

Exploring dynamic inter-organizational business process
collaboration
Citation for published version (APA):
Norta, A. H. (2007). Exploring dynamic inter-organizational business process collaboration. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR626844

DOI:
10.6100/IR626844

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR626844
https://doi.org/10.6100/IR626844
https://research.tue.nl/en/publications/3ef693ba-d5d5-44e0-8f2c-3b90400c7353

Exploring Dynamic Inter-Organizational
Business Process Collaboration

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de Rector Magnificus,

prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het
College voor Promoties in het openbaar te verdedigen op

donderdag 22 maart 2007 om 16.00 uur

door

Alexander Horst Norta

geboren te Pretoria, Zuid-Afrika

2

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. P.W.P.J. Grefen
en
prof.dr.ir. W.M.P. van der Aalst

Copromotor:
dr.ir. H. Eshuis

List of Abbreviations

ATC A b s t r a c t T r a n s a c t i o n C o n s t r u c t
BNM B u s i n e s s Network Model
BPEL B u s i n e s s P r o c e s s E x e c u t i o n Language
BPML B u s i n e s s P r o c e s s Model ing Language
BTF B u s i n e s s T r a n s a c t i o n Framework
BTML B u s i n e s s T r a n s a c t i o n Model Language
CE C o n c e p t u a l E x t e r n a l
CI C o n c e p t u a l I n t e r n a l
DIBPM Dynamic I n t e r −O r g a n i z a t i o n a l B u s i n e s s P r o c e s s Management
eBT e B u s i n e s s T r a n s a c t i o n
ECML E l e c t r o n i c C o n t r a c t i n g Markup Language
eSML e S o u r c i n g Markup Language
eSRA e S o u r c i n g R e f e r e n c e A r c h i t e c t u r e
HTTP H y p e r t e x t T r a n s f e r P r o t o c o l
IKW I n t e r − and I n t r a −o r g a n i z a t i o n a l Knowledge Worker
OEM O r i g i n a l Equipment M a n u f a c t u r e r
OWL−S Onto logy Web Language f o r S e r v i c e s
PNK P e t r i Net K e r n e l
PNML P e t r i Net Markup Language
SOBI S e r v i c e−O r i e n t e d B u s i n e s s I n t e g r a t i o n
SOA S e r v i c e−o r i e n t e d a r c h i t e c t u r e
SOAP Simple O b j e c t Access P r o t o c o l
SOC S e r v i c e−o r i e n t e d comput ing
UDDI U n i v e r s a l D e s c r i p t i o n D i s c o v e r y and I n t e g r a t i o n
UML U n i f i e d Mode l l i ng Language
WFMS Worklfow Management System
WISE Workflow Based I n t e r n e t S e r v i c e s
WS−C Web S e r v i c e C o o r d i n a t i o n
WS−CDL Web S e r v i c e s Choreography D e s c r i p t i o n Language
WSCI Web S e r v i c e Choreography I n t e r f a c e
WSCL Web S e r v i c e Compos i t ion Language
WSDL Web S e r v i c e D e f i n i t i o n Language
WSFL Web S e r v i c e s Flow Language
WS−T Web S e r v i c e T r a n s a c t i o n
XML E x t e n s i b l e Markup Language
XPDL XML P r o c e s s i n g D e s c r i p t i o n Language
XRL eXchangeab le Rou t ing Language
XSLT E x t e n s i b l e S t y l e s h e e t Language T r a n s f o r m a t i o n s
XTC e X e c u t i o n o f T r a n s a c t i o n a l C o n t r a c t e d e l e c t r o n i c s e r v i c e s

i

ii

Contents

1 Introduction 1
1.1 Electronic Business . 2
1.2 Overall Research Question . 2
1.3 Evolution of Business-Process Support 3
1.4 Research Design . 6
1.5 Structure of the Thesis . 10
1.6 Contributions and Demarcations . 11
1.7 Research History and Publications 13

2 Petri-net Theory 17
2.1 Introduction . 17
2.2 Petri nets . 18
2.3 Workflow nets . 21
2.4 Inter-Organizational Workflow nets 23
2.5 A Notion of Business-Process Inheritance 26
2.6 A Verification Tool . 28
2.7 Conclusion . 29

3 The Perspective of eSourcing 31
3.1 Introduction . 32
3.2 Tackling Complexity . 33
3.3 eSourcing and Control-Flow . 34
3.4 Suitability Features of eSourcing . 40
3.5 Related Research . 45
3.6 Conclusion . 45

4 The Nature of Patterns in the Context of DIBPM 47
4.1 Introduction . 48
4.2 The Pattern Meta-Model . 49
4.3 Patterns in other perspectives . 54
4.4 Interaction Patterns of the eSourcing Setup Phase 55
4.5 eSourcing-Construction Patterns . 64
4.6 Conclusion . 82

5 Verifying eSourcing Configurations 83
5.1 Introduction . 84
5.2 Conceptual Level of the Service Consumer 84
5.3 Conceptual Level of the Service Provider 88

iii

iv CONTENTS

5.4 External-Level Properties . 88
5.5 eSourcing Configurations . 93
5.6 Checking eSourcing Configurations 94
5.7 A Verifier Component . 98
5.8 Related Work . 100
5.9 Conclusion . 101

6 Proof-of-Concepts 103
6.1 Introduction . 104
6.2 A Reference Architecture for eSourcing 105
6.3 eSML - electronic Sourcing Markup Language 113
6.4 A Pattern Knowledge Base Reference Architecture 121
6.5 XRL and XRL/flower . 125
6.6 Conclusion . 131

7 Cases and Evaluations 133
7.1 Introduction . 134
7.2 Characteristics of Automobile Supply Chains 134
7.3 Evaluation Requirements . 135
7.4 Case 1: eSourcing, Patterns, and eSRA Evaluation 136
7.5 Case 2: eSML Evaluation . 143
7.6 Conclusion . 149

8 An Outlook for eSourcing 151
8.1 Introduction . 151
8.2 The Context of eSourcing . 152
8.3 Dynamic Mechanisms for Extending eSourcing 154
8.4 Outlining an eBusiness-Transaction Concept 158
8.5 Conclusion . 159

9 Conclusion 161
9.1 Summary of Research Findings . 161
9.2 Final Remarks . 165

A Further Refining eSML Models 169
A.1 Process Definition Model . 169
A.2 Data Package Integration . 171
A.3 Variable Definition . 171
A.4 Defining Rules . 174
A.5 The Resource Section . 176
A.6 The XRL-Based Route Model . 181
A.7 Lifecycle Details . 184
A.8 The Monitorability Model . 184
A.9 The Transition-Type Model . 187
A.10 The Data Model . 188

B eSML Schema 191

C eSML Instantiation 233

List of Figures

1.1 How to compose business processes inter-organizationally? 3
1.2 Components and interfaces of the WfMC reference model [115]. . . . 4
1.3 The technology stack of the service-oriented architecture [49]. 5
1.4 Design-science research framework for the domain of information sys-

tems [54]. 6

2.1 An example of a Petri net. 20
2.2 An example of a WF-net (a) and its extended shortcircuited net (b). . . 22
2.3 An IOWF-net. 24
2.4 The flattened IOWF-net. 25
2.5 Silent actions in a WF-net. 26
2.6 A projection-inheritance example. 27
2.7 Violations of soundness. 28
2.8 A violation of projection inheritance for the superclass of Figure 2.5. . 29
2.9 A screenshot of Woflan. 29

3.1 A three-level business process framework. 34
3.2 A conceptual-level process of a service consumer. 35
3.3 An external level of an eSourcing configuration. 36
3.4 A conceptual-level process of a service provider. 37
3.5 Collapsing an eSourcing configuration. 39
3.6 Relating perspectives for DIBPM. 40
3.7 Dimensions and values of interaction patterns. 42
3.8 Dimensions and values of the eSourcing perspective. 43

4.1 Meta-model packages with their dependencies and the Pattern class. 49
4.2 Detailed class model of the Taxonomy package. 50
4.3 Detailed class model of the Pattern package. 52
4.4 Detailed class model of the Support package. 53
4.5 An interaction-sequence example for static service assignment. 56
4.6 An interaction-sequence example for dynamic service assignment. . . 58
4.7 An interaction-sequence example for semi-dynamic service assignment. 59
4.8 An interaction-sequence example for in-sourcing. 61
4.9 An interaction-sequence example for external-to-internal sourcing. . . 63
4.10 An interaction-sequence example for internal-to-external sourcing. . . 64
4.11 Black-box pattern example. 66
4.12 White-box and a grey-box pattern example. 67
4.13 Linking options for pursuing run-time visibility. 69

v

vi LIST OF FIGURES

4.14 Mapping of life-cycle stages. 70
4.15 Example of token propagation and token messaging. 71
4.16 Life-cycle messaging as a black box and white box. 73
4.17 Example of token takeover and token polling. 74
4.18 Life-cycle polling as a black box and white box. 76
4.19 Active conjoinment node notation. 77
4.20 Provider-initiated one-directional conjoinment. 78
4.21 Consumer-initiated one-directional conjoinment. 79
4.22 Provider-initiated bi-directional conjoinment. 80
4.23 Consumer-initiated bi-directional conjoinment. 81

5.1 The conceptual domain of the service consumer. 85
5.2 The result of mapping from a partitioned in-house process to a IOWF-net. 87
5.3 The provider contractual sphere and two provider spheres. The bottom

one is illegal. 89
5.4 A black-box projection to the external level. 90
5.5 An example of both collaborating parties using grey-box projection. . 92
5.6 A high-level overview of an eSourcing configuration. 93
5.7 The IOWF-net underlying the partitioned in-house process of Figure 5.1,

with CS replaced by PS of Figure 5.3. 95
5.8 The IOWF-net underlying the flattened IOWF-net of Figure 5.7. . . . 96
5.9 A collapsed net. 96
5.10 The essence of the compositionality of projection inheritance [12]. . . 98
5.11 The verifier component in detail. 99

6.1 Overall Sourcing enactment architecture. 106
6.2 External-level collaboration. 107
6.3 Translating between external and internal level. 108
6.4 Setup functionality. 109
6.5 Connecting to internal legacy systems. 110
6.6 The CE translator in detail. 111
6.7 The global WFMS in detail. 112
6.8 The CI translator in detail. 113
6.9 The local WFMS in detail. 114
6.10 The service broker in detail. 115
6.11 The auction service in detail. 115
6.12 Perspective notation. 116
6.13 Detailed Who model. 117
6.14 Detailed Where model. 118
6.15 Detailed What model. 119
6.16 The lifecycle of a pattern. 121
6.17 Detailed class model of the UserManagement package. 122
6.18 The application architecture of the pattern knowledge base. 124
6.19 XRL/flower architecture [21]. 127
6.20 XRL case life-cycle. 128
6.21 Database model of XRL/flower. 129
6.22 Enactment application of the Petri-net enactment module. 130
6.23 Worklistitem manager created by the web server. 130
6.24 Display of an activity. 131

LIST OF FIGURES vii

7.1 Supply-chain hierarchy in the automobile industry. 134
7.2 OEM in-house process. 137
7.3 Provider domains with their respective provider spheres. 137
7.4 External-level contractual spheres. 139
7.5 Related eSourcing spheres in detail. 140
7.6 Corrected in-house process. 141
7.7 Related eSourcing spheres in detail. 142
7.8 An overview of an eSML instantiation. 143

8.1 The context of eSourcing. 153

A.1 Model of process_section. 170
A.2 Data package integration in a contract. 172
A.3 Model of var_section. 173
A.4 Model of rule_section. 175
A.5 First part of the resource_section Model. 178
A.6 Second part of the resource_section Model. 179
A.7 Third part of the resource_section Model. 180
A.8 Thirst part of the route. 182
A.9 Second part of route. 183
A.10 Model of lifecycle_details. 185
A.11 Model of monitorabilty. 186
A.12 Model of transition_type. 187
A.13 Model of data. 189

viii LIST OF FIGURES

List of Tables

7.1 Requirements for eSourcing, related patterns, eSRA, and eSML. . . . 135

ix

x LIST OF TABLES

Acknowledgements

This PhD thesis was made possible with the help of my dear colleagues from the De-
partment of Information Systems at the Faculty of Technology Management of the
TU-Eindhoven. In particular, I am deeply indebted for the support I received from the
CrossWork project team at the Information Systems department, namely, Paul Grefen,
Rik Eshuis, Sven Till, and Jochem Vonk. Paul and his valuable feedback were the rea-
son why this PhD thesis could be brought to a good and successful end. Rik patiently
helped me during the last stages of the PhD thesis with giving important advice on the
correctness of the formal chapters. Sven and Jochem were excellent partners for jointly
working on case studies and they also backed me in technical matters. It was always a
joy and uplifting to collaborate with them in a team.

I want to specially thank the members of the ICTA group and also the members of
the BPM group under the chairmanship of Wil van der Aalst, who were an unlimited
source of inspiration. Many thanks to Wil for providing very profound feedback on the
Petri-net sections. Many ideas expressed in this thesis evolved in the plenty meetings
and presentations that took place at our department. Special thanks to my office col-
league, Anne Rozinat, who patiently and politely listened to my monologues during
the final stages of the thesis. Also many thanks to Lea Kutvonen for the collaboration
invitation and for allowing me to concentrate on finishing the thesis after joining her
group. Additionally, I must thank Sini Ruohomaa, Janne Metso, and Toni Ruokolainen
for proofreading selected chapters of this thesis, and thanks to Bram Moonen for trans-
lating the abstract into Dutch and Jaana Moonen for hosting me and my family during
the defense period.

Most importantly, I have to thank my wonderful wife, Kaisa Lotta, who supported
me all along the way and who took on the sacrifice of relocating from her home in
Finland to Eindhoven for the duration of my PhD project, during which we became the
proud parents of Elias Onni Alexander and Saga Lotta Amelie.

Last but not least, I thank my parents and my grandfather who helped and cared
for me in the years preceding my move to Eindhoven. They allowed me to establish
the foundation for progressing to a PhD degree. I would like to express my deepest
gratitude to them for their love and support.

xi

Abstract

In the area of business-to-business (B2B) collaboration, original equipment manufacturers (OEM)
are confronted with the problem of spending considerable time and effort on coordinating sup-
pliers across multiple tiers of their supply chain. In tightly integrated supply chains the failure
of providing services and goods on time leads to interruptions of the overall production and
consequently results in customer dissatisfaction.

Collaborating parties must be able to set up an inter-organizational business process by dis-
closing to each other only as much as necessary. At the same time, checking the correctness of an
inter-organizational business process must not force the collaborating parties into revealing their
process internals to each other. However, in B2B collaborations, the ability of keeping internal
business activities secret is important for retaining a competitive advantage.

The described problem is investigated in this thesis by exploring the following question:
How to put into effect dynamically composed inter-organizational business processes such that
the correctness of the overall process is guaranteed without imposing fixed standardized routing
or compromising the autonomy of one of the organizations involved?

During the setup phase of a B2B collaboration, a service consumer is interested in keeping
business-process parts opaque if they are carried out in-house. On the other hand, a collaborating
party must be enabled to provide a service with the flexibility of integrating back-office activities
and structural constructs for the exchange of business-critical information without violating the
externally promised service behavior. Moreover, the ability of selective monitoring is necessary
so that a service consumer can selectively observe process-enactment progress and a service
provider is protected from having to expose more enactment progress than desired.

This thesis proposes the concept of eSourcing for improving the coordination of service
provision across several tiers of a supply chain. eSourcing allows the external harmonization
of business processes and the internal integration of heterogenous system environments without
requiring collaborating parties to disclose internal business details to the counterpart.

As a means of exploring eSourcing in a conceptual and technology-independent way, this
thesis performs a pattern-based analysis of eSourcing features that address the issues of visi-
bility restriction, critical business-information exchange, and selective monitoring of enactment
progress. The discovered and specified eSourcing patterns are focusing, on the one hand, on the
interactions between collaborating parties during the setup phase of eSourcing and, on the other
hand, on the construction elements used in an eSourcing configuration. To equip the eSourcing
concept with rigor, formalisms are adapted for eSourcing that allow the verification of promised
service-provision adherence without requiring the disclosure of internal business-process exten-
sions. Additionally, a method is formalized that enables a tool-based verification of the correct
termination for an eSourcing configuration.

To demonstrate the feasibility of the eSourcing concept, the discovered patterns are trans-
lated into a language that is instrumental for specifying B2B service collaboration. Moreover,
a reference architecture is proposed for the development of applications that support the setup
and enactment of eSourcing configurations. Within the framework of the EU research project
CrossWork, case studies with industry partners from the automobile industry apply the eSourcing
concept.

Samenvatting

Op het gebied van business-to-business (B2B) samenwerking zijn original equipment manufac-
turers (OEM) genoodzaakt veel tijd en energie te besteden aan het coördineren van de activiteiten
van leveranciers verspreid over verschillende onderdelen van de leveranciersketen. In een sterk
geïntegreerde leveranciersketen leidt het niet tijdig leveren van goederen en diensten tot produc-
tieonderbrekingen, resulterend in een lagere klanttevredenheid.

Samenwerkende partijen moeten in staat worden gesteld om inter-organisatorische bedrijf-
sprocessen op te zetten waarbij zij elkaar niet meer openheid geven dan noodzakelijk. Tegeli-
jkertijd dient het controleren van de juistheid van inter-organisatorische bedrijfsprocessen de
samenwerkende partijen niet te dwingen tot het geven van onderlinge openheid over de eigen
interne processen. Nochtans ,in B2B samenwerking is het van belang dat samenwerkende parti-
jen de mogelijkheid hebben om hun interne bedrijfsvoering geheim te houden en zodoende hun
concurrentievoordeel te behouden.

Het beschreven probleem wordt in dit proefschrift onderzocht door middel van de volgende
vraagstelling: op welke wijze realiseren we dynamisch samengestelde inter-organisatorische
bedrijfsprocessen zodanig dat we de juistheid van het totale proces kunnen garanderen, maar
zonder een vaste gestandaardiseerde routing op te leggen en zonder de autonomie van de be-
trokken organisaties te compromitteren?

Gedurende de opzetfase van een B2B samenwerking zal een dienstenconsument onderdelen
van bedrijfsprocessen geheim willen houden zolang deze in-house worden uitgevoerd. Anderz-
ijds moet een samenwerkende partij in staat worden gesteld om diensten te verlenen met de
flexibiliteit van het integreren van back-office activiteiten en het structureren van constructies
voor de uitwisseling van bedrijfskritische informatie zonder de extern beloofde dienstbaarheid
geweld aan te doen. Bovendien is er een noodzaak voor de mogelijkheid tot selectieve observatie,
zodat de dienstenconsument de mogelijkheid heeft om selectief de voortgang van het proces-in-
uitvoering te observeren, en de dienstverlener niet meer informatie over de uitvoering hoeft prijs
te geven dan gewenst.

Dit proefschrift stelt het concept eSourcing voor als aanpak ter verbetering van de coördi-
natie van dienstverlening over de verschillende onderdelen van de leveranciersketen. eSourcing
biedt de mogelijkheid tot externe harmonisatie van bedrijfsprocessen en de interne integratie
van heterogene systeemomgevingen zonder dat de samenwerkende partijen daardoor gedwon-
gen worden om interne bedrijfsgegevens aan de andere deelnemende partijen te openbaren.

Om eSourcing op een conceptuele, technologieonafhankelijke wijze te onderzoeken voert dit
proefschrift een patroongebaseerde analyse uit op eSourcing kenmerken die betrekking hebben
op beperking van de zichtbaarheid, uitwisseling van kritische bedrijfsinformatie en selectieve ob-
servatie van het uitvoeringsproces. De geïdentificeerde en gespecificeerde eSourcing patronen
richten zich aan de ene kant op interactie tussen samenwerkende partijen gedurende de opzetfase
van eSourcing, en aan de andere kant op de gebruikte constructie-elementen in een eSourcing-
configuratie. Om het eSourcing-concept te voorzien van hardheid zijn formalismes aangepast
voor eSourcing waardoor de mogelijkheid ontstaat om de nakoming van beloofde dienstver-
lening te verifiëren zonder dat het noodzakelijk is om interne bedrijfsprocessen te onthullen.
Bovendien is een methode geformaliseerd die de mogelijkheid biedt tot een werktuiggebaseerde
verificatie voor de correcte beëindiging van een eSourcing configuratie.

Om de bruikbaarheid van het eSourcing concept te demonstreren zijn de ontdekte patronen
vertaald in een taal die instrumenteel is voor het specificeren van B2B dienstensamenwerking.
Daarnaast is een referentiearchitectuur voorgesteld voor de ontwikkeling van applicaties die de
opzet en uitvoering van eSourcing configuraties ondersteunen. Binnen het raamwerk van het
EU onderzoeksproject CrossWork, wordt in case studies met industriële partners uit de automo-
bielindustrie het eSourcing concept toegepast.

Chapter 1

Introduction

Contents

1.1 Electronic Business . 2
1.2 Overall Research Question . 2
1.3 Evolution of Business-Process Support 3

1.3.1 Developments in Workflow-Management Systems 4

1.3.2 Developments in Service-Oriented Business Integration . . 5

1.4 Research Design . 6
1.4.1 Research Approach . 7

1.4.2 Specific Research Questions 8

1.4.3 Research Steps . 9

1.5 Structure of the Thesis . 10
1.6 Contributions and Demarcations 11

1.6.1 Contributions of the Thesis 11

1.6.2 Demarcations . 13

1.7 Research History and Publications 13

The introduction of this thesis commences with trends in business and technologies that
result in the adoption of electronic support for inter-organizational business process
collaboration, followed by a presentation and explanation of the overall research goal.
Next, the evolution of business-process support shows which categories of business
processes exist and how technology supports them intra- and inter-organizationally.
After that, the research methodology of the thesis is explained, namely design-science
research, accompanied by a list of research guidelines that are obeyed. Different parts
of the overall research goal are underpinned with detailed research questions. The
listed research steps that adhere to the research-methodology guidelines, address the
research questions. Next, the structure of the thesis shows in which chapters what
research steps are carried out. The expected contributions of the thesis resulting from
the research work, are formulated as deliverables. A demarcation for the thesis scope
points out what is not part of the research work. The chapter is concluded by a list of
publications that are related to the thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Electronic Business
With market liberalizations and globalization, companies experience an acceleration
and decentralization of their business activities. At the same time the lifecycles of
tangible and intangible products or services are shrinking and less time is available to
make newly introduced products and services financially profitable as competition is
fierce and market opportunities are short-lived. Products and services are composed
of several nested parts that need to be obtained from collaborating enterprizes across
multiple supply-chain tiers that are geographically distributed.

The changes in market conditions are complemented by a virtualization of business
collaboration that is driven by new technologies like the internet, agent technology,
workflows, web-services, XML-based standards for service discovery, service orches-
tration, and so on. This combination of pull factors resulting from new requirements
caused by market changes and the push factors of newly available technologies are
rapidly accelerating the trend towards a global networking of economies. For being
able to participate in such a networked economy, the availability of suitable electronic
collaboration concepts and supporting web-based middleware is crucial.

Adopting a process-oriented perspective is instrumental for tackling the degree of
complexity in a networked economy [49]. This thesis focusses on vertical process col-
laboration where a client/server relationship exists between one company that sources
a service and a chosen provider of core competencies. For example, in the automobile
industry a dynamically out-sourced business subprocesses for the delivery of car parts
is serviced by a cluster of small- and medium sized companies that are addressed by
an original manufacturer like one organizations [44]. Another example is an insurance
company [57] sources the provision of a damage claim assessment.

In this thesis, for addressing a process-oriented collaboration in a networked econ-
omy, the concept of eSourcing is proposed. It builds on the idea of having a part of
the overall business process of a service consumer performed by a service provider. To
handle the inherent business, conceptual, and technological complexity, a framework is
adopted for eSourcing that comprises several levels to achieve a separation of concern.
To achieve an inter-organizational business-process harmonization, eSourcing focusses
on matching parts of the control flow of a service provider and a service consumer. De-
tails about eSourcing are contained in following chapters.

1.2 Overall Research Question
The research problem is summed up in the following question: How to put into effect
dynamically composed inter-organizational business processes such that the correct-
ness of the overall process is guaranteed without imposing fixed standardized routing
or compromising the autonomy of one of the organizations involved?

In Figure 1.1 the problem tackled in this thesis is considered where non matching
workflows are depicted. Two organizations that want to collaborate inter-organizationally
need to agree on the coordination of their respective processes, which involves an
agreement of common syntax and a common semantics of the business process they
want to link. Mismatching process collaboration may be caused by false expectations
and misunderstandings, e.g., a deadlock because a seller only wants to ship goods after
receiving a payment and the buyer only pays after receiving the goods. Traditionally
such inter-organizational conflicts are solved by people who use context information
and experience. In a highly dynamic and networked environment this is costly. Thus,

1.3. EVOLUTION OF BUSINESS-PROCESS SUPPORT 3

Organization 1

Organization 2 connect

?
Figure 1.1: How to compose business processes inter-organizationally?

this problem of achieving matching inter-organizational business process collaboration
must be addressed to successfully become electronic.

1.3 Evolution of Business-Process Support

A business process is a description of tasks with clearly defined inputs and outputs that
are associated with a business activity across time and place. Business processes have a
beginning and a clear end, and contained subprocess. All of them have their own goals,
owners, inputs and outputs. Tasks are logical units of work and considered atomic
processes that can not be further decomposed and are either carried out completely or
not at all, e.g., produce an invoice, answer the phone.

There are different types of business processes [16]. Management processes have
objectives and capital as input and must deliver business performance, e.g, profit fig-
ures. Examples of management processes are corporate governance or strategic man-
agements. Supporting processes receive from the management processes the means to
purchase resources, and they free up resources that are no longer required. Examples
include accounting, recruitment, IT support, and so on. Finally, operational processes
receive from the support processes resources like raw materials, personnel, components
for their disposal and deliver products and services as output. From the managerial
processes the operational processes receive assignments and purchasing budgets. The
supporting and operational processes both report back to the managerial processes and
submit their income figures.

The ability of inter-organizationally linking business processes is receiving in-
creased attention in an ever more networked economy [49] as mere data exchange
between companies via electronic data interchange (EDI) does not meet the demands
of electronic trading relationships among businesses. EDI mainly enables bi-lateral
linkages that are relationship specific and neither supports dynamic collaboration nor
is it process oriented. However, there is a need to support business-process collabo-
ration across several tiers of a supply chain that involves multiple organizations. The
primary problem of inter-organizationally linking business processes is not the transla-
tion of data formats and routing. Instead, the difficulty is the bridging of the business
processes embedded in an application of one collaborating party with the processes of
an application located in the domain of another collaborating party [89]. The linked
business processes are not defined as data but rather as tasks in workflows as the fol-
lowing section shows.

4 CHAPTER 1. INTRODUCTION

1.3.1 Developments in Workflow-Management Systems
Traditionally the business-process logics of a company has been hard -coded into exe-
cution applications, which is undesirable as it restricts the flexibility of an organization
to adjust its information-system infrastructure to business-process changes. Instead, by
introducing a workflow system [16, 69] that deals with the management of the business
processes, several objectives are achieved. It allows the setup of information systems in
a way that the structure of business processes is clearly reflected. If business processes
change, the information system infrastructure is easily adjustable. Clearly factored out
business processes may be analyzed for performance key factors such as bottle necks,
throughput time, and so on. A balanced workload distribution among the resources of
an organization is facilitated [16].

Companies use workflow-management systems for explicitly supporting their busi-
ness processes. A workflow comprises a number of logical steps that are comparable
to tasks in business processes. These logical steps are embedded in a control flow that
consists of sequences, splits, and joins. A workflow-management system is a software
package that is not specifically customized for supporting only one specific type of
workflow. Instead, many workflows can be instantiated and enacted by one system.

Process Definition
Tools

Administration and
Monitoring Tools

Client
Applications

Invoked
Applications

Other Workflow Enactment Services
Workflow Enactment Services

Workflow
Engines

Workflow
Engines

Interface 1

Interface 2 Interface 3

Interface 4Interface 5

Interoperability

Process Definition Import/Export

WAPIs

Figure 1.2: Components and interfaces of the WfMC reference model [115].

Figure 1.2 depicts a reference architecture that has been proposed by the Workflow
Management Coalition (WfMC) [115]. Workflow-management systems share compa-
rable components that are developed to different degrees. To achieve interoperability, a
set of interfaces and data-interchange formats is necessary between the depicted com-
ponents.

In the center of Figure 1.2 the enactment services are depicted with runtime en-
vironments that instantiate and activate workflows that are related to business pro-
cesses. The enactment services interact with applications in their environment via five
workflow-application programming interfaces (WAPI).

The process-definition interface allows to connects software tools with which work-
flows are modelled together with their related data. The resulting models are inter-

1.3. EVOLUTION OF BUSINESS-PROCESS SUPPORT 5

pretable by the enactment services. The client applications permit actors to interact
with the enactment engine for, e.g., worklist-handling, process-instance initiation, and
so on. The third interface is used for the enactment services component for invoking
applications, e.g., web services, or systems for enterprize-resource planning systems,
customer-relationship management.

The fourth interface in Figure 1.2 enables two or more workflow engines to com-
municate and interoperate so that processes can be enacted across several workflow en-
gines. The degree of interoperability varies from simple passing of tasks to supporting
a complete sharing of process definitions. Finally, the fifth interface enables workflow
services to share administration and monitoring tools across heterogenous workflow
products, e.g., for workflow management, auditing, resource control, process status
control, and so on.

1.3.2 Developments in Service-Oriented Business Integration

The question arises how an inter-organizational integration of business processes is
achievable. Emerging technologies from the domain of service-oriented computing that
are part of a basic infrastructure level and a process level [52] promise to be enablers
for such an objective. By using web services, it becomes possible to connect distributed
business processes that belong to different companies. A web service is a closed, self-
explaining, and modular software component that is published, found, and used on the
internet. A web service provides arbitrarily complex functionality and is composed
with a different application (possibly another web service) into a new system. The
message exchanges between web services are usually based on an XML format [79].

HTTPXML

SOAP

WS-C

BPEL

WSDL

WS-T

W
S

-A
g
re

e
m

e
n

t

W
S

-S
e

c
u
ri

ty

U
D

D
I

Figure 1.3: The technology stack of the service-oriented architecture [49].

Service-oriented computing (SOC) uses web services for developing loosely coupled
applications where inter-system dependency is minimized. SOC relies on the technol-
ogy stack of a service-oriented architecture (SOA) that is depicted in Figure 1.3. The
core layers with XML, SOAP, and HTTP are well accepted of which the latter con-
stitutes the basic communication protocol. The eXtensible Markup Language XML
[86] is used for data exchange on nearly all layers of the SOA and the Simple Object
Access Protocol SOAP [32] is instrumental as a messaging protocol that implements a
request/response communication between connected web services.

6 CHAPTER 1. INTRODUCTION

On the higher level of the SOA in Figure 1.3, the interfaces of web services con-
sisting of their operations and corresponding data flows are described with the Web
Service Description Language WSDL [37]. To describe the execution logics of web-
service based applications, an XML-based process description language is necessary.
The Business Process Execution Language BPEL [40] is emerging as the dominant
standard for orchestrating web services. Again on top of that, there are protocols for
collaboration (WS-C) [35] and transaction management (WS-T) [34].

To the left Figure 1.3 additional services are depicted such as the Universal De-
scription Discovery and Integration standard (UDDI) [29] to facilitate searching for
web service in public directories by company name, specific service, or types of ser-
vice. Further, there are standards for other aspects of collaboration, e.g., service level
(agreement) management, and security.

The next section describes the research design that is used for this thesis, the re-
search goals, and the concrete research steps that are performed for achieving the de-
fined goals.

1.4 Research Design
In this thesis, design-science research in the domain of information systems is fol-
lowed as a research methodology. The design-science paradigm seeks to extend the
boundaries of human and organizational capabilities by creating new and innovative
artifacts [54] that are broadly defined as constructs (vocabulary and symbols), models
(abstractions and representations), methods (algorithms and practices), and instantia-
tions(implemented and prototype systems).

People
-Role
-Capabilities
-Characteristics

Organizations
-Strategies
-Structure & Cultures
-Processes

Technology
-Infrastructure
-Applications
-Communications
Architecture
-Development
Capabilities

Foundations
-Theories
-Frameworks
-Instruments
-Constructs
-Models
-Methods
-Instantiations

Methodologies
-Data Analysis
Techniques
-Formalisms
-Measures
-Validation Criteria

Develop/Build
-Theories
-Artifacts

Justify/Evaluate
-Analytical
-Case Study
-Experimental
-Field Study
-Simulation

Business
Needs

Application
Knowledge

Environment IS Research Knowledge BaseRelevance Rigor

Assess Refine

Application in the
Appropriate Environment

Addition to the
Knowledge Base

Figure 1.4: Design-science research framework for the domain of information systems
[54].

In Figure 1.4, the essence of information-systems research framework is depicted. To
the left, the environment pillar defines the problem space in which phenomena of inter-
est reside consisting of people, organizations, and technology. Design-science research
achieves relevance by building artifacts that address the business needs evolving from
the environment.

1.4. RESEARCH DESIGN 7

To the right of Figure 1.4, the knowledge base delivers foundations and method-
ologies from and through which IS research is accomplished. Rigor is achieved by
applying foundations in the develop/build phase and methodologies during the justi-
fy/evaluate phase. The results of design-science research are assessed to the business
need in an appropriate environment and contribute to the content of the knowledge
base for further research and practice. The next section shows how this thesis follows
guidelines for conducting design-science research.

1.4.1 Research Approach

For conducting design-science research that adheres to the framework in Figure 1.4,
guidelines exist [54] that are followed as a research approach in this thesis.

• Problem Relevance: The importance of inter-organizational electronic business
for the future competitiveness of companies is explained in this introduction
chapter. For developing the concept of eSourcing, the business needs of inter-
organizational electronic business are relevant input.

• Design as an Artifact: This thesis proposes the concept of eSourcing that allows
inter-organizational collaboration without directly linking the respective infor-
mation infrastructure of collaborating business parties. Furthermore, eSourcing
allows to safeguard business privacy and ensures flexibility for internally orga-
nizing tasks without violating the externally agreed-upon business collaboration
agreements.

The concept of eSourcing is translated into an XML-based language that allows
the formulation of configurations. Additionally, a system architecture is pro-
posed that supports the collaborative formulation of an eSourcing configuration
and its enactment.

• Research Rigor: To understand eSourcing in further detail, a pattern-based ex-
ploration method is used that results in pattern catalogues. The advantage of
using patterns is they are conceptually formulated and technology independent.
A pattern meta-model establish a uniform vocabulary for specifying the pattern
catalogue.

For eSourcing exploration, workflow modelling is an integral part. Petri nets [90,
91] have been widely used to provide underlying semantics for workflow models.
These formal semantics serve as an analysis technique for eSourcing that enables
the development of automated verification tools.

• Design as a Search: The developed eSourcing concept is part of a broader lifecy-
cle of inter-organizational electronic business collaboration. It is explored what
comprises this broader notion of collaboration and how the eSourcing concept
model is embedded in it.

• Design Evaluation: In case studies, an evaluation of the eSourcing concept is
performed by using the correspondingly developed XML-based language for
formulating the business collaborations as required and showing which com-
ponents of an eSourcing reference architecture are important for different parts
of the setup and enactment phase.

8 CHAPTER 1. INTRODUCTION

The research approach can be expressed in a concrete form through a number of spe-
cific research questions and research steps (RS) that result in answers for the research
questions. The list of steps is as follows:

1.4.2 Specific Research Questions
The research questions below are aligned to the overall research question stated in
Section 1.2. For every research question it is pointed out what part of the overall
research question is addressed.

Q1. What existing theory provides a formal grounding for addressing the correctness
of business processes that are inter-organizationally linked.
a.) What fundamental correctness criteria for business processes exist?
b.) Which formal theory provides correctness criteria for inter-organizationally
linked business processes?
These questions lay the foundation for the issue of correctness of inter-organizational
business processes that is stated in the overall research question.

Q2. What is a suitable framework for conducting dynamic inter-organizational elec-
tronic business?
a.) What are the critical issues that need to be addressed for such a framework?
b.) Which features does this framework have?
The overall research question states that inter-organizational business processes
should be composed dynamically. Thus, such dynamic composition requires a
suitable framework.

Q3. How can patterns be discovered and subsequently related to each other within
the framework of eSourcing?
a.) How can a pattern concept be employed for developing a meta model that is
guiding for a technology independent exploration of eSourcing?
b.) Which dimensions are specifically inherent to eSourcing and what patterns
can be discovered in those perspectives?
These research questions address the demand in the overall research question
that inter-organizational business process need to be put into effect. Thus, these
questions address the issue of bridging the gap from the framework of eSourcing
to its operationalization through finding a way for conducting a pattern-based
exploration of eSourcing.

Q4. How can collaborating parties reach a consensus about the content of a service in
an eSourcing configuration without imposing fixed standardized routing or com-
promising the autonomy of one of the organizations involved?
a.) What are the structural features of an eSourcing configuration?
b.) How can a service provider perform opaque service refinement without vio-
lating the service consensus?
These questions address the request of the overall research question that the inter-
organizational business process must be correct and that no fixed standardized
routing should be imposed or the autonomy of the organizations involved be
compromised.

Q5. How should an eSourcing-formulation language and a web-based middleware be
specified?

1.4. RESEARCH DESIGN 9

a.) How should an eSourcing-formulation language be specified that permits the
verification of correct process termination?
b.) How should a web-based middleware be designed for enacting processes for-
mulated in such a language?
c.) How should a pattern-knowledge base be designed for supporting intra-
and inter-organizational knowledge workers during the setup phase of eSour-
cing configurations?
An eSourcing-formulation language and a web-based middleware are allow putting
into effect an inter-organizational business process, as is requested in the overall
research question.

Q6. How can the eSourcing concept of this thesis be evaluated?
While this research question does not address a specific part of the overall re-
search question, it addresses a relevant part of the chosen design-science re-
search method that is required to establish validity for the research conducted in
this thesis.

Q7. How must the eSourcing concept be extended to fully support inter-organizational
electronic business collaboration?
a.) With which mechanisms must eSourcing be extended for fully supporting
inter-organizational electronic business collaboration?
b.) How can a transaction concept for eSourcing safeguard inter-organizational
electronic business collaboration?
These questions address the request of the oeverall research question that inter-
organizational business processes need to be composed dynamically.

1.4.3 Research Steps
The research steps of this thesis are presented that answer the research questions posed
above. It is pointed out how the research steps relate to each other, which research
questions they answer, and what design-science research guideline from Section 1.4.1
they address.

1. Performing an exploration of existent Petri-net theory that is relevant for this
thesis (RS1).
This step answers research question Q1 by establishing a foundation of rigor
for following chapters in the thesis by introducing properties of Petri-nets and
a particular subclass of this formalism that is used for the workflow domain.
The presented Petri-net theory is particularly important for formally defining the
eSourcing concept (see RS3). This research step addresses the guideline research
rigor.

2. Elaboration on a general model that supports the business needs of inter-organi-
zational electronic business collaboration (RS2).
The model is conceptually introduced using Petry-net formalism. An exploration
method is applied that determines factors related to business needs from the en-
vironment in which the eSourcing concept needs to function. This step answers
research questions related to Q2. The exploration method results in a factors
taxonomy that is guiding for identifying pattern specifications (see RS3). Addi-
tionally, a conceptual model is the foundation for further formal definitions (see
RS4). This research step addresses the guideline research rigor.

10 CHAPTER 1. INTRODUCTION

3. Identification and description of patterns for the setup and enactment phase of
eSourcing (RS3).
A catalogue of patterns is deducted from the factors taxonomy that results in
a deeper conceptual and technology independent understanding of eSourcing.
The pattern meta-model used for achieving a uniform specification of the pat-
tern catalogue is input for a component of a reference model (see RS5). This
step answers research questions related to Q3. This research step addresses the
guideline research rigor.

4. Formally defining the properties of eSourcing using Petri-net formalism (RS4)
and establishing when collaborating parties achieve a consensus about service
consumption and service provision.
This step answers research questions related to Q4. This research step addresses
the guideline research rigor.

5. Identifying of the language constructs required for formulating an eSourcing
configuration and of the requirements for a supporting conceptual reference ar-
chitecture (RS5).
This step answers research questions related to Q5. This research step addresses
the guideline design as an artifact.

6. Evaluating the eSourcing concept, the patterns approach, the XML-based formu-
lation language, and the corresponding reference architecture (RS6). It contains
the following sub-steps:
A. applying the eSourcing concept for analysing business cases;
B. applying the pattern catalogue for the design and analysis of a business case;
C. specifying business cases using the XML-based formulation language;
D. evaluating the application of architectural design principles in the design of
the reference architecture.
This last research step answerts research question Q6 and is relevant for satisfy-
ing the design-science guideline called design evaluation.

7. Identification of a broader notion of electronic business collaboration that in-
cludes the ingredients for safeguarding such collaboration (RS7).
This step answers research questions related to Q7. This research step addresses
the guideline design as a search.

Next, the structure of the thesis is presented that closely follows the list of research
steps.

1.5 Structure of the Thesis
In Chapter 2 Petri-nets related theory is introduced (related to RS1). In particular a
subclass of Petri-nets is covered that is used extensively in this thesis, namely workflow
nets (WF-nets) that carry the property of Soundness. This property is relevant for
verifying the correct termination of eSourcing configurations. The Petri-nets formalism
is proposed for checking the adherence to agreed upon service provision.

In Chapter 3 the concept of eSourcing is presented (related to RS2) that is based
on a three-level model to bridge the gap between the domains of collaborating parties.
For the eSourcing concept the control-flow perspective is informally investigated and

1.6. CONTRIBUTIONS AND DEMARCATIONS 11

the environmental business needs are explored that eSourcing must satisfy (commence-
ment of RS3).

In Chapter 4 a pattern-based analysis is performed based on a pattern meta-model
that is used for uniformly defining and relating patterns to each other. The pattern-
based analysis focuses on the setup-phase of eSourcing and on construction patterns
that are the building blocks of eSourcing (related to RS3).

In Chapter 5 the eSourcing concept that evolves in previous chapters is first for-
mally defined. Secondly, it is explored which conditions need to be satisfied for a
service consumer and a service provider for reaching a consensus about the structure
of a service. A method is formally grounded for determining the correct termination of
an eSourcing configuration and the correctness of service provision without requiring
the disclosure of internal business secrets (related to RS4). Finally, a component is
presented that supports the verification method (beginning of RS5).

Chapter 6 contains as a proof-of-concept an XML-based eSourcing formulation
language that incorporates earlier specified construction patterns. Furthermore, a con-
ceptual reference architecture is proposed that consists of interacting components dis-
tributed across the three-level framework. Finally, two components of the reference
architecture are further explored, namely a pattern knowledge base that supports par-
ties involved in a business collaboration, and an application that evaluates the business
processes contained in an eSourcing configuration (related to RS5).

Chapter 7 presents case studies where the eSourcing concept of this thesis is ap-
plied through the pattern catalogue specified in this thesis. These patterns are used
during the setup phase and consequently an analysis phase of the presented business
collaborations. The first case study shows eSourcing in a multilateral situation with
one service provider and several service providers and points out how the pattern cat-
alogues are used for the design and analysis phase, and how the components of the
reference architecture support the setup and enactment phase of an eSourcing config-
uration. The second case study is a bilateral collaboration that focusses on applying
the range of modelling constructs comprising the XML-based eSourcing formulation
language (related to RS6).

In Chapter 8 the eSourcing concept of this thesis is embedded in a notion of dy-
namic electronic business collaboration. As part of this business-collaboration notion,
the ingredients of a suitable e-business transaction concept are outlined (related to
RS7). In Chapter 9, a conclusion for the thesis is presented.

1.6 Contributions and Demarcations
In this section, a summary of the main contributions of the thesis is presented in the
form of deliverables. Different research domains are dealing in related ways with re-
search on inter-organizational e-business collaboration. Thus, the research work of this
thesis is demarcated from other related research domains.

1.6.1 Contributions of the Thesis
As a first deliverable, a collaboration framework needs to be developed that allows dif-
ferent organizations to provide and consume services. This framework must take into
account the business needs for dynamically composed inter-organizational business
process collaboration. Collaborating parties should not be forced into directly connect-
ing their respective information infrastructure and must be able to keep their competi-

12 CHAPTER 1. INTRODUCTION

tive advantages hidden from each other. Thus, only those business details should need
to be disclosed that are necessary for establishing and carrying out a collaboration.

As a second deliverable, for offering a deep understanding on business-to-business
collaboration and e-business processes, pattern catalogues for the setup and enactment
phases of eSourcing configurations must be generated. These pattern catalogues need
to be discovered and specified based on the environmental business needs of inter-
organizational business collaboration. To achieve a uniform specification of the pattern
catalogues, a pattern meta-model must be provided that shows pattern entities with
relationships and attributes. By offering catalogues of conceptually formulated and
technology independent patterns for the establishment of eSourcing configurations, it
must become unnecessary to consistently "reinvent the wheel". Instead, based on the
identification of specific situational problems, the pattern specifications should refer to
constructs of knowledge that can be used for providing quick solutions.

As a third deliverable, the concept of eSourcing must be well grounded on Petri-
net formalism, for which a considerable body of theory exists for the domain of busi-
ness processes. By employing specific Petri-net theory, the semantics of the control-
flow perspective for eSourcing configurations has to be unambiguously defined. That
way collaborating parties have to be equipped with a common understanding about
the control-flow constructs in eSourcing that they intend to employ. Additionally, by
adopting existing Petri-nets theory for eSourcing, it has to become possible to inter-
organizationally link business processes while ensuring that collaborating parties re-
tain a business-relevant degree of internal adjustment flexibility that remains opaque to
the opposing collaborating party. That way organizations must be enabled to keep their
business secrets without having fixed, standardized routing imposed on themselves. By
adopting clear control-flow semantics for eSourcing, it must be possible to check a con-
figuration at the end of the setup phase for problems that make a successful enactment
impossible. That way the need for expensive exception handling and compensation
steps must be reduced.

As a fourth deliverable, the work presented in the thesis must facilitate the develop-
ment of an inter-organizational e-business collaboration application by providing the
basic functionalities and interdependencies of an eSourcing application infrastructure.
A reference architecture for eSourcing applications has to comprise of components that
are instrumental for the setup and enactment of eSourcing configurations. The archi-
tecture must be based on design principles that pay attention to a separation of business,
conceptional, and technological concerns. As a result, collaborating parties must only
have to expose as many business internals to each other as is necessary for establishing
a collaboration consensus. It has to be stressed that technological details must equally
remain opaque as it should not be required in an eSourcing configuration to directly
link the respective legacy systems of collaborating parties.

As a sixth deliverable, for negotiating collaboration consensus with an equal set of
mutually understood concepts, the thesis has to offer an XML-based formulation lan-
guage that comprises constructs based on the specified eSourcing pattern catalogues.
The formulation language must be the result of the setup phase of an eSourcing con-
figuration that is enactable with software applications.

As a seventh deliverable, two components of the eSourcing reference architecture
must be implemented as proof-of concept prototypes. The first prototype needs to be
an enactment evaluation application for business processes that maps the control-flow
constructs of the XML-based eSourcing formulation language to Petri-net constructs.
With this mapping it becomes unnecessary to change the enactment engine of the eval-
uation application when new control-flow constructs are added to the the eSourcing

1.7. RESEARCH HISTORY AND PUBLICATIONS 13

formulation language. Instead, the evaluation prototype must be adjustable by only ex-
tending the library of mapping rules. The second proof-of-concept prototype must be a
pattern knowledge base that is built on top of the pattern meta-model. This knowledge
base has to be instrumental for storing pattern catalogues that can grow dynamically.
In this case dynamically means that users of the knowledge base must be able to pro-
pose new patterns that need to be accepted in a review process before they enter the
knowledge base. With the help of this knowledge base a tool support must be provided
for an accelerated setup of eSourcing configurations.

1.6.2 Demarcations
This thesis focusses on the correctness of the control-flow perspective in eSourcing.
However, there are other perspectives that are also important in this context, e.g., data-
flow perspective [95], resource perspective [96], transactional perspective [111]. Still,
these perspectives are catered for and incorporated into the XML-based eSourcing for-
mulation language.

For the establishment of an eSourcing configuration the employment of ontologies
[36] is relevant for ensuring that opposing parties share an equal understanding about
the properties of their business collaboration. Ontologies are important during the setup
phase of an inter-organizational business collaboration for mutually meaningfully de-
composing the goals of collaboration and performing an appropriate team formation.
Furthermore, ontologies play an important role in supporting the comprehension of
exchanged data between the domains of collaborating parties. Ontological issues are
not the focus of this thesis as the the adoption of Petri-net formalism establishes clear
control-flow semantics for eSourcing. However, it is possible to adopt ontologies for
other eSourcing-related perspectives.

Business collaborations may stretch over long periods of time during which changes
may be required. When changes are necessary, they should take place dynamically, i.e.,
the changes should take effect without having to stop an ongoing business collabora-
tion [81]. This thesis does not investigate how such change updates can be supported
without violating the correctness of an ongoing business collaboration.

It is desirable to perform an automated formation of workflows that are conse-
quently inter-organizationally linked. For such automated formation [44] special algo-
rithms are required that use the data-flows between collaborating business parties as
a starting point for assembling control-flow patterns into workflows. However, such
automated workflow formation is not explored in this thesis.

Finally, to pursue total automation in eSourcing, the adoption of agent technology
is feasible. Such agents [118] establish a collaboration and negotiate business process
details. During the enactment phase the inter-organizational business process coordi-
nates agents that belong to the domains of the opposing parties. Thus, by employing
agents it is possible to eliminate human involvement in eSourcing. In this thesis the
pursuit of such total eSourcing automation is out of focus. In the conclusion of Chap-
ter 9, it is discussed how the aspects listed above can be integrated in the eSourcing
approach.

1.7 Research History and Publications
The contributions of this thesis that are presented in Section 1.6.1 are part of the Chap-
ters 2-7. Many of these contributions are based on publications (conference proceed-

14 CHAPTER 1. INTRODUCTION

ings, technical reports, deliverables of the EU research project called CrossWork [2]).
The work presented in Chapter 4 is to appear in a journal publication. To demonstrate
the research history of this thesis, the list follows a chronology from the oldest to the
latest publication. After every publication an explanation follows that points out the
contribution of the thesis author. Note that the thesis author was known as Hirnschall
before his marriage.

• W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative Way
to Analyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C. Woo,
and M.T. Ozsu, editors, Proceedings of the 14th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’02), Volume 2348 of Lecture
Notes in Computer Science, pages 535-552. Springer-Verlag, Berlin, 2002.

This publication shows that the set of reduction rules presented in [97] is not
complete. The thesis author participated in proposing an alternative complete al-
gorithm that translates workflow graphs into so-called WF-nets (see Section 2.3),
for which the verification tool Woflan [108] can be used. Although these con-
tributions are not used in this thesis, much the introduced Petri-net theory is
contained in Chapter 2 where the preliminaries of this thesis are presented.

• H.M.W. Verbeek, A. Hirnschall, and W.M.P. van der Aalst. XRL/Flower: Sup-
porting Interorganizational Workflows using XRL/Petri-net Technology. In C.
Bussler, R. Hull, S. McIlraith, M. Orlowska, B. Pernici, and J. Yang, editors,
Workshop on Web Services, E-Business, and the Semantic Web (CAISE’02),
pages 93 ff. Springer-Verlag, Berlin, 2002.

The thesis author contributed in presenting the architecture of XRL/Flower (see
Section 6.5.4). XRL/Flower benefits from being both XML and Petri nets based.
Standard XML tools can be deployed to parse, check, and handle XRL (eX-
changeable Routing Language) documents. XRL constructs are automatically
translated into Petri-net constructs. As a result, the system is easy to extend as
only the translation to the Petri-net engine needs to be added for supporting a
new routing primitive and the engine itself does not need to change. The Petri
net representation can be analyzed with tool support.

• A. Norta. Web supported enactment of petri-net based workflows with XR-
L/flower. In J. Cortadella and W. Reisig, editors, Proceedings of the 25th In-
ternational Conference on the Application and Theory of Petri Nets 2004, num-
ber 3099 in Lecture Notes in Computer Science, pages 494.503, Bologna, Italy,
2004. Springer Verlag, Berlin.

While the previous workshop paper presents the architecture of XRL/flower, this
publication describes the implementation of the web-based application that car-
ries out Petri-net based workflows described with XRL. The thesis author de-
cided that XRL/flower uses XML technology and is implemented in Java on
top of the Petri-net Kernel PNK. Standard XML tools can be deployed to parse,
check, and handle XRL documents. The XRL enactment application is comple-
mented with a web server, allowing actors to interact with the system through
the internet. A database allows the enactment engine and the Web server to ex-
change information with each other. Since XRL is instance based, a modelled
workflow serves as a template that needs to be copied and may be possibly re-
fined for enactment. In this thesis XRL/flower is used as a process validation
tool.

1.7. RESEARCH HISTORY AND PUBLICATIONS 15

• A. Norta. Sourcing framework, in: CrossWork: Workflow Model Elements,
Work Package 2: Workflow Modelling, Task 2.1: Agent-Based Workflow Con-
figuration, 2005. pages 14-20;

For the EU research project CrossWork [2] the thesis author participated in the
writing of deliverable documents. Much of the content of these deliverable doc-
uments is also adopted and contained in this monograph. For the CrossWork
project the thesis author developed eSourcing [85] as an inter-organizational
business-process collaboration concept. eSourcing is matching on an external
level conceptually formulated service consuming and providing processes be-
longing to the domains of autonomous organizations for the formation of an
inter-organizationally linked business process. For eSourcing, dynamic inter-
organizational business process management (DIBPM) [50] is combined with
technologies for service-oriented business integration.

• A. Norta. eSML (eSourcing Markup Language), in: R. Eshuis and I. Stalker,
CrossWork: Requirements and concepts for agent-based workflow configura-
tion, Work Package 2: Workflow Modelling, Task 2.2: Agent-Based Workflow
Configuration, 2005. pp 149;

The features of eSourcing are contained in the inter-organizational business pro-
cess collaboration language eSML that uses ECML (Electronic Contracting Markup
Language) [23] as a foundation and integrates XRL for specifying business pro-
cess. eSML is applied in CrossWork to specify case studies for the automo-
bile industry. Furthermore, eSML is employed for enabling the communica-
tion between components that are part of the CrossWork proof-of-concept pro-
totype [53].

• A. Norta and P. Grefen. A Framework for Specifying Sourcing Collaborations.
In Jan Ljungberg and Bo Dahlbom, editors, 14th European Conference on In-
formation Systems: Grand Challenges, pages CD.ROM, Gothenburg, Sweden,
2006. IT-University Gothenburg.

The thesis author consolidated the earlier published eSourcing concept for this
conference contribution. The questions are answered how eSourcing manages
the business, conceptual, and technological complexity of inter-organizational
business process harmonization; which pre-existing formal theory is available
for giving eSourcing rigor, and how the features of eSourcing can be analyzed
for ensuring that the concept has relevance for industry applications.

• A. Norta and P. Grefen. Discovering Patterns for Inter-Organizational Business
Collaboration in a Top-Down Way. BETA Working Paper Series, WP 163, Eind-
hoven University of Technology, Eindhoven, 2006.

In this paper, the discovered features of the eSourcing concept are analyzed in
a pattern-based way. The thesis author pursues an analysis and specification of
eSourcing construction patterns in a top-down way. These construction patterns
are the building blocks for eSourcing collaboration configurations and are con-
tained in eSML as schema elements.

• A. Norta and P. Grefen. Developing a Reference Architecture for Inter-Organiza-
tional Business Collaboration Setup Systems. BETA Working Paper Series, WP
170, Eindhoven University of Technology, Eindhoven, 2006.

16 CHAPTER 1. INTRODUCTION

The thesis author contributed with an investigation of the characteristics of in-
teraction between a service consumer and provider during setup time for es-
tablishing an enactable B2B collaboration. These characteristics are employed
to discover interaction patterns in a dop-down way that are exemplified for the
concept of eSourcing. As such, the discovered patterns form the basis for the
design of a reference architecture that serves as a foundation for the design of
e-collaboration setup systems.

• A. Norta and P. Grefen. A Pattern Repository for Establishing Inter-Organizational
Business Processes. BETA Working Paper Series, WP 175, Eindhoven Univer-
sity of Technology, Eindhoven, 2006.

In this conference publication the thesis author elaborated on a reference archi-
tecture for a pattern repository to support the effective and efficient design of
inter-organizational business processes. By storing patterns in a uniform spec-
ification template of a meta model together with the technology support of in-
dividual patterns, inter- and intra-organizational knowledge workers (IKW) can
quickly analyse with which intersection of pattern sets it is possible to construct
intra-organizational business processes.

• A. Norta, M. Hendrix, and P. Grefen. A Pattern-Knowledge Base Supported
Establishment of Inter-Organizational Business Processes. In R. Meersman, Z.
Tari, and P. Herrero, editors, Proceedings of On the Move to Meaningful Internet
Systems 2006: OTM 2006 Workshops, Volume 4277 of Lecture Notes in Com-
puter Science, pages 834-843. Springer-Verlag, Berlin, 2006.

This workshop paper is a condensed version of the previous technical report
about the pattern repository.

• A. Norta and P. Grefen. Discovering Patterns for Inter-Organizational Business
Collaboration in a Top-Down Way. To appear in the International Journal of
Cooperative Information Systems (IJCIS).

Chapter 2

Petri-net Theory

Contents

2.1 Introduction . 17
2.2 Petri nets . 18
2.3 Workflow nets . 21

2.3.1 The Soundness of WF-nets 22
2.4 Inter-Organizational Workflow nets 23

2.4.1 The Soundness of IOWF-nets 25
2.5 A Notion of Business-Process Inheritance 26
2.6 A Verification Tool . 28
2.7 Conclusion . 29

For the domain of inter-organizational business process management, collaborating
parties need to have semantic clarity about the processes that have to be inter-organi-
zationally harmonized. Additionally, semantic clarity allows the application of verifi-
cation tools so that errors in an inter-organizational business process can be detected
before enactment. The Petri-net formalism offers a clear semantics and theoretical re-
search results for inter-organizational business process management. This preliminary
chapter introduces existing Petri-net theory that is used in later chapters.

2.1 Introduction
For the domain of eSourcing, the control-flow perspective is the dominant perspective
that has been best explored. The control-flow perspective addresses the way how tasks
of a process are related to each other and orders tasks in sequences and different types
of splits and joins [17]. A process may contain control-flow problems, e.g., deadlocks
or livelocks, that prevent correct termination. For eSourcing, such control-flow prob-
lems are more acute as processes that terminate correctly by themselves may fail to do
so when linked together [12]. Based on a correct control-flow in an inter-organizational
business process, the other important perspectives like data-flow, organization, and re-
source usage can be constructed.

To ensure that the control-flow perspective is modelled [16] and analyzed correctly,
a graph-based formalism like Petri nets [90, 91] is suitable. Here a subclass of Petri nets

17

18 CHAPTER 2. PETRI-NET THEORY

is used for the domain of business-process management, namely so called workflow
nets (WF-net) [9] that have been further explored [10, 42]. For WF-nets, the notion of
soundness [8] exists, a property that ensures the correct termination of local workflows
and which can be verified with tool support. For inter-organizational business process
collaboration, WF-nets are extended into inter-organizational workflow nets (IOWF-
nets) [12] for which the soundness notion is also applicable after using a flattening
method for turning an IOWF-net into a WF-net.

Besides ensuring correct termination, for inter-organizationally linked business pro-
cesses it is also desirable to check how and if linked processes relate to each other. If it
is assumed that linked processes belong to domains that relate in a client-server way to
each other, then one serving process must must still display the agreed upon service-
provision behavior despite inserted, opaque refinements. To use extensions, a special
notion of inheritance is used to establish the inter-organizational business process rela-
tionship. In this chapter projection inheritance [14, 27] is employed for that purpose.
Informally, projection inheritance allows the incorporation of a refining task in a su-
perprocess without violating the displayed runtime behavior.

Note that this chapter comprises pre-existing research results from the Petri-net do-
main that are instrumental for following chapters. Each formal definition comes from
[12] unless stated otherwise. The structure of this chapter is as follows. First Petri-nets
are introduced in Section 2.2 followed by a presentation of WF-nets in Section 2.3,
which are a subclass of Petri-nets. Additionally, the soundness property of WF-nets
is explained that is relevant for verifying the correct termination of eSourcing con-
figurations. Section 2.4 introduces IOWF-nets together with a flattening method that
consequently allows the verification of soundness. Section 2.5 gives an introduction
to the notion of projection inheritance that is relevant for checking the adherence to
agreed upon service provision. Section 2.6 gives a brief introduction to a verification
tool for checking the soundness of WF-nets and projection inheritance. Finally, Section
2.7 concludes this chapter.

2.2 Petri nets
The classical Petri net [90, 91] is a directed bipartite graph with two node types called
places and transitions. The nodes are connected via directed arcs. Connections be-
tween two nodes of the same type are not allowed. Places are represented by circles
and transitions by rectangles.

In this chapter a variant of the classic Petri-net is defined, namely a labelled Place/
Transition net. Let U be a universe of identifiers; let AL be some set of action labels
with τ ∈ AL the silent action, whose role will be explained later. Let ALv = AL\{τ}
be the set of visible labels.

Definition 1 (Labelled P/T-net). [12] A labelled Place/Transition net, or simply P/T-
net, is a tuple (P, T, L, F, `) where

1. P ⊆ U is a finite set of places;

2. T ⊆ U is a finite set of transitions such that P ∩ T = ∅;

3. L ⊆ ALv is a finite set of labels such that L ∩ (P ∪ T) = ∅;

4. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation;

2.2. PETRI NETS 19

5. `:T → L ∪ {τ} is a labelling function.

A place p is called an input place of a transition t iff there exists a directed arc from p
to t. Place p is called an output place of transition t iff there exists a directed arc from
t to p. Likewise, a transition t is called an input transition of a place p iff there exists a
directed arc from t to p. Place t is called an output transition of place p iff there exists
a directed arc from p to t. All input nodes of a particular node constitute the preset and
all output nodes of a particular node are called postset.

For the pre- and postsets an additional notation is relevant. Two auxiliary functions
•−,−•: (P ∪ T) → P(P ∪ T) are defined that assign to each node its preset and
postset, respectively. For any node x ∈ P ∪ T, •x = {y | yFx}. To avoid confusion
about which net a node belongs to, the preset and postset notation is augmented with
the name of the net: Given a net N, N•x is the preset of node x in N and •N x is the
postset of node x in N.

Definition 2 (Marked, labelled P/T-net). A marked, labelled P/T-net is a pair (N, s),
where N = (P, T, L, F, `) is a labelled P/T-net and where s is a bag over P denoting
the marking (also called state) of the net. The set of all marked, labelled P/T-nets is
denoted N .

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e., a function
s ∈ P →N. A state is represented as follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one
token in place p1, two tokens in p2, one token in p3 and no tokens in p4. This state can
also be represented as follows: p1 + 2p2 + p3. A Petri net PN and its initial marking
s: P → N where for each p ∈ P there are n ∈ N tokens, are denoted by (PN , s). If
confusion is possible, brackets are used to denote markings, e.g., [p1+2p2+p3]. This
is particularly useful for markings having only one token, e.g., [p] is the marking with
just a token in place p.

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token
from each input place p of t and produces one token for each output place p of t.

In Figure 2.1 an example of a Petri net is depicted. The circles are places, the boxes are
transitions, and the black dots in the places are tokens. Marking s’ is reachable from s
if there is a sequence of transitions such that, starting in s, firing the transitions results
in state s’. For a formal definition see [12].

The transition with the label a is enabled as all its input places contain at least
one token. When the a-labelled transition fires, it consumes one token from all its
input places and produces as a result the Petri net of Figure 2.1 is in the new state
1p1+0p2+0p3+1p4. Next, the b-labelled transition is enabled. After the latter transition
fires, it produces one token for its only output place p3 that does not result in an enabled
a-labelled transition. The reason is that place p2 does not contain a token any more.
The following definitions represent a non-exhaustive selection of Petri-net properties
that are sufficient for later sections.

20 CHAPTER 2. PETRI-NET THEORY

a b

p1

p2

p3

p4

Figure 2.1: An example of a Petri net.

Definition 3 (Connectedness). A labelled P/T-net in N , where N=(P, T, L, F, `), is
weakly connected, or simply connected, iff, for every two nodes x and y in
P ∪ T, x (F∪F−1)∗y. Net N is strongly connected iff, for every two nodes x and y in P
∪ T, x F∗y.

The net at the top of Figure 2.2 is connected but not strongly connected because there
is no directed path from o place to the i place. The bottom net of Figure 2.2 is strongly
connected because of the the additional transition labelled t̄ that connects the places
with the i and o label.

Definition 4 (Live). A marked, labelled P/T-net (N , s) is live iff, for every reachable
state s′ and every transition t there is a state s′′ reachable from s′ which enables t.

The Petri net in Figure 2.1 is not life as the explanation to the figure shows that a state
is reachable where the a-labelled transition is not enabled to fire.

Definition 5 (Bounded, safe). A marked, labelled P/T-net (N , s) is bounded iff for
each place p there is a natural number n such that for every reachable state the number
of tokens in p is less than n. The net is safe iff for each place the maximum number of
tokens does not exceed 1.

The example depicted in Figure 2.1 is bounded. However, due to the mentioned initial
state, the net is not safe since p1 contains 2 tokens.

For labelled P/T-nets it is important to understand when they are identical. Mathe-
matically, two nets are identical iff all their objects are pairwise identical. For P/T-nets
the notion of an isomorphism is instrumental to express equality. The following defi-
nition is based on [94].

Definition 6 (Isomorphism). Two nets N0 = (P0, T0, L0, F0, `0) and N1 = (P1, T1,
L1, F1, `1) are isomorphic, denoted by N0 ≡ N1 if there exist two bijections α: P0 →
P1 and β: T0 → T1 such that for every p ∈ P0 and t ∈ T0,

1. (p,t) ∈ F0 iff (α(p),β(t)) ∈ F1,

2. (t,p) ∈ F0 iff (β(t),α(p)) ∈ F1,

3. `(t)=`(β(t)),

4. L0 = L1.

Finally, it is possible that so-called dead transitions are contained in a P/T-net. A
definition for dead transitions is given below.

2.3. WORKFLOW NETS 21

Definition 7 (Dead transition). Let (N,s) be a marked, labelled P/T-net in N . A
transition t ∈ T is dead in (N,s) if and only if there is no marking s’ reachable from s,
such that s enables t.

Petri-net formalisms are suitable for specifying the control-flow of tasks in a process.
However, for the domain of business processes, simple Petri-nets are not sufficient.
For the domain of business-process management, a subclass of Petri-nets has been
developed, namely workflow net (WF-net) [9]. The following section defines WF-nets
and their properties.

2.3 Workflow nets
Workflow is the operational aspect of a work procedure: how tasks are structured,
who performs them, what their relative order is, how they are synchronized, how in-
formation flows to support the tasks and how tasks are being tracked. A WorkFlow
net (WF-net) [9, 10, 42] models the control-flow dimension of a workflow. It should
be noted that a WF-net specifies the dynamic behavior of a single case in isolation.
This means that every piece of work is executed for a specific case that is also called a
workflow instance. Examples of cases are handling an insurance case, an order, a tax
declaration, and so on.

Definition 8 (WF-net). [12] Let N = (P, T, L, F, `) be a labelled P/T-net in N . N is a
WF-net iff the following conditions are satisfied:

1. Instance creation: P contains an input (source) place i ∈ P such that •i=∅;

2. Instance completion: P contains an output (sink) place o ∈ P such that o•=∅;

3. Strongly connected: N̄ = (P, T∪{t̄}, L, F ∪{(o, t̄), (t̄,i)}, `∪{(t̄, τ)}) is strongly
connected (t̄ 6∈ T);

4. Label use: L = rng(`)\{τ};

5. Visible start: for any t ∈ T such that t ∈ i•: `(t) ∈ ALv , i.e. `(t) 6= τ ;

6. Visible end: for any t ∈ T such that t ∈ •o: `(t) ∈ ALv , i.e. `(t) 6= τ .

A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when a token enters the place
i and ends when a token enters place o, i.e., the WF-net specifies the life-cycle of a
case. The third requirement in Definition 8 has been added to avoid ‘dangling tasks
and/or conditions’, i.e., tasks and conditions which do not contribute to the processing
of cases. Note that transitions model tasks and places model conditions. The structure
of a WF-net allows to define the following functions.

Definition 9 (source, sink). Let N = (P, T, L, F, `) be a WF-net.

1. source(N) is the unique input place i ∈ P such that •i = ∅;

2. sink(N) is the unique output place o ∈ P such that o• = ∅.

The top P/T-net of Figure 2.2 fits the requirements of a WF-net as stated in Definition 8.
To the left the input place (i) and to the right the output place (o) are depicted. Further-
more, the third condition is satisfied as all other nodes contribute to the processing of
the WF-net.

22 CHAPTER 2. PETRI-NET THEORY

a

c

b

d
i o

a

c

b

d
i o

connected

strongly connected

t

a)

b)

Figure 2.2: An example of a WF-net (a) and its extended shortcircuited net (b).

2.3.1 The Soundness of WF-nets

The three requirements stated in Definition 8 can be verified statically, i.e., they only
relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the
procedure terminates there is a token in place o and all the other places
are empty.

Looking at the WF-net of Figure 2.2, this requirement is fulfilled. The requirement
mentioned at the end of the previous subsection corresponds to the so-called soundness
property [8].

Definition 10 (Soundness). A WF-net N = (P, T, L, F, `) with source(N) = i and
sink(N) = o is weakly sound iff the following conditions are satisfied:

(i) safeness: (N, [i]) is safe;

(ii) proper completion: for any marking s reachable from [i], o ∈ s implies s = [o];

(iii) completion option: for any marking s reachable from [i], [o] is reachable
from s.

N is said to be strongly sound, or simply sound, if and only if, in addition there are no
dead transitions, i.e., (N, [i]) contains no dead transitions.

The set of all strongly sound WF-nets is denoted as W . The first condition of Definition
10 states that a sound WF-net is safe. The second condition focuses on the completion
of a WF-net. If a marking in o is reached, all places are empty with the exception
of place o that must contain one token. Finally, the third condition states that from
the initial marking i that activates a case, it is always possible to reach the marking
with one token in place o that results in a successful termination. The fourth condition
about dead transitions that defines strong soundness, states that for each transition there
is an execution sequence activating this transition. To show the relation between strong
and weak soundness, we use a β operator [12] that removes all dead transitions and
corresponding places from the net.

2.4. INTER-ORGANIZATIONAL WORKFLOW NETS 23

Definition 11 (Removing dead transitions: β). Let (N, s) be a marked, labelled P/T-
net in N , with N = (P, T, L, F, `) and a set of dead transitions D ⊆ T such that T \ D
does not contain dead transitions. β is a function such that it maps marked P/T-nets
onto P/T nets: β(N, s) = (P’, T’, L’, F’, `’) with T’ = T\D, P’ = {p ∈ P | (•p ∪ p•)
* D}, F’ = F ∩ ((P’ × T’) ∪ (T’ × P’)), dom(`’) = T’, for t ∈ T’:`’(t) = `(t), and
L’ = rng(`’)\{τ}. If N is a WF-net with source place i, then β can also be applied
without explicitly stating the initial marking, i.e., β(N) = β(N, [i]).

The theorem below states that a weakly sound WF-net can be transformed into a
strongly sound WF-net by using the β operator for removing dead transitions.

Theorem 1. [12] Let N be a weakly sound WF-net. β(N) is strongly sound.

The results show that we can focus on strongly sound WF-nets in the sequel and there-
fore the term "soundness" is used for referring to strongly sound WF-nets, unless stated
otherwise. Note that the soundness property relates to the dynamics of a WF-net. Given
a WF-net N = (P , T , L, F , `), one wants to decide whether N is sound. In [9] it is
shown that soundness corresponds to liveness and boundedness. To link soundness to
liveness and boundedness, an extended net N = (P , T , L, F , `) is defined that is the
P/T-net obtained by adding an extra transition t̄ (see Definition 8) which connects o
and i. Such an extended net is called the short-circuited net of N that allows for the
formulation of the following theorem.

Theorem 2. [12] A WF-net N is sound iff (N , [i]) is live and safe.

This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness. For the verification of complex WF-nets it is desirable to have tool
support (see Section 2.6).

For the area of intra-organizational business processes WF-nets are of significant
value. With increasing size of a process models it becomes hard to detect control-
flow problems as deadlocks manually. When process models are enacted by workflow
systems, contained mistakes result in loss of time and money. By using WF-net for-
malisms, it is possible to automate during design time the verification of soundness.
Next, the theory of WF-nets is extended to an inter-organizational level.

2.4 Inter-Organizational Workflow nets
The previous section lays a theoretical foundation for a internal business processes in
isolation. For inter-organizational business process collaboration this theory needs to
be extended. Therefore, this section begins with the definition of IOWF-nets [12] that
connects several WF-nets through channels.

Definition 12 (IOWF-net). [12] An inter-organizational workflow net (IOWF-net) is
a tuple (C, n, N0, N1,..., Nn−1, L, G) where:

1. C ⊆ U is a finite set of channels,

2. N0, N1,..., Nn−1 are n WF-nets such that
(a) (∀ k: 0 ≤ k < n: Nk = (Pk, Tk, Lk, Fk, `k),
(b) (∀ k, l: 0 ≤ k < l < n: (Pk ∪ Tk ∪ Lk) ∩ (Pl ∪ Tl ∪ Ll) = ∅), and
(c) (∀ k: 0 ≤ k < n: (Pk ∪ Tk ∪ Lk) ∩ C = ∅)

3. L = (∪ k: 0 ≤ k < n: Lk) is the union of labels, and

24 CHAPTER 2. PETRI-NET THEORY

4. G ⊆ (C × L) ∪ (L × C) is a set of directed arcs, called the channel flow relation.

An IOWF-net comprises a set WF-nets interconnected by a set of channels C, a set of
labels L, and a channel flow relation G. An example of an IOWF-net is given in Figure
2.3 where two WF-nets are connected inter-organizationally. The respective WF-nets
are enclosed in boxes and their connections are realized with channels between them.
The channels exist of interface channels that are depicted in Figure 2.3 with grey shaded
places. In this example, each channel place is connected to two labels belonging to each
respective connected WF-net. The labels are part of the transitions and each channel
has a direction from one WF-net to the other one.

Figure 2.3: An IOWF-net.

For IOWF-nets a flattening method is available to create a labelled P/T-net. The flat-
tening method takes the union of all WF-nets, adds a place for each channel, connects
transitions to the added places as specified by G, and removes unnecessary source and
sink places. The following definition describes the flat function [12] for transforming
IOWF-nets into labelled P/T-nets.

Definition 13 (flat(Q)). Let Q = (C, n, N0, N1,..., Nn−1, L, G) be an IOWF-net. N =
(P, T, L, F, `) is the flattened P/T-net such that:

1. P = C ∪(∪k: 0 ≤ k < n: Pk),

2. Pi = {source(Nk) | 0 ≤ k < n},

3. Po = {sink(Nk) | 0 ≤ k < n},

4. T = (∪k: 0 ≤ k < n: Tk),

5. L = (∪k: 0 ≤ k < n: Lk),

6. ` = (∪k: 0 ≤ k < n: `k), and

2.4. INTER-ORGANIZATIONAL WORKFLOW NETS 25

7. F = (∪k: 0 ≤ k < n: Fk) ∪ {(p, t) ∈ P × T | (p, `(t)) ∈ G } ∪
{(t, p) ∈ T × P | (`(t), p) ∈ G }.

Let N’ = (P’, T, L, F’, `) be the labelled P/T net obtained by removing all places
X = {p ∈ Pi |

N•(p•N) 6= {p}} ∪ {p ∈ Po | (N•p)•N 6= {p}}, i.e., P’ = P\X and
F’ = F ∩ ((P’ × T) ∪ (T × P’)). flat(Q) = N’ is the flattened IOWF-net.

According to the definition of flat, the source place source(Nk) is removed if and only
if there is a transition which consumes tokens from source(Nk) and at least one other
place, i.e., only source places which serve as the only input place for all connected
transitions are kept. Similarly, sink place sink(Nk) is removed if and only if there
is a transition which produces tokens for sink(Nk) and at least one other place. In
[12] more information about the activation safeness, soundness, and self triggering of
flattened IOWF-nets is contained.

Figure 2.4: The flattened IOWF-net.

Figure 2.4 shows the IOWF-net of Figure 5.7 after the flat function is applied. Note
that the dashed source and sink place of the bottom WF-net in Figure 2.3 are removed.
The transitions of both WF-nets that are connected to labels in Figure 2.3 are now
connected by places in Figure 2.4 that represent channels in Figure 2.3.

2.4.1 The Soundness of IOWF-nets
A subflow in an IOWF-net is activated if at least one of the places in the subflow is
marked (except the source and sink place). Here a subflow is one WF-net that is part
of an IOWF-net. A subflow might be activated again without being deactivated first,
which may lead to anomalies in an IOWF-net. To detect this, the notion of activation
soundness [12] is used.

Definition 14 (Activation safeness). Let (N, s) be a marked, labelled P/T-net in N ,
where N = (P, T, L, F, `). A subset of places P’ ⊆ P is activation safe in (N, s) if and
only if for any reachable state s’ any transition t ∈ •P’\P’•, and any place
p ∈ P’: if s’ enables t, then s’(p) = 0.

A set of places P’ is activation safe if all transitions producing tokens for P’ but not
consuming tokens from P’ are not enabled as long as there are tokens in P’. A subflow
that is part of an IOWF-net is not activated multiple times if and only if the places
of each subflow are activation safe. Next, the notion of soundness for IOWF-nets is
defined [12].

Definition 15 (Soundness of IOWF-nets). Let Q = (C, n, N0, N1,..., Nn−1, L, G) be
an IOWF-net and let N = (P, T, L, F, `) be the corresponding flattened net without dead
transitions, i.e., N = β(flat(Q)). Q is sound if and only if:

26 CHAPTER 2. PETRI-NET THEORY

1. (∀k: 0 ≤ k ≤ n: Nk ∈ W), i.e., all subflows are sound,

2. N ∈ W , i.e., the flattened IOWF-net is a sound WF-net, and

3. (∀k: 0 ≤ k ≤ n: Pk\{source(Nk), sink(Nk)} is activation safe in (N, [i])).

The first condition states that sound WF-nets compose a sound IOWF-net. According
to the second requirement, the flattened IOWF-net is also a sound WF-net. Note that
a flattened IOWF-net is without dead transitions, i.e., the dead transitions are removed
using β. The third requirement ensures activation safeness.

When business processes need to be related inter-organizationally, it is desirable to
establish a relationship that can be analyzed and checked for correctness. The following
section proposes such an inheritance relationship.

2.5 A Notion of Business-Process Inheritance
To expresses a client-server relationship between an original equipment manufacturer
and suppliers, a special notion of business-process inheritance is used in this section,
namely the notion of projection inheritance[14, 27] that can informally described as
follows:

For two workflow process definitions A and B, where B contains all transitions
in A and some additional ones, if it is not possible to distinguish between the
behavior of A and B, when the effects of the transitions that are in B but not in A
are hidden (ignored), then B is a subclass of A under projection inheritance

Before, projection inheritance can be defined formally, first an equivalence relation
needs to be specified. This equivalence is based on the idea that a superprocess and a
refined subprocess have the same (observable) behavior. Concretely, branching bisim-
ilarity [48] is such an equivalence.

The notion of a silent action is pivotal for branching bisimilarity that can be used
to hide labels. Silent actions are result from an abstraction that is defined as follows:

Definition 16 (Abstraction). Let N = (P, T, L, F, `0) be a labelled P/T-net. For any
I ⊆ ALv , the abstraction operator τI is a function that renames all transition labels in I
to the silent action τ . Formally τI (N) = (P, T, L, F, `1) such that, for any t ∈ T, `0(t) ∈ I
implies `1(t) = τ and `0(t) /∈ I implies `1(t) = `0(t).

Silent actions can not be observed and are denoted with the label τ , i.e., only transitions
in a Petri net with a label different than τ are observable. Such a single label suffices as
all internal actions are equal in the sense that can not be observed by the collaborating
counterpart. In Figure 2.5, the depicted WF-net contains τ -labels for both transitions
of the parallel branch, which means these two transitions are silent actions.

Figure 2.5: Silent actions in a WF-net.

2.5. A NOTION OF BUSINESS-PROCESS INHERITANCE 27

Two marked, labelled P/T-nets are called branching bisimilar, denoted p ∼b , iff their
observable behaviors coincide, i.e., abstracting from silent actions. For a formal defi-
nition it is referred to [12]. Branching bisimilarity is an equivalence relation on N , i.e.,
∼b is reflexive, symmetric, and transitive (see [26]). Branching bisimilarity is used in
the following definitions.

Definition 17 (Behavioral equivalence of WF-nets). For any two WF-nets N0 and N1

in W , N0
∼= N1 iff (N0,[i]) ∼b (N1,[i]).

After clarifying the notion of behavioral equivalence the initially presented notion of
projection inheritance above can be defined formally. For that purpose the abstraction
operator τI of Definition 16 is useful for hiding labels. The definition of projection
inheritance is presented as follows.

Definition 18 (Projection inheritance). For any two weakly sound WF-nets N0 and
N1 in W , N1 is a subclass of N0 under projection inheritance, denoted N1 ≤pj N0, iff
there is an I ⊆ ALv such that (τI (N1),[i]) ∼b (N0,[i]).

In Figure 2.6 projection inheritance is illustrated by means of an example. The top of
the figure shows a WF-net where all transitions carry visible labels. The WF-net at the
bottom of Figure 2.6 shows three additional transitions. Thus, when the labels of these
transitions are renamed into silent actions, their effect is not visible.

 b
 e

superclass

 c
 a d

oi

 b
 e

subclass

 c
 a d

oi

x

y

z

Figure 2.6: A projection-inheritance example.

The question arises how the two processes of Figure 2.6 relate to each other. Both
WF-nets are identical with the exception of additional transitions with the labels x, y,
z and their corresponding input- and output places in the bottom net. These transitions
are inserted into the subclass process in according to refinement patterns. The thee
refinement patterns are explained by means of the example the Figure 2.6 explains.

• Firstly, the transition carrying label x represents an inserted parallel branch that
connect the a- and e-labelled transitions. These transitions are also contained in
the superclass process. Note that a parallel branch can connect two τ -labelled
transitions.

• Secondly, the transition carrying a label y represents an inserted transition that
extends a sequence of nodes.

• The transition with label z is part of an inserted loop construct that start and ends
with the same place.

28 CHAPTER 2. PETRI-NET THEORY

In [27] details are contained about the three mentioned projection-inheritance preserv-
ing refinement patterns in the subprocess of Figure 2.5. Finally, according to Definition
18, the bottom WF-net of Figure is a subclass according to projection inheritance com-
pared to the top WF-net.

It was stated earlier that business-process models of increasing size are difficult to
check manually for contained mistakes such as deadlock. When business processes are
linked inter-organizationally, this problem becomes even more acute as the linked pro-
cesses may result in deadlocks or livelocks although the separate processes terminate
correctly. Manual checks are additionally impaired as organizations that own business
processes are reluctant to disclose all their internal business details. Thus, on the one
hand the availability of tool support saves time and money by automating the process
verification, on the other hand it also helps to keep business internals hidden when such
tools are available as intermediary services between collaborating parties that are oper-
ated by trusted third parties, e.g., an e-notary. The following section introduces a tool
for verifying process models.

2.6 A Verification Tool
As a means of verification, Woflan [108] has been developed, a tool which analyzes
workflow process definitions specified in terms of Petri nets. There is a need for such a
tool, to verify the correctness of workflow process definitions. Serious errors may re-
main undetected if process models are checked manually. This means that an erroneous
process model may be carried out by an application, i.e., a workflow management sys-
tem, thus causing dramatic problems for an organization.

a

c

b
i

e

olack of synchronization

a

b

c
i odeadlock

Figure 2.7: Violations of soundness.

If an intra-organizational business-process model is not sound, Woflan guides the user
in finding and correcting the error. For WF-nets typical detected errors are a deadlock
or a lack of synchronization. In the top of Figure 2.7, soundness is violated because
c is dead. The reason is that no state can occur during carrying out the proces where
both input places of the c-labelled transition contain at least one token. The bottom
process of Figure 2.7 shows a lack of synchronization caused by an AND-split being
complemented by an OR-join. As a result more than one token remains in the o-labelled
place after executing that process.

When processes are matched for inter-organizational business collaboration, Woflan
supports the checking of projection inheritance. In Figure 2.8, a variation of the sub-
class from Figure 2.5 is depicted. When the earlier superprocess and the subprocess
from Figure 2.8 are checked by Woflan, a violation of projection inheritance is de-
tected. The reason is the different refinement compared to the subprocess in Figure 2.5

2.7. CONCLUSION 29

b
e

no subclass

c
a d

oi

x

y

z

Figure 2.8: A violation of projection inheritance for the superclass of Figure 2.5.

with the x-labelled transition that is part of an OR-split and competes for the token
with the c-labelled transition. Thus, when the x-labelled transition fires, the perceived
behavior differs from the superprocess in Figure 2.8 as the c-labelled transition does
not need to fire.

Figure 2.9: A screenshot of Woflan.

A screenshot of Woflan is depicted in Figure 2.9 where the results from diagnosing a
WF-net are displayed. In this case Woflan has detected dead tasks, i.e., tasks that never
get enabled. These tasks are listed in the graphical user interface of Figure 2.9. Thus,
a process modeler can use this information for detecting which nodes are involved in
the control-flow error.

2.7 Conclusion
This preliminary chapter presents the use of the Petri-net formalism for inter-organizational
business process collaboration. A subclass of Petri-nets, namely WF-nets, is well es-
tablished for modelling intra-organizational processes. Since for WF-nets the notion of

30 CHAPTER 2. PETRI-NET THEORY

soundness exists, it can be used for verifying the correct termination of a modelled pro-
cess before enactment. This is of importance as manually checking complex processes
for errors like deadlocks or lack of synchronization is difficult.

For inter-organizational process collaboration, the IOWF-net formalism and corre-
sponding soundness is presented. Furthermore, the use of a matching formalism is pro-
posed, namely projection inheritance, which allows establishing a perceived behavior-
relationship between a superprocess and a subprocess. Transitions that extend the sub-
process are hidden and the perceived process behavior still needs to be equivalent com-
pared to the superprocess. Projection inheritance and soundness can be verified by the
Woflan tool, which offers a graphical user interface for supporting business-process
modelers.

Chapter 3

The Perspective of eSourcing

Contents

3.1 Introduction . 32
3.2 Tackling Complexity . 33
3.3 eSourcing and Control-Flow . 34

3.3.1 An Exemplary eSourcing Configuration 35
3.3.2 Control-Flow Properties of eSourcing 37
3.3.3 Verification Criteria for eSourcing 38

3.4 Suitability Features of eSourcing 40
3.4.1 eSourcing-Interaction Dimensions 41
3.4.2 eSourcing-Construction Dimensions 42
3.4.3 Detailing the eSourcing-Construction Dimensions 43

3.5 Related Research . 45
3.6 Conclusion . 45

Dynamic inter-organizational business process management (DIBPM) combines service-
oriented business integration (SOBI) and workflow management as a promising ap-
proach for supporting commercial business-to-business (B2B) activities over web-based
infrastructures. SOBI applies concepts from the field of service-oriented computing in
the domain of dynamic business collaboration. There is scope for SOBI technologies
to improve the support of B2B collaboration where dynamic matching of structures of
service consuming and service providing processes is performed. Collaborating par-
ties want to control how much process detail they expose and which parts of them are
monitorable. SOBI technology should offer rigor that permits verification of desir-
able features before enactment, e.g., correct termination. Furthermore, current SOBI
technologies lack concepts which are useful for specifying and implementing B2B col-
laborations. Hence, several related critical issues are explored in this chapter. Firstly,
how to manage the inherent conceptual, business, and technological complexity of such
business collaboration. Secondly, the issue is addressed of laying a foundation for ver-
ifying control-flow adherence and correct termination of coupled business processes.
These requirements need to be guiding the development of specification languages of
inter-organizational business processes and related middleware that enact them in a
web-based way. Exploring these critical issues leads to the proposal of eSourcing.

31

32 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

For tackling the business-, conceptual-, and technological complexity of dynamically
matching a service consuming and a service providing process in eSourcing a three-
level framework is employed. Furthermore, eSourcing offers rigor by utilizing WF-
net theory that results in improved control over inter-organizational business process
structure. Finally, the issue of application suitability is tackled by discovering inherent
eSourcing features that permit the positioning of Sourcing configurations in differing
perspectives.

3.1 Introduction
The way companies collaborate with each other is experiencing significant changes.
Employing information infrastructures in novel ways enables new ways of B2B collab-
oration. A promising approach for B2B collaboration is the coupling of workflow man-
agement with SOBI. This framework of DIBPM [50] offers a new model for addressing
the need of organizations for dynamically bringing together a service consumer and a
service provider over web-based infrastructures where the service is a business process.
In this chapter the term dynamic refers to automatically integrated business relations
that are forged between business parties by matching structures of respective processes.

The setup of such B2B collaboration is a client-server relationship where one party
offers a service that is integrated into the process of a consumer. Thus, parties that wish
to engage dynamically disclose process details to each other while they keep many
details hidden to safeguard their competitive advantages. Though a service provider
has to adhere to the requirements agreed with the service consumer, the provider still
needs flexibility for extending and adjusting the service provisioning to internal needs
that remain opaque to the consumer, e.g., to perform back-office tasks.

More recently, in the EU research project CrossWork [2], the objective is pursued
to develop automated mechanisms for allowing dynamic workflow formation and en-
actment, enabling tight coupling and strong synergies between different organizations.
The CrossWork architecture involves the development of ontologies for goal decompo-
sition and team formation, followed by an inter-organizational business-process setup-,
verification-, and enactment-environment that integrates legacy systems. Furthermore,
this architecture is complimented by visualization tools for the setup and enactment
phase of an eSourcing configuration.

An integrating concept for DIBPM is missing that exploits existing research results.
eSourcing is proposed building on the idea of having a part of the overall business pro-
cess of a service consumer performed by a service provider. To handle the inherent
business, conceptual, and technological complexity, a framework is adopted that com-
prises several levels to achieve a separation of concerns. Furthermore, the concept of
eSourcing is rigorous as it builds on Petri-net theory as presented in Chapter 2. With
respect to the issue of suitability of eSourcing applications for the requirements of dy-
namic business collaboration, a top-down exploration approach is chosen for discover-
ing and exploring relevant characteristics of eSourcing. Various degrees of enactment
progress monitoring of a service consumer are resulting from differing ways of linking
nodes of the consumer process and provider process. Dedicated constructs in eSourcing
lay the foundation for inter-organizational data exchange. Finally, different degrees of
collaboration visibility are discovered that permit collaborating parties to keep certain
business activities hidden from each other.

The structure of this chapter is as follows. First, the context of eSourcing is given in
Section 3.2 where the use of a three-level model is proposed, followed by a definition

3.2. TACKLING COMPLEXITY 33

of the nature of eSourcing in Section 3.3. After presenting an exemplary eSourcing
configuration in Section 3.3.1, the control-flow properties of eSourcing are defined in
Section 3.3.2 and verification criteria of eSourcing are discussed in Section 3.3.3. Next,
the eSourcing perspective is positioned and investigated in correlation to DIBPM in
Section 3.4. To investigate eSourcing in a top-down way, multi-dimensional, logical
spaces are presented for interaction patterns that occur during the setup phase in Section
3.4.1 and for construction-elements of eSourcing configurations in Section 3.4.2. The
values on the space axis are described in detail in these sections. Finally, subsequent
research areas related to eSourcing are given in Section 3.5 followed by a conclusion
in Section 3.6.

3.2 Tackling Complexity
A model is required to manage the complexity resulting from matching and subse-
quently enacting inter-organizational processes. A definition of DIBPM is given as
follows [50]:

A dynamic inter-organizational business process is formed dynamically by the
(automatic) integration of the subprocesses of the involved organizations. Here
dynamically means that during process enactment collaborator organizations
are found by searching business process market places and the subprocesses are
integrated with the running process.

Related issues to DIBPM are the definition and identification of processes, the way
compatible business partners find each other efficiently, the dynamic establishment of
inter-organizational processes, and the setup and coupling for process enactment. With
respect to business-processes integration in DIBPM that is based on matching specific
characteristics, various approaches are possible. The simplest matching approach is by
name, which is only applicable in very simple or highly standardized cases. Attribute-
based matching is performed by comparing values of attributes of services that are
standardized within a specific domain, such that there are no semantics conflicts. Ex-
amples for attributes are the name of a service, the price in business-oriented matching,
transactional properties like the presence of a particular compensation mechanism, or
QoS dimensions such as service availability. Semantics-based business process match-
ing is an extension of the attribute-based approach where attributes are compared based
on ontologies that are realized with semantic web technology such as OWL-S [74]. Fi-
nally, the eSourcing concept represents a structure-based approach of business-process
matching that focuses on the structure (or behavior) of the process itself. In order to
manage such complex issues, a three-level framework [51] is a suitable model.

The bottom level of Figure 3.1 shows the internal level. Using an internal level in
the domains of a service consumer and provider caters towards a heterogenous system
environment. Often organizations support their business processes by containing them
in a hard-coded way in legacy systems. Examples of such legacy systems are appli-
cations for enterprize-resource planning, databases, accounting systems, applications
for human-resource management, and so on. If the business processes of an organi-
zation are known and modelled, they are directly enactable by process management
applications, e.g., by intra-organizational workflow management systems. Companies
are reluctant to directly link their internal-level legacy systems inter-organizationally to
safeguard their information infrastructure and the fear of disclosing business internals
that result in a loss of competitive advantages.

34 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

Figure 3.1: A three-level business process framework.

At the conceptual level, the business processes are designed independent from infras-
tructure and collaboration specifics. Conceptual processes are mapped to their respec-
tive internal level for enactment. If the conceptual-level processes are supported by
service oriented architecture, their enactment allows the orchestration of web-service
wrapped legacy systems of the internal level. A language used on the conceptual level
should have clearly defined semantics so that collaborating parties can us a common
denominator for inter-organizational business process harmonization.

The external level stretches across the domains of the process initiator and respon-
der. Parts of the conceptual processes are projected to the external level and compared
by the collaborating parties. That way the parties investigate the demands of service
consumption and the ability of service provision. Since not the entire conceptual-level
process must be project to the external level, an organization can determine which
business internals should remain hidden from the counterpart. The process-based col-
laboration is automated and dynamically forged.

After proposing a three-level framework to tackle the issue of complexity in DIBPM,
the following section defines eSourcing, gives an example, and presents important
control-flow properties, followed by a subsection about quality features of eSourcing.

3.3 eSourcing and Control-Flow
eSourcing embedded in DIBPM is essential for the automatic external-level harmo-
nization of parties that wish to collaborate. Harmonization refers to the external-level
structural matching of business processes, i.e., the control-flow properties of the exter-
nalized processes are compared. The following definition of eSourcing is used:

In the context of DIBPM, eSourcing is a framework for harmonizing on an exter-
nal level the intra-organizational business processes of a service consuming and
service providing organizations into a B2B supply-chain collaboration. Impor-
tant elements of eSourcing are the support of different visibility levels of corpo-
rate process details for the collaborating counterpart and mechanisms for ser-
vice monitoring and information exchange.

The next section presents eSourcing in a configuration example that focuses on the
control-flow perspective and is modelled using labelled Petri nets as introduced in
Chapter 2. The control flow perspective focuses on the way tasks are ordered, either

3.3. ESOURCING AND CONTROL-FLOW 35

in a sequence or in parallel [18, 19]. Note that Chapter 5 provides definitions for this
informal discussion of eSourcing control-flow properties.

3.3.1 An Exemplary eSourcing Configuration

eSourcing is applicable in many market configurations. For example, a travel agency
offers complex travelling products consisting of parts that it sources in from other,
specialized tourism-industry companies.

Figure 3.2 depicts the in-house process of the travel agency on the conceptual level.
Passive nodes labelled with i and o are the unique input and output places of a demar-
cated area of the conceptual-level process. This demarcated area is a subnet of the
in-house process that is termed sphere and destined for externalization.

Figure 3.2: A conceptual-level process of a service consumer.

Next, the content of Figure 3.2 is explained. Following the three-level business process
framework of Figure 3.1, the consumer’s in-house process is mapped to the internal-
level. Regarding the conceptual level process, after starting the process by taking a
customer’s details, the particular travelling wishes are acquired. Next, a parallel split
is modelled where one branch contains a consumer sphere that is depicted with a grey
shaded ellipse.

In the consumer sphere the travel agency allocates a flight ticket for the customer
while billing matters are prepared and exchanged with the in-house process. Eventu-
ally, the parallel branches are joined by a node that results in informing the customer
about all flight details followed by the handling of customer payment. The exchange
direction between the consumer sphere and the rest of the in-house process is recog-
nizable by the in and out labels of interface places, which are a labelling notation for
a subset of places in spheres. Thus, the subset of places with in-labels is denoted as
in-labelled interface places and the subset of places with out-labels is denoted as out-
labelled interface places.

The other parallel branch handles exchanges of business critical information with
the consumer sphere. Note that the consumer sphere is externalized to a different orga-
nization that carries the sphere out as a service provider. Thus, the modelled exchanges
result during enactment in an exchange of business information between the opposing
collaboration domains.

36 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

Booking a flight ticket is not core business of the travel agency. Thus, the travel
agency assigns the consumer sphere to a separate organization that functions as a ser-
vice provider. Relating this situation to Figure 3.3, the consumer sphere is projected en-
tirely to the external level turning it into the consumer’s contractual sphere. The eSour-
cing counterpart responds with projecting a structurally equivalent provider’s contrac-
tual level to the external level. Consensus is achieved when the respective contractual
spheres are equal as depicted in Figure 3.3.

Figure 3.3: An external level of an eSourcing configuration.

In compliance with the three-level model of Figure 3.1, the service provider also has
a conceptual level. In Figure 3.4 the conceptual-level process is depicted, which is a
refined sphere in correlation to the contractual sphere that is termed provider sphere.
Active nodes with labels equally contained in the provider’s contractual sphere are vi-
sualized using broader lining. Figure 3.4 shows an internal level on which the provider
sphere of the conceptual level is mapped.

Next, the provider sphere is explained. An active node for choosing a flight ticket
is followed by an added parallel branch in which the flight ticket is booked and the
billing organized. These additional active nodes carry labels that do not exist in the
corresponding contractual spheres. Thus, the service consumer is not aware of this re-
finement. After the provider sends the payment data, further refining nodes for posting
the flight ticket and checking payment are contained in the provider sphere. The se-
quence continues with two consecutive nodes, one for receiving credit card details and
a following send node for exchanging travel data with the service consumer’s in-house
process. Note that data flow in eSourcing is not the focus of this chapter. However, ex-
plicit send and receive nodes in combination with in and out-labelled passive interface
nodes lay the foundation for developing sophisticated inter-organizational data flow for
eSourcing instances.

Once enactment of the provider sphere is completed, an active node in the in-house

3.3. ESOURCING AND CONTROL-FLOW 37

Figure 3.4: A conceptual-level process of a service provider.

process is enabled for informing the customer. Since this active node is outside of the
consumer sphere, the service provider is not aware of such a step. The in-house process
concludes with handling customer payment. After that the enactment of the eSourcing
configuration is completed.

The figures of this subsection comprise an eSourcing configuration that requires
further explanations of the control-flow properties. Thus, the next section defines those
properties followed by a subsection about a desirable requirement of eSourcing. Note
that Chapter 5 contains the formal definitions for eSourcing properties.

3.3.2 Control-Flow Properties of eSourcing
Figure 3.2 shows in and out-labelled passive nodes that are so-called interface places.
They connect active nodes that are located in a consumer sphere and the rest of the in-
house process. The labels specify the nature of exchange between the in-house process
and a consumer sphere. Exchange can only occur after a consumer sphere has begun
with enactment being enabled by a token placed in an in-labelled interface place. When
a token is placed into an in or out-labelled interface place from an active input node,
an exchange is attempted between the domains of a service consumer and provider.

Taking into account the Petri-net theory of Chapter 2, the conceptual-level process
of Figure 3.2, so the in-house process with the contained consumer sphere, is a sound
WF-net. The in-house process has a unique input place with one token, no nodes
are dangling, and there is a unique output place where only one token is left once
enactment has completed. The consumer sphere of the service consumer in Figure 3.2
is a subnet contained in the in-house process. All nodes belonging to a consumer
sphere are depicted as grey shaded when located as a subnet in the in-house process
of a service consumer. A consumer sphere has an input place labelled i and an output
place labelled o. All nodes belonging to the sphere are connected. When a consumer
sphere is enabled, a token is put into an in-labelled interface place produced from an
active input node not belonging to the consumer sphere. After its enactment, only one
token is left in its unique output place and one out-labelled interface place enabling one
or many active nodes from outside of the consumer sphere belonging to the in-house

38 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

process.
By using control-flow constructs for emulating business-data exchange, soundness

can be verified before an actual exchange between eSourcing domains takes place dur-
ing enactment. In this context, the term exchange is synonymous with data flow be-
tween a sphere and an in-house process. Enactment abnormalities like deadlocks may
occur when the information flow deviates from control-flow that is otherwise sound.
However, many data-flow problems occurring during enactment are avoidable when
it is assumed that data ideally flows along the control flow of a process. That way
data flow is emulated during build time with control-flow elements that include explicit
control-flow constructs like in and out-labelled interface places.

Neither the consumer sphere nor the provider sphere of a service provider are WF-
net. As required, starting from the i-labelled input place the o-labelled output place
is eventually reached once enactment is completed and all active nodes contribute to
the processing of a case. However, the interface places of a provider sphere represent
additional input and output places that are not permitted according to the definition of
a WF-net. Looking at the consumer sphere in isolation and at the provider sphere, they
are WF-nets when the interface places are removed. Thus, it is necessary to ensure
in an eSourcing configuration that the interface places are empty when the in-house
process terminates.

Comparing the consumer sphere and the provider sphere, one notes the labels of
active nodes are identically contained in both spheres. However, labels in a provider
sphere must not always be in the consumer. On the other hand a service provider is not
aware of active-node labels from the domain of a consumer that are not projected to
the external level. Likewise, a service consumer is not aware of labels contained in a
provider sphere that are not projected to the external level, as depicted in Figure 3.3.

3.3.3 Verification Criteria for eSourcing
Respecting control flow, the question arises how a service consumer ensures that a
provider adheres to the contractual sphere in an eSourcing configuration while not im-
posing fixed routing in the provider’s domain. Therefore a notion of inheritance is
required that focusses on the dynamics rather than data and/or signatures of methods.
Four notions of such dynamic inheritance have been identified in [13, 26] addressing
the usual aspects of substitutability, subclassing, and subtyping. Substitutability refers
to replacing the superclass with a subclass without breaking the system. Subclassing
asks if the subclass can use the implementation of the superclass. Finally, subtyping
means a subclass can use or conform to the interface of the superclass. The four notions
of inheritance are inspired by a mixture of these aspects. For eSourcing a restriction
to so-called projection inheritance (see Definition 18 in Section 2.5) is considered.
Informally, projection inheritance allows the incorporation of a refining task in a su-
perprocess without violating the displayed runtime behavior. Mapped on the eSourcing
configuration of the figures in Section 3.3.2, hidden steps are active nodes of a provider
sphere where their labels are not contained in the corresponding contractual sphere.
When a consumer’s sphere is enacted and the service consumer only perceives the ef-
fects of active nodes with labels that are also contained in the consumer’s sphere, the
provider sphere is a subclass.

An evaluation is achieved by introducing the procedure of collapsing. Figure 3.5
shows at the top the service consumer’s and provider’s conceptual-level processes. A
consumer sphere is contained in the in-house process of the service consumer. Inter-
face places permit exchanges between the in-house process and the consumer sphere.

3.3. ESOURCING AND CONTROL-FLOW 39

Figure 3.5: Collapsing an eSourcing configuration.

Likewise, the corresponding provider sphere has interface places. The collapsed net is
shown at the bottom of Figure 3.5.

Compared to the top depiction, the bottom process shows that the consumer sphere
is removed and replaced with the provider sphere in the in-house process. As a result,
the collapsed net must be a sound WF-net. Projection inheritance is adhered to if the
collapsed net containing the provider sphere is a subclass net of the consumer’s in-
house process. However, in this case the collapsed net is not a projection-inheritance
subclass of the consumer’s in-house process. While the soundness of an eSourcing
configuration is a required minimum that must always be adhered to with respect to
control flow, projection-inheritance is not always compulsory. For example, if a service
consumer and a service provider decide to only agree on disclosing the interfaces of
their service collaboration, projection inheritance can not be requested.

If an eSourcing configuration is not sound, the enactment of a corresponding eSour-
cing configuration fails because of control-flow abnormalities, e.g., a contained dead-
lock. On the other hand, when the full content of the consumer’s conceptual-level
sphere is projected to the external level, the provider must demonstrate projection-
inheritance adherence in its provider sphere. In the example of Section 3.3.1 this
situation is given. Flexibility is given as the provider is permitted to add refinement
nodes that do not violate projection inheritance. The topic of control-flow verification
is formally analyzed in further detail in Chapter 5.

After proposing the three-layer framework for complexity management and infor-
mally discussing the control-flow perspective in eSourcing, the third relevant issue of
investigation in this chapter is an analysis of eSourcing features. They are instrumental
for the development of suitable applications, which meet the needs of collaborating
business parties.

40 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

3.4 Suitability Features of eSourcing
As the previous section demonstrates, control-flow is one fundamental perspective of
inter-organizational business-process collaboration. In this section other related per-
spectives are discussed. Informally, a perspective is a particular angle from which a
certain domain is regarded. Figure 3.6 relates eSourcing to other essential perspectives
of inter-organizational business-process collaboration. To the very left and right of the
figure, factory symbols represent a service consumer and provider where internal and
conceptual-level processes are located. eSourcing rests on other relevant perspectives
depicted as pillars in the center of Figure 3.6 where external-level processes are located.
The listed pillar-perspectives are considered the most significant for DIBPM without
claiming completeness.

The importance of the control-flow pillar is identified in the previous section. In
an eSourcing configuration, data flow is essential as input and output of information
during the enactment of service provision steps. Data flow focusses on the various
ways in which data is represented and utilized in business processes [95]. The provision
and consumption of services involves human or non-human resources, e.g., machines,
production material, office space, and so on. Thus, the resource pillar deals with the
way how the involvement of such resources is represented and utilized [96]. Finally, the
enactment of an eSourcing configuration must offer a degree of certainty. By including
a transaction pillar, enacted eSourcing steps are secured and exceptional situations are
handled and compensated if required.

eSourcing

C
on

tro
l f

lo
w

D
at

a
flo

w

R
es

ou
rc

e
Tr

an
sa

ct
io

n

Service provider

Model

C
on

tro
l f

lo
w

D
at

a
flo

w

R
es

ou
rc

e
Tr

an
sa

ct
io

n

Model

Enact Enact
Service consumer

Inter-organizational
knowledge worker

Inter-organizational
knowledge worker

Figure 3.6: Relating perspectives for DIBPM.

For eSourcing the objective is pursued to realize expressive and suitable applications
that support collaborating organizations in setting up and enacting eSourcing config-
urations in an automated way. Here, the setup phase focuses on specifying an inter-
organizational business process template and linking the information infrastructure of
the respective collaborating parties according to the three-level framework [51], i.e.,
the legacy systems on the respective internal levels are not directly linked with each
other. For the enactment phase an instance of a specified inter-organizational business
process template is used to orchestrate the collaboration of a service consumer and a
service provider.

A well-structured approach is needed to explore the features of the perspectives
contained in Figure 3.6 in order to create a foundation for developing a suitable lan-
guage for eSourcing. The problem must be tackled of having to deal with a high degree
of complexity that results from a heterogenous system environment of collaborating
business parties.

3.4. SUITABILITY FEATURES OF ESOURCING 41

On top of Figure 3.6 two IKWs are depicted that each belong to a collaborating or-
ganization. The IKWs support collaborating organizations in submitting process mod-
els to an eSourcing configuration that involves the depicted perspectives. Although the
creation of eSourcing configurations should be carried out fully automated, it is realistic
that IKWs are involved for the foreseeable future. For carrying out their work effec-
tively and efficiently the support of a knowledge base that contains perspective-specific
patterns for intra- and inter-organizational business process management is important.

To explore the eSourcing perspective for its setup phase and for its construction
elements, the following method is chosen. DIBPM contains several feature dimensions
in the form of axes that create a multi-dimensional space. On every axis, dimension
values are located that detail the DIBPM feature an axis represents. By taking a subset
of axes, a logical space is created that represents a particular DIBPM perspective.

The remainder of this section comprises examples of the explained eSourcing-
exploration method. Two different multidimensional spaces are presented that em-
phasize separate concerns of an eSourcing configuration. First, in Section 3.4.1 a two-
dimensional space guides the exploration of the interactions of collaborating parties
during the setup phase in eSourcing. Secondly, starting with Section 3.4.2 the second
three-dimensional space focusses on features from which construction elements are
deductable. These construction elements are building blocks of an eSourcing configu-
ration.

3.4.1 eSourcing-Interaction Dimensions
When intra-organizational business processes are linked in a B2B supply chain, the
setup phase requires an additional perspective that focusses on the way how business
processes need to be linked inter-organizationally. Thus, the interaction perspective
that is the focus of this section, deals with the the setup phase of establishing an inter-
organizational business process between a service consuming and a service providing
organization. For the interaction perspective a definition is proposed:

The interaction perspective is focussing on the way a service consuming and a
service providing party interact with each other during the setup phase of a B2B
supply chain with the objective of aligning their respective intra-organizational
business processes on an inter-organizational level.

Based on CrossWork [2] case studies, two feature dimensions for the interaction per-
spective emerged. As Figure 3.7 shows, these dimensions exist in the form of axes that
create a two-dimensional space. On every axis the dimension values are located.
Figure 3.7 shows the dimensions for the interaction perspective. One dimension is
called assignment, which is focussing on the way a service provider is determined for
an eSourcing configuration. The values on the assignment dimension state to which de-
gree the collaborating parties know at the beginning of an interaction, that they collab-
orate with each other during enactment time of an inter-organizational business process
configuration.

• Static assignment means the collaborating parties already know before setup time
they surely collaborate with each other.

• On the other hand, dynamic assignment means the collaborating parties bid in an
anonymous market for service provision and/or consumption and only towards
the end it is clear who collaborates during enactment.

42 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

assignment

direction

dynamic

semi-dynamic

static

internal-to-external external-to-internalin-sourcing out-sourcing

Figure 3.7: Dimensions and values of interaction patterns.

• In the semi-dynamic case, the number of collaborating parties that engage in a
setup phase is limited at the beginning and therefor known. However, only at the
end of the setup phase it is clear who collaborates.

The other dimension depicted in Figure 3.7 is named direction and focusses on the
degree of external-level harmonization of inter-organizational business process collab-
oration. Thus, this dimension describes the dependencies between the processes on the
conceptual- and the external level of an eSourcing configuration.

• Internal-to-external assignment direction means the collaborating parties have
internal processes that are only harmonized externally at the end of their setup
interaction.

• Likewise, the assignment direction in-sourcing means a service provider has a
service that is subsequently integrated into the process of a service consumer.
Thus, external harmonization is only performed at a later stage.

• Out-sourcing is similar to in-sourcing with respect to harmonization. However,
now the consumer starts the interaction with externalizing a service demand first.

• Finally, the external-to-internal dimension means that external harmonization
is the starting point of interaction and the collaborating parties set up internal
processes at a later stage just before enactment starts.

For every setup phase of a B2B collaboration only one assignment and one direction
value are combinable to describe the nature of interaction between collaborating par-
ties. Thus, following Figure 3.7, there are 12 combinations possible. In Section 4.5
detailed examples of interaction patterns are given.

3.4.2 eSourcing-Construction Dimensions
The cube depicted in Figure 3.8, is created by three axes representing different eSour-
cing dimensions on which values are positioned. The created multi-dimensional space
is instrumental for deducting eSourcing-construction elements.

The axis of the multi-dimensional space of Figure 3.8 carry the dimensions called
contractual visibility, monitorability, and conjoinment. Based on experiences from

3.4. SUITABILITY FEATURES OF ESOURCING 43

bi-d
ire

cti
on

al
on

e-d
ire

cti
on

al
messaging polling

black box

white box

grey box

Conjoinment

Monitorability

Contractual
visibility

Figure 3.8: Dimensions and values of the eSourcing perspective.

modelling eSourcing configurations, further refining values depicted on the first di-
mension have exactly one pattern assigned. The other values positioned on the latter
two dimensions have multiple patterns assigned.

3.4.3 Detailing the eSourcing-Construction Dimensions
The cube dimensions and values of Figure 3.8 are described as follows:

• Contractual Visibility: is focussing on how much process detail is disclosed to
a collaborating counterpart. In Figure 3.3 a consensus exists since both spheres
are similar. Three values are located on the contractual-visibility dimension of
Figure 3.8. The values are regarding the amount of nodes from the conceptual
level that are projected to the contractual sphere of the external level. First, a
white-box value means that all nodes of a consumer sphere are contained in the
contractual sphere of the external level. In case of a black-box value only the
interfaces of a consumer sphere are projected to the contractual level. Finally,
the grey-box value means the interface places and a subset of the nodes and arcs
of the consumer sphere are projected to the external level’s contractual sphere.

Patterns covering different levels of visibility in eSourcing configuration are
mentioned in relation with dynamic service outsourcing [51]. However, the listed
patterns are all values of a control-flow dimension and are not separated into the
axis contractual visibility and monitorability as in this chapter. For example, the
black box pattern roughly corresponds to black-box contractual visibility in the
sense that a consumer has no information about how the service is executed by
the provider. The glass-box pattern roughly corresponds to the white-box con-
tractual visibility as the consumer is aware of internal states of the outsourced
process. Since it is not clear to which extent internal states are disclosed, the
glass-box pattern can also be interpreted as similar to the grey box. The half-
open box and the open box patterns are for service synchronization where the

44 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

first pattern only synchronizes from service consumer to provider and the latter
pattern allows for synchronization in both directions. While nothing equivalent
is contained in the dimension contractual visibility, these patterns are assignable
to the dimension described below.

• Conjoinment: focusses on the exchange of business-relevant information be-
tween the domains of the service consumer and service provider. Consequently,
the consumer sphere and the provider sphere contain equal conjoinment con-
structs. One-directional conjoining implies that there is one out or in-labelled
interface place present that is either complemented by an active send node or an
active receive node respectively. Those active send and receive nodes are con-
tained in the spheres of an eSourcing configuration and handle the exchange be-
tween the domains of a service consumer and provider. Bi-directional conjoining
is initiated by a sending active node to the domain of the eSourcing counterpart
that returns the communication exchange immediately to the initiating eSourcing
party.

• Monitorability: covers the way how nodes in a consumer’s and provider’s con-
tractual spheres of the external level are linked with each other. Available linking
values are messaging and polling. The nodes of the contractual spheres are con-
nected to nodes in the corresponding spheres in the respective conceptual levels.
The degree of monitorability of service provision for a service consumeris in-
creased by the amount of nodes that are linked with monitorbility constructs. At
a minimum all interface places of both contractual spheres need to be linked with
each other to transitively relate the consumer sphere and provider sphere with
each other. Additional passive and active nodes of the contractual spheres may
be linked. Messaging can be applied to linked passive and active nodes contained
in both contractual spheres. If two passive nodes are linked in a messaging way,
the node experiencing a change in number of tokens signals that information to
the linked destination node. When active nodes are linked in a messaging way,
the executing node messages this event to the linked active node. The classifier
termed polling links nodes of the service consumer’s and provider’s contractual
sphere in a way where one node periodically checks whether the linked node has
changed. When passive nodes are linked in a polling way, one node checks if
the number of contained tokens has altered. Subsequently, the change is mir-
rored by the polling node. If two active nodes are linked in a polling way, one
node periodically checks if the linked node has experienced an execution event.
Subsequently, the polling node reflects the execution event.

If the dimension values of Figure 3.8 are used as a taxonomy for the specification
of patterns, the following statements hold: For creating an instance of an eSourcing
configuration, exactly one pattern belonging to a value of contractual visibility must
be chosen. Regarding the monitorability dimension, at least two patterns have to be
used, either from the value messaging or polling. That way the service provider’s
provider sphere is connected to the consumer sphere via the external level. The mini-
mum amount of connected nodes are the respective i and o-labelled interface places of
the spheres located on the external and conceptual levels. If increased monitorability
is desired by the consumer and granted by the provider, multiple patterns from both
values are optionally used to link more nodes contained in the spheres. Finally, the
conjoinment dimension is optional and not required for the creation of an eSourcing
configuration.

3.5. RELATED RESEARCH 45

3.5 Related Research
With respect to research projects, the WISE project [22, 68] resulted in a software
platform for process-based B2B electronic commerce that focusses on support for a
network of small and medium sized enterprizes. In WISE a virtual business process
consists of a number of black-box services that are linked in a workflow process [22].
A service is offered by an involved organization and can be a business process that
is controlled by a local workflow management system. Although the WISE project
succeeds in orchestrating workflows of different collaborating organizations, it does
not cater for a flexible degree of mutual visibility of business-process details. Further-
more, collaborating parties can not negotiate how much may be observed during the
enactment phase.

In the CrossFlow project [93] inter-organizational business process collaboration
was investigated. In the context of this project, the formation of virtual enterprizes is
realized by dynamically out-sourcing a part of the service consumer’s process to a ser-
vice provider. A service matchmaker matches a service offering and a service request.
The service provider has adjustment flexibility as nodes of the assigned process can be
internally refined on a lower process level. However, that way the service consumer can
not ensure the lower-level refinement still results in an adherence to the agreed upon
service provision. CrossFlow has an external level that spans across organizational do-
mains where the process specification is part of a contract specification. The workflow
specification language of the workflow management system IBM MQSeries Workflow
[5] forms the internal process level.

The prototypical implementation called Nehemiah [101] is an inter-organizational
workflow management system that combines private workflows of collaborating par-
ties with a so-called joint coalition workflow. The prototype supports synchronous and
asynchronous communication between collaborating parties while offering the protec-
tion of respective workflow details. Nehemiah uses task specialization as a mechanism
to ensure the protection of private workflow views. However, just as in the case of
CrossFlow, it is hard to verify whether the lower-level refinement adhere to the agreed
upon service provision.

The integrated EU research project ATHENA [1] investigates enterprize inter-opera-
bility in a holistic way that is guided by user requirements. It is the strategic objective
of the project to enable networked businesses and governments. In the area of inter-
organizational business process modelling, a business-level framework is proposed
with a B2B process spanning across organizations that is complemented by a public
process and a private process in the collaborating domains. This business level is com-
plimented with a technical and execution level that is responsible for enactment. For
business-process modelling an extension of event-process chain (EPC) formalism with
so-called process-modules is proposed to achieve process abstraction.

3.6 Conclusion
Three crucial issues for the evolvement of eSourcing are investigated, namely com-
plexity management, control-flow rigor, and suitability features for applications that
support the establishment and enactment of eSourcing configurations.

eSourcing uses a three-level business process framework to manage the conceptual,
business, and technological complexity involved in inter-organizational business pro-
cess collaboration. This chapter informally defines eSourcing with its control-flow

46 CHAPTER 3. THE PERSPECTIVE OF ESOURCING

properties and demonstrates how the structural matching of service-requesting and
service-providing processes is supported. Furthermore, a collapsing method is pre-
sented for checking during build time the adherence of eSourcing parties to process-
behavior requirements and whether the enactment of an eSourcing configuration can
successfully terminate.

To succeed in exploring suitability features for eSourcing, the establishment of
multi-dimensional spaces is pursued for exploring the setup phase and structural ele-
ments of eSourcing configurations. These multi-dimensional spaces permit the posi-
tioning of individual eSourcing configurations and axis values of the multi-dimensional
eSourcing spaces are elaborated upon. The following chapter demonstrates how the
multi-dimensional spaces creates a taxonomy for top-down patterns discovery. These
patterns will be instrumental for developing suitable and expressive web service com-
position languages and their corresponding enactment applications for formulating and
enacting dynamic inter-organizational business processes.

Chapter 4

The Nature of Patterns in the
Context of DIBPM

Contents

4.1 Introduction . 48
4.2 The Pattern Meta-Model . 49

4.2.1 Meta-Model Packages . 49
4.2.2 The Pattern-Taxonomy Model 50
4.2.3 Pattern-Related Properties 51
4.2.4 Capturing Pattern-Support 53

4.3 Patterns in other perspectives 54
4.4 Interaction Patterns of the eSourcing Setup Phase 55

4.4.1 Assignment-Dimension Patterns 55
4.4.2 Direction-Dimension Patterns 60

4.5 eSourcing-Construction Patterns 64
4.5.1 Contractual Visibility . 65
4.5.2 Monitorability . 68
4.5.3 Conjoinment . 76

4.6 Conclusion . 82

In Chapter 3, a top-down method for the exploration of eSourcing was presented.
Multi-dimensional spaces are given for exploring interaction features during the setup
phase of eSourcing configurations and for exploring features of eSourcing-construction
elements. The objective of this chapter is to explore the eSourcing features in fur-
ther detail in a technology independent and conceptual way. To achieve the objective,
the eSourcing features of Chapter 3 are input for discovering patterns. Beforehand
it is important to understand the nature of patterns in the context of dynamic inter-
organizational business process management (DIBPM). Thus, a pattern meta-model is
proposed that serves the purpose of establishing a soft ontology to achieve a uniform
understanding of pattern entities and their relationships. Secondly, the pattern meta-
model is the foundation for the development of a knowledge base that is populated with
DIBPM-related patterns. The knowledge base is intended to support intra- and inter-
organizational knowledge workers (IKWs) that search for patterns of different DIBPM

47

48 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

perspectives. Finally, the discovered eSourcing patterns of this chapter are examples
to populate such a knowledge base .

4.1 Introduction
To establish intra- and inter-organizational business processes efficiently and effec-
tively in DIBPM, the use of patterns is recommendable. Corporations typically have an
information infrastructure consisting of a heterogenous system environment supporting
their business processes. The situation turns even more complex when the business pro-
cesses of collaborating parties are linked. By checking which patterns the respective
heterogenous system environments support, a common denominator of collaboration
is detected. Control-flow patterns [17, 18, 19] have been specified after investigating
several intra-organizational workflow management systems. Furthermore, patterns for
intra-organizational data-flow and resource management [95, 96] have been discovered
and specified. More recently service-interaction patterns [25] have been specified for
the coordination of collaborating processes that are distributed in different web ser-
vices.

In the domain of SOBI, web service composition languages (WSCL) have emerged
for supporting process specifications, e.g., BPEL, BPML [33, 40] and so on. Such
languages formulate the orchestration of services in a workflow, creating a complex
service that carries out activities. The referenced pattern specifications and WSCLs
show that a rich amount of results exist that are relevant for DIBPM. For example,
many e-business related patterns are textually available online [6] for the perspectives
of business, integration, composite, custom design, application and runtime. For inter-
and intra-organizational knowledge workers (IKWs) who are exposed to business, tech-
nological, and conceptual complexity, such patterns promise a meaningful support for
effectively and efficiently establishing inter-organizational business processes with the
help of SOBI technology.

IKWs organize the business processes in-house and establish business process links
for B2B activities. They manage the heterogenous system infrastructure that supports
such business processes. However, the pattern specifications of various perspectives
that IKWs need to employ differ in specification terminology. For example, the service-
interaction patterns [25] specify issues and design choices while the control-flow pat-
terns [19] define an implementation specification. It has not been investigated how the
different specification terms can be harmonized.

It is desirable to store all the pattern related data uniformly in one knowledge base
and make it accessible for IKWs with tool support. Existing pattern repositories are
static in content and limited to either one or a couple of perspectives. However, for
IKWs it is desirable to have a repository available that is interactive and dynamically
growing in perspectives and content. The repository should store knowledge about how
patterns relate to each other within the same perspective and across different perspec-
tives. This chapter fills the gap by presenting a pattern meta-model that allows dynamic
growth in content by permitting the admission of new patterns that may belong to newly
introduced perspectives.

The structure of this chapter is as follows. First, Section 4.2 gives an overview of
a pattern meta-model that is used for uniformly storing and relating patterns to each
other. In Section 4.4, the eSourcing setup-phase patterns are specified based on the
dimensions of Figure 3.7 and in Section 4.5 the pattern specifications are presented
based on the dimensions depicted in Figure 3.8. Next, Section 4.3 discusses pattern

4.2. THE PATTERN META-MODEL 49

catalogues that are relevant for dynamic inter-organizational business collaboration and
Section 4.6 concludes this chapter.

4.2 The Pattern Meta-Model
A pattern meta-model must be able to accommodate for new patterns belonging to
newly introduced perspectives that are relevant for DIBPM. It is predictable that the
meta model needs to capture many patterns and an IKW should be able to quickly
find them based on characterizing search options. As inter-organizational business
processes are supported by a heterogenous system environment, a meta model needs to
capture technology support.

Such information is useful for IKWs to determine with which commonly supported
patterns inter-organizational collaboration can be established. Finally, besides IKWs,
different types of users of a pattern meta-model based repository exist, e.g., an ad-
ministrator, users who submit patterns, pattern reviewers, and so forth. A meta model
must capture information of different user types for managing access rights to pattern
information. The following subsection uses UML notation [46] to first group the pat-
tern meta-model into packages and relates them. Next, the content of the packages are
presented.

4.2.1 Meta-Model Packages
The left side of Figure 4.1 depicts a model of packages that are related to each other.
These packages encapsulate classes [46] that are explained in following sections. The
center of the package-model is named Pattern, which contains all classes that cap-
ture information for specifying a patterns. In the Taxonomy package, classes are
contained that capture information about DIBPM perspectives. This package contains
classes that create a taxonomy into which patterns can be embedded. The Support
package encapsulates classes for managing information about technologies that support
patterns. Finally, the User Management package captures information of different
users of the pattern repository, e.g., administrator, reviewer, pattern submitter, and so
on.

Taxonomy

PatternSupport User
Management

-version : string
-name : string
-author: string
-creationDate : date
-description : string
-intuitiveVisualization : blob
-problem : string
-context : string
-resultingContext : string
-forces : string

Pattern

Figure 4.1: Meta-model packages with their dependencies and the Pattern class.

On the right side of Figure 4.1 the core class of the Pattern package is depicted, which
is also named Pattern. The attributes of this class form the main description tem-
plate of a pattern specification. A pattern has a version and a name that should be

50 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

meaningful. Furthermore, a pattern has an author and a creationDate for every
version. The description of a pattern mentions the inherent pattern properties and
describes the relationship between them. Furthermore, the intuitiveVisuali-
zation contains a model that helps to support the comprehensibility of the pattern
description. The problem of a pattern is a statement describing the context of pattern
application. In this context conflicting environmental objectives and their constraints
are described. The application of a pattern in that context should result in an alignment
of the given objectives. Next, the context states a precondition, which is the ini-
tial configuration of a system before the pattern is applied to it. On the other hand, the
resultingContext describes the postcondition and possible side-effects of pattern
application. Finally, the forces describe trade-offs, goals and constraints, motivating
factors and concerns for pattern application that may prevent reaching the described
postcondition.

After presenting an overview of the pattern meta-model, the following subsections
present detailed models of the packages depicted in Figure 4.1. The detailing classes of
package Pattern are presented as a white box. When the packages Taxonomy and
Support are presented in detail, their references to classes in the Pattern package
are depicted explicitly.

4.2.2 The Pattern-Taxonomy Model
As the first package that is presented in detail, Figure 4.2 depicts the classes of the
Taxonomy package. Creating a taxonomy is relevant for ordering patterns and relating
them to each other. Additionally, a taxonomy helps to find patterns that are stored in
the repository.

Pattern

-name : string
-definition : string
-description : string

Perspective

-name : string
-description : string

CharacteristicCategory-comprisesOf0..*

-fitsIn
0..*

PatternCategoryLink
-keyTerm : string
-comment : string

Classifier

-detailing
0..*

-detailedBy
0..*

-value : string

Assignment

-organizedBy

0..*

-in S
 c o p e

1

-contains

0..*

-c
o

n
ta

in
e

d
In

0 ..1

-characterizedBy 1..*

-assignedTo

1

-contains 0..*

-belongsTo

1

Pattern package
Taxonomy package

Figure 4.2: Detailed class model of the Taxonomy package.

The introduction of this chapter references patterns belonging to DIBPM-relevant per-
spectives, e.g., control-flow, data-flow, resource. Thus, in the depiction of package
Taxonomy in Figure 4.2 the class named Perspective is central. Informally, a per-
spective can be seen as a particular angle from which a certain domain is perceived. To
the left of Figure 4.2 the relationship to the Pattern package is depicted. It shows
that a pattern always only belongs to one perspective while a perspective possibly ref-
erences many patterns.

4.2. THE PATTERN META-MODEL 51

Publications of pattern specifications contain groupings of patterns that share char-
acteristics. For example, the white-box, black-box, and grey-box patterns [85, 84] of the
eSourcing construction dimension (see Section 3.4.2 and Section 4.5) are in one group
with the characteristic contractual visibility. If a considerable amount of patterns is in
the repository, a more detailed grouping of patterns is sensible to allow IKWs speedy
pattern discovery. Therefore, Figure 4.2 shows a class called Characteristic
Category that is assigned to one perspective. To permit recursive groupings of pat-
terns, CharacteristicCategory instances may contain each other. For example,
in the control-flow perspective the patterns are grouped in six characteristic categories
[17], e.g., structural patterns and cancellation patterns.

Although Figure 4.2 depicts a reference between the CharacteristicCategory
and a Pattern by using an association class called PatternCategoryLink, a
further refinement of the taxonomy with additional classes is realized. Thus, a class
Classifier organizes a CharacteristicCategory with refining keywords
that are commented for clear comprehension. For example, the eSourcing category
called contractual visibility [85, 84] (see Section 4.5.1) is refined by the category key-
word projection. This keyword indicates how much process content is projected to an
external level where the collaborating counterpart can perceive it. Finally, the class
Assignment is completing the taxonomy creation by allowing the assignment of a
value to a pattern classifier that belongs to a special category. For example, the black-
box pattern of the characteristic category with the value contractual visibility has the
assignment value none.

4.2.3 Pattern-Related Properties
The next package focusses on properties around class Pattern. As Figure 4.3 shows,
a pattern can have one or several Alias instances associated, e.g., the control-flow
pattern called sequence is also known as sequential routing or serial routing.

Patterns can relate to each other in different ways. The package depicted in Figure
4.3 includes relationships where patterns are either Similar to each other or one
pattern is a Generalization of another one. For example, it can be argued that the
control-flow patterns parallel split and synchronization are similar as they complement
each other where the first pattern creates parallel branches of execution and the latter
pattern is required to join them. On the other hand, the discriminator pattern is a
generalization of the n-out-of-m-join pattern [17]. Both patterns perform a merge of
many executing paths and execute the subsequent activity only once. However, while
the first pattern performs no synchronization, the latter pattern is more flexible as it is
possible to set the number of parallel branches that need to be synchronized.

There are two different ways how a Solution may relate to a pattern. Firstly, a
pattern tackles a particular problem for which one or many Solution instances are
applicable. On the other hand a solution is only assigned to one pattern problem. Sec-
ondly, it may require the application of several patterns to achieve one greater solution.
Therefore a second relationship arc is depicted in Figure 4.3 where a solution may use
several patterns. In this context a solution contains static relationships and dynamic
rules describing how to realize a desired outcome. For example, for the eSourcing
category contractual visibility [85, 84] the problem attribute (see Section 4.5.1) states
the service consumer is interested in using service provision. However, the consumer
does not mind how the provision is carried out as long as the specified exchanges are
performed correctly. The applied pattern is called black box from the contractual visi-
bility category and is characterized by a disclosure of business-process interfaces only

52 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Figure 4.3: Detailed class model of the Pattern package.

without revealing the rest of internal process content. A solution that tackles the pat-
tern problem is the application of a three-level framework [51] where it is possible to
disclose on an external layer less than the full content of an internally given process on
an internal layer.

The pattern and solutions are additionally linked by the Requirement class.
Thus, a pattern must fulfill some requirements so that a solution becomes applicable.
It represents a statement about the demanded pattern function and performance with
respect to quantitative and qualitative features. For example, a requirement term can
be system-interoperability support. A complementary description may mention that a
solution must pay attention that collaborating parties do not want to disclose all their
system details to each other.

The association class RequirementCoverage allows textual statements ex-
pressing to which extent a solution covers a requirement or not. For example, system-
interoperability support is fully covered by a solution that represents a three-layer
framework with internal process levels and conceptual process levels for the respec-
tive collaborating parties, and one external level for process merging [51]. That way
collaborating parties have the chance to hide internal details from each other while only
needing to disclose what is necessary to perform process merging on an external level.

Two more classes are depicted in Figure 4.3, namely the classes Example and
Model. While one example only belongs to one particular pattern, a pattern may
inspire several examples. An example is a textual description of a concrete instance in

4.2. THE PATTERN META-MODEL 53

a real-world setting where a pattern is used. Alternatively, it is also possible to give an
abstract example that is based on a formal model,e.g., Petri nets.

While patterns are conceptually formulated, IKWs need to evaluate which patterns
are applicable for their own system setup. Thus, the meta model should also cater for
the management of technology-support information. In the next subsection a package
is presented with classes for capturing such information.

4.2.4 Capturing Pattern-Support
In Figure 4.4, a package called Support is depicted containing classes for captur-
ing technology information of patterns. On top of Figure 4.4 the Pattern pack-
age is shown with the subset of contained classes that have relationships to classes
from the Support package. Accordingly, a pattern example is visualized by an
Illustration instance, a model is expressed in an instance of a Language sub-
class, and a pattern is supported by an Artifact. In the latter case an artifact can be
of a complex nature, e.g., a software system that supports a standard language.

PatternExample

-version : string
-marketedBy : string
-webSiteLink : string

ToolLanguage

-version : string
-standardizingOrganization : string
-approvalDate : date
-submissionDate : string
-submittedBy : string
-webSiteLink : string

StandardLanguage

-languageElementsDescription : string
-semanticsDescription : string
-syntaxDescription : string

Language

Model

-developedBy : string
-introductionDate : date
-documentationList : string
-webSiteLink : string

FormalLanguage

-depictedBy

0..*

-e
xp

re
s

se
d

In

1..1

-extractedFrom
0..*

-inspires

0..1

-name : string

Artifact

-version :string
-producers : string
-functionality : string
-subComponents : string
-systemRequirements : string

SoftwareSystem
-version : string
-depiction : blob
-standardObjective : string
-standardizingInstitution : string
-approvalDate : date
-submissionDate : date
-submittedBy : string
-publishedIn : string
-webSiteLink : string

Standard

-usedBy

0..*

-uses0..*

-supportedBy

0..*

-supports

0..*

-visualization : blob
-description : string

Illustration

-supportScale : enumeration ("fully","limited","none")
-description : string

Support

-visualizes

1..1

-visualizedBy

0..*

-basedOn0..1

-visualizedBy0..*

-relationshipDescription : string

ComplexArtifact -containedIn

0..1

-comprisesOf

*

-exemplifies

1..1

-inspires

0..*

Pattern package

Support package

Figure 4.4: Detailed class model of the Support package.

Instances of the class Illustration contain a screenshot with textual description
that shows how an artifact supports a pattern, e.g., a modelling element description.
This screenshot is related to an instance of the association class Support that links a

54 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

pattern instance with a particular technology, indicating to which degree the the pattern
is supported, i.e., either fully, limited, or not at all.

A Model can be represented in a language that consists of several elements. One
hierarchy level lower, Figure 4.4 depicts several subclasses. An instance of Formal
Language is, e.g., the Petri-net markup language PNML [65, 113] that is based on
Petri-net theory. Instances of StandardLanguage refer to languages that are, e.g.,
XML based and pursue the objective of supporting the modelling of business processes
that are carried out with the help of web service orchestration. Examples of such XML-
based standards are BPEL [40] or WSDL [37]. Instances of ToolLanguage are re-
lated to some software system, e.g., the workflow management system Staffware [102].
Next, an instance of Software System is an aligned set of programs and ap-
plication software that perform a specific function directly for the user. Finally, a
Standard is a prescription or regulation that is fixed by approved institutions. Stan-
dards achieve the unification of artifacts that are published in journals. Standards in
the ICT domain are necessary for interworking, portability, and reusability. They may
be de facto standards for various communities, or officially recognized national or in-
ternational standards. The next section discusses related pattern specifications that are
candidates for filling pattern knowledge base that is built using the pattern meta-model.

4.3 Patterns in other perspectives
Referencing patterns, Gamma et al. [47] first catalogued systematically some 23 de-
sign patterns that describe the smallest recurring interactions in object-oriented sys-
tems. Those patterns are formulated in a uniform specification template and grouped
into categories. For the domain of intra-organizational business process collaboration
patterns were discovered in various perspectives.

In the area of control flow, a set of patterns was generated [17, 18, 19] by investi-
gating several intra-organizational workflow systems for commonalities. The resulting
patterns are grouped into different categories. Basic patterns contain a sequence, ba-
sic splits and joins, and an exclusive split of parallel branches and their simple merge.
Further patterns are grouped into the categories advanced branching and synchroniza-
tion, structural patterns, patterns involving multiple instances, state-based patterns, and
cancellation patterns. The resulting pattern catalog is for the evaluation [15, 116] of
WSCLs.

Following a similar approach as in the control-flow perspective, data-flow pat-
terns [95] are grouped into various characteristics categories. One category is focuses
on different visibility levels of data elements by various components of a workflow
system. The category called data interaction focusses on the way in which data is com-
municated between active elements within a workflow. Next, data-transfer patterns
focus on the way data elements are transferred between workflow components and
additionally describe mechanisms for passing data elements across the interfaces of
workflow components. Patterns for data-based routing deal with the way data elements
can influence the control-flow perspective.

Patterns for the resource perspective [96] are aligned to a the lifecycle of a work
item. A work item is created and either offered to a single or multiple resources. Al-
ternatively a work item can be allocated to a single resource before it is started. Once a
work item is started it can be temporarily suspended by a system or it may fail. Even-
tually a work item completes. The transitions between those life-cycle stages of a work
item either involve a workflow system or a resource. Characteristic categories for the

4.4. INTERACTION PATTERNS OF THE ESOURCING SETUP PHASE 55

resource perspective are deducted from those life-cycle transitions and group specified
patterns.

More recently so-called service interaction patterns [25] are specified for the co-
ordination of collaborating processes that are distributed in different, combined web
services. Again, the patterns are categorized according to several dimensions. Based
on the number of parties involved, an exchange between services is either bilateral or
multilateral. The interaction between services is either of the nature single or multi
transmission. Finally, if the bilateral interaction between services is of the nature two
ways, a round-trip interaction means the receiver of a response must be equal to the
sender. Alternatively a routed interaction takes place.

The next section presents the interaction patterns that occur between collaborat-
ing organizations during the setup phase of an eSourcing configuration. The pattern
specifications are deducted from the interaction dimensions presented in Section 3.4.1
in a top down way. With respect to the interaction patterns of Section 4.4, for the
examples of patterns, sequence diagrams are used that propose a possible interaction
during the setup phase of an eSourcing configuration. However, for sake of brevity
completeness of the interactions is not claimed. Furthermore, chunks of the overall
interaction sequences are grouped into phases that are reused as interaction blocks in
following sequence diagrams. In order to keep the figures brief, those reused interac-
tion blocks abstract from the message exchanges and merely contain activation bars
to depict which parties and applications are active in that particular interaction block.
The labels of the interaction blocks are unique throughout this section. For example,
the interaction example of Figure 4.5 depicts the interaction block labelled contracting
as a white box. Thus, in the first occurrence all message exchanges between the parties
involved in contracting are depicted. In contrast, the interaction example of Figure 4.6
depicts the contracting interaction block as a black box, hiding for sake of brevity the
identical message exchanges shown in Figure 4.5.

4.4 Interaction Patterns of the eSourcing Setup Phase

This section explains first the assignment dimension of Figure 3.7 with the correspond-
ing dimension values. Next, for each dimension value one pattern is deduced that is
specified using the description template mentioned above. The same approach is used
in Section 4.4.2 where the direction dimension is explained and corresponding patterns
are specified for each dimension value. Each specification of Section 4.4.1 and Section
4.4.2 gives two examples, one abstract example and a real-life example.

4.4.1 Assignment-Dimension Patterns

During the setup time of an inter-organizational business process collaboration, a ser-
vice consumer may be confronted with different numbers of potential providers that are
either known and predetermined beforehand or not. On the one hand a service provider
can already be chosen by the consumer before setup time, which is termed static as-
signment. The opposite extreme is dynamic assignment where a potentially unlimited
number of service providers engage in a competition for involvement in an eSourcing
configuration. Finally, between those extremes the pattern for semi-dynamic assign-
ment specifies that a predefined number of service providers engage in a competition
at setup time.

56 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Pattern 1 (Static Assignment)
Problem: Due to market pressures a company is involved in optimized production
cycles of complex industrial goods with very small order numbers. To reach the objec-
tive, it is critical that a significant part of the overall production needs to origin from an
external source that can guarantee high quality and time precision.

Template
loading

Contracting

Verifying

Monitorability
negotiation

Enactment

Service consumer MiddlewareTemplate library

define in-house process

Service provider

return consumer's contractual sphere

evaluate contractual sphere

verify properties

project provider contractual sphere

request provider contractual sphere

return provider contractual sphere

request verification

send verification results

deliver template

request process template

project consumer sphere

successfully projected

notify service provider

request consumer's contractual sphere

successfully projected

notify service provider

start monitorability negotiation

participate in monitorability negotiation

start enactment

enact Sourcing configuration

request in-house process

commit in-house process

request provider sphere

commit provider sphere

send verification results

signal agreement

consensus reachedconsensus reached

consensus accepted consensus accepted

create provider sphere

Figure 4.5: An interaction-sequence example for static service assignment.

Description: Before the setup phase of a B2B collaboration begins, a service consumer
and a service provider limit their collaboration choice to one candidate. The provision
candidate must be able to guarantee the consumer the capability of offering an agreed
upon service. The sourced service is formulated as a template and externalized to ini-
tialize the setup interaction between collaborating parties with the objective to receive
a service of predictable time precision and agreed upon quality.
Forces: Achieving tight integration between a service consumer and a provider might
fail for different reasons. For example, if a provider is not capable of performing the
agreed upon service, it fails to be a credible candidate. Furthermore, failing technolog-
ical integration attempts between provider and consumer are a potential obstacle. The
provider might not be able to offer requested quality standards of services.

4.4. INTERACTION PATTERNS OF THE ESOURCING SETUP PHASE 57

Examples:

• A truck manufacturer has a competitive advantage by delivering according to
customer specifications within 17 working days. Such prompt delivery is only
assured when the truck manufacturer consumes clearly defined, external services
that are reliably available. Therefore, there exists one specially prepared supplier
who is capable of performing a mirroring of externalized consumer-processes.
Since the chosen supplier happens to possess crucial production know how with-
out which the truck manufacturer isn’t able to reach his deadlines, the consumer
is interested in a very tight supply-chain integration.

• An abstract example of static assignment that focusses on eSourcing is given in
Figure 4.5. The a priori tight integration efforts between service consumer and
provider are abstracted from. Instead the sequence of interaction starts with a
service consumer loading the predefined template resulting from earlier integra-
tion efforts. The template represents a consumer sphere that is integrated into the
consumer’s in-house process. Next, the consumer projects its sphere to the mid-
dleware situated between the consumer and the service provider. Consequently,
the service provider is informed by the middleware about the committed con-
sumer’s contractual sphere. The provider responds with a sphere projection to
the middleware. If the respective contractual spheres don’t match, the projection
procedures need to be repeated until the respective contractual spheres match
and a consensus is created. The contracting phase of interacting is ended after
the middleware informs the collaborating parties about the shared consensus and
when the provider has created its provider sphere. Next, the service consumer
requests the middleware to perform a verification of control-flow and data-flow
properties of the eSourcing configuration. In order to keep each other’s processes
secret from each other, the collaborating parties supply the in-house process and
the provider sphere to the middleware that performs all checks. The results are
sent out to the collaborating parties. If the verification succeeds, the collaborat-
ing parties may engage in negotiating the monitorability aspect of the eSourcing
configuration. Finally, the service provider sends a message to the middleware
that enactment should commence.

Pattern 2 (Dynamic Assignment)
Problem: For a part of the overall in-house process, an organization intends to exter-
nalize this process part to find an eSourcing counterpart. However, it is not clear who
the best counterpart is. Thus, the service-externalizing organization wants to see the
prospective candidates engage in a competition for service collaboration.
Description: An organization externalizes its service to a public broker that functions
as an anonymous process-market place for the purpose of engaging in a business collab-
oration. Other organizations may evaluate the published process and decide to engage
in a bidding for service. The service-externalizing organization chooses the offer and
rejects all other.
Forces: The publicly available process broker needs to be equipped with a directory
that allows service consumers to correctly file their process according to attributes like,
e.g., the type of industry, geographic location, language, and so on. With the help of
a search engine, potential service providers must be able to find those filed processes.
Furthermore, it must be ensured that bids and eventually bid acceptance and bid rejec-
tions can be communicated between the potential service providers and the consumer.

58 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

In-house
setup

Contracting

Verifying

Monitorability
negotiation

Enactment

Service consumer Middleware

model in-house process

define consumer sphere

Service broker

commit consumer's contractual sphere

successfully committed

Service provider N

check library

return contractual spheres

return contractual spheres

evaluate evaluate

store contractual process

place bid

bid accepted

place bid

bid accepted

check service-provider bids

return bids

evaluate bids

reject bid

rejection received

accept bid

accept received

remove contractual process

removed

Bidding

Broker
commit

Service provider 1

check library

reject bid

rejection received

accept received

accept bid

Figure 4.6: An interaction-sequence example for dynamic service assignment.

If the consumer happens to be confronted with a big number of provision bids, tool
support must permit the evaluation of those bids in an efficient and effective way.
Examples:

• A travel agency carries out the booking of a trip for a customer who needs to
travel to a capital city. The overall booking comprises a flight ticket, a hotel, and
renting a car. However, the hotel booking is carried out by a different company
that is actually located in the capital city and therefore has the appropriate exper-
tise. Thus, the travel agency submits the part of the in-house process to a public
broker as a request for service provision. Many potential service providers start
bidding and the travel agency chooses the best deal and rejects all other offers.

• In Figure 4.6 a possible setup phase is depicted that uses a dynamic-assignment
pattern for creating an eSourcing configuration. First, the service consumer cre-
ates an in-house process and defines a consumer sphere in it. Next, the consumer
sphere is projected to a publicly available service broker that can be searched by
potential service providers. Thus, interested parties place bids for service pro-
visions that are evaluated by the service consumer. The latter party chooses a

4.4. INTERACTION PATTERNS OF THE ESOURCING SETUP PHASE 59

service provider that represents the best deal and rejects all other offers. After
that, interaction blocks termed contracting, verifying, monitorability negotiation,
and enactment follow that contain interaction sequences similar to Figure 4.5.

Pattern 3 (Semi-Dynamic Assignment)
Problem: An organization is involved in tight supply-chain integration where parts of
an overall service are sourced. While it is important that a service is sourced, it is not
clear which organization can offer guaranteed collaboration.

Bidding

Broker
commit

Template
loading

Service consumer Middleware Service provider 1Service broker Service provider 2Template library Service provider N

check library

return contractual spheres

notify service provider

notify service provider

Contracting

Verifying

Monitorability
negotiation

Enactment

Figure 4.7: An interaction-sequence example for semi-dynamic service assignment.

Description: Before the setup time of a service exchange begins, the number of or-
ganizations that are willing to collaborate is predetermined. When the service to be
sourced is externalized to a broker, only the collaboration candidates may evaluate and
engage in a bidding for the service. Any other organization that is not a predetermined
candidate, is excluded. The service-externalizing organization chooses the offer and
rejects all other.
Forces: With respect to the tight integration of service providers, the forces of Pattern 1
apply. For using a publicly visible process broker and managing a bidding procedure,
the forces of Pattern 2 are applicable. The requirement of a notification system is spe-
cific for this semi-dynamic assignment pattern. Such a notification system is activated
when the template process is committed to the public process broker by the service
consumer. Since the template contains the set of predetermined service providers, the
broker should notify those providers so that they may engage in the bidding.
Examples:

• An insurance company evaluates claims resulting from car crashes. A part of
the in-house process is concerned with evaluating the damage. However, the
insurance company doesn’t consider such an assessment its core business and
therefore has external companies providing such assessment services. Those
companies form a pool of competing service providers that are shared between a
number of different insurance companies. Thus, it is never clear which company
is available for performing a car-damage assessment.

• An abstract example geared towards the creation of an eSourcing configuration
is given in Figure 4.7. First, a service consumer loads a template that contains

60 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

definitions referring to a set of tightly integrated service providers. After that the
consumer commits its sphere to a publicly available service broker. A service
provider N is browsing the service broker and receives several processes in re-
turn. However, processes where the predetermined service-provider candidates
are defined are not returned. Instead the service broker sends out notifications to
those providers defined in the process. The notified providers engage in a bid-
ding procedure after which a contracting phase follows with the providers that
were chosen by the service consumer. Afterwards the service consumer requests
a verification of the preliminarily defined eSourcing configuration. If the verifi-
cation concludes with an approval, the monitoring of process nodes is negotiated.
Eventually the service consumer requests from the middleware to enact the ready
eSourcing configuration.

After specifying assignment patterns, the following section comprises patterns deduced
from the direction dimension of Figure 3.7. As in the case of the assignment dimension,
each direction value is translated into one pattern specification.

4.4.2 Direction-Dimension Patterns

As Figure 3.7 shows, there are four options in the direction dimension of the interac-
tion perspective. Out-sourcing is characterized by a service consumer which initiates
the setup procedure of an eSourcing configuration by determining which part of the in-
house process is published externally. In the case of in-sourcing, the service provider
starts the setup phase with publishing a subset of process properties externally in a
broker. For both directions of interaction it is possible that the opposing collaborating
party is unknown at the beginning of the setup face of an eSourcing configuration. For
the following two direction options it is assumed the collaborating parties are deter-
mined at the beginning of the setup face. When an external-to-internal interaction is
chosen, both collaborating parties start with negotiating the shared, external process be-
fore adding their respective internal processes. Finally, during the internal-to-external
interaction both collaborating parties have internal processes defined that need to be
harmonized on an external level between the collaborating domains.

Pattern 4 (Out-Sourcing)
Problem: A company has a part of its in-house business process that is detrimental to
its overall competitive advantage. Thus, the company knows that a subcontractor could
carry out the process in a better way.
Description: A part of an organization’s in-house process that should be carried out
by a third party, is demarcated into a subprocess. Next, the subprocess is taken over
by an organization that agrees with offering the service. In the domain of the service
provider further refinement of the service may take place that remains opaque to the
service consumer. The subprocess in the domain of the service consumer and the re-
fined process in the domain of the provider are linked with each other and the service
consumer starts with enactment of the created inter-organizational configuration.
Forces: Since the assignment patterns of Subsection 4.4.1 are variants of the out-
sourcing pattern, all forces mentioned in the assignment patterns also apply for this
direction pattern.
Example: All examples mentioned for the assignment patterns of Subsection 4.4.1 are
variants of the out-sourcing direction pattern.

4.4. INTERACTION PATTERNS OF THE ESOURCING SETUP PHASE 61

Pattern 5 (In-Sourcing)
Problem: A company has serendipitously discovered a process innovation that poses a
competitive advantage. However, it is initially not clear which companies the potential
purchasers of the process innovation are.

Contracting

Verifying

Monitorability
negotiation

Enactment

Service provider Middleware

model refined sphere

Service broker

commit provider's contractual sphere

successfully committed

Service consumer N

check library

return contractual spheres

return contractual spheres

evaluate evaluate

store contractual process

place offer

offer accepted

place offer

offer accepted

check service-consumer offer

return offer

evaluate offer

reject offer

rejection received

accept offer

accept received

remove contractual process

removed

Consumer
offering

Broker
commit

Service consumer 1

check library

reject offer

rejection received

accept received

accept offer

Figure 4.8: An interaction-sequence example for in-sourcing.

Description: The service provider sets up a process in its own domain and subsequently
exposes a subset of the process details publicly. Compared to the exposed version,
the internal process contains additional refinement steps that remain opaque. Next, an
interested service consumer adopts the exposed process and integrates it in the in-house
process.
Forces: The service consumer may find it impossible to integrate the exposed process
of the provider. In that case extra negotiation about the exposed process content needs
to unfold between the collaborating parties. The situation can occur that potential
consumers are not aware of the offered service and as a result no collaboration comes
into existence.
Examples:

• A firm has set up a service where databases of many airline companies are
queried for last minute offers that are available for a reduced price. The search

62 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

is embedded in a bigger service where the booking and payment of the flight are
automatically handled. Travel agencies that sell tailored holiday trips to end cus-
tomers may integrate the flight-booking service into their booking process that
also incorporates insurance purchases, bookings of hotels, cars, and so on.

• In Figure 4.8 an in-sourcing example is depicted that focusses on the eSourcing
concept of Chapter 3. First, a service provider models a provider sphere inter-
nally. A subset of this provider sphere is turned into a provider’s contractual
sphere and committed to a publicly available service broker. Next, interested
service consumers check the committed contractual process and respond with
placing offers. The service provider evaluates the offers, accepts the best, and
rejects all other offers from the remaining consumers. Once two collaborat-
ing parties are allocated, the remainder of Figure 4.8 is described by interaction
blocks that are detailed in the assignment patterns of Section 4.4.1. Thus, the
collaborating parties engage in concrete contracting, followed by a verification
phase. After negotiating which process steps need to be monitored, the resulting
eSourcing configuration is enacted.

Pattern 6 (External-to-Internal)
Problem: Two parties want to establish a B2B supply chain without existing constraints
resulting from historically grown business processes in their own domains.
Description: The service consuming and providing organizations start with negotiat-
ing process properties on an external level. When they have reached consensus, both
parties take over the publicly agreed upon process for their internal domains. In the
domain of the service consumer the adopted process becomes a subnet of a bigger in-
house process, while in the service provider’s domain further refining process steps are
inserted.
Forces: A service broker can not be employed if there is no published service offer
available in the beginning. Thus, it might be a problem to find a collaborating party.
Furthermore, integrating the externally agreed process might fail because of an inade-
quacy of internal resources, e.g., the organizational structure turns out to mismatch, no
employees have the appropriate skills for carrying out certain tasks, required produc-
tion resources might be lacking, and so on.
Examples:

• An IT-company intends to develop an innovative software package for a lead-
ing telecom enterprize. For this purpose personnel with state-of-the-art skills is
hired. Still, a part of this new software package for the telecom enterprize can’t
be developed internally. Instead, a subcontractor that has been founded very
recently is used for this externalized part of the overall software.

• In Figure 4.9 an example of external-to-internal sourcing is depicted. Since there
is no initial contractual process available to publish in a public service broker,
collaborating parties need to find each other in a different way. The example in
Figure 4.9 suggests that a service consumer directly contacts a suitable provider
to engage in contractual negotiation on an external level. Thus, the collabo-
rating parties propose to each other their respective contractual spheres until a
consensus is reached. Next, the contractual spheres are backed by processes
in the domains of the service consumer and provider. The first party integrates
the sphere in the in-house process, and the latter party extends the contractual
sphere to a refined process. The following phases are depicted by interaction

4.4. INTERACTION PATTERNS OF THE ESOURCING SETUP PHASE 63

Verifying

Monitorability
negotiation

Enactment

Service consumer Middleware

model in-house process model provider sphere

propose external-to-internal sourcing

accept proposal

Service broker

commit consumer's contractual sphere

commit accepted

notify provider

request consumer's contractual sphere

return consumer's contractual sphere

evaluate

commit provider's contractual sphere

commit accepted

notify service consumer

evaluate

request provider's contractual sphere

return provider's contractual sphere

signal consensus

notify consensus

request consumer's contractual sphere

return consumer's contractual sphere

evaluate

signal consensussignal consensus

Service provider

External
negotiation

Internal
setup

Figure 4.9: An interaction-sequence example for external-to-internal sourcing.

blocks that have been detailed in previous pattern examples. Thus, the service
consumer initiates a verification phase that is followed by a negotiation phase
for determining which process steps need to be monitored. Finally, the resulting
eSourcing configuration is enacted.

Pattern 7 (Internal-to-External)
Problem: Collaborating parties have historically grown, stabile business processes in
their respective domains. These processes need to be harmonized on an external level
across organizational boundaries.
Description: Both the service consumer and provider have established business pro-
cesses in their domains. The consuming organization considers a part of its in-house
process to not be core business. On an external level, the consumer and provider engage
in negotiating a consensus process that accommodates their already existent respective
internal processes.
Forces: The internal processes of the service consumer and provider may proof to
differ so extensively from each other that it is not possible to find a consensus on an
external level.

64 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

External
negotiation

Verifying

Monitorability
negotiation

Enactment

Service consumer Middleware

model in-house process model provider sphere

propose internal-to-external sourcing

accept proposal

Service broker Service provider

contractual sphere integration contractual sphere integration

Figure 4.10: An interaction-sequence example for internal-to-external sourcing.

Examples:

• A market-share dominating OEM is a producer of high-precision track mainte-
nance machines. The OEM feels no necessity to change the production and busi-
ness processes. The suppliers of the OEM are equally not prepared to change
their historically grown production and business processes. After investing in
information technology and techniques the OEM and its suppliers begin to es-
tablish business collaborations electronically.

• An abstract example is depicted in Figure 4.10 as a sequence diagram. First the
collaborating parties model their internal processes before they engage with each
other proposing to commence with contractual negotiations on an external level.
The external negotiations are depicted as an interaction block that is detailed in
Figure 4.9. Once a consensus is reached, the contractual processes are integrated
in the processes of the respective domains. The remaining interaction shows
several interaction blocks for verification, monitorability negotiations, and the
eventual enactment of the ready eSourcing configuration.

After presenting the interaction patterns for the setup phase, the next section comprises
the construction-elements patterns of eSourcing configurations. These patterns are de-
ducted in a top-down way from the dimensions depicted in Figure 3.8.

4.5 eSourcing-Construction Patterns
The first dimension of contractual visibility addresses the issue of keeping business
secrets by disclosing different amounts of internal process details to the collaborating
counterpart. Thus, construction-dimension values of Section 3.4.2 are called white
box, grey box, and black box and are presented in Section 4.5.1. The monitorabil-
ity dimension is focusing on linking equivalent nodes of the consumer sphere and the
provider sphere so that their enactment is coordinated and that it is possible for one
party to observe in a flexible way the enactment progress of the eSourcing counter-
part. Given values in Figure 3.8 are messaging and polling from which patterns are

4.5. ESOURCING-CONSTRUCTION PATTERNS 65

deducted in Section 4.5.2. Finally, the conjoinment dimension addresses the issue of
modelling the exchange of commercially relevant information between the collaborat-
ing domains while ensuring correct termination. Such information exchange is either
one-directional or bi-directional and Section 4.5.3 specifies patterns that are deducted
from the given values.

4.5.1 Contractual Visibility
The contractual visibility is variable depending on the amount of process content that is
projected from the consumer sphere and the provider sphere to the contractual spheres.
On the one hand the consumer sphere and the contractual spheres contain identical
nodes and control-flow constructs. Such an example is depicted in Figure 3.2 and Fig-
ure 3.3. On the other hand only the interfaces of the consumer sphere are projected to
the contractual sphere, which grants the service provider no visibility of further process
details in the consumer sphere. Finally, a third option of contractual visibility is located
between the mentioned extremes where the consumer sphere’s interfaces and a subset
of the remaining process content is projected to the contractual sphere. Corresponding
to the values on the contractual-visibility axis of Figure 3.8, the emerging patterns for
contractual visibility are called black box, grey box, and white box.

The figures of the contractual-visibility patterns only contain two levels, namely
the service provider’s and consumer’s conceptual level, and the external level. The rea-
son is that the consumer’s and provider’s contractual spheres always need to be similar
for representing a consensus. Thus, depicting both contractual spheres does not add
to the specification of contractual-visibility patterns. Furthermore, in the consumer’s
conceptual level only the consumer sphere is depicted and the rest of the in-house pro-
cess omitted as the content of the in-house process has no influence on the type of
contractual-visibility pattern. Finally, when a transition in the provider sphere of the
service provider is depicted with a τ label in a provider sphere, it means that an abstrac-
tion has taken place (see Definition 16 of Section 2.5). Thus, the τ -labelled transition
is an additionally inserted refinement the service consumer is not aware of. During the
setup phase the service consumer is not aware because a τ -labelled transition is not
projected to the external level and during enactment the service consumer is not aware
since the effects of enacting a τ -labelled transitions are hidden from perception of the
collaborating counterpart.

There are further τ labels in the domain of the service consumer. The transitions
of the in-house process that are located outside of consumer spheres experience an ab-
straction as they are no candidates for projection to the consumer’s contractual sphere
of the external level. As a result the service provider is not aware of them during the
setup phase and the enactment of an eSourcing configuration. However, in the depic-
tions of the contractual-visibility patterns, only consumer spheres are contained and
the rest of the in-house process with τ -labelled transitions is omitted as it doesn’t add
to the pattern depictions.

Pattern 1 (Black Box)
Problem: The service consumer is interested in using service provision. However,
the consumer does not mind how the provision is carried out as long as the specified
exchanges are performed correctly.
Description: In the case of black-box visibility, only the interfaces of the consumer
sphere are focused on. These interface places must be equally contained with identical
labels in the consumer sphere and the provider sphere. It is not permitted for any

66 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Figure 4.11: Black-box pattern example.

sphere of the external level or the respective conceptual levels to have a deviating set
of interface places or differing labels. The opposing eSourcing parties are not aware
of other details in the consumer sphere and the provider sphere since the contractual
spheres only contain interface places with their labels. Thus, the provider sphere may
otherwise completely deviate from the consumer sphere provided the similar interface
places are serviced correctly according to their labels.
Forces: When only the interfaces of a contractual sphere are given, the service provider
might struggle to fill the provider sphere with process content. During the enactment
of an eSourcing configuration the consumer might experience service provision that is
counter productive.
Examples:

• A travel agency organizes journeys abroad for arbitrary customers. Such a travel
package consists of booking a trip, finding a hotel, renting a car, and so on. The
travel agency does not specialize on negotiating and ordering affordable hotel
bookings. As a result such a service is sourced in from service brokers where
providers are registered who know the market and have special agreements with
hotels in proximity. Since the concrete procedures of finding and booking most
suitable hotels differs from country to country, the travel agency merely discloses
the interfaces for starting and ending the hotel-booking service.

• In Figure 4.11 an abstract example of a black-box pattern is presented. The in and
out-labelled interface places are fully disclosed in the contractual sphere. Con-
sequently these interface places are also part of the provider sphere. However, it
is depicted that all transitions contained in the consumer sphere and the provider
sphere have a τ label, which means the eSourcing counterparts are not aware
of the other’s process content. Additionally, Figure 4.11 depicts that control-
flow constructs in both conceptual-level spheres are different. These differences
do not result in soundness problems as long as the interface places are adhered

4.5. ESOURCING-CONSTRUCTION PATTERNS 67

to. The reason is that the consumer sphere and the provider sphere are WF-nets
when the in and out-labelled interface places are removed.

Pattern 2 (White Box)
Problem: The service consumer demands an externalized service where the provider
must strictly adhere to the requirements defined in the consumer sphere. Despite having
strict service requirements imposed, the provider should still have the flexibility to ad-
just his service provision to internal requirements. However, these internal adjustments
should remain hidden from the service consumer.

Figure 4.12: White-box and a grey-box pattern example.

Description: A consumer sphere is fully projected to the external level of an eSourcing
configuration. All labels are visible to the provider as they are fully projected to the
consumer’s contractual sphere. As a result the nodes and labels of the contractual
sphere are all present in the provider sphere. However, it is possible for the service
provider to insert additional transitions in the provider sphere without violating the
agreed upon service behavior.
Forces: If projection inheritance [11] is used for provider sphere, it is not trivial for a
service provider to adhere as the correct application of refinement rules requires deep
knowledge of modelling formalisms when no tool support is available. However, with
tool support projection inheritance can be verified by replacing the consumer sphere of
the in-house process with the provider sphere. Projection inheritance is given when the
resulting net is a subclass of the in-house process.
Examples:

• For a so-called original equipment manufacturer (OEM) in the automobile in-
dustry it is important to reduce the production time per truck to 14 working days.
In order to achieve this objective, the OEM pursues a tight integration of sup-
pliers. Given the complexity of producing a truck within the market-dictated

68 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

time budget, the OEM demands that providers precisely mirror processes that
are outsourced to avoid supply problems.

• Figure 4.12 depicts that all nodes, control-flow constructs, and labels of the con-
sumer and contractual sphere are similar and no deviations are contained. While
the provider sphere at the bottom of Figure 4.12 contains all elements of the con-
tractual sphere, many additional elements are depicted with transitions contain-
ing a τ label. This means the service consumer is not aware of these additional
transitions during build and run time.

Pattern 3 (Grey Box)
Problem: The service consumer does not mind in large parts how service provision is
realized. However, the consumer wants to ensure that particular steps contained in the
provided service are mandatory and carried out in certain control-flows.
Description: The pattern does not permit deviating interface places in the consumer
sphere, the contractual sphere, and the provider sphere. Furthermore, a subset of nodes
different from interface places contained in the consumer sphere and provider sphere
is projected to the contractual sphere. The resulting consumer sphere is a connected
graph.
Examples:

• An OEM in the automobile industry demands from a provider the delivery of
leather coated car seats. However, the OEM insists the provider must purchase
the leather from a special certified seller following an agreed upon flow of tasks.

• An example of grey-box contractual visibility is depicted in Figure 4.12. The
provider sphere of the service consumer depicts interface places with labels that
are identical compared to the consumer sphere and the contractual sphere. The
contractual sphere shows a connected graph that contains a subset of nodes of the
consumer sphere. The provider sphere is a refinement of the contractual sphere,
as the inserted τ -labelled transition shows.

In the next section patterns belonging to values of the dimension called monitorabil-
ity are presented. These monitorability patterns ensure different levels of enactment
awareness for the service consumer.

4.5.2 Monitorability
Revisiting the initial eSourcing example of Section 3.3.1, there is no linking depicted
between the contractual sphere, provider sphere, and the contractual spheres of the
respective eSourcing domains. However, during enactment of an eSourcing configu-
ration, the collaborating parties must be able to coordinate and overview in a flexible
way the service provision and consumption. Thus, the monitorability patterns of this
section offer ways of establishing such links between spheres in different domains.

Communication across organizational domains may take place in two ways. Ac-
cordingly, in Figure 3.8 two values are contained in the dimension called monitorabil-
ity, namely polling and messaging. Based on those generalized communication con-
cepts, patterns for eSourcing are deducted. In the case of value polling one eSourcing
domain periodically asks if a change has taken place to a linked node of the opposing
eSourcing domain. Detected changes are duplicated by the linked node in the polling
eSourcing domain. The second monitorability classifier called messaging reverses the

4.5. ESOURCING-CONSTRUCTION PATTERNS 69

signalling direction. When a linked node experiences a change, a signal is sent to the
other linked node in the opposing eSourcing domain. Investigating such opposing mon-
itorability patterns is relevant to cater for a heterogenous enactment environment that
does not take into account similar monitorability options in the opposing eSourcing
domains.

a

a

a

a

Token
polling

Token
messaging

Life-cycle
polling

Life-cycle
messaging

Service provider

Service consumer

Token
propagation

Token
takeover

a

a

Transition
messaging

a

a

Transition
polling

Service provider

Service consumer

Polling

Messaging

p

m

t

p m

p p

m

Figure 4.13: Linking options for pursuing run-time visibility.

The degree of monitorability for a service consumer during the enactment of an eSour-
cing configuration is determined by the level of contractual visibility (see Section 4.5.1).
Only nodes from the consumer sphere and the provider sphere of an eSourcing config-
uration that are projected to the respective contractual spheres on the external level are
considered for monitorability. Figure 4.13 depicts different messaging and polling pat-
terns for linking such passive and transitions without claiming completeness. However,
before messaging-monitorability patterns are specified in the following subsection, an
investigation of issues related to the monitorability of equally labelled transitions with
a lifecycle is carried out

Introduction of Life-Cycle Monitorablity

For applying patterns of life-cycle monitorability, it is necessary to explore whether it
is possible to achieve a mapping of life-cycle stages that equally labelled transitions
use in opposing eSourcing domains. For presenting an analysis of the problem in this
subsection, a life cycle of a transition is refined to a labelled WF-net when an isolated
transition has only one input place and one output place. As Figure 4.14 shows, there is
only one life-cycle transition serving as an output node of that transition’s input place
and only one life-cycle transition serving as an input node of the transition’s passive
output node. Those life-cycle transitions propel a transition’s life-cycle states, which
are represented by labelled places.

If a transition in a process has multiple input places, they are at the same time mul-
tiple input places of the first labelled life-cycle transition that is starting to propel the
life cycle. Equally, when the transition with a life cycle has multiple output places, they
are at the same time the output places of the last unique, labelled life-cycle transition.
In Figure 4.14 the respective transitions’ life cycles are WF-nets as both have one input
place and one output place. The transitions are depicted by grey shaded boxes. All
other nodes are connected, i.e., they have at least one input and one output arc. In both

70 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Consumer life-cycle stages

accept complete

accept completeexecuting

Provider life-cycle stages

set event

accepted

event
execute

executing

stopped

pause resume

executing

Figure 4.14: Mapping of life-cycle stages.

cases the life-cycle nets terminate after enactment so that only one token is left in their
output places. Furthermore, Figure 4.14 contains a loop for pausing and resuming a
transition that is in the life-cycle stage executing. The transition contains an additional
life-cycle transition and state for event setting, which is not present in the consumer’s
life cycle. When a transition is accepted by a provider, this may serve as an event that
other transitions might need to wait for before they can be enabled.

Revisiting the notion of projection inheritance in Section 2.5, the life-cycle of the
provider’s isolated transition in Figure 4.14 is a subclass of the consumer’s transition
life cycle. Thus, in this case, when all transitions in a provider sphere and an in-house
process are replaced with life-cycle transitions and life-cycle places then an in-house
process containing a provider sphere instead of the consumer sphere is still a sound
WF-net. Next, the patterns depicted in Figure 4.13 are specified in detail starting with
patterns for the monitorability value called messaging. For all specified monitorability
patterns the examples are of an abstract nature and adjusted to purposeful applications
in an eSourcing configuration.

Pattern 4 (Token Propagation)
Problem: During the enactment of an eSourcing configuration, tokens enter out-labelled
interface places in the provider sphere that should trigger a message exchange with the
in-house process. Since all places of the provider sphere must be empty after en-
actment, these tokens should be removed while the exchange between the provider
sphere and the in-house process takes place. Additionally, the final token left in the
out-labelled interface place of the provider sphere needs to be removed to complete
enactment.
Description: This pattern links two equally labelled places from spheres that are not
part of the same level in an eSourcing configuration. Thus, linked are two out-labelled
interface places of the provider sphere, contractual sphere, and the consumer sphere.
The propagation starts when a token arrives in the linked source place. In that case the
token is passed on as a message to the linked target place in the different level. As a
result the source place has that token removed and placed in the target place.
Forces: A token already resides in the out-labelled interface place of the consumer
sphere before token propagation takes place. Thus, this token may be ahead of the
provider sphere’s out-labelled interface place and as a result it still takes more time
until a token-propagation message is triggered. Such an ’early’ token can’t result in

4.5. ESOURCING-CONSTRUCTION PATTERNS 71

enabling a transition.

Figure 4.15: Example of token propagation and token messaging.

Examples:

• For out-labelled interface places, the eSourcing configuration depicted in Figure
4.15 shows an example. When a token enters the out-labelled interface place
of the provider sphere, a propagation to the consumer sphere takes place. As
a result, the enactment of the provider sphere is terminated and the rest of the
service consumer’s in-house process is carried out.

• The out-labelled interface place of the provider sphere in Figure 4.15 is con-
nected with a token-propagation arc. When a token is placed in the interface
place, a message is sent to the equally labelled interface place of the consumer
sphere. As a result the token is passed on across the eSourcing domains from
one interface place to the other.

Pattern 5 (Token Messaging)
Problem: During the enactment of service provision, the consumer wants to observe
certain provision states. Thus, state changes that occur in the provider sphere of the
provider domain should be mirrored by the consumer sphere in the opposing domain.
Description: The token-messaging mechanism is triggered when a source place experi-
ences a change in the contained amount of tokens. A message delivers the new number
of contained tokens to the target place. The target place evaluates if its contained token
amount deviates from the number delivered in the received message. If the number
deviates, the tokens contained in the target place are synchronized while the amount of
tokens in the source place remain unchanged.

72 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Examples:

• Figure 4.15 depicts a token-messaging example for in-labelled interface places.
The token-messaging direction must lead from the consumer sphere to the provider
sphere. The reason for this linking direction is that an active input node belong-
ing to the service consumer’s in-house process puts a token into the consumer
sphere. Consequently, the enactment of the consumer sphere is started. In order
to start the enactment of the provider sphere, token messaging is required to put
a token into the in-labelled interface place of the provider sphere. After token
messaging, the input places of both spheres contain a token and the enactment of
the eSourcing configuration may carry on.

• To support monitorability for the service consumer, places in spheres that are
not interface places can be linked in the direction from the provider domain to
the consumer domain. Once the enactment of service provision is started, state
changes are taking place in the provider sphere that should be monitorable in the
consumer sphere. Thus, token messaging from the provider domain to the con-
sumer results in having state changes of service provision followed for permitting
consumer monitoring. In Figure 4.15 corresponding examples are depicted.

• Interface places with an in label have an active input node from the in-house
process outside of the consumer sphere. As Figure 4.15 shows, such a token
enables the active receive nodes in the consumer sphere and the provider sphere.
Therefore, token messaging is applicable in such a case with a linking direction
from the consumer sphere to the provider sphere.

Pattern 6 (Transition Messaging)
Problem: A transition does not contain a lower-level life cycle. An equivalently la-
belled transition in the consumer domain only has to be enacted when the linked tran-
sition in the provider’s provider sphere has fired.
Description: While a linked source transition fires, a message is sent to the equally
labelled target transition. If the target transition is enabled, i.e., has a token in all its
input places, the transition fires once the message from the equally labelled source
transition arrives. Consequently, the target transition produces a token for all its output
places.
Examples:

• An example of transition messaging is depicted in Figure 4.16 in connection
with transitions that have life-cycles. When enabled, the consumer’s life-cycle
transitions can fire in synch with an equally labelled life-cycle transition of a
service provider. The life-cycle transitions labelled accept and complete equally
occur in transitions of the service consumer and provider domain. Thus, these
two nodes are suitable for linking with transition-messaging arcs directed from
the service provider to the consumer.

• Active nodes without a life cycle can be linked with a transition-messaging arc.
These nodes must have equal labels and be mutually known, i.e., be part of the
respective contractual spheres on the external level of an eSourcing configura-
tion. Then the linking direction is from the domain of the service provider to the
domain of the consumer.

4.5. ESOURCING-CONSTRUCTION PATTERNS 73

Consumer domain

accept complete

accept completeexecuting

Provider domain

set event

accepted

event

execute

stopped

pause resume

executing

m m m

a

a

Consumer domain

Provider domain

a

a

m

Figure 4.16: Life-cycle messaging as a black box and white box.

Pattern 7 (Life-Cycle Messaging)
Problem: During the enactment of transitions carrying labels that are equally located
in the domains of the respective eSourcing parties, the life-cycle changes need to be
communicated from the domain of the service provider to the consumer’s domain.
Description: This pattern assumes the life-cycle of transitions that are linked for mon-
itoring consist of lower-level nets. Consequently, life-cycle states and life-cycle transi-
tions that are semantically matched for the respective transitions, are linked with token
messaging and transition messaging arcs.
Forces: Prior semantic life-cycle mapping is required in the heterogeneous system
environments of the service consumer and provider. As discussed in the beginning
of Subsection 4.5.2, linked transitions might have different life cycles with steps not
present in the opposing eSourcing domain or with differently positioned life-cycle
steps. Some life-cycle steps may be mutually present but differently termed. Thus,
a decision needs to be taken about the semantic equivalence of particular life-cycle
steps.
Examples:

• In the example depicted in Figure 4.16, the life-cycle states in the consumer’s
and provider’s transition carry the equal executing label. Thus, the respective
life-cycle states are linked with a token-messaging arc (see Pattern 5). Dur-
ing the enactment of an eSourcing configuration the life-cycle transitions in the
provider sphere propel the life cycle of transitions. Tokens that appear in the
source life-cycle state are messaged to the equally labelled target life-cycle state
in the consumer domain.

• Equally labelled life-cycle transitions are linked with a transition-messaging arc
(see Pattern 6) from the direction of a service provider to a consumer. An exam-
ple is given in the previous pattern.

The following patterns are focusing on different ways of polling changes during the
enactment of an eSourcing configuration. Those polled changes help one eSourcing
party to monitor and mirror the enactment progress of the opposing eSourcing party.
In Figure 4.13 the monitorability patterns that use polling mechanisms are depicted at
the top. These patterns are described below in further detail:

74 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Pattern 8 (Token Takeover)
Problem: A provider sphere needs to be cleared of tokens residing in places that do not
serve as input nodes to any other transitions. However, the token clearing is triggered
from the domain of the service consumer.

Figure 4.17: Example of token takeover and token polling.

Description: The out-labelled interface places are linked in the direction from a con-
sumer sphere to the corresponding provider sphere of a provider. A request is sent
periodically from the domain of a service consumer to the equally labelled place of the
provider sphere to check whether a token resides there. If the response is positive, the
token is removed from the provider domain and placed in the target interface place of
the consumer domain.
Examples:

• The out-labelled interface place of the provider sphere in Figure 4.17 is con-
nected to a token-takeover arc. When a token is placed in that interface place,
token polling from the domain of the service consumer results in a positive re-
sponse. As a result the token is taken over and placed in the equally labelled
interface place of the consumer’s domain. Consequently, the provider’s out-
labelled interface place is empty.

Pattern 9 (Token Polling)
Problem: During the enactment of an eSourcing configuration the opposing eSourcing
parties want to monitor the progress of state changes. However, for economic reasons
only some state changes are of relevance to an eSourcing party and are consequently
mirrored according to the opposing domain.
Description: Places that belong to the domains of a service provider and consumer and
that are not out interface places are linked with each other. Periodically the number of
tokens contained in the respective places are checked. When the numbers deviate, the
amount of tokens contained in the place of the polling domain is synchronized if it is
less than in the target domain. Such synchronization does not affect the token amount
contained in the place of the target domain.

4.5. ESOURCING-CONSTRUCTION PATTERNS 75

Forces: The proper setting of the polling interval is relevant for keeping the polling
domain up to date with respect to state changes in the target domain. If the polling in-
tervals are too long, state changes of the target domain can be miss. On the other hand,
if the polling intervals are very short, the performance of the applications involved in
the enactment of an eSourcing configuration are stressed unnecessarily. Furthermore,
it must be stated that early tokens may occur in a linked place of a consumer sphere.
Thus, such an early token only enables the output transitions of the place it resides
in when the procedure of token polling results in a synchronization of the amount of
tokens compared to the linked place in the provider sphere.
Examples:

• The in-labelled interface places of Figure 4.17 are linked with a token-polling
arc from the domain of the service consumer to the provider. The token is pro-
duced by an active input node belonging to the consumer’s in-house process and
consumed by an active receive node that is located in the provider sphere.

• Places that are not interface places are linked with token-polling arcs in the di-
rection from service consumer to the provider domain. In Figure 4.17 the place
between the a and b-labelled transitions of the provider sphere is polled for to-
kens. The linked place in the consumer sphere synchronizes its token number.

Pattern 10 (Transition Polling)
Problem: A service consumer wants to monitor when an enabled transition without a
life cycle may fire in its domain.
Description: Two transition nodes with equal labels in opposing eSourcing domains
are linked in the direction from service consumer to provider. When the consumer’s
transition is enabled, periodic polling takes place to check if the provider’s linked tran-
sition has fired. If the response is positive, the consumer transition fires and the polling
is stopped.
Forces: The forces exserted on this pattern are comparable to the forces of Pattern 9
during the enactment of an eSourcing configuration with respect to the alignment
promptness of a source transition compared to the polled target transition.
Examples:

• An example of transition polling is depicted in Figure 4.18 in connection with
transitions that have life-cycles. Both life-cycle transitions labelled accept and
complete occur in transitions of the service consumer and provider domain.
The equally labelled life-cycle transition of the service provider is periodically
polled. If the response contains the message that firing has been carried out, the
consumer transition fires, which results in a change of the life-cycle state.

• Transitions without life cycles that are equally labelled in the domains of the ser-
vice consumer and provider may be linked with transition-polling arcs. When the
consumer’s transition is enabled, polling of the target transition in the provider’s
domain starts to monitor its firing. This is periodically repeated until the re-
sponse states firing occurred. As a result the consumer transition also fires to
follow the provider domain and polling is stopped.

Pattern 11 (Life-Cycle Polling)
Problem: During enactment of an eSourcing configuration the life cycles of transitions
in the consumer sphere need to be synchronized with the life-cycles of equally labelled

76 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

accept complete

accept completeexecuting

set event

accepted

event

execute

stopped

pause resume

executing

Consumer domain

Provider domain

a

a

p

Consumer domain

Provider domain

a

a

ppp

Figure 4.18: Life-cycle polling as a black box and white box.

transitions in the provider’s domain. However, the initiative for triggering alignments
during service enactment should occur in the consumer domain.
Description: This pattern assumes the life-cycles of transitions consists of a lower-
level net (see Subsection 4.5.2). It is a prerequisite that life-cycle states and life-cycle
transitions need to be semantically matched across eSourcing domains. Consequently
they are linked in the direction from the service consumer to the provider domain with
token-polling and transition-polling arcs.
Forces: For this pattern the forces are comparable to those mentioned in Pattern 7 about
life-cycle messaging. Additionally, the polling intervals must be set appropriately. The
consumer sphere runs the danger of falling behind during enactment when polling is
not performed promptly. However, too frequent polling is a burden for the efficiency
of applications that are used during the enactment of an eSourcing configuration.
Examples:

• In the example depicted in Figure 4.18 the life-cycle states labelled executing in
the consumer’s and provider’s transition are linked with a token-polling arc (see
Pattern 9). During enactment of an eSourcing configuration the provider’s tran-
sition is polled for having reached the life-cycle stage executing. If the response
results in having a lower number of tokens contained in the respective life-cycle
state, the number of tokens is aligned in the domain of the service consumer.
Consequently, the tokens in the provider’s life-cycle state remain unchanged.

• Equally labelled life-cycle transitions are linked with a transition-polling arc
from the direction of a service consumer to a provider domain. An example
is given in Pattern 10.

Next, the eSourcing-patterns space in Figure 3.8 contains another eSourcing dimension
that is covered in the following section, namely conjoinment.

4.5.3 Conjoinment
Conjoinment is focusing on the way a service provider and consumer use exchange
channels. In the example of Figure 3.3.1, the provider sphere, respective contractual
spheres, and the consumer sphere contain in- and out-labelled interface places through

4.5. ESOURCING-CONSTRUCTION PATTERNS 77

which such conjoinment between the two eSourcing domains takes place. These in-
terface places are connected to dedicated transitions that trigger either the sending or
the receiving of business information across organizational domains. These conjoin-
ment transitions carry visible labels in the consumer sphere, the provider sphere, and
the respective contractual spheres. Thus, conjoinment transitions are part of the the
negotiations between service consumers and providers during the setup phase of an
eSourcing configuration.

In Figure 4.19 an extra notation for transitions is presented that is used for further
discussing the conjoinment dimension. By using this notation, particular features of
conjoinment patterns become apparent. The transitions of Figure 4.19 either receive a
message, send a message, or receive and send a message consecutively. Such nodes can
either be transitions that fire immediately when enabled or they contain more elaborate
life cycles (see Subsection 4.5.2).

S
send node receive node bi-directional

node
send

transition
receive

transition
bi-directional

transition

BR BTRTST

Figure 4.19: Active conjoinment node notation.

In order to make those distinctions visible, additional labels are depicted in Figure 4.19
that are carried by the shown nodes. The labels S, R, B are for transitions with lower
level life cycles where the first is sending or initiating an exchange, the second receives
or accepts an exchange, and the latter is bidirectional, i.e., the node needs to accept an
exchange before it is enabled to initiate a counter exchange after firing. The labels ST,
RT, BT are for transitions that are transitions without any contained life cycle where
the first is for an exchange-initiating transition, the second an exchange-accepting tran-
sition, and the latter node is a bi-directional transition that needs to accept an exchange
before an exchange is initiated in response.

In accordance with the values depicted in Figure 3.8 on the conjoinment dimension,
the first two patterns described below are part of the conjoinment value one-directional
and the latter two patterns are part of the value bi-directional. The reason for having
two patterns deducted from each conjoinment value is that an information exchange
can either be initiated from the domain of the service consumer or from the domain of
the service provider.

Every pattern specification includes a visualization that consists of two parts. The
top shows the conceptual-level in the consumer domain consisting of an in-house pro-
cess with a contained consumer sphere. For sake of brevity a depiction of the external
level and the provider’s conceptual level are omitted. If the labels of conjoinment
nodes in the top depictions are in brackets, then the service provider is not aware of
them as they are part of the in-house process. The same is true for transitions that
carry a τ -label. The bottom of the pattern figures show pattern variations that employ-
ing different types of conjoinment nodes from Figure 4.19. The specified conjoinment
patterns do not contain a description of related forces as they are similar. Instead the
forces are given towards the end of this section.

78 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Pattern 12 (Provider-Initiated One-Directional)
Problem: During build time of an eSourcing configuration a construct is required that
allows the service consumer and provider to reach consensus on an exchange of in-
formation directed from the provider domain to the consumer domain. The created
exchange should permit the checking of correct termination.

Figure 4.20: Provider-initiated one-directional conjoinment.

Description: All spheres of an eSourcing configuration have a port through which in-
formation leaves towards the domain of the service consumer. This port has an input
node for triggering the sending of information. In the domain of the service consumer
an output node of the port receives the delivered information. This receiving conjoin-
ment node is part of an in-house process outside of the consumer sphere.
Examples:

• A service provider in the automobile industry agrees to supply an engine to an
original manufacturer (OEM) of trucks. The OEM demands process mirroring
for achieving a tight integration with the provider. Whenever the production of
an engine is completed, the OEM demands to have the resulting data from the
quality checks delivered for evaluation and controlling purposes.

• An abstract example is depicted at the top of Figure 4.20 where a conceptual-
level process in the consumer domain is depicted. The consumer sphere contains
a sending conjoinment node connected to an out-labelled interface place. These
two nodes are replicated in all other spheres that are part of the same eSourcing
configuration if they are projected to the consumer’s contractual sphere. The in-
house process of Figure 4.20 has an R-labelled conjoinment node that uses the
interface place as an input node. Since the enactment of the sending conjoin-
ment node takes place in the domain of the service provider, an exchange from
provider to consumer takes place via the external level.

Pattern 13 (Consumer-Initiated One-Directional)
Problem: The eSourcing parties need to reach consensus on an information exchange
directed from the consumer domain to the provider domain. Such an exchange should
not endanger the correct termination of the overall eSourcing configuration.
Description: In the domain of the service consumer a sending conjoinment node that
initiates information exchange to the domain of the service provider, is part of an in-
house process outside of the consumer sphere. Such a transition is connected to a port
through which information is injected into the spheres of the eSourcing configuration.

4.5. ESOURCING-CONSTRUCTION PATTERNS 79

Figure 4.21: Consumer-initiated one-directional conjoinment.

The input port is followed by a node that receives this information and which is located
in the consumer sphere, the respective contractual spheres, and the provider sphere.
Examples:

• In alignment with the first business example given in Pattern 12, the exchange
is now directed from the OEM to the service provider who delivers engines for
truck production. The produced trucks may individually vary depending on cus-
tomer demand. Thus, for every engine that is produced by the provider, the
adjusted engine specifications must be communicated as input to the provider.
That way the overall eSourcing configuration is stabile from a process point-of
view. However, it is possible to adjust the engine production in a flexibel way to
requested engine variations.

• The consumer’s in-house process is depicted in Figure 4.21 where it has a send-
ing conjoinment node equipped with an S label in brackets and a passive output
node that is an in-labelled interface place. This interface place in the domain of
the service consumer serves as a passive input node for a receiving conjoinment
node contained in the consumer sphere. In Figure 4.21 that latter node carries
an R label. Due to well-directedness, the in-labelled interface place is replicated
and contained in the provider sphere of the service provider. During enactment
of the overall eSourcing configuration an exchange is carried out that is initiated
by the consumer and accepted by the provider. If data flows along such control
flow that is verified for soundness, it is likely that the exchange from the domain
of the service consumer to the provider does not create problems.

Pattern 14 (Provider-Initiated Bi-Directional)
Problem: The service provider has to forward information to the consumer domain that
should immediately be answered by a response. Such an exchange should not violate
the correct termination of an eSourcing configuration.
Description: A sending conjoinment node that initiates information exchange to the
domain of the service consumer is part of the consumer sphere, the contractual spheres,
and the consumer. Such a sending conjoinment node is connected to a port at the border
of the sphere through which information is exchanged to the domain of the service
consumer. The port is connected to a bi-directional conjoinment node that is part of
an in-house process outside of the consumer sphere. This bi-directional node receives
the delivered information and responds with sending information back to the domain
of the service provider through another sphere port. Finally, a receiving conjoinment

80 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Figure 4.22: Provider-initiated bi-directional conjoinment.

node that is replicated in all spheres of an eSourcing configuration serves as a recipient
for the information sent through the response port.
Examples:

• A local service provider is booking a hotel room according to special require-
ments of a customer. Those requirements are delivered by a travel agency that
sources in the service of booking a hotel room. Since the payment format should
be kept flexible, the provider must be able to ask the travel agency during en-
actment how the customer would like to pay for a particular hotel room. The
response from the travel agency should be received immediately by the service
provider in order to finalize the hotel booking.

• In the top of Figure 4.22 the depicted consumer sphere contains a sending and
receiving conjoinment node in the sphere. The first node carries an S label and
the latter and R label. The sending conjoinment node has a passive output node
that is an out-labelled interface place, which serves an an input node for the
bi-directional node in the in-house process. This B-labelled conjoinment node
produces an immediate response during the exchange. For this reason one pas-
sive output node of the bi-directional conjoinment node is an in-labelled inter-
face place. Consequently, that interface place is a passive input node for the
R-labelled receive node contained in the consumer sphere.

Pattern 15 (Consumer-Initiated Bi-Directional)
Problem: The consumer needs to initiate an exchange with the service provider. How-
ever, the provider is immediately responding to the opposing eSourcing domain. Such
bi-directional information exchange must not endanger the correct termination of an
eSourcing configuration.
Description: A sending conjoinment node that is part of the in-house process outside of
the consumer sphere, is connected to a port through which information is injected into
eSourcing spheres. This port is connected to a bi-directional conjoinment node that is
replicated in all spheres of to the same eSourcing configuration. The latter conjoinment
node responds with information that is sent through another port back to the domain

4.5. ESOURCING-CONSTRUCTION PATTERNS 81

Figure 4.23: Consumer-initiated bi-directional conjoinment.

of the service consumer. Finally, a receiving conjoinment node located in the in-house
process outside of the consumer sphere serves as a recipient for the information that is
delivered through the second port.
Examples:

• A broker deals with a customer who wants to buy a house. While the process of
finding a suitable house is on the way, in parallel a service provider deals with
the financial matters related to providing a mortgage. For example, the service
provider first needs to evaluate whether the customer of the broker is free of
debts. At some point a house is found and the broker exchanges details about
the price to the service provider. Based on the evaluated credit-worthiness, the
provider needs to respond immediately whether a mortgage can be granted for
purchasing the house. Based on the response, the broker goes ahead to offer the
house or recommends that the customer needs to look for a less expensive house.

• The top of Figure 4.23 depicts an in-house process that contains a sending and
receiving conjoinment node. The first node carries a S label and the latter node a
R label. The sending node has a passive output node that is an in-labelled inter-
face place, which denotes an information exchange into a consumer sphere takes
place. This interface place serves as a passive input node for the bi-directional
conjoinment node in the depicted consumer sphere. A contained B-labelled node
produces an immediate response by placing a token in an out-labelled interface
place. The latter interface place is a passive input node for the R-labelled receive
node contained in the in-house process. Since the R and S-labelled conjoin-
ment nodes are positioned outside of the sphere, the provider’s provider sphere
does not contain equally labelled conjoinment nodes. Instead the in and out-
labelled interface places are part of all spheres involved in the eSourcing con-
figuration. Consequently, a B or BT-labelled conjoinment node is part of the
provider sphere.

Finally, it needs to be stated that all four conjoinment patterns are exposed to the same
forces. When a conjoinment construct is chosen, the performance characteristics of
an exchange during enactment are influenced by incorporated monitorability patterns.

82 CHAPTER 4. THE NATURE OF PATTERNS IN THE CONTEXT OF DIBPM

Depending on the conjoinment direction, the out and in-labelled interface places need
to be linked with monitorability arcs. If messaging is applied, token propagation (see
Pattern 4) is suitable and if polling is applied, token takeover (see Pattern 8) is ap-
propriate. However, such a monitorability choice influences the speed of conjoinment
enactment. If token takeover is used, the defined polling period potentially postpones
the conjoinment until the next polling interval starts. If token propagation is chosen,
the conjoinment across eSourcing domains is started immediately. However, it is pos-
sible that the R, RT, or B-labelled conjoinment node is not yet enabled for responding
to the conjoinment exchange.

Let us assume equally labelled conjoinment nodes are part of the consumer sphere,
the respective contractual spheres, and the provider sphere. If these transitions are
linked for life-cycle monitorability (see Pattern 7 and Pattern 11) then conjoinment
construction fails during build time if the lower level life-cycles can’t be semantically
matched. Furthermore, just as in the case of linking out and in-labelled interface places,
the speed of enacting conjoinment nodes varies depending on the type of employed
monitorability links.

4.6 Conclusion
This chapter proposes that intra and inter-organizational knowledge workers should
employ patterns for dynamic inter-organizational business process management. Using
patterns promises the speedy evaluation and integration of intra-organizational busi-
ness processes across the domains of collaborating parties. A meta model is described
for uniformly storing pattern specifications, ordering the patterns in a taxonomy, and
capturing information about technology support of specific patterns. Subsequently a
knowledge base can be constructed based on the pattern meta-model for supporting
inter-organizational knowledge workers.

For a pattern-based exploration of eSourcing, the suitability analysis of eSourcing
from Section 3.4 is used. Thus, the interaction dimensions called assignment and di-
rection and the construction structural dimensions called contractual visibility, moni-
torability, and conjoinment are used for discovering patterns that are specified in this
chapter.

The specified eSourcing patterns are instrumental in two ways. Firstly, the interac-
tion patterns are input for developing a reference architecture that supports the setup-
and the enactment phase of eSourcing configurations. Secondly, the construction-
elements patterns are used for developing an XML-based specification language for
eSourcing configurations.

Chapter 5

Verifying eSourcing
Configurations

Contents

5.1 Introduction . 84
5.2 Conceptual Level of the Service Consumer 84
5.3 Conceptual Level of the Service Provider 88
5.4 External-Level Properties . 88

5.4.1 Properties of Contractual Sphere 89

5.4.2 External-Level Projections 90

5.4.3 Contractual Consensus 92

5.5 eSourcing Configurations . 93
5.6 Checking eSourcing Configurations 94

5.6.1 Checking Correct Termination Using Collapsing 94

5.6.2 Checking Correct Termination using Projection Inheritance 97

5.7 A Verifier Component . 98
5.8 Related Work . 100
5.9 Conclusion . 101

An eSourcing configuration that is constructed with the structural patterns of Chapter 4
needs to be verified before enactment for service-agreement adherence and control-
flow anomalies, e.g., deadlocks and livelocks. Hence, this chapter formally defines
properties of eSourcing configurations and shows that the collapsing method of Chap-
ter 3.3.3 is applicable for ensuring the correct termination of an eSourcing configura-
tion. The formal definitions build on the Petri-net theory of Chapter 2, in particular the
pre-existing theory about inter-organizational workflow nets (IOWF-nets). The formal
definitions of this chapter point out an extension scope for the verification tool Woflan
that is integrated into a proposed reference architecture. The extension permits collab-
orating parties to independently have their conceptual-level processes verified without
forcing collaborating parties to disclose their business internals to each other.

83

84 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

5.1 Introduction
In Chapter 3 the concept of eSourcing is proposed, which employs a three-level frame-
work [51] for tackling the complexity of dynamically matching a service consuming
and a service providing process. An eSourcing configuration constructed with the
structural patterns of Chapter 4 needs to be verified before enactment for service-
agreement adherence and control-flow anomalies, e.g., deadlocks and livelocks. These
structural patterns include contractual visibility that needs to conclude in a consensus
between a service consumer and a service provider.

In this chapter, the properties of eSourcing configurations are formally defined, for
which the conceptual understanding about eSourcing established by the pattern-based
analysis of Chapter 4 serving as input. The formal definitions build on the Petri-net
theory of Chapter 2, in particular the pre-existing theory about inter-organizational
workflow nets (IOWF-nets). An approach for establishing an eSourcing configuration
is presented that supports the three-level framework proposed in Chapter 3 and Chap-
ter 4. It is shown that the collapsing method of Chapter 3.3.3 can be formalized to
check the correct termination of an eSourcing configuration. Furthermore, it is demon-
strated that using particular types of contractual visibility suffices for establishing a
contractual consensus that only requires local checks within the domains of a service
consumer and a service provider, rendering a check of an entire eSourcing configura-
tion by a trusted-third-party component superfluous.

The structure of this chapter is as follows. A running example is used that shows
how the processes of a service consumer and a service provider are inter-organizationally
matched while correct service termination is ensured. Each section presents different
properties of an eSourcing configuration. Based on the Petri-net theory of Chapter 2,
Section 5.2 starts with formally investigating the conceptual levels of the service con-
sumer and how a partitioned in-house process can be mapped to inter-organizational
workflow nets. Next, Section 5.3 formally defines the domain of a service provider
and shows how service refinement is formally supported. The respective conceptual
levels are part of a three-level framework [51] (see Section 3.2) for managing the busi-
ness, conceptual, and technological complexity involved in eSourcing configurations.
Section 5.4 defines the projection variations from the conceptual to the external levels
and different types of consensus constellations between collaborating parties. In Sec-
tion 5.5 the properties of eSourcing configurations are defined. Section 5.6 focusses
on how eSourcing configurations can be checked for correct termination. Furthermore,
the section shows that if black-box projection is not used, an established run-time inter-
organizational workflow is guaranteed to be sound and to realize the in-house process
without requiring any coordination among collaborating parties. Section 5.7 presents
a reference architecture for supporting the methods defined in Section 5.6. Section 5.8
discusses related work and finally, Section 5.9 concludes the chapter.

5.2 Conceptual Level of the Service Consumer
Based on a three-level framework [51], Figure 5.1 shows the top conceptual level where
an in-house process initially does not contain a consumer sphere. The bottom concep-
tual level of Figure 5.1 depicts that a consumer sphere is demarcated in the in-house
process. Since this results in a discontinuity in the remainder of the in-house process,
it is considered invalid. To resolve this, an extra place with the label im is introduced in
the middle process of Figure 5.1. Details about the im place are presented in the sequel

5.2. CONCEPTUAL LEVEL OF THE SERVICE CONSUMER 85

of the section. The external level depicted in Figure 5.1 is explained in Section 5.4
where contractual spheres are investigated.

Figure 5.1: The conceptual domain of the service consumer.

Figure 5.1 shows a mapping to the internal level where legacy systems are located, e.g.,
intra-organizational workflow management systems, ERP systems. The projection of
process details to the external level is dealt with in Section 5.4. An in-house process is
defined as follows.

Definition 19 (In-house process). An in-house process is a sound WF-net, i.e., N ∈
W .

See Section 2.3.1 for the definition of soundness. In conformance with the connected-
ness requirement for WF-nets (see Definition 3 in Section 2.2), the in-house process of
Figure 5.1 has one unique input and one unique output place. A token that is placed in
i instantiates one particular in-house process.

The interface places depicted in Figure 5.1 located on the borders of the respective
spheres are provisions to enable a systematic exchange of business relevant informa-
tion between the consumer sphere and the rest of the in-house process. The interface

86 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

places are part of what Section 3.4.3 and Section 4.5.3 describe with the specifically
introduced eSourcing term conjoinment. To denote that the interface places and theirs
connected arcs are separated from the consumer sphere in a valid partitioned in-house
process, they are depicted with dotted lines. Furthermore, to support the clarity of the
formalism in this chapter, the interface places and connected arcs in depicted contrac-
tual spheres and provider spheres are also lined in a dotted way.

We formalize eSourcing configurations using the theory of IOWF-nets. In Sec-
tion 2.4, an IOWF-net has been defined as a set of sound WF-nets connected by
channel-flow relations. The following definition, taken from [12], shows that a sound
WF-net can be partitioned into an IOWF-net where it is important that such a partition-
ing is valid.

Definition 20 (Valid partitioning). Let N be a sound WF-net and Q be an IOWF-net.
Q is a valid partitioning of N if and only if Q is sound and N = β(flat(Q)).

See Section 2.4.1 for the definition of soundness for IOWF-nets. Using Definition 20,
we can now define the notion of a partitioned in-house process. An example of such a
partition is shown at the bottom of Fig 5.1. A partitioned in-house process is defined
as follows.

Definition 21 (Partitioned in-house process, consumer sphere, internal process). A
partitioned in-house process PIHP is a tuple (IHP, I, CS, IP, L, G) where:

1. IHP is an in-house process in W;

2. I is a set of interface places;

3. CS = (PCS , TCS , LCS , FCS , `CS) is a WF-net, called a consumer sphere, that
is sound, i.e., CS ∈ W;

4. IP = (PIP , TIP , LIP , FIP , `IP) is a WF-net, called an internal process, that is
sound, i.e., IP ∈ W;

5. Instance creation: PIP contains an input (source) place i ∈ PIP

such that •i=∅;

6. Instance completion: PIP contains an output (sink) place o ∈ PIP

such that o•=∅;

7. L = (LCS ∪ LIP) is the set of transition labels;

8. G ⊆ (I × L) ∪ (L × I);

such that Q = (I, 2, IP, CS, L, G) is an IOWF-net and Q is a valid partitioning of IHP.

Note that channels formalize interface places and the channel flow relation formalizes
conjoinment (see Section 4.5.3). From Definition 20, it follows that I ⊆ PIHP . The
partitioned in-house process focuses on the collaboration of one service consumer with
one service provider. However, the collaboration is extensible to one service consumer
with several service providers by repeatedly partitioning the internal process.

Next, the mapping of a valid partitioned in-house process to an IOWF-net is ex-
plained. Figure 5.2 depicts the IOWF-net Q that corresponds to the partitioned in-house
process at the bottom of Figure 5.1, using the notation of [12]. The grey-filled boxes
are labels in L to which the transition labels of the consumer sphere and internal pro-
cess are assigned. Between the labels the channel places in I are depicted that connect

5.2. CONCEPTUAL LEVEL OF THE SERVICE CONSUMER 87

Figure 5.2: The result of mapping from a partitioned in-house process to a IOWF-net.

the two workflow nets. The created channel flows in G have the same direction as the
conjoinment directions of the running eSourcing example of Figure 5.1.

For a valid partitioning, the internal process, i.e., the remainder of the in-house
process without the consumer sphere must again be a sound WF-net. Figure 5.1 shows
an in-house process IHP and a consumer sphere CS for which the resulting internal
process IP does not fulfill this criterion any more, since IP is not a WF net. Thus, the
partitioning created by the consumer-sphere demarcation might not be valid.

To overcome this problem, the extension of the to be partitioned workflow net with
implicit places has been proposed [12]. A place of a marked P/T-net is said to be
implicit or redundant if and only if it does not depend on the number of tokens in the
place whether any of its output transitions is enabled by some reachable marking. Note
that implicit places do not change the behavior of a process they are used in.

Definition 22 (Implicit place). Let (N, s) with N = (P, T, L, F, `) be a marked, labeled
P/T net. A place p ∈ P is called implicit in (N, s) if and only if, for all s’ reachable from
s and transition t ∈ p•, s’ ≥ •t\{p} ⇒ s’ ≥ •t.

In Figure 5.1, adding implicit place im to the in-house process results in a valid par-
titioning of the in-house process (shown in the middle process of Figure 5.1). Thus,
the internal process is a sound WF-net. Implicit places and their properties have been
studied in [30, 39]. Further details about implicit places and their use in IOWF-nets
are contained in [12]. Adding the im-labeled place in Figure 5.1 yields a P/T-net which
is branching bisimilar to the original net. Next, the conceptual level of the service
provider is defined.

88 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

5.3 Conceptual Level of the Service Provider

A minimal requirement for a provider sphere is that it sound. A provider sphere is
defined as follows.

Definition 23 (Provider sphere). A provider sphere N is a sound WF-net, i.e., N ∈W .

In an eSourcing configuration, a service provider should not have fixed, standardized
routing imposed by the service consumer. Instead, a degree of flexibility is important
for internal service refinement in the domain of the service provider to allow the in-
tegration of back-office tasks that remain opaque to the service consumer for various
reasons, e.g., they constitute a competitive advantage that should not be revealed, the
service consumer is not interested in them, and so on.

Figure 5.3 illustrates how a service provider may perform internal refinement. On
top of the figure, the service provider contractual sphere is depicted that has the same
content compared to the consumer contractual sphere that Figure 5.1 contains. Fur-
ther details about the external level depicted in Figure 5.3 follow in Section 5.4 where
contractual spheres are investigated.

The provider sphere of Figure 5.3 contains additional labels compared to the con-
tractual sphere. However, during enactment the service consumer only perceives pro-
cess behavior that is part of the external level and not what constitutes the service
provider’s refinement. To realize such a refinement scenario as depicted in Figure 5.3,
projection inheritance [14, 27] is employed. In Section 2.5, projection inheritance (see
Definition 18) is explained together with the related notions of branching bisimilarity
[48] and behavioral equivalence (see Definition 17).

In Figure 5.3 an example is depicted for showing projection inheritance (see Sec-
tion 2.5). The provider sphere PS1 is a subclass of PCS according to projection inheri-
tance because hiding the inserted transitions does not violate the behavior equivalence
the service consumer expects. Firstly, neither hiding the parallel branch with w nor hid-
ing the execution of the inserted x violates the original behavior of PCS. Secondly, the
same holds for hiding the execution of y that merely postpones the execution of e. In
[27] details are contained about the projection-inheritance preserving refinement pat-
terns in PS1 of using parallel branches, inserted transitions, and loops. Mapping the
provider sphere to the internal level of the service provider can be done in a similar
way.

The bottom PS2 sphere of Figure 5.3 shows a violation of projection inheritance
in correlation to PCS because hiding the inserted newly labeled transitions results in
a potential trace where a is followed by d without executing c. The following section
demonstrates how collaborating parties of an eSourcing configuration can project their
respective spheres to the external level.

5.4 External-Level Properties

The external level of an eSourcing configuration determines how much internal pro-
cess details are exposed (see Section 4.4). The collaborating parties have the option of
projecting different amounts of conceptual-level process content into their respective
contractual spheres. To achieve a consensus about the nature of service provision, the
respective contractual spheres must match in content. The structure of this section is
as follows. First, the properties of a contractual sphere are described in Section 5.4.1,

5.4. EXTERNAL-LEVEL PROPERTIES 89

Figure 5.3: The provider contractual sphere and two provider spheres. The bottom one
is illegal.

followed by Section 5.4.2 that presents different types of projection options to the ex-
ternal level that collaborating parties can use. Finally, Section 5.4.3 defines when a
contractual consensus is achieved in an eSourcing configuration.

5.4.1 Properties of Contractual Sphere
Both the service consumer and the service provider have their own contractual spheres
that belong to the external level of an eSourcing configuration.

Definition 24 (Contractual sphere). A contractual sphere is a labeled P/T-net (P, T,
L, F, `) such that τ /∈ rng(`). The set of contractual spheres is denoted as C.

Note that a contractual sphere CS does not need to be a WF-net. This is to allow black-
box projection. Using τ -labels in the contractual spheres does not make sense from a
business point of view as it would result in an eSourcing of invisible actions. Examples
of contractual spheres are depicted in Figure 5.1 and Figure 5.3. The figures show
there are two contractual spheres, one for the service consumer and for the service

90 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

provider, located on the external level of an eSourcing configuration. Having separate
contractual spheres for the respective collaborating parties facilitates negotiations until
a consensus is reached.

5.4.2 External-Level Projections

The three projection variations called black-box, white-box, grey-box are depicted in
several figures of this chapter. The projection options result from the contractual vis-
ibilities that Section 4.5.1 describes. As Figure 5.1 shows, in the case of a white-box
projection, the consumer sphere is fully projected into the contractual sphere on the
external level. The black-box projection example of Figure 5.4 depicts a contractual
sphere where only the channels are exposed, which grants the service provider no visi-
bility of process details in the consumer sphere.

Figure 5.4: A black-box projection to the external level.

For black-box projection the issue arises how a proper conjoinment of the contractual
spheres of a service consumer and a service provider can be achieved. The problem
occurs because for the formalization of eSourcing the labelling of interface places is
omitted. To solve this problem, during the setup phase of an eSourcing configuration,
a service consumer can inform the service provider about the conjoinment labels of the
channel flows in the consumer contractual sphere.

Black-box projection offers increased flexibility for external-level business process
harmonization with the trade off that matching is difficult to achieve as the business-
process internals remain opaque. To alleviate this situation, it is necessary that collab-
orating parties have a mechanism available to support the checking of an eSourcing
configuration realized with black-box projection. In Section 5.6.1 such a method will
be presented, backed in Section 5.7 by a reference architecture for a trusted-third-party
verification that incorporates the Woflan tool [106] for checking the correctness of
eSourcing configuration.

Finally, the third option of grey-box projection is depicted in Figure 5.3 where
only a subset of the provider sphere is projected to the external level. This subsection
formally defines the three projection options.

5.4. EXTERNAL-LEVEL PROPERTIES 91

White-Box Projection

In accordance with the white-box pattern specification given in Section 4.5.1, the entire
content of a consumer sphere or a provider sphere is projected to the external level.
White-box projection is defined as follows:

Definition 25 (ω-projection). Let N0 = (P0, T0, L0, F0, `0) be a consumer sphere or
a provider sphere and N1 = (P1, T1, L1, F1, `1) be a contractual sphere in C. There is
an ω-projection from N0 to N1, written N0ωN1, if and only if N0 ≡ N1, so N0 and N1

are isomorphic.

Grey-Box Projection

In Figure 5.3 an example of γ-projection is depicted. Grey-box projection is defined as
follows.

Definition 26 (γ-projection). Let NPS = (PPS , TPS , LPS , FPS , `PS) be a provider
sphere and NPCS = (PPCS , TPCS , LPCS , FPCS , `PCS) a provider contractual sphere
in C. There is a γ-projection from NPS to NPCS , written NPSγNPCS , if and only if:

- NPCS is a sound WF-net, i.e. NPCS ∈ W;

- NPS ≤pj NPCS;

- { `(t) | t ∈ TPS ∧ source(NPS) ∈ • t} = { `(t) | t ∈ TPCS ∧ source(NPCS) ∈ • t};

- { `(t) | t ∈ TPS ∧ sink(NPS) ∈ t•} = { `(t) | t ∈ TPCS ∧ sink(NPCS) ∈ t•}.

For NPS to be a projection-inheritance subclass of NPCS , NPCS must be WF-net and
both nets must be weakly sound (see Definition 18 of Section 2.5). Additionally, the
labels of the starting transitions must be equal, and the labels of the ending transitions
must be equal to support projection inheritance.

Note that γ-projection is limited to provider spheres and must not be performed
with consumer spheres. The reason for this limitation is the non-adherence to projec-
tion inheritance that may occur during the enactment of an eSourcing configuration.
Then a consumer sphere and a provider sphere can have partly deviating control-flow
constructs, leading to a violation of projection inheritance and therefore to a lack of
contractual adherence. To see why, in Figure 5.5 an example is depicted where both
parties use grey-box projection. At the top of Figure 5.5, the bold lined parallel branch
is not projected to the external level. The provider sphere at the bottom of Figure 5.5
depicts the bold lined refinement compared to the provider contractual sphere.

Black-Box Projection

In accordance with the black-box pattern specification of Section 4.5.1, the black-box
projection does not project any content of the sphere to the external level. In Figure 5.4
an example of β-projection is depicted. The notion of β-projection is defined as fol-
lows.

Definition 27 (β-projection). Let N0 = (P0, T0, L0, F0, `0) be a consumer sphere or
a provider sphere, N1 = (P1, T1, L1, F1, `1) a contractual sphere in C. There is a
β-projection from N0 to N1, written N0βN1 , if and only if N1 = (∅, ∅, ∅, ∅, ∅).

92 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

Figure 5.5: An example of both collaborating parties using grey-box projection.

If the contractual spheres result from β-projection, nothing from the conceptual level
is exposed. Still, the collaborating parties have to conjoin their spheres through the
interface places (channels), which is specified by the channel flow relation (G in Defi-
nition 21). This can be solved in an architectural way, by allowing the service consumer
to inform the service provider of conjoinment specifics.

With β-projection it is not ensured that an eSourcing configuration is deadlock
free. Instead the collaborating parties need to rely on the collapsing method that is in-
formally introduced in Section 3.3.3 and formally presented in Section 5.6. Informally,
the collapsing method replaces the consumer sphere of an in-house process with the
provider sphere and the resulting net must be sound. For such a soundness check the
tool Woflan (see Section 2.6) is instrumental.

5.4.3 Contractual Consensus
For contractual consensus, the contractual spheres of the collaborating parties must be
isomorphic. The definition of the contractual consensus is as follows.

5.5. ESOURCING CONFIGURATIONS 93

Definition 28 (Contractual consensus). Let CCS be a consumer contractual sphere
and PCS be a provider contractual sphere where CCS and PCS are in C. There is a
contractual consensus between CCS and PCS if and only if CCS ≡ PCS.

An example of contractual consensus is given by Figure 5.1 and Figure 5.3. The con-
sumer contractual sphere CCS of Figure 5.1 and the the provider contractual sphere
PCS of Figure 5.3 are isomorph although in the first case ω-projection and in the latter
case γ-projection results in the respective contractual sphere.

The different processes of a service consumer and service provider are distributed
across the three-level framework [51]. The following section consolidates the content
presented so far into one definition for an eSourcing configuration.

5.5 eSourcing Configurations

To realize a method for checking eSourcing configurations, it is relevant to first give
a definition of an eSourcing configuration. This section presents a definition together
with the accompanying properties of an eSourcing configuration. Figure 5.6 depicts a
high level overview of the different parts of an eSourcing configuration and how they
relate to each other.

Figure 5.6: A high-level overview of an eSourcing configuration.

Shown at the left bottom of Figure 5.6, a valid partitioned in-house process PIHP is a
net in W located on the conceptual level. The interface places (channels) I connect the
consumer sphere CS with the internal process IP. On the right side of Figure 5.6 the
provider sphere PS ∈ W is located on the conceptual level.

The service consumer can choose between an ω-projection and β-projection from
the consumer sphere to the consumer contractual sphere CCS on the external level. On
the other hand, the service provider can choose between an ω-projection, γ-projection,
and β-projection. At the top of Figure 5.6, the external level is depicted were the con-
tractual spheres CCS and PCS are located. To have a contractual consensus between
CCS and PCS, the respective contractual spheres need to be isomorph, so CCS ≡ PCS.
In the middle, the three projection tuples are depicted that are available for the collab-
orating parties to establish a contractual consensus between CCS and PCS. Either the
service consumer performs a white-box projection which the service provider comple-

94 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

ments either with a white-box projection or a grey-box projection. Or both parties use
a black-box projection.

Definition 29 (eSourcing configuration). An eSourcing configuration is a tuple
eSC = (PIHP, PS, CCS, PCS) such that:

1. PIHP = (IHP, I, CS, IP, L, G) is a partitioned in-house process;

2. PS is a provider sphere;

3. CCS is a contractual sphere in C called a consumer contractual sphere;

4. PCS is a contractual sphere in C called a provider contractual sphere;

5. there is a projection relation between CS and CCS on the one hand, and between
PS and PCS on the other hand, such that either:

- CSωCCS and PSωPCS, or

- CSωCCS and PSγPCS, or

- CSβCCS and PSβPCS;

6. there is contractual consensus: CCS ≡ PCS.

The definition states in which cases the partitioned in-house process, provider sphere,
and the corresponding contractual spheres of the service consumer and service provider
are properly related to each other. The next section introduces two methods that are
instrumental for checking the correct termination and adherence of the service provider
to an agreed upon service provision.

5.6 Checking eSourcing Configurations
For eSourcing configurations a verification method is used that takes advantage of
the supporting theorems and their proofs that stem from the IOWF-net domain [12].
Firstly, it is shown how the collapsing method (see Section 3.3.3) for eSourcing con-
figurations can be specified by using the flattening function defined for IOWF-nets (see
Section 2.4). Such a flattening is useful for checking soundness, however, it requires
that a service consumer and a service provider expose their local processes to a trusted
third party. Secondly, it is shown that for certain eSourcing configurations, an estab-
lished inter-organizational workflow is guaranteed to be sound. Thus, the collapsing
method is not needed then to check soundness, and the consumer and provider do not
need to expose their processes to some trusted third party. Furthermore, it is ensured
that the inter-organizational workflow realizes the in-house process.

5.6.1 Checking Correct Termination Using Collapsing
The practical method with which an eSourcing configuration is checked for control-
flow problems and correct service provision is the collapsing method that Figure 5.9
depicts as an example (see Section 3.3.3). The collapsed eSourcing configuration in
Figure 5.9 omits the contractual spheres from Section 5.4. By applying the collapsing
method, a run-time IOWF-net is yielded, i.e., an IOWF-net that specifies the enact-
ment of inter-organizational collaboration between a service consumer and a service

5.6. CHECKING ESOURCING CONFIGURATIONS 95

provider. It is important to check this created process for correct termination, which
can be done by flattening the IOWF-net to a WF-net and checking this net for sound-
ness. In addition, the flattened net can be checked for adherence to agreed upon service
processing by checking whether the flattened net is a subclass under projection inheri-
tance of the in-house process.

To obtain this run-time IOWF-net, an operator is defined for replacing a consumer
sphere that is contained in the valid partitioned in-house process with a provider sphere.
The resulting IOWF-net connects the internal process to the provider sphere, so the
IOWF-net is linking the domains of a service consumer and a service provider for
collaborative enactment.

Definition 30 (CSreplacePS). Let eSC = (PIHP, PS, CCS, PCS) be an eSourcing con-
figuration with PIHP = (IHP, I, CS, IP, L, G), then CSreplacePS(eSC) is defined as the
IOWF-net Q = (I, 2, IP, PS, L, G).

Hence, CSreplacePS(eSC) is an IOWF-net in which the provider sphere replaces
the consumer sphere, i.e., the provider sphere cooperates with the consumer’s internal
process. Figure 5.7 illustrates the CSreplacePS function. The process at the top is the
internal process IP and the bottom is the replaced provider sphere PS. Both processes
are connected by channel-flow relations.

Figure 5.7: The IOWF-net underlying the partitioned in-house process of Figure 5.1,
with CS replaced by PS of Figure 5.3.

Using CSreplacePS, we can formally define collapsing method. For the collapsing
method the operator flat is used (see Definition 13 of Section 2.4).

Definition 31 (Collapsed net). Let eSC = (PIHP, CS, PS, CCS, PCS) be an eSourcing
configuration. The collapsed net is flat(CSreplacePS(eSC)).

Figure 5.8 depicts the net that results if the flattening operator flat is applied to the
IOWF-net in Figure 5.1. At the bottom of Figure 5.9, the collapsed net for the running

96 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

Figure 5.8: The IOWF-net underlying the flattened IOWF-net of Figure 5.7.

example is depicted, which can be verified with the tool Woflan [106] for soundness.
Moreover, Woflan can check whether the collapsed net is a subclass according to pro-
jection inheritance compared to the in-house process IHP that is depicted in Figure 5.1.
If β-projection is used, the flattened net need not be a WF-net. In that case Woflan may
still be used, although the tool signals the input is not a WF-net. However, for such a
soundness and adherence check, the service consumer must send the internal process
IP and service provider must send the provider sphere PS to a trusted third party (see
Section 5.7). The following section shows that for eSourcing configurations not using
black-box projection, an established inter-organizational workflow is guaranteed to be
sound.

Figure 5.9: A collapsed net.

5.6. CHECKING ESOURCING CONFIGURATIONS 97

5.6.2 Checking Correct Termination using Projection Inheritance
In this section, a theorem is introduced, which states that for eSourcing configuration
in which black-box projection is not used, the run-time IOWF-net is sound and the
collapsed net is a subclass under projection inheritance of the in-house process. The
advantage of this approach is that without the need for coordination among the collab-
orating parties, the resulting IOWF-net is guaranteed to be sound. Additionally, it is
guaranteed that the eSourcing configuration realizes the in-house process, i.e., all the
tasks specified in the in-house process are executed in the proper order.

Theorem 3 (Compositionality of eSourcing configurations). Let eSC = (PIHP, PS,
CCS, PCS) be an eSourcing configuration with PIHP = (IHP, I, CS, IP, L, G) the par-
titioned in-house process, CS the consumer sphere, PS the provider sphere, and IP the
internal process, with a projection relation between CS and CCS on the one hand, and
between PS and PCS on the other hand, such that either CSωCCS and PSωPCS, or
CSωCCS and PSγPCS.

1. CSreplacePS(eSC) is sound, and

2. β(flat(CSreplacePS(eSC))) is a subclass of IHP under projection inheritance,
i.e., β(flat(CSreplacePS(eSC))) ≤pj IHP.

Proof. The proof consists of two parts. Firstly, a theorem is cited from [12] for the
compositionality of projection inheritance in the IOWF-net domain, onto which in the
second part of this proof the theorem is mapped for the compositionality of projection
inheritance for eSourcing configurations.

Part A
IOWF-net Theorem: [12] Let D = {0,1,...n-1} be a set of n domains consisting of
collaborating parties; Npubl is a public workflow in W; Qpart = (C, n, Npart

0
, Npart

1
,..,

Npart
n−1

, Lpart, G) is the valid partitioning of Npubl, where Npart
k is a public workflow

belonging to domain k called the public part of k; Qoverall = (C, n, Npriv
0

, Npriv
1

,..,
Npriv

n−1
, Lpriv , G) is an IOWF-net, where Npriv

k = (Ppriv
k , Tpriv

k , Fpriv
k , Lpriv

k , `priv
k) is a

private workflow belonging to domain k such that Npriv
k ≤pj Npart

k ; the labels of start
and stop transitions are visible and not changed (see Definition 26 for a formalization);
and Noverall = β(flat(Qoverall)) then:

1. Qoverall is sound, and

2. Noverall is a subclass of Npubl under projection inheritance, i.e., Noverall ≤pj Npubl.

Part B
Theorem Mapping: Establishing a mapping from the first theorem to the IOWF-net
theorem is straightforward:

1. Npubl = IHP,

2. Qpart = (I, 2, IP, CS, LIP ∪ LCS , G) where LIP is the label set of IP and LCS is
the label set of CS,

3. Qoverall = CSreplacePS(eSC) = (I, 2, IP, PS, L, G),

4. Noverall = β(flat(CSreplacePS(eSC))).

98 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

For showing the condition Npriv
k ≤pj Npart

k , it must be proven that PS ≤pj CS. The
projection relation CSωCCS results in CS ≡ CCS. Since CS is sound (Definition 21)
and CS ≡ CCS, CCS is sound. Thus CCS ≤pj CS. Since PSωPCS, by similar reasoning
we have PS ≤pj PCS; and PSγPCS implies PS ≤pj PCS according to Definition 26. A
contractual consensus exists if and only if PCS ≡ CCS (see Definition 28). Therefore,
PCS ∼= CCS, so PCS ≤pj CCS. Since ≤pj is transitive [12], PS ≤pj CS.

The condition that the labels of the start and stop transitions are visible and not
changed (see Def 26 for the requirements), follows from the definitions of WF-nets
(see Definition 8 in Section 2.3), isomorphism (≡) (see Definition 6 in Section 2.2) and
γ-projection (see Definition 26).

The essence of the theorem about compositionality of projection inheritance is depicted
in Figure 5.10. It shows that if the provider sphere PS is a subclass of the consumer
sphere CS under projection inheritance, then the flattened net without dead transitions
FN is guaranteed to be a subclass of the in-house process IHP. So FN and IHP do
not have to be checked explicitly for deciding whether FN is a subclass of IHP under
projection inheritance.

Figure 5.10: The essence of the compositionality of projection inheritance [12].

The consequence of this theorem is that it is possible to check the overall soundness of
an eSourcing configuration and the adherence of internal service provision to what is
publicly agreed while maintaining independent and mutually opaque process domains
of a service consumer and a service provider. The soundness of the eSourcing configu-
ration is guaranteed without the need for any coordination among the service provider
and service consumer. Hence, the employment of a trusted third party by the service
consumer and the service provider is only required for checking contractual consensus
(see Definition 28). It is ensured that the tasks of the consumer sphere are executed in
the proper order by the refined service provision.

5.7 A Verifier Component
In the previous section it is demonstrated how an eSourcing configuration can be
mapped to a WF-net using an IOWF-net as intermediate notions. The soundness prop-
erty and projection inheritance of WF-nets can be verified with the analysis tool Woflan

5.7. A VERIFIER COMPONENT 99

[106, 107, 109] (see Section 2.6). This way it is possible to detect modelling abnormal-
ities, e.g., deadlocks, before workflow enactment, which helps to avoid costly run-time
failures.

The approach of Section 5.6.1 can be architecturally supported by the verifier com-
ponent shown in Figure 5.11. This component offers a trusted third-party service, to
which collaborating parties can independently submit their conceptual processes for
verification without disclosing internal business details. Note that a verification of cor-
rect termination performed by a trusted-third-party component is necessary when a
service consumer and a service provider agree on using β-projection to the external
level.

Figure 5.11: The verifier component in detail.

In Figure 5.11, a process-communicator component receives a request from the con-
tracting client belonging to the domain of a collaborating party to perform a verifi-
cation of a created eSourcing configuration. The process communicator requests the
conceptual-level processes of all collaborating parties and the contractual spheres from
the eSourcing middleware. Next, the collected in-house process, the provider spheres,
and the contractual spheres are delivered to a translator that converts the processes into
a format the eSCtoIOWF-mapper component and Woflan can process. The first compo-
nent delivers the resulting IOWF-net to a flattener component that creates a net, which
Woflan verifies for soundness and projection inheritance. For the latter verification type
the in-house process is compared with the flattened P/T-net.

Finally, it needs to be stressed that Theorem 3 implies that the trusted-third-party
component in Figure 5.11 is not necessary when a service provider and a service con-
sumer agree on performing ω-projection and/or γ-projection. In that case, the third
party only needs to check contractual consensus. All other checks can be performed
locally by the collaborating parties themselves.

100 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

5.8 Related Work
In [12], IOWF-nets are explored in a P2P (Public-To-Private) setup approach that con-
sists of three stages. In the first step, a publicly agreed WF-net is created. Secondly, the
public WF-net is partitioned into domains for the collaborating parties. Finally, a pri-
vate workflow is created for each domain such that the private workflow is a subclass of
the corresponding part of the public workflow. Thus, by starting with a publicly agreed
WF-net, the P2P approach implies an equal power constellation between collaborating
business parties.

The mentioned approach of IOWF-nets suit the current way of technically compos-
ing web services. However, observing OEMs and their suppliers in CrossWork industry
case studies (see Chapter 7) shows that the business needs of B2B collaboration must be
matched better. Typically OEMs play a dominant role in B2B settings and try to exert
tight control over their suppliers. Thus, OEMs impose a dominating client-server rela-
tionship on their suppliers that are usually tightly integrated into the OEM’s in-house
process. That way the OEM achieves fast production cycles, which is a competitive ad-
vantage. To support B2B collaboration in an electronic way, the client-server nature of
inter-organizational business process management must be more strongly emphasized.

Workflow modules have been proposed as an extension of WF nets to model and
analyse business processes that are distributed across several web services. In the anal-
ysis, a weak notion of soundness is used [66, 73]. However, checks are necessary to
determine whether individual modules are compatible [7] and usable [72]. Informally,
compatibility tackles the question whether two modules fit together in a way such that
the composed system is deadlock-free. Usability investigated the soundness of one
given workflow module without considering the actual environment it will by used in.
Related is the issue of equivalence between workflow modules that addresses the ques-
tion whether a module is replaceable by another one while the remaining components
stay untouched.

These workflow modules [66, 73] have been succeeded by so-called open work-
flow nets (oWFN) [92], which have been specified and investigated for the purpose
of distributing business processes across web-services. An oWFN is a P/T-net that is
enriched with communication places for sending and receiving messages to another
oWFN, i.e., a sphere is a special case of an oWFN. The formal definition of oWF nets
differs from the definition of WF-nets, but according to [75] open WF-nets can be seen
as a liberal version of WF-nets. When the communication places are removed, the inner
P/T-net is considered liberal as it allows for many output places. Consequently, weak
termination is realized when the final marking leaves one token in one output place
and all other places are empty. For one oWFN a second oWFNS is called a strategy
when their component-wise union via the channel places is weakly terminating. The
resulting composition is again an oWFN net.

If the role of service provider or service consumer is filled by an oWFN [75, 77], a
publication and discovery is feasible via a service broker that is followed by a binding.
To support the discovery process, a description of the behaviors of all strategies for an
oWFN P is provided in the form of reachability trees. The most permissive strategy is
an oWFN with a most permissive behavior that comprises all behaviors of strategies
for P.

The problem of controllability for oWFN [100] is whether a controller can actually
use the functionality that a web service provides. To verify controllability, interaction
graphs are constructed for an oWFN and its controller for the objective of investigating
adherence to weak termination. The controllability investigation is extended to three

5.9. CONCLUSION 101

cases: an oWFN with only one port, an oWFN with two ports, and the special case
where it is investigated if the controllers of ports can be constructed independently
from each other. As the interaction graph for verifying controllability is huge in size,
reduction rules [114] have been developed for increasing the computational feasibility
of such verification.

oWFN research results might be useful to support the eSourcing setup phase if the
collaborating parties use β- projection. Although this projection type allows for col-
laboration flexibility, the collaborating parties need to rely at the end of a setup on the
collapsing method for verifying the correct termination of an eSourcing configuration.
Hence, it could be desirable to equip the setup phase that involves β- projection with
an additional verification technique. By constructing interaction graphs in a similar
manner as for the domain of oWFN, it can be checked during the setup phase of an
eSourcing configuration, whether an internal process can use the functionality that is
offered by a provider sphere.

For oWFN, tool support is available for a mapping from the industry standard BPEL
[40]. The tool BPEL2oWFN [70] is a compiler that translates a BPEL specified busi-
ness processes into an oWFN. BPEL2oWFN can be used for several checks. With the
integration of the tool Fiona [78], it is possible to check for controllability. Fiona auto-
matically analyzes the interactional behavior of an oWFN. It provides two techniques:
it checks for the controllability of the given net by computing the interactiong graph,
and it calculates within BPEL2oWFN the operating guideline [76] for the net. For
computing the states of the graph nodes, the model checking algorithms of the low-
level Petri-net analyzer LoLa [98, 99]are used. Within BPEL2oWFN, the tool LoLA
is used for validating reduction techniques for place/transition net reachability graphs.
LoLA can analyze reachability of a given state or state predicate, boundedness of the
net or a place, deadlocks, dead transitions, reversibility, and existence of home states.

5.9 Conclusion
This chapter formally investigates the concept of eSourcing for aligning the busi-
ness processes of a service consuming and a service providing organization inter-
organizationally. The preliminary Petri-net theory of Chapter 2 is adopted for defining
the processes located on the conceptual and external levels of an eSourcing configura-
tion. It is defined which conditions must hold in order to achieve contractual consensus
between collaborating parties.

A practical collapsing method is given that is instrumental for verifying whether
a collapsed eSourcing configuration terminates correctly. The collapsing method can
also be used to verify if the provider adheres to an agreed upon service request. Al-
ternatively, it is shown that an eSourcing configuration that does not use black-box
projection is guaranteed to be sound and moreover, the collaboration of the internal
process with the provider sphere then is guaranteed to realize the in-house process.
The latter approach relies on a theorem from IOWF-nets about the compositionality of
projection inheritance.

Finally, a reference architecture of a trusted-third party service is proposed for sup-
porting the checking of an eSourcing configuration without forcing collaborating par-
ties to reveal internal business secrets to each other. In this reference architecture the
tool Woflan is employed for checking the soundness of an eSourcing configuration
before enactment. This reference architecture is needed for supporting the collapsing
method when the contractual parties are using β-projection. In this case, a check of the

102 CHAPTER 5. VERIFYING ESOURCING CONFIGURATIONS

eSourcing configuration by a trusted-third-party service is necessary to avoid that col-
laborating parties reveal business internals to each other. For eSourcing configurations
that use ω-projection and γ-projection, a trusted third-party service is only needed for
checking contractual consensus. Instead, checking for correct termination can be done
locally by the collaborating parties themselves.

Chapter 6

Proof-of-Concepts

Contents

6.1 Introduction . 104
6.2 A Reference Architecture for eSourcing 105

6.2.1 First Detail-Level of eSRA 105
6.2.2 Second Detail-Level of eSRA 106
6.2.3 Third Detail-Level of eSRA 110

6.3 eSML - electronic Sourcing Markup Language 113
6.3.1 Foundation of eSML . 114
6.3.2 Notation Explanation . 115
6.3.3 eSML Models . 116
6.3.4 Related Work . 120

6.4 A Pattern Knowledge Base Reference Architecture 121
6.4.1 A Pattern Lifecycle . 121
6.4.2 An Extension for User and Review Management 122
6.4.3 An Application Architecture 123

6.5 XRL and XRL/flower . 125
6.5.1 XRL: an XML-Based Routing Language 125
6.5.2 XRL/flower: An Evaluation Tool 126
6.5.3 Architecture of XRL/flower 127
6.5.4 Evaluation with XRL/flower 128
6.5.5 Component Description 128

6.6 Conclusion . 131

This chapter comprises of several proof-of-concept approaches for eSourcing, which
demonstrate in short realizations that the core ideas of eSourcing are workable and
feasible. Note that this design-science research oriented proof-of-concept does not ex-
plicitly pursue the objective of demonstrating the formalizations of Chapter 5, as is
customary in purely mathematical research. Firstly, an eSourcing reference architec-
ture (eSRA) is proposed that is guiding for the development of applications to support
the establishment of an eSourcing configurations and the subsequent enactment. This
reference architecture consists of interacting components distributed across the three-
level framework (see Section 3.2) that uses the earlier specified interaction patterns

103

104 CHAPTER 6. PROOF-OF-CONCEPTS

(see Section 4.4) as input. Next, the XML-based language eSML (electronic Sourcing
Markup Language) is presented which allows the specification of eSourcing config-
urations. eSML incorporates the eSourcing construction patterns of Section 4.5 and
elements for representing the resource- and data-flow perspective that are based on
respective pattern catalogues. eSRA comprises components for the specification and
enactment of eSML instances. Hence, the communication between eSRA components is
realized by using eSML code fragments. Finally, two components of eSRA are further
explored, namely a pattern knowledge base that supports actors involved in creating
an eSourcing configuration, and an evaluation tool that runs the business processes
contained in eSML. The pattern knowledge base is relevant as a large number of pat-
tern specifications exist that are relevant for eSourcing. An evaluation tool is needed
to ensure that the different perspectives that are specified in one business process can
be enacted together without conflicts.

6.1 Introduction
In the introduction of this thesis the design-science research guideline termed design
as an artifact (see Section 1.4.1) is adopted. Part of the realization of this guide-
line is a reference architecture for the development of application that support the the
setup and enactment of eSourcing configurations. The reference architecture uses the
earlier specified interaction patterns (see Section 4.4) as input and comprises com-
ponents that are distributed across the three-levels framework adopted for eSourcing.
On the external level, components are located for the collaborative setup of eSourcing
configurations between service providers and consumers. To deliver business-process
constructs to the external level, the conceptual level offers components for modelling
and storing, verifying, and evaluating business processes constructs that are negotiated
on the external level. Furthermore, the conceptual level comprises components that
translate data and business-process constructs to be suitable for the components on the
respective levels. Finally, the components on the internal level store data, and business-
process constructs that are received after a translation from the conceptual level. The
business-process constructs are enacted by components that orchestrate legacy sys-
tems. Collaborating parties only communicate via the external level with each other
and within one domain the components belonging to the external and internal level can
only communicate via the conceptual level with each other.

The XML-based modelling language eSML is instrumental for inter-organizationally
harmonizing business processes. eSML instances that specify an eSourcing configu-
ration are the result of a setup phase for which application systems are used that are
developed in line with eSRA. An eSML instance is interpretable by components of
such an application system that orchestrates legacy systems of collaborating parties.
eSML specifies inter-organizationally harmonized business processes that also include
data-flow and resource specifications.

To support intra- and inter-organizational knowledge workers during the setup phase
of an eSourcing configuration, a pattern-knowledge base is employed that has been im-
plemented as a prototype. Such a pattern-knowledge base is necessary as there are
many pattern specifications that are relevant for eSourcing [17, 25, 95, 96]. Thus, sup-
porting users with a tool for quickly finding the right pattern for solving a specific
problem is relevant. The pattern-knowledge base supports collaborating parties with
setting up eSourcing configurations by providing stored pattern specifications and data
about which technologies support respective patterns. Registered users may submit

6.2. A REFERENCE ARCHITECTURE FOR ESOURCING 105

patterns for a reviewing process that results in an extension of the catalogue of stored
patterns if the reviewing results in an acceptance. Such accepted patterns enter the
publicly available knowledge base.

The inter-organizationally harmonized business processes that are specified in an
eSML instance need to be evaluated before enactment. This is necessary to comple-
ment the verification of separate perspectives that are specified for a business process.
In eSRA a component is part of the conceptual level that has been implemented as a
prototype that performs such evaluations of business processes, which are separated for
the domain of each collaborating party. After an accompanying verification of different
perspectives such as control-flow, the enactment phase of an eSourcing configuration
commences.

The structure of this chapter is as follows. In Section 6.2 the eSourcing reference
architecture eSRA is presented. The architecture comprises of communicating com-
ponents on all three levels of an eSourcing configuration and are further decomposed
on three refinement levels. Next, Section 6.3 introduces eSML by describing the con-
tained business-process specification constructs with class diagrams [46]. Section 6.4
describes the pattern-knowledge base to support collaborating parties in setting up an
eSourcing configuration. Finally, Section 6.5 describes the evaluation tool XRL/flower.

6.2 A Reference Architecture for eSourcing

A reference architecture for supporting electronic interaction between business parties
provides the major design principles and specifies the functionalities that must be de-
livered by such an e-collaboration system. Thus, a reference architecture serves as
a starting point for software developers who are occupied with designing and imple-
menting an information system for supporting the automated setup and enactment of
business collaboration.

Software development consists of three main phases, the analysis, design, and im-
plementation phases [71]. This section presents a conceptual (also known as a logical
architecture) reference architecture for collaboration setup and enactment that facili-
tate the understanding of the interactions between components and the functionalities
provided by the system, and are consequently a good technique for the definition of
reference architectures.

The eSourcing reference architecture (eSRA) is designed in accordance with the
principle of functional decomposition of a system. This decomposition is also known
as ”separation operation” and based on the part-whole principle. Thus, at each refine-
ment level of the eSRA, the identified components provide functionalities that do not
overlap with the remaining components that are located at the same level. To achieve
completeness, eSRA is designed in a top-down way, i.e., the components on the first
level are decomposed into detailing components. The following subsections present
three refinement levels of eSRA.

6.2.1 First Detail-Level of eSRA

In Figure 6.1 the highest abstraction level of the eSRA is depicted. In the figure two
collaborating parties show the same set of components distributed across an external,
conceptual, and internal level. The grey shaded boxes represent components and arcs
between the components depict exchanges between the components.

106 CHAPTER 6. PROOF-OF-CONCEPTS

Figure 6.1: Overall Sourcing enactment architecture.

On the external level the Sourcing middleware is replicated on the respective external
levels of collaborating parties. This component is the main enabler of interoperability
and direct information exchange exists between the eSourcing middleware of each col-
laborating party to synchronize the respective components. Between the collaborating
parties a component is located termed trusted third party that exchanges information
with the eSourcing middleware. A trusted third party is necessary for several reasons.
Firstly, collaborating parties expose service demands or service offerings to the trusted
third party for public evaluation. Secondly, the trusted third party performs verification
of services and checks quality features of eSourcing configurations before enactment.
If collaborating parties perform verifications and checks of eSourcing configurations
themselves, they would need to reveal competitive secrets to each other, which is un-
desirable.

The conceptual level of Figure 6.1, depicts two components, namely the translators
and the eSourcing setup support. The translator component exchanges information
between the components located on the external and internal level. The Sourcing setup
support contains among other functionality tools for modelling business rules and pro-
cesses. Finally, the internal level depicts a legacy management component that inter-
faces on the one hand with the translator component of the conceptual level and on the
other hand with the legacy system of a collaborating party.

6.2.2 Second Detail-Level of eSRA

In this subsection each component of the reference architecture depicted in Figure 6.1,
is further refined. The first refinement in Figure 6.2 covers all components that are lo-
cated on the external level, namely the Sourcing middleware, and the trusted third party.
This focus is visualized by grey shading. In contrast, the translator component is not
grey shaded as it is refined in a later figure. In all figures of this subsection the refined
components of focus are depicted with their exchanges to bordering components.

In Figure 6.2 the eSourcing middleware of one collaborating party is depicted. The
Sourcing counterpart contains the same second level components, however, for sake
of brevity only the relationship between the coordination-interface components is de-
picted. Furthermore, Figure 6.2 shows the trusted-third-party component as a white
box and its relationship with the Sourcing-middleware component. A dashed arc be-

6.2. A REFERENCE ARCHITECTURE FOR ESOURCING 107

Figure 6.2: External-level collaboration.

tween the trusted-third-party component and the Sourcing-middleware is an abstraction
of more detailed information exchange that is described in Section 6.2.3.

In the latter component several refining components are contained. The contract-
ing client component provides support for the management of an e-contracting pro-
cess. Concretely, the contracting client semi-automatically assembles services by using
workflow sniplets that are stored in a corresponding database of the trusted third party.
That way the workflow sniplets may be communicated between collaborating organi-
zations. Depending on whether a collaborating party slips into the role of a service
consumer or service provider, the contracting client submits or retrieves contractual
spheres from a service broker. If a submitted service contains the definition of a con-
cerned party, a submission notification is sent out from the service broker. If several
parties are interested in the same service, a bid can be placed with the auction service.
The latter component relates the bid data with services stored in the service broker.
Finally, when an eSourcing configuration is established, the collaborating parties send
their in-house processes and refined spheres to a verifier component for testing the cor-
rect termination, i.e., the soundness [10, 62], of the overall eSourcing configuration.
The verification results are returned to the collaborating parties. By having a trusted
third party perform the verification, the collaborating parties do not have to disclose
their internal business details to each other.

When an eSourcing configuration is established, the contracting client distributes
the business rules and the processes contained in the contract to the global rules engine
and the workflow management system (WFMS) respectively. In order to synchronize
the global WFMSs and global rules engines in the Sourcing-middleware components
of other collaborating parties, events-, production-, and rules data is communicated via
a coordination interface. Production data is for example the specification of a product
or data needed for condition statements. Furthermore, the global WFMS and rules
engine also exchange production-, and event data with each other.

Finally, the contracting client sends workflow sniplets and composed processes

108 CHAPTER 6. PROOF-OF-CONCEPTS

Translator

CE Translator

CI Translator

Contracting client

Local WFMS

in-house process/
refined spheres

Local rules
engine

contractual rules

Legacy menagement

Sourcing setup support

Process
modeller

contractual rules

in-house processes/
refined spheres

Rules
modeller

events/production data
rules/events data

Rules/events
data exchanger

Workflow/events
data exchanger

events/production data rules/events data

rules/events dataevents/production data

Sourcing middleware

Global WFMS
Global rules

engine

consumer’s/provider’s
contractual spheres

events/production data rules/events data

contractual rules

contractual rules

workflow sniplets/
composed processes

contractual rules

workflow sniplets/
composed processes

Figure 6.3: Translating between external and internal level.

and contractual rules to the translator. That way the workflow sniplets and composed
processes and contractual rules are prepared for the heterogenous system environment
that exists on lover internal levels of a collaborating party. Also the global WFMS and
rules engine send data to the translator component that is depicted as a white box in
Figure 6.3. The translator contains two main translator components for transferring
data between the external, conceptual and internal level.

The CE translator component translates data from the conceptual to the external
level and vice versa. The component is connected with the rules and process modelers
of the Sourcing-setup-support component. The relationships between the CE transla-
tor and components contained in the Sourcing middleware is explained above. Two
components exchange data between the CE translator and and CI translator, namely
the worklfow/events data exchanger and the rules/events data exchanger. Those data
exchangers contain information about where data needs to be routed to. For example,
several instances of WFMSs and rules engines on the external and internal level may
enact several instances of different Sourcing configurations. Furthermore, on the inter-
nal level several web services wrap legacy systems to which exchanged data needs to
be routed to.

The CI translator component translates data between components of the conceptual
and internal levels. From the data-exchanger components, events-, rules-, and produc-
tion data are translated bi-directionally to the local WFMS and rules engine on the
internal level. Furthermore, the CI translator receives contractual rules from the rules

6.2. A REFERENCE ARCHITECTURE FOR ESOURCING 109

modeler and in-house processes and refined spheres from the process modeler. They
are translated to the local WFMS and rules engine on the internal level.

Translator

Local rules DB

Rules
modeler

contractual rules

CE Translator

CI Translator

contractual rules

contractual rules

Process
modeler

Workflow sniplets/
local processes DB

workflow sniplets/
composed processes

in-house processes/
refined spheres

workflow sniplets/
local processes

Workflow
Composer

Validator

composed process

validation results

composed processes

Verifier

composed process

verification results

Sourcing setup support

workflow sniplets/
local processes

Pattern
knowledge

base

patterns patterns

Figure 6.4: Setup functionality.

In Figure 6.4 the Sourcing-setup-support component is located on the conceptual level.
The component has two core functions, namely modelling business rules and processes,
and composing workflows that are on the one hand evaluated and on the other hand
verified for correct termination. Thus, the rules modeler and the process modeler are
responsible for the first function for which they are supported by a pattern knowledge
base. In Section 6.4 the pattern knowledge base is presented in further detail. The
second function is related to the workflow composition component. For composition
[44], workflow sniplets or local processes are taken from a dedicated database, which
are supplied by the process modeler.

A composed workflow is either an in-house process or a refined sphere and is
checked internally in two ways. First, with respect to control flow, correct termina-
tion is verified by the tool Woflan [109] for which the process needs to be mapped to
a place/transition net. If the net is a WF-net, Woflan checks for structural conflicts,
i.e., deadlocks or lack of synchronization. Thus, if the WF-net is verified to terminate
correctly, it conforms to the notion of soundness [10]. Secondly, the in-house process
or refined sphere needs to be verified for other conflicts, e.g., data-flow or resource.

Although it is desirable to have verification tools for several workflow related per-
spectives, e.g., data-flow and resource, it is essential to validate the in-house process
and refined spheres of an eSourcing configuration with an additional tool. Among other
aspects, such a validation is meaningful for testing how the different perspectives fit to-
gether for workflow enactment, e.g., the correct functioning of web services that are
orchestrated by the processes. In the Sourcing-setup-support component of Figure 6.4
XRL/flower [83] is depicted as a validation tool. In Section 6.5 this tool is presented in
further detail. XRL/flower uses XML technology and is implemented in Java on top of
the Petri-net Kernel PNK [64]. Standard XML tools can be deployed to parse, check,
and handle XRL documents. The XRL enactment application is complemented with a
web server allowing actors to interact with the system through the internet.

Finally, Figure 6.5 visualizes a second-level refinement of the legacy-management
component. In it, a local WMFS and rules engine constitute the core components.
These components are exchanging data between each other and are instrumental for
coordinating legacy systems. The business rules and processes that are enacted by

110 CHAPTER 6. PROOF-OF-CONCEPTS

Local WFMS Local rules
engine

Legacy menagement

Consumer/provider web service

rules/events data

event data

events/
production data

Process DB Rules DB

Production data

in-house process/
refined sphere contractual rules

data data

Translator

CI translator

contractual rulesin-house process/
refined spheres

Figure 6.5: Connecting to internal legacy systems.

the WFMS and rules engine are translated down to the internal level by the CI trans-
lator. For enactment, the local WFMS and rules engine use a production database.
Furthermore, to coordinate the enactment on an internal level and external level, the
local WFMS and rules engine communicate events, rules, and production data bi-
directionally.

Next, the grey-shaded eSRA components of this section are presented on a third
refinement level.

6.2.3 Third Detail-Level of eSRA

In this subsection the dark-grey shaded components of Subsection 6.2.2 are further
detailed according to the principles of functional decomposition. First the CE translator
and CI translator are refined in Figure 6.6 and Figure 6.8. The refinement of the CE
translator depicts a CE projector component that is performing projections between the
conceptual and external levels. To perform that function, the CE projector uses a rules
database.

Figure 6.6 shows several bidirectional arcs to the CE-projector of which some are
related to each other. The rules- and process-modeler components exchange contrac-
tual rules and workflow sniplets and composed processes via the CE projector with the
contracting client on the external level. The global rules engine receives contractual
rules from the CE projector through which rules- and events data is exchanged via the
rules- and events data exchanger down to the local rules engine on the internal level.
Figure 6.6 depicts a detailed exchange between the CE projector and components of
the global WFMS. The enactment engine receives contractual spheres from the service
consumer or provider respectively. During enactment, an exchange occurs with the en-
actment monitor and the conjoinment monitor, which is explained below and depicted

6.2. A REFERENCE ARCHITECTURE FOR ESOURCING 111

Translator

CE Projector

Projection rules DB

projection rules

CE Translator

Global rules
engine

Sourcing middleware

Rules/events
data exchanger

Workflow/events
data exchanger

events/production data rules/events data

Global WFMS

Enactment
monitor

Conjoinment
manager

production data
event data

rules/events data

contractual rules

Enactment
engine

consumer’s/provider’s
contractual spheres

Contracting
client

contractual rules

workflow sniplets/
composed processes

Sourcing setup support

Rules modeler

Process modeler

contractual rules

workflow sniplets/
composed processes

Figure 6.6: The CE translator in detail.

in Figure 6.7. The latter two components exchange events- and production data via
the CE projector and the workflow/events data exchanger down to the local enactment
monitor and conjoinment monitor that are located on the internal level of the reference
architecture.

Figure 6.7 the global WFMS component of the Sourcing middleware that is sit-
uated at the external layer, is depicted as a refinement. It shows an enactment en-
gine for the consumer’s or provider’s consumer spheres that are delivered from the CE
translator. Event and production data is created during enactment and also needed for
enactment and therefore stored and retrieved from dedicated databases. In order to
support the concept of Sourcing, Figure 6.7 shows an enactment-monitor component
and conjoinment-monitor component. These components are important to support the
Sourcing patterns that are formulated in Chapter 4. Concretely, the enactment moni-
tor is responsible for aligning the enactment progress of internal level processes of the
collaborating parties. In Subsection 4.5.2 the patterns are specified that are supported
by the enactment-monitor component. Likewise, the conjoinment-manager component
supports the conjoinment patterns specified in Subsection 4.5.3. Both the enactment
monitor and the conjoinment manager exchange production and event data with com-
ponents in the domain of the collaborating party via the coordination interface. Fur-
thermore, production and event data is communicated to the internal level via the CE
translator to coordinate local components.

The refinement of the CI translator in Figure 6.8 depicts a similar setup as for the
CE translator. However, the information exchange to neighboring components differs.
The CI translator contains a CI-projector component that projects information between
the conceptual and internal level. To do so, a projection-rules database is exchang-
ing rules with the CI projector. With respect to information exchange between the CI
translator and its environment, different subsets of arcs depicted in Figure 6.8 are re-
lated to each other. The CI projector receives contractual rules from the rules modeler,
and in-house processes and refined spheres from the process modeler. The contrac-
tual rules are projected to the local rules engine of the internal level. Furthermore, the
in-house processes and refined spheres are also projected to the internal level where a
process database stores them until the local WFMS loads the processes for enactment.

112 CHAPTER 6. PROOF-OF-CONCEPTS

Global WFMS
Enactment

monitor

Enactment
engine

Monitoring DB

 event data

 event data

 event data

Conjoinment
manager

Production DB

production data

production data

production data

Sourcing middleware

Coordination
interface

CE Translator

Translator

production data

 event data

Rules Engine

 event data

production data

consumer’s/provider’s
contractual spheres

Figure 6.7: The global WFMS in detail.

To coordinate the local WFMS and rules engine with corresponding components on the
external level, the CI-projector transfers production , rules, and events data between the
internal and external levels of the reference architecture.

The internal level refinement of Figure 6.9 shows a setup that is comparable to the
global WFMS of Figure 6.7. The local WFMS contains an enactment engine that re-
ceives in-house processes and refined spheres from the process database. Production
data that is produced and consumed during process enactment, is exchanged with the
production-data database. Event data is exchanged with the local rules engine that car-
ries out contractual rules. Furthermore, the enactment engine exchanges data with ports
for the coordination of legacy systems. To coordinate the local enactment progress with
the external level, production data and event data are exchanged with the conjoinment
manager and the enactment monitor respectively. The latter two components exchange
events- and production data via the CI translator with the equally named components
located on the external level.

The service-broker refinement within the trusted third party of Figure 6.10 reveals
a service-library database that stores contractual spheres of service consumers and
providers via the template search engine. The latter component exchanges contrac-
tual spheres with the contracting client of the Sourcing middleware that is located on
the external level of the collaborating parties. Furthermore, the template search engine
exchanges data with the bid-manager component of the auction service. The notifier
component checks contractual spheres that are stored in the service library for data
about a collaborating party that needs to be informed. If such facts are defined, the
notifier informs the specified contracting client of the respective parties about the sub-
mission of the contractual sphere. Consequently, informed parties check the contractual
sphere and either engage in a bidding procedure or commit to the contractual sphere
by instantaneously responding with committing a contractual sphere of equal content

6.3. ESML - ELECTRONIC SOURCING MARKUP LANGUAGE 113

Translator

CI Projector

Projection rules DB

projection rules

Rules/events
data exchanger

Workflow/events
data exchanger

rules/events dataevents/production data

Local rules
engine

contractual rules

Legacy menagement

Enactment
monitor

Process DB

Conjoinment
engine

Local WFMS

production data
event data

in-house process/
refined sphere

CI Translator

Sourcing setup support

Rules modeler

Process modeler

in-house process/
refined spheres

contractual rules

rules/events data

Figure 6.8: The CI translator in detail.

to the trusted third party.
The refined auction service of the trusted third party is depicted in 6.11. In the auc-

tion service component the contained bidding library stores bids that are committed and
retrieved by a bid manager. This component is communicating with the contracting-
client component that places and retrieves bids from the bidding library. As described
earlier, the bid manager is exchanging bid- and service data with the template-search-
engine component of the service broker. Finally, the last component of the trusted third
party is the verifier. In Section 5.7 a verifier architecture is presented that is suitable for
the trusted third party. In this architecture the in-house process of a service consumer
and the provider sphere are flattened to a P/T-net and consequently verified for correct
termination and inheritance relations.

In the remaining sections of this chapter two components of the eSRA reference
architecture are further detailed. The component for the pattern knowledge base con-
tained in Figure 6.4 is further elaborated upon with a proposed reference architec-
ture that results from the implementation of a learning prototype. Finally, a proof-of-
concept prototype for the evaluation tool contained in Figure 6.4 is presented, namely
the web based business-process enactment application called XRL/flower.

Next, the XML-based language eSML is presented that is instrumental for formu-
lating eSourcing configurations.

6.3 eSML - electronic Sourcing Markup Language
An XML-based modelling language, eSML, is developed as a further proof of the
eSourcing concept. It is employed for inter-organizationally harmonizing business pro-
cesses between collaborating parties by containing the pattern catalogue for eSourcing
that are specified in Chapter 4. eSML is applied at the external level where business-
process details are publicly disclosed. These details are the result of projecting a larger
internal business process that is located on the conceptual layer in the domains of col-

114 CHAPTER 6. PROOF-OF-CONCEPTS

Enactment
monitor

Local WFMS

Enactment
engine

send/receive data
to web-service ports

event data

Process DB

in-house process/
refined sphere

CI Translator

Local rules
engine

production data
events data

Legacy management

Translator

Consumer/provider web service

Production data

Conjoinment
manager

event data

in-house process/
refined sphere

data

production data

send/receive data
to web-service ports

Figure 6.9: The local WFMS in detail.

laborating parties. With this combination of using eSML on the external level and
on the conceptual level a separate, bigger business-process definition, the contractual
visibility (see Section 4.5.1) for the collaborating counterpart is determined.

In an eSML instance the contractual spheres of a service consumer and a service
provider are contained. To achieve a consensus, both contractual spheres must match
(see Section 5.4.3). The exposed contractual spheres of the collaborating parties may
optionally contain conjoinment nodes (see Section 4.5.3) for the exchange of busi-
ness information between the opposing business domains. For linking the contractual
spheres, a set of monitorability patterns (see Section 4.5.2) is available. That way it is
possible to determine how much the enactment progress of an eSourcing configuration
may be monitored by a service consumer.

6.3.1 Foundation of eSML
The foundation of eSML is the XML-based language ECML (Electronic Contracting
Markup Language) [23], which is designed for the formulation of electronic contracts.
A contract is a legally enforceable agreement, in which two or more parties commit
to certain obligations in return for certain rights [56]. In B2B relationships all eco-
nomic production and exchange processes are organized through contracts. Electronic
contracting aims at using information technologies to significantly improve the effi-
ciency and effectiveness of paper contracting, allowing companies to support the newly
emerging business paradigms while still being legally protected.

At the highest abstraction a contract in eSML is reduced to answering three ques-
tions i.e., the Who, Where, and What question [23]. The Who answer concerns the

6.3. ESML - ELECTRONIC SOURCING MARKUP LANGUAGE 115

Figure 6.10: The service broker in detail.

Sourcing middleware Auction service

Bid manager

Bidding library

bid dataContracting client

bid placement

bid retrieval

Template search
engine

bid data service data

Trusted third party

Service broker

Figure 6.11: The auction service in detail.

actors that participate in the contract establishment and enactment. The Where an-
swer specifies the context of a contract, e.g., the legal context, business context. The
What answer models the exchanged values, rules, and the exchange processes for which
XRL [82] is an integral part (see Section 6.5). In its full specification ECML is used for
specifying the answers to another questions, namely the How answer that specifies the
contract content structuring, representation, establishment, and enactment. However,
the How answer is also not part of eSML as it is covered by the reference architecture
for eSourcing.

The following sections present models of constructs and their relationships that are
part of the eSML definition. These models are based on the three contracting questions
that are described above.

6.3.2 Notation Explanation

Since different perspectives are contained in eSML, it is important to visually distin-
guish them in the following static UML diagrams [46]. The referred to perspectives are

116 CHAPTER 6. PROOF-OF-CONCEPTS

described in Figure 3.6 of Section 3.4 and paid attention to with a special notation as
depicted in the figure below.

Sourcing
perspective

contracting
perspective

data-flow
perspective

resource
perspective

control-flow
perspective

data-flow
perspective

resource
perspective

control-flow
perspective

Service Consumer Service Provider

Figure 6.12: Perspective notation.

In Figure 6.12 some UML-class icons are equipped with background shading of differ-
ent darkness variations and different boldness of lines. Since the inter-organizational
concept of eSourcing rests on the three inter-organizational perspectives of control flow,
resource, and data flow, eSML also incorporates classes belonging to the latter three.

Visualizing all elements of eSML in a static class diagram results in fairly large
models. In order to fit the visualization into this chapter, a way of splitting the overall
model into smaller sub-models must be found. Thus, classes that are coupling points
between different sub-models are grey shaded and replicated in those sub-models that
are adjacent to each other.

6.3.3 eSML Models
As mentioned before, eSML contains three important concepts, namely Who, Where,
and What. These three concepts are relevant for structuring eSML in a top-down way
for creating a framework in which the perspectives depicted in Figure 6.12 are embed-
ded.

The Who Concept

In Figure 6.13 the classes and relationships belonging to the Who concept are depicted.
As mentioned earlier, this concept clearly identifies the contracting parties by including
the class party. Parties are actors that have rights and obligations, which are listed in
the Sourcing configuration. Concerning the relationship cardinalities, it is defined that
at least two parties must be stated in a contract. However, it is also possible to have
more than two parties defined. For example, an original manufacturer can agree with
several suppliers to be included in one contract.

In a contract several third parties may optionally be involved that are termed me-
diators in the case of eSML. Mediators represented by class mediator, participate
in the enactment of a Sourcing configuration but their rights/obligations are not stated.
Consequently, mediators do not have to sign the e-contract. If their relations with the
parties must be defined as legally binding, they can become a party in the same or in

6.3. ESML - ELECTRONIC SOURCING MARKUP LANGUAGE 117

company_info

company_data company_contact_data

1

1
1

1

1

0..1

-snippet_id : ID
snippet_section

only_vars_section

-1

-1

-1

-0..1

resource_section

var_section

-contract_id : ID
-global_language : string

contract

-local_language : string

party

-local_mediator : string

mediator

-

1
-0..*

-

1

-2..*

� �

�

�

�

� �

context_section

1

0..1

�

Figure 6.13: Detailed Who model.

a separate contract where their rights and obligations are stated. For example, a me-
diator could be concerned with verifying whether a Sourcing configuration that is part
of a contract can terminate successfully from a control-flow point of view. In order to
safeguard business details from each other, the contracting parties can not check such
correct termination themselves as they would disclose their business secrets to each
other.
Contracting parties and optional numbers of mediators are in a relationship with sev-
eral other classes. The company_data comprises information like the name of a
contracting party or mediator, the type of legal organization, and so on, while the
company_contact_data refers to information related to the geographic location
of the Sourcing party. That way a contracting party or a mediator is uniquely identified
according to legal requirements.

The third related class termed resource_section is the root class of the re-
source perspective. A contracting party or a mediator may have attached resource
definitions. However, in most cases it might, for example, be superfluous to define
resources of mediators, unless a mediator is also primarily involved in commercial ex-
changes. Resources may comprise of actors and non-actors where the latter can be of
a consumable or non-consumable nature. Further details are contained in Appendix A,
where figures about the resource perspective are contained.

The classes company_data and company_contact_data are subclasses of
class only_vars_section, which contains variables and so called snippets. The

118 CHAPTER 6. PROOF-OF-CONCEPTS

class var_section is a docking class belonging to the data-flow perspective that
includes company description, trade registration number, VAT registration number, ad-
dress of registration, etc. The class snippet_section references so-called contract
snippets that can be attached to particular contract definitions, for example, to attach
general terms and conditions.

contract

-contract_id : ID
-global_language : string

business_context_provisions legal_context_provisions other_context_provisions

all_section

1

0..*

1

0..*

1

0..*

snippet_section

-snippet_id : ID

- 1

- 0..1

-

1

- 0..1

- 1

- 0..1

-

1

- 0..1

process_section var_section rule_section
�

�

�

� ���

Figure 6.14: Detailed Where model.

The Where Concept

The Where group of concepts contains provisions related to the context of the e-
contract. We distinguish two basic aspects of the e-contract context, i.e., the business
context and the legal context. Thus two subsections are proposed in the Where section.
In addition, a third subsection can be defined to include other e-contract provisions that
are not related to the legal and business context.

All three classes named business_context_provisions, legal_
context_provisions, and other_context_provisions are subclasses of
the grouping class named all_section. It references the classes process_
section, var_ section, rule_section, and snippet_section.

The What Concept

As depicted in Figure 4, the What group contains concepts related to the exchanged
values and their related conditions. Two main subsections are distinguished in the
What concept, namely the exchanged_value and the corresponding exchange_

6.3.
ESM

L
-

ELEC
TR

O
N

IC
SO

U
R

C
IN

G
M

A
R

K
U

P
LA

N
G

U
A

G
E

119

contract

-contract_id : ID
-global_language: string

exchanged_value exchange_provisions

all_section

snippet_section

-snippet_id : ID

- 1

- 0..1

-

1

- 0..1

- 1

- 0..1

-

1

- 0..1

process_section var_section rule_section

�

� � � �

- 1

- 2..*

- 1

- 2..*

�

product financial_rewardservice

- 1

- 0..*

- 1

- 0..*

- 1

- 0..*

vars_and_processes_section

� � �

�

0..10..11 0..1 0..1 0..1 0..1

�

Figure
6.15:D

etailed
W

hatm
odel.

120 CHAPTER 6. PROOF-OF-CONCEPTS

provisions for the value exchange. These classes are defined separately for every
respective contractual party involved in contracting.

In a case of product exchange, the product is described by means of data constructs.
In a case of service exchange, the service is described through a combination of data
that flows through and process constructs. The corresponding financial reward for the
received value (in non-barter exchanges) uses the same constructs as a service descrip-
tion subsection. The value exchange provisions subsection requires the use of rule and
process specification constructs. Examples for exchange provisions are rules for de-
termining how late payment needs to be handled, how cancellations are dealt with, or
definitions for calculating interest adjustments in payments.

The grey shaded classes of Figures 6.13 - 6.15 are docking classes to more elaborate
eSML models that are contained in Appendix A. These models cover the contractual
perspective and also the control-flow, resource, and data-flow perspective.

For eSML an application environment is required for supporting the different phases
of eSourcing collaboration between business parties. The next section offers a refer-
ence architecture for setting up and enacting eSourcing configurations that is replicated
in the domains of a service consumer and service provider.

6.3.4 Related Work

With respect to industry standards, related work exists. Firstly, abstract BPEL [58]
process definitions describe the observable behavior of executable BPEL proces speci-
fications. Abstract BPEL and executable BPEL use the same formal expressive system
while the first one permits details to be left out. The intent of abstract BPEL is to
provide enough detail for describing the public behavior and to insure conformance at
implementation time. Hence, three potential uses of abstract BPEL can be mentioned,
namely, the specification of public behavior contracts, the provision of implementation
templates, and guards to ensure the executable BPEL processes adhere to what has
been agreed upon.

The second notable industry effort is the Web Services Choreography Descrip-
tion Language (WS-CDL) [59] that describes peer-to-peer collaborations of parties by
defining their common and complementary observable behavior. Hence, WS-CDL of-
fers a communication bridge between the heterogeneous computational environments
used to develop and host applications. Differently to abstract BPEL, WS-CDL explic-
itly describes how participants interact in a choreography.

When abstract BPEL and WS-CDL are compared with eSML, it can be noted that
different collaboration models are realized. Both industry languages address the match-
ing of collaborating processes in a different way than in eSML where a contractual
consensus must be established. Moreover, the ability to define the monitorability in a
flexible way does not exist in abstract BPEL and WS-CDL. Looking at how the dif-
ferent perspectives are represented in the industry language definitions, it can be noted
that eSML is more comprehensive as pattern catalogues for the perspectives control
flow, data flow, and resource use are integrated. Additionally, the availability of sev-
eral types of business rules in eSML allows an extensive specification of contractual
clauses that accompany the inter-organizational business process collaboration of a ser-
vice consumer and service provider.

6.4. A PATTERN KNOWLEDGE BASE REFERENCE ARCHITECTURE 121

6.4 A Pattern Knowledge Base Reference Architecture

Inter- and intra-organizational knowledge workers (IKWs) that setup eSourcing col-
laborations must not have to "reinvent the wheel" every time. Instead, they should be
able to use existent pattern catalogues such as those specified in Chapter 4. In Figure
6.4 a pattern knowledge base is depicted to support the modelling of processes. In this
section a reference architecture for such a pattern knowledge base is presented that uses
the pattern meta-model of Section 4.2 as a foundation.

A pattern for an eSourcing perspective has a lifecycle, which is the starting point
for establishing a reference architecture for a pattern knowledge base. A pattern must
first be reviewed by a committee before it turns into a quality pattern that is available
for IKWs. For the reference architecture an extension of the pattern meta-model is re-
quired for capturing additional information about the knowledge-base users and review
procedures of patterns.

6.4.1 A Pattern Lifecycle

In Figure 6.16, an activity diagram shows the lifecycle of a pattern, which starts with
an initial pattern proposal that is submitted to the knowledge base by a user who has
the appropriate authorization level. This initial version of a pattern needs to go through
a process of quality assurance before it may be accessible to IKWs who want to search
for quality pattern information. Without a review procedure for patterns, the pattern
content of the knowledge base may lack quality.

/ pattern version proposed

submitted to repository

/ suggested for reviewing

in review

/ review results are submitted

rejected accepted quality pattern
/ status change

/ rewrite new version

[review rule satisfied][review rule not satisfied]

/ review rule not satisfied

Figure 6.16: The lifecycle of a pattern.

Thus, a knowledge-base user with the authorization of leading a review proposes the
pattern for a review process. Repository users with the right skills may volunteer for
a review or be explicitly invited by the review leader. Based on a defined review rule,
a certain number of review results needs to be submitted for determining whether the
pattern is accepted or not. If the review rule is not satisfied, the pattern is rejected
and needs to be rewritten as a new proposal. If the review rule is satisfied, the pattern
proposal is officially accepted and experiences a status change. Thus, it turns into a
quality pattern that is exposed to IKWs for searching. Based on the pattern lifecycle

122 CHAPTER 6. PROOF-OF-CONCEPTS

of Figure 6.16, it is possible to extend the pattern meta-model so that relevant data is
captured for running an online application on top.

6.4.2 An Extension for User and Review Management
In Figure 6.17 the User package contains relevant classes for handling user and review-
related information. On top of Figure 6.17 the Pattern package contains class
Pattern, which is the only connection between the two packages.

The central class of the User package is called RepositoryUser and contains
the attribute volunteer for indicating whether a user wants to be a reviewer or not.
The user of a knowledge base may slip into several Roles which have different autho-
rization levels included that influence how a user can interact with the pattern knowl-
edge base. For example, an analyst is only allowed to browse for information but not
allowed to edit a pattern.

-volunteer : boolean
-name: string
-userName : string
-password : string
-registrationDate : date
-email : string
-address : string
-title : string
-initials : strinbg

RepositoryUser

-creationDate : date
-endDate : date
-accepted : boolean

Review

-name : string
-authorizationLevel : integer

Role

-acceptsNeeded : integer
-rejectsNeeded : integer
-creationDate : date

Rule

-accepted : boolean
-handled : boolean

FulfilledRole

-invitationDate : date
-acceptRejectDate : date
-accept : boolean

InvolvementInvitation

Pattern

-resultDate : date
-comments : string
-accept : boolean

ReviewResult

-invitationDate : date
-comment : string
-endDate : date

VolunteerReview

-title : string
-domain : string

Qualification

ObtainedQualification

-possesses1..*

-isAssignedTo
0..*

-creates

0..*

-c
o

n
s

tr
u

ct
e

d
B

y

1 ..1

-takesPart

0..*

-involves

1..*

-followsA

1..1

-for
1..*

-belongsTo
0..*

-commandsOver

0..*

-i
sP

e
rf

o
rm

e
d

B
y

1 ..1

-issues

1..1

-contributes

0..*

-s u b m
 itte d B

 y

1
..

1

-isFor1..1

-r
e

ce
iv

e
s

1..*

-submits0..*

-s
u

b
m

it
te

d
B

y

1 ..1

-forPattern

1..1

-goesThrough
0..1

-initiates 0..*
-initiatedBy

1..1

Pattern package

User package

Figure 6.17: Detailed class model of the UserManagement package.

The model in Figure 6.17 also depicts the class Qualification that is referenced
by RepositoryUser. The qualifications of a user are relevant for taking part in
reviews. Users who do not have required qualifications can not be considered for re-
viewing patterns. Furthermore, if a user has the appropriate role assigned for leading a
review, she can issue invitations for several reviews. Such a knowledge-base user also

6.4. A PATTERN KNOWLEDGE BASE REFERENCE ARCHITECTURE 123

needs to define a Rule for a review if a predefined rule doesn’t exist already. For ex-
ample, a rule could state that four reviewers out of five must accept a pattern proposal
in order to become a quality pattern while two rejections are enough to totally reject
the pattern proposal without waiting for the results of the remaining reviewers.

A Review is initiated by a knowledge-base user who has the role of a review
leader. After assigning a rule to the review, the review leader must find review par-
ticipants. First, a review leader can look in the pool of users who issued an entry
in Volunteer Review. Provided a volunteers possess the appropriate qualifica-
tions, a review leader creates an entry in class InvolvementInvatiation and
therefor establishes a relationship between a knowledge-base user and a pattern re-
view. Secondly, if not enough volunteers are available, the review leader searches for
rightly qualified knowledge-base users and issues a review-involvement invitation that
is either accepted or rejected. If the knowledge base rejects the invitation, the entry
created by the review leader is removed from class InvolvementInvatiation.
Finally, once the required amount of review participants is established, entries in class
ReviewResult are performed that indicate whether a knowledge-base user accepts
or rejects a pattern proposal. Next, a reference architecture is presented for a pattern
knowledge base.

6.4.3 An Application Architecture
The pattern lifecycle of Figure 6.16 shows which actions of application users an ap-
plication architecture must support. An author is a user who submits a pattern to the
knowledge base. A review leader forms a review committee for the evaluation of newly
submitted patterns. Registered users of the knowledge base who indicate to be volun-
teers as reviewers are invited by the review leader to form a committee. An IKW with
the role termed analyst is interested in browsing a knowledge base that contains pat-
terns of different perspectives and corresponding information about their artifact sup-
port. As indicated in Figure 3.6, that pattern information helps an analyst to estimate
which patterns collaborating business parties support despite their heterogeneous sys-
tem environments. That way the setup time of inter-organizational business processes
is accelerated. Finally, an administrator of the pattern knowledge base is required to
grant roles to registered users, troubleshoot during pattern reviews, and so on.

The mentioned roles for knowledge-base users are input for an architecture that
uses the pattern meta-model as a foundation. The described knowledge-base user types
are depicted in Figure 6.18 where bi-directional arrows indicate an exchange with cer-
tain modules of the application’s web interface. In the interface layer, modules are
contained, for user management related interfaces, pattern related interfaces, and re-
view related interfaces.

• The user management interfaces offer a knowledge-base user to register, claim
various qualifications, and request particular roles. As different roles give a
knowledge-base user different rights, the administrator may need to authorize
the roles. Once a knowledge-base user is approved, the user management inter-
faces allow user to login and logout, and modify roles and qualifications.

• The pattern interfaces allow users to browse the knowledge base for patterns
with a search engine that uses facts from the classes belonging to the taxonomy
package (see Figure 4.2) and the support package (see Figure 4.4). The generated
lists of patterns can be individually selected for exploring their details.

124 CHAPTER 6. PROOF-OF-CONCEPTS

User data Review dataPattern data

Pattern
manager

User
manager

Review
manager

Review
interfaces

Pattern
interfaces

User management
interfaces

Pattern author Reviewer Review leader/
Administrator

Analyst

bu
si

ne
ss

 lo
gi

c
da

ta
 lo

gi
c

pr
es

en
ta

tio
n

lo
gi

c

Figure 6.18: The application architecture of the pattern knowledge base.

• Review interfaces allow a review leader to set up a review committee consisting
of reviewers who either volunteer or are appointed based on their qualifications.
In the latter case an appointed reviewer may decline through an interface. After
the reviewers explore the properties of a pattern, they submit an accept or reject
and their feedback for the pattern author. The latter knowledge-base user checks
the feedback from the reviewers through another interface.

The functionality layer of Figure 6.18 shows modules that support the presentation-
logic layer, namely the user manager, pattern manager, and the review manager. They
process input of the knowledge-base users and control the interfaces that are presented
for the signing up and signing in of users, submitting and browsing patterns, performing
reviews, and various administration activities. Figure 6.18 depicts the modules of the
functionality layer that are referencing each other. For example, to perform a review,
the review-manager module uses functionality contained in the user-manager module.
As a result, competent review teams are organized with the right qualifications. Dur-
ing a review, functionality from the pattern manager allows a reviewer to explore the
context a pattern proposal is embedded in, i.e., the taxonomy location, technology sup-
port, relationship with other patterns, and so on. Furthermore, a reference between the
pattern-manager module and the user-manager module exists for the same reason of
employing functionality from each other. For example, if a knowledge-base user wants
to browse for pattern information, she needs to have the role of an analyst, which must
be checked by using functionality from the user manager.

6.5. XRL AND XRL/FLOWER 125

The bottom of Figure 6.18 depicts the data layer showing databases for user data,
pattern data, and review data. These databases are referenced by the corresponding
modules of the functionality layer. The figures of Section 4.2 contain data elements
that are in the pattern data. The review and user data is depicted in Figure 6.17 without
claiming completeness.

6.5 XRL and XRL/flower

This section starts with an introduction of XRL (eXchangable Routing Language) [82],
which is contained in the schema definition of eSML for the purpose of modelling the
contractual spheres of a service provide and service consumer. XRL is also an option
for modelling the in-house process of a service consumer and the provider sphere of
a service provider that are located on the conceptual level of an eSourcing configura-
tion. As a means of evaluation of these processes, the tool XRL/flower exists to be an
evaluation tool as proposed by eSRA.

This section is structured as follows. First, a brief introduction to XRL is given, fol-
lowed by an architecture overview of XRL/flower. Next, the enactment lifecycle of an
XRL file is described, followed by a brief presentation of the components comprising
XRL/flower.

6.5.1 XRL: an XML-Based Routing Language

XRL an instance-based workflow language that uses XML for the representation of
process definitions and Petri nets for its semantics. A catalogue of control-flow patterns
[17, 18, 60, 61] is contained in the definition of XRL [20, 82] as routing elements that
results in strong control-flow expressive power of XRL. These routing elements are
equipped with Petri-net semantics [21], namely, every routing element stands for an
equivalent WF-net sniplet that can be connected with other routing elements into a
bigger WF-net. The syntax of XRL is completely specified in a DTD and schema
definition [82]. An XRL route is a consistent XML document, that is, a well-formed
and valid XML file with top element route (see the Appendix A.6). The structure of any
XML document forms a tree. In case of XRL, the root element of that tree is the route.
This route contains exactly one so-called routing element. A routing element (RE) is
an important building block of XRL. It can either be simple (no child routing elements)
or complex (one or more child routing elements). A complex routing element specifies
whether, when and in which order the child routing elements are done.

XRL provides the following routing elements:

• Task. Offer the given step to some resource, wait until the step has been per-
formed, and afterwards set all events for which a child event element exists.

• Sequence. Start the child routing elements in the given order and wait until all
have been performed.

• Any_sequence. Start the child routing elements in any order and wait until all
have been performed.

• Choice. Start one of the child routing elements and wait until it has been per-
formed.

126 CHAPTER 6. PROOF-OF-CONCEPTS

• Condition. If the given condition holds, start the child routing elements of all true
child elements in parallel and wait until all have been performed. Otherwise, start
the child routing elements of all false child elements in parallel and wait until all
have been performed. A condition may have any number (even none) of true and
false child elements.

• Parallel_sync. Start the child routing elements in parallel and wait until all have
been performed.

• Parallel_no_sync. Start the child routing elements in parallel but do not wait for
any of them.

• Parallel_part_sync. Start the child routing elements in parallel and wait until the
given number of child routing elements has been performed.

• Parallel_part_sync_cancel. Start the child routing elements in parallel, wait until
the given number of child routing elements has been performed and cancel the
remaining child routing elements if possible.

The routing elements of XRL are based on a thorough analysis of the workflow pat-
terns supported by leading workflow management systems [17]. XRL is an instance-
based workflow language that uses XML for the representation of process definitions
and Petri-net formalism for its semantics resulting in an unambiguous understanding
of XRL. This makes XRL an interesting proposition for eSML instantiations where
XRL is used for modelling the contractual spheres of a service consumer and a service
provider (see Appendix C).

As shown in [21], the semantics of XRL is expressed in terms of WF-nets (see
Section 2.3), which permits the use of theoretical results and standard tools such as
Woflan [10, 109] (see Section 2.6) for checking the notion of soundness. The Petri-
net semantics of XRL is realized by mapping to PNML [63, 65, 113], an XML-based
interchange format that permits the definition of Petri-net types. For that purpose a
stylesheet translator is employed that contains mapping rules to PNML for every XRL
control-flow construct that are described in [21].

6.5.2 XRL/flower: An Evaluation Tool
XRL/flower [110] is intended to be part of eSRA (see Section 6.2) where it is used as
an evaluation tool for the in-house process of a service consumer and for the provider
sphere of the service provider. The development of XRL and subsequently XRL/flower
can be seen as a reaction to several XML-based standards for business process mod-
elling that have emerged in recent years. Some examples of relevant present and past
acronyms are BPEL4WS [40], BPML [33], WSFL [55], WSCI [28], XPDL [38],
XLANG [103], and so forth. However, while their semantics and expressive power
is suitable for technically composing web services, their satisfactory application in
B2B collaboration poses a challenge. In contrast, XRL as a part of eSML is equipped
with very clear Petri-net semantics. Differently to the mentioned XML-standards one
can determine before enactment whether an XRL modelled workflow is sound or not.
Such analysis power is crucial for avoiding the occurrence of abnormalities such as
deadlocks during carrying out business transactions.

Since XRL is based on both XML for syntax and Petri nets for semantics, standard
XML tools can be deployed to parse, check, and handle XRL documents. The Petri-net
representation allows for a straightforward implementation of the workflow enactment

6.5. XRL AND XRL/FLOWER 127

engine. XRL constructs are automatically transformed to Petri-net constructs. This
allows for an efficient implementation and the system is easy to extend by employing
an XSL translator for mapping routing elements to PNML. Thus, for supporting a new
control flow primitive, only a transformation to the Petri-net format needs to be added
and the engine itself does not need to change.

6.5.3 Architecture of XRL/flower
Figure 6.19 shows the toolset architecture of XRL/flower where grey shaded elements
are implemented. Using both the control-flow data for the workflow case and case
specific data, the Petri-net engine computes the set of enabled tasks, that is, the set of
work items that are ready. The engine sends this set to the work distribution module.
Based on information of organizational roles and actors, the work distribution module
fills the work item pool. Resources that may carry out those ready worklist items can
log into XRL/flower through the web server. If the actor has registered beforehand, an
online worklist manager displays the ready items in the web client that are assigned
by the work distribution module. By accepting a chosen worklist item, its content is
displayed.

Petri-net
engine

Web server

Work
distribution

module

Process
data

Case data

Form data

Enabled
tasks

Work item

Web client

XRL2PNML

XRL file
(new instance)

Woflan

PNML file
to verfiy

Verification
results

Verified
PNML file

Client PC

XRL/flower

User requests Responses

Task
update

Organizational
data

Work item
pool

Workflow
composer

Composed
process

Interface
module

Composed
process

Validation
result

Validation result

Validation result

Figure 6.19: XRL/flower architecture [21].

In order to enable an actor to perform an activity, the web server fills the appropriate
form template with case specific data for the activity. The web server stores updated
case data and signals the Petri-net engine the activity has been completed. The Petri-
net engine then recomputes a new set of work items that are ready. The actor can also
start an XRL instance by sending the corresponding XRL file to the web server. The
web server forwards the XRL file to the XRL2PNML module that transforms XRL to
PNML (Petri-Net Markup Language), which is a standard representation language for

128 CHAPTER 6. PROOF-OF-CONCEPTS

a Petri net in XML format [63]. Finally, Figure 6.19 also depicts an interface module
of XRL/flower. The interface is used to communicate the composed process and the
validation results to the workflow composer, which conforms to Figure 6.4 where a
higher level exchange between the two components is explained.

6.5.4 Evaluation with XRL/flower

The activity diagram depicted in Figure 6.20 shows the enactment lifecycle of an XRL
modelled workflow. First, the XRL2PNML module performs a transformation from
XRL to two PNML files: one for verification and one for enactment sharing similar
soundness characteristics. The first PNML file is verified using the Woflan tool. Based
on the result either the second PNML file is sent to the Petri-net engine for enactment,
or the actor is informed about the XRL instance containing flaws. In the latter case, the
actor may either abandon the new instance, or modify it to fix the errors. Of course,
the fixed instance is also verified before it is enacted.

Transform into PNML using XRL2PNML

Verify PNML using Woflan

Enact using Petri-net engineFix XRL instance

XRL file to

enact

PNML Files

Verfication Ok

Verification not Ok

AbandonContinue

Verified PNML file

 Verified
PNML Files

Fixed XRL

file to enact

PNK

review.xrl

review_1.xrl review_2.xrl

review_1.pnml review_2.pnml

Enactment Enactment

XRL2PNML

XRL Template

XRL Case

PNML Case

Figure 6.20: XRL case life-cycle.

The right hand visualization of Figure 6.20 serves to complete the understanding of
XRL/ flower instance handling. Dashed rectangles represent workflow files, rectan-
gles stand for XRL/flower modules, and circles depict component processes. An XRL
workflow may serve as a template of which instance files are created. Every instance of
the workflow is uniquely identifyable. After the XRL2PNML module translates every
instance to PNML and assuming soundness evaluation succeeds, instances are loaded
into the Petri-net engine module that consists of the Petri-net kernel PNK and an en-
actment application built on top of PNK. For every workflow instance that needs to be
carried out, a new enactment application process is created. Thus, multiple instance
enactments can be handled concurrently by XRL/flower’s Petri-net enactment module.

6.5.5 Component Description

Several parts of the XRL/flower toolset in Figure 6.19 are grey shaded, which means
they are largely implemented in the currently available prototype [83]. This section
describes the existing functionality of tool modules depicted in Figure 6.19 and how
they interact with each other.

6.5. XRL AND XRL/FLOWER 129

Worklistitem

WorklistitemAccepted
ByActor

WorklistitemCompleted
ByActor

WFCase

Variable

Document

Role

Actor

Role_Actor

WorklistItem_Variable

WorklistItem_Document

Role_WorklistItem

WorklistManager

WorklistitemPool

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1

1

1

1..*

1..*

0..*

0..*

1

1

0..*
0..*

0..1

0..1

1..*

0..*

Figure 6.21: Database model of XRL/flower.

A relevant preliminary for describing the component’s way of interacting is the database
of which a model is depicted in Figure 6.21. Note that this model is independent from
the pattern meta-model of Section 4.2 and it’s extension for the pattern-knowledge base
of Section 6.4.2. The central entity of the model is WFCase that contains attributes
about every enacted case instance’s unique identifier, starting and ending timestamp. A
case file can contain variables with optional values present at case start time. Likewise
documents can be contained in the case file in combination with a uri.

For attaining increased flexibility with respect to organizational fluctuation, a split
between organizational roles and actors is sensible. Attributes can be attached to roles
into which actors can slip. The database model in Figure 6.21 shows that an actor may
slip into multiple roles and a role may be held by many actors. When an actor registers
for the first time with XRL/flower, a worklistitem manager entry is inserted in the entity
WorklistManager.

Ready worklist items are inserted with a start timestamp in the Worklistitem
entity and a worklist-item-manager identifier is instantaneously added to the worklis-
titem entry. Variable and document links can be contained in a XRL task definition.
Thus, further tuples need to be inserted for assigning the appropriate variables and
documents to a particular worklist item entry. The database model of Figure 6.21 also
shows entities for the acceptance of a worklist item and completion of an activity that
are committed by an actor together with time stamps through the web client.

XRL2PNML

The XRL2PNML module consist of a stylesheet translator containing mapping se-
mantics from XRL [20, 82] to PNML described in [21]. As a result carefully ex-
tracted control-flow patterns [21] contained in the XRL modelled workflow (see Ap-
pendix A.6) are converted into a WF-net represented in PNML format.

Petri-Net Enactment Engine

The core of this module is the Petri-net kernel PNK on top of which an enactment
application is implemented. PNML files representing case instances can be loaded into
the PNK that translates workflow node tags into an object instance net. Next, the case
name is detected in the PNML file and inserted to the WFCase entity. Parsers check

130 CHAPTER 6. PROOF-OF-CONCEPTS

for variable and document tags that are automatically inserted to the database together
with their optionally present values.

Figure 6.22: Enactment application of the Petri-net enactment module.

Figure 6.22 shows the enactment application selection in front of an editor displaying
the PNK loaded workflow instance. After choosing the enactment application, a simple
Petri-net firing rule can be started that allocates all enabled transitions and fires them
randomly in a loop until no enabled transitions can be detected [110].

Figure 6.23: Worklistitem manager created by the web server.

Web Server/Web Client

An actor who wants to interact with the XRL/flower system must log in through the
web client. If the actor can not be detected in the database, the web server sends a form

6.6. CONCLUSION 131

to the client for entering assorted data that is inserted through the web server to the
database.

Figure 6.24: Display of an activity.

If the actor logging into XRL/flower can be detected in the database, the web server
checks the WorklistitemPool for ready worklist items. In Figure 6.23the detected
set is displayed in the web client. Clicking the Accept button triggers the web server
to perform a corresponding insertion in the database (see Figure 6.21).

In a next step the web server reads all variable and document entries associated
with the activity and displays them in the web client for the actor. A chosen work-
list item can be accepted through the web interface, which results in a display of all
activity properties as Figure 6.24 shows. An address attribute is displayed delivering
a web Service uri the actor can use for carrying out an activity operation. The web
client allows the actor to choose particular variables and documents for changing the
delivered values and commits them to the database. Such changes are relevant for the
evaluation result of XPath conditions used in the workflow case.

Figure 6.24 shows a Complete button the actor may click after having carried
out the activity instruction. Such action commits a corresponding entry in the database
containing a timestamp. As a result the web server collects the new set of ready work-
list items the Petri-net engine module has generated and inserted to the database and
displays them again in the web client. Once the actor has completed carrying out ac-
tivities with XRL/flower support, clicking the SignOff button results in a log off.

6.6 Conclusion
In this chapter several proof-of-concepts are presented, which demonstrate in short re-
alizations that the core ideas of eSourcing are workable and feasible. Hence,a reference
architecture is presented that is guiding for the development of applications to support
the eSourcing setup phase and the enactment. eSRA is embedded in the three-level
framework for supporting the setup and enactment of eSourcing configurations. It is

132 CHAPTER 6. PROOF-OF-CONCEPTS

demonstrated that collaborating parties must not directly connect their domain-specific
legacy systems with each other. Instead the three-level framework ensures that a com-
mon external denominator is established for achieving inter-organizational business
process harmonization.

Next, in this chapter an XML-based proof-of-concept language called eSML is de-
scribed. eSML is intended for the external level of an eSourcing configuration and
based on the electronic contracting language ECML. eSML provides the constructs
for defining eSourcing configurations. By adopting the process modelling language
XRL for eSML, the control-flow perspective is supported with clearly defined seman-
tics. The data-flow and resource perspectives for business processes are realized by
introducing into eSML additional XML constructs that embody specified patterns in
the mentioned perspectives. Thus, by combining these perspectives into eSML, a lan-
guage is created that covers the business needs of inter-organizational business process
harmonization.

For two components of eSRA, a further refined architecture and instantiation are
presented. Firstly, a detailed model and reference architecture for a pattern knowledge
base is presented that supports intra- and inter-organizational knowledge workers in
efficiently and effectively setting up eSourcing configurations. Since many patterns
are specified in different perspectives, the need arises for such a knowledge base. The
architecture shows which components are required to develop a pattern knowledge
base and how these components communicate with each other. By using a pattern
meta-model as a foundation for the knowledge base, the specified pattern catalogues
for eSourcing can be stored and searched as the the knowledge base allows to arrange
the patterns in a taxonomy.

Finally, the web-based workflow management system XRL/flower is a "proof of
construction" that is instrumental as a validation tool for the eSML formulated business-
process specifications. The architecture of XRL/flower is explained, depicting the ex-
istent toolset. By employing a translation module XRL2PNML, Woflan can be applied
for verifying the soundness property of a workflow before enactment. The Petri-net
enactment module uses the Petri-net kernel PNK on top of which an enactment appli-
cation is implemented. No adaptations have to be carried out at the Petri-net enact-
ment module if XRL is extended with a new control-flow element. The XRL/flower
database model is presented and explained followed by a detailed discussion of the in-
teraction sequence between the Petri-net enactment module, web-server module, and
the database server.

Chapter 7

Cases and Evaluations

Contents

7.1 Introduction . 134
7.2 Characteristics of Automobile Supply Chains 134
7.3 Evaluation Requirements . 135
7.4 Case 1: eSourcing, Patterns, and eSRA Evaluation 136

7.4.1 Conceptual-Level Setup 137

7.4.2 External-Level Setup . 138

7.4.3 Selected Spheres in Detail 139

7.4.4 Monitorability negotiations 142

7.5 Case 2: eSML Evaluation . 143
7.5.1 Resource-Perspective Definition 144

7.5.2 Data-Flow Definition . 145

7.5.3 Structure of Process-Harmonization Definition 146

7.5.4 Lifecycle Definition . 147

7.5.5 Mapping Definitions . 147

7.5.6 Monitorability Definition 148

7.6 Conclusion . 149

Following the design-science research methodology, results in the creation of artifacts,
namely the eSourcing framework together with corresponding pattern catalogues, the
reference architecture eSRA, and the eSourcing Markup Language called eSML. The
focus of this chapter is an evaluation of the mentioned artifacts with the help of case
studies, which are inspired by larger case studies that have been conducted for Cross-
Work. The concise case studies in this chapter perform an evaluation of the created
artifacts, which demonstrate that the eSourcing concept these artifacts represent are
workable and feasible. The evaluation requirements are defined based on the business
needs of CrossWork industry partners, literature, and expert interviews. After eval-
uating the artifacts in two case studies, the conclusion of this chapter discusses the
evaluation results, i.e., assesses to which extent the list of requirements defined earlier
are fulfilled.

133

134 CHAPTER 7. CASES AND EVALUATIONS

7.1 Introduction
For evaluating the concept of eSourcing, business cases from the automobile industry
are taken and translated into eSML specifications. Since the case studies for evalu-
ating the eSourcing framework with related patterns, eSRA, and eSML are inspired
by CrossWork [3, 4] case studies, it is important to stress the differences. Firstly, in
the latter case the emphasis of case studies is on solving practical functional problems
that CrossWork industry partners are facing and secondly these case studies are large
and extensively documented. In contrast, the two case studies in this chapter need to
be brief and the case studies focus more on non-functional requirements. However,
the cases in this chapter are inspired by the large CrossWork case studies. Finally,
it must be stressed that eSRA is not implemented as a proof-of-concept prototype in
CrossWork, instead the latter prototype represents a subset of eSRA.

The structure of this section is as follows. First, Section 7.2 characterizes supply-
chain features of the automobile industry. After that, Section 7.3 defines evaluation
criteria for the eSourcing framework, the related pattern catalogues, eSRA, and eSML.
In Section 7.4 the first case study is presented that focuses on the eSourcing framework,
the pattern-catalogue application, and eSRA. The second case study of Section 7.5
focuses on showing an application of eSML constructs. Finally, Section 7.6 concludes
this chapter by presenting the evaluation results based on an assessment of criteria.

7.2 Characteristics of Automobile Supply Chains
For evaluating the concept of eSourcing, business cases from the automobile industry
are taken and translated into eSML specifications. In the automobile industry, original
equipment manufacturers (OEM) have several tiers of suppliers that agree to deliver
systems collaboratively. For example, the OEM assembles cars with systems like a
cockpit, or an engine, etc. These systems are manufactured by Tier 1 that gets the
components for those systems from a Tier 2 supplier.

OEM

Systems and
modules suppliers

Component suppliers

Raw materials, standardized parts

Tier 1

Tier 2

Tier 3

engineering, machine
and plant construction

logistics, tooling

mould making,
IT services

Figure 7.1: Supply-chain hierarchy in the automobile industry.

As depicted in Figure 7.2, the supply chain relationship between an OEM and suppli-
ers resembles a pyramid where the OEM at the top spends considerable time and effort
on aligning first and second tier suppliers for achieving the desired service provision.
Additionally, the overall number of produced cars and also the number of variants is

7.3. EVALUATION REQUIREMENTS 135

going up while the lifetime of car-types is shortening, which means the number of cars
per type is decreasing. To deal with the resulting complexity in manufacturing as well
as in design and development, OEMs are shifting parts of their activities down the or-
ganizational hierarchy. By applying eSourcing with specifying the inter-organizational
collaboration with eSML, this coordination effort between collaborating parties is fa-
cilitated.

Both CrossWork-inspired case studies are for the assembly and supply of water
tanks for trucks. First, the order of the OEM needs to be prepared by service provider
A who has to find the appropriate automobile-cluster members for carrying out the
required nested spheres. The water tank itself consists of a body, a grommet, a motor
pump, a dispenser, and a sealing ring. Provider A receives the order for the entire
automobile cluster from the OEM and organizes the distribution of the production of
water-tank parts to partners of the automobile cluster. Thus, it is decided the body and
the grommet are produced by service provider B, the motor pump and the sealing ring
are produced by service provider C, and the dispenser is produced by service provider
D. Finally provider A takes over the services of preparing the order and assembling the
produced parts to one water tank that can be shipped to the OEM.

7.3 Evaluation Requirements

For the eSourcing framework, the pattern-catalogue application, eSRA, and eSML, a
set of functional and non-functional requirements is chosen with specific definitions.
Functional requirements specify specific behaviors of a system while non-functional
requirements specify criteria that can be used to judge the operation of a system, rather
than specific behaviors. Other terms for non-functional requirements are "quality at-
tributes" and "quality of service requirements". In Table 7.1 presents a requirements
classification, stating which are functional and non-functional. The next column as-
signs the requirements to artifacts. While some requirements in Table 7.1 are evaluated
for the several artifacts, their respective definitions differ. The right-hand column lists
the case studies, in which the requirement is investigated.

Table 7.1: Requirements for eSourcing, related patterns, eSRA, and eSML.

First, requirements for the eSourcing framework are presented. The requirement feasi-
bility means that it is possible to model a business case as an eSourcing configuration.

136 CHAPTER 7. CASES AND EVALUATIONS

Scalability refers to the ability of the eSourcing framework to combine many collabo-
rating parties into one eSourcing configuration. Interoperability focuses on the ability
of the eSourcing framework to connect intra-organizational business processes of col-
laborating parties inter-organizationally so that the parties can reach their respective
business goals. Coherence must exist between external tasks and their internal coun-
terparts.

For the specified pattern catalogue for eSourcing, the requirements are as follows.
Applicability focuses on the pattern catalogues for eSourcing and how the patterns are
relevant for solving problems in dynamic inter-organizational business process collab-
oration. Structuring support means that the patterns are instrumental for the detailed
design and analysis phase of an eSourcing configuration.

The reference architecture eSRA is assessed with the following requirements. Com-
pleteness is the quality of comprising the components required for setting up and enact-
ing an eSourcing configuration satisfactorily. Applicability states that eSRA is useful
for operationalizing inter-organizational collaboration without a direct connection of
internal legacy systems. Interoperability is the capability of eSRA to realize a tech-
nical and conceptual harmonization of intra-organizational business processes for a
linked enactment phase.

Several requirements are used for assessing eSML in a separate case study. Structur-
ing support means that eSML is instrumental for specifying a collaboration where the
business processes are inter-organizationally harmonized. Data-flow support demands
that eSML is suitable for specifying the data-flow within and between the domains
of collaborating parties. Resource-specification support states that eSML contains the
constructs required for specifying organizational facts, production infrastructure and
material facts, and the relationship between them. Finally, applicability as a require-
ment for eSML states that the language comprises of relevant modelling constructs for
specifying a collaboration in the perspectives eSourcing, control flow, data flow, and
resource. In the first case the requirements for the eSourcing framework, the pattern
catalogue, and eSRA are evaluated.

7.4 Case 1: eSourcing, Patterns, and eSRA Evaluation
A truck-producing OEM has several suppliers of components that are united in a re-
gional automobile cluster of service providers. Within that cluster the service provider
A functions as a unique communication party for the entire cluster to the truck producer.

Both, the OEM and the suppliers have historically grown business process that can
not be rearranged easily, which is why an external-level process harmonization is re-
quired. Thus, the case study applies the internal-to-external interaction pattern from
Section 4.4.2 of the direction dimension that is explained in Section 3.4.1. The OEM
always receives the same system for the truck from the same set of suppliers that are
united in a cluster. Within that cluster one supplier serves as the unique communication
and coordination party between the OEM and all other suppliers of the cluster. Thus,
the internal-to-external pattern is combined with the static assignment pattern of Sec-
tion 4.4.1, since the OEM has one predetermined supplier to collaborate with. In this
case study it was pointed out in which way components of eSRA (see Section 6.2) are
used to support this case study.

Referring to the pattern example of Figure 4.10, the interaction assumes the exis-
tence of internal processes in the domains of the service consumer and service provider.
The service consumer proposes the creation of an eSourcing configuration. The nego-

7.4. CASE 1: ESOURCING, PATTERNS, AND ESRA EVALUATION 137

Figure 7.2: OEM in-house process.

tiations about creating a common external-level process are followed by an integration
of the contractual spheres in the respective domains. Next, the eSourcing configuration
is verified and the extent of monitoring is negotiated. Finally, the enactment of the
completed eSourcing configuration commences.

7.4.1 Conceptual-Level Setup
Figure 7.2 depicts the in-house process setup for the OEM. On top, the internal level
shows legacy systems that support the OEM’s business process. On the conceptual
level of Figure 7.2, the in-house process for producing a truck is depicted. Contained
in the in-house process is a consumer sphere that delimits a subnet for eSourcing a
water tank from service providers. Since for this eSourcing-concept evaluation the
original processes are too large to fit into this chapter, the in-house process of Figure
7.3 doesn’t use Petri-net formalisms, but a high-level conceptual visualization.

Figure 7.3: Provider domains with their respective provider spheres.

The service provider domains are depicted in Figure 7.3 with their internal setup. Four

138 CHAPTER 7. CASES AND EVALUATIONS

provider domains are contained in the figure that are part of an automobile cluster with
each containing processes that create parts of a water tank for the OEM. According
to Figure 7.3, a service provider may be capable of contributing several processes for
producing parts of a water tank. Similarly to the OEM, all service providers have legacy
systems on their respective internal levels that need to be integrated in the eSourcing
configuration. To do so, the OEM and service providers map their conceptual-level
processes on the internal level.

For modelling the conceptual level processes depicted in Figure 7.2 and Figure 7.3,
eSRA comprises process-modeler components. Furthermore, the workflow-composer
component is available to support the suppliers of the automobile cluster in establishing
a composed workflow. The process-modeler and workflow-composer component are
part of the Sourcing-setup-support component depicted in Figure 6.4. Although the
case study focuses on the business processes, it is assumed that business rules are
created with the rules-modeler component that is also depicted in Figure 6.4.

Both processes and rules are stored in their respective databases. To ensure good
quality of the conceptual-level processes, the collaborating parties need to utilize the
validation and the verification components. Furthermore, each party needs to ensure
that conceptual-level processes are mapped to their internal-level legacy systems. Fig-
ure 6.3 depicts that processes and rules are delivered to the internal level via the CI
translator component of Figure 6.3. Furthermore, in Figure 6.5 the local WFMS and
rules engine are the recipients that consequently control web-service wrapped legacy
systems.

7.4.2 External-Level Setup
When all the conceptual-level processes are in place in the respective domains, the
collaborating parties need to harmonize their respective processes on the external level.
In this case study, the OEM proposes to service provider A from the automobile cluster
the initiation of negotiations for external-level harmonization. The latter party accepts
and the OEM and the automobile cluster engage in external-level negotiations.

The OEM starts by filling the gap of the consumer sphere depicted in Figure 7.2 by
the rules-modeler and the process-modeler components of the Sourcing-setup-support
component of Figure 6.4. Next, the consumer sphere is transferred via the CE transla-
tor of Figure 6.3 to the contracting client of the external level. The latter component
exposes the OEM’s contractual sphere to the service broker of Figure 6.2 that is part
of the trusted third party. Note that a trusted-third-party component is not part of the
CrossWork prototype. As a result, service brokering is out of focus in CrossWork.
Since service provider A is the unique contact point for the OEM, the first party has
the task to find and organize other service providers for the fulfillment of the externally
agreed upon service provision.

Service-provider A is notified by the service broker of Figure 6.2 and requests the
OEM’s contractual sphere for a check. In Figure 7.4 the OEM’s consumer sphere is
depicted that is entirely projected to the external level. The consumer sphere shows
several nested consumer spheres for the production of the water tank. The higher-level
consumer sphere is designed to be a fitting subnet within the overall in-house process
while each contained consumer spheres is eSourced from a supplier of the automobile
cluster.

On the service provider’s side of the external level in Figure 7.3, a consensus is cre-
ated as equal nested spheres are projected. Thus, an overall consensus is given at the
end of negotiation phase of the interaction between the OEM and the automobile clus-

7.4. CASE 1: ESOURCING, PATTERNS, AND ESRA EVALUATION 139

Figure 7.4: External-level contractual spheres.

ter. Optionally, an integration of the contractual spheres of the external level is required
on the conceptual level. Such a step is necessary if the negotiation phase has resulted in
external-level deviations compared to what is originally projected from the respective
conceptual levels. Finally, it needs to be stressed that conceptual-level processes in the
domains of the service providers represent refinements of the corresponding external-
level contractual spheres. The refinements are additional tasks that are integrated in
the provider sphere that remain opaque for the service consumer. In the case study
this is illustrated by showing in Figure 7.3 bigger sized ellipses that represent provider
spheres compared to the external level of Figure 7.4. For the external-level negotiations
the collaborating parties employ from Figure 6.2 the contracting-client component of
the Sourcing middleware and service-broker component of the trusted third party.

7.4.3 Selected Spheres in Detail

After the negotiation achieved a preliminary external harmonization of inter-organi-
zational business processes, the following phase in Figure 4.10 of the internal-to-
external interaction pattern focuses on the verification of the collaborating processes.
Earlier, internal verification ensures that the business processes of collaborating par-
ties enact correctly on their own. However, when intra-organizational processes are

140 CHAPTER 7. CASES AND EVALUATIONS

linked inter-organizationally, structural problems may occur. For example, deadlocks
that prevent the correct termination of the overall business process.

Figure 7.5: Related eSourcing spheres in detail.

In Figure 7.5, a subset of related eSourcing spheres are depicted in detail. The con-
ceptual level of the service consumer shows a consumer sphere that is a subnet of an
in-house process. Clouds denote abstracted details from the in-house process. How-
ever, it is assumed that an and-split is contained that results in the enactment of parallel
branches that is complemented by an and-join at the end. Only one depicted node inter-
acts with the ports of the consumer sphere. This interacting node carries a BT label that
indicates there is a bi-directional exchange with the consumer sphere modelled, which
is part of a conjoinment pattern (see Section 4.5.3). The BT-labelled node delivers
a motor-pump specification to the in-labelled interface place of the consumer sphere
after withdrawing such information from the web service of the internal level.

In the consumer sphere a receive node accepts the motor-pump specification. Next,
a node is contained for assembling a motor pump. When this node contains further as-
sembly information, the truck producer makes a particular way of assembly mandatory
for the service provider if it is assumed the consumer sphere exists before the provider
sphere and the contractual spheres. Finally, a send transition returns the status of the
motor-pump to the BT-labelled node via the out-labelled interface place.

The consumer sphere in Figure 7.5 is fully projected to the external. Thus, the

7.4. CASE 1: ESOURCING, PATTERNS, AND ESRA EVALUATION 141

content of the external level consumer contractual sphere and the consumer sphere
on the conceptual level are isomorph, which corresponds to a white-box contractual
visibility pattern (see Section 4.5.1). According to Section 5.4.3, the service provider
has the options of responding either with a grey-box or a white-box projection in order
to achieve a contractual consensus.

On the external level of Figure 7.5, the provider contractual sphere is isomorph
compared to the consumer contractual sphere, which means the collaborating par-
ties have reached a contractual consensus (see Definition 28). However, the service
provider needs to fit the contractual sphere into the internal organizational setup. Ad-
ditional tasks need to be carried out for manufacturing water-tank components before
an assembly takes place and the final water tank needs to be forwarded to the site of
the service consumer.

Figure 7.6: Corrected in-house process.

On the conceptual level of the service provider, the contractual sphere is refined by ad-
ditional nodes, which means a grey-box contractual visibility pattern (see Section 4.5.1)
is used by the service provider. Figure 7.5 shows bold lined tasks that represent inserted
nodes in the provider sphere. Thus, after receiving the motor-pump specification, the
motor and the pump are produced in parallel branches before they are assembled in
a joining task. Next, the finished motor pump is forwarded as defined by the truck
producer and subsequently quality data is transferred in a document about the motor-
pump status to the domain of the service consumer. The tasks focusing on producing
and forwarding the motor-pump interact with a web service of the provider.

The created eSourcing configuration of Figure 7.5 must be verified for correct ter-
mination before enactment. Thus, the parties independently submit their respective
processes to a trusted third party that is depicted in Figure 6.2. In accordance with
Theorem 3 in Section 5.6.2, it is not necessary to collapse the eSourcing configuration
for checking the correct termination. The reason is that the collaborating parties use
a white-box and grey-box projection, which means that local checks of the in-house
process and the provider sphere suffice to guarantee the overall eSourcing configura-
tion has sound control-flow. For the eSourcing configuration of Figure 7.5 these local
verifications fail because the in-house process can not terminate correctly. The reason
is a deadlock contained in the processes that are caused by the arcs of the BT-labelled
node. As this node needs to wait for the S-labelled node to fire, it can never be enabled.

After the local checking of correct termination, the service consumer has to remodel
the in-house process. The changed in-house process of Figure 7.6 has the BT-labelled
node replaced with different conjoinment nodes that establish an exchange between the
in-house process and the consumer sphere. Consequently, a repeated local check of the
in-house process’ control flow by the service consumer succeeds.

142 CHAPTER 7. CASES AND EVALUATIONS

7.4.4 Monitorability negotiations

After the inter-organizational processes are verified, the processes need to be linked
for a synchronized enactment. In Section 4.5.2 such linking across the domains of
collaborating parties is termed monitorability. Several patterns for monitorability and
conjoinment were specified for linking processes into an eSourcing configuration [84].

Figure 7.7: Related eSourcing spheres in detail.

In Figure 7.7 two monitorability constructs are used, namely token messaging and
token propagation. Token messaging is used for connecting the in-labelled interface
places. For an enactment application of the eSourcing configuration, token messaging
means once the enactment of the in-house process has reached the consumer sphere,
such a state is messaged across the organizational domains and the enactment of the
provider’s provider sphere commences. Token messaging is also used for connecting in
and out-labelled interface places for exchanging the motor-pump specification and the
status report across organizational domains. Finally, token propagation is employed for
connecting the out-labelled interface places of the provider sphere and the consumer
sphere via the external level. In the eSourcing configuration of Figure 7.7 this means
the enactment of the provider sphere is terminated and this event is communicated to
the domain of the OEM where the enactment of the next consumer sphere is starting.

For realizing monitorability, the collaborating parties negotiate directly with each

7.5. CASE 2: ESML EVALUATION 143

other without the help of the trusted-third-party component (see Section 6.2.2). Thus,
the eSourcing middlewares of the external levels are involved where the global WFMSs
and the rules engines need to be linked via the respective coordination interfaces. The
agreed upon montorability constructs need to be further realized by appropriately link-
ing the local WFMS and rules engine on the internal level to the conceptual level. When
this setup is completed, the enactment of the eSourcing configuration commences.

The next case study is again taken from CrossWork and presented in a condensed
version for an eSML evaluation.

7.5 Case 2: eSML Evaluation
The second case study results from CrossWork collaborations with industry partners
and focuses on an eSML instance that is used for the external level collaboration defi-
nition of two service providers that form a virtual enterprize. This virtual enterprize is
publicly advertised to OEM who can integrate the resulting virtual-enterprize service
into their in-house process.

<company_data/>

<company_contact_data/>

<resource_section/>

<data_definition_section/>

<business_context_provisions/>

<legal_context_provisions/>

<exchanged_value>

<process/>

<lifecycle_definition/>

<lifecycle_mapping/>

<active_node_label_mapping/>

<monitorability/>

</exchange_value>

eC
on

tra
ct

W
ho

W

he
re

W

ha
t

M
ap

pi
ng

pa

rty

Figure 7.8: An overview of an eSML instantiation.

While the entire eSML instance of this case study is contained in Appendix C, this
section explains code extracts that show how eSML is instrumental for specifying an
eSourcing configuration on the external level. First, Figure 7.8 gives an overview of the
structure in an eSML instantiation. As explained in Section 6.3.1, eSML uses parts of
the ECML [23] schema as a foundation. In Figure 7.8 this fact is reflected by consider-
ing an entire eSML instance as a contract between collaborating parties and by struc-
turing the eSML content into the blocks Who, Where, and What that are explained in
Section 6.3.1. The parts of eSML in Figure 7.8 that are ECML-based are not explained
in this case study, namely the definition of company data and company-contact data,

144 CHAPTER 7. CASES AND EVALUATIONS

the Where block, and the XRL-based process definition within the exchanged-value
definition. In Appendix C code examples are available for the mentioned eSML parts
and detailed models explain them in Appendix A.

The bold typed eSML-definition parts in Figure 7.8 are either extensions or mod-
ifications that are not part of the ECML foundation. In the Who block extensions
for eSML are the resource definition (see Appendix A.5) and the data definition (see
Appendix A.10). In the What block, the process definitions are based on XRL, how-
ever, extensions have taken place for adopting the conjoinment nodes described in Sec-
tion 4.5.3 and for linking to the resource- and data-definition sections of eSML. The
lifecycle definitions (see Section 4.5.2 and Appendix A.7) focus on the business pro-
cess and the lifecycle of tasks. In the mapping block of eSML, firstly the lifecycles of
the inter-organizationally harmonized business processes are linked, and secondly the
lifecycles of tasks from the opposing domains are linked.

Labels of tasks belonging to processes of opposing domains may be considered
semantically equal while they actually deviate from each other. To establish a seman-
tic connection, the second part of the mapping block is focussing on the mapping of
task labels in the active_node_label_mapping tag. Such mapping is relevant
for establishing a contractual consensus between collaborating parties. Finally, in the
monitorability section of Figure 7.8, it is defined how much visibility is granted to the
service consumer (see Section 4.5.2). Next, extracts from eSML code are explained
that are contained in Appendix C and it is pointed out how these code extracts related
to concepts of previous chapters.

7.5.1 Resource-Perspective Definition
The code extract below is part of the resource definition where an organizational unit is
defined as a permanently existing organization. Thus, it is not a unit that dissolves at a
certain point in time, e.g., an organization set up for the purpose of managing a project
that has a deadline. In line 10 the name of the organizational unit is defined, followed
by the definition of the start date. Organizational units may have a business objective
assigned. In the code example above this definition is omitted.

< p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
<name> Procuremen t_Depar tmen t < / name>
< s t a r t _ d a t e >2005−01−01</ s t a r t _ d a t e >
< d e s c r i p t i o n / >
< b u s i n e s s _ o b j e c t i v e s / >
< r e s o u r c e _ n r e f >

< r e s o u r c e _ t y p e _ r e f >Department_Head </ r e s o u r c e _ t y p e _ r e f >
<number >1 </ number >

</ r e s o u r c e _ n r e f >
< r e s o u r c e _ n r e f >

< r e s o u r c e _ t y p e _ r e f > Depar tmen t_Cle rk < / r e s o u r c e _ t y p e _ r e f >
<number >33 </ number >

</ r e s o u r c e _ n r e f >
< i n d i v i d u a l _ r e s o u r c e >Actor2 < / i n d i v i d u a l _ r e s o u r c e >

</ p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >

The organizational unit has department members that are defined as roles. These
roles are separately specified in the resource section of the eSML file. According
to Line 17 the procurement department has one head of department. In Line 16 the
Department_Head is a unique identifier for an separate extensive role definition.

7.5. CASE 2: ESML EVALUATION 145

Similarly, Lines 19-22 specify that the procurement department has a resource assigned
with the role name Department_Clerk. In the line below the number of individu-
als is given that slip into the mentioned role of a clerk. Finally, in Line 23 an individual
is directly specified as a procurement-department member with the identifier Actor2.

7.5.2 Data-Flow Definition

The central part of the data-flow definition in an eSML file is a data package. Such data
packages flow through a business process and may even be exchanged to the opposing
organizational domain. Following the data-flow pattern specifications [95], in an eSML
instantiation, data has a particular visibility ranging from only a task to all instances of
a business process and even its environment; a certain interaction type that focuses on
the way data is communicated with, e.g, a data package is communicated from a task
to another task; or from a block to a different process instance, and so on. Data has
different transfer type specifications, e.g, by a copy, a reference, by value, etc. Finally, a
data-flow element may be specified to interact with the control-flow perspective, e.g., a
pre- or postcondition of data existence for a task, data-value based condition evaluation,
etc.

< d a t a _ d e f i n i t i o n _ s e c t i o n >
< d a t a _ p a c k a g e >

< package_ id >cd </ package_ id >
< v a r _ s e c t i o n >

< s t r i n g _ v a r tag_name=" B i l l o f M a t e r i a l " v a r _ i d ="BOM"
c h a n g e a b l e =" f a l s e " e n a b l e d =" e n a b l e d "> S u r r o u n d i n g Box ;
Gear ing < / s t r i n g _ v a r >

</ v a r _ s e c t i o n >
< d o c u m e n t _ s e c t i o n >

<document >
<document_id >cadDrawing </ document_id >
<name>Cad Drawing of c o m p l e t e GearBox </ name>
< u r i > h t t p : / / www. ve . com / drawings / gearBox . 3 ds </ u r i >

</ document >
</ d o c u m e n t _ s e c t i o n >

</ d a t a _ p a c k a g e >
</ d a t a _ d e f i n i t i o n _ s e c t i o n >

The code extract above specifies a data package specifies with a contained variable
and a document section. In Line 14 a variable is specified with its attributes. The bill
of material is changeable, i.e., the value may be modified, and it is enabled for use.
Additionally, Lines 19-23 define a document that is a CAD drawing and is available at
a particular uri.

< r e c e i v e _ t r a n s i t i o n a c t i v e _ n o d e _ i d ="CO" name=" Rece ive_Orde r ">
< da ta >

< d a t a _ f l o w _ d i r e c t i o n > i n p u t < / d a t a _ f l o w _ d i r e c t i o n >
< d a t a _ p a c k a g e _ r e f >cd </ d a t a _ p a c k a g e _ r e f >

</ da t a >
< da ta >

< d a t a _ f l o w _ d i r e c t i o n > i n p u t < / d a t a _ f l o w _ d i r e c t i o n >
< d a t a _ p a c k a g e _ r e f >do </ d a t a _ p a c k a g e _ r e f >

</ da t a >
</ r e c e i v e _ t r a n s i t i o n >

146 CHAPTER 7. CASES AND EVALUATIONS

Specified above is code where data packages are used with elements in the control-flow
of an eSML instantiation. A receive node is specified that receives two data packages
from the domain of a collaborating counterpart. In Line 13 the data package with the
identifier cd is specified as an input. Additionally, in Line 17 the data package with the
identifier id is equally input to the receiving node. In Appendix C further specification
details about the data packages are contained.

7.5.3 Structure of Process-Harmonization Definition

In an eSML instantiation the harmonization of business processes is specified. The
code extract below shows how such harmonization is achieved. For every collaborating
party an exchanged_value section is specified with a service that is either provided
or consumed, which depends on the role a collaborating party slips into.

< exchanged_va lue >
< s e r v i c e >

< p r o c e s s _ s e c t i o n >
< p r o c e s s tag_name=" G e a r b o x _ P r o d u c t i o n "
p r o c e s s _ i d =" GB_produc t ion ">

< p a r a l l e l _ s y n c >
< s o u r c i n g _ s p h e r e >

XRL−based r o u t i n g e l e m e n t s
</ s o u r c i n g _ s p h e r e >
< s o u r c i n g _ s p h e r e / >
< s o u r c i n g _ s p h e r e / >

< p a r a l l e l _ s y n c / >
</ p r o c e s s >
< l i f e c y c l e _ d e f i n i t i o n s / >
< l i f e c y c l e _ m a p p i n g s / >
< a c t i v e _ n o d e _ l a b e l _ m a p p i n g / >
< m o n i t o r a b i l i t y / >

</ p r o c e s s _ s e c t i o n >
</ s e r v i c e >

</ exchanged_va lue >

The service is represented by an XRL-based (see Section 6.5.2) process definition.
Several sourcing_spheres may be contained in a process specification. In Line
15 it is specified that three sourcing spheres are embedded in a parallel_sync
construct, which means the sourcing spheres are contained in parallel branches of con-
trol. The sourcing spheres are matched by spheres in exchanged_value sections
of the same eSML instantiation that belong to opposing collaborating parties. For the
matching a grey-box contractual visibility pattern (see Section 4.5.1) is used. In its
final state where a consensus is specified in an eSML instantiation, the content of op-
posing sourcing spheres must match in content. In Line 17 the lengthy XRL-based
control flow code is omitted in this code extract. Instead Appendix C contains the
entire control-flow code.

In Lines 23 to 26 further eSML constructs are contained that are used for achieving
inter-organizational business process harmonization. The constructs for mapping life-
cycles and for monitorability specifications are contained in the exchanged_value
section of the service consumer. The eSML constructs are explained below in detailing
code extract.

7.5. CASE 2: ESML EVALUATION 147

7.5.4 Lifecycle Definition
In an eSourcing configuration, the heterogeneous system environment of the internal
level needs to be inter-organizationally harmonized. The business processes of col-
laborating parties may have deviating lifecycles on a process and task level. For the
enactment phase, it may be relevant to specify a synchronization of the lifecycles (see
Section 4.5.2).

< l i f e c y c l e _ d e f i n i t i o n s >
< p r o c e s s _ l i f e c y c l e >

< l i f e c y c l e _ s e q u e n c e >
< a t o m i c _ s t a t e name=" VE_process_ ready "
tag_name=" r e a d y " / >
< t r a n s i t i o n name=" V E _ p r o c e s s _ s t a r t _ e n a c t m e n t "
tag_name=" s t a r t _ e n a c t m e n t " / >
. . . . more l i f e c y c l e s p e c i f i c a t i o n s
tag_name=" ended " / >

</ l i f e c y c l e _ s e q u e n c e >
</ p r o c e s s _ l i f e c y c l e >
< a c t i v e _ n o d e _ l i f e c y c l e / >

</ l i f e c y c l e _ d e f i n i t i o n s >

Above, it is shown that lifecycles for a process are specified with control-flow con-
structs. In Line 13 a not further decomposable atomic state is defined. However, in a
lifecycle states are possible that contain further nested states. Accordingly, eSML con-
tains a nesting_state construct that comprises lower-level states. The lifecycle of
a process or a task is propelled by transitions of which Line 15 shows an example. In
Line 21 the active_node_lifecycle the lifecycle of a task is defined with the
same control-flow constructs that are used for the specification of process lifecycles.

7.5.5 Mapping Definitions
If a heterogenous system environment with different lifecycles is harmonized in one
eSourcing configuration, it may be important for the enactment infrastructure to specify
in an eSML instantiation how the respective lifecycles fit together. As the previous case
study shows, in an eSourcing configuration several service providers are included with
one service consumer. Thus, for lifecycle harmonization it is relevant to include all
service providers. The respective lifecycle steps that are specified as equal may have
diverting names but are still semantically equivalent. The same holds for the mapping
of task labels from the domains of opposing parties.

The code extract below shows how lifecycles are mapped. In Line 11 the map-
ping of process lifecycles starts with first specifying the lifecycle label of the service
consumer. From Line 16 onwards the semantically equivalent labels of two service
providers are specified. For every lifecycle step this specification needs to be repeated.
From Line 25 onwards the same specification approach is used for mapping lifecycle
steps of tasks that belong to the domains of opposing parties.

< l i f e c y c l e _ m a p p i n g s >
< p r o c e s s _ l i f e c y c l e _ m a p p i n g mapping_name=" p r o c e s s _ r e a d y "
node_ type =" l i f e c y c l e _ s t a t e ">

< consumer_sphere >OEM_Sphere1 < / consumer_sphere >
< c o n s u m e r _ a c t i v e _ n o d e >OEM_process_ready
</ c o n s u m e r _ a c t i v e _ n o d e >

148 CHAPTER 7. CASES AND EVALUATIONS

< p r o v i d e r >
< p r o v i d e r _ s p h e r e > Prov ider_SP1_1 </ p r o v i d e r _ s p h e r e >
< p r o v i d e r _ a c t i v e _ n o d e > S P 1 _ p r o c e s s _ i d l e
</ p r o v i d e r _ a c t i v e _ n o d e >
< p r o v i d e r _ s p h e r e > Prov ide r_SP2 </ p r o v i d e r _ s p h e r e >
< p r o v i d e r _ a c t i v e _ n o d e > S P 1 _ p r o c e s s _ i d l e
</ p r o v i d e r _ a c t i v e _ n o d e >

</ p r o v i d e r >
</ p r o c e s s _ l i f e c y c l e _ m a p p i n g >
< a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g mapping_name=" node_comple t e "
node_ type =" l i f e c y c l e _ t r a n s i t i o n ">

< consumer_sphere >OEM_Sphere1 < / consumer_sphere >
< c o n s u m e r _ a c t i v e _ n o d e > OEM_act ive_node_comple te
</ c o n s u m e r _ a c t i v e _ n o d e >
< p r o v i d e r >

< p r o v i d e r _ s p h e r e > Prov ider_SP1_1 </ p r o v i d e r _ s p h e r e >
< p r o v i d e r _ a c t i v e _ n o d e > S P 1 _ a c t i v e _ n o d e _ c o m p l e t e
</ p r o v i d e r _ a c t i v e _ n o d e >
< p r o v i d e r _ s p h e r e > Prov ide r_SP2 </ p r o v i d e r _ s p h e r e >
< p r o v i d e r _ a c t i v e _ n o d e > S P 2 _ a c t i v e _ n o d e _ c o m p l e t e
</ p r o v i d e r _ a c t i v e _ n o d e >

</ p r o v i d e r >
</ a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g >

</ l i f e c y c l e _ m a p p i n g s >

For the mapping of task labels a code extract is given below. In Line 11 the specification
of a service-consumer task label starts by first naming the process a task is contained
in followed by the label of a task. In Line 13 similar specifications are given for the
domain of the service provider. Differently to lifecycle mappings, there is always one
label of the service consumer that is mapped to a label of one service provider because
the concept of eSourcing assumes a task is always serviced by one provider.

< a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
< consumer_p roces s >GB_product ion < / consumer_p roces s >
< c o n s u m e r _ a c t i v e _ n o d e >CO</ c o n s u m e r _ a c t i v e _ n o d e >
< p r o v i d e r _ p r o c e s s >PP_SP1_1 </ p r o v i d e r _ p r o c e s s >
< p r o v i d e r _ a c t i v e _ n o d e >Local_CO </ p r o v i d e r _ a c t i v e _ n o d e >

</ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >

7.5.6 Monitorability Definition
The last construct of the process harmonization code in Section 7.5.3 is for specifying
with which monitorability patterns the business processes of collaborating parties are
linked. The more monitorability patterns are specified, the more enactment progress
the service consumer is able to follow. Many monitorability patterns are specified in
Section 4.5.2 to cater for differing linking functionalities in a heterogenous system
environment of eSourcing configurations.

< m o n i t o r a b i l i t y >
< p o l l i n g / >
<messaging >

< t r a n s i t i o n _ m e s s a g i n g >
< consumer_sphere >SP1_Sphere1 < / consumer_sphere >
< c o n s u m e r _ a c t i v e _ n o d e >CO</ c o n s u m e r _ a c t i v e _ n o d e >

7.6. CONCLUSION 149

< p r o v i d e r >
< p r o v i d e r _ s p h e r e >PP_SP1_1 </ p r o v i d e r _ s p h e r e >
< p r o v i d e r _ a c t i v e _ n o d e >Local_CO </ p r o v i d e r _ a c t i v e _ n o d e >

</ p r o v i d e r >
</ t r a n s i t i o n _ m e s s a g i n g >

<messaging >
</ m o n i t o r a b i l i t y >

An example for a monitorability specification is given above with two parts, namely
one for the specification of polling constructs and one for specifying messaging con-
structs. In Lines 13-20 a transition-messaging monitorability construct is defined. First,
the transition identifier in the domain of the service consumer is specified that repre-
sents the target node. In Lines 16-19 the source node for the messaging construct is
specified that is located in the domain of the service provider.

7.6 Conclusion
In the first case study of Section 7.4 all requirements for eSourcing are evaluated. The
case study shows it is feasible to use the framework of eSourcing for inter-organi-
zational business process collaboration. The eSourcing framework fulfills the require-
ment of scalability as it is demonstrated how an OEM can collaborate with several
service providers in one eSourcing configuration. The inter-operability requirement is
fulfilled for eSourcing as the case study in Section 7.4 demonstrates how the OEM and
the service providers reach a collaboration consensus. With reaching a consensus for
inter-organizational collaboration, the setup phase of an eSourcing configuration ends
and the enactment phase commences. Finally, the requirement of coherence is fulfilled
if it is assumed that the external-level tasks are complemented by conceptual-level
business processes where labels match with the external-level contractual spheres.

The eSourcing related pattern catalogue of Chapter 4 is applicable in the case study
of Section 7.4. Only a small number of patterns are used, namely the interaction pat-
tern (see Section 4.4.2) called internal-to-external, for contractual visibility (see Sec-
tion 4.5.1) the service provider uses a white box pattern and the service providers use
grey-box patterns. In Figure 7.5 a consumer-initiated bi-directional conjoinment pat-
tern is (wrongly) applied and in the initial setup phase of the eSourcing configuration
of Figure 7.7, two one-directional conjoinment patterns are used. Finally, several mon-
itorability patterns (see Section 4.5.2) are used for linking the consumer sphere, the
contractual spheres, and the provider sphere with each other. Finally, by using the
eSourcing patterns, the structuring of collaborations for eSourcing configurations is
possible. That is demonstrated by Figure 4.13 where the deadlock problem caused by
a wrong application of a bi-directional conjoinment pattern in Figure 7.5 is solved by
using two one-directional conjoinment patterns instead.

For the case study in Section 7.4, the application of eSRA components for real-
izing an internal-to-external interaction pattern demonstrate the completeness of the
reference architecture. For sake of brevity it can not be demonstrated in this chapter
how all interaction patterns are supported by eSRA components. Furthermore, it is not
investigated in detail how eSRA supports the enactment phase of an eSourcing con-
figuration. The interoperability requirement of eSRA is also fulfilled in Section 7.4,
as it is shown how the processes of collaborating parties are harmonized on the exter-
nal level of an eSourcing configuration. By using a conceptual level, an abstraction
is achieved from the technical features of legacy systems on the internal levels of the

150 CHAPTER 7. CASES AND EVALUATIONS

respective collaborating parties. The conceptual-level processes are harmonized on the
external level of the eSourcing configuration. By having many monitorability patterns
available for linking the processes of collaborating parties, the heterogenous nature of
legacy systems is paid attention to.

In the second case study of Section 7.5, it is demonstrated with code extracts how
eSML is instrumental for structuring the inter-organizational collaboration of business-
process harmonization. The code extracts are taken from a full eSML instantiation in
Appendix C. The data-flow support requirement is realized in eSML by adopting data-
flow patterns [95] and combining them with conjoinment and monitorabilty elements
for inter-organization data-flow specification. The resource-specification support re-
quirement is fulfilled by integrating an extensive resource model into eSML (see Ap-
pendix A.5). Both data-flow and resource support are integrated with the control-flow
elements of eSML. Although only code extracts of eSML are presented in Section 7.5
and only one full eSML instantiation is given in Appendix A.5, these examples show
that eSML fulfills the applicability requirement.

Chapter 8

An Outlook for eSourcing

Contents

8.1 Introduction . 151
8.2 The Context of eSourcing . 152
8.3 Dynamic Mechanisms for Extending eSourcing 154

8.3.1 eCommunity-Lifecycle Management 154
8.3.2 Negotiation Support . 155
8.3.3 eContract Management 157
8.3.4 Service Management . 157

8.4 Outlining an eBusiness-Transaction Concept 158
8.4.1 Business-Aware Transaction Models 158
8.4.2 Abstract Transaction Constructs 159

8.5 Conclusion . 159

The concept of eSourcing increases the effectiveness and efficiency for enterprizes in
electronically integrating and enacting inter-organizational business processes. In this
chapter, an outlook for eSourcing is presented that addresses the issue of addition-
ally required mechanisms for dynamic and transactionally safeguarded e-business col-
laboration. In the context of eSourcing, dynamic stands for automatically integrated
business process relations that are forged between business parties by matching struc-
tures of respective processes. Additionally, it is important to ensure the safety of dy-
namic e-business collaboration with using an electronic business transactions concept.
In this PhD thesis the focus for eSourcing lies on matching business processes inter-
organizationally. For this outlook chapter it is explored what the context of eSourcing
is, what dynamic mechanisms are lacking for fitting into this context, and what the
features of a suitable transaction concept are for automatically integrated business
process relations.

8.1 Introduction
The concept of eSourcing is embedded in a broader framework with the objective of
automatically integrated business process relations that can be characterized by the
following key features. Firstly, this broader framework that eSourcing is embedded

151

152 CHAPTER 8. AN OUTLOOK FOR ESOURCING

in, is an open collaboration system with several participating parties, resources, rules,
processes, etc., that is in exchange with its environment. For example, the participat-
ing parties are service providers, service consumers, various mediating parties, and so
forth. The resources may consists of production materials, machines, organizations,
and so on.

Since automatically integrated business process relations are open, the structure is
not stable as the relationship of the parties, resources, rules, processes changes over
time. For example, a mediator must be added, the service provision must be modified,
instead of paying one amount, the payment is performed in parts after certain periods.
Furthermore, automatically integrated business process relations are complex as they
comprise many highly interrelated elements. When the elements of a business rela-
tionship change or the relationships between involved elements, a new state is entered
that may change again after some time. For example, in an existing e-business col-
laboration an additional service provider must be included, or a service provider must
be eliminated from an e-business collaboration because of a decreased level of trust.
Dynamic mechanisms provide a feedback loop that propels an e-business collaboration
from one state to the next.

When the broader context of eSourcing is considered, scope exists for dynamic e-
business collaboration extensions in the eSourcing concept. This chapter explores how
eSourcing relates to and overlaps with other concepts that are relevant for automatically
integrated business process relations as their integration promises a total automation of
the setup, enactment and post-enactment By exploring and relating dynamic mecha-
nisms and drafting an e-business transaction concept for safeguarding these business
relations, the extension potential for eSourcing is detected.

The structure of this chapter is as follows. In Section 8.2 the context of eSourcing
is explained based on a figure. Next, Section 8.3 proposes dynamic mechanisms that
eSourcing should adopt for better supporting automated business relations. To safe-
guard the automatically integrated business process relations, an e-business transaction
concept is outlines in Section 8.4. Finally, Section 8.5 concludes this chapter.

8.2 The Context of eSourcing
Based on the description of features in the introduction, automatically integrated busi-
ness process relations are complex, open, dynamic systems of interrelated elements that
pursue the objective of providing inter-organizational business services for financial
compensation. Such systems experience state changes of elements and their relation-
ships, which are governed by dynamic mechanisms that prevent the business relations
from turning into a chaotic system of unpredictable behavior.

In Figure 8.1, the context of eSourcing is modelled by showing several contained
concepts. To tackle the involved complexity three dimensions are depicted. One di-
mension is a lifecycle of an automatically integrated business relation that has a setup,
enactment, and post-enactment phase [23]. During the setup phase an offer is made
to form an eCommunity [67] that is eventually defined in a business-network model
(BNM). Changes of community members and their relationships result in updates of
the BNM, e.g., the service provision is modified, a party of the e-business collabora-
tion changes, and so on. Such changes result in a new state of a community, which
is visualized by a separate dimension in Figure 8.1. The collaborating parties engage
in forming one or many eContracts [23] until signatures exist for them and the eCon-
tract(s) are stored. An eContract is defined in accordance with the earlier definition

8.2. THE CONTEXT OF ESOURCING 153

given in Section 6.3.1.
Following Section 6.3, a real-world contract is a legally enforceable agreement, in

which two or more parties commit to certain obligations in return for certain rights.
During an eContract enactment, service provisions are consumed for some compen-
sation. In this phase exceptional eContract-enactment situations may occur that are
either resolved or lead to the termination of individual enactment phases. Finally, the
post-enactment phases characterized by compensations and rollbacks if any exceptions
are not resolved during the enactment phases. Eventually, when no eContracts need to
be established and enacted any more, a community dissolves.

The third dimension focusses on establishing a separation of concerns with the
values pragmatic, semantic, and syntactic. Pragmatic collaboration captures the will-
ingness of parties to perform the necessary activities. The willingness to participate
involves the capability to perform requested actions and policies that dictate whether
the action is preferable for a party to be involved in an eCommunity. Semantic collab-
oration means that a message content is understood in the same way by a sender and
receiver. Finally, syntactic collaboration means that messages can be transported from
one application to another and correctly processed.

Figure 8.1: The context of eSourcing.

The context of eSourcing is summed up in Figure 8.1 that shows nested concepts of
which eSourcing is the core concept. Following Section 3.3, eSourcing is embedded
in DIBPM [50], which is defined in Section 3.2. On the highest level, the concept of
eCommunities [67] is depicted in Figure 8.1 that contains the first two mentioned con-
cepts. An eCommunity is a specific collaboration with special operations, agreements
and states. An eCommunity carries identities and is managed according to the BNM
information. Collaborating parties join or leave an eCommunity either voluntarily or
by community decision.

The differences between the concepts depicted in Figure 8.1 are as follows. While

154 CHAPTER 8. AN OUTLOOK FOR ESOURCING

eSourcing is a concept for externally harmonizing business process views, the eCom-
munity approach is supporting a federated model of interoperability of systems that
does not deal with inter-organizational business-process management, but monitors the
interactions between the domains of collaborating parties that are part of an eContract.
eSourcing provides an infrastructure for integrating business processes with a different
degree of mutual content visibility and enactment monitorablity. In contrast, eCommu-
nity management facilities provide support for loose coupling and emphasizes the need
of predefined, dynamic (breeding environment) type discipline for the benefit of au-
tomated negotiation and monitoring. In this process, the harmonization of eContracts
takes place while defining models and types.

To realize this broader framework of Figure 8.1 for the objective of automatically
integrated dynamic business process collaboration, eSourcing needs to be extended to
allow an integration with the broader context. In the following section this extension
scope for eSourcing is explored by investigating important dynamic mechanisms that
are part of the concepts of eCommunities [67] and DIBPM [50] and discussing how
they relate to the current state of the art of eSourcing.

8.3 Dynamic Mechanisms for Extending eSourcing

Based on Figure 8.1, dynamic and automatically integrated business process relations
require supporting mechanisms that go further than inter-organizationally harmonizing
business processes. By evaluating the concepts of Figure 8.1, a gap exists between
eSourcing and the depicted broader context. As business relations between collabo-
rating parties are arranged in communities that experience state changes, mechanisms
for their life-cycle management are of importance. The collaborating members need
to negotiate on the one hand the conditions for their community membership and also
the content of eContracts. Thus, mechanisms for negotiation support are relevant to
fill the gap. Next, mechanisms for the collaborative establishment and management of
such eContracts must be adopted. As services are important at all stages of a business
collaboration, mechanisms for service management should be adopted.

In the following sections, the mentioned dynamic mechanisms for automatically in-
tegrated business process relations are further elaborated upon. These dynamic mecha-
nisms are inspired by the eCommunity concept [67]. First, the category of mechanisms
is described and consequently specific types are explained. It is stated to which extent
dynamic mechanisms are already present in the eSourcing concept.

8.3.1 eCommunity-Lifecycle Management

An eCommunity lifecycle is a series of stages through which a business collaboration
moves. The specific functional blocks supporting a lifecycle are discussed below, of
which all are currently part of the eCommunity [67] concept. The following mecha-
nisms are listed in accordance with an eCommunity lifecycle.

1. The lifecycle starts with a BNM former that is instrumental for the formation
of a BNM where defined roles and interactions between roles are governed by
policies and consolidated so that the structure and behavior of a collaborating
community is set up. In this case a first negotiation between potential partners
involves comparing and matching strategic and pragmatic goals in the network.

8.3. DYNAMIC MECHANISMS FOR EXTENDING ESOURCING 155

2. The populator represents a breeding process where services are selected for
eCommunity roles. Here a match needs to be established between the candidate
attribute values and constraints for roles in a BNM.

3. The BNM joiner goes a step further and establishes a grouping of similar models
with suitable transformers and adapters for the configuration of communication
channels so that information exchange becomes understood correctly. Further-
more, a deadlock free message exchange needs to be ensured.

4. Next, the membership manager retrieves potential participants for an eCommu-
nity for the defined roles of a BNM based on a service-type repository where
providers publish their service offers. The resulting eCommunity contract is a
subject for re-negotiation that results in a trajectory of states.

5. The state support is a mechanism that manages the change of major reorganiza-
tions of the collaboration structure in a BNM. A state is a period where the roles
and services of the BNM participants are stable while subsequent states have
different roles and services involved.

6. Finally, the state-transition synchronizer governs state changes based on transi-
tion rules. Some participants that fill BNM roles reappear in the next state, while
others leave the community. The transitions between states lead to synchroniza-
tions between partners where the constraints in a BNM that govern their behavior
need to be adjusted.

Mapped to Figure 8.1 the first four dynamic mechanisms are part of the setup phase
and the latter two mechanisms are part of the enactment phase. A post-enactment
phase of an eCommunity may be considered a dynamic mechanism that results in an
orderly termination where the members agree to part, the behavior governing rules and
linked business processes are uncoupled, and the technological infrastructures in the
respective community-member domains are disconnected (see Section 7.4).

In the eSourcing concept this dynamic eCommunity-lifecycle management mech-
anism is not contained. However, since the scalability of the eSourcing concept may
extend to more than two collaborating parties, the integration with mechanisms for
managing the lifecycles of eCommunities is feasible. For an extension the results of
the described function blocks need to be reflected in eSML instantiations. For example,
it can not be possible that a collaborating party is defined in an eSML instantiation that
isn’t member of a community. Furthermore, the roles defined during the BNM forma-
tion must be reflected in eSML. Also the policies governing the interaction between
collaborating parties need to be adopted in individual eSML instantiations. The in-
formation exchanges between communication channels must be reflected in the eSML
data-flow specifications. Finally, the deadlock-freeness of message exchanges can be
ensured by correctly terminating inter-organizational business processes and the ser-
vices integrated in a BNM are also part of an eSML instantiation.

8.3.2 Negotiation Support
Several functional blocks are contained in this dynamic mechanisms that is fully rep-
resented in the eCommunity concept and partly in DIBPM. Negotiation is a process
where collaborating parties address disputes, agree upon courses of action, bargain for
individual or collective advantage, or craft outcomes that serve their mutual interests.

156 CHAPTER 8. AN OUTLOOK FOR ESOURCING

The eCommunity membership negotiator is used during the setup phase and the
enactment phase. In the first case members need to match their strategic and pragmatic
goals to form an eCommunity. During the enactment phase the membership may be al-
tered. For example, a member may be replaced with a different one on an own decision
or because of being voted out by the other eCommunity members. The membership
negotiator is a pragmatic mechanism because a willingness must exist to be part of an
eCommunity or not.

The BNM negotiator supports the establishment of BNMs that define the collab-
oration of eCommunity members. A BNM defines the structure and behavior of the
collaborating community through roles and interactions between them. Additionally,
assignment rules are defined for the service offer, and conformance rules are instrumen-
tal to limit acceptable behavior during an eCommunity operation. The BNM negotiator
is used during the setup and enactment phase of a business collaboration and applied
as a pragmatic mechanisms.

The coordination elector generates an eCommunity member who functions as a co-
ordinator who is elected during the first negotiation round among the participant candi-
dates. The coordinator gathers and considers the agreement proposals, disagreements,
and possible counter offers and merges them into one contract. A coordination elector
is used during the setup phase and the enactment of a business collaboration. During
the enactment phase a contract may be subject of modification requests for which a
coordinator is instrumental. Furthermore, this dynamic mechanism is pragmatic as the
wills of collaborating parties are collected for generating a coordinator.

A policy negotiator is responsible for the collaborative establishment of a set of
guiding policies. These policies govern the alternative behavior patterns in a BNM.
Thus, the policies dictate whether a potential action is preferable for a collaborating
party to be involved in. A policy negotiator is used in the setup and enactment phase
of a business collaboration and is of a pragmatic and semantic nature. A variant of a
policy negotiator is also part of DIBPM when it is taken into account that contractual
policies are also part of an eSourcing configuration.

Finally, the eContract negotiator supports negotiations on the exchanged values,
the content of the eContract, and so on. On a subordinate level the business-process
negotiator is a central mechanism for the collaborative establishment of an inter-organi-
zational business process. Thus, the result of such negotiation in the case of automat-
ically integrated business process relations may be an eSourcing configuration as pre-
sented in previous chapters. The business-process negotiator is used during the setup
and enactment phase of a business collaboration and is of a pragmatic and semantic
nature. The mechanism needs to respect clear semantics because there must be mutual
clarity about the meaning of used constructs in a business process. In DIBPM a variant
of a business-process negotiator is part of the concept.

In the eSourcing concept there is no support for the first four function blocks. For
the eSourcing concept an adoption to these function blocks means that eSML instan-
tiations must be updated every time the negotiations result in a change of community
members, rules, or policies. However, for the function block termed eContract negotia-
tor, the eSourcing concept provides a foundation. As eSML instantiations contain inter-
organizationally harmonized business processes and supporting policies in the form of
contractual business rules, the policy negotiator and eContract negotiator mechanisms
is supported. The existence of a service-broker and auction-service components (see
Figure 6.2) of eSRA is a supporting foundation for the latter two mechanisms.

8.3. DYNAMIC MECHANISMS FOR EXTENDING ESOURCING 157

8.3.3 eContract Management
The main issue for the eContract management is the detection and management of mi-
nor and major breaches of contractual agreements. Minor breaches can be resolved and
major breaches result in the termination of an eContract. Such breaches are perceived
by a breach detector that notifies a recovery component that decides whether a recov-
ery action within the domain of a collaborating party is sufficient or if the occurrence
may be ignored all together.

For a serious breach that can not be resolved locally, a breach manager is acti-
vated that initiates a negotiation between the eCommunity members in which the cor-
rective actions are decided. The breach manager is used during the enactment and
post-enactment phase. If no corrective action can be agreed upon, the eCommunity is
terminated.

In the eSourcing concept no eContract management mechanisms are included yet.
However, an adoption is necessary as the eSourcing concept also uses eSML instantia-
tions for formulating the contracts between collaborating parties that may be breached
during enactment. For integrating eContract management, an extension of eSRA on
the external level is required where the contracting-client component of Figure 6.2 is
equipped with a breach detector, breach manager, and recovery component. For fur-
ther details about eContract management, in [23] an elaborate reference architecture
for electronic contracting is described.

8.3.4 Service Management
In automatically integrated business process relations, services that are implemented
by business processes are heavily used at every stage of an eContract. Service manage-
ment is relevant for all concepts that are contained in Figure 8.1.

The service discoverer uses a repository with service offers that need to be matched
with service types contained in a BNM or in an eContract. A service type is an abstract
definition of business service functionality. The service publication functionality for
registering services in a shared repository may be similar to UDDI [29]. The service
discoverer scans through the repository and generates a set of service offers that are
candidates for service-type matching based on published functional properties such as
the service-interface signature, service behavior, requirements for technical bindings,
and so on.

Next, the service selector chooses a particular service offer for a service type that
is part of the set generated by the service discoverer. A service offer is chosen based
on trust and service quality related evaluations that are non-functional properties. Af-
ter a performed conformance validation the match with the service type needs to be
established.

Finally, the local service manager the the domain of each collaborating party con-
trols the local operating environment and is involved in message exchanges with the
eCommunity contract that is an agent itself. The local service manager use knowledge
about local services and their various management methods.

For the automatically integrated business process relations framework depicted in
Figure 8.1, an exploration of service-management mechanisms on all contextual levels
of eSourcing is necessary. The application of services is instrumental for all lifecycle
stages of an eCommunity and the eContracts it comprises. In eSRA a service broker
allows a collaborating party to publicly register services. However, neither is a trust
evaluation component integrated in eSRA nor are quality of service issues considered.

158 CHAPTER 8. AN OUTLOOK FOR ESOURCING

Local service management in eSRA is situated on the internal level (see Figure 6.5)
where a local workflow management system and a local rules engine orchestrate legacy
systems.

The post-enactment phase of automatically integrated business process relations is
not extensively covered by the discussed dynamic mechanisms of this section. The
next section outlines the ingredients of an e-business transaction concept for automat-
ically integrated business process relations that is meant to safeguard dynamic inter-
organizational business collaboration.

8.4 Outlining an eBusiness-Transaction Concept
For eSourcing, a transaction concept is important to ensure reliability in business col-
laboration. However, with the apparent complexity involved in eSourcing and its
broader context of automatically integrated business process relations, no single trans-
action model is able to meet all requirements. Traditionally, a transaction is a unit of
interaction with a database management system that must be treated in a coherent and
reliable way independent of other transactions. From a technical standpoint, current
web service composition approaches are confronted with the transactional challenges
of relaxed atomicity, where intermediate results may be kept without rollback despite
the failure to complete the overall execution of a composite service. Secondly, com-
posed services are dynamic as they can be automatically selected at run-time based on
specific requests [80]. A solution approach is to compose web services also from a
transaction perspective where first the transactional requirements are defined together
with acceptable termination states. During the web-service composition phase, the
transactional properties of every service can be matched with these prior defined trans-
actional requirements. However, for eSourcing such a technology centered transaction
concept does not suffice as business relevance must be taken into account.

As previous chapters show, in eSourcing configurations spheres are used to demar-
cate process parts that are provided by a collaborating party. The theory of spheres of
control [31] originates from the domain of traditional database transactions. So called
workflow spheres [69] expand the transaction theory into the dynamic world of com-
plex business processes. Those concepts are applied in [105] for analyzing atomicity
criteria dependencies and atomicity spheres. This work, does not relate the workflow
concepts of highly dynamic inter-organization processes. In the work of [104] a sub-
stantial emphasis is put on the characteristic atomicity properties of e-business. These
unconventional atomicities for spheres in eBT are explored and related [87] to each
other along the categories system-level atomicity, business-interaction atomicity, and
operational-level atomicity. These atomicities need to be part of a transaction model
that pays attention to the business realities that form the context of an eSourcing con-
figuration.

8.4.1 Business-Aware Transaction Models
An e-business transaction (eBT) concept must go further than transactions for the
database domain if it should support eSourcing and if it needs to ensure consistent
state changes of a business collaboration. An eBT needs to reflect the operational busi-
ness semantics that accompanies inter-organizationally harmonized business processes.
Thus, the business needs and their objectives between collaborating parties drive busi-
ness transactions, e.g., business commitments, mutual obligations, the exchange of

8.5. CONCLUSION 159

monetary resources, and so on.
eBTs are long lived, involve collaboration at multiple levels, are characterized by

unconventional behavioral features, and include multiple parties that exchange services
for compensation. The successful completion of a business transaction results in con-
sistent state changes that reflect the objectives of multi-party business collaboration.
Furthermore, business transactions are a means of ensuring that collaborating parties
have a common semantic understanding of their collaboration.

In [88] the key components of business transactions are described, namely com-
mitment exchange, the parties involved in the commitment, business constraints and
invariants that apply to the messages exchanged between collaborating parties, and
business objects that are operated upon by business activities. In eSML these key com-
ponents are contained. An eSML instantiation represents a definition of a commitment
exchange between collaborating parties that is only complete, when the collaborating
parties reach a consensus about the contained commitment exchange definition. In an
eSML instantiation the collaborating parties can be specified. The definition of busi-
ness constraint and invariants is supported in an eSML instantiation in the form of
business rules and definitions for the Where concept (see Section 6.3.3). Finally, in
eSML business objects in the form of documents can be defined and assigned to tasks.

The foundation for supporting the definition of business transactions is created in
eSML. However, for integrating eBTs, the eSourcing concept needs to be extended
with an extra XML-based specification language for the setup time that describes addi-
tional elements for business transactions, e.g, quality of service or specifying common
business functions like payment, certified delivery, non repudiation, goods, and so on.
The Business Transaction Model Language BTML [88] comprises of elements that
allow to specify such special business transaction elements.

On the internal level of an eSourcing configuration, many legacy systems safe-
guarded by diverse transaction concepts are located that must be inter-organizationally
integrated. The following section discusses ongoing research about a business trans-
action framework (BTF) that may enable eSourcing configurations to integrate inter-
organizationally the differing transaction concepts of internal-level legacy systems.

8.4.2 Abstract Transaction Constructs
The need for a comprehensive and flexible transactional support is addressed in the
XTC project (eXecution of Transactional Contracted electronic services) [112] that is
funded by the Dutch Organization for Scientific Research (NWO). By means of a BTF,
the XTC project lays a transactional foundation for processes in contract-driven and
service-oriented environment. In XTC, existing transaction models are integrated into
abstract transaction constructs (ATC) so that their implementation details are hidden.
The heterogeneous infrastructures of eSourcing configurations are catered for by se-
lecting ATCs to form an overall transaction scheme. Thus, ATCs are building blocks
of a BTF that are composed into specific transaction models

8.5 Conclusion
This chapter presents an outlook for eSourcing that explores what dynamic mecha-
nisms are required for supporting the setup, enactment, and post-enactment of business
networks and associated eContracts in dynamic electronic business collaborations. Au-
tomatically integrated business relations comprises several contained concepts with

160 CHAPTER 8. AN OUTLOOK FOR ESOURCING

eSourcing as a core embedded in DIBPM and the eCommunity concept. The members
and their behavior-governing rules of an eCommunity are defined in business-network
models that have one or several eContracts associated. For supporting such automati-
cally integrated business process relations, dynamic mechanisms are investigated that
eSourcing must either adopt or connect to.

Partly hierarchical, unconventional e-business transaction atomicities are consid-
ered for safeguarding eSourcing configurations. These unconventional types of atom-
icities need to be employed for securing on the one hand the business-interaction pro-
tocols of collaborating parties during the setup phases of electronic communities and
electronic contracts. On the other hand these atomicities also safeguard during en-
actment the consumption of service provision for corresponding compensation. In an
eSourcing configuration the spheres must be additionally demarcated with e-business
atomicities.

The ingredients of an e-business transaction for eSourcing are explored. Research
results from the ongoing XTC project are considered where a business transaction
framework is established by combining differing abstract transaction constructs that are
ordered in a taxonomy. For eSourcing configurations, these ATCs need to be adopted
for establishing a composed transaction that spans across the domains of collaborat-
ing organizations and incorporates the conceptual and internal business processes that
orchestrate heterogenous legacy systems. The advantage of ATCs is that different trans-
action concepts can be composed to accommodate this heterogenous system environ-
ment that is integrated in eSourcing configurations.

Chapter 9

Conclusion

Contents
9.1 Summary of Research Findings 161

9.1.1 Formal Preliminaries . 161
9.1.2 The eSourcing Concept 162
9.1.3 A Pattern-Based Exploration 162
9.1.4 Formal Properties of eSourcing 163
9.1.5 Prototypes for eSourcing 164
9.1.6 Case Studies . 164
9.1.7 An Outlook . 165

9.2 Final Remarks . 165

In this thesis several results can be distinguished that are summed up below and com-
bined with an assessment of the research results. Next, final remarks for this thesis
discuss remaining issues for the eSourcing concept that could not be sufficiently ad-
dressed.

9.1 Summary of Research Findings
The answers given below sum up the research findings of this thesis. The sequence of
subsections corresponds to the sequence of research questions listed in Section 1.4.2.
First, every subsection answers the main research question and their additional sub-
questions. The answers are followed by concluding remarks.

9.1.1 Formal Preliminaries
In providing a formal grounding for the concept of eSourcing, Petri-net formalism is
used for which a considerable body of theory exists for the domain of business pro-
cesses. By employing specific Petri-net theory, the semantics of the control-flow per-
spective of business processes is unambiguously defined. A subclass of Petri-net the-
ory is adopted, namely WF-nets. For inter-organizationally linking business processes,
IOWF-nets are adopted that can be flattened to a place/transition-net.

By adopting WF-nets, the soundness property is available for verifying the correct
termination of processes. After applying the flattening method, the soundness property

161

162 CHAPTER 9. CONCLUSION

can also be used for verifying the correct termination of IOWF-nets. In using projec-
tion inheritance for comparing consumer spheres and provider spheres, collaborating
parties retain a business relevant degree of internal adjustment flexibility that remains
opaque to the opposing collaborating party. That way, organizations are enabled to
keep their business secrets and must not have fixed, standardized routing imposed on
themselves. With the adoption of clear control-flow semantics, it is possible to check
a configuration at the end of the setup phase of an eSourcing configuration for prob-
lems that render a successful enactment impossible. That way the need for expensive
exception handling and compensation steps is reduced.

9.1.2 The eSourcing Concept

As a framework for conducting dynamic inter-organizational electronic business, this
thesis introduces the eSourcing perspective that supports the establishment and enact-
ment of inter-organizational business process collaboration. eSourcing integrates three
crucial issues, namely conceptual, business, and technological complexity manage-
ment; control-flow rigor; and relevance for the domain of investigation, i.e., dynamic
inter-organizational business process collaboration.

A three-level business process framework is used in eSourcing to manage the con-
ceptual, business, and technological complexity involved in inter-organizational busi-
ness process collaboration. The informally introduced collapsing method for eSour-
cing allows the eSourcing parties to check during build time if they adhere to process-
behavior requirements and whether the enactment of an eSourcing configuration can
successfully terminate. These checks are possible without revealing the internals of the
collaborating opponent.

With eSourcing a framework is established for the structural matching of business
processes. It allows companies to identify the benefits of carrying out electronically
inter-organizational business process collaboration where a conceptual harmonization
between collaborating domains takes place. It is not required to directly link the respec-
tive information infrastructures, and collaborating parties have the freedom to protect
their competitive advantages.

9.1.3 A Pattern-Based Exploration

For discovering patterns for eSourcing, a suitability analysis forms the foundation,
which is a top-down exploration approach resulting from exploring relevant charac-
teristics of dynamic inter-organizational business process collaboration. To explore the
eSourcing framework for its setup phase and for its structural elements, the following
method is chosen. Dynamic inter-organizational business process collaboration con-
tains several feature dimensions in the form of axes that create a logical space. On
every axis, dimension values are located that detail the feature an axis represents. By
taking a subset of axes, a logical space is created that represents a particular perspec-
tive.

Many pattern catalogues exist for perspectives that are relevant to dynamic inter-
organizational business process collaboration. While their specifications share many
commonalities, the terminology used for specifying patterns for different perspectives
is not uniform. Still, the pattern catalogues form a foundation for exploring the na-
ture of patterns and for extracting a common specification terminology. The results
of this exploration result in a pattern meta-model for uniformly specifying patterns,

9.1. SUMMARY OF RESEARCH FINDINGS 163

ordering the patterns in a taxonomy, and capturing information about technology sup-
port of specific patterns that establishes relevance for eSourcing. Deducted from the
suitability analysis, two multi-dimensional spaces are created for exploring the setup
phase and structural elements of eSourcing configurations. Firstly, the interaction di-
mensions called assignment and direction and secondly the construction dimensions
called contractual visibility, monitorability, and conjoinment are used for discovering
and specifying patterns.

Using the specified patterns allows for an evaluation and integration of intra-organi-
zational business processes across the domains of collaborating parties. By using con-
ceptually formulated and technology independent patterns for the establishment of
eSourcing configurations, it becomes unnecessary for intra- and inter-organizational
knowledge workers to continuously "reinvent the wheel". The insight gained by spec-
ifying interaction patterns about how collaborating parties are in exchange with each
other during the setup phase of an eSourcing configuration, is input for developing a
reference architecture that supports the setup- and the enactment phase of eSourcing
configurations. The construction-element patterns are used for developing a specifica-
tion language for eSourcing configurations.

9.1.4 Formal Properties of eSourcing
Shifting to a formal exploration of eSourcing, different options for reaching a consen-
sus about service provision and service consumption are defined. To reach a consen-
sus, the projected contractual spheres of collaborating parties must be isomorph on the
external level of an eSourcing configuration. The projection options result in three re-
lationship variants between the consumer sphere and the consumer contractual sphere,
and the provider sphere and the provider contractual sphere, namely a white-box, grey-
box, or a black-box projection. To avoid enactment problems, the service consumer
may only use white-box and black-box projection, while the service provider may use
all three projection options. For reaching a contractual consensus, if the service con-
sumer uses white-box projection, the service provider may either respond with white-
box or grey-box projection, while black-box projection must always be complemented
with black-box projection by the collaborating counterpart.

On the conceptual level of the consumer domain, an eSourcing configuration con-
sists of an in-house process with a consumer sphere as a contained subnet. On the
external level, a contractual sphere for every collaborating party is located and on the
service provider’s conceptual level the provider sphere is situated. The in-house pro-
cess and the provider sphere form an IOWF-net. To perform service refinement without
violating the externally agreed upon service provision, process refinement patterns are
available, namely a parallel branch, a loop, and an inserted task. These patterns en-
sure that the projection-inheritance relationship between the consumer sphere and the
provider sphere is not violated if white-box or grey-box projection are performed.

eSourcing is backed by a proven theorem from IOWF-nets about the composition-
ality of projection inheritance that states under certain conditions, a subflow can be
replaced by a subclass subflow without endangering soundness. However, further re-
search is required for supporting a setup phase of an eSourcing configuration where
black-box projection is used. This projection type offers collaborating parties design
freedom for their conceptual-level business processes with the drawback that it is chal-
lenging to achieve a sound eSourcing configuration. Instead, it should be formally
explored how the compatibility and usability of the consumer sphere and the provider
sphere can be checked during the setup phase of eSourcing configurations.

164 CHAPTER 9. CONCLUSION

9.1.5 Prototypes for eSourcing

Based on the electronic contracting language ECML, the eSourcing-formulation lan-
guage eSML is constructed for the external level of an eSourcing configuration. The
eSourcing pattern catalogues of this thesis are used for constructing the syntax of
eSML. By employing additional pre-existing pattern catalogues for the data-flow and
resource perspectives, further XML constructs are included in eSML. Respecting de-
sign principles that pay attention to a separation of business, conceptional, and tech-
nological concerns, the eSourcing reference architecture called eSRA is constructed
for the development of applications that support the eSourcing setup phase and the
enactment, which is embedded in the three-level framework.

With the adoption of the process modelling language XRL in eSML, contained
business process definitions have clearly defined control-flow semantics. That way
the Woflan application becomes instrumental for verifying the soundness property of
a collapsed eSourcing configuration before enactment. The XRL formulated business-
process specifications that are contained in eSML instantiations can be validated with
the web-based toolset XRL/flower. XRL/flower is built on existing technology that
allows for an efficient implementation and the system is easy to extend by employ-
ing an XSL translator for mapping routing elements to PNML. Thus, for supporting a
new control flow primitive, only a transformation to the Petri-net format needs to be
added and the engine itself does not need to change. The XRL enactment application
is complemented with a web server, allowing actors to interact with the system through
the internet. The pattern-knowledge base application uses a pattern meta-model as
a foundation and stores pattern catalogues of various business-process collaboration
perspectives. A pattern lifecycle is the starting point for establishing a reference archi-
tecture for a pattern knowledge base. The pattern meta-model is extended for capturing
additional information about the knowledge-base users and review procedures of pat-
terns.

9.1.6 Case Studies

The thesis illustrates two case studies from the automobile industry that were conducted
for the CrossWork project. These two case studies are instrumental for evaluating a set
of functional and non-functional requirements for eSourcing and the related pattern cat-
alogues, eSRA, and eSML. The first case study describes the application of eSourcing
with the related pattern catalogues and eSRA in a scenario where an OEM is eSour-
cing from an automobile cluster that collaboratively produces, assembles and delivers
a water-tank. The second case study shows how eSML is applied for specifying on
the external level of an eSourcing configuration the collaboration for producing a gear
box. The requirements are for eSourcing feasibility, scalablity, interoperability, and
coherence; for the pattern catalogues applicability and structuring support; for eSRA
interoperability, applicability, and completeness; for eSML applicability, structuring
support, data-flow support, and resource specification support.

The case studies in this thesis provide an illustration of feasibility for the eSour-
cing approach. However, the considerable complexity of eSourcing and the related
pattern catalogues, eSRA, and eSML requires the conduction of additional, more elab-
orate case studies with additional requirements for evaluating a more complete list of
functional and non-functional requirements.

9.2. FINAL REMARKS 165

9.1.7 An Outlook

The broader context for eSourcing is explored to fill the gap for realizing dynamic inter-
organizational business process collaboration. Consequently, eSourcing is embedded
in additional tiers of broader concepts with DIBPM being a second encapsulating tier.
As a third tier, the eCommunity concept contains the first two mentioned concepts. An
eCommunity is a specific collaboration with special operations, agreements and states.

The detected need for additional dynamic mechanisms in eSourcing is inspired by
considering the eCommunity concept as the third context tier that encapsulates eSour-
cing. The dynamic mechanisms are called eCommunity-lifecycle management, nego-
tiation support, eContract management, and service management. To safeguard the
enactment of eSourcing configurations, partly hierarchical, unconventional e-business
transaction atomicities are considered for eSourcing spheres that need to help in se-
curing on the one hand the business-interaction protocols of collaborating parties, and
on the other hand the consumption of service provision for monetary compensation.
Furthermore, the ingredients of an e-business transaction for eSourcing are outlined,
inspired by research results from the ongoing XTC project. For eSourcing, a electronic
business transaction framework is required for combining differing abstract transac-
tion constructs that are ordered in a taxonomy. These abstract transaction constructs
must be combined in an eSourcing configuration to support automatically integrated
business relations.

For forging automatically integrated business process relations, the eSourcing con-
cept needs to be extended for adopting dynamic mechanisms that result from the broader
conceptual context that eSourcing is embedded in. A more elaborate investigation
is required for operationalizing the dynamic mechanisms in eSourcing, which results
in extensions of eSML and eSRA. For creating an e-business transaction concept for
eSourcing, a case study must be conducted where the research results from the XTC
project are applied. That way an extension scope is detected for eSML and eSRA,
namely, the introduction of an e-business transaction concept to safeguard dynamic
inter-organizational business process collaboration.

9.2 Final Remarks

With the emergence of service-oriented technologies and their application for sup-
porting business activities, it becomes possible for companies to inter-organizationally
align their business processes and transact via electronic marketplaces. The concept of
eSourcing is a contribution into this direction, which is enabled by a move towards web
service ecosystems. According to [24], a web service ecosystems is a logical collec-
tion of web services whose exposure and access are subject to constraints, which are
characteristic of business service delivery.

For web service ecosystems several critical issues exist, namely, the extent to which
different service supply and distribution roles are supported in a service supply and
distribution network, capturing semantics for web services to support their discovery
in a flexible way, supporting long-running multi-party service interactions in inter-
organizational business processes, capturing non-functional properties in service de-
scriptions to manage the quality of service level agreements, and enabling automated
respecification of services that support business processes in order to compose and bind
them inter-organizationally in ways unforeseeable at design time.

In eSourcing several of these issues are paid attention to in varying degrees. For the

166 CHAPTER 9. CONCLUSION

first issue of role support, eSourcing is integrating an elaborate resource model in its
language representation termed eSML. In Section 6.3.3 the Who-concept is presented
for eSML that is refined with further detailing models in Appendix A.5. Condition
statements that are associated to tasks and their related services, use resource speci-
fications for roles binding. Furthermore, the eSourcing reference architecture eSRA
lays a foundation for developing system applications that support the brokerage and
mediation of process-oriented services in an electronic marketplace.

The issue of including semantics in eSourcing is not explicitly dealt with in this
thesis. However, it is addressed in the CrossWork project [2] where domain-specific
ontologies for goal decomposition and automated team formation in the automobile
industry have been developed. Such domain-specific ontologies are linked into eSML
instantiations to support business collaboration in an eSourcing configuration. In eSML
instantiations, the collaborating parties and their resource details can be specified to-
gether with legal context specifications for covering the What-concept (see Section 6.3.3).
Hence, it is feasible to use these facts and to extend eSourcing into the direction of
semantics-supported service discovery.

Long-running multi-party business-process interactions in eSourcing should be se-
cured with an appropriate e-business transaction concept. While Section 8.4 gives a
direction for such an e-business transaction concept, it also is shown that this is a mat-
ter of ongoing research. Hence, the current state of eSourcing does not include an e-
business transaction concept for safeguarding inter-organizational business processes.
Currently, for an eSML instantiation, business rules can be specified in a way that
exceptional situations are managed, followed by a business-process rollback. The pur-
pose of such rules is the specification of contractual clauses that cover, e.g., a penalty
situation.

The topic of service quality for eSourcing is not dealt with in this thesis. It is an
open research issue to investigate what non-functional properties are required in dif-
fering industry domains for ensuring good quality of service. While eSML allows the
specification of business relevant facts like price or a delivery timetable, further non-
functional business properties like trust, reputation, promises, penalties, escalation, and
dispute resolution mechanisms are open issues.

An automated respecification of services that support business processes is a nec-
essary extension for eSourcing where business collaboration is set up in a dynamic
way. Respecification means that the nodes and links between them, and the interfaces
of a services are changed. By supporting service interface adaptation in eSourcing,
interfaces could be kept as generic as possible while adapting to functions peculiar to
implementation or prone to change. In [41] such interface adaptation is investigated in
a declarative way where a visual language allows pairs of provided and required inter-
faces to be linked through algebraic expressions. Hence, the tools that are developed
for supporting such interface adaptation should be integrated in eSRA for enhancing
the inter-organizational linking support in eSourcing collaboration.

A respecification approaches of a process is achievable by looking at the data-flow
dependencies [45]. With a given set of services and their interdependencies, an algo-
rithm constructs fully automatically a structured composition that satisfies the given
dependencies. However, the user must still give input to the algorithm by annotating
the dependency graphs, which is less work is than annotating services with formal pre-
and post-conditions, as usually required by most other comparable service composition
approaches. The constructed compositions use only basic workflow patterns [19].

Finally a respecification may focus on the differing views of a business process
that is offered to a collaborating counterpart [43]. Here a process view hides details of

9.2. FINAL REMARKS 167

an internal process that are secret to or irrelevant for the consumer. In a formal two-
step approach, customized process views are constructed on structured process models.
Firstly, from an internal structured process model, internal activities that need to be
hidden are aggregated into a non-customized process view. Secondly, by aggregating
and omitting activities from the non-customized view that are not requested by the
consumer, a customized process view is constructed .

Considering the schema definition in Appendix B, the complexity of specifying
eSourcing configurations becomes apparent. According to [24], web service ecosys-
tems need even more extensive specifications when non-functional requirements and
ontologies are taken into account. To support intra- and inter-organizational knowl-
edge workers who have the task assigned of setting up eSourcing configurations, visual
modelling support is relevant. However, so far there is no visual language existent for
eSML. In [117], a service behavior modelling language is presented that is created ac-
cording to a clearly defined set of requirements, namely abstraction, comprehensibility,
and suitability. This modelling language is supported by a tool that performs a static
analysis. For eSourcing a similar development is necessary where first the require-
ments of a visual modelling language needs to be defined. Consequently, when it is
assumed in a semi-automated environment that human involvement for the setup phase
of an eSourcing configuration is at least required for final checks and modifications,
there is a need for tool-supported eSML instantiation specifications with incorporated
automatic analysis algorithms that check the correctness of eSourcing configurations.

168 CHAPTER 9. CONCLUSION

Appendix A

Further Refining eSML Models

Contents

A.1 Process Definition Model . 169
A.2 Data Package Integration . 171
A.3 Variable Definition . 171

A.3.1 Standard Data Types . 172
A.3.2 Special Data Types . 172

A.4 Defining Rules . 174
A.4.1 Integrity Rules . 174
A.4.2 Derivation Rules . 174
A.4.3 Reaction Rules . 176
A.4.4 Deontic Rules . 176
A.4.5 Free-Text Rules . 176

A.5 The Resource Section . 176
A.6 The XRL-Based Route Model 181
A.7 Lifecycle Details . 184
A.8 The Monitorability Model . 184
A.9 The Transition-Type Model . 187
A.10 The Data Model . 188

The models of Section 6.3 contain docking classes to sub-models for process definitions,
capturing resource facts of contracting parties, variable and rule definitions. Thus, the
following sub-sections and figures are presenting further detailing sub-models.

A.1 Process Definition Model
Process definitions are used in the shamrock concepts of Where and What. Looking
at Figure A.1, the process model contains classes that belong to two different perspec-
tives, namely the control-flow and the eSourcing perspective. The classes in Figure A.1
are appropriately background shaded.

A process_section may contain no or multiple process definitions. A process
is a type of route, which is the root class for a process definition in XRL, which is a

169

170
A

PPEN
D

IX
A

.
FU

RTH
ER

R
EFIN

IN
G

ESM
L

M
O

D
ELS

active_node_lifecycle_mappingprocess_lifecycle_mapping

active_node_lifecycleprocess_lifecycle

-tag_name : string
-process_id : ID
-enabled : (enabled | disabled)
-created_by : string
-date : string

route

process_section

process

lifecycle_definition monitorability

-

1

- 0..*

-
1

- 0..*

-
1

- 0..*

-
1

- 0..*

-process_id : IDREF

lifecycle_details

- 1

- 0..*

- 1

- 0..*

- 1

- 0..*

- 1

- 0..*

- 1

- 0..*

�

�

� �

�

� �

� �

1..* 1

�

-consumer_process : IDREF
-consumer_active_node : IDREF
-provider_process : IDREF
-provider_active_node : IDREF

active_node_label_mapping

-sink_sphere : IDREF
-sink_node : IDREF

sink

-mapping_name : ID
-node_type : (lifecycle_transition | lifecycle_state)

lifecycle_mapping

-source_sphere : IDREF
-source_node : IDREF

link_properties

-mapping_name : ID
-node_type : (lifecycle_transition | lifecycle_state)

lifecycle_mapping_details

Figure
A

.1:M
odelof

p
r
o
c
e
s
s
_
s
e
c
t
i
o
n.

A.2. DATA PACKAGE INTEGRATION 171

subset of eSML. The route is a docking class that is further refined in Figure A.8 and
Figure A.9 and explained at a later stage.

All remaining classes of the process_section in Figure A.9 are part of the
eSourcing perspective. The majority of those classes are dealing with defining and
mapping the life-cycles of service consumer’s and provider’s processes that are in-
volved in an eSourcing configuration.

The class life_cycle_definition can be contained in a process_section
multiple times. It is instrumental for defining life-cycle stages of entire processes or
merely active nodes that are part of respective processes. Such definitions are assigned
to the processes of a consumer and provider. The classes process_lifecycle
and active_node_lifecycle are subclasses of lifecycle_details. The
latter class is a docking class belonging to the eSourcing perspective that is explained
in further detail below.

Once the lifecycles of respective processes and their contained active nodes are
defined, the case may occur that labels are named differently but express equal tasks.
Thus, the class active_node_label_mapping serves to define such semantic
equivalence that is important for verifying projection inheritance of a consumer sphere
and the refinement sphere of a service provider.

As the class lifecycle_mapping indicates, it is also important to map life-
cycle stages of different processes and active nodes belonging to the domain of a ser-
vice consumer and provider. Such labels may be differently named but semantically
considered equal. Mapping is important for application support of the enactment of an
eSourcing configuration in eSML.

Finally, a docking class for monitorability is contained in the process_section
model of Figure A.9 that is further refined in Figure A.9. Montitorability is dealing with
different ways of linking nodes belonging to the service consumer and service provider
process. Section A.8 gives a more elaborate description.

A.2 Data Package Integration
In an eSourcing configuration a forged contract usually defines variables and docu-
ments that are relevant for enactment. The figure below shows how such data is inte-
grated in an eSourcing configuration.

A contract in Figure A.2 may reference one data_definition_section,
which in return references one or several data packages. These data packages op-
tionally contain a set of variables and documents.

A.3 Variable Definition
The data items contained in Figure A.3 are data definitions in an eSourcing configu-
ration that are to be used by the contract enactment system. Furthermore, data items
can have the function of variables in programming languages, allowing an item to be
referenced by other e-contract elements. As in many programming languages, it is
essential that data items belong to a specific data type. This allows easier contract
processing and sets basic constraints on the allowed values for a data element. Two
classes of required data types are identified, i.e., standard data types and special data
types. Next, the identified required data types are listed. As rge variable definitions
stem from ECML, in [23] further details and examples can be found.

172 APPENDIX A. FURTHER REFINING ESML MODELS

document_section

-contract_id : ID
-global_language : string

contract

data_definition_section

-package_id : ID
data_package

var_section

-document_id : ID
-name : string
-file_format : string
-uri : anyURI

document

-1

-0..1

�

-1

-1..*

�

-

1

-0..1

� -
1

-

0..1

�

-1

-1..*

�

-
1

- 0..1

�

Figure A.2: Data package integration in a contract.

A.3.1 Standard Data Types
Standard data types required in an eSourcing language are:

• String. The string type is required to support the definition of string data items.

• Number. The number data type is required to support the definition of number-
data items.

• Boolean. The boolean data type is required to support the definition of boolean
data items.

• Set. The set data type is required to support the definition of sets of data items.

• List. The list data type is required for the definition of ordered sets.

• Record. The record data type is required for the definition of bundles of data
items.

A.3.2 Special Data Types
In addition to the standard data types, the need for data types is identified that are of
importance for eSourcing but are not widely accepted in programming languages. Such
special data types can be seen as a specialization of the standard data types. Next, the
required special data types are described.

• Date/Time. The date and time data types are required for the support of definition
of date/time data items.

A
.3.

VA
R

IA
B

LE
D

EFIN
ITIO

N
173

string_va

real_var

integer_var

var_section

boolean_var

date_var

time_var

event_var

money_var

external_resource_reference_var

list_of_events_var

list_of_strings_var

-tag_name : string
-var_id : ID
-changeable
-owner
-changeable : boolean
-properties
-enabled (enabled | disabled)
-rules_for_change

common_var_attributes

-1

-

1

1

1

1

1

1

1

1

1

1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

�

�

1

Figure
A

.3:M
odelof

v
a
r
_
s
e
c
t
i
o
n.

174 APPENDIX A. FURTHER REFINING ESML MODELS

• Money. The money data type is required for the definition of amounts of money
from a specific currency.

• Event. The event data type is required to specify events that can occur during
contract enactment.

• External Resource Reference (ERR). The ERR data type is required for the spec-
ification of references to external contract elements.

A.4 Defining Rules

A rule construct is required for the specification of contract provisions. In Figure A.4
the eSML model of contained rules is depicted. Contract rules are business rules rel-
evant to the contracting relations between the contracting parties. In the existing lit-
erature four basic types of business rules are identified, i.e., integrity rules, derivation
rules, reaction rules, and deontic assignments. Examples of each of these four rule
classes can be identified in existing business contracts. This shows that constructs for
each of them has to be provided in an e-contract specification language. In addition, a
free-text rule construct can be used for the expression of any provisions targeted only
for reading by humans. Every business rule can either be in an enabled or disabled
state. Two rules can conflict with each other when both apply at the same time. Thus,
the prioritization of execution of rules is required, i.e., when two or more rules have
conditions that are satisfied, prioritization can be used to suppress the execution of
some of them. In the following subsections, the rules are briefly described and in [23]
further details are contained.

A.4.1 Integrity Rules

Integrity rules represent assertions that must be satisfied in the evolving states and
state transitions. Two sub-classes of the integrity rules exist, i.e., state constraints and
process constraints (also referred to as dynamic constraints).

• State constraints set constraints on states of objects at any point in time.

• Dynamic constraints set restrictions on transitions from one state to another.

A.4.2 Derivation Rules

A derivation rule prescribes the way for obtaining the value of a data element. Two
types of derivation rules can be distinguished, i.e., computational and linguistic rules.

• In Computational rules the value of a data element is calculated through a math-
ematical expression.

• In Linguistic rules, information for a data element is derived from existing infor-
mation (or from information that itself can be derived).

A
.4.

D
EFIN

IN
G

R
U

LES
175

rule_section

-derivation_expression : IDREFS
-assigned_to : IDREF
-type : (must_observe | may_break)

state_constraint_rule -rule_conditions : IDREF
-element_ref : IDREF
-element_attribute_ref : IDREF
-list_of_strings_type
-type : (must_observe | may_break)

dynamic_constraint_rule

-derived_variable_ref : IDREF
-derivation_expression : IDREFS

computational_derivation_rule

-derivation_expression : IDREFS
-property_extended_variable_ref : IDREF
-property_to_be_added_ref : IDREF

linguistic_derivation_rule

-rule_conditions : IDREF
reaction_rule

free_text_rule

-

1

-0..*

-

1

-0..*

-1

-0..*

-1

-0..*

-

1

-0..*

-

1

-0..*

-rule_id : ID
-tag_name : string
-enable : (enabled | disabled)
-changeable : boolean
-overrides : IDREFS

common_rule_attributes

�

�

�

�
� �

-1

-

1

�

-1

-

1

-1

-

1

-
1

-

1

-

1

-1

-1

-

1

-target_element : IDREF
-new_state : (enabled | disabled)
-type : (must | may | may_not)
-assigned_to : IDREF

enabler_action
-targets : IDREFS
-type : (must | may | may_not)
-assigned_to : IDREF

executive_action
-target_element : IDREF
-target_attribute : string
-new_value : string

copier_action

-

1

-

0..*

-1

-0..*

-

1

-0..*

�

� �

��

�

�

�

Figure
A

.4:M
odelof

r
u
l
e
_
s
e
c
t
i
o
n.

176 APPENDIX A. FURTHER REFINING ESML MODELS

A.4.3 Reaction Rules
Reaction rules are rules that lead to invocation of actions (execution of processes,
changing of data values, etc.) in response to certain events, provided that certain state
conditions are true. These rules are often referred to as Event Condition Action (ECA)
rules. Condition Action (CA) rules can be seen as special cases of the ECA type of
rule. The structure of an ECA rule is encoded in its name. An ECA rule construct
must provide a definition of the events and conditions for the firing of a rule, and the
actions to be performed. Three classes of reaction rules are distinguished according
to the type of action defined in the action sub-construct, i.e., enabler, executive, and
copier reaction rules.

• Enabler reaction rules create/delete or enable/disable e-contract elements.

In an eSourcing configuration, the free and rule governed updates are agreed
upon in advance. For this reason, e-contracts contain the text that has to be
added or deleted in its content. Often complete data item, rule, or process spec-
ification (or a set of the) is disabled initially or during the contract enactment.
These clauses of the contract must be indicated as non-active parts of the e-
contract. When an enabler reaction rule fires, a data item, a rule, or a process can
change its status (to enabled or disabled). Thus, enabler ECA rules do not di-
rectly delete or create new content but only disable or enable previously defined
contract elements. When a rule of this type evaluates to true, the contract man-
agement system has to cater for the change of the state of the relevant e-contract
elements. Enabler rules require the action sub-construct to contain the new state
and the identification string of the element whose state is to be changed. This
limited functionality of enabler rules required in e-contracts can be delivered by
copier reaction rules as well (copier reaction rules are discussed below).

• Executive reaction rules cause a process to be triggered or a rule to fire.

• Copier reaction rules set the value of a data element.

A.4.4 Deontic Rules
Deontic assignments regulate the assignments of powers, duties, etc. Deontic assign-
ments indicate the rights, obligations, and prohibitions each party (or a person/role
from a party) is given/imposed during enactment.

A.4.5 Free-Text Rules
Formalization of certain provisions is not necessary as it does not deliver any value. A
free-text rule construct contains the rule in a free text form and indicates that it contains
a rule that is to be monitored and evaluated by humans. This allows its automatic
extraction from the e-contract and representation to the e-contracting parties for manual
evaluation.

A.5 The Resource Section
Resources can either be actors or non actors that are involved in an organization. In the
Figures A.5, A.6, A.7 the full resource model is depicted split into three parts. Resource

A.5. THE RESOURCE SECTION 177

facts defined that way can be used for three types of task assignment. Either tasks are
assigned directly to actors, or a role is defined with a task that can be filled by several
actors. Finally, a more complex formal language can be employed for defining which
resources are potentially carrying out a task. Such a formal language may take into
account capabilities, command over particular resources, authorities, and so on. eSML
does not cater for such a formal language. However, a task definition offers a tag
where one of the three options may be used for resource definition. The three resource
models are connected by three docking classes, namely organizational_unit,
resource_type, and individual_resource.

In Figure A.5 the central class is organizational_unit which has two sub-
classes, namely temporary_organizational_unit and
permanent_organizational_unit. Both subclasses have a start_date
and the first subclass has an end_date. An organizational unit has a correlation
class related that can be used to describe how two units are correlated to each other.
Furthermore, it is possible to relate organizational units in a hierarchy to each other.
An organizational_unit comprises of a collection and a resource_type,
where the latter class is described in connection with Figure A.6.

A collection has three subclasses, namely a concrete_collection, a
mixed_collection, and a typed_collection. The first subclass comprises
a number of actors that are either real humans or agents. A typed_collection
references a set of optionally contained roles of actors, or resource-type references such
as space, machines, or production material. Consequently, a mixed_collection
combines both collection types and references actors and typed collections. Finally, an
individual resource may be available for a task to particular degree.

As mentioned before, an individual_resource has an actor as a subclass.
Such an actor may be directly assigned to a task. As Figure A.6 shows, an actor refer-
ence various assigned appointments that have a start and an end. An actor references
one or many roles that can be delegated to other actors. Furthermore, an actor has also
one or many organizational positions that are related to organizational units. Such an
organizational position may mean several privileges are attached that are also related
to roles.

A role is a subclass of a resource_type and may be filled by several actors.
Besides already mentioned, several capabilities may be required to fill a role. Further-
more, a role can give certain power that can also be delegated to other roles for a limited
time. Power that is attached to a role is also related to capabilities and privileges.

In the third part of the resource model depicted in Figure A.7, the focus lies on non
actors. A non_actor is a subclass of an individual_resource and has two
further subclasses, namely space and consumable_resource. Space is located in
a building, has a room_number and a capacity. A consumable_resource has
equally two subclasses, which are production_material and machine.

All those subclasses of non_actor inherit a contact and phone attribute. The
purpose for providing such human contact details is the availability of somebody when
"things go wrong". For example, in a tightly integrated just-in-time supply chain, major
losses can be expected when a machine fails or certain production_material
isn’t available as scheduled. As a result one crucial contact must be available to avoid
a collapse of the overall supply chain.

The classes production_material and machine both reference the classes
rate_of_usage and capacity. The first class is instrumental to define how much
production_material a particular machine consumes in a specific time period.
The class capacity also links production_material to a machine. The class can

178
A

PPEN
D

IX
A

.
FU

RTH
ER

R
EFIN

IN
G

ESM
L

M
O

D
ELS

-name: VARCHAR(255)
-start_date
-description
-business_objectives

organizational_unit

-name : VARCHAR2(255)
-description : VARCHAR2(4000)

collection

-is_part_of

1

-comprises_of

1..*

concrete_collection mixed_collection typed_collection

-number : int

resource_nref

-for

1.
.*

-involves_resource
1..*

-involves1..*

-included_in

0..*

-name : VARCHAR(100)
-address : VARCHAR2(4000)

individual_resource

-involved_in0..*

-involves

1.. *

-belongs_to

0..*

-involves

1..*

-number
-start_date
-start_time : TIME
-end_date
-end_time : TIME
-status : VARCHAR2(100)
-reserved_for :

available

-available_at

0..*

-assigned
_to

1

-name : VARCHAR2(100)
-description : VARCHAR2(4000)

resource_type

-for1

-resources0..*

-refered_by

0..*

-refers_to

1..*

-end_date
temporary_organizational_unit

-superior 0..*

-inferior

0..*

-related_to

1

-relation
_source

1

-description
correlation

permanent_organizational_unit

-description
hierarchy_relationship

-comprises_individual_resource

1..*

-part_of 1..*

�

�

� � ��

�

�

�

�

�

�

Figure
A

.5:Firstpartofthe
r
e
s
o
u
r
c
e
_
s
e
c
t
i
o
n

M
odel.

A
.5.

TH
E

R
ESO

U
R

C
E

SEC
TIO

N
179

-name : VARCHAR2(100)
-description : VARCHAR2(4000)

resource_type

-name: VARCHAR(255)
-start_date
-description
-business_objectives

organizational_unit

-name : VARCHAR(100)
-address : VARCHAR2(4000)

individual_resource

-first_name : VARCHAR2(100)
-last_name : VARCHAR2(100)
-e-mail : VARCHAR2(100)
-login_id : VARCHAR2(100)
-phone : int
-qualifications
-skills
-previous_work_experience
-held_responsibilities
-actor_id : ID

actor

-name
-description
-qualifications_required
-skills_required

role

-filled_by

0..*

-fills

1..*

-name
-description

privilege
-name
-description

capability

-assigned_to
0..*

-has
0..*

-description

organizational_position

-com
prises

0..*

-is_part_of
1..*

-assi
gned_to 0..*

-has

0..*

-description

power

-part_of
0..*

-com
prises

0..*

-belongs_to

1..*

-gives
0..*

task

-description
-date
-start_time
-end_time

appointment

-relates_to

0..*

-involved_in

0..*

-directly_assigned_to0..*

-has_direct_assignm
ent

0..*

-has_role_assignm
ent

0..*

-assigned_to
0..*

-com
prises_individual_resource

1..*

-part_of

1..*

-start_date
-start_time
-end_date
-end_time
-description

role_delegation

-for
1..*

-has
0..1

-start_date
-start_time
-end_date
-end_date
-description

power_delegation

-involved_in

0..*

-involves1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

-name: VARCHAR(255)
-start_date
-description
-business_objectives

organizational_unit

-name : VARCHAR2(100)
-description : VARCHAR2(4000)

resource_type
-for1 -resources

0..*-name : VARCHAR(100)
-address : VARCHAR2(4000)

individual_resource

-first_name : VARCHAR2(100)
-last_name : VARCHAR2(100)
-e-mail : VARCHAR2(100)
-login_id : VARCHAR2(100)
-phone : int
-qualifications
-skills
-previous_work_experience
-held_responsibilities
-actor_id : ID

actor
-can_delegate

1..*

-receives_delegation

0..*

-in1..*

-filled_by
0..*

-description
-date
-start_time
-end_time

appointment

-assigned_to

1..*

-has_scheduled

0..*

-start_date
-start_time
-end_date
-end_time
-description

role_delegation

-name
-description
-qualifications_required
-skills_required

role

-superior 1

-inferior

1

-name
-description

capability

-belongs_to 1..*

-com
prises

0..*

-name
-description

privilege

-part_of

0..*

-contains

0..*

-delegation_involvem
ent

0..*

-concerns

1..*

-start_date
-start_time
-end_date
-end_date
-description

power_delegation

Figure
A

.6:Second
partofthe

r
e
s
o
u
r
c
e
_
s
e
c
t
i
o
n

M
odel.

180
A

PPEN
D

IX
A

.
FU

RTH
ER

R
EFIN

IN
G

ESM
L

M
O

D
ELS

-name : VARCHAR(100)
-address : VARCHAR2(4000)

individual_resource
-description : VARCHAR2(4000)
-contact : VARCHAR2(255)
-phone : int

non_actor

-name : VARCHAR2(100)
-description : VARCHAR2(4000)

resource_type

machine_type

-building_number : VARCHAR2(100)
-room_number : VARCHAR2(100)
-description : VARCHAR2(4000)
-capacity : VARCHAR2(4000)

space

-number : VARCHAR2(100)

machine
-machine

1

-machine_type

1

-space

1

-space_type

1

consumable_resource

production_material

-capacity_quantity
-capacity_unit
-capacity_period

capacity

-usage_quantity
-period_quantity
-period_unit

rate_of_usage

production_material_type

-production_material1
-production_material_type 1

-superior
0..*

-inferior

0..1

-description

containment_type

-for

0..*

-involves

0..*

-for

0..*

-involves0..*

-part_of

0..*

-involves

0..*

-part_of

0..*-involves
0..*

-source1

-target
1

-description
connection_relationship

space_type

�

�

�

�

�

�

�

�

�

� �

Figure
A

.7:T
hird

partofthe
r
e
s
o
u
r
c
e
_
s
e
c
t
i
o
n

M
odel.

A.6. THE XRL-BASED ROUTE MODEL 181

be used to define, for example, be 50 kg of a particular product that a machine can
produce per hour.

Different types of production_material can be related with each other. Thus,
two relating classes are provided, namely containment_type and connection_
relationship. The first class helps to define that a particular material is part of
another material in a sense of a hierarchy. The latter class defines a peer-to-peer rela-
tionship between differing production_material.

Finally, the classes space, machine, and production_material are related to
the docking class resource_type. To achieve this relationship, resource_type
has three subclasses called machine_type, production_material_type, and
space_type.

A.6 The XRL-Based Route Model
The route model is depicted in the Figure A.8 and Figure A.9 and comprises of classes
that are part of the control-flow, eSourcing, and workflow-data perspective while the
majority of classes belong to the first perspective. The grey shaded classes are repli-
cated in both Figure A.8 and Figure A.9 and therefore relate the figures.

The top class of the elements is route that references a group definition called
common_elements. In Figure A.8 that group all control-flow classes are contained
of which several classes recursively reference class common_elements again. A
detailed description of the semantics of the control-flow elements can be found at [17].
By placing a data definition into the common_elements group, the workflow-data
pattern 2 is supported. Thus, data visibility can be defined on a group level, e.g., a
sequence, parallel_sync, etc. If the data definition takes place on a rout level,
the range stretches over the entire process. Furthermore, adding data definition in the
common elements allows visibility on a process and block level.

In Figure A.8 several member classes of group common_elements belong to the
eSourcing perspective. Concretely, the classes named receive_task, send_task,
receive_transition, and send_transition are part of the conjoinment di-
mension of the eSourcing perspective. Additionally, the classes
bi_directional_transition and bi_directional_task equally belong
to the conjoinment dimension. The semantics of these classes is contained in the deliv-
erable Section 4.5.3 where the eSourcing perspective patterns are described.

Finally, the class data_scope is part of the data perspective that is referenced by
class route. By using data scopes, data elements can be defined which are accessible
by a subset of the tasks in a case. For example, the initial tax estimate variable is
only used within the Gather Return Data, Examine Similar Claims and Prepare Initial
Return tasks in the Prepare Tax Return process.

The motivation for data scopes is where several tasks within a workflow coordinate
their actions around common data elements or a set of data elements, it is useful to
be able to define data elements that are bound to that subset of tasks in the overall
workflow process. One of the major justifications for scopes in workflows is that they
provide a means of binding data elements, error and compensation handlers to sets of
related tasks within a case. This allows for more localized forms of recovery action to
be undertaken in the event that errors or concurrency issues are detected.

The routing elements are extended by contextual and logistic attributes. The con-
textual attributes are necessary for human-centric modelling and contains aspects such
as goal, risk assessment, project accomplishment, and handbook reference. The other

182 APPENDIX A. FURTHER REFINING ESML MODELS

-logistic_attributes
-contextual_information_attributes

false_branch

-logistic_attributes
-contextual_information_attributes

parallel_sync terminate

-tag_name : string
-process_id : ID
-enabled : (enabled | disabled)
-created_by : string
-date : string
-logistic_attributes
-contextual_information_attributes

route

-element_id : ID

common_elements

-process : IDREF
-active_nodes : IDREFS

data_scope

- 1

- 1

-

1

-

1

-logistic_attributes
-contextual_information_attributes

restricted_parallel_sync
-condition : string
-logistic_attributes
-contextual_information_attributes

while_do

receive_transition

-event_ref : IDREF
-logistic_attributes
-contextual_information_attributes

wait_any

-logistic_attributes
-contextual_information_attributes

condition

send_transition

-event_ref : IDREF
-logistic_attributes
-contextual_information_attributes

wait_all

-logistic_attributes
-contextual_information_attributes

choice

-logistic_attributes
-contextual_information_attributes

any_sequence

-number : NMTOKEN
-logistic_attributes
-contextual_information_attributes

parallel_part_sync_cancel

send_task

-logistic_attributes
-contextual_information_attributes

parallel_no_sync

-logistic_attributes
-contextual_information_attributes

sequence

-logistic_attributes
-contextual_information_attributes

parallel_part_sync

1

1

1 0..1

1

1

1

1

0..*

0..1

0..1

0..1

0..1

0..1

0..1

0..1

contains�

contains�

contains�

contains�

contains�

contains�

contains�

contains�

1

1

1

co
nt

ai
ns

� co
nt

ai
ns

�

1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

-time: string
-type: (relative | s_relative | absolute)
-logistic_attributes
-contextual_information_attributes

timeout_type

contains�
1

-active_node_id : ID
-applied_rules : IDREFS
-name : string
-address : string

transition_type

-

1
-

1

�

�

�

�

-logistic_attributes
-contextual_information_attributes

true_branch

contains�
1 1

receive_task

-owner : IDREF
-executor : IDREF
-responsible : IDREF
-result : string
-notify : string
-enabled : (enabled | disabled)
-start_date : date
-start_time : time
-end_date : date
-end_time : time
-necessary_resources : IDREF
-logistic_attributes
-contextual_information_attributes

task

-cost : decimal
-min_duration : time
-max_duration : time
-avg_duration : time
-quality : decimal(0-1)

logistic_attributes

-goal : string
-risk : string
-project_accomplishment : string
-handbook_reference : anyURI

contextual_information_attributes

-

1

-

1

receive_transition

receive_transition

receive_transition
0..1

0..1

Figure A.8: Thirst part of the route.

A.6. THE XRL-BASED ROUTE MODEL 183

attributes capturing costs, durations and quality (= probability of valid output) of the
execution of an element are needed for the evaluation of the workflow under logistic
aspects such as minimum duration.

The second part of the route model depicted in Figure A.9 contains an equal number
of classes that belong to the control-flow and the eSourcing perspective. Two classes
are members of the workflow-data perspective. The grey shaded docking classes be-
longing to the control-flow perspective and class data_scope are explained in the
part one of the route model. The latter class references class data, which is central
for the data-flow perspective. Since this latter class is a grey shaded docking class, is
explained more elaborately in Figure A.13.

common_elements

-element_id : ID

data_scope

-process : IDREF
-active_nodes : IDREFS

lock_change

-package : IDREF
-variable : IDREF
-new_lock : (read_lock | write_lock | exclusive_lock)

data

-workflow_visibility_range : boolean
-case_visibility : boolean
-control_flow_passing : boolean
-sub_level_visibility : integer
-data_package_ref : IDREF

sourcing_sphere

-sphere_id : ID
-description : string
-owner : IDREF

send_transition

bi_directional_task

send_task

contains�
1

transition_type

-active_node_id : ID
-applied_rules : IDREFS
-name : string
-address : string

send_transition_type

-destination_URI : anyURI

send_task_type

-destination_URI : anyURI

bi_directional_transition

-

1

- 1

�

- 1

- 0..1�

-

1
-

0..*

�

contains �

�

1

1

0..1

0..*

- 0
..1

- 1

�

task_type

-owner : IDREF
-executor : IDREF
-responsible : IDREF
-result : string
-notify : string
-enabled : (enabled | disabled)
-start_date : date
-start_time : time
-end_date : date
-end_time : time
-necessary_resources : IDREF

-process : IDREF
-active_nodes : IDREFS

data_scope

-sphere_id : ID
-description : string
-owner : IDREF

sourcing_sphere

0..*

-package : IDREF
-variable : IDREF
-new_lock : (read_lock | write_lock | exclusive_lock)

lock_change

-workflow_visibility_range : boolean
-case_visibility : boolean
-control_flow_passing : boolean
-sub_level_visibility : integer
-data_package_ref : IDREF

data

- 0.
.1

-

1

- 0.
.*

-

1

Figure A.9: Second part of route.

The classes bi_directional_task, bi_directional_transition,
sending_task_type, and sending_task_transition all belong to the con-
joinment dimension of the eSourcing perspective. For further details Section 4.5.3 may
be consulted.

184 APPENDIX A. FURTHER REFINING ESML MODELS

The class sourcing_sphere is mutually related to class common_elements.
A sourcing_sphere is instrumental to support multi-lateral contracting of one ser-
vice consumer and several providers who are all involved in one eSourcing configura-
tion. In such a case the service consumer places one entire process on the external layer
of an eSourcing configuration. However, for each provider involved in the multi-lateral
contract, the consumer process contains an eSourcing sphere. Thus, one provider’s
contractual sphere on the external layer is assigned to one sourcing_sphere of
the consumer’s contractual sphere.

Finally, class lock_change is used to impose locks on data packages that are
used in an eSourcing configuration. The lock types available for a data_package_ref
are read lock, write lock, and exclusive lock. Since there are several visibility lev-
els of data packages, class lock_change is referenced by several other classes in
Figure A.9. The referred to visibility levels that are directly supported by eSML
are on an active-node level, block level, and sphere level. Correspondingly, class
lock_change referenced by other classes in the second part of the route model.

A.7 Lifecycle Details
The model about different types of life-cycle elements in Figure A.10 is an adja-
cent sub-model to route in Figure A.8 where the class lifecycle_details is
contained as a replica. Consequently, the classes of Figure A.10 are used to define
the lifecycles of processes and active nodes that are part of an eSourcing configura-
tion. Accordingly, Figure A.10 depicts that lifecycle_details is a subclass of
lifecycle_elements. Compared to Figure A.8, a similar pattern emerges where
routing elements belonging to the control-flow-perspective are extracted for lifecycle
definitions in the eSourcing perspective.

Similar to Figure A.8 there exists a mutual reference between class lifecycle_
elements and the extracted lifecycle control-flow classes. The semantics of those
control-flow classes is similar to Figure A.8 and described in more elaborate detail in
[17].
However, some classes are contained for lifecycle definitions that are not part of a pro-
cess definition. Concretely, states are introduced that are either of the class nesting_
state or atomic_state. The purpose of the first class is to cater for the obser-
vation that nested states are common in practice when workflow management systems
are examined. On a lower level of a nesting state further lifecycle elements may be
used, including another instance of nesting_state. On the other hand, the class
atomic_state can not be further refined on a lower level. Finally, transitions propel
the lifecycle of a process or active node from one state to the next.

A.8 The Monitorability Model
The classes belonging to Figure A.11 all belong to the monitorability dimension of the
eSourcing perspective and are instrumental for linking active and passive nodes that
belong to the respective contractual spheres of a service consumer and provider. On a
process level nodes are only active, i.e., task, transition, send task, receive task, send
transition, receive transition, bi-directional task, and bi-directional transition. The only
two cases of passive nodes exist on a life-cycle level of tasks where nested states and
atomic states exist.

A.8. THE MONITORABILITY MODEL 185

-process_id : IDREF

lifecycle_details

nesting_state

lifecycle_sequence

lifecycle_parallel_no_sync

transition

lifecycle_parallel_part_sync
atomic_state

lifecycle_parallel_sync

-number : NMTOKEN
lifecycle_parallel_part_sync_cancel

-name : ID
-tag_name : string

lifecycle_node_type

lifecycle_elements

1

0..1

0..1

0..1

0..1

co
n

ta
in

s

�

1

1

0..1

contains�

contains�

�

0..1

0..1

0..1

0..1

co
nt

ai
n

s

1

contains�
0..1

1

1

1

Figure A.10: Model of lifecycle_details.

By defining monitoring links between nodes of respective eSourcing domains, it is
possible for one contracting party to observe the progress of process enactment of the
eSourcing counterpart. Usually the monitoring direction is from service consumer to
provider. However, it is also imaginable that it can be necessary for the service provider
to observe enactment progress of the service consumer.

The monitorability classes of Figure A.11 either perform the polling or the mes-
saging of enactment progress. Assuming that polling is used from service consumer
to provider, the consumer frequently requests the status of the linked node, which is
enacted in the domain of the service provider. When an enactment change is perceived,
the linked node in the domain of the service consumer follows the change. When an
active node with a life-cycle is polled, state changes or transition firings are mirrored.
When a transition on a process level is polled, information is returned whether the
linked node has fired. Subsequently the firing is equally mirrored in the domain of
the service consumer. Finally, the class enactment_termination is instrumen-
tal for polling whether the enactment of service provision is completed. In that case
the eSourcing sphere of the consumer also terminates and the rest of the consumer’s
in-house process commences with enactment.

Messaging classes are used to link nodes from the process enacting domain to the
eSourcing counterpart that wants to observe. Thus, when two transitions in oppos-
ing eSourcing domains are linked, the firing is messaged to the other domain where
that behavior is mirrored by the linked node. When a task is linked, lifecycle messag-
ing must be employed. Thus, when a lifecycle state is entered and left again, these
events are messaged to the task in the other domain where the lifecycle-state changes
are followed. Equally lifecycle-transition changes are mirrored in the domain of the

186
A

PPEN
D

IX
A

.
FU

RTH
ER

R
EFIN

IN
G

ESM
L

M
O

D
ELS

monitorability

pollingmessaging

-
1

-

0..1

-

1

-

0..1

enactment_takeover
transition_polling

lifecycle_polling

-1

-

1..*

-
1

-

1..*

-
1

-

1..*

-consumer_sphere : IDREF
-consumer_active_node : IDREF
-provider_sphere : IDREF
-provider_active_node : IDREF

link_properties

lifecycle_messaging
transition_messaging

enactment_propagation

-1

-

1..*

-
1

-

1..*

-
1

-

1..*

lifecycle_transition_polling lifecycle_state_pollinglifecycle_transition_messaging lifecycle_state_messaging

-consumer_sphere : IDREF
-consumer_active_noce : IDREF
-consumer_lifecycle_node : IDREF
-provider_sphere : IDREF
-provider_active_node : IDREF
-provider_lifecycle_node : IDREF

lifecycle_link_properties

��

�
�

� ���

-1

-

0..1

-1

-

0..1

-

1

-

0..1

-1

-

0..1

�

�

�

�

-consumer_sphere : IDREF
-provider_sphere : IDREF

enactment_properties

termination_takeovertermination_propagation

-1

-

1..*

�-1

-

1..*

�

Figure
A

.11:M
odelofm

onitorabilty.

A.9. THE TRANSITION-TYPE MODEL 187

message recipient. The class enactment_propagation is used when enactment
of the eSourcing sphere in the domain of the service consumer is started. This enact-
ment commencement is propagated to the domain of the eSourcing counterpart where
service provision commences.

A.9 The Transition-Type Model

In Figure A.12 the class transition_type is depicted in further detail. This class
is contained in Figure A.8 and Figure A.9 that are the first and second part of the
route model. In those latter figures class transition_type is central for all active
nodes belonging to the control-flow perspective and the conjoinment dimension of the
eSourcing perspective. As Figure A.12 shows, class transition_type is also a
central connection to the workflow-data perspective. The lock_type is initially set
or not set when a data package is defined may be altered with the lock_change tag.

The common_var_attributes contains properties that are used for all sim-
ple and complex variables used in eSML. The class common_var_attributes is
replicated as a docking class in Figure A.3 where many variable classes are depicted.
Also class event employs the properties of common_var_attributes.

-active_node_id : ID
-applied_rules : IDREFS
-name : string
-address : string

transition_type

-time_of_occurence : time
-date_of_occurence : date

event

data_existence_preconditiondata_value_precondition data_existence_postconditiondata_value_postcondition

-package : IDREF
-variable : IDREFS

data_existence_condition_type

-workflow_visibility _range : boolean
-case_visibility : boolean
-control_flow_passing : boolean
-sub_level_visibility : integer
-data_flow_direction : (input | output | in_output)
-data_package_ref : IDREF

data

-package : IDREF
-variable : IDREF
-new_lock : (read_lock | write_lock | exclusive _lock)

lock_change

-package : IDREF
-value_check_statement : string

data_value_condition_type

-

1

-

0..* �

-
1

-

0..*

�

-

1

-

0..1

�

-1

- 0..*

�

�

�

�

-1

- 0..*

-1

- 0..*

-

1

- 0..*

-var_id : ID
-tag_name : string
-owner : IDREFS
-changeable : boolean
-properties : IDREFS
-enabled : (enabled | disabled)
-rules_for_change : IDREFS

common_var_attributes

Figure A.12: Model of transition_type.

188 APPENDIX A. FURTHER REFINING ESML MODELS

The only grey shaded class in Figure A.12 is named data, which is central for the
workflow-data perspective. An instance of data may reference one or many data-
package references, which contain different variables and/or document definitions.
Next, the properties of class data are explained. If workflow_visibility_range
is true, a package is visible in all cases of a process template for all active nodes con-
tained. If case_visibility is true, a data package is visible for all cases.

The property data_flow_direction supports the passing of data elements
from a block task instance to the corresponding sub-workflow that defines its imple-
mentation. When no further explicit assignment definition is given, no data passing
is performed since data is stored in a global data store. That means all lower-level
elements are automatically aware of the data package. If additional assignment tags
are used, then either data passing is performed via a dedicated data channel or via an
integrated control and data channel, i.e., in the latter case data flows along control flow.

The property control_flow_passing is instrumental for supporting
data_flow_direction. When data_types are defined on a block level, set-
ting control_flow_passing to true means that an integrated control and data
channel is used. As a result data flows from one node to the next along control flow.

By using sub_level_visibility in combination with a data_package_ref
definition for a control-flow block element, it can be determined to which lower level
the data_package_ref is visible. For example, if a block has 5 lower levels of
routing elements and level 4 is defined in a sub_level_visibility tag, then ele-
ments located on the lowest level don’t have visibility of the data package, i.e., the 5th
level below the definition level of the data package in question.

In Figure A.12 the class transition_type references several other classes that
are part of the workflow-data perspective. With the referenced classes
data_existence_precondition the presence of a variable can be checked as
a prerequisite for enactment of an active node and with data_existence_
postcondition the presence of a variable can be defined as a postcondition that
must be fulfilled after the completed enactment of an active node. The superclass
data_existence_condition_type contains properties for defining which vari-
able in which package is targeted.

Finally, the classes data_value_precondition and data_value_
postcondition can be used to define pre- and postconditions for the enactment of
active nodes. However, differently to the prior case where variable existence was the
criteria, this time the variables must have a particular value. Therefore, the superclass
data_value_condition_type contains a property for checking the value of a
variable.

A.10 The Data Model
In the last submodel depicted in Figure A.13, many classes are contained to support
further data-flow models. Subsequently all classes belong exclusively to the data-flow
perspective. The central class is data, which can be found replicated in Figure A.9
and Figure A.12 as a grey shaded docking class.

With case_visibility_range the set of cases can be specified where a data
package is equally visible. Class passing_destination supports passing data
packages from task to task. Class passing_destination is instrumental for two
different cases. When data_type definition is on block level, then explicit data
passing from a block level to a contained lower-level element can be performed with

A.10. THE DATA MODEL 189

passing_destination. Furthermore, with passing_destination task-level
data packages can be assigned explicitly to the higher level, e.g., a block.

-workflow_visibility_range : boolean
-case_visibility : boolean
-control_flow_passing : boolean
-sub_level_visibility : integer
-data_flow_direction : (input | output | in_output)
-data_package_ref : IDREF

data

-case_id : IDREFS

case_visibility_range passing_destinationpassing_origin destination_package_mapping

-aim_block : IDREF
-aim_scope : IDREF
-aim_sphere : IDREF
-aim_process : IDREF

passing_type

-aim_package : IDREF

package_mapping_type

1

0..1

�

1

0..1

�

1

0..1

�

source_package_mapping

1

0..1

1

0..1

�

�

-from_variable_name : IDREF
-to_variable_name : IDREF
-transformation_function : string

variable_mapping

1

0..1

�

aim_task aim_case

-destination_instance : IDREFS
-all_instances : boolean
-instance_number : integer

instance_type

1

0..*

1

0..* ��

Figure A.13: Model of data.

Instead of passing a data package per se, destination_package_mapping and
source_package_mapping map parts of a data package in one process node on
properties of another data package at some other location.

In Figure A.13 passing_type is a superclass of passing_origin and
passing_destination. Thus, depending on the visibility level for destination
passing, the properties contained in passing_type are used for detailed definitions
in the subclasses passing_origin and passing_destination.

The referenced classes aim_task and aim_case may be identified differently.
It could be that several instances of a task exist within a case. An eSourcing configura-
tion can be equally instantiated several times. Thus, the superclass instance_type
is employable for identifying if either all instances or a subset of either tasks or cases
is addressed for data visibility.

Finally, in Figure A.13 package_mapping_type serves as a superclass of
destination_package_mapping and source_package_mapping. The su-
perclass contains a property for targeting a data package of which the variables can be
mapped on the variable of another package. During that mapping a transformation
function may be applied. For that purpose package_mapping_type references

190 APPENDIX A. FURTHER REFINING ESML MODELS

class variable_mapping. The following section is the eSML schema definition
that the models of Section 6.3 and of this chapter describe.

Appendix B

eSML Schema

1000 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="uTF−8" ?>
1001 <!−− e d i t e d wi th XML Spy v4 . 4 U (h t t p : / / www. xmlspy . com) by
1002 Alex Nor ta (T e c h n i s c h e U n i v e r s i t e i t Eindhoven) −−>
1003 <xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"
1004 e l e m e n t F o r m D e f a u l t =" q u a l i f i e d " a t t r i b u t e F o r m D e f a u l t =" u n q u a l i f i e d ">
1005 <!−− PART 1 −−>
1006 <!−− Next , t h e d e f i n i t i o n o f t h e d a t a t y p e s r e q u i r e d i n an
1007 e−c o n t r a c t l a n g u a g e a r e p r o v i d e d . We use t h e b u i l t i n t h e XML
1008 schema d a t a t y p e s and e x t e n d them wi th t h e r e q u i r e d a d d i t i o n a l
1009 a t t r i b u t e s f o r a d a t a i t em . The common a t t r i b u t e s f o r a l l d a t a
1010 i t e m s a r e l i s t e d i n t h e group of a t t r i b u t e s
1011 " c o m m o n _ v a r _ a t t r i b u t e s " . We s t a r t w i th t h e d e f i n i t i o n o f t h e
1012 s t a n d a r d d a t a t y p e s and c o n t i n u e wi th t h e d e f i n i t i o n
1013 of t h e s p e c i a l d a t a t y p e s . At t h e end of t h i s p a r t o f t h e
1014 eSML schema , we l i s t t h r e e p r e d e f i n e d s e t t y p e s (i . e . ,
1015 " s t a t e _ t y p e " , " c o n s t r a i n t _ t y p e " , " c u r r e n c y _ t y p e ") . These c o n s t a n t
1016 s e t s a r e used as t h e d a t a t y p e o f a t t r i b u t e s o f c o n t r a c t e l e m e n t s
1017 t h a t a r e d e f i n e d l a t e r on i n t h e l a n g u a g e schema . −−>
1018 <!−− d e f i n i t i o n o f s t a n d a r d V a r i a b l e TYPES −−>
1019 <xs : a t t r i b u t e G r o u p name=" c o m m o n _ v a r _ a t t r i b u t e s ">
1020 <xs : a t t r i b u t e name=" tag_name " t y p e =" xs : s t r i n g "
1021 use =" r e q u i r e d " / >
1022 <xs : a t t r i b u t e name=" v a r _ i d " t y p e =" xs : ID " use =" r e q u i r e d " / >
1023 <xs : a t t r i b u t e name=" owner " t y p e =" xs : IDREFS"
1024 use =" o p t i o n a l " / >
1025 <xs : a t t r i b u t e name=" c h a n g e a b l e " t y p e =" xs : b o o l e a n "
1026 use =" r e q u i r e d " / >
1027 <xs : a t t r i b u t e name=" p r o p e r t i e s " t y p e =" xs : IDREFS"
1028 use =" o p t i o n a l " / >
1029 <xs : a t t r i b u t e name=" e n a b l e d " t y p e =" s t a t e _ t y p e "
1030 use =" r e q u i r e d " / >
1031 <xs : a t t r i b u t e name=" r u l e s _ f o r _ c h a n g e " t y p e =" xs : IDREFS"
1032 use =" o p t i o n a l " / >
1033 </ xs : a t t r i b u t e G r o u p >
1034 <!−− Tag " name " a t t r i b u t e i s a name from an a g r e e d
1035 o n t o l o g y . " v a r _ i d " a t t r i b u t e i s t h e u n i q u e i d e n t i f i e r
1036 of t h e d a t a i t em . " owner " a t t r i b u t e c o n t a i n s a
1037 r e f e r e n c e t o an owner o f t h e d a t a i t em who i s a l l o w e d

191

192 APPENDIX B. ESML SCHEMA

1038 t o u p d a t e t h e v a l u e o f t h e d a t a i t em . " c h a n g e a b l e "
1039 i n d i c a t e s i f t h e v a l u e o f t h e d a t a e l e m e n t can be changed .
1040 " p r o p e r t i e s " a t t r i b u t e i n d i c a t e s t h e p r o p e r t i e s a d a t a
1041 e l e m e n t has . " e n a b l e d " a t t r i b u t e i n d i c a t e s i f t h e d a t a
1042 i t em i s c u r r e n t l y e n a b l e d . The v a l u e o f t h i s a t t r i b u t e
1043 i s from t h e d e f i n e d s t a t e _ t y p e . " r u l e s _ f o r _ c h a n g e " a t t r i b u t e
1044 i s used t o i n d i c a t e t h e r u l e s i n t h e c o n t r a c t t h a t must
1045 e v a l u a t e t o t rue i n o r d e r a change t o t a k e p l a c e . I t i s
1046 o p t i o n a l and i s used s o l e l y f o r improv ing t h e e f f i c i e n c y
1047 of t h e m o n i t o r i n g s y s t e m s . −−>
1048 <xs : complexType name=" s t r i n g _ t y p e ">
1049 <xs : s i m p l e C o n t e n t >
1050 <xs : e x t e n s i o n base =" xs : s t r i n g ">
1051 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1052 </ xs : e x t e n s i o n >
1053 </ xs : s i m p l e C o n t e n t >
1054 </ xs : complexType >
1055 <xs : complexType name=" r e a l _ t y p e ">
1056 <xs : s i m p l e C o n t e n t >
1057 <xs : e x t e n s i o n base =" xs : d e c i m a l ">
1058 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1059 </ xs : e x t e n s i o n >
1060 </ xs : s i m p l e C o n t e n t >
1061 </ xs : complexType >
1062 <xs : complexType name=" i n t e g e r _ t y p e ">
1063 <xs : s i m p l e C o n t e n t >
1064 <xs : e x t e n s i o n base =" xs : i n t e g e r ">
1065 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1066 </ xs : e x t e n s i o n >
1067 </ xs : s i m p l e C o n t e n t >
1068 </ xs : complexType >
1069 <xs : complexType name=" b o o l e a n _ t y p e ">
1070 <xs : s i m p l e C o n t e n t >
1071 <xs : e x t e n s i o n base =" xs : b o o l e a n ">
1072 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1073 </ xs : e x t e n s i o n >
1074 </ xs : s i m p l e C o n t e n t >
1075 </ xs : complexType >
1076 <!−− Sample d e f i n i t i o n o f d a t a i t e m s from t h e L i s t d a t a t y p e .
1077 A d d i t i o n a l l i s t t y p e s can be d e f i n e d by d e s i g n e r s i n t h e schema
1078 or i n t h e e−c o n t r a c t
1079 i t s e l f . −−>
1080 <xs : s impleType name=" l i s t _ o f _ s t r i n g s _ t y p e ">
1081 <xs : l i s t i temType =" xs : s t r i n g " / >
1082 </ xs : s impleType >
1083 <xs : complexType name=" l i s t _ o f _ e v e n t s _ t y p e ">
1084 <xs : sequence >
1085 <xs : e l e m e n t name=" e v e n t " t y p e =" e v e n t _ t y p e "
1086 maxOccurs=" unbounded " / >
1087 </ xs : sequence >
1088 </ xs : complexType >
1089 <!−− For t h e d e f i n i t i o n o f d a t a i t e m s from t h e Record d a t a
1090 type , c o n t r a c t d e s i g n e r s can use t h e b u i l d i n XML Schema
1091 Complex Type e l e m e n t . −−>

193

1092 <!−− D e f i n i t i o n o f s p e c i a l d a t a t y p e s −−>
1093 <xs : complexType name=" d a t e _ t y p e ">
1094 <xs : s i m p l e C o n t e n t >
1095 <xs : e x t e n s i o n base =" xs : d a t e ">
1096 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1097 </ xs : e x t e n s i o n >
1098 </ xs : s i m p l e C o n t e n t >
1099 </ xs : complexType >
1100 <xs : complexType name=" t i m e _ t y p e ">
1101 <xs : s i m p l e C o n t e n t >
1102 <xs : e x t e n s i o n base =" xs : t ime ">
1103 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1104 </ xs : e x t e n s i o n >
1105 </ xs : s i m p l e C o n t e n t >
1106 </ xs : complexType >
1107 <xs : complexType name=" money_type ">
1108 <xs : s i m p l e C o n t e n t >
1109 <xs : e x t e n s i o n base =" xs : d e c i m a l ">
1110 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1111 <xs : a t t r i b u t e name=" c u r r e n c y " t y p e =" c u r r e n c y _ t y p e "
1112 use =" r e q u i r e d " / >
1113 </ xs : e x t e n s i o n >
1114 </ xs : s i m p l e C o n t e n t >
1115 </ xs : complexType >
1116 <xs : complexType name=" e v e n t _ t y p e ">
1117 <xs : s i m p l e C o n t e n t >
1118 <xs : e x t e n s i o n base =" xs : b o o l e a n ">
1119 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1120 <xs : a t t r i b u t e name=" t i m e _ o f _ o c c u r e n c e " t y p e =" xs : t ime "
1121 use =" o p t i o n a l " / >
1122 <xs : a t t r i b u t e name=" d a t e _ o f _ o c c u r e n c e " t y p e =" xs : d a t e "
1123 use =" o p t i o n a l " / >
1124 </ xs : e x t e n s i o n >
1125 </ xs : s i m p l e C o n t e n t >
1126 </ xs : complexType >
1127 <!−− For e i t h e r p u s h i n g o u t o r p u l l i n g i n e x t e r n a l d a t a −−>
1128 <xs : s impleType name=" a c c e s s _ t y p e ">
1129 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1130 <xs : e n u m e r a t i o n v a l u e =" push " / >
1131 <xs : e n u m e r a t i o n v a l u e =" p u l l " / >
1132 </ xs : r e s t r i c t i o n >
1133 </ xs : s impleType >
1134 <!−− For r e f e r e n c i n g v a r i a b l e s t h a t a r e d e f i n e d i n a d a t a _ p a c k a g e
1135 −−>
1136 <xs : complexType name=" e x t e r n a l _ r e s o u r c e _ r e f e r e n c e _ t y p e ">
1137 <xs : s i m p l e C o n t e n t >
1138 <xs : e x t e n s i o n base =" xs : anyURI ">
1139 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1140 <xs : a t t r i b u t e name=" a c c e s s " t y p e =" a c c e s s _ t y p e "
1141 use =" o p t i o n a l " / >
1142 <xs : a t t r i b u t e name=" r e s o u r c e _ s t a t e "
1143 t y p e =" l i s t _ o f _ r e s o u r c e _ t y p e s " use =" o p t i o n a l " / >
1144 <xs : a t t r i b u t e name=" i s _ l e g a l l y _ b i n d i n g "
1145 t y p e =" xs : b o o l e a n " use =" r e q u i r e d " / >

194 APPENDIX B. ESML SCHEMA

1146 </ xs : e x t e n s i o n >
1147 </ xs : s i m p l e C o n t e n t >
1148 </ xs : complexType >
1149 <!−−Documents may l s o be a p a r t o f d a t a p a c k a g e s f o r d a t a f low .
1150 −−>
1151 <xs : complexType name=" document_ type ">
1152 <xs : sequence >
1153 <xs : e l e m e n t name=" document_ id " t y p e =" xs : ID " / >
1154 <xs : e l e m e n t name=" name " t y p e =" xs : s t r i n g "
1155 maxOccurs=" unbounded " / >
1156 <xs : e l e m e n t name=" f i l e _ f o r m a t " t y p e =" xs : s t r i n g "
1157 minOccurs=" 0 " maxOccurs=" unbounded " / >
1158 <xs : e l e m e n t name=" u r i " t y p e =" xs : anyURI "
1159 maxOccurs=" unbounded " / >
1160 <xs : e l e m e n t name=" v a r _ s e c t i o n "
1161 t y p e =" v a r i a b l e s _ d e f _ s e c t i o n " minOccurs=" 0 " / >
1162 <!−− s p e c i f y t h e s t r u c t u r e o f t h e document −−>
1163 </ xs : sequence >
1164 </ xs : complexType >
1165 <xs : complexType name=" d o c u m e n t _ d e f _ s e c t i o n ">
1166 <xs : s e q u e n c e maxOccurs=" unbounded ">
1167 <xs : e l e m e n t name=" document_read " t y p e =" document_ type "
1168 minOccurs=" 0 " maxOccurs=" unbounded " / >
1169 <xs : e l e m e n t name=" d o c u m e n t _ c r e a t e " t y p e =" document_ type "
1170 minOccurs=" 0 " maxOccurs=" unbounded " / >
1171 <xs : e l e m e n t name=" document_upda te " t y p e =" document_ type "
1172 minOccurs=" 0 " maxOccurs=" unbounded " / >
1173 </ xs : sequence >
1174 </ xs : complexType >
1175 <xs : complexType name=" l i s t _ o f _ d o c u m e n t s ">
1176 <xs : s e q u e n c e maxOccurs=" unbounded ">
1177 <xs : e l e m e n t name=" document " t y p e =" document_ type " / >
1178 </ xs : sequence >
1179 </ xs : complexType >
1180 <xs : complexType name=" i n t e r n a l _ r e s o u r c e _ r e f e r e n c e _ t y p e ">
1181 <xs : s i m p l e C o n t e n t >
1182 <xs : e x t e n s i o n base =" xs : anyURI ">
1183 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ v a r _ a t t r i b u t e s " / >
1184 <xs : a t t r i b u t e name=" r e f e r e n c e d _ p a c k a g e "
1185 t y p e =" xs : IDREFS" use =" r e q u i r e d " / >
1186 <xs : a t t r i b u t e name=" r e f e r e n c e d _ v a r i a b l e "
1187 t y p e =" xs : IDREFS" use =" r e q u i r e d " / >
1188 </ xs : e x t e n s i o n >
1189 </ xs : s i m p l e C o n t e n t >
1190 </ xs : complexType >
1191 <!−− S n i p p e t s a l l o w i n c l u s i o n o f p r e d e f i n e d c o n t r a c t p a r t s . −−>
1192 <xs : complexType name=" s n i p p e t _ t y p e ">
1193 <xs : sequence >
1194 <xs : any maxOccurs=" unbounded " / >
1195 </ xs : sequence >
1196 <xs : a t t r i b u t e name=" s n i p p e t _ i d " t y p e =" xs : ID "
1197 use =" r e q u i r e d " / >
1198 </ xs : complexType >
1199 <!−− D e f i n i t i o n o f r u l e / p r o c e s s s t a t e t y p e −−>

195

1200 <xs : s impleType name=" s t a t e _ t y p e ">
1201 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1202 <xs : p a t t e r n v a l u e =" e n a b l e d | d i s a b l e d " / >
1203 </ xs : r e s t r i c t i o n >
1204 </ xs : s impleType >
1205 <!−− D e f i n i t i o n o f d e o n t i c o p e r a t o r s −−>
1206 <xs : s impleType name=" c o n s t r a i n t _ t y p e ">
1207 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1208 <xs : e n u m e r a t i o n v a l u e =" must " / >
1209 <xs : e n u m e r a t i o n v a l u e ="may" / >
1210 <xs : e n u m e r a t i o n v a l u e =" may_not " / >
1211 </ xs : r e s t r i c t i o n >
1212 </ xs : s impleType >
1213 <!−− D e f i n i t i o n o f s t a t i c c o n s t r a i n t s d e o n t i c o p e r a t o r s −−>
1214 <xs : s impleType name=" s t a t i c _ c o n s t r a i n t _ t y p e ">
1215 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1216 <xs : e n u m e r a t i o n v a l u e =" m u s t _ o b s e r v e " / >
1217 <xs : e n u m e r a t i o n v a l u e =" may_break " / >
1218 </ xs : r e s t r i c t i o n >
1219 </ xs : s impleType >
1220 <!−− D e f i n i t i o n o f c u r r e n c y t y p e s −−>
1221 <xs : s impleType name=" c u r r e n c y _ t y p e ">
1222 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1223 <xs : e n u m e r a t i o n v a l u e ="USD" / >
1224 <xs : e n u m e r a t i o n v a l u e ="EUR" / >
1225 <xs : e n u m e r a t i o n v a l u e ="GBP" / >
1226 <xs : e n u m e r a t i o n v a l u e ="cAD" / >
1227 <xs : e n u m e r a t i o n v a l u e ="BGN" / >
1228 </ xs : r e s t r i c t i o n >
1229 </ xs : s impleType >
1230 <!−− D e f i n i t i o n o f r e s o u r c e s t a t e t y p e s −−>
1231 <xs : s impleType name=" l i s t _ o f _ r e s o u r c e _ t y p e s ">
1232 <xs : l i s t i temType =" r e s o u r c e _ s t a t e _ t y p e " / >
1233 </ xs : s impleType >
1234 <xs : s impleType name=" r e s o u r c e _ s t a t e _ t y p e ">
1235 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1236 <xs : e n u m e r a t i o n v a l u e =" a v a i l a b l e " / >
1237 <xs : e n u m e r a t i o n v a l u e =" u n a v a i l a b l e " / >
1238 <xs : e n u m e r a t i o n v a l u e =" changed " / >
1239 </ xs : r e s t r i c t i o n >
1240 </ xs : s impleType >
1241 <!−− PART 2 −−>
1242 <!−− In t h e second p a r t o f t h e eSML schema , we p r o v i d e
1243 t h e c o n s t r u c t s r e q u i r e d f o r t h e d e f i n i t i o n o f t h e i n t e g r i t y ,
1244 d e r i v a t i o n , and r e a c t i o n c o n t r a c t r u l e s . The common f o r
1245 a l l t h r e e r u l e t y p e s a t t r i b u t e s a r e e x t r a c t e d i n t h e
1246 a t t r i b u t e group " c o m m o n _ r u l e _ a t t r i b u t e s " . A sample s e t
1247 of o p e r a t o r s t h a t can be used i n e x p r e s s i o n s i s p r o v i d e d
1248 wi th an i l l u s t r a t i v e p u r p o s e (e . g . , t h e " u n a r y _ o p e r a t o r "
1249 t y p e) . The c o m p l e t e s e t o f o p e r a t o r s must a d d i t i o n a l l y be
1250 d e f i n e d . −−>
1251 <!−− D e f i n i t i o n o f common r u l e a t t r i b u t e s . In a d d i t i o n t o
1252 t h e a t t r i b u t e s " tag_name " , " r u l e _ i d " , " c h a n g e a b l e " ,
1253 " e n a b l e d " e x p l a i n e d i n t h e d a t a i t em d e f i n i t i o n s e c t i o n ,

196 APPENDIX B. ESML SCHEMA

1254 t h e f o l l o w i n g a t t r i b u t e s a r e d e f i n e d :
1255 The " o v e r r i d e s " a t t r i b u t e i n d i c a t e s which o t h e r r u l e a r e
1256 o v e r r i d d e n by t h i s r u l e i f t h e y f i r e t o g e t h e r . −−>
1257 <xs : a t t r i b u t e G r o u p name=" c o m m o n _ r u l e _ a t t r i b u t e s ">
1258 <xs : a t t r i b u t e name=" tag_name " t y p e =" xs : s t r i n g "
1259 use =" r e q u i r e d " / >
1260 <xs : a t t r i b u t e name=" r u l e _ i d " t y p e =" xs : ID "
1261 use =" r e q u i r e d " / >
1262 <xs : a t t r i b u t e name=" e n a b l e d " t y p e =" s t a t e _ t y p e "
1263 use =" r e q u i r e d " / >
1264 <xs : a t t r i b u t e name=" c h a n g e a b l e " t y p e =" xs : b o o l e a n "
1265 use =" r e q u i r e d " / >
1266 <xs : a t t r i b u t e name=" o v e r r i d e s " t y p e =" xs : IDREFS"
1267 use =" o p t i o n a l " / >
1268 </ xs : a t t r i b u t e G r o u p >
1269 <!−− D e f i n i t i o n o f some o p e r a t o r s used i n e x p r e s s i o n s
1270 i n r u l e s . −−>
1271 <xs : s impleType name=" u n a r y _ o p e r a t o r ">
1272 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1273 <xs : e n u m e r a t i o n v a l u e =" p l u s " / >
1274 <xs : e n u m e r a t i o n v a l u e =" minus " / >
1275 <xs : e n u m e r a t i o n v a l u e =" s q r t " / >
1276 <xs : e n u m e r a t i o n v a l u e =" p e r c e n t " / >
1277 </ xs : r e s t r i c t i o n >
1278 </ xs : s impleType >
1279 <xs : s impleType name=" u n a r y _ b o o l e a n _ o p e r a t o r ">
1280 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1281 <xs : e n u m e r a t i o n v a l u e =" n o t " / >
1282 </ xs : r e s t r i c t i o n >
1283 </ xs : s impleType >
1284 <!−− Next , we s t a r t w i th t h e d e f i n i t i o n o f I n t e g r i t y r u l e s
1285 (d i s t i n g u i s h i n g t h e two c l a s s e s o f i n t e g r i t y r u l e s , namely
1286 t h e " s t a t e _ c o n s t r a i n t _ r u l e _ t y p e " and t h e
1287 " d y n a m i c _ c o n s t r a i n t _ r u l e _ t y p e ") .
1288 The s t a t e _ c o n s t r a i n t _ r u l e _ t y p e c o n s t r u c t i s a s i m p l e
1289 Boolean e x p r e s s i o n . The " a s s i g n e d _ t o "
1290 a t t r i b u t e i n d i c a t e s t h e p a r t y (i f any) t o which t h e
1291 c o n s t r a i n t i s a s s i g n e d . The " t y p e " a t t r i b u t e i n d i c a t e s i f
1292 t h e r u l e o b l i g a t e s t h e a s s i g n e d p a r t y t o o b s e r v e t h e r u l e
1293 or a l l o w s i t t o break t h e r u l e .
1294 The d y n a m i c _ c o n s t r a i n t _ r u l e _ t y p e c o n s t r u c t c o n s i s t s o f
1295 f o u r e l e m e n t s . I f t h e boolean e x p r e s s i o n e v a l u a t e s t o
1296 t rue t h e r u l e i s i n f o r c e and t h e r e f e r e n c e d e l e m e n t
1297 " e l e m e n t _ r e f " (o r a t t r i b u t e o f t h e e l e m e n t
1298 " e l e m e n t _ a t t r i b u t e _ r e f ") may / may n o t (depend ing
1299 on t h e v a l u e o f t h e v a l u e o f t h e t y p e a t t r i b u t e) r e c e i v e
1300 a new v a l u e i n d i c a t i n g i t s new s t a t e . The
1301 " r e s t r i c t e d −n o n r e s t r i c t e d _ v a l u e s " e l l e m e n t c o n t a i n s a s e t
1302 of a l l o w e d / d i s a l l o w e d v a l u e s . −−>
1303 <!−− D e f i n i t i o n o f e x p r e s s i o n s i n r u l e t y p e s .
1304 E x p r e s s i o n s i n r u l e s a r e p r e s e n t e d as s t r i n g s t h a t
1305 a r e t o be p a r s e d by t h e c o n t r a c t i n t e r p r e t a t i o n s o f t w a r e
1306 i n o r d e r t o o b t a i n an e x p r e s s i o n t r e e . The e x p r e s s i o n
1307 s t r i n g s can be mixed wi th r e f e r e n c e s t o e a r l i e r d e f i n e d

197

1308 v a r i a b l e s . −−>
1309 <xs : complexType name=" e x p r e s s i o n " mixed=" t r u e ">
1310 <xs : sequence >
1311 <xs : e l e m e n t name=" e x p r e s s i o n _ v a r i a b l e _ r e f "
1312 t y p e =" xs : IDREF" minOccurs=" 0 "
1313 maxOccurs=" unbounded " / >
1314 </ xs : sequence >
1315 </ xs : complexType >
1316 <!−− D e f i n i t i o n o f t h e p o s s i b l e r u l e t y p e s and t h e i r
1317 sub−c o n s t r u c t s −−>
1318 <xs : complexType name=" s t a t e _ c o n s t r a i n t _ r u l e _ t y p e ">
1319 <xs : sequence >
1320 <xs : e l e m e n t name=" r u l e _ c o n d i t i o n s "
1321 t y p e =" e x p r e s s i o n " / >
1322 </ xs : sequence >
1323 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ r u l e _ a t t r i b u t e s " / >
1324 <xs : a t t r i b u t e name=" a s s i g n e d _ t o " t y p e =" xs : IDREF"
1325 use =" o p t i o n a l " / >
1326 <xs : a t t r i b u t e name=" t y p e "
1327 t y p e =" s t a t i c _ c o n s t r a i n t _ t y p e " use =" o p t i o n a l " / >
1328 </ xs : complexType >
1329 <xs : complexType name=" d y n a m i c _ c o n s t r a i n t _ r u l e _ t y p e ">
1330 <xs : sequence >
1331 <xs : e l e m e n t name=" r u l e _ c o n d i t i o n s "
1332 t y p e =" e x p r e s s i o n " / >
1333 <xs : e l e m e n t name=" e l e m e n t _ r e f " t y p e =" xs : IDREF" / >
1334 <xs : e l e m e n t name=" e l e m e n t _ a t t r i b u t e _ r e f "
1335 t y p e =" xs : IDREF" minOccurs=" 0 " / >
1336 <xs : e l e m e n t name=" r e s t r i c t e d −n o n r e s t r i c t e d _ s t a t e s "
1337 t y p e =" l i s t _ o f _ s t r i n g s _ t y p e " / >
1338 </ xs : sequence >
1339 <xs : a t t r i b u t e name=" t y p e " t y p e =" c o n s t r a i n t _ t y p e " / >
1340 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ r u l e _ a t t r i b u t e s " / >
1341 </ xs : complexType >
1342 <!−− Next , we d e f i n e t h e D e r i v a t i o n r u l e c o n s t r u c t s
1343 (d i s t i n g u i s h i n g t h e two t y p e s o f d e r i v a t i o n r u l e s , namely
1344 " c o m p u t a t i o n a l _ d e r i v a t i o n _ r u l e _ t y p e " and
1345 " l i n g u i s t i c _ d e r i v a t i o n _ r u l e _ t y p e " . The " d e r i v e d _ v a r i a b l e _ r e f "
1346 a t t r i b u t e c o n t a i n s a r e f e r e n c e t o t h e d a t a i t e m s t h e v a l u e
1347 of which i s d e r i v e d wi th t h i s r u l e . " d e r i v a t i o n _ e x p r e s s i o n "
1348 c o n t a i n s a Boolean e x p r e s s i o n t h a t when e v a l u a t i n g t o t rue
1349 f i r e s t h e r u l e .
1350 In " l i n g u i s t i c _ d e r i v a t i o n _ r u l e _ t y p e " , t h e
1351 " p r o p e r t y _ e x t e n d e d _ v a r i a b l e _ r e f " c o n t a i n s a r e f e r e n c e t o t h e
1352 d a t a i t em t h a t i s g i v e n a p r o p e r t y when t h e r u l e f i r e s .
1353 " p r o p e r t y _ t o _ b e _ a d d e d _ r e f " c o n t a i n s a r e f e r e n c e t o a d a t a
1354 i t em t h a t c o n t a i n s t h e p r o p e r t y t o be added . In t h i s
1355 approach , we r e q u i r e t h e p r o p e r t i e s t o be d e f i n e d as d a t a
1356 i t e m s i n t h e e−c o n t r a c t , a s i n t h i s way t h e y can be
1357 r e f e r e n c e d by many components and w i l l be from a c l e a r l y
1358 d e f i n e d d a t a t y p e . However , i t i s p o s s i b l e l i n g u i s t i c
1359 d e r i v a t i o n r u l e s t o be c o m p l e t e l y r e p l a c e d by c o p i e r r e a c t i o n
1360 r u l e s t h a t s i m p l y s t a t e t h e new v a l u e t o be g i v e n t o t h e
1361 d a t a i t em (i n a s t r i n g f o r m a t). −−>

198 APPENDIX B. ESML SCHEMA

1362 <xs : complexType name=" c o m p u t a t i o n a l _ d e r i v a t i o n _ r u l e _ t y p e ">
1363 <xs : sequence >
1364 <xs : e l e m e n t name=" d e r i v e d _ v a r i a b l e _ r e f "
1365 t y p e =" xs : IDREFS" / >
1366 <xs : e l e m e n t name=" d e r i v a t i o n _ e x p r e s s i o n "
1367 t y p e =" e x p r e s s i o n " / >
1368 </ xs : sequence >
1369 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ r u l e _ a t t r i b u t e s " / >
1370 </ xs : complexType >
1371 <xs : complexType name=" l i n g u i s t i c _ d e r i v a t i o n _ r u l e _ t y p e ">
1372 <xs : sequence >
1373 <xs : e l e m e n t name=" d e r i v a t i o n _ e x p r e s s i o n "
1374 t y p e =" e x p r e s s i o n " / >
1375 <xs : e l e m e n t name=" p r o p e r t y _ e x t e n d e d _ v a r i a b l e _ r e f "
1376 t y p e =" xs : IDREF" / >
1377 <xs : e l e m e n t name=" p r o p e r t y _ t o _ b e _ a d d e d _ r e f "
1378 t y p e =" xs : IDREF" / >
1379 </ xs : sequence >
1380 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ r u l e _ a t t r i b u t e s " / >
1381 </ xs : complexType >
1382 <!−− Next , t h e eSML c o n s t r u c t s f o r t h e s u p p o r t o f R e a c t i o n
1383 r u l e s f o l l o w . A r e a c t i o n r u l e can be from one of t h e t h r e e
1384 s u b t y p e s , i . e . , e n a b l e r , e x e c u t i v e , and c o p i e r s . To s u p p o r t
1385 each of t h e t h r e e t y p e s , we p r o v i d e t h r e e sub−c o n s t r u c t s
1386 f o r each of them . Each r e a c t i o n r u l e f i r e s when i t s
1387 " r u l e _ c o n d i t i o n s " e v a l u a t e s t o t rue .
1388 The " e n a b l e r _ a c t i o n _ t y p e " has two e l l e m e n t s . The
1389 " t a r g e t _ e l e m e n t " c o n t a i n s a r e f e r e n c e t o t h e e l e m e n t t h e
1390 s t a t e o f which w i l l be changed . " n e w _ s t a t e " i n d i c a t e s t h e
1391 new s t a t e t h a t must be a s s i g n e d t o t h e e l e m e n t (e n a b l e d o r
1392 d i s a b l e d) . The " t y p e " a t t r i b u t e i n d i c a t e s t h e d e o n t i c
1393 a s s i g n m e n t t o a p a r t y (d e f i n e d i n t h e " a s s i g n e d _ t o "
1394 a t t r i b u t e) , i . e . , i f a p a r t y t h a t i s owner o f t h e r u l e
1395 i s o b l i g e d / a l l o w e d / f o r b i d d e n t o pe r fo rm t h e u p d a t e o f t h e
1396 s t a t u s o f t h e e l e m e n t . The " e x e c u t i v e _ a c t i o n _ t y p e "
1397 sub−c o n s t r u c t i n d i c a t e s t h r o u g h t h e " T a r g e t s " e l e m e n t t h e
1398 e x e c u t i o n o f which p r o c e s s s p e c i f i c a t i o n s must
1399 be / may be / c a n n o t be s t a r t e d when t h e r u l e f i r e s . The " t y p e "
1400 a t t r i b u t e i n d i c a t e s t h e d e o n t i c a s s i g n m e n t t o a p a r t y ,
1401 i . e . , i f a p a r t y (d e f i n e d i n t h e " a s s i g n e d _ t o " a t t r i b u t e)
1402 i s o b l i g e d / a l l o w e d / f o r b i d d e n t o s t a r t t h e e x e c u t i o n o f t h e
1403 p r o c e s s . The " c o p i e r _ a c t i o n _ t y p e " sub−c o n s t r u c t i n d i c a t e s
1404 which e l e m e n t (t h e " t a r g e t _ e l e m e n t " e l e m e n t) o r i t s
1405 a t t r i b u t e (t h e " t a r g e t _ a t t r i b u t e " a t t r i b u t e) i s g i v e n
1406 a new v a l u e (t h e " new_value " a t t r i b u t e) . Again t h e " t y p e "
1407 a t t r i b u t e i n d i c a t e s t h e d e o n t i c a s s i g n m e n t on t h e owner
1408 of t h e r u l e . −−>
1409 <xs : complexType name=" e n a b l e r _ a c t i o n _ t y p e ">
1410 <xs : sequence >
1411 <xs : e l e m e n t name=" t a r g e t _ e l e m e n t " t y p e =" xs : IDREF" / >
1412 <xs : e l e m e n t name=" n e w _ s t a t e " t y p e =" s t a t e _ t y p e " / >
1413 </ xs : sequence >
1414 <xs : a t t r i b u t e name=" t y p e " t y p e =" c o n s t r a i n t _ t y p e " / >
1415 <xs : a t t r i b u t e name=" a s s i g n e d _ t o " t y p e =" xs : IDREF"

199

1416 use =" o p t i o n a l " / >
1417 </ xs : complexType >
1418 <xs : complexType name=" e x e c u t i v e _ a c t i o n _ t y p e ">
1419 <xs : sequence >
1420 <xs : e l e m e n t name=" t a r g e t s " t y p e =" xs : IDREFS" / >
1421 </ xs : sequence >
1422 <xs : a t t r i b u t e name=" t y p e " t y p e =" c o n s t r a i n t _ t y p e " / >
1423 <xs : a t t r i b u t e name=" a s s i g n e d _ t o " t y p e =" xs : IDREF"
1424 use =" o p t i o n a l " / >
1425 <xs : a t t r i b u t e name=" r e p e a t a b l e " t y p e =" xs : b o o l e a n " / >
1426 </ xs : complexType >
1427 <xs : complexType name=" c o p i e r _ a c t i o n _ t y p e ">
1428 <xs : sequence >
1429 <xs : e l e m e n t name=" t a r g e t _ e l e m e n t " t y p e =" xs : IDREF" / >
1430 <xs : e l e m e n t name=" t a r g e t _ a t t r i b u t e "
1431 t y p e =" xs : s t r i n g " minOccurs=" 0 " / >
1432 <xs : e l e m e n t name=" new_value "
1433 t y p e =" l i s t _ o f _ s t r i n g s _ t y p e " minOccurs=" 0 " / >
1434 <!−− b e s i d e s t h e a s s i g n m e n t o f one va lue , a p a r t y
1435 can be a l l o w e d t o s e t one o f a s e t o f v a l u e s (f o r
1436 example i n t h e c o n t r o l o f a p r o c e s s t a t u s). −−>
1437 </ xs : sequence >
1438 <xs : a t t r i b u t e name=" t y p e " t y p e =" c o n s t r a i n t _ t y p e " / >
1439 <xs : a t t r i b u t e name=" a s s i g n e d _ t o " t y p e =" xs : IDREF"
1440 use =" o p t i o n a l " / >
1441 </ xs : complexType >
1442 <xs : complexType name=" r e a c t i o n _ r u l e _ t y p e ">
1443 <xs : sequence >
1444 <xs : e l e m e n t name=" r u l e _ c o n d i t i o n s " t y p e =" e x p r e s s i o n " / >
1445 <xs : cho i ce >
1446 <xs : e l e m e n t name=" e n a b l e r _ a c t i o n "
1447 t y p e =" e n a b l e r _ a c t i o n _ t y p e " / >
1448 <xs : e l e m e n t name=" e x e c u t i v e _ a c t i o n "
1449 t y p e =" e x e c u t i v e _ a c t i o n _ t y p e " / >
1450 <xs : e l e m e n t name=" c o p i e r _ a c t i o n "
1451 t y p e =" c o p i e r _ a c t i o n _ t y p e " / >
1452 </ xs : cho i ce >
1453 </ xs : sequence >
1454 <xs : a t t r i b u t e G r o u p r e f =" c o m m o n _ r u l e _ a t t r i b u t e s " / >
1455 </ xs : complexType >
1456 <!−− Next , we p r o v i d e t h e c o n s t r u c t f o r f r e e−t e x t
1457 r u l e s . −−>
1458 <xs : complexType name=" f r e e _ t e x t _ r u l e _ t y p e ">
1459 <xs : s i m p l e C o n t e n t >
1460 <xs : e x t e n s i o n base =" xs : s t r i n g ">
1461 <xs : a t t r i b u t e G r o u p
1462 r e f =" c o m m o n _ r u l e _ a t t r i b u t e s " / >
1463 </ xs : e x t e n s i o n >
1464 </ xs : s i m p l e C o n t e n t >
1465 </ xs : complexType >
1466 <!−− PART 3 −−>
1467 <!−− For t h e d e f i n i t i o n o f p r o c e s s s p e c i f i c a t i o n c o n s t r u c t s
1468 i n eSML we use as a f o u n d a t i o n XRL (eXchangeab le Rou t ing
1469 Language) . XRL i s an i n s t a n c e −based workflow l a n g u a g e t h a t

200 APPENDIX B. ESML SCHEMA

1470 u s e s XML f o r t h e r e p r e s e n t a t i o n o f p r o c e s s d e f i n i t i o n s and
1471 P e t r i n e t s f o r i t s s e m a n t i c s . A few m o d i f i c a t i o n s have been
1472 a p p l i e d on XRL . These e x t e n s i o n s a r e marked wi th
1473 commen ta r i e s . XRL i s a p r e s c r i p t i v e l a n g u a g e which d e f i n e s
1474 e x p l i c i t l y t h e c o n t r o l f low between a c t i v i t i e s .
1475 XRL was chosen as p r o c e s s s p e c i f i c a t i o n l a n g u a g e f o r s e v e r a l
1476 r e a s o n s . F i r s t , i t s XML r e p r e s e n t a t i o n and s h o r t schema
1477 d e f i n i t i o n a l l o w easy i n t e g r a t i o n and e x t e n s i o n t o s u i t t h e
1478 eSML g o a l s . Second , t h e u n d e r l y i n g P e t r i Net s e m a n t i c s i n
1479 XRL a l l o w s t h e P e t r i n e t r e p r e s e n t a t i o n o f an XRL p r o c e s s
1480 s p e c i f i c a t i o n t o be a n a l y z e d u s i n g s t a t e −of−the−a r t a n a l y s i s
1481 t e c h n i q u e s and t o o l s . F i n a l l y , t h e e x p e r i e n c e and background
1482 of u s i n g XRL i n t h e IS group a t t h e T e c h n i c a l U n i v e r s i t y
1483 of Eindhoven a l l o w e d e a s i e r i m p l e m e n t a t i o n and m a i n t e n a n c e
1484 i n eSML . More i n f o r m a t i o n a b o u t XRL and i t s o r i g i n a l
1485 DTD/ schema can be found a t :
1486 h t t p : / / tmitwww . tm . t u e . n l / s t a f f / a n o r t a / XRL / xrlHome . h tm l −−>
1487 <xs : s impleType name=" p r o b a b i l i t y ">
1488 <xs : r e s t r i c t i o n base =" xs : d e c i m a l ">
1489 <xs : m i n I n c l u s i v e v a l u e =" 0 " / >
1490 <xs : m a x I n c l u s i v e v a l u e =" 1 " / >
1491 </ xs : r e s t r i c t i o n >
1492 </ xs : s impleType >
1493 <xs : a t t r i b u t e G r o u p name=" l o g i s t i c _ a t t r i b u t e s ">
1494 <xs : a t t r i b u t e name=" c o s t " t y p e =" xs : d e c i m a l " u
1495 se =" o p t i o n a l " / >
1496 <xs : a t t r i b u t e name=" m i n _ d u r a t i o n " t y p e =" xs : t ime "
1497 use =" o p t i o n a l " / >
1498 <xs : a t t r i b u t e name=" m a x _ d u r a t i o n " t y p e =" xs : t ime "
1499 use =" o p t i o n a l " / >
1500 <xs : a t t r i b u t e name=" a v g _ d u r a t i o n " t y p e =" xs : t ime "
1501 use =" o p t i o n a l " / >
1502 <xs : a t t r i b u t e name=" q u a l i t y " t y p e =" p r o b a b i l i t y "
1503 use =" o p t i o n a l " / >
1504 <!−− q u a l i t y i s d e f i n e d as how h igh i s t h e p r o b a b i l i t y
1505 t h a t t h e a c t i v e node (t a s k , b lock , p r o c e s s) o u t p u t s
1506 t h e r e q u i r e d da t a−−>
1507 </ xs : a t t r i b u t e G r o u p >
1508 <xs : a t t r i b u t e G r o u p name=" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s ">
1509 <xs : a t t r i b u t e name=" g o a l " t y p e =" xs : s t r i n g "
1510 use =" o p t i o n a l " / >
1511 <xs : a t t r i b u t e name=" r i s k " t y p e =" xs : s t r i n g "
1512 use =" o p t i o n a l " / >
1513 <xs : a t t r i b u t e name=" p r o j e c t _ a c c o m p l i s h m e n t "
1514 t y p e =" xs : s t r i n g " use =" o p t i o n a l " / >
1515 <xs : a t t r i b u t e name=" h a n d b o o k _ r e f e r e n c e "
1516 t y p e =" xs : anyURI " use =" o p t i o n a l " / >
1517 </ xs : a t t r i b u t e G r o u p >
1518 <xs : group name=" common_elements ">
1519 <xs : cho i ce >
1520 <xs : e l e m e n t name=" i n t e r f a c e _ i n "
1521 t y p e =" i n t e r f a c e _ t y p e " / >
1522 <xs : e l e m e n t name=" i n t e r f a c e _ o u t "
1523 t y p e =" i n t e r f a c e _ t y p e " / >

201

1524 <xs : e l e m e n t name=" e l e m e n t _ i d "
1525 t y p e =" xs : ID " minOccurs=" 0 " / >
1526 <xs : e l e m e n t name=" t a s k " t y p e =" t a s k _ t y p e " / >
1527 <xs : e l e m e n t name=" s e q u e n c e "
1528 t y p e =" s e q u e n c e _ t y p e " / >
1529 <xs : e l e m e n t name=" any_sequence "
1530 t y p e =" a n y _ s e q u e n c e _ t y p e " / >
1531 <xs : e l e m e n t name=" c h o i c e " t y p e =" c h o i c e _ t y p e " / >
1532 <xs : e l e m e n t name=" c o n d i t i o n "
1533 t y p e =" c o n d i t i o n _ t y p e " / >
1534 <xs : e l e m e n t name=" p a r a l l e l _ s y n c "
1535 t y p e =" p a r a l l e l _ s y n c _ t y p e " / >
1536 <xs : e l e m e n t name=" p a r a l l e l _ n o _ s y n c "
1537 t y p e =" p a r a l l e l _ n o _ s y n c _ t y p e " / >
1538 <xs : e l e m e n t name=" p a r a l l e l _ p a r t _ s y n c "
1539 t y p e =" p a r a l l e l _ p a r t _ s y n c _ t y p e " / >
1540 <xs : e l e m e n t name=" p a r a l l e l _ p a r t _ s y n c _ c a n c e l "
1541 t y p e =" p a r a l l e l _ p a r t _ s y n c _ c a n c e l _ t y p e " / >
1542 <xs : e l e m e n t name=" r e s t r i c t e d _ p a r a l l e l _ s y n c "
1543 t y p e =" r e s t r i c t e d _ p a r a l l e l _ s y n c _ t y p e " / >
1544 <xs : e l e m e n t name=" w a i t _ a l l " t y p e =" w a i t _ a l l _ t y p e " / >
1545 <xs : e l e m e n t name=" w a i t _ a n y " t y p e =" w a i t _ a n y _ t y p e " / >
1546 <xs : e l e m e n t name=" whi l e_do " t y p e =" w h i l e _ d o _ t y p e " / >
1547 <xs : e l e m e n t name=" t e r m i n a t e " t y p e =" t e r m i n a t e _ t y p e " / >
1548 <xs : e l e m e n t name=" s e n d _ t a s k " t y p e =" s e n d _ t a s k _ t y p e " / >
1549 <xs : e l e m e n t name=" r e c e i v e _ t a s k " t y p e =" t a s k _ t y p e " / >
1550 <xs : e l e m e n t name=" b i _ d i r e c t i o n a l _ t a s k "
1551 t y p e =" s e n d _ t a s k _ t y p e " / >
1552 <xs : e l e m e n t name=" s e n d _ t r a n s i t i o n "
1553 t y p e =" s e n d _ t r a n s i t i o n _ t y p e " / >
1554 <xs : e l e m e n t name=" r e c e i v e _ t r a n s i t i o n "
1555 t y p e =" t r a n s i t i o n _ t y p e " / >
1556 <xs : e l e m e n t name=" b i _ d i r e c t i o n a l _ t r a n s i t i o n "
1557 t y p e =" s e n d _ t r a n s i t i o n _ t y p e " / >
1558 <xs : e l e m e n t name=" s o u r c i n g _ s p h e r e "
1559 t y p e =" s o u r c i n g _ s p h e r e _ t y p e " minOccurs=" 0 "
1560 maxOccurs=" unbounded " / >
1561 <xs : e l e m e n t name=" d a t a " t y p e =" d a t a _ t y p e "
1562 minOccurs=" 0 " maxOccurs=" unbounded " / >
1563 <xs : e l e m e n t name=" l o c k _ c h a n g e " t y p e =" l o c k _ c h a n g e _ t y p e "
1564 minOccurs=" 0 " / >
1565 <!−− By p l a c i n g a d a t a d e f i n i t i o n i n t o t h e
1566 common_elements group , d a t a v i s i b i l i t y can be d e f i n e d on
1567 a group l e v e l , e . g . , a sequence , p a r a l l e l _ s y n c , e t c . I f t h e
1568 d a t a d e f i n i t i o n t a k e s p l a c e on a r o u t l e v e l , t h e r a n g e
1569 s t r e t c h e s ove r t h e e n t i r e p r o c e s s . −−>
1570 <!−− Adding d a t a d e f i n i t i o n i n t h e common e l e m e n t s a l l o w s
1571 v i s i b i l i t y on a p r o c e s s and b l o c k l e v e l . −−>
1572 </ xs : cho i ce >
1573 </ xs : group >
1574 <!−− The l o c k _ t y p e s u p p o r t s workflow d a t a p a t t e r n s 3 0 and 3 1 .
1575 Locks t h a t a r e i n i t i a l l y s e t o r n o t s e t when a d a t a package i s
1576 d e f i n e d may be a l t e r e d wi th t h e l o c k _ c h a n g e t a g . −−>
1577 <xs : complexType name=" l o c k _ c h a n g e _ t y p e ">

202 APPENDIX B. ESML SCHEMA

1578 <xs : sequence >
1579 <xs : e l e m e n t name=" package " t y p e =" xs : IDREF"
1580 maxOccurs=" unbounded " / >
1581 <xs : e l e m e n t name=" v a r i a b l e " t y p e =" xs : IDREF"
1582 minOccurs=" 0 " maxOccurs=" unbounded " / >
1583 <xs : e l e m e n t name=" new_lock " t y p e =" l o c k _ t y p e " / >
1584 </ xs : sequence >
1585 </ xs : complexType >
1586 <!−− The l o c k _ t y p e s u p p o r t s workflow d a t a p a t t e r n s 2 9
1587 and 30 −−>
1588 <xs : s impleType name=" l o c k _ t y p e ">
1589 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1590 <xs : e n u m e r a t i o n v a l u e =" r e a d _ l o c k " / >
1591 <xs : e n u m e r a t i o n v a l u e =" w r i t e _ l o c k " / >
1592 <xs : e n u m e r a t i o n v a l u e =" e x c l u s i v e _ l o c k " / >
1593 <xs : e n u m e r a t i o n v a l u e =" none " / >
1594 </ xs : r e s t r i c t i o n >
1595 </ xs : s impleType >
1596 <xs : complexType name=" l o c k _ d e f i n i t i o n _ t y p e ">
1597 <xs : sequence >
1598 <xs : e l e m e n t name=" lock_owner " t y p e =" xs : IDREFS"
1599 maxOccurs=" unbounded " / >
1600 <xs : e l e m e n t name=" l o c k " t y p e =" l o c k _ t y p e " / >
1601 <!−− A l o c k owner may be a r e s o u r c e o r a m o d e l l i n g
1602 c o n s t r u c t , e . g . , a scope , a p r o c e s s , e t c . −−>
1603 </ xs : sequence >
1604 </ xs : complexType >
1605 <!−− Data−d e f i n i t i o n t a g s . −−>
1606 <!−− A package of d a t a may e i t h e r be i n p u t o r o u t p u t . −−>
1607 <!−−May be used t o s u p p o r t worf low d a t a p a t t e r n 9 and 1 0 .
1608 S t a t e s whe the r a package i s i n p u t , o u t p u t , o r i n _ o u t −−>
1609 <xs : s impleType name=" d a t a _ f l o w _ d i r e c t i o n _ t y p e ">
1610 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
1611 <xs : e n u m e r a t i o n v a l u e =" i n p u t " / >
1612 <xs : e n u m e r a t i o n v a l u e =" o u t p u t " / >
1613 <xs : e n u m e r a t i o n v a l u e =" i n _ o u t p u t " / >
1614 </ xs : r e s t r i c t i o n >
1615 </ xs : s impleType >
1616 <xs : complexType name=" i n s t a n c e _ t y p e ">
1617 <xs : sequence >
1618 <xs : e l e m e n t name=" d e s t i n a t i o n _ i n s t a n c e "
1619 t y p e =" xs : IDREFS" / >
1620 <xs : cho i ce >
1621 <xs : e l e m e n t name=" a l l _ i n s t a n c e s "
1622 t y p e =" xs : b o o l e a n " minOccurs=" 0 " / >
1623 <xs : e l e m e n t name=" i n s t a n c e _ n u m b e r "
1624 t y p e =" xs : i n t e g e r " minOccurs=" 0 " / >
1625 <!−− T a r g e t a l l i n s t a n c e s o f a t a s k
1626 −−>
1627 <!−− T a r g e t a p a r t i c u l a r t a s k−i n s t a n c e
1628 number −−>
1629 </ xs : cho i ce >
1630 </ xs : sequence >
1631 </ xs : complexType >

203

1632 <!−− Packages can be e i t h e r p a s s e d from a s o u r c e o r t o
1633 a t a r g e t . −−>
1634 <!−−A p a s s i n g d e s t i n a t i o n d e f i n e s where a package i s
1635 p a s s e d on t o . −−>
1636 <!−− Workflow d a t a p a t t e r n 1 3 i s s u p p o r t e d by d e f i n i n g
1637 a d e s t i n a t i o n case f o r a package t h a t i s v a l i d i n
1638 a n o t h e r case . −−>
1639 <!−− Also workflow d a t a p a t t e r n s 1 1 and 1 2 a r e s u p p o r t e d
1640 i f t h e a d a t a package p a s s i n g from t a s k t o t a s k i s
1641 i n c l u d i n g a m u l t i p l e −i n s t a n c e t a s k . Such a t a s k i s
1642 l o c a t e d i n a p a r a l l e l _ n o n _ s y n c b lok . −−>
1643 <xs : complexType name=" p a s s i n g _ t y p e ">
1644 <xs : cho i ce >
1645 <xs : e l e m e n t name=" a i m _ t a s k " t y p e =" i n s t a n c e _ t y p e "
1646 minOccurs=" 0 " maxOccurs=" unbounded " / >
1647 <xs : e l e m e n t name=" a im_block " t y p e =" xs : IDREF"
1648 minOccurs=" 0 " maxOccurs=" unbounded " / >
1649 <xs : e l e m e n t name=" a im_scope " t y p e =" xs : IDREF"
1650 minOccurs=" 0 " maxOccurs=" unbounded " / >
1651 <xs : e l e m e n t name=" a i m _ s p h e r e " t y p e =" xs : IDREF"
1652 minOccurs=" 0 " maxOccurs=" unbounded " / >
1653 <xs : e l e m e n t name=" a im_case " t y p e =" i n s t a n c e _ t y p e "
1654 minOccurs=" 0 " maxOccurs=" unbounded " / >
1655 <xs : e l e m e n t name=" a i m _ p r o c e s s " t y p e =" xs : IDREF"
1656 minOccurs=" 0 " maxOccurs=" unbounded " / >
1657 </ xs : cho i ce >
1658 </ xs : complexType >
1659 <!−− V a r i a b l e s and t h e i r v a l u e s o f one package can be
1660 mapped t o v a r i a b l e s o f a d e s t i n a t i o n package . −−>
1661 <xs : complexType name=" v a r i a b l e _ m a p p i n g _ t y p e ">
1662 <xs : sequence >
1663 <xs : e l e m e n t name=" f r o m _ v a r i a b l e _ n a m e "
1664 t y p e =" xs : IDREF" / >
1665 <xs : e l e m e n t name=" t o _ v a r i a b l e _ n a m e "
1666 t y p e =" xs : IDREF" / >
1667 <xs : e l e m e n t name=" t r a n s f o r m a t i o n _ f u n c t i o n "
1668 t y p e =" xs : s t r i n g " minOccurs=" 0 " / >
1669 <!−− A v a r i a b l e t h a t i s mapped may f i r s t
1670 be t r a n s f o r m e d by a f u n c t i o n . −−>
1671 </ xs : sequence >
1672 </ xs : complexType >
1673 <xs : complexType name=" package_mapp ing_ type ">
1674 <xs : sequence >
1675 <xs : e l e m e n t name=" aim_package "
1676 t y p e =" xs : IDREF" / >
1677 <xs : e l e m e n t name=" v a r i a b l e _ m a p p i n g "
1678 t y p e =" v a r i a b l e _ m a p p i n g _ t y p e " minOccurs=" 0 "
1679 maxOccurs=" unbounded " / >
1680 </ xs : sequence >
1681 </ xs : complexType >
1682 <!−− Data may be v i s i b l e i n one o r many c a s e s . −−>
1683 <xs : complexType name=" c a s e _ v i s i b i l i t y _ t y p e ">
1684 <xs : s e q u e n c e maxOccurs=" unbounded ">
1685 <xs : e l e m e n t name=" c a s e _ i d " t y p e =" xs : IDREFS" / >

204 APPENDIX B. ESML SCHEMA

1686 </ xs : sequence >
1687 </ xs : complexType >
1688 <!−− Coverage o f workflow d a t a p a t t e r n s 3 3 t i l i n c l u d i n g 3 6 .
1689 −−>
1690 <!−−Thi s t a g i s u s e f u l f o r a c t i v e nodes t o d e f i n e as a
1691 p r e c o n d i t i o n f o r e n a c t m e n t t h e e x i s t a n c e o f a p a r t i c u l a r
1692 v a r i a b l e . −−>
1693 <xs : complexType name=" d a t a _ e x i s t e n c e _ c o n d i t i o n _ t y p e ">
1694 <xs : sequence >
1695 <xs : e l e m e n t name=" package " t y p e =" xs : IDREF" / >
1696 <xs : e l e m e n t name=" v a r i a b l e " t y p e =" xs : IDREF"
1697 maxOccurs=" unbounded " / >
1698 </ xs : sequence >
1699 </ xs : complexType >
1700 <!−− A p p l i c a b l e i n a c t i v e nodes t o check t h e v a l u e o f a
1701 p a r t i c u l a r v a r i a b l e .−−>
1702 <xs : complexType name=" d a t a _ v a l u e _ c o n d i t i o n _ t y p e ">
1703 <xs : sequence >
1704 <xs : e l e m e n t name=" package " t y p e =" xs : IDREF" / >
1705 <xs : e l e m e n t name=" v a l u e _ c h e c k _ s t a t e m e n t "
1706 t y p e =" xs : s t r i n g " maxOccurs=" unbounded " / >
1707 </ xs : sequence >
1708 </ xs : complexType >
1709 <!−− Below da ta−package d e f i n i t i o n s a r e g i v e n f o r s u p p o r t i n g
1710 v a r i o u s da t a−f low p a t t e r n s . −−>
1711 <!−−Workflow d a t a p a t t e r n 2 i s s u p p o r t e d by d e f i n i n g d a t a
1712 package v i s i b i l i t y on a b l o c k l e v e l . −−>
1713 <!−− S u p p o r t s workflow d a t a p a t t e r n 9 . When no f u r t h e r
1714 e x p l i c i t a s s i g n m e n t d e f i n i t i o n s g iven , t h e t h i r d o p t i o n
1715 of no d a t a p a s s i n g i n workflow d a t a p a t t e r n 9 i s pe r fo rmed .
1716 That means a l l lower−l e v e l e l e m e n t s a r e a u t o m a t i c a l l y aware
1717 of t h e d a t a package . I f a d d i t i o n a l a s s i g n m e n t t a g s a r e used ,
1718 t h e n e i t h e r d a t a p a s s i n g i s pe r fo rmed v i a a d e d i c a t e d
1719 d a t a c h a n n e l o r v i a an i n t e g r a t e d c o n t r o l and d a t a channe l ,
1720 i . e . , i n t h e l a t t e r case d a t a f l o w s a l o n g c o n t r o l f low.−−>
1721 <!−− c a s e _ v i s i b i l i t y s u p p o r t s workflow d a t a p a t t e r n 5 .
1722 Here i t can be d e f i n e d i f a d a t a package i s v i s i b l e i n
1723 a l l c u r r e n t c a s e s o f a workflow p r o c e s s . −−>
1724 <!−− With c a s e _ v i s i b i l i t y _ r a n g e a l i m i t a t i o n i n a c c o r d a n c e
1725 wi th workflow d a t a p a t t e r n 5 i s a c h i e v e d . The s e t o f c a s e s
1726 can be s p e c i f i e d where a d a t a package i s e q u a l l y v i s i b l e .−−>
1727 <!−− p a s s i n g _ d e s t i n a t i o n s u p p o r t s workflow d a t a p a t t e r n
1728 8 f o r p a s s i n g d a t a p a t t e r n s from t a s k t o t a s k . −−>
1729 <!−− p a s s i n g _ d e s t i n a t i o n i s a l s o u s e f u l f o r s u p p o r t i n g
1730 workflow d a t a p a t t e r n 9 and 1 0 . When d a t a _ t y p e d e f i n i t i o n
1731 i s on b l o c k l e v e l . Then e x p l i c i t d a t a p a s s i n g from a b l o c k
1732 l e v e l t o a c o n t a i n e d lower−l e v e l e l e m e n t can be pe r fo rmed .
1733 In case of s u p p o r t i n g p a t t e r n 1 0 , t a s k−l e v e l d a t a p a c k a g e s
1734 can be a s s i g n e d e x p l i c i t l y t o t h e h i g h e r l e v e l , e . g . ,
1735 a b l o c k .−−>
1736 <!−− c o n t r o l _ f l o w _ p a s s i n g i s u s e f u l f o r workflow d a t a
1737 p a t t e r n 9 . When d a t a _ t y p e s a r e d e f i n e d on a b l o c k l e v e l ,
1738 s e t t i n g c o n t r o l _ f l o w _ p a s s i n g t o t rue means t h a t an i n t e g r a t e d
1739 c o n t r o l and d a t a c h a n n e l i s used . Tha t means d a t a f l o w s

205

1740 from one node t o t h e n e x t a l o n g c o n t r o l f low . −−>
1741 <!−− I f w o r k f l o w _ v i s i b i l i t y _ r a n g e i s true , a package i s
1742 v i s i b l e i n a l l c a s e s o f a p r o c e s s f o r a l l a c t i v e nodes
1743 c o n t a i n e d . S u p p o r t s workflow d a t a p a t t e r n 6 −−>
1744 <!−− I f c a s e _ v i s i b i l i t y i s true , a d a t a package i s
1745 v i s i b i l i t y f o r a l l c a s e s . Covers workflow d a t a p a t t e r n 5 .
1746 Comparable t o c l a s s v a r i a b l e s i n OO.−−>
1747 <!−− Workflow d a t a p a t t e r n 4 i s s u p p o r t e d i f a d a t a
1748 package i s d e f i n e d f o r a t a s k t h a t i s i n s t a n t i a t e d s e v e r a l
1749 t imes , e . g . , when a t a s k i s p a r t o f a p a r a l l e l _ n o _ s y n c
1750 b l o c k . −−>
1751 <!−−Workflow d a t a p a t t e r n s c o n c e r n e d wi th i n t e r n a l and
1752 e x t e r n a l d a t a p a s s i n g (p a t t e r n s 8 − 2 5) can be s u p p o r t e d
1753 wi th t h e t a g s p a s s i n g _ d e s t i n a t i o n and p a s s i n g _ o r i g i n i n
1754 c o m b i n a t i o n wi th v a r i o u s t a g s c o n c e r n e d wi th v i s i b i l i t y .
1755 −−>
1756 <!−−Workflow d a t a p a t t e r n s 2 6 and 2 7 a r e c o n c e r n e d wi th
1757 incoming and o u t g o i n g d a t a t r a n s f e r by v a l u e . Such s u p p o r t
1758 can be a c h i e v e d when d a t a p a c k a g e s a r e d e f i n e d f o r r e s p e c t i v e
1759 t a s k s and c a s e s . When d a t a needs t o be p a s s e d from one
1760 t a s k t o a n o t h e r by va lue , a mapping of a v a r i a b l e and v a l u e
1761 can f i r s t t a k e p l a c e t o a case package . S u b s e q u e n t l y t h e
1762 v a r i a b l e mapping t o a d e s t i n a t i o n t a s k can be r e p e a t e d
1763 from a case l e v e l . −−>
1764 <!−−Workflow d a t a p a t t e r n s 2 7 i s s u p p o r t e d by u s i n g a
1765 d a t a package on a case l e v e l from which v a r i a b l e s a r e
1766 r e t r i e v e d i n t o a d a t a package on a t a s k l e v e l . The d a t a
1767 wi th t h e i r v a l u e s a r e p l a c e d back i n t o t h e case d a t a
1768 package when t h e t a s k i s n e a r c o m p l e t i o n .−−>
1769 <!−−Workflow d a t a p a t t e r n s 2 5 and 2 6 a r e s u p p o r t e d wi th
1770 u s i n g t a g s p a s s i n g _ d e s t i n a t i o n and p a s s i n g _ o r i g i n .−−>
1771 <!−−Workflow d a t a p a t t e r n s 3 1 and 3 2 a r e s u p p o r t e d wi th
1772 u s i n g d e s t i n a t i o n _ p a c k a g e _ m a p p i n g and source_package_mapp ing .
1773 I n s t e a d o f p a s s i n g a d a t a package p e r se , p a r t s o f a d a t a
1774 package i n one p r o c e s s node a r e mapped on p r o p e r t i e s o f
1775 a n o t h e r d a t a package a t some o t h e r l o c a t i o n . −−>
1776 <!−−Workflow d a t a p a t t e r n s 3 3 t i l l 3 9 a r e c o v e r e d by
1777 b u s i n e s s r u l e s d a t a a r e n o t p a r t o f t h e d a t a _ t y p e t a g . −−>
1778 <!−−By u s i n g s u b _ l e v e l _ v i s i b i l i t y i n c o m b i n a t i o n wi th
1779 a d a t a _ p a c k a g e d e f i n i t i o n f o r a c o n t r o l −f low b l o c k e lement ,
1780 i t can be d e t e r m i n e d t o which lower l e v e l t h e d a t a _ p a c k a g e
1781 i s v i s i b l e . For example , i f a b l o c k has 5 lower l e v e l s o f
1782 r o u t i n g e l e m e n t s and l e v e l 4 i s d e f i n e d i n a
1783 s u b _ l e v e l _ v i s i b i l i t y tag , t h e n e l e m e n t s l o c a t e d on t h e
1784 l o w e s t l e v e l don ’ t have v i s i b i l i t y o f t h e d a t a package ,
1785 i . e . , t h e 5 t h l e v e l below t h e d e f i n i t i o n l e v e l o f t h e
1786 d a t a package i n q u e s t i o n . −−>
1787 <xs : complexType name=" d a t a _ t y p e ">
1788 <xs : sequence >
1789 <xs : e l e m e n t name=" d a t a _ f l o w _ d i r e c t i o n "
1790 t y p e =" d a t a _ f l o w _ d i r e c t i o n _ t y p e " / >
1791 <xs : e l e m e n t name=" w o r k f l o w _ v i s i b i l i t y _ r a n g e "
1792 t y p e =" xs : b o o l e a n " minOccurs ="0" / >
1793 <xs : e l e m e n t name=" c a s e _ v i s i b i l i t y " t y p e =" xs : b o o l e a n "

206 APPENDIX B. ESML SCHEMA

1794 minOccurs ="0" / >
1795 < xs : e l e m e n t name=" c a s e _ v i s i b i l i t y _ r a n g e "
1796 t y p e =" c a s e _ v i s i b i l i t y _ t y p e " minOccurs ="0" / >
1797 <xs : e l e m e n t name=" p a s s i n g _ d e s t i n a t i o n "
1798 t y p e =" p a s s i n g _ t y p e " minOccurs ="0" / >
1799 <xs : e l e m e n t name=" p a s s i n g _ o r i g i n "
1800 t y p e =" p a s s i n g _ t y p e " minOccurs ="0" / >
1801 <xs : e l e m e n t name=" c o n t r o l _ f l o w _ p a s s i n g "
1802 t y p e =" xs : b o o l e a n " minOccurs ="0" / >
1803 <xs : e l e m e n t name=" d e s t i n a t i o n _ p a c k a g e _ m a p p i n g "
1804 t y p e =" package_mapp ing_ type " minOccurs ="0"
1805 maxOccurs =" unbounded " / >
1806 <xs : e l e m e n t name=" sou rce_package_mapp ing "
1807 t y p e =" package_mapp ing_ type " minOccurs ="0"
1808 maxOccurs =" unbounded " / >
1809 <xs : e l e m e n t name=" s u b _ l e v e l _ v i s i b i l i t y "
1810 t y p e =" xs : i n t e g e r " minOccurs ="0" / >
1811 <xs : e l e m e n t name=" d a t a _ p a c k a g e _ r e f "
1812 t y p e =" xs : IDREF "/ >
1813 </ xs : sequence >
1814 </ xs : complexType >
1815 <!−− A scope c o m p r i s e s o f s e v e r a l a c t i v e nodes on a p r o c e s s
1816 t h a t s h a r e a s e t o f d a t a . I t c o v e r s workflow d a t a p a t t e r n 3
1817 −−>
1818 <xs : complexType name=" d a t a _ s c o p e _ t y p e ">
1819 <xs : complexConten t >
1820 <xs : e x t e n s i o n base =" d a t a _ t y p e ">
1821 <xs : sequence >
1822 <xs : e l e m e n t name=" p r o c e s s " t y p e =" xs : IDREF "/ >
1823 <xs : e l e m e n t name=" a c t i v e _ n o d e s "
1824 t y p e =" xs : IDREFS " maxOccurs =" unbounded " / >
1825 </ xs : sequence >
1826 </ xs : e x t e n s i o n >
1827 </ xs : complexConten t >
1828 </ xs : complexType >
1829 <!−− The f o l l o w i n g d e f i n i t i o n c r e a t e s p a c k a g e s o f d a t a t h a t
1830 may c o m p r i s e o f v a r i a b l e s t o g e t h e r wi th t h e i r o p t i o n a l v a l u e s
1831 and documents . −−>
1832 <xs : complexType name=" d a t a _ p a c k a g e _ t y p e ">
1833 <xs : sequence >
1834 <xs : e l e m e n t name=" p a c k a g e _ i d " t y p e =" xs : ID "/ >
1835 <xs : e l e m e n t name=" v a r _ s e c t i o n "
1836 t y p e =" v a r i a b l e s _ d e f _ s e c t i o n " minOccurs ="0" / >
1837 <xs : e l e m e n t name=" d o c u m e n t _ s e c t i o n "
1838 t y p e =" l i s t _ o f _ d o c u m e n t s " minOccurs ="0" / >
1839 </ xs : sequence >
1840 </ xs : complexType >
1841 <!−− Conjo inment p e r s p e c t i v e s u p p o r t i n g t y p e s . −−>
1842 <!−− < xs : complexType name=" c o n j o i n m e n t _ b a s e _ t y p e ">
1843 <xs : sequence >
1844 <xs : e l e m e n t name=" d e s t i n a t i o n _ U R I "
1845 t y p e =" xs : anyURI " / >
1846 </ xs : sequence >
1847 </ xs : complexType > −−>

207

1848 <xs : complexType name=" s e n d _ t a s k _ t y p e ">
1849 <xs : complexConten t >
1850 <xs : e x t e n s i o n base =" t a s k _ t y p e ">
1851 <xs : sequence >
1852 <xs : e l e m e n t name=" d e s t i n a t i o n _ U R I "
1853 t y p e =" xs : anyURI " minOccurs ="0" / >
1854 </ xs : sequence >
1855 </ xs : e x t e n s i o n >
1856 </ xs : complexConten t >
1857 </ xs : complexType >
1858 <xs : complexType name=" s e n d _ t r a n s i t i o n _ t y p e ">
1859 <xs : complexConten t >
1860 <xs : e x t e n s i o n base =" t r a n s i t i o n _ t y p e ">
1861 <xs : sequence >
1862 <xs : e l e m e n t name=" d e s t i n a t i o n _ U R I "
1863 t y p e =" xs : anyURI " / >
1864 </ xs : sequence >
1865 </ xs : e x t e n s i o n >
1866 </ xs : complexConten t >
1867 </ xs : complexType >
1868 <xs : complexType name=" s o u r c i n g _ s p h e r e _ t y p e ">
1869 <xs : sequence >
1870 <xs : e l e m e n t name=" s p h e r e _ i d " t y p e =" xs : ID "/ >
1871 <xs : e l e m e n t name=" owner " t y p e =" xs : IDREF"
1872 minOccurs ="0" / >
1873 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
1874 maxOccurs =" unbounded " / >
1875 <xs : e l e m e n t name=" d a t a " t y p e =" d a t a _ t y p e "
1876 minOccurs = " 0 " maxOccurs =" unbounded " / >
1877 <xs : e l e m e n t name=" l o c k _ c h a n g e "
1878 t y p e =" l o c k _ c h a n g e _ t y p e " minOccurs ="0" / >
1879 <xs : group r e f =" common_elements "
1880 maxOccurs =" unbounded " / >
1881 <xs : e l e m e n t name=" i n t e r f a c e _ i n "
1882 t y p e =" i n t e r f a c e _ t y p e " / >
1883 <xs : e l e m e n t name=" i n t e r f a c e _ o u t "
1884 t y p e =" i n t e r f a c e _ t y p e " / >
1885 <!−− s h o u l d r e f e r t o a p a r t y −−>
1886 </ xs : sequence >
1887 <!−− When m u l t i− l a t e r a l c o n t r a c t i n g t a k e s p l a c e ,
1888 t h e consumer p r o c e s s c o n t a i n s m u l t i p l e S o u r c i n g
1889 s p h e r e s . Each S o u r c i n g s p h e r e i n t h e consumer
1890 p r o c e s s i s complemented by a s e r v i c e p r o v i d i n g
1891 p r o c e s s . In t h e l a t t e r c a s e s p h e r e c o m p r i s e s t h e
1892 e n t i r e s e r v i c e −p r o v i s i o n p r o c e s s . −−>
1893 </ xs : complexType >
1894 <xs : complexType name=" a n y _ s e q u e n c e _ t y p e ">
1895 <xs : sequence >
1896 <xs : group r e f =" common_elements "
1897 maxOccurs =" unbounded " / >
1898 </ xs : sequence >
1899 <xs : a t t r i b u t e G r o u p
1900 r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1901 <xs : a t t r i b u t e G r o u p

208 APPENDIX B. ESML SCHEMA

1902 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1903 </ xs : complexType >
1904 <xs : complexType name=" c h o i c e _ t y p e ">
1905 <xs : sequence >
1906 <xs : group r e f =" common_elements "
1907 maxOccurs =" unbounded " / >
1908 </ xs : sequence >
1909 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1910 <xs : a t t r i b u t e G r o u p
1911 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1912 </ xs : complexType >
1913 <xs : complexType name=" c o n d i t i o n _ t y p e ">
1914 <xs : c h o i c e minOccurs = " 0 " maxOccurs =" unbounded ">
1915 <xs : e l e m e n t name=" t r u e _ b r a n c h "
1916 t y p e =" t r u e _ b r a n c h _ t y p e " / >
1917 <xs : e l e m e n t name=" f a l s e _ b r a n c h "
1918 t y p e =" f a l s e _ b r a n c h _ t y p e " / >
1919 </ xs : cho i ce >
1920 <xs : a t t r i b u t e name=" c o n d i t i o n "
1921 t y p e =" xs : s t r i n g " use =" r e q u i r e d " / >
1922 <xs : a t t r i b u t e name=" d e s c r i p t i o n "
1923 t y p e =" xs : s t r i n g " / >
1924 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1925 <xs : a t t r i b u t e G r o u p
1926 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1927 </ xs : complexType >
1928 <xs : complexType name=" f a l s e _ b r a n c h _ t y p e ">
1929 <xs : sequence >
1930 <xs : group r e f =" common_elements " / >
1931 </ xs : sequence >
1932 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1933 <xs : a t t r i b u t e G r o u p
1934 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1935 </ xs : complexType >
1936 <xs : complexType name=" p a r a l l e l _ n o _ s y n c _ t y p e ">
1937 <xs : sequence >
1938 <xs : group r e f =" common_elements "
1939 maxOccurs =" unbounded " / >
1940 </ xs : sequence >
1941 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1942 <xs : a t t r i b u t e G r o u p
1943 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1944 </ xs : complexType >
1945 <xs : complexType name=" p a r a l l e l _ p a r t _ s y n c _ t y p e ">
1946 <xs : sequence >
1947 <xs : group r e f =" common_elements "
1948 maxOccurs =" unbounded " / >
1949 </ xs : sequence >
1950 <xs : a t t r i b u t e name=" number " t y p e =" xs :NMTOKEN"
1951 use =" r e q u i r e d " / >
1952 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1953 <xs : a t t r i b u t e G r o u p
1954 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1955 </ xs : complexType >

209

1956 <xs : complexType name=" p a r a l l e l _ p a r t _ s y n c _ c a n c e l _ t y p e ">
1957 <xs : sequence >
1958 <xs : group r e f =" common_elements "
1959 maxOccurs =" unbounded " / >
1960 </ xs : sequence >
1961 <xs : a t t r i b u t e name=" number " t y p e =" xs :NMTOKEN"
1962 use =" r e q u i r e d " / >
1963 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1964 <xs : a t t r i b u t e G r o u p
1965 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1966 </ xs : complexType >
1967 <xs : complexType name=" p a r a l l e l _ s y n c _ t y p e ">
1968 <xs : sequence >
1969 <xs : group r e f =" common_elements "
1970 maxOccurs =" unbounded " / >
1971 </ xs : sequence >
1972 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1973 <xs : a t t r i b u t e G r o u p
1974 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1975 </ xs : complexType >
1976 <xs : complexType name=" r e s t r i c t e d _ p a r a l l e l _ s y n c _ t y p e ">
1977 <xs : sequence >
1978 <xs : group r e f =" common_elements "
1979 maxOccurs =" unbounded " / >
1980 </ xs : sequence >
1981 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1982 <xs : a t t r i b u t e G r o u p
1983 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1984 </ xs : complexType >
1985 <xs : complexType name=" s e q u e n c e _ t y p e ">
1986 <xs : sequence >
1987 <xs : group r e f =" common_elements "
1988 maxOccurs =" unbounded " / >
1989 </ xs : sequence >
1990 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
1991 <xs : a t t r i b u t e G r o u p
1992 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
1993 </ xs : complexType >
1994 <!−− d a t a _ e x i s t e n c e _ p r e c o n d i t i o n s u p p o r t s workflow d a t a
1995 p a t t e r n 34.−−>
1996 <!−− d a t a _ e x i s t e n c e _ p o s t c o n d i t i o n s u p p o r t s workflow d a t a
1997 p a t t e r n 36.−−>
1998 <!−− d a t a _ v a l u e _ p r e c o n d i t i o n s u p p o r t s workflow d a t a p a t t e r n
1999 35.−−>
2000 <!−− d a t a _ v a l u e _ p o s t c o n d i t i o n s u p p o r t s workflow d a t a p a t t e r n
2001 37.−−>
2002 <xs : complexType name=" t r a n s i t i o n _ t y p e ">
2003 <xs : sequence >
2004 <xs : e l e m e n t name=" e v e n t " t y p e =" e v e n t _ t y p e "
2005 minOccurs = " 0 " maxOccurs =" unbounded " / >
2006 <xs : e l e m e n t name=" d a t a " t y p e =" d a t a _ t y p e "
2007 minOccurs = " 0 " maxOccurs =" unbounded " / >
2008 <xs : e l e m e n t name=" l o c k _ c h a n g e "
2009 t y p e =" l o c k _ c h a n g e _ t y p e " minOccurs ="0" / >

210 APPENDIX B. ESML SCHEMA

2010 <xs : e l e m e n t name=" a p p l i e d _ r u l e s " t y p e =" xs : IDREFS"
2011 minOccurs = " 0 " maxOccurs =" unbounded " / >
2012 <xs : e l e m e n t name=" d a t a _ e x i s t e n c e _ p r e c o n d i t i o n "
2013 t y p e =" d a t a _ e x i s t e n c e _ c o n d i t i o n _ t y p e " minOccurs ="0"
2014 maxOccurs =" unbounded " / >
2015 <xs : e l e m e n t name=" d a t a _ v a l u e _ p r e c o n d i t i o n "
2016 t y p e =" d a t a _ v a l u e _ c o n d i t i o n _ t y p e " minOccurs ="0"
2017 maxOccurs =" unbounded " / >
2018 <xs : e l e m e n t name=" d a t a _ e x i s t e n c e _ p o s t c o n d i t i o n "
2019 t y p e =" d a t a _ e x i s t e n c e _ c o n d i t i o n _ t y p e " minOccurs ="0"
2020 maxOccurs =" unbounded " / >
2021 <xs : e l e m e n t name=" d a t a _ v a l u e _ p o s t c o n d i t i o n "
2022 t y p e =" d a t a _ v a l u e _ c o n d i t i o n _ t y p e " minOccurs ="0"
2023 maxOccurs =" unbounded " / >
2024 <!−− S u p p o r t o f workflow d a t a p a t t e r n 1 . Data b l o c k
2025 v i s i b i l i t y f o r t h e t a s k l e v e l .−−>
2026 <!−− t h i s t a g c o v e r s p a t t e r n 1 o f t h e workflow d a t a
2027 p a t t e r n s . Tha t way d a t a v i s i b i l i t y i s r e a l i z e d on a
2028 t a s k l e v e l . −−>
2029 </ xs : sequence >
2030 <xs : a t t r i b u t e name=" a c t i v e _ n o d e _ i d " t y p e =" xs : ID "
2031 use =" r e q u i r e d " / >
2032 <xs : a t t r i b u t e name="name " t y p e =" xs : s t r i n g " use =" r e q u i r e d " / >
2033 <xs : a t t r i b u t e name=" a d d r e s s " t y p e =" xs : s t r i n g "
2034 use =" o p t i o n a l " / >
2035 </ xs : complexType >
2036 <!−− i n t e r f a c e _ t y p e i s r e l e v a n t f o r d e f i n i n g t h e i n t e r f a c e s
2037 f o r s u p p o r t i n g a b l a c k box p a t t e r n −−>
2038 <xs : complexType name=" i n t e r f a c e _ t y p e ">
2039 <xs : complexConten t >
2040 <xs : e x t e n s i o n base =" t r a n s i t i o n _ t y p e ">
2041 </ xs : e x t e n s i o n >
2042 </ xs : complexConten t >
2043 </ xs : complexType >
2044 <xs : complexType name=" t a s k _ t y p e ">
2045 <xs : complexConten t >
2046 <xs : e x t e n s i o n base =" t r a n s i t i o n _ t y p e ">
2047 <xs : a t t r i b u t e name=" owner " t y p e =" xs : IDREF"
2048 use =" o p t i o n a l " / >
2049 <xs : a t t r i b u t e name=" e x e c u t o r "
2050 t y p e =" xs : IDREF " use =" o p t i o n a l " / >
2051 <xs : a t t r i b u t e name=" r e s p o n s i b l e "
2052 t y p e =" xs : IDREF " use =" o p t i o n a l " / >
2053 <xs : a t t r i b u t e name=" n e c e s s a r y _ r e s o u r c e s "
2054 t y p e =" xs : IDREF " use =" o p t i o n a l " / >
2055 <xs : a t t r i b u t e name=" r e s u l t " t y p e =" xs : s t r i n g " / >
2056 <xs : a t t r i b u t e name=" n o t i f y " t y p e =" xs : s t r i n g " / >
2057 <xs : a t t r i b u t e name=" e n a b l e d " t y p e =" s t a t e _ t y p e " / >
2058 <xs : a t t r i b u t e name=" s t a r t _ d a t e "
2059 t y p e =" xs : d a t e " use =" o p t i o n a l " / >
2060 <xs : a t t r i b u t e name=" s t a r t _ t i m e "
2061 t y p e =" xs : t ime " use =" o p t i o n a l " / >
2062 <xs : a t t r i b u t e name=" e n d _ d a t e " t y p e =" xs : d a t e "
2063 use =" o p t i o n a l " / >

211

2064 <xs : a t t r i b u t e name=" end_ t ime " t y p e =" xs : t ime "
2065 use =" o p t i o n a l " / >
2066 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2067 <xs : a t t r i b u t e G r o u p
2068 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2069 </ xs : e x t e n s i o n >
2070 </ xs : complexConten t >
2071 </ xs : complexType >
2072 <xs : complexType name=" t e r m i n a t e _ t y p e " / >
2073 <xs : complexType name=" t i m e o u t _ t y p e ">
2074 <xs : sequence >
2075 <xs : group r e f =" common_elements " minOccurs ="0" / >
2076 </ xs : sequence >
2077 <xs : a t t r i b u t e name=" t ime " t y p e =" xs : s t r i n g " use =" r e q u i r e d " / >
2078 <xs : a t t r i b u t e name=" t y p e " d e f a u l t =" a b s o l u t e ">
2079 <xs : s impleType >
2080 <xs : r e s t r i c t i o n base =" xs :NMTOKEN">
2081 <xs : e n u m e r a t i o n v a l u e =" r e l a t i v e " / >
2082 <xs : e n u m e r a t i o n v a l u e =" s _ r e l a t i v e " / >
2083 <xs : e n u m e r a t i o n v a l u e =" a b s o l u t e " / >
2084 </ xs : r e s t r i c t i o n >
2085 </ xs : s impleType >
2086 </ xs : a t t r i b u t e >
2087 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2088 <xs : a t t r i b u t e G r o u p r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2089 </ xs : complexType >
2090 <xs : complexType name=" t r u e _ b r a n c h _ t y p e ">
2091 <xs : sequence >
2092 <xs : group r e f =" common_elements " / >
2093 </ xs : sequence >
2094 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2095 <xs : a t t r i b u t e G r o u p r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2096 </ xs : complexType >
2097 <xs : complexType name=" w a i t _ a l l _ t y p e ">
2098 <xs : c h o i c e maxOccurs =" unbounded ">
2099 <xs : e l e m e n t name=" e v e n t _ r e f " t y p e =" xs : IDREF "/ >
2100 <xs : e l e m e n t name=" t i m e o u t " t y p e =" t i m e o u t _ t y p e " / >
2101 </ xs : cho i ce >
2102 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2103 <xs : a t t r i b u t e G r o u p r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2104 </ xs : complexType >
2105 <xs : complexType name=" w a i t _ a n y _ t y p e ">
2106 <xs : c h o i c e maxOccurs =" unbounded ">
2107 <xs : e l e m e n t name=" e v e n t _ r e f " t y p e =" xs : IDREF "/ >
2108 <xs : e l e m e n t name=" t i m e o u t " t y p e =" t i m e o u t _ t y p e " / >
2109 </ xs : cho i ce >
2110 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2111 <xs : a t t r i b u t e G r o u p r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2112 </ xs : complexType >
2113 <xs : complexType name=" w h i l e _ d o _ t y p e ">
2114 <xs : sequence >
2115 <xs : group r e f =" common_elements " / >
2116 </ xs : sequence >
2117 <xs : a t t r i b u t e name=" c o n d i t i o n " t y p e =" xs : s t r i n g "

212 APPENDIX B. ESML SCHEMA

2118 use =" r e q u i r e d " / >
2119 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2120 <xs : a t t r i b u t e G r o u p
2121 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2122 </ xs : complexType >
2123 <xs : complexType name=" r o u t e ">
2124 <xs : sequence >
2125 <xs : group r e f =" common_elements " / >
2126 <xs : e l e m e n t name=" d a t a _ s c o p e "
2127 t y p e =" d a t a _ s c o p e _ t y p e " minOccurs ="0"
2128 maxOccurs =" unbounded " / >
2129 <!−− A Data_scope c o m p r i s e s o f s e v e r a l a c t i v e
2130 nodes , i . e . , t a s k , t r a n s i t i o n , and a l l a c t i v e
2131 c o n j o i n m e n t nodes . D a t a _ s c o p e s c o v e r workflow
2132 d a t a p a t t e r n 3.−−>
2133 </ xs : sequence >
2134 <xs : a t t r i b u t e name=" tag_name " t y p e =" xs : s t r i n g "
2135 use =" r e q u i r e d " / >
2136 <xs : a t t r i b u t e name=" p r o c e s s _ i d " t y p e =" xs : ID "
2137 use =" r e q u i r e d " / >
2138 <xs : a t t r i b u t e name=" e n a b l e d " t y p e =" s t a t e _ t y p e " / >
2139 <xs : a t t r i b u t e name=" c r e a t e d _ b y " t y p e =" xs : s t r i n g " / >
2140 <xs : a t t r i b u t e name=" d a t e " t y p e =" xs : s t r i n g " / >
2141 <xs : a t t r i b u t e G r o u p r e f =" l o g i s t i c _ a t t r i b u t e s " / >
2142 <xs : a t t r i b u t e G r o u p
2143 r e f =" c o n t e x t u a l _ i n f o r m a t i o n _ a t t r i b u t e s " / >
2144 <!−− C o n t r o l ove r t h e p r o c e s s and m o n i t o r i n g r i g h t s
2145 and o b l i g a t i o n s a r e s p e c i f i e d t h r o u g h d e o n t i c
2146 a s s i g n m e n t s and r e a c t i o n r u l e s (e x e c u t i v e f o r
2147 m o n i t o r i n g and c o p i e r r e a c t i o n r u l e s f o r c o n t r o l
2148 r i g h t s) −−>
2149 <!−− e x t e n s i o n −−>
2150 </ xs : complexType >
2151 <!−− PART 4 Syntax −−>
2152 <!−− In t h i s p a r t , we p r o v i d e t h e s y n t a x d e f i n i t i o n s
2153 of eSML , i . e . , t h e s t r u c t u r e o f eSML . F i r s t , we
2154 p r o v i d e t h r e e b a s i c s t r u c t u r e s , i . e . , t h e V a r i a b l e
2155 d e f i n i t i o n s e c t i o n , Rule d e f i n i t i o n s e c t i o n , and P r o c e s s
2156 d e f i n i t i o n s e c t i o n . In each of t h e s e s e c t i o n s can
2157 r e s p e c t i v e l y be d e f i n e d d a t a c o n s t r u c t s , r u l e c o n s t r u c t s ,
2158 and p r o c e s s c o n s t r u c t s . −−>
2159 <xs : complexType name=" v a r i a b l e s _ d e f _ s e c t i o n ">
2160 <xs : s e q u e n c e maxOccurs =" unbounded ">
2161 <xs : cho i ce >
2162 <xs : e l e m e n t name=" s t r i n g _ v a r "
2163 t y p e =" s t r i n g _ t y p e " / >
2164 <xs : e l e m e n t name=" r e a l _ v a r "
2165 t y p e =" r e a l _ t y p e " / >
2166 <xs : e l e m e n t name=" i n t e g e r _ v a r "
2167 t y p e =" i n t e g e r _ t y p e " / >
2168 <xs : e l e m e n t name=" b o o l e a n _ v a r "
2169 t y p e =" b o o l e a n _ t y p e " / >
2170 <xs : e l e m e n t name=" d a t e _ v a r "
2171 t y p e =" d a t e _ t y p e " / >

213

2172 <xs : e l e m e n t name=" t i m e _ v a r "
2173 t y p e =" t i m e _ t y p e " / >
2174 <xs : e l e m e n t name=" e v e n t _ v a r "
2175 t y p e =" e v e n t _ t y p e " / >
2176 <xs : e l e m e n t name=" money_var "
2177 t y p e =" money_type " / >
2178 <xs : e l e m e n t
2179 name=" e x t e r n a l _ r e s o u r c e _ r e f e r e n c e _ v a r "
2180 t y p e =" e x t e r n a l _ r e s o u r c e _ r e f e r e n c e _ t y p e " / >
2181 <xs : e l e m e n t name=" l i s t _ o f _ e v e n t s _ v a r "
2182 t y p e =" l i s t _ o f _ e v e n t s _ t y p e " / >
2183 <xs : e l e m e n t name=" l i s t _ o f _ s t r i n g s _ v a r "
2184 t y p e =" l i s t _ o f _ s t r i n g s _ t y p e " / >
2185 <xs : any / >
2186 <!−− < xs : e l e m e n t
2187 name=" i n t e r n a l _ r e s o u r c e _ r e f e r e n c e _ v a r "
2188 t y p e =" i n t e r n a l _ r e s o u r c e _ r e f e r e n c e _ t y p e " / >
2189 −−>
2190 <!−−S u p p o r t s workflow d a t a p a t t e r n 7 .
2191 Thi s way e n v i r o n m e n t d a t a can be b r o u g h t
2192 i n t o a d a t a package . −−>
2193 <!−− R e q u i r e d t o a l l o w t h e d e f i n i t i o n o f
2194 use r−d e f i n e d complex t y p e s and l i s t s −−>
2195 </ xs : cho i ce >
2196 <xs : e l e m e n t name=" l o c k _ d e f i n i t i o n "
2197 t y p e =" l o c k _ d e f i n i t i o n _ t y p e " minOccurs ="0" / >
2198 <!−− For d a t a d e f i n i t i o n s o f a d a t a package
2199 an i n i t i a l l o c k can be p l a c e d . −−>
2200 </ xs : sequence >
2201 </ xs : complexType >
2202 <xs : complexType name=" r u l e _ d e f _ s e c t i o n ">
2203 <xs : s e q u e n c e maxOccurs =" unbounded ">
2204 <xs : cho i ce >
2205 <xs : e l e m e n t name=" s t a t e _ c o n s t r a i n t _ r u l e "
2206 t y p e =" s t a t e _ c o n s t r a i n t _ r u l e _ t y p e "
2207 minOccurs = " 0 " maxOccurs =" unbounded " / >
2208 <xs : e l e m e n t name=" d y n a m i c _ c o n s t r a i n t _ r u l e "
2209 t y p e =" d y n a m i c _ c o n s t r a i n t _ r u l e _ t y p e "
2210 minOccurs = " 0 " maxOccurs =" unbounded " / >
2211 <xs : e l e m e n t name=" c o m p u t a t i o n a l _ d e r i v a t i o n _ r u l e "
2212 t y p e =" c o m p u t a t i o n a l _ d e r i v a t i o n _ r u l e _ t y p e "
2213 minOccurs = " 0 " maxOccurs =" unbounded " / >
2214 <xs : e l e m e n t name=" l i n g u i s t i c _ d e r i v a t i o n _ r u l e "
2215 t y p e =" l i n g u i s t i c _ d e r i v a t i o n _ r u l e _ t y p e "
2216 minOccurs = " 0 " maxOccurs =" unbounded " / >
2217 <xs : e l e m e n t name=" r e a c t i o n _ r u l e "
2218 t y p e =" r e a c t i o n _ r u l e _ t y p e " minOccurs ="0"
2219 maxOccurs =" unbounded " / >
2220 <xs : e l e m e n t name=" f r e e _ t e x t _ r u l e "
2221 t y p e =" f r e e _ t e x t _ r u l e _ t y p e " minOccurs ="0"
2222 maxOccurs =" unbounded " / >
2223 </ xs : cho i ce >
2224 </ xs : sequence >
2225 </ xs : complexType >

214 APPENDIX B. ESML SCHEMA

2226 <!−− Next , t h e m o n i t o r a b i l i t y p a t t e r n s a r e d e f i n e d .−−>
2227 <xs : complexType name=" s i n k _ t y p e ">
2228 <xs : s e q u e n c e maxOccurs =" unbounded ">
2229 <xs : e l e m e n t name=" p r o v i d e r _ s p h e r e "
2230 t y p e =" xs : IDREF "/ >
2231 <xs : e l e m e n t name=" p r o v i d e r _ a c t i v e _ n o d e "
2232 t y p e =" xs : IDREF "/ >
2233 </ xs : sequence >
2234 </ xs : complexType >
2235 <xs : complexType name=" l i n k _ p r o p e r t i e s ">
2236 <xs : sequence >
2237 <xs : e l e m e n t name=" c o n s u m e r _ s p h e r e "
2238 t y p e =" xs : IDREF "/ >
2239 <xs : e l e m e n t name=" c o n s u m e r _ a c t i v e _ n o d e "
2240 t y p e =" xs : IDREF "/ >
2241 <xs : e l e m e n t name=" p r o v i d e r "
2242 t y p e =" s i n k _ t y p e " / >
2243 </ xs : sequence >
2244 </ xs : complexType >
2245 <xs : complexType name=" e n a c t m e n t _ p r o p e r t i e s ">
2246 <xs : sequence >
2247 <xs : e l e m e n t name=" c o n s u m e r _ s p h e r e "
2248 t y p e =" xs : IDREF "/ >
2249 <xs : e l e m e n t name=" p r o v i d e r _ s p h e r e "
2250 t y p e =" xs : IDREF "/ >
2251 </ xs : sequence >
2252 </ xs : complexType >
2253 <xs : complexType name=" l i f e c y c l e _ l i n k _ p r o p e r t i e s ">
2254 <xs : sequence >
2255 <xs : e l e m e n t name=" c o n s u m e r _ s p h e r e "
2256 t y p e =" xs : IDREF "/ >
2257 <xs : e l e m e n t name=" c o n s u m e r _ a c t i v e _ n o d e "
2258 t y p e =" xs : IDREF "/ >
2259 <xs : e l e m e n t name=" c o n s u m e r _ l i f e c y c l e _ n o d e "
2260 t y p e =" xs : IDREF "/ >
2261 <xs : e l e m e n t name=" p r o v i d e r _ s p h e r e "
2262 t y p e =" xs : IDREF "/ >
2263 <xs : e l e m e n t name=" p r o v i d e r _ a c t i v e _ n o d e "
2264 t y p e =" xs : IDREF "/ >
2265 <xs : e l e m e n t name=" p r o v i d e r _ l i f e c y c l e _ n o d e "
2266 t y p e =" xs : IDREF "/ >
2267 </ xs : sequence >
2268 </ xs : complexType >
2269 <xs : complexType name=" l i f e c y c l e _ p o l l i n g _ p a t t e r n s ">
2270 <xs : s e q u e n c e maxOccurs =" unbounded ">
2271 <xs : cho i ce >
2272 <xs : e l e m e n t
2273 name=" l i f e c y c l e _ t r a n s i t i o n _ p o l l i n g "
2274 t y p e =" l i f e c y c l e _ l i n k _ p r o p e r t i e s "
2275 minOccurs = " 0 " maxOccurs =" unbounded " / >
2276 <xs : e l e m e n t
2277 name=" l i f e c y c l e _ s t a t e _ p o l l i n g "
2278 t y p e =" l i f e c y c l e _ l i n k _ p r o p e r t i e s "
2279 minOccurs = " 0 " maxOccurs =" unbounded " / >

215

2280 </ xs : cho i ce >
2281 </ xs : sequence >
2282 </ xs : complexType >
2283 <xs : complexType name=" l i f e c y c l e _ m e s s a g i n g _ p a t t e r n s ">
2284 <xs : s e q u e n c e maxOccurs =" unbounded ">
2285 <xs : cho i ce >
2286 <xs : e l e m e n t
2287 name=" l i f e c y c l e _ t r a n s i t i o n _ m e s s a g i n g "
2288 t y p e =" l i f e c y c l e _ l i n k _ p r o p e r t i e s "
2289 minOccurs = " 0 " maxOccurs =" unbounded " / >
2290 <xs : e l e m e n t
2291 name=" l i f e c y c l e _ s t a t e _ m e s s a g i n g "
2292 t y p e =" l i f e c y c l e _ l i n k _ p r o p e r t i e s "
2293 minOccurs = " 0 " maxOccurs =" unbounded " / >
2294 </ xs : cho i ce >
2295 </ xs : sequence >
2296 </ xs : complexType >
2297 <xs : complexType name=" p o l l i n g _ p a t t e r n s ">
2298 <xs : c h o i c e maxOccurs =" unbounded ">
2299 <xs : e l e m e n t name=" e n a c t m e n t _ t a k e o v e r "
2300 t y p e =" e n a c t m e n t _ p r o p e r t i e s " minOccurs ="0"
2301 maxOccurs =" unbounded " / >
2302 <xs : e l e m e n t name=" t e r m i n a t i o n _ t a k e o v e r "
2303 t y p e =" e n a c t m e n t _ p r o p e r t i e s " minOccurs ="0"
2304 maxOccurs =" unbounded " / >
2305 <xs : e l e m e n t name=" t r a n s i t i o n _ p o l l i n g "
2306 t y p e =" l i n k _ p r o p e r t i e s " minOccurs ="0"
2307 maxOccurs =" unbounded " / >
2308 <xs : e l e m e n t name=" l i f e c y c l e _ p o l l i n g "
2309 t y p e =" l i f e c y c l e _ p o l l i n g _ p a t t e r n s "
2310 minOccurs = " 0 " maxOccurs =" unbounded " / >
2311 </ xs : cho i ce >
2312 </ xs : complexType >
2313 <xs : complexType name=" m e s s a g i n g _ p a t t e r n s ">
2314 <xs : s e q u e n c e maxOccurs =" unbounded ">
2315 <xs : cho i ce >
2316 <xs : e l e m e n t name=" e n a c t m e n t _ p r o p a g a t i o n "
2317 t y p e =" e n a c t m e n t _ p r o p e r t i e s " minOccurs ="0"
2318 maxOccurs =" unbounded " / >
2319 <xs : e l e m e n t name=" t e r m i n a t i o n _ p r o p a g a t i o n "
2320 t y p e =" e n a c t m e n t _ p r o p e r t i e s " minOccurs ="0"
2321 maxOccurs =" unbounded " / >
2322 <xs : e l e m e n t name=" t r a n s i t i o n _ m e s s a g i n g "
2323 t y p e =" l i n k _ p r o p e r t i e s " minOccurs ="0"
2324 maxOccurs =" unbounded " / >
2325 <xs : e l e m e n t name=" l i f e c y c l e _ m e s s a g i n g "
2326 t y p e =" l i f e c y c l e _ m e s s a g i n g _ p a t t e r n s "
2327 minOccurs = " 0 " maxOccurs =" unbounded " / >
2328 </ xs : cho i ce >
2329 </ xs : sequence >
2330 </ xs : complexType >
2331 <xs : complexType name=" m o n i t o r a b i l i t y _ p a t t e r n s ">
2332 <xs : sequence >
2333 <xs : e l e m e n t name=" p o l l i n g " t y p e =" p o l l i n g _ p a t t e r n s "

216 APPENDIX B. ESML SCHEMA

2334 minOccurs ="0" / >
2335 <xs : e l e m e n t name=" messag ing "
2336 t y p e =" m e s s a g i n g _ p a t t e r n s " minOccurs ="0" / >
2337 </ xs : sequence >
2338 </ xs : complexType >
2339 <!−− The d e f i n i t i o n o f l i f e c y c l e s i s g i v e n . L i f e c y c l e s may
2340 be p r e s e n t f o r a p r o c e s s l e v e l , o r on a t a s k l e v e l . A l i f e
2341 c y c l e has c o n t r o l −f low t o o .−−>
2342 <xs : complexType name=" l i f e c y c l e _ n o d e _ t y p e ">
2343 <xs : a t t r i b u t e name="name " t y p e =" xs : ID " use =" r e q u i r e d " / >
2344 <xs : a t t r i b u t e name=" tag_name " t y p e =" xs : s t r i n g " u
2345 se =" r e q u i r e d " / >
2346 </ xs : complexType >
2347 <xs : complexType name=" l i f e c y c l e _ s e q u e n c e _ t y p e ">
2348 <xs : sequence >
2349 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s "
2350 maxOccurs =" unbounded " / >
2351 </ xs : sequence >
2352 </ xs : complexType >
2353 <!−− A n e s t i n g s t a t e c o n t a i n s f u r t h e r l i f e −c y c l e nodes . −−>
2354 <xs : complexType name=" n e s t i n g _ s t a t e _ t y p e ">
2355 <xs : sequence >
2356 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s "
2357 maxOccurs =" unbounded " / >
2358 </ xs : sequence >
2359 </ xs : complexType >
2360 <xs : complexType name=" l i f e c y c l e _ p a r a l l e l _ s y n c _ t y p e ">
2361 <xs : sequence >
2362 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s "
2363 maxOccurs =" unbounded " / >
2364 </ xs : sequence >
2365 </ xs : complexType >
2366 <xs : complexType name=" l i f e c y c l e _ p a r a l l e l _ n o _ s y n c _ t y p e ">
2367 <xs : sequence >
2368 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s "
2369 maxOccurs =" unbounded " / >
2370 </ xs : sequence >
2371 </ xs : complexType >
2372 <xs : complexType name=" l i f e c y c l e _ p a r a l l e l _ p a r t _ s y n c _ t y p e ">
2373 <xs : sequence >
2374 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s "
2375 maxOccurs =" unbounded " / >
2376 </ xs : sequence >
2377 <xs : a t t r i b u t e name=" number " t y p e =" xs :NMTOKEN"
2378 use =" r e q u i r e d " / >
2379 </ xs : complexType >
2380 <xs : complexType
2381 name=" l i f e c y c l e _ p a r a l l e l _ p a r t _ s y n c _ c a n c e l _ t y p e ">
2382 <xs : sequence >
2383 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s "
2384 maxOccurs =" unbounded " / >
2385 </ xs : sequence >
2386 <xs : a t t r i b u t e name=" number " t y p e =" xs :NMTOKEN"
2387 use =" r e q u i r e d " / >

217

2388 </ xs : complexType >
2389 <!−− Below , a l l e l e m e n t s o f a l i f e c y c l e a r e grouped
2390 t o g e t h e r . −−>
2391 <xs : group name=" l i f e c y c l e _ e l e m e n t s ">
2392 <xs : cho i ce >
2393 <xs : e l e m e n t name=" t r a n s i t i o n "
2394 t y p e =" l i f e c y c l e _ n o d e _ t y p e " / >
2395 <xs : e l e m e n t name=" n e s t i n g _ s t a t e "
2396 t y p e =" n e s t i n g _ s t a t e _ t y p e " / >
2397 <xs : e l e m e n t name=" a t o m i c _ s t a t e "
2398 t y p e =" l i f e c y c l e _ n o d e _ t y p e " / >
2399 <xs : e l e m e n t name=" l i f e c y c l e _ s e q u e n c e "
2400 t y p e =" l i f e c y c l e _ s e q u e n c e _ t y p e " / >
2401 <xs : e l e m e n t name=" l i f e c y c l e _ p a r a l l e l _ s y n c "
2402 t y p e =" l i f e c y c l e _ p a r a l l e l _ s y n c _ t y p e " / >
2403 <xs : e l e m e n t name=" l i f e c y c l e _ p a r a l l e l _ n o _ s y n c "
2404 t y p e =" l i f e c y c l e _ p a r a l l e l _ n o _ s y n c _ t y p e " / >
2405 <xs : e l e m e n t name=" l i f e c y c l e _ p a r a l l e l _ p a r t _ s y n c "
2406 t y p e =" l i f e c y c l e _ p a r a l l e l _ p a r t _ s y n c _ t y p e " / >
2407 <xs : e l e m e n t name=" l i f e c y c l e _ p a r a l l e l _ p a r t _ s y n c _ c a n c e l "
2408 t y p e =" l i f e c y c l e _ p a r a l l e l _ p a r t _ s y n c _ c a n c e l _ t y p e " / >
2409 </ xs : cho i ce >
2410 </ xs : group >
2411 <xs : complexType name=" l i f e c y c l e _ d e t a i l s ">
2412 <xs : sequence >
2413 <xs : group r e f =" l i f e c y c l e _ e l e m e n t s " / >
2414 </ xs : sequence >
2415 <xs : a t t r i b u t e name=" p r o c e s s _ i d " t y p e =" xs : IDREF "/ >
2416 </ xs : complexType >
2417 <xs : complexType name=" l i f e c y c l e s ">
2418 <xs : sequence >
2419 <xs : e l e m e n t name=" p r o c e s s _ l i f e c y c l e "
2420 t y p e =" l i f e c y c l e _ d e t a i l s " minOccurs ="0"
2421 maxOccurs =" unbounded " / >
2422 <xs : e l e m e n t name=" a c t i v e _ n o d e _ l i f e c y c l e "
2423 t y p e =" l i f e c y c l e _ d e t a i l s " minOccurs ="0"
2424 maxOccurs =" unbounded " / >
2425 </ xs : sequence >
2426 </ xs : complexType >
2427 <!−− Next , t h e mapping of l i f e −c y c l e s t a g e s i s d e f i n e d −−>
2428 <xs : complexType name=" l i f e c y c l e _ m a p p i n g _ d e t a i l s ">
2429 <xs : complexConten t >
2430 <xs : e x t e n s i o n base =" l i n k _ p r o p e r t i e s ">
2431 <xs : a t t r i b u t e name=" mapping_name "
2432 t y p e =" xs : ID " use =" r e q u i r e d " / >
2433 <xs : a t t r i b u t e name=" node_ type ">
2434 <xs : s impleType >
2435 <xs : r e s t r i c t i o n base =" xs : s t r i n g ">
2436 <xs : p a t t e r n
2437 v a l u e =" l i f e c y c l e _ t r a n s i t i o n |
2438 l i f e c y c l e _ s t a t e " / >
2439 </ xs : r e s t r i c t i o n >
2440 </ xs : s impleType >
2441 </ xs : a t t r i b u t e >

218 APPENDIX B. ESML SCHEMA

2442 </ xs : e x t e n s i o n >
2443 </ xs : complexConten t >
2444 </ xs : complexType >
2445 <xs : complexType name=" m a p p i n g _ d e t a i l s ">
2446 <xs : sequence >
2447 <xs : e l e m e n t name=" p r o c e s s _ l i f e c y c l e _ m a p p i n g "
2448 t y p e =" l i f e c y c l e _ m a p p i n g _ d e t a i l s " minOccurs ="0"
2449 maxOccurs =" unbounded " / >
2450 <xs : e l e m e n t name=" a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g "
2451 t y p e =" l i f e c y c l e _ m a p p i n g _ d e t a i l s " minOccurs ="0"
2452 maxOccurs =" unbounded " / >
2453 </ xs : sequence >
2454 </ xs : complexType >
2455 <xs : complexType name=" p r o v i d e r _ t y p e ">
2456 <xs : s e q u e n c e maxOccurs =" unbounded ">
2457 <xs : e l e m e n t name=" p r o v i d e r _ p r o c e s s "
2458 t y p e =" xs : IDREF "/ >
2459 <xs : e l e m e n t name=" p r o v i d e r _ a c t i v e _ n o d e "
2460 t y p e =" xs : IDREF "/ >
2461 </ xs : sequence >
2462 </ xs : complexType >
2463 <xs : complexType name=" a c t i v e _ n o d e _ l a b e l _ m a p p i n g _ t y p e ">
2464 <xs : sequence >
2465 <xs : e l e m e n t name=" c o n s u m e r _ p r o c e s s "
2466 t y p e =" xs : IDREF "/ >
2467 <xs : e l e m e n t name=" c o n s u m e r _ a c t i v e _ n o d e "
2468 t y p e =" xs : IDREF "/ >
2469 <xs : e l e m e n t name=" p r o v i d e r _ p r o c e s s "
2470 t y p e =" xs : IDREF "/ >
2471 <xs : e l e m e n t name=" p r o v i d e r _ a c t i v e _ n o d e "
2472 t y p e =" xs : IDREF "/ >
2473 <xs : e l e m e n t name=" p r o v i d e r "
2474 t y p e =" p r o v i d e r _ t y p e " / >
2475 </ xs : sequence >
2476 </ xs : complexType >
2477 <!−− Next , t h e r e s o u r c e−p e r s p e c t i v e d e f i n i t i o n f o r
2478 c o v e r i n g t h e o r g a n i z a t i o n a l a s p e c t . −−>
2479 <!−− An o r g a n i z a t i o n a l u n i t and i t s s u b c l a s s e s i s
2480 d e f i n e d . These s u b c l a s s e s a r e p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t
2481 and t e m p o r a r y _ o r g a n i z a t i o n a l _ u n i t −−>
2482 <xs : group name=" o r g a n i z a t i o n a l _ u n i t _ e l e m e n t s ">
2483 <xs : sequence >
2484 <xs : e l e m e n t name="name " t y p e =" xs : ID "/ >
2485 <xs : e l e m e n t name=" s t a r t _ d a t e " t y p e =" xs : d a t e "
2486 maxOccurs =" unbounded " / >
2487 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2488 maxOccurs =" unbounded " / >
2489 <xs : e l e m e n t name=" b u s i n e s s _ o b j e c t i v e s "
2490 t y p e =" xs : s t r i n g " maxOccurs =" unbounded " / >
2491 </ xs : sequence >
2492 </ xs : group >
2493 <xs : complexType name=" t e m p o r a r y _ o r g a n i z a t i o n a l _ u n i t _ t y p e ">
2494 <xs : complexConten t >
2495 <xs : e x t e n s i o n base =" o r g a n i z a t i o n a l _ u n i t _ t y p e ">

219

2496 <xs : sequence >
2497 <xs : e l e m e n t name=" e n d _ d a t e " t y p e =" xs : d a t e " / >
2498 </ xs : sequence >
2499 </ xs : e x t e n s i o n >
2500 </ xs : complexConten t >
2501 </ xs : complexType >
2502 <xs : complexType name=" p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t _ t y p e ">
2503 <xs : complexConten t >
2504 <xs : e x t e n s i o n base =" o r g a n i z a t i o n a l _ u n i t _ t y p e " / >
2505 </ xs : complexConten t >
2506 </ xs : complexType >
2507 <xs : complexType name=" o r g a n i z a t i o n a l _ u n i t _ t y p e ">
2508 <xs : sequence >
2509 <xs : group r e f =" o r g a n i z a t i o n a l _ u n i t _ e l e m e n t s " / >
2510 <xs : e l e m e n t name=" r e s o u r c e _ t y p e " t y p e =" xs : IDREF"
2511 minOccurs = " 0 " maxOccurs =" unbounded " / >
2512 <xs : e l e m e n t name=" r e s o u r c e _ n r e f "
2513 t y p e =" r e s o u r c e _ n r e f _ t y p e " minOccurs ="0"
2514 maxOccurs =" unbounded " / >
2515 <xs : e l e m e n t name=" c o l l e c t i o n " t y p e =" xs : IDREF"
2516 minOccurs = " 0 " maxOccurs =" unbounded " / >
2517 <xs : e l e m e n t name=" i n d i v i d u a l _ r e s o u r c e "
2518 t y p e =" xs : IDREF " minOccurs = " 0 " maxOccurs =" unbounded " / >
2519 </ xs : sequence >
2520 </ xs : complexType >
2521 <xs : complexType name=" o r g a n i z a t i o n a l _ p o s i t i o n _ t y p e ">
2522 <xs : sequence >
2523 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2524 minOccurs = " 0 " maxOccurs =" unbounded " / >
2525 <xs : e l e m e n t name=" o r g a n i z a t i o n a l _ u n i t "
2526 t y p e =" xs : IDREF " maxOccurs =" unbounded " / >
2527 <xs : e l e m e n t name=" a c t o r " t y p e =" xs : IDREF"
2528 minOccurs = " 0 " maxOccurs =" unbounded " / >
2529 <xs : e l e m e n t name=" p r i v i l e g e " t y p e =" xs : IDREF"
2530 minOccurs = " 0 " maxOccurs =" unbounded " / >
2531 </ xs : sequence >
2532 </ xs : complexType >
2533 <!−− S e v e r a l r e s o u r c e _ t y p e may be p a r t o f o r g a n i z a t i o n a l _ u n i t s .
2534 A r e s o u r c e _ t y p e has s u b c l a s s e s , namely a r o l e , a machine ,
2535 space , and p r o d u c t i o n _ m a t e r i a l . Fu r the rmore , a r e s o u r c e _ t y p e
2536 i s r e f e r r e d by a t y p e d _ c o l l e c t i o n . −−>
2537 <xs : group name=" r e s o u r c e _ p e r s p e c t i v e ">
2538 <xs : c h o i c e minOccurs = " 0 " maxOccurs =" unbounded ">
2539 <xs : e l e m e n t name=" mach ine_ type " t y p e =" m a c h i n e _ t y p e _ t y p e "
2540 minOccurs = " 0 " maxOccurs =" unbounded " / >
2541 <xs : e l e m e n t name=" p r o d u c t i o n _ m a t e r i a l _ t y p e "
2542 t y p e =" p r o d u c t i o n _ m a t e r i a l _ t y p e _ t y p e " minOccurs ="0"
2543 maxOccurs =" unbounded " / >
2544 <xs : e l e m e n t name=" s p a c e _ t y p e " t y p e =" s p a c e _ t y p e _ t y p e "
2545 minOccurs = " 0 " maxOccurs =" unbounded " / >
2546 <xs : e l e m e n t name=" c a p a b i l i t y " t y p e =" c a p a b i l i t y _ t y p e "
2547 minOccurs = " 0 " maxOccurs =" unbounded " / >
2548 <xs : e l e m e n t name=" p r i v i l e g e " t y p e =" p r i v i l e g e _ t y p e "
2549 minOccurs = " 0 " maxOccurs =" unbounded " / >

220 APPENDIX B. ESML SCHEMA

2550 <xs : e l e m e n t name=" power " t y p e =" power_ type " minOccurs ="0"
2551 maxOccurs =" unbounded " / >
2552 <xs : e l e m e n t name=" p o w e r _ d e l e g a t i o n "
2553 t y p e =" p o w e r _ d e l e g a t i o n _ t y p e " minOccurs ="0"
2554 maxOccurs =" unbounded " / >
2555 <xs : e l e m e n t name=" c o n c r e t e _ c o l l e c t i o n "
2556 t y p e =" c o n c r e t e _ c o l l e c t i o n _ t y p e " minOccurs ="0"
2557 maxOccurs =" unbounded " / >
2558 <xs : e l e m e n t name=" m i x e d _ c o l l e c t i o n "
2559 t y p e =" m i x e d _ c o l l e c t i o n _ t y p e " minOccurs ="0"
2560 maxOccurs =" unbounded " / >
2561 <xs : e l e m e n t name=" t y p e d _ c o l l e c t i o n "
2562 t y p e =" t y p e d _ c o l l e c t i o n _ t y p e " minOccurs ="0"
2563 maxOccurs =" unbounded " / >
2564 <xs : e l e m e n t name=" r e s o u r c e _ n r e f "
2565 t y p e =" r e s o u r c e _ n r e f _ t y p e " minOccurs ="0"
2566 maxOccurs =" unbounded " / >
2567 <xs : e l e m e n t name=" a v a i l a b l e " t y p e =" a v a i l a b l e _ t y p e "
2568 minOccurs = " 0 " maxOccurs =" unbounded " / >
2569 <xs : e l e m e n t name=" s p a c e " t y p e =" s p a c e _ t y p e "
2570 minOccurs = " 0 " maxOccurs =" unbounded " / >
2571 <xs : e l e m e n t name=" p r o d u c t i o n _ m a t e r i a l "
2572 t y p e =" p r o d u c t i o n _ m a t e r i a l _ t y p e " minOccurs ="0"
2573 maxOccurs =" unbounded " / >
2574 <xs : e l e m e n t name=" c o n t a i n m e n t _ t y p e "
2575 t y p e =" c o n t a i n m e n t _ t y p e _ t y p e " minOccurs ="0"
2576 maxOccurs =" unbounded " / >
2577 <xs : e l e m e n t name=" machine " t y p e =" mach ine_ type "
2578 minOccurs = " 0 " maxOccurs =" unbounded " / >
2579 <xs : e l e m e n t name=" c a p a c i t y " t y p e =" c a p a c i t y _ t y p e "
2580 minOccurs = " 0 " maxOccurs =" unbounded " / >
2581 <xs : e l e m e n t name=" r a t e _ o f _ u s a g e "
2582 t y p e =" r a t e _ o f _ u s a g e _ t y p e " minOccurs ="0"
2583 maxOccurs =" unbounded " / >
2584 <xs : e l e m e n t name=" a c t o r " t y p e =" a c t o r _ t y p e "
2585 minOccurs = " 0 " maxOccurs =" unbounded " / >
2586 <xs : e l e m e n t name=" r o l e _ d e l e g a t i o n "
2587 t y p e =" r o l e _ d e l e g a t i o n _ t y p e " minOccurs ="0"
2588 maxOccurs =" unbounded " / >
2589 <xs : e l e m e n t name=" a p p o i n t m e n t "
2590 t y p e =" a p p o i n t m e n t _ t y p e " minOccurs ="0"
2591 maxOccurs =" unbounded " / >
2592 <xs : e l e m e n t name=" c o r r e l a t i o n "
2593 t y p e =" c o r r e l a t i o n _ t y p e " minOccurs ="0"
2594 maxOccurs =" unbounded " / >
2595 <xs : e l e m e n t name=" h i e r a r c h y _ r e l a t i o n s h i p "
2596 t y p e =" h i e r a r c h y _ r e l a t i o n s h i p _ t y p e "
2597 minOccurs = " 0 " maxOccurs =" unbounded " / >
2598 <xs : e l e m e n t name=" t e m p o r a r y _ o r g a n i z a t i o n a l _ u n i t "
2599 t y p e =" t e m p o r a r y _ o r g a n i z a t i o n a l _ u n i t _ t y p e "
2600 minOccurs = " 0 " maxOccurs =" unbounded " / >
2601 <xs : e l e m e n t name=" p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t "
2602 t y p e =" p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t _ t y p e "
2603 minOccurs = " 0 " maxOccurs =" unbounded " / >

221

2604 <xs : e l e m e n t name=" o r g a n i z a t i o n a l _ p o s i t i o n "
2605 t y p e =" o r g a n i z a t i o n a l _ p o s i t i o n _ t y p e " minOccurs ="0"
2606 maxOccurs =" unbounded " / >
2607 <xs : e l e m e n t name=" r o l e " t y p e =" r o l e _ t y p e "
2608 minOccurs = " 0 " maxOccurs =" unbounded " / >
2609 <xs : e l e m e n t name=" c o n n e c t i o n _ r e l a t i o n s h i p "
2610 t y p e =" c o n n e c t i o n _ r e l a t i o n s h i p _ t y p e " minOccurs ="0"
2611 maxOccurs =" unbounded " / >
2612 <xs : e l e m e n t name=" r e s o u r c e _ t y p e "
2613 t y p e =" r e s o u r c e _ t y p e _ t y p e " minOccurs ="0"
2614 maxOccurs =" unbounded " / >
2615 <xs : e l e m e n t name=" c o l l e c t i o n "
2616 t y p e =" c o l l e c t i o n _ t y p e " minOccurs ="0"
2617 maxOccurs =" unbounded " / >
2618 <xs : e l e m e n t name=" i n d i v i d u a l _ r e s o u r c e "
2619 t y p e =" i n d i v i d u a l _ r e s o u r c e _ t y p e " minOccurs ="0"
2620 maxOccurs =" unbounded " / >
2621 <xs : e l e m e n t name=" n o n _ a c t o r " t y p e =" n o n _ a c t o r _ t y p e "
2622 minOccurs = " 0 " maxOccurs =" unbounded " / >
2623 <xs : e l e m e n t name=" c o n s u m a b l e _ r e s o u r c e "
2624 t y p e =" c o n s u m a b l e _ r e s o u r c e _ t y p e " minOccurs ="0"
2625 maxOccurs =" unbounded " / >
2626 <xs : e l e m e n t name=" o r g a n i z a t i o n a l _ u n i t "
2627 t y p e =" o r g a n i z a t i o n a l _ u n i t _ t y p e " minOccurs ="0"
2628 maxOccurs =" unbounded " / >
2629 </ xs : cho i ce >
2630 </ xs : group >
2631 <xs : group name=" r e s o u r c e _ t y p e _ e l e m e n t s ">
2632 <xs : sequence >
2633 <xs : e l e m e n t name="name " t y p e =" xs : ID "/ >
2634 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2635 minOccurs = " 0 " maxOccurs =" unbounded " / >
2636 </ xs : sequence >
2637 </ xs : group >
2638 <xs : complexType name=" r e s o u r c e _ t y p e _ t y p e ">
2639 <xs : sequence >
2640 <xs : group r e f =" r e s o u r c e _ t y p e _ e l e m e n t s " / >
2641 <xs : e l e m e n t name=" t y p e d _ c o l l e c t i o n " t y p e =" xs : IDREF"
2642 minOccurs = " 0 " maxOccurs =" unbounded " / >
2643 </ xs : sequence >
2644 </ xs : complexType >
2645 <xs : complexType name=" m a c h i n e _ t y p e _ t y p e ">
2646 <xs : complexConten t >
2647 <xs : e x t e n s i o n base =" r e s o u r c e _ t y p e _ t y p e " / >
2648 </ xs : complexConten t >
2649 </ xs : complexType >
2650 <xs : complexType name=" p r o d u c t i o n _ m a t e r i a l _ t y p e _ t y p e ">
2651 <xs : complexConten t >
2652 <xs : e x t e n s i o n base =" r e s o u r c e _ t y p e _ t y p e ">
2653 <xs : sequence >
2654 <xs : e l e m e n t name=" p r o d u c t i o n _ m a t e r i a l "
2655 t y p e =" xs : IDREF "/ >
2656 </ xs : sequence >
2657 </ xs : e x t e n s i o n >

222 APPENDIX B. ESML SCHEMA

2658 </ xs : complexConten t >
2659 </ xs : complexType >
2660 <xs : complexType name=" s p a c e _ t y p e _ t y p e ">
2661 <xs : complexConten t >
2662 <xs : e x t e n s i o n base =" r e s o u r c e _ t y p e _ t y p e ">
2663 <xs : sequence >
2664 <xs : e l e m e n t name=" s p a c e " t y p e =" xs : IDREF "/ >
2665 </ xs : sequence >
2666 </ xs : e x t e n s i o n >
2667 </ xs : complexConten t >
2668 </ xs : complexType >
2669 <!−−A r o l e d e f i n i t i o n and a l l r e l a t e d e n t i t i e s .−−>
2670 <xs : group name=" r o l e _ e l e m e n t s ">
2671 <xs : sequence >
2672 <xs : e l e m e n t name=" q u a l i f i c a t i o n s _ r e q u i r e d "
2673 t y p e =" xs : s t r i n g " minOccurs ="0"
2674 maxOccurs =" unbounded " / >
2675 <xs : e l e m e n t name=" s k i l l s _ r e q u i r e d " t y p e =" xs : s t r i n g "
2676 minOccurs = " 0 " maxOccurs =" unbounded " / >
2677 </ xs : sequence >
2678 </ xs : group >
2679 <xs : complexType name=" r o l e _ t y p e ">
2680 <xs : complexConten t >
2681 <xs : e x t e n s i o n base =" r e s o u r c e _ t y p e _ t y p e ">
2682 <xs : sequence >
2683 <xs : group r e f =" r o l e _ e l e m e n t s " / >
2684 <xs : e l e m e n t name=" power " t y p e =" xs : IDREF"
2685 minOccurs = " 0 " maxOccurs =" unbounded " / >
2686 <xs : e l e m e n t name=" c a p a b i l i t y "
2687 t y p e =" xs : IDREF " minOccurs ="0"
2688 maxOccurs =" unbounded " / >
2689 <!−− t h i s i s r e f e r i n g t o r e q u i r e d
2690 c a p a b i l i t i e s f o r a c e r t a i n r o l e −−>
2691 </ xs : sequence >
2692 </ xs : e x t e n s i o n >
2693 </ xs : complexConten t >
2694 </ xs : complexType >
2695 <xs : group name=" f e a t u r e _ e l e m e n t s ">
2696 <xs : sequence >
2697 <xs : e l e m e n t name="name " t y p e =" xs : ID "/ >
2698 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2699 minOccurs = " 0 " maxOccurs =" unbounded " / >
2700 </ xs : sequence >
2701 </ xs : group >
2702 <xs : complexType name=" c a p a b i l i t y _ t y p e ">
2703 <xs : sequence >
2704 <xs : group r e f =" f e a t u r e _ e l e m e n t s " / >
2705 </ xs : sequence >
2706 </ xs : complexType >
2707 <xs : complexType name=" p r i v i l e g e _ t y p e ">
2708 <xs : sequence >
2709 <xs : group r e f =" f e a t u r e _ e l e m e n t s " / >
2710 <xs : e l e m e n t name=" r o l e " t y p e =" xs : IDREF "/ >
2711 </ xs : sequence >

223

2712 </ xs : complexType >
2713 <xs : complexType name=" power_ type ">
2714 <xs : sequence >
2715 <xs : group r e f =" f e a t u r e _ e l e m e n t s " / >
2716 <xs : e l e m e n t name=" c a p a b i l i t y " t y p e =" xs : IDREF"
2717 minOccurs = " 0 " maxOccurs =" unbounded " / >
2718 <xs : e l e m e n t name=" p r i v i l e g e " t y p e =" xs : IDREF"
2719 minOccurs = " 0 " maxOccurs =" unbounded " / >
2720 </ xs : sequence >
2721 </ xs : complexType >
2722 <xs : complexType name=" p o w e r _ d e l e g a t i o n _ t y p e ">
2723 <xs : sequence >
2724 <xs : group r e f =" t i m i n g _ e l e m e n t s " / >
2725 <xs : e l e m e n t name=" s u p e r i o r _ r o l e " t y p e =" xs : IDREF"
2726 minOccurs = " 0 " maxOccurs =" unbounded " / >
2727 <xs : e l e m e n t name=" i n f e r i o r _ r o l e " t y p e =" xs : IDREF"
2728 minOccurs = " 0 " maxOccurs =" unbounded " / >
2729 <xs : e l e m e n t name=" power " t y p e =" xs : IDREF"
2730 minOccurs ="0" / >
2731 </ xs : sequence >
2732 </ xs : complexType >
2733 <!−−The d e f i n i t i o n o f a c o l l e c t i o n and a l l s u b c l a s s e s .
2734 These s u b c l a s s e s a r e m i x e d _ c o l l e c t i o n , c o n c r e t e _ c o l l e c t i o n ,
2735 and t y p e d _ c o l l e c t i o n −−>
2736 <xs : group name=" c o l l e c t i o n _ e l e m e n t s ">
2737 <xs : sequence >
2738 <xs : e l e m e n t name="name " t y p e =" xs : ID "/ >
2739 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2740 minOccurs = " 0 " maxOccurs =" unbounded " / >
2741 </ xs : sequence >
2742 </ xs : group >
2743 <xs : complexType name=" c o l l e c t i o n _ t y p e ">
2744 <xs : sequence >
2745 <xs : group r e f =" c o l l e c t i o n _ e l e m e n t s " / >
2746 <xs : e l e m e n t name=" o r g a n i z a t i o n a l _ u n i t "
2747 t y p e =" xs : IDREF " minOccurs = " 0 " maxOccurs =" unbounded " / >
2748 </ xs : sequence >
2749 </ xs : complexType >
2750 <xs : complexType name=" c o n c r e t e _ c o l l e c t i o n _ t y p e ">
2751 <xs : complexConten t >
2752 <xs : e x t e n s i o n base =" c o l l e c t i o n _ t y p e ">
2753 <xs : sequence >
2754 <xs : e l e m e n t name=" i n d i v i d u a l _ r e s o u r c e "
2755 t y p e =" xs : IDREF " maxOccurs =" unbounded " / >
2756 </ xs : sequence >
2757 </ xs : e x t e n s i o n >
2758 </ xs : complexConten t >
2759 </ xs : complexType >
2760 <xs : complexType name=" m i x e d _ c o l l e c t i o n _ t y p e ">
2761 <xs : complexConten t >
2762 <xs : e x t e n s i o n base =" c o l l e c t i o n _ t y p e ">
2763 <xs : sequence >
2764 <xs : e l e m e n t name=" r e s o u r c e _ n r e f "
2765 t y p e =" r e s o u r c e _ n r e f _ t y p e " maxOccurs =" unbounded " / >

224 APPENDIX B. ESML SCHEMA

2766 <xs : e l e m e n t name=" i n d i v i d u a l _ r e s o u r c e "
2767 t y p e =" xs : IDREF " maxOccurs =" unbounded " / >
2768 </ xs : sequence >
2769 </ xs : e x t e n s i o n >
2770 </ xs : complexConten t >
2771 </ xs : complexType >
2772 <xs : complexType name=" t y p e d _ c o l l e c t i o n _ t y p e ">
2773 <xs : complexConten t >
2774 <xs : e x t e n s i o n base =" c o l l e c t i o n _ t y p e ">
2775 <xs : sequence >
2776 <xs : e l e m e n t name=" r e s o u r c e _ n r e f _ t y p e "
2777 t y p e =" r e s o u r c e _ n r e f _ t y p e " maxOccurs =" unbounded " / >
2778 </ xs : sequence >
2779 </ xs : e x t e n s i o n >
2780 </ xs : complexConten t >
2781 </ xs : complexType >
2782 <xs : complexType name=" r e s o u r c e _ n r e f _ t y p e ">
2783 <xs : sequence >
2784 <xs : e l e m e n t name=" r e s o u r c e _ t y p e _ r e f "
2785 t y p e =" xs : IDREF "/ >
2786 <xs : e l e m e n t name=" number " t y p e =" xs : i n t e g e r " / >
2787 <xs : e l e m e n t name=" t y p e d _ c o l l e c t i o n _ r e f e r e n c e "
2788 t y p e =" xs : IDREF "/ >
2789 <xs : e l e m e n t name=" m i x e d _ c o l l e c t i o n _ r e f e r e n c e "
2790 t y p e =" xs : IDREF "/ >
2791 </ xs : sequence >
2792 </ xs : complexType >
2793 <!−− Resource r e l a t e d d e f i n i t i o n s . −−>
2794 <xs : group name=" i n d i v i d u a l _ r e s o u r c e _ e l e m e n t s ">
2795 <xs : sequence >
2796 <xs : e l e m e n t name="name " t y p e =" xs : ID "/ >
2797 <xs : e l e m e n t name=" a d d r e s s " t y p e =" xs : s t r i n g "
2798 maxOccurs =" unbounded " / >
2799 </ xs : sequence >
2800 </ xs : group >
2801 <xs : complexType name=" i n d i v i d u a l _ r e s o u r c e _ t y p e ">
2802 <xs : sequence >
2803 <xs : group r e f =" i n d i v i d u a l _ r e s o u r c e _ e l e m e n t s " / >
2804 <xs : e l e m e n t name=" a v a i l a b l e " t y p e =" xs : IDREF"
2805 minOccurs = " 0 " maxOccurs =" unbounded " / >
2806 <xs : e l e m e n t name=" c o n c r e t e _ c o l l e c t i o n "
2807 t y p e =" xs : IDREF " minOccurs = " 0 " maxOccurs =" unbounded " / >
2808 <xs : e l e m e n t name=" m i x e d _ c o l l e c t i o n "
2809 t y p e =" xs : IDREF " minOccurs = " 0 " maxOccurs =" unbounded " / >
2810 <xs : e l e m e n t name=" o r g a n i z a t i o n a l _ u n i t "
2811 t y p e =" xs : IDREF " maxOccurs =" unbounded " / >
2812 <xs : e l e m e n t name=" c a p a b i l i t y " t y p e =" xs : IDREF"
2813 minOccurs = " 0 " maxOccurs =" unbounded " / >
2814 </ xs : sequence >
2815 </ xs : complexType >
2816 <xs : group name=" a v a i l a b l e _ t y p e _ e l e m e n t s ">
2817 <xs : sequence >
2818 <xs : e l e m e n t name=" number " t y p e =" xs : ID "/ >
2819 <xs : e l e m e n t name=" s t a r t _ d a t e " t y p e =" xs : d a t e "

225

2820 minOccurs ="0" / >
2821 <xs : e l e m e n t name=" s t a r t _ t i m e " t y p e =" xs : t ime "
2822 minOccurs ="0" / >
2823 <xs : e l e m e n t name=" e n d _ d a t e " t y p e =" xs : d a t e "
2824 minOccurs ="0" / >
2825 <xs : e l e m e n t name=" end_ t ime " t y p e =" xs : t ime "
2826 minOccurs ="0" / >
2827 <xs : e l e m e n t name=" s t a t u s " t y p e =" xs : s t r i n g "
2828 minOccurs ="0" / >
2829 <xs : e l e m e n t name=" r e s e r v e d _ f o r " t y p e =" xs : s t r i n g "
2830 minOccurs = " 0 " maxOccurs =" unbounded " / >
2831 </ xs : sequence >
2832 </ xs : group >
2833 <xs : complexType name=" a v a i l a b l e _ t y p e ">
2834 <xs : sequence >
2835 <xs : group r e f =" a v a i l a b l e _ t y p e _ e l e m e n t s " / >
2836 <xs : e l e m e n t name=" i n d i v i d u a l _ r e s o u r c e "
2837 t y p e =" xs : IDREF " minOccurs ="0" / >
2838 </ xs : sequence >
2839 </ xs : complexType >
2840 <!−− n o n _ a c t o r d e f i n i t i o n wi th t h e i r s u b c l a s s e s . −−>
2841 <xs : group name=" n o n _ a c t o r _ e l e m e n t s ">
2842 <xs : sequence >
2843 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2844 minOccurs = " 0 " maxOccurs =" unbounded " / >
2845 <xs : e l e m e n t name=" c o n t a c t " t y p e =" xs : s t r i n g "
2846 minOccurs = " 0 " maxOccurs =" unbounded " / >
2847 <xs : e l e m e n t name=" phone " t y p e =" xs : i n t e g e r "
2848 minOccurs = " 0 " maxOccurs =" unbounded " / >
2849 </ xs : sequence >
2850 </ xs : group >
2851 <xs : complexType name=" n o n _ a c t o r _ t y p e ">
2852 <xs : complexConten t >
2853 <xs : e x t e n s i o n base =" i n d i v i d u a l _ r e s o u r c e _ t y p e ">
2854 <xs : sequence >
2855 <xs : group r e f =" n o n _ a c t o r _ e l e m e n t s " / >
2856 </ xs : sequence >
2857 </ xs : e x t e n s i o n >
2858 </ xs : complexConten t >
2859 </ xs : complexType >
2860 <xs : group name=" s p a c e _ e l e m e n t s ">
2861 <xs : sequence >
2862 <xs : e l e m e n t name=" b u i l d i n g _ n u m b e r "
2863 t y p e =" xs : s t r i n g " / >
2864 <xs : e l e m e n t name=" room_number "
2865 t y p e =" xs : s t r i n g " / >
2866 <xs : e l e m e n t name=" d e s c r i p t i o n "
2867 t y p e =" xs : s t r i n g " minOccurs ="0"
2868 maxOccurs =" unbounded " / >
2869 <xs : e l e m e n t name=" c a p a c i t y " t y p e =" xs : s t r i n g " / >
2870 </ xs : sequence >
2871 </ xs : group >
2872 <xs : complexType name=" s p a c e _ t y p e ">
2873 <xs : complexConten t >

226 APPENDIX B. ESML SCHEMA

2874 <xs : e x t e n s i o n base =" n o n _ a c t o r _ t y p e ">
2875 <xs : sequence >
2876 <xs : group r e f =" s p a c e _ e l e m e n t s " / >
2877 </ xs : sequence >
2878 </ xs : e x t e n s i o n >
2879 </ xs : complexConten t >
2880 </ xs : complexType >
2881 <xs : complexType name=" c o n s u m a b l e _ r e s o u r c e _ t y p e ">
2882 <xs : complexConten t >
2883 <xs : e x t e n s i o n base =" n o n _ a c t o r _ t y p e " / >
2884 </ xs : complexConten t >
2885 </ xs : complexType >
2886 <xs : complexType name=" p r o d u c t i o n _ m a t e r i a l _ t y p e ">
2887 <xs : complexConten t >
2888 <xs : e x t e n s i o n
2889 base =" c o n s u m a b l e _ r e s o u r c e _ t y p e " / >
2890 </ xs : complexConten t >
2891 </ xs : complexType >
2892 <xs : complexType name=" c o n t a i n m e n t _ t y p e _ t y p e ">
2893 <xs : sequence >
2894 <xs : e l e m e n t name=" s u p e r i o r _ p r o d u c t i o n _ m a t e r i a l "
2895 t y p e =" xs : IDREF "/ >
2896 <xs : e l e m e n t name=" i n f e r i o r _ p r o d u c t i o n _ m a t e r i a l "
2897 t y p e =" xs : IDREF "/ >
2898 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2899 maxOccurs =" unbounded " / >
2900 </ xs : sequence >
2901 </ xs : complexType >
2902 <xs : complexType name=" c o n n e c t i o n _ r e l a t i o n s h i p _ t y p e ">
2903 <xs : sequence >
2904 <xs : e l e m e n t name=" s o u r c e _ p r o d u c t i o n _ m a t e r i a l "
2905 t y p e =" xs : IDREF "/ >
2906 <xs : e l e m e n t name=" t a r g e t _ p r o d u c t i o n _ m a t e r i a l "
2907 t y p e =" xs : IDREF "/ >
2908 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
2909 maxOccurs =" unbounded " / >
2910 </ xs : sequence >
2911 </ xs : complexType >
2912 <xs : complexType name=" mach ine_ type ">
2913 <xs : complexConten t >
2914 <xs : e x t e n s i o n base =" c o n s u m a b l e _ r e s o u r c e _ t y p e ">
2915 <xs : sequence >
2916 <xs : e l e m e n t name=" number " t y p e =" xs : s t r i n g "
2917 maxOccurs =" unbounded " / >
2918 </ xs : sequence >
2919 </ xs : e x t e n s i o n >
2920 </ xs : complexConten t >
2921 </ xs : complexType >
2922 <xs : group name=" c a p a c i t y _ e l e m e n t s ">
2923 <xs : sequence >
2924 <xs : e l e m e n t name=" amount " t y p e =" xs : d e c i m a l " / >
2925 <xs : e l e m e n t name=" u n i t " t y p e =" xs : s t r i n g " / >
2926 </ xs : sequence >
2927 </ xs : group >

227

2928 <xs : complexType name=" c a p a c i t y _ t y p e ">
2929 <xs : sequence >
2930 <xs : group r e f =" c a p a c i t y _ e l e m e n t s " / >
2931 <xs : e l e m e n t name=" machine " t y p e =" xs : IDREF "/ >
2932 <xs : e l e m e n t name=" p r o d u c t i o n _ m a t e r i a l " t y p e =" xs : IDREF"
2933 minOccurs = " 0 " maxOccurs =" unbounded " / >
2934 </ xs : sequence >
2935 </ xs : complexType >
2936 <xs : group name=" r a t e _ o f _ u s a g e _ e l e m e n t s ">
2937 <xs : sequence >
2938 <xs : e l e m e n t name=" u s a g e _ q u a n t i t y " t y p e =" xs : d e c i m a l " / >
2939 <xs : e l e m e n t name=" u s a g e _ p e r i o d " t y p e =" xs : d e c i m a l " / >
2940 <xs : e l e m e n t name=" p e r i o d _ u n i t " t y p e =" xs : s t r i n g " / >
2941 </ xs : sequence >
2942 </ xs : group >
2943 <xs : complexType name=" r a t e _ o f _ u s a g e _ t y p e ">
2944 <xs : sequence >
2945 <xs : group r e f =" r a t e _ o f _ u s a g e _ e l e m e n t s " / >
2946 <xs : e l e m e n t name=" machine " t y p e =" xs : IDREF "/ >
2947 <xs : e l e m e n t name=" p r o d u c t i o n _ m a t e r i a l " t y p e =" xs : IDREF"
2948 minOccurs = " 0 " maxOccurs =" unbounded " / >
2949 </ xs : sequence >
2950 </ xs : complexType >
2951 <!−− a c t o r d e f i n i t i o n wi th t h e i r s u b c l a s s e s . −−>
2952 <xs : group name=" a c t o r _ e l e m e n t s ">
2953 <xs : sequence >
2954 <xs : e l e m e n t name=" a c t o r _ i d " t y p e =" xs : ID "/ >
2955 <xs : e l e m e n t name=" f i r s t _ n a m e " t y p e =" xs : s t r i n g " / >
2956 <xs : e l e m e n t name=" l a s t _ n a m e " t y p e =" xs : s t r i n g " / >
2957 <xs : e l e m e n t name=" e m a i l " t y p e =" xs : s t r i n g "
2958 maxOccurs =" unbounded " / >
2959 <xs : e l e m e n t name=" l o g i n _ i d " t y p e =" xs : s t r i n g " / >
2960 <xs : e l e m e n t name=" phone " t y p e =" xs : s t r i n g "
2961 maxOccurs =" unbounded " / >
2962 <xs : e l e m e n t name=" q u a l i f i c a t i o n " t y p e =" xs : s t r i n g "
2963 minOccurs = " 0 " maxOccurs =" unbounded " / >
2964 <xs : e l e m e n t name=" s k i l l " t y p e =" xs : s t r i n g " minOccurs ="0"
2965 maxOccurs =" unbounded " / >
2966 <xs : e l e m e n t name=" p r e v i o u s _ w o r k _ e x p e r i e n c e "
2967 t y p e =" xs : s t r i n g " minOccurs = " 0 " maxOccurs =" unbounded " / >
2968 <xs : e l e m e n t name=" h e l d _ r e s p o n s i b i l i t y " t y p e =" xs : s t r i n g "
2969 minOccurs = " 0 " maxOccurs =" unbounded " / >
2970 </ xs : sequence >
2971 </ xs : group >
2972 <xs : complexType name=" a c t o r _ t y p e ">
2973 <xs : sequence >
2974 <xs : group r e f =" a c t o r _ e l e m e n t s " / >
2975 <xs : e l e m e n t name=" r o l e " t y p e =" xs : IDREF " minOccurs ="0"
2976 maxOccurs =" unbounded " / >
2977 </ xs : sequence >
2978 </ xs : complexType >
2979 <xs : group name=" t i m i n g _ e l e m e n t s ">
2980 <xs : sequence >
2981 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "

228 APPENDIX B. ESML SCHEMA

2982 minOccurs = " 0 " maxOccurs =" unbounded " / >
2983 <xs : e l e m e n t name=" s t a r t _ d a t e " t y p e =" xs : d a t e "
2984 minOccurs ="0" / >
2985 <xs : e l e m e n t name=" s t a r t _ t i m e " t y p e =" xs : t ime "
2986 minOccurs ="0" / >
2987 <xs : e l e m e n t name=" e n d _ d a t e " t y p e =" xs : d a t e "
2988 minOccurs ="0" / >
2989 <xs : e l e m e n t name=" end_ t ime " t y p e =" xs : t ime "
2990 minOccurs ="0" / >
2991 </ xs : sequence >
2992 </ xs : group >
2993 <xs : complexType name=" r o l e _ d e l e g a t i o n _ t y p e ">
2994 <xs : sequence >
2995 <xs : group r e f =" t i m i n g _ e l e m e n t s " / >
2996 <xs : e l e m e n t name=" s o u r c e _ a c t o r " t y p e =" xs : IDREF "/ >
2997 <xs : e l e m e n t name=" t a r g e t _ a c t o r " t y p e =" xs : IDREF "/ >
2998 </ xs : sequence >
2999 </ xs : complexType >
3000 <xs : complexType name=" a p p o i n t m e n t _ t y p e ">
3001 <xs : sequence >
3002 <xs : group r e f =" t i m i n g _ e l e m e n t s " / >
3003 <xs : e l e m e n t name=" a c t o r " t y p e =" xs : IDREF"
3004 maxOccurs =" unbounded " / >
3005 <xs : e l e m e n t name=" t a s k " t y p e =" xs : IDREF"
3006 maxOccurs =" unbounded " / >
3007 </ xs : sequence >
3008 </ xs : complexType >
3009 <!−− The r e l a t i o n s h i p s o f o r g a n i z a t i o n a l _ u n i t e n t i t i e s
3010 t o each o t h e r i s e s t a b l i s h e d . Tha t i n c l u d e s h i e r a r c h y
3011 r e l a t i o n s h i p s i n t e r m s of s u p e r i o r and i n f e r i o r , and
3012 a c o r r e l a t i o n o f one o r g a n i z a t i o n a l _ u n i t t o a n o t h e r one ,
3013 e . g . , a r e l a t i o n s h i p e x i s t s b e c a u s e b i t h a r e i n v o l v e d
3014 i n t h e same p r o j e c t o r i n t h e same b u s i n e s s p r o c e s s ,
3015 e t c .−−>
3016 <xs : complexType name=" c o r r e l a t i o n _ t y p e ">
3017 <xs : sequence >
3018 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
3019 maxOccurs =" unbounded " / >
3020 <xs : e l e m e n t name=" r e l a t e d _ t o " t y p e =" xs : IDREF "/ >
3021 <xs : e l e m e n t name=" r e l a t i o n _ s o u r c e " t y p e =" xs : IDREF "/ >
3022 </ xs : sequence >
3023 </ xs : complexType >
3024 <xs : complexType name=" h i e r a r c h y _ r e l a t i o n s h i p _ t y p e ">
3025 <xs : sequence >
3026 <xs : e l e m e n t name=" d e s c r i p t i o n " t y p e =" xs : s t r i n g "
3027 maxOccurs =" unbounded " / >
3028 <xs : e l e m e n t name=" s u p e r i o r " t y p e =" xs : IDREF "/ >
3029 <xs : e l e m e n t name=" i n f e r i o r " t y p e =" xs : IDREF "/ >
3030 </ xs : sequence >
3031 </ xs : complexType >
3032 <!−− Next , t h e p r o c e s s d e f i n i t i o n wraps up a l l r e s p e c t i v e ,
3033 a v a i l a b l e e l e m e n t s . −−>
3034 <xs : complexType name=" p r o c e s s _ d e f _ s e c t i o n ">
3035 <xs : sequence >

229

3036 <xs : e l e m e n t name=" p r o c e s s " t y p e =" r o u t e "
3037 maxOccurs =" unbounded " / >
3038 <xs : e l e m e n t name=" l i f e c y c l e _ d e f i n i t i o n s "
3039 t y p e =" l i f e c y c l e s " minOccurs ="0" / >
3040 <xs : e l e m e n t name=" l i f e c y c l e _ m a p p i n g s "
3041 t y p e =" m a p p i n g _ d e t a i l s " minOccurs ="0" / >
3042 <xs : e l e m e n t name=" a c t i v e _ n o d e _ l a b e l _ m a p p i n g "
3043 t y p e =" a c t i v e _ n o d e _ l a b e l _ m a p p i n g _ t y p e "
3044 minOccurs = " 0 " maxOccurs =" unbounded " / >
3045 <xs : e l e m e n t name=" m o n i t o r a b i l i t y "
3046 t y p e =" m o n i t o r a b i l i t y _ p a t t e r n s " minOccurs ="0" / >
3047 </ xs : sequence >
3048 </ xs : complexType >
3049 <!−− Next , we d e f i n e t h e p o s s i b l e c o m b i n a t i o n s o f d a t a
3050 c o n s t r u c t s , r u l e c o n s t r u c t s and p r o c e s s c o n s t r u c t s t h a t
3051 can be used i n an e−c o n t r a c t sub−s t r u c t u r e . −−>
3052 <xs : complexType name=" o n l y _ v a r s _ s e c t i o n ">
3053 <xs : sequence >
3054 <xs : e l e m e n t name=" v a r _ s e c t i o n "
3055 t y p e =" v a r i a b l e s _ d e f _ s e c t i o n " / >
3056 <xs : e l e m e n t name=" p r o c e s s _ s e c t i o n "
3057 t y p e =" p r o c e s s _ d e f _ s e c t i o n " minOccurs ="0" / >
3058 <xs : e l e m e n t name=" s n i p p e t _ s e c t i o n "
3059 t y p e =" s n i p p e t _ t y p e " minOccurs ="0" / >
3060 <!−− r e q u i r e d t o s u p p o r t t h e i n c l u s i o n o f
3061 e x t e r n a l l y d e f i n e d d a t a i t e m s . −−>
3062 </ xs : sequence >
3063 </ xs : complexType >
3064 <xs : complexType name=" v a r s _ a n d _ p r o c e s s e s _ s e c t i o n ">
3065 <xs : sequence >
3066 <xs : e l e m e n t name=" v a r _ s e c t i o n "
3067 t y p e =" v a r i a b l e s _ d e f _ s e c t i o n " minOccurs ="0" / >
3068 <xs : e l e m e n t name=" p r o c e s s _ s e c t i o n "
3069 t y p e =" p r o c e s s _ d e f _ s e c t i o n " minOccurs ="0" / >
3070 <xs : e l e m e n t name=" s n i p p e t _ s e c t i o n "
3071 t y p e =" s n i p p e t _ t y p e " minOccurs ="0" / >
3072 </ xs : sequence >
3073 </ xs : complexType >
3074 <xs : complexType name=" a l l _ s e c t i o n ">
3075 <xs : sequence >
3076 <xs : e l e m e n t name=" v a r _ s e c t i o n "
3077 t y p e =" v a r i a b l e s _ d e f _ s e c t i o n " minOccurs ="0" / >
3078 <xs : e l e m e n t name=" r u l e _ s e c t i o n "
3079 t y p e =" r u l e _ d e f _ s e c t i o n " minOccurs ="0" / >
3080 <xs : e l e m e n t name=" p r o c e s s _ s e c t i o n "
3081 t y p e =" p r o c e s s _ d e f _ s e c t i o n " minOccurs ="0" / >
3082 <xs : e l e m e n t name=" s n i p p e t _ s e c t i o n "
3083 t y p e =" s n i p p e t _ t y p e " minOccurs ="0" / >
3084 </ xs : sequence >
3085 </ xs : complexType >
3086 <!−− d e f i n i t i o n o f c o n t r a c t sub−s t r u c t u r e s o f
3087 t h e 4W s t r u c t u r e −−>
3088 <xs : complexType name=" r e s o u r c e _ s e c t i o n _ t y p e ">
3089 <xs : sequence >

230 APPENDIX B. ESML SCHEMA

3090 <xs : group r e f =" r e s o u r c e _ p e r s p e c t i v e "
3091 minOccurs = " 0 " maxOccurs =" unbounded " / >
3092 </ xs : sequence >
3093 </ xs : complexType >
3094 <xs : complexType name=" company_info ">
3095 <xs : sequence >
3096 <xs : e l e m e n t name=" company_data "
3097 t y p e =" o n l y _ v a r s _ s e c t i o n " / >
3098 <xs : e l e m e n t name=" c o m p a n y _ c o n t a c t _ d a t a "
3099 t y p e =" o n l y _ v a r s _ s e c t i o n " / >
3100 <xs : e l e m e n t name=" r e s o u r c e _ s e c t i o n "
3101 t y p e =" r e s o u r c e _ s e c t i o n _ t y p e " minOccurs ="0" / >
3102 <xs : e l e m e n t name=" c o n t e x t _ s e c t i o n "
3103 t y p e =" o n l y _ v a r s _ s e c t i o n " minOccurs ="0" / >
3104 </ xs : sequence >
3105 <xs : a t t r i b u t e name=" l o c a l _ l a n g u a g e "
3106 t y p e =" xs : s t r i n g " / >
3107 </ xs : complexType >
3108 <xs : complexType name=" v a l u e _ t y p e s ">
3109 <xs : cho i ce >
3110 <xs : e l e m e n t name=" p r o d u c t "
3111 t y p e =" v a r s _ a n d _ p r o c e s s e s _ s e c t i o n "
3112 minOccurs = " 0 " maxOccurs =" unbounded " / >
3113 <xs : e l e m e n t name=" s e r v i c e "
3114 t y p e =" v a r s _ a n d _ p r o c e s s e s _ s e c t i o n "
3115 minOccurs = " 0 " maxOccurs =" unbounded " / >
3116 <xs : e l e m e n t name=" f i n a n c i a l _ r e w a r d "
3117 t y p e =" v a r s _ a n d _ p r o c e s s e s _ s e c t i o n "
3118 minOccurs = " 0 " maxOccurs =" unbounded " / >
3119 </ xs : cho i ce >
3120 </ xs : complexType >
3121 <xs : complexType name=" l i s t _ o f _ d a t a _ p a c k a g e s ">
3122 <xs : s e q u e n c e maxOccurs =" unbounded ">
3123 <xs : e l e m e n t name=" d a t a _ p a c k a g e "
3124 t y p e =" d a t a _ p a c k a g e _ t y p e " / >
3125 </ xs : sequence >
3126 </ xs : complexType >
3127 <!−− F i n a l l y , we d e f i n e t h e r o o t e l e m e n t o f
3128 t h e schema and t h e c o m p l e t e c o n t r a c t
3129 s t r u c t u r e −−>
3130 <xs : e l e m e n t name=" c o n t r a c t ">
3131 <xs : complexType >
3132 <xs : sequence >
3133 <xs : e l e m e n t name=" p a r t y "
3134 t y p e =" company_info "
3135 maxOccurs =" unbounded " / >
3136 <xs : e l e m e n t name=" m e d i a t o r "
3137 t y p e =" company_info " minOccurs ="0"
3138 maxOccurs =" unbounded " / >
3139 <xs : e l e m e n t name=" d a t a _ d e f i n i t i o n _ s e c t i o n "
3140 t y p e =" l i s t _ o f _ d a t a _ p a c k a g e s " minOccurs ="0" / >
3141 <xs : e l e m e n t name=" b u s i n e s s _ c o n t e x t _ p r o v i s i o n s "
3142 t y p e =" a l l _ s e c t i o n " minOccurs ="0"
3143 maxOccurs =" unbounded " / >

231

3144 <xs : e l e m e n t name=" l e g a l _ c o n t e x t _ p r o v i s i o n s "
3145 t y p e =" a l l _ s e c t i o n " minOccurs ="0"
3146 maxOccurs =" unbounded " / >
3147 <xs : e l e m e n t name=" o t h e r _ c o n t e x t _ p r o v i s i o n s "
3148 t y p e =" a l l _ s e c t i o n " minOccurs ="0"
3149 maxOccurs =" unbounded " / >
3150 <xs : e l e m e n t name=" e x c h a n g e d _ v a l u e "
3151 t y p e =" v a l u e _ t y p e s " minOccurs ="2"
3152 maxOccurs =" unbounded " / >
3153 <xs : e l e m e n t name=" e x c h a n g e _ p r o v i s i o n s "
3154 t y p e =" a l l _ s e c t i o n " minOccurs ="2"
3155 maxOccurs =" unbounded " / >
3156 <xs : e l e m e n t name=" a g r e e d _ o n t o l o g y "
3157 t y p e =" e x t e r n a l _ r e s o u r c e _ r e f e r e n c e _ t y p e "
3158 maxOccurs =" unbounded " / >
3159 <!−−WHO S e c t i o n c o n t a i n s t h e d e s c r i p t i o n
3160 of t h e p a r t i e s and t h e p o s s i b l e m e d i a t o r s .
3161 −−>
3162 <!−−WHERE S e c t i o n c o n t a i n s t h e d e s c r i p t i o n
3163 of t h e c o n t e x t o f t h e ag reemen t . −−>
3164 <!−−WHAT S e c t i o n c o n t a i n s t h e d e s c r i p t i o n
3165 of t h e exchanged goods / s e r v i c e s and t h e
3166 c o n d i t i o n s f o r t h e exchange . −−>
3167 </ xs : sequence >
3168 <xs : a t t r i b u t e name=" c o n t r a c t _ i d " t y p e =" xs : ID "/ >
3169 <xs : a t t r i b u t e name=" g l o b a l _ l a n g u a g e " t y p e =" xs : s t r i n g " / >
3170 <xs : a t t r i b u t e name=" w e b _ s e r v i c e _ u r i " t y p e =" xs : s t r i n g " / >
3171 </ xs : complexType >
3172 </ xs : e lement >
3173 </ xs : schema >

232 APPENDIX B. ESML SCHEMA

Appendix C

eSML Instantiation

1000 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
1001 < c o n t r a c t xmlns : x s i =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "
1002 x s i : noNamespaceSchemaLocat ion ="C : \ eSML \ eSML_l i te . xsd "
1003 c o n t r a c t _ i d =" CrossWorkD2 . 2 " g l o b a l _ l a n g u a g e =" E n g l i s h ">
1004 <!−− Beg inn ing of What concep t−−>
1005 < p a r t y >
1006 <company_data >
1007 < v a r _ s e c t i o n >
1008 < s t r i n g _ v a r tag_name="CompanyName" v a r _ i d =" SP1 "
1009 c h a n g e a b l e =" f a l s e " e n a b l e d =" e n a b l e d ">Super
1010 S u p p l i e r ABC</ s t r i n g _ v a r >
1011 < s t r i n g _ v a r tag_name=" R e g i s t e r N r " v a r _ i d =" ID2 "
1012 c h a n g e a b l e =" f a l s e "
1013 e n a b l e d =" e n a b l e d " >1111111 </ s t r i n g _ v a r >
1014 < i n t e g e r _ v a r tag_name=" BankNr " v a r _ i d =" ID3 "
1015 c h a n g e a b l e =" t r u e "
1016 e n a b l e d =" e n a b l e d " >111000 </ i n t e g e r _ v a r >
1017 <!−− The c h a n g e a b l e a t t r i b u t e i n d i c a t e s t h a t t h e
1018 v a l u e o f t h e e l e m e n t can be changed by t h e
1019 Owner (D e T e l e g r a a f) f r e e l y (w i t h o u t any r u l e s
1020 a p p l i e d as t h e r e i s n o t r e f e r e n c e t o
1021 a p p l i c a b l e r u l e s ; IDNumber i l l u s t r a t e s t h a t
1022 i t i s n o t an o f t e n r e f e r e n c e d e l e m e n t and does
1023 n o t r e q u i r e a s p e c i a l s t r i n g ; −−>
1024 < i n t e g e r _ v a r tag_name=" BankNr " v a r _ i d =" ID4 "
1025 c h a n g e a b l e =" t r u e "
1026 e n a b l e d =" e n a b l e d " >1111111 </ i n t e g e r _ v a r >
1027 < s t r i n g _ v a r tag_name=" P r o p e r t y "
1028 v a r _ i d =" AccountManagerSp1 " c h a n g e a b l e =" f a l s e "
1029 e n a b l e d =" e n a b l e d ">Account Manager < / s t r i n g _ v a r >
1030 < s t r i n g _ v a r tag_name=" C o n t a c t P e r s o n "
1031 v a r _ i d =" C o n t a c t P e r s o n S p 1 " c h a n g e a b l e =" t r u e "
1032 e n a b l e d =" e n a b l e d ">Max Spar < / s t r i n g _ v a r >
1033 </ v a r _ s e c t i o n >
1034 </ company_data >
1035 < c o m p a n y _ c o n t a c t _ d a t a >
1036 < v a r _ s e c t i o n >
1037 < s t r i n g _ v a r tag_name=" Mai lAddress " v a r _ i d =" ID5 "

233

234 APPENDIX C. ESML INSTANTIATION

1038 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d "> Pos tbox
1039 1 1 1 , 1 0 0 0 Linz < / s t r i n g _ v a r >
1040 < s t r i n g _ v a r tag_name=" V i s i t i n g A d d r e s s "
1041 v a r _ i d =" ID6 " c h a n g e a b l e =" t r u e "
1042 e n a b l e d =" e n a b l e d "> B e r g s t r e e t 1 1 , 1 1 1 1
1043 Linz < / s t r i n g _ v a r >
1044 < i n t e g e r _ v a r tag_name=" Te l " v a r _ i d =" Tel1 "
1045 c h a n g e a b l e =" t r u e "
1046 e n a b l e d =" e n a b l e d " >010111111 </ i n t e g e r _ v a r >
1047 < i n t e g e r _ v a r tag_name=" Te l " v a r _ i d =" Tel2 "
1048 c h a n g e a b l e =" t r u e "
1049 e n a b l e d =" e n a b l e d " >01011112 </ i n t e g e r _ v a r >
1050 < i n t e g e r _ v a r tag_name=" Fax " v a r _ i d =" Fax1 "
1051 c h a n g e a b l e =" t r u e "
1052 e n a b l e d =" e n a b l e d " >01011113 </ i n t e g e r _ v a r >
1053 </ v a r _ s e c t i o n >
1054 </ c o m p a n y _ c o n t a c t _ d a t a >
1055 < r e s o u r c e _ s e c t i o n >
1056 < r o l e >
1057 <name>Department_Head </ name>
1058 </ r o l e >
1059 < r o l e >
1060 <name> Depar tmen t_Cle rk < / name>
1061 </ r o l e >
1062 < p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1063 <name> Procuremen t_Depar tmen t < / name>
1064 < s t a r t _ d a t e >2005−01−01</ s t a r t _ d a t e >
1065 < d e s c r i p t i o n / >
1066 < b u s i n e s s _ o b j e c t i v e s / >
1067 < r e s o u r c e _ n r e f >
1068 < r e s o u r c e _ t y p e _ r e f >Depar tment_Head
1069 </ r e s o u r c e _ t y p e _ r e f >
1070 <number >1 </ number >
1071 </ r e s o u r c e _ n r e f >
1072 < r e s o u r c e _ n r e f >
1073 < r e s o u r c e _ t y p e _ r e f > D e p a r t m e n t _ C l e r k
1074 </ r e s o u r c e _ t y p e _ r e f >
1075 <number >33 </ number >
1076 </ r e s o u r c e _ n r e f >
1077 < i n d i v i d u a l _ r e s o u r c e > Actor2
1078 </ i n d i v i d u a l _ r e s o u r c e >
1079 </ p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1080 < p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1081 <name> L o g i s t i c _ D e p a r t m e n t < / name>
1082 < s t a r t _ d a t e >2005−01−01</ s t a r t _ d a t e >
1083 < d e s c r i p t i o n / >
1084 < b u s i n e s s _ o b j e c t i v e s / >
1085 < r e s o u r c e _ n r e f >
1086 < r e s o u r c e _ t y p e _ r e f >Depar tment_Head
1087 </ r e s o u r c e _ t y p e _ r e f >
1088 <number >1 </ number >
1089 </ r e s o u r c e _ n r e f >
1090 < r e s o u r c e _ n r e f >
1091 < r e s o u r c e _ t y p e _ r e f > D e p a r t m e n t _ C l e r k

235

1092 </ r e s o u r c e _ t y p e _ r e f >
1093 <number >200 </ number >
1094 </ r e s o u r c e _ n r e f >
1095 </ p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1096 < p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1097 <name> Q u a l i t y _ A s s u r a n c e _ D e p a r t m e n t < / name>
1098 < s t a r t _ d a t e >2005−01−01</ s t a r t _ d a t e >
1099 < d e s c r i p t i o n / >
1100 < b u s i n e s s _ o b j e c t i v e s / >
1101 < r e s o u r c e _ n r e f >
1102 < r e s o u r c e _ t y p e _ r e f >Depar tment_Head
1103 </ r e s o u r c e _ t y p e _ r e f >
1104 <number >1 </ number >
1105 </ r e s o u r c e _ n r e f >
1106 < r e s o u r c e _ n r e f >
1107 < r e s o u r c e _ t y p e _ r e f > D e p a r t m e n t _ C l e r k
1108 </ r e s o u r c e _ t y p e _ r e f >
1109 <number >15 </ number >
1110 </ r e s o u r c e _ n r e f >
1111 </ p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1112 < p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1113 <name> E n g i n e e r i n g _ D e p a r t m e n t < / name>
1114 < s t a r t _ d a t e >2005−01−01</ s t a r t _ d a t e >
1115 < d e s c r i p t i o n / >
1116 < b u s i n e s s _ o b j e c t i v e s / >
1117 < r e s o u r c e _ n r e f >
1118 < r e s o u r c e _ t y p e _ r e f >Depar tment_Head
1119 </ r e s o u r c e _ t y p e _ r e f >
1120 <number >1 </ number >
1121 </ r e s o u r c e _ n r e f >
1122 < r e s o u r c e _ n r e f >
1123 < r e s o u r c e _ t y p e _ r e f > D e p a r t m e n t _ C l e r k
1124 </ r e s o u r c e _ t y p e _ r e f >
1125 <number >150 </ number >
1126 </ r e s o u r c e _ n r e f >
1127 < i n d i v i d u a l _ r e s o u r c e > Actor1
1128 </ i n d i v i d u a l _ r e s o u r c e >
1129 </ p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1130 < p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1131 <name> P r o d u c t i o n _ D e p a r t m e n t < / name>
1132 < s t a r t _ d a t e >2005−01−01</ s t a r t _ d a t e >
1133 < d e s c r i p t i o n / >
1134 < b u s i n e s s _ o b j e c t i v e s / >
1135 < r e s o u r c e _ n r e f >
1136 < r e s o u r c e _ t y p e _ r e f >Depar tment_Head
1137 </ r e s o u r c e _ t y p e _ r e f >
1138 <number >1 </ number >
1139 </ r e s o u r c e _ n r e f >
1140 < r e s o u r c e _ n r e f >
1141 < r e s o u r c e _ t y p e _ r e f > D e p a r t m e n t _ C l e r k
1142 </ r e s o u r c e _ t y p e _ r e f >
1143 <number >1500 </ number >
1144 </ r e s o u r c e _ n r e f >
1145 < r e s o u r c e _ n r e f >

236 APPENDIX C. ESML INSTANTIATION

1146 < r e s o u r c e _ t y p e _ r e f > D r i l l e r
1147 </ r e s o u r c e _ t y p e _ r e f >
1148 <number >35 </ number >
1149 </ r e s o u r c e _ n r e f >
1150 </ p e r m a n e n t _ o r g a n i z a t i o n a l _ u n i t >
1151 < t y p e d _ c o l l e c t i o n >
1152 <name>MAN_Decision_Team </ name>
1153 < r e s o u r c e _ n r e f _ t y p e >
1154 < r e s o u r c e _ t y p e _ r e f >Depar tment_Head
1155 </ r e s o u r c e _ t y p e _ r e f >
1156 <number >5 </ number >
1157 </ r e s o u r c e _ n r e f _ t y p e >
1158 </ t y p e d _ c o l l e c t i o n >
1159 < machine_ type >
1160 <name> D r i l l e r < / name>
1161 </ machine_ type >
1162 < a c t o r >
1163 < a c t o r _ i d >Actor2 < / a c t o r _ i d >
1164 < f i r s t _ n a m e >S </ f i r s t _ n a m e >
1165 < las t_name >Buyer < / l a s t_name >
1166 <emai l >sbuyer@abs . com </ emai l >
1167 < l o g i n _ i d >sb < / l o g i n _ i d >
1168 <phone >9999 </ phone >
1169 < r o l e >Department_Head </ r o l e >
1170 </ a c t o r >
1171 < a c t o r >
1172 < a c t o r _ i d >Actor1 < / a c t o r _ i d >
1173 < f i r s t _ n a m e >Max</ f i r s t _ n a m e >
1174 < las t_name >Design < / l a s t_name >
1175 < e m a i l / >
1176 < l o g i n _ i d >mdesign < / l o g i n _ i d >
1177 <phone / >
1178 < r o l e > Depar tmen t_Cle rk < / r o l e >
1179 </ a c t o r >
1180 </ r e s o u r c e _ s e c t i o n >
1181 < c o n t e x t _ s e c t i o n >
1182 < v a r _ s e c t i o n >
1183 < s t r i n g _ v a r tag_name=" g o a l _ p r i o r i t y "
1184 v a r _ i d =" g o a l P r i o " c h a n g e a b l e =" t r u e "
1185 e n a b l e d =" e n a b l e d ">
1186 4∗ t ime +3∗ q u a l i t y +2∗ c o s t +1∗ f l e x i b i l i t y
1187 </ s t r i n g _ v a r >
1188 </ v a r _ s e c t i o n >
1189 </ c o n t e x t _ s e c t i o n >
1190 </ p a r t y >
1191 < p a r t y >
1192 <company_data >
1193 < v a r _ s e c t i o n >
1194 < s t r i n g _ v a r tag_name="CompanyName" v a r _ i d =" SP2 "
1195 c h a n g e a b l e =" f a l s e " e n a b l e d =" e n a b l e d ">Component
1196 S u p p l i e r XYZ</ s t r i n g _ v a r >
1197 < s t r i n g _ v a r tag_name=" R e g i s t e r N r " v a r _ i d =" ID12 "
1198 c h a n g e a b l e =" f a l s e " e n a b l e d =" e n a b l e d " >222222
1199 </ s t r i n g _ v a r >

237

1200 < i n t e g e r _ v a r tag_name=" BankNr " v a r _ i d =" ID13 "
1201 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d " >2222000
1202 </ i n t e g e r _ v a r >
1203 <!−− The c h a n g e a b l e a t t r i b u t e i n d i c a t e s t h a t t h e
1204 v a l u e o f t h e e l e m e n t can be changed by t h e Owner
1205 (D e T e l e g r a a f) f r e e l y (w i t h o u t any r u l e s a p p l i e d
1206 as t h e r e i s n o t r e f e r e n c e t o a p p l i c a b l e r u l e s ;
1207 IDNumber i l l u s t r a t e s t h a t i t i s n o t an o f t e n
1208 r e f e r e n c e d e l e m e n t and does n o t r e q u i r e a s p e c i a l
1209 s t r i n g ; −−>
1210 < i n t e g e r _ v a r tag_name=" BankNr " v a r _ i d =" ID14 "
1211 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d " >2222222
1212 </ i n t e g e r _ v a r >
1213 < s t r i n g _ v a r tag_name=" P r o p e r t y "
1214 v a r _ i d =" AccountManagerSp2 " c h a n g e a b l e =" f a l s e "
1215 e n a b l e d =" e n a b l e d ">Account Manager < / s t r i n g _ v a r >
1216 < s t r i n g _ v a r tag_name=" C o n t a c t P e r s o n "
1217 v a r _ i d =" C o n t a c t P e r s o n S p 2 " c h a n g e a b l e =" t r u e "
1218 e n a b l e d =" e n a b l e d " owner=" SP2 "> F e l i x Pods
1219 </ s t r i n g _ v a r >
1220 </ v a r _ s e c t i o n >
1221 </ company_data >
1222 < c o m p a n y _ c o n t a c t _ d a t a >
1223 < v a r _ s e c t i o n >
1224 < s t r i n g _ v a r tag_name=" Mai lAddress " v a r _ i d =" ID15 "
1225 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d "> Pos tbox 2 ,
1226 2 0 0 0 S t e y r < / s t r i n g _ v a r >
1227 < s t r i n g _ v a r tag_name=" V i s i t i n g A d d r e s s "
1228 v a r _ i d =" ID16 " c h a n g e a b l e =" t r u e "
1229 e n a b l e d =" e n a b l e d ">Dommelroad 2 2 , 2 2 2 2 S t e y r
1230 </ s t r i n g _ v a r >
1231 < i n t e g e r _ v a r tag_name=" Te l " v a r _ i d =" Tel1_Sp2 "
1232 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d " >02022222
1233 </ i n t e g e r _ v a r >
1234 < i n t e g e r _ v a r tag_name=" Te l " v a r _ i d =" Tel2_Sp2 "
1235 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d " >02022221
1236 </ i n t e g e r _ v a r >
1237 < i n t e g e r _ v a r tag_name=" Fax " v a r _ i d =" Fax1_Sp2 "
1238 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d " >02022223
1239 </ i n t e g e r _ v a r >
1240 </ v a r _ s e c t i o n >
1241 </ c o m p a n y _ c o n t a c t _ d a t a >
1242 < r e s o u r c e _ s e c t i o n / >
1243 </ p a r t y >
1244 < p a r t y >
1245 <company_data >
1246 < v a r _ s e c t i o n >
1247 < s t r i n g _ v a r tag_name="CompanyName" v a r _ i d ="VE"
1248 c h a n g e a b l e =" f a l s e " e n a b l e d =" e n a b l e d ">
1249 V i r t u a l E n t e r p r i s e NoAE</ s t r i n g _ v a r >
1250 < s t r i n g _ v a r tag_name=" P r o p e r t y "
1251 v a r _ i d =" C o o r d i n a t o r " c h a n g e a b l e =" f a l s e "
1252 e n a b l e d =" e n a b l e d ">NoAE c o o r d i n a t o r
1253 </ s t r i n g _ v a r >

238 APPENDIX C. ESML INSTANTIATION

1254 < s t r i n g _ v a r tag_name=" C o n t a c t P e r s o n "
1255 v a r _ i d =" ContactPerson_NoAE " c h a n g e a b l e =" t r u e "
1256 e n a b l e d =" e n a b l e d "> F e l i x Pods < / s t r i n g _ v a r >
1257 </ v a r _ s e c t i o n >
1258 </ company_data >
1259 < c o m p a n y _ c o n t a c t _ d a t a >
1260 < v a r _ s e c t i o n >
1261 < s t r i n g _ v a r tag_name=" Address "
1262 v a r _ i d =" AddressOeM " c h a n g e a b l e =" f a l s e "
1263 e n a b l e d =" e n a b l e d "> S t e y r / A u s t r i a < / s t r i n g _ v a r >
1264 </ v a r _ s e c t i o n >
1265 </ c o m p a n y _ c o n t a c t _ d a t a >
1266 < r e s o u r c e _ s e c t i o n / >
1267 </ p a r t y >
1268 < d a t a _ d e f i n i t i o n _ s e c t i o n >
1269 < d a t a _ p a c k a g e >
1270 < package_ id >cd </ package_ id >
1271 < v a r _ s e c t i o n >
1272 < s t r i n g _ v a r tag_name=" B i l l o f M a t e r i a l "
1273 v a r _ i d ="BOM" c h a n g e a b l e =" f a l s e "
1274 e n a b l e d =" e n a b l e d "> S u r r o u n d i n g Box ; Gea r ing
1275 </ s t r i n g _ v a r >
1276 </ v a r _ s e c t i o n >
1277 < d o c u m e n t _ s e c t i o n >
1278 <document >
1279 <document_id >cadDrawing </ document_id >
1280 <name>Cad Drawing of c o m p l e t e GearBox
1281 </ name>
1282 < u r i >
1283 h t t p : / / www. ve . com / drawings / gearBox . 3 ds
1284 </ u r i >
1285 </ document >
1286 </ d o c u m e n t _ s e c t i o n >
1287 </ d a t a _ p a c k a g e >
1288 < d a t a _ p a c k a g e >
1289 < package_ id >do </ package_ id >
1290 < d o c u m e n t _ s e c t i o n >
1291 <document >
1292 <document_id >do_doc < / document_id >
1293 <name>Development Order Document < / name>
1294 < u r i / >
1295 < v a r _ s e c t i o n >
1296 < s t r i n g _ v a r tag_name=" O r d e r C o n t e n t "
1297 v a r _ i d ="OC" c h a n g e a b l e =" t r u e "
1298 e n a b l e d =" e n a b l e d ">Develop and Produce
1299 a GearBox < / s t r i n g _ v a r >
1300 < s t r i n g _ v a r tag_name=" S u p p l i e r I D "
1301 v a r _ i d =" SID "
1302 c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d ">
1303 S u p p l l i e r 1
1304 </ s t r i n g _ v a r >
1305 < s t r i n g _ v a r tag_name=" BuyerID "
1306 v a r _ i d ="BID" c h a n g e a b l e =" t r u e "
1307 e n a b l e d =" e n a b l e d ">Buyer1 < / s t r i n g _ v a r >

239

1308 </ v a r _ s e c t i o n >
1309 </ document >
1310 </ d o c u m e n t _ s e c t i o n >
1311 </ d a t a _ p a c k a g e >
1312 < d a t a _ p a c k a g e >
1313 < package_ id >Box </ package_ id >
1314 < v a r _ s e c t i o n >
1315 < s t r i n g _ v a r tag_name=" S u r r o u n d i n g Box "
1316 v a r _ i d ="SB" c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d ">
1317 S u r r o u n d i n g Box D e l i v e r a b l e Data < / s t r i n g _ v a r >
1318 </ v a r _ s e c t i o n >
1319 </ d a t a _ p a c k a g e >
1320 < d a t a _ p a c k a g e >
1321 < package_ id >GearBox </ package_ id >
1322 < v a r _ s e c t i o n >
1323 < s t r i n g _ v a r tag_name=" Complete Gear Box "
1324 v a r _ i d ="cGB" c h a n g e a b l e =" t r u e " e n a b l e d =" e n a b l e d ">
1325 Complete GearBox D e l i v e r a b l e Data < / s t r i n g _ v a r >
1326 </ v a r _ s e c t i o n >
1327 </ d a t a _ p a c k a g e >
1328 < d a t a _ p a c k a g e >
1329 < package_ id >cdBox </ package_ id >
1330 < v a r _ s e c t i o n >
1331 < s t r i n g _ v a r tag_name=" B i l l o f M a t e r i a f o r box "
1332 v a r _ i d ="BOM_box" c h a n g e a b l e =" f a l s e "
1333 e n a b l e d =" e n a b l e d "> S u r r o u n d i n g Box , s c r e w s
1334 </ s t r i n g _ v a r >
1335 </ v a r _ s e c t i o n >
1336 < d o c u m e n t _ s e c t i o n >
1337 <document >
1338 <document_id >cadDrawing_Box </ document_id >
1339 <name>Cad Drawing of s u r r o u n d i n g Box </ name>
1340 < u r i >
1341 h t t p : / / www. ve . com / drawings / s u r r o u n d i n g B o x . 3 ds
1342 </ u r i >
1343 </ document >
1344 </ d o c u m e n t _ s e c t i o n >
1345 </ d a t a _ p a c k a g e >
1346 < d a t a _ p a c k a g e >
1347 < package_ id >doBox </ package_ id >
1348 < d o c u m e n t _ s e c t i o n >
1349 <document >
1350 <document_id >do_Box_doc < / document_id >
1351 <name> S u r r o u n d i n g Box Development Order Document
1352 </ name>
1353 < u r i / >
1354 < v a r _ s e c t i o n >
1355 < s t r i n g _ v a r tag_name=" BoxOrderConten t "
1356 v a r _ i d ="BoxOC" c h a n g e a b l e =" t r u e "
1357 e n a b l e d =" e n a b l e d ">
1358 Develop and Produce a S u r r o u n d i n g Box
1359 </ s t r i n g _ v a r >
1360 < s t r i n g _ v a r tag_name=" S u p p l i e r I D "
1361 v a r _ i d =" BoxSID " c h a n g e a b l e =" t r u e "

240 APPENDIX C. ESML INSTANTIATION

1362 e n a b l e d =" e n a b l e d "> S u p p l l i e r 1 < / s t r i n g _ v a r >
1363 < s t r i n g _ v a r tag_name=" BuyerID "
1364 v a r _ i d =" BoxBID " c h a n g e a b l e =" t r u e "
1365 e n a b l e d =" e n a b l e d ">Buyer1 < / s t r i n g _ v a r >
1366 </ v a r _ s e c t i o n >
1367 </ document >
1368 </ d o c u m e n t _ s e c t i o n >
1369 </ d a t a _ p a c k a g e >
1370 < d a t a _ p a c k a g e >
1371 < package_ id > BankSta tement < / package_ id >
1372 < v a r _ s e c t i o n >
1373 < s t r i n g _ v a r tag_name=" Account Number "
1374 v a r _ i d ="ANr" c h a n g e a b l e =" f a l s e " e n a b l e d =" e n a b l e d ">
1375 1111 </ s t r i n g _ v a r >
1376 < s t r i n g _ v a r tag_name=" Account Holde r "
1377 v a r _ i d ="AH" c h a n g e a b l e =" f a l s e "
1378 e n a b l e d =" e n a b l e d ">VE</ s t r i n g _ v a r >
1379 </ v a r _ s e c t i o n >
1380 </ d a t a _ p a c k a g e >
1381 < d a t a _ p a c k a g e >
1382 < package_ id > T r a n s f e r B i l l < / package_ id >
1383 < v a r _ s e c t i o n >
1384 < s t r i n g _ v a r tag_name=" Sender Account "
1385 v a r _ i d =" SenderAcount " c h a n g e a b l e =" f a l s e "
1386 e n a b l e d =" e n a b l e d " >1111 </ s t r i n g _ v a r >
1387 < s t r i n g _ v a r tag_name=" R e c e i v e r Account1 "
1388 v a r _ i d =" R e c e i v e r A c c o u n t 1 " c h a n g e a b l e =" t r u e "
1389 e n a b l e d =" e n a b l e d " >2222 </ s t r i n g _ v a r >
1390 < s t r i n g _ v a r tag_name=" R e c e i v e r Account2 "
1391 v a r _ i d =" R e c e i v e r A c c o u n t 2 " c h a n g e a b l e =" t r u e "
1392 e n a b l e d =" e n a b l e d " >33333 </ s t r i n g _ v a r >
1393 </ v a r _ s e c t i o n >
1394 </ d a t a _ p a c k a g e >
1395 </ d a t a _ d e f i n i t i o n _ s e c t i o n >
1396 <!−− end of Who c o n c e p t −−>
1397 <!−− Beg inn ing of Where c o n c e p t −−>
1398 < b u s i n e s s _ c o n t e x t _ p r o v i s i o n s >
1399 < r u l e _ s e c t i o n >
1400 < r e a c t i o n _ r u l e tag_name=" ComplainRule "
1401 r u l e _ i d =" ComplainRule " e n a b l e d =" e n a b l e d "
1402 c h a n g e a b l e =" f a l s e ">
1403 < r u l e _ c o n d i t i o n s >
1404 C u r r e n t D a t e& l t ; C o n t r a c t D a t e +60
1405 </ r u l e _ c o n d i t i o n s >
1406 < e x e c u t i v e _ a c t i o n t y p e ="may"
1407 a s s i g n e d _ t o ="VE"
1408 r e p e a t a b l e =" t r u e ">
1409 < t a r g e t s >Complain < / t a r g e t s >
1410 </ e x e c u t i v e _ a c t i o n >
1411 </ r e a c t i o n _ r u l e >
1412 < r e a c t i o n _ r u l e tag_name=" ForceMajeu reRu le "
1413 r u l e _ i d =" ForceMajeu reRu le " e n a b l e d =" e n a b l e d "
1414 c h a n g e a b l e =" f a l s e ">
1415 < r u l e _ c o n d i t i o n s >

241

1416 (Fo rceMajeu re = t rue) AND
1417 (Fo rceMajeu re . D a t e o f O c c u r a n c e +30& l t ; C u r r e n t D a t e)
1418 </ r u l e _ c o n d i t i o n s >
1419 < e x e c u t i v e _ a c t i o n t y p e ="may"
1420 a s s i g n e d _ t o ="VE" r e p e a t a b l e =" f a l s e ">
1421 < t a r g e t s > T e r m i n a t e C o n t r a c t
1422 </ t a r g e t s >
1423 </ e x e c u t i v e _ a c t i o n >
1424 </ r e a c t i o n _ r u l e >
1425 < r e a c t i o n _ r u l e tag_name=" T e r m i n a t e R u l e "
1426 r u l e _ i d =" T e r m i n a t e R u l e 2 " e n a b l e d =" e n a b l e d "
1427 c h a n g e a b l e =" f a l s e ">
1428 < r u l e _ c o n d i t i o n s > C o n t r a c t B r e a c h = t rue
1429 </ r u l e _ c o n d i t i o n s >
1430 < e x e c u t i v e _ a c t i o n t y p e ="may" a s s i g n e d _ t o ="VE">
1431 < t a r g e t s > T e r m i n a t e C o n t r a c t < / t a r g e t s >
1432 </ e x e c u t i v e _ a c t i o n >
1433 </ r e a c t i o n _ r u l e >
1434 < r e a c t i o n _ r u l e tag_name=" T e r m i n a t e R u l e "
1435 r u l e _ i d =" T e r m i n a t e R u l e 1 " e n a b l e d =" e n a b l e d "
1436 c h a n g e a b l e =" f a l s e ">
1437 < r u l e _ c o n d i t i o n s >(BankruptcyOfVE= t rue) OR
1438 (MoratoriumByVE= t rue) < / r u l e _ c o n d i t i o n s >
1439 < e x e c u t i v e _ a c t i o n t y p e ="may" a s s i g n e d _ t o =" SP1 ">
1440 < t a r g e t s > T e r m i n a t e C o n t r a c t < / t a r g e t s >
1441 </ e x e c u t i v e _ a c t i o n >
1442 </ r e a c t i o n _ r u l e >
1443 </ r u l e _ s e c t i o n >
1444 < p r o c e s s _ s e c t i o n >
1445 < p r o c e s s tag_name=" Complain " p r o c e s s _ i d =" Complain "
1446 e n a b l e d =" e n a b l e d ">
1447 < t a s k name=" SendComplain " a c t i v e _ n o d e _ i d =" scomp "
1448 owner="VE" e x e c u t o r ="VE" e n a b l e d =" e n a b l e d " / >
1449 </ p r o c e s s >
1450 < p r o c e s s tag_name=" T e r m i n a t e C o n t r a c t "
1451 p r o c e s s _ i d =" T e r m i n a t e C o n t r a c t " e n a b l e d =" e n a b l e d ">
1452 < sequence >
1453 < t a s k name=" N o t i f y S e r v i c e P r o v i d e r s "
1454 a c t i v e _ n o d e _ i d =" n s p r o v i d e r s "
1455 a d d r e s s =" someWebService " e x e c u t o r ="VE"
1456 e n a b l e d =" e n a b l e d " / >
1457 < t a s k name=" S t o p C o n t r a c t "
1458 a c t i v e _ n o d e _ i d =" s c o n t r a c t "
1459 a d d r e s s =" someWebService " e x e c u t o r ="VE"
1460 e n a b l e d =" e n a b l e d " / >
1461 </ sequence >
1462 </ p r o c e s s >
1463 </ p r o c e s s _ s e c t i o n >
1464 </ b u s i n e s s _ c o n t e x t _ p r o v i s i o n s >
1465 < l e g a l _ c o n t e x t _ p r o v i s i o n s >
1466 < v a r _ s e c t i o n >
1467 < e x t e r n a l _ r e s o u r c e _ r e f e r e n c e _ v a r
1468 tag_name=" G e n e r a l P r o v i s i o n s " v a r _ i d =" ID31 "
1469 c h a n g e a b l e =" t r u e "

242 APPENDIX C. ESML INSTANTIATION

1470 e n a b l e d =" e n a b l e d " i s _ l e g a l l y _ b i n d i n g =" t r u e "
1471 owner="VE" r e s o u r c e _ s t a t e =" a v a i l a b l e ">
1472 h t t p : / / s e r v i c e . VE . n l / t a r i e v e n / w e b s i t e / i n d e x . php ?39
1473 </ e x t e r n a l _ r e s o u r c e _ r e f e r e n c e _ v a r >
1474 </ v a r _ s e c t i o n >
1475 </ l e g a l _ c o n t e x t _ p r o v i s i o n s >
1476 <!−− end of Where c o n c e p t −−>
1477 <!−− Beg inn ing of What c o n c e p t −−>
1478 < exchanged_va lue >
1479 < p r o d u c t >
1480 < v a r _ s e c t i o n >
1481 < s t r i n g _ v a r tag_name="Name"
1482 v a r _ i d =" name_end_produc t " c h a n g e a b l e =" f a l s e "
1483 e n a b l e d =" e n a b l e d ">Gear Box </ s t r i n g _ v a r >
1484 </ v a r _ s e c t i o n >
1485 </ p r o d u c t >
1486 </ exchanged_va lue >
1487 < exchanged_va lue >
1488 < p r o d u c t >
1489 < v a r _ s e c t i o n >
1490 < s t r i n g _ v a r tag_name="Name"
1491 v a r _ i d =" NameComponent1 " c h a n g e a b l e =" f a l s e "
1492 e n a b l e d =" e n a b l e d "> Gear ing System </ s t r i n g _ v a r >
1493 </ v a r _ s e c t i o n >
1494 </ p r o d u c t >
1495 </ exchanged_va lue >
1496 < exchanged_va lue >
1497 < p r o d u c t >
1498 < v a r _ s e c t i o n >
1499 < s t r i n g _ v a r tag_name="Name"
1500 v a r _ i d =" NameComponent2 " c h a n g e a b l e =" f a l s e "
1501 e n a b l e d =" e n a b l e d "> S u r r o u n d i n g Box
1502 </ s t r i n g _ v a r >
1503 </ v a r _ s e c t i o n >
1504 </ p r o d u c t >
1505 </ exchanged_va lue >
1506 < exchanged_va lue >
1507 < s e r v i c e >
1508 < p r o c e s s _ s e c t i o n >
1509 < p r o c e s s tag_name=" G e a r b o x _ P r o d u c t i o n "
1510 p r o c e s s _ i d =" GB_produc t ion ">
1511 < sequence >
1512 < s o u r c i n g _ s p h e r e >
1513 < s p h e r e _ i d >SP1_Sphere1 < / s p h e r e _ i d >
1514 <owner >SP1 </ owner >
1515 < d e s c r i p t i o n >
1516 Thi s i s t h e f i r s t s o u r c i n g s p h e r e
1517 of t h e SP1
1518 </ d e s c r i p t i o n >
1519 < sequence >
1520 < r e c e i v e _ t r a n s i t i o n
1521 a c t i v e _ n o d e _ i d ="CO"
1522 name=" Rece ive_Orde r ">
1523 < da ta >

243

1524 < d a t a _ f l o w _ d i r e c t i o n >
1525 i n p u t
1526 </ d a t a _ f l o w _ d i r e c t i o n >
1527 < d a t a _ p a c k a g e _ r e f >
1528 cd
1529 </ d a t a _ p a c k a g e _ r e f >
1530 </ da t a >
1531 < da ta >
1532 < d a t a _ f l o w _ d i r e c t i o n >
1533 i n p u t
1534 </ d a t a _ f l o w _ d i r e c t i o n >
1535 < d a t a _ p a c k a g e _ r e f >
1536 do
1537 </ d a t a _ p a c k a g e _ r e f >
1538 </ da t a >
1539 </ r e c e i v e _ t r a n s i t i o n >
1540 < t a s k
1541 a c t i v e _ n o d e _ i d =" Check_Gearbox_order "
1542 name=" Check_Order "
1543 owner="VE"
1544 e x e c u t o r =" SP1 ">
1545 < da ta >
1546 < d a t a _ f l o w _ d i r e c t i o n >
1547 i n p u t
1548 </ d a t a _ f l o w _ d i r e c t i o n >
1549 < d a t a _ p a c k a g e _ r e f >
1550 cd
1551 </ d a t a _ p a c k a g e _ r e f >
1552 </ da t a >
1553 < da ta >
1554 < d a t a _ f l o w _ d i r e c t i o n >
1555 i n p u t
1556 </ d a t a _ f l o w _ d i r e c t i o n >
1557 < d a t a _ p a c k a g e _ r e f >
1558 do
1559 </ d a t a _ p a c k a g e _ r e f >
1560 </ da t a >
1561 </ t a s k >
1562 < p a r a l l e l _ s y n c >
1563 < sequence >
1564 < t a s k
1565 name=" Deve lop_Gear ing "
1566 a c t i v e _ n o d e _ i d ="DevG"
1567 owner="VE"
1568 e x e c u t o r =" SP1 ">
1569 < e v e n t
1570 tag_name=" c d B o x _ a v a i l a b l e "
1571 v a r _ i d =" c d B o x _ a v a i l a b l e "
1572 c h a n g e a b l e =" t r u e "
1573 e n a b l e d =" e n a b l e d ">
1574 f a l s e
1575 </ even t >
1576 < da ta >
1577 < d a t a _ f l o w _ d i r e c t i o n >

244 APPENDIX C. ESML INSTANTIATION

1578 o u t p u t
1579 </ d a t a _ f l o w _ d i r e c t i o n >
1580 < d a t a _ p a c k a g e _ r e f >
1581 cdBox
1582 </ d a t a _ p a c k a g e _ r e f >
1583 </ da t a >
1584 </ t a s k >
1585 < t a s k
1586 name=" P r o d u c e _ G e a r i n g "
1587 a c t i v e _ n o d e _ i d =" ProG "
1588 owner="VE"
1589 e x e c u t o r =" SP1 " / >
1590 </ sequence >
1591 < sequence >
1592 < wai t_any >
1593 < e v e n t _ r e f >
1594 c d B o x _ a v a i l a b l e
1595 </ e v e n t _ r e f >
1596 </ wai t_any >
1597 < t a s k
1598 name=" Order_Box "
1599 a c t i v e _ n o d e _ i d =" OrdB "
1600 owner="VE"
1601 e x e c u t o r =" SP1 ">
1602 < e v e n t
1603 tag_name=" d o B o x _ a v a i l a b l e "
1604 v a r _ i d =" d o B o x _ a v a i l a b l e "
1605 c h a n g e a b l e =" t r u e "
1606 e n a b l e d =" e n a b l e d ">
1607 f a l s e
1608 </ even t >
1609 < da ta >
1610 < d a t a _ f l o w _ d i r e c t i o n >
1611 o u t p u t
1612 </ d a t a _ f l o w _ d i r e c t i o n >
1613 < d a t a _ p a c k a g e _ r e f >
1614 doBox
1615 </ d a t a _ p a c k a g e _ r e f >
1616 </ da t a >
1617 </ t a s k >
1618 < s e n d _ t a s k
1619 a c t i v e _ n o d e _ i d =" send_Order_Box_CD "
1620 name=" SendOrderCD ">
1621 < da ta >
1622 < d a t a _ f l o w _ d i r e c t i o n > o u t p u t
1623 </ d a t a _ f l o w _ d i r e c t i o n >
1624 < d a t a _ p a c k a g e _ r e f >
1625 doBox
1626 </ d a t a _ p a c k a g e _ r e f >
1627 </ da t a >
1628 < da ta >
1629 < d a t a _ f l o w _ d i r e c t i o n >
1630 o u t p u t
1631 </ d a t a _ f l o w _ d i r e c t i o n >

245

1632 < d a t a _ p a c k a g e _ r e f >
1633 cdBox
1634 </ d a t a _ p a c k a g e _ r e f >
1635 </ da t a >
1636 < d e s t i n a t i o n _ U R I >
1637 h t t p : / / www. ve . com / b o x o r d e r . wsd l ? p o r t =12212? o p e r a t i o n= r e c e i v e
1638 </ d e s t i n a t i o n _ U R I >
1639 </ s e n d _ t a s k >
1640 < s o u r c i n g _ s p h e r e >
1641 < s p h e r e _ i d >Sphere_SP2 </ s p h e r e _ i d >
1642 <owner >SP2 </ owner >
1643 < d e s c r i p t i o n >
1644 S o r u c i n g Sphere o f S u p l l i e r SP2
1645 </ d e s c r i p t i o n >
1646 < sequence >
1647 < r e c e i v e _ t a s k
1648 name=" Receive_Box_Order "
1649 a c t i v e _ n o d e _ i d =" ReceiveBO "
1650 owner="VE"
1651 e x e c u t o r =" SP2 ">
1652 < da ta >
1653 < d a t a _ f l o w _ d i r e c t i o n >
1654 i n p u t
1655 </ d a t a _ f l o w _ d i r e c t i o n >
1656 < d a t a _ p a c k a g e _ r e f >
1657 doBox
1658 </ d a t a _ p a c k a g e _ r e f >
1659 </ da t a >
1660 < da ta >
1661 < d a t a _ f l o w _ d i r e c t i o n >
1662 i n p u t
1663 </ d a t a _ f l o w _ d i r e c t i o n >
1664 < d a t a _ p a c k a g e _ r e f >
1665 cdBox
1666 </ d a t a _ p a c k a g e _ r e f >
1667 </ da t a >
1668 </ r e c e i v e _ t a s k >
1669 < t a s k
1670 name=" Check_Box_Order "
1671 a c t i v e _ n o d e _ i d ="CBO"
1672 owner="VE"
1673 e x e c u t o r =" SP2 ">
1674 < da ta >
1675 < d a t a _ f l o w _ d i r e c t i o n >
1676 i n p u t
1677 </ d a t a _ f l o w _ d i r e c t i o n >
1678 < d a t a _ p a c k a g e _ r e f >
1679 doBox
1680 </ d a t a _ p a c k a g e _ r e f >
1681 </ da t a >
1682 </ t a s k >
1683 < t a s k
1684 name=" Develop_Box "
1685 a c t i v e _ n o d e _ i d ="DevB"

246 APPENDIX C. ESML INSTANTIATION

1686 owner="VE"
1687 e x e c u t o r =" SP2 ">
1688 < da ta >
1689 < d a t a _ f l o w _ d i r e c t i o n >
1690 i n p u t
1691 </ d a t a _ f l o w _ d i r e c t i o n >
1692 < d a t a _ p a c k a g e _ r e f >
1693 cdBox
1694 </ d a t a _ p a c k a g e _ r e f >
1695 </ da t a >
1696 </ t a s k >
1697 < t a s k
1698 name=" Produce_Box "
1699 a c t i v e _ n o d e _ i d =" ProB "
1700 owner="VE"
1701 e x e c u t o r =" SP2 ">
1702 < e v e n t
1703 tag_name=" B o x _ a v a i l a b l e "
1704 v a r _ i d =" B o x _ a v a i l a b l e "
1705 c h a n g e a b l e =" t r u e "
1706 e n a b l e d =" e n a b l e d ">
1707 f a l s e
1708 </ even t >
1709 < da ta >
1710 < d a t a _ f l o w _ d i r e c t i o n >
1711 o u t p u t
1712 </ d a t a _ f l o w _ d i r e c t i o n >
1713 < d a t a _ p a c k a g e _ r e f >
1714 Box
1715 </ d a t a _ p a c k a g e _ r e f >
1716 </ da t a >
1717 </ t a s k >
1718 < s e n d _ t a s k
1719 name=" Send_Box "
1720 a c t i v e _ n o d e _ i d =" SendB "
1721 owner="VE"
1722 e x e c u t o r =" SP2 ">
1723 < da ta >
1724 < d a t a _ f l o w _ d i r e c t i o n >
1725 o u t p u t
1726 </ d a t a _ f l o w _ d i r e c t i o n >
1727 < d a t a _ p a c k a g e _ r e f >
1728 Box
1729 </ d a t a _ p a c k a g e _ r e f >
1730 </ da t a >
1731 < d e s t i n a t i o n _ U R I >
1732 h t t p : / / www. ve . com / r e c e i v e P o r t . wsd l ? o p e r a t i o n =1111
1733 </ d e s t i n a t i o n _ U R I >
1734 </ s e n d _ t a s k >
1735 </ sequence >
1736 <!−− end of seq w i t h i n SP2 −−>
1737 </ s o u r c i n g _ s p h e r e >
1738 <!−− end of Sphere_Sp2−−>
1739 </ sequence >

247

1740 <!−− end seq lower b r a n c h
1741 w i t h i n p a r a l l _ s y n c −−>
1742 </ p a r a l l e l _ s y n c >
1743 </ sequence >
1744 </ s o u r c i n g _ s p h e r e >
1745 < s o u r c i n g _ s p h e r e >
1746 < s p h e r e _ i d >Sphere_SP1_2 </ s p h e r e _ i d >
1747 <owner >SP1 </ owner >
1748 < d e s c r i p t i o n >
1749 Thi s i s t h e second s p h e r e o f
1750 p r o v i d e r SP1
1751 </ d e s c r i p t i o n >
1752 < sequence >
1753 < r e c e i v e _ t a s k
1754 a c t i v e _ n o d e _ i d =" Receive_Box "
1755 name=" Rece ive S u r r o u n d i n g Box ">
1756 < da ta >
1757 < d a t a _ f l o w _ d i r e c t i o n >
1758 i n p u t
1759 </ d a t a _ f l o w _ d i r e c t i o n >
1760 < d a t a _ p a c k a g e _ r e f >
1761 Box
1762 </ d a t a _ p a c k a g e _ r e f >
1763 </ da t a >
1764 </ r e c e i v e _ t a s k >
1765 < t a s k
1766 name=" Assemble_Gear_Box "
1767 a c t i v e _ n o d e _ i d =" AssB "
1768 owner="VE" e x e c u t o r =" SP1 ">
1769 < da ta >
1770 < d a t a _ f l o w _ d i r e c t i o n >
1771 o u t p u t
1772 </ d a t a _ f l o w _ d i r e c t i o n >
1773 < d a t a _ p a c k a g e _ r e f >
1774 GearBox
1775 </ d a t a _ p a c k a g e _ r e f >
1776 </ da t a >
1777 </ t a s k >
1778 </ sequence >
1779 </ s o u r c i n g _ s p h e r e >
1780 </ sequence >
1781 </ p r o c e s s >
1782 < l i f e c y c l e _ d e f i n i t i o n s >
1783 < p r o c e s s _ l i f e c y c l e >
1784 < l i f e c y c l e _ s e q u e n c e >
1785 < a t o m i c _ s t a t e
1786 name=" VE_process_ ready "
1787 tag_name=" r e a d y " / >
1788 < t r a n s i t i o n
1789 name=" V E _ p r o c e s s _ s t a r t _ e n a c t m e n t "
1790 tag_name=" s t a r t _ e n a c t m e n t " / >
1791 < a t o m i c _ s t a t e
1792 name=" V E _ p r o c e s s _ e n a c t i n g "
1793 tag_name=" e n a c t i n g " / >

248 APPENDIX C. ESML INSTANTIATION

1794 < t r a n s i t i o n
1795 name=" V E _ p r o c e s s _ f i n i s h _ e n a c t m e n t "
1796 tag_name=" f i n i s h _ e n a c t m e n t " / >
1797 < a t o m i c _ s t a t e
1798 name=" VE_process_ended "
1799 tag_name=" ended " / >
1800 </ l i f e c y c l e _ s e q u e n c e >
1801 </ p r o c e s s _ l i f e c y c l e >
1802 < a c t i v e _ n o d e _ l i f e c y c l e >
1803 < l i f e c y c l e _ s e q u e n c e >
1804 < a t o m i c _ s t a t e name=" VE_ac t i ve_node_ ready "
1805 tag_name=" r e a d y " / >
1806 < l i f e c y c l e _ p a r a l l e l _ s y n c >
1807 < l i f e c y c l e _ s e q u e n c e >
1808 < t r a n s i t i o n
1809 name=" V E _ a c t i v e _ n o d e _ a c c e p t "
1810 tag_name=" a c c e p t " / >
1811 < a t o m i c _ s t a t e
1812 name=" V E _ a c t i v e _ n o d e _ e x e c u t i n g "
1813 tag_name=" e x e c u t i n g " / >
1814 </ l i f e c y c l e _ s e q u e n c e >
1815 < l i f e c y c l e _ s e q u e n c e >
1816 < t r a n s i t i o n
1817 name=" VE_ac t ive_node_bypas s "
1818 tag_name=" b y p a s s " / >
1819 < a t o m i c _ s t a t e
1820 name=" VE_ac t ive_node_bypas sed "
1821 tag_name=" b y p a s s e d " / >
1822 </ l i f e c y c l e _ s e q u e n c e >
1823 </ l i f e c y c l e _ p a r a l l e l _ s y n c >
1824 < t r a n s i t i o n name=" VE_ac t ive_node_comple t e "
1825 tag_name=" c o m p l e t e " / >
1826 < a t o m i c _ s t a t e name=" V E _ a c t i v e _ c o m p l e t e d "
1827 tag_name=" comple t ed " / >
1828 </ l i f e c y c l e _ s e q u e n c e >
1829 </ a c t i v e _ n o d e _ l i f e c y c l e >
1830 </ l i f e c y c l e _ d e f i n i t i o n s >
1831 < l i f e c y c l e _ m a p p i n g s >
1832 < p r o c e s s _ l i f e c y c l e _ m a p p i n g
1833 mapping_name=" p r o c e s s _ r e a d y "
1834 node_ type =" l i f e c y c l e _ s t a t e ">
1835 < consumer_sphere >SP1_Sphere1
1836 </ consumer_sphere >
1837 < c o n s u m e r _ a c t i v e _ n o d e >
1838 VE_process_ ready
1839 </ c o n s u m e r _ a c t i v e _ n o d e >
1840 < p r o v i d e r >
1841 < p r o v i d e r _ s p h e r e >PP_SP1_1
1842 </ p r o v i d e r _ s p h e r e >
1843 < p r o v i d e r _ a c t i v e _ n o d e >
1844 S P 1 _ p r o c e s s _ i d l e
1845 </ p r o v i d e r _ a c t i v e _ n o d e >
1846 < p r o v i d e r _ s p h e r e >PP_SP2
1847 </ p r o v i d e r _ s p h e r e >

249

1848 < p r o v i d e r _ a c t i v e _ n o d e >
1849 S P 1 _ p r o c e s s _ i d l e
1850 </ p r o v i d e r _ a c t i v e _ n o d e >
1851 </ p r o v i d e r >
1852 </ p r o c e s s _ l i f e c y c l e _ m a p p i n g >
1853 < p r o c e s s _ l i f e c y c l e _ m a p p i n g
1854 mapping_name=" p r o c e s s _ s t a r t "
1855 node_ type =" l i f e c y c l e _ t r a n s i t i o n ">
1856 < consumer_sphere >SP1_Sphere1
1857 </ consumer_sphere >
1858 < c o n s u m e r _ a c t i v e _ n o d e >
1859 V E _ p r o c e s s _ s t a r t _ e n a c t m e n t
1860 </ c o n s u m e r _ a c t i v e _ n o d e >
1861 < p r o v i d e r >
1862 < p r o v i d e r _ s p h e r e >PP_SP1_1
1863 </ p r o v i d e r _ s p h e r e >
1864 < p r o v i d e r _ a c t i v e _ n o d e >
1865 S P 1 _ p r o c e s s _ s t a r t
1866 </ p r o v i d e r _ a c t i v e _ n o d e >
1867 < p r o v i d e r _ s p h e r e >PP_SP2
1868 </ p r o v i d e r _ s p h e r e >
1869 < p r o v i d e r _ a c t i v e _ n o d e >
1870 S P 1 _ p r o c e s s _ s t a r t
1871 </ p r o v i d e r _ a c t i v e _ n o d e >
1872 </ p r o v i d e r >
1873 </ p r o c e s s _ l i f e c y c l e _ m a p p i n g >
1874 < p r o c e s s _ l i f e c y c l e _ m a p p i n g
1875 mapping_name=" p r o c e s s _ e n a c t i n g "
1876 node_ type =" l i f e c y c l e _ s t a t e ">
1877 < consumer_sphere >SP1_Sphere1
1878 </ consumer_sphere >
1879 < c o n s u m e r _ a c t i v e _ n o d e >
1880 V E _ p r o c e s s _ e n a c t i n g
1881 </ c o n s u m e r _ a c t i v e _ n o d e >
1882 < p r o v i d e r >
1883 < p r o v i d e r _ s p h e r e >
1884 PP_SP1_1
1885 </ p r o v i d e r _ s p h e r e >
1886 < p r o v i d e r _ a c t i v e _ n o d e >
1887 S P 1 _ p r o c e s s _ e n a c t i n g
1888 </ p r o v i d e r _ a c t i v e _ n o d e >
1889 < p r o v i d e r _ s p h e r e >PP_SP2
1890 </ p r o v i d e r _ s p h e r e >
1891 < p r o v i d e r _ a c t i v e _ n o d e >
1892 S P 2 _ p r o c e s s _ e n a c t i n g
1893 </ p r o v i d e r _ a c t i v e _ n o d e >
1894 </ p r o v i d e r >
1895 </ p r o c e s s _ l i f e c y c l e _ m a p p i n g >
1896 < p r o c e s s _ l i f e c y c l e _ m a p p i n g
1897 mapping_name=" p r o c e s s _ f i n i s h "
1898 node_ type =" l i f e c y c l e _ t r a n s i t i o n ">
1899 < consumer_sphere >SP1_Sphere1
1900 </ consumer_sphere >
1901 < c o n s u m e r _ a c t i v e _ n o d e >

250 APPENDIX C. ESML INSTANTIATION

1902 V E _ p r o c e s s _ f i n i s h _ e n a c t m e n t
1903 </ c o n s u m e r _ a c t i v e _ n o d e >
1904 < p r o v i d e r >
1905 < p r o v i d e r _ s p h e r e >PP_SP1_1
1906 </ p r o v i d e r _ s p h e r e >
1907 < p r o v i d e r _ a c t i v e _ n o d e >
1908 S P 1 _ p r o c e s s _ f i n i s h
1909 </ p r o v i d e r _ a c t i v e _ n o d e >
1910 < p r o v i d e r _ s p h e r e >PP_SP2
1911 </ p r o v i d e r _ s p h e r e >
1912 < p r o v i d e r _ a c t i v e _ n o d e >
1913 S P 2 _ p r o c e s s _ f i n i s h _ e n a c t m e n t
1914 </ p r o v i d e r _ a c t i v e _ n o d e >
1915 </ p r o v i d e r >
1916 </ p r o c e s s _ l i f e c y c l e _ m a p p i n g >
1917 < p r o c e s s _ l i f e c y c l e _ m a p p i n g
1918 mapping_name=" p r o c e s s _ e n d e d "
1919 node_ type =" l i f e c y c l e _ s t a t e ">
1920 < consumer_sphere >SP1_Sphere1
1921 </ consumer_sphere >
1922 < c o n s u m e r _ a c t i v e _ n o d e >
1923 VE_process_ended
1924 </ c o n s u m e r _ a c t i v e _ n o d e >
1925 < p r o v i d e r >
1926 < p r o v i d e r _ s p h e r e >
1927 PP_SP1_1
1928 </ p r o v i d e r _ s p h e r e >
1929 < p r o v i d e r _ a c t i v e _ n o d e >
1930 SP1_proces s_ended
1931 </ p r o v i d e r _ a c t i v e _ n o d e >
1932 < p r o v i d e r _ s p h e r e >PP_SP2
1933 </ p r o v i d e r _ s p h e r e >
1934 < p r o v i d e r _ a c t i v e _ n o d e >
1935 SP2_proces s_ended
1936 </ p r o v i d e r _ a c t i v e _ n o d e >
1937 </ p r o v i d e r >
1938 </ p r o c e s s _ l i f e c y c l e _ m a p p i n g >
1939 < a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g
1940 mapping_name=" node_ready "
1941 node_ type =" l i f e c y c l e _ s t a t e ">
1942 < consumer_sphere >SP1_Sphere1
1943 </ consumer_sphere >
1944 < c o n s u m e r _ a c t i v e _ n o d e >
1945 VE_ac t i ve_node_ ready
1946 </ c o n s u m e r _ a c t i v e _ n o d e >
1947 < p r o v i d e r >
1948 < p r o v i d e r _ s p h e r e >
1949 PP_SP1_1
1950 </ p r o v i d e r _ s p h e r e >
1951 < p r o v i d e r _ a c t i v e _ n o d e >
1952 S P 1 _ a c t i v e _ n o d e _ r e a d y
1953 </ p r o v i d e r _ a c t i v e _ n o d e >
1954 < p r o v i d e r _ s p h e r e >
1955 PP_SP2

251

1956 </ p r o v i d e r _ s p h e r e >
1957 < p r o v i d e r _ a c t i v e _ n o d e >
1958 S P 2 _ a c t i v e _ n o d e _ r e a d y
1959 </ p r o v i d e r _ a c t i v e _ n o d e >
1960 </ p r o v i d e r >
1961 </ a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g >
1962 < a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g
1963 mapping_name=" n o d e _ a c c e p t "
1964 node_ type =" l i f e c y c l e _ t r a n s i t i o n ">
1965 < consumer_sphere >SP1_Sphere1
1966 </ consumer_sphere >
1967 < c o n s u m e r _ a c t i v e _ n o d e >
1968 V E _ a c t i v e _ n o d e _ a c c e p t
1969 </ c o n s u m e r _ a c t i v e _ n o d e >
1970 < p r o v i d e r >
1971 < p r o v i d e r _ s p h e r e >
1972 PP_SP1_1
1973 </ p r o v i d e r _ s p h e r e >
1974 < p r o v i d e r _ a c t i v e _ n o d e >
1975 S P 1 _ a c t i v e _ n o d e _ a c c e p t
1976 </ p r o v i d e r _ a c t i v e _ n o d e >
1977 < p r o v i d e r _ s p h e r e >PP_SP2
1978 </ p r o v i d e r _ s p h e r e >
1979 < p r o v i d e r _ a c t i v e _ n o d e >
1980 S P 2 _ a c t i v e _ n o d e _ a c c e p t
1981 </ p r o v i d e r _ a c t i v e _ n o d e >
1982 </ p r o v i d e r >
1983 </ a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g >
1984 < a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g
1985 mapping_name=" node_comple t e "
1986 node_ type =" l i f e c y c l e _ t r a n s i t i o n ">
1987 < consumer_sphere >
1988 SP1_Sphere1
1989 </ consumer_sphere >
1990 < c o n s u m e r _ a c t i v e _ n o d e >
1991 VE_ac t ive_node_comple t e
1992 </ c o n s u m e r _ a c t i v e _ n o d e >
1993 < p r o v i d e r >
1994 < p r o v i d e r _ s p h e r e >
1995 PP_SP1_1
1996 </ p r o v i d e r _ s p h e r e >
1997 < p r o v i d e r _ a c t i v e _ n o d e >
1998 S P 1 _ a c t i v e _ n o d e _ c o m p l e t e
1999 </ p r o v i d e r _ a c t i v e _ n o d e >
2000 < p r o v i d e r _ s p h e r e >PP_SP2
2001 </ p r o v i d e r _ s p h e r e >
2002 < p r o v i d e r _ a c t i v e _ n o d e >
2003 S P 2 _ a c t i v e _ n o d e _ c o m p l e t e
2004 </ p r o v i d e r _ a c t i v e _ n o d e >
2005 </ p r o v i d e r >
2006 </ a c t i v e _ n o d e _ l i f e c y c l e _ m a p p i n g >
2007 </ l i f e c y c l e _ m a p p i n g s >
2008 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2009 < consumer_p roces s > GB_produc t ion

252 APPENDIX C. ESML INSTANTIATION

2010 </ consumer_p roces s >
2011 < c o n s u m e r _ a c t i v e _ n o d e >CO
2012 </ c o n s u m e r _ a c t i v e _ n o d e >
2013 < p r o v i d e r _ p r o c e s s >PP_SP1_1
2014 </ p r o v i d e r _ p r o c e s s >
2015 < p r o v i d e r _ a c t i v e _ n o d e >Local_CO
2016 </ p r o v i d e r _ a c t i v e _ n o d e >
2017 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2018 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2019 < consumer_p roces s > GB_produc t ion
2020 </ consumer_p roces s >
2021 < c o n s u m e r _ a c t i v e _ n o d e >
2022 Check_Gearbox_order
2023 </ c o n s u m e r _ a c t i v e _ n o d e >
2024 < p r o v i d e r _ p r o c e s s >PP_SP1_1
2025 </ p r o v i d e r _ p r o c e s s >
2026 < p r o v i d e r _ a c t i v e _ n o d e >
2027 Loca l_Check_Gearbox_orde r
2028 </ p r o v i d e r _ a c t i v e _ n o d e >
2029 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2030 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2031 < consumer_p roces s > GB_produc t ion
2032 </ consumer_p roces s >
2033 < c o n s u m e r _ a c t i v e _ n o d e >DevG
2034 </ c o n s u m e r _ a c t i v e _ n o d e >
2035 < p r o v i d e r _ p r o c e s s >PP_SP1_1
2036 </ p r o v i d e r _ p r o c e s s >
2037 < p r o v i d e r _ a c t i v e _ n o d e >Local_DevG
2038 </ p r o v i d e r _ a c t i v e _ n o d e >
2039 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2040 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2041 < consumer_p roces s > GB_produc t ion
2042 </ consumer_p roces s >
2043 < c o n s u m e r _ a c t i v e _ n o d e >ProG
2044 </ c o n s u m e r _ a c t i v e _ n o d e >
2045 < p r o v i d e r _ p r o c e s s >PP_SP1_1
2046 </ p r o v i d e r _ p r o c e s s >
2047 < p r o v i d e r _ a c t i v e _ n o d e >Local_ProG
2048 </ p r o v i d e r _ a c t i v e _ n o d e >
2049 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2050 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2051 < consumer_p roces s > GB_produc t ion
2052 </ consumer_p roces s >
2053 < c o n s u m e r _ a c t i v e _ n o d e >OrdB
2054 </ c o n s u m e r _ a c t i v e _ n o d e >
2055 < p r o v i d e r _ p r o c e s s >PP_SP1_1
2056 </ p r o v i d e r _ p r o c e s s >
2057 < p r o v i d e r _ a c t i v e _ n o d e >Local_OrdB
2058 </ p r o v i d e r _ a c t i v e _ n o d e >
2059 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2060 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2061 < consumer_p roces s > GB_produc t ion
2062 </ consumer_p roces s >
2063 < c o n s u m e r _ a c t i v e _ n o d e >

253

2064 send_Order_Box_CD
2065 </ c o n s u m e r _ a c t i v e _ n o d e >
2066 < p r o v i d e r _ p r o c e s s >PP_SP1_1
2067 </ p r o v i d e r _ p r o c e s s >
2068 < p r o v i d e r _ a c t i v e _ n o d e >
2069 Local_send_Order_Box_CD
2070 </ p r o v i d e r _ a c t i v e _ n o d e >
2071 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2072 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2073 < consumer_p roces s > GB_produc t ion
2074 </ consumer_p roces s >
2075 < c o n s u m e r _ a c t i v e _ n o d e >ReceiveBO
2076 </ c o n s u m e r _ a c t i v e _ n o d e >
2077 < p r o v i d e r _ p r o c e s s >PP_SP2
2078 </ p r o v i d e r _ p r o c e s s >
2079 < p r o v i d e r _ a c t i v e _ n o d e >
2080 Local_ReceiveBO
2081 </ p r o v i d e r _ a c t i v e _ n o d e >
2082 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2083 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2084 < consumer_p roces s > GB_produc t ion
2085 </ consumer_p roces s >
2086 < c o n s u m e r _ a c t i v e _ n o d e >CBO
2087 </ c o n s u m e r _ a c t i v e _ n o d e >
2088 < p r o v i d e r _ p r o c e s s >PP_SP2
2089 </ p r o v i d e r _ p r o c e s s >
2090 < p r o v i d e r _ a c t i v e _ n o d e >Local_CBO
2091 </ p r o v i d e r _ a c t i v e _ n o d e >
2092 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2093 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2094 < consumer_p roces s > GB_produc t ion
2095 </ consumer_p roces s >
2096 < c o n s u m e r _ a c t i v e _ n o d e >DevB
2097 </ c o n s u m e r _ a c t i v e _ n o d e >
2098 < p r o v i d e r _ p r o c e s s >PP_SP2
2099 </ p r o v i d e r _ p r o c e s s >
2100 < p r o v i d e r _ a c t i v e _ n o d e >Local_DevB
2101 </ p r o v i d e r _ a c t i v e _ n o d e >
2102 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2103 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2104 < consumer_p roces s > GB_produc t ion
2105 </ consumer_p roces s >
2106 < c o n s u m e r _ a c t i v e _ n o d e >ProB
2107 </ c o n s u m e r _ a c t i v e _ n o d e >
2108 < p r o v i d e r _ p r o c e s s >PP_SP2
2109 </ p r o v i d e r _ p r o c e s s >
2110 < p r o v i d e r _ a c t i v e _ n o d e >Local_ProB
2111 </ p r o v i d e r _ a c t i v e _ n o d e >
2112 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2113 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2114 < consumer_p roces s > GB_produc t ion
2115 </ consumer_p roces s >
2116 < c o n s u m e r _ a c t i v e _ n o d e >SendB
2117 </ c o n s u m e r _ a c t i v e _ n o d e >

254 APPENDIX C. ESML INSTANTIATION

2118 < p r o v i d e r _ p r o c e s s >PP_SP2
2119 </ p r o v i d e r _ p r o c e s s >
2120 < p r o v i d e r _ a c t i v e _ n o d e >Local_SendB
2121 </ p r o v i d e r _ a c t i v e _ n o d e >
2122 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2123 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2124 < consumer_p roces s > GB_produc t ion
2125 </ consumer_p roces s >
2126 < c o n s u m e r _ a c t i v e _ n o d e >Receive_Box
2127 </ c o n s u m e r _ a c t i v e _ n o d e >
2128 < p r o v i d e r _ p r o c e s s >PP_SP1_2
2129 </ p r o v i d e r _ p r o c e s s >
2130 < p r o v i d e r _ a c t i v e _ n o d e >
2131 Loca l_Rece ive_Box
2132 </ p r o v i d e r _ a c t i v e _ n o d e >
2133 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2134 < a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2135 < consumer_p roces s > GB_produc t ion
2136 </ consumer_p roces s >
2137 < c o n s u m e r _ a c t i v e _ n o d e >AssB
2138 </ c o n s u m e r _ a c t i v e _ n o d e >
2139 < p r o v i d e r _ p r o c e s s >PP_SP1_2
2140 </ p r o v i d e r _ p r o c e s s >
2141 < p r o v i d e r _ a c t i v e _ n o d e >Local_AssB
2142 </ p r o v i d e r _ a c t i v e _ n o d e >
2143 </ a c t i v e _ n o d e _ l a b e l _ m a p p i n g >
2144 < m o n i t o r a b i l i t y >
2145 < p o l l i n g >
2146 < e n a c t m e n t _ t a k e o v e r >
2147 < consumer_sphere >
2148 SP1_Sphere1
2149 </ consumer_sphere >
2150 < p r o v i d e r _ s p h e r e >
2151 PP_SP1_1
2152 </ p r o v i d e r _ s p h e r e >
2153 </ e n a c t m e n t _ t a k e o v e r >
2154 < t e r m i n a t i o n _ t a k e o v e r >
2155 < consumer_sphere >
2156 SP1_Sphere1
2157 </ consumer_sphere >
2158 < p r o v i d e r _ s p h e r e >
2159 PP_SP1_1
2160 </ p r o v i d e r _ s p h e r e >
2161 </ t e r m i n a t i o n _ t a k e o v e r >
2162 < t e r m i n a t i o n _ t a k e o v e r >
2163 < consumer_sphere >
2164 Sphere_SP1_2
2165 </ consumer_sphere >
2166 < p r o v i d e r _ s p h e r e >
2167 PP_SP1_2
2168 </ p r o v i d e r _ s p h e r e >
2169 </ t e r m i n a t i o n _ t a k e o v e r >
2170 </ p o l l i n g >
2171 <messaging >

255

2172 < e n a c t m e n t _ p r o p a g a t i o n >
2173 < consumer_sphere >
2174 Sphere_SP2
2175 </ consumer_sphere >
2176 < p r o v i d e r _ s p h e r e >
2177 PP_SP2
2178 </ p r o v i d e r _ s p h e r e >
2179 </ e n a c t m e n t _ p r o p a g a t i o n >
2180 < t e r m i n a t i o n _ p r o p a g a t i o n >
2181 < consumer_sphere >
2182 Sphere_SP2
2183 </ consumer_sphere >
2184 < p r o v i d e r _ s p h e r e >PP_SP2
2185 </ p r o v i d e r _ s p h e r e >
2186 </ t e r m i n a t i o n _ p r o p a g a t i o n >
2187 < e n a c t m e n t _ p r o p a g a t i o n >
2188 < consumer_sphere >
2189 Sphere_SP1_2
2190 </ consumer_sphere >
2191 < p r o v i d e r _ s p h e r e >
2192 PP_SP1_2
2193 </ p r o v i d e r _ s p h e r e >
2194 </ e n a c t m e n t _ p r o p a g a t i o n >
2195 < t r a n s i t i o n _ m e s s a g i n g >
2196 < consumer_sphere >SP1_Sphere1
2197 </ consumer_sphere >
2198 < c o n s u m e r _ a c t i v e _ n o d e >CO
2199 </ c o n s u m e r _ a c t i v e _ n o d e >
2200 < p r o v i d e r >
2201 < p r o v i d e r _ s p h e r e >PP_SP1_1
2202 </ p r o v i d e r _ s p h e r e >
2203 < p r o v i d e r _ a c t i v e _ n o d e >
2204 Local_CO
2205 </ p r o v i d e r _ a c t i v e _ n o d e >
2206 </ p r o v i d e r >
2207 </ t r a n s i t i o n _ m e s s a g i n g >
2208 < l i f e c y c l e _ m e s s a g i n g >
2209 < l i f e c y c l e _ s t a t e _ m e s s a g i n g >
2210 < consumer_sphere >
2211 SP1_Sphere1
2212 </ consumer_sphere >
2213 < c o n s u m e r _ a c t i v e _ n o d e >
2214 DevG
2215 </ c o n s u m e r _ a c t i v e _ n o d e >
2216 < c o n s u m e r _ l i f e c y c l e _ n o d e >
2217 V E _ a c t i v e _ n o d e _ a c c e p t
2218 </ c o n s u m e r _ l i f e c y c l e _ n o d e >
2219 < p r o v i d e r _ s p h e r e >PP_SP1_1 </ p r o v i d e r _ s p h e r e >
2220 < p r o v i d e r _ a c t i v e _ n o d e >
2221 Local_DevG
2222 </ p r o v i d e r _ a c t i v e _ n o d e >
2223 < p r o v i d e r _ l i f e c y c l e _ n o d e >
2224 S P 1 _ a c t i v e _ n o d e _ a c c e p t
2225 </ p r o v i d e r _ l i f e c y c l e _ n o d e >

256 APPENDIX C. ESML INSTANTIATION

2226 </ l i f e c y c l e _ s t a t e _ m e s s a g i n g >
2227 </ l i f e c y c l e _ m e s s a g i n g >
2228 </ messaging >
2229 <!−−More m o n i t o r a b i l i t y can be d e f i n e d h e r e
2230 depend ing on p r e f e r e n c e . −−>
2231 </ m o n i t o r a b i l i t y >
2232 </ p r o c e s s _ s e c t i o n >
2233 </ s e r v i c e >
2234 < s e r v i c e >
2235 < p r o c e s s _ s e c t i o n >
2236 < p r o c e s s tag_name=" P r o v i d e r P r o c e s s _ S P 1 _ 2 "
2237 p r o c e s s _ i d =" PP_SP1_2 ">
2238 < sequence >
2239 < r e c e i v e _ t a s k
2240 a c t i v e _ n o d e _ i d =" Loca l_Rece ive_Box "
2241 name=" Rece ive S u r r o u n d i n g Box ">
2242 < da ta >
2243 < d a t a _ f l o w _ d i r e c t i o n >
2244 i n p u t
2245 </ d a t a _ f l o w _ d i r e c t i o n >
2246 < d a t a _ p a c k a g e _ r e f >
2247 Box
2248 </ d a t a _ p a c k a g e _ r e f >
2249 </ da t a >
2250 </ r e c e i v e _ t a s k >
2251 < t a s k name=" Assemble_Gear_Box "
2252 a c t i v e _ n o d e _ i d =" Local_AssB "
2253 owner=" SP1 " e x e c u t o r =" SP1 ">
2254 < da ta >
2255 < d a t a _ f l o w _ d i r e c t i o n >
2256 o u t p u t
2257 </ d a t a _ f l o w _ d i r e c t i o n >
2258 < d a t a _ p a c k a g e _ r e f >
2259 GearBox
2260 </ d a t a _ p a c k a g e _ r e f >
2261 </ da t a >
2262 </ t a s k >
2263 </ sequence >
2264 </ p r o c e s s >
2265 </ p r o c e s s _ s e c t i o n >
2266 </ s e r v i c e >
2267 < s e r v i c e >
2268 < p r o c e s s _ s e c t i o n >
2269 < p r o c e s s tag_name=" P r o v i d e r P r o c e s s _ S P 1 _ 1 "
2270 p r o c e s s _ i d =" PP_SP1_1 ">
2271 < sequence >
2272 < r e c e i v e _ t r a n s i t i o n
2273 a c t i v e _ n o d e _ i d =" Local_CO "
2274 name=" Rece ive_Orde r ">
2275 < da ta >
2276 < d a t a _ f l o w _ d i r e c t i o n >
2277 i n p u t
2278 </ d a t a _ f l o w _ d i r e c t i o n >
2279 < d a t a _ p a c k a g e _ r e f >

257

2280 cd < / d a t a _ p a c k a g e _ r e f >
2281 </ da t a >
2282 < da ta >
2283 < d a t a _ f l o w _ d i r e c t i o n >
2284 i n p u t
2285 </ d a t a _ f l o w _ d i r e c t i o n >
2286 < d a t a _ p a c k a g e _ r e f >do
2287 </ d a t a _ p a c k a g e _ r e f >
2288 </ da t a >
2289 </ r e c e i v e _ t r a n s i t i o n >
2290 < t a s k
2291 a c t i v e _ n o d e _ i d =" Loca l_Check_Gearbox_orde r "
2292 name=" Check_Order "
2293 owner=" SP1 " e x e c u t o r =" SP1 ">
2294 < da ta >
2295 < d a t a _ f l o w _ d i r e c t i o n > i n p u t
2296 </ d a t a _ f l o w _ d i r e c t i o n >
2297 < d a t a _ p a c k a g e _ r e f >cd
2298 </ d a t a _ p a c k a g e _ r e f >
2299 </ da t a >
2300 < da ta >
2301 < d a t a _ f l o w _ d i r e c t i o n >
2302 i n p u t < / d a t a _ f l o w _ d i r e c t i o n >
2303 < d a t a _ p a c k a g e _ r e f >do
2304 </ d a t a _ p a c k a g e _ r e f >
2305 </ da t a >
2306 </ t a s k >
2307 < p a r a l l e l _ s y n c >
2308 < sequence >
2309 < t a s k name=" Deve lop_Gear ing "
2310 a c t i v e _ n o d e _ i d =" Local_DevG "
2311 owner=" SP1 " e x e c u t o r =" SP1 ">
2312 < e v e n t
2313 tag_name=" c d B o x _ a v a i l a b l e "
2314 v a r _ i d =" L o c a l _ c d B o x _ a v a i l a b l e "
2315 c h a n g e a b l e =" t r u e "
2316 e n a b l e d =" e n a b l e d "> f a l s e </ even t >
2317 < da ta >
2318 < d a t a _ f l o w _ d i r e c t i o n >
2319 o u t p u t
2320 </ d a t a _ f l o w _ d i r e c t i o n >
2321 < d a t a _ p a c k a g e _ r e f >cdBox
2322 </ d a t a _ p a c k a g e _ r e f >
2323 </ da t a >
2324 </ t a s k >
2325 < t a s k name=" P r o d u c e _ G e a r i n g "
2326 a c t i v e _ n o d e _ i d =" Local_ProG "
2327 owner=" SP1 " e x e c u t o r =" SP1 " / >
2328 </ sequence >
2329 < sequence >
2330 < wai t_any >
2331 < e v e n t _ r e f > c d B o x _ a v a i l a b l e
2332 </ e v e n t _ r e f >
2333 </ wai t_any >

258 APPENDIX C. ESML INSTANTIATION

2334 < t a s k name=" Order_Box "
2335 a c t i v e _ n o d e _ i d =" Local_OrdB "
2336 owner=" SP1 " e x e c u t o r =" SP1 ">
2337 < e v e n t
2338 tag_name=" d o B o x _ a v a i l a b l e "
2339 v a r _ i d =" L o c a l _ d o B o x _ a v a i l a b l e "
2340 c h a n g e a b l e =" t r u e "
2341 e n a b l e d =" e n a b l e d "> f a l s e </ even t >
2342 < da ta >
2343 < d a t a _ f l o w _ d i r e c t i o n > o u t p u t
2344 </ d a t a _ f l o w _ d i r e c t i o n >
2345 < d a t a _ p a c k a g e _ r e f >doBox
2346 </ d a t a _ p a c k a g e _ r e f >
2347 </ da t a >
2348 </ t a s k >
2349 < s e n d _ t a s k
2350 a c t i v e _ n o d e _ i d =" Local_send_Order_Box_CD "
2351 name=" SendOrderCD ">
2352 < da ta >
2353 < d a t a _ f l o w _ d i r e c t i o n > o u t p u t
2354 </ d a t a _ f l o w _ d i r e c t i o n >
2355 < d a t a _ p a c k a g e _ r e f >doBox
2356 </ d a t a _ p a c k a g e _ r e f >
2357 </ da t a >
2358 < da ta >
2359 < d a t a _ f l o w _ d i r e c t i o n > o u t p u t
2360 </ d a t a _ f l o w _ d i r e c t i o n >
2361 < d a t a _ p a c k a g e _ r e f >cdBox
2362 </ d a t a _ p a c k a g e _ r e f >
2363 </ da t a >
2364 < d e s t i n a t i o n _ U R I >
2365 h t t p : / / www. ve . com / b o x o r d e r . wsd l ? p o r t =12212? o p e r a t i o n= r e c e i v e
2366 </ d e s t i n a t i o n _ U R I >
2367 </ s e n d _ t a s k >
2368 </ sequence >
2369 </ p a r a l l e l _ s y n c >
2370 </ sequence >
2371 </ p r o c e s s >
2372 < l i f e c y c l e _ d e f i n i t i o n s >
2373 < p r o c e s s _ l i f e c y c l e >
2374 < l i f e c y c l e _ s e q u e n c e >
2375 < a t o m i c _ s t a t e name=" S P 1 _ p r o c e s s _ i d l e "
2376 tag_name=" i d l e " / >
2377 < t r a n s i t i o n name=" S P 1 _ p r o c e s s _ s t a r t "
2378 tag_name=" s t a r t " / >
2379 < a t o m i c _ s t a t e
2380 name=" S P 1 _ p r o c e s s _ e n a c t i n g "
2381 tag_name=" e n a c t i n g " / >
2382 < t r a n s i t i o n name=" S P 1 _ p r o c e s s _ f i n i s h "
2383 tag_name=" f i n i s h " / >
2384 < a t o m i c _ s t a t e name=" SP1_proces s_ended "
2385 tag_name=" comple t ed " / >
2386 </ l i f e c y c l e _ s e q u e n c e >
2387 </ p r o c e s s _ l i f e c y c l e >

259

2388 < a c t i v e _ n o d e _ l i f e c y c l e >
2389 < l i f e c y c l e _ s e q u e n c e >
2390 < a t o m i c _ s t a t e
2391 name=" S P 1 _ a c t i v e _ n o d e _ r e a d y "
2392 tag_name=" r e a d y " / >
2393 < l i f e c y c l e _ p a r a l l e l _ s y n c >
2394 < l i f e c y c l e _ s e q u e n c e >
2395 < t r a n s i t i o n
2396 name=" S P 1 _ a c t i v e _ n o d e _ a c c e p t "
2397 tag_name=" a c c e p t " / >
2398 < a t o m i c _ s t a t e
2399 name=" S P 1 _ a c t i v e _ n o d e _ e x e c u t i n g "
2400 tag_name=" e x e c u t i n g " / >
2401 </ l i f e c y c l e _ s e q u e n c e >
2402 </ l i f e c y c l e _ p a r a l l e l _ s y n c >
2403 < t r a n s i t i o n
2404 name=" S P 1 _ a c t i v e _ n o d e _ c o m p l e t e "
2405 tag_name=" c o m p l e t e " / >
2406 < a t o m i c _ s t a t e
2407 name=" S P 1 _ a c t i v e _ c o m p l e t e d "
2408 tag_name=" comple t ed " / >
2409 </ l i f e c y c l e _ s e q u e n c e >
2410 </ a c t i v e _ n o d e _ l i f e c y c l e >
2411 </ l i f e c y c l e _ d e f i n i t i o n s >
2412 </ p r o c e s s _ s e c t i o n >
2413 </ s e r v i c e >
2414 < s e r v i c e >
2415 < p r o c e s s _ s e c t i o n >
2416 < p r o c e s s tag_name=" P r o v i d e r P r o c e s s _ S P 2 "
2417 p r o c e s s _ i d =" PP_SP2 ">
2418 < sequence >
2419 < r e c e i v e _ t a s k
2420 name=" Receive_Box_Order "
2421 a c t i v e _ n o d e _ i d =" Local_ReceiveBO "
2422 owner=" SP2 " e x e c u t o r =" SP2 ">
2423 < da ta >
2424 < d a t a _ f l o w _ d i r e c t i o n >
2425 i n p u t
2426 </ d a t a _ f l o w _ d i r e c t i o n >
2427 < d a t a _ p a c k a g e _ r e f >doBox
2428 </ d a t a _ p a c k a g e _ r e f >
2429 </ da t a >
2430 < da ta >
2431 < d a t a _ f l o w _ d i r e c t i o n >
2432 i n p u t
2433 </ d a t a _ f l o w _ d i r e c t i o n >
2434 < d a t a _ p a c k a g e _ r e f >
2435 cdBox
2436 </ d a t a _ p a c k a g e _ r e f >
2437 </ da t a >
2438 </ r e c e i v e _ t a s k >
2439 < t a s k
2440 name=" Check_Box_Order "
2441 a c t i v e _ n o d e _ i d =" Local_CBO "

260 APPENDIX C. ESML INSTANTIATION

2442 owner=" SP2 " e x e c u t o r =" SP2 ">
2443 < da ta >
2444 < d a t a _ f l o w _ d i r e c t i o n >
2445 i n p u t
2446 </ d a t a _ f l o w _ d i r e c t i o n >
2447 < d a t a _ p a c k a g e _ r e f >
2448 doBox
2449 </ d a t a _ p a c k a g e _ r e f >
2450 </ da t a >
2451 </ t a s k >
2452 < t a s k name=" Develop_Box "
2453 a c t i v e _ n o d e _ i d =" Local_DevB "
2454 owner=" SP2 " e x e c u t o r =" SP2 ">
2455 < da ta >
2456 < d a t a _ f l o w _ d i r e c t i o n >
2457 i n p u t
2458 </ d a t a _ f l o w _ d i r e c t i o n >
2459 < d a t a _ p a c k a g e _ r e f >
2460 cdBox
2461 </ d a t a _ p a c k a g e _ r e f >
2462 </ da t a >
2463 </ t a s k >
2464 < t a s k name=" Produce_Box "
2465 a c t i v e _ n o d e _ i d =" Local_ProB "
2466 owner=" SP2 " e x e c u t o r =" SP2 ">
2467 < e v e n t
2468 tag_name=" B o x _ a v a i l a b l e "
2469 v a r _ i d =" L o c a l _ B o x _ a v a i l a b l e "
2470 c h a n g e a b l e =" t r u e "
2471 e n a b l e d =" e n a b l e d "> f a l s e </ even t >
2472 < da ta >
2473 < d a t a _ f l o w _ d i r e c t i o n >
2474 o u t p u t < / d a t a _ f l o w _ d i r e c t i o n >
2475 < d a t a _ p a c k a g e _ r e f >Box
2476 </ d a t a _ p a c k a g e _ r e f >
2477 </ da t a >
2478 </ t a s k >
2479 < s e n d _ t a s k name=" Send_Box "
2480 a c t i v e _ n o d e _ i d =" Local_SendB "
2481 owner="VE" e x e c u t o r =" SP2 ">
2482 < da ta >
2483 < d a t a _ f l o w _ d i r e c t i o n > o u t p u t
2484 </ d a t a _ f l o w _ d i r e c t i o n >
2485 < d a t a _ p a c k a g e _ r e f >Box
2486 </ d a t a _ p a c k a g e _ r e f >
2487 </ da t a >
2488 < d e s t i n a t i o n _ U R I >
2489 h t t p : / / www. ve . com / r e c e i v e P o r t . wsd l ? o p e r a t i o n =1111
2490 </ d e s t i n a t i o n _ U R I >
2491 </ s e n d _ t a s k >
2492 </ sequence >
2493 <!−− end of seq w i t h i n SP2 −−>
2494 </ p r o c e s s >
2495 < l i f e c y c l e _ d e f i n i t i o n s >

261

2496 < p r o c e s s _ l i f e c y c l e >
2497 < l i f e c y c l e _ s e q u e n c e >
2498 < a t o m i c _ s t a t e
2499 name=" S P 2 _ p r o c e s s _ r e a d y "
2500 tag_name=" r e a d y " / >
2501 < t r a n s i t i o n
2502 name=" S P 2 _ p r o c e s s _ s t a r t _ e n a c t m e n t "
2503 tag_name=" s t a r t _ e n a c t m e n t " / >
2504 < a t o m i c _ s t a t e
2505 name=" S P 2 _ p r o c e s s _ e n a c t i n g "
2506 tag_name=" e n a c t i n g " / >
2507 < t r a n s i t i o n
2508 name=" S P 2 _ p r o c e s s _ f i n i s h _ e n a c t m e n t "
2509 tag_name=" f i n i s h _ e n a c t m e n t " / >
2510 < a t o m i c _ s t a t e
2511 name=" SP2_proces s_ended "
2512 tag_name=" ended " / >
2513 </ l i f e c y c l e _ s e q u e n c e >
2514 </ p r o c e s s _ l i f e c y c l e >
2515 < a c t i v e _ n o d e _ l i f e c y c l e >
2516 < l i f e c y c l e _ s e q u e n c e >
2517 < a t o m i c _ s t a t e
2518 name=" S P 2 _ a c t i v e _ n o d e _ r e a d y "
2519 tag_name=" r e a d y " / >
2520 < l i f e c y c l e _ p a r a l l e l _ s y n c >
2521 < l i f e c y c l e _ s e q u e n c e >
2522 < t r a n s i t i o n
2523 name=" S P 2 _ a c t i v e _ n o d e _ a c c e p t "
2524 tag_name=" a c c e p t " / >
2525 < a t o m i c _ s t a t e
2526 name=" S P 2 _ a c t i v e _ n o d e _ e x e c u t i n g "
2527 tag_name=" a c c e p t e d " / >
2528 </ l i f e c y c l e _ s e q u e n c e >
2529 < l i f e c y c l e _ s e q u e n c e >
2530 < t r a n s i t i o n
2531 name=" S P 2 _ a c t i v e _ n o d e _ b y p a s s "
2532 tag_name=" b y p a s s " / >
2533 < a t o m i c _ s t a t e
2534 name=" S P 2 _ a c t i v e _ n o d e _ b y p a s s e d "
2535 tag_name=" b y p a s s e d " / >
2536 </ l i f e c y c l e _ s e q u e n c e >
2537 </ l i f e c y c l e _ p a r a l l e l _ s y n c >
2538 < t r a n s i t i o n
2539 name=" S P 2 _ a c t i v e _ n o d e _ c o m p l e t e "
2540 tag_name=" c o m p l e t e " / >
2541 < a t o m i c _ s t a t e
2542 name=" S P 2 _ a c t i v e _ c o m p l e t e d "
2543 tag_name=" comple t ed " / >
2544 </ l i f e c y c l e _ s e q u e n c e >
2545 </ a c t i v e _ n o d e _ l i f e c y c l e >
2546 </ l i f e c y c l e _ d e f i n i t i o n s >
2547 </ p r o c e s s _ s e c t i o n >
2548 </ s e r v i c e >
2549 </ exchanged_va lue >

262 APPENDIX C. ESML INSTANTIATION

2550 < exchanged_va lue >
2551 < f i n a n c i a l _ r e w a r d >
2552 < p r o c e s s _ s e c t i o n >
2553 < p r o c e s s tag_name="Name"
2554 p r o c e s s _ i d =" moneyflow ">
2555 < sequence >
2556 < t a s k a c t i v e _ n o d e _ i d ="RM"
2557 name=" Rece ive Money" owner="VE"
2558 e x e c u t o r ="VE">
2559 < da ta >
2560 < d a t a _ f l o w _ d i r e c t i o n >
2561 i n p u t
2562 </ d a t a _ f l o w _ d i r e c t i o n >
2563 < d a t a _ p a c k a g e _ r e f >
2564 BankSta t emen t
2565 </ d a t a _ p a c k a g e _ r e f >
2566 </ da t a >
2567 </ t a s k >
2568 < t a s k a c t i v e _ n o d e _ i d ="DM"
2569 name=" D i s t r i b u t e Money"
2570 owner="VE" e x e c u t o r ="VE">
2571 < da ta >
2572 < d a t a _ f l o w _ d i r e c t i o n >
2573 o u t p u t
2574 </ d a t a _ f l o w _ d i r e c t i o n >
2575 < d a t a _ p a c k a g e _ r e f >
2576 T r a n s f e r B i l l
2577 </ d a t a _ p a c k a g e _ r e f >
2578 </ da t a >
2579 </ t a s k >
2580 </ sequence >
2581 </ p r o c e s s >
2582 </ p r o c e s s _ s e c t i o n >
2583 </ f i n a n c i a l _ r e w a r d >
2584 </ exchanged_va lue >
2585 < e x c h a n g e _ p r o v i s i o n s / >
2586 < e x c h a n g e _ p r o v i s i o n s / >
2587 <!−− end of What c o n c e p t −−>
2588 </ c o n t r a c t >

Bibliography

[1] ATHENA: Advanced Technologies for Interoperability of Heterogenous En-
terprise Networks and their Application. http://www.athena-ip.org/index.php.
pages 45

[2] CrossWork: Cross-Organisational Workflow Formation and Enactment, IST no.
507590. http://www.crosswork.info/. pages 14, 15, 32, 41, 166

[3] CrossWork Deliverable D2.1: Final Report. pages 134

[4] CrossWork Deliverable D2.2 Final Report. pages 134

[5] IBM MQSeries workflow. http://www-4.ibm.com/software/mqseries/workflow.
pages 45

[6] IBM patterns for e-business. http://www-
128.ibm.com/developerworks/patterns/. pages 48

[7] On compatibility of web services. Petri Net Newsletter, 65:12–20, 2003. pages
100

[8] W.M.P. van der Aalst. Structural Characterizations of Sound Workflow Nets.
Computing Science Reports 96/23, Eindhoven University of Technology, Eind-
hoven, 1996. pages 18, 22

[9] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture
Notes in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.
pages 18, 21, 23

[10] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998. pages 18,
21, 107, 109, 126

[11] W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to
Agree to Disagree Without Loosing Control? BETA Working Paper Series, WP
46, Eindhoven University of Technology, Eindhoven, 2000. pages 67

[12] W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to
Agree to Disagree Without Loosing Control? Information Technology and Man-
agement Journal, 2(3), 2002. pages vi, 17, 18, 19, 21, 22, 23, 24, 25, 27, 86,
87, 94, 97, 98, 100

263

264 BIBLIOGRAPHY

[13] W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Computing Science Reports 99/06,
Eindhoven University of Technology, Eindhoven, 1999. pages 38

[14] W.M.P. van der Aalst and T. Basten. Inheritance of workflows: An approach
to tackling problems related to change. Theoretical Computer Science, 270(1-
2):125–203, 2002. pages 18, 26, 88

[15] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-
Based Analysis of BPML (and WSCI). QUT Technical report, (FIT-TR-2002-
05):487–531, 2002. pages 54

[16] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, MA, 2002. pages 3, 4, 17

[17] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns Home Page. http://www.workflowpatterns.com. pages 17,
48, 51, 54, 104, 125, 126, 181, 184

[18] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Advanced Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th
International Conference on Cooperative Information Systems (CoopIS 2000),
volume 1901 of Lecture Notes in Computer Science, pages 18–29. Springer-
Verlag, Berlin, 2000. pages 35, 48, 54, 125

[19] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Bar-
ros. Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.
pages 35, 48, 54, 166

[20] W.M.P. van der Aalst and A. Kumar. XML Based Schema Definition for Support
of Inter-organizational Workflow. Information Systems Research, 14(1):23–47,
March 2003. pages 125, 129

[21] W.M.P. van der Aalst, H.M.W. Verbeek, and A. Kumar. XRL/Woflan: Verifi-
cation of an XML/Petri-net based language for inter-organizational workflows
(Best paper award). In K. Altinkemer and K. Chari, editors, Proceedings of the
6th Informs Conference on Information Systems and Technology (CIST-2001),
pages 30–45. Informs, Linthicum, MD, 2001. pages vi, 125, 126, 127, 129

[22] G. Alonso, SU. Fiedler, C. Hagen, A. Lazcano, H.Schuldt, and N. Weiler. WISE:
business to business e-commerce. In Proceedings of the 9th International Work-
shop on Research Issues on Data Engineering, pages 132–139, Sydney, Aus-
tralia, 1999. pages 45

[23] S. Angelov. Foundations of B2B Electronic Contracting. Dissertation, Technol-
ogy University Eindhoven, Faculty of Technology Management, Information
Systems Department, 2006. pages 15, 114, 143, 152, 157, 171, 174

[24] A. Barros and M. Dumas. The rise of web service ecosystems. IT Professional,
8:31–37, October 2006. pages 165, 167

[25] A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service interaction patterns. In
W.M. P. van der Aalst and F. Curbera B. Benatallah, F. Casati, editors, Business
Process Management: 3rd International Conference, BPM 2005, number 3649

BIBLIOGRAPHY 265

in Lecture Notes in Computer Science, pages 302–318, Nancy, France, 2005.
Springer Verlag, Berlin. pages 48, 55, 104

[26] T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra.
PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
December 1998. pages 27, 38

[27] T. Basten and W.M.P. van der Aalst. Inheritance of behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001. pages 18, 26, 28, 88

[28] BEA Systems, Intalio, SAP AG , Sun Microsystems. Web
Service Choreography Interface (WSCI) 1.0 Specification.
http://wwws.sun.com/software/xml/developers/wsci/, 2003. pages 126

[29] T. Bellwood, L. Clément, and D. Ehnebuske et al. UDDI Version 3.0, Published
Specification. http://uddi.org/pubs/uddi-v3.00-published-20020719.htm, 2003.
pages 6, 157

[30] G. Berthelot. Transformations and Decompositions of Nets. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri
Nets, central models and their properties, volume 254 of Lecture Notes in Com-
puter Science, pages 360–376. Springer-Verlag, Berlin, 1987. pages 87

[31] V. Bjork and C.T. Davis. Data processing spheres of controldata, 1978. pages
158

[32] D. Box, D. Ehnebuske, and G. Kakivaya et al. Simple Object Access Protocol
(SOAP) 1.1. http://www.w3.org/TR/SOAP/, 2003. pages 5

[33] BPML.org. Business Process Modeling Language (BPML) version 1.0. Ac-
cessed August 2003 from www.bpmi.org, 2003. pages 48, 126

[34] F. Cabrera, G. Copeland, and et al. B. Cox. Specification: Web Services Trans-
action (WS-Transaction). citeseer.nj.nec.com/vanderaalst02yawl.html, 2002.
pages 6

[35] L.F Cabrera, G. Copeland, M. Feingold, R.W.
Freind, and T. Freund. WS-Coordination 1.0.
ftp://www6.software.ibm.com/software/developer/library/WS-
Coordination.pdf, 2005. pages 6

[36] M. Carpenter and A. Gledsonand N. Mehandjiev. Support for dynamic ontolo-
gies in open business systems. In Agent-Oriented Information Systems Workshop
AAMAS’04. pages 13

[37] R. Chinnici, M. Gudgin, J.J. Moreau, and Sanjiva Weerawarana. Web Services
Description Language (WSDL) Version 1.2. http://www.w3.org/TR/2003/WD-
wsdl12-20030611, 2003. pages 6, 54

[38] Workflow Management Coalition. XML Process Definition Language.
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf, 2002.
pages 126

266 BIBLIOGRAPHY

[39] J.M. Colom and M. Silva. Improving the Linearly Based Characterization of
P/T Nets. In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483
of Lecture Notes in Computer Science, pages 113–146. Springer-Verlag, Berlin,
1990. pages 87

[40] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and
S. Weerawarana. Business Process Execution Language for Web-Services 1.0.
http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003. pages 6, 48,
54, 101, 126

[41] M. Dumas, M. Spork, and K. Wang. Adapt or perish: Algebra and visual nota-
tion for service interface adaptation. In S. Dustdar, J.L. Fiadeiro, and pages =
A. Sheth, editors, Business Process Management: 3rd International Conference,
BPM 2006. pages 166

[42] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In
M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume
691 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, Berlin,
1993. pages 18, 21

[43] R. Eshuis and P. Grefen. Constructing Customized Process Views. BETA Work-
ing Paper Series, WP 197, Eindhoven University of Technology, Eindhoven,
2007. pages 166

[44] R. Eshuis, P. Grefen, and S. Till. Structured service composition. In S. Dustdar,
J. Fiadeiro, and A.P. Sheth, editors, 4th International Conference, BPM 2006,
volume 4102 of Lecture Notes in Computer Science, pages 97–112, Vienna,
Austria, September 2006. LNCS Springer. pages 2, 13, 109

[45] R. Eshuis, P.W.P.J. Grefen, and S. Till. Structured service composition. In
Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors, BPM, vol-
ume 4102 of Lecture Notes in Computer Science, pages 97–112. Springer, 2006.
pages 166

[46] R. Soley et al. Unified Modelling Language. http://www.uml.org, 2004. pages
49, 105, 115

[47] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison
Wesley, Reading, MA, USA, 1995. pages 54

[48] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996. pages
26, 88

[49] P. Grefen. Towards dynamic interorganizational business process management
[keynote speech]. In Proceedings 15th IEEE International Workshops on En-
abling Technologies: Infrastructures for Collaborative Enterprises. pages v, 2,
3, 5

[50] P. Grefen. Service-Oriented Support for Dynamic Interorganizational Business
Process Management. to appear, 2006. pages 15, 32, 33, 153, 154

BIBLIOGRAPHY 267

[51] P. Grefen, H. Ludwig, and S. Angelov. A Three-Level Framework for Process
and Data Management of Complex E-Services. International Journal of Coop-
erative Information Systems, 12(4):487–531, 2003. pages 33, 40, 43, 52, 84,
93

[52] P. Grefen, H. Ludwig, A. Dan, and S. Angelov. An Analysis of Web Services
Support for Dynamic Business Process Outsourcing. Information and Software
Technology, 48(11):1115–1134, 2006. pages 5

[53] P. Grefen, N. Mehandjievb, G. Kouvasc, G. Weichhart, and R. Eshuis. Dy-
namic Business Network Process Management in Instant Virtual Enterprises.
BETA Working Paper Series, WP 198, Eindhoven University of Technology,
Eindhoven, 2007. pages 15

[54] A.R. Hevner, S. Ram, S.T. March, and J. Park. DESIGN SCIENCE IN INFOR-
MATION SYSTEM RESEARCH. MIS Quarterly, 28(1):75–105, 2004. pages
v, 6, 7

[55] IBM. Web Service Flow Language (WSFL) 1.0 Specification. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, 2003. pages 126

[56] G. Dessler J. Reinecke and W. Schoell. Introduction to Business - A Contempo-
rary View. Allyn and Bacon, 1989. pages 114

[57] J. Saint-Blancat (Editor). CrossFlow Deliverable D16: Final Report. pages 2

[58] D. Jordan, J. Evdemon, A. Alves, and A. Arkin. Business Pro-
cess Execution Language for Web-Services 2.0. http://www.oasis-
open.org/committees/download.php/10347/wsbpel-specification-draft-
120204.htm, 2007. pages 120

[59] D. Jordan, J. Evdemon, A. Alves, and A. Arkin. Web Services Choreogra-
phy Description Language 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217/, 2007. pages 120

[60] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology,
Queensland University of Technology, Brisbane, Australia, 2002. pages 125

[61] B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of Control Flow in Workflows. Acta Informatica, 39(3):143–209, March 2003.
pages 125

[62] E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence. In-
formation Processing Letters, 70(6):269–274, June 1999. pages 107

[63] E. Kindler, J. Billington, and S. Christensen et al. The petri net markup lan-
guage: Concepts, technology, and tools. In W.M.P. van der Aalst and E. Best,
editors, Proceedings of the 24th International Conference,ICATPN 2003, num-
ber 2679 in Lecture Notes in Computer Science, pages 483–505, Eindhoven,
The Netherlands, 2003. Springer Verlag, Berlin. pages 126, 128

[64] E. Kindler and M. Weber et al. Petri Net Kernel (PNK) Home Page.
http://www.informatik.hu-berlin.de/top/pnk/, 2003. pages 109

268 BIBLIOGRAPHY

[65] E. Kindler and M. Weber et al. Petri Net Markup Language (PNML) Home Page.
http://www.informatik.hu-berlin.de/top/pnml/, 2003. pages 54, 126

[66] E. Kindler, A. Martens, and W. Reisig. Inter-operability of workflow appli-
cations: Local criteria for global soundness. Lecture Notes in Computer Sci-
ence: Business Process Managements - models, techniques and empirical stud-
ies, 1806:235–253, 2000. pages 100

[67] L. Kutvonen, J. Metso, and T. Ruokolainen. Inter-enterprise Collaboration Man-
agement in Dynamic Business Networks. In R. Meersman and Z. Tari, edi-
tors, On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3760 of Lecture Notes in Computer Science, page 593Ű611,
Agia Napa, Cyprus, October 2005. LNCS Springer. pages 152, 153, 154

[68] A. Lazcano, H. Schuldt, G. Alonso, and H Schek. WISE: Process Based E-
Commerce. IEEE Data Engineering Bulletin, 24(1), 2001. pages 45

[69] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall, N.J., 2000. pages 4, 158

[70] N. Lohmann. BPEL2oWFN: Translating BPEL Processes into Open Workflow
Nets. http://www.gnu.org/software/bpel2owfn/, 2006. pages 101

[71] L.A. Maciaszek. Requirements Analysis and System Design. Developing Infor-
mation Systems with UML. Addison Wesley, 2001. pages 105

[72] A. Martens. On usability of web services. In Coral Calero, Oscar Díaz,
and Mario Piattini, editors, Proceedings of 1st Web Services Quality Workshop
(WQW 2003), Rome, Italy 2003. pages 100

[73] A. Martens. Verteilte Geschäftsprozesse - Modellierung und Verifikation
mit Hilfe von Web Services. Dissertation, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät II, 2003. pages 100

[74] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
and S. McIlraith. OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, 2004. pages 33

[75] P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach
to the SOA. In 2nd South-East European Workshop on Formal Methods 2005
(SEEFM05), Ohrid, Republic of Macedonia, 2005. pages 100

[76] P. Massuthe, W. Reisig, and K. Schmidt. An operating guideline approach to the
soa. Ohrid, Republic of Macedonia, 2005. pages 101

[77] P. Massuthe and K. Schmidt. Operating Guidelines for Services. In
Karsten Schmidt and Christian Stahl, editors, 12. Workshop "Algorithmen und
Werkzeuge für Petrinetze" (AWPN 2005), Proceedings, pages 78–83. Humboldt-
Universität zu Berlin, September 2005. pages 100

[78] P. Massuthe and D. Weinberg. Fiona. http://www.informatik.hu-
berlin.de/top/tools4bpel/fiona, 2006. pages 101

BIBLIOGRAPHY 269

[79] C. Mohan. Dynamic e-business: Trends in web services. In Alejandro P. Buch-
mann, Fabio Casati, Ludger Fiege, Mei-Chun Hsu, and Ming-Chien Shan, edi-
tors, TES, volume 2444 of Lecture Notes in Computer Science, pages 1–5, Hong
Kong, China, August 2002. LNCS Springer. pages 5

[80] Frederic Montagut and Refik Molva. Augmenting web services composition
with transactional requirements. icws, 0:91–98, 2006. pages 158

[81] M.Reichert and P.Dadam. ADEPTflex - Supporting dynamic changes of work-
flow without loosing control. Journal of Intelligent Information Systems (JIIS),
Special Issue on Workflow and Process Management, 10(2):93–129, 1998.
pages 13

[82] A. Norta. XRL Home Page. http://is.tm.tue.nl/research/xrl/. pages 115, 125,
129

[83] A. Norta. XRL/flower Home Page. http://is.tm.tue.nl/research/xrl/flower. pages
109, 128

[84] A. Norta and P. Grefen. Discovering Patterns for Inter-Organizational Business
Collaboration in a Top-Down Way. BETA Working Paper Series, WP 163, Eind-
hoven University of Technology, Eindhoven, 2006. pages 51, 142

[85] Alex Norta. eSourcing: electronic Sourcing for business to business.
http://is.tm.tue.nl/research/eSourcing, 2006. pages 15, 51

[86] OASIS. eXtensible Markup Language (SOAP) 1.1. http://www.xml.org/, 2006.
pages 5

[87] M.P. Papazoglou. Web Services and Business Transactions. World Wide Web:
Internet and Web Information Systems, 6:49–91, 2003. pages 158

[88] M.P. Papazoglou and B. Kratz. A business-aware web service transaction model.
In A. Dan and W. Lamersdorf, editors, Service-Oriented Computing - ICSOC
2006, 4th International Conference, volume 4294 of Lecture Notes in Com-
puter Science, pages 352–364, Chicago, USA, December 2006. LNCS Springer.
pages 159

[89] M.P. Papazoglou and P.M.A Ribbers. e-Business: organizational and technical
foundations. John Wiley & Sons, Ltd., 2006. pages 3

[90] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998. pages 7, 17, 18

[91] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications,
volume 1492 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998. pages 7, 17, 18

[92] W. Reisig, K. Schmidt, and C. Stahl. Kommunizierende Workflow-Services
modellieren und analysieren. Informatik - Forschung und Entwicklung, pages
90–101, October 2005. pages 100

[93] IBM Research. Crossflow architecture description, Technical report, ESPRIT
Crossflow EP 28653, 1999. pages 45

270 BIBLIOGRAPHY

[94] G. Rozenberg and J. Engelfriet. Elementary net systems. Lecture Notes in
Computer Science: Lectures on Petri Nets I: Basic Models, 1491:12–121, 1998.
pages 20

[95] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work-
flow Data Patterns. QUT Technical report, (FIT-TR-2004-01), 2004. pages 13,
40, 48, 54, 104, 145, 150

[96] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work-
flow Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven Uni-
versity of Technology, Eindhoven, 2004. pages 13, 40, 48, 54, 104

[97] W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Identi-
fying Structural Conflicts in Process Models. In M. Jarke and A. Oberweis, edi-
tors, Proceedings of the 11th International Conference on Advanced Information
Systems Engineering (CAiSE ’99), volume 1626 of Lecture Notes in Computer
Science, pages 195–209. Springer-Verlag, Berlin, 1999. pages 14

[98] K. Schmidt. Lola: A low level analyser. In M. Nielsen and D. Simpson, editors,
Application and Theory of Petri Nets, 21st International Conference (ICATPN
2000), volume 1825 of Lecture Notes in Computer Science, pages 465–474,
Aarhus, Denmark, June 2000. LNCS Springer. pages 101

[99] K. Schmidt. LoLA: A Low Level Analyser. http://www.informatik.hu-
berlin.de/top/lola/doku.ps, 2004. pages 101

[100] K. Schmidt. Controllability of Open Workflow Nets. In Jörg Desel and Ul-
rich Frank, editors, Enterprise Modelling and Information Systems Architec-
tures, volume P-75 of Lecture Notes in Informatics (LNI), pages 236–249, Bonn,
2005. Entwicklungsmethoden für Informationssysteme und deren Anwendung
(EMISA, RWTH Aachen), Köllen Druck+Verlag GmbH. pages 100

[101] K.A. Schulz and M.E. Orlowska. Facilitating cross-organizational workflows
with a workflow view approach. Data & Knowledge Engineering, 51:109–147,
2004. pages 45

[102] Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire,
United Kingdom, 1999. pages 54

[103] S. Thatte. XLANG: Web Service for Business Process Design, 2003. pages 126

[104] J.D. Tygar. Atomicity in electronic commerce. In Proceedings of the 15th
Annual ACM Symposium on Principles of Distributed Computing (PODC’96),
pages 8–26, New York, 1996. pages 158

[105] W.J. van den Heuvel and S. Artyshchev. Developing a three-dimensional trans-
action model for supporting atomicity spheres. Proceedings of NetObjectDays
2002 vol. 2, 2002. pages 158

[106] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan Home Page,
Eindhoven University of Technology, Eindhoven, The Netherlands.
http://www.tm.tue.nl/it/woflan. pages 90, 96, 99

BIBLIOGRAPHY 271

[107] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based
Workflow Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Applica-
tion and Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer
Science, pages 475–484. Springer-Verlag, Berlin, 2000. pages 99

[108] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001. pages
14, 28

[109] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes Using Woflan. The Computer Journal, British Computer Society,
44(4):246–279, 2001. pages 99, 109, 126

[110] H.M.W Verbeek, A. Hirnschall, and W.M.P. van der Aalst. XRL/Flower: Sup-
porting inter-organizational workflows using XML/Petri-net technology. In
C. Bussler, R. Hull, S. McIlraith, M.E. Orlowska, B. Pernici, and J. Yang, ed-
itors, Web Services, E-Business, and the Semantic Web, CAiSE 2002 Interna-
tional Workshop, WES 2002, Toronto, Canada, pages 93–109. LNCS Springer,
May 2002. pages 126, 130

[111] J. Vonk and P.W.P.J. Grefen. Cross-organizational transaction support for e-
services in virtual enterprises. Distributed and Parallel Databases, 14(2):137–
172, 2003. pages 13

[112] T. Wang, P. Grefen, and J. Vonk. Abstract transaction construct: Building a
transaction framework for contract-driven, service-oriented business processes.
In A. Dan and W. Lamersdorf, editors, Service-Oriented Computing - ICSOC
2006, 4th International Conference, volume 4294 of Lecture Notes in Com-
puter Science, pages 352–364, Chicago, USA, December 2006. LNCS Springer.
pages 159

[113] M. Weber and E. Kindler. The petri net markup language. In H. Ehrig, W. Reisig,
G. Rozenberg, and H. Weber, editors, Petri Net Technology for Communication-
Based Systems Advances in Petri Nets, number 2472 in Lecture Notes in Com-
puter Science, page 455 p. Springer Verlag, Berlin, 2003. pages 54, 126

[114] D. Weinberg. Reduction Rules for Interaction Graphs. Informatik-Berichte 198,
Humboldt-Universität zu Berlin, February 2006. pages 101

[115] WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-
TC-1011). Technical report, Workflow Management Coalition, Brussels, 1996.
pages v, 4

[116] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analy-
sis of Web Services Composition Languages: The Case of BPEL4WS. In I.Y.
Song, S.W. Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International
Conference on Conceptual Modeling (ER 2003), number 2813 in Lecture Notes
in Computer Science, pages 200–215, Chicago, Illinois, 2003. Springer Verlag,
Berlin. pages 54

[117] J.M. Zaha, A. Barros, M. Dumas, and A. H.M. ter Hofstede. Let’s dance: A lan-
guage for service behavior modeling. In R. Meersman and Z. Tari, editors, On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA, and ODBASE,

272 BIBLIOGRAPHY

volume 4276 of Lecture Notes in Computer Science, Montpellier, France, Octo-
ber 2006. LNCS Springer. pages 167

[118] L. Zhao, N. Mehandjiev, and L. Macaulay. Agent roles and patterns for support-
ing dynamic behavior of web service applications. In AAMAS’04 Workshop on
Web Services and Agent-Based Engineering (WSABE). pages 13

Index

β operator, 23

AbstractBPEL, 120
Abstraction, 26
Analyst, 123
Assignment dimension, 55

Dynamic assignment, 57
Semi-dynamic assignment, 59
Static assignment, 56

ATC, 159, 160
ATHENA, 45
Atomicities, 158
Auction service, 113, 115
Author, 123
Automobile industry, 134

Behavioral equivalence, 27
Bidding, 112
Bidding library, 113
Black-box projection, 91
BNM, 152
BNM former, 154
BNM joiner, 155
BNM negotiator, 156
BPEL, 6, 126
BPEL2oWFN, 101
BPML, 126
BTF, 159
BTML, 159
Business process, 3
Business Process Execution Language,

6
Business-process inheritance, 26

CE projector, 110
CE translator, 108, 110, 111
CI projector, 111
CI translator, 108, 111, 113
Collapsed net, 95
Collapsing, 38
Commitment exchange, 159

Complexity, 33
Compositionality, 97
Conjoinment, 44, 76, 142

Bi-directional, 79, 80
One-directional, 78

Conjoinment monitor, 110, 111
connectedness, 20
Construction dimensions, 163
Construction patterns, 64
Consumer sphere, 86
Contracting client, 112
Contractual consensus, 92, 93
Contractual sphere, 89
Contractual visibility, 43, 51

Black box, 65
Grey box, 68
White box, 67

Contributions, 11
Control-flow, 37
Control-flow perspective, 54
CrossFlow, 45
CrossWork, 15, 32, 41, 135
Curriculum vitae, 277

Data exchanger, 110
Data layer, 125
Data-flow definition, 145
Data-flow perspective, 54
Dead transition, 21
Deadlock, 28
Demarcations, 13
Design as a search, 7
Design as an artifact, 7
Design evaluation, 7
design-science research, 6
DIBPM, 32, 33
Direction dimension, 60

External-to-internal, 62
In-sourcing, 61
Internal-to-external, 63
Out-sourcing, 60

273

274 INDEX

eBT, 158
eBusiness-transaction concept, 158
ECML, 114, 143, 164
eCommunity, 152, 160

Lifecycle, 154
Membership negotiator, 156

eContract, 152, 159
eContract management, 157
eContract negotiator, 156
Enactment engine, 110
Enactment monitor, 110, 111
eSCtoIOWF-mapper, 99
eSML, 15, 113, 136
eSourcing, 32, 34

Construction dimension, 42
Interaction-dimension, 41
Suitability features, 40
Verification criteria, 38

esourcing
Prototypes, 164

eSourcing condept, 162
eSourcing configuration, 94
eSRA, 15, 105, 136, 157, 164

First level, 105
Second level, 106
Third level, 110
Translation, 108

Evaluation requirements, 135
Applicability, 136
Coherence, 136
Completeness, 136
Data-flow support, 136
Feasibility, 135
Interoperability, 136
Resource-specification support, 136
Scalability, 136
Structuring support, 136

Event data, 110
Exchange provisions, 120
External level, 88
External-level collaboration, 107

Fiona, 101
Flattening, 113
Functionality layer, 124

Global rules engine, 110
Global WFMS, 112
Grey-box projection, 91

How, 115

IKW, 16, see Knowledge worker, 121
Implicit place, 87
In-house process, 85

partitioned, 86
Interaction dimensions, 163
Interaction pattern, 55
Interaction perspective, 41

assignment, 41
direction, 42

Interaction-dimension
External-to-internal, 42
In-sourcing, 42
Internal-to-external, 42
Out-sourcing, 42
Static, 41

Internal-to-external, 136
IOWF-net, 23, 161
IOWF-net , flat function24, activation

safeness25, soundness25
IOWF-nets, 100

Knowledge worker, 48

Lack of synchronization, 28
Legacy management, 109
Legacy systems, 110
Life-cycle monitorablity, 69
Lifecycle definition, 147
Local rules engine, 110
Local WFMS, 109, 114
LoLa, 101

Management process, 3
Mapping definition, 147
Mediator, 116
Membership manager, 155
Meta-model packages, 49
Monitorability, 44, 68, 142

Life-cycle messaging, 73
Life-cycle polling, 75
Token messaging, 71
Token polling, 74
Token propagation, 70
Token takeover, 74
Transition messaging, 72
Transition polling, 75

Monitorability definition, 148

Negotiation support, 155
Nehemiah, 45

INDEX 275

Notifier, 112

OEM, 136
Open workflow nets, 100
Operating guidelines, 101
oWFN, 100
OWL-S, 33

Pattern catalogue, 136
Pattern data, 125
Pattern interface, 123
Pattern knowledge base, 121
Pattern lifeacycle, 121
Pattern manager, 124
Pattern meta-model, 162
Pattern properties, 51
Pattern support, 53
Pattern-based exploration, 162
Pattern-taxonomy model, 50
Petri net, 18, 37

bounded, 20
isomorphism, 20
live, 20
safe, 20

PNK, 128
PNML, 54, 127, 164
Populator, 155
Problem relevance, 7
Process modeler, 110
Process-harmonization definition, 146
Production data, 111
projection, 90
Projection inheritance, 18, 26, 27, 38,

163
Provider sphere, 88
Publications, 13

Repository user, 122
Research approach, 7
Research design, 6
Research history, 13
Research question, 2
Research questions, 8
Research rigor, 7
Research steps, 9
Resource perspective, 54
Resource-perspective definition, 144
Review, 124
Review data, 125
Review interface, 124

Review manager, 124
Reviewer, 123
Rules data, 110
Rules engine, 109, 112
Rules modeler, 110

Service broker, 112, 113, 115
Service library, 112
Service management, 157
Service-interaction patterns, 55
Service-library database, 112
Service-oriented architecture, 5
Service-oriented computing, 5
Setup functionality, 109
Silent action, 26
Sink, 21
SOA, 5
SOAP, 5
SOBI, 32
SOC, 5
Soundness, 22
soundness, 107
Source, 21
Sourcing middleware, 106
Sourcing-setup-support, 109
Spheres of control, 158
State support, 155
State-transition synchronizer, 155
Static assignment, 136
Suitability analysis, 163
Supply-chain hierarchy, 134

Template search engine, 112
Thesis structure, 10
Three-level framework, 33, 84
three-level framework, 162

UDDI, 6
UML, 115
User data, 125
User management, 122
User management interfcae, 123
User manager, 124

Valid partitioning, 86
Verifier, 113

WF-net, see WorkFlow net, 161
sound, see Soundness

What, 115
What model, 119

276 INDEX

Where, 115
Where model, 118
White-box projection, 91
Who, 114
Who model, 117
WISE, 45
Woflan, 28, 109, 164

extension, 98
WorkFlow net, 21
Workflow-management systems, 4

Reference architecture, 4
Worklfow modules, 100
Worklfow spheres, 158
Worklist item, 127
Worklist manager, 127
WS-CDL, 120
WSCI, 126
WSFL, 126

XPDL, 126
XRL, 109, 125, 164
XRL/flower, 14, 109, 126, 164

Database model, 129
Enactment module, 130
Web client, 130
Web server, 130
Worklistitem manager, 130

XRL2PNML, 127, 129
XSLT, 127
XTC, 159

Curriculum Vitae

Alex Norta (née Hirnschall) was born in 1972 in the city of Pretoria, South Africa.
He graduated from grammar school in Linz Austria and after completing military ser-
vice, he commenced to study business informatics at the Johannes Kepler University
of Linz. In 1992/93 he was a student at the School of Management of the University of
Manchester Institute of Science and Technology.

From 1998 till 2000 he performed his master-thesis project as part of a funded re-
search project about active object-oriented database systems and was at the same time
a student assistant and tutor at the department of Data- and Knowledge Engineering
of the Johannes Kepler University. In 2000/01 he moved on to the department of In-
formation Systems as a scientific programmer in the Co-flow project to implement a
Smalltalk-based workflow management system, in cooperation with PSE Siemens Vi-
enna. In 2001 he obtained a M.Sc. in business informatics.

From 2001 until 2006 he was a Ph.D. student at the Information Systems depart-
ment of the TU-Eindhoven, The Netherlands. Embedded in the EU research project
CrossWork, he focused on developing a concept for dynamic inter-organizational busi-
ness process collaboration. His research work led to a number of international publica-
tions. During his Ph.D. studies, he was actively involved in teaching activities. In 2007
he joined the Computer Science department of the Helsinki University in Finland, to
work for the SOAMeS project on an investigation of service-oriented architectures for
enterprize computing and inter-enterpriser computing.

Since 2003 he is happily married to Kaisa Lotta Norta and a proud father of Elias
Onni Alexander and Saga Lotta Amelie, with whom he lives in Espoo, Finland.

277

	List of abbreviations
	Contents
	List of figures
	List of tables
	Acknowledgements
	1. Introduction
	2. Petri-net theory
	3. The perspective of eSourcing
	4. The nature of patterns in the context of DIBPM
	5. Verifying eSourcing configurations
	6. Proof-of-concepts
	7. Cases and evaluations
	8. An outlook for eSourcing
	9. Conclusion
	A. Further refining eSML models
	B. eSML schema
	C. eSML instantion
	Bibliography
	Index
	Curriculum Vitae

