
 

A formal approach to designing delay-insensitive circuits

Citation for published version (APA):
Ebergen, J. C. (1988). A formal approach to designing delay-insensitive circuits. (Computing science notes; Vol.
8810). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ace0c64e-f38b-485b-bf0c-f3ac1819c659


RRD 
01 

CSN 

A FormaJ Approach to Designing 
DeJay-Insensitive Circuits 

by 

Jo C. Ebergen 

88/10 



A Formal Approach to Designing 
Delay-Insensitive Circuits 

by 

Jo C. Ebergen 

88/10 

May 1988 



COMPUTING SCIENCE NOTES 

This is a series of notes of the Computing Science Section of the Department 

of Mathematics and Computing Science of Eindhoven University of Technol

ogy. 

Since many of these notes are preliminary versions or may be publish~ else

where, they have a limited distribution only and are not for review. 

Copies of these notes are available from the author or the editor. 

Eindhoven University of Technology 

Department of Mathematics and Computing Science 

P.O. Box 513 

5600 MB Eindhoven 

The Netherlands 

All rights reserved 

editor: F.A.]. van Neerven 
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A method for designing delay-insensitive circuits is presented based on a simple formalism. The communi
cation behavior of a circuit with Its envlronmenf is speclfied by a regular expresslon-llke program. Based 
on formal manipulations this program is then transformed into a delay·insensltlve connection of basic ele
ments realizing the specified circuit. The notion 01 delay-lnsensitlvlty Is concisely formalized. 

I. INTRODUCTION 
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In 1938 Oaude E. Shannon wrote his seminal article [23] entitled 'A Symbolic Analysis of 
Relay and Switching Circuits'. He demonstrated that Boolean algebra could be used 
degantly in the design of switching circuits. The idea was to specify a circuit by a set of 
Boolean equations, to manipulate these equations by means of a calculus, and to realize this 
specification by a connection of basic elements. The result was that only a few basic ele
ments, or even one element such as the 2-input NAND gate, suffice to synthesize any 
switching function speci.fted by a set of Boolean equations. Shannon's idea proved to be 
very fertile and out of it grew a complete theory, called switching theory. which is used by 
most circuit designers nowadays. 

The purpose of this paper is to present a formal approach to designing VlSI circuits. in 
particular delay-insensitive circujts. A delay-insensitive circuit can be interpreted as a circuit 
whose functional operation is insensitive to delays in basic elements or connection wires. 
The principal idea of our approach is similar to that in Shannon's article: to design a circuit 
as a connection of basic elements and to construct this connection from a specification with 
the aid of a formalism. We specify circuits by means of programs expressing orderings of 
events instead of logic functions. We then manipulate these programs by means of a cal
culus into a set of programs that correspond to basic elements. The connection of these ele
ments forms a realization of the desired circuit. 

The formal techniques and examples presented here form an extract from [5). There, a 
method for constructing delay-insensitive circuits is developed that amounts to translating 
programs satisfying a certain syntax. The result of such a translation is a delay-insensitive 
connection of elements chosen from a finite set of basic elements. Moreover, this translation 

J. The JCSCU'Ch reported in this artic1ew~ carried out 'oVbile_ the author was working at CWI (CcntR for Mathematics and 
Computer Science) in Amsterdam. - -
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has the property that the number of basic elements in the connection is proportional to the 
length of the program. 

In this paper we give a short introduction to the formalism presented in [5] and illustrate 
this by means of some examples. The approach is briefly described as follows. An abstrac
tion of a circuit is called a component; components are specified by programs written in a 
notation based on trace theory. Trace theory was inspired by Hoare's CSP [6, 7] and 
developed by a number of people at the University of Technology in Eindhoven for reason
ing about parallel computations [9, 18, 19, 24] and delay-insensitive circuits [l0, 20, 21, 26, 
27]. 

The programs are called commands and can be considered as an extension of the notation 
for regular expressions. Any component represented by a command can also be represented 
by a regular expression, i.e. it is a regUlar component. The notation for commands, how
ever, allows for a more concise representation of a component due to the additional pro
gramming primitives in this notation. These extra programming primitives include opera
tions to express parallelism and projection (for introducing internal symbols). 

Based on trace theory the concepts of decomposition and DI decomposition of a component 
are formaliud. A decomposition of a component is intended to represent a realization of 
that component by means of a connection of other components such that the functional 
behavior of the connection is insensitive to delays in the components. Several theorems are 
presented that are helpful in finding decompositions of a component. 

A 01 decomposition represents a realization of a component by means of a connection of 
components such that the functional behavior of the connection is insensitive to delays in 
components and connection wires. In general, decomposition and OJ decomposition are not 
equivalent. If, however, all constituting components are so-called DI components, then 
decomposition and OJ decomposition are equivalent. Operationally speaking, a DJ com
ponent represents a circuit for which the communication behavior between circuit and 
environment is insensitive to wire delays in those communications. 

As examples we specify a modulo-3 counter and a token-ring interface by means of a 
command. Using the theorems presented, we then derive (OJ) decompositions for these 
components into basic elements. 

Before we discuss these examples and the underlying formalism, we describe some of the 
history of designing delay-insensitive circuits and some of the reasons why we would like to 
design delay-insensitive circuits. 

2. SoME HIsTORY 

Delay-insensitive circuits are a special type of circuits. We bridly describe their origins and 
how they are related to other types of circuits and design techniques. The most common 
distinction usually made between types of circuits is the distinction between synchronous cir
cuits and asynchronous circuits. 

Synchronous circuits are circuits that perform their (sequential) computations based on 
the successive pulses of the clock. From the time of the first computer designs many 
designers have chosen to build a computer with synchronous circuits. Alan Turing, one of 
those first computer designers, has motivated this choice as follows in [25]: 



We might say that the clock enables us to introduce a discreteness into time, so 
that time for some purposes can be regarded as a succession of instants instead of 
a continuous flow. A digital machine must essentially deal with discrete objects, 
and in the case of the ACE this is made possible by the use of a clock. All other 
digital computing machines except for human and other brains that I know of do 
the same. One can think up ways of avoiding it, but they are very aWkward. 
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In the past fifty years many techniques for the design of synchronous circuits have been 
developed and are described by means of switching theory. The correctness of synchronous 
systems relies on the bounds of delays in elements and wires. The satisfaction of these delay 
requirements cannot be guaranteed under all circumstances, and for this reason problems 
can crop up in the design of synchronous systems. (Some of these problems are described in 
the next section.) In order to avoid these problems interest arose in the design of circuits 
without a clock. Such circuits have generally been called asynchronous circuits. 

The design of asynchronous circuits has always been and still is a difficult Subject. Several 
techniques for the design of such circuits have been developed (e.g. by Huffman) and are 
discussed in, for example, [II, IS, 28J. For special types of such circuits formalizations and 
other design techniques have been proposed and discussed. David E. Muller gave a rigorous 
formalization of a special type of circuits for which he coined the name speed-independent 
circuits. An account of this formalization is given in .[16]. Informally speaking, speed
independent circuits are characterized as circuits that are insensitive to element delays. 

'From a design discipline that was developed as part of the Macromodules project [3, 4J at 
Washington University in St. Louis the concept of a special type of circuit evolved which 
was given the name delay-insensitive circuit, i.e. a circuit that is insensitive to both element 
delay and wire delay. It was realized that a proper formalization of this concept was 
needed in order to specify and design such cirwits in a well-defined manner. A formaliza
tion of one of the central concepts in the design of delay-insensitive circuits, viz. that of the 
so-called 'Foam Rubber Wrapper' principle, was later given in [26J. 

Another name that is frequently used in the design of asynchronous circuits is self-timed 
systems. This name has been introduced by C. L. Seitz in {22] in order to describe a method 
of system design without making any reference to timing except in the d-'gn of the self
timed elements. 

Recently, Alain Martin has proposed some interesting and promising design techniques 
for circuits of which the functional operation is unaffected by delays in elements [12, 13]. 
His techniques are based on the compilation of CSP-like programs into connections· of basic 
dements. The techniques presented in [5] exhibit a similarity with the techniques applied by 
Alain Martin in the sense that they are both aimed at the translation of programs into con
nections of basic elements. 

3. WHY DELAY-INSENSITIVE CIRCUITS? 

The reasons to ~design delay-insensitive systems are manifold. One reason why there has 
always been an interest in asynchronous systems is that synchronous systems tend to reflect 
a worst-case behavior, while asynchronous systems tend to reflect an average-case behavior. 

I 
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A synchronous system is divided into several parts, each of which performs a specific com
putation. At a certain clock pulst; input data are sent to each of these parts and at the next 
clock pulse the output data, i.e. the results of the computations, are sampled and sent to the 
next parts. The correct operation of such an organization is established by making the clock 
period larger than the worst-case delay for any sub computation. Accordingly, this worst
case behavior may be disadvantageous in comparison with the average-case behavior of 
asynchronous systems. 

Another important reason for designing delay-insensitive systems is the so-called glitch 
phenomenon. A glitch is the occurrence of metastable behavior in circuits. Any computer 
circuit that has a number of stable states also has metastable states. When such a circuit 
gets into a metastable state, it can remain there for an indefinite period of time before it 
resolves into a stable state. For example, it may stay in the metastable state for a period 
larger than the clock period. Consequently, when a glitch occurs in a synchronous system, 
erroneous data may be sampled at the time of the clock pulses. In a delay-insensitive sys
tem it does not matter whether a glitch occurs: the computation is delayed until the meta
stable behavior has disappeared and the element has resolved into a stable state. One fre
quent cause for glitches are, for example, the asynchronous communications between 
independently clocked parts of a system. 

The first mention of the glitch problem appears to date back to 1952 (cf. [ID. The first 
publication of experimental results of the glitch problem and a broad recognition of the fun
damental nature of the problem came only after 1973 [2, 8) due to the pioneering work on 
this phenomenon at the Washington University in St. Louis. 

A third reason is due to the effects of scaling. This phenomenon became prominent with 
the advent of integrated circuit technology. Because of the improvements of this technology, 
circuits could be made smaller and smaller. It turned out, however, that if all characteristic 
dimensions of a circuit are scaled down by a certain factor, including the clock period, 
delays in long wires do not scale down proportional to the clock period [14, 22]. As a 
consequence, some VLSI designs when scaled down may no longer work properly anymore, 
because delays for some computations have become larger than the clock period. Delay
insensitive systems do not have to suffer from this phenomenon if the basic elements are 
chosen small enough so that the effects of scaling are negligible with respect to the func
tional behavior of these elements ((24)) and the interconnections of these elements are 
delay-insensitive. 

A fourth reason is the clear separation between functional and physical correctness con
cerns that can be applied in the design of delay-insensitive systems. The correctness of the 
behavior of basic elements is proved by means of physical principles only. The correctness 
of the behavior of connections of basic elements is proved by mathematical principles only. 
Thus, it is in the design of the basic elements only that considerations with respect to delays 
in wires play a role. In the design of a connection of basic elements no reference to delays 
in wires or elements is made.· This does not hold for synchronous systems where the func
tional correctness of a circuit also depends on timing considerations. For example, for a 
synchronous system one has to calculate the worst-case delay for each part of the system 
and for any computation in order to satisfy the requirement that this delay must be smaller 
than the clock period. 
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As a last reason, we believe that the translation of parallel programs into delay-insensitive 
circuits offers a number of advantages compared to the translation of parallel programs into 
synchronous systems. In [5] a method is presented with which the synchronization and com
munication between parallel parts of a system can be programmed and realized in a natural 
way. 

4. DIRECTBD TRACE STRUCTURES AND COMMANDS 

In this and the next sections we describe the underlying formalism for the design of delay
insensitive circuits. Components, i.e. abstractions of circuits, are specified by so-called 
directed trace structw"es satisfying certain properties. Before we give a number of such 
specifications for components, we briefly explain what directed trace structures are and how 
they can be constructed similarly to regular expressions. 

4.0. Directed trace structW"es 

A directed trace structW"e is a pair <A,B,X>, where A and B are finite sets of symbols and 
X~(A UB)". The set (A UB)" is the set of all finite-length sequences of symbols from 
A U B. A finite sequence of symbols is called a trace. The empty trace is denoted by (. 
Notice that 0*={(). For a directed trace structure R = <A,B,X>, the set A UB is called 
the alpluzbet of R and denoted by aR; the set A is called the input alphabet of R and denoted 
by iR; the set B is called the outpuJ alphabet of R and denoted by oR; the set X is called the 
trace set of R and denoted by tR. 

NOTATIONAL CONVENTION. In the following, directed trace structures are denoted by the 
capitals R,S, and T; traces are denoted by the lower-case letters r, s, and t; alphabets are 
denoted by the capitals A and B; symbols are usually denoted by the lower-case letters with 
exception of r, s, and t. 
o 

REMAP.K In addition to directed trace structures, we also have (undirected) trace structures 
which are defined as pairs <A, X>, where X ~A •. The sets A and X are called the alpha
bet and the trace set of the trace structure respectively. In this paper we consider directed 
trace structures only . 
o 

4.1. Operations on directed trace structures 

The definitions and notations for the operations concatenation. union. repetition. (taking the) 
prefix-closure, projection. and weaving of directed trace structures are as follows. 
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R;S = <iRUiS, oRUoS , tRtS> 

RIS = <iR UiS , oR UoS , tR UtS> 

(R] = <iR, oR, (tR)*> 

prefR = <iR , oR, {sl (Et::stEtR)}> 

RtA = <iRnA , oRnA , {ttA/tEtR}> 

RIIS = <iRUiS, oRUoS , {tE(aRUaS)"jttaREtR /\ ttaSEtS}>, 

where tt C denotes the trace t projected on C, i.e. the trace t from which all symbols not in 
C have been deleted. Concatenation of sets is denoted by juxtaposition and (tR)· denotes 
the set of all finite-length concatenations of traces in tR. 

The operations concatenation, union, and repetition are familiar operations from formal 
language theory. We have added three operations: prefix-closure, projection, and weaving. 

The pref operator constructs prefix-closed trace structures. A trace structure R is called 
prefix-closed if pref R =R holds. Later, we use prefix-closed and non-empty directed trace 
structures for the specification of components. A non-empty trace structure is a trace struc
ture R for which tR =1= 0 

The projection operator allows us to abstract away from a set of 'internal' symbols. 
The weave operation constructs trace structures whose traces are weaves of traces from the 

constituent trace structures. Notice that common symbols must match, and, accordingly, 
weaving expresses 'instantaneous' synchronization. The set of symbols on which this syn
chronization takes place is the intersection of the alphabets. 

The weave of n trace structures R.i, O<,i <n, is denoted by (IIi: O<.i <n : R.O. A similar 
notation holds for the union of alphabets A.i, O<.i <n, which is denoted by 
(Ui:O<,i <n :A.i). 

4.2. Directed commands 

A directed trace structure is called a regular directed trace structure if its trace set is a regular 
set, i.e. a set generated by some regular expression. A directed command is a notation similar 
to regular expressions for representing a regular directed trace structure. 

Let U be a sufficiently large set of symbols. The characters (, 0, b 1, b!, and !b 1 with 
b E U, are called atomic directed commands. They represent the atomic directed trace struc
tures <0,0,{f:}>, <0,0,0>, <{b},0,{b}>, <0,{b},{b}>, <{b},{b},{b}>, 
respectively. Every atomic directed command and every expression for a directed trace struc
ture constructed from the atomic directed commands and finitely many applications of the 
operations defined in Section 4.1 is called a directed command In such an expression 
parentheses are allowed. For example, the expression (a111b?);c! is a directed command and 
represents the directed trace structure < {a,b }, {c }, { abc, bac } >. 

NOTATIONAL CONVENTION. In the following. directed commands are denoted by capital Es. 
The input and output alphabet and the trace set of the directed trace structure represented 
by command E are denoted by iE, oE, and tE respectively. In order to save on parentheses, 
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we stipulate the following priority rules for the operations just defined. Unary operators 
have highest priority. Of the binary operators in Section 4.1, weaving has highest priority. 
then concatenation, then union, and finally projection. 
D 

PROPERTY 4.2.0. Every directed command represents a regular directed trace structure. 
D 

ExAMPLE 4.2.1. Syntactically different commands can express the same trace structure. We 
have, for example, 

D 

pref[a ?;c!] II pref[b ?;c!] = pref[a ?lIb ?;c !] 

pref[a?;b !]II pref[a?;c!] = pref[a?;b !lIe !l). 

5. SPBCIFYING CoMPONENTS 

This section addresses the specification of components, which may be viewed as abstractions 
of circuits. Components are specified by directed trace structures satisfying certain proper
ties. In this paper we shall keep to regular components, i.e. to regular directed trace struc
tures. We explain how a directed trace structure prescribes all possible communication 
behaviors between a component and environment at their mutual botmdary. A number of 
basic components are then specified by means of directed commands. 

5.0. Specifications and their intetpretation 

A communication behavior between component and environment is specified by a prefix
closed, non-empty. directed trace structure R with iR noR = 0. The alphabet of R contains 
the names of all terminals at which component and environment communicate with each 
other. This set of terminals is also called the houndary between component and environ
ment. An occurrence of a communication action at a terminal is represented by the name 

of that terminal We assume that an occurrence of a communication action is determined 
by only one of the communicants. The sets iR and oR are used to stipulate by whom a 
communication action may be produced. The set iR contains all communication actions 
that may be produced by the environment and the set oR contains all communication 
actions that may be produced by the component. The trace set of R contains all communi
cation behaviors that may take place between component and environment. 

A communication behavior evolves by the production of communication actions. Because 
lR noR = 0, a communication action is produced either by the component or by the 
environment. Together, the sets iR, oR, and tR specify when which communication action 
may be produced and by whom as follows. Let the communication actions that have 
already taken place correspond to the trace tEtR, and let thEtR. (Initially, t=f..) If hEiR. 
then the environment may produce a next communication action b; if b EoR, then the 

I 
f 
I 
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component may produce a next communication action b. These are also the only rules for 
the production of inputs and outputs for environment and component respectively. 

ExAMPLE 5.0.0 Consider the command E given by E = pref[a?lIb?;cl]. 'This command 
specifies a component for which the environment initially produces the inputs a and b in 
parallel (or in arbitrary order). Then the component may produce output c. Only after out
put c has been produced may the environment produce inputs a and b again. The com
ponent may then produce output c again and this behavior repeats. 
o 

Because the directed trace structure R specifies the communication behavior of both com
ponent and environment, we speak of component R and environment R. The role of com
ponent and environment can be interchanged by reflecting R: 

DBFINmON 5.0.1. The reflection of R, denoted by R, is defined by 

R = <oR, iR, tR>. 

o 

(Consequently, iR =~, oR =iR, and tR. =tR..) Instead of environment R we can now also 
speak of component R. 

ExAMPl! 5.0.2. !he environment E, where E = pref[a?lIb?;c !], can be expressed as com
ponent E, where E = pref[a !lIb !;c?]. 
o 

With the above interpretation of a specification we explicitly prescribe restrictions on how 
the environment may communicate with the component Later, in Section 6, when we are 
interested in realizing components by connections of other components, we assume that the 
environment of this connection behaves as prescribed. Under this assumption the connec
tion has to react as prescribed for the component In case of a physical implementation of a 
component (e.g. for basic components) the environment stipulates under what conditions 
correct physical operation must be guaranteed. 

A possible physical implementation of a component is that each symbol b of aR 
corresponds to a terminal of a circuit, and each occurrence of b in a trace of tR corresponds 
to a voltage transition at that terminal. There is no distinction between high-going and 
low-going transitions: both transitions are denoted by the same symbol. Outputs are transi
tions caused by the circuit and inputs are transitions caused by the environment When we 
refer to implementations in this paper we mean the above mentioned implementations and 
we assume that initially the voltage levels at the terminals are low. 

In the following subsections, a number of components are specified by directed com
mands. For each of these components we also give a pictorial representation, called a 
schematic. 
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5.1. Specification of a set of basic components 

In Figure 5.0 a set of basic components is specified by means of directed commands. The 
first column lists the names of the components, the second column the specifications, and 
the third column the schematics. 

WIRE pref[a?;b !] 
a7 .. .. b! 

WIRE pref[b !;a?] a7~b! 

-Cb
! FORK pref[a?;b!] II pref[a?;c!] a? 

c! 

":0-CEL pref[a?;c!] II pref[b?;c!] c! 

b7 

XOR pref[a?;c! I b?;c!] :;~D-c! 

TOGGLE pref[a?;b !;a?;c!] -<e:b
! a7 • 

c! 

SEQ pref[a?;p !] 

"=0=" II pref[ b ?;q !] b? q! 

II pref[n1;~ !Iql)] n7 

FIGURE 5.0. Specification of a set of basic components. 

There are two WIRE components. A WIRE component describes the transmission of a 
signal from terminal to terminal. Notice that both WIRE components have the same 
behavior except for a difference in initial states. For the WIRE component pref[a1;b!] the 
environment initially produces an input a. For the WIRE component pref[b !;a1] the com
ponent initially produces an output b. 'This difference in initial states (or the production of 
initial symbols) is depicted by an open arrow head in a schematic. The trace structures are, 
apart from a renaming, each other's reflection. 

Operationally speaking, the first WIRE component corresponds to a physical wire. Notice 
that there is always at most one transition propagating along either WIRE component 
according to our interpretation of a specification as a prescription for both component and 
environment. 

A FORK component performs the primitive operation of duplication of inputs. 
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A eEL component performs the primitive operation of synchronization on an output. 
(R.ecalI from example 4.2.1 that a eEL and FORK component can be represented by other 
directed commands.) eEL components are re1lections of FORK components, apart from a 
different initialization. (The eEL component can be implemented by the Muller C-element, 
named after David E. Muller.) 

The TOGGLE component determines the parity of the input occurrences. After each odd 
occurrence of input a output b is produced and after each even occurrence of input a output 
c is produced. 

The XOR component 'merges' two inputs into one output. Notice that for this com
ponent the environment produces either an input a or an input b. In both cases the com
ponent will then produce an output c, after which the environment may produce a next 
input again. (The XOR component can be implemented by an exclusive OR gate.) 

The 2-SEQ component is a kind of arbiter component. For a 2-SEQ component we use 
the following terminology. Output p is called the grant of request a. Similarly, output q is 
the grant of request b. We say that request a is pending after trace t if tNa-tNp= 1, where 
tNx denotes the number of x's in trace t. A SEQ component grants one request for each 
occurrence of input n. We also say that the SEQ component sequences the grants and, for 
this reason, it is sometimes also called a sequencer. In sequencing the grants it may have to 
arbitrate among several pending requests. If there is only one pending request after receipt 
of input n, no arbitration is needed and the grant for this pending request will be produced. 
If, however, there are two pending requests after receipt of input n, the SEQ component has 
to arbitrate which of the pending requests will be granted. 

5.2. Examples 

ExAMPLE 5.2.0. Consider the modulo-3 counter specified by the following communication 
behavior. The modulo-3 counter has three communication actions: one input, denoted by a, 
and two outputs, denoted by p and q. The communication behavior is an alternation of 
inputs and outputs, starting with an input. The outputs depend on the inputs as follows. 
After the n-th input, where n >0 and n mod 3 =1= 0, output q is produced; if n mod 3 = 0, then 
output p is produced. This behavior is expressed in the following directed command EO, 
where 

EO = pref[a?;q l;a?;q I;a?;p I]. 

Notice that the TOGGLE component of Figure 5.0 can be considered as a modulo-2 
counter. In Section 6 we discuss a decomposition of the modulo-3 counter into basic com
ponents of Figure 5.0. (Before reading this section, the reader may try to find such a con
nection.) 
o 

ExAMPLE 5.2.1. This example concerns the specification of the communication behavior of a 
token-ring interface. Consider a number of machines. For each machine we introduce a 
component, and all components are connected in a ring. Through this ring a so-called token 
is propagated from component to component. The ring-wise connection is called a token 
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ring, and the components are called token-ring interfaces. Each machine communicates with 
the token ring through its token-ring interface. 

In order to achieve mutual exclusion among machines entering a critical section, the fol
lowing protocol is described for a token-ring interface. The schematic of the token-ring 
interface is given in Figure 3. 

a I? aO? pO! pI! 

I 
I I t t 

b? ) .q! 

FIGURE 3. A token-ring interface. 

The communication actions between token-ring interface and machine are interpreted as fol
lows. 

a 1'1 request for the token by the machine 

pI! grant of the token to the machine 

a 0'1 release of the token by the machine 

pO! confirm of release. 

With respect to these actions the protocol satisfies the specification pref[a l?;p l!;aO?;pO!]. 
The communication actions between token-ring interface and the rest of the token ring are 

interpreted as follows. 

b? receipt of the token 

q ! sending of the token. 

With respect to these actions the protocol satisfies the specification pref[b?;q I]. 
The synchronization between the two protocc!s must satisfy the following requirements. 

After each receipt of the token, the token can either be sent on to the next token-ring inter
face or, if there is also a request from the machine, the token can be granted to the machine. 
If the machine releases the token, it is sent on to the next token-ring interface. Tne com
plete communication protocol for the token-ring interface can be specified by the directed 
command 

pref[a l?;p 1 !;aO?;pO!] 

II pref[b?;(q! I p l!;aO?;q I)]. 

Recall that weaving denotes synchronization on common symbols and therefore alternative 
pI !;aO?;q! of the second line can only be executed when in the first line pI! can be exe
cuted· as wdl. Iri the -following sections we show how this synchronization· can be realized 
by a delay-insensitive connection of basic elements. (As an exercise, the reader may try to 



12 

find such a connection before reading Section 6.) 
o 

6. DECOMPOSITION 

The idea of this paper is to realize a component by means of a delay-insensitive connection 
of basic components. In this section we formalize this idea by presenting the definitions and 
theorems underlying this approach. 

First, we define what we mean by 'a component can be realized by a connection of (other) 
components such that the functional operation of the connection is insensitive to delays in 
the components'. 'This is formulated in the definition of decomposition. 

Subsequently, we give two theorems on decomposition: the Substitution Theorem, which 
enables us to decompose a component in a hierarchical way, and the Separation Theorem, 
which enables us to decompose parts of a specification separately. 

In a decomposition delays may occur in a component but the communications between 
components are considered to be instantaneous and unidirectional. Usually these communi
cations take place through wires in which delays can also be incurred. If we incorporate 
wire delays as well in a decomposition then we obtain the definition of DI decomposition. A 
01 decomposition corresponds to a realization of a component by means of a connection of 
components such that the functional operation of the connection is insensitive to delays in 
components and in communications (i.e. wires). 

In order to relate decomposition and 01 decomposition we introduce DI components. 
Decomposition and 01 decomposition are in general not equivalent, hut if all constituting 
components are so-called 01 components, then decomposition and 01 decomposition are 
equivalent. A 01 component may be interpreted as a component whose communication 
behavior with its environment is insensitive to wire delays. 

6.0; The definition 

Bdow, we first present the definition of decomposition and then give a brief motivation for 
it. 

DEFINITION 6.0.0. Let n > l. We say that component S.O can be decomposed into the com
ponents S.i, 1 ~i <12, denoted by 

S.O -4 (i: los;;;;i<n:S.i), 

if the follOWing conditions are satisfied 
Let R. O=S.0, R.i=S.ifor los;;;;i<12, and W=(lIi:OE;;;i<n:R.i). 

(I) (Closed connection) 
(Ui: Oos;;;;i<n: o(R.i» = (Ui: Oos;;;;i<n: i(R.i)). 

(il) (No output inteiference) 
o(R.i)no(R.j)=" for Oos;;;;i,j<n /\ i=/=j. 



(iil) (Connection behaves as specified at boundmy a(S. 0») 
tWta(R. 0) = t(R. 0). 

(iv) (Connection is free of computation interference) 

o 

For all traces t, symbols x, and indexes i, Oe:;;;i <n. we have 
tetW /\ xeo(R.i) /\ txta(R.i)et(R.i) ~ txetw. 

13 

NOTATIONAL REMARK. The notation (i: Oe:;;;i <n : S.i) can be interpreted as an enumeration 
of the components S.;, Oe:;;;i <no Notice, however, that the order of this enumeration is not 
important, as can be deduced from the definition of decomposition. Instead of, for example, 
S.O~(i: le:;;;i<4:S.i) we sometimes write S.O~S.I,S.2, S.3. Here, the comma separates 
the components. 
o 

In Section 5, we stipulated that a directed trace structure S.O prescribes the joint behavior 
of component and environment: it specifies when the component may produce outputs and 
when the environment may produce inputs. In a decomposition of component S. 0 we 
require that the production of outputs of component S. 0 is realized by a connection of com
ponents. We assume that the environment of this connection produces the inputs as 
specified for environment S. O. This environment can also be seen as component S. O. 
Accordingly, in order to comprise all components that ~uce outputs relevant 10 the 
decomposition, we consider the connection of components S.O and S.i, I e:;;;i <no 

Condition (I) says that there are no dangling inputs and outputs in the connection: every 
output is connected to an input, and every input is connected to an output. We call such a 
connection a closed connection. 

Condition (i,) requires that outputs of distinct components are not connected with each 
other. If (i,) holds we say that the connection is free of output interference. 

Condition (iii) requires that the behavior of the connection at the boundary a(S. 0) 
behaves as spedu'ied by t(S. 0). The behavior of dle connection is given by 
tW=t(lIi:Oe:;;;i<n:R.i). Restriction of this behavior to the boundary a(S.O) (=a(R.0» is 
expressed by tWt a(R. 0). 

Condition (iv) requires that the connection is free of computation interference. We say 
that the connection has danger of cOltfJutation interference, if there exists a trace t, symbol x, 
and index i, Oe:;;;i <n, such that 

I etW /\ x eo(R.i) /\ txta(R.i)et(R.i) /\ Ix ~tw. 

In words, if after a mutually agreed behavior a component can produce an output that is 
not in accordance with the prescribed behavior of other components, then we say that the 
connection has danger of computation interference. Absence of computation interference 
guarantees that every output that can be produced can also be. received as input, i.e. no 
environment prescription is violated. 

A violation of an environment prescription of a component can cause hazardous behavior. 
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For example, if WIRE component pref[a?;b!] receives two inputs a without producing an 
output b, we have computation interference for the WIRE component (caused by the 
environment). Operationally speaking, in the case of this computation interference more 
than one transition is propagating along a wire, which can cause hazardous behavior and 
must, therefore, be avoided . 

.REMARK O. Some misbehaviors of circuits that are characterized in classical switching 
theory by hazards or critical races can be seen as special cases of computation interference. 
Absence of interference in a decomposition guarantees that the thus synthesized circuit is 
free of hazards and critical races, provided that the basic components used are themselves 
free of hazards and critical races. 
o 

.REMARK 1. In the definition of decomposition we have not included conditions such as 
absence of deadlock and livelock. This is done for reasons of simplicity but also because we 
believe that these issues can be dealt with separately. For a study on these issues we refer to 
[9]. 
o 

Notice that we have described decomposition as a goal-directed activity: we start with a 
component S. 0 and try to find components S.i, 1 EO;;i <n, such that the relation 
S. 0 ~ (i: 1 EO;;i <n : S.i) holds. Thus, we explicitly use the assumption that the environment 
of the connection of components behaves as specified for environment S. O. We do not start 
with components S.;, 1 <i <n, to find out what could be made of them without requiring 
anything from the environment. This is also the reason why this method is called decompo
sition instead of composition. Also, a decomposition does not have to be unique. For a 
component several decompositions may exist. 

ExAMPLE 6.0.1. We demonstrate that the modulo-3 counter of Example 5.2.0 can be decom
posed into the two TOGGLE components and an XOR component. A schematic of this 
decomposition is given in Figure 6.0. 

? Ib? Ie? : :', a'7~_ 
!d? 

FIGURE 6.0. A decomposition of the modulo-3 counter. 

To verify this decomposition we take 

R. 0 = pref[a !;q?;a !;q?;a !;p?], . 

R. 1 = pref[(a? I d'l);b!], 
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R.2 == pref[b?;ql;b?;el].and 

R. 3 == pref[e?;dl;c?;p I]. 
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By inspection, we observe that the connection of the components R. O. R. 1. R. 2, and R. 3 is 
closed and free of output interference. 

Furthermore, we have 

tW == 1(R.OIIR. 1 IIR. 2 IIR. 3) 

== tnr:ef['a?"b?"q?' 'a?"b?' 'e?' 'd?' 'b?' 'q1' 'a?' 'b?' 'e?' ,,,?] ... . ,. " " " I, .. ,. " I,' ,. "", "-r' • 

From this we derive that t Wt a(R. 0) == 1(R. 0). Accordingly we conclude that the connection 
behaves as specified at the boundary a(R. 0). 

For absence of computation interference we have to prove for all t, x, i, Oe;;;.;i <4, that 

t etW /\ x eo(R.i) /\ txt a(R.i) et(R.i) => tx etw. 

Instead of proving this for all triples (t,x,i), we take for all states of tWa representative t 
and consider all x and i. OEO;;i <3, such that 

tetW /\ xeo(R.i) /\ txta(R.i)et(R.i). (6.0) 

(For the states of tW we may take the equivalence classes of the right-invariant relation 
under concatenation, but also the states of any finite automaton accepting tW.) It suffices 
to prove for these triples (t, x, i) that tx etw. By inspection, we find that for the triples 
satisfying (6.0) indeed Ix etw.. Consequently, we conclude that Figure 6.0 gives a decompo
sition of the modulo-3 counter. 
o 

ExAMPLE 6.0.2. Similar to Example 6.0.1 we can prove the decompositions 

pref[a I?;p lI;a01;a 1 I] .... pref[a 1?;p 1 I] , pref[a O?;pOI] (6.1) 

pref[b?;(q 11 I pi l;aO?;qOI] .... pref[b?;(q I!lp If)] , pref[aO?;qO!]. (6.2) 

and 

pref[b?;(ql Ip 11;aO?;q!)] (6.3) 

.... pref[b?;(qI! Ip 1!;aO?;qO!J, pref[(q l?jqO?);qij. 

In decomposition (6.3) we have made a distinction between the outputs q in the two alterna
tives by renaming them into q 1 and qO. By means of a X OR component these two symbols 
can then be merged again into output q. 
o 

ExAMPLE 6.0.3. In this example we consider a decomposition of the component specified by 

EO == pref[a?;b !;e?lId?;e !;a?lIe?;b !;d?;e !l. 
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This component can be decomposed into the components 

E 1 = pref[a?;b l;e?;a?lle?;b I] and 

E2 = pref[e?lId?;e I]. 

Component E2 is a eEL component and component E 1 can be implemented by an OR 
gate, assuming that initially all voltage levels are zero. The decomposition of EO is depicted 
in Figure 6.1, where we have taken the schematic of the OR gate as the schematic for com
ponent E1. 

a?_---~ 
--.J'----""'~--..... b! 

c? ---4{ 

r---..... e ! 
d? _---~ 

FIGURE 6.1. A decomposition of EO. 

In Figure 6.1 we have used a fork with an equality sign next to the fat dot. The equality 
sign signifies that this fork is not a genuine FORK component of the decomposition, but 
that both oomponents to which this fork is oonnected have the same input, viz. input c 
(More will be said about these forks in the next example.) 
o 

ExAMPLE 6.0.4. Suppose that we would consider the fork in Figure 6.1 of the previous 
example as a genuine FORK oomponent of a tentative decomposition of EO. The schematic 
of this tentative decomposition is given in Figure 6.2 

a? _------" 
~--...... b! 

c? __ ...... 

r---..... e ! 
d? _---.-J'~ 

FIGURE 6.2. A tentative decomposition of EO. 

We demonstrate that this tentative decomposition is not a decomposition: it has danger of 
computation interference. This is shown as follows. Let 

R. 0 = pref[a I;b?;cllldl;e?;a Ille I;b?;dl;e?] 

R. 1 = pref[a?;b !;x?;a?lIx?;b!] 



R. 2 = pref[d?llY?;e!] 

R. 3 = preflc?; x !llY!] . 
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Let, furthermore, W = R. 01iR. IIiR. 211R. 3. For trace t = abcdye we observe t etw. More
over, we have that after trace t component R. 0 can produce output . a, ie. 
a eo(R. 0) /\ tat a(R. 0) et(R. 0). But from the specification of R. 1 we observe that input a 
can not be received after trace t, i.e. aha ftt(R.l). Consequently, ta fttw, and we conclude 
that the connection has computation interference. (N otice that, indeed, if we may assume 
arbitrary wire delays hazardous behavior can occur at output b. Notice also that the other 
three conditions of decomposition are satisfied for the components R. 0, R. 1, R. 2, and R. 3.) 

In order to avoid hazardous behavior in an implementation of the decomposition of EO 
into Eland E2, as given in the previous example, the fork in Figure 6.1 must be imple
mented by a so-called isochronic fork [12, 13]. An isochronic fork is a (Physical) fork in 
which the delays in the branches of the fork are (much) smaller than the delays in the ele
ments to which the fork is connected. 
o 

6.1. Some theoren'U on decompOSition 

As the reader may have noticed in the above examples, verifying whether a connection of 
components forms a decomposition of a component is simple but may be laborious. It 
would be convenient if we would have some theorems on decomposition with which the 
verification, or even the derivation, of a decomposition could be done quickly. 

A theorem helpful in finding decompositions of a component is the Substitution Theorem. 
1bis theorem applies to problems of the following kind. Suppose that component S. 0 can 
be decomposed into a number of components of which T is one such component. Suppose, 
moreover, that T can be decomposed further into a number of components. Under what 
conditions can the decomposition of T be substituted in the decomposition of S.01 We 
have 

THEOREM 6.! .0. (Substitution Theorem) 
Let components S.O, S. 1, S.2, S. 3, and T satisfy 

We have 

(&(S.O) U a(S. 1» n (&(S.2) U a(S.3» = aT. 

S.O ~ S.I, T 

/\T~S.2,S.3 

~ S.O ~ S.I,S.2,S.3. 

o 

The proof of this theorem can be found in [5] (pp. 47), 

(6.4) 

Condition (6.4) of the above theorem states that the only symbols that the two 
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decompositions have in common are symbols from aT. Condition (6.4) is essentially a void 
condition, since, by an appropriate renaming of the internal symbols in the decomposition 
of T, this condition can always be satisfied. The internal symbols of the decomposition of T 
are given by (a(S. 2) U a(S. 3» \ aT . 

The above theorem considers decompositions into two components only. The generaIiza
tion of this theorem to decompositions into more than two components is straightforward 
and omitted here. 

NOTATIONAL RBMAIuc.. In the derivation of a decomposition of a component in a number of 
steps we use the following notation. 

S.O 

~ {hint why S.O~S.l, T} 

S.I, T 

~ {hint why T ~ S. 2, S. 3} 

S. I, S. 2, S. 3. 

Such a derivation is then based on the Substitution Theorem, and care must be taken that 
the condition for its application holds. 
o 

F..xAMPl.B 6.1.1. Applying the Substitution Theorem to Example 6.0.2, we derive 

pref[b?;(ql I p 11;aO?;ql)] 

o 

~ {(6.3)} 

pref[b?;(q 1 1 I p l!;aO?;qOI)] , pref[(q 11 I qO?);q I] 

~ {(6.2)} 

Iftflb 7;(q I! \p 1 !)J , Jftf[aO'?;qO!) , pref[(q 17 \ qO?);q I]. 

Another theorem that may be convenient in finding a decomposition of a component is the 
Separation Theorem. We have 

THEoREM 6.1.2 (Separation Theorem) For components S.i and T.i, OEO;i<n, we have 

S.O ~ 0: 1I5ii;i<n:S.i) 

/\ T.O ~ (i: 1I5ii;i<n: T.i) 

=> S.OIlT.O~(i:lrs;,;i<n:S.illT.i) 

if the follOWing conditions are satisfied. 



I 

1 
I 
I 

AnB=0 

0111.; n Out.j = 0 for OrS;.i,j <n /\ i=Fj, 

where 

o 

A = (Ui: I~i<n: a(S.i» \ a(S. 0) 
B = (Ui: IE;;i<n: a(T.i»\ a(T. 0) 
Out.i = o(S.;) U o(T.i) for I E;;i <n, and 
Out. 0 = o(S. 0) U 0(T. 0). 

The proof of this theorem can be found in [5] (ef pp. 51). 
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(6.5) 

{I:.'&:\ 
\v.VJ 

Condition (6.S) can be interpreted as 'the internal symbols of the decompositions are 
row-wise disjoint', where the internal symbols of the decomposition of S. 0 (i.e. row 0) are 
given by A. This condition can always be satisfied by an appropriate renaming of the inter
nal symbols. 

Condition (6.6) can be interpreted as 'the outputs are column-wise disjoint', where the 
outputs of column i, OE;;; <n, are given by Out.i. (Notice that Out. 0 represents the outputs 
of the components S. 0 and T. 0.) Recall from the definition of decomposition that the ord
ering of the components in (i : I ~; <n :S.;) is not relevant. Accordingly, we may reorder the 
components such that condition (6.6) can be satisfied. 

Theorem 6.1.2 can be generalized in a natural way to decompositions of weaves of more 
than two directed trace structures. 

ExAMPLE 6.1.3. We apply the Separation Theorem to obtain a decomposition of the token
ring interface. The token-ring interface was specified by 

pref[a 1?;p II;aO?;pOI] 

II pref[b?;(ql I p II;aO?;q I)]. 

This command is written a a weave of two commands EO and E 1, where 

E 1 = pref[b ?;(q I I p II;a O?;q I)]. 

From Examples 6.0.2 and 6.1.1 we derive that EO and E 1 can be decomposed as follows. 

EO ~ pref[a I?;p II] , pref[aO?;pO!] , (, ( 

E I ~ pref[b?;(q 1 lip 11») , ( , pref[aO?;qOI] , pref[(q I? I qO?);q I]. 

We have added several (epsilon) components ( in order to bring the decompositions into a 
form to which the Separation theorem can be applied. Adding (epsilon) components does 
not invalidate a decomposition. 

Verifying conditions (6.3) and (6.4) of the Separation Theorem, we derive that the internal 
symbols of the decompositions are disjoint, -since 0 n {q 0, q I} = .0. FiJrthermote, we 
observe that the outputs are column-wise disjoint. Consequently, we conclude by the 
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Separation Theorem that 

EOIiEl 

~ {Above decompositions, Separation Theorem} 

pref[a 1 ?;p I!] II pref[b ?;(q I! Ip 1 I)] 

, pref[aO?;pO!] 

, pref[aO?;qO!] 

, pref[(q 11 I qO?);q !J. 
AIl components in this list are basic components except for the one in the first line. This 
command almost looks like the command of a SEQ component. We are missing a com
mand expressing the alternation of a request (for grant q 1) and grant q 1. Therefore, we 
introduce the symbol rq 1, representing the request for grant q I, and apply the following 
decomposition. 

pref[a 11;p I!] II pref[b1;(q l! Ip I!)] 
~ {Dei. of decomposition, introduction of internal symbol rq I} 

pref[a I1;p I!] II pref[rq I?;q I!] II pref(b1;(q 1 lip I!)] 

,pref[rq I!;q 11]. 

Applying the Substitution Theorem once more we obtain the complete decomposition of the 
token-ring interface into basic elements: 

EOIIEI 

~ {Decomposition above, Substitution Theorem} 

pref[aI?;pI!] II pref[rqI1;ql!] II pref[b1;(ql! Ip I!)] 
, pref[rq 1 !;q 11] 

, pref[a01;pO!] 

, pref[aO?;qO!] 

, pref[(q 11 I q01);q I]. 

This decomposition is shown in Figure 6.3. Since both aO and q 1 are inputs for two com
ponents, we have drawn Figure 6.3 two forks to depict the decomposition. Notice that these 
forks do not occur as genuine FORK components in the decomposition. For this reason, 
these forks should be drawn as isochronic forks. Later, in example 6.3.2, we shall see, how
ever, that these forks can be considered as genuine FORK components in the decomposi
tion. That is, operationally speaking, arbitrary delays may take place in the branches of the 
forks without affecting the functional behavior of the connection. 
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a 11 aO? pO? p 17 

b? ~ ____ ---' '----.... q! 

o 
FIGURE 6.3 A decomposition of the token-ring interface. 

6.2. DI decompafition 

In our operational interpretation, a decomposition is intended to represent a decomposition 
of a physical circuit into sub-circuits. In these sub-circuits arbitrary delays may occur 
between the receipt of an input and the production of an output (with a different name). It 
is assumed, however, that the communications between the sub-circuits are instantaneous, 
i.e. the sending and receipt of a signal coincide. If these sub-circuits are connected by wires 
with unspecified delays this assumption is clearly violated, unless we explicitly include the 
connection wires in the connection of the sub-circuits. For this reason, we introduce WIRE 
components in a DI decomposition. We make the wire connections through 'intermediate 
terminals' as depicted in Figure 6.4. The set of intermediate terminals is called the intermedi
ate boundary. 

FIGURE 6.4. DI decomposition. 

Operationally speaking, the WIRE components introduce delays in the communications 
between components and the intermediate boundary. Thus, they may affect the functional 
behavior of the connection (of components). If this closed connection operates as specified 
and is free of interference, then we call such a connection a delay-insensitive connection. 

The formalization of a delay-insensitive connection of components is done as follows. Let 
a(S.k), lEO;;k<n, stand for an intermediate boundary and define the enclosure enc(S.k) of 
this boundary by 

enc(S.k) is the trace structure obtained by replacing 

each output a in S.k by oak and 

each input a in S.k by iak' 
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Instead of considering the components S.k, 1 <.k <12, we consider the components etJc(S.k) 
and the intermediate boundaries given by a(S.k). For each k, 1 <.k<n and a Ea(S.k) we 
introduce the WIRE component Wire(k,a) between the boundary of the enclosure and the 
intermediate boundary by 

Wire(k.a) = pref(oak?;a!] if a eo(S.k) 

= pref[a?;iak!] if a ei(S.k). 

The collection of WIRE components for S.k, 1 <.k <12, is defined by 

Wires(S.k) = (a:aea(S.k): Wire(k,a» 

With these definitions we can formulate 

DEFINITION 6.2.0. We say that the components S.k, 1 <.k<nform a DI decomposition of com
ponent S. 0, denoted by 

DI 
S.O~(k: l<.k<n:S.k), 

if and only if 
S. 0 ~ (k: 1 <.k <n: enc(S.k), Wires(S.k». 

o 

Rm4ARK. The definition of DI decomposition given here is slightly different from the one 
given in [5]. The definition in [5] requires that the (closed) connection is also insensitive to 

wire delays introduced between the intermediate boundary a(S. 0) and the environment S.O 
(i.e. component S. 0). The definition given here is easier to formulate and to use than the 
one in [5]. 
o 

ExAMPLE 6.2.1. Of all the examples on decomposition in Section 6.0 we could verify 
whether these decompositions are also DI decompositions. In general, this may be rather 
laborious, because of the extra WIRE components. In the next section we present a 
theorem with which we can verify quickly whether a decomposition is also a 01 decomposi
tion. It turns out that the decompositions of the modulo-3 counter and the token-ring inter
face are indeed 01 decompositions. The decomposition given in Example 6.0.3, however, is 
not a 01 decomposition. Essentially, this is demonstrated in Example 6.0.4, where we 
showed that there was danger of computation interference in case extra WIRE components 
are introduced in the communications. 
o 
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6.3. DI components 

In this paper we are interested in DI decompositions of a component In general, DI decom
positions are more difficult to verify or derive than decompositions because of all the (con
nection) WIRE components. The two decompositions are equivalent, however, if all consti
tuting components are so-called DI components. DI components are defined by 

DEPINmoN 6.3.0. Component S is called a DI componen~ if 

S ~ Wires(S) , enc(S). 

o 

We have 

THEOREM 6.3.1. If all components S.i, Oll!iii;i <11, are DI components, then 
DI 

S.O~(i: l~i<n:S.i) = S.O~(i: l~i<n;S.i). 
o 

REMARK The proof from the left-hand side to the right-hand side follows immediately from 
the Substitution Theorem and the definitions of DI component and DI decomposition. The 
other way is more complicated. A complete proof can be found in [5]. 
o 

Definition 6.3.0 formalizes that the set of allowed external communication behaviors, i.e. the 
communications between component and environment, is insensitive to wire delays. The 
characterization of a DI component S by the property S ~ Wires(S), enc(S) can be con
sidered as a formalization of the so-called Foam Rubber Wrapper (FRW) principle. For
mally speaking, the FRW principle states that the specification of a component is invariant 
under the extension of WIRE components. Operationally speaking, the PRW metaphor 
expresses that the circuit specified by S is embedded in a <Foam Rubber Wra.pper' formed 
by the connection wires. The boundaries of the FRW are constituted by aenc(S) and as, as 
depicted in Figure 6.5. 
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"'''';--, ..... , 
/.~---.s-.- " 
I aenc(S) \ 

\ ------ ~ 
(~ '-. 'I 

FRW 

....... - --
FIGURE 6.5. S is a DJ component: S ~ Wires(S), enc(S). 

The idea of formaJizing delay-insensitivity by means of the FRW principle originates from 
Charles E. Molnar [17]. Jan Tijmen Udding was the first to give a rigorous formulation of 
this principle in terms of directed trace structures. In [26] he postulates a number of rules 
which a component must satisfy in order to meet the FRW principle. It turns out that 
Udding's definition of a DJ component is equivalent to Definition 6.3.0 [5]. T.P. Fang had 
earlier expressed the FRW principle - though less completely - by means of Petri Net rules. 
In [20] another formalization of the FRW principle is given by Huub Schols. For a proof of 
the equivalence of Udding's and Schols's formalization we refer to (20, 21]. 

In order to use Theorem 6.3.1 we have to know whether a component is a OJ component. 
The recognition of OJ components can be done in several ways. We could use Definition 
6.3.0, for example, or the rules given by Jan Tijmen Udding. Yet another method is to use 
a Dl grammar, ie. a grammar that generates commands representing OJ components. Such 
a grammar is given in [5]. We shall not recapitulate these methods here, but mention, 
without proof, that all basic components of Figure 5.0 are 01 components. 

ExAMPLE 6.3.2. Since the TOGGLE and XOR component are OJ components, we conclude 
by Theorem 6.3.1, that the decomposition of the modulo-3 counter in Example 6.0.1 is a OJ 
decomposition. 

Because the SEQ, XOR, and WIRE components are OI components, it follows by 
Theorem 6.3.1 that the decomposition of the token-ring interface given in Example 6.1.3 is 
also a OJ decomposition. 

The specification of an OR gate given in Example 6.0.3 is not a 01 component. (Notice 
that there can be two inputs c in a row, which is not allowed for a 01 component) In gen
eral, this may be an indication that the decomposition is not a OJ decomposition. From 
Example 6.0.4 it followed that indeed the decomposition of Example 6.0.3 is not a OJ 
decomposition. 
o 

7. CoNCLUDING REMARKs 

In this paper we have described a formal approach to the design of delay-insensitive circuits. 
We have specified circuits, or components as we call them formally, by means of regular 
expression-like programs representing all communication behaviors between component and 
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environment. Subsequently, such a program is manipulated by means of a calculus into a 
set of programs representing basic components. The connection of these basic components 
forms a realization of the desired component such that the functional operation of the con
nection is insensitive to component delays. Such a realization is called a decomposition. If, 
furthermore, all components involved are so-called Dr components, then we may even con
clude that this connection is insensitive to delays in components and connection wires, i.e. 
the decomposition is also a DI decomposition. 01 components can be characterized as 
components whose communication behavior with the environment is insensitive to wire 
delays. We have illustrated this formal approach to circuit design by means of several 
examples including a modulo-3 counter and a token-ring interface. 

Although we have covered only a few topics of [5], we hope we have revealed some of the 
aspects of the fascinating and many-sided research on the design of delay-insensitive circuits. 
We name a few of these aspects: 

Language design: which programming primitives do we include in the language in order to 
be able to express a component in a clear and concise program? Here, for example, we 
have used the language of regular expressions and extended it with the operations weaving 
and projection in order to allow succinct expressions for components. It is also possible to 
include tail recursion in the language in order to be able to express finite state machine 
tersely. 

Programming methodology: how do we design programs (i.e. commands) for components 
from given specifications? Although we have not used it explicitly here, there exists a tech
nique called the conjunction-weave rule with which parallel programs can be derived in a 
natural way from a specification [9, 18]. 

Translation techniques: how do we translate programs into connections of basic elements? 
The translations we have given in this paper are based on the definition of decomposition 
and a few useful theorems that could be formulated on decomposition. We believe that 
there exist many more theorems on decomposition that may be helpful in finding, or even 
deriving, decompositions in a constructive way. By developing a calculus on decomposition 
we may thus obtain translation techniques based on the syntax of commands, for example. 

Syntax and semantics: how can we can satisfy semantic properties (like being a 01 com
ponent or being a decomposition) by impo'ling syntactic requirements on programs? For the 
semantic property of 'being a Dr component' we have developed a so-called DI grammar, 
i.e. a grammar that generates commands representing DI components. For decomposition 
we can formulate theorems, like the Separation Theorem, which depend on the syntax of a 
command. 

VLSI design: what physical constraints must be met in order to implement the circuit 
designs obtained in the VLSI medium? 

The most important results reported in (5J can be phrased briefly as follows. It is shown 
that any DI component can be decomposed into a finite basis of Dr components. This basis 
essentially consists of the components given in Figure 5.0. Moreover, it is shown that if a 
component is specified by a command satisfying a specific DI grammar, then it can be 
decomposed into a number of basic components that is linear in the length of the command. 

Finally, we want to emphasize that in approach presented our first concern has been the 
correctness of the designs and only in the second place have we addressed their efficiency. 
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Although the results are theoretically interesting, we believe that still many improvements 
can be made in translating programs into delay-insensitive circuits to make it also a practi
cally interesting design method. 
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