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O. INTRODUCTION

The rate of radiationless decay is measured by ex­

citing a molecule with electromagnetic radiation and de­

tecting the fluorescence radiation as a function of time;

this will give us the fluorescence lifetime rF . From the

integrated absorption band one can derive the radiative

lifetime f r with the Strickler-Berg formulas l
-

3
• By

measuring the ratio of absorbed and emitted radiation one

obtains the fluorescence quantum yield if. The non-radia­

tive lifetime 0... can now be derived from:

So this provides even a double-check on the determination

of ~4; however, ~ is difficult to determine.

Radiationless processes occur in a very wide range of

phenomena in the gas, liquid and solid phase. We are

especially interested in radiationless transitions because

of their wide occurrence in photochemical reactions. Here

we will only be concerned with the gas phase and in parti­

cular with circumstances in which we can consider the

molecules as isolated. In the last couple of years, with

the advent of dye LASER technology, many detailed measure­

ments have been made on very low pressure (0.1 Torr) gases.

The theoretical activity concerning radiationless process­

es is also of rather recent origin. Only in 1968, by the

work of Bixon and Jortner 4 , it was understood that radia­

tionless decay in isolated molecules can occur by means of

quantum-mechanical interference of the initial states.

Since then a welter of "formal" treatments has showered
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down on this area. One of the problems recelvlng much

attention was which coupling "caused" the radiationless

transition. In Chapter 1 of this thesis this problem is

considered. Only very few people have attempted an actual

calculation of the radiationless process 5
; however, the

quantitative numbers for coupling and density of states

have a decisive influence on the qualitative behaviour of

the system (exponential decay or oscillatory behaviour,

etc.). The calculation of the radiationless process in

formaldehyde, described in this thesis, constitutes the

first such calculation on the ab initio level.
In Chapter 2 the formal equations for describing the radia­

tionless process are described. In Chapter 3 these are

applied to formaldehyde. In Chapter 4 we compare the results

for the radiative and non-radiative process with the ex­
periment.
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1. THEORY OF RADIATIONLESS TRANSITIONS

1.1. The Exact Description

The time-dependent behaviour of an excited molecule

can be completely described with the time-dependent Schro­

dinger equation:

H is the total molecular Hamiltonian; ~(;,t) is the total

wave function containing both nuclear and electron coor­

dinates.

We can expand w(;,t) in some complete set of orthonormal

functions un C;) ;

(1 . 1)

C1. 2)

Substitution in (1.1) gives after multiplication with u;C;)

and integration over r:
. J .)(. ~t ~/'lM (-t =

where

This is a set of coupled linear differential equations.

Substitute:

Then:

-,'Ft-
ath if)::::: {;l/h ~

9
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Solution gives:

with~k -:::

eigenvalues

eigenvectors

(ale)..

So the solution of (1.1) is:
">" -t-"C; ~
C. (a;.)•.. £. I< ,.t(", (X) (1. 5

'"
The general solution is a linear combination of these solu­

tions, with coefficients a k determined by ~(r,O):

1t;( t) = ? eX" " <f (qtk)40 x.- i
4l ~'h (,t)

?!(jijt)= f If 0(1; (alc}.. ~-t·EJ:1 ~.. (X)

A special case occurs if the un(r) are eigenfunctions of H.

Then (ak)n = 0kn and (1.6) reduces to:

This case is of value because of the greatly simplified

formulas that result from it.

As we are interested in interaction of an excited state ~1

with the electromagnetic field, we will consider one com­

ponent of the oscillator strength f with the ground state:

(1. 6

(1. 7

wi th:

(1. 8
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So

(1. 9)

(1.10)

where in the last step the AOk are supposed to be real.

So the oscillator strength is time-dependent if more than

one AOk is unequal zero, i.e. if the bandwidth of the ex­

citing radiation exceeds the energy difference between two

contiguous eigenstates of H.

After a certain time, the recurrence time t R ,f will have

the same value as on t = 0; between t = 0 and t = t R ' f

will be less than on t = 0, f can even become practically

zero, especially so if there are many eigenstates involved.

The recurring of the oscillator strength is referred to as

a quantum beat, these have been experimentally observed!.

As a result of the interference process the lifetime of the

excited state is increased because the oscillator strength

temporarily decreases. The quantum yield, i.e. the ratio of

emitted and absorbed radiation, should be unity, however,

despite this behaviour. In the experimental practice this

is often not the case, because the molecule can dissipate

its energy in other ways: collisions with other molecules

or the wall, IR transitions.
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With the theory of Bixon and Jortner 2
, the different cases

of interference behaviour can easily be recognized and a

classification scheme has accordingly be outlined by Jort­

ner and Berry 3 •

1.2. Splitting the Hamiltonian

We will first digress somewhat upon the possible

choices for u (t), the complete set of functions.
n

If we take for the un(t) the exact eigenfunctions of H, we

get of course the simplest formulas (see 1.7), but the

exact eigenfunctions are the most difficult to determine,

so we have to resort to sets u (r) that give rise to com-
n

plicated formulas, but can be easily determined.

In fact we are not interested in describing the total eigen­

value spectrum of H with the basis set un (t), because in

the experimental set-up for measurement of radiationless

transitions, the exciting radiation has a very narrow fre­

quency distribution. So the set un(r) does not have to be

complete. What we will do is derive what portion of the

eigenvalue spectrum of H is described correctly by this

set.

In the model of Bixon and Jortner 2 some extra conditions

are imposed on the set u (t); the validity of these condi-
n

tions makes it possible to derive the rate constant for

radiationless decay in a rather straightforward manner *)
The assumptions about u (t) are:

n

(i) only one basis function uo(t) has oscillator strength,
i. e. :

(1.11)

where D is the dipole operator.

*)We will here use a somewhat generalized case in which we

relax the restrictions of constant v and £ , see further on.
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We will derive that in this case ~l(r,O) = uO(r)

From (1.5) and (1.6) we know that in general:

wi th ~ ~ ? (Ci.,,).. ,I,{/>o (Ji)

The oscillator strength of Wk is:

<{,,1J)/1k) = <i/.JJ/[fa"j,.ofl",(hJ>=ffal,J",4... J;..
= ra.k;)" . .J)fJC

(1.12)

(1.13)

So (1.14)

Substituting in (1.12) gives:

(1.15)

The vectors ~k forman orthonormal set (see (1.4)), there­
fore the matrix A, formed by the vectors ~k' is a unitary
matrix; these have the property:

Substituting in(1.1s) gives:

(1.16)

(1.17)

If ~1(r,o) and uoer) are normalized to unity, then it fol­

lows from (1.17) that ~l(r,O) = uO(r) q.e.d.
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(ii) Further assumptions are made concerning H
mn

in equa­

tion (1.3):

+- ? ~ tllr =17

+ (£; '-G" j-d l =t? (1.18)

where Ek ' = Hkk ; HOk = HkO = vk for k > O.
So it is supposed that Hkl = Oor 0 f k f I f o. Further

we call Ek '-Ek_1 = £k

We will only consider sets u (r) that can be generated in a
n

certain way:

(1.19)

The functions ~n and Xn are determined by splitting the
Hamiltonian:

(1.20)

where TN kinetic energy operator for the nuclei.

The functions ~n and Xn further have to fulfill the eigen­
value equations:

(~-£ll.. =17 (1.21)

(-r:r I- d", -1:) J{/k = v

wi th Uft =' i I- <'~ IfI,.,jf ItA.) 1-(1.. I~/i>, where the integra­
tion is over those coordinates on which Xn does not depend.

Different sets u (r) are then obtained by varying Hand
n 0

Hrest ' Possibilities are for instance (in the following Q
and M represent the complete sets of nuclear coordinates

14



and masses, respectively; q denotes the complete set of

electron coordinates):

(i) H
rest

=0: Adiabatic Born-Oppenheimer approximation

(ABO set)

~111 fe/~) = Yi. ($, ~) . X", (~)

wi th lie f- Hle,!i) --l,.r~)j 9i (t. ~)::;I)

I~ ~i./~) r (,/,e}f)<i f!.,f)/?1 r4 fe. ~)1- E} 'X", (41)

T
E

is the kinetic energy operator for the electrons,

U(q,Q) the Coulomb interaction between all particles

and P the impulse operator for the nuclei.

(1.22)

(ii) Hrest = U(q,Q)-U(q,QO): Crude Born-Oppenheimer approxi­
mation (CBO set)

A", ft: ~}.~ i ft, il~) X", (!;)

wi th 11;.f II(e, ~~) - i~(tP~Jli (t.I,,) :::cJ ) (1. 23)

/t;; f -l.. (~) I-- (y( (t, ~o)/t/feJJ)- tlft,4ell ift #o)~ +

- FJ- X,., (€J=o

where Q
O

is the equilibrium configuration for the nu­
clei.

(iii) H
rest

= H
so

' where lI
so

is the spin-orbit Hamiltonian.

(iv) Hrest = U(q,Q)-U(q,QO)+Hso

For case (iii) and (iv) the eigenvalue equations are readi­

ly derived.

15



(1. 24)

1.3. Determining the Basis Set

In this chapter we will derive what portion of the

eigenvalue spectrum of H is described correctly by the set

u (r), if this set satisfies the conditions (1.11) and
n

(1.18) imposed by the generalized model of Bixon and Jort-

ner 2 , with the restriction that we will only consider sets

u (r) that can be generated with equations (1.19) to (1.21).
n

In order to do this we will first consider the exact eigen-

functions of H, described with equations strongly remini­

scent of equations (1.19) to (1.21). We will then derive

under what conditions these equations simplify to the

equations (1.18). We will then see that these conditions in

fact constitute a limitation on the energy E for which the

equations (1.18) are valid.

Generalizing the treatment of Born 4 we can write the exact

eigenfunctions of H as

Further we write:

II= hi..;. r,:; of- IIrf'Ji (EPN, to. I. 4i'J~ =,) (1 • 25)

(110 -:lJ~" -:::<1 it ::: eljent/c3/tle

Now we can derive:

with ~.:::I; I- (I.- / IIr~jt / ~>.f (I./P'l.:<)11I..> (1. 26)

Ctj· -=: <~ /lIr<'stll;> r <~·/pall/~·>1- (f4/P/#/~.>?

16



Possibilities for H
rest

are for instance:

(a) 0

(b) U(q,Q)-U(q,QO)

(c) U(q,Q)-U(q,QO)+Hso
(d) H

so

(1.27)

with~aik' Xik

( 0.t f ~. - E;k Ix." ::: r?

where H is the spin-orbit coupling Hamiltonian.so
If possibilities (b) and (c) are used, H will contain the

o
potential energy function U(q,QO)

By deleting the terms with the C.. 's (irj) we arrive at the
1)

ABO's and CBO's, if we take for H case (a) and (b),
rest

respectively.

Now we make the expansion: Xi =

where E
ik

is the eigenvalue. Then eqs. (1.26) become:

(0t + tit -E){a"kXi~ r if("e"i :{C)AX;ic]~tl/ t:.t;~-I;.

from which

MUltiplying with xi p and integrating gives:

(~p -c)a.~1' f f al/r<X"I'/C.;il'X,Ir )" {a.tIc('Xf)i'IC-;.:./~k)-f.$cJ,

fE;p·-E)a 1h r ~a <X le!,-v > { ,P~()./'.I, (1.28)
r " II. I,. N -'I..,k I- a (N

_ ;,fir /1.11'1L;z lXzk>I- .. =t7

(C£/J-E)/t.//,I- {aCk ('X.t/,/t...'.t.li.k) f- ~=()/U,
.. '. =0 > /''''''',1,2/

We will now simplify these equations until we arrive at the

set of equations (1.18). We will then see which assumptions

are implicit in the simplified equations (1.18) and whether

they are justified or not. We will look at the eigenvalues

of these equations in a certain region of E centered on Ell;

17



the choice of E
11

is arbitrary.

If (Condition I):

then thea. ,,0(i=2,3, ... ;p=0,1,2, ... ) and eqs. (1.28) sim­
Ip

plify to:

r~G"v/'-E) a,,/, f- {a/Ie <'X,,/>/C)~I/X//(>::p -' I~ v/I,'<', .. ' (1.29)

I...(C';" --E) a,1' t- 2' Clol: <X IC) / 'If
k 'I' to> 'l-ok)=(:1,/'-:o,./'./.,.·

If also (Condition II):

then the a 1p " 0 for p = 0,2,3, ... and eqs. (1.29) simplify to:

(

(1:01' -t:)a. p l- aft <,Xap/C,,) 'XII) -:17 , P~Q,;;.l-,
(1.30)

(~, -IF) ai, I- { a'k ('X II Ie,,, /Xok)::v

We have thus derived that the set (1.26) of coupled dif­

ferential equations that are satisfied by the functions

that determine the exact wave function, reduces to the set

(1.30) of coupled linear equations for the interval S of

E-values for which conditions I and II are satisfied.

If we call <X11 \C10lxoe = vk ' eqs. (1.30) are identical to

eqs. (1.18). (Also only the state ¢1 X11 should carry

oscillator strength from the ground state). This means that

the space spanned by the eigenfunctions of H whose eigen­

values lie in S, is also spanned by the subset un that

corresponds to eqs. (1.18) (while the vibrational part of

un satisfies eq. (1.27)). This is what we set out to prove.

Now we will find out what the interval S of E-values is,

i.e. we will find those E-values for which conditions I and
II are satisfied.

18



First we will assume that condition I is satisfied and con­

sider condition II; condition I is taken up after that.

We will estimateEvk.aOk' If the vk do not vary too much, we

can write Evk.aO/= v.EaOk'v= some average of thevk's.
k k

We take for the a Ok the ones obtained upon solving the de­

coupled eqs. (1.30); this can be considered as a zeroth

order solution for the coupled set of equations (1.29).
We obtain (see Appendix 1):

(1.31)

with EOp-EOp-1 = £ some average for all p.

To check condition II we have to compare If(E) I with E
12

-E

and E10 -E; if condition II is satisfied for p=O and p=2
for an interval of E-values, then it will be satisfied for

all pl1 in this interval.

This is because (E -E) > (E -E) p=3,4, ... (See Fig. 1.1
1P 12'

for the illustration ot the case of p=3). Also we see that

if(E 12 -E) » v,then (E 12 -E) » If(E) I.

v

__ E

Fig. 1J. The functions fCE), E12-E, E-E 12 and E13-E
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Condition II i~ satisfied for a certain energy interval E

around Ell' We define a new variable r: E = Ell + r
Then (E12 -E) »v becomes

(1.32)

The maximal r for which this condition is satisfied is

r ; 2r is the width of the E-interval around Ell' formax max
which condition II is satisfied. So:

(1 .33)

This means that eqs. (1.30) have eigenvectors that are also

eigenvectors of H in the denoted E-interval. So we can

describe experiments in which the frequency range is less

or equal 2r around E .
max 11

Each eigenstate has a certain oscillator strength. The ra-

diationless decay depends on the "oscillator-profile" and

on the part of it that is excited. If we call the half-line

width of the exciting radiation r
b

,then we can describe

the experiment if r > r b •
max

In the model of Bixon and Jortner one derives the rate of

radiationless decay under the assumption that the whole

oscillator-profile is excited and that the oscillator-pro­

file is Lorenzian in form; this last assumption is equiva­

lent to assuming that only one zero-order state has oscilla­

tor-strength 2 and that v and £ are constants. We call the

half-line width of the oscillator-profile r . The whole
op

oscillator-profile is excited, so the whole oscillator-

profile must be described correctly with the set un' i.e.:

(I. 33) '~

(1. 34)

If we calculate r
op

with the Bixon-Jortner theory, we ob­
tain 2 :

20



r, is the half-line width of the state ~,X'l caused by
coupling with the electromagnetic field (natural line-width);

v and E see eq. (1. 31). So we obtain:

We remark that in the whole derivation the spin state of

the wave function is not specified, so the derivation is

valid for both internal conversion and intersystem cross­

ing.

Concerning condition I, we consider the case that this con­

dition is not satisfied. The eigenvectors resulting from

(1.29) and (1.30) can then be different from the exact

eigenvectors with respect to eigenvalue and oscillator­

strength; these two quantities determine the radiationless

decay process. The eigenvalue will be higher than the eigen­

value of the corresponding exact state. The oscillator­

strength can be higher or lower, so it is impossible to

predict whether the radiationless decay predicted with the

deficient basis set is higher or lower than the decay ob­

tained from the exact set.

It is obvious that if one has to choose between basis sets,

one will choose the one for which condition I is satisfied

best*). It is of course possible that there is no basis set

for which condition I is satisfied, i.e. if there are elec­

tronic states that lie close to the excited state of in­

terest. Under those circumstances one will have to take

explicit account of the couplings with the other electronic

states like in eqs. (1. 29).

*J See also § 2. 1. 1.

21
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2. CALCULATION OF INTERNAL CONVERSION. THE METHOD

2.1. The Coupling Element

2.1.1. The Electronic Part

A. The ABO Set

From eq. (1.30) we see that the total coupling element

is:

C
10

is the electronic coupling element. In (1.26) it is

defined as:

(2. 1)

For the ABO set H = 0, so we obtain:
rest

The impulse operator P can be expressed in mass-weighted

normal coordinates Qk: (Q stands forQl' Q2, ... ,QN' N = the
number of normal coordinates)

Generally the first term is considered smaller than the

second one. The first term can be expanded as (Appendix 2):

22



The summation p is over all electronic states different

from 0 and ,. The first term in this expression is small if

condition I is satisfied. If we also assume that <¢, 1~1¢0>
o\,{k q

varies only slowly with Qk' then the second term in (2.5)

will also be small.

It would be interesting to calculate this coupling, because

it gives information on how well condition I is satisfied.

The calculation leads, however, to very many rather com­

plicated integrals (see Appendix 3) and has therefore not

been undertaken in the present work.

So, C,o reduces to:

-2
Ie

f <11 fe.4J)/~~ / I: ft.· tPl), i)~~

(I, It ~)/ ~J;tfJ't,~»
i; (iI) - l (1ft)

(2.6)

(See (2.7)

ill',p.lI)

U represents all potential energy terms: electron-electron

repulsion, nuclear-nuclear repulsion and electron-nuclear

attraction.

The first term does not contribute, because it doesn't

depend on Q
k

; the second term does not contribute because

it doesn't depend on q, which causes the integral over q

to be zero, because ¢o and ¢, are orthogonal.

This leaves (2.8)

The summations e and n are over all electrons and nuclei,

respectively. Z is the nuclear charge and r is the
m en

electron-nucleus distance:

(2.9)
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sj and qj are the Cartesian coordinates of nucleus and

electron, respectively.

In order to differentiate r en we will first transform ~Qk :

n'are the elements Dj 'k of

transforms normal coor-

The differential quotients

the Jacobian matrix D that

)j ~ ;(,y % ; ./}II rltJ,j () vel"

,:).// hucle/.
(2.10)

dinates to Cartesian coordinates. This matrix can be deter­

mined from a normal coordinate analysis (see Chapter 2.4.).

From eq. (2.8) and eq. (2.10) it follows that:

-;> ) ~. 'h' .2-/'_)" ) ~/-:0 ~"" =:; c- C J)J. 'J. ":"5. ", C- c... Il t .... ( 2 • 11 )
'D'1k "" J' 1('" ." £.."h

r en depends only on the coordinates of one nucleus n, so:

(2.12)

From eq. (2.9) it follows that:

:J>t it)
!::- (/l~~) = -~ (5)1 J - ~I

~~.~ !Zj.M

Now we obtain:

(2.13)

L"

Now is ~ ~/_S~, the j'th component of the electric field
Il ""'..~

opera- tor for nucleus n.
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We call the vector

<~,(&I Q)/ f{~f. ;.5j-)/II. ($ltP).j:::: Ej:"(t()
.eM

We define a new index p; p runs over the Cartesian compo­

nents of all the nuclei; Z then equals the charge of nu­
p

cleus 1 for p = 1,2,3, similarly for the other nuclei.

Eq. (2.14) then becomes:

So C10 becomes (see 2.7):

B. The CBO set

Fromeq. (2.2):

eN:::: <iIC~,,)/flr~i- /~(&·~.)11- (1,(t-.(M/!#/pf(t·~.J1 r

+<I,(t,~.)/J/i (~JJ'}1 .p

IIrM = Ii 1$, J;) - tfIf.. ,fl•.)
50

{.~" = <A (t· J. ) / /I(!ltf) - Itlt.' ~j/ rf.(CI ~(J)'>t

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

The V will not contribute, because it does not depend on
nn

q (<P 1 and <PO are orthogonal).

25



So we obtain:

<f4 (~,tf.)/ 14~.re.~) - t{" (&:#.)/7'0 It, fJc)~ (2.23)

l/ )~ -2
lit,., - I-~ ll.t: ~ Jk.hrmi/l.f tJl/er e/ectr"'hof dna" (2.24)

"'I((:/ei.

Now is E~ the potential energy operator for the inter­
action e en between nucleus n and all electrons.

We call

(2.25)

So eq. (2.23) becomes

2.1.2. The Vibrational Part

A. The ABO Set

The total coupling element is (2.1):

<Xl!' (~) / c~" (#) / 'X"t (~)'At J t{.f/~ ef' (Z·/I) ltJe ,,),1.31'7

. tt" '. ~ !
(1 (IJ) I ~ Ie (~) v~1< / x" itP)~

II' '" 1st}-ll!;) t 'f

The X are solutions of (1.22):

(2.26)

(2.27)

(2.28)

(Q and M represent the complete sets of nuclear coordinates

and masses, respectively).
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We neglect .lit <i(t/~)/P/I.:(t.-~)1
will make

compared

complete

1because the 2M factor
this term small

to the other terms. We can let Qnow represent the

set of normal coordinates:

(~+Lrlt)-Ei--..,}:;t.·'h('/f)=o (2.30)

If i(~/::.l(t£}r2i(t;J *) then (2.31)
I<

'Xi.m (~)= 7f'i.,..(tf/c) III,!}, I:,; r A-(4/r)-E;-/jX"ltPk)-::o (2.32)

.Jw:f ?;~ ::#;14') I- 2: r k (2.33)Ie tAo

Then the coupling element becomes:

(2.34 )

We assume that:

(2.35)

Substituting (2.35) in (2.34) we obtain:

~ V",:<J(~.,J. 7T(XiI> (~Ic)I'X~,IQ,,» ex'}> r~".)/it/;t"i(~?o» -ן
M /d'1o

;. ~ 2-71 <XI!'(~1)/IIn.;~(~,)-!1-0,..(/-J~,Jj/X.Jt:("./»*'(2.36)
m ,t ,,"'''''I'

If ;{';(;; (~..) ht /rOt (~'10»' ( 1- 6-1-..) -I- ~Ao] (1" (~J;)Ir.j(!iK»

*J!t is observed that we take the same normal coordinates

for both ground and excited state, i.e.: we neglect the so­

called Duschinsky effects.
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This is th~ total expression for the coupling. There occur

4 different types of integrals in this expression.

B. The CBO Set

The total coupling element is (2.1):

<"XII' (RJ / CI • (~) / Xat' /Fj)~

with ~c(tJ)-::=? 2",,(C~f.#/~)_cv..~'(~~)j (.5<'e (..f.,tI;)

The X are solutions of:

(2.37)

If we assume that:

with Qk the normal coordinates, then:

The coupling element becomes:

1IlT<'XI/, Iflle) / etc (~) / 'X"e fIJ,)>
k. A

If we assume that C
N

(~).~ C.~c(~,.) I- ;E (!,u (tfJ-.)
/1-0-0

then (2.41) becomes

(2.40)

(2.41)

.{ 77 ('XI!,ftJlc)/elc(~'Jo,)/'-X()tf!;e)1/

= 0" (fi,f!1<'X'1> (!?k)/'Xo1 (tile) ,t- (; r<';(/'(~/Jk;(~",,)/:r./&i:j)(2.42

== 0c (11.)·7/(XI!' (~k)1:X.~ (~d'\.+ Z 1T(XII'(tP.~)Ie,o (E;".,)/~,f!;",i\1t
k /I V -ktJtH' v·Y'
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2.2. The Rate of Radiationless Decay

Radiationless decay is described by the decrease of

oscillator-strength due to interference of eigenstates of

the Hamiltonian. (The total rate of decay also includes

decay of the initial state via other processes).

So we first have to know the eigenvectors of H. We simply

determine the exact eigenvectors by diagonalizing the

interaction matrix H (see (1.5)). The matrix H will have
mn

the form

/'" ilf, I/Iz. 'If3 ' .

1'It, f,' 0
''V"l

E
1

'

11ft
G; I

0 !
\ I

!

(2.43)

(excited state)

(high vibrational level of ground state)

considering.

The resulting eigenvectors

To be exact we have to add complex terms to the elements of
the interaction matrix 3,4,5,6 to describe decay of the

zero-order states via other processes. The most well-known

of these is the decay by fluorescence. However, this can be

treated as an independent decay channell, if the irradiation

time is short compared to the radiative lifetime, i.e. in

the short time experiment, which is the case that we are

(

('4c)I·]
are ~,. '~) wi th eigenvalue Ek .
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We are interested in the oscillator strength of ~ :(see
1

(1.9)).

(2.44)

(2.45)

If only Uo has oscillator-strength with ~o ' then this for­
mula reduces to

/'/1/ /( f /J) / ?rXi( (ak). i-,"E"k~~" >/ l

(2.46)

-,Ek t / 2-f /1/ I ( ~ /J) / ,d. > ? (akJ/ "-

:=: / ? (a/c). i. ), - i £" t-/ l

== F: It)

We know that, if only Uo has oscillator-strength, then

ak~(ak)0(see(1.14)). So we obtain:

(2.47)T:It) =

If logp,(t) versus t gives a straight line, then we have

exponential decay. However, we can also detect deviations

from exponential decay with this method. The diagonalizing

and summing are programmed in the INTERF program.

If all vi are equal, and Ek-Ek_1 = £ = constant (the original

Bixon-Jortner model) then we can obtain eigenvectors of

H in an analytical way.mn
For P,(t) we obtain:

2.3. Normal Coordinates

In paragraph 2.2. it turned out that we need the

normal coordinates of the molecule concerned; we also need

the matrix D that transforms normal coordinates to Carte­

sian coordinates (formula 2.10).
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We shall denote the main features of the derivation of these
quantities 9 ,lo.

In Classical Mechanics the equations of motion are the

Lagrange equations:

(2.48)

T is the kinetic energy, V is the potential energy, r. is
1

the space coordinate,!i;:;-t, t is the time.
In Cartesian coordi- nates they take the form:

(2.49)

mi is the mass of particle i, N is the number of particles,

x· is a Cartesian coordinate.
1

.JI'i

We define internal coordinates 5-1::: ~ .15~.. :tt ' i: 1,.,(,'" Jty'-/
t -::/

then:

IN

MiA ?~I':;,;J;;'l It ~:" (2.50)

and

and the equations of motion become:

Making the multiple substitutions

.-5tk :: ~k Cd) (.t1C Vi t- +p) dhcl

;; :;. - /lk ..ftit- ,S, W /IJ, Al .... .rc.,;/.::: C<)I<~) I~v k::: /'.1,. ' .. jto/-/'

(2.51)
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we obtain the secular equations:

(2.52)

(2.53)

Multiplying on the left with G gives:

? ( (; T~./ - Ak St/j~k ~o -' k= /'.1, ,.. , 3 If-I
,f

Before continuing we must remark that often internal sym­

metry coordinates are used instead of internal coordinates,

because then the F and G matrix reduce to a block-diagonal

matrix, the different blocks corresponding to the different

irreducible representations. We will denote matrices and

vectors in internal symmetry coordinates with script capi­

tals (e.g'S
3

G3 F).

We writel:1 = Z- 1/" . S, t' t (;

If one works in internal symmetry coordinates, all capitals

in the following should be changed to script capitals.

The making of matrix U can give problems if more than one

normal coordinate belongs to the same degenerate (e.g. E)

representation. The generators - that generate the symmetry

coordinates via the projection operator - then must have

the same transformation properties (remain invariant under

the same operators), because otherwise the blocks to which

F reduces (in the internal symmetry coordinate representa­

tion) will not be identical for this degenerate represen­

tation; this will give difficulties if one wants to make

use of this property (manual calculations).

We return to equation (2.53). The direct calculation of the

eigenvectors L of GF is difficult because GF is not a sym­

metricl matrix, although G and F are. In practice, one

therefore takes a different matrix H, that is symmetric

and that has the same eigenvectors as GF .

L is the matrix of eigenvectors of GF, this matrix also
diagonalizes F : L t FL = A ( L r = Ltransposed) ) A is a diagonal

matrix with the eigenvalues A
k

'
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If we define

then it turns out that

are the normal coordinates.

We write:
-,

L 13 7(,

We can also derive
9

It = 1'1-'13 I ([') 'Ii (2.54)

in which M- 1 is a diagonal matrix 3N x 3N wi th on the dia-

gonal the inverse of the atomic mass, three times for each

atom.

One can also derive (2.55)

So we need the matrix (L- 1BM- 1) 1 to calculate the normal

coordinates.

We also need this same matrix in eq. (2.10) for the matrix
D because:

::: (2.56)
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3. CALCULATION OF INTERNAL CONVERSION IN FORMALDEHYDE

3.0. The Choice of Formaldehyde

There is a number of reasons why formaldehyde was

chosen as an example of the calculation of radiationless
decay:

Formaldehyde is small enough to be subject to accurate

ab initio calculations.

- The vibrational levels of formaldehyde in the nn·-state

are sufficiently separated, so that they can be ex­

cited selectively, this in contradistinction to the

aromatic hydrocarbons. The radiationless decay for a

number of these levels has been measured (see 4.Z.).

- The rovibronic analysis of the ground and n?-excited

state is completely known (see 4.1.).

- Formaldehyde can also serve as a model for photodissocia­

tion, because after exciting the nn· -state, dissociation

takes place via a radical (H - HCO) or a molecular pro­

cess (HZ + CO).
The S1-levels are sharp and the high S-levels are broad­
ened to a quasi-continuum. Yeung and Mooreoo,os conclude

from this that So does not, but S1 does couple with the

dissociative continue, and that the rate-determining step

for the dissociation is the S1+S0 internal conversion.

A potential difficulty is formed by the triplet state T1 ,

which lies 3000 cm- 1 below the S1 level. This means that

the density of triplet levels, for energies lying in the

S1 spectrum, is only slightly greater than the density of

the corresponding S1 levels. In accordance with this, ex­

periments have never shown phosphorescence after excitation

of the S1 state, only after direct excitation of the T1
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state 46 •

Tang et aZ. 47 have also concluded that for the 22 41 level,

for which strong S-T perturbation has been observed, the

triplet state must have a minor or negligible role in the

photochemical mechanism for this level, with the Sl~SO in­

ternal conversion probably the most important pathway for

its radiationless decay.

3.1. Calculation of the Normal Coordinates

The formaldehyde molecule has C2v symmetry in the

ground state equilibrium geometry (see Fig. 3.1.). The re­

presentation for the vibrations is: r = 3A1 + B1 + 2B Z'

Therefore, the matrix F reduces as follows (see eq. (2.53)
and further):

X I. J(

x ~ J( 0
J( ;( )(

)(

a I< I(

l(. ;(

y

It follows that there are 10 independent force constants

in the general harmonic force field (Fis also symmetric).

Duncan and Mallinson l have determined these 10 force con­

stants from the IR, Raman and microwave spectra of formal­

dehyde and its isotopes; these form the matrix F. The equi­
librium geometry used by Duncan and Mallinson is shown in

Fig. 3.1.

HI

116.~ 1.203,l{
------- c MMP o-----x--

j1.099~
H2

Fig. 3.1.
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The internal coordinates are: r 1 and r 2• the CH 1 and CH 2
distances; R the CO distance; a the H1CH 2 angle; Sl and S2
the H1CO and H2CO angles; y the angle the CO bond makes

with the HCH plane.

The internal symmetry coordinates are:

_1
2 2(or 1 + or 2)

oR
_1

6 2(2oa - oSl - oS2)

oy
_ 1

2 2(or 1_1

2 2(oSl

The nuclear masses used. are those of the l~C • l~o and ~H

isotopes 2 • Now the Band G matrices are determined with the
computer program GMOPREAL 3 • The input consists of geometry.

nuclear masses. definition of internal coordinates and
internal symmetry coordinates.

-1
Then we use the program VSEC 3 to calculate L by diagonal-
izing the Wilson GF vibration secular equations (eq. (2.53)).

The input cons is ts of: G • F • B = UB, the geometry and the
masses. We can now calculate the matrix (L- 1BM- 1) ' (' means

transposed). by simple matrix mUltiplication. This is the

matrix we need to calculate the cartesian coordinates of
different points of the normal coordinate path:

?<.~ (dC-':J3I1-j' ~

Also this same matrix is used in eq. (2.10).

A few words about dimensions and units.

The normal coordinates resulting from the VSEC program
1 1

have the dimension (a.w.C)2 ~ = 80.9742 (a.m.u.)2 a.l.u.
1

1.889726 (a.w.C)2 a.l.u. with: a.w.C = atomic weight scale

based on C; a.m.u. = atomic mass unit; a.l.u. = atomic
length unit.
The (L- 1BM- 1) I matrix calculated with the VSEC program

converts normal coordinates to cartesian coordinates. i.e.

(a.w.C)! ~ to ~. and so the (L- 1BM- 1) I matrix elements
_1 _1

have the dimension (a.w.C) 2 = 0.02317 (a.m.u.) 2
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/-same: '';
,/ h 4!t' -:

We can also relate the normal coordinate for the out-of­

plane bending to the out-of-plane angle y.
The kinetic energy in terms of normal and internal coordi­

nates must be the

(3. 1)

so:

internal

(G 44 is sometimes called the reduced mass).
Jones and Coon~l derived that for formaldehyde one can also

write: ,;/ I::: ~: :::- .-fi(rJ ..-t z• flo -> dli¥ =/«J') ~;f' dr~
y ; (3.2)

4" ::..//< t;')S/t d;"

with y = the out-of-plane angle in radians

r = the CO distance in ~

~(y) is the reduced mass corresponding to the
coordinate ry for the out-of-plane bending:

/,(T)= - .t#HL (/In I- III1.~2r)
/]'1 (I-HI) +.J AM 7~ e<!J r +"t (I-LJ~2. (3.3)

with I m n = M

R -...L , s = C-H distance, 28 = the HCH angle.
~ c..'1/3

We now want to extend the usual application of normal

coordinates to rotations and translations. The definition

of a normal coordinate is that the potential and kinetic

energy for the normal coordinate movement can be written

as: V = AQ2 and T = !Q2, respectively. For rotations and

translations V is constant, so we can set A = O. We only

have to be concerned with the kinetic energy for these
movements.

We will first treat the translations.
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Translation along the x-axis corresponds

energy of: /=.t ~ /171, • ,;/
i

The normal coordinate Q is defined as T

with a kinetic

• 2! Q .
So

with

(3.4)

/

So ,,-;;;;;
-1 -1 I

is a matrix element of the (L EM ) matrix, because

this matrix transforms Q into x (see eq. (2.55)).

(3.5)

For the rotations we first need to know the center of mass.

For formaldehyde it lies on the CO axis, between e and 0,

at a distance of 0.602 K from e. The principal axes are

the x-axis and the axes parallel to the y- and z-axis,

going through the center of mass. Formaldehyde is an asym­

metric top molecule, with three different moments of inertia

lA' I B and Ie (in order of decreasing magnitude). But as

IB~Ie the system behaves very much like a prolate symmetric

top molecule.

The rotation around an axis parallel to the y-axis will be

given as an example. First the distances of the atoms to

the axis of rotation are calculated:

r e = 0.602 A, r O = 0.601 A, r H = r
H2

= 1.180 A.
We now write down the kinetic ~nergy, valid for a rotation

over small angles:
'2 'z. 'OZ ~l)r ... i (/}1'1(:1 '2-u .;- ~ . 2e .;- m?~ z?-H, I- 4nAi ' -2~

zp being the vertical displacement of P.

We now express all z's in z = zO:

(3.6)

This gives:
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0.0586 0 0 0.0004 0 0 -0.3529 0.5924 0 -0.3529 -0.5924 0

-0.2141 0 0 0.1448 0 0 0.1262 0.2007 0 0.1262 -0.2007 0

0.0254 0 0 -0.0906 0 0 0.5676 0.3237 0 0.5676 -0.3237 0

0 0 -0.1481 0 0 0.0361 0 0 0.5958 0 0 0.5958

0 -0.0938 0 0 -0.0006 0 -0.3546 0.5636 0 0.3546 0.5636 0

0 0.1283 0 0 -0.0681 0 -0.5576 -0.2238 0 0.5576 0.2238 0

0 0 0 0 0 0 0 0 -0.7043 0 0 0.7043

0 0 -0.1672 0 0 0.1672 0 0 -0.3284 0 0 -0.3284

0 0.1573 0 0 -0.1573 0 0.3335 0.2078 0 -0.3335 0.2078 0

0.0333 0 0 0.0333 0 0 0.0333 0 0 0.0333 0 0

0 0.0333 0 0 0.0333 0 0 0.0333 0 0 0.0333 0

\ 0 0 0.0333 0 0 0.0333 0 0 0.0333 0 0 0.0333

-1 -1 1
Table 3.1. The (L BM ) matrix



If we take:

(3.8)

(masses in a.w.C)

then we obtain: T = ! Q2.

Having obtained z, all zp's can be calculated from it.

For rotation around the x-axis: r C = r O = 0, r
H1

r
H2

0.9345 ~. For rotation around the axis parallel to the

z-axis: r C = 0.601 R, r C = 0.602 R, r H = r H = 1.505 R.
-1 -1 I _1 1 2

The (L EM ) matrix in (a.m.C) 2 is given in Table 3.1.

Cartesian coordinates vertically, normal coordinates

horizontally; the cartesian coordinates have the order

C, 0, H, H; the normal coordinates have the order: vibra­

tions, rotations, translations.

One general remark concerning the use of normal coordinates

must be made. The normal coordinates we used so far are

linear coordinates, because they are generated with a
-1 -1 Imatrix (L EM ) with elements that are constants. This

has the effect that these normal coordinates cannot des­

cribe pure bendings and rotations. For rotations it is

especially obvious that for large values of the rotation

normal coordinate, the rotating atoms will disappear into

infinity, and this is not what we call a rotation.

It is possible to define non-linear normal coordinates by

expressing them in non-linear internal coordinates, e.g.

a pure bending. This is what Jones and Coon did for the

out-of-plane bending of formaldehyde (see eq. (3.2)); it

is, however, not clear if with this non-linear coordinate

eq. (2.31) will be satisfied better. If we use the non­

linear coordinate for the out-of-plane bending, this im­

plies that we have to use a different fourth column in the
-1 -1 '(L EM ) matrix (also used to transform the coupling

components), at every point of the non-linear coordinate.

The question will be taken up again with the discussion of

the Results in Chapter 4.1.
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We can describe the D2CO molecule by assuming that the

normal modes are equal to those of H2CO, except for a

constant depending on the mode considered. The following

relations hold:

1/ = f t<JZ 6( l

1/ = f (tV~f" ft9')z
j~ (3.9)

The i-superscripted quantities are for D2CO, the others

for H2CO. For the program that calculates the vibration

functions, it is more convenient to use the same Q for
D2CO, but to change the reduced mass from one to "", ..~ tJI)Z
because this gives the same potential V, but the right
frequency:

(3.10)

The normal coordinates are different for D2CO, therefore
-1 -1 ,the (L BM ) matrix will change as well: .

'I( = (£-I!J3l1j4J,: ItY-'!3I1) '.fj-', tf .~ (of-'f3/'fj< tf" (3.11)

So (3.12)

The ~i,s for the six normal modes of D2CO are listed in

Table 3.2; the w's are taken from ref. 40.

mode
i (~)211 =

1
W

1 1. 8307

2 1.0548

3 1.8396

4 1.5484

5 1.7326

6 1. 591 3

Table 3.2.
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3.2. Calculation of the Electronic Wavefunction and Proper­

ties

3.2.0. General

In this chapter we will show how equation (1.25) is

solved for formaldehyde:

(3.13)

in which H assumes the forms:
o

(3.14)

for the

Now:

ABO and CBO set,
_ !d pZ
/ E = 2- v;;:z

/.:/ I-~

tV k

it(e/~)== - ~ ~
,£:/ Ih'"

respectively.

r:
40

2",- (3.15)

7?hJ~'

in which qi are the cartesian components of the electron

coordinates, N is the number of electrons, K is the number

of nuclei, Zn is the charge of nucleus n.
r en is the distance between electron e and nucleus n

r ee ' is the distance between electron e and electron e'

Rnn , is the distance between nucleus n and nucleus n'

So we have to solve a partial differential equation of the

second order in 3N coordinates.

Fock 8 and Slater 9 simultaneously developed a method for

solving this equation; this method was based on earlier

work by Hartree 10 and is therefore known as the Hartree­

Fock method.

In the Hartree-Fock method we first put a constraint on the

function ~i' in the sense that ~iis written as a single

anti-symmetrized product of one-electron spin functions

(functions that depend only upon the spatial and spin coor-
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dinates of one electron); antisymmetrical because electrons

are spin-half particles.

(3.16)

of a spatial orbital 8i and a

(the 8. are also known as
1

A is the antisymmetrizer.

This is also called a Slater

Si(~) or a configuration.

We write S.(~) as a product
1

spin function a(~) or S(~)

molecular orbitals: MO's):

determinant of the functions

(3.17)

We consider the special case of a closed shell system, i.e.:

an even number of electrons, each spatial orbital occurring

one time with a-spin and one time with S-spin.

Fock suggested a functional J that is stationary with res­

pect to the 8. (~), for those 8. that make ¢. a solution of
1 1 1

equation (3.13). This functional J can be given the physic-

al interpretation of the energy of the system if ¢i is the

solution of (3.13).

</';/fIv/i:>
<1..11,.>

(3.18)

Varying the functional J with respect to the 8. , and putting
1

the variation in J equal to zero, gives the Hartree-Fock
equations:

i'l

;-"(/<) I- ./S- (,/ J; - ki) &t

(3.19)

or if· (7 .:= €. 6 ./ ~ ,oS .;l d'..:Jy~h~/ ,fnat~'"iX.
h(~) is the one-electron part of the Hamiltonian for elec­
tron ~ .
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J:v.).~.~)= <e.. (v) / ~ / ~'(1I)~ '&/(/4)

k.. ("u). ~//,).:= <: &,,' (7.))/.t: / ~./(-VJ->V .B,;f~)
(3.20)

The Hartree-Fock equations must be solved in an iterative

way. For atoms the equations can be integrated numerically,

for multi-center systems (more than one nucleus) this be­

comes impossible.

Roothaan 11 has solved the HF equations by expanding the

functions 80 in a complete basis set of one-electron func-
1

tions:

(3.21)

Substitution in the functional J and varying now with res­

pect to the C's gives the HF equations in linear form, in­

stead of differential form:

(3.22)

with

r- Ct,° = C",; ACt.o

F ~ "l t if I1'J

A :=: fl'1
and /1-{ -

~f =- (0/» (;<J /-1(,,;.)/ ~eu-)) f-/{ /t(~v.)lF0)/??,(/t.J)f-

-(1;, (;-cJ/k;- V)/1tlj.J';j'

= AI( (jA) of-A?~JS Ie <11> v.)?s (71)/~ /7r frJ f/i (7,1)> ;I- (3.23)

- (P»/,4) '7.. (~)/~ /"?u.)~s (V»7

in which

This is a pseudo eigenvalue equation in which the Ci form

the pseudo eigenvectors. This equation can be solved with
a variety of numerical procedures l2 •
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For the basis functions n one used initially so-called

Slater functions:

/h-I

=fl (3.24)

Y~(e $) is a spherical harmonic in real form.
~ is a number that is given the physical interpretation of

an effective nuclear charge.

These Slater functions were used because they express in

analytical form the numerical solutions of the Hartree

equations (the Hartree equations are similar to the HF

equations with the difference that the ~. are not anti-
1

symmetrized).

A disadvantage of the Slater functions is that multi-center

integrals are very time-consuming to evaluate. Therefore,

we use a basis set of cartesian Gaussian functions:

(3.25)

These functions can be integrated a lot easier, but more

functions are necessary to obtain the same accuracy as with

the Slater functions. This has an especially time-consuming

effect on the iterative solution of the HF equations, be­
cause of the increased size of the HF matrix. Therefore,

the basis functions are grouped, and we obtain the so­

called contracted basis functions:

, t~::t, ... , /l1ttInJ~r "'/ t'DhCV'Jc-z'et7" (3. 26)
-r4nc:t'Qh$ .

in which the d .. are constant coefficients.
)1

This reduces the size of the HF matrix and thus results in

a considerable saving of computing time.

One distinguishes single ~ f double ~ and extended basis

sets according to the number of basis functions used. As a

reference one takes the solutions of the hydrogen atom (ls,

2s, 2p etc.) and takes the number of these so-called atomic
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orbitals (AO's), necessary to accomodate the electrons

available for a certain atom. A calculation done with this

number of STO's (Slater Type Orbitals) is of single ~

quality. If two 8TO's per AO are taken one has double ~

quality, more than two is called an extended basis set.

Going back to the solution of the HF equations, we realize

that the one-configuration constraint on ¢. can be re-
I

laxed. The reason is that the one-electron functions ai'

determined with the HF equations, form a complete set of

one-electron functions if the basis set np is complete.

Now ¢i is an N-electron function and we can prove that any

¢i can be expressed as:

/{ /~ ,,/ = 2.- !.~&kl (J .". ~ (1{)7·Cl .. L.Y't (:J- 1 '~', /'1/ N J I; '~.y
k,<k~< .. <I<",

(3.27)

That is ¢i can be expressed as a sum of all possible con­

figurations that can be formed from the set a i .

In practice we work of course with only a finite number of

configurations in which hopefully only a few will pre­
dominate.

The coefficients Ck are determined by applying the varia­

tion method to the functional:

<p;o / II..II;.;?
<I"jl.>

This gives the secular equations:

2- (41. - ~ Sk/./=O
L.

in which

and f>kL = <:.:J)/c /.J)L >

(3.28)

These secular equations again are a pseudo-eigenvalue pro­
blem that can be solved with known methods 12 •
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3.2.1. The AO Basis Set

The basis set used for the calculation of the elec­

tronic wave function of formaldehyde is a contracted Gaus­

sian basis set. We used the exponents and contraction

coefficients recommended by Dunning 4 • For carbon and oxygen

we used a (9s5p) [4s3p] set, for hydrogen a (4s) [2~ set.

(This set is of double ~ quality). The exponents and coef­

ficients used are shown in Table 3.3.

carbon oxygen hydrogen

exponents coeffi- exponents coeffi- exponents coeffi-
cients cients cients

4232.6100 0.002029 7816.5400 0.002031 13.3615 0.032828

634.8820 0.015535 1175.8200 0.015436 2.0133 0.231208

146.0970 0.075411 273.1880 0.073771 0.4538 0.817238

42.4974 0.257121 81.1696 0.247606 0.1233 1.0

14.1892 0.596555 27.1836 0.611832

1.9666 0.242517 3.4136 0.241205
5.1477 1.0 9.5322 1.0
0.4962 1.0 0.9398 1.0
0.1533 1.0 0.2846 1.0

Table 3.3.

The integrals were calculated with the integral program of

the IBMOLH program packages.

3.2.2. The SCF Method

With the S(elf) C(onsistent) F(ield) method one deter­

mines in an iterative way the M(olecular) O(rbitals) that

are the solution of the H(artree) F(ock) equations (eq.
(3.22)) for a given state of the molecule, i.e. the ground
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state or some excited state. These MO vectors are used to

perform the C(onfiguration) I(nteraction) calculation (eq.

(3.28)).
If the AO basis set is complete (i.e. the SCF solution

then is the HF limit) and the CI is also complete (i.e. all
possible configurations are used), then it does not make
any difference for which molecular state the MO vectors

are calculated. Both these conditions are not satisfied
for the present calculation of formaldehyde. Buenker and

Peyerimhoff 6 have investigated the effects of different
MO sets in the CI calculation of formaldehyde. Their con­

clusion is that a given state is described best if the MO­
vectors used in the CI calculation, are obtained from an

SCF on the same state (so-called parent state MO's: PSMO's).

If one uses GSMO's (ground state MO's) to describe the l Az
and 3A2 excited states in a CI calculation, then the non­

planar equilibrium geometry is not found and the excitation

energy for these states overestimated (4.71 eV versus 3.44
eV).

For the present purpose it is necessary to use one MO set

to calculate both the ground and excited state. The reason

is that transition properties are calculated between the
two states (see 3.2.5); if two different MO sets are used,
then rather time-consuming manipulations must be performed

to calculate the transition properties?
In order to describe ground and excited state with the same
accuracy with one MO set, we have to obtain an MO set

that is in some way intermediate between those of ground
and excited state. One way of doing this is to use the

Transition Orbital Method (TOM) developed by Goscinski et

aZ. 13
-

19
• This method is especially suited for single exci­

tations, i.e. excitations in which one electron is promoted

from MO i to MO a. The HF operator is then changed in such
a way that effectively one half electron is removed from

the MO i, and one half electron is put into MO a. We work

with the RHF method in which we then have 1.5 electrons in
i and 0.5 electron in a. Also because of the RHF method we
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have 0.75 ~ electron and 0.75 8 electron in i, and 0.25 ~

and 0.25 8 electron in a.

In the normal RHF procedure the HF operator has the form 39

(see eq. (3.19)):

til
qI~ "'if! -f- .~ (.lJ; - 1<;) (3.29); ;/

in the n basis this gives 39 : (cf. eq. (3.23))

with

The HFTOM operator has the form:

This results in:

with

The Transition Operator Method was developed by Goscinski

et al. to be able to calculate transitions energies with

one calculation instead of the usual two. But they indeed

suggest that the TOM orbitals should form a suitable basis

for performing CI calculations in which two states are to
be described correctly14,19.

The SCFV programS was changed, so that TOM functions can

be calculated.
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3.2.3. The CI Method

Only a limited number of configurations can be admit­

ted in the CI calculation. The problem is how to select

these configurations. We use the "point" system of Morokuma

and Konishi 2o ,21: "In this system, each MO is assigned a

point based on its energy and its supposed importance for

the properties being calculated. Then each configuration

is assessed a point that is the sum of the points of all

MO's involved in the excitation from the reference (or

ground) configuration". All configurations with points not

greater than a chosen limit are included in the CI calcula­
tion.

For formaldehyde we take the points for the MO's from refe­

rence 21. The points are: 3,3,2,1,1,1,1,0,0,0,1,2 (in order

of increasing energy of the MO's). The maximum sum of

points allowed for any configuration is 2. We included 175

configuration in the CI calculation. The computer program

consists of two parts: 1) a program to calculate the spin

symmetry coefficients S ; 2) a program to generate the H­
matrix and diagonalizing its.

3.2.4. The Crude Adiabatic Wave Function

The CBO function is defined by eq. (1.23). From eq.
(2.22) we have that:

So for each Q we only have to evaluate:

(3.33)

This expression consists only of one-electron integrals;

there is an enormous time-saving compared with the ABO

function, also because we only have to calculate the wave
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function in the equilibrium position QO' We modified the

1BMOL programS so that these integrals were evaluated,

while we took for the ¢n(q,QO) the ABO C1 function of the

equilibrium position QO'

3.2.5. The Properties

A. The ABO set

We have adapted the properties program of the POLY­

ATOM packageS, so that properties between C1 functions can

be calculated.

For each point of the energy surface where the wave

function of ground and excited state are calculated, we

calculate the 12 cartesian components (3 per atom) of the

electric field operator, and the 3 components of the dipole

operator. So we have:

(3.34)

in which p is an operator and ¢O and ¢, are C1 functions.

The 12 cartesian components of the electric field operator

are transformed to 12 normal coordinate components (see

Table 3.1). The electronic dipole transition element can

be expressed in three waysZZ,3S:

dipole length: (3.35)

For the symbols used see 2.2.1 (q. and \j. are defined with
1 1

respect to the origin of the coordinate system as are the

other terms of the Hamiltonian).
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The transition dipole moments are invariant to the choice

of the origin. The dipole transition moment is given by:

If D(Q) can be written as:

(3.38)

(3.39)

then ..J) == J) (~.). IT<' ;;{III~.. ) / ';(d/ (~.~)> f-
~ (3.40)

.;-{J[('1;r (~,)/J)/~/)/X<ltICfteJ> (-:r't,ff/lo) / r~f (~""»

The oscillator strength can be expressed in D:

in atomic units we get:

in which ~E is the energy difference between initial and

final state. The radiative lifetime for spontaneous emis­
sion is:

(3.41)

(3.42)

(3.43)

(Akl and Bkl are Einstein coefficients)
Now:
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So:

(3.44)

'r is an experimental quantity that is known for several
levels of formaldehyde.

Ln and An are calculated.

An can be simply expressed in E~:O (see eq. (2.15)):
J n

Zn is the charge of nucleus n.
AADj I is the j 'th component of n.

B. The CBO Set

(3.45)

From eq. (2.26) we know that there is only one compo­

nent of the coupling element; it is also calculated with

the C1 properties program using for ¢n(q,QO) the ABO C1

function in the equilibrium point QO'
The transition dipole moment is of course zero in the case

of formaldehyde (forbidden transition), because no account

is taken of the coupling of the CBO function with higher

electronic states.

3.3. Calculation of the Vibrational Wave Function and

Properties

3.3.0. General

We have to solve the vibrational wave equation for

each normal coordinate Qk:

(3.46)
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(see also eq.

in which T =
N

dinate.

(2.32) and following)
1 --o--·Qk being a mass-weighted normal coor-
2 2 I

oQk
With the COUPEL program (see 3.3.1) we first solve this

equation for the lowest vibrational states of the excited

electronic state, i.e. i = 1, n = 0,1,2, ... ; k = 1, ... ,6.

We then select the vibrational wave function of interest,

say n = 1, and calculate the energy of it:

(3.47)

We now solve the vibrational equation for the 6 normal

coordinates of the ground state, for eigenvalues until

So i = 0, k = 1, .•. , 6 and Ek ~ Ell .on ,

We feed the eigenvalues Ek (k = 1, ... ,6, n = 0,1, ... ) ino,n
the VICTBAR program (see 3.3.2).

We also indicate an energy interval ~E around E1 l',
The program finds all combinations of the six vibration

functions (one for each normal coordinate), that have a

total energy in the specified interval ~E (this we call

the "raw" density of energy levels). ~E is chosen so that

an increase in ~E does not influence the decay function
2

of ~ ( see 2.3)
E:

pet); ~E will have to be of the order

if the Bixon-Jortner model is valid.

For each of these total vibration functions we calculate

the coupling with the total vibration function of the ex­

cited state with the COUPEL program (see 3.3.3). In order

to do this, the program needs, apart from the vibration

functions of ground and excited state, also the coupling

elements for each point of the six potentials. For ABO

functions the coupling element has six components per

point, for CBO functions only one component.

Having obtained all vibration functions in the energy

interval ~E, each with its energy and coupling element,

these data are fed into the INTERF program (see 3.4). This
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program calculates the exact eigenfunctions by diagonaliz­

ing the interaction matrix. It also calculates the time­

dependence of the oscillator strength, if all these eigen-

functions are excited on t = O. This decay function can be ~

compared with the experimental decay curve.

3.3.1. The Vibrational Wave Function

In the COUPEL (Coupling Element) program the vibra­

tional eigenfunctions and eigenvalues are calculated by

numerical integration of the vibrational wave equation.

The integration procedure is taken from the TRAPRB program
written by W.R. Jarmain and J.C. McCallum 23 ,24,25. Jarmain

and McCallum slightly modified the program of Zare and

Cashion 26 , who modified the program written by Cool ey 27.

The method they used was given by Hartree 28 , who based it

on the Numerov finite difference method 42 • An idea about

the accuracy of the obtained wave function can be acquired

from the orthogonality test.

/< 1, IXl>/ is of the order of 10- 12

The number of integration points is 200-800 per R, depend­

ing on the number of nodes the wave function contains. The

potential energy curve is calculated in all these points

by fitting cubic splines to the points calculated with the

ab initio CI program.

3.3.2. The Energy Levels of the Total Vibrational Wave

Function

We need to know the energies E
o)n

, - k.
E;/h = #: (!f6)-f f E; ..

that lie in a certain predetermined energy interval ~E. To

(3.48)
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this end the algorithm VICTBAR*) (Vibrational Counting

with Backtracking Algorithm) was developed 29 , which is

based on the backtracking procedure from combinatorics 30 •

This method has many advantages over the methods used in
the literature 29 • The program can accommodate both the

harmonic and the anharmonic case, with and without dege­

nerations. All that is required are the positions of the

energy levels in each of the normal modes. It turns out

that deviations from the harmonic potential have a large

effect on the level density (see 4.2), contrary to what
has been maintained in the literature 31 ,32.

3.3.3. The Vibrational Integrals

The vibrational coupling for the ABO set (see eq.

(2.36)) and the CBO set (eq. (2.42)) are implemented in
the COUPEL program. The integrals that occur in these ex­

pressions are of the following types:

<X,p (~k)/l"t (ft,,»

(tiP (~,J ) II/~I<) / 'X of, f!f1k)>
! XI; (~l) / of I -tQt ("Ie»

(-ill' (~,) / t/(!f,) d~ / 't"1 fflk) >

(3.49)

All these integrals are evaluated numerically with an inte­

gration grid of 200-800 points per ~ (depending on the num­

ber of modes the wave functions contain). The coupling ele­
ments are calculated at all these points by fitting cubic

splines to the points known from the ab initio CI calcu­
lation.

*)Not to be confused with Victor Baarn, a mysterious cash
collector4 3.
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The integration is performed with the modified trapezium

rule: A

p.J/tx) dx = (.! j,j'AX (3.50)

with

(3.51)

The differentiation is performed with a four point rule 33 :

JJ/f.J) ~ (-/(-<-1) I- rY /(4) -0'1/-4) l-!f-x.l)},,1..e ~
Some tests were performed to determine the dependence of

the overlap integrals on the exact form of the potential.

Overlap integrals were calculated between the vibration

functions of two different potentials. One vibration func­

tion had a low energy (zero nodes), the other was highly

excited (30 nodes); this situation resembles the formalde­

hyde case. The potential energy curve for the 30 node

function was varied and the effect upon the overlap inte­

gral evaluated. It was found that the overlap integral is

determined primarily by the lower part of the potentials.

Variations in the higher part of the potential energy

curve gave variations in the overlap integral of 150%,

while corresponding variations in the lower part resulted

in deviations of 600%. This is due to the fact that the

zero-node wave function differs from zero only around the

equilibrium configuration; so when determining the overlap

integral, only this part of the 3D-node wave function is

important; now the 3D-node wave function around the equi­

librium configuration is primarily determined by the poten­

tial energy curve in this region.

From all this it follows that, despite the fact that we

are working with highly excited vibration functions, the

lower part of the potential curve is the most important

part for the properties we are interested in.

If we want to describe the lowest part of the potential

energy curve, then the normal coordinates provide the best
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choice.
If we want to describe the higher part of the potential

energy curve, then internal coordinates*) are better.

3.4. Calculation of the Radiationless Decay

A set of equations of the following form has to be

solved to obtain the non-EO states (see eq. (2.43)):

[- f o AI', II/z

nfl (;-t"

'lTz. t-j;z..

0
tVl.(

, if", fAa 0

ct., 0

0 V\1 ::: 0

o

(3.52)

The secular equation is:

(3.53)

Normalization of the eigenfunctions requires:

t Qi 1. =: :t
~':I

From (3.52) we also obtain:

(3.54)

a-t (3.55)

*)Internal coordinates are also used under the name "local

modes" for the analysis of the vibrationally highly excit­
ed part of the spectrum 36 ,37,38.
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we obtain:Combining (3.54) and (3.55)
AI

- "V""al 2 -f 2. ~)2. 'a,p2 :;::i
'=1 IF-E;-

->
N

-l ) ,,(I,
at) :::f. -/- L- /E~)l

i;1 t. •
:;.I'[E)~

(3.56)
z '

ad = -1'/e)
This is particularly fortunate, as we are only interested

in a O (see 2.2).

The function feE) has only one zero-point between each pair

(E i ,E i +1); f'(E»l, we therefore find the zero-points with

a Newton iteration procedure:

/t-x",)
fIx,..)

(3.57)

in which Xn+ 1 is the (n+l)th approximation for the zero­

point.

The interference of the non-BO states is described by (see
(2.46)):

(3.58)

The k in (ak)O denotes the kth eigenvector.

Pl(O) has to equal 1.
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4. RESULTS AND COMPARISON WITH EXPERIMENT

4.1. The Vibrational Structure of the 1A1~2 Radiative

Transition

The energies of the ground and (nn-) excited state of

formaldehyde were calculated as a function of the six nor­

mal coordinates. About 14 points per normal coordinate were

calculated. Also were calculated for each point the 3 Car­

tesian components of the dipole transition moments LD and

AD. See Figure 4.1. for the potential energy curves. The

point a in the figures is the point QO of equation (2.31);

for the point QO was taken the experimental equilibrium

point for the normal coordinate calculation of the ground

state, which is shown in Figure 3.1.

The calculated equilibrium values for the 1A1 and 1A2 state

for each of the internal coordinates are obtained from Fig.

4.1. They are compared with the experimental ones l in Table

4.1. (8 is the out-of-plane angle).

1A 1A1 2

experimental calculated experimental calculated

8 deg. 0.0 0.0 33.6 30
HCH deg. 116.52 116.5 118.0 112.5
C-H A 1.1161 1. 10 1.0947 1. 06
c-o A 1.2078 1. 23 1.3252 1. 36

Table 4.1. The calculated equilibrium geometries

The dipole length moment in QO for ground and excited state

is shown in Table 4.2. To be completely comparable with ex-
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experiment, one has to calculate the dipole moment for the

zero vibrational state, which will lower the calculated
value somewhat.

dipole moment

calculateda ) experimental
1A -1.114 -0.9Z0b )
1 1

-0.65Z -0.614 c )AZ

a) calculated in QO
b)from reference 3

c)from reference 14

Table 4.Z. The dipole moments

Concerning the calculation of the potential energy curves

for mode 4 the following can be remarked. We first used

the linear normal coordinate for the out-of-planemovement.

For the 1AZ state this resulted in an energy lowering of

Z5 cm- 1 (with as reference energy the energy in the point

QO) for an out-of-plane angle of 30 0
. Next we used the non­

linear out-of-plane coordinate (that leaves the bond

lengths intact, see Chapter 3.1.); using this coordinate

resulted in an energy depression of 157 cm- 1 , again at 30°.

The experimental energy dip (from the frequencies of the

vibrational progression in mode 4 of the excited state) is

356 cm- 1. The difference is obviously caused by the fact

that in the calculations the equilibrium point QO of the

excited state was taken the same as that of the ground

state: QO' This is of course an approximation (see Table

4.1.) and adversely affects all the excited state frequen­

cies (see Table 4.3.) but in particular mode 4, because of

the extremely small energy difference involved. We there­

fore used for the excited state potential of mode 4, the

experimentally determined energy curve 1S ,16; the ground

state energy curve and the transition dipole and non-adia-
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batic coupling elements were calculated with the electronic

wave functions obtained for the linear normal coordinate
path.

The zero-vibrational level energies for ground and excited

state of H2CO and D2CO are listed in Table 4.3.

Table 4.3. The zero-vibrational energy levels with as re­

ference energy the ~O(QO) and ~l(QO) energy for
the l Al and l A2 state, respectively

H2CO D7CO

mode l A l A l A l A1 2 1 2

1 1345.4 1359.9 942.0 940.8
2 795.2 -5328.8 434.9 -5341.0
3 705.3 430.9 499.2 234
4 698.2 - 116.4a ) 575.8 - 144.6a )

5 1302.9 1335.8 999.3 1018.0
6 661.1 490.8 523.8 388.5

l: 5508.1 -1824.8 3975.0 -2904.3

a) experimental values, see Discussion p.63

The calculated 0-0 transition energy for H2CO (see eq.

(2.33)) :

32090.3

32090.3

24757.4

- 0 + (-1824.8)

- 7332.9
-1cm

- 5508.1

The experimental 0-0 transition lies at 28188 for H2CO lS ,

which is 3.49 eV = 0.1287 a.u. So there is an underestima­

tion of 3430.6 cm- l = 0.0157 a.u., which is of the order of
magnitude for the error in a calculation of this typelO,ll.

The calculated difference between the H2CO and D2CO 0-0

transition is -453.6; experimentally it is -113 cm- lls
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The calculated vibrational frequencies for the lowest IR

transitions in ground and excited state for H2CO and D2CO

are listed in Table 4.4., where they are compared with the

experimental data.

It appears that, apart from mode 3 in the excited state,

the calculation can reproduce the experimental results to

within 30-300 cm- 1 ; the largest discrepancy occurs for the

excited state mode 1.

hot

bandband in H2CO

is by Job et

887 cm- 1.

Mode 3 of the excited state is particularly intriguing.

Experimentally the assignment of v
3

is rather problematicl5
;

it is in fact based on only two bands: one type B band in
-1HDCO at 874 cm from the 0-0 band, the other a type B

at 262 cm- 1 from the 0-0 band. The latter

aZ.assigned to: 36 4~, resulting in a v 3 =
1 0We calculate, however, that the 30 41 band has an

intensity 17 times larger than the 36 4~ band (see .Table

4.7.); assigning 36 4~ to this band results in a V 3 = 1429

cm- 1 , which is in the expected range from the calculated

value of 1495.9 cm- 1.

The 874 cm- 1 band in HDCO is assigned by Job et aZ. to

36 46; however, this band does not occur in the H2CO and
D2CO spectrum at the required places.

Applying Teller-Redlich product rule ratios one obtains
-1 -1for v 3 in D2CO 1009 cm and 1290 cm in HDCO.

Sethuraman et aZ. 19 have deduced from the rotational fine
-1structure that the band in H2CO, 262 cm from the 0-0

band, has a type C Coriolis interaction with the 426'

band that lies 17 cm- 1 above it. This finding is also com­

patible with the 3140 assignment of the 262 cm- 1 band.

Formaldehyde is an asymmetric top molecule. Therefore,

there are three types of bands in the 1A, + 'A2 absorption

spectrum: type A, Band C bands. These bands can be re­

cognized by the characteristic shape of the rotational fine

structure; the bands result from a transition moment along

the a, band c axis, respectively. The a axis is defined

as the axis with the smallest moment of inertia (the x axis

in formaldehyde, see Fig. 3.1., p. 35); the c axis as the
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Table 4 4

H2CO D2CO

mode exp.a) calcul. exp.a) calcul.
1A state1

n d) 2766.4 2796.2 2055.8 2041.6
2A 1746.1 1651.0 1700 1612.3
3A 1500.6 1546.3 1105.7 1117.2
4a 1167.3 1242.3 933.8 1004.1
Sa 2843.4 2656.0 2159.7 1974.8
6A 1251.2 1325.5 990.4 1049.8
1A state2

n d) 2847 3157.7 2079 2348.9
2a 1173 1345.0 1176 1309.8
3a 887 1495.9 (625)e) 1107.2

(1429)b) (1009)b)

4a 124.6 125.9c ) 68.5 67.8 c )

4~ 417.7 419.4c ) 318.5 327.4c )

4~ 405.6 408.5 c ) 281. 0 286.5 c )

sa 2968 2767.2 2233 2070.4

6A 904 988 705 781. 3

a)Experimental data from reference 15.

b)Revised assignment, see Discussion p.66

c) Calculated from the experimental potential, see Discus­

sion p.63

d)In this Table Xa means a transition concerning only one
electronic state.

e)Not observed, but calculated from Teller-Redlich product

rule ratios by Job et al.
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one with the largest moment of inertia (the z axis in for­

maldehyde). The b axis has the intermediate moment of iner­

tia (the y axis in formaldehyde). The Band C bands of a

nearly symmetric top molecule become the perpendicular

bands of the symmetric top molecule; the A band becomes

the parallel band.
In formaldehyde the type A bands have an intensity of 3-5%

of the type B bands l5 • It is estimated from experiment that

the type B bands contribute 75% of the total oscillator

strength, the rest being type C.
From symmetry considerations 9 one can derive that mode 4

should give a transition moment along the y axis (type B

bands), and mode 5 and 6 along the z axis (type C bands),

all other transition moments being zero. This is also what

we find with our calculations; the resulting three transi­

tion dipole length and acceleration moments are shown in

Figure 4.2. It is observed in Figure 4.2. that the accele­

ration dipole transition moments are 3-80 times larger

than the corresponding length moments. This is a fact

well-known in the very few calculations that have so far

been done with the acceleration formula 2o - 23 • It turns out

that the acceleration formula depends very sensitively

upon the wave function close to the nuclei, because of the

1/r2 term in the operator 24 • The dipole length form of the

transition moment depends more strongly on the wave func­

tion farther from the nuclei; therefore, the dipole length

form is always more accurate than the acceleration

form 2o
-

23
, because the wave functions usually calculated

are not designed to be accurate close to the nuclei. So

comparing the acceleration and length transition moments

gives an estimate of the accuracy of the electric field

transition components. From this comparison one estimates

that these electric field transition moments are probably

a factor 3 to 80 too large.

The electric field components for the ground state of for­

maldehyde have been calculated by Neumann and Moscowitz 25

with a HF function using a basis set of double zeta plus
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polarization functions. Our calculation gives results for

these electric field components which differ at most 15%

from their calculation.

In Tables 4.5. and 4.6. overlap integrals and transition

dipole length integrals are listed. With formulas (3.40)

and (3.41) we can calculate the oscillator strengths from

it.

With Table 4.5. we can predict which "cold" (starting from

XOO) bands will occur in the UV spectrum of formaldehyde.

First we have to remark that we are here only considering

bands with type B or C polarization, as the type A bands

are magnetic dipole transitions 15 or transitions caused by

a combination of odd quanta in the B, (mode 4) and B2
(mode 5 and 6) vibrations 15 • The latter combination transi­

tions are not found with the present treatment, because it

was assumed that the 6-dimensional integral for the

transition moment can be approximated by a product of 6

one-dimensional integrals (see eq. (3.40) ) ; to calculate

the combination bands with A polarization, one would have

to retain the two-dimensional integral over coordinates

4 and 5 or 4 and 6.

The following cold progressions (with polarizations) are

predicted for H2CO and D2CO from Table 4.5:

nlA (B or C polarization)

2~262~232i2g2K ( " " )

3~3A ( " " )

46434g (B " )

4~4~ (C " )

s~ (B " )

sA (C " )

6~ (B " )

6A (C " )

Progressions are found in the spectra 15 ,29; there are no

experimentally found transitions with B or C polarization

that are not found with the calculation. All calculated
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Table 4.5.

k=

mode inte-) mole- 0 1 2 3 4 5 6
gral a cule

1 001k H2CO 0.98 0.17 0.37(- 1) 0.26(- 3) -0.13(- 2) 0.16(- 2) -0.31(- 3)
001k D2CO 0.98 0.20 0.46(- 1) 0.25(- 2) -0.18(- 2) 0.11(- 2) 0.59 (- 3)

2 001k H2CO 0.31 -0.44 0.48 -0.45 0.37 -0.28 0.19
001k D2CO 0.30 -0.44 0.48 -0.45 0.38 -0.28 0.20

3 001k H2CO 0.91 0.40 O. 11 0.22(- 1) -0.32(- 3) -0.59(- 2) -0.39(- 2)
OOlk D2CO 0.88 0.45 0.16 0.43(- 1) 0.60(- 2) -0.59(- 2) -0.58(- 2)

4 001k H2CO 0.71 0.20(-4) -0.64 0.64(- 5) 0.28 -0.82(- 5) -0.11

001k D2CO 0.62 0.71(-5) -0.70 0.30(- 5) 0.33 -0.19(- 5) -0.14
OODlk H2CO -0.20(- 5) -0.23(-1) -0.20(- 5) -0.25(- 1) 0.18(- 6) -0.15(- 1) 0.14(- 5)
OODlk D2CO -0.73(- 6) -0.19(-1) -0.69(- 6) 0.22(- 1) -0.76(- 7) -0.15(- 1) 0.38(- 6)

5 001k H2CO 1.0 0.49(-8) 0.93(- 2) -0.19(- 8) -0.52(- 3) 0.13(- 8) -0.46(- 3)
001k D2CO 1.0 0.47(-7) 0.10(- 1) -0.51(-10) 0.68(- 4) 0.14(-10) -0.56(- 3)

OODlk H2CO -0.12(- 9) -0.21(-1) -0.11(- 8) -0.42(- 3) 0.20(-10) -0.11(- 4) -0.95(-11)
OODlk D2CO -0.13(- 9) -0.19(-1) -0.13(- 8) -0.39(- 3) 0.14(-11) -0.16(- 4) -0.41(-12)

6 001k H2CO 0.99 0.36(-6) -0.10 0.60(-10) 0.12(- 1) 0.35(- 8) -0.15(- 2)
001k D2CO 0.99 0.20(-6) -0.82(- 8) -0.19(- 7) 0.13(- 1) 0.55(- 8) -0.16(- 2)
OODlk H2CO -0.59(-11) 0.16(-1) 0.73(-11) 0.28(- 2) -0.91(-12) 0.44(- 3) 0.59(-11)
OODlk D7 CO 0.31(- 9) 0.14(-1) -0.25(- 2) -0.25(- 2) -0.74(-10) 0.40(- 3) 0.41(-10)

(-6) means 10- 6



Table 4.6.

mode integrala) k=

t-B2 CO 0 1 2 3 4 5 6

1 OklO 0.98 - O. 17 0.59(- 2) 0.77(-2) -0.23(- 2) -0.12(- 2) 0.14(- 2)
Okll 0.17 0.96 -0.23 0.21(-1) 0.75(- 2) -0.43(- 2) 0.35(- 4)

2 OklO 0.31 0.48 0.53 0.47 0.34 0.21 0.12
Okll -0.44 -0.41 - O. 12 0.22 0.42 0.44 0.35
Ok12 0.48 0.16 -0.26 -0.36 - 0.13 0.19 0.38
Ok13 -0.45 O. 11 0.35 0.66(-1) -0.28 -0.31 -0.62(- 1)

3 OklO 0.91 -0.39 0.12 -0.32(-1) 0.84(- 2) 0.85(- 3) -0.25(- 2)
4 OklO 0.71 0.87(-4) 0.53 0.73(-3) 0.39 -0.95(- 3) 0.22

OkDl0 -0.20(- 5) -0.54(-1) -0.40(- 4) -0.58(-1) -0.11(- 3) -0.44(- '1 ) 0.31(- 3)
Okl1 0.20(- 4) 0.62 0.39(- 3) 0.59 1.0 (- 3) 0.43 -0.30(- 2)
OkDl1 -0.23(- 1) -0.15(-4) -0.67(- 1) -0.15(-3) -0.71(- 1) 0.13(- 3) -0.47(- 1)
Ok12 0.64 0.10(-3) 0.23 0.13(-2) 0.50 -0.32(- 3) 0.42
OkD12 0.20(- 5) 0.13(-1) -0.52(- 4) -0.47(-1) -0.26(- 3) -0.68(- 1) 0.43(- 3)
Ok13 0.64(- 5) -0.64 0.29(- 3) 0.67(-1) 0.32(- 2) 0.45 -0.26(- 2)
OkD13 0.25(- 1) -0.63(-5) 0.32(- 1) -0.14(-3) -0.36(- 1) -0.17(- 3) -0.69(- 1)

5 OklO 1.0 0.41(-7) -0.93(- 2) 0.13(-7) 0.61(- 3) 0.28(- 9) 0.42(- 3)
OkDl0 -0.12(- 9) -0.21(-1) -0.11(- 8) 0.13(-3) 0.46(-11) -0.10(- 3) -0.19(-11)
Okll 0.48(- 8) 1.0 0.53(- 7) -0.12(-1) 0.23(-11) 0.25(- 2) -0.38(-10)
OkDl1 -0.21(- 1) -0.22(-9) -0.28(- 1) -0.53(-8) -0.39(- 4) -0.88(-11) -0.19(- 3)

6 OklO 0.99 0.69(-7) 0.10 0.60(-7) 0.13(- 1) 0.65(-10) 0.16(- 2)
OkDl0 -0.59(-11) 0.18(-1) 0.60(-11) 0.32(-2) 0.15(-11) 0.48(- 3) 0.41(-11)
Okll 0.36(- 9) 0.98 -0.20(- 6) 0.17 0.75(- 7) 0.27(- 1) -0.28(- 7)
OkDll 0.16(- 1) 0.13(-8) 0.27 e- 1) 0.55(-8) 0.63(- 2) 0.16(- 8) 0.11(- 2)

'""-
(-6) means 10- 6



polarizations agree with the experimental ones.

The hot bands in H2CO are obtained from Table 4.6:

o· 1· (B C polarization)1 1 1 1 or

2Y 2l· ( " " )
3y. ( " " )

4Y (B " )

4t4t (C " )

4~ 4t (B " )

4 ~. (C " )

5~· (C " )

6~ (C " )

The asterisk-marked progressions are experimentally not

found, while the others are found; all polarizations agree

with the experimental ones. The hot bands from modes 1 and

5 are not seen experimentally, because the first excited

level in these modes has a rather high energy ( 3000 cm- 1).

There is one experimental progression that is not found in

the calculation: 4~.
1 2This one occurs in the combination assigned 3041 at 28450

cm- 1 with B polarization. For the 364~ band the calculated

intensity is 17 times that of the 364l transition (see

Table 4.7.) as was already alluded to on p.66; with the

revised value for v 3 the progression does not occur in

H2CO. For D2CO the 4~ progression is 2.5 times stronger

than for H2CO and for D2CO it has experimentally been ob-
2served as 41 (see Table 4.7.).

In Table 4.7. the calculated oscillator strengths are

shown for all observed bands in H2CO and also for the

bands involving mode 3, using 1428 cm- 1 for v 3 • One can

see again that it is extremely unlikely that the 364~ hot

band can be observed in the spectrum, noting the large

oscillator strengths apparently necessary to observe a

band in the hot spectrum at all.

One expects that the 263646 transition can be seen in the
experimental spectrum, because it does not lie on the

flank of a strong transition. It will be interesting to
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Table 4.7.

transition liE (cm- 1) D f polarization
H2CO

cold

46 28312 0.629 (-2) 3.41 (-6) B
45 29136 0.684 (-2) 4. 15 (- 6) B
2646 29495 0.893 (- 2) 7. 15 (- 6) B
4~66 29634 0.283 (- 2) 0.72 (-6) C
3646- 29742 0.276 (-2) 0.69 (- 6) B
2645 30340 0.971 (-2) 8.72 (-6) B
3645- 30565 0.301 (- 2) 0.84 (- 6) B
2~46 30659 0.974 (- 2) 8.85 (-6) B
264a66 30819 0.402 (- 2) 1. 51 (-6) C
263646- 30914 0.392 (- 2) 1. 45 (-6) B
56 31156 0.408 (- 2) 1. 58 (-6) C
n46 31159 0.109 (- 2) O. 12 (-6) B
2a45 31531 1 .059 (-2) 10.42 (- 6) B
263645- 31738 0.427 (- 2) 1. 76 (-6) B
2546 31809 0.913 (-2) 8.07 (- 6) B
n45 31987 O. 112 (- 2) O. 12 (- 6) B
2656 32335 0.579 (-2) 3.31 (- 6) c
2~46 35090 0.386 (- 2) 1. 59 (- 6) B
1b2~45 35740 O. 142 (- 2) 0.22 (- 6) B
2~45 36220 0.419 (-2) 1. 94 (- 6) B
16 2 546 37250 0.099 (-2) O. 11 (- 6) B

hot

364y 28450 O. 156 (- 2) 0.21 (-6) B
364~ 28450 0.648 (- 2) 3.64 (- 6) B
4y- 27563 0.355 (- 2) 1. 06 (- 6) B
264~ 27241 2.601 (- 2) 56. 12 (- 6) B
4~ 27021 1. 48 (-2) 17.94 (- 6) B
2Y46 26567 0.97 (- 2) 7.61 (-6) B
4~ 26061 1. 83 (-2) 26.63 (- 6) B

D2CO

hot

4f 27753 0.561 (- 2) 2.65 (-6) B

(-6) means 10- 6

~Not observed in the experimental spectrum.

73



see further experimental material in this respect and also

regarding the intensities, as no experimental spectrum has

been published so far, in which the intensities of the

different transitions are shown.

4.Z. The l A1 -1 AZ Non-Radiative Transition

In principle, the coupling of each vibrational

of the l AZ state with each vibrational level of the

state consists of 84 terms:

level
l A1

a) The coupling in QO' consisting of 1Z components, being

the derivatives in lZ directions.

b) The coupling as a result of the 6 normal modes; each

normal mode coupling has 1Z components, being the deri­

vative of Q in lZ directions.

It is possible to derive from symmetry considerations

which components of the electronic coupling element be-
l 1tween the A1 and AZ state are unequal zeros. The symmetry

of the 6 vibrational normal modes and of the rotations and
translations are shown below:

mode kind symmetry

1 vibrato A1
Z " A1
3 " A1
4 " B1
5 " BZ
6 " BZ
7 R AZx
8 R B1Y
9 R BZz

1O X A1
11 y BZ
lZ Z B1
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For mode 4 (B 1 symmetry) we havecontributions* of BZ sym-

metry: ~}!- I ~ } .~.
')~s J fJ, <> ;e~ J )I

For mode 5 (B Z symmetry) we have contributions of B1 sym-

metry: ~ .~ C)
~RI( } J~ I <J~

For mode 6 (B Z symmetry) we have contributions of B1 sym-

metry: Z! () ;;>
d6l'-l I iRy • ;r~

i-
')';('1( has A2 symmetry, therefore this component of the coup-

ling has a contribution in all modes and QO'
In other words:

coordinate Q4 has electronic coupling component 5, 6, 9 and

11 unequal zero,
coordinate QS has electronic coupling component 4, 8 and
12 unequal zero,
coordinate Q6 has electronic coupling component 4, 8 and
12 unequal zero,
all coordinates have electronic coupling component 7 un-

equal zero.

This is exactly what is found the ab initio CI calcula­

tions; the resulting coupling terms are shown in Figure

4.3.

We next calculate which vibrational levels of the ground

state lie in an interval ~E around a vibrational level of

the excited state. The energy of the excited state level

(see eq. (3.47)) was calculated with for ¢1(QO)-¢O(QO)
the experimental value (the experimental value is 3430.6

-1cm larger than the calculated one, see Chapter 4.1.); if

the theoretical value is used, the results below are vir­

tually unaltered.

*) I rI. .~ /. '\.
<,. '/'# (~.)hr;i f, (4'.)~ has to contain the A1 representation.
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-1The raw level density varies from 10 per cm around the
1 -1 1 14 level, to 18 per cm for the 2 5 level. The largest

couplings that occur are 5.10- 6 a.u., the smallest are

10- 23 a.u. Couplings smaller than 10- 7 have a negligable

effect upon ~he oscillator strength distribution and the

time evolution thereof. It turns out that if ~E is taken

larger than 10 cm- 1 , no appreciable difference in the

oscillator profile occurs, when compared with the ~E =
10 cm- 1 case. The number of levels with a coupling larger

than 10- 7 is extremely low, varying from 0 to 6 with an

average of 3. No clear dependence on energy or type of

excited level can be observed, neither are the 50 levels

that have the largest couplings, of a particular type.

Calculation of the energy function P1(t) (see eq. (3.58);
all levels in the ~E = 10 cm- 1 are excited) results for

all excited state levels in an oscillatory behaviour of

the oscillator strength, with oscillating times varying
-12 -10from 2. 10 to 2. 10 sec. In other words, in H2CO

(and also D2CO, see below) we have an example of the so­

called resonance case 17 • In the resonance case the density

of coupling levels is so low, that any interaction depends

on the fortuitous position of the interacting levels.

In D2CO the raw density is about two times of that of H2CO

at the same 51 level. The couplings are, however, a factor

10 smaller, so that here even fewer levels effectively

couple with the excited state levels.

It is seen from Figure 4.3. that there is also rotational

coupling between the 51 and 50 states. This means that for
rotation states with at least one quantum number unequal

zero, there is an extra coupling. The.R component willx
give the main contribution, because it is unequal zero in

QO'
The rotational wave function for a rigid symmetric top

molecule (formaldehyde is well described by this, as it is

an almost symmetric top molecule) is:
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'-z> llell' rj - t'k'/
T _ ", /IJ. -l,J' 7/·

(4.1)

y;: SpherIcal !7.l-N'hG"''''

? ,-= d>s..c:t'a-t~cI Le.Jo.dre f.;lyho"';,3 /

Therefore:
(4.2)

So the rotational coupling depends linearly on K (see also

eq. (2~6) • However, inclusion of the rotational coupling

does not alter the resonance behaviour of the S1 levels;

even for K = 10 there are added only a couple of levels to

the ones originating from the vibrational components. It

should be noted that a certain rotational state of S1

couples only with the same rotational state of SO' because
of the orthogonality of the rotational states.

From Figure 4.3. it is also seen that there are translation­

al components in the non-adiabatic coupling between S1 and

"SO' I t should be noted that the 1;-~ is taken wi th respect
to electron coordinates held fixed in the center of

mass of the nuclei coordinate system; this approximation

is not valid anymore when the translational velocity of

the nuclei is appreciable with respect to the internal

velocity of the electrons 27
•

We take for the translation function a plane wave in the

x-direction:

p, with p, the transla­

M is the mass of the

The translation energy E = w.

k is the propagation vector: k

tional momentum of the molecule;

molecule.

So: k:: I!.il-'/E"

We obtain: ~ T(x,t)= i=#' llAtt).:: -/1/:<£', /C7f,r-)
}Jilr

kill/, ~T'::; 1/7? X ( .J u ~ f· (// J'))

(4.3)

(4.4)

(4.5)
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This result is not changed if we form a wave packet, be­

cause the wave packet will only contain plane waves which

have about the same k.
So the translational component of the non-adiabatic coup­

ling is linearly dependent on the translational momentum

of the molecule. The translational energy available to one

coordinate is approximately !k.T, k = Bol~manns constant,

T is the absolute temperature.

For T = 296 oK we obtain:
-4!k.T = 4.6 10 a.u.

So the translational components of the coupling are multi­

plicated with 4.6 10- 4 at 23 °C. Of course the translation­

al components should actually be identical to zero; the

deviation from zero indicates the error made by keeping

the electron coordinates fixed while differentiating.

The accuracy of the non-adiabatic coupling elements can be

estimated by comparing the length and acceleration dipole

transition moments for the So ~ Sl transition (see p.6S).

It was estimated there that the coupling elements are

possibly a factor 3-80 too large. It is obvious that this

does not afflict any of the conclusions about the internal

conversion in formaldehyde.

The exponential radiationless decays observed in formal­

dehyde 4
- 7 have lifetimes varying from 5-10- 9 to 8-10- 8 sec.

Clearly, these processes cannot be explained by internal

conversion as the calculations show. We can explain the

exponential decay by considering the coupling between the

S, levels and the dissociative continuum states of SO'

Formaldehyde can give two reactions:

H2 + CO

H + HCO

( 1)

(2) LIE

-140

32000

-1cm

-1cm

The quantum yield for dissociation of formaldehyde is

0.96-1.0. Process (1) predominates for energies near the

Sl origin at 28188 cm- 1 , process (2) predominates for
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-1energies above 32250 cm 18. The potential energy surface

is schematically drawn in Figure 4.4.
X lO\m-1

30

co + HZ Fig. 4.4.

The barrier height for reaction (1) is unknown. We assume

that the barrier is below the S1 state, as is also corro­

borated by our calculations on mode 1 (see Figure 4.1.).

The time evolution of the system can now be described if

we know the complete set of eigenfunctions and the state

at t = O. We will consider the case of one discrete state

\j!1 interacting with two continua sE' and nE'; the case of
n continua can be obtained by simple extension. H being

the total Hamiltonian, we assume that the interaction ma­

trix has the form:

<'l/, / IIIPt > = E;

.( 5£' 11-1/1:): (/EI

(~E,I#/~/.,.h/cl (4.6)

<'~/ / 1-1/~,/= (-"'1e l 11/ 1E'>=1:' 6 (E '!.E)

«J'e" I /I / ~E' >= 0

The eigenvectors to be determined have the form:

(4.7)
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h is required to completely specify ~, since each value of

E is twofold degenerate.
Fano 26 has solved this problem. For the moment we are only

interested in a. Of the two solutions that are obtained,

one has a = 0, the other one has:

This is a resonance curve (Lorenzian for constant V and W)

with its center at the zero point of E - E1 - G(E), and

half width TI(!VEIZ+IWElf If at t = 0 the system is pre­

pared in the state ~1 ' the state will decay with a mean

life time of:

If besides ~1 also one or more continua have oscillator

strength, the absorption peak becomes asymmetric as des­

cribed by Fano; it would be interesting to see if this be­

haviour can be observed in formaldehyde.

We observe that the coupling of 51 with the continuum ex­

plains the exponential decay of the 51 levels; the eva­

luation of the coupling with the continua will have to

await further research.

For the 41 level in DZCO it is experimentally observed

that the quantum yield for dissociation is 0.0 28 ; the

radiationless lifetimeTNR~ 45 ~sec., about a factor 500

larger than the corresponding HZCO level. If the previous­

ly noted ratio of 10 for the HZCO and DZCO coupling con-
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tinues into the continuum, this explains the two orders of

magnitude longer lifetime of the D2CO levels and the cor­
responding zero dissociation yield.

4.3. Comparing the Adiabatic and Crude Adiabatic Results

The energies of the So and S1 state of formaldehyde

were calculated as a function of the six normal coordi­

nates. Two of the resulting 0-1 vibrational frequencies

are shown in Table 4.8., where they are compared with ex­

periment. It is observed that these results are much too

high; this is in agreement with an earlier calculation of
Atabek 12 on H2 and N2•

Table 4.8.

mode 'A 1A1 2
mode calcul. exper. calcul. exper.

1 18727 2766.4 20367 2847

6 49408 1251.2 49395 904

The CBO set cannot be used to calculate the internal con­

version in formaldehyde, because:

1) The potential energy curves do not resemble the experi­

mental ones: in mode 6 the calculated 0-1 IR transition

has an energy higher than the observed So + S1 UV

transition.

2) The coupling between So and S1 is zero, because of

symmetry reasons.

So comparing the ABO and CBO results we find that the

former are clearly superior for describing the radiation­

less process in formaldehyde.
We can now also check to what extent the inequality (1.35)

is satisfied by the two basis sets.
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From Table 4.4. we see that for the ABO set ~E is minimally

of the order of 100 cm- 1 = 5'10- 4 a.u. From Chapter 4.2. we

know that v ~ 10- 6 a.u., and £ ~ 3 cm- 1 ~ 10- 5 a.u. From

Chapter 4.1. we can calculate that 'r ~ ~ sec.; this

corresponds to a f r ~ 10- 11 a.u. So substituting these

values in the inequality (1.35) we obtain:

5'10- 4 » 3'10- 11 + 3.10- 7 + 2'10- 6

So inequality (1.35) is satisfied for the ABO set.

For the CBO set v = 0 and also lr = 0, because with the

CBO set one calculates probability zero for exciting the

1A2 state. The ~E is roughly a factor 10 larger than for

the ABO set, so ~E 5. 10 - 3 a.u. So we obtain:

5'10- 3 » 0 + 0 + 0

Obviously the inequality is also satisfied for the CBO set.
Inequality (1.35) is derived from condition II. It appears

from the results that for formaldehyde condition I is a

stronger condition than condition II. As the couplings with

the higher states were not calculated, it is not possible
to check condition I.
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APPENDIX 1 (see po19)

The set of equations (1.30) is identical to the set of

equations that appears in a paper of Bixon and Jortner 2 •

They derive that:

(A. 1 )

and (A. 2)

So: ). /c- G:? =
k "'Ie

(A.3)

Also from reference 2:

(A.4)

So: (A.5)

85



APPENDIX 2 (see p.22)

(A.6)

Inserting in the second term the unity operator 1 = ~ )p)(pJ
(the set Ip> being complete) we obtain: r
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APPENDIX 3 (see P.2~

A straightforward but long and tedious derivation ll gives:

I ; ()z I.r -f I, / (Dt:!/2/ri "<' 9, I ()b)t/ Y11 ~ (~-ff)~' < I J"""f/ / %'1 f-

/,- () i: .J / lJtI. /,/-;"£:£)2 j7i;<~ J1i ~1r (A.B)

/ / ,)'t< / .
-f (Hi «~ ~~ic' i,:j

(I, /:et. /c)~~ can be calculated via the methods of
Chapt'er 2 (see (2.16)).

can be calculated with the field-gradient

operator (9 components per atom!).

cannot be calculated with a standard pro­

perties program.
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APPENDIX 4 (see p.2~

Using eq. (1.21): (A.9)

(A. 10)

i)1!.> fJt{
Now ~ = ~ , in which U represents the potential energy

terms. The term with O~~~) does not contri-

bute, because of the orthogonality of ¢1 and ¢1'

So we obtain:

(A.11)
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SUMMARY

In Chapter 1 it is examined which conditions a basis

set must satisfy in order to describe radiationless decay.

These conditions are derived by examining which conditions

must be imposed on the exact equations for the process, in

order that they simplify to a generalized form of the

Bixon-Jortner model for radiationless decay.
In the remaining chapters the ab initio calculation of the

S1+S0 radiative and radiationless transition in formalde­

hyde is described. The calculation of the radiationless

process in formaldehyde was done with two basis sets: the
Adiabatic Born-Oppenheimer basis set and the Crude Born­

Oppenheimer basis set. The coupling in the ABO set was

calculated by expressing the coupling in integrals over
the electric field operator. The six-dimensional potential

energy surface for the nuclear movement was approximated

by six sections along the normal coordinates. The electronic

wave function was calculated with a Gaussian Atomic Orbital

set of double-zeta quality. The SCF MO's were calculated

with a modified Hartree-Fock operator: the Transition

operator; this ensures that the ground and (nn*) excited

state are described with the same accuracy by these MO's.

The Configuration Interaction calculation included 175

configurations. The vibrational eigenfunctions, energies

and integrals were calculated by numerical integration.

Selection of the ground state vibration functions, that

have the correct energy to interact with an excited state

level, was performed by a procedure based on the back­

tracking algorithm. The diagonalization of the interaction

matrix and the time-dependent interference of the result­

ing eigenstates were calculated numerically.

The calculation of the SO+S1 radiative transition with the

ABO set gives good correspondence with the experiment; the

94



results obtained with the CBO set give no correspondence

with the experiment.

The calculation of the radiationless 5,+50 transition of
formaldehyde with the ABO set indicates that this molecule

belongs to the so-called resonance case; this means that

an excited state level couples with so few levels of the

ground state, that an oscillatory behaviour of the oscilla­

tor strength results; the oscillation times are of the
-11order of 10 seconds and are therefore not experimentally

detectable. The experimentally found exponential decay can

thus not be explained by the internal conversion process

as has been assumed; it can in principle be explained by

taking into account the coupling of the excited state

with the dissociative continuum levels.
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SAMENVATTING

In Hoofdstuk 1 worden de voorwaarden onderzocht
waaraan 'n basisset moet voldoen om stralingsloos verval

te kunnen beschrijven. Deze voorwaarden worden afgeleid

door te onderzoeken welke voorwaarden gesteld moeten wor­

den aan de exacte vergelijkingen voor het proces om deze

te laten vereenvoudigen tot een gegeneraliseerde vorm van

het Bixon-Jortner model voor stralingsloos verval.

In de andere hoofdstukken wordt de ab initio berekening

van de S1~SO stralings- en stralingsloze overgang in for­
maldehyde beschreven.

De berekening van het stralingsloze proces in formaldehyde

werd gedaan met twee basissets: de Adiabatische Born

Oppenheimer basisset en de Crude Born Oppenheimer basisset.

De koppeling in de ABO set werd berekend door de koppeling

uit te drukken in integralen over de elektrische veld­

operator. Het zes-dimensionale potentiaaloppervlak voor de

kernbeweging werd benaderd door zes doorsneden volgens de

normaalcoordinaten. De elektronengolffunctie werd berekend

met een Gaussische AO set van dubbel-zeta kwaliteit. De

SCF MO's werden berekend met een gemodificeerde Hartree­
Fock operator: de Transition operator; dit om ervoor te

zorgen dat de grond- en (nn*)-aangeslagen toestand met

dezelfde nauwkeurigheid worden beschreven door deze MO's.

De Configuratie Interactie berekening had betrekking op

175 configuraties. De vibrationele eigenfuncties, -ener­
gieen en -integralen werden berekend door numerieke inte­

gratie. De selectie van de grondtoestand vibratiefuncties,

die de juiste energie hebben om een interactie aan te

gaan met een niveau van de aangeslagen toestand, werd ver­

richt met een procedure gebaseerd op het backtracking

algoritme. De diagonalisatie van de interactie matrix en

de tijdafhankelijke interferentie van de resulterende
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eigentoestanden werden numeriek berekend.

De berekening van de SO+S1 stralingsovergang met de ABO
set geeft goede overeenkomst met het experiment; de resul­

taten verkregen met de CBO set geven geen overeenkomst met

het experiment.

De berekening van de stralingsloze S1+S0 overgang in for­
maldehyde met de ABO set geeft aan dat dit molecule tot

het zogenaamde resonantiegeval behoort; dit betekent dat

een niveau van de aangeslagen toestand met ZQ weinig ni­

veau's van de grondtoestand koppelt, dat een oscillerend

gedrag van de oscillatorsterkte resulteert; de oscillatie­
tijden zijn van de orde van 10- 11 seconde en zijn daarom

experimenteel niet meetbaar. Het experimenteel gevonden

exponentiele verval van de oscillatorsterkte kan daarom

niet verklaard worden met het interne conversieproces zoals
werd aangenomen; het kan in principe weI verklaard worden

door de koppeling van de aangeslagen toestand met de

dissociatieve continuumniveau's in rekening te brengen.
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moeten zitten.
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