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1. INTRODUCTION AND SUMMARY

1.1. Queuneing network models,

Networks of queues are used in many areas to model and analyse real-life systems, as for
instance in computer performance analysis, design of communication networks, produc-
tion planning in manufacturing enterprises and planning of iransportation systems. The
use of such models is justified by a common characteristic of such systems: they can be
viewed as a collection of interconnected resources providing service to a group of users.
The resources have a finite capacity and, consequently, waiting lines of jobs may be
formed.

Especially for the performance evaluation and the design of information processing sys-
tems gueueing network models have proved to be a reliable and accurate tool for analysis,
¢f. Kleinrock [1975:1] and [1975:2], Ferrari [1978], Kobayashi [1978], Gelenbe and
Mitrani [1980], Sauer and Chandy [1981], Lavenberg [1983] Lazowska, Zahorjan, Graham
and Sevcik [1984] and Heidelberger and Lavenberg [1985].

Mathematical models provide an efficient tool for the evaluation of large and complex
queuveing network systems. The development of an adeguate model assumes a thorough
study of the essential features of the system and as such provides a clear and profound
insight in the operation of the system. The mathematical analysis of the model may lead
to the development of an efficient tool for the evaluation of the system for different
parameter sets and as such yields the possibility of parametrization.

The analysis of mathematical models yields thus an atiractive basis for the design, con-
irol and performance improvement of queueing network systems,

1.2. The analysis of queueing network models

Standard tools in the study of models of queueing network systems are simulation and
mathematical analysis. In some instances "hybrid methods" have to be advocated.

It is typical for simulation that it may be used to analyse mathematical models at virtu-
ally every level of detail. Essentially, it provides a too! for the analysis of transient or
time-dependent behaviour by the construction of sample paths of the underlying stochas-
tic process. In practice, the use of simulation i§ restricted as the evaluation of large and
complex models by simulation takes large amounts of computation time and demands
vast storage requirements. Furthermore, the statistical interpretation of the numerical
results is a difficult and quite often underestimated problem. In Bratley Fox and Schrage
[1983] an overview is given of the technical aspects of simulation. The simulation of
queueing network models for instance has been treated in Markowitz [1983], Sauer and
Chandy [1981] and Kobayashil1978].

Typical for analytical techniques is that these may yield efficient algorithmic precedures
for the computation of important system characteristics. They, essentially, provide a tool
for the analysis of the equilibrium behaviour. The major problem is that only for a
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relatively small class of queueing network models exact and efficient evaluation tech-
niques are known.

Both simulation and analytical technigues have their restrictions. For large and complex
gueueing network models neither of the two techniques provides an efficacious tool. For
such models the development of approximation methods seems to be a natural way-out.
In this monograph we concentrate on the development of analytical approximation
methods, It is our aim to show the lines of argument which may lead to the development
of intuitive, accurate and efficient approximation methods. Some more or less well-
established problems from the area of queuveing network analysis illustraie the general
ideas.

1.3. Separable queueing network models

Stochastic models and particularly Markov processes are a widely used tool for the
analysis of queuveing network systems. Though it is, in principle, possible to study the
transient behaviour of such models, in practical situations one concentrates on the
analysis of the limiting behaviour. Under certain ergodicity conditions the equilibrium
and limiting distribution of a Markov process may be obtained as the unique, strictly
positive and normalized solution of a set of linear equations relating the equilibrium or
limiting probabilities.

If a queueing network model apart from these ergodicity conditions satisfies so-called
separability conditions, the solution of this set of equations attain an attractive product
form. Such models are therefore called separable or product form queueing network
models.

This line of research started in Jackson [1957] in which it has been proved that the equili-
brium distribution of a particular type of network models has a product form. Extension
of Jackson's results has shown that in a larger class of networks the set of equilibrium
equations has a product form solution. Noteworthy papers in this line are Gordon and
Neweli [1967] and Baskett, Chandy, Muntz and Palacios [1975). The latter paper has set
a standard for the class of product form or separable queueing network models: the
BCMP network models. Further extensions have been studied for example in Lam [1977],
Kelly [1976] and [1979), Hordijk and Van Dijk [1981] and [1984] and Lazar and Rober-
tazzi [1984]. K seems that the boundaries of the class of separable queucing networks
have been reached and that it is guite unlikely that substantial extensions are to be found
any more.

Apart from the fact that for separable queueing network models analytical expressions
for the equilibrium probabilities have been obtained, it has been shown that important
system characteristics may be evaluated in a relatively simple and efficient way.

Queueing network models can be divided in open, closed and mixed open and closed net-
works. Open networks are characterized by the fact that the customers arrive from out-
side the system, proceed through the network and eventuvally leave it. In closed networks
a fixed number of customers proceed through the system and the customers neither enter



~3-

nor leave the system. In mixed open and closed networks both types of customers are
present.

For separable open queueing networks the evaluation of steady-state system characteris-
tics is straightforward as each queue may be evaluated in separation: the network is
separable in a strict sense. For separable closed queueing networks, and consequently for
mixed open and closed networks as well, the analysis is more complicated. The product
form establishes the equilibrivm distribution up to a normalization constant. The evalua-
tion of this constant causes computational problems, as it involves a summation of the
unnormalized equilibrium probabilities over the complete state space.

The two main procedures for solving this problem are known as the convolution algo-
rithm and the mean value analysis.

The convolution algorithm, introduced in Buzen [1973], is a recursive algorithm for the
computation of the normalization constant. It appears that the system characteristics can
be expressed in the recursively computed values and thus may be evaluated efficiently. In
Reiser and Kobayashi [1975] the procedure has been extended to a large class of separable
queueing network models.

The mean value analysis forms a recursive algorithm which is based on a set of relations
between important system characteristics as for instance expected residence times,
expected numbers of customers at the resources and throughputs. It has been introduced
in Reiser [1979] and extended in Reiser and Lavenberg [1980], Zahorjan and Wong [1981],
Krzesinski, Teunissen and Kritzinger [1982] and Bruell, Balbo and Afshari [1984). The
relations can be shown to hold by algebraic manipulation on the equilibrium probabilities.
However, the relations have an attractive intuitive interpretation as well, as these may be
viewed as consequences of two important results from gueueing theory: Little’s formula
and an arrival theorem.

Little’s formula expresses the expected number of customers in a queueing system as the
product of the arrival rate of customers at that system and the expected residence time of
a single customer in the system, cf. Little [1961] and Stidham [1974],

The arrival theorem couples the equilibrium distribution of the queueing network model
with the equilibrium distributions at departure and arrival moments of individual custo-
mers, cf. Lavenberg and Reiser [1980] and Sevcik and Mitrani [1981].

The implementation of the convolution and mean value analysis algorithms is discussed
for instance in Bruell and Balbe [1980], Chandy and Sauver [1980], Reiser [1981] and
Zahorjan and Wong [1981].

A considerable improvement of the standard convolution algorithm algorithm may be
accomplished by the use of ihe tree convolution algorithm which has been introduced in
Lam and Lien [1983]. For the mean value analysis algorithm an analogous improvement,
the tree MVA algorithm, has been suggested in Tucci and Sauer [19851.

Very recently a new convolution-like algorithm has been suggested in Conway and Geor-
ganas [1985]. It is claimed that for some types of queueing network models the method is
considerably faster than the classical algorithms.
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1.4 Approximate analysis of queueing network models

Regrettably, many realistic models for practical problems do not have a product form, i.e.
are not separable, whereas separable models tend to be very large and therefore cannot be
evaluated using standard methods. For both types of problems the use of approximation
methods seems a way-out. )

In this monograph particular emphasis will be put on the use of separable queueing net-
work models and the computational procedures which are associated with such models.

A wave of papers has appeared in this area of research. We may, roughly, discern three
approaches in the development of approximation methods. These will be discussed in
more detail, but beforehand it should be noted that the approaches cannot be viewed as
strictly independent. Whereas the last two approaches are typical for the approximate
analysis of large and complex queuveing network models, the first approach provides a
more fundamental and theoretical framework.

The first approach is based on the analysis of the set of equilibrium equations of the Mar-
kov process. The emphasis is on the use of the sparseness and structure of the transition
matrix which describes the linear system. Decomposition and aggregation are standard
techniques for obtaining approximate solutions for such highly structured linear systems.

Decomposition methods are based on a splitting of the state space of the Markov process
in subsets of states. The analysis of an adjusted model at the states of a given subset is
followed by a composition step in which the relevant information for the overall model is
obtained. Such methods have been extensively dealt with in Courtois [1977] in which
concepts as "exactly” and "nearly-completely-decomposable” matrices have been intro-
duced. The approximation methods have an interesting algebraic background which
makes it possible to formulate bounds for the evaluated approximations. Furthermore, the
algebraic results may be interpreted in terms of the studied stochastic models. They may
be viewed as consequences of the different time scales at which distinct parts of the sys-
tem are operating. This interpretation provides a tool for constructing a decomposition of
the state space which is based on the relevant features of the system rather than on the
explicit structure of the iransition matrix. Examples are discussed in Courtois [1977],
Hine, Mitrani and Tsur [1979] and Kuehn [1979].

Aggregation methods are based on the lumping together of subsets of the state space in
single states and the formulation of an adjusted model on this newly defined smaller
state space. The analysis of this smaller model is followed by a disaggregation step in
which the relevant characteristics of the original model are evaluated. Again, algebraic
arguments may be used to obtain information on the accuracy of such approximating
schemes, cf. the discussion on exact and approximate lumpability in Schweitzer {1984}
and the notes on exact aggregation in Vantilborgh [1978] and Schassberger [1984]. In
practice, the aggregation of the state space has to be a natural consequence of the structure
of the underlying stochastic model.
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It should be observed that both decomposition and aggregation methods may be imple-
mented as iterative schemes. By iterating between the decomposition (aggregation) step
and the composition (disaggregation) step one hopes 1o obtain better approximations.

The second approach is based on the theory of separable queueing networks. Since efficient
computational procedures for such networks are available it seems natural to use separ-
able queveing network models to approximate general or very large separable queuveing
network models. The problem is to find an appropriate set of parameters for the approxi-
mating model.

Most of the approximation methods are based on a hierarchical model of the gueueing net-
work system. At a higher level a relatively simple separable gueueing network model
describes the interaction between the components of the system. At a lower level more
detailed models describe the operation of specific components of the system.
Decomposition and aggregation techniques are natural tools to analyse hierarchical models.
Later on we will take up the question of when and how to use decomposition and aggre-
gation techniques. Here we would like to point out the close relationship between the use
of decomposition and aggregation in the first two approaches.

Typical examples in this line of research are the parametric analysis, introduced in
Chandy, Herzog and Woo [1975:1] with applications in Chandy, Herzog and Woo [1975:2]
and Chandy and Sauer [1978), and the iterative method iniroduced in Marie [1979] and
Marie and Stewart [1977] with an application in Bondi [1984].

In recent years a third approach has atiracted a lot of attention. Since the development of
the mean value analysis and the understanding of its intuitive interpretation, a wave of
papers has appeared on the use of this procedure as a basis for approximation methods for
large and complex gueueing network models. Though the methods are basically heuristic
in nature, they show some structural resemblance for different types of problems. Apart
from experimental results little is known about the accuracy of the proposed methods.
However, the results are quite satisfactory and so the mean value analysis approach has
become a popular and widely appraised tool, De Souza e Silva, Muntz and Lavenberg
[1984], Lavenberg and Sauer [1983] and Van Doremalen and Wessels [1983].

The mean value analysis algorithm is recursive and thus the approximation methods may
be formulated in a recursive fashion. In many applications an iteration is implemented
anyway.

There are two good arguments to do so. The first one is that it may be attractive to iterate
in order to capture more precisely the interactions between the components of the system.
The second one is that iteration may be used to bypass the recursiveness of the mean
value analysis procedure which causes serious computational problems for larger models.
One of the main conclusions of our research is that for closed queueing network models
the implementation of a strictly recursive approximation method has to be advocated.
Strictly recursive methods can be very efficient and accurate evaluation tools for the
approximate arialysis of large and complex queueing network systems.
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‘We have not ventured on the question of when to use a specific approach and of how to
design an approximation method. The structure of the model and the type of information
that one wants to extract from the model are two important guides. In Chapter 2 we
review some ideas with respect to the development of approximation methods for large
and complex queueing network models. The examples which are presented in the chaplers
4, 5 and 6, provide a further insight in the application of these ideas.

1.5 Aim of the monograph

In the preceding sections we have given a rough sketch of the exact and approximate
analysis of Markovian models of queueing network systems.

In this monograph we sketch ideas and lines of reasoning which provide a basis for the
development of efficient and accurate approximation methods for large and complex
queveing network models. The main emphasis is on the use of the recursive mean value
analysis algorithm and its intuitive interpretation.

The first conclusion of the research is that the mean value analysis provides an attractive
basis for the development of highly efficient, accurate and appealing intuitive approxima-
tion methods.

The second conclusion is that for the approximate analysis of closed queueing network
models the use of strictly recursive methods has to be advocated. Whereas in the recent
literature the emphasis is on iterative approximation methods, it is our opinion that
strictly recursive methods for several reasons form an interesting alternative.

In the first place strictly recursive methods use explicitly the structure of the mean value
analysis reasoning which is based on a strict recursion in the number of customers. This
idea of studying the system with a given number of customers and trying to estimate
what happens when an extra customer is added forms an atiractive basis for the develop-
ment of approximation methods.

In the second place such methods appear to yield very good results that can be compared
with related iterative methods.

In the third place the implementation of a strict recursion in a computer program has the
considerable advantage that a priori estimates can be made for the amount of computation
time needed and the size of the storage facilities needed.

This monograph is organized as follows. The first part concentrates on the characteriza-
tion of some general ideas that may be useful in the development of approximation
methods for queueing network models.

Important observations for the analysis of queueing network systems are that the models
tend to be highly structured and that interest is in aggregated rather than in detailed
information. Decomposition and aggregation techniques seem, therefore, obvious tools for
the approximate analysis of such models. These techniques have to be based on the struc-
ture of a gueueing network system and an understanding of the specific performance
measures to be evaluated. We shall discuss these global observations in more detail later
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on.

For the approximate analysis of large queueing network models we have decided 1o use
separable queuveing network models and, more in particular, the mean value analysis pro-
cedure with its appealing intuitive interpretation. We shall discuss the use of these tech-
niques in more detail and provide an introduction to the analysis of separable queueing
network models and the mean value analysis procedure.

In the second part of the monograph the sketched ideas are elaborated for a set of queue-
ing network models. The examples are typical in so far that they cover the essential
problems that may arise in the analysis of large and complex queueing network models.

The first example considers the evaluation of the system characteristics of a closed mul-
tichain queueing network model. Computational complexity and storage requirements of
the recursive mean value analysis procedure prohibit an exact evaluvation for larger
numbers of closed customer chains.

The second example considers a queueing network model with a special type of two-phase
servers, where the first phase is a preparatory one. The problem is here the violation of
the separability conditions.

The third example considers a closed gueuveing network with a priority schedule at one or
more of the queues. Here we have to do with a combination of the problems: the compu-
tational complexity of the mean value analysis algorithm and the {act that the separabil-
ity conditions are violated. problems.

1.6 Summary

This monograph deals with the development of approximation methods for the analysis
of large and complex queuveing network models. The first part, Chapters 2 and 3, deals
with the introduction of some ideas and techniques which may be used as tools for the
development of intuitive, efficient and accurate approximation methods. The second part,
Chapters 4, 5 and 6, treats a number of worked out examples.

In Chapter 2 the development of approximation methods is discussed from a rather gen-
eral point of view.

The first part of the chapter considers a description of a queueing network model in terms
of a production structure, describing the operation of the resources, and a demand struc-
ture, describing the arrival processes, the routing behaviour and the service requirements
of the customers. This structure in a natural way leads to the introduction of decomposi-
tion and aggregation techniques.

In the second part of the chapter the use of separable queueing network models and the
associated mean value analysis procedure are discussed in more detail. The line of argu-
ment is augmented by some illustrating examples.

In Chapter 3 a class of mixed open and closed separable queueing network models with
multiple customer chains and queue length dependent service rates is introduced. The
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emphasis is on the mean value analysis procedure and its intuitive interpretation in terms
of Little’s formula and an arrival theorem. An implementation of the recursive algorithm
is presented and remarks are made with respect to computational complexity and storage
requirements.

Chapter 4 considers the numerical problem of evaluating the exact mean value analysis
procedure for separable queuveing network models with many closed cusiomer chains. A
classification of the approximation methods is presented and existing as well as new
methods are described.

Chapter J treats the approximate analysis of a non-separable queueing network model
with a special type of two-phase service units. The first part of the service is preparatory
and can be performed in the preceding idle period for the first customer of the next busy
period.

Chapter 6 deals with the approximate analysis of a queueing network model with
preemptive resume and head-of-the-line priority queves. We present a new approxima-
tion method which is based on the mean value analysis procedure and a mean value
analysis of M/G/1 priority queues.
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2. THE APPROXIMATE ANALYSIS OF QUEUEING NETWORK MODELS

2.1 Introduction

This chapter is devoted to the introduction of some basic arguments which may lead to
the development of efficient and accurate approximation methods for large and complex
queueing network models.

In the first part of the chapter the use of decomposition and aggregation methods is
reviewed.

The components of a queueing network model are split in a production structure, describ-
ing the operation of the resources or queues, and a demand structure, describing the
arrival processes, routing behaviour and service demands of the customers or jobs.
Though these two structures in general interfere in a more or less complicated way, the
recognition of this basic distinction may lead to the design of efficient and accurate decom-
position and aggregation methods.

The second part of the chapter deals with the use of separable queueing network models
and the application of mean value arguments. Two approaches are discussed.

In the first approach non-separable queueing network models are approximated by separ-
able ones and large separable models by smaller ones. The second approach consists of
adjusting or extending the mean value analysis procedure using mean value arguments.
For non-separable queueing network models this is done in such a way thai the violation
of the separability conditions is accounted for. For large separable queueing network
models the computational complexity and storage requirements are diminished by consid-
ering smaller models.

The chapter is organized as follows. The distinction of a production and a demand struc-
ture and the use of decomposition and aggregation techniques are reviewed in Section 2.2
The use of separable queuveing network models and the mean value analysis procedure is
briefly discussed the Sections 2.4 and 2.5. The discussion is illustrated by some small
examples which require the prerequisites provided in Section 2.3.

2.2. Decomposition and aggregation

In this section we discuss the use of decomposition and aggregation techniques in the
development of approximation methods for large and complex queueing network models.
The use of such techniques may be based on a description of a queueing network model in
terms of a production structure and a demand structure.

The production structure describes the nature and operation of the resources. A resource
is designed to execute a set of tasks in a specified way. Its operation may be expressed in
terms of buffer capacities, service rates, service disciplines and availability.

The demand structure describes arrival processes, routing behaviour and service demands
of the individual customers. Principally, each customer has its own set of tasks and it
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needs a specific subset of resources to execute these tasks in a prescribed order. In practice,
it is convenient to discern groups of customers which are alike. For each group or chain of
customers one has to describe the structure of the set of tasks, the order in which the
tasks have to be executed and the assignment of the resources that have to execute the
tasks.

Note that a strict separation of the production and demand structure has been suggested.
In many applications it is difficult or even impossible to make such a rigorous division;
production and demand structure will interfere in a more or less complicated way. For
the line of reasoning this is not a handicap, as the global distinction of a production and a
demand structure in many instances leads 1o the development of efficient approximation
methods.

Natural tools to go from a detailed description to a less detailed one are decomposition
and aggregation. The basic idea of decomposition is to split a model with multiple
resources into multiple models with single resources or to split a2 model with multiple
groups of customers into multiple models with a single group of customers. The basic
idea of aggregation is to lump groups of resources together into a single resource and
several groups of customers into a single group of customers.

Observe that aggregation and decomposition may be used simultaneously, e.g. an aggrega-
tion of production structure and a decomposition of the demand structure can be com-
bined in one method.

It should be noted that an aggregation step in general is followed by a disaggregation step
and a decomposition step by a composition step. In approximation methods this leads to
an iteration between aggregation and disaggregation step and between decomposition and
composition step.

Let us next indicate the impact of performance and design questions on the choice of
aggregation and decomposition methods. Performance and design guestions can roughly
be divided in production and demand oriented problems. Capacity planning and service
discipline analysis are typical production oriented problems. Response time analysis is a
typical example of a demand oriented problem.

It is obvious that many problems will fall in both categories. For example, if a new ser-
vice discipline is considered, this will influence both the utilization of the resources and
the response times of the customers. So production and demand oriented performance
measures enter into the analysis. It will often be possible to isolate these problems and to
analyse them separately.

In production oriented problems the demand structure is of secondary importance: it must
be modelled in such a way that it reflects the influence of the demand processes on the
distinct cornponents of the queueing network model. An aggregation of the demand struc-
ture therefore seems a natural technique for approximating the influence of the demand
structure on the production structure.

If the production oriented performance questions are directed towards the evaluation and
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analysis of particular components or subsystem of components, then a decomposition of
the production structure may be a useful tool. Note that this requires an adjustment of
the demand structure as well.

In demand oriented problems the production siructure has to be modelled in such a way
that it reflects the influence of the production structure on the performance measures of
the demand structure. An aggregation of the production structure is the obvious way to
approximate this influence.

1If the demand oriented problem is directed towards the analysis of specific groups of cus-
tomers, the decomposition of the demand structure can be the next step in the approxi-
mate analysis.

In what follows the sketched arguments will be used explicitly and implicitly many
times.

2.3. Two separable queneing network models

2.3.1. Introduction

In the next two sections the use of separable queueing network models and the mean
value analysis procedure in the approximate analysis of queueing network models is
reviewed. The line of reasoning is illustrated by a number of examples. In this section
we introduce two relatively simple separable queueing network models that will be used
in these examples.

2.3.2. A closed single chain queveing network model

The first queveing network model is a closed single chain queueing network with first-
come first-served resources with a single service unit and queue length dependent service
rates.

The production structure of the model comprises N resources, numbered n =1,2,..N.
Each resource has an infinite buffer capacity. The single service unit at resource
n,n=1,2,.N, has service rates u, (X ) indicating the amount of work executed per unit
time when k customers are present. The customers are serviced in order of arrival.

The demand structure of the model consists of X customers of a single type which
proceed through the network in accordance with a Markov routing defined by an irreduci-
ble stochastic matrix P. The elements p,, ., n.m=12,..,N, describe the probability that
a customer after its service has been completed at resource n joins the buffer at resource
m. The service demands at resource nn, n=172,...N, are stochastically independent and
exponentially distributed with mean w, .

Consider the following continucus-time Markov process. The state of the queueing net-
work model is described by a vector {£4,k,,....ky ), where k,, n=1.2,.,N, denotes the
. number of customers at resource n. The state space S is the set of all states and is given
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as,

S={{ky.... 0} 1k, €{0,1,... K} n=12,.N,and %i k=K }. (23.13
n=1
To be able to formulate analytic expressions for the equilibrium or limiting probabilities
the following auxiliary quantities are introduced.
The visiting ratios f,.,n=12,..,N, are the stationary distribution of the Markov chain
defined by the routing matrix P, i.e the f,’s are the unique positive solution of a set of
linear equations,

N
o= % fmPmnsn=12,,N, (2.3.2)

m=1

and a normalization equation
N
Lfn=1. (2.3.3)
n=1

The value f, is called a visiting ratio as it may be interpreted as the stationary probabil-
ity that the visit of a customer is to resource nn.

In accordance with Theorem 3.1 the equilibrium probabilities p (K), k={ky,... ,ky €S,
satisfy,

N
pK) = »é— I Fn (ko) (2.3.4)
nw=1
where, for k =0,1,...K,
Eownfn
k)= 2.3.
Fn(k) igllan(i) (2.3.5)
and where
N
G=F IF.(k,). (2.3.6)
k€8 n=1 .

Usually, one is not interested in these limiting probabilities but in steady-state charac-
teristics, for example expected residence times, throughputs and expected numbers of cus-
tomers. The characteristics for the equilibrium behaviour are informally introduced as
follows

S,{K} expected residence time at resource n ,

A,(K) expected number of arrivals per unit time at resource n, ie. the
throughput at resource n, and

Pk K} the probability that £ customers are at resource 2,

where K emphasizes the dependence of these behavioural characteristics on the popula~
tion. In Chapter 3 these steady state characteristics are discussed in more detail and it is
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shown that these may be evaluated in a relatively efficient way.

2.3.3. A closed multichain queueing network model

The second queueing network model is a closed multichain queueing network with first-
come first-served resources with a single service unit and a fixed service rate.

The production structure consists of N resources. Each resource has an infinite buffer
capacity and a single service unit that services the customers in order of arrival. The single
service unit at resource n,n=12,...N, has a fixed service rate which is normalized to
unity.

The demand structure comprises R groups of customers or chains, numbered r=1,2,..,R.
The K, customers of chain r visit the resources of a subset Q(+ JC {1,2,...N}. The rout-
ing is defined by an irreducible and stochastic matrix P, which is defined on Q{r IxQ(r ).
The elements P, , ,, denote the probability that a customer of chain r after a visit to
resource n brings a visit to resource m. The service demands at resourcen, n=12,...N,
are stochastically independent and exponentially distributed with mean w, . This mean is
independent of the chain number.

The visiting ratios [, ., are for each chain r,r=1.2,..,R, defined as the unique positive
solution of

fn,r = Z fm.rpr;.n s GQ(I') (2'3'?)
meQ(r)

and a normalization equation

Y fmr=1. (2.3.8)
meQir)

The following steady-state characteristics may be evaluated from a recursive scheme
which is known as the mean value analysis algorithm. The characteristics are to be
viewed as limiting quantities either for the number of visits going to infinity or for the
time going to infinity. Forn=1.,...N and r =1....R we introduce,

S, - (K) expected residence time of chain r customers at resource n,

A, (K}  throughput of chain r customers at resource n, and

L, . (K) expected number of chain r customers at resourcen.
where K= (K ;,..,Ky ) denotes the dependence on the population vector.

In Section 3.3 an arrival theorem is derived that states that the limiting distribution of
the state of the system upon an jump moment of a customer of a specific chain equals the
limiting distribution as if one customer of this chain has been removed. In combination
with Little’s formula the arrival theorem offers an appealing intuitive basis for the
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development of a recursive scheme for the evaluation of the performance measures.
‘We sketch this intuitive derivation and refer to Chapter 3 for details.

Consider a customer of chainr, r=1,2,...,R, arriving at a resource n € Q{r ). As a conse-
quence of the arrival theorem, the expected number of customers of chain I that it will
see in front of it, equals L, ;{(K—e, ) where e, is the r ~th unit vector. Each of these cus-
tomers is to be served before the arriving customer and, consequently, its expected
residence time equals

R :
So,K)= I L, (K—e w, +w, . (23.9)
=1
The expected number of visits that customers of chain r,r=1,..,R, bring 1o resource
m,mE€Q(r), between two departures from a fixed resource n,n €Q(r) equals
fmrlfar+ As aconsequence the expected time between two departures from resource n
of a chain-r customer equals

y Inrg . (2.3.10)
meQ(r) fn Fd
For the throughput of customers of chain r at resource n we thus obtain,
fn I’Kf
A, (K)= : . (2.3.11)
fid Z fm;sm,r(K)
meP(r)

Finally, applying Little’s formula to the single resource n and the single chain r yields
for the expected numbers of customers

Ly, (K) = A, ,(K)S, , (K). (2.3.12)

Starting with L, ,(0)=0, for n=1,2,..,N and r=1,2,...R, the Relations (2.3,9), (2.3.11)
and (2.3.12) constitute a recursive scheme for the computation of the expected residence
times, the throughputs and the expected numbers of customers.

2.4. Separable queucing network models

2.4.1. Introduction

If a queueing network model satisfies, apart from certain ergodicity conditions, so-called
separability conditions, the equilibrium eguations for the equilibrium probabilities of a
detailed state description attain a product-form solution. In Section 1.3 it has been noted
that efficient algorithms have been developed for the evaluation of some important steady
state system characteristics.

Regrettably, in most realistic models of queueing network systems the separability condi-
tions are nol satished and, consequently, the corresponding efficient evaluation methods
cannot be applied directly. On the other hand separable models can be very large and are
therefore inaccessible for the standard evaluation methods.

The approximation of non-separable by separable models and of very large separable
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models by simpler separable queuveing network models is a standard way-out. The kernel
of such methods-is the construction of a separable queueing network model for which the
characteristics are an accurate approximation of the corresponding characteristics in the
original model.

As indicated in Section 1.4 these methods, in general, find their validation in the
mathematical analysis of exact and approximate decomposition and aggregation tech-
niques for large and structured sets of linear equations. In practice, the choice of a decom-~
position or aggregation has to be made after a study of the structure of the model and the
explicit performance and design questions that have to be answered.

The next two subsections are devoted 10 an elaboration of these global ideas in two exam-
ples. In Subsection 2.4.2 an iterative aggregation/disaggregation technique based on an
aggregation of the production structure is discussed for a non-separable queueing network
model with non-exponential service demand distributions at resources with a first-come
first-served service discipline. In Subsection 2.4.3 an iterative decomposition/composition
method is discussed for a separable queueing network model with many closed customer
chains.

2.4.2. Aggregation of the production structure

One of the ways to construct an approximating separable queueing network model is an
aggregation of the complex or large production structure. In this subsection we discuss an
iterative aggregation-disaggregation method for a queueing network model with a complex
production structure and a relatively simple demand structure. The method is closely
related 10 the parametric analysis method, cf. Chandy, Herzog and Woo [1975:1] and
{1975:2], and the method introduced in Marie [1979] and Marie and Stewart [1977].

Consider a queueing network model with N resources. At the resources, the customer are
serviced in order of arrival by a single service unii with a fixed service rate that is nor-
malized to unity. The network is closed and the X customers form a single chain. The
routing is defined by an irreducible stochdstic matrix P. The service demands at resource
n,n=1,..N, are stochastically independent and distributed in accordance with a distri-
bution function G, with mean w, . The resulting model is non-separable. The separabil-
ity conditions are violated by the non-exponentiality of the service demand distributions
at resources with a first-come first-served discipline, cf. the discussion in Section 3.2.

The model is approximated by a separable model comprising NV resources with a first-
come first-served discipline and a single service unit with queue length dependent service
rates p,(k), for k=1,..K and n=1,..,.N. The service demands are assumed to be
independent and exponentially distributed with unit mean. Note that this model has
been sketched in Subsection 2.3.2. It is separable and, so, the performance measures may
be computed efficiently.

The iterative aggregation-disaggregation method now proceeds as follows.
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Assume that an initial set of service rates u,{k ) has been given. A plausible first guess
might be g, {k )=w,"'. The corresponding separable queueing network model may be
evaluated to obtain the relevant characteristics. These characteristics are approximations
for the corresponding characteristics in the original non-separable model.

This completes the aggregation step. The relevant information for the disaggregation step
is provided by the probabilities p, (k ,K ).

The disaggregation step starts with the evaluation of sets of gueue length dependent
instream rates A, (% ), k =0,...,K , at each resource n, n=1,...N.

These instream rates are to be used as the input parameters for a procedure to evaluate the
performance measures of a finite capacity M/G/1-queuve with state-dependent instream
rates. The outcomes of these procedures are used to construct a new set of queue length
dependent service rates u, (k ).

The instream rates A, (k ) are obtained from the analysis of the separable model. Note
that A, (¥ } describes the expected number of arrivals at resource n per unit time when k
customers are present.

A fraction p,{(k.K ) of the time there are k customers present at resource n. So, the
expected number of arrivals per unit time while ¥ customers are present equals
h,{k)p, %k ,K). This number has to equal the expected number of service completions
per unit time leaving £ customers at resource n, i.e for k =0,....K~1,

A Ip, (kK )= p,(k+1)p (k+1,K) (2.4.1)
and, obviously, A, (K )=0.

A crucial point is the efficient evaluation of the M/G/1-queue with state dependent arrival
rates. For suggestions on the evaluation of such queueing systems we refer to Marie
{1980), Tijms and Van Hoorn [1981] and Van Hoorn [1983].

The evaluation of the new set of queue length dependent service rates varies with the
structure of the problem.

Tterating between the analysis of the separable model and the analysis of the M/G/I-—
queues the characteristics of the original model are approximated.

in Chapter 5 we present an application of the method when analyzing a queueing network
model with two-phase servers.

2.4.3. Decomposition of the demand structure

The second example uses a decomposition of the demand structure. The problems are
caused by the high computational complexity and the large storage requirements of the
exact evaluation method.

Consider the closed multichain queueing network model introduced in Subsection 2.3.3.
The recursive scheme is given by the Relations (2.3.9), (2.3.11) and (2.3.12). It runs
through all the vectors in the range of (0,...,0) up tilt (X4,..., Ky ). So, the number of
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recursion steps equals,

ﬁ (K. +1) (2.4.2)

rel
and a large part of the information has to be stored. It is evident that for larger values of
R K, ...,Kp the computational complexity and storage requirements will prohibit an
exact evaluation.

This problem has attracted a lot of attention in the recent literature and in Chapter 4 it is
analysed in detail. As an example we present an iterative decomposition/composition
method which is based on a decomposition of the demand structure.

Consider a set of R separable single chain queueing network models. The r** network is
associated with chain r, r=1,2,...,R, in the original model. It is characterized by the set
Q{(r ) of resources and the K, customers of chain r with routing matrix P,. The routing
behaviour is left intact, bul the expected service demands at the resources are adjusted to
account for the influence of the remaining chains. For the chain-r customers we introduce
at each resource n, n € Q (r ) an adjusted expected service demand wy, ,.

The method now proceeds as follows. Assume that an initial set of adjusted expected ser-
vice demands w,,,n=1,..,N andr=1,.,R, has been given. For each chain
r,r=12,..R, the performance measures are evaluated from a one-dimensional recursive
scheme, cf. Subsection 2.3.3. Fork=1,..K, evaluateat alln €Q(r)

Se,plk)= Ly (k=Dwy , + Wy, (2.4.3)
- fark
A k)= Y s (2.4.4)
mEeQ(r)
Ly k)= A, (k)S, (k). (2.4.5)

Observe that the number of recursion steps of this scheme equals,

2 .
7 (K. +1). (2.4.6)
r=1

The problem is now to find new and hopefully better values w, , in such a way that the

performance measures of the proposed scheme approximate the corresponding measures in

the original model.

For this step in the approximation method we perform a composition step. It seems rea-
sonable to consider an adjustment of the effective expected service demand w,, accounting
for the influence of the remaining chains. A plausible guess is to set w, , 10

wn

1 - zAnJ(Kg)Wn )

i1#=r

Wn F

(24.7)

Note that in this way the resource n appears to the customers of chain r as a resource
. which is slowed down by a factor corresponding with the fraction of time it is serving
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customers

2.5. Mean Value Analysis

2.5.1. Introduction

In recent years the use of mean value analysis arguments has become a widely advocated
and appraised basis for the development of approximation methods. Since the presenta-
tion of the mean value analysis procedure and its attractive interpretation in terms of an
arrival theorem and Little’s formula a wave of papers has appeared on the subject, see e.g.
De Souza e Silva, Muniz and Lavenberg [1984] and Lavenberg and Sauer [1983] for an
overview and discussion. The reason for this success is threefold.

In the first place, the appealing interpretation in terms of an arrival theorem and Little’s
formula yields an attractive basis for the development of adjusted and extended mean
value analysis procedures. Such procedures may be used for the evaluation of approxima-
tions for performance characteristics in non-separable and large separable queueing net-
work models.

In the second place, these adjusted procedures can be implemented with relative ease in
existing mean value analysis algorithms,

In the third place the approximation methods have proved their value in the analysis of
queveuing network systems, especially in the field of computer system and communica-
tion network analysis.

As we have seen in Subsection 2.3.3 the mean value analysis procedure comprises relations
between important steady-state system characteristics, viz. relations for the expected
residence times (2.3.9), for the throughputs {2.3.11) and for the expected numbers of cus-
tomers (2.3.12). The latter two relations may be viewed as consequences of Little’s for-
mula and will hold in most non-separable networks as well. The expected residence time
relation is special as it is based on the arrival theorem which is typical for separable
queveing network models.

Thus, the crucial steps in the design of an approximating mean valve analysis procedure
are the formulation of an adjusted or extended relation for the expected residence times
and the introduction of an approximating arrival theorem. The methods will therefore
show for different types of problems some structural resemblance, but are typically
heuristic in nature. Apart from experimental results little is known about the accuracy
of the proposed methods. In several practical sifuations the results have appeared to be
guite satisfactory.

In the next two subsections we give examples illustrating the main lines which may be
followed in the design of mean value analysis based approximation methods. The first
example considers a trictly recursive mean value analysis extension, whereas the second
example presents an iterative method.
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2.5.2. Non-exponential service demand distributions

Consider the queuveing network model introduced in Subsection 2.3.3. However, now the
service demands of customers of chainr,r=12,...R, at resource n,n=1,2,.,N, have a
distribution function G, , with mean w, , and variance S +- This network is non-
separable and the arrival theorem cannot be invoked to construct an expected residence
time relation.

A first approximation for the evaluation of the expected residence times in this non-
separable queueing network is the following one. We use an adjustment of (2.3.9)

S K)= 3 Ly (Kee, W W s | 25.1)
=1
as if the arrival theorem holds (which certainly is not the case) and, consequently, a cus-
tomer of chain r would upon its arrival at resource n see an expected number of
L, ,(K~e,) customers of chain !. The mean service demand of a chain-! customer is
w, ;. Summing these mean service demands and adding the mean service demand of the
customer itself yields Relation {2.5.1).

The approximation may be improved. If a customer of chain / is being served upon the
arrival moment of a customer of chain r, its expected residual service demand, in general,
does not equal w, ;. It seems a better guess to apply the mean residual life time formula
at an arbitrary time instant, cf. Kleintock [1975:1]. So, if a customer of chain ! is in ser-
vice, we use

Ons ¥y (252)

2wy,

to approximate the expected residual service demand at the arrival moment of a customer
of chainr.
Note that A, ;(K—e, )w, ; is an obvious approximation for the probability that a custo-
mer of chain 7 upon its arrival at resource n finds a customer of chain  in service. This
yields the following improvement of Relation (2.5.1),

- R
S, (K)= T (L, (K—e.) = Ay, (K—e, w,  Jw (2.5.3)
i=1

2 2
0,,’1+wn,z

R
+ Ay (K—e w
l§1 n,l n,tl 2Wn P

+ W, .

The similarity between this formula and the Pollaczek-Khintchine formula for M/G/1-
queues should be observed, cf. Oliver [1964] and Kleinrock [1975:1] for similar reasonings
to obtain the expected residence times in M/G/1-queves.

Note that (2.5.3) in combination with (2.3.11) and (2.3.12) forms a strictly recursive
scheme for the evaluation of approximations for the performance measures. It is easily
verified that, in a straightforward way, the scheme can be implemented in any existing
mean value analysis algorithm.
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In Chapter 6 the proposed technique shall be applied in the more complex setting of a
queuveing network model with a preemptive resume priority schedule at some of the
resources.

2.5.3 Closed multichain gueueing network models

As we have seen in subsection 2.4.3 the main problem in the evaluation of the perfor-
mance measures in large separable queueing network models with many closed customer
chains are the high computational complexity and the large storage requirements of the
mean value analysis algorithm.

In this subsection an alternative approximation method is highlighted which is based on
an adjustment of the mean value analysis procedure. For more details we refer to
Chapter 4. The simple and iterative method has been examined in Chow [1983). The idea
is to remove the recursion from the mean value analysis procedure by assuming that cus-
tomers arriving at a resource see the system as if in equilibrium,.

The resulting approximate scheme has the following form,

Sur (K) = (F Ly (0 + Dw, , (2.5.4)
=1

A )= — Tk (2.5.5)
Z fm,r Sm;(K)
m=1

Lo, (K) = A, (K)S, , (K) . (2.5.6)

This yields a set of non-linear equations for the approximate performance measures at the
population vector K.

 Using Brouwer’s fixed point theorem one may show the existence of a solution of this set
of equations. A standard way to obtain such a fixed point is by successive approxima-
tions. In Chow [1983] it is shown that the resulting iterative scheme converges o a
unique fixed point.

Brouwer’s fixed point theorem and the successive approximation method are standard
tools in the analysis of iterative extensions of the mean value analysis procedure.
Regrettably, little is known with respect to convergence of the iteration schemes and the
uniqueness of the fixed points, confer De Souza a Silva, Muntz and Lavenberg [1984] and
Lavenberg and Sauer [1983]. In Chapter 4 this fixed point problem is revisited in the con-
text of approximation methods for separable queueing networks with many closed custo-
mer chains. In Chapter 5 we discuss the problem in a different setting, when studying a
queueing network model with a special type of two-phase servers.



-21-
3. MIXED OPEN AND CLOSED MULTICHAIN QUEUEING NETWORK MODELS

3.1. Introduction

In Chapter 1 we have briefly reviewed the relevant literature on separable queueing net-
work models. It has been noted that two approaches can be distinguished in the develop-
ment of efficient computational procedures for the evaluation of system characteristics:
the convolution method and the mean value analysis. In this chapter the Mean Value
Analysis (MVA) approach is presented.

The MV A approach is based on an arrival theorem and Little’s formula and allows for an
intuitive derivation of a set of relations between system characteristics as expected
residence times, throughputs, expected numbers of customers at the resources. These rela-
tions are the basis of the recursive Mean Value Analysis (MVA) algorithm.

Regrettably, the MVA approach does not prove the correctness of the relations. A techni-
cal proof based on algebraic manipulation of the detailed steady state probabilities must
back up the approach. A detailed presentation of the proof falls outside the scope of this
monograph and we content ourselves therefore with a number of references.

That the MV A approach is nevertheless presented, is suggested by the discussions in Sec-
tion 1.4 and 2.5. It provides an attractive tool for the development of approximation
methods.

The chapter is organized as follows.

In Section 3.2 a mixed open and closed multichain queueing network model is introduced
as an irreducible, aperiodic and time-homogeneous Markov process on a finite or denumer-
able state space. Ergodicity and separability conditions are formulated that guarantiee the
existence and the product form of the limiting distribution of the Markov process.

In Section 3.3 we present the MVA approach. The first part of the section is devoted 1o
an introduction of the steady-staie system characteristics and the formulation of the
relevant relations between these characteristics, Then we formulate and prove an arrivatl
theorem and discuss the use of Little’s formula.

The second part is devoted to the MVA approach. First, the approach is demonstrated in
two special cases, an open and a closed gueueing network model each with one customer
chain. Then, then mixed multichain queueing network model with queue length depen-
dent service rates is treated. H is also shown that the reasoning simplifies for models
with fixed service raie resources.

In Section 3.4 an implementation of the MVA algorithm is described and remarks on the
computational complexity and storage requirements of the algorithm are made.
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3.2. A class of separable queueing network models

3.2.1. Introduction

In this section a class of mixed open and closed multichain queueing network models is
introduced. The existence and structure of the limiting distribution of an associated
continuous-time Markov process is discussed.

In Subsection 3.2.2 the gueveing network model! is introduced. The production structure
comprises a set of resources. The versatile description of the resources allows for the
introduction of well-known service disciplines as first-come first served, processor sharing
and infinite server, The demand structure comprises open as well as closed customer
chains.

The gqueueing network model generates an irreducible, aperiodic and time-homogeneous
Markov process with a finite or denumerable state space: the buffer occupation process. In
Subsection 3.2.3 we formulate an ergodicity condition guaranteeing the existence of the
limiting probabilities and a separability condition guaranteeing the solution of the equili-
brium equations to have a product form solution if any.

Queueing network models with this type of analytical solutions for the set of equilibrium
equation are called product-form or separable queueing networks models.

3.2.2. A mixed open and closed multichain queueing network model

We introduce the production and demand structure of a mixed open and closed queveing
network model.

The production structure comprises N resources, numbered n=1,2,..,.N. The set of
resource is also denoted by §={1,...N}. The buffers for these resources have an infinite
capacity, so there will be no blocking due to full buffers. Furthermore, it is assumed that
the resources are not subject to interrupts or breakdowns, i.e. the availability is 100 %.

The service rate at resource n, n € Q, is given by a service rate function u,, where u, (k }
indicates, for k= 1,2,..., the service rate if ¥ customers are present at resource n.

As in Kelly [1976] and [1979] the service discipline at a resource is described by an
admittance and a dedication function.

The admittance function vy, indicates at which buffer place an arriving customer is stored.
If K —1 customers are present at resource n, an arriving customer is stored at buffer-place
k,k=1.2..K, with probability v,(k K ). The customers in the places k ,.,K —1 are
shifted to the places k +1,.. K.

The dedication function ¢, distributes the service capacity over the customers present at
resource 7. If K customers are present, a fraction &, (k ,K') of the service rate u, (K ) is
dedicated to the customer a: buffer place £,k =1,2,..,K. At the moment the job of a
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customer at buffer place £ has been completed, the customer leaves the buffer and the
customers at the places k +1,...,K are shifted to the places k¥ ,.... K —1.

For every K=1,2,... admittance and dedication functions form proper distribution func-
tions, i.e.

X X
Lok K)= Ly,(kK)=1.
K=1 K=1

The modelling in terms of service capacity, admittance and dedication functions includes
several well-known service disciplines. We discuss the first-come first-served, processor
sharing and infinite server service disciplines. It does not allow for all types of service
disciplines, as for instance priority schedules or blocking phenomena.

At a first-come first-served resource the customers are served in order of arrival. Letc¢ be
the number of service units and u the constant service rate of each of these units. The
service discipline is then modelled by the following service-rate, admittance and dedica-
tion functions

ku , 1€k €
ulk) =

cp , ¢Sk
L k=k
Y& K= 10 | otherwise

, 1€k €K &¢c

1
3

ok K) = % 1€k e €K
0

, otherwise

The processor-sharing service discipline is characlerized by the fact that the total service
rate is evenly distributed over the customers present. Thus, it has no influence on the
operation of the resource at which buffer place an arriving customer is stored. We may
therefore put, for given K and k= 1,....K,

ok K)= vk ,K)= "}g k=12,.K .

The infinite server discipline may be viewed as a special case of the processor sharing dis-
cipline. An infinite number of service units each with a constant service-rate of u serve
the customers. The service rate function is given by u(k )=k u, k= 1,2,.... The admit-
tance and dedication function are as in the processor sharing case.

The demand structure comprises open and closed customer chains. We restrict ourselves
to a relatively simple modelling of arrival processes, routing behaviour and service
demands. Some extensions are discussed at the end of Subsection 3.2.3,
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We discern L customer chains, numbered r=1,...,L . The chains r=1,...,R are closed and
the chains i =R +1,...... are open. We use C={1,...,R} and O={R+1,....L} to denote the
sets of closed and open customer chains respectively.

Let us first discuss the modelling of a closed customer chain 7, 7 € C, containing K, cus-
tomers.

The routing is described by a stochastic matrix P., which is defined on @ XQ. The ele-
ment P, ,, ,,n,m&Q, is the probability that a customer after a visit to resource m joins
the buffer at resource n. The matrix P. may be viewed as the transition matrix of an
embedded Markov chain on the finite set Q. It is assumed that this Markov chain has one
recurrent class. The row vector f, of stationary probabilities of this Markov chain is the
unique solution of the set of equilibrium equations and a normalization, viz.

fr=Ff,P.and fre =1, (3.2.1)

where e is a column vector of ones.

The component [, .. n€Q, of f, is called a visiting ratio, since it may be interpreted as
the stationary probability that the visit of a cusiomer is to resourcen.

It should also be observed that f,, ./ f, . is the expected number of visits to resource m
between two successive visits 1o a particular resource n. This interpretation will be of
importance in the discussion of the MVA approach later on.

The service demands at resource 11 are stochastically independent and exponentially dis-
tributed random variables with mean w, ..

Let us next discuss the modelling of an open chain £, € 0. The customers arrive at the
system in accordance with a Poisson process with rate A; and join the buffer of resource
n € Q) with probability p, ;. The probabilities p, ; form a row-vector p;.

The routing is described by a substochastic matrix P; with elements P, ., n.m€Q,
being the probabilities that customers after a visit to resource m join the buffer at
resource . Note that with probability

1 - f: P; n (3.2.2)
n=1
a customer leaves the system after a visit 10 resource m.
The substochastic matrix P, may be viewed as the transition matrix of an embedded Mar-
kov chain on the set Q. It is assumed that all the states of this chain are transieni. This
implies that all customers entering the system will eventually leave. We now may define
the row-vector A; as the unique solution of the linear system

A, = N\.p, + AP, . (3.2.3)

The solution of this linear system has an important interpretation. Under certain condi-
tions, which for example guarantee the non-degeneracy of the limiting behaviour of the
queueing processes, the component A, ;,n=1,.,N, of A; may be interpreted as the lim-
iting rate of the arrival or departure process of chain / customers at resource n . Therefore,
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this quantity shall be referred to as the throughput of chain i customers at resource n.

The service demands at resource n are stochastically independent and exponentially dis-
tributed random variables with mean w,, ;.

This completes the formulation of the model.

3.2.3. Buffer occupation procem and product form solution

Let {X({z),7z 20} be a Markov process describing in a detailed way the stochastic
behaviour of the buffer occupations. For every 1 20 X (¢ ) takes values in a state space S.
The elements s of S are represented as row-vectors s = (s,,..5y), where 5, n€Q,
describes the buffer occupation at resource n as

s, = (ko (1), o, (K, D) . (3.2.4)

Here, k,, denotes the number of customers at resource n and r, (k ) the chain to which the
customer at buffer place & belongs. If the buffer is empty, we set s =(0).

The state space S comprises all possible states s. We write S{(X) instead of § to
emphasize the dependence of § on the population vector X defined as K =(K{,...,Kp ).

The definitions of the production and demand structure guarantee the process
{X(r),7 20} to be an irreducible, aperiodic and time-homogeneous Markov process on a
finite or denumerable state space. For such processes one may analyse the behaviour for
large t. If a limiting distribution exists, the limiting probabilities p (s ,K } are the unique,
normalized and strictly positive solution of a set of global balance or equilibrium egua-
tions ¢f. Chung [1960], Cinlar [1975], Ross [1982] and Heyman and Sobel {1982]. These
limiting probabilities are, for all s € S(K ), defined as

p(s,K)r-tlim Prix(t)=s}. (3.2.5)

In the sequel of this section we shall treat the existence and the product form of the solu-
tion of the set of global balance equations for the buffer occupation process {X {z )z 20}
It falls outside the scope of this monograph to discuss the proofs at length. For details on
the analysis and the methods of proof we refer to Baskett, Chandy, Muntz and Palacios
[1975]), Reiser and Kobayashi [1975], Kelly [1976] and [1979], Chandy, Towsley and
Howard [1977] and Hordijk and Van Dijk [1981].

We start with the formulation of ergodicity and separability conditions which guarantee
the existence and product form of the limiting distribution, respectively.

The ergodicity condition.
The limiting distribution exists if at all resources n=1,...,N

Jc‘ Z An,iwn,i

- i€0
kgl zH: #,() <. (3.2.6)
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The ergodicity condition has an interesting interpretation. If at all resources n=1,....N

liminf u, (k3> 3 Ay iWays 3.2.7)
ks €0

the ergodicity condition is satisfied. The condition states that the total amount of work

offered to a resource n must not exceed the capacity of the resource.

Note that this condition is very similar to the ergodicity condition of a single Markovian

gueue with a Poisson arrival process and queue length dependent service rates.

The separability condition.

The limiting distribution has a product form if for all states s € S(K ) and at all resources
n=1.,N

kn gk k) — yolk &)
) ? =

k=1 Wa (k)

0. (3.2.8)

The consequences of this condition are discussed later on.
‘We now may formulate the main theorem of this section.
Theorem 3.1

If the Markov process {X (7 ),z 20} satisfies the ergodicity and separability conditions, the
limiting and stationary probabilities p (s ,K ) are for s € §(X ) given by

_ wls)
p(s . K)= Gl (3.2.9)
where
N
w(s)= [I Fuls,) (3.2.10)
n=1
and
GK)= ¥ - 7(s); (3.2.11)
s ES{K)

the quantity F, (s, ) equals

kno x
Fals)= T ﬂ—(,i—k))- (3.2.12)
where for 7 € C eguals
Xor = [rnrWar (3.2.13)
and fori €0
Xni = ApiWa (3.2.14)
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This theorem has far reaching consequences as it allows for the construction of relatively
efficient procedures for the computation of steady-state system characteristics.

Let us discuss some restrictions and possible extensions of the separability condition.

The following two lemmas give straightforward conditions for the separability condition
to hold.

Lemma 3.1
The separability condition is satisfied at resource n if there is a value w,, such that for all
recuo

W, = Wy . (3.2.15)
Proof: Verification. a
Lemma 3.2

The separability condition is satisfied at resource n if the dedication and admittance func-
iion are such that forall K =1,2,.. andk=1,...K

¢,k K)=y,(k K) (3.2.16)
Proof: Verification. N

The service disciplines which satis{y (3.2.16) are called symmetric disciplines and play an
important role in the analysis of separable queueing network models, cf. Kelly [1976] and
[1979] and Hordijk and Van Dijk [1981]. The processor sharing and infinite server discip~
lines are such symmetric disciplines.

The admittance and dedication function of the first-come first-served discipline does not
satisfy this condition. So, it must be assumed that at such resources (3.2.15) is satisfied,
i.e. at each first-come first-served resource the customers must have exponentially distri-
buted service demands with a common mean.

It should be observed that a rather simple routing behaviour and exponentially distri-
buted service demands have been introduced. It is well known that these restrictions may
be relaxed somewhat, cf. Baskett, Chandy, Muntz and Palacios [1975], Kelly [1976] and
[1979] and Hordijk and Van Dijk [1981].

This may be done by the introduction of class indices allowing for the introduction of a
more detailed description of the routing behaviour. Apart from a chain number each cus-
tomer atlains a class index that, in contrast with the chain number, may change during its
sojourn in the system.

Class indices can be used to represent (a part of the) history of the route that a specific
customer has followed. As a consequence routing behaviour and service demands can be
made history dependent. This makes it possible to use class indices as a tool to simulate
non-exponential service demand distributions at resources with a symmetric service dis~
cipline.

In fact, it can be shown that the limiting probabilities attain exactly the same product
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form as sketched in Theorem 3.1, if the service demand of a customer of chain r at a
resource n with a symmetric service discipline has a distribution function with a rational
Laplace-Stieltjes transform instead of an exponential distribution.

3.3. The MVA approach

3.3.1. Introduction

In the preceding section a class of mixed multichain queuveing network models has been
introduced and the product form solution has been formulated for the limiting distribu-
tion of a relatively detailed state description under certain ergodicity and separability
conditions.

A normalization constant appears in the denominator of the expression for the limiting
probabilities. This constant may, in principle, be evaluated by a summation of relatively
complicated expressions over the complete state space. Obviously, such a technique has 1o
be dissuaded as the state space of a queueing network model can be enormous.

Moreover, the interest is not so much in these limiting probabilities for a detailed descrip-
tion of the buffer occupation, as well as in more global steady state characteristics. In the
literature two elegant and relatively efficient approaches for the construction of computa-
tional algorithms have been introduced: the convolution method and the mean value
analysis. In this monograph we concentrate at the second approach.

The MV A approach is based on a set of recursive relations between certain steady state
characteristics. In Reiser [1979:1] the approach has been presented for a simple queueing
network with first-come first-served resources with a single service unit and one closed
customer chain. It was observed that the relations might be interpreted in terms of an
arrival theorem and Little’s formula.

Afterwards, the approach has been extended to closed multichain gqueuveing network
models in Reiser and Lavenberg [1980], and mixed open and closed multichain queueing
network models in for instance Zahorjan and Wong [1981], Krzesinski, Teunissen and
Kritzinger [1982] and Bruell, Balbo and Afshari [1984].

Though in all papers the interpretation in terms of an arrival theorem and Little’s for-
mula is referred to, this interpretation is not given. In this section we, therefore, shall
skelch this interpretation for the mixed open and closed queueing network model satisfy-
ing the ergodicity and separability conditions.

In the next section we discuss the implementation of the relations in the MVA algorithm.

In Subsection 3.3.2 we introduce important steady state system characteristics as expecta-
tions of the corresponding limiting processes. The relation with the stationary versions of
these processes is indicated. The subsection is concluded with a theorem summarizing the
mean value relations between the steady state characteristics.

In Subsection 3.3.3 Little’s formula and an arrival theorem are discussed and some first
applications are presented.
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In Subsection 3.3.4 the MVA approach is presented for queueing network models with
gueue length dependent service rate functions. We start with the discussion of an open
and a closed single chain queueing network model. The reasoning is then extended to the
general case.

In Subsection 3.3.5 the MVA approach is presented for queueing network models with
fixed service rate functions. It is shown that for such networks one may concentrate at
the evaluation of closed multichain queueing network models with an adjusted set of ser-
vice demand parameters.

3.3.2. Steady state system characteristics and mean value relations

To describe the steady state system characteristics, for all r€CUO, n€Q, k=1.2,..,
t 20, r=1,2,... and & >0 the following random variables are introduced

S, ,(v.K) the residence time at resource n of the »* arriving customer of
chain r,

A, (t t+h,K) the number of customers of chain r that arrive at resource n in
the interval [t 7 +h ),

At 4+~ K) the number of customers of chain r that depart from resource n
in the interval [r 7 +h ),

L,,.X) the number of customers of chain 7 at resource n at time ¢, and

L,k K) the indicator function that at time ¢ attains the value 1 if there
are kX customers at resource n and the value O otherwise.

The argument X emphasizes the dependence on the populations of the closed customer
chains.

If the queueing network model satisfies the ergodicity conditions, the limiting distribu-
tions of these random variables exist and we may introduce S, (K ), A, (K ), L, .(K)
and p, (k ,K )} as

Snr(K)= BmE{S, (n.K) 1, (3.3.1)

E{A, 1 +h.K)} E{D, .t 1+h K}

A, (K)= lmé tlixg - = 11;111% 11’1‘m A - {3.3.2)
L, (K)= tlim E{L,, (t K)},and (3.3.3)
palk K)= zlim E{I,(tkK)}. (3.3.4)

We can go one step further by appealing to the fact that the process {X(r )z 20} is a
regenerative process. Note that every initial state may be taken as a reference point. If
the ergodicity conditions are satisfied, the expected length of a regeneration cycle will be
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finite. o .

As a consequence, cf. Heyman and Sobel [1982:pp 362-380], we can study the steady
state behaviour by an analysis of the stationary version of the stochastic process. This
greatly facilitates the evaluation of steady state characteristics.

Assuming {X (z )t 20} to be stationary we may write
S, (K)=EIS, (1K},

_ . ElA, 04K} _  EiD,, (04 .K)
An (K= Jim A = h ’
Lo, (K)= E{L, ,(0K)},

2.(k K )= E{I,(0k K)}.

‘We use the following formulations for the steady state or stationary behavioural charac-
teristics

S, .(K) expected residence time (including waiting and service) of a customer
of chain r at resourcen,

A, (K) throughput of customers of chain r at resourcen ,
L, AK) expected number of customers of chain r at resource n and
P,k .K) probability that & customers are at resource 1 .

In the literature a great number of relations between these steady stale characteristics
have been formulated and proved. Before the MV A approach is presented, we summarize
the relations that are relevant for our purposes in the form of a theorem. As we have
noted these relations can be proved by algebraic manipulation of the detailed limiting pro-
babilities. The proofs fall outside the scope of this monograph. For similar results and
details on the method of proof we refer to Reiser and Lavenberg [1980), Krzesinski, Teun-
issen and Kritzinger [1982] and Bruell, Balbo and Afshari [1984]. The last paper contains
an overview of known relations and references are provided for a more detailed study.

Theorem 3.2: The Mean Value Relations

Let M, (K ), n €Q. denote the maximum number of customers that may be present at
resource n, if the population vector is K, and let the buffer occupation process
{X (z ) 20} satisfy the ergodicity and separability conditions.

Then, for a closed chain » € C the characteristics at resource n € Q are related through

(X) M, (K) kw,

Sp K )= e k—1,K~— , 3.3.

.. T e) (33.5)
B,

Anp ()= — L , (33.6)

E fm,rSm,r(K}
me g
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Ly, (K)= A, (K)S, (KD, (33.7)

and for an open chain i € O through
M, (K>

kw, ; _
SuK)= E B b (= 1K), (3.3.8)
A )= Ay, (3.3.9)
Ln,i (K) = An,iSn,i (K) , ) (3.3.10)

The probabilities p, (k ,K ) are, for & =1,...,M,, (K ), related through the difference equa-
tions

Wi i A 1Pk —1,K)

(k. K)= (3.3.11)
n 5T m
Wy, Ay K Ip{k~1,K e, )
rec #n (k}
and a boundary condition
M, (KD .
T pkK)=1, (3.3.12)
k=0
|

The mean value relations form a recursive scheme for the computation of the introduced
performance characteristics. In Section 3.4 this scheme is studied in more detail. The rest
of this section is devoted to an interpretation of the relations.

3.3.3. Little’s formula and an arrival theorem

In this subsection we discuss two importiant tools in the analysis of separable queueing
network models: Little’s formula and an arrival theorem.

Little’s formula, cf. Little [1961}, Stidham [1974], Brumelle [1971} and Heyman and
Sobel [1982], relates for a siationary queueing system the expected number of customers,
the rate of the arrival process and the expected residence time of a customer as

L=)S. ' (3.3.13)

The virtue of Little’s formula is its wide applicability which is mainly due to the flexibil-
ity one has in choosing "the queueing system” to which L=AS is applied.

To illustrate its use in the analysis of queueing network systems we shall discuss a
derivation of the Relations (3.3.7) and (3.3.10) and (3.3.6). 1t is assumed that the buffer
occupation process of Subsection 3.2.3 satisfies the ergodicity conditions. S0, we can use
the stationary version of the buffer occupation process. Note that we do not demand that
the separability conditions are satisfied.
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The first application is rather straightforward. Concentrating on the analysis of the
characteristics of customers of a certain closed chain r € C at a resource n € @, we observe
that the stochastic processes {L, ,(¢ K )z 20} and {S, ,(».K ),y=12,.} are stationary
and that the arrival rate is A, ,(K). A direct application of Little’s formula yields
(3.3.7).

An analogous reasoning may be used to ascertain (3.3.10).

A more sophisticated application yields {3.3.6). We concentrate on the analysis of the
system characteristics of a certain closed chain r € C at a particular resource n. Relation
(3.3.6) can be rewritten as

X fmr
K, = A, (K) T Lnig (K).
m=1

nr

it will be made plausible that this relation is an application of Litle’s formula with the
complete queueing network system as "the gueueing system”.

Assume that the customers of chain r arriving at resource n are observed. First of all,
the arrival rate equals A, (K ). If we can distinguish between the customers of chainr,
the time between two arrivals at resource n can be measured for each individual custo-
mer. With f, ,./f,, being the expected number of visits to resource m between two
visits to resource n the expected time of such a round trip through the system is

N
5 Ims

m=1 fﬂf

Su (KD

The expected number of customers of chain 7 in the system equals K,. Applying Little’s
formula we find the desired result {3.3.13).

Note that these two illustrations of the use of Little’s formula have a much wider appli-
cability than just the separable mixed open and closed queueing network system intro-
duced in Section 3.2. '

The second important property of queueing network systems applies typically to separ-
able queueing networks. For mixed multichain queueing network models that satisfy the
ergodicity and separability conditions, one may formulate a relation between the limiting
distribution of the queueing processes and the limiting distribution of the gqueueing
processes at arrival, jump and departure moments.

The main result is a so-called arrival theorem which, roughly spoken, states that an arbi-
{rary customer observes at an arrival, jump or departure moment the queueing network
system as if in equilibrium with itself removed. For a customer of an open chain this
implies that it observes the system in equilibrium and for a customer of a closed chain
that it observes equilibrium as if one customer of its own chain has been removed from
the system.

For closed multichain gueueing networks an arrival theorem has been stated and proved
in Lavenberg and Reiser [1982], cf. also Kelly [1979:Theorem 3.12]. For open multichain
queueing networks some results have been formulated in Kelly [1979:Theorem 3.7].



-~ 33 -

For an open chain i, { £ O the following stationary probabihties for the queueing network
model with population vector X are introduced foralls € S(K)andn,m€Q

@ (s ,K) stationary probability that a customer of an open chain i arriving
at resource n, sees the system in state s,

nm(s.K) statinary probability that a customer of an open chain i jumping
from resource n to resource m, sees the system in state s,

d; . (s.K) stationary probability that a customer of an open chain i depart-
ing from the system after its service has been completed at
resource 1, sees the system in state s,

For a closed chain r € C the following stationary probabilities are introduced for all
s€S(K—e. Jandn,meC

Gram(5.K) stationary probability that a customer of chain r jumping from
resource n 1o resource m , sees the system in state s.

‘We now may formulate the following theorem,
Theorem 3.3 : The Arrival Theorem

Consider the stationary version of the buffer occupation process {X {z ) 20} of Section
3.2.3 satisfying the ergodicity and separability conditions.
Thenforalli€0,n.m=1,.N,and s€S{K)

4 (5. K)= gupn(s.K)=d, (s K)= (;’((j()) , (3.3.14)
andforallr€C,nm=1,.,N,and s€ S{(K—e,)

Qr,n,m(S,K)z -5% (3.3.15)
Proof :

We proof Relation (3.3.15). The other relations may be proved in a similar way.

We introduce A, , ,,(s) as the rate of the stationary process describing the number of
jumps of customers from a closed chain r from resource n 1o resource m observing the
system at the jump moment in a state s, where 7 €C,n,m=1,..N and s € §(K—e, ).

To describe a change in a state vector s a shift operator T, , (s is introduced, where
n=1..,N, k=12,. and r=1.,...L. The shift operator affects the buffer description of
resource n by the insertion of a customer of chain r at buffer-place k. So, if the n*?
component of s equals

Sy = (ko (1), 0o (R D),

the n™ component of T, 4 ,(s) equals
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[T,, (s )l,, = Gy + 17 (Do (k= 1), 7 (& Dy (R )

Applying the results of Theorem 3.1 we obtain for those s€S (K —e,) for which
T i ($)ES(K)

phn (i + 1), (K Ky + 1DP, 1

Wn,r

L
Ar,n,m(s)= Zp(Tn,k,r(S)rK)
k=1

- En 1 17(S) fn,rwn,r /‘n(kn+1)¢n(k vkn+l)Pr,n,m
=1 G(K) wpy(k,+1) Wy,

= Lnrlian f’;{";’m a(s)

and consequently, referring to Relation (3.2.9),

A am(s)
Ar,n,m(u)
u€S(K—e,)
fn,rPr,n,m 77(S)
fn,rPn,r,m Z 77(21)

u€S(K~—e,)

9r am(s)

= p(s,K—e,)

In the next subsections we shall see some applications of the arrival theorem.

3.3.4. The MVA approach: queue length dependent service rates

3.3.4.1. Introduction

In this subsection we sketch the MV A approach for the queueing network model satisfy-
ing the conditions for ergodicity and separability. The approach provides an intuitive
derivation for the mean value relations stated in Theorem 3.2.

To illustrate the line of reasoning we start with two special cases. In Subsections 3.3.4.2
and 3.3.4.3 the approach is highlighted for an open and a closed queueing network with
one customer chain, respectively. Here, the reasonings can be seen as informal proofs.

In Subsection 3.3.4.3 we discuss the general case with multiple open and closed customer
chains. Here, the reasoning provides an intuitive understanding only.

3.3.4.2. An open single chain queueing network model

Consider a queueing network system with one open customer chain. There are no closed
customer chains. So both the chain number and the argument X may be dropped.
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The model is described by the following parameters
N number of resources,
#,{k)  service rate of resource n if k¥ customers a2 present, and
W, mean service demand at resource 7.

The steady state system characteristics are

S expected residence time at resource n,
A, throughput of customers at resourcen,
L, expected number of customers at resource n, and

p. (k) probability that & customers are at resource n.

The MVA approach starts with an intuitive derivation of relations for the probabilities
Pn (K ).
It is common practice to the derive the limiting distribution of a one-dimensional Marko-
vian gqueueing system or random walk by matching the flows between two adjacent states
in the one-dimensional state space.
This reasoning shall be applied to a particular resource n, n=1,..,N. Due 1o the arrival
theorem an arriving customer sees k —1 customers present with probability p, (kK —1),
where k= 1,2,..... The throughput at resource n equals A,. So, the average number of
transitions from state k —1 to state k¥ per unit time equals A, p, (k —1).
On the other hand the resource operates at a rale u, (k) if & customers are present and
s0, the average number of iransitions from sfate X to state £—1 per unit time equals
w, Y, (% )p, (k). Matching these two flows yields, for k =1,2,...,

(k)

w,

Prlk )= Ayp, (k—1). (3.3.16)

A boundary condition follows from the fact that the marginal queue length distribution
must be proper, i.e.

$ pk)=1. (3.3.17)
k=0

The Relations (3.3.16) and (3.3.17) are special cases of {3.3.11) and (3.3.12) respectively.
The solution is, for k =0,1.,..., given by
Wwa Ap

<
wmo ' E LTS

-1

A v
Yr 2 , {3.3.18)

Xk
Pnfk ) = H

(=1

where the empty product is defined to be one.

Note that this marginal queue length distribution forms a proper istribution function if

1+ 3 I Wb o (3.3.19)
k=121 #all) ’ ‘ -




-3 -

This condition agrees with the ergodicity condition (3.2.6). Note that the marginal queue
length distribution equals the stationary distribution of a one-dimensional Markovian
queue with a Poisson arrival process with rate A, , queue length dependent service rates
i, (k) and exponential service demands with mean w, .

Rewriting (3.3.16) as
sl P (k)= w, A, p, (k—1), (3.3.20)

we may give another interpretation that shall be of importance in the analysis of the gen-
eral queueing network model. The left hand side of this relation denotes the rate at
which work is done with £ customers being present, whereas the right hand side denotes
the rate at which work is arriving with k —1 customers being present. Apparently, these
rates are equal for this separable queueing network model. We shall refer to these rates
as "work flow rates”.

The next step in the MVA approach is the derivation of a relation for the expected
residence time at resource n. Multiplying both sides of {3.3.16) by £ and summing over
k=1,2,.. yields

):kpn(k)—/\ ;; )p,,(k 1. (3.3.21)

Observe that the left hand side of (3.3.21) equals the expected number of customers at
resource n . Application of Little’s formula yields

% kv
S =L he

L An(k)pn(k 1. (3.3.22)

This relation corresponds with (3.3.8].

For the expected number of customers at resource n we have by virtue of Little’s formula

L, = AyS, . (3.3.23)

This completes the MV A approach. A computational algorithm for the evaluation of the
characteristics is relatively simple to design as the resources of the queuveing network
model may be analysed in isolation. The only coupling is by equation (3.2.3) which
relates the throughputs at the different resources. If it is possible to simplify the evalua-
tion of (3.3.18), the amount of work to be done will be very small. In other cases the
algorithm involves a summation over an infinite number of terms.

3.3.4.3. A closed single chain gueueing network

In this subsection we present the MVA approach for a closed single chain gueueing net-
work model with queue length dependent service rate functions. So, we may omit the
chain number in the formulations.

The system is described by the following parameters
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N number of resources,

pa (k) service rate of resource n if k customers are present,
K number of customers in the system,

Wy mean service demand of a customer at resource n, and
In visiting ratio at resource n.

The steady state characteristics are

S, (K) expected residence time at resource n,

AK) throughput at resource n,

L,(K) expected number of customers at resource n, and

Pa kKD marginal probability that k customers are at resource n .

The MV A approach staris with a derivation of the marginal queue length distributions at
a particular resource n, n=1,..,N.

Due to the arrival theorem an arriving customer will see k —1 customers present with
probability p,(k —1,K—1). The throughput is A, (K ). So, the transitions rate from
state ¥ —1 to state & equals A, (K )p,(k—~1,K~1). On the other hand, the resource
operates at a rate u, (k ) with k customers being present and so, the transition rate from
state & to state k£ — 1 equals w,” u, (k )p, (k ,K). Matching these two transition rates we
obtain fork=1,...K

#n(k)pn(k,K)'-*An('&’)l}n{k‘]'ﬁ"l)‘ " (3.3.24)

n
The boundary condition is
K
T pak K)=1. (3.3.25)
k=0

These relations imply a simple recursion, once the throughput A, (K ) is known. Note
that here an interpretation in terms of work flow rates can be given as well, ¢f. Relation
(3.3.20).

The next step in the MVA approach is the derivation of a relation for the expected
residence times at resource n. Multiplying both sides of (3.3.24) by k and summing over
k=1,..K yields

$ kpak K)= A (K) 3 X

—p {k—1,K—1). (3.3.26)
k=1 k=1 #n(k) Pr

We recognise the left hand side as the expected number of customers at resource n and
find by application of Little’s formula
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K kw
S (K )= SR k—1LK=-1). 3.3.27
(K ) kéx Iun(k)Pn( ) ( )

For a derivation of a throughput relation at resource n we refer to the discussion of
Little’s formula in 3.3.2, ie.

Ap(K)= # . (3.3.28)

L [nSa(K)
m=1

The last step in the MV A approach is another application of Little’s formula. At resource
n we obtain for the expected number of customers

L (K)= A (KIS (K). (3.3.29)

Starting with L,(0)=0 at all resources n=1,..,N the Relations (3.3.27), (3.3.28),
(3.3.24), (3.3.25) and (3.3.29) form a finite and recursive scheme for the evaluation of
the steady state characteristics of the queueing network model.

3.3.4.4. Mixed multichain queueing network models

In this subsection the mixed open and closed multichain queueing network model that
satisfies the ergodicity and separability conditions is considered. The ideas sketched in the
preceding subsections are used to give an intuitive derivation of the mean value relations.
We first describe the parameters of the system and the characteristics that are to be
evaluated. Then the MV A approach is sketched.

The model is characterised by the following parameters

N number of resources,

wa k) service rate at resource n if k¥ customers are prgsent,

8] set of open chains,

C set of closed chains,

K population vector of closed customer chains,

Tnr visiting ratio of closed chain r customers at resource n,

M. (K) maximum number of customers that may be present at resource n.

The following steady state characteristics play a role in the analysis
S, (K) expected residence time of chain r customers at resource n,

“Ap throughput of an open chain i at resource n,
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A K throughput of chain r customer at resource n,
L,,(K) expected number of chain r customers at resource n,
2.k K) probability that X customers are at resource n .

The first step in the MVA approach concerns the derivation of the Relations (3.3.11) and
(3.3.12) for the marginal queue length distribution at a particular resource n .

‘We cannot use the technique of matching the transition rates between two states £ —1
and k directly. But applying the interpretation in terms of a "work flow rate" between
these two states, we can give an intuition for Relation {3.3.11).

The work flow rate from state K to state k —1 equals forall k =1,...M, (K )

£k )p, (kK.

For the work flow rate from state k¥ —1 to state X we must distinguish between the open
and closed customer chains. The customers of an open chain i €O arrive at a rate A, ;
and have a mean service demand of w, ;. Due to the arrival theorem an arriving customer
sees k —1 customers present with probability p, (kK —1,K ). So, the work flow rate from
state K —1 to k due to work from chain i equals

wn,iAn,ipn (k —I»K ) .

For the work flow rate due to work from a closed chain r € C we thus find with the same
reasoning

Wo A (K, (A —1,K~e, ).

Combining these results we find forall k = 1....,M,, (X')
a & Ik K= T owy 1Ay 0 (K —LK )+ (3.3.30)
i€0
L WnpAn (K p, (k—1,K—e,)
reC
with as boundary condition

M, (K) -
T ok K)=1 (3.3.31)
k=0

Relations (3.3.30) and (3.3.31) correspond with (3.3.11) and (3.3.12) respectively.

The second step in the MVA approach is the derivation of a relation for the expected
residence time of a customer of a particular chain at a specific resource.
Multiplying both sides of {3.3.30) by & and summing over k = 1,...M, (K } yields
M,(K) M (KDY o ,
T kppk K)=F Ay L —Fep,(k—1K)+ (3.3.32)
K=1 ico " w1 #a (k)
M (K)

kw
A (K —T e p (k—1.K—e.).
rEG:C " ,r( } k§1 My (k ) Pn ¢ e )
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The left hand side of {3.3.32) is the expected numbers of customers at resource 2, so

M, (K) :

YT kpk,K)= ¥ L, (K)+ L L,.(K). (3.3.33)
k=1 i€Q rec

Observe that by virue of Little's formula foralli €O

Ly {K)= A, ;S,,(K), (3.3.34)
and forallr€C
L, (K)= A, (K)S, (K). (3.3.35)

Combining the Relations (3.3.32), (3.3.34) and (3.3.35), it seems a reasonable guess that
forallr €C

Mo (k) KWy »
S, AK)= kf_::l m;}n(k—l,lf—*e,) (3.3.36)
and foralli €O
M (k) gy
S, (K)= k};; . (";) Pk —1,K). (3.3.37)

Relations (3.3.36) and (3.3.37) agree with (3.3.5) and (3.3.8) respectively. Note that this
result suggests that there is a work flow balance per cusiomer chain.

The third step in the MV A approach is the derivation of the throughputs of a closed chain
r € C at a particular resource nn. Referring to the discussion in Subsection 3.3.2 we find
K .
57 T K . {3.3.38)
L TmsSmr(K)
m=1

Ap,(K)=

Note that {3.3.38) agrees with (3.3.6).

Thus we have given an intuitive derivation of the relations between the system charac-
teristics as formulated in in Theorem 3.3. In the next section we show thal these rela-
tions may be used to design a recursive algorithm for the evaluation of the characteristics
at arbitrary population vectors.

3.3.5. The MVA approach: fixed service rate functions

In this subsection the MVA approach is discussed for a class of mixed multichain queue-
ing network models with resources falling in of the following three categories:

FCFS A resource with a first-come first served service discipline and a single ser-
vice unit operating atconstant service rate. The service demands of the
distinct customer chains are independent and exponentially distributed
with a common mean.
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Ps A resource with a processor sharing service discipline and a single service
" unit operating a constant service rate. The service demands of the
different customer chains are independent and exponentially distributed.

IS A resource with an infinite server service discipline. The service rate of the
service units is constant. The service demands of the different customer
chains are independent and exponentiaily distributed.

For this class of queueing network models the mean value relations attain an attractive
form allowing for the efficient evaluation of the main system characteristics. It appears
that expected residence times, throughputs and expected numbers of customers can be
evaluated from a relatively simple recursive scheme. The evaluation of the marginal
queue length distributions is not necessary in this case.

The model is characterized by the following parameters
N number of resources,
Ma service rate of a single service unit at resource n,
set of open customer chains;

set of closed customer chains,

K population vector of closed customer chains,
for visiting ratio of customers of a closed chain r at resource n,
W, mean service demand at a FCFS resource n,

War mean service demand of a customer of chain r &t PS or 1S resource .
The relevant steady state characteristics are k

S, (K] expected residence time of a customer of chain 7 at resource 7,

Ans throughput of customers of an open chain i at resource n

A, (K}  throughput of customgrs of a closed chain r at resource r1,

L, ,(K)  expected number of customers of chain 7 at resource n.

The reasoning for the derivation of a relation for the throughputs and expected numbers
of customers by application of Little’s formula may be repeated for this case. We thus
immediately obtain for all chains 7 € C at the resources n=1,....N
Ao ()= —Lrrks (3:3.40)
Z fm,rSm,r(K )
m=1

and
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L, (K)= A,,(K)S,,(K), (3.3.41)
and for all chains / €O at the resources n=1,..N

A AK)= Ay (3.3.42)
and

Lo (K)= A, ;5,,(K). (3.3.43)

It will be shown that the MV A approach leads to an appealing interpretation of relatively
simple expressions for the expected residence times. The reasoning is different for the
different types of service disciplines. So, we shall consider resources with FCFS, PS and IS
service disciplines respectively.

Let n be a resource with a FCFS service discipline.

As a consequence of the arrival theorem, a customer of an open chain i, { € O, sees on the
average L, ;(K ) customers of chain I,/ €0 UC, in front of it. The expected remaining
service demand equals for all these customers w,. So, the expected residence time of a
customer of an open chain i at the FCFS resource n is

S K)=( F Ly K)+1) 2.
1eouC Fop

(3.3.44)

As a consequence of the arrival theorem, a customer of a closed chainr, r €C, sees on the
average L, (K —e.) customers of chain [,I€0UC, in front of it. The expected
residence time of the customer of a closed chain r thusis

S, K)=( L L, (K—e)+1) 22 (3.3.45)
1eoucC Men

These relations follow also from (3.3.8) and (3.3.5) by inserting<fi, (kA J=pn,, k=12,..
and w, ;=w,,foralll €O UC.

Let n be a resource with a PS service discipline.

As a consequence of (3.3.8) and (3.3.5) the expected residence time of a customer of an
open chain i, 1 €0, at resource n equals

w :
SpilK)=( ¥ L, (K)+1)—"L (3.3.46)
1EQUC Hn
and of a customer of a closed chainr,r €,

Sp,K)=( L Ly, (K—e )+ 1) 2L (3.3.47)
teouc #n

These relations have an interesting intuitive explanation. The arrival theorem states that
a customer of an open chain observes the system upon an arrival, jump or departure
moment as if in equilibrium. If the system is in equilibrium during the residence of this
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particular customer, the expected residence time egquals the product of the mean rate at
which the service unit works for this customer and the mean service demand, i.e.

-} s
1 W i

E Ln,Z(K)+1 Hn
lE0UC

Sq (K )= . (3.3.48)

For a customer of a closed chain r this argument yields
-1

1 Wr
= =, 3.4
SppB)= |y | (3.3.49)
leQuUC

Let n be a resource with a IS service discipline.

Each arriving customer is served immediately and consequently the expected residence
time equals for all customers of an open or closed chain,I€0OUC

Wn 1

SnJ(K)=

(3.3.50)

n

In the next Section we will see that the above introduced relations form the basis of an
efficient algorithm for evaluating the main system characteristics.

3.4. The MVA algorithm

3.4.1. Introduction

Relations (3.3.5) through (3.3.12) form the basis of a recursive algorithm for the compu-
tation of the introduced system characteristics. This algorithm is called the Mean Value
Analysis (MVA) algorithm. This Section is concerned with the formulation and imple-
mentation of the algorithm and is organized as follows.

In Subsection 3.4.2 the MVA algorithm is discussed for general mixed multichain queuve-
ing network models. It appears that complicated expressions have to be evaluated and
that extira conditions have to be imposed to allow for an efficient computational pro-
cedure.

In Subsection 3.4.3 we discuss the MV A algorithm for the network model treated in Sub-
section 3.3.5. For this special case the MV A algorithm takes a simple.

In Subsection 3.4.4 we discuss the implementation of the recursion and make some
remarks with respect 1o the computational complexity of the resulting algorithm.

3.4.2. The MVA algorithm: queue length dependent service rates

The mean value relations form the basis of a recursive algorithm for the evaluation of
system characteristics in mixed multichain queueing network models. The Relations
(3.3.5) and (3.3.11) indicate that the algorithm is recursive in the population vector. To
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compute the characteristics at population vector X we need the characteristics at the
population vectors K —e, forall r€C.

So, the recursion runs through all vectors in the range of (0,....0) through (X, ...,K)
in order to compute the characteristics at the population vector K=(X,,...,Kz ). Note
that

R
Ik, +1)
=1

recursion steps have to be performed. This remark gives a first indication for the com-
plexity of the MV A algorithm.

‘We shall describe a recursion step in the MVA algorithm and concentrate at the evalua-
tion of the characteristics ai the population vector K = (K4, ...,Kp ). Afterwards the
initialization of the recursion at K ={0,....0) is discussed.

A recursion step consists of three phases: 1. an evaluation of characteristics for closed
chains, 2. an evaluation of marginal gueuvelength distributions, and 3. an evaluation of
characteristics for open chains.

Phase 1 : Closed chain characteristics

In the first phase the three characteristics of closed chains are computed by means of the
Relations (3.3.5), (3.3.6) and (3.3.7).

Step 1 : Expected residence times

Relation (3.3.5) yields for chain r,r €C, at resourcen, n €Q,

M (KD kWn
S, (K= —= p(k~1.K—~e. ). (3.4.1)
" k§1 Hn (k } Pa "
This evaluation may involve a summation of an infinite series. For special cases the
evaluation reduces 1o a finite summation. As examples we mention the FCF5, PS and IS
service disciplines as introduced in Subsection (3.3.5). In the next subsection we discuss
the scheme for these special cases in more detail.

Step 2 : Throughputs
From Relation {3.3.6) it follows for r € and n €Q
X
Ap (K)= — SorKe . (3.4.2)
gl fm me s (K)

Step 3 : Expected numbers of customers

From Relation (3.3.7) it follows forr €C and n €Q
L, (K)= A, (KIS, (K). (3.4.3)
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Phase 2 : Marginal gueue length distributions

The second phase in the algorithm consists of the computation of the marginal queue
length distributions by means of Relations (3.3.11) and (3.3.12).

The following auxiliary quantities are introduced for all x =1,..M, (X )

i

Wrz,iAn,z
a, (k )— ,;E:o m s (3.4.4)
A (k)= T] a,(), (3.4.5)
=1
_ Wy Ay (K) e
bk K)= T TELPRLDD b k- Lk -e). (3.4.6)

Furthermore, it is convenient to let a, (0)=A4, (0)= 1. Observe that the values a, (k ) are
independent of the population vector and may be evaluated in advance, whereas the
values b, (k ,K') cannot be computed before phase 1 of the recursion step has been com-
pleted.

The probabilities p, (k ,K ) are the solution of, cf. (3.3.11) and (3.3.12),

Polk K)=a,(k)p,(k—1LK)+ b,k .K), (3.4.7)
fork=1,..M,(K }, and
M, (KD
L k. K)=1. (3.4.8)
k=0

The solution of these equations is

kop
Pk K)= A, (k) |p,(0K)+ T A(l(ﬁ) , (3.4.9)
=1
where
M,(K) &
-5 A E éf(f))
PO ) = "Mn(x) =1 . (3.4.10)
¥ A k)
k=0

It is noted that the ergodicity condition (3.2.7) guarantees that the solution is a proper
distribution. This is not a priori obvious from (3.4.10).

Furthermore, the evaluation of the marginal queue length distributions, involves a sum-
mation of an infinite series, unless the service rate function takes a special form.

Phase 3 : Characteristics of the open chains

The characteristics of the open chains may be evaluated in a straightforward way from
(3.3.8),(3.3.9) and (3.3.10), i.e. for all open chains i € 0 we have at resource n €Q
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AK) = LE k—1,K 3.4.11
Sna(K) kz=:l ﬂn(k)pn( ) ( )
Ap(K)= Ay, (3.4.12)
Ly AK}= A, S8, (K) (3.4.13)

This completes the description of a recursion step in the MV A algorithm.
Initialization

The MVA algorithm starts with the computation of the characteristics of the open chains
at population vector 0=(0,...,0), i.e. there are no closed chain customers in the system.

If a resource nn is not visisted by customers of an open chain, i.e. A, ;=0, forallicO,
we initialize p, {0.0)= 1.

So, consider a resource that is visited by customers of open chains. The difference equa-
tion (3.4.9) is homogeneous and the solution is

Pa(k 0) = A,(k)p,(0,0), (3.4.14)
where
(00 = —1 (3.4.15)
T A (k)
k=1

Note that the marginal gueue length distribution is proper, if the ergodicity condition
{(3.2.6) is satished. One may prove, cf. Reiser and Kobayashi [1975], that this condition
guarantees the gqueueing network model to be ergodic for any population vector X. So,
the mixed multichain queueing network model is ergodic, if an associated strictly open
network is ergodic.

Once the marginal queue length distributions have been evaluated, one may evaluate the
characteristics for the open chain customers by means of Relations (3.4.11) till (3.4.13).

The algorithm sketched above is the basis for an implementation of the Mean Value
Analysis. However, it must be noted that for general service rate functions it is hard to
design an efficient algorithm. Only for special functions the algorithm obtains a tractable
form.

3.4.3. The MV A algorithm: fixed service rate functions

For the queueing network model introduced in Subsection 3.3.5 the MVA algorithm takes
a simple form. The model is a frequently used tool in the analysis of a wide variety of
queueing network systems. So, it is worthwhile to discuss its MVA algorithm in more
detail.

It will be shown that the algorithm for the mixed multichain model reduces to an
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ad justed model for a closed multichain queueing network model.

The MVA algorithm is a recursive scheme that runs through all vectors in the range of
(0...0) 10 (K,....,Kz) A single recursion step, consists of two phases: 1, the evalua-
tion of characteristics of closed chains, and 2. the evaluation of characteristics of open
chains. The evaluation of the marginal queue length distribution is not needed.

First, we sketch the relations to be evaluated in a recursion step.
Phase 1 : Characteristics of the closed chains

The expected residence times, throughputs and expected numbers of customers of an
closed chain r € C at the different resources may be evaluated from the Relations (3.3.45),
(3.3.50), (3.3.40) and (3.3.41).

For the expected residence times we have at a resource n with-a FCFS or PS service discip-
line

So,(B)=( § Ly (K—e )+ Dw,, (3.4.16)
1EQUC

and at a resource n with an IS service discipline

Sa K)= Wy, . (3.4.17)

Furthermore the throughputs are related by

A (K)= — Tnrk: (3.4.18)

Z FmrSn, (KD
m=1 .

and the expected numbers of customers by
L (K)= A, (K)S, (K). (3.4.19)

Phase 2 : Characteristics of the open chains

The expected residence times, throughputs and expected numbers of customers of an open
chain 7 € 0 may be evaluated from the Relations (3.3.44), (3.3.50), (3.3.42) and (3.3.43).
For the expected residence times we have at a resource n with a FCFS or PS service discip-
line

S (K)=( T LK)+ w,, (3.4.20)
1eQuUC e

and at a resource n with an IS service discipline

Sy (K)=w,, . (33.21)

The throughputs and expected numbers of customers are related by
A (K)= Ay, (3.4.22)

and
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Ln,i (K} == An,isn i (K) . (3-4.23)

The Relations (3.4.20) through (3.4.23) form a linear system of equations for the charac-
teristics of the open chain customers. This system has a simple solution. From Relations
{3.4.20) and {3.4.23) it follows that

Sp K = AT Ly (K)Y+ T Ay ;S ;(K)+ Dhwy . (3.4.24)
3 j€0
This relation can be rewritten as
Sp (K -8, (K
SailKD) Ll (K)+ ZA,,JWRJL)-*}-I. (3.4.25)
Wn i 1€C j€0 Wn i
The right hand side does not depend on the index i and so
T L., (K)+1
S, (K)=218 — _w . 3.4.26
n,z( ) l- zAn,jwn'j wn,z ( )
j€0

Using Relation (3.4.26) instead of (3.4.20), we have a strictly recursive scheme for the
evaluation of system characteristics for closed and open chains.

Initialization is by
S (0= A, (@)=L, ,(0)=0 (3.4.27)
forallr €C andn=1,...N.

The second part of this subsection is devoted 10 a further simplification of the algorithm,
Relation (3.4.26) suggests that only the evaluation of the characteristics of the closed cus-
tomer chains is of importance. From (3.4.26) and (3.4.23) we obtain for all open chains
i €O at resources n with a FCFS or PS service discipline

T LK)+

ieC

L= 2 An Wy,
F€0

Ln K] (K) = /\n,,-w,, g (3.4.28)

Inserting this relation in (3.4.16), we obtain after some algebra

W
S, (K)=( (K—e )+ 1) m—mgmr— (3.4.29)
' zgcl‘n ! 1- ,};OAn W
i

The characteristics of the closed customer chains thus can be evaluated from a closed mul-
lichain gueueing network model with adjusted expected service demands. The characteris-
tics of the open chains may be evaluated afterwards, cf. (3.4.26)

3.4.4. An implementation of the MVA algorithm

In this subsection we review the implementation of the recursion that forms the basis of
the MVA algorithm. We discuss a straightforward implementation of the recursion
which is based on a lexicographic enumeration of the set of population vectors. For a
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more detailed analysis of implementations of the MVA algorithm we refer to Zahorjan
and Wong [1981] and Balbo and Bruell [1980). The overlay algorithm proposed in Zahor-
jan and Wong [1981] is, in priniple, more efficient than our implementation, but up till
now an efficient implementation of the algorithm has not been found.

We shall describe the implementation for a given population vector K =(K,,...,Kz ).

The multi-dimensional recursion runs through all the integer valued vectors (ky,...,kz)
in the range of (0,...,0) till (X, ..., Kz ). We denote the set of vectors in this range by

T={k=(ky, ... kg) |k, €40,k }, r=1..R}. (3.4.30)

The crucial point in implementing the recursion is the design of a so-called feasible
enumeration of the set 7', An enumeration is feasible if & is preceded in the enumeration
by k—e, forallr=1,...R.

We propose a transformation of the multi-dimensional recursion into a one-dimensional
enumeration. This is done by a lexicographic ordering of the vectors in theset 7",

iet the integers X, , r=1,...R+1, be defined as
r=1 .
X, =T+ (3.4.31)
=1

Note that the number of elements in the set 7 equals Xp 4.

Next the map ¢ : 77— {0,....Xp;— 1} is, for all k € T, defined by

ok)= ¥ K X, (3.4.32)

r=1

wherek €T,

The map ¢ will be used to construct a feasible enumeration of the set 7. The enurmera-
tion is based on a linear enumeration of the set {0,....Xz +;— 1}. The following two lem-
mas provide the basis of the enumeration. The first lemma shows that the map ¢ is one-
10 one and, as an aside, provides the inverse map ¢! of é. The second lemma shows the
enumeration to be feasible.

Lemma 3.1
The map ¢ : T —10,...,.Xp . 1— 1} is one-to-one.

Proof
For m €1{0,...,Xp 41— 1} define the vector k (m )}=(k(m),...,kz{m)) by the following
recursion inr=R ,R—1,..1

R
m- ¥ kim)X;

ke (m)= | "’;} |, (3.4.33)
r

where | x| denotes the largest integer smaller or equal to x and where the empty sum is
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defined to be zero.

1t is readily verified that k (m J€T and that ¢(k (m ))=m.

That the map ¢ is one-to-one follows from the observation that the number of elements
in the set T equals the number of elements in the set {0,.... Xz ., — 1}

a
Lemma 3.2
For all k €T with &k, > 0 for some r ihe following equation holds
ok)= plk—e )+ X, . : (3.4.34)
Proof
Sk)= 3 kX, — X, + X, = dlk—e, )+ X, . ' ]

=1

The enumeration algorithm has the following structure:

Algorithm.
for m=0 step 1 until Xz, ,~1do
begin

k=g i m);

evaluate the characteristics at the population vector k
end.

1t is easily verified that the number of recursion steps in this enumeration equals

R
1T (&, +1).

r=1

This implies that the computational complexity of the corresponding MVA algorithm
grows exponentially with the number of closed customer chains. It is obvious that the
number of recursion steps will form a handicap in the evaluation of systems with a larger
number of closed customer chains.

Observe, that the complexity of a recursion step is highly dependent on the structure of
the queuveing network model and that it is possible that infinite series have to be summed,
cf. Relations (3.4.1), (3.4.9), (3.4.10) and (3.4.11).

With respect 1o the storage requirements we remark that for a simple implementation of
the algorithm in each recursion step information has to be stored and kept in memory.
This implies that the reguired storage facilities grow exponentially in the number of
closed customer chains as well. The overlay algorithm, cf. Zahorjan and Wong {1981}, is
more efficient than the standard MVA algorithms in that the storage reguirements are less.

Id
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4. CLOSED MULTICHAIN QUEUEING NETWORK MODELS

4.1 Introduction

This chapter is concerned with the approximate evaluation of performance measures in
closed multichain queueing network models with many closed customer chains. The exact
evaluation may be performed by the MV A-algorithm, but computational complexity and
the storage requirements restrict the use of the algorithm 1o models with relatively few
closed customer chains. The complexity is largely caused by the fact that the number of
recursion steps grows exponentially with the number of closed customer chains.

In this chapter we develop approximation methods for queveing network models with
many closed customer chains. The analysis is restricted to models with first-come first-
served, processor sharing and infinite server service disciplines. It is assumed that the ser-
vice rates are queue length independent and normalized 10 unity. The main purpose is to
show that the arguments sketched in Chapter 2 lead to the development of efficient and
accurate approximation methods in a natural way.

The approximation methods are based on the mean value analysis approach and properties
of the production and demand structure. The methods may be classified in three
approaches.

The first approach is to avoid the recursion which causes the computational problems, and
to concentrate on the evaluation of the performance measures at the desired. population
vector. Typical representatives are the widely appraised Schweitzer method, introduced in
Schweitzer [1979], and its refinements suggested in Chandy and Neuse [1982].

In a wider perspective the approach may be viewed as a top-down analysis. Whereas the
MVA-algorithm starts at the bottom vector (0,..,0) and ends at the desired population
vector {K 1, . .., Kp ), one might consider the reverse way. In Eager and Sevcik [1983] and
[1984] this idea has been worked out in a so-called Performance Bound Hierarchy method.
‘We introduce a related concept : the depth improvement.

The second approach concerns a decomposition of the demand structure. Instead of the
complicated network with many closed customer chains a simpler network model is
evaluated for each customer chain. The mutual influence of the chains may be approxi-
mated for instance by an adjustment of service demands or service rates, cf. for instance
Reiser [1979:1] and Reiser and Lavenberg [1980] or an adjustment of the mean value
analysis procedure, cf. Van Doremalen [1984:1].

We discuss approximation methods along these lines. Apart from a depth improvement
one might consider a partial decomposition to improve on the approximations. The idea is
to split the set of closed customer chains in disjoint subsets that are treated, separately, as
smaller closed multichain queveing network models.

The third approach involves an aggregation of the demand structure, We present a recur-
sive aggregation-disaggregation method based on a complete aggregation of all closed
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customer chains into one chain. A natural refinement is formed by a partial aggregation.

The chapter is organized as follows. In Section 4.2 we recapitulate the MV A-algorithm
and the necessary notations. The Sections 4.3, 4.4 and 4.5 cover the three approaches. In
Section 4.6 eiﬁciency and accuracy of the methods and their refinements are discussed by
some typical models sternming from the analysis of communication networks and com-~
puter systems.

4.2. Model and mean value analysis algorithm

For lucidity of presentation a multichain queueing network model is introduced and the
corresponding mean value analysis algorithm is recapitulaied.

The service discipline at the & resources is first-come first-served or processor sharing.
The service rate of the single service unit at resource n = 1,...N is fixed and normalized to
unity.

The K, customers of the closed customer chain r, r==1,....,R, proceed through the network
in accordance with a Markov routing given by an irreducible stochastic matrix P,.. The
visiting ratios f, . of customers of chain r at resource n are the unique stationary proba-
bilities of the discrete Markov chains associated with these routing matrices. The service
demands at the resources are independent random variables with a mean w, , for custo-
mers of chain r at resource n. At each first-come first-served resource the demands must
be exponentially distributed with the same mean for all customers.

The following steady state characteristics play a role:
‘ S, (K) expected residence time of a customer of chain r at resourcen,
A, -(K)  throughput of customers of chain r at resource 2, and
L, .(K)  expected number of customers of chain r at resource n,
where K emphasizes the dependence on the population vector.

In Chapter 3 the mean value analysis algorithm has been described for the computation of
these characteristics, It constitutes the following three relations:

R

S, (K)=AFT L, (K~e )+ Dw,,, 4.2.1)
i=1

Ap (K)= _TLL&,“ (4.2.2)
L fnsSm (K)
mo==]

Lo (K)= A, ,(K)S, (K). (4.2.3)

The recursion is initialized by L, .(0)=0, for all n=1..N andr=1,. R, and runs
through all vectors in the range of (0,...,0) through (K, ....Kp). It is easily verified
that
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R
DK, +1
r=1

recursion steps have to be executed. Only for small values of R ,K,,..., Ky an exact
evaluation of the algorithm will be possible. The design of approximation methods is the
way out that will be analysed in the sequel of this chapter.

4.3. Removal of the recursion

4.3.1. Introduction

This section deals with a first approach for the approximation of behavioural characteris-
tics in closed multichain queueing network models. The computational complexity of the
MV A-algorithm is largely caused by ihe recursion. A reduction of the number of recur-
sion steps seems a good starting point for the development of approximation methods.

In its most extreme form this will lead to the formulation of a set of approximating mean
value relations at the desired population vector. We introduce basic methods which have
their roots in the technigues presented in Schweitzer [1979] and Chow [1983].

In a more general framework the approach can be formulated as a top-down analysis.
‘Whereas the exact MV A-algorithm runs through all the population vectors in the range of
(0,...0) till (Ky.....Ag), in the approximation methods only the last steps in this
recursion are performed. This idea will be worked out in detail. The emphasis is on the
formulation of a so-called first order depth improvement. )
Most of the approximation methods in this line may be formulated as successive approxi-
mation methods for the determination of a fixed point of a non-linear operator. Tech-
niques 1o ascertain the existence and unigueness of the solutions and the convergence of
the iteration schemes are discussed. One of the new results is an alternative proof of the
convergence of the Schweitzer method in case the model comprises only one closed custo-
mer chain.

4.3.2. The basic method

The recursion appears in the expected residence time relation only. A formal way to
remove the recursion from the scheme is by the introduction of a set of auxiliary quanti-
ties, ¢f. also Reiser and Lavenberg [1980], Chandy and Neuse [1982] and Chow [19831
Defining ¢, ; , (K ) by
o = Ln_g(K}—Ln,i(K-e,}
n A, Lﬂ P ( K ) 4

we may rewrite Relation (4.2.1) as

(4.3.1)

R
Su KDY= | T N—ey, (KN, (K)+ 1w, , . (4.3.2)
i=1
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So, the quantities ¢, ; .(K ) are the relative difference between the expected number of
customers of chain i at resource n for the population vectors K and K —e,. The last
step in the recursive MV A-algorithm has been rewritten in terms of the population vector
K only.

However, for an exact evaluation of the performance measures at vector K the quantities
€, ;- (K) have 1o be computed by means of the complete original MVA-algorithm. To
bypass this complex computation it is suggested to use approximations for these quanti-
ties. Before doing so, the last step in the MVA-algorithm is rewritten leaving out the
argument K.

The Relations {4.2.1), (4.2.2) and (4.2.3) become

R
Sp,= (% Umey i s + Uwyp s (4.3.3)
i ]
r‘Kr
Ay, = N—f”———- (4.3.4)
;lfm,rsm,r
Lyy = Ay Sny- (4.3.5)

A first guess for €, ; , might be
€ ir & 0 , (43-6)

for all n=1,..N and i,r=1..R. The rational is that for larger population sizes the
expecied numbers of customers at the distinct resources will not change much with the
removal or addition of a customer. In Chow [1983] this approximation has been worked
out in detail.

An interpretation in the line of the mean value approach gives some insight in where the
method may fail. The idea is based on the assumption that a customer at a jamp moment
observes the system as if in equilibrium. For smaller population sizes this argument will
yield bad approximations.

It is rather straightforward to amend for one obvious mistake that is introduced by the
approximation idea. The arrival theorem states that a jumping customer observes the
system as if in equilibriuvm with one customer of its own chain removed. If it is assumed
that the distribution of the customers over the resources does not change with the addi-

tion or removal of one customer, the following approximation, introduced in Schweitzer
{1979], makes sense

€ up = %—r—) : (4.3.7)
r

where 8(7 7 ) is the Kronecker 8.

The behavioural characteristics may thus be approximated by a solution of a set of non-
linear equations, namely
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R L
Spr =Y Ly — 25+ Dw,, , {4.3.8)
i=1 Kr
K,
Ay, = Nf LA S— {4.3.9)
Z fm.rsm,r
me=1
Loy = Ay pS0r (4.3.10)

A standard way to solve this system of equations is by successive approximation. With
initial values for L, , the scheme defined by (4.3.8), (4.3.9) and (4.3.10) is repeatedly
evaluated until convergence has been established. Though it is, in principle, possible that
the method diverges, the method converges in all experimental situations. This remark-
able result has been backed up with relatively few theoretical results. In Subsection 4.3.4
we return to this subject.

4.3.3. Depth improvement

The Schweitzer method has attracted a lot of attention as it is highly efficient and fairly
accurate. However, if a higher accuracy is required and one is willing to spend extra com-
putation time and storage facilities, a straightforward depth improvement may be con-
sidered.

The basic idea is to evaluate approximations for the behavioural characteristics at the
population vectors K —e,.,r=1,..,R, and then to evaluate the last step in the recursive
MVA-algorithm exactly. We shall refer to this improvement as a first order depth
improvement. It is a special case of a range of improvements which we have called depth
improvements.

The MVA-algorithm runs through all vectors in the range of (0,..,0) through
(Ky,....Kg) With V we denote the set of all R-dimensional integer valued vectors in
this range, i.e.

V= {k=0ky ... kp) 1 & €{0,..K.}, r=1..R }. (4.3.11)

The MV A-algorithm is recursive in the number of customers of the distinct chains. So, it
makes sense to introduce the number T as

R
=YK, : (4.3.12)
r=1
and the sets V(k ), £ =0,1,....T, as
R
Vik)={kev | Tk=k}. (4.3.13)
r=1
Observe that the sets V (k ) are disjoint and their union is the set V. These sets form the
basis for an efficient implementation of the MVA-algorithm as well, c¢f. Zahorjan and
Wong [1981]. To evaluate the characteristics at the vectors in the set V(X)) the
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behavioural characteristics at the population vectors in the set V {k —1) are needed only.

We now introduce the & “ -order depth improvement. First, approximations for the
behavioural characteristics at the population vectors in the set V(I'—k ) are evaluated.
Afterwards, an evaluation of the original MV A-algorithm is performed for the population
vectors in the sets V(T —& +1) through V(7' ),

The depth improvement is a generally applicable method that may be used in virtually
all methods discussed in this chapter, and it yields very satisfactory results. A more ela-
borated first order depth improvement of the Schweitzer method has been introduced in
Chandy and Neuse [1982].

Another interesting use of higher order depth improvements is the Performance Bound
Hierarchy method introduced in Eager and Sevcik [1983] and [1984]. The method gen-
erates upper and lower bounds on certain performance characteristics by an appropriate
choice of initial sets of characteristics.

4.3.4. Notes on convergence, existence and uniqueness

In this subsection some remarks are made with respect to the existence, and uniqueness of
the solution of the non-linear equations (4.3.3) through (4.3.5) and the convergence of the
corresponding successive approximation scheme for the special case of a single closed cus-
tomer chain.

In- the recent literature this problem has received some attention, cf. for instance Reiser
and Lavenberg [1980], De Souza e Silva, Muntz and Lavenberg [1983] and Chow [1983].
In Chow [1983] the approximation suggested by (4.3.6) is analysed in detail. It is proved
that the solution of the corresponding set of non-linear equations is unigue.

‘We will analyse the general case. The existence of a fixed point may be proved by an
application of Brouwer’s fixed point theorem. For the uniqueness of the fixed point and
the convergence of the successive approximation method only marginal results are known.
For the gueueing network model with exactly one closed customer chain, we give a new
proof for the convergence of the successive approximations 10 a unigue and positive solu-
tion. The proof is based on the theory of non-negative matrices.

Before we proceed with the discussion, a formulation of Brouwer's fixed point theorem is
introduced.

Theorem 4.1

Let F be a continuous map of a compact and convex subset D € R™ into itself. Then the
equation F (x )= x has at least one solution in D.

Proof : ¢f. Ortega and Rheinboldt [1970:161-162). B

We shall rewrite the set of non-linear system of equations (4.3.3), (4.3.4) and (4.3.5) in
such a way that it takes the form of an eigenvalue-eigenvector problem. It is assumed
throughout the sequel of this subsection that the values of the quantities ¢, ; , satisfy
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0<¢,,,<1, forall indicesn,i,r.
The equations can be rewritten as a set of equations for the values L, , in the following
way. Forn=1,..N and r=1,....R,

R
(E[l - en,i,r]Ln,f + l)frz,rwn,r
i=1

L,,= (4.3.14)

N 4 M
2: (Z[l - em,i,r]Lm,i + l)fm,rwm,r

m=1 i=1

Defining the auxiliary quantities x,, , and ¢, , as

— Ln,r
xn,r - §%
r
and
Tnrw
e nr¥nr
(bnrr - N s
Z FmrWn,
=1

a set of non-linear equations for the quantities x;,, n=1,.,N and r=1..R, is
obtained:

R
(Z Ki[l - érz,t’,r]xn,t + l)d)n,r
e . (4.3.15)
Z (sz[l - em,é,r]xm,i + 1)¢m,r

m=] i=1

Note that x, , may be interpreted as an approximation for the long run fraction of the
number of customers of chain » being at resource n.

Let us introduce the row-vector notation
x=(xq,...,xp)

for the quantities x, ,, where, for r= 1,....R,
X, = (Xq9,00..Xn,0

Furthermore, the set D ¢ R™® is defined as
N
D={yeRM 10y, Sland ¥ y,, = 1}. {4.3.16)
me=1

Note that D is a compact and convex subset of R¥®, Now, the map F:RV? .. RVF g
defined by its components F,, , as

R
(.ZKi“ - Gn,i,r].Yn,i + l)d’n,r
F, ()= % : . ©(43a7)
z (ZJK!’“ = Em,i,r]ym.f + l)(bm,r

m=1i=1
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It is easily verified that the map F is continuous on D and maps D into itself. Invoking
the fixed point theorem we conclude that there exists at least one x €D such that
F(x")= x". This guarantees the existence of at least one solution of the original prob-
lem in the feasible region D.

Of course it would have been nice if we would also have been able to prove the unique-
ness of the solution and the convergence of the successive approximation method.
Regrettably, we have not been able to do so for the general case, but we have succeeded in
constructing a new proof for uniqueness and convergence of the successive approximations
in the case of a single closed customer chain.

As, forr=1,..R,
N
T xn,=1,
me=]

we can rewrite {(4.3.15) as,

R N
. 1
_Zl Kl - b, + 78‘.2!75;,5 b
_ i= j=
Xn, = : " (4.3.18)
Z Z Kz’““ em,i,r]"(m,i +§Exj,i ‘bm,r
m=1i=1 j=1
Defining, for all i 7 =1...,R, matrices A*" € R¥*V with elements A}, by
2 1 —
K- e,m-,,3+i oy, . n=m
A,f,’fn = 1 (4.3.19)
~ n¥m
R nr *
we may rewrite (4.3.18), for each r = 1,....R in vector-matrix notation as
R .
T x AN .
x, = ‘;1 , (4.3.20)
T x,A'e

i=1
where e is the column vector of ones with a suitable dimension.
For R=1 we may drop the subscripts / and r and it may be assumed that ¢, is strictly

positive for all n=1,...,N. This leaves us with the problem of finding a positive solution
of,

x = 22 ‘ (4.3.21)
Observe that the matrix A has strictly positive elements. As a consequence of the

Perron-Frobenius theory for non-negative matrices, cf. Seneta [1973] or Berman and Plem-
mons [1979], we may conclude that equation (4.3.21) has a unigue and strictly positive
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solution and that the successive approximation method, defined by Relation (4.3.15), con-
verges geometrically. The asymptotic rate of convergence equals {o;1/10,1, where 0,
and o, are the in absolute value largest and second largest eigenvalue of the matrix A
respectively.

4.4. Decomposition of the demand structure

4.4.1. Introduction

This section deals with a second approach for the approximation of behavioural charac-
teristics in closed multichain queueing network models. The complexity of the mean
value analysis algorithm is largely due to the fact that the demand structure comprises a
large number of closed customer chains. It seems therefore natural to use an aggregation
or decomposition of the demand structure. In the next section we concentrate on aggrega-
tion methods, whereas here the emphasis is on decomposition methods.

The basic idea behind a decomposition of the demand structure is to construct R queueing
network models with a single chain and an adjusted‘ set of paramelers or an adjusted ‘
mean value analysis procedure. Subsection 4.4.2 treats methods which are based on an
adjustment of the parameter sets. In Subsection 4.4.3 an adjustment of the mean value
analysis algorithm is considered.

Again, it is possible to design improvements of the standard methods. The depth
improvement iniroduced in the preceding section is such an improvement. We shall
design a partial decomposition method as well in Subsection 4.4.4,

4.4.2. Adjustment of the parameters

The first line is based on adjusting the parameters of the R parallel single chain queueing
network models. To the customers of a particular chain it appears as if the service units
at the resources are slowed down because of the work that these have to perform for the
customers of the other chains. This may be accounted for by a service demand or service
rate adjustment.

The methods are split in a decomposition and a composition step and proceed as follows.

The decomposition step starts with the analysis of a particular chain r. Assume that an
initial set of adjusted service demands W, , has been given for all n=1,..N. A one-
dimensional MV A-algorithm has to be evaluated.

For k=1,...K, the relations at n==1,...N are given by

Sp k)= Ly k=1 + Dby, (a.4.1)
fn,rk

An, k)= —
Z fm,rsm,r(k)
m=1

, (4.4.2)



Lo (k)= A, (k)S,, (k). k (4.4.3)

The recursion, as usual, is started with L, .{0)}=0 for all n=1,..N. For each chain r
ihis computation yields new approximations.

The composition step comprises the construction of a new set of service demands W, ,.
‘We shall discuss two alternatives.

The first alternative has been suggested in in Reiser [1979:2] and in a somewhat different
context in Reiser [1976] and Sevcik {1978].

In the decomposition step approximations A, ;(X;) have been computed for the
throughput of customers of chain i at resource . So, the fraction of time that the service
unit at resource n is serving customers of chain i is approximated by A, ;(K; w, ;.

A plausible ad justment of the service demand of a customers of chain r is given by
Vo r

= L= T An (K wy 4 '

ity

W

(4.4.4)

The denominator at the right hand side may be interpreted as the fraction of time the ser-
vice unit at resource n is {ree for the handling of customers of chain 7.

Regrettably, the method presented above cannot be recommended as it is possible that the
composition step yields negative or even undefined values w, ,. This may be amended by
a simple trick. Note that the problem arises if at a certain resource 1,

R
ZAn,i(Ke)‘Vn,e 2 1.

i=1
This can be remedied by replacing (4.4.4) with

W e War

e Z An ,f(Ki Jw, K] )
f -

(4.4.5)

R
Z An,i(Ké }Wn W

i=1

The decomposition and composition step suggest an iterative procedure. Using (4.4.5)
instead of {4.4.4) yields in each iteration step feasible approximations for the characteris-
tics. As in the preceding section the existence of a fixed point can be proved applying
Brouwers fixed point theorem. The uniqueness of the solution and convergence of the
iteration scheme have not been established.

The second composition step is based on an idea introduced in Reiser and Lavenberg
{1980]. Though in this paper no intuitive argument is given, the intuitive background of
the method seems to be formed by the interpretation of the processor sharing service dis-
cipline, ¢f. Subsection 3.3.5.
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In the decomposition step approximations L, ; (K, ) have been computed for the expected
number of customers of chain { at resource 1. Now
L, (K.)
I3
Z L, (K;)

i=1]

(4.4.6)

is an approximation for the fraction of the number of customers at resource n being of
chain r. If resource n would have had a processor sharing service discipline this fraction
could have been used as an approximation for the fraction of the total service rate dedi-
cated to customers of chain 7. An plausible adjustment of the service demand of a custo-
mer of chain r at resource n therefore seems to be

-1

L, (&)
£ L., (&)

i=1

e st
Wn Fa

W r - (4.4.7)

Again, we have formulated the basis for an iterative decomposition/composition method.
In each jteration step feasible performance characteristi¢s are constructed. Following the
line in Subsection 4.3.4, it is not difficult fo establish the existence of a solution of the
implicitly defined set of non-linear equations for these performance characteristics.

In Reiser [1979:1] and Reiser and Lavenberg [1980] another line is followed. There the
basic approximation idea is a removal of the recursion as suggested by the Relations
(4.3.1) through (4.3.5). The approximate values for the quantities ¢, ., are obtained
from the above described decomposition steps in the following way.

After an evaluation of the decomposition step a two-stage composition step is performed.
First, the quantities €, ; , are approXimated by,

Ln,z’ (Kz‘ )"Ln i (Ks_ 1)
L, (K;) '

€n Kkd = 0 ity (44.8)

and (4.3.3), (4.3.4) and (4.3.5) are evaluated.
Then, new values for W,, are computed from the new approximations for the
behavioural characteristics. The adjustments are based on the (4.4.4) and (4.4.7).

For the discussion of the numerical results in Section 4.6 we have chosen for the original
two approximation methods. The extra amount of work that has 1o be done by in
evaluating {(4.3.3) through {4.3.5) makes the more complicated methods numerically less
attractive, whereas numerical experiments have shown that the accuracy is in the same
order.
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4.4.3. Adjustment of the mean value analysis procedure

The second approach is based on an adjustment of the MV A-algorithm and, more in par-
ticular, on an adjustment of the expected residence time relation (4.2.1).

Consider a particular chain 7. To obtain approximations for the characteristics of this
particular chain we perform a decomposition step based on the following MV A-algorithm
for a network with one chain.

For k =1,2,..,K, compute at all resources n = 1,...N

Sp (k)= (Ly (k=1 + Ay (k=1) + Dw, , , (4.4.9)
A, k)= V—L (4.4.10)
L fmrSn, k)
m=1
Ly, (k)= Ay (kS (k) (4.4.11)

where the recursion starts with L, .{0)=0 for all n=1,..N. The term A, ,(k~1} in
(4.4.9) represents the expected number of customers of other chains a customer of chain r
sees in front of it on arrival at resource n if the population vector is K — (K, —% Je,.

It is not difficult to verify from {4.2.1), (4.2.2) and (4.2.3) that the adjusted single chain

MVA-algorithm yields exact results, if one puts, forallk=1,... K.,
A, k== T L, (K — (K, =k =1)e,.). (4.4.12)
i

However, the computation of the values A, .(k )} implies the evaluation of the complete
exact MV A-algorithm and that is just what we want to avoid.

We suggest, therefore, 1o use an approximation for the values A, , (k). The idea is to
assume that a customer of chain r sees at a jump moment the situation for the other
chains as if in equilibrium.
For A, ,(k ) we therefore put for k= 1,2,...K,,

Ap k)= ¥ L, (K;)). (4.4.13)

ir

Note that this step defines a composition step in an iterative decomposition/composition
method and that the values A, . (k) do not depend on & any longer. The decomposition

siep is started with an initial set of approximations for A, ,(k ). Afterwards, in a compo-
sition step, the new values of A, ,(k ) are evalvated.

The iterative scheme again defines a successive approximation method for the determina-
tion of a solution of a set of non-linear equations. Using the same arguments as in Sub-
section 4.3.4 one may prove the existence of a solution. We have not been able to proof
the convergence of the method or the uniqueness of the solution, but the method con-
verges in all practical situations.
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Numerical experiments have also shown that the method converges faster than the ones
presented in the preceding subsection, that the iteration shows a less wild behaviour and
that the approximations are less often really bad. In fact, one might say that it is more
robust. A possible explanation is provided by the observation that the approximations
for A, ,(k) satisfy an important conservation property: the sum of all these values
equals the sum of all customers in the other chains, as it should be.

4.4.4. Partial decomposition

In the preceding subsections we have discussed methods based on a complete decomposi-
tion of the demand structure. All chains have been analysed separately in a decomposi-
tion step. A natural relaxation of this method is a partial decomposition which is based
on a partitioning of the set of closed cusiomer chains in subsets.

Though numerical experiments have indicated that the depth improvement as suggested in
Subsection 4.3.4 yields in a more efficient way equally accurate approximations, the par-
tial decomposition method is presented as a natural relaxation step in the design of
approximation methods. However, in the discussion of the numerical results in Section
4.6 the method is not reviewed. )

As before let C = {1,....R } be the set of closed customer chains. A partitioning of C in J
disjoint subsets, Cy,....C; say, provides a basis for a partial decomposition. Assume
that the chains r,_y+1,...,r, are in the set C; for i==1,..J, where ry=0 by definition.
This can always be achieved be a renumbering of the chains. With each subset
C; i=1,..1] we associate a population vector B,

B, = (K, _ i10mKp) . (4.4.18)

The partial decomposition method proceeds as follows.

The decomposition step is initialized by a set of approximations for the expected numbers
of custiomers of the distinct chains at the distinct resources. For r € C; these are denoted
as L, ,{B;). For each subset C; of chains a MVA-algorithm is evaluated running through
all the vectors b; in the range of the null-vector and B;. The scheme is given by the fol-
lowing three mean value relations that are very similar to (4.4.9), (4.4.10) and (4.4.11),

Sapb)= (X L, (b=, )+ L T L,/ (B;)+ 1w,,, {4.4.15)
1E€C; JRilEC,

An (b)) = T—fL’-k"————— (4.4.16)
Z fm.rSm,r(bi)
moe]

L, ,(8,)= A, . (b,S, (b)) . 4.4.17)

The recursion is started with L, ,(0)=0forallr €C, and n=1,..,.N.
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The composition step is simple since new approximations for the expected numbers of
customers have been computed in the decomposition step.

An important measure for the numerical complexity of the method is the required
number of recursion steps per iteration step. It is not difficult to verify that, for a given
partitioning C 4, . .. ,C;, this number equals

}I: & +1).

i=1r€cC,
In applications one will only consider a partial decomposition with a few subsets. For
example, to study the characteristics of a particular chain one might consider a partition-
ing in two subsets, where one set contains this particular chain and the other set the
remaining chains. Furthermore, it should be noted that I =1 corresponds with the exact
MV A-algorithm and I =R with a complete decomposition.

4.5. Aggregation of the demand structure

4.5.1. Introduction

This section concerns a third approach towards the approximation of large and closed
multichain queuveing network models. The method discussed is based on a recursive
aggregation-disaggregation of the demand structure.

In Subsection 4.5.2 a complete aggregation is considered, whereas 4.5.3 deals with an
improvement by a partial aggregation.

The methods are strictly recursive, This implies that existence, uniqueness and conver-
gence problems do not have to be answered. Furthermore, the resulting algorithms are
finite and it is possible to give an a priori estimation for the amount of computation time
and the size of storage facilities needed. These features make the aggregation methods to a
very promising and interesting new tool for the approximate analysis of large scale queuve-
ing network systems. In Chapter 6 we shall see that an application of the methods in the
more complex context of a network system with priority queues yields very good result
as well.

4.5.2. Basic aggregation method

In this subsection we introduce an approximation method based on a recursive
aggregation-disaggregation of the demand structure. Starting point of the analysis is the
MV A-algorithm as given by (4.2.1), (4.2.2) and (4.2.3).

it is suggested to perform a complete aggregation of the set of closed customer chains into
one closed customer chain. As a consequence the adjusted MVA-algorithm for the aggre-
gation method runs through the integers 0,...,T", where

R
T=J K, . o (4.5.1)

re=1
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In each step of this single chain recursion both an aggregation and a disaggregation step are
performed.

The disaggregation uses an adjustment of {4.2.2) and (4.2.3). The basic idea is that the
customers which are lumped together in a single chain in an aggregation step, may be dis-
tributed over the original chains in a disaggregation step. Let o, ,r=1,...,R, be the frac-
tion of the total mumber of customers belonging to chain r, i.e.
K,

7

(4.5.2)

o, =

We now introduce the recursive aggregation-disaggregation method in more detail. The
basis is a recursion in the integer values k = 1,...,T, where each recursion step comprises an
aggregation and a disaggregation siep.

A recursion step starts with an aggregation step. If it is assumed that at a jump moment
a customer observes the system as if in equilibrium with one customer removed, the
expected total number of customers that a customer sees present on arrival at a resource
n may be approximated by

R

Lylk—1)= F L, ,(k—1). (4.5.3)

r=1

The disaggregation step comprises the evaluation of the following three adjusted mean
value relations that are very similar to (4.2.1), (4.2.2) and (4.2.3)

Sp k)= (Lylk=1) + Dw, ., (4.5.4)

A (k)= ——x—fﬂk—— (4.5.5)
}'-_'lfm,Sm,(k)

Ly, (k)= A, (k)5, (k). (4.5.6)

The recursion may be started with L,{0) = 0, foralln=1,..N.

The algorithm is easy to implement and has the considerable advantage over most existing
approximation methods that it is non-iterative. It is evident that the method may be
improved by the simple trick of a depth improvement. In the next subsection we discuss
another obvious improvement: a partial aggregation method.

4.5.3. Partial aggregation

In this subsection we discuss a refinement of the global aggregation method. As in the
partial decomposition method it seems a good idea 1o use a partitioning of the set of
chains. Each of the created subsets forms the basis for an aggregate closed customer chain.

A partitioning of C in 7 subsets, C4....,C; say, is the basis of the partial aggregation
method. The sets C; are disjoint and their union is C. With the subset C; we associate a
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population B;, where

B, = ¥ K,.. (4.5.7)
recC;
This defines a population vector B = (B, ..., B;) for the aggregated model. We intro-

duce for all r € C; the quantity «, as the fraction of the number of customers in the
aggregate C; which is of chainr, ie.

{4.5.8)

The approximating MVA-algorithm again is an adjusted mean value analysis scheme
involving an I-dimensional recursion on the population vector B.

The recursion is defined by the following four relations at an arbitrary population vector
b in the range of (0,....0) through (B, ... ,B;).
Forallr €C, i=1..1 and n=1,...N evaluate

S pb)= (L, (b—e; )+ w, , . (4.5.9)

An,s(b)= --A“—b'f"— (4.5.10)
I TnsSer )

L,,(6)= A, (b)S, (b)), {4.5.11)

L, (b)= ,}i Ay (6L, (B). (4.5.12)

The recursion runs through all the vectors in the range of (0,...,0) through (B,, ..., B;)
and, consequently,

I

Is+n

i=1
recursion steps are 10 be evaluated. The amount of work per recursion step is very similar
to that in the original MV A-algorithm. As a consequence the total amount of work to be
done will be much less than for the original MV A-algorithm if the value of / is not too
large.

We have introduced the partial aggregation method. The problem that remains, is a good
choice of a partitioning. The accuracy of the method will tend to be better for a more
detailed partitioning, bul a refined partitioning will cost more computation time and
larger storage facilities than a simple one. One has to look for a partitioning in the range
of =R corresponding with the exact MV A-algorithm, and / = 1 corresponding with the
global aggregation, which yields the right balance between desired accuracy and acceptable
computational costs.
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The number of recursion steps gives a good indication for the computational complexity
and may be used 1o give an a priori estimation of the efficiency of a given partitioning.
The accuracy of the method for a given partitioning is hard to measure as no bounds are
presently known for the resulting procedures. Here, numerical experiments and an intuj-
tive insight have to be combined in order to be able to come up with some general guide
lines.

It has appeared that for general purposes the first order depth improvement is a reliable
tool for improving the accuracy of the method. For more detailed problems the use of a
partial aggregation may be considered. We present some examples in Section 4.6.

4.6. Numerical examples

4.6.1. Introduction

For none of the proposed approximation methods it is clear on forehand whether it will
yield an acceptable accuracy, as no error-bounds have been derived. To compare the
methods we, therefore, present three examples stemming-from the analysis of information
processing systems.

The first example concerns a model of a communication network with a window-flow
control protocol. The second example concerns a model of a time-sharing system compris-
ing a set of ferminals, a central processor unit and a set of I/0-devices. The third example
concerns a closed central server model comprising multiple central processor units sharing
a set of 1/0-devices.

We have restricted the analysis to separable queueing network models. This allows for a
comparison of the approximate and the exact results and the conclusions are not confused
by the extira complication of a violation of the separability conditions.

Such an extra complication is introduced in Chapter 6 in which we study large scale
closed multichain gueueing network models in which the separability conditions are
violated by the introduction of priority schedules.

4.6.2. A communication network with window flow control

In this subsection we study closed multichain queueing network models of communica-
tion networks with a window flow control protocol. For more details on such systems
and a validation of some of the assumptions we refer to Reiser [1979:2] and Lam and
Wong [1982].

A communication network is designed for the fransportation of messages between so-
called hosts, e.g. main {rame computers, single terminals and large data bases. It is unat-
tractive to couple every pair of hosts by a dedicated channel. So, one shall consider the
installation of a communication network comprising a set of switches and a network of
channels connecting these switches. The switches are highly specialized software driven
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devices which control the traffic of the messages through the network. A message enters
the network at a source-switch and proceeds through the network from switch to switch
via the intermediate channels until it reaches a destination-switch. It is assumed that the
path followed by a message is determined by the source and destination host. A message
is buffered at a swilch until the next channel on its route becomes free.

If every message is allowed for to enter the system, the network will get clogged up and
extreme long response times are the unsatisfactory consequence. On the other hand, if
only a single message is allowed for to be in the system, the capacity of the network will
be ill-used and the response times will therefore be undesirable long. Apparently, it is an
interesting problem 1o design a protocol forming the in-between of these extreme
schedules.

A typical admittance schedule achieving this goal is the window flow control protocol.
The basic idea is that for each source-destination pair a maximum number of messages,
the window, is allowed for 10 be in the network. H this maximum number is reached,
newly arriving messages are buffered in a so-called source buffer until a place in the net-
work becomes available, This protocol is relatively easy to implement as the source
switch receives acknowledgements for all (un)successfully transmitted messages.

We introduce a closed multichain queueing network model of a communication network
with window flow control.

The model comprises N channels which are modelled as resources with a single service
unit operaling at a fixed service rate normalized to unity. It is common practice to model
the delays at the switches as integral parts of the service demands at the channels.
Though the service discipline at the channels, in principle, is first-come first-served, it is
converient 1o assume a processor sharing service discipline, since this allows for non-
exponential service demand distributions with a different mean for the different types of
messages, cf. Reiser [1979:2]. Another way 1o bypass this problem might be the use of
the approximation method suggested in Subsection 2.5.2.

The network provides service 1o a set of hosts which communicate with the network as
medium. A source-destination pair forms a virtval channel. It is assumed that the route
of a message through the communication network is fixed for a given source-destination
pair. Thus a virtual channel is given by a source host, a set of (physical) channels and a
destination host.

We discern R virtual channels. The route of a message of the virtual channel
r,r=1...R, is implicitly defined by a set of visiting ratios [, ,,n=1...N. Here,
fn =1 if the message visits channel r and f, ,=0 otherwise. The service demands of
the messages of virtual channel r at channel n are stochastically independent random
variables with mean w, ,.

For each virtual channel r we introduce the window size K, which indicates the max-
imum number of messages that is allowed for to be in the network.
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We consider two ways to model the arrival processes of messages to the communication
network.

The first way uses the introduction of a source queue, cf. Reiser [1979:2]. The arrival pro-
cess is modelled as a resource with a first-come first-served resource with a single service
unit and a fixed service rate normalized 10 unity. The service demands at the source
queue of virtual channel r are stochastically independent and exponentially distributed
with mean w,. Note that the number of messages in the network for each virtual channel
r may vary from 0 t0 X .

The second way uses the assumption that the system operates under heavy traffic, cf. Lam
and Wong [1982]. This implies that at the moment a message leaves the network at the
destination switch, instantaneously a new message enters the network at the source
switch. Note that in this way the number of messages in the network equals the window
size K, for every virtual channel r at every instant.

In fact, this modelling may be viewed as a special case of the first one by setting the ser-
vice demands at the source queues to 0.

Observe that both ways of modelling lead to separable and closed multichain queueing
network models. The resources are the source queues and the channels. The customer
chains are the virtual channels. Such models tend to be very large as the number of chan-
nels and virtual channels are in the order of several dozens. The exact evaluation of such
models is prohibited by the computational complexity of the MVA algorithm and the use
of approximation methods has to be considered.

In the sequel of this subsection we present two numerical examples that are based on the
two ways of modelling the arrival processes. The discussion concentrates at the evalua- -
tion of three important performance characteristics: the expected response time of a mes-
sage, the throughput of messages, and the utilization of the channels. Apart from an
exact evaluation with an implementation of the MVA algorithm the characteristics have
been pictured for seven approximation methods:

SwW the Schweitzer method described in Subsection 4.3.2,
SW-Di the Schweitzer method with a first order depth improvement,
DSDA the decomposition method with a service demand adjustment suggested

by Relation (4.4.4),

DSRA the decomposition method with a service rate adjustment suggested by
Relation (4.4.7),
DMVA the decomposition method based on a mean value analysis extension

suggested in Subsection 4.4.3,

AG the global aggregation method suggested in Subsection 4.5.2,
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AG-DI the global aggregation method with a first order depth improvement.

The stop criterion for the iterative methods is a five-decimal precision in the maximal
relative difference between two successive approximations of the throughputs. This choice
seems 10 be quite arbitrary, but numerical experiments have shown the results to be only
marginal influenced by the choice of a higher precision.

The model parameters for the two examples are pictured in Tables 4.1 and 4.5. The first
example uses the concept of source queues, whereas the second example studies the system
under heavy trafhc. '

The Tables 4.2, 4.3 and 4.4 concern the first example and give the exact and approximate
results for the expected response times and throughputs of the messages of the virtual
channels and the utilizations of the physical channels. We have pictured the processing
times in seconds in the last row of Table 4.2 (CPT).

The Tables 4.6 and 4.7 picture expected response times, utilizations and processing times
for the second example.

At first glance, the figures show that all methods yield quite good approximations. A first
tentative conclusion which has been strengthened by other experiments, is that the rela-
tively simple Schweitzer method or the global aggregation method have to be recom-
mended. If these methods are used with a first order depth improvement, the results are
within a few percent of the exact values.

The decomposition methods perform equally well. Numerical experiments have shown
that the third method has to be advocated. This iterative mean value analysis extension
converges fast and the convergence does not show a wild behaviour in the first few itera-
tion steps. This in contrast with the first two methods.

A disadvantage of the iterative methods is that it is difficult to find a good stopping cri-
terion and that it is not clear beforehand how many iteration steps are needed.

In this respect, i1 should be remarked that the method of Schweitzer and the decomposi-
tion method with the mean value extension are rather robust. Already after a couple of
iteration steps these methods yield a reasonably acceptable accuracy.

The presentation of the examples in the 4.6.3 and 4.6.4 support these observations.
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virtual window service demand service demand
channel size source queue channels
- 2 3 4 |
1 6 2 2 2 2 0
2 8 2 0 0.5 0.5 0.5
3 4 3 4 4 0 0
4 8 5 1 0 0 1
Table 4.1 : A communication network model (example 1 ).
virtual exact removal recursion decomposition aggregation
channel SwW SW-DI DSDA DSRA DMVA AG AG-DI
1 28.98 29.19 28.62 29.22 28.32 29.80 29.26 27.92
2 §5.73 5.55 5.64 5.60 5.37 591 5.36 5.42
3 47.17 48.74 46.72 48.52 47.06 49.72 49.01 45.23
4 7.66 7.34 745 7.58 6.74 7.51 7.22 7.32
CPT 6.25 0.02 0.06 0.50 0.60 0.15 0.02 0.08
Table 4.2 : Expected response times of the messages (example 1).
virtual l exact removal recursion decomposition aggregation
channel ? SwW SwW-DI DSDA DSRA DMVA AG AG-DI
1 f 188 | .187 190 186 .191 84 | 185 194
2 - .491 471 482 478 453 493 440 473
3 079 | 076 079 077 079 075 076 082
4 | 200 | 195 198 198 .188 200 | .180  .185
Table 4.3 : Throughput of the virtual channels {(example 1J.
physical exact removal recursion decomposition , aggregation
channel sSwW SW-DI DSDA DSRA DMVA AG AG-DI
1 890 874 .896 876 884 867 .853 910
2 936 915 939 917 923 913 893 952
3 621 610 621 611 608 613 .590 625
4 445 430 439 437 414 446 400 431

Table 4.4 : Utilizations of the physical channels (example 1).
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virtual window service demand
channel size channels
1 2 3 4 5 6 7 8 9 10 11 12
1 2 1 0 0 0 0 1 1 0 0 1 0 0
2 2 i 1 0 g 1 o 0 0 0 0 1 0
3 2 0 1 1 0 0 1 1 1 1 0 0 0
4 2 0 0 1 0 1 0 0 0 1 1 1 0
5 2 1 0 i 1 1 0 0 0 0 0 0 0
6 2 0 o 0 1 0 0 0 1 1 1 1 1
7 2 1 0 0 0 0 1 1 1 1 0 0 0
8 2 0 0 g 0 0 0 0 1 1 1 1 1
Table 4.5 : A communication network model (example 2).
virtual exact removal recursion decomposition aggregation
channel SW SW-DI DSDA DSRA DMVA AG AG-DI
1 8.89 9.43 8.87 941 9.43 9.43 9.97 8.89
2 8.82 9.34 8.82 9.31 9.34 9.34 9.86 8.81
3 12.79 13.15 12.67 13.18 13.13 13.15 13.69 12.77
4 11.35 11.84 11.37 11.84 11.83 11.84 12.27 11.36
5 8.14 8.58 8.16 8.55 8.60 8.58 9.17 8.14
6 13.27 13.58 13.30 13.58 13.58 13.58 13.99 13.28
7 12.18 12,77 12.23 12.74 12.84 12.77 13.01 12.13
8 11.70 12.05 11.75 12.05 12.04 12.05 12.46 11.70
CPT 32.00 0.05 0.30 0.25 0.25 0.15 0.05 0.30
Table 4.6 : Expected response times of messages (example 2).
physical exact removal recursion decomposition aggregation 1
channel 5w SW-DI DSDA DSRA DMVA AG AG-DI i
1 .861 816 .861 818 815 816 775 862
2 629 .599 630 600 599 .599 567 629
3 578 5354 5379 555 554 554 527 578
4 .3%96 .380 39 381 380 .380 361 396
5 .403 .383 403 384 .383 .383 366 403
6 545 521 547 521 520 520 .500 546
7 545 521 547 521 520 .520 500 546
8 642 622 642 622 622 622 603 643
9 818 791 818 791 791 .791 766 819
10 723 694 722 695 695 694 0667 723
11 725 696 723 697 6497 696 669 725
12 322 313 321 313 314 .313 .303 322

Table 4.7 : Utilizations of the physical channels (example 2).
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4.6.3. A time-sharing system

A basic mode! in the analysis of computer systems is the central server model, cf. for
instance Sauer and Chandy [1981] and Lavenberg and Sauer [1983]. The central part of
such a model comprises a set of central processor units and 1/0-devices: the computer sys-
tem or central processor. The computer system executes jobs which are generated by
different types of customers, for instance edit and compile jobs from terminals, large
batch jobs and data-base enquiries from remote sources.

In this subsection we present an example of a central server model comprising one central
processor unit, a set of three I/0-devices and three groups of terminals, see Figure 4.1.

terminal
group 1
terminal
o \_ group 2
: terminal
group 3 Y

<

Figure 4.1 : A central server model with terminal groups.

The model assumptions are as follows. The users at the 20 terminals of group 1 have
exponentially distributed think times with a mean of 10 seconds and generate jobs that
on the average comprise 20 visits to the CPU, 15 to 1/0-1 and 4 to 1/0-2. The users at
the 10 terminals of group 2 have exponentially distributed think times with a mean of 20
seconds and generate jobs that on the average comprise 40 visits to the CPU, 14 to I/0-1
and 25 to [/0-2. The users at the 10 terminals of group 3 have exponentially distributed
think times with a mean of 60 seconds and generate jobs that on the average comprise 200
visits to the CPU, 20 1o 1/0-1, 40 to 1/0-2 and 139 to 1/0-3.

The CPU and the 1/0-devices are modelled as first-in first-out resources with a fixed ser-
vice rate that is normalized to unity. The mean service demands per visit to the CPU,
1/0-1, 1/0-2 and 1/0-3 are 10 msec, 20 msec, 20 msec and 30 msec respectively. The ser-
vice demands are stochastically independent and exponentially distributed.

The model is a separable closed multichain queueing network model with three customer
chains. In the Tables 4.8. 4.9 and 4.10 we have pictured the results of an exact evaluation
and seven approximation methods, ¢f. the discussion in the preceding subsection.
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The numerical results agree with the observations that we have made in the preceding
subsection,

terminal exact removal recursion decomposition aggregation
group SW SW-DI DSDA DSRA DMVA AG AG-DI
1 1.69 1.81 1.75 1.74 1.84 1.77 1.71 1.70
2 3.11 3.29 3.21 3.22 3.34 3.26 3.12 3.11
3 17.30 18.43 17.81 17,79 19.31 17.95 18.27 17.63
crT 5.50 0.02 0.05 0.25 0.25 025 | 005 0.15

Table 4.8 : Expected response times of the jobs at the computer.

terminal exact removal recursion decomposition aggregation
group SW SW-DI DSDA DSRA DMVA AG AG-DI
i 1.711 1.694 1.702 1.703 1.690 1.699 1.708 1.710
2 0.433 0.429 0.431 0.431 0.428 0.430 0.433 0.433
3 0.129 0.127 0.129 0.129 0.126 0.128 0.128 0.129

Table 4.9 : Throughput of jobs at the computer.

TESOUrce exact removal recursion decomposition aggregation
SwW Sw-DI DSDA DSRA DMVA AG AG-DI
CPU 774 .766 770 770 761 768 770 773
1/0-1 686 679 683 683 677 682 684 686
1/0-2 457 | .452 454 454 450 454 455 456
1/0-3 539 532 536 526 .526 535 533 537

Table 4.10 : Utilization of the computer system resources.
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4.6.4. A closed central server model

The third example considers a closed central server model of a computer system compris-
ing multiple central processor units or CPU’s and a set of commonly shared 170 devices or
[/0’s. Such models are of importance when studying computer systems with a buffer or
memory queue and a multi-programming service discipline by means of a decomposition
technique, cf. Courtois [1977] and Hine, Mitrani and Tsur [1979].

We consider one example. The numerical results are representative for this type of
models. As an aside we discuss tentative conclusions with respect 1o the use of a partial
aggregation method for this type of queueing network models.

The system comprises three CPU’s and nine 1/0’s. The service discipline at the CPU’s is
processor sharing and at the 1/0's firsi-come first-served. The service rates at the
resources are fixed and normalized to unity.

There are three types of jobs. The jobs of a given type are distributed over the CPU's.
The numbers of jobs per type and per CPU are pictured in Table 4.11. The expected ser-
vice demands of the customers at the CPU’s depend on the type and CPU number and are
pictured in Table 4.11 also.

After a visit to the CPU a visit to an 1/0 device follows. The probabilities of visiting a
given 170 depend on the type number only and are pictured in Table 4.12. The service
demands at an 1/0 device are exponentially distributed with an expectation that is
independent of the type or CPU number of a given customer. The expectations are pic-
tured in Table 4.12,

The resulting model is a separable closed multichain queueing network model with twelve
resources and nine closed customer chains.

In the Tables 4.13 and 4.14 we have pictured the numerical results of a set of approxima-
tion methods. In Table 4.13 the throughputs of the different types of customers at the
distinct CPU’s are pictured. In Table 4.14 the utilizations of the CPU’s are pictured and
as an aside the processing times of the methods are given in seconds.

The numerical results support the discussion in the preceding subsections.

We have added two new approximations, PA-1 and PA-2, which are based on a partial
aggregation of the set of customer chains. As we have three types of jobs which are
divided over the three CPU’s two obvious aggregations offer themselves immediately.

The first one partitions the set of nine chains in three subsets corresponding with the three
types. So, the aggregate {,i=1,2,3, comprises all customers of type /. The results are
pictured under the name of PA-1.

The second one partitions the set of chains in three subsets corresponding with the three
CPU's. So, the aggregate {, i=1,2,3, comprises all those customers which are dedicated to
CPU i. The results are pictured under the name of PA-2.
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It should be observed that the second partitioning yields better results than the first one,
This may be explained by a more general observation: an aggregation yields good results if
the chains which are lumped together, show some structural resemblance. For the
approximate analysis of large closed multichain queueing network models it has appeared
that the routing is of paramount influence on the accuracy. If chains which visit approxi-
mately the same set of resources, are lumped together, the approximate results of the par-
tial aggregation method tend to be good

Further research in this direction is necessary to validate these first fentative conclusions.

type 1 type 2 type 2
cpu 1 2 3 1 2 3 1 2 3
population 3 1 1 2 2 1 i 2 3
demand 10 15 15 20 25 30 30 40 50

Table 4.11 : Populations and service demands at the CPU’s.

visiting probability per I/0 service
type 1 type 2 type 3 demand

1 25 15 .00 30

2 25 15 .00 30

3 25 13 05 30

4 .05 A0 .05 50

5 .05 .10 .15 50

6 05 10 .15 60

7 .06 05 .20 60

8 .04 05 20 80

9 .00 13 .20 80

Table 4.12 : Visiting probabilities and service demands at 1/0’s.
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type 1 type 2 type 3
CPU 1 2 3 1 2 3 1 2 3
EXACT | 32.03 947 905 1339 1224 567 4.72 8.34 10.82
SwW 31.58 9.18 873 13.03 1186 542 455 8.04 10.34
SwW-DI 3227 952 905 1345 1223 5.63 4.75 836 10.75
DSDA 3166 920 879 13.06 1192 539 4.54 8.08 10.50
DSRA 31.30 882 838 1278 1136 501 448 7.71 9,71
DMVA 3164 9.19 878 13.04 1190 537 4.53 8.06 10.48
AG 3048 866 825 12,70 11.32 508 441 11.32 9.63
AG-DI 3226 935 886 13.54 12,14 553 4.82 8.33 1061
PAG-1 3149 875 834 1290 11.50 507 440 7.69 9.96
PAG-2 31.55 925 890 13.06 12.11 559 451 8.18 10.68
Table 4.13 : Throughputs at the CPU’s per type.
utilizations processing
CPU-1 CPU-2 CPU-3 time in sec

EXACT 730 782 .847 12.50

SwW J13 756 811 0.05

SW-DI 734 783 .840 0.50

DSDA 714 759 819 0.60

DSRA 703 724 762 0.75

DMVA 713 .758 817 0.15

AG 691 717 758 0.02

AG-DI 738 777 .829 0.30

PAG-1 705 726 775 0.50

PAG-2 J12 769 835 0.50

Table 4.14 : Utilizations of the CPU’s and processing times
of the algorithmic procedures.
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5. QUEUEING NETWORK MODELS WITH TWO PHASE SERVERS

5.1. Introduction

This chapter treats the approximate analysis of queueing network models with a special
type of two phase servers. At some of the resources the service demand splits in two
phases, where the first one is preparatory and may be executed in the absence of the cus-
tomer. However, the preparatory phase may be executed in advance for one customer
only. So only the first customer in a busy period may find its first phase already executed.
Such resources do not satisfy the separability conditions and consequently ihe resulting
queueing network model is non-separable. The analysis is of inierest as such two-phase
servers are a natural model for some phenomena in queueing network analysis. In fact,
the model is a special case of a larger class of important queueing network models. It
represents a systern where the first customer of a busy period has a deviating service
demand distribution, cf. Welch [1964].

In Section 1.4 it has been observed that separable queueing networks, essentially, may be
applied in two ways for the construction of approximation methods. The first approach
is to approximate general queueing network models by separabale queueing network
models, ¢f. the discussion in Section 2.4. The second approach is to design approximating
adjustments and extensions of the exact evaluation procedures for separable queueing net-
work models. Especially the MVA algorithm with its attractive interpretation forms a
good starting point for such methods, cf. the discussion in Section 2.5.

In this chapter three approximation methods are presented.

Theé first method is based on the first approach and is an application of the iterative
aggregation-disaggregation method which has been introduced in Subsection 2.4.2.

The second method is based on a straightforward mean value analysis extension and is
related to the approximation method discussed in Subsection 2.5.2.

The third method combines the ideas of the two approaches. In an iterative procedure an
approximating separable queueing network model is constructed. The formulation of a
new set of parameters is based on the MVA approach. One of the more interesting parts
in the analysis is the formulation of a set of conditions for which the iterative procedure.
converges. As a side result a monotonicity property of throughputs in a closed single
chain queueing network model is established.

The chapler is organized as follows. In Section 5.2 the queueing network model is intro-
duced and the mean value analysis of the corresponding separable queueing network is
presented. The analysis of a single resource in such a queueing network model by means
of a parametric analysis type of argument is discussed as well. The relation with the
theory described in Chandy, Herzog and Woo [1975:1] is demonstrated.

The Sections 5.3 till 5.5 are dedicated to the three approximation metheds. In Section 5.6
some numerical results are discussed and a few conclusions are drawn.
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5.2, Model, mean value analysis and parametric analysis

In this section the queueing network model is introduced. Mean value analysis and
parametric analysis of the basic separable queueing network model are reviewed.

The system comprises N resources with a service rate function u, . a dedication function
¢, and an admittance function y, at resource n,n=1,..N. There are X customers in
the network which belong to a single chain. The relative visiting ratios are given by
fnon=1..,N. The service demand at a resource n is exponentially distributed with
expectation w,. This description defines a separable queueing network with a single cus-
tomer chain, if the separability conditions are satisfied, ¢f. Section 3.2 for more details.

However, a subset A C {1,...,V } of servers operates differently. At a resourcen € A a sin-
gle service unit operates at a constant service rate which is normalized to unity. The ser-
vice demand splits up in two independent and exponentially distributed phases with
means v, and w,, respectively. The customers are served in order of arrival and the first
phase has to be executed before the second one. However, if there are no customers at the
resource the service unit may execute the first preparatory phase of the first customer in
the next busy period. The second phase may only be executed when the customer is
present.

The approximation methods are based on the mean value analysis approach. The
parametric analysis of such models will play a role in the analysis of the methods.

First, the MVA algorithm is recapitulated for this single chain queueing network model
with queue length dependent service rates. For details we refer to Chapter 3.

The algorithm starts with a relation for the expected residence times at resource n when
K customers are in the system

S(K)= § X

R mpn(k—l,ﬁ'-l). (521)

If the service rate is constant and normalized to unity, this relation may be simplified. At
a first-come first-served or processor sharing queue we obtain

S, (K)= L,(K—Dw, +w, , (5.2.2)

where L, (K —1) denotes the expected number of customers at resource n when K—1
customers are in the system. At an infinite server queue this yields

S (K) = w, . {5.2.3)

The second relation couples the throughput at resource n with the expected residence
times
K
A K ) = —N—f—"— . (5.2.4)
3 fnSn(K)
m=1
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The third relation couples the marginal queue length distributions for the systems with
K and K—1 customers. With p,(k K ) being the probability that X customers are at
resource n when there are X' customers in the system the relation is, for k =1,..X, given
by

w, A, (K)
kK)= 2T~ p (k—1,K—1 5.2.5
Pa( ) PR(3) Pal ) ( )
and, for k=0 by ’
K
p.(0K)=1— T p,(kK). (5.2.6)
k=1

The fourth relation couples the expected number of customers with the throughput and
the expected residence time by

L, (KJ)= A, (K)S,(K}. (5.2.7)

These four relations comprise the recursive MVA algorithm.

The second part of this section considers a technique to evaluate in an efficient way the
performance characteristics at a particular resource for varying parameters. It will be
shown that the characteristics may be evaluated from an associated system comprising
two resources: the given resource and a complementary resource describing the influence of
the remaining part of the gqueueing network system. The analysis is based on the MVA
approach and the results are very similar to the results in Chandy, Herzog and Woo
{1975:11 :

Let us concentrate on the evaluation of the performance characteristics at a given resource
n. A complementary resource is associated with this particular resource. This resource
has a first-come first-served service discipline and gueue length dependent service rates
T,(k ), k=1,.,K. The service demands are stochastically independent and exponentially
distributed with unit mean. The A customers are alternately visiting the resource n and
its complement.

With the marginal queue length probabilities at resource n being p, (k K ), for £ =0,..,K ,
the rates 7, (X ), k = 1,...,K, are defined by the flow rate relation

K—k+1
pnlh k1) " ) PolK—k+1,K) = T, (k Jp,(K—k K), (5.2.8)
n
which yields

(K —k+1) p,(K—~k+1K)
W, PalK—k ,K)

T, (k)= {5.2.9)

It wij® be shown that the values T, (K ) as defined by (5.2.9) do not depend on the model
paran‘ers at resource . The proof uses a slightly adjusted version of Theorem 3.1.
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The state of the single chain queueing system may be described by a wvector
k=(ky,...,ky), where k, denotes the number of customers present at resource n. The
associated state space S (X ) is given as

- N
S(K)={(kqy,... . ky)10<k, <K and ¥ k,=K }. (5.2.10)
n=1

The steady-state probabilities p (k) of the system being in a state ¥ € S(X) are, cf.
Theorem 3.1,

k

k 5.2.11
plk)= (K) 1‘[1 3m(k y ( )
where
X = [ Wm (5.2.12)
and
km
Bnlky)= Tl #n(k). (5.2.13)
k=1
The normalization constant G (K ) is given by
k
x £:3
G(K)= T (5.2.14)
e Ko s B ()
Furthermore, we introduce the auxiliary quantities G (K ) as
39S} T ﬁ xim ( )
GM(K )= | 5.2.15
EES(K)m=1 Bm(km )
k=0
The following Lemma provides the prerequisites for the apalysis.
Lemma 5.1
The following three relations hold for all K 20, n=1,.,N and i =0,....K:
X
G(K)=3 G K —~j), (5.2.16)
£ Bn ( )
oy x4 Gk —i)
prli k) .Y G&E) (5.2.17)
= G{X~—1) .
AK)= [, & (5.2.18)
Proof :
: s
GK)= % i

kES(KD mgl 8. (km )
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k

N
j=orestk) m=1 Bm(kp)
ky=j
_§ o -
7=0 Ba(j) keSK=j)m=1 Bnlky,)
K xJ
= 2 __Ghrkx—j)
,'go Bn(f) Y
k
. 1 N xm”‘
Poi K} =
" e 2, G A, Bae)
k=i

: . X,
i
1 Xn N Xm"

= TR Bl gesitony i, Bl
k,,=0

_ % Gk
B.(i) G(K)

Hp {] )
Wn

K
AK)= F p(G oK)
j=1
=£ x Gl g—5) #a(j)
A G GE)  w
I X x’{'—l
G&) = B.G-D

G K —1=(j-1))

G(K-1)

=71 e

Thus, it follows from the definition of 7, (%) and the results of Lemma 5.1 that, for
k=1,.,K,

_ G["](k—-l)
TN (5.2.19)

This last relation corresponds with Relation {20) in Chandy, Herzog and Woo [1975:1].

It is easily seen that the values Gk ) do not depend on the parameters at resource n.
As a consequence we can evaluate the performance characteristics at resource n for
different sets of parameters by studying the system with the resource n and jis
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complement: the service rates of the complement need to be evaluated only once.

5.3. An iterative aggregation-disaggregation method

5.3.1. Introduction

In this section an iterative aggregatibn—disaggregation method is discussed. The line of
argument follows the discussion in Subsection 2.4.2. The method is based on the recogni-
tion of two hierarchical levels. At the higher level a separable queueing network is
analysed. At a lower level more detailed models are introduced for two phase server
resources. An exact analysis of these models appears to be possible.

An analysis of the higher level yields a new set of parameters for the lower level model
and vise versa. An iteration between these two levels yields approximations for some
important system characateristics.

In Subsection 5.3.2 a detailed model for a two phase server is introduced and analysed. In
Subsection 5.3.3 the iterative aggregation-disaggregation method is presented. -

5.3.2. The two phase server model

The lower level detailed model of a two phase server is defined as a resource with a single
service unit, queue length dependent Poisson -instream rates, and a first-come first-served
service discipline. The instream rates are A(k ) for £ =0,..K—1. The service demand
splits into two independent and exponentially distributed phases, where the first phase is
preparatory. The parameters of the exponential distributions are v and g respectively.
The buffer has a capacity of X' customers.

The state of the system is given by a tuple (k,f ), where &,k €{0,...K } denotes the
number of customers in the system and [, f €{1,2} the phase the service unit is execut-
ing. Note that (0,1) corresponds with the situation that the service unit is executing the
first phase of a customer that is not present and that {0,2) describes the situation that the
service unit is idle, but that the first phase of the service demand of the next customer to
arrive has been completed.

The model describes an irreducible and time-homogeneous Markov process on a finite state
space. The limiting probabilities p (k ,f ) of the system being in some state (k ,f ) are the
unique and strictly positive solution of the set of equilibrium equations and a normaliza-
tion.
For k =0 these equations are
pODAO) +v)= p(1.2)u (5.3.1)
p(0,2M(0) = p(0,1)v, (5.3.2)
fork=1,..K~1
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DK+ )= pk—LINGK~D + pk +1,2)p (53.3)

P20+ @)= pk—12M&k~-D+pk, 1y (5.3.4)
and fork =K

K,y = p(K~1,10a(K~1) (53.5)

K 2u=p(K~12M(K—-1)+p(K ,Dr. (5.3.6)
The normalization is given by

§ }:f‘, plk,fi=1. (53.7)

k=0f=1

This linear system may be solved recursively. Define #{k ,.f ) by

ok f)= %Jli)l . (5.3.8)

The values w(k ,f ) satisTy a set of recursive relations. Then, for k=0 and f =1 the
recursion is initialized by

7(0,1)= 1. (53.9)

Matching the total flow-rate out of state (0,2) with the total fiow-rate into state (0,2)
yields '

7(0,2) = ﬁ . (5.3.10)
From the state transition diagram pictured in Figure 5.1 it follows that fork =1,2,...K

AMEk—1Xmk~L D)+ 7k =12)) = »7(k 2], (5.3.11)
or

a2y = 22D -1+ 7 e-12)). (5.3.12)

Matching the total flow-rate out of state {(k,2) with the total flow-rate into state (k¥ ,2)
yields for k= 1,...K

+AEDNTE 2= Ak —-Drx-1,2) + pw(k 1), (5.3.13)
where it is assumed that A{K )=0. This yields for k=1,....k
2l 1) = LEAMED S ay L’:—U- 7k —12). (5.3.18)

The Relations (5.3.9), (5.3.10), (5.3.12) and (5.3.14) define a recursive scheme for the
evaluation of lhe quantities #(k ,f ) forallk =0,..,K and f =1,2.
The limiting probabilities p (k ,f ) are easily obtained as

P F )= mik.f) ) (5.3.15)
(w1 + #(i 2))

W
[Rcle
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)\(0) @ Alk—1) 0
l y

Figure 5.1 : State-transition diagram of the two phase server model.

This completes the exact analysis of a lower level model of a two phase server resource.

5.3.3. The iterative aggregation-disaggregation method

The hierarchical model comprises a lower level at which the two phase server resources
are modelled in a detailed way, and a higher level at which the interaction between the
resources is modelled as a separable queueing network model with queue length dependent
service rates.

In the separable network the two phase server resource is approximated as a resource with
a single service unit, a first-come frst-served service discipline and queue length depen-
dent service rates. The service demand is assumed to be exponentially distributed with
unit mean. If resource n is a two phase server, the service rates u, (% ), k = 1,....K , are set
to

(k.,2) 1

wlk)= S ¥ D) W

(5.3.16)

The idea behind this relation is as follows. The lower level model yields for resource n a
set of limiting probabilities p (k ,f ), where £ =0,...,.K and f =1,2. Thus, the first part of
the right hand side of (5.3.16) denotes the conditional probability that the resource is
busy with phase two provided there are X customers present at resource n. The second
part denotes the rate at which customers are leaving the resource in that situation.

The lower level model is analysed with a set of state dependent instream rates which fol-

low from the analysis of the higher level model.

The rates of the two phases are v=v,"!

A(k) are for k =0,...,K — 1 given by
Me)=T,(K—k), ' (5.3.17)

where T, (K —k ) is defined by (5.2.9).

and u=w, ! respectively., The instream rates
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The iteration between the two hierarchical levels yields approximations for the relevant
performance characieristics at the distinct resources. Such an iteration may be started

with an analysis of the higher level model. For this initial network the service rate func-
tion at a two phase server resource n may be set to

(k)= (5.3.18)

In practice the iteration method converges fast and yields quite acceptable results. In Sec-
tion 5.6 we give some numerical examples.

5.4. Mean value analysis extensions

5.4.1. Introduction

In this section we discuss extensions of the MVA algorithm. The mean value relations are
extended to account for the fact that the service disciplines at two phase server resources
violate the separability conditions.

The ad justments are based on a mean value analysis of a single two phase server resource.
This approach yields in a relatively simple way appealing intuitive approximation
methods that are easy to implement in existing MVA algorithms.

In Subsection 5.4.2 the mean value analysis of the two phase server is dicussed. The
implementation of the ideas in the MVA algorithm is covered in Subsection 5.4.3. Both a
purely recursive and an iterative variant are presented.

5.4.2. Mean value analysis of a two phase server

Consider the following model. Customers arrive at a single service unit as a Poisson pro-
cess with rate A. The service discipline is first-come first-served. The service demand
splits into two independent and exponentially distributed phases with means v and w
respectively. The first phase is preparatory. The second phase can be executed orily if the
customer is present.

We derive relations between the expected residence time S of a customer in the queueing
system and the expected number of customers in the system L. The derivation is based
on the three important results: 1. the property that "Poisson Arrivals See Time Averages”
{PASTA), 2. the expected residual life time formula and 3. Little’s formula.

The property PASTA, Poisson Arrivals See Time Averages, has been used for long time in
queueing system analysis. Only recently, a rigorous proof of the property has been given
in Wolff [1982].

The expected residual life time formula is a standard result from renewal theory, cf.
Kleinrock [1975:1] or Heyman and Sobel [1982]. For a queueing system it may be used in
the following way: the expectation of the residual service demand of a customer equals
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{024+w?2){2w. Here, w and ¢ denote the expectation and variance of the service demand
distribution respectively.

Little’s formula, cf. Subsection 3.3.3, relates the expected residence time S, the expected
number of customers L and the throughput A of a queueing system as L=AS.

The first relation between S and L is provided by Little’s formula
L=XxS. (5.4.1)

The second relation matches the expected residence time of a newly arriving customer
with the expected total amount of work to be executed with this customer being in the
system.

Due to property PASTA, the arriving customer finds an expected number of L customers
in front of it. The expected service demand of the customers equals v+w. So, roughly,
the expected residence time equals the sum of the expectied waiting time L {(v+w) and its
own expected service demand v+w,

However, we have to amend for two obvious mistakes. In the first place, the newly
arriving customer may find the service unit already busy with the second phase of the
service demand of a customer. In the second place, the newly arriving customer may find
the service unit idle. This implies that the customer is the first one in a busy period and
that its preparatory phase has been completed in the preceding idle period.

Note that Av and Aw denote the fractions of time that ihe service unit is busy with
phase one and two respectively. With probability Av the newly arriving customer sees
the service unit busy executing the first phase and so the expected residual service demand
equals v+w. With probability Aw the service unit is busy with the second phase and so
the expected residual service demand equals w instead of v4w. With probability
I—Av—Aw the service unit is idle when a customer arrives and the expected remaining
service demand equals w instead of v+w.

When these observations are taken into account, we obtain the following relation for the
expected residence time

S=(L+ Dv+w)=Awv — (1= r(v+w ]l , (5.4.2)
which may be rewritten as

S=L{+w)+Avw 4+ w . {(5.4.3)

Relations {5.4.1) and (5.4.3) yield explicit expressions for the expected residence time and
the expected number of customers in the two phase server system. In the next subsection
- we shall see how the reasoning may be used to approximate queueing network models
with two phase servers.
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5.4.3. Mean value analysis extensions

In Section 5.2 we have introduced the queueing network model with two phase servers.
The basic queueing network model is separable. The MVA algorithm has been recapitu-
lated.

The relations for the throughputs and the expected numbers of customers may be viewed
as consequences of Little’s formula and thus have a wide applicability. The expected
residence time relations are consequences of an arrival theorem and cannot be used in this
form for the analysis of a non-separable queueing network model.

However, we may use the idea of the arrival theorem in combination with the mean value
anlysis of a two phase server as described in the preceding subsection to obtain approxi-
mate relations for the expected residence times.

The idea is to adopt the arrival theorem and to assume that in the non-separable queueing
network model a customer sees upon a jump moment the system as if in equilibrium with
itself removed. So, the relations of Section 5.2 remain intact at separable resources,
though they are no longer exact as the network is no longer separable. At a two phase
server resource, say n, the following adjustment of (5.4.3) is used

SK)= L, (K—=1)v, + w, ) + A (k=12 +w, . (5.4.4)

The resulting adjusted MVA algorithm is again a recursive scheme and the implementa-
tion of (5.4.4) in an existing MVA algorithm is straightforward.

Note, that for K=1 the approximation for S,(1) equals w, at a two phase server
resource n € A. Apparently, the approximation neglects the fact that the first phase has
not necessarily been completied when the single customer that is in the system arrives.

A simple improvement to amend this obvious mistake is to use A, (KX ) rather than
A, (K —1)in (5.4.4). This yields instead of (5.4.4)

S (K)= Ly(K—1)v, + wy )+ A (K W2+ w, . (5.4.5)

Observe, that now A, (K ) has not been evaluated at the moment that S,(K) is to be
evaluated.

A standard way 1o solve this problem is to start with an initial set of approximations for
the throughputs A, (A ). After an evaluation of the mean value analysis algorithm with
this set of throughputs we have a new set of approximations at our disposal. This succes-
sive approximation method converges in all practical situations, but we have not investi-
gated the method in detail.
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5.5 An iterative approximation method

5.5.1. Introduction

In this section an iterative approximation method is introduced and analysed. The basic
idea is to construct a separable queueing network model which approximates the original
network model with two phase server resources. The parameters of the separable queue-
ing network model are iteratively improved. The improvement is based on mean value
arguments.

The method is introduced in Subsection 5.5.2. It is representative for a large class of
iterative approximation methods. The iteration may be viewed as a successive approxima-
tion method for the determination of a fixed point of a continuous operator on a closed
and convex subset of the n-dimensional Euclidean space. In Subsection 5.3.3 properties of
the iteration method are studied for a model with only one two phase server. It is proved
that for a broad class of queueing network models the method yields a unique fixed point.

5.5.2. The iterative approximation method

Consider a resource n € A being a special type of two phase server. The service demand at
such a resource consists of two independent exponentially distributed phases with means
v, and w, respectively. The effect of the deviating service discipline will be that some
customers experience only a service demand w, whereas others have the full demand
v, +w, .

A natural approximation method seems to be to construct a separable queueing network
model with at resource n an average service demand w, being a weighted average of v,
and w,, , namely

w, ={1=a, v, +w, , (5.5.1)

where g, denotes the probability that an arriving customer finds its preparatory phase
finished.

Finding a, requires a rigorous analysis of the original model and that we just wanted to
avoid. However, one might make a first guess, for instance a, =0 or a,=1, and try to
improve on this guess after an evaluation of the associated separable queueing network
model.

We may write g, as

@y = Bycy (5.5.2)

where b, is the probability that an arriving customer is the first on in a busy period and
¢, the probability that its preparatory phase has been completed in the preceding idle
period.

Estimates for b, and ¢, may be constructed as follows. The probability b, equals the
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probability that an arriving customer sees no customers in front of it and thus may be
approximated by

b, = p,(0.K—-1), (5.5.3)

where it is tacitly assumed that the arrival theorem still holds.

The expected duration of an idle period, say /,, is the quotient of the fraction of time
during which no customers are at resource n, p, (0,K ), and the expected number of busy
periods per unit time, A, (X Jp, (0,K—1), i.e.

P, (0.K)

I, = . (5.5.4)
n A (K )p, (0,K—1)
Assuming that an idle period is exponentially distributed yields for c,
1y
Cp = m— . (5-5.5)

So, suppose that we have a guess an(i). The new guess for a, may now be introduced as

20,5 — 1) pAA0K)

g+ =
(i) - (i) @) - ’
PRANOK ) + AR ), (0,8 — 1)v,

n

(5.5.6)

where the values at the right hand side are obtained from a mean value analysis of a
separable queveing network model with at a two phase server resource n an expected ser-
vice demand W’ given by

‘;n(i) =(1-— an(i))vn +w, . (5.5.7)

This completes the description of the iterative method. In Section 5.6 some numerical
examples are given and the accuracy is compared with that of the methods described in
the preceding sections. In the next subsection we analyse the iteration method for a sys-
tem with exactly one two phase server.

5.5.3. Existence, uniqueness and convergence

This subsection is concerned with the analysis of the iterative approximation method
which has been introduced in the preceding subsection. It is assumed that there is exactly
one two phase server in the network.

The method will be formulated as a successive approximation method for the determina-
tion of a fixed point. The existence of a fixed point is a consequence of Brouwer’s fixed
point theorem. The convergence of the method and the uniqueness of the fixed point will
be proved for a subclass of queueing network models.

For details on the presented analysis we refer to Van Doremalen and De Waal [1985].

Assume that resource n is the two phase server resource and that the visiting ratios have

been normalized in such a way that f,=1. A non-linear operator F:R— R gives the

relation between w,%*V and W as w,0*P=F (@), cf. Relations (5.5.1) through
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(5.5.7),

— Pn (O’K" I}Pﬂ (O,K )
Paf0.K) + A (K )p, (0K —1)v,

Flx)e= ll v, +w, , (5.5.8)

where p, {0,K —1), p, (0,K ) and A, (K ) are functions of x.

Applying the results of Lemma 5.1 {(5.5.8) reduces to

) 1 Ghilxk-netrik)

F&)= 1= 5D GPIK) + v, G K ~1)

Vo F Wy . (5.5.9)

Note that G XX —1) and GI* XX ) do not depend on x and can be treated as constants in
the analysis of the operator F. Furthermore, we may write G (K —1) as a polynomial of
degree K -1 in the variable x, ¢f. Lemma 3.1,

K—1
GEK-1D= ¥ GrAK—1-k:*. (5.5.10)
k=0

Now the analysis of the operator F' is straightforward. It is assumed that at least two
customers are in the system, i.e. K >1. For K=1 the results are trivially true as is
easily verified.

‘We first show that F has at least one fixed point at the interval [w, v, w,]. Afterwards
it is shown that for a large class of queueing network models the fixed point is unique.

The existence of a fixed point is an immediate result of the next lemma
Lemma 5.2

Assume that X > 1. Then the following three statements hold:

(i) F is analytic on the interval [w, v, +w, ],

(ii} F is monotonically increasing on [w, v, +w,], and

(iii) F(x)e(w,,v,+w, )forall x € bw, v, +w, ]

Proof :

To prove (i} it is sufficient 1o observe that F is a rational polynomial without any poles
on the interval fw, v, +w, 1.

To prove (ii) observe that for x € [w,,v, +w, )} G(K—1) is a monotone increasing func-
tion of x as the coefficients G Xk ) are strictly positive, cf. (5.2.15).

To prove (iii) observe that F (x ) may be written as
Flx)= (11— Dx v, +w, , (5.5.11)

where
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D(x) = Gl iK—1) G K )

K1 GFIR) + v, GE =)
Gk -1+ ¥ G K -1—k)x* n
k=1

As a consequence we have that, for all x € [w, v, +w, ]

0< D)<, (5.5.13)

which completes the proof.

To prove convergence of the successive approximation method and uniqueness of the fixed
point we first transform the operator F. The analysis is reduced to the analysis of the
iteration function in a queueing network model with only two resources: the two phase
server and a complementary resource replacing the complement of the network, cf. the
discussion in Section 5.2.

The service rates of the complementary resource are T, (k ), k =1,...K , where

Gl ik —1)

T (k)= G["](k} (5.5.14)
That this transformation yields the desired results from
K~1 [rn]
; Gk —1—k)
T,(i)= 2| (5.5.15)
z‘=11:"[—k * Gk —-1)
which in combination with (5.5.9) and (5.5.10) yields
1 1
F{x)= |1~ TR el RO VU (5.5.16)
iy - -+
LS T @ PR
k=1 i=K-k

So, /' is the iteration function of a gueueing network model with a two phase server and
a complementary resource with queue length dependent service rates.

The following lemma prepares for a theorem on the convergence of the successive approxi-
mation method defined by the operator F'.

Lemma 5.3

Let the following condition be satisfied for a given K
TS, (2)< - - €7,(K). (5.5.17)
Then

dF (x) ¢ Tk —D (5.5.18)

0< ,
dx 1+ v, T,(k)

forall k=2,...K and x €[w, v, +w, |
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Proof : Cf. Theorem 4.3.2.1 in Van Doremalen and De Waal [1985]. ]
The next Theorem is an immediate consequence of Lemmas 5.2 and 3.3.

Theorem 5.2

Let the condition given by (5.5.17) be satisfied. Then the operator F defines a contraction
on the interval {w, ,v, +w, ] and F (x J=x has exactly one solution in (w, ,v, +w, ).

Proof @

Let x,y € [w, ,v, +w, ] with x <y. Then it is well known that, for some x <z <y,

Fa)—Fiy)= L8 —y), (5.5.19)
From Lemma 5.3 we have
v, T (K ~1)
- e -
FF(x)— Fp)t £ T+ w T (&) Ix —yi, (5.5.20)

From Lemma 5.2 it follows that F{x J€(w, ,v,+w,) forall x €fw, v,+w,land so F is
a contraction on {w, v, +w,l This implies that the successive approximation method
converges 10 a2 unique solution of the equation F{x)=x, c¢f. Ortega and Rheinboldt
[1970: 5.1.3). a

So, we have proved the convergence of the iterative approximation method for those
queueing network models for which the complementary resource satisfies the condition
given by (5.5.17). This condition states that the service rate of the complementary
resource is a non-decreasing function of the number of customers present. This seems 10
be a quite natural condition and we show that it holds for a large class of queueing net-
work models. i

Consider the separable queveing network model of Section 5.2. In Van Doremalen and De
Waal {1985] it is shown that the condition (5.5.17) is satisfied if the throughput at each
resource is a non-decreasing function of the number of customers in the system. The next
theorem provides a sufficient condition for this 1o be true. It gives an monolonicity result
which in itself is of importance in the analysis of queuveing network models.

Theorem 5.3

Let at each resource n € {1,...,N } the service capacity function satisfy the condition
a(1) € pa(2) € -+ Cpp (KD (5.5.21)
Then foralln=1,.N
A{D S A€ --- SALK). (5.5.22)
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Proof :

This monotonicity result has been proved in Van Doremalen and De Waal [1985].
Independently a similar result has been formulated and proved in Suri [1985]. These
proofs are based explicitly on the product form solution and proceed by induction.
Related results have been reported in Robertazzi and Lazar [1984].

For an interesting alternative proof we refer to Van der Wal [1985]. In this paper an
appealing intuitive proof has been given as well.

5.6. Numerical examples

In this section we discuss four small numerical examples to show the behaviour of the
different approximation methods. The exact evaluation has been obtained by the solution
of the corresponding set of equilibrium equations, examples 1 and 2, and the method
described in Subsection 5.3.2, examples 3 and 4. The exact results are denoted by
EXACT. ,

We have tested the four approximation methods suggested in the preceding sections. The
first method is the iterative aggregation-disaggregation method which in the tables has
been called the IAD method. The next two methods are the recursive and iterative MVA
extensions which are denoted as MVE-R and MVE-I respectively. The last method is the
iterative method with mean value arguments which is denoted as MVA-L

From the results it appears that especially the iteralive aggregation- disaggregation
method and the iteralive method with mean value arguments perform very well. The
MVA extensions perform slightly worse. It is our belief that for larger systems the
approximations will tend to be better, but further research is needed to support this ten-
tative conclusion.

Example 1 : A cyclic system

The first example concerns a cyclic queuveing system with three resources. The first
resource in the cycle is a two phase server with expected service demands v,=1 and
w =1 respectively. The second and third resource in the cycle are first-come first-served
resources with expected service demands w, and w3 respectively. There are four custo-
mers in the system.

In the Tables 5.1 and 5.2 we have listed the exact and approximate results for the
throughput at the two-phase server and the expected cycle time respectively. This is done
for various w5 and w 3.

Example 2 : A branching system

The second example concerns a branching system with three resources. The first resource
is a two phase server with expected service demands v;=1 and w ;=1 respectively. The
second and third resource in the branching system are first-come first-served resources
withexpected service demands w, and w; respectively. After a visit to the two phase
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server with probability 0.5 a visit to the second resource follows and with probability 0.5
to the third resource. After a visit to the second or third resource the two phase server is
visited again. There are four customers in the system.

In the Tables 5.3 and 5.4 the resulis are shown for the throughput at the two phase
server and the expected cycle time respectively. This is done for various w; and w 3.

Example 3 : A two phase server and an infinite server

The third example concerns a cyclic system comprising a two phase server and an infinite
server. The expected service demands of the two phases are v,=1 and w respectively.
The expected service demand at the infinite server is w,. There are K customers in the
system.

In the Tables 5.5 and 5.6 we have listed the throughputs and expected residence times at
the two phase server for various values of w, and X'.

Example 4 : A two phase server and a first-come first-served server

The fourth example considers a cyclic syslem comprising a two phase server and a first-
come first-served server. The expected service demands of the two phase are vi=1 and
w =1 respectively. The expected service demand at the firsi-come firsi-served server is
w,. There are X' customers in the system.

Tables 5.7 and 5.8 show the throughputs and expected residence times at the two phase
server for varipus values of w, and XK.



Wy W3 EXACT IAD MVE-R MVE-] MVA-I
25 25 500 500 537 533 500
2 2 357 .352 .353 .352 351
8 8 124 - 124 124 124 124
2 8 124 124 124 124 124

Table 5.1 : Throughput at the two-phase server {example 1).

W Wy EXACT 1AD MVE-R MVE-I MVA-]I
25 25 8.00 8.00 7.45 7.48 8.00
2 2 11.38 11.36 11.33 <1136 11.38
8 8 32.19 32.19 32.19 32.19 32.19
2 8 32.19 32.19 32.19 32.19 32.19
Table 5.2 : Expected cycle times (example 1).
Wy W3 EXACT 1AD MVE-R MVE-I MVA-I
25 25 500 500 532 533 500
2 2 A77 478 501 497 - .473
8 8 194 .194 .194 194 194
10 1 198 | 199 .198 198 199
20 1 .100 100 100 .100 100

Table 5.3 : Throughput at the two phase server (example 2).

W w3 EXACT 1AD MVE-R MVE-] MVA-1
25 .25 8.00 8.00 7.52 7.50 8.00
2 2 8.39 8.37 7.98 8.05 8.96
8 8 20.57 20.57 20.38 20.58 20.57
i0 1 20.22 20.10 20.20 20.20 20.10
20 1 40.03 40.00 40.00 40.00 40.00

Table 5.4 : Expected cycle times {example 2).
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Wy X EXACT IAD MVE-R MVE-I MVA-I
10 10 497 497 466 520 495
2 2 444 444 500 A70 441

Table 5.5 : Throughput at the two phase server (example 3).

'w, K | EXACT | IAD MVE-R MVEI MVA-
10 10 10.12 10.12 8.91 9.23 10.20
2 2 2.50 2.50 2.00 2.26 2.54

Table 5.6 : Expected residence time at the two phase server (example 3).

w, K EXACT | IAD MVE-R MVEI  MVA-
2 10 466 466 521 466 463
2 2 371 371 .375 .372 .366

Table 5.7 : Throughput at the two phase server (example 4).

Wa K EXACT IAD MVE-R MVE-] MVA-I
2 10 10.34 10.34 9.19 8.99 9.92
2 2 2.35 2.35 2.00 2.16 2.37

Table 5.8 : Expected residence time at the two phase server {example 4).
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6. PRIORITY QUEUEING NETWORK MODELS

6.1. Introduction

This chapter is concerned with the approximate analysis of gueveing network systems
with a priority schedule at one or more of the resources. We concentrate on the preemp-
tive resume priority schedule which is a frequently used tool in the modelling of priority
schedules in computer systems.

The exact analysis of priority schedules is notoricusly difficult. Only for relatively small
and simple models exact results and efficient computational procedures have been derived,
of. for instance Jaiswal [1968], Avi-Itzhak and Heyman [1973], Marks [1973), Neuts
[1981:pp 298-300], Morris [1981], Veran [1984] and Van Doremalen [1984:2].

For larger and more complex models simulation techniques and analytical approximation
methods have 1o be considered. We concentrate on the latter way-out and present a new
and promising approximation method.

The analysis of priority queueing network models is of paramount interest as priority
disciplines are a natural and frequently used tool for improving the performance of a
queueing network. The introduction of a priority schedule has consequences for produc-
tion oriented characteristics, such as utilizations, and demand oriented characteristics, such
as expected residence times and throughputs. A priority schedule may be implemented to
find a good balance between these characteristics, for instance by tryving to optimize the
utilization under certain constraints on the expected residence times.’

A first example is a CP-terminal system comprising a central processor (CP) and a set of
active terminals. The users at the terminals generate jobs to be executed by the CP. The
CP gives preference to the jobs of certain terminals. The service discipline operates under
a preemptive resume priority schedule.: if a job with a higher priorily enters the CP, it
interrupts the execution of a job with a lower priority instantaneously. The execution of
this lower priority job is resumed as soon as no jobs with a higher priority are present
anymore. Observe that in this way the execution of a job may be interrupted one or more
times by what we shall refer 1o as busy periods of higher priority jobs.

Priority schedules in computer systems are studied in for example Avi-Itzhak and Hey-
man [1973], Kleinrock [1975:2] and Kameda {1984].

For the CP-terminal system relatively efficient computational procedures for the exact
evaluation of important performance characteristics have been developed in Veran [1984]
and Van Doremalen [1984:2]. The impact of the preemptive resume priority schedule on
ihe utilization of the CP has for instance been studied in Van der Wal [1982].

A second example is a closed central server model with central processor units and a set
of shared background memory devices or 1/0’s, ¢f. also Subsection 4.6.3. The performance
of the system may be improved by the introduction of a preemptive resume priority
schedule at the central processor units. In practical situations the priority schedule will
be more sophisticated, but the analysis of a comparitively simple schedule may provide
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insight in the operation of the queueing network system under more complicated
schedules, ¢f. Chandy and Sauer [1978].

Separable queuveing network models are an important tool in the analysis of large and
complex queuveing network systems. Regrettably, many realistic problems either cannot
be modelled as separable gqueueing network models or the models are very large and there-
fore intractable by the standard evaluation methods.

Queueing network systems with a priority schedule at some of the resources are examples
of realistic and important problems which lead to non-separable and very large models.
In Sections 2.4 and 2.5 two approaches have been discussed for the approximate analysis
of queueing network systems. These offer themselves as immediate candidates for the
approximate analysis of queveing network models with priority schedules.

The first approach is based on the idea to approximate the non-separable queueing net-
work model by a separable model. In this approach two lines may be discerned.

A fBrst line uses ideas based on a parametric analysis, ¢f. Chandy, Herzog and Woo
[1975:1] and [1975:2]. The usual idea is to perform an exact analysis of a relatively
detailed but small priority queueing system, where the complement of the network has
been aggregated in a single complementary resource. A further reduction in the complex-
ity may be achieved by introducing an aggregation of priority levels as well. Typical
examples in this line are the methods described in Sauer and Chandy [1975], Chow and
Yu [1983] and Neuse and Chandy [1983].

A second line started in Reiser {1976] and Sevcik [19781 with the development of the vir-
tual server or shadow-CPU approximation. The main idea is to decompose a single prior-
ity queuve in a set of parallel queues, each appointed for the execution of jobs of a particu-
lar priority level. The service rates or service demands at these resources are adjusted to
account for the influence of the customers of the other priority levels. Improvements
have been suggested in Schmitt [1984]) and Kaufmann [1984],

The second approach is based on adjustments and extensions of the MVA algorithm. For
the approximate analysis of priority schedules we refer to Bard {1979], Bryant, Krzesinski
and Teunissen {1983] and Chandy and Lakshmi [1983]. Typical for these methods is that
they are based on the MVA approach as sketched in Chapter 3 and the analysis of an
M/M/1//PR-queue, i.e. a single server system with Poisson arrival processes, exponential
service demand distributions and a preemptive resume priority schedule.

In this chapter we follow the second approach and present a new and promising approxi-
mation method: the service completion time approximation.

The basic queueing network model is a separable queueing network model with constant
service rates, cf. Subsection 3.3.5. For reasons of presentation the model and its MVA
algorithm are briefly recapitulated in Section 6.2. At some of the resources a preemptive
resume priority schedule is introduced. In Section 6.4 we present the new approximation
method which is based on the MVA approach and the mean value analysis of M/G/1-
priority queues. This latter analysis is reviewed in Section 6.3.
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As our method is based on the MVA analysis of closed multichain queueing network
models, where the chains and priority levels have to be identified, the computational com-
plexity and storage requirements of the method are similar to that of the original MVA
algorithm. This prohibits the exact evaluation for larger numbers of priority levels. In
Section 6.3 the use of the approximation methods that have been presented in Chapter 4 is
considered. The concentration is on the use of the Schweitzer method and the global aggre-
gation method, both with a first order depth improvement.

In Section 6.6 we present an exact procedure for the evaluation of important performance
measures in the CP-terminal system. The material is based on Van Doremalen [1984:2]
and [1984:3], '

In Section 6.7 some numerical examples are presented to illustrate the effectiveness of the
approximation methods. For a detailed analysis of numerical experiences we refer to Van
Doremalen, Wessels and Wijbrands [1985].

6.2. The basic closed multichain queueing network model

The basic model is a separable and closed multichain queueing network model. It is a spe-
cial case of the model discussed in Subsection 3.3.5. For reasons of presentation we
shortly recapitulate the model and its mean value analysis.

The network comprises N resources. We allow for three service disciplines: first-come
fArst-served (FCPFS), processor sharing (PS) and infinite server (IS). It is assumed that the
service rates at each of these resources are fixed and normalized 1o unity.

There are R closed customer chains. The K, customers of chain » follow a Markov rout-
ing with visiting ratios [, . al a resource n. The service demands of the customers of
chain r at resource n are stochastically independent random variables with mean w, ,.
The service demands at a FCFS resource are exponentially distributed with a common
mean for all chains.

The studied steady state system characteristics are

S (KD expected residence time of customers of chain r at resource n,
A, (K) throughput of customers of chain r at resource n and
L, (K] expected number of customers of chain » at resourcen,

where the argument K expresses the dependency on the population vector,
The MV A approach, as sketched in Subsection 3.3.5, leads to a recursive procedure for the
evaluation of the characteristics.

For all population vectors k in the range of (0,...,.0) through {K;, ..., Kg ) a set of mean
value relations has to be evaluated. ;
The expected residence time of a chain r customer at a FCFS or PS resource is given by
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R

Sp k3= T Ly (k—eJw, , +w,, ~ (6.2.1)

i=1

and at an IS resource by

Su k)= w,, . ‘ (6.2.2)
The throughput of customers of chain r at resource n is given by

k
JNTD JEp— L Y — 62.3)
Z fm »"Sm J'(k )
m=1

The expected number of chain r customers at resource n is given by

Ly, (k)= A, (k)S,, (k). (6.2.4)

6.3. A mean value analysis of M/G/1//PR-queues

Consider a queueing system with a single service unit and a fixed service rate which is
normalized to unity. Customers arrive as R independent Poisson streams with rates
A.,7=1,..R. The service demands of the customers of stream r are stochastically
independent random variables with distribution functions G, with mean w, and variance
o 2. The customers of a given stream are served in order of arrival, but between the
streams a preemptive resume priority schedule governs the service discipline. This
schedule is such that customers of stream i have a higher priority level than customers of
stream r if i <r. If a higher priority customer arrives during the service of a lower
priority customer, the service of the latter customer is instantaneously interrupted in
favor of the new customer. The serving of the lower priority customer is resumed as soon
as no higher priority customers are present anymore.

In such a system, which shall be referred to as an M/G/1//PR queue, the steady state per-
formance measures may be derived by means of a mean value reasoning. This reasoning is
based on the following three results for the stochastic process under consideration: 1.
Poisson arrivals see time averages, 2. the expected residual life time formula, and 3.
Little’s formula, cf. Section 5.3 for more details.

For a more detailed analysis we refer to Gaver [1962], Cobham [1954], Takacs [1964],
Wolff [1970]} and Stidham [1972].

The system is characterized by

R the number of priority levels,

A, the instream rate of customers with priority level r,

W, mean service demand of a customer of steam r ,‘ and

o2 variance of the service demand distribution of a customer of stream r.
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The following steady state characteristics play a role
Sr expected residence time of a stream r customer in the system,

C, expected service completion time of a stream r customer, i.e. the expected
length of the time interval which passes between the moment that the cus-
tomer is taken into service for the first time and the moment that its service
has been completed,

L, expected number of stream r customers in the system, and
Q, probability that a stream r customer is in the service completion phase.

It is assumed that Aj;w+..+Apwg <1. This implies that the queveing process is not
degenerated, since the total amount of work offered to the system does not exceed the
capacity of the service unit.

We discuss a derivation of direct relations between these system characteristics based on a
mean value analysis reasoning. The technique is very similar to the one described in Sec-
tion 5.3.

The reasoning starts with a relation for the expected residence time of customers of
stream r,r=1,...R. Since Poisson arrivals see time averages, a stream r customer sees
upon its arrival at the priority queuve on the average L; customers of stream i, i=1,...R,
present and with probability Q; it finds a stream r customer in the service completion
phase. The expected remaining service demand of the L, —Q; customers which are not in
the service completion phase, equals the mean of the distribution function G;, i.e. w;. The
expected remaining service demand, say m;, of a customer of stream i being in the service
completion phase equals the expectation of the limiting distribution of the remaining ser-
vice demand as seen by a random observer ( Poisson arrivals see time averages), i.e.

m; = oltw? , (6.3.1)

2w; .

A customer of stream r has to wait for the service completion of the customers of the
streams ¢==1l,...r/ which are in the system upon its arrival. Furthermore, during its
residence in the system new customers of the higher priority levels i =1,...,r— 1 are arriv-
ing at a rate A;. These customers are to be served in front of the customer of stream 7 as
well. The expected residence time thus atains the following form

r r r=1
S,= F(L~Qw, + ¥ Qimy +w, + T A S, w, . (6.3.2)
i=1 i

=1 i==]

To obtain an expression for the expected number of customers of stream r we apply
Little’s formula

L. = \,S, . (6.3.3)
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To evaluate the (limiting) probability that a customer of stream r is in the service com-
pletion phase we observe that the expected length of the service completion phase satisfies
the following equation

r—1
C,=w, + I ANCowy (6.3.4)
i=1

3

which yields
C, = —02 . (6.3.5)
r r=-1
1~ Z )\iwi
i=1

Applying Little’s formula yields
0, = A.C, . (6.3.6)

Introduce, fori r=1,...R, W, , and M, , as
W, = — (6.3.7)
1— 3 Aw;
i=1
and
my
Mg,,- = B a—— (63.8)
L= ¥ x;wy
j=1

Then, we may rewrite (6.3.2) as

r r
S, = Z (Li - )W7i,r + Z Qz’ Mz‘;‘ + Wr.r . (6.3.9)
i=1

i=1

The above sketched relations constitute a recursive scheme for the evaluation of the per-
formance characteristics in a M/G/1//PR-queue. One may even give a closed form expres-
sion for the expected residence times. By induction the following lemma may be shown.
For similar results see for instance Takacs [1964] and Wolff [1970],

Lemma 6.1
Forr=1,.,R
-
Z Agwimy
— i) W,
S, = + — . (6.3.10)

r—1 r ~1
(=T xw, = T A;w;) 1= F A w,
F=1 j=1 Jj=1

The Relations (6.3.7) through (6.3.9) form the basis for the approximation methods 1o be
discussed in the next section.
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6.4. A service completion time approximation

Let us consider the closed gueueing network model of Section 6.2. At some of the
resources a preemptive resume priority schedule is implemented. For reasons of presenta-
tion it is assumed that the priority levels correspond with the customer chain numbers.
This implies that at all the resources with a priority schedule R priority levels are dis-
cerned which correspond with the R closed customer chains. Furthermore, at all priority
resources the customers of chain 1 have the highest priority and of chain R the lowest. It
is straightforward to extend the reasoning of this section to more general schedules.

As we have seen in Section 6.2 the model without priority queues may be evaluated by
means of the recursive MVA algorithm. For the model with priority queues the relations
for the throughput (6.2.3) and the expected numbers of customers (6.2.4) remain valid as
these are based on applications of Little’s formula. The relation for the expected residence
time (6.2.1) will be violated as the arrival theorem will no longer hold.

A natural way to design an approximation method offers itself. One has to adjust the
relation for the expected residence times in such a way that the violation of the arrival
theorem and the introduction of the alternative service discipline are compensated. These
adjustments may be founded on a study of the behaviour of a priority gqueue in a more
simple environment and on the formulation of an approximating arrival theorem.

The simple environment has been sketched in the preceding section. As an approximating
arrival theorem we simply extend the MVA approach to the non-separable queueing net-
work model: the limiting distribution at arrival epochs of customers of chain { priority
level ) r equals the limiting distribution of the same system with one customer of chain
r removed. ‘

Note that the latter assumption implies that the expected residence time relations for
FCFS and PS resources are given by the Relation (6.2.1). For the formulation of an
approximating expected residence time relation we, therefore, may concentrate on
resources with a priority schedule.

Consider a resource n with a preemptive resume priority schedule. Combining Relation
(6.3.9) for the expected residence time of a customer of priority level r at an M/G/1//PR
queue and the approximating arrival theorem, we formulate the following approximating
expression for the expected residence time of a customer of chain r at a preemptive
resume resource n

.

S, (K)= § (L (K—e,) = Qu (K —e, )W, (K)+ (6.4.1)

i=1

R
Z Qn;x‘(X_er )Mn,iér(K) + Wn',.’,(X) .
i=1
Combining (6.3.5) and (6.3.6) yields the following approximation for the probabilities
Qn i (K € )

Arz i (K_e,- )‘W” i

i~1 "
1= T Ay K=,
i=1

Qn ,e(K —e,) = (6.4.2)
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This relation differs from (6.3.6) just by the addition of the resource index n and the
dependency on the population vector X .

First guesses for W, ; (K} and M, , .(K ) follow from (6.3.7) and (6.3.8), namely

Wa i

Wi (K)= Py (6.4.3)
1— L Apj(K—e v,
i=1
and
M, (K)= — Pon . (6.4.4)
1= T Ay (K—e )w,,;
i=1

The idea 1o base the approximation on the values for the population vector X —e, rather
than for X must be seen in the light of the arrival theorem. If we assume the arrival
theorem 10 hold (approximately) in the network model with priority queues, it might be
argued that the number of interrupts during the residence of a given customer is deter-
mined by the situation where this customer is not in the system.

As an aside it should be noted that in practical situations the removal of a low priority
customer will hardly influence the throughput of higher priority customers. Then, the
argument that the use of the population vector K —e, leads 1o a purely recursive scheme,
whereas the use of population vector K does not necessarily implies this property, may
be a decisive argument to use the dependency on K —e, .

For exponentially distributed service demands the above sketched scheme has been men-
tioned eg. in Bryant, Krzesinski and Teunissen [1983). An improvement has been sug-
gested in Chandy and Lakshmi [1983]. We shall refer 1o the approximation as the MVA
approximation.

The idea behind Relation (6.4.2) is that there is a constant instream of customers of prior-
ity level i during the sojourn of a customer of priority level r, where i=1,..,r—1, The
method is based on an approximation of this instream rate. For open queueing network
systems as the M/G/1//PR queue this reasoning is sound enough.
However, the fact that in a closed queueing network model the populations are finite
introduces a complication. Especially the instream rate of customers of the levels
i+1,...,r —1 during the service completion of customers from the levels 1,...,i seems to be
grossly overestimated by (6.4.3) and (6.4.4). We therefore suggest to approximate
W, (K)and M, ; .(K) by

PRLE (6.4.5)
F— ¥ A, (K~ew, ;

i=1

Wn,i,r(K)z

and

My, (K) = — T ) (6.4.6)

t
1- F Ay (K—e v,
i

=1
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Observe that these expressions are approximations .for the expected service completion
time of a customer of chain { and the expected remaining service completion time, cf.
Relation (6.3.5). The approximation method suggested by the Relations (6.4.5) and
(6.4.6) shall therefore be referred to as the SCT or service completion time approximation.

6.5. Closed multichain queueing network approximations

6.5.1. Introduction

The approximation methods suggested in the preceding section use the recursive MVA
algorithm for closed multichain queueing network models. As we have seen, the compu-
tational complexity and storage requirements of this algorithm prohibit an exact evalua-
tion for larger values of R ,K'{,...,Kp. A number of approximation methods has been
proposed in Chapter 4. The Schweitzer method and the global aggregation method
appeared to be efficient and accurate tools for the evaluation of approximations for some
important performance characteristics. Especially in combination with a first order depth
improvement the methods performed quite satisfactory. In this section we discuss the use
of these methods for the approximate analysis of queueing network models with preemp-
tive resume priority queues.

In order not to obscure the line of argument, the service demands at the priority queues
are assumed 10 be exponentially distributed. As a consequence the expected residence time
relations attain a more simple form. The extension to general service demand distribu-
tions is straightforward.

For the sake of completeness let us formulate the expected residence time relation at a
preemptive resume priority. queue with exponential service demand distributions. It is
easily verified that (6.4.1) reduces to

.
Sy (K)= % Ly (K—e, W, o (K)+ Wy, (K. (6.5.1)
i=1
We study the MVA approximation and the SCT approximation as suggested by (6.4.3)
and (6.4.5) respectively.

6:5.2. The Schweitzer method

The Schweitzer method is founded on the idea of removing the recursion from the MVA
algorithm and to concentrate on the evaluation of the performance characteristics at the
population vector K, cf. Section 4.3.

To construct a non-recursive set of mean value relations at the population vector X the
following approximations L, ; . are introduced for L, ;(K—e,)

L, (K) JiFET
Loiy=lpg 3 (6.5.2)
S LK) L=y ’
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Furthermore, it is suggested to approximate A, ;{K —e, ) by A, ; ., Where,
An REd = An,i (K) . (653)

The mean value relations at the population vector K then transform in a set of non-linear
equations for the performance characteristics at the population vector XK. Omitting the
argument X' we may write these relations as follows.

At a first-come first-served or processor sharing resource n the expected residence time
relation for a customer of chain r is

R
Sy, = _ZIL,, i Vn g W, (6.5.4)
o

and at an infinite server resource n
Sur = Wn,. (6.5.3)

As an approximation for the expecled residence time at a resource with a preemptive
resume priority schedule we obtain instead of (6.5.1)

-
So,= Ly i Woipo v W, ., (6.5.6)
i=1
For the values W, ;. the approximations proposed in the preceding section are used in
combination with {6.5.3). The first idea, the MV A approximation, leads to
Wn A7 = b A 3 (6.57)

r=1
L= 3 Anjr¥a,
i=1

wheras the second idea, the SCT approximation, leads to

Wn i

W,,, = . ) (6.5.8)
L= 2 AnjrWny
i=1

The relation for the throughput of chain r customers at resource n is
f 7 Kr

Apr = % (6.5.9)
Z fm > Sm s
m=1
The relation for the expected number of chainr customers at resource n is
Ly, =An/ S, - (6.5.10)

This set of non-linear equations for the approximate characteristics may be solved in a
standard way by successive approximations. Numerical experiments have shown the
method to converge in all situations considered. We have implemented the Schweitzer
approximation in combination with a first order depth improvement and have found the
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method to be a very reliable and accurate tool for the approximation of the relevant per-
formance characteristics. Especially the method based on the service completion time
approximation yields very good results.

6.5.3. The global aggregation method

The global aggregation method, cf. Section 4.5, may be extended in a straightforward way
1o include approximations for preemptive resume priority resources.

This method consists of a recursive scheme rimning through all integer values & in the
range 0,....T, where

R
T=3 K, . (6.5.11)

r=1

The expected residence time for a chain r customer at a first-come first-served or proces-
sor sharing resource n is given by

< ,
Saplk)= F L, lk=1lw,, +w,, ‘ (6.5.12)

i=1
and at an infinite server resource n by
Sa k)= w,, . {6.5.13)
The expected residence time at a preemptive resume priority resource n may be approxi-
mated by the following variant of (6.5.1)
r
Sp k)= F L, (k=1W,  (k—1)+ W, (k—1). (6.5.14)
i=1

For the MVA approximation the value W, ; . (¥ —1) is put to

u}
Wn,i,r(k —1)=

e — (6.5.15)
1= 3 A, 6—Dw,

i=1
and for the SCT approximation to

Wy k=1 = —— . (6.5.16)
= X A k=1w,
j=1

The throughput of customers of chain r at resource nn is approximated by
K fask

A k)= S P
T FomsSm k)
mo=

(6.5.17)

and the expected number of chain r customers at resource n by
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L, (k)=A,,k)S, (k). (6.5.18)

The above described scheme is purely recursive and very efficient: the number of recursion
steps is linear in the total number of customers instead of exponential in the number of
customer chains. In the discussion of the numerical results we have considered a first-
order depth improvement of the global aggregation method. It should be observed that
the last step of such a depth improvement may be performed by means of the relations
suggested in the Sections 6.2 and 6.4,

The numerical resulls are very promising and justify one of the main conclusions of our
research: for the approximate analysis of closed queueing network models the use of
purely recursive methods yields appealing, efficient and accurate approximation methods.

6.6. The CP-terminal system with preemptive resume priorities

6.6.1. Introduction

This section deals with the exact analysis of a priority queueing system which models a
real life system comprising a set of terminals coupled with a single central processor sys-
tem, a so-called CP-terminal system.

There are R groups of terminals, numbered r=1,....R. The K, terminals of group r have
independent and exponentially distributed thinktimes with parameter A,.. The processing
times of their jobs at the CP are independent and have a distribution function G, with
mean w,. At the CP a preemptive resume priority schedule is implemented. The jobsof a
terminal from group i have a higher priority than the jobs from group r if i <r.

For jobs from terminals of the same terminal group one may assume any work-conserving
service discipline, for example first-come first-served, processor sharing or preemptive
resume priorities, cf. Wolff [1970].

The user at the terminal thinks only if he has no job at the CP. Otherwise he is waiting
for a response from the CP. So each user has al most one job at the CP at a time.

Our main interest is in the consequences of the priority schedule on the utilization of the
CP and the expected response times of the jobs of the various priority levels. Thus it is
our main purpose 1o evaluate global performance measures.

The system is a gueueing system with a single service unit, finite Poisson sources, a
preemptive resume priority service discipline and general processing time distributions.
For the system with infinite Poisson sources we have described a mean value analysis in
Section 6.3. For the system with finite Poisson sources, until recently, only complicated
results in terms of Laplace-Stieltjes transforms were known. In Jaiswal [1968] an exten-
sive study of such systems has been presented.

For the evaluation of utilizations and expected response times in a CP-terminal model
with exponential think and processing times an exact algorithm has recently be presented
in Veran [1984). The analysis is based on a detailed study of the equilibrium equations of
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the underlying continuous time Markov process.

‘We present a recursive algorithm for the evaluation of the utilizations and expected
response times based on mean value arguments and properties of regenerative processes
that can be recognised in the stochasic process describing the behaviour of the queueing
system. It is shown that, for exponentially distributed processing times, the resulling
scheme coincides with the one presented in Veran [1984] Our analysis extends to the
situation where the processing times have a general distribution in case a terminal group
consists of a single terminal. For group with more than one terminal the exponentiality
of the processing time distribution is essential.

This section is organized as follows. In Subsection 6.6.2 the recursive scheme for the CP-
terminal system with general processing time distributions and a single terminal per
group is derived.

In Subsection 6.6.3 it is shown how this analysis may be extended to cover systems with
more than one terminal per group.

The recursive scheme induces a recursive algorithm for the evaluation of the main perfor-
mance characteristics. In Van Doremalen [1984:3] an efficient algorithm has been
presentied 1o execute this recursive algorithm. In Subsection 6.6.4 we make some final
remarks with respect 1o the analysis presented.

6.6.2. The CP terminal model with one terminal per group

In this subsection we discuss the exact analysis of a CP-terminal model with one terminal
per group. Observe that this implies that the system comprises R terminals and R prior-
ity levels at the central processor. A recursive scheme is derived {or the evaluation of the
fractions of time the central processor is busy with jobs of a given terminal. The expected
response times are simple functions of these quantities.

To get an intuition for the line of reasoning the following observations are made.

First, note that the first r terminals behave as if the last R —r terminals did not exist.
Obviously, the reverse is not true.

Secondly, note that the stochastic behaviour of terminal » may be analysed by consider-
ing a closed cyclic queueing system comprising two resources and a single customer which
alternately visits these two resources. The service demand at one resource describes the
thinktime at the terminal. The other resource models the execution of a job of the termi-
nal. It behaves as a resource with a single service unit subject 1o breakdowns. The break-
downs are busy periods of higher priority jobs from the terminals 1.0~ 1.

These observations indicate the possibility of a recursive analysis based on an analysis of
busy periods.

The basic recursive scheme

The evaluation of the performance measures is based on a mean value analysis of a special
type of busy cycles. Before presenting the basic recursion the following terminology is
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introduced to describe these busy cycles

busy r—period a busy period of jobs from the first r terminals at the central pro-
cessor, i.e. an uninterrupted period of time during which the central
processor is execuling jobs from the first v terminals,

idle r—period  an idle period with respect to jobs from the first r terminals at the
central processor, and

busy r—cycle a busy cycle of the first r terminals, i.e. a combination of an idle
and a busy r-period.

The basic observations are: 1. during a busy r-cycle at most one job from terminal r is
executed and 2. a busy r-cycle forms a renewal cycle in the stochastic process describing
the behaviour of the first r terminals. 1t should be noted that the start of a busy r-
period is a regeneration point in this process as well.

Let us introduce the following notations:

A, y Q)\,» , where A o= 0 by definition,
i=
U, fraction of time the CP is executing jobs from terminal r,
U, ioui , where uo=0 by definition, and
i=
S, expected response time of a job from terminal r at the CP, including service

and waiting time.

Consider the situation that we have analysed the behaviour of the first 7 —1 terminals
and that we are interested in the evaluation of u.. One of the following three events
occurs in a busy r-cycler 1. a busy r-period starts with a job from terminal r, or 2. one
job from terminal r enters during the busy r-period, or 3. during the busy r-period no job
from terminal r is executed at all.

Studying the structure of a busy r-cycle and conditioning on the first two events, one
may verify that

A,
A

A,

r

+ 1=

7, (6.6.1)

r

is the probability that during a busy r-cycle a job from terminal r is executed, where 7,
is to be interpreted as

T, probability that during an arbitrary busy r-period a job from terminal r is
executed, given that this period does not start with a job from terminal r.

The evaluation of the probabilities 7., r=1...,R, is studied later on. We now proceed
with a mean value analysis of a busy r-cycle.
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The expected number of busy r-periods per unit time equals the expected number of idle
r-periods per unit time. The latter expectation is the quotient of the long run fraction of
time that none of the first 7 terminals has a job at the CP, 1-U, , and the expected length
of an idle r-period, A,”*. The long run fraction of lime the CP is executing jobs from ter-
minal » is the product of the expected number of busy r-periods per unit lime, the proba-
bility that during a given busy r-period a job from terminal r is executed, and the
expected processing time of a job from terminal r.
This yields, for r = 1,....R ,

1-U, | A A,

= —L |4 (1 -
T AT A, A,

Jm b w, . (6.6.2)

Inserting U, =U, _,+u, and A,=A,_,;+\, and solving for U/, yields for r=1,...R

Ur—l + ().,- “+ A{-;Wr )W}-

U =
T+ (A, + A7, W,

(6.6.3)

With starting values U =0 and Ay=0 Relation (6.6.3) induces a recursive scheme for the
evaluation of the fractions of time u,. that the CP is executing jobs from a specific termi-
nal r if the probabilities 7. can be evaluated.

One may verify that the expected response time S, of a job from terminal r at the CP is
given by relation
‘4«'}.

1
S, = —
u, A

{6.6.4)

Let us now concentrate on the evaluation of the probabilities 7.

Evaluation of the probabilities ,

The probability 7, depends on the think rate A, of the user at terminal r and on the
think rates and processing time distributions of the users at the terminals i=1,..r—1. It
does not depend on the processing time distribution of a job from the user at terminal r.
The terminals i=r +1,....R have no influence at all.

This leads to the introduction of auxiliary probabilities #,(A) which, for r=1,..R and
A 20, are defined as

7, (A) conditional probability that during a busy r-period at least one custo-
mer from a Poisson process with parameter A arrives, if the period does
not start with a job from terminal r.

For r=1 and A 20 we may initialize 7,{AJ=0. The probabilities #, correspond with the
probabilities 7 (A, }forallr=1,....R.

The remainder of this subsection is devoted to the derivation of a recursive scheme for
computing the probabilities 7, () for a given r in the range of r=1,.R—1. The
method is based on the use of the structure of busy r-periods.
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The first job in 2 busy r-period is from one of the terminals i=1,...,r. Conditioning on
the first job being either from the user at terminal  or from one of the users at the ter-
minals {=1,...,/ —1, we obtain for all A 20

I_i’_

A,

7o) = i v + ®,00), (6.6.5)

r

where ¥, (1) and @, (1) should be interpreted as

W, (A) conditional probability that during a busy r-period at least one customer of
a Poisson process with rate A arrives, if it starts with a job from terminal r
and

@,(A) conditional probability that during a busy r-period at least one customer
from a Poisson process with parameter A arrives, if it starts with a job from
one of the terminals 1,...r —1, Le. if it starts with a busy {(r-1)-period.

Let us first have a closer look at the probabilities ®, (A ). Forr=1 and A 20 we may ini-
tialize with

®{(A)= 0. (6.6.6}

For r=2,...,R a busy r-period starts with a busy (r-1)-period if it does not start with a
job from terminal r. At the end of a busy (r-1)-period one of the following three events
has occured

1. with probability #,.(Xx) at least one customer from a Poisson process with
parameter A has arrived,

2. with probability 7, (A + X, ) — #.(A) a job l'rom terminal » has arrived and no
customer {rom a Poisson process with parameter A, and

3. with probability 1 — 7.{h + A, ) the end of the busy (r-1)-period coincides
with the end of the busy r-period and no customer from a Poisson process with
parameter A has arrived.

Conditioning on the first two events we obtain

&M= 7, N+ r, N+ 2, )= 7. Q¥ (W) (6.6.7)

Next we concentrate on the evaluation of the probabilities W.{A ). Here, for ihe first time
the explicit processing time distribution play a role in the analysis. We first discuss the
situation that the processing time of a job from terminal r is exponentially distributed.
Afterwards the more complicated and somewhat different analysis for a general process-
ing time distribution is given.
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Exponentially distributed processing times

Suppose that the processing time of a job from terminal r is exponentially distributed
with parametier u,. If the busy r-period starts with a job from terminal r, three events
may occur: 1. the job is interrupted by an arriving higher priority customer, i.e. a busy
(r-1)-period, 2. the job is interrupted by an arrival from a Poisson process with parame-
ter A, or 3. the job is processed without interrupts.

Conditioning on the first two events yields

- Arey _ A
,(A\) = m 7, AN+ (1 — 7, ONT, A + A ta h (6.6.8)
which may be rewritien as
-+ -
woy= A~ F AT () (6.6.9)

My + A+ Ar..l’ff,-()\) '
Relations (6.6.6), (6.6.7) and (6.6.9) induce a recursive scheme for the evaluation of the

probabilities 7, {A ).

Before starting the discussion on general processing time distributions, an alternative for-
mulation of the recursion is given establishing the equivalence of our scheme and the
scheme proposed in Veran [1984]. It is assumed that all processing times are exponen-
tially distributed.

Lemma 6.1

Define 8, (\), for r = 1,...,R and A 20, as

G, A)=x+ A _ 7. (A). (6.6.10)
Then, for r =1 and A 20,
0, A=A (6.6.11)

and, for r =2,....,R and A 20,
-yt 6,.-;()\%-)\,_;)

_ My
8, (x)=8,_,(x) PRS- NS

{6.6.12)

Proof

For r=1 and A 20 (6.6.11) trivially holds. So, fix r,r=1,..R—1 and A, A 20. From
(6.6.5) it follows that

8, )=+ 2,0+ A0, (M), (6.6.13)
Furthermore, it follows from (6.6.9) that
6, ()
R bt d— 6.6.14
v (\) PRET RO ( )

and from (6.6.7) and (6.6.14) that
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[6, (A+x, )—A,—6, (A6, (A)

A_1@, (A= 6. (A)-2+ @, 46,0

(6.6.15)

Combining (6.6.13), (6.6.14) and (6.6.15) yields (6.6.12). ]

The Relations (6.6.11) and (6.6.12) correspond with the scheme as given by Relation (13)
in Veran [1983].

General processing time distributions

Let G, be the processing time distribution of a job from a particular terminal r. Condi-
tioning on the processing time of the job from terminal r we find for A 20

w0\ = ! 2, (A\x)dG, (x), (6.6.16)

where p, {x.x ) is the conditional probability that during a busy r-period at least one cus-
tomer of a Poisson process with parameter X arrives, provided this busy r-period starts
with a job from terminal r with a processing time x .

The processing time of a job from terminal r at the central processor is interrupted by
jobs of higher priority forming busy (r-1)-periods. Conditioning on the number of busy
(r-1)-periods interrupting the processing time of a job from terminal r of length x, we
find

(Ar-lx)k —A,_jx
e

)= T 2 Oux k), (6.6.17)

k=0 k!

where p,{(A,x k) is the conditional probability that during a busy r-period at least one
customer from a Poisson process with parameter A arrives, provided this busy r-period
starts with a job from terminal r with a processing time x which is interrupted by &
busy (r-1)-periods.

One may verify that
A k)= 1—e ™ (Q—m, (A)F . {6.6.18)

Combining these results yields

v, = [t — e * MmO y6 (). (6.6.19)
[+]

If we write the Laplace-Stieltjes transform of the distribution function G, as I, , i.e for
alls 20

T.(s)= [e ™ dG,(x), (6.6.20)
[4]

then ¥,.(A) may be written as
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V.M =1-T,A+A,_;7, (). (6.6.21)

This completes the analysis of ¥, (A) for a general processing time distribution.

The last relation is interesting because it shows that for processing times with a rational
Laplace-Stieltjes transform, the evaluation of ¥, {(A) reduces to the solution of a set of
linear equations, cf. Van Doremalen [1984:2] for a discussion on phase-type processing
time distributions.

6.6.3. A CP terminal system with multi~terminal groups

The analysis discussed in the previous section can be extended to certain CP-terminal sys-
tems with more than one lerminal per group. Such multi-terminal groups consist of sets
of active terminals with identical specifications. The think times of the users and the pro-
cessing times of the jobs are stochastically independent and exponentially distributed.
The priority level is the same for all terminals in a specific group. The service at the CP is
governed by an alternative service discipline which is assumed to be work-conserving, i.e.
it does not affect the amount of processing time of a given customer, cf. Wolff [1970).

The basic idea in the analysis of a system with multi-terminal groups is a conversion of
the service discipline at the CP. Each terminal obtains its own priority level. So, there
are as many priority levels as terminals. The resulting model is a CP terminal model
which may be analysed with the technique that has been described in the previous section.
An aggregation step provides the results for the original system with multi-terminal
groups.

Essential in the justification of the proposed analysis is to determine whether the utiliza-
tion of the CP is influenced by the transformation of the service discipline. In general, the
service discipline will have an influence on the utilization.

However, if the processing times at the CP are exponentially distributed, the utilization is
not affected by applying an alternative work-conserving service discipline. Examples of
work-conserving disciplines are first-come first-served, processor sharing and, for our
analysis very important, preemptive resume priorities.

To understand that the utilization is not affected by the use of an altemauve work-~
conserving service discipline, note that the jobs from terminals with the same exponen-
tially distributed processing times are in a sense undistinghuishable and therefore inter-
changeable at the CP.

This subsection is concluded with an elaboration of this idea for the evaluation of the
utilizations in a multi-terminal CP-terminal system.

et the tuple {r .k ) denote terminal number k in group r, where r = 1,...,R and, for given
r, k=1,.,K,. The auxiliary priority rule is introduced as follows. A job from terminal
(i I ) has a higher priority than a job from terminal {r k) if i <r and, if i=r1, if [ <k .

invoking the recursive scheme derived in the preceding subsection one may evaluate the
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fractions u, ; of time the CP is executing jobs from the various terminals (r k). An
aggregation step yields the fraction v, of time the CP is executing jobs {rom group r

X,
Up = ¥ Upg . (6.6.22)
k=1
The expected response time of a job from terminal group r is evaluated by
K, w, 1
o - 6.6.23
S, " X, ( )

6.6.4. Conclusions and remarks

Based on mean value ideas and renewal arguments a recursive scheme has been derived for
the evaluation of important characteristics of a system comprising a set of terminals and
a central processor with a preemptive resume priority discipline. It should be observed
that the evaluation of the recursive scheme is not trivial. Of course, it is possible to
implement the recursion by brute force in any high level programming language with a
recursion feature, like in ALGOL 68. For larger values of R Ky, ..., Ky this cannot be
recommended, as the computational complexity and storage requirements of such an
implementation would be disastrous. In Van Doremalen [1984:3] we bave presented an
enumeration algorithm which is relatively efficient. The number of recursion steps is in
the order of
R R

(X RITI &, +1).

raed r=1
The complexity of the scheme thus resembles that of the MVA algorithm for the evalua-
tion of a closed multichain queueing network model with R chains and population vector
Ky.....Kp. An immediate consequence is that for larger numbers of priority levels an
exact analysis is prohibited by the complexity of the recursion. The standard approxima-
tion methods of Section 6.4 have the same complexity as the exact method introduced in
this section. For larger values of R one has, therefore, to resort to the methods intro-

duced in Section 6.5. In the next section some examples are presented which support
these remarks.

6.7. Numerical results and conclusions

6.7.1. Introduction

In this section we discuss numerical results illustrating the accuracy of the various
methods presented for two typical models from the analysis of computer systems: a CP-
terminal system and a closed central server model.

We have restricted the discussion to a few examples which represent a large class of
queveing network models. For a more detailed numerical analysis of the methods and a
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comparison with other approximation methods we refer to Van Doremalen, Wessels and
Wijbrands [19851.

In Subsection 6.7.2 some examples of a CP-terminal system are treated. In Subsection
6.7.3 a large example is presented which is related with the closed central server model
which has been introduced in Subsection 4.6.4. Some general conclusions that may be
drawn from a more sophisticated analysis of the methods are reviewed in Subsection
6.7.4.

6.7.2. CP-terminal models.

The CP-terminal model provides an interesting class of test examples. In the first place
because the model has its virtue as a tool for the analysis of the influence of priority
schedules on the performance of computer systems. In the second place because the model
can be analysed exactly in a relatively efficient way as we have shown in Section 6.6.

Our numerical example concerns four closely related models, numbered 1 till 4. A model
is given by the number of groups, by the numbers of terminals per group, the expected
think times and the distribution functions of the processing times. Table 6.1 shows the
relevant model parameters.

Let us first consider the case where all processing times are exponentially distributed.
Tables 6.2 and 6.3 show the numerical results for utilizations at the CP, i.e. the fractions
of time the central processor is processing jobs of a certain group, and the expected
response times at the CP per terminal group.

Apart from the exact results {EXACT) we have included the figures for the six approxi-
mation methods which have been suggested in this chapter.

The first three methods are the MVA approximations. Apart from the standard MVA
method we have implemented the first order depth improvement of the Schweilzer
method (SW-DI) and of the global aggregation method (AG-DI). The next three methods
are the corresponding service completion time or SCT approximations.

The columns M and G stand for the model and terminal group number respectively.

The first observation that may be drawn from the tables are that the SCT approximations
have a higher accuracy than the MVA approximations and that the first order depth
improvements of the Schweitzer and global aggregation method yield approximately the
same results as the corresponding standard methods.

These observations may be generalized as further numerical evidence has learned. The
first conclusion is therefore 1o use the SCT approximation with a first order depth
improvement of the Schweitzer or global aggregation method.

The second observation is thatl the rather artificial priority schedules of the models 2 and
4 yield relatively bad results, whereas the more natural schedules which give preference
1o the smaller jobs yield very good results. This observation has been made earlier for
related approximation methods as for instance the virtual server approximation, cf.
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Sevcik [1978] and Kaufman [1984], but numerical experiments have indicated that it is
irue for most approximation methods presented in the literature, cf. Van Doremalen,
Wessels and Wijbrands {19851 for a discussion.

The second conclusion is therefore to be careful when studying priority schedules which
give preference to jobs with longer processing times.

Apart from this CP-terminal system we present the results for the models 1 and 2 with
deterministic service demands at the CP in Table 6.4. We have used the first order dep‘ih
improvement of the Schweitzer method. The results are very remarkable if we compare
the bad approximations for model 2 with exponential processing times with the relatively
good approximations for the model with deterministic processing times. Further research
in this direction is necessary to explain this behaviour.
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M populations processing limes think times
G 1 2 4 1 2 3 4 i 2 3 4
1 1 1 2 2 1 16 1 16 4 b4 8 128
2 T 12 2 2 g 2 8 8§ 32 16 64
3 P12 2 4 4 4 4 116 16 32 32
4 1 1 2 2 8 2 8 2 132 8 64 16
5 11 2 2 16 1 16 1 | 64 4 128 8
Table 6.1 : Model parameters for the CP-terminal examples.
MVA approximations SCT approximations 1
M G | EXACT | MVA  SW-DI  AG-DI | SCT SW-DI  AG-DI

1 .200 .200 .200 .200 200 200 200

2 .187 .186 .186 186 .187 .187 .187

3 172 .169 .169 169 171 171 172

4 151 .147 .147 148 | 1151 151 .152
| 5 .124 118 118 119 124 124 125

1 200 200 200 200 200 200 200

2 181 174 174 172 177 177 176

3 .153 127 127 125 .140 .140 .138

4 122 073 073 072 095 095 093

5 093 036 2036 034 055 055 055

1 220 220 220 219 220 220 219

2 .208 208 208 207 208 208 .208

3 92 190 .190 .190 193 .193 .193

4 .167 .162 162 .163 .168 .168 .168
; 5 .126 118 118 .120 126 127 .128
1 220 220 220 219 | 220 220 219
2 202 .197 197 196 200 .200 199
% 3 171 .147 .148 147 | 163 163 161
4 132 083 083 083 | .11 110 110
5 094 039 039 038 063 063 063

Table 6.2: Approximations of the utilizations at the CP.
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MVA approximations SCT approximations
G | EXACT MVA SwW-DI AG-DI 5CT SW-DI AG-DI
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 2.7 2.8 2.8 2.8 2.7 2.7 2.7
3 7.3 7.7 7.7 7.6 7.4 7.4 7.3
4 20.9 22.5 22.5 22.1 21.0 21.0 20.6
5 64.9 71.5 71.5 70.7 63.1 65.1 63.8
1 16.0 16.0 16.0 16.0 16.0 16.0 160
2 12.3 14.0 14.0 14.4 13.2 13.2 13.5
3 10.1 154 154 15.9 12,5 12.5 12.9
4 8.4 19.2 19.2 19.9 13.1 13.1 134
5 6.8 23.5 23.5 252 14.1 14.1 14.2
1 1.1 L1 1.1 1.1 1.1 1.1 1.1
2 3.2 33 33 33 3.2 3.2 32
3 9.6 10.2 10.1 10.1 9.5 9.5 9.6
4 31.8 35.3 34.7 34.2 314 31.3 31.0
5 126.2 144.0 142.8 139.7 125.8 124.1 121.1
1 17.8 17.8 17.8 17.9 17.8 17.8 17.9
2 15.3 17.2 17.3 17.7 16.0 16.0 16.4
3 14.7 22.2 22.2 22.5 17.1 17.2 17.6
4 14.2 31.8 319 32.4 20.1 20.2 20.5
5 13.2 42.7 42.9 44.4 23.8 23,9 239

Table 6.3 : Approximations for the expected response times at the CP.

deterministic exponential
processing times processing times
M G EXACT SCT-SW-DI EXACT SCT-SW-DI
1 1 200 .200 200 200
2 .189 .189 187 187
3 174 174 172 171
4 154 154 151 151
5 127 125 124 124
2 1 200 200 200 200
2 184 180 .181 177
3 159 159 153 .140
4 127 122 122 095
5 095 094 093 055

Table 6.4 : Approximations for the utilizations at the CP for
deterministic and exponential processing time distributions.
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6.7.3. A closed central server model

The closed central server model introduced in Subsection 4.6.4 provides an interesting
example for the approximate analysis of large scale computer systems with a preemptive
resume priority schedule at the central processor units.

The system comprises three CPU’s and nine 1/0 devices. Three types of jobs are distri-
buted over the three CPU’s to form nine closed customer chains in a closed multichain
queueing network model. Let us assume that one wants to study the influence of a prior-
ity schedule at the CPU’s. The idea is to give preference to type 1 over type 2 and to type
2 over type 3.

Table 6.5 pictures the throughputs of the three types at the respective CPU’s. Apart from
the results obtained by a simulation procedure (SIMULATION) where the 95 % confidence
region is indicated (CONFIDENCE), the results of the first order depth improvements of

the Schweitzer and global aggregation method have been evaluated for the MVA and SCT
approximations.

Observe that the results support the conclusions drawn in the preceding subsection. The
figures should also be compared with these in Table 4.13, where the results for the
equivalent system without a priority schedule are given.

type 1 type 2 type 3

CPU 1 2 3 1 2 3 1 2 3

SIMULATION 34.6 11.3 11.4 13.2 13.8 7.1 3.8 7.2 9.4
CONFIDENCE 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.3

MVA-SW-DI 34.6 11.2 114 13.2 13.6 6.9 3.8 6.7 9.3
MVA-AG-DI 35.1 114 11.6 13.5 13.9 7.0 3.9 6.8 9.2

|

SCT-SW-DI 34.5 11.2 11.4 13.2 13.6 6.9 3.8 6.7 9.3

{ SCT-AG-DI 35.0 11.4 11.6 13.6 13.8 7.0 4.2 7.2 94

Table 6.5 : Approximations for the throughputs of the different types
at the different central processor units.
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6.7.4. Conclusions

We have presented a new and promising approximation method for the analysis of closed
queueing network models with a preemptive resume priority schedule at some of the
resources. Regrettably, the computational complexity prohibits an evaluation of the
methods for larger numbers of priority levels. This problem has been solved in an
efficient way be the application of the approximation methods for queueing network
models with many closed customer chains that have been developed in Chapter 4. As the
method is an extension of the standard MVA algorithm the implementation in existing
sof tware packages is straightforward.

In Van Doremalen, Wijbrands and Wessels [1985] we have presented a comparison of a
number of approximation methods that have been proposed in the literature. It has
appeared that the SCT or service completion time approximation provides a reasonable
level of accuracy at low computational costs, especially if the first order depth improve-
ments of the Schweitzer and global aggregation method are applied. This makes the
method an interesting tool for the performance evaluation of systems with preemptive
resume priority queues.

It should be noted that the method allows for a number of extensions.

In Wijbrands [1985] the special layout of the closed central server model is exploited to
design an improved version of the SCT approximation. This model has an important
albeit limited field of application.

Extensions of the suggested ideas to mixed open and closed gqueueing network models and
models with a head-of-the-line priority schedule are possible and relatively straightfor-
ward. The first numerical experiments in that direction are promising, but it is premature
10 draw to strong a conclusion.

The analysis presented and the numerical results support one of the major outcomes of
our research. For the analysis of closed queueing network models the use of strictly
recursive approximation methods yield attractive intuitive, efficient and accurate approxi-
mation methods.
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Samenvatting

De laatste twee decennia is er zowel van theoretische als praktische zijde een groeiende
belangstelling voor de analyse van grote en complexe wachtrijsystemen.

Aan de theoretische zijde heeft de snelle ontwikkeling van de moderne rekenapparatuur
voor een doorbraak gezorgd in de bestudering van algoritmisch georienteerde technieken
voor de analyse van min of meer complexe wiskundige modellen van netwerken van
wachtrijen.

Aan de praktische zijde groeit de behoefte aan efficiente en betrouwbare hulpmiddelen voor
de ontwikkeling, bestudering en verbetering van bijvoorbeeld computer systemen,
telecommunicatie netwerken, produktielijnen en transport netwerken.

Het gebruik van wachtrijmodellen wordt op een natuurlijke manier gerechtvaardigd door
een gemeenschappelijke karakteristieck van dergelijke systemen. Ze kunnen worden
opgevat als een verzameling van onderling verbonden werkstations, die taken verrichten
voor verschillende groepen klanten. Omdat werksnelheden en kapaciteiten van de werks-
tations in het algemeen eindig zijn onstaan voor elk van de werkstations wachtrijen.

In de praktijk is simulatie nog altijd het belangrijkste gereedschap bij de analyse van
wachtrijsystemen. Twee nauw samenhangende recente ontwikkelingen kunnen echter een
verschuiving teweeg brengen in de richting van het gebruik van analytische technieken.
Voor een interessante deelklasse van netwerken zijn namelijk efficiente algoritmen
ontwikkeld om belangrijke systeemgrootheden te berekenen. Deze algoritmen vormen
bovendien een veelbelovende basis voor het ontwerpen van efficiente en betrouwbare
analytische benaderingsmethoden.

Bij de bestudering van wachtrijsystemen speelt de analyse van stochastische modellen en
met name van kontinue-tijd Markov-processen met een diskrete toestandsparameter een
belangrijke rol. Hoewel het theoretisch mogelijk is om het tijdsafhankelijke gedrag van
dergelijke processen te analyseren, ligt de nadruk op de bestudering van het limietgedrag.
Onder niet al te restriktieve voorwaarden is de limietverdeling namelijk de unieke, strikt
positieve en genormeerde oplossing van een eindig of aftelbaar stelsel lineaire ver-
gelijkingen, de evenwichtsvergelijkingen.

Als deze oplossing een aantrekkelijke analytische vorm heeft of op een efficiente manier
kan worden berekend, is het gebruik van analytische technieken in het algemeen te pre-
valeren boven het gebruik van simulatie.

Een klasse van dergelijke wachtrijmodellen wordt gevormd door de separabele of pro-
duktvorm netwerken, die gekenschetst worden door het feit dat oplossing van het stelsel
evenwichtsvergelijkingen een produktvorm aanneemt.

Het belang van separabele netwerken voor de analyse van wachtrijsystemen is vooral
gelegen in het feit dat voor de evaluatie van belangrijke systeemgrootheden, zoals gemid-
delde verblijftijden, doorstroomsnelheden en gemiddelde aantallen klanten, relatief
efficiente algoritmen zijn ontwikkeld. De twee voornaamste rekentechnieken zijn het con-
volutie algoritme en de gemiddelde waarden analyse. ‘
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Helaas zijn de meeste realistische modellen van wachtrijsystemen niet separabel. Boven-
dien geldt voor grotere separabele netwerken dat de complexiteit van de resulterende rek-
enprocedures in vele gevallen toch een efficiente berekening van systeemgrootheden verhin-
dert.

Het ontwikkelen van analytische benaderingsmethoden met behulp van de theorie van de
separabele netwerken lijkt een natuurlijke weg om deze twee problemen aan te pakken.

In dit proefschrift wordt de aandacht met name gericht op het gebruik van de gemiddelde
waarden analyse, omdat deze analyse een interessante interpretatie geeft aan een stel rela-
ties tussen de systeemgrootheden. Hoewel deze interpretatie niet zonder meer over te zet-
ten is op niet-separabele wachtrijmodellen, biedt ze een basis voor de ontwikkeling van
heuristische benaderingsmethoden.

Het proefschrift bestaat it twee delen. In het eerste deel, de Hoofdstukken 1,2 en 3, wor-
den enkele algemene technieken besproken welke in het tweede deel, de Hoof dstukken 4,5
en 6, aan de hand van enkele voorbeelden worden geillustreerd.

In Hoofstuk 1 wordt een kort overzicht gegeven van de voor onze analyse relevante
ontwikkelingen op het gebied van de analyse van netwerken van wachtrijen.

In Hoofdstuk 2 wvolgt een meer gedetailleerd overzicht van de technieken die kunnen
bijdragen tot de ontwikkeling van efficiente en betrouwbare benaderingsmethoden. Met
name wordt ingegaan op decompositie en aggregatie technieken en het gebruik van separa-
bele netwerken en gemiddelde waarden analyse.

In Hoofdstuk 3 wordt een klasse van separabele netwerken besproken. Met name wordt
ingegaan op de interpretatie van de gemiddelde waarden analyse. Enkele opmerkingen
over de implementatie van het gemiddelde waarden algoritme worden gemaakt.

In Hoofstuk 4 wordt het complexiteitsprobleem onder de loep genomen aan de hand van
een bekend probleem in de analyse van separabele netwerken: de evaluatie van systemen
met meerdere gesloten klantenketens, We beschrijven een konstruktieve aanpak die leidt
tot de ontwikkeling van efficiente benaderingsmethoden. Naast bestaande methoden
bespreken we enkele veelbelovende nieuwe technieken.

In Hoofdstuk 5 wordt de verstoring van de separabiliteitsvoorwaarden besproken aan de
hand van een wachtrijmodel met enkele zogenaamde twee fasen servers. Op min of meer
geordende wijze wordt naar enkele benaderingsmethoden toegewerkt.

In Hoofdstuk 6 ontmoeten we een mengeling van de twee problemen bij de analyse van
een wachtrijmodel met prioriteitswachtrijen. Het blijkt dat ook hier de structurele aan-
pak leidt tot efficiente en betrouwbare benaderingsmethoden.

De behandelde technieken zijn vrijwel alle geimplementeerd. De numerieke voorbeelden
verschaffen enig inzicht in het gedrag van de benaderingsmethoden.
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STELLINGEN

I

De eerste r elementen van de p-adische ontwikkeling van een rationaal getal q vormen de
basis van de Hensel kode H(p,r,q). De recente ontwikkeling van efficiente koderings- en
dekoderingsalgoritmen maakt het gebruik van Hensel kodes voor het exakt rekenen met
rationale getallen aantrekkelijk, zie o.a. [1].

Hoewel in de literatuur in het algemeen grote priemgetallen p als basis voor de p-adische
ontwikkeling worden gekozen, verdient de keuze p=2 vanuit praktisch ocogpunt de
voorkeur, omdat de resulterende algoritmen efficient zijn en minder geheugenruimte ver-
gen.

[1] P. Kornerup en R.T. Gregory, " Mapping integers and Hensel codes onto Farey frac-
tions ", B.LT. 23(1983)9-20 ‘

i

Beschouw een geboorte-sterfte proces op de niet negatieve gehele getallien met geboor-
tesnelheden A, >0, i =0,1,..., en sterftesnelheden u; >0, i=1,2,... Het n% moment van
de first passage time van toestand i naar toestand ¥ wordt aangeduid met mf(n ), n 20
en 0<Xi €k. De rijvector m* (n } met elementen m}(n ), i=0,1,...k voldoet aan de vol-
gende recursie:

m*(0) = (1,..,1),
m*(n)A = nm*(n—1), n>0.

Hierin is
Ao =py
—~Xho Aptpy =gy
A o L ] . -

Mgz Apeytigr —ig
g1 Agptuy

Omdat de matrix A een tridiagonaal matrix is, bepaalt deze recursie een efficient algoritme
voor de berekening van de momenten van de first passage times.
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Er zijn unitdrukkingen afgeleid voor de blokkeringskansen in een wachtrijsysteem met ein-
dige capaciteit en twee prioriteitsklassen, zie [1). Met een aggregatieargument is een uit-
breiding naar meerdere prioriteitsklassen mogelijk.

{11 A.S. Kapadia, M.F. Kazmi en A.C. Mitchell, * Analysis of a finite capacity non-
preemptive priority queue *, Computers and Operations Research, 11(1984)337-343,

v

De Formule van Little, zie [1] and [2], wordt veel gebruikt in de wachtiijdtheorie. Hoewel
deze relatie een zeer algemene geldigheid heeft, blijft enige voorzichtigheid bij het koppelen
van verwachte aantallen, doorstroomsnelheden en verwachte verblijftijden geboden. Met
name dient men er op te letten dat deze grootheden op het zelfde deelsysteem en het zelfde
type klanten betrekking hebben.

Zo wordt in [3] op pagina 415 het verwachte aantal lagere prioriteitsklanten in de wacht~
kamer ten onrechte gekoppeld aan de doorstroomsnelheid en de verwachte verblijftijd van
een speciaal type lagere prioriteitsklanten.

[1] ID. Little, * A proof of the queueing formula L=AW *, Operations Research
9(1961)383-387.

[2] S. Stidham, " A last word on L =AW ", Operations Research 22(1974)417-421.

[3] A.S. Kapadia, Y.K. Chiang en M.F. Kazmi, * Finite capacity priority queues with
potential health applications *, Computers and Operations Research, 12(1985)411-
420.
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Een klasse van kontinue optimale besturingsproblemen kan door tijdsdiskretisatie ver-
taald worden in eindig-dimensionale optimale besturingsproblemen. Als in de diskretisa-
tie tijdsafgeleiden worden vervangen door differentie-quotienten, dan valt een van de
meest efficiente algoritmen voor eindig-dimensionale problemen samen met het overeen-
komstige algoritme voor kontinue problemen onder gebruikmaking van de methode van
Euler als integratiemethode voor de betreffende differentiaalvergelijkingen.

Een belangrijke konklusie, die uit deze konstatering kan worden getrokken, is dat een
vroegtijdige diskretisatie van het kontinue besturingsprobleem dient t¢ worden afgeraden.



Vi
In [1] wordt het stelsel evenwichtsvergelijkingen van een twee-dimensionaal wachtrijsys-
teern met een overloopmogelijkheid in een enkele richting opgelost met behulp van een
blok LU decompositie. Deze methode kan aanzienlijk worden versneld door op te merken
dat de matrix D diagonaliseerbaar is. De resulterende methode is nauw verwant met de
techniek beschreven in [2].

[1] 1B.M. van Doremalen, " Two parallel quenes with one-way overflow: a matrix struc-
ture approach ", In: Operations Research Proceedings 1984, Springer Verlag, Berlin,
1985.

[2] JLA. Morrison, " An overflow system in which gueueing takes precedence *, Bell Sys-
tems Technical Journal, 60(1981)1-12.

v

De analyse van ontwerpproblemen die geformuleerd worden met behulp van zogenaamde
chance constraints, wordt veelal bemoeilijkt door het probleem van een herhaalde evalua-
tie van de constraints, zie bv. [1}. Het gebruik van benaderingsmethoden kan hier wit-
komst bieden.

[1] JB.M. van Doremalen, " The design of a system with two parallel queues and one-
way overflow ", Memorandum COSOR 83-02, THE, Eindhoven, 1983.

Vi

Geautomatiseerde produktienetwerken en transportnetwerken vormen een uitdagend
toepassingsgebied voor de theorie van netwerken van wachtrijen, zoals die in de afgelopen
twintig jaar mei name is ontwikkeld voor de performance evaluatie van communica-
tienetwerken en computersystemen.

IX

De invoering van het nieuwe uitlotingssysteem voor obligaties betekent fnet name voor
kleine beleggers een variantie-reduktie in de opbrengst die niet door iedereen als prettig
behoeft te worden ervaren. '
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Recente resulaten uit het onderzoek naar het sterfteproces van lichaamscellen tonen aan

dat het gezegde " hardlopers zijn doodlopers " niet alleen figuurlijk dient te worden
opgenomen. '

[1] S. Hauser, " Celslijtage en dementie ", Intermediair, 22(1986)23-27.
X1

Naar analogie van de indeling in gewichtsklassen bij boksen en gewichtsheffen dient bij
basketballen de indeling in lengteklassen overwogen te worden.

J.B.M. van Doremalen, .14 maart 1986.



