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OPTIMAL SEGMENTATIONS 

Introduction 

In programming methodology the attention gradually shifts from specific problems to
wards classes of problems, their characterization and theorems for their solutions. A 
classification of segment problems is in progress and several solution schemes may be 
viewed as theorems. A type of problems not too distant from the segment problems 
is that of partitionings. Given a sequence (or set) construct a partition, possibly an 
extremal partition, whose members all satisfy certain conditions. E.g. partition a list 
into segments that satisfy a certain "nice" predicate, give a construction of a partition 
with as few members as possible; such a partition may be called an optimal segmenta
tion. I'll derive conditions on the predicate involved that guarantee efficient algorithms 
modulo the predicate calculations (i.e. evaluation of predicates is assumed to take con
stant time). Moreover, it is shown that the proposed algorithms are greedy. 

Notation and concepts 

One of the alleged disadvantages of predicate calculus notation is indexitis. This is often 
circumvented by introduction of abbreviations and ad hoc notations. A more compact, 
sometimes even too compact, notation is the so-called Bird-Meertens formalism (with 
APL rudiments, see [BD. Just as an experiment, I incorporate some of the BM features 
in predicate notation. 

For a set (type) a, the triple (a*, i!-, []) denotes the monoid of lists over a. 
Lists are denoted as sequences between brackets. The catenation (i!-)1 and the unit 
((], the empty list) are polymorphic. So lists (a*) as well as lists of lists (a**) are both 
considered with the same symbols for catenation and unit, the distinction may be seen 
from the choice of identifiers: 

aEa 

u, v, ... ,z E a* 

us, VS, • •• ,Z8 E a** 

I'll use reduction (just i!-/, :flatten) and filter ( <l) as in BM. The functions inits, tails 
and segs are considered in the set-valued versions of those in BM, e.g.: 

tails.xs = {vs I (Eus :: xs = uSi!- vs)} . 

The segmentation concepts are formalized as follows: 

1 As an experiment, -It- will be given the highest priority: J.x -It-1I = f.( x -It-1I). 



Let Q : a* --+ Bool be a predicate on a-lists. 
Define the relations P, OP ~ a** X a* and 

the function N : a* --+ IN by 
xsPx _ -tt-/xs = x A Q <l xs = xs 

N.x = (1xs : xsPx : #xs) 

xsOPx _ xsPx A N.x = #xs 

Then xs(O)Px may be paraphrazed as: X8 is an (optimal) Q-segmentation for x. 
Note that optimal Q-segmentations need not be unique. 

Some properties 
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It is good practice to collect, prior to the derivation, some properties of the concepts 
involved. The easy proofs are left as exercises: 

(0) []P[], hence N.[] = 0 and []OP[] 

(1) xsPx A ysPy =::> xs-tt-Y$Px-tt-y 

(2) xsPx A 'Us E segs.xs =::> 'UsP-tt-/'Us 

(3) xsOPx A 'Us E segs.xs =::> 'UsOP-tt-/'Us 

(4) xsit- [[]]it-Y8 Px =::> xsit-YsPx 

(5) Note that by (4), empty segments may be discarded in considering opti
mal segmentations. If necessary one may consider Q' with Q'.X == Q.x A x ¥= [] in
stead of Q. 

Life would have been a lot easier (although very dull) if the OP version of (1) were 
true, quod non. Since the P-part of OP behaves nicely, an investigation of N is in 
order. It seems interesting to see whether some recurrence is lurking around. Indeed 

(6) N.xit-[a] = (1z,w : wit-z=x A Q.z-tt-[a1 : N.w+1) 

For: N.xit- [a1 

= {def N} 

U.ys : ysPx-tt- [a] : #ys) 

= {-tt-/ys = x-tt-[a] =::> Y$ ¥= []} 

Clzs, z : zsit- [z]Pxit- [a1 : #zs + 1) 

= {defP} 

(lzs,z: (-tt-/zs)it-z=x-tt-[a] A Q<lZs=zs A Q.z #zs+l) 
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= {one point rule} 

(lzs,z,w : w-tt-z = x-tt-[a] A w = -tt-/zs A Q <1 zs = zs A Q.z #zs + 1) 

= {defP} 

(±zs,z,w : w-tt-z = x-tt-[a] A zsPw A Q.z #zs + 1) 

= {promotion} 

(±z,w : w-tt- z = x-tt-[a] A Q.z (±zs zsPw #zs+l» 

= {def N, pinf + 1 = pinf} 

(±z,w: w-tt-z=x-tt-[a] A Q.z: N.w+l) 

= {split off z = [], without loss of generality ..,Q.[] (5)} 

(lz,w : w-tt-z=x A Q.z-tt-[aJ : N.w+l) 

Note that, thanks to the rule pinf + 1 = pinf, the validity of the recurrence relation is 
independent of the existence of Q-segmentations. Nonexistence is rather unsatisfactory, 
so I propose an easy way out: assume 

(7) Q.[a] for every a E a 

Hence the exotic rule pinf + 1 = pinf is superfluous. 

Thinning out the quantification 

Since in the recurrence relation a quantification over all postfixes of x occurs, the 
resulting algorithm is quadratic modulo Q-calculations. Efficiency improvement is to 
be expected if only a small subset of the postfixes of x suffices. Given an optimal 
Q-segmentation xs for x an interesting subset of the postfixes of x is given by 

{-tt-/vslvSEtails.xs} (=: T). 

In order to restrict the quantification in the right-hand side of (6) to z E T, there 
should be reasons to discard z tt T. Consider the following Setting (S) 

(S) 

(i) x = -tt-/xs A x = w-tt-z A z tt T 

(ii) xsOPx A Q.z-tt- [a] 

By (i), there are us, vs, u, v such that 

xs = us-tt- [u-tt- vJ-tt- vs and 

w = (-tt-/us)-tt-u A z = v-tt-C-tt-/vs) A u # [] A v # [] . 
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One may forget about this z in the quantification of (6) if there is a Q-segmentation 
zs of x-tt- [a] such that 

- last.zs = p-tt- [a] for some pET 

- #zs ~ N.w+ 1 

Given setting (S), two obvious candidates for zs can be constructed from the Q

segmentation xs, such that last.zs = P-tt- [a] for some pET: 

(cO) zs = us-tt-[u-tt-v-tt-(-tt-/vs)-tt-[a]] 

(el) zs = us-tt-[u-tt-v]-tt-[(-tt-/vs)-tt-[a]] 

These candidates are Q-segmentations if: 

- ad (cO): Q.u-tt-v-tt-(-tt-/vs)-tt-[a] 
Since u-tt-v in xs and xsPx, certainly Q.u-tt-v. 
By (ii), Q.z-tt- [a] ,while z = v-tt- (-tt-/vs) and v::l [] «S)). 
Hence overlap closed ness of Q is sufficient. 

(I.e. Q.k-tt-l A Q.l-tt-m A 1::1 [] => Q.k-tt-1-tt-m.) 

- ad (el): Q.( -tt-/vs)-tt- [a] 
Since Q.z -tt- [a] ,while z = v -tt- ( -tt-/ vs) , it is sufficient to require Q to be 
postfix closed. 
(I.e. Q.k-tt-l => Q.l. Indeed a weaker requirement could be 

Q.k-tt-l A Q.l-tt-m A 1::1 [] => Q.m, 
which seems a somewhat awkward property.) 

With respect to the last requirement: 

#zs ~ N.w+ 1 

= {#zs = ius + 1 + j for candidate (cj)} 

ius ~ N.w-j 

~ {In setting (S): us C xs A -tt-/us ewe -tt-/xs} 

(OSj) (Aus',w' : us' C xs A -tt-/us' c w' c -tt-/xs : #us'::; N.w' - j) 

where "J;;;;" denotes the prefix order: 

p ~ q == P E inits.q, p C q == p ~ q A p::l q . 
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The universal quantification in (OSj) is chosen because 

- U8 and w in the setting (S) are arbitrarily chosen such that z ¢ T. It is desirable to 
have a condition that is independent of that choice. 

- (OSj) is a property of the Q-segmentation xs alone (even optimality is not used). 

The established "thinning out" may be formulated as: 

(8) Lemma. Let xsOPx. In each of the following two cases: 

LO Q is overlap closed and xs satisfies OSO 

L1 Q is postfix closed and xs satisfies OS1 

the quantification in (6) may be thinned out to 

N.xi/-[a] = (lus,vs : usi/-vs = xs A Q.(i/-/vs)i/-[a] 

N.xi/- [a] 

= {(6), Lj hence restriction to z E T} 

(lw,z: zET A wi/-z=x A Q.zi/-[a] : N.w+l) 

= {z E T == (Eus,vs : usi/-v8 = xs : z = i/-/vs) ; calc} 

(lus, '08: usi/- 'Os = xs : 

#us + 1) . 

(lw,z : z = i/-/V8 A wi/-z = x A Q.zi/-[a] N.w+ 1» 
= {i/-/xs = x and wi/-z = (i/-(us/i/-z == w = i/-/us} 

(lus,vs: usi/-vs=xs A Q.(i/-/vs)i/-[a]: N.{i/-/us) + 1) 

= {xsOPx A us!;;; xs, (3)} 

(:!:.us,vs : usi/-vs;:;xs A Q.(i/-/vs)i/-[a] :#us+l) 0 

Lemma (8) only guarantees efficiency improvement if the (OSj) property is an invariant 
in the (successive) construction of optimal segmentations. This will be addressed in 
the next section. 

Construction of an optimal segmentation 

In the following blueprint for the calculation of an optimal segmentation for X E tn, 
only the invariance of 12 is left to be proved: 

10 xi/-x' = X 

I1 xsOPx 

12 xs satisfies OSj 



x ,X',XS := [] ,X , [] {I} 

; do x' =i' [] 

----* a := hd.x' 

; S {(ys, zs) is a witness for 

(lJus,vs) : us-jf-vs = xs A Q.(-jf-/vs)-jf-[a] : #us+ I)} 

jXS:= yS-jf-[(-jf-/zs)-jf-[a]] {I1[x:= x-jf-[a]]A12!} 

jX,x':= x-jf-[a),tl.x' {I} 

od {I A x = X, hence xsOPX} 

In order to prove the invariance of 12, assume 

(i) -jf-/(ys-jf-[q]) = (-jf-/xs)-jf-[a] {where q = (-jf-/zs)-jf-[a]) 

(ii) ys!; xs 

(iii) N.-jf-/xs = #xs 

then ys-jf- [q] satisfies OSj 

= {def OSj} 

{(ys, zs) is a witness} 

{ll A def.N} 
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(Aus, w : us C ys-jf- [q] A -jf-/us ewe -jf-/(ys-jf- [q]) Ius ::; N.w - j) 

= {(i);!;} 

(Aus, w : us!; ys A -jf-/us C w !; -jf-/xs : #us::; N.w - j) 

¢: {«ii) jsplit off w = -jf-/xs ; -jf-/us C -jf-/xs => us C xs} 

(Aus, w : us C xs A -jf-/us ewe -jf-/xs : #us::; N.w - j) 

A (Aus : us C xs : #us::; N.-jf-/xs - j) 

= {def OSj j (iii) and j E {O, I}} 

xs satisfies OSj (A true) 

Note that OSI is an invariant for the construction in both cases, Q is overlap closed 
and Q is postfix closed. 

For the construction of S in case Q is overlap closed I don't see a better solution than 
just checking all splittings of xs. However, in case Q is postfix closed, things are a lot 
more attractive: since 

...,Q.q => ..,Q .p-jf- q 



S boils down to a linear search: 

ys, ZS, q := xs, [], [al 
{ys-tt-zs = xs 1\ Q.q A q = (-tt-/zs)-tt-[a]) 

; do ys i [] cand Q.(last.ys)-tt-q 

---+ ys, zs,q := front.ys, ~ast.ys]-tt- zs , (last.ys)-tt-q 

od 
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S can easily be mixed with the assignment to xs. [Identify ys and xs, forget about zs 
in the above]. 
The complete algorithm is linear (modulo Q-calculations) which is evident from the 
variant function 

For completeness sake: the algorithm, in case Q is postfix closed, is: 

x, x', xs := [], X, [] 

; do x':f: [] 

---+ a := hd.x' ; q := tal 

od 

; do xs:f: [] cand Q.(last.xs)-tt-q 

---+ xs, q := front.xs , (last.x8)-tt- q 

od 

; X,X',X8 .- x-tt-[a],tl.x',xs-tt-[q] 

Greedy Q-segmentations 

Interpretation of the strongest OS condition (OSI) leads to some feeling of greediness. 
The definition of (left-) greediness for Q-segmentations (see [B]): 

(9) Greedy.[] 

Greedy.[x]-tt-x8 == Greedy.xs 1\ x = (lz : z!; x-H- (-tt-/xs) A Q.z : z) 

The following lemma shows that the construction in the former section is a construction 
for the greedy Q-segmentation: 



(10) Lemma. Let X8 be a Q-segmentation with Q.+/xs == #X8 S 1. Then 

xs satisfies OS1 => Greedy.xs. 

Proof. By induction on #xs. The base-case, #X8 S 1 , is trivial. 
Suppose #X8 ~ 1. Then for Q-segmentation [x]+xs: 

and 

[X]+X8 satisfies OSI 

:::} {domain restriction} 

(Aus, w : [x] b us C [x]-tl-X8 A -tt-/U8 ewe x+ (+/xs) ius < N.w) 

== {dummy change for us, w} 

(Aus, w : us C xs A -tt-/us ewe -tt-/xs ius + 1 < N.x-tt-w) 

:::} {Q.x, so N.x-tl-w S 1 + N.w; def OS!} 

xs satisfies OSI 

:::} {Ind. hyp.} 

Greedy.xs 

[x]-tI- xs satisfies OS1 

:::} {instantiate us := [x]; #xs ~ I} 

(Aw : xC w c xit-(-tt-/xs) : 1 < N.w) 

=> {I < N.w :::} 1 t-: N.w; w t-: [] => (1 == N.w == Q.w)} 

(Aw : xC w c x+ (-tt-/xs) : ..,Q.w) 

= {#([x1-t1-xs) > I:::} ..,Q.x+(-tI-/xs)j Q.x} 

x = (lw : w b x+(+/xs) A Q.w : w) 

Afterthought and acknowledgements 
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o 

The derivation of the requirements on Q and the corresponding algorithms were what 
I was after. However, also the solutions themselves are interesting: The shape of 
the "postfix-closed" version is very familiar. It has a striking resemblance with the 
algorithms for 

- the maximal pre- and postfix of a string [CWO)]. 

- the largest rectangle under a histogram [(WI)]. 

- the maximal one-sided extreme segment (and the like). 
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A common root for all these problems would be very interesting. I don't mean simply 
the use of a stack that is apparent in these examples, but a general recognition strategy 
and a theorem that converts the recognition (almost) immediately into an algorithm. 

The problem and the challenge to derive the solution resulted from discussions in the 
algorithmics working group at the llijks Universiteit van Utrecht. Hans Zantema gave 
a functional solution using a direct proof that greedy is optimal. The solution presen
ted here inspired Maarten Fokkinga to give a full account of promotion possibilities for 
an optimal segmentation problem, leading to a kind of "taxonomy" of their solution 
schemes ([FD. Oege de Moor presented a Bird-Meertens derivation in Ameland ([MD. 
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