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Abstract

We consider a queueing system where feedback information about the level of
congestion is given right after arrival instants. When the amount of work right after
arrival is at most (respectively, larger than) K, then the server works at speed r1

(respectively, r2) until the next arrival instant. We derive the distribution of the
workload right after and right before arrivals, as well as in steady state. In addition,
we consider the generalization to the N -step service rule.

1 Introduction

The queueing literature contains many studies about queues with workload-dependent
service speeds. In those studies it is usually assumed that the speed of the server is
continuously adapted over time based on the buffer content. In many practical situations,
though, service speed adaptations are only made at particular points in time, like arrival
epochs. For example, feedback information about the buffer state may only be available
at such epochs. Furthermore, continuously changing the service speed may come with
certain costs.
In this paper, we consider a single-server queue with adaptable service speed based on
the amount of work right after customer arrivals. In between arrivals, the service speed is
held fixed and may not be changed until the next customer arrival. The main aim of this
paper is to find the (Laplace Stieltjes Transform of the) distribution of the steady-state
workload embedded at epochs immediately after arrivals, and the steady-state workload
distribution at arbitrary epochs.

Related literature
Models with continuously adaptable service speed originate from the study of dams and
storage processes. There exists a rich body of literature on dams and storage systems going

∗The first author was financially supported by a research grant from Philips Research. The research of
the second author fits into the BRICKS project. Part of the research was conducted in the framework of
Euro-NGI.
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back to the 1960’s, see e.g. [10, 13]. Queueing systems with workload-dependent service
speeds can also be found in, e.g., [1, 3, 8, 11]. Furthermore, in [7, 10] and [8], p. 555-556,
the authors consider a queueing system with a two-stage service rule: If the workload is
less than K, then the service speed equals r1, whereas the service speed equals r2 when
the workload exceeds K. Using an elegant technique for the convolution of two Laplace
Stieltjes Transforms (LST), they determine the steady-state workload distribution. In this
paper, we apply a similar method to obtain the LST of the workload at embedded epochs
for the M/G/1 queue with service speeds only being changed at customer arrivals.
A related branch of literature considers queueing systems where the service speed depends
not only on the buffer content, but also on the stage of the system. In particular, an
(m,M) control rule prescribes to switch from stage 1 to stage 2 at an upcrossing of the
workload of level M (and the stage is 1) and to switch back from stage 2 to stage 1 at a
downcrossing of m (and the stage is 2), see also e.g. [2, 12, 15]. The control of the service
speed may be realized by letting ri be the service speed in stage i, i = 1, 2. In such control
systems, usually costs are imposed including, e.g., holding costs and switchover costs. In
[15], the long-run average costs per unit time for the (m,M)-policy are determined. Of
special interest is the case when m = 0 which is commonly referred to as a D-policy (that
is (m,M) = (0,D)). In [14], the author shows that the D-policy is average-cost optimal
under the assumption that the workload can only be controlled at arrival epochs. In [9],
the average-cost optimality of D-policies is rigorously proved in a more general setting.

Model description
We consider an M/G/1 queueing system where feedback information about the level of
congestion is available right after arrival instants. The customers arrive to the system
according to a Poisson process with rate λ. Let An, n = 1, 2, . . ., denote the time between
the arrival instants of customers n and n+1. Also, denote by Bn, n = 1, 2, . . ., the service
requirement of customer n. We assume that B1, B2, . . . are i.i.d. copies of the generic
random variable B with distribution B(·), mean β, and LST β(·). We also assume that
the sequences of interarrival intervals and service requirements are independent.
When the amount of work right after an arrival instant equals x, the server works at
constant speed r(x) until the next customer arrival. Note that the service speed is thus
only changed at discrete points in time. In this paper, we specifically consider the case of
a two-step service speed function: If the amount of work right after an arrival is smaller
than (or equal to) a finite number K, then the server starts to work at speed r1, whereas
the service speed equals r2 if the workload is larger than K. Later, we also consider the
generalization to an N -step service-speed function (see Subsection 5.3).
Define ρi := λβ/ri, i = 1, 2. Throughout, we assume that the system is stable, i.e., ρ2 < 1.
Let Wn and Sn be the workload just before, respectively right after, the arrival instant of
customer n. We denote by W and S the steady-state random variables corresponding to
Wn and Sn. We have the following recursion relation:

Sn+1 = (Sn − r(Sn)An)+ + Bn+1, (1)

where x+ = max(x, 0). Because of the trivial relation Sn = Wn + Bn, one also has
Wn+1 = (Sn − r(Sn)An)+.
In queueing systems where the server always works at unit speed when there is any work
in the system, W corresponds to a waiting time and S represents a customer’s sojourn
time. This equivalence no longer holds when the service speed varies with the amount of

2



work present. For convenience, however, we often refer to W and S as the waiting and
sojourn time, respectively.

Goal and organization
The main aim of this paper is to find the distribution (and LST) of S, and then also of
W . It should be observed that, due to PASTA, the distribution of W also equals the
steady-state workload distribution.
The paper is organized as follows. In Section 2 we derive two distinct equations for the
LST of S and sketch a four-step procedure to determine its distribution. The first step
of this procedure does not depend on the distribution of the service requirement and is
analyzed in detail in Section 2. We give steps two to four in Section 3 in case the service
requirements follow an exponential distribution. It turns out that the density of S is then a
weighted combination of two exponentials for x ≤ K, and is purely exponential for x > K.
The M/M/1 case gives much insight into the structure of the solution for more general
cases, like the M/G/1 case, which is addressed in Section 4. For expository reasons, we
have chosen to treat these cases separately instead of all in one. Special cases and the
extension to the N -step service rule are discussed in Section 5.

2 Sojourn times: Equations and general procedure

In this section, we first derive equations to determine the LST of S in case of the two-step
service speed function. Secondly, we outline a four-step procedure to find the LST and
distribution of S from the constructed equations, and describe the first step in detail.
For convenience, we recall the definition of the two-step service rule:

r(x) =
{

r1, for 0 < x ≤ K,
r2, for x > K.

Denote the LST of S by

φ(ω) :=
∫ ∞

0
e−ωxdP(S < x). (2)

Also, define, for i = 1, 2 and ρi �= 1,

Fi(ω) := (1 − ρi)
riωβ(ω)

ωri − λ + λβ(ω)
. (3)

Observe that Fi(ω) corresponds to the LST of the sojourn time in an M/G/1 queue with
service speed ri, i = 1, 2.
The equations for φ(ω) are summarized in the following lemma:

Lemma 2.1. φ(ω) satisfies the following two equations, for Re ω ≥ 0,

φ(ω) = F2(ω)
W (0)
1 − ρ2

(4)

+ F2(ω)
λ( r1

r2
− 1)

(ωr1 − λ)(1 − ρ2)

[∫ K

0
e−ωxdP(S < x) −

∫ K

0
e
− λ

r1
xdP(S < x)

]
,

3



with W (0) := P(W = 0). Also,

φ(ω) = F1(ω)
W (0)
1 − ρ1

(5)

+ F1(ω)
λ(1 − r2

r1
)

(ωr2 − λ)(1 − ρ1)

[∫ ∞

K
e
− λ

r2
xdP(S < x) −

∫ ∞

K
e−ωxdP(S < x)

]
.

Proof. It follows after some straightforward calculations that, for ω �= λ/r1, λ/r2,

E

[
e−ω(Sn−r(Sn)An)+ |Sn = x

]
= e−ωxλ

∫ x/r(x)

0
e(ωr(x)−λ)ydy + e−λx/r(x)

=
ωr(x)

ωr(x) − λ
e
− λ

r(x)
x − λ

ωr(x) − λ
e−ωx. (6)

Using the recursion (1), conditioning on Sn, and applying the above, yields

E
[
e−ωSn+1

]
=

∫ ∞

0
E
[
e−ωSn+1 |Sn = x

]
dP(Sn < x)

= β(ω)
[

ωr1

ωr1 − λ

∫ K

0
e
− λ

r1
xdP(Sn < x) − λ

ωr1 − λ

∫ K

0
e−ωxdP(Sn < x)

+
ωr2

ωr2 − λ

∫ ∞

K
e
− λ

r2
xdP(Sn < x) − λ

ωr2 − λ

∫ ∞

K
e−ωxdP(Sn < x)

]
. (7)

To analyze the steady-state behavior of Sn, we let n → ∞. Furthermore, combining (2)
and (7), in addition to some basic manipulations, we may obtain two alternative equations
for φ(ω): First,

φ(ω) =
F2(ω)

(1 − ρ2)(ωr1 − λ)

[
r1

r2
(ωr2 − λ)

∫ K

0
e
− λ

r1
xdP(S < x)

+λ(
r1

r2
− 1)

∫ K

0
e−ωxdP(S < x) + (ωr1 − λ)

∫ ∞

K
e
− λ

r2
xdP(S < x)

]
, (8)

and second,

φ(ω) =
F1(ω)

(1 − ρ1)(ωr2 − λ)

[
(ωr2 − λ)

∫ K

0
e
− λ

r1
xdP(S < x)

−λ(1 − r2

r1
)
∫ ∞

K
e−ωxdP(S < x) +

r2

r1
(ωr1 − λ)

∫ ∞

K
e
− λ

r2
xdP(S < x)

]
. (9)

Now, Equations (4) and (5) follow from (8) and (9), respectively, and from the observation
that

W (0) =
∫ K

0
e
− λ

r1
xdP(S < x) +

∫ ∞

K
e
− λ

r2
xdP(S < x). (10)

This completes the proof.

Determining φ(ω) from Equations (4) and (5) involves the more complicated part. We
introduce a four-step procedure to determine the distribution of S. Below, we sketch each
of the four steps. Because Step 1 is the only step that does not depend on the service
requirement distribution, we analyze it in detail at the end of this section. Steps 2–4 are
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carried out in Section 3 in case the distribution of the service requirements is exponential.
The general M/G/1 case is considered in Section 4. The procedure builds upon techniques
applied in [7, 10] and [8], p. 556. It starts from the observation that a serious complication
in determining φ(ω) from (4) and (5) is that both equations involve the incomplete LST
of S.
The basic algorithm to obtain P(S < x) is as follows:

Step 1 Rewrite Equation (5) such that the second term of (5) can be interpreted as the
sum of (i) the LST of the convolution of F1(·) with an exponential term, and (ii) a
transform that only has points of increase on (K,∞).

Step 2 Apply Laplace inversion to the reformulated Equation (5) resulting from Step 1,
to determine P(S < x) for x ∈ (0,K].

Step 3 By Step 2, we may now calculate
∫K
0 e−ωxdP(S < x). Substitution in (4) then

directly provides φ(ω). Applying Laplace inversion again, we determine P(S < x)
for x > K.

Step 4 The remaining constants may be found by normalization.

The remainder of this section is devoted to the description of Step 1.

Step 1: Rewriting (5)
In this part, when considering the sojourn time of customer n+1, we distinguish between
two cases: (i) Sn ≤ K, and (ii) Sn > K. If Sn+1 ≤ K, this imposes for case (ii)
that a downcrossing of level K occurs between the arrival instants of customers n and
n + 1. However, the residual interarrival time at a downcrossing of K is still exponential.
Consequently, given a downcrossing of level K between the arrival epochs of customers
n and n + 1, the precise distribution of Sn on (K,∞) does not affect the distribution of
Sn+1 ≤ K, because Wn+1 is simply distributed as (K − r2An)+. The aim of this first step
is to show that the second part of Equation (5) corresponds to case (ii) and to apply the
intuitive arguments above in reformulating (5).
Denote by I(·) the indicator function. Using (6), we get

E

[
e−ω(Sn−r(Sn)An)+I(Sn > K)

]
−
∫ ∞

K
e
− λ

r2
xdP(Sn < x)

=
λ

ωr2 − λ

[∫ ∞

K
e
− λ

r2
xdP(Sn < x) −

∫ ∞

K
e−ωxdP(Sn < x)

]
.

Observe that the right-hand side (rhs) corresponds to the final part of the second term in
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(5). However, by conditioning on Sn, we may also rewrite this expression as

E

[
e−ω(Sn−r(Sn)An)+I(Sn > K)

]
−
∫ ∞

K
e
− λ

r2
xdP(Sn < x)

=
∫ ∞

K
e−ω(x−r2An)+dP(Sn < x) −

∫ ∞

K
e
− λ

r2
xdP(Sn < x)

=
∫ ∞

K
e−ω(x−r2An)I(An ≤ (x − K)/r2)dP(Sn < x)

+
∫ ∞

K

∫ x/r2

(x−K)/r2

λe−λye−ω(x−r2y)dydP(Sn < x)

= E

[
e−ω(Sn−r2An)I(Sn − r2An > K)

]
+

λ

ωr2 − λ

(
1 − e

−ωK+ λ
r2

K
) ∫ ∞

K
e
− λ

r2
xdP(Sn < x).

Letting n → ∞ and combining the above, Equation (5) reads,

φ(ω) = F1(ω)
W (0)
1 − ρ1

+ F1(ω)
(1 − r2

r1
)

1 − ρ1

{
E

[
e−ω(S−r2A)I(S − r2A > K)

]

+
λ

ωr2 − λ

(
1 − e

−ωK+ λ
r2

K
)∫ ∞

K
e
− λ

r2
xdP(S < x)

}
. (11)

The second and third term on the rhs of (11) directly correspond to the intuitive obser-
vations made above. The first one provides the LST of W when W > K. The second one
involves the LST of K − r2A (with A a generic interarrival time) multiplied by a constant
(see Section 4 for an interpretation).

3 Exponential service requirements

In this section, we assume that B(x) = 1 − e−μx, i.e., the service requirements are expo-
nentially distributed with mean 1/μ. Applying the procedure described in Section 2, we
explicitly determine the steady-state “sojourn time” distribution. We have chosen to treat
the M/M/1 case first, because the structure of the density of S is here readily exposed,
yielding insight into the solution for the M/G/1 case. Moreover, the solutions reduce to
nice analytical expressions in that case.
Because the interpretation of Step 1 is valid independently of B(·), the starting point of
the algorithm is Equation (11).

Step 2: Sojourn time density on (0,K]
Using the construction of Step 1, we apply Laplace inversion to determine the density
fS(x) of S for 0 < x ≤ K. In the exponential case, we easily obtain for the first transform
in (11),

F1(ω) = (1 − ρ1)
r1μ

r1(ω + μ) − λ
.

Laplace inversion provides the familiar M/M/1 term for queues with constant service speed
r1,

s1(x) = μ(1 − ρ1)e
( λ

r1
−μ)x

, for x > 0,
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where s1(·) denotes the density of a random variable with LST F1(·).
The inversion of the second transform in (11) is based on an observation made in [7, 8, 10].
First, consider

F1(ω)E
[
e−ω(S−r2A)I(S − r2A > K)

]
.

This term involves a product of two LST, corresponding to the sum of a random variable
with mass on [0,∞), and one with mass on [K,∞). Hence, that sum has no mass on
[0,K].
Second, consider

F1(ω)
λ

ωr2 − λ

(
1 − e

−ωK+ λ
r2

K
)

. (12)

It is readily checked that the latter part, λ
ωr2−λ

(
1 − e

−ωK+ λ
r2

K
)
, is the Laplace Transform

of the function

f(x) =

{
λ
r2

e
λ
r2

x
, for 0 < x ≤ K,

0, for x > K.
(13)

Thus, (12) represents the convolution of s1(·) with f(·). By applying (11) and combining
the above, we obtain after lengthy calculations the following “sojourn time” density fS(x),
for 0 < x ≤ K,

fS(x) = s1(x)
W (0)
1 − ρ1

+
1 − r2

r1

1 − ρ1

∫ ∞

K
e
− λ

r2
ydP(S < y)

∫ x

0
s1(y)

λ

r2
e

λ
r2

(x−y)dy

= Q1e
( λ

r1
−μ)x + Q2e

λ
r2

x
, (14)

with

Q1 = μ

∫ K

0
e
− λ

r1
ydP(S < y) +

r1r2μ
2

λ(r1 − r2) + r1r2μ

∫ ∞

K
e
− λ

r2
ydP(S < y), (15)

Q2 =
λμ(r1 − r2)

λ(r1 − r2) + r1r2μ

∫ ∞

K
e
− λ

r2
ydP(S < y). (16)

Because we have determined the density of S on (0,K] up to some constants, this con-
cludes Step 2.

Step 3: Sojourn time density on (K,∞)
In this step, we first determine φ(ω) using (4) and then apply Laplace inversion once more
to obtain the density of S on (K,∞). From the final result of Step 2, we deduce,∫ K

0
e−ωxdP(S < x) =

Q1

ω + μ − λ/r1
(1 − e

( λ
r1

−μ−ω)K) +
Q2

ω − λ/r2
(1 − e

( λ
r2

−ω)K). (17)

Substitution in (4) then immediately yields φ(ω).
Next, to obtain fS(x) for x > K, we invert φ(ω) on the corresponding interval. Similar to
F1(ω) in Step 2, we have

F2(ω) = (1 − ρ2)
r2μ

r2(ω + μ) − λ
.

Laplace inversion provides the expression of an M/M/1 queue with service speed r2:

s2(x) = μ(1 − ρ2)e
( λ

r2
−μ)x

, for x > 0,
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where s2(·) represents the density of a random variable with LST F2(·).
By (17), it follows that the second term of Equation (4) constitutes a Laplace transform
having four poles. We observe that the zero in the denominator of λ/(ωr1 − λ) is a
removable zero. The expression in (17) is the LST of a density on (0,K]. Hence, the only
pole contributing on (K,∞) is the zero in the denominator of F2(ω), that is, η = λ/r2−μ.
Since the first term of (4) provides the same pole, we immediately deduce that

fS(x) = Q3e
( λ

r2
−μ)x

, for x > K. (18)

We note that the terms with removable singularities in λ/(ωr1 −λ) and (17) do affect the
constant Q3. However, Q3 is determined in Step 4 using the expressions for Q1, Q2, and
the normalizing condition, and there is thus no need to specify Q3 any further.

Step 4: Determination of the constants
In this final step, we use the normalizing condition

∫∞
0 dP(S < x) = 1 to determine the

constants Q1, Q2, and Q3. In particular, combining normalization with (15) and (16) we
obtain a set of three equations with the above three unknowns (hence, there is indeed no
need to give Q3 explicitly in Step 3).
Substituting (18) in (16) and calculating the integral yields

Q2 = Q3
λ(r1 − r2)

λ(r1 − r2) + r1r2μ
e−μK . (19)

Also, substitution of both (14) and (18) in (15) and performing the integrations, yield, for
r1 �= r2,

Q1 = Q1(1 − e−μK) + Q2
r1r2μ

λ(r1 − r2)
(e( λ

r2
− λ

r1
)K − 1) + Q3

r1r2μ

λ(r1 − r2) + r1r2μ
e−μK .

Consequently, using the expression for Q2 in (19) in addition to some rewriting, we express
Q1 in terms of Q3 as

Q1 = Q3
r1r2μ

λ(r1 − r2) + r1r2μ
e
( λ

r2
− λ

r1
)K

. (20)

We obtain an additional equation from the normalizing condition
∫∞
0 fS(x)dx = 1. Using

the densities of (14) and (18) and determining the integrals yields (for λ �= r1μ, with an
obvious modification when λ = r1μ):

Q1r1

λ − r1μ
(e( λ

r1
−μ)K − 1) +

Q2r2

λ
(e

λ
r2

K − 1) +
Q3r2

λ − r2μ
e
( λ

r2
−μ)K = 1.

Now, substituting (20) and (19) in the above in addition to some manipulations, gives

Q3 =
[(

r2

λ − r1μ
− r2

λ − r2μ

)
e
( λ

r2
−μ)K − r2

1r2μ

(λ(r1 − r2) + r1r2μ)(λ − r1μ)
e
( λ

r2
− λ

r1
)K

− r2(r1 − r2)
λ(r1 − r2) + r1r2μ

e−μK

]−1

. (21)

The expressions for Q1 and Q2 follow directly from (20) and (19).
Summarizing, we have found that, in the M/M/1 queue with a two-step service speed func-
tion, the density of the “sojourn time” is given by (14) and (18), the constants Q1, Q2, Q3
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being specified by (19), (20) and (21). Observing that Sn = Wn + Bn, where Wn and
Bn are independent, now yields the distribution of W , and hence, using PASTA, the
steady-state workload distribution. We give P(W = 0) and the density fW (x), x > 0:

P(W = 0) =
Q1 + Q2

μ
, (22)

fW (x) =

{
Q1ρ1e

( λ
r1

−μ)x + Q2(1 + ρ2)e
λ
r2

x
, for 0 < x ≤ K,

Q3ρ2e
( λ

r2
−μ)x

, for x > K.
(23)

Remark 3.1. Note that the equations reduce to familiar results for the M/M/1 queue with
service speed r2 in case either K = 0, or r1 = r2. In particular, we then have

fS(x) = μ(1 − ρ2)e−μ(1−ρ2)x, for x > 0.

4 General service requirements

In this section we apply the procedure described in Section 2 to the general M/G/1 queue.
The basic ideas are similar as in the M/M/1 case of Section 3. Again, we start the algo-
rithm with Equation (11), which is the result of Step 1 in Section 2.

Step 2: Sojourn time distribution on (0,K]
The transforms in this step can be treated in a similar manner as the transforms in the
exponential case of Section 3. First, to describe the inverse of F1(ω), we define

H(x) := β−1

∫ x

0
(1 − B(y))dy

as the stationary residual service requirement distribution. Similar to [6, 7], let δ1 = 0 for
ρ1 ≤ 1 and for ρ1 > 1 let δ1 be the unique positive zero of the function∫ ∞

0
e−xyρ1dH(y) − 1.

Then, for x > 0, define

L(x) :=
∫ x

0
e−δ1yρ1dH(y),

and

W1(x) :=
∫ x

0−
eδ1yd

{ ∞∑
n=0

Ln∗
(y)

}
,

where Ln∗
(·) denotes the n-fold convolution of L(·) with itself. Finally, let

S1(x) := (1 − ρ1)
∫ x

0
B(x − y)dW1(y),

be the convolution of (1 − ρ1)W1(·) with B(·). It may be checked that, as in [6, 7], the
LST of S1(·) equals F1(ω), that is, Equation (3) with i = 1.
For ρ1 < 1, we note that (1 − ρ1)W1(·) and S1(·) are the steady-state waiting-time and
sojourn-time distributions in an M/G/1 queue with service speed r1. In case ρ1 ≥ 1, W1(·)
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may be interpreted in terms of a dam with release rate r1 and capacity K. Specifically, the
stationary waiting-time distribution for such a dam equals W1(·)/W1(K), see for instance
[6], or [8], p. 536.
To obtain the sojourn time distribution on (0,K], we apply Laplace inversion to each of
the transforms in (11) as in Section 3. The inverse of the first LST F1(ω) is described
above. For the second transform

F1(ω)E
[
e−ω(S−r2A)I(S − r2A > K)

]
,

we recall that this involves a product of two LSTs, corresponding to the sum of a random
variable with mass on [0,∞), and one with mass on [K,∞). Thus the sum has no mass
on (0,K]. Using (13) for the third transform in (11) as in Section 3, we obtain, for ρ1 �= 1,

P(S < x) =
W (0)
1 − ρ1

S1(x) +
(1 − r2

r1
)

1 − ρ1

∫ ∞

K
e
− λ

r2
ydP(S < y)

∫ x

0
S1(x − y)f(y)dy. (24)

The above equation may be rewritten into an intuitively more appealing expression by
using the interpretation of f(·). As discussed in Step 1, the event Sn ≤ K implies that
either the previous sojourn time was also at or below K, or a downcrossing has occurred
between the two consecutive arrivals. Denote the probability of a downcrossing of K
between two successive arrivals by P↓K . Then, obviously,

P↓K =
∫ ∞

K
e
− λ

r2
(y−K)dP(S < y).

Let Aλ be a generic exponential random variable with mean 1/λ. It is then easily seen
that

E

[
e−ω(K−Aλ/r2

)+
]

=
λ

r2ω − λ

(
e
− λ

r2
K − e−ωK

)
+ e

− λ
r2

K
.

In case ρ1 < 1 , let Ŝ1 denote a generic sojourn time in an M/G/1 queue with service rate
r1. Combining the above directly gives, for x ∈ (0,K] and ρ1 < 1,

P(S < x) =
Q

1 − ρ1
P(Ŝ1 < x) +

1 − r2
r1

1 − ρ1
P↓KP(Ŝ1 + (K − Aλ/r2

)+ < x), (25)

where

Q :=
∫ K

0
e
− λ

r1
ydP(S < y) +

r2

r1

∫ ∞

K
e
− λ

r2
ydP(S < y).

To provide some insight, let a cycle be the sample path in (0,K] starting when the workload
process enters (0,K] and ending when it leaves (0,K]. Then, the two probabilities in (25)
have a direct interpretation: The first probability stems from sojourn times of customers
arriving in cycles starting from the empty system, while the second term is due to cycles
starting with a downcrossing of K. The sum with (K −Aλ/r2

)+ in the second probability
corresponds to the first “waiting time” after such a downcrossing.
Finally, in case ρ1 ≥ 1 the intuitive form may be expressed in a similar way as (25). In
that case, let Ŵ1 be a generic waiting time in an M/G/1 dam with service speed r1 and
finite buffer K and let B be a generic service requirement. Expression (25) then holds
upon replacing Ŝ1 by Ŵ1 + B and 1/(1 − ρ1) by W1(K).
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Step 3: Sojourn time distribution on (K,∞)
Taking the LST of (24) on (0,K] and substituting the result in (4) yields φ(ω). Below,
we apply Equation (4) directly though to derive the sojourn time distribution on (K,∞).
First, define

W2(x) := (1 − ρ2)
∞∑

n=0

ρn
2Hn∗

(x).

Because ρ2 < 1, W2(·) corresponds to the steady-state waiting-time distribution in an
M/G/1 queue with service speed r2. Let S2(x) = W2(x) ∗B(x) be the stationary sojourn
time distribution in such a queue, with generic random variable Ŝ2. As is well-known,
F2(ω) in (3) is the LST of S2(·).
For convenience, denote γ(ω) :=

∫ K
0 e−ωxdP(S < x). Using standard algebra, we deduce

λ
γ(λ) − γ(ω)

ω − λ
= E

[
e−ω(S−Aλ)+I(S ≤ K)

]
− γ(λ). (26)

Define, for 0 ≤ x ≤ K,

S̃(x) := P((S − Aλ/r1
)+I(S ≤ K) ≤ x)

=
∫ x

0
s̃(y)dy + S̃(0),

where S̃(0) =
∫ K
0 e

− λ
r1

ydP(S < y), which is also equal to γ(λ/r1), and

s̃(x) :=
∫ K

x

λ

r1
e
− λ

r1
(y−x)dP(S < y).

Combining the above with (4) rewritten as

φ(ω) = F2(ω)
W (0)
1 − ρ2

+ F2(ω)
1 − r1

r2

1 − ρ2

λ/r1

ω − λ/r1
(γ (λ/r1) − γ(ω)) ,

we obtain, for x > K,

P(S < x) =
W (0)
1 − ρ2

S2(x) +
1 − r1

r2

1 − ρ2

∫ K

0
S2(x − y)s̃(y)dy. (27)

Alternatively, using that

W (0) =
r1

r2
Q + (1 − r1

r2
)γ(λ/r1),

the sojourn time distribution may be expressed as

P(S < x) =
r1
r2

Q

1 − ρ2
P(Ŝ2 < x) +

1 − r1
r2

1 − ρ2
P(Ŝ2 + (S − Aλ/r1

)+I(S ≤ K) < x). (28)

Here, the first probability relates to busy cycles in which all “sojourn times” are larger
than K. In that case, the system is identical to an M/G/1 queue with service speed r2.
In case Sn ≤ K before the end of the busy cycle, the sample path above level K in the
subsequent part of the busy cycle is initiated by S − Aλ/r1

with S ≤ K, as is reflected in
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the second term. Note that Equation (2.15) in [7] has a similar structure.

Step 4: Determination of the constants
Using the fact that limx→∞ P(S < x) = 1 and limx→∞ S2(x) = 1, we deduce from (27)
that

W (0) = 1 − ρ2 − (1 − r1

r2
)
(

P(S < K) −
∫ K

0
e
− λ

r1
ydP(S < y)

)
. (29)

Moreover, substituting x = K in (24) yields

P(S < K) =
W (0)
1 − ρ1

S1(K) +
(1 − r2

r1
)

1 − ρ1

∫ ∞

K
e
− λ

r2
ydP(S < y)

∫ K

0
S1(K − y)f(y)dy. (30)

Equations (10) and (24) can be used to determine the constants
∫ K
0 e

− λ
r1

ydP(S < y) and∫∞
K e

− λ
r2

ydP(S < y) in terms of W (0) and P(S < K). Hence, using (29) and (30), we find
after lengthy calculations that

W (0) =
(1 − ρ1)(1 − ρ2)(D1 + e

− λ
r1

K
f2)

(1 − r1
r2

)S1(K)D2 + D3 + (1 − ρ1) r1
r2

e
− λ

r1
K

f2

, (31)

∫ ∞

K
e
− λ

r2
ydP(S < y) = W (0)

D1 − e
− λ

r1
K

S1(K)

D1 + e
− λ

r1
K

f2

, (32)

where

fi :=
∫ K

0

λ

ri
e

λ
ri

(K−y)
S1(y)dy, i = 1, 2,

D1 := 1 − ρ1 − e
− λ

r1
K

f1,

D2 := D1 + e
− λ

r1
K
(

r2

r1
f2 − (1 − ρ1)

)
,

D3 := D1

(
1 − ρ1 + (1 − r1

r2
)(1 − r2

r1
)f2

)
.

Summarizing, the density of the “sojourn time” is given by (24) and (27) (see (25) and
(28) for another representation), where the main constants are given by (31) and (32).
Because Sn = Wn + Bn, where Wn and Bn are independent, we also directly obtain the
“waiting-time” distribution and, applying PASTA, the steady-state workload distribution.
In particular, for x ∈ (0,K], we have

P(W < x) = W (0)W1(x) + (1 − r2

r1
)
∫ ∞

K
e
− λ

r2
ydP(S < y)

∫ x

0
W1(x − y)f(y)dy, (33)

and for x > K,

P(W < x) =
W (0)
1 − ρ2

W2(x) +
1 − r1

r2

1 − ρ2

∫ K

0
W2(x − y)s̃(y)dy.

Note that we may determine the density s̃(y), 0 < y ≤ K, up to some constants, once we
have found the workload distribution on (0,K].
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5 Special cases and extensions

In this section we first consider some special cases of the model with a two-step service
rule and conclude with the extension to the N -step service speed function. The case of
exponentially distributed service requirements and the two-step service rule has already
been treated in Section 3. In Subsection 5.1 we focus on service requirements with a
rational LST to provide some structural properties. Furthermore, by allowing general
service requirements, but letting r2 → ∞ we obtain an M/G/1 queue with disasters
(clearings) at level crossings in Subsection 5.2. Finally, in Subsection 5.3 we analyze the
M/G/1 queue with an N -step service speed function.

5.1 Service requirements with rational LST

In this subsection we assume that the LST β(ω) is a rational function of ω. This allows
us to obtain some structural properties of the steady-state sojourn time distribution. In
particular, let

β(ω) =
β1(ω)
β2(ω)

,

where β1(ω) and β2(ω) are polynomials in ω with β2(ω) of degree n and β1(ω) of degree
strictly less than n (in other words, we assume B(0+) = 0). This class includes, for
instance, phase-type distributions. We use the notation M/Kn/1 to denote single-server
queues where the service requirements have such rational LSTs.
The inverse of Fi(ω), i = 1, 2, can now be given more explicitly. Rewrite (3) as

Fi(ω) = (1 − ρi)
riβ1(ω)

riβ2(ω) − λ(β2(ω) − β1(ω))/ω
.

Let δ2 := 0 and ε > 0 be arbitrary small. It then follows from Rouché’s theorem applied
to the function riβ2(ω)− λ(β2(ω)− β1(ω))/ω for Re ω ≤ δi + ε, i = 1, 2, that the function
has exactly n zeros in the plane with Re ω < δi + ε (see for instance [8], p. 323, in case
ρi < 1).
For ease of presentation, we assume that the function riβ2(ω)−λ(β2(ω)−β1(ω))/ω, i = 1, 2,
has one zero of multiplicity mi, mi = 2, 3, . . . , n, while the other n − mi zeros are simple,
i.e., have multiplicity one. Let ωi(1) be the non-simple zero and ωi(mi + 1), . . . , ωi(n) be
the distinct simple zeros. By a partial-fraction expansion and Laplace inversion of Fi(ω),
we have

si(x) =
mi∑
k=1

Q̃i(k)xkeωi(1)x +
n∑

k=mi+1

Q̃i(k)eωi(k)x,

for some constants Q̃i(k), i = 1, 2 and k = 1, . . . , n. In other words, the density of the
sojourn time in the M/Kn/1 queue with service speed ri may be written as the mixture
of mi Erlang densities with scale parameter ωi(1) and n − mi exponential terms.
It now follows from the general expressions in Section 4 that the “sojourn time” density
has a similar structure. First consider 0 < x ≤ K. Note that the convolution of an
Erlang(k, μ) distribution with an exponential term is a mixture of Erlang(i, μ), i = 1, . . . , k,
distributions and the same exponential. Using (24), we obtain, for 0 < x ≤ K,

fS(x) =
m1∑
k=1

Q1(k)xkeω1(1)x +
n∑

k=m1+1

Q1(k)eω1(k)x + Q0e
λ
r2

x
.
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Observe that fS(x) has the same Erlang and exponential terms as the sojourn time density
in an ordinary M/Kn/1 queue with service speed r1 (for ρ1 < 1) plus one additional
exponential exp(xλ/r2) (but with different constants). Further observe that ωi(k), i = 1, 2,
k = mi +1, . . . , n, might be complex, in which case its complex conjugate will also appear,
leading to an exponential times a cosine, respectively, sine function.
Second, for x > K, we use the fact that the conditional sojourn time density of Ŝ2 has the
same structure as the density of Ŝ2 itself, i.e.,

s2(x + y|Ŝ2 > y) =
m2∑
k=1

Q̂2(k)xkeω2(1)x +
n∑

k=m2+1

Q̂2(k)eω2(k)x,

for some constants Q̂2(k), k = 1, . . . , n (which depend on y). Combining the above with
(27), we deduce that

fS(x) =
m2∑
k=1

Q2(k)xkeω2(1)x +
n∑

k=m2+1

Q2(k)eω2(k)x.

Finally, using the normalization condition
∫∞
0 fS(x)dx = 1 together with the definitions

of Qi(k), i = 1, 2 and k = 1, . . . , n, provides 2n + 1 equations for determining the 2n + 1
constants Q0, Qi(k), for i = 1, 2 and k = 1, . . . , n.

5.2 Disasters at level crossings

A special case of the model discussed in Section 4 is an M/G/1 queue with disasters at
level crossings, see e.g. [5]. In such a model, the system is immediately cleared when the
workload exceeds some level K, that is, the residual amount of work is removed from the
system when the workload becomes larger than K. In case r2 → ∞ in our model, the
available amount of work is not removed but served instantaneously when the workload
upcrosses K. However, both interpretations of the work present after such an upcrossing
result in identical mathematical models.
First, we note that the workload embedded at epochs right after arrival instants may be
larger than K in our model (with r2 → ∞). In terms of clearing processes, this embedded
workload may be considered as the overshoot (and thus the amount of work lost) rather
than the actual amount of work present. Letting r2 → ∞ in (27) yields, for x > K,

P(S < x) = W (0)B(x) +
∫ K

0
B(x − y)s̃(y)dy,

where s̃(·) may, for instance, be determined by letting r2 → ∞ in (24).
For clearing models, the workload might be a more natural performance measure than the
“sojourn time”. In particular, we have P(W ≤ K) = 1 and, for x ∈ (0,K), Equation (33)
reduces to

P(W < x) = W (0)W1(x) − P(S > K)
λ

r1

∫ x

0
W1(y)dy.
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By letting r2 → ∞ in (31) and (32), we obtain the two main constants

W (0) =
(1 − ρ1)D1

S1(K)
(
D1 − e

− λ
r1

K
D4

)
+ D1D4

,

P(S > K) = W (0)
D1 − e

− λ
r1

K
S1(K)

D1
,

where

D4 = 1 − ρ1 − λ

r1

∫ K

0
S1(y)dy.

Observe that Equations (10) and (29) are identical when r2 → ∞. Because P(S > K)

equals
∫∞
K e

− λ
r2

ydP(S < y) in that case, the three constants can also be found from the
three independent equations as discussed in Section 4.

Remark 5.1. In the M/M/1 case with r1 = 1, it may be checked that (22) and (23) for
r2 → ∞, or the expressions given above, indeed reduce to the workload density and the
probability of an empty system of [5, Theorem 3].

5.3 N-step service rule

In this subsection we extend the analysis to an N -step service rule. Specifically, let r(x) =
ri for x ∈ (Ki−1,Ki], i = 1, . . . , N (where K0 = 0 and KN = ∞). Also, define ρi := λβ/ri.
For stability, we require that ρN < 1. The basic ideas are now similar to the case N = 2
discussed in Section 4.
Below, we give the derivation of the “sojourn time” distribution for the N -step service
rule along similar lines as the four-step procedure described in Section 2. That is, we first
present N different equations for φ(ω). Second, we use a similar interpretation as in Step
1 to rewrite the N equations. Third, similar to Step 2 in Section 4 we analyze P(S < x)
for x ∈ (0,K1]. Then, we recursively determine P(S < x) for x ∈ (Ki−1,Ki], i = 2, . . . , N
(comparable with Step 3). We conclude with some remarks about the determination of
the constants.
Concerning the equations for φ(ω), it follows from (1), (6), and conditioning on Sn that

E
[
e−ωSn+1

]
=

∫ ∞

0
E
[
e−ωSn+1 |Sn = x

]
dP(Sn < x)

= β(ω)
N∑

j=1

[
ωrj

ωrj − λ

∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x)

− λ

ωrj − λ

∫ Kj

Kj−1

e−ωxdP(Sn < x)
]
,

with obvious modification for ω = λ/rj , j = 1, . . . , N . Using similar manipulations as in
the proof of Lemma 2.1, we obtain N alternative equations for φ(ω); for i = 1, . . . , N , we

15



have

φ(ω) = Fi(ω)
W (0)
1 − ρi

(34)

+
Fi(ω)
1 − ρi

N∑
j=i+1

[
λ(1 − rj

ri
)

ωrj − λ

(∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x) −

∫ Kj

Kj−1

e−ωxdP(S < x)

)]

+
Fi(ω)
1 − ρi

i−1∑
j=1

[
λ(1 − rj

ri
)

ωrj − λ

(∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x) −

∫ Kj

Kj−1

e−ωxdP(S < x)

)]
,

with obvious notation for Fi(ω) and

W (0) =
N∑

j=1

∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x). (35)

In the remainder, we follow the convention that empty sums are equal to zero.

Step 1: Rewriting (34)
Fix some i = 1, . . . , N and consider the term on the second line of (34). As in Step 1 of
Section 2, Sn > Ki and Sn+1 ≤ Ki means that a downcrossing of level Ki occurs between
the arrival epochs of customers n and n + 1. Again, the residual interarrival time at a
downcrossing of Ki is still exponential, but the service speed now depends on the value
of Sn. In particular, the precise distribution of Sn on (Ki,∞) does not directly affect the
distribution of Sn+1 ≤ Ki but determines the service speed until the next arrival epoch.
Using similar calculations as in Step 1 of Section 2, we obtain

N∑
j=i+1

[
λ

ωrj − λ

(∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x) −

∫ Kj

Kj−1

e−ωxdP(Sn < x)

)]

= E

[
e−ω(Sn−r(Sn)An)+I(Sn > Ki)

]
−

N∑
j=i+1

∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x)

= E

[
e−ω(Sn−r(Sn)An)I(Sn − r(Sn)An > Ki)

]

+
N∑

j=i+1

λ

ωrj − λ

(
1 − e

−ωKi+
λ
rj

Ki

)∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x).

For convenience, we define the quantity

Cj :=
∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x),
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which is clearly independent of ω. Then, by letting n → ∞, we may rewrite (34) as

φ(ω) = Fi(ω)
W (0)
1 − ρi

(36)

+
Fi(ω)
1 − ρi

E

[
e−ω(S−r(S)A)I(S − r(S)A > Ki)

]

+
Fi(ω)
1 − ρi

N∑
j=i+1

(1 − rj

ri
)Cj

λ

ωrj − λ

(
1 − e

−ωKi+
λ
rj

Ki

)
,

+
Fi(ω)
1 − ρi

i−1∑
j=1

[
λ(1 − rj

ri
)

ωrj − λ

(∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x) −

∫ Kj

Kj−1

e−ωxdP(S < x)

)]

=: I + II + III + IV.

Note that the intuitive observations made above are reflected in Terms II and III.

Step 2: Sojourn time distribution on (0,K1]
First we consider i = 1, i.e., the interval (0,K1]. Note that this implies that IV = 0.
As in Step 2 of Section 4 we now apply Laplace inversion to each of the Terms I, II, and
III separately. Again, S1(·)W (0)/(1 − ρ1) is the inverse of Term I, see also Section 4.
Term II involves the convolution of two random variables, one with mass on [0,∞) and
one with mass on (K1,∞). Hence, the sum clearly has no mass on (0,K1].

For Term III, we note that λ
ωrj−λ

(
1 − e

−ωKi+
λ
rj

Ki

)
is the Laplace Transform of the

function

fi,j(x) =

{
λ
rj

e
λ
rj

x
, for 0 < x ≤ Ki,

0, for x > Ki.

To provide some intuition, suppose that Sn ∈ (Kj−1,Kj ] and a downcrossing of level
Ki ≤ Kj−1 occurs in the subsequent interarrival time, which has stationary probability

P j
↓Ki

=
∫ Kj

Kj−1

e
− λ

rj
(y−Ki)dP(S < y).

Then P j
↓Ki

fi,j may be interpreted as Cj times the “density” of (Ki − Aλ/rj
)+ (in fact,

(Ki − Aλ/rj
)+ has a defective distribution with an atom in 0).

Combining the above and applying Laplace inversion provides an extension of Equa-
tion (24) to the case of an N -step service rule, with 0 < x ≤ K1,

P(S < x) =
W (0)
1 − ρ1

S1(x) +
1

1 − ρ1

N∑
j=2

(1 − rj

r1
)Cj

∫ x

0+

S1(x − y)f1,j(y)dy. (37)

Note that the difference with N = 2 is the fact that the service speed now depends on the
previous “sojourn time” in case of a downcrossing of K1. This naturally leads to a mixture
of convolutions of S1(·) with various exponential functions depending on the service speed
in the second part of (37).

Step 3: Sojourn time distribution on (Ki−1,Ki]
In Step 2 we obtained the “sojourn time” distribution on the first interval (0,K1]. We
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may now recursively determine the “sojourn time” distribution on the remaining intervals.
That is, suppose that P(S < x) is known for x ∈ (Kj−1,Kj ], j = 1, . . . , i − 1, with
i = 2, . . . , N (the case i = 1 corresponds to Step 2). Using (36), we then find P(S < x)
for x ∈ (Ki−1,Ki].
To do so, we apply Laplace inversion again to each of the four terms in (36). Terms
I, II, and III can be treated as in Step 2, with obvious notation for Wi(·), i = 2, . . . , N .
For the fourth term, we apply similar arguments as in Step 3 of Section 4, in particular
Equation (26). Thus,

IV =
Fi(ω)
1 − ρi

i−1∑
j=1

(1 − rj

ri
)
(

E

[
e
−ω(S−Aλ/rj

)+
I(Kj−1 < S ≤ Kj)

]
− Cj

)
.

Note again that (S −Aλ/rj
)+I(Kj−1 < S ≤ Kj) has a defective distribution function with

an atom at zero, S̃j(0) := Cj . Moreover, the density reads, for 0 < x < Kj,

s̃j(x) :=
∫ Kj

max(x,Kj−1)

λ

rj
e
− λ

rj
(y−x)

dP(S < y).

Because we assumed that P(S < x) is known on (0,Ki−1], s̃j(x) is computable for every
j = 1, . . . , i − 1.
Now, combining the above and applying Laplace inversion to (36) yields, for Ki−1 < x ≤
Ki, i = 1, . . . , N ,

P(S < x) =
W (0)
1 − ρi

Si(x) +
1

1 − ρi

N∑
j=i+1

(1 − rj

ri
)Cj

∫ x

0+

Si(x − y)fi,j(y)dy

+
1

1 − ρi

i−1∑
j=1

(1 − rj

ri
)
∫ Kj

0+

Si(x − y)s̃j(y)dy. (38)

The Si(·) term and the convolution of Si(·) with s̃j(·) are similar to the case N = 2, see
(27). For i = 1, . . . , N − 1, we just have an additional convolution of Si(·) with fi,j(·),
which is the consequence of “sojourn times” after a downcrossing of Ki, as discussed in
Step 2.

Step 4: Determination of the constants
Taking i = N and letting x → ∞ in (38), yields

W (0) = 1 − ρN −
N−1∑
j=1

(1 − rj

rN
) (P(Kj−1 ≤ S < Kj) − Cj) . (39)

Moreover, (38) can be used to give expressions for P(S < Ki) and Ci, i = 1, . . . , N − 1.
To obtain the latter N − 1 constants, differentiate (38) with respect to x, multiply by
exp(−λx/ri), and integrate over the interval (Ki−1,Ki]. Together with (35) and (39), this
provides 2N independent equations to determine the 2N unknowns: W (0), P(S < Ki) for
i = 1, . . . , N − 1, and Ci, i = 1, . . . , N .

18



Acknowledgement

The authors are indebted to Johan van Leeuwaarden for interesting discussions and to
Prof. Ton de Kok for posing the problem.
A preliminary version of this paper was presented in a Korea-Netherlands workshop in
Seoul [4]; the second author greatfully acknowledges the hospitality of Prof. B.D. Choi.

References

[1] Asmussen, S. (2003). Applied Probability and Queues, Second Edition. Springer, New York.

[2] Bae, J., S. Kim, E.Y. Lee (2003). Average cost under the P M
λ,τ policy in a finite dam with compound

Poisson inputs. Journal of Applied Probability 40, 519–526.

[3] Bekker, R., S.C. Borst, O.J. Boxma, O. Kella (2004). Queues with workload-dependent arrival and
service rates. Queueing Systems 46, 537–556.

[4] Bekker, R., and O.J. Boxma (2005). Queues with adaptable service speed. In: B.D. Choi (ed.), Korea-
Netherlands; Joint conference on Queueing theory and its Applications to Telecommunication Sys-
tems, 91–100.

[5] Boxma, O.J., D. Perry, W. Stadje (2001). Clearing models for M/G/1 queues. Queueing Systems 38,
287–306.

[6] Cohen, J.W. (1976). On Regenerative Processes in Queueing Theory. Lecture Notes in Economics
and Mathematical Systems 121. Springer-Verlag, Berlin.

[7] Cohen, J.W. (1976). On the optimal switching level for an M/G/1 queueing system. Stochastic Pro-
cesses and Their Applications 4, 297–316.

[8] Cohen, J.W. (1982). The Single Server Queue, North-Holland, Amsterdam.

[9] Feinberg, E.A., and O. Kella (2002). Optimality of D-policies for an M/G/1 queue with a removable
server. Queueing Systems 42, 355–376.

[10] Gaver, D.P., and R.G. Miller (1962). Limiting distributions for some storage problems. In: Studies in
Applied Probability and Management Science, 110–126.

[11] Harrison, J.M., and S.I. Resnick (1976). The stationary distribution and first exit probabilities of a
storage process with general release rule. Mathematics of Operations Research 1, 347–358.

[12] Lee, J., and J. Kim (2005). A workload-dependent M/G/1 queue under a two-stage service policy.
Operations Research Letters, to appear.

[13] Moran, P.A.P. (1969). A theory of dams with continuous input and a general release rule. Journal of
Applied Probability 6, 88–98.

[14] Tijms, H.C. (1976). Optimal control of the workload in an M/G/1 queueing system with removable
server. Math. Operationsforsch. Statist. 7, 933–944.

[15] Tijms, H.C., and F.A. van der Duyn Schouten (1978). Inventory control with two switch-over levels
for a class of M/G/1 queueing systems with variable arrival and service rate. Stochastic Processes
and Their Applications 6, 213–222.

19


