps, with correction terms taking into account
the avoidance constraint.

The lace expansion of Hara and Slade [13] makes this procedure precise. It produces a convo-
lution equation

τp(0, x) = δ0,x + pΩ(D ∗ τp)(0, x) + pΩ(Πp ∗D ∗ τp)(0, x) + Πp(0, x) (3.1)

for the two-point function, valid for p ≤ pc(Tr,n). The expansion gives explicit but complicated
formulas for the function Πp : Tr,n × Tr,n → R, which will turn out to be small under Assump-

tion 1.1. In particular, Π̂p(k) = O(Ω−1) uniformly in p ≤ pc(G). Putting Πp = 0 in (3.1) gives
(2.3), and in this sense the percolation two-point function can be regarded as a small perturbation
of the random walk two-point function.

Since the Fourier transform of a convolution is the product of Fourier transforms, (3.1) can be
rewritten as

τ̂p(k) =
1 + Π̂p(k)

1− pΩD̂(k)[1 + Π̂p(k)]
. (3.2)

We will prove estimates to show that Π̂p(k) can be well approximated by Π̂p(0). Since Π̂p(k) is
also small compared to 1, (3.2) suggests that the approximation

τ̂p(k) ≈ 1

1− pΩ[1 + Π̂p(0)]D̂(k)
(3.3)

is reasonable (where ≈ denotes an uncontrolled approximation). Comparing with (2.4), this sug-
gests that

τ̂p(k) ≈ Ĉµp(k) with µpΩ = pΩ[1 + Π̂p(0)]. (3.4)

We will make this approximation precise in (5.4) and (6.6). Since D̂(0) = 1, if we set k = 0 in
(3.2) and solve for pΩ then we obtain

pΩ =
1

1 + Π̂p(0)
− τ̂p(0)−1. (3.5)

For p = pc = pc(Tr,n), (3.5) states that

pcΩ =
1

1 + Π̂pc(0)
− λ−1V −1/3, (3.6)

and hence µpcΩ ≈ 1− λ−1V −1/3. This should be compared with the critical value µΩ = 1 for the
random walk.

For the triangle condition, we analyse the Fourier representation of ∇p(x) given in (1.23).
Extraction of the k = 0 term in (1.23) gives

∇p(x) =
χ3(p)

V
+

1

V

∑

k∈T∗

r,n:k 6=0

τ̂p(k)3e−ik·x. (3.7)

The second term can be estimated using (3.4) and Assumption 1.1, leading to a proof of Theo-
rem 1.3. Details are given in Section 5.

Using Π̂p(k) = O(Ω−1), (3.6) gives pc = Ω−1 + O(Ω−2) if λ−1V −1/3 ≤ O(Ω−2). This is the
first term in an asymptotic expansion. Further terms will follow from an asymptotic expansion
of Π̂pc(0) in powers of Ω−1. This was done in [15] for percolation on Zn and is developed more
generally in [17].
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3.2 Derivation of the lace expansion

In this section, we derive a version of the lace expansion (3.1) that contains a remainder term. We
use the method of [13], which requires no change for a transitive graph G, and we closely follow
the presentation of [19]. We assume for simplicity that G is finite, but with minor modifications
the analysis also applies when G is infinite provided there is almost surely no infinite cluster.

Fix p ∈ [0, 1]. We write τ(x) = τp(x) for brevity, and generally drop subscripts indicating
dependence on p. For each M = 0, 1, 2, . . ., the expansion takes the form

τ(0, x) = δ0,x + pΩ(D ∗ τ)(0, x) + pΩ(ΠM ∗D ∗ τ)(0, x) + ΠM(0, x) +RM(0, x). (3.8)

Here D(0, x) is given by (1.24), the function ΠM : V×V→ R is the key quantity in the expansion,
and RM(0, x) is a remainder term. The dependence of ΠM on M is given by

ΠM(0, x) =
M
∑

N=0

(−1)NΠ(N)(0, x), (3.9)

with Π(N)(0, x) independent of M . The alternating sign in (3.9) arises via repeated inclusion-
exclusion. In Section 5, we will prove that for G = Tr,n with Assumption 1.1, and for p ≤ pc(Tr,n)

lim
M→∞

∑

x

|RM(0, x)| = 0, (3.10)

which leads to (3.1) with Π = Π∞. Convergence properties of (3.9) when M = ∞ will also be
established in Section 5. The remainder of this section gives the proof of (3.8).

Given increasing events E, F , we use the notation E ◦ F to denote the event that E and F
occur disjointly. Roughly speaking, E ◦ F is the set of bond configurations for which there exist
two disjoint sets of occupied bonds such that the first set guarantees the occurrence of E and the
second guarantees the occurrence of F . The BK inequality asserts that P(E ◦ F ) ≤ P(E)P(F ),
for increasing events E and F . (See [10, Section 2.3] for a proof, and for a precise definition of
E ◦ F .) Given a bond configuration, we say that a bond is pivotal for x ↔ y if x ↔ y in the
possibly modified configuration in which the bond is made occupied, whereas x is not connected
to y in the possibly modified configuration in which the bond is made vacant.

Bonds are not directed. However, it will be convenient at times to regard a bond {u, v} as
directed from u to v, and we will emphasize this point of view with the notation (u, v).

We need the following definitions and lemma.

Definition 3.1. (a) Given a bond configuration, and A ⊂ V, we say x and y are connected in A
if there is an occupied path from x to y having all its endpoints in A, or if x = y ∈ A. We define
a restricted two-point function by

τA(x, y) = P(x and y are connected in V\A). (3.11)

(b) Given a bond configuration, and A ⊂ V, we say x and y are connected through A, if x↔ y and
every occupied path connecting x to y has at least one bond with an endpoint in A. This event is

written as x
A↔ y.

(c) Given a bond configuration, and a bond b, we define C̃b(x) to be the set of sites connected to
x in the new configuration obtained by setting b to be vacant.
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(d) Given an event E, we define the event {E occurs on C̃(u,v)(x)} to be the set of configurations
such that E occurs on the modified configuration in which every bond that does not have an
endpoint in C̃(u,v)(x) is made vacant. We say that {E occurs in V\C̃(u,v)(x)} if E occurs on the
modified configuration in which every bond that does not have both endpoints in V\C̃(u,v)(x) is
made vacant.

Lemma 3.2. Fix p ∈ [0, 1]. Given a bond (u, v), a site w and events E, F ,

E
(

I[E occurs on C̃(u,v)(w) & (u, v) is occupied & F occurs in V\C̃(u,v)(w)]
)

= pΩD(u, v)E
(

I[E occurs on C̃(u,v)(w)] E
(

I[F occurs in V\C̃(u,v)(w)]
))

. (3.12)

The identity (3.12) is also valid if the event {(u, v) is occupied} is removed from the left side and
ΩD(u, v) is removed from the right side.

Proof. The proof is by conditioning on the bond cluster of w which remains after setting (u, v) to
be vacant, which we denote C̃(u,v)(w)b. Let B denote the set of all finite bond clusters of A. Given
B ∈ B, we denote the set of vertices in B by Bs. Conditioning on C̃(u,v)(w)b, we have

E
[

I
[

E occurs on C̃(u,v)(w) & F occurs in V\C̃(u,v)(w) & (u, v) occupied
]]

(3.13)

=
∑

B∈B

E
[

I[C̃(u,v)(w)b = B & E occurs on B̃s & F occurs in V\B̃s & (u, v) occupied]
]

,

where B̃s emphasizes that E occurs on Bs after setting (u, v) to be vacant. Since the first two of
the four events on the right side of (3.13) depend only on bonds with an endpoint in Bs (excluding
(u, v)), while the third event depends only on bonds which do not have an endpoint in Bs (again,
excluding (u, v)), and the fourth event depends only on (u, v), this independence allows us to write
(3.13) as

p
∑

B∈B

E
[

I[C̃(u,v)(w)b = B & E occurs on B̃s]
]

E
[

I[F occurs in V\B̃s]
]

= pE
[

I[E occurs on C̃(u,v)(w)]E
[

I[F occurs in V\C̃(u,v)(w)]
]]

. (3.14)

This completes the proof of (3.12), since ΩD(u, v) = 1 if (u, v) is a bond. The statement under
(3.12) holds by the same proof.

In the nested expectation on the right side of (3.12), the set C̃(u,v)(w) is a random set with
respect to the outer expectation, but it is deterministic with respect to the inner expectation. The
inner expectation on the right side effectively introduces a second percolation model on a second
graph, which is coupled to the original percolation model via the set C̃(u,v)(w).

Given a configuration, we say that x is doubly connected to y, and we write x⇔ y, if there are
at least two bond-disjoint paths from x to y consisting of occupied bonds. By convention, x⇔ x
for all x. To begin the expansion, we define

Π(0)(0, x) = P(0⇔ x)− δ0,x (3.15)

and distinguish configurations with 0↔ x according to whether or not there is a double connection,
to obtain

τ(0, x) = δ0,x + Π(0)(0, x) + P(0↔ x & 0⇔/ x). (3.16)
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If 0 is connected to x, but not doubly, then there is at least one pivotal bond for the connection,
and hence a first such pivotal bond. Denoting this pivotal bond by (u, v), we can write

P(0↔ x & 0⇔/ x) =
∑

(u,v)

P(0⇔ u and (u, v) is occupied and pivotal for 0↔ x). (3.17)

Now comes the essential part of the expansion. Ideally, we would like to factor the probability on
the right side of (3.17) as

P(0⇔ u) P((u, v) is occupied) P(v ↔ x) =
(

δ0,u + Π(0)(0, u)
)

pΩD(u, v)τ(v, x). (3.18)

This would give (3.8) with ΠM = Π(0) and RM = 0. However, (3.17) does not factor in this way
because the cluster C̃(u,v)(u) is constrained not to intersect the cluster C̃(u,v)(v), since (u, v) is
pivotal. What we can do is approximate the probability on the right side of (3.17) by (3.18), and
then attempt to deal with the error term.

For this purpose, we observe that

P(0⇔ u and (u, v) is occupied and pivotal for 0↔ x) (3.19)

= E
(

I[0⇔ u occurs on C̃(u,v)(0) & (u, v) is occupied & v ↔ x occurs in V\C̃(u,v)(0)]
)

.

Therefore, by Lemma 3.2,

P(0⇔ u and (u, v) is occupied and pivotal for 0↔ x)

= pΩD(u, v)E
(

I[0⇔ u occurs on C̃(u,v)(0)]τ C̃(u,v)(0)(v, x)
)

. (3.20)

On the right side, τ C̃(u,v)(0)(v, x) is the restricted two-point function given the cluster C̃(u,v)(0) of

the outer expectation, so that in the (inner) expectation defining τ C̃(u,v)(0)(v, x), C̃(u,v)(0) should
be regarded as a fixed set. We stress this delicate point here, as it is crucial also in the rest of
the expansion. As mentioned above, the expectation defining τ C̃(u,v)(0)(v, x) effectively introduces
a second percolation model.

It follows from (3.17) and (3.20) that

P(0↔ x & 0⇔/ x) =
∑

(u,v)

pΩD(u, v)E
(

I[0⇔ u occurs on C̃(u,v)(0)] τ C̃(u,v)(0)(v, x)
)

=
∑

(u,v)

pΩD(u, v)E
(

I[0⇔ u] τ C̃(u,v)(0)(v, x)
)

. (3.21)

In the second equality of (3.21), we dropped the condition “occurs on C̃(u,v)(0),” because of the

fact that τ C̃(u,v)(0)(v, x) = 0 on the event {0⇔ u} \ {0⇔ u occurs on C̃(u,v)(0)}. We write

τ C̃(u,v)(0)(v, x) = τ(v, x)−
(

τ(v, x)− τ C̃(u,v)(0)(v, x)
)

= τ(v, x)− P
(

v ←C̃
(u,v)(0)−−−−−→ x

)

, (3.22)

insert this into (3.21), and use (3.16) and (3.15) to obtain

τ(0, x) = δ0,x + Π(0)(0, x) +
∑

(u,v)

(

δ0,u + Π(0)(0, u)
)

pΩD(u, v)τ(v, x)

−
∑

(u,v)

pΩD(u, v)E
(

I[0⇔ u] P(v ←C̃
(u,v)(0)−−−−−→ x)

)

. (3.23)
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0 u v u′v′ x

Figure 2: A possible configuration appearing in the second stage of the expansion.

With R0(0, x) equal to the last term on the right side of (3.23) (including the minus sign), this
proves (3.8) for M = 0.

To continue the expansion, we would like to rewrite the final term of (3.23) in terms of a
convolution with the two-point function. A configuration contributing to the expectation in the
final term of (3.23) is illustrated schematically in Figure 2, in which the bonds drawn with heavy
lines should be regarded as living on a different graph than the bonds drawn with lighter lines, as
explained previously. Our goal is to extract a factor τ(x− v ′).

Given a configuration in which v ←A−→ x, the cutting bond (u′, v′) is defined to be the first pivotal

bond for v ↔ x such that v ←A−→ u′. It is possible that no such bond exists, as for example would
be the case in Figure 2 if only the leftmost four sausages were included in the figure (using the
terminology of Section 3.1), with x in the location currently occupied by u′. Let

E ′(v, x;A) = {v A↔ x} ∩ {6 ∃ pivotal (u′, v′) for v ↔ x such that v
A↔ u′}, (3.24)

E(v, u′, v′, x;A) = E ′(v, u′;A) ∩ {(u′, v′) is occupied and pivotal for v ↔ x}. (3.25)

By partitioning {v A↔ x} according to the location of the cutting bond (or the lack of a cutting
bond), we obtain the partition

{v A↔ x} = E ′(v, x;A)
·
⋃

(u′,v′)

E(v, u′, v′, x;A), (3.26)

which implies that

P(v
A↔ x) = P(E ′(v, x;A)) +

∑

(u′,v′)

P(E(v, u′, v′, x;A)). (3.27)

Defining
E ′′(v, u′, v′;A) = {E ′(v, u′;A) occurs on C̃(u′,v′)(v)}, (3.28)

the event E(v, u′, v′, x;A) can be rewritten as

E(v, u′, v′, x;A) = E ′′(v, u′, v′;A) ∩ {(u′, v′) occupied} ∩ {v′ ↔ x occurs in V\C̃(u′,v′)(v)}. (3.29)

Using Lemma 3.2, this gives

P(v
A↔ x) = P(E ′(v, x;A)) + pΩ

∑

(u′,v′)

D(u′, v′) E

(

I[E ′′(v, u′, v′;A)] τ C̃(u′,v′)(v)(v′, x)
)

. (3.30)

The events E ′′(v, u′, v′;A) and E ′(v, u′;A) differ only on configurations for which v′ ∈ C̃(u′,v′)(v).

Since τ C̃(u′,v′)(v)(v′, x) = 0 on such configurations, we may replace E ′′(v, u′, v′;A) in (3.30) by
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E ′(v, u′;A). Using this observation, and inserting the identity (3.22) into (3.30), we obtain

P(v
A↔ x) = P(E ′(v, x;A)) + pΩ

∑

(u′,v′)

D(u′, v′) P(E ′(v, u′;A)) τ(v′, x)

− pΩ
∑

(u′,v′)

D(u′, v′) E1

(

I[E ′(v, u′;A)] P2(v
′ ←C̃

(u′,v′)
1 (v)−−−−−−→ x)

)

. (3.31)

In the last term on the right side, we have introduced subscripts for C̃ and the expectations, to
indicate to which expectation C̃ belongs.

Let
Π(1)(0, x) =

∑

(u,v)

pΩD(u, v) E0

(

I[0⇔ u]P1(E
′(v, x; C̃

(u,v)
0 (0)))

)

. (3.32)

Inserting (3.31) into (3.23), and using (3.32), we have

τ(0, x) = δ0,x + Π(0)(0, x)− Π(1)(0, x) +
∑

(u,v)

(

δ0,u + Π(0)(0, u)− Π(1)(0, u)
)

pΩD(u, v) τ(v, x)

+
∑

(u,v)

pΩD(u, v)
∑

(u′,v′)

pΩD(u′, v′)

× E0

(

I[0⇔ u]E1

(

I[E ′(v, u′; C̃0
(u,v)

(0))]P2(v
′ ←C̃

(u′,v′)
1 (v)−−−−−−→ x)

)

)

. (3.33)

This proves (3.8) for M = 2, with R2(x) given by the last two lines of (3.33).

We now repeat this procedure recursively, rewriting P2(v
′ ←C̃

(u′,v′)
1 (v)−−−−−−→ x) using (3.31), and so on.

This leads to (3.8), with Π(0) and Π(1) given by (3.15) and (3.32), and, for N ≥ 2,

Π(N)(0, x) =
∑

(u0,v0)

· · ·
∑

(uN−1,vN−1)

[N−1
∏

i=0

pΩD(ui, vi)
]

E0I[0⇔ u0] (3.34)

× E1I[E ′(v0, u1; C̃0)] · · ·EN−1I[E ′(vN−2, uN−1; C̃N−2)]ENI[E ′(vN−1, x; C̃N−1)],

RM(0, x) = (−1)M+1
∑

(u0,v0)

· · ·
∑

(uM ,vM )

[ M
∏

i=0

pΩD(ui, vi)
]

E0I[0⇔ u0]

× E1I[E ′(v0, u1; C̃0)] · · ·EM−1I[E ′(vM−2, uM−1; C̃M−2)]

× EM

[

I[E ′(vM−1, uM ; C̃M−1)]PM+1(vM ←C̃M−−→ x)
]

, (3.35)

where we have used the abbreviation C̃j = C̃
(uj ,vj)
j (vj−1).

Since

PM+1(vM ←C̃M−−→ x) ≤ τp(vM , x), (3.36)

it follows from (3.34)–(3.35) that

|RM(0, x)| ≤
∑

uM ,vM∈V

Π(M)(0, uM)pΩD(uM , vM)τp(vM , x). (3.37)

21



4 Diagrammatic estimates for the lace expansion

In this section, we prove bounds on Π(N). These bounds are summarized in Lemma 4.1. We refer
to the methods of this section as diagrammatic estimates, as we use Feynman diagrams to provide
a convenient representation for upper bounds on Π(N).

4.1 The diagrams

In this section, we show how Π(N) of (3.34) can be bounded in terms of Feynman diagrams. Our
approach here is essentially identical to what is done in [13, Section 2.2], apart from some notational
differences, and we omit some details in the following. The results of this section apply to any
transitive graph G = (V,B).

Let P(N) denote the product measure on N+1 copies of percolation on G. By Fubini’s Theorem
and (3.34),

Π(N)(0, x) =
∑

(u0,v0)

· · ·
∑

(uN−1 ,vN−1)

[N−1
∏

i=0

pD(ui, vi)
]

× P(N)
(

{0⇔ u0}0 ∩
(

N−1
⋂

i=1

E ′(vi−1, ui; C̃i−1)i

)

∩ E ′(vN−1, x; C̃N−1)N

)

, (4.1)

where E ′(vi−1, ui; C̃i−1)i denotes the event that E ′(vi−1, ui; C̃i−1) occurs on graph i, and {0⇔ u0}0
denotes the event that 0⇔ u0 occurs on graph 0. To estimate Π(N)(0, x), it is convenient to define
the events

F0(v, t, z, u) = {v ↔ t} ◦ {t↔ z} ◦ {t↔ u} ◦ {z ↔ u}, (4.2)

F1(vi−1, ti, zi, ui, wi, zi+1) = {vi−1 ↔ ti} ◦ {ti ↔ zi} ◦ {ti ↔ wi}
◦ {zi ↔ ui} ◦ {wi ↔ ui} ◦ {wi ↔ zi+1}, (4.3)

F2(vi−1, ti, zi, ui, wi, zi+1) = {vi−1 ↔ wi} ◦ {wi ↔ ti} ◦ {ti ↔ zi}
◦ {ti ↔ ui} ◦ {zi ↔ ui} ◦ {wi ↔ zi+1}, (4.4)

F (vi−1, ti, zi, ui, wi, zi+1) = F1(vi−1, ti, zi, ui, wi, zi+1) ∪ F2(vi−1, ti, zi, ui, wi, zi+1). (4.5)

The events F0, F1 and F2 are depicted in Figure 3.
By the definition of E ′ in (3.24),

E ′(vN−1, x; C̃N−1)N ⊂
⋃

zN∈C̃N−1

⋃

tN∈V

F0(vN−1, tN , zN , x). (4.6)

In fact, viewing the connection from vN−1 to x as a string of sausages beginning at vN−1 and ending
at x, for the event E ′ to occur there must be a vertex zN ∈ C̃N−1 that lies on the last sausage, on
a path from vN−1 to x. (In fact, both “sides” of the sausage must contain a vertex in C̃N−1, but
we do not need or use this.) This leads to (4.6), with tN representing the other endpoint of the
sausage that terminates at x.

Assume, for the moment, that N ≥ 2. The condition in (4.6) that zN ∈ C̃N−1 is a condition on
the graph N − 1 that must be satisfied in conjunction with the event E ′(vN−2, uN−1; C̃N−2)N−1. It
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F0(v, t, z, u) =
v t z

• u

F1(vi−1, ti, zi, ui, wi, zi+1) =
vi−1 ti zi

• ui

wi

zi+1

F2(vi−1, ti, zi, ui, wi, zi+1) =
vi−1 ti zi

• ui

wi

zi+1

Figure 3: Diagrammatic representations of the events F0(v, t, z, u), F1(vi−1, ti, zi, ui, wi, zi+1) and
F2(vi−1, ti, zi, ui, wi, zi+1). Lines indicate disjoint connections.

is not difficult to see that for i ∈ {1, . . . , N − 1},

E ′(vi−1, ui; C̃i−1)i ∩ {zi+1 ∈ C̃i} ⊂
⋃

zi+1∈C̃i

⋃

ti,wi∈V

F (vi−1, ti, zi, ui, wi, zi+1)i. (4.7)

See Figure 4 for a depiction of the inclusions in (4.6) and (4.7). Further details are given in [13,
Lemma 2.5] or [21, Lemma 5.5.8].

With an appropriate treatment for graph 0, (4.6) and (4.7) lead to

{0⇔ u0}0 ∩
(N−1
⋂

i=1

E ′(vi−1, ui; C̃i−1)i

)

∩ E ′(vN−1, x; C̃N−1)N (4.8)

⊂
⋃

~t, ~w,~z

(

F0(z0, w0, u0, 0)0 ∩
(

N−1
⋂

i=1

F (vi−1, ti, zi, ui, wi, zi+1)i

)

∩ F0(vN−1, tN , zN , x)N

)

,

where ~t = (t1, . . . , tN), ~w = (w0, . . . , wN−1) and ~z = (z1, . . . , zN ). Therefore,

Π(N)(0, x) ≤
∑

Pp(F0(z1, w0, u0, 0))
N−1
∏

i=1

Pp(F (vi−1, ti, zi, ui, wi, zi+1))Pp(F0(vN−1, tN , zN , x)),

(4.9)
where the summation is over z1, . . . , zN , t1, . . . , tN , w0, . . . , wN−1, (u0, v0), . . . , (uN−1, vN−1). The
probability in (4.9) factors because the N + 1 percolation models are now independent. Each
probability in (4.9) can be estimated using the BK inequality. The result is that each of the
connections {x ↔ y} present in the events F and F0 is replaced by a two-point function τp(x, y).
This results in a large sum of two-point functions.

To organize a large sum of this form, we let

τ̃p(0, x) = pΩ(D ∗ τp)(0, x), (4.10)
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E ′(vN−1, x; C̃N−1)N ⊂
⋃

zN∈C̃N−1

⋃

tN∈V

vN−1

tN zN

x

C̃N−1

E ′(vi−1, ui; C̃i−1)i ∩ {zi+1 ∈ C̃i} ⊂
⋃

zi+1∈C̃i

⋃

ti,wi∈V

vi−1

ti zi

ui

wi

zi+1

C̃i

⋃ vi−1

ti zi

ui

wi

zi+1

C̃i

Figure 4: Diagrammatic representations of the inclusions in (4.6) and (4.7).

and define

A3(s, u, v) = τp(s, v)τp(s, u)τp(u, v), (4.11)

B1(s, t, u, v) = τ̃p(t, v)τp(s, u), (4.12)

B2(u, v, s, t) = τp(u, v)τp(u, t)τp(v, s)τp(s, t)

+
∑

a∈V

τp(s, a)τp(a, u)τp(a, t)δv,sτp(u, t). (4.13)

The two terms in B2 arise from the two events F1 and F2 in (4.5). We will write them as B(1)

2

and B(2)

2 , respectively. The above quantities are represented diagrammatically in Figure 5. In the
diagrams, a line joining x and y represents τp(x, y). In addition, small bars are used to distinguish
a line that represents τ̃p, as in B1.

Application of the BK inequality yields

Pp(F0(z1, w0, u0, 0)) ≤ A3(0, u0, w0)τp(w0, z1), (4.14)

∑

vN−1

pΩD(uN−1, vN−1)Pp(F0(vN−1, tN , zN , x)) ≤ B1(wN−1, uN−1, zN , tN )

τp(wN−1, zN )
A3(x, tN , zN). (4.15)
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s

u

v

A3(s, u, v) B1(s, t, u, v) =

B2(u, v, s, t) = +

s

t

u

v

tu

s = v
s

tu

v

=

Figure 5: Diagrammatic representations of A3(s, u, v), B1(s, t, u, v) and B2(u, v, s, t).

For F1 and F2, application of the BK inequality yields
∑

vi−1

pΩD(ui−1, vi−1)Pp(F1(vi−1, ti, zi, ui, wi, zi+1))

≤ B1(wi−1, ui−1, zi, ti)

τp(wi−1, zi)
B(1)

2 (zi, ti, wi, ui)τp(wi, zi+1), (4.16)

∑

vi−1,ti

pΩD(ui−1, vi−1)Pp(F2(vi−1, ti, zi, ui, wi, zi+1))

≤ B1(wi−1, ui−1, zi, wi)

τp(wi−1, zi)
B(2)

2 (zi, wi, wi, ui)τp(wi, zi+1). (4.17)

Since the first and the third argument of B(2)

2 are equal by (4.13), we can combine (4.16)–(4.17) to
obtain

∑

vi−1,ti

pΩD(ui−1, vi−1)Pp(F (vi−1, ti, zi, ui, wi, zi+1))

≤
∑

ti

B1(wi−1, ui−1, zi, ti)

τp(wi−1, zi)
B2(zi, ti, wi, ui)τp(wi, zi+1). (4.18)

Upon substitution of the bounds on the probabilities in (4.14), (4.15) and (4.18) into (4.9),
the ratios of two-point functions form a telescoping product that disappears. After relabeling the
summation indices, (4.9) becomes

Π(N)(0, x) ≤
∑

~s,~t,~u,~v

A3(0, s1, t1)
N−1
∏

i=1

[

B1(si, ti, ui, vi)B2(ui, vi, si+1, ti+1)
]

×B1(sN , tN , uN , vN)A3(uN , vN , x). (4.19)

The bound (4.19) is valid for N ≥ 1, and the summation is over all s1, . . . , sN , t1, . . . , tN ,
(u1, v1), . . . , (uN , vN). For N = 1, 2, the right side is represented diagrammatically in Figure 6. In
the diagrams, unlabeled vertices are summed over V.

4.2 The diagrammatic bounds

We now specialize to the case G = Tr,n, making use of the additive structure and the x 7→ −x
symmetry of the torus. We will write τp(y − x) in place of τp(x, y), and similarly for D and Π(N).
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(a)

(b)

0

0 0+

x

x x

Figure 6: The diagrams bounding (a) Π(1)(0, x) and (b) Π(2)(0, x).

The upper bounds we prove are in terms of various quantities related to the triangle diagram.
Let

Tp(x) =
∑

y,z,u∈V

τp(y)τp(z − y)pΩD(u)τp(x + z − u) = (τp ∗ τp ∗ τ̃p)(x), (4.20)

Tp = max
x∈V

Tp(x), (4.21)

T ′
p = max

x∈V

∑

y,z∈V

τp(y)τp(z − y)τp(x− z) = max
x∈V

(τp ∗ τp ∗ τp)(x), (4.22)

and, for k ∈ T∗
r,n, let

Wp(y; k) =
∑

x∈V

[1− cos(k · x)]τ̃p(x)τp(x + y), (4.23)

Wp(k) = max
y∈V

Wp(y; k). (4.24)

Recall that B(2)

2 denotes the second term of (4.13). For k ∈ T∗
r,n, we also define

Hp(a1, a2; k)=
∑

ui−1,vi,vi−1,si,ti

[1− cos(k · (ti − ui−1))]B1(0, a1, ui−1, vi−1)

×B(2)

2 (ui−1, vi−1, si, ti)B1(si, ti, vi, vi + a2), (4.25)

and
Hp(k) = max

a1,a2∈V
Hp(a1, a2; k). (4.26)

The remainder of this section is devoted to the proof of the following lemma.

Lemma 4.1. For N = 0,
∑

x∈V

Π(0)(x) ≤ Tp, (4.27)

∑

x∈V

[1− cos(k · x)]Π(0)(x) ≤ Wp(0; k). (4.28)

For N ≥ 1,
∑

x∈V

Π(N)(x) ≤ T ′
p(2TpT

′
p)N , (4.29)

∑

x∈V

[1− cos(k · x)]Π(N)(x) ≤ (4N + 3)
[

T ′
pWp(k)(2Tp + [1 + pΩ]NT ′

p)(2TpT
′
p)

N−1

+ (N − 1)(T 2
pWp(k) +Hp(k))(T ′

p)2(2TpT
′
p)N−2

]

, (4.30)
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and, for N = 1, (4.30) can also be replaced by

∑

x∈V

[1− cos(k · x)]Π(1)(x) ≤ Wp(0; k) + 31TpT
′
pWp(k). (4.31)

4.2.1 Proof of (4.27)–(4.28)

By (3.15) and the BK inequality,

Π(0)(x) = P(0⇔ x)− δ0,x ≤ τp(x)2 − δ0,x. (4.32)

For x 6= 0, the event {0↔ x} is the union over neighbors y of the origin of {{0, y} occupied}◦{y ↔
x}. Thus, by the BK inequality,

τp(x) ≤ pΩ(D ∗ τp)(x) = τ̃p(x) (x 6= 0). (4.33)

Therefore,
∑

x∈V

Π(0)(x) ≤
∑

x∈G

τp(x)τ̃p(x) ≤ Tp(0). (4.34)

Similarly,
∑

x∈V

[1− cos(k · x)]Π(0)(x) ≤ Wp(0; k). (4.35)

This proves (4.27)–(4.28).

4.2.2 Proof of (4.29)

For N ≥ 1, let

Ψ(N)(sN+1, tN+1) =
∑

~s,~t,~u,~v

A3(0, s1, t1)
N
∏

i=1

[

B1(si, ti, ui, vi)B2(ui, vi, si+1, ti+1)
]

. (4.36)

For convenience, we define Ψ(0)(x, y) = A3(0, x, y), so that

Ψ(N)(x, y) =
∑

uN ,vN ,sN ,tN

Ψ(N−1)(sN , tN)B1(sN , tN , uN , vN)B2(uN , vN , x, y), (N ≥ 1). (4.37)

Since
∑

x

A3(uN , vN , x) ≤
∑

x,y

B2(uN , vN , x, y), (4.38)

it follows that
∑

x

Π(N)(x) ≤
∑

x,y

Ψ(N)(x, y), (4.39)

and bounds on Π(N) can be obtained from bounds on Ψ(N). We prove bounds on Ψ(N), and hence
on Π(N), by induction on N .

The induction hypothesis is that

∑

x,y

Ψ(N)(x, y) ≤ T ′
p(2TpT

′
p)N . (4.40)
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For N = 0, (4.40) is true since
∑

x,y

A3(0, x, y) ≤ T ′
p. (4.41)

If we assume (4.40) is valid for N − 1, then by (4.37),

∑

x,y

Ψ(N)(x, y) ≤
(

∑

sN ,tN

Ψ(N−1)(sN , tN)
)(

max
sN ,tN

∑

uN ,vN ,x,y

B1(sN , tN , uN , vN)B2(uN , vN , x, y)
)

, (4.42)

and (4.40) then follows once we prove that

max
s,t

∑

u,v,x,y

B1(s, t, u, v)B2(u, v, x, y) ≤ 2TpT
′
p. (4.43)

It remains to prove (4.43). There are two terms, due to the two terms in (4.13), and we bound
each term separately. The first term is bounded as

max
s,t

∑

u,v,x,y

τ̃p(v − t)τp(u− s)τp(y − u)τp(x− v)τp(v − u)τp(x− y)

= max
s,t

∑

u,v

τ̃p(v − t)τp(u− s)τp(v − u)
(

∑

x,y

τp(y − u)τp(x− v)τp(x− y)
)

≤ T ′
p max

s,t

∑

u,v

τ̃p(v − t)τp(u− s)τp(v − u)

= TpT
′
p. (4.44)

The second term is bounded similarly by

max
s,t

∑

u,v,x,y,a

τ̃p(v − t)τp(u− s)δv,xτp(y − u)τp(x− a)τp(u− a)τp(y − a)

= max
s,t

∑

a,y,u

(

τ̃p ∗ τ)(a− t)τp(u− s)
)(

τp(y − u)τp(u− a)τp(y − a)
)

= max
s,t

∑

y′,a′

Tp(a
′ + s− t)τp(y′)τp(a′)τp(y′ − a′)

≤
(

max
a′,s,t

Tp(a′ + s− t)
)(

∑

y′,a′

τp(y′)τp(a′)τp(y′ − a′)
)

= TpT
′
p, (4.45)

where a′ = a− u, y′ = y − u. This completes the proof of (4.43) and hence of (4.29).

4.2.3 Proof of (4.30)

Next, we estimate
∑

x[1 − cos(k · x)]Π(N)(x). In a term in (4.19), there is a sequence of 2N + 1
two-point functions along the “top” of the diagram, such that the sum of the displacements of
these two-point functions is exactly equal to x. For example, in Figure 6(a) there are three
displacements along the top of the diagram, and in Figure 6(b) there are five in the first diagram
and four in the second. We regard the second diagram as also having five displacements, with the
understanding that the third is constrained to vanish. With a similar general convention, each of
the 2N−1 diagrams bounding Π(N) has 2N + 1 displacements along the top of the diagram. We
denote these displacements by d1, . . . , d2N+1, so that x =

∑2N+1
j=1 dj. We will argue as follows to

distribute the factor 1− cos(k · x) among the displacements dj.
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Let t =
∑J

j=1 tj. Taking the real part of the telescoping sum

1− eit =
J
∑

j=1

[1− eitj ]ei
∑

m<j
tm (4.46)

leads to the bound

1− cos t ≤
J
∑

j=1

[1− cos tj] +
J
∑

j=1

sin tj sin
∑

m<j

tm. (4.47)

It follows from the identity sin(x+ y) = sin x cos y+ cos x sin y that | sin(x+ y)| ≤ | sinx|+ | sin y|.
Applying this recursively gives

1− cos t ≤
J
∑

j=1

[1− cos tj] +
J
∑

j=1

j−1
∑

m=1

| sin tj|| sin tm|. (4.48)

In the last term we use |ab| ≤ (a2 + b2)/2, and then 1− cos2 a ≤ 2[1− cos a], to obtain

1− cos t ≤
J
∑

j=1

[1− cos tj] +
1

2

J
∑

j=1

j−1
∑

m=1

[sin2 tj + sin2 tm]

≤
J
∑

j=1

[1− cos tj] + J
J
∑

j=1

sin2 tj

=
J
∑

j=1

[1− cos tj] + J
J
∑

j=1

[1− cos2 tj]

≤ (2J + 1)
J
∑

j=1

[1− cos tj]. (4.49)

We apply (4.49) with t = k · x =
∑2N+1

j=1 k · dj to obtain a sum of 2N + 1 diagrams like the
ones for Π(N)(x), except now in the jth term the jth line in the top of the diagram represents
[1− cos(k · dj)]τp(dj) rather than τp(dj).

We distinguish three cases: (a) the displacement dj is in a line of A3, (b) the displacement dj

is in a line of B1, (c) the displacement dj is in a line of B2.

Case (a): the displacement is in a line of A3. We consider the case where the weight [1−cos(k ·dj)]
falls on the last of the factors A3 in (4.19). This contribution is equal to

∑

u,v

Ψ(N−1)(u, v)
∑

w,x,y

B1(u, v, w, y)τp(y − w)[1− cos(k · (x− y))]τp(x− y)τp(x− w). (4.50)

Applying (4.33) to τp(x− y), we have

max
u,v

∑

w,x,y

B1(u, v, w, y)τp(y − w)[1− cos(k · (x− y))]τp(x− y)τp(x− w) ≤ TpWp(k). (4.51)

It then follows from (4.40) that (4.50) is bounded above by T ′
p(2TpT

′
p)N−1TpWp(k). By symmetry,

the same bound applies when the weight falls into the first factor of A3, i.e, when we have a factor
[1− cos(k · d1)]. Thus case (a) leads to an upper bound

2T ′
p(2TpT

′
p)N−1TpWp(k). (4.52)
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Case (b): the displacement is in a line of B1. Suppose that the factor [1− cos(k · dj)] falls on the
ith factor B1 in (4.19). Depending on i, it falls either on τ̃p or on τp in (4.12). We write the right
side of (4.19) with the extra factor as

∑

x

∑

si,ti,ui,vi

Ψ(i)(si, ti)B̃1(si, ti, ui, vi)Ψ
(N−i−1)(ui − x, vi − x), (4.53)

where either
B̃1(s, t, u, v) = [1− cos(k · (u− s))]τ̃p(u− s)τp(v − t), (4.54)

or
B̃1(s, t, u, v) = τ̃p(u− s)[1− cos(k · (v − t))]τp(v − t). (4.55)

For (4.54), we let a1 = ti − si, a2 = vi − ui, and x′ = ui − x. With this notation, the contribution
to (4.53) due to (4.54) is bounded above by

(

∑

si,a1

Ψ(i)(si, si + a1)
)(

∑

x′,a2

Ψ(N−i−1)(x′, x′ + a2)
)(

max
si,a1,a2

∑

ui

B̃1(si, si + a1, ui, ui + a2)
)

=
(

∑

si,ti

Ψ(i)(si, ti)
)(

∑

x,y

Ψ(N−i)(x, y)
)

Wp(k)

≤ T ′
p(2TpT

′
p)iT ′

p(2TpT
′
p)N−i−1Wp(k) = T ′

p(2TpT
′
p)N−1T ′

pWp(k), (4.56)

where we used (4.40). For (4.55), we use (4.33) for τp(v − t) and also obtain an additional factor
pΩ from τ̃p(u− s). Since there are N choices of factors B1, case (b) leads to an upper bound

[1 + pΩ]NT ′
p(2TpT

′
p)N−1T ′

pWp(k). (4.57)

Case (c): the displacement is in a line of B2. It is sufficient to estimate

max
∑

si−1, ti−1, ui−1, vi−1

si, ti, ui, vi, x

Ψ(i−1)(si−1, ti−1)Ψ
(N−i−1)(ui − x, vi − x)[1− cos(k · di)]

× B1(si−1, ti−1, ui−1, vi−1)B2(ui−1, vi−1, si, ti)B1(si, ti, ui, vi), (4.58)

where the maximum is over the choices di = si − vi−1 or di = ti − ui−1. We consider separately
the contributions due to B(1)

2 and B(2)

2 of (4.13), beginning with B(2)

2 .
Recall the definition of H(a1, a2; k) in (4.25). The contribution to (4.58) due to B(2)

2 can be
rewritten as

∑

si−1,a1,a2,x′

Ψ(i−1)(si−1, si−1 + a1)Ψ(N−i−1)(x′, x′ + a2)H(a1, a2; k)

≤ Hp(k)
(

∑

x,y

Ψ(i−1)(x, y)
)(

∑

x,y

Ψ(N−i−1)(x, y)
)

≤ Hp(k)(T ′
p)2(2TpT

′
p)

N−2. (4.59)

Since there are N − 1 factors B2 to choose, this contribution to case (c) contributes at most

(N − 1)Hp(k)(T ′
p)2(2TpT

′
p)N−2. (4.60)

It is not difficult to check that the contribution to case (c) due to B (1)

2 is at most

(N − 1)(T 2
pWp(k))(T ′

p)
2(2TpT

′
p)N−2. (4.61)

The desired estimate (4.30) then follows from (4.49), (4.52), (4.57) and (4.60)–(4.61).

30



4.2.4 Proof of (4.31)

Recall from (4.19) that

Π(1)

p (x) ≤
∑

s,t,u,v

A3(0, s, t)B1(s, t, u, v)A3(u, v, x). (4.62)

We define A′
3(u, v, x) by

A3(u, v, x) = δu,xδv,x + A′
3(u, v, x). (4.63)

Then we have

∑

x∈V

[1− cos(k · x)]Π(1)

p (x) ≤
∑

x∈V

[1− cos(k · x)]B1(0, 0, x, x)

+
∑

x∈V

∑

s,t,u,v

[1− cos(k · x)]A′
3(0, s, t)B1(s, t, u, v)A3(u, v, x)

+
∑

x∈V

∑

s,t,u,v

[1− cos(k · x)]B1(0, 0, u, v)A′
3(u, v, x). (4.64)

The first term equals Wp(0; k). The second and third terms are bounded above by 7 · 3TpT
′
pWp(k)

and 5 · 2TpWp(k) ≤ 10TpT
′
pWp(k), respectively, using (4.49) (with J = 3 and J = 2) and the

methods of Section 4.2.3.

5 Analysis of the lace expansion

In this section, we use the lace expansion to prove the triangle condition of Theorem 1.3. The
analysis is similar in spirit to the analysis of [13], but it has been simplified and reorganized,
and it differs significantly in detail from the presentation of [13]. Specific improvements include:
(i) We have reduced the number of functions in the bootstrap argument from five to three (cf. [13,
Proposition 4.3]), and in the bootstrap we work directly with the Fourier transform of the two-point
fuction rather than with the triangle and related diagrams. (ii) We work with 1−cos(k ·x) directly,
rather than expanding the cosine to second order. (iii) Our treatment of Hp(k) in Lemma 5.5 below
is simpler than the corresponding treatment of [13, Section 4.4.3(e)].

We work in this section on an arbitrary torus Tr,n with r ≥ 2, assuming that Assumption 1.1
is satisfied. As usual, we write the degree of the torus as Ω, and we abbreviate pc(Tr,n) to pc.

Our analysis actually uses a slightly weaker assumption than the one stated in Assumption 1.1.
Instead of (1.26), we will assume in the proof that

1

V

∑

k∈T∗
r,n: k 6=0

|D̂(k)|2
[1− µD̂(k)]3

≤ β (5.1)

holds uniformly in µ ∈ [0, 1 − 1
2
λ−1V −1/3]. Equation (5.1) is strictly weaker than (1.26), but not

in a significant way. The analogue of (2.28) with µ inserted in the denominator follows from (5.1)
in the same way that (2.28) follows from (1.26).
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5.1 The bootstrap argument

Taking the Fourier transform of (3.8) and solving for τ̂p(k) gives

τ̂p(k) =
1 + Π̂M(k) + R̂M(k)

1− pΩD̂(k)[1 + Π̂M(k)]
, (5.2)

for all k ∈ T∗
r,n and allM = 0, 1, 2, . . .. Recall from (2.4) that Ĉµ(k) = [1−µΩD̂(k)]−1. As explained

in Section 3.1, we would like to compare τ̂p(k) with Ĉµ(k), with µΩ equal to pΩ[1 + Π̂M(0)]. We

know that τ̂p(0) = χ(p) > 0, but we do not yet know that 1 + Π̂M(0) + R̂M(0) is positive and
thus we cannot yet be sure that the denominator of (5.2) is positive when k = 0. We therefore
do not yet know that our choice of µ is less than Ω−1. To safeguard against the possibility that
pΩ[1 + Π̂M(0)] ≥ 1 (later we will see that this possibility is not realized), we define µ(M)

p by

µ(M)

p Ω = min{1− 1

2
λ−1V −1/3, pΩ[1 + Π̂M(0)]+}, (5.3)

where x+ = max{x, 0}. We will prove that for all M sufficiently large (depending on p), and for
all p ≤ pc,

max
k∈T∗

r,n

τ̂p(k)

Ĉ
µ

(M)
p

(k)
≤ 3. (5.4)

The inequality (5.4) is the key ingredient in the proof of Theorem 1.3.
The proof of (5.4) is based on the following elementary lemma. The lemma states that under

an appropriate continuity assumption, if an inequality implies a stronger inequality, then in fact
the stronger inequality must hold. This kind of bootstrap argument has been applied repeatedly
in lace expansion analyses, and goes back to [24] in this context.

Lemma 5.1 (The bootstrap). Let f be a continuous function on the interval [p1, p2], and assume
that f(p1) ≤ 3. Suppose for each p ∈ (p1, p2) that if f(p) ≤ 4 then in fact f(p) ≤ 3. Then f(p) ≤ 3
for all p ∈ [p1, p2].

Proof. By hypothesis, f(p) cannot be strictly between 3 and 4 for any p ∈ [p1, p2). Since f(p1) ≤ 3,
it follows by continuity that f(p) ≤ 3 for all p ∈ [p1, p2].

We will apply Lemma 5.1 with p1 = 0, p2 = pc, and

f(p) = max{f1(p), f2(p), f3(p)}, (5.5)

where

f1(p) = pΩ, f2(p) = max
k∈T∗

r,n

τ̂p(k)

Ĉ
µ

(M)
p

(k)
, (5.6)

f3(p) = max
k, l ∈ T∗

r,n

k 6= 0

Ĉ1(k)

X

τ̂p(l)− 1
2
(τ̂p(l − k) + τ̂p(l + k))

Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l) + Ĉ
µ

(M)
p

(l)Ĉ
µ

(M)
p

(l + k) + Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l + k)
,

(5.7)
with the constant X equal to X = 675 (the exact value of X is not important).
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We benefit from working on a finite graph in using f2 and f3 as defined above. As we will argue
below, it is easy to establish continuity in p of the quantities to the right of the maxima in the
definitions of f2 and f3, and hence the continuity of f2 and f3 follows immediately. However, on
an infinite graph k and l lie in an infinite set, the maxima must be replaced by suprema, and the
continuity for each fixed k, l does not necessarily imply the continuity of the suprema. Different
functions were used in [13] for this reason.

The expression τ̂p(l) − 1
2
(τ̂p(l − k) + τ̂p(l + k)) in (5.7) is closely related to a discrete second

derivative of τ̂p(l), and we discuss this now in more detail as a preliminary for what follows. Given

a function f̂ on T∗
r,n and k, l ∈ T∗

r,n, let

∂+
k f̂(l) = f̂(l + k)− f̂(l), (5.8)

∂−k f̂(l) = f̂(l)− f̂(l − k), (5.9)

and ∆kf̂(l) = ∂−k ∂
+
k f̂(l). Then

−1

2
∆kf̂(l) = f̂(l)− 1

2
(f̂(l + k) + f̂(l − k)). (5.10)

In particular, − 1
2
∆kτ̂p(l) appears in the numerator of f3(p).

The following will be useful in computations involving ∆k. Let g be a symmetric function on
the torus, meaning g(x) = g(−x). Then the Fourier transform of g is actually the cosine series
ĝ(l) =

∑

x g(x) cos(l · x). We define

ĝcos(l, k) =
∑

x

g(x) cos(l · x) cos(k · x) =
1

2
[ĝ(l − k) + ĝ(l + k)], (5.11)

ĝsin(l, k) =
∑

x

g(x) sin(l · x) sin(k · x) =
1

2
[ĝ(l − k)− ĝ(l + k)]. (5.12)

Then

−1

2
∆kĝ(l) = ĝ(l)− ĝcos(l, k), (5.13)

and, assuming only for (5.14) that g(x) ≥ 0,

1

2
|∆kĝ(l)| = |ĝ(l)− ĝcos(l, k)| ≤ ĝ(0)− ĝ(k). (5.14)

By definition,
ĝ(l + k)ĝ(l − k) =

∑

x,y

g(x)g(y) cos((l + k) · x) cos((l − k) · y). (5.15)

Using symmetry and the identity cos(a+ b) = cos a cos b− sin a sin b, this becomes

ĝ(l + k)ĝ(l − k) = ĝcos(l, k)2 − ĝsin(l, k)2. (5.16)
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5.2 Bounds on Π(N)

The verification of the main hypothesis of Lemma 5.1 for f of (5.5) relies crucially on the bounds
on Π(N) given in the following lemma.

Lemma 5.2 (Bounds on the lace expansion). Let N = 0, 1, 2, . . ., and assume that Assump-
tion 1.1 holds. For each K > 0, there is a constant c̄K such that if f(p) of (5.5) obeys f(p) ≤ K,
then

∑

x∈Tr,n

Π(N)(x) ≤ [c̄K(λ3 ∨ β)](N−1)∨1 (5.17)

and
∑

x∈Tr,n

[1− cos(k · x)]Π(N)(x) ≤ [1− D̂(k)][c̄K(λ3 ∨ β)](N−1)∨1. (5.18)

Lemma 5.2 will follow from Lemma 4.1 combined with the following three lemmas. For these
three lemmas, we recall the quantities defined in (4.20)–(4.26) and also define

T (α)

p =
1

V

∑

k∈T∗

r,n

|D̂(k)|ατ̂p(k)3. (5.19)

Lemma 5.3. Fix p ∈ (0, pc), assume that f(p) of (5.5) obeys f(p) ≤ K, and assume that As-
sumption 1.1 holds. There is a constant cK, independent of p, such that

T (2)

p ≤ cK(λ3 ∨ β), Tp ≤ cK(λ3 ∨ β), T ′
p ≤ 1 + cK(λ3 ∨ β). (5.20)

The bound on T (2)
p also applies if τ̂p(k)3 is replaced by τ̂p(k) or τ̂p(k)2 in (5.19). In addition, λ3

can be replaced by V −1χ(p)3 in each of the above bounds.

Proof. We begin with T (2)
p . We extract the term due to k = 0 in (5.19) and use f2(p) ≤ K to

obtain
T (2)

p ≤ V −1χ(p)3 + V −1
∑

k 6=0

|D̂(k)|2K3Ĉ
µ

(M)
p

(k)3. (5.21)

The first term obeys V −1χ(p)3 ≤ V −1χ(pc)
3 = λ3, and the desired result follows from (5.1). The

final statement of the lemma follows from the fact that the quantity with τ̂p(k) or τ̂p(k)2 is easily
bounded in x-space by the quantity with τ̂p(k)3.

For Tp, we extract the term in (4.20) due to y = z = 0 and u = x, which is pΩD(x) ≤ Kβ,
using f1(p) ≤ K and (1.25). This gives

Tp(x) ≤ Kβ +
∑

u,y,z:(y,z−y,x+z−u)6=(0,0,0)

τp(y)τp(z − y)KD(u)τp(x+ z − u). (5.22)

Therefore, by (4.33),

Tp ≤ Kβ + 3K2 max
x

∑

y,z∈Tr,n

τp(y)(D ∗ τp)(z − y)(D ∗ τp)(x + z), (5.23)

where the factor 3 comes from the 3 factors τp whose argument can differ from 0. In terms of the
Fourier transform, this gives

Tp ≤ Kβ + 3K2 max
x

V −1
∑

k∈T∗

r,n

D̂(k)2τ̂p(k)3e−ik·x ≤ Kβ + 3K2T (2)

p . (5.24)
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Our bound on T (2)
p then gives the desired estimate for Tp.

The bound on T ′
p is a consequence of T ′

p ≤ 1 + 3Tp. Here the term 1 is due to the contribution
to (4.22) with y = z − y = x − z = 0, so that x = y = z = 0. If at least one of y, z − y, x− z is
nonzero, then we can use (4.33) for the corresponding two-point function.

Lemma 5.4. Fix p ∈ (0, pc), assume that f(p) of (5.5) obeys f(p) ≤ K, and assume that As-
sumption 1.1 holds. There is a constant cK, independent of p, such that

Wp(0; k) ≤ cK [1− D̂(k)](λ3 ∨ β), Wp(k) ≤ cK[1− D̂(k)]. (5.25)

Proof. For the bound on Wp(0; k), we use (4.33) to obtain

τ̃p(x) ≤ pΩD(x) +
∑

v:v 6=x

pΩD(v)τ(x− v).

≤ pΩD(x) + [pΩ]2(D ∗D ∗ τp)(x). (5.26)

We insert (5.26) into the definition (4.23) of Wp(0; k) to get

Wp(0; k) ≤ pΩ
∑

x

[1− cos(k · x)]D(x)τp(x) + [pΩ]2
∑

x

[1− cos(k · x)]τp(x)(D ∗D ∗ τp)(x). (5.27)

We begin with the first term in (5.27), which receives no contribution from x = 0. Using (4.33)
and (5.26), we obtain

pΩ
∑

x6=0

[1− cos(k · x)]D(x)τp(x)

≤ [pΩ]2
∑

x

[1− cos(k · x)]D(x)2 + [pΩ]2
∑

x

[1− cos(k · x)]D(x)
∑

v 6=x

D(v)τp(x− v)

≤ [pΩ]2
∑

x

[1− cos(k · x)]D(x)2 + [pΩ]3
∑

x

[1− cos(k · x)]D(x)(D ∗D)(x)

+ [pΩ]3
∑

x

[1− cos(k · x)]D(x)(D ∗D ∗ τp)(x). (5.28)

The first term on the right side is bounded by K2β[1 − D̂(k)], by (1.25). The second term can
be bounded similarly, using maxx(D ∗ D)(x) ≤ β. For the last term in (5.28), we use Parseval’s
identity, together with the fact that the Fourier transform of [1−cos(k ·x)]D(x) is D̂(l)−D̂cos(k, l),
to obtain

∑

x

[1− cos(k · x)]D(x)(D ∗D ∗ τp)(x) =
1

V

∑

l∈T∗
r,n

[D̂(l)− D̂cos(k, l)]D̂(l)2τ̂p(l). (5.29)

Applying (5.14) and the bound on T (2) (with τ̂p(k)3 replaced by τ̂p(k)) yields

∑

x

[1−cos(k ·x)]D(x)(D∗D∗τp)(x) ≤ [1−D̂(k)]
1

V

∑

l∈T∗

r,n

D̂(l)2τ̂p(l) ≤ cK(λ3∨β)[1−D̂(k)]. (5.30)

This completes the bound on the first term of (5.27).
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For the second term in (5.27), we again use Parseval to obtain

∑

x

[1− cos(k ·x)]τp(x)(D ∗D ∗ τp)(x) =
1

V

∑

l∈T∗

r,n

[

τ̂p(l)− 1

2
(τ̂p(l+ k) + τ̂p(l− k))

]

D̂(l)2τ̂p(l). (5.31)

We apply the assumed bounds on f2(p) and f3(p) to obtain

∑

x

[1− cos(k · x)]τp(x)(D ∗D ∗ τp)(x)

≤ cλ3 +K2X[1− D̂(k)]
1

V

∑

l 6=0

D̂(l)2Ĉ
µ

(M)
p

(l)

×
[

Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l) + Ĉ
µ

(M)
p

(l)Ĉ
µ

(M)
p

(l + k) + Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l + k)
]

. (5.32)

For the last term in (5.32), we set

Cµ,k(x) = cos(k · x)Cµ(x). (5.33)

Then
|Cµ,k(x)| ≤ Cµ(x), (5.34)

and, recalling (5.11),

Ĉµ,k(l) =
∑

x∈V

cos(k · x) cos(l · x)Cµ(x) = Ĉcos(k, l). (5.35)

Also, by (5.16),

Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l + k) = Ĉcos

µ
(M)
p

(k, l)2 − Ĉsin

µ
(M)
p

(k, l)2 ≤ Ĉcos

µ
(M)
p

(k, l)2. (5.36)

Therefore, using (5.34) and Parseval’s identity,

1

V

∑

l∈T∗
r,n

Ĉ
µ

(M)
p

(l)D̂(l)2Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l + k) ≤ 1

V

∑

l∈T∗
r,n

Ĉ
µ

(M)
p

(l)D̂(l)2Ĉcos

µ
(M)
p

(k, l)2

= (D ∗D ∗ C
µ

(M)
p
∗ C

µ
(M)
p ,k

∗ C
µ

(M)
p ,k

)(0)

≤ (D ∗D ∗ C
µ

(M)
p
∗ C

µ
(M)
p
∗ C

µ
(M)
p

)(0). (5.37)

Moreover, by (5.1),

(D ∗D ∗ C
µ

(M)
p
∗ C

µ
(M)
p
∗ C

µ
(M)
p

)(0) =
1

V

∑

l∈T∗

r,n

D̂(l)2Ĉ
µ

(M)
p

(l)3 ≤ 8(λ3 ∨ β), (5.38)

where the λ3 arises from the l = 0 term together with the fact that 1 − µ ≥ 1
2
λ−1V −1/3. This

proves the desired bound on the last term in (5.32).
To bound the sum of the remaining terms in (5.32), we consider

1

V

∑

l∈T∗

r,n

D̂2(l)Ĉ
µ

(M)
p

(l)2
[

Ĉ
µ

(M)
p

(l − k) + Ĉ
µ

(M)
p

(l + k)
]

. (5.39)
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Applying (5.11), (5.35) and (5.1), (5.39) equals

2

V

∑

l∈T∗
r,n

D̂2(l)Ĉ
µ

(M)
p

(l)2Ĉcos

µ
(M)
p

(k, l) = 2(D ∗D ∗ C
µ

(M)
p
∗ C

µ
(M)
p
∗ C

µ
(M)
p ,k

)(0)

≤ 2(D ∗D ∗ C
µ

(M)
p
∗ C

µ
(M)
p
∗ C

µ
(M)
p

)(0) ≤ 16(λ3 ∨ β). (5.40)

This completes the bound on the second term of (5.27), and thus the proof that Wp(0; k) ≤
cK(λ3 ∨ β)[1− D̂(k)].

Finally, we estimate Wp(k). Note that no factor λ3 ∨ β appears in the desired bound. By
definition,

Wp(k) = pΩ max
y∈V

∑

x,v∈V

[1− cos(k · x)]D(v)τp(x− v)τp(x + y). (5.41)

Let
Dk(x) = [1− cos(k · x)]D(x), τp,k(x) = [1− cos(k · x)]τp(x). (5.42)

Applying (4.49) with t = k · v + k · (x− v), we obtain

Wp(k) ≤ 5pΩ max
y∈V

∑

x,v∈V

[1− cos(k · v)]D(v)τp(x− v)τp(y − x)

+ 5pΩ max
y∈V

∑

x,v∈V

D(v)[1− cos(k · (x− v))]τp(x− v)τp(y − x)

≤ 5K max
y∈V

(Dk ∗ τp ∗ τp)(y) + 5K max
y∈V

(D ∗ τp,k ∗ τp)(y). (5.43)

For the first term, we have

(Dk ∗ τp ∗ τp)(y) =
1

V

∑

l∈T∗

r,n

e−il·yD̂k(l)τ̂p(l)2 ≤ K2

V

∑

l∈T∗

r,n

D̂k(l)Ĉ
µ

(M)
p

(l)2. (5.44)

It follows from (5.14) that for all k, l ∈ T∗
r,n

|D̂k(l)| = |D̂(l)− D̂cos(k, l)| ≤ [1− D̂(k)], (5.45)

and hence, by (2.28),

max
y∈V

(Dk ∗ τp ∗ τp)(y) ≤ [1− D̂(k)]
K2

V

∑

l∈T∗
r,n

Ĉ
µ

(M)
p

(l)2 ≤ cK(λ3 ∨ 1)[1− D̂(k)], (5.46)

where the λ3 arises from the l = 0 term.
The remaining term to estimate in (5.43) is

max
y∈V

(D ∗ τp,k ∗ τp)(y) = max
y∈V

1

V

∑

l∈T∗
r,n

e−il·yD̂(l)τ̂p(l)τ̂p,k(l). (5.47)

Since

τ̂p,k(l) = τ̂p(l)− 1

2
(τ̂p(l + k) + τ̂p(l − k)), (5.48)
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we can use the bound on f3(p) to obtain

max
y∈V

(D ∗ τp,k ∗ τp)(y)

≤ K2X[1− D̂(k)]
1

V

∑

l∈T∗

r,n

|D̂(l)|Ĉ
µ

(M)
p

(l)

×
[

Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l) + Ĉ
µ

(M)
p

(l)Ĉ
µ

(M)
p

(l + k) + Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l + k)
]

.

The above sums can all be bounded using the methods employed for the previous term. For
example, the last term can be estimated using |D̂(l)| ≤ 1, (5.36), (5.34) and (2.28), by

1

V

∑

l∈T∗

r,n

Ĉ
µ

(M)
p

(l)Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l + k) ≤ max
k∈T∗

r,n

1

V

∑

l∈T∗

r,n

|D̂(l)|Ĉ
µ

(M)
p

(l)Ĉcos

µ
(M)
p

(l, k)2

= max
k∈T∗

r,n

(C
µ

(M)
p
∗ C

µ
(M)
p ,k

∗ C
µ

(M)
p ,k

)(0)

≤ (C
µ

(M)
p
∗ C

µ
(M)
p
∗ C

µ
(M)
p

)(0) = S(0)

p , (5.49)

where we define
S(α)

p = V −1
∑

l∈T∗
r,n

|D̂(l)|αĈ
µ

(M)
p

(l)3. (5.50)

Lemma 5.5. Fix p ∈ (0, pc), assume that f(p) of (5.5) obeys f(p) ≤ K, and assume that As-
sumption 1.1 holds. There is a constant cK, independent of p, such that

Hp(k) ≤ cK(λ3 ∨ β)[1− D̂(k)]. (5.51)

Proof. Recall the definition of Hp(a1, a2; k) in (4.25), and let di = ti−ui−1. In terms of the Fourier
transform, and recalling (5.42),

H(a1, a2; k) =
1

V 3

∑

l1,l2,l3∈T∗
r,n

e−il1·a1e−il2·a2D̂(l1)τ̂p(l1)
2D̂(l2)τ̂p(l2)

2τ̂p,k(l3)

× τ̂p(l1 − l2)τ̂p(l2 − l3)τ̂p(l1 − l3). (5.52)

We use f(p) ≤ K to replace τ̂p(k) by KĈ
µ

(M)
p

(k) and (recalling (5.48)) τ̂p,k(l3) by

KX[1− D̂(k)]
[

Ĉ
µ

(M)
p

(l3 − k)Ĉ
µ

(M)
p

(l3) + Ĉ
µ

(M)
p

(l3)Ĉ
µ

(M)
p

(l3 + k) + Ĉ
µ

(M)
p

(l3 − k)Ĉ
µ

(M)
p

(l3 + k)
]

.

(5.53)

This gives an upper bound for (5.52) consisting of a sum of 3 terms.
The last of these terms can be bounded by

K8X[1− D̂(k)]
1

V 3

∑

l1,l2,l3∈T∗

r,n

|D̂(l1)|Ĉ
µ

(M)
p

(l1)2|D̂(l2)|Ĉ
µ

(M)
p

(l2)
2

× Ĉ
µ

(M)
p

(l3 − k)Ĉ
µ

(M)
p

(l3 + k)Ĉ
µ

(M)
p

(l1 − l2)Ĉµ
(M)
p

(l2 − l3)Ĉ
µ

(M)
p

(l1 − l3). (5.54)
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Using Hölder’s inequality with p = 3 and q = 3/2, (5.54) is bounded above by a K-dependent
constant times

[1− D̂(k)]
(

1

V 3

∑

l1,l2,l3

|D̂(l1)|3/2Ĉ
µ

(M)
p

(l1)3|D̂(l2)|3/2Ĉ
µ

(M)
p

(l2)3Ĉ
µ

(M)
p

(l3 + k)3/2Ĉ
µ

(M)
p

(l1 − l3)3/2
)2/3

×
(

1

V 3

∑

l1,l2,l3

Ĉ
µ

(M)
p

(l1 − l2)3Ĉ
µ

(M)
p

(l2 − l3)3Ĉ
µ

(M)
p

(l3 − k)3
)1/3

. (5.55)

The Cauchy–Schwarz inequality implies that for all k and l1,

∑

l3

Ĉ
µ

(M)
p

(l3 + k)3/2Ĉ
µ

(M)
p

(l1 − l3)3/2 ≤ S(0)

p , (5.56)

with S(0)
p given by (5.50). Therefore (5.55) is bounded above by

[1− D̂(k)]
(

S(0)

p

)5/3(

S(3/2)

p

)4/3
. (5.57)

To complete the proof, we note that by Hölder’s inequality,

S(3/2)

p ≤
(

S(2)

p

)3/4(

S(0)

p

)1/4
. (5.58)

Thus (5.57) is bounded above by [1 − D̂(k)]S(2)
p (S(0)

p )2. The latter factor can be bounded using
(2.28), and the former with (5.1). This gives a bound of the desired form, with the λ3 arising as
usual from the l = 0 term of S(2)

p .
Routine bounds can be used to deal with the other two terms in a similar fashion.

Proof of Lemma 5.2. This is an immediate consequence of Lemmas 4.1 and 5.3–5.5. The bound
(4.31) is used for (5.18) when N = 1 (as (4.30) is not sufficient).

The following consequence of Lemma 5.2 plays an essential role in completing the bootstrap
argument.

Lemma 5.6. Let M = 0, 1, 2, . . ., and assume that Assumption 1.1 holds. If f(p) of (5.5) obeys
f(p) ≤ K, then, for λ and β sufficiently small,

∑

x∈Tr,n

|Π̂M(x)| ≤ 3c̄K(λ3 ∨ β), (5.59)

∑

x∈Tr,n

[1− cos(k · x)]|Π̂M(x)| ≤ 3c̄K(λ3 ∨ β)[1− D̂(k)], (5.60)

and for M sufficiently large (depending on p, K, r, n),

∑

x∈Tr,n

|RM(x)| ≤ (λ3 ∨ β), (5.61)

∑

x∈Tr,n

[1− cos(k · x)]|RM(x)| ≤ (λ3 ∨ β)[1− D̂(k)]. (5.62)
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Proof. The bounds (5.59)–(5.60) are immediate consequences of Lemma 5.2 (the factor 3 comes
from summing the geometric series).

For the remainder term RM(x), we conclude from (3.37) that

|RM(x)| ≤ pΩ
∑

u,v

Π(M)(u)D(v − u)τp(x− v), (5.63)

and hence (5.61) is bounded above by pΩΠ̂(M)(0)χ(p). This can be made less than λ3∨β by taking
M sufficiently large, by Lemma 5.2. For (5.62), we apply (4.49) with J = 3 to obtain

∑

x∈Tr,n

[1− cos(k · x)]|RM(x)| (5.64)

≤ 7pΩ[1− D̂(k)]Π̂(M)

p (0)χ(p) + 7pΩ
[

Π̂(M)

p (0)− Π̂(M)

p (k)]χ(p) + 7pΩΠ̂(M)

p (0)
[

τ̂p(0)− τ̂p(k)].

By Lemma 5.2, we can choose M large enough that 14KΠ̂(M)
p (0)χ(p) ≤ 1

3
(λ3 ∨ β). The second

term can be treated similarly. For the last term, we apply the bound f3(p) ≤ 3 for l = 0 and again
choose M large, with a final appeal to Lemma 5.2.

5.3 The bootstrap argument completed

We now show that f of (5.5) obeys the assumptions of Lemma 5.1, with p1 = 0 and p2 = pc.
To see that f(0) ≤ 3, we note that τ̂0(k) = 1, µ(M)

0 = 0 and hence Ĉ
µ

(M)
0

(k) = 1, so that

f2(0) = 1. Since f1(0) = f3(0) = 0, we have f(0) = 1 < 3.
Next, we verify the continuity of f . Continuity of f1 is clear. For f2, since Tr,n is finite it

follows that τ̂p(k) is a polynomial in p and hence is continuous. Similarly, Π̂M(0) is a polynomial

in p. Therefore µ(M)
p is continuous in p, and hence Ĉ

µ
(M)
p

(k) also is, since Ĉµ(k) is continuous in

µ. The numerator and denominator in the definition of f2 are therefore both continuous. There
is no division by zero, since the denominator is positive when µ(M)

p < 1, by (2.4). The maximum
over k is a maximum over a finite set, so f2 is continuous. Similarly, f3 is continuous, and thus f
is continuous.

The remaining hypothesis of Lemma 5.1 is the substantial one, and requires the detailed in-
formation about ΠM and RM provided by Lemma 5.6. We fix p < pc and prove that f(p) ≤ 4
implies f(p) ≤ 3. By the assumption that f(p) ≤ 4, the hypotheses of Lemma 5.2 are satisfied
with K = 4. Therefore, assuming M is sufficiently large, the bounds (5.59)–(5.62) hold, with c̄K

replaced by c̄4.
Let

λ(M)

p Ω = pΩ[1 + Π̂M(0)]. (5.65)

We now show that λ(M)
p Ω ∈ [0, 1− 1

2
λ−1V −1/3], and hence µ(M)

p = λ(M)
p . By (5.2) with k = 0,

χ(p)[1− λ(M)

p Ω] = 1 + Π̂M(0) + R̂M(0). (5.66)

Therefore,

1− λ(M)

p Ω ≥ χ−1(p)
[

1− |ΠM(0)| − |R̂M(0)|
]

≥ χ−1(p)
[

1− (3c̄4 + 1)(λ3 ∨ β)
]

. (5.67)

40



Since χ(p) ≤ χ(pc) = λV 1/3, for λ3 ∨ β sufficiently small it follows that

λ(M)

p Ω ≤ 1− 1

2
λ−1V −1/3. (5.68)

In addition, when λ and β are sufficiently small,

λ(M)

p Ω = pΩ[1 + Π̂M(0)] ≥ pΩ
[

1− 3c̄4(λ
3 ∨ β)

]

≥ 0. (5.69)

This proves that µ(M)
p Ω = λ(M)

p Ω = pΩ[1 + Π̂M(0)].

5.3.1 The improved bounds on f1(p) and f2(p)

First, we improve the bound on f1(p). We have already shown in (5.68) that µ(M)
p Ω ≤ 1. Therefore,

by (5.17),

f1(p) = pΩ =
µ(M)

p Ω

1 + Π̂M(0)
≤ 1

1− 3c̄4(λ3 ∨ β)
≤ 3 (5.70)

when λ and β are small enough.
To improve the bound on f2(p), we write (5.2) as τ̂ = N̂/F̂ , with

N̂(k) = 1 + Π̂M(k) + R̂M(k), F̂ (k) = 1− pΩD̂(k)[1 + Π̂M(k)]. (5.71)

This yields

τ̂p(k)

Ĉ
µ

(M)
p

(k)
= N̂(k) + τ̂p(k)[1− µ(M)

p ΩD̂(k)− F̂ (k)]

= [1 + Π̂M(k) + R̂M(k)] + τ̂p(k)pΩD̂(k)[Π̂M(k)− Π̂M(0)]. (5.72)

By Lemma 5.6, and by our assumptions that τ̂p(k) ≤ 4Ĉ
µ

(M)
p

(k) and pΩ ≤ 4, it follows from (5.72)

that
τ̂p(k)

Ĉ
µ

(M)
p

(k)
≤ 1 +

(

3c̄4 + 1 + 423c̄4Ĉµ
(M)
p

(k)[1− D̂(k)]
)

(λ3 ∨ β). (5.73)

Since

0 ≤ Ĉ
µ

(M)
p

(k)[1− D̂(k)] = 1 +
µ(M)

p Ω− 1

1− µ(M)
p ΩD̂(k)

D̂(k) ≤ 2, (5.74)

it follows from (5.73) that

τ̂p(k)

Ĉ
µ

(M)
p

(k)
≤ 1 + (3c̄4 + 1 + 96c̄4)(λ

3 ∨ β). (5.75)

This is less than 3, if λ3 ∨ β is small enough.
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5.3.2 The improved bound on f3(p)

This is the most substantial part of the argument. Let g be a symmetric function on the torus,
meaning g(x) = g(−x), and let

Ĝ(k) =
1

1− ĝ(k)
. (5.76)

Then Ĝ obeys the identity in the following lemma.

Lemma 5.7. For all k, l ∈ T∗,

−1

2
∆kG(l) = Ĝ(l − k)Ĝ(l)Ĝ(l + k)

[

[ĝ(l)− ĝcos(l, k)][1− ĝcos(l, k)]− ĝsin(l, k)2
]

. (5.77)

Proof. Let ĝ± = ĝ(l ± k) and write ĝ = ĝ(l). Direct computation using (5.10) gives

−1

2
∆kG(l) =

1

2
Ĝ(l)Ĝ(l + k)Ĝ(l − k)

[

[2ĝ − ĝ+ − ĝ−] + [2ĝ+ĝ− − ĝĝ− − ĝĝ+]
]

= Ĝ(l)Ĝ(l + k)Ĝ(l − k)
[

[ĝ(l)− ĝcos(l, k)] + [ĝ+ĝ− − ĝ(l)ĝcos(l, k)]
]

, (5.78)

using (5.11) in the last step. By (5.16),

ĝ−ĝ+ = ĝcos(l, k)2 − ĝsin(l, k)2. (5.79)

Substitution in (5.78) gives (5.77).

We will use (5.77) to improve the bound on f3(p). For this, we recall the definitions of N̂ and
F̂ in (5.71) and write τ̂p(l) as

τ̂p(l) =
N̂(l)

F̂ (l)
=

1

1− ĝ(l)
(5.80)

with

ĝ(l) = 1− F̂ (l)

N̂(l)
= 1− 1

N̂(l)

{

1− µ(M)

p ΩD̂(l) + pΩD̂(l)[Π̂M(0)− Π̂M(l)]
}

. (5.81)

By Lemma 5.6,
|N̂(l)− 1| ≤ 4c̄4(λ3 ∨ β). (5.82)

In particular, N̂(l) > 0. Since τ̂p(l) ≥ 0 (as proved in [3]), it follows that F̂ (l) > 0. Lemma 5.6
and (5.74) then imply that

0 ≤ F̂ (l) ≤ [1− µ(M)

p ΩD̂(l)] + 32c̄4(λ
3 ∨ β)[1− D̂(l)]

≤ [1 + 18c̄4(λ
3 ∨ β)][1− µ(M)

p ΩD̂(l)]. (5.83)

Since f2(p) ≤ 3, (5.77) implies that

τ̂p(l)− 1

2
(τ̂p(l + k) + τ̂p(l − k)) = −1

2
∆kτ̂p(l) (5.84)

≤ 33Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l)Ĉ
µ

(M)
p

(l + k)
[

|ĝ(l)− ĝcos(l, k)||1− ĝcos(l, k)|+ ĝsin(l, k)2
]

.

42



We will prove the following three inequalities:

|1− ĝcos(l, k)| ≤ 1

Ĉ
µ

(M)
p

(l − k)
+

1

Ĉ
µ

(M)
p

(l + k)
, (5.85)

|ĝsin(l, k)|2 ≤ 75[1− D̂(k)]
1

Ĉ
µ

(M)
p

(l)
, (5.86)

|ĝ(l)− ĝcos(l, k)| ≤ 4[1− D̂(k)]. (5.87)

These inequalities are sufficient to improve the bound on f3(p), since they imply that the right
side of (5.84) is bounded above by

3[1− D̂(k)]Ĉ
µ

(M)
p

(l − k)Ĉ
µ

(M)
p

(l)Ĉ
µ

(M)
p

(l + k)
[

36

Ĉ
µ

(M)
p

(l − k)
+

36

Ĉ
µ

(M)
p

(l + k)
+

675

Ĉ
µ

(M)
p

(l)

]

. (5.88)

Recalling that Ĉ1(k) = [1− D̂(k)]−1 and X = 675, this gives f3(p) ≤ 3.
To prove (5.85), we use (5.11) to write

1− ĝcos(l, k) =
1

2

F̂ (l − k)

N̂(l − k)
+

1

2

F̂ (l + k)

N̂(l + k)
. (5.89)

The desired estimate (5.85) then follows from (5.82)–(5.83).
To prove (5.86), we use (5.81) and (5.12) to see that

|ĝsin(l, k)|2 =

∣

∣

∣

∣

∣

− F̂
sin(l, k)

N̂ (l − k)
+
F̂ (l + k)N̂ sin(l, k)

N̂(l − k)N̂(l + k)

∣

∣

∣

∣

∣

2

≤ 2
|F̂ sin(l, k)|2
N̂(l − k)2

+ 2
F̂ (l + k)2|N̂ sin(l, k)|2
N̂(l − k)2N̂(l + k)2

. (5.90)

To deal with the first term on the right side of (5.90), we use (5.71) and (5.12) to obtain

F̂ sin(l, k) = −pΩ
[

D̂sin(l, k)[1 + Π̂M(l − k)] + D̂(l + k)Π̂sin
M

(l, k)
]

. (5.91)

By the Cauchy-Schwarz inequality and the elementary estimate 1− cos2 t ≤ 2[1− cos t],

D̂sin(k, l)2 ≤
∑

x

sin(k · x)2D(x)
∑

y

sin(l · y)2D(y)

=
∑

x

[1− cos(k · x)2]D(x)
∑

y

[1− cos(l · y)2]D(y)

≤ 4[1− D̂(k)][1− D̂(l)]. (5.92)

The estimate (5.92) can also be applied to Π̂sin
M

(l, k) or R̂sin
M

(l, k) using Lemma 5.6, but now the
upper bound contains a small factor proportional to λ3 ∨ β. The factor F̂ (l + k) is at most 5, by
(5.71). This shows that the contributions to (5.90) other than that from (5.92) are of the same
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form but with an arbitrarily small prefactor. In addition, the factor 1 − D̂(l) can be bounded
above by 2Ĉ

µ
(M)
p

(l)−1, by (5.74). Also, we have pΩ ≤ 3. Therefore, as required,

ĝsin(k, l)2 ≤ 32 · 4 · 2(1 + o(1))[1− D̂(k)]Ĉ
µ

(M)
p

(l)−1. (5.93)

Finally, we estimate ĝ(l)− ĝcos(l, k) = −1
2
∆kĝ(l) and prove (5.87). For this, we use ∆k = ∂−k ∂

+
k

in conjunction with the quotient and product rules

∂+
k

b(l)

d(l)
=
∂+

k b(l)

d(l)
− b(l)∂+

k d(l)

d(l)d(l + k)
, (5.94)

∂−k
b(l)

d(l)
=
∂−k b(l)

d(l)
− b(l − k)∂−k d(l)

d(l)d(l − k)
, (5.95)

∂+
k [f̂(l)ĥ(l)] = ∂+

k f̂(l)ĥ(l + k) + f̂(l)∂+
k ĥ(l), (5.96)

∂−k [f̂(l)ĥ(l)] = ∂−k f̂(l)ĥ(l) + f̂(l − k)∂−k ĥ(l). (5.97)

This gives

−1

2
∆kĝ(l) = −1

2
∆k

F̂ (l)

N̂(l)

=
−1

2
∆kF̂ (l)

N̂(l)
+

1

2

∂+
k F̂ (l − k)∂−k N̂(l)

N̂(l)N̂(l − k)
+

1

2

∂−k F̂ (l)∂+
k N̂(l)

N̂(l)N̂(l + k)

+
1

2

F̂ (l − k)∆kN̂(l)

N̂(l)N̂(l + k)
− 1

2

F̂ (l − k)∂+
k N̂(l − k)∂−k [N̂(l)N̂(l + k)]

N̂(l − k)N̂(l)2N̂(l + k)
. (5.98)

The denominators are all as close to 1 as desired, by (5.82), and we need to estimate the numerators.
The first term on the right side of (5.98) is the main term. Its numerator is equal to

−1

2
∆kF̂ (l) = pΩ

1

2
∆kD̂(l)[1 + Π̂M(l + k)] +

1

2
pΩ∂+

k D̂(l − k)∂−k Π̂M(l + k)

+
1

2
pΩ∂−k D̂(l)∂+

k Π̂M(l) + pΩD̂(l − k)[
1

2
∆kΠ̂M(l)]. (5.99)

We bound the factors pΩ by 3. The factor | 1
2
∆kD̂(l)| is bounded above by 1 − D̂(k), by (5.14).

The last term on the right side of (5.99) is bounded by a small multiple of 1− D̂(k), by (5.14) and
Lemma 5.6. For the cross terms, we use

|∂±k D(l)| ≤
∑

x

D(x)|Re{eil·x[e±ik·x − 1]}|

≤
∑

x

D(x)
[

[1− cos(k · x)] + | sin(k · x)|| sin(l · x)|
]

≤ [1− D̂(k)] + 2[1− D̂(k)]1/2[1− D̂(l)]1/2

≤ [1− D̂(k)] + 23/2[1− D̂(k)]1/2, (5.100)
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using (5.92) for the third inequality. Applying Lemma 5.6, similar estimates apply to ∂±
k Π̂M and

∂±k R̂M , but with a small factor. The two cross terms in (5.99) are therefore bounded by a small
multiple of 1 − D̂(k). Writing o(1) to denote a multiple of λ3 ∨ β, we have shown that the first
term on the right side of (5.98) is bounded above by 3[1 + o(1)][1− D̂(k)].

It is sufficient to show that the remaining terms in (5.98) are at most o(1)[1 − D̂(k)]. The
fourth term on the right side of (5.98) obeys this bound, using (5.83) to bound F̂ (l − k) by a
constant, and (5.14) and Lemma 5.6 to bound ∆kN̂(l) = ∆kΠ̂M(l) + ∆kR̂M(l) by o(1)[1− D̂(k)].

The remaining three terms in (5.98) each contain a product of a derivative of F̂ with a derivative
of N̂ , or a product of two derivatives of N̂ (using (5.97) for the last term). Other factors of F̂ or
N̂ are bounded by harmless constants. The above arguments imply that ∂±

k N̂(l) is bounded by
o(1){[1− D̂(k)] + 23/2[1− D̂(k)]1/2}, as in (5.100) but with a small factor. By the definition of F̂
in (5.71) and by the product rule (5.96), we have

∂+
k F̂ (l) = −pΩ∂±k D̂(l)[1 + Π̂M(l + k)]− pΩD̂(l)∂+

k Π̂M(l), (5.101)

which is bounded by a multiple of the right side of (5.100) (with no small factor). The same
bound is obeyed by ∂−k F̂ (l). Although the derivative of F̂ does not produce a small factor, it is
accompanied by a derivative of N̂ which does provide the desired factor o(1). Thus each of the
remaining three terms in (5.98) is at most o(1)[1− D̂(k)].

This completes the proof that (5.98) is bounded above by 4[1− D̂(k)]. Therefore, as required,
we have shown that f3(p) ≤ 3.

5.3.3 Conclusion

This completes the verification of the hypotheses of Lemma 5.1. Thus the conclusion of the lemma
applies, and f(p) ≤ 3 for all p ≤ pc. In particular, (5.4) and the bounds of Lemmas 5.2–5.6 all
hold. This implies that we may take the limit M →∞ in (5.2) and (5.72) so that, in particular,

τ̂p(k) =
1 + Π̂p(k)

1− pΩD̂(k)[1 + Π̂p(k)]
, (5.102)

where Πp denotes ΠM=∞.

5.4 The triangle condition

Proof of Theorem 1.3. By definition, 1 ≤ ∇p(x, x) ≤ T ′
p. Since f(p) ≤ 3, it follows from Lemma 5.3

that ∇p(x, x) ≤ 1 + c3(V −1χ(p)3 ∨ β), for p ≤ pc. This gives (1.27) for x = y. For x 6= y it follows
from (4.33) that

∇p(x, y) = (τp ∗ τp ∗ τp)(x, y) ≤ 3Tp(y − x) (x 6= y), (5.103)

where the factor 3 arises since there are three factors τp that could have a nonzero argument and
hence permit application of (4.33). The desired bound then follows from Lemma 5.3. This also
proves (1.10) with a0 = 3c3(λ

3 ∨ β).
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6 Asymptotics for τ̂p(k)

In this section, we show that it is possible to extend (1.30) to an asymptotic formula for τ̂p(k)
when p ≤ pc, for all k ∈ T∗

r,n. We will not use this result elsewhere in the paper.

Let ε = Ω(pc− p) ≥ 0 and ε0 = λ−1V −1/3. The result of [7, Theorem 1.2 i)] gives the following
extension of Theorem 1.5 i) to all p ≤ pc:

1

ε0 + ε
≤ χ(p) ≤ 1

ε0 + [1− a0]ε
. (6.1)

As we have seen in Section 5.4, a0 ≤ O(λ3 ∨ β). Let

mpΩ = 1− ε− ε0 = 1− Ω(pc − p)− λ−1V −1/3. (6.2)

Theorem 6.1 (Asymptotics for the two-point function). For p ≤ pc,

τ̂p(k) = (1 +O(λ3 ∨ β))Ĉmp(k) =
1 +O(λ3 ∨ β)

1−mpΩD̂(k)
, (6.3)

with the error term uniform in k ∈ T∗
r,n and p ≤ pc.

Proof. For k = 0, (6.3) is a consequence of (6.1). We therefore assume k 6= 0 henceforth.
We may now take the limit M →∞ in (5.72). Writing Π̂p(0) for Π̂

∞
(0) and also

µp = µ(∞)

p = p[1 + Π̂p(0)], (6.4)

this gives
τ̂p(k)

Ĉµp(k)
− 1 = Π̂p(k) + τ̂p(k)pΩD̂(k)

[

Π̂p(k)− Π̂p(0)
]

. (6.5)

By (5.4), (5.60)–(5.18) and (5.74), this leads to

∣

∣

∣

τ̂p(k)

Ĉµp(k)
− 1

∣

∣

∣ = O(λ3 ∨ β). (6.6)

Since
τ̂p(k)

Ĉmp(k)
− 1 =





τ̂p(k)

Ĉµp(k)
− 1





Ĉµp(k)

Ĉmp(k)
+





Ĉµp(k)

Ĉmp(k)
− 1



 (6.7)

and since
∣

∣

∣

Ĉµp(k)

Ĉmp(k)
− 1

∣

∣

∣ =
|(µp −mp)ΩD̂(k)|

1− µpΩD̂(k)
≤ |µp −mp|Ω

1− µpΩ
, (6.8)

it suffices to show that
|µp −mp|Ω

1− µpΩ
= O(λ3 ∨ β). (6.9)

But by definition and (5.102),

µpΩ = 1− [1 + Π̂p(0)]χ(p)−1. (6.10)
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Also, by (6.1),
mpΩ = 1− [1 +O(λ3 ∨ β)]χ(p)−1. (6.11)

Therefore,
|µp −mp|Ω

1− µpΩ
=

O(λ3 ∨ β)χ(p)−1

[1 + Π̂p(0)]χ(p)−1
= O(λ3 ∨ β), (6.12)

as required.
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