

Optimal segmentations

Citation for published version (APA):
Woude, van der, J. C. S. P. (1989). Optimal segmentations. (Computing science notes; Vol. 8915). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e0de6a15-3472-4a91-946a-3fc7bf827092

Optimal segmentations

by

C.G
J.S.C.P. van der Woude

89/15

December, 1989

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

OPTIMAL SEGMENTATIONS

Introduction

In programming methodology the attention gradually shifts from specific problems to
wards classes of problems, their characterization and theorems for their solutions. A
classification of segment problems is in progress and several solution schemes may be
viewed as theorems. A type of problems not too distant from the segment problems
is that of partitionings. Given a sequence (or set) construct a partition, possibly an
extremal partition, whose members all satisfy certain conditions. E.g. partition a list
into segments that satisfy a certain "nice" predicate, give a construction of a partition
with as few members as possible; such a partition may be called an optimal segmenta
tion. I'll derive conditions on the predicate involved that guarantee efficient algorithms
modulo the predicate calculations (i.e. evaluation of predicates is assumed to take con
stant time). Moreover, it is shown that the proposed algorithms are greedy.

Notation and concepts

One of the alleged disadvantages of predicate calculus notation is indexitis. This is often
circumvented by introduction of abbreviations and ad hoc notations. A more compact,
sometimes even too compact, notation is the so-called Bird-Meertens formalism (with
APL rudiments, see [BD. Just as an experiment, I incorporate some of the BM features
in predicate notation.

For a set (type) a, the triple (a*, i!-, []) denotes the monoid of lists over a.
Lists are denoted as sequences between brackets. The catenation (i!-)1 and the unit
((], the empty list) are polymorphic. So lists (a*) as well as lists of lists (a**) are both
considered with the same symbols for catenation and unit, the distinction may be seen
from the choice of identifiers:

aEa

u, v, ... ,z E a*

us, VS, • •• ,Z8 E a**

I'll use reduction (just i!-/, :flatten) and filter (<l) as in BM. The functions inits, tails
and segs are considered in the set-valued versions of those in BM, e.g.:

tails.xs = {vs I (Eus :: xs = uSi!- vs)} .

The segmentation concepts are formalized as follows:

1 As an experiment, -It- will be given the highest priority: J.x -It-1I = f.(x -It-1I).

Let Q : a* --+ Bool be a predicate on a-lists.
Define the relations P, OP ~ a** X a* and

the function N : a* --+ IN by
xsPx _ -tt-/xs = x A Q <l xs = xs

N.x = (1xs : xsPx : #xs)

xsOPx _ xsPx A N.x = #xs

Then xs(O)Px may be paraphrazed as: X8 is an (optimal) Q-segmentation for x.
Note that optimal Q-segmentations need not be unique.

Some properties

2

It is good practice to collect, prior to the derivation, some properties of the concepts
involved. The easy proofs are left as exercises:

(0) []P[], hence N.[] = 0 and []OP[]

(1) xsPx A ysPy =::> xs-tt-Y$Px-tt-y

(2) xsPx A 'Us E segs.xs =::> 'UsP-tt-/'Us

(3) xsOPx A 'Us E segs.xs =::> 'UsOP-tt-/'Us

(4) xsit- [[]]it-Y8 Px =::> xsit-YsPx

(5) Note that by (4), empty segments may be discarded in considering opti
mal segmentations. If necessary one may consider Q' with Q'.X == Q.x A x ¥= [] in
stead of Q.

Life would have been a lot easier (although very dull) if the OP version of (1) were
true, quod non. Since the P-part of OP behaves nicely, an investigation of N is in
order. It seems interesting to see whether some recurrence is lurking around. Indeed

(6) N.xit-[a] = (1z,w : wit-z=x A Q.z-tt-[a1 : N.w+1)

For: N.xit- [a1

= {def N}

U.ys : ysPx-tt- [a] : #ys)

= {-tt-/ys = x-tt-[a] =::> Y$ ¥= []}

Clzs, z : zsit- [z]Pxit- [a1 : #zs + 1)

= {defP}

(lzs,z: (-tt-/zs)it-z=x-tt-[a] A Q<lZs=zs A Q.z #zs+l)

3

= {one point rule}

(lzs,z,w : w-tt-z = x-tt-[a] A w = -tt-/zs A Q <1 zs = zs A Q.z #zs + 1)

= {defP}

(±zs,z,w : w-tt-z = x-tt-[a] A zsPw A Q.z #zs + 1)

= {promotion}

(±z,w : w-tt- z = x-tt-[a] A Q.z (±zs zsPw #zs+l»

= {def N, pinf + 1 = pinf}

(±z,w: w-tt-z=x-tt-[a] A Q.z: N.w+l)

= {split off z = [], without loss of generality ..,Q.[] (5)}

(lz,w : w-tt-z=x A Q.z-tt-[aJ : N.w+l)

Note that, thanks to the rule pinf + 1 = pinf, the validity of the recurrence relation is
independent of the existence of Q-segmentations. Nonexistence is rather unsatisfactory,
so I propose an easy way out: assume

(7) Q.[a] for every a E a

Hence the exotic rule pinf + 1 = pinf is superfluous.

Thinning out the quantification

Since in the recurrence relation a quantification over all postfixes of x occurs, the
resulting algorithm is quadratic modulo Q-calculations. Efficiency improvement is to
be expected if only a small subset of the postfixes of x suffices. Given an optimal
Q-segmentation xs for x an interesting subset of the postfixes of x is given by

{-tt-/vslvSEtails.xs} (=: T).

In order to restrict the quantification in the right-hand side of (6) to z E T, there
should be reasons to discard z tt T. Consider the following Setting (S)

(S)

(i) x = -tt-/xs A x = w-tt-z A z tt T

(ii) xsOPx A Q.z-tt- [a]

By (i), there are us, vs, u, v such that

xs = us-tt- [u-tt- vJ-tt- vs and

w = (-tt-/us)-tt-u A z = v-tt-C-tt-/vs) A u # [] A v # [] .

4

One may forget about this z in the quantification of (6) if there is a Q-segmentation
zs of x-tt- [a] such that

- last.zs = p-tt- [a] for some pET

- #zs ~ N.w+ 1

Given setting (S), two obvious candidates for zs can be constructed from the Q

segmentation xs, such that last.zs = P-tt- [a] for some pET:

(cO) zs = us-tt-[u-tt-v-tt-(-tt-/vs)-tt-[a]]

(el) zs = us-tt-[u-tt-v]-tt-[(-tt-/vs)-tt-[a]]

These candidates are Q-segmentations if:

- ad (cO): Q.u-tt-v-tt-(-tt-/vs)-tt-[a]
Since u-tt-v in xs and xsPx, certainly Q.u-tt-v.
By (ii), Q.z-tt- [a] ,while z = v-tt- (-tt-/vs) and v::l [] «S)).
Hence overlap closed ness of Q is sufficient.

(I.e. Q.k-tt-l A Q.l-tt-m A 1::1 [] => Q.k-tt-1-tt-m.)

- ad (el): Q.(-tt-/vs)-tt- [a]
Since Q.z -tt- [a] ,while z = v -tt- (-tt-/ vs) , it is sufficient to require Q to be
postfix closed.
(I.e. Q.k-tt-l => Q.l. Indeed a weaker requirement could be

Q.k-tt-l A Q.l-tt-m A 1::1 [] => Q.m,
which seems a somewhat awkward property.)

With respect to the last requirement:

#zs ~ N.w+ 1

= {#zs = ius + 1 + j for candidate (cj)}

ius ~ N.w-j

~ {In setting (S): us C xs A -tt-/us ewe -tt-/xs}

(OSj) (Aus',w' : us' C xs A -tt-/us' c w' c -tt-/xs : #us'::; N.w' - j)

where "J;;;;" denotes the prefix order:

p ~ q == P E inits.q, p C q == p ~ q A p::l q .

5

The universal quantification in (OSj) is chosen because

- U8 and w in the setting (S) are arbitrarily chosen such that z ¢ T. It is desirable to
have a condition that is independent of that choice.

- (OSj) is a property of the Q-segmentation xs alone (even optimality is not used).

The established "thinning out" may be formulated as:

(8) Lemma. Let xsOPx. In each of the following two cases:

LO Q is overlap closed and xs satisfies OSO

L1 Q is postfix closed and xs satisfies OS1

the quantification in (6) may be thinned out to

N.xi/-[a] = (lus,vs : usi/-vs = xs A Q.(i/-/vs)i/-[a]

N.xi/- [a]

= {(6), Lj hence restriction to z E T}

(lw,z: zET A wi/-z=x A Q.zi/-[a] : N.w+l)

= {z E T == (Eus,vs : usi/-v8 = xs : z = i/-/vs) ; calc}

(lus, '08: usi/- 'Os = xs :

#us + 1) .

(lw,z : z = i/-/V8 A wi/-z = x A Q.zi/-[a] N.w+ 1»
= {i/-/xs = x and wi/-z = (i/-(us/i/-z == w = i/-/us}

(lus,vs: usi/-vs=xs A Q.(i/-/vs)i/-[a]: N.{i/-/us) + 1)

= {xsOPx A us!;;; xs, (3)}

(:!:.us,vs : usi/-vs;:;xs A Q.(i/-/vs)i/-[a] :#us+l) 0

Lemma (8) only guarantees efficiency improvement if the (OSj) property is an invariant
in the (successive) construction of optimal segmentations. This will be addressed in
the next section.

Construction of an optimal segmentation

In the following blueprint for the calculation of an optimal segmentation for X E tn,
only the invariance of 12 is left to be proved:

10 xi/-x' = X

I1 xsOPx

12 xs satisfies OSj

x ,X',XS := [] ,X , [] {I}

; do x' =i' []

----* a := hd.x'

; S {(ys, zs) is a witness for

(lJus,vs) : us-jf-vs = xs A Q.(-jf-/vs)-jf-[a] : #us+ I)}

jXS:= yS-jf-[(-jf-/zs)-jf-[a]] {I1[x:= x-jf-[a]]A12!}

jX,x':= x-jf-[a),tl.x' {I}

od {I A x = X, hence xsOPX}

In order to prove the invariance of 12, assume

(i) -jf-/(ys-jf-[q]) = (-jf-/xs)-jf-[a] {where q = (-jf-/zs)-jf-[a])

(ii) ys!; xs

(iii) N.-jf-/xs = #xs

then ys-jf- [q] satisfies OSj

= {def OSj}

{(ys, zs) is a witness}

{ll A def.N}

6

(Aus, w : us C ys-jf- [q] A -jf-/us ewe -jf-/(ys-jf- [q]) Ius ::; N.w - j)

= {(i);!;}

(Aus, w : us!; ys A -jf-/us C w !; -jf-/xs : #us::; N.w - j)

¢: {«ii) jsplit off w = -jf-/xs ; -jf-/us C -jf-/xs => us C xs}

(Aus, w : us C xs A -jf-/us ewe -jf-/xs : #us::; N.w - j)

A (Aus : us C xs : #us::; N.-jf-/xs - j)

= {def OSj j (iii) and j E {O, I}}

xs satisfies OSj (A true)

Note that OSI is an invariant for the construction in both cases, Q is overlap closed
and Q is postfix closed.

For the construction of S in case Q is overlap closed I don't see a better solution than
just checking all splittings of xs. However, in case Q is postfix closed, things are a lot
more attractive: since

...,Q.q => ..,Q .p-jf- q

S boils down to a linear search:

ys, ZS, q := xs, [], [al
{ys-tt-zs = xs 1\ Q.q A q = (-tt-/zs)-tt-[a])

; do ys i [] cand Q.(last.ys)-tt-q

---+ ys, zs,q := front.ys, ~ast.ys]-tt- zs , (last.ys)-tt-q

od

7

S can easily be mixed with the assignment to xs. [Identify ys and xs, forget about zs
in the above].
The complete algorithm is linear (modulo Q-calculations) which is evident from the
variant function

For completeness sake: the algorithm, in case Q is postfix closed, is:

x, x', xs := [], X, []

; do x':f: []

---+ a := hd.x' ; q := tal

od

; do xs:f: [] cand Q.(last.xs)-tt-q

---+ xs, q := front.xs , (last.x8)-tt- q

od

; X,X',X8 .- x-tt-[a],tl.x',xs-tt-[q]

Greedy Q-segmentations

Interpretation of the strongest OS condition (OSI) leads to some feeling of greediness.
The definition of (left-) greediness for Q-segmentations (see [B]):

(9) Greedy.[]

Greedy.[x]-tt-x8 == Greedy.xs 1\ x = (lz : z!; x-H- (-tt-/xs) A Q.z : z)

The following lemma shows that the construction in the former section is a construction
for the greedy Q-segmentation:

(10) Lemma. Let X8 be a Q-segmentation with Q.+/xs == #X8 S 1. Then

xs satisfies OS1 => Greedy.xs.

Proof. By induction on #xs. The base-case, #X8 S 1 , is trivial.
Suppose #X8 ~ 1. Then for Q-segmentation [x]+xs:

and

[X]+X8 satisfies OSI

:::} {domain restriction}

(Aus, w : [x] b us C [x]-tl-X8 A -tt-/U8 ewe x+ (+/xs) ius < N.w)

== {dummy change for us, w}

(Aus, w : us C xs A -tt-/us ewe -tt-/xs ius + 1 < N.x-tt-w)

:::} {Q.x, so N.x-tl-w S 1 + N.w; def OS!}

xs satisfies OSI

:::} {Ind. hyp.}

Greedy.xs

[x]-tI- xs satisfies OS1

:::} {instantiate us := [x]; #xs ~ I}

(Aw : xC w c xit-(-tt-/xs) : 1 < N.w)

=> {I < N.w :::} 1 t-: N.w; w t-: [] => (1 == N.w == Q.w)}

(Aw : xC w c x+ (-tt-/xs) : ..,Q.w)

= {#([x1-t1-xs) > I:::} ..,Q.x+(-tI-/xs)j Q.x}

x = (lw : w b x+(+/xs) A Q.w : w)

Afterthought and acknowledgements

8

o

The derivation of the requirements on Q and the corresponding algorithms were what
I was after. However, also the solutions themselves are interesting: The shape of
the "postfix-closed" version is very familiar. It has a striking resemblance with the
algorithms for

- the maximal pre- and postfix of a string [CWO)].

- the largest rectangle under a histogram [(WI)].

- the maximal one-sided extreme segment (and the like).

9

A common root for all these problems would be very interesting. I don't mean simply
the use of a stack that is apparent in these examples, but a general recognition strategy
and a theorem that converts the recognition (almost) immediately into an algorithm.

The problem and the challenge to derive the solution resulted from discussions in the
algorithmics working group at the llijks Universiteit van Utrecht. Hans Zantema gave
a functional solution using a direct proof that greedy is optimal. The solution presen
ted here inspired Maarten Fokkinga to give a full account of promotion possibilities for
an optimal segmentation problem, leading to a kind of "taxonomy" of their solution
schemes ([FD. Oege de Moor presented a Bird-Meertens derivation in Ameland ([MD.

10

References

[B] Bird, R.S., An introduction to the theory of lists, in NATO ASI, Series F, vol 36,
Springer (1987).

[F] Fokkinga, M., Squiggolish derivations for , Lecture Notes (pa.rt III), Hollum-
Ameland (1989).

[M] Moor, O. de, List partitions, Lecture Notes (part II), Hollum-Ameland (1989).

[WO] Woude, J.C.S.P. van der, Playing with pa.tterns searching for strings, SCP if

[WI] Woude, J.C.S.P. van der, Rabbitcount := Rabbitcount-l, in "Groningen 375". 7f ?r'

C' r-;;.. " ~ (',t$ '; :) ~'
v -

l..JJ C. S (,c.S-J <

~ ,-

