

Message sequence charts in the software engineering
process
Citation for published version (APA):
Mauw, S., Reniers, M. A., & Willemse, T. A. C. (2000). Message sequence charts in the software engineering
process. (Computing science reports; Vol. 0012). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2cc576b8-1701-4bdb-87b7-3e42871dc316

Technische Universiteit Eindhoven
Department of Mathematics and Computing Science

Message Sequence Charts
in the Software Engineering Process

by

S. Mauw, M.A. Reniers and T.A.e. Willemse

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.e.M. Baeten

prof.dr. P.A.J. Hilbers

Reports are available at:
http://www.win.tue.nVwinics

00112

Computing Science Reports 00/12
Eindhoven, June 2000

MESSAGE SEQUENCE CHARTS

IN THE SOFTWARE ENGINEERING PROCESS

S. MAUW and M.A. RENIERS and T.A.C. WILLEMSE

Department of Mathematics and Computing Science, Eindhoven University oj Technology
P.O. Box 513, NL-5600 ME Eindhoven, The Netherlands

The software development process benefits from the use of Message Sequence Charts
(MSC), which is a graphical language for displaying the interaction behaviour of a system.
We describe canonical applications of MSC independent of any software development
methodology. We illustrate the use of MSC with a case study: the Meeting Scheduler.

Keywords: Message Sequence Chart, software engineering process, groupware.

1. Introduction

The common agreement is that software engineering is a difficult discipline. Despite
the methodologies that describe the partitioning of the software engineering trajec
tory into phases including the deliverables for each phase and techniques that can be
applied in these phases, a great number of industrial software engineering projects

encounter unanticipated problems. Unfortunately, pinpointing the exact causes for
these problems is not always possible, but there are a few well known issues that
give rise to these problems. Among these issues are the shifts between subsequent
phases and version-management of documentation and software, but also the more
basic communication problems between the client and the engineering team.

The language Message Sequence Chart (MSC) is a graphical language, initially
developed to support the SDL methodology for describing possible scenarios of
systems and is standardised by the ITU. In the past decade, many features have
been added to the core language. This culminated in the documentation for the most
recent version, MSC 2000 [1), describing its syntax, semantics and its conventions.

Traditionally, MSC has been used in the area of telecom oriented applications.
There, it has earned its medals for visualising and validating dynamic behaviour
(see the SDL Forum proceedings [2, 3, 4, 5, 6]). However, over the past years,
alongside the increased expressiveness of the language also the specifying of dynamic
behaviour has become a major topic of research and practice. Being a standardised

2 S. Mauw and M.A. Reniers and T.il.C. Willemse

language, one of the main advantages of MSC over comparable languages is that
is has been formalised. Moreover, the language is understandable both by the
specialist and a layman, i.e. it can serve as a medium for communication between
groups with different backgrounds. This is particularly useful in the setting of
software engineering.

In this paper we will give an overview of the canonical applications of MSC within
the software engineering trajectory, without focusing on one particular methodol
ogy. This is done by identifying the commonly occurring phases in a number of
software engineering methodologies, and explaining the applications of MSC in and
between each phase, based upon this identification. Some of these applications are
already much used, while other applications are not that straightforward. Wherever
possible, references to literature or ongoing research is provided.

In order to present more than an abstract framework, in this paper a relatively
trivial case study is presented. Using this case study, various of the discussed ap
plications of the language MSC are shown in practice, thereby providing a more
profound understanding of the canonical applications of MSCs and of the language
itself. The case study we will discuss is an application that is part of an Inter Busi
ness Communication Support System software suite, called the Meeting Scheduler.

We will start by introducing the language MSC in a nutshell in Section 2 for the
common understanding of the diagrams presented in this paper. The application of
MSCs in the software engineering trajectory is subsequently discussed in Section 3.
There, the canonical applications in each phase, and between different phases, are
presented. Using the Meeting Scheduler as a running example, in Section 4, some
of the canonical uses of MSC are presented, thus providing a concrete example of
both the applications of MSC and the language itself. At the end of this paper, in
Section 5, some concluding remarks are made.

2. Message Sequence Charts

MSC (Message Sequence Charts) is a graphical specification language standardised
by the ITU (International Telecommunication Union). In this section we will give an
overview of the main features of the MSC language. For a more detailed introduction
the reader may consult [7, 8].

MSC is a member of a large class of similar drawing techniques which more
or less independently arose in different application areas, such as object-oriented
design, real-time design, simulation and testing methodology.

The main virtue of these languages is their intuitive nature. Basically, an MSC
describes the communication behaviour of a number of logically or physically dis
tributed entities, displaying the order in which messages are exchanged. Graphi
cally, the life-line of an entity is represented by a vertical axis, while the messages
are drawn as arrows connecting these life-lines. A simple MSC (such as the one
in Fig. 1), can be easily understood by a non-trained user, which makes the MSC
language very suitable for communication with e.g. clients.

The MSC language as used in this paper stems from the telecommunication

Message Sequence Charts in the Software Engineering Process 3

world. The popularity of MSC in this area is explained by the fact that typical
telecom applications feature distributed reactive systems with real-time demands,
for which a scenario based description with MSC is particularly useful. While the
application of MSC in the telecom world dates back to the seventies, the first official
ITU recommendation was issued in 1992. Since then, the language was maintained
actively by an international user community and supported by commercially avail
able design tools (e.g. [9, 10]).

Over the years, the small and informal MSC92 language developed into a pow
erful and formalised language, of which the current version is called MSC2000 ([1]).

The choice for using MSC2000 in this paper is motivated by these factors: MSC
is a formal, standardised and well supported language. Although, in the context of
the ITU, MSC is embedded in the SDL design methodology for distributed telecom
applications ([11, 12, 13, 14, 15]), this does not impose any restrictions on its use in
a different methodological context. We consider MSC as a generally applicable tool
which can be used to strengthen the software development process independent of
the adopted methodology.

The remainder of this section will be devoted to explaining the main constructs
from the MSC language.

2.1. Basic Message Sequence Charts

As explained above, a basic MSC consists of vertical axes representing the life-lines
of entities and arrows connecting these lines, which represent messages. MSC M
from Fig. 1 contains four entities, p, q, r, and 5 (In this section we will introduce MSC
with meaningless abc-examples. More useful MSCs are given when discussing the
case study in Section 4). Instance p first sends message a to instance q, which sub
sequently receives this message. Messages in an MSC are considered asynchronous,
which means that the act of sending a message is separate from the reception of
a message. Of course the sending of a message must occur before the reception of
this same message, but between these two events, other events may take place. We
say that the sending and reception of a message are causally related events.

msc M

p q r s

a
~

b

d
c

~

Fig. 1. A basic MSC.

After reception of message a by instance q, instance q will send message b. The

4 S. Mauw and M.A. Reniers and T.A. C. Willemse

reception of a and the sending of b are causally related, because they occur in
the given order on the same instance axis. After sending b, we come into a state
where two events are enabled: the reception of b and the sending of d. Since in
the diagram no causal dependency between these two events is expressed there is
no implied order of execution. Continuing this line of reasoning, we find that a
basic MSC diagram defines a number of execution orders of simple communication
events.

This interpretation is worked out in mathematical detail in the official MSC
semantics (see [16, 17, 18, 19, 20]). In this paper we will not pursue the path of
formality, but we will restrict ourselves to intuitive explanations.

In Fig. 2, we have extended the simple MSC with additional information. First,
we see that the events of sending a and receiving d are vertically connected by a
two-way arrow. This means that we have put a time constraint on the occurrence
of these two events: the reception of d must occur within 3 time units after the
sending of a.

rnse M'

p q r s

.1
a 1

~ - -- -+
b

I
[0,3) I

d I

~ I I C L __

P' --@ 8

e

~
Fig. 2. An extended basic MSC.

Apart from the expression of relative time requirements, MSC also supports
the observation of absolute time stamps. This is denoted by the timing attribute
connected to the reception of message c. Therefore, this event occurs at time 8.

Next, observe that the life-line of instance q is partly dashed. This means that
the events on this part of the instance axis are not causally ordered. The sending
of b may occur before or after the sending of d. This allows to reduce determinacy
of the specification. This construct is called a coregion.

Message e is a special kind of message, namely a message to the environment.
Such messages are needed to specify open systems. Message f is added to show that
messages are allowed to overlap. This means that there is no a priori assumption
about the type of message buffering.

At the end of instance q we have added an example of the use of timers. This
example denotes the setting of a timer with name t, followed by the subsequent
time-out signal of this timer. It is allowed to detach the time-out event from the

Message Sequence Charts in the Software Engineering Process 5

setting of the timer. In this case, the hour glass symbol and the attached timer
name must be repeated.

Finally, notice the small box at the end of instance s. This stands for a local
action, performed by instance s. This is simply an action event of which we know
the name (dojt), which must occur after the reception of f.

2.2. Structured Message Sequence Charts

Although basic MSCs yield quite clear descriptions of simple scenarios, structuring
mechanisms are needed to nicely express more complex behaviour. There are three
ways of defining substructure within an MSC: MSC references, instance decompo
sition and inline expressions (see Fig. 3).

mse S

p q r s t

I I _I ecom osed

~
u

A
x

v

~

<- when it > 0

v

- - -- ----------- ------------- - --

otherwise

z

Fig. 3. An MSC with sub-structure.

This example shows a reference to MSC A, which must be defined elsewhere.
MSC A is simply thought to replace the area of the MSC reference which covers
the instances p and q. The diagram also shows that we expect that a message x
is leaving the MSC reference. This implies that within MSC A a message x to the
environment must be defined.

Instance decomposition is similar to MSC references. Rather than abstracting
from the internals of a region within an MSC, it serves to abstract from the internals
of an instance. In the example instance t is labelled as a decomposed instance, which
means that the reader must refer to an MSC named t to find the description of the
internal behaviour of this instance. MSC t will in general contain a number of

6 S. Mauw and M.A. Reniers and T.A. C. Willemse

(new) instances, which co-operate to obtain the external behaviour of instance t.

This clearly implies that MSC t must contain at least a message u sent to the
environment and a message v received from the environment.

The third structuring mechanism in Fig. 3 is the inline expression. An inline
expression consists of a framed region of the MSC with in the upper left corner the
name of an operator. The operands to which the operator applies are separated
by a dashed horizontal line. In this case, the operator is the alt operator which
stands for alternative. The two operands which are considered alternatives consist of
message y and message z, respectively. In its general appearance, the choice between
the alternatives is made non-deterministically. However, by using conditions the
selection criterion can be made explicit. In this case, the alternatives are preceded
by conditions (represented by stretched hexagons) testing the value of some variable
n. Please notice that such a condition does not represent a synchronisation of the
involved instances. It merely expresses that the instances reach agreement on the
continuation, possibly not exactly at the same moment of time.

The conditions as used in this example also hint at the use of data variables in
an MSC. Since we do not need data in our examples, we will not discuss this issue
in greater detail. A more symbolic way of using conditions is also supported, as
shown in Fig. 7. It is allowed to simply label a condition with a symbolic name,
which can be asserted and inspected.

In its general appearance an inline expression may contain other operators than
the alt operator, such as loop to express repetition and par to describe (interleaved)
parallelism. The allowed number of operands depends upon the operator used.

2.3. High-level Message Sequence Charts

A different construct which supports modularisation of MSC specifications is a
High-level MSC (HMSC). An HMSC serves as a kind of road-map linking the MSCs
together. In Fig. 4 we see the relation between three MSC references, A, B, and C.
The upside down triangle indicates the start point. Then, following the arrow we
arrive at a condition, which gives a hint about the state the system is in initially
(idle). Then, we encounter the first MSC to be executed, MSC A. After executing
A there is a choice between continuation: B, preceded by the condition ok, and (,
preceded by condition retry. After selecting the left branch, B is executed which
is followed by another triangle, which indicates the end of the HMSC. If we would
have selected the right branch, MSC C is executed, after which we restart at MSC
A.

2.4. Additional MSC constructs

Until now we have discussed all MSC language constructs needed to understand the
remainder of this paper. There are some more useful constructs, but we will only
mention these briefly.

An MSC document is a drawing which can be seen as the declaration of a coher-

Message Sequence Charts in the Software Engineering Process 7

msc H

Fig. 4. A High-level MSC.

ent collection of MSCs, instances, variables and other objects. In an MSC document
a distinction is made between public and private MSCs as to control visibility to
the outside world. Also, the decomposition hierarchy which emerges when using
the decomposition construct iteratively is reflected in the use of MSC documents.

Finally, we mention special syntax for expressing a more rigid order on the
contained events, for the creation and stopping of instances, for describing method
calls and replies, and for defining messages that do not arrive at their destination.

3. The application of MSCs in software engineering

In this section we first present a simplified view of the software engineering process.
Later this view will be used to connect the applications of MSC to.

3.1. Software engineering

There are many models that describe the software engineering process. We mention
the waterfall model [21], the incremental delivery model [22], the spiral model [23],
the V·model [241, and the cluster model [251. In general these models prescribe the
same types of activity, but differ in the way these activities are partitioned into
phases, the order in which the phases are executed, and the deliverables. We will
not focus on one of these models specifically. Instead, we will pay attention to a
number of frequently occurring phases in these models. These are requirements
engineering, specification, design, and implementation. Summarising, these phases

8 S. Mauw and M.A. Reniers and T.A.C. Willemse

can be characterised as follows.
In the requirements engineering phase it is clarified what the system is supposed

to do and in which way it is dependent on the environment of the system. This
not only refers to the functional requirements the system should satisfy, but also
includes non-functional requirements like timeliness) dependability, fault-tolerance,

etc.
In the specification phase the user requirements are analysed and a set of software

requirements is produced that is as complete, consistent and correct as possible. In
contrast with the user requirements, the software requirements are the developer's
view of the system and not the user's view. The result of this phase is a specification
of the system in natural language, a formal specification language, or possibly a
combination of both.

In the design phase decisions are taken as to the partitioning of the system
into subsystems and interfaces with a well-understood and well-specified behaviour.
Also the interaction of the subsystems is considered carefully. The design will serve
as a blueprint for the structure of the implementation.

In the implementation phase the design from the design phase is realised in terms
of software and hardware. Typical validation activities are acceptance, conformance
and integration testing.

In each of the abovementioned phases verification and validation activities are
performed. These activities are intended to verify the results of a phase with respect
to the results of other phases (or with respect to requirements not mentioned before).
We will not make any assumptions about the order in which phases are executed,
the overlapping of phases, or the number of iterations. Based on the distinction
of phases, discussed in this section, the use of MSC will be described in the next
section.

3.2. MSCs in the software engineering phases

Thus far, we have mentioned some frequently occurring phases in the software
engineering process. Next, we will discuss the use of MSCs in each of these phases
and in the relation between the phases. An overview is given in Fig. 5. The details
of this figure will be explained in the course of this section.

3.2.1. Requirements engineering

In the requirements engineering phase of the software engineering process we con
sider two tasks in more detail. These are requirements capturing and requirements
analysis.

The objective of requirements capturing is to obtain a view of the clients wishes.
Unfortunately, clients are not always clear in what their wishes arej hence, the user
requirements are not straightforwardly obtained. Often employed techniques involve
interviews, confrontations with prototypes and conversations with the engineering
team. Although the experienced requirements engineer is trained in abstraction

Message Sequence Charts in the Software Engineering Process 9

I requirements engineering l
J requirement MSCs

I specification [+
J specification MSCs)

l design [+
J interaction MSCs }-

I implementation [

1 log MSCs j

Fig. 5. Overview of the use of MSC in the software engineering process.

and deduction, still, tools are necessary for documenting requirements in a clear
and concise manner. Message Sequence Charts can very much assist the process of
converting informal documentation into more formal requirements; moreover, MSC
eases communications with clients in which harder to understand parts of system's
behaviour and implications of a combination of requirements are discussed.

Basically, in every interview with a client, various causal relations can be read.
From these relations, one can derive scenarios or use cases, describing parts of
the desired system's behaviour. Such a use case describes (part of) the external
behaviour of the system placed in its environment. The descriptions can include
resource constraints, timeliness constraints, performance constraints, etc. In this
paper, we will assume that the result of the requirements capturing phase among
others consists of a set of use cases.

The language MSC can be used to clarify use cases in which one or more actors
and the system are involved. The roles that appear in use cases are represented
by instances in MSCs. Also the system is represented by an instance. MSCs are
suited for this purpose as they emphasise the interaction between instances. The
interactions between the roles and the system are described by means of messages.
Conditional behaviour can be expressed by means of conditions and alternatives.

Consider the user requirement that the system must react within 15 seconds
on a request from an initiator by means of an acknowledgement. In Fig. 6 the
corresponding MSC is given.

Scenarios are not always considered to be true requirements, as they describe the
system's behaviour in a very operational manner, possibly containing redundancy.
However, the skilled requirements engineer is capable of turning these scenarios into
real requirements by abstraction, deduction and combination. This process is called

10 S. Mauw and M.A. Reniers and 1'.A.C. Willemse

rnse requirement
Initiator System

'--,-""" request

'-'1-------+ --* [0,15)
r- reply _ -V

Fig. 6. A simple user requirement.

requirements analysis.
MSCs can be of use in the requirements analysis phase by aiding communication

between the engineering team and the client. By the mere task of collecting all
user requirements and combining them, system behaviour 1 foreseen or not foreseen
by the client can be derived. Being of a more complex nature than simple user
requirements, these composed behaviours are often hard to explain to the client.
The concepts of the language MSC can be employed to visualise these more complex
behaviours. In this way, communication between the engineering team and the client
is eased.

If use cases described by MSCs tend to be large and have overlapping parts,
re-occurring parts can be isolated in separate MSCs and be referred to by means of
MSC references. The relation between the auxiliary MSCs obtained in this way can
be defined in an HMSC. The MSC document allows the separation of defining MBCs
from auxiliary MSCs. Especially in an incremental or iterative software engineering
process, the MSC document enables to maintain a good overall view of the MSCs
and their relations.

Although MSC does not really add new ways to finding requirements, the benefit
of using MSC may be clear: abstracting and deducting information is eased by the
overview that is achieved by explicitly focusing on the causal relationships that
would otherwise remain hidden in text. References to the use of MSC for use case
description are [26], and [27].

In the verification and validation part of the implementation phase the MSCs
produced in the requirements engineering phase can be used as descriptions of the
test purposes or test cases for acceptance testing.

3.2.2. Specification

The specification of the system is not necessarily described by means of formal
methods. Often prototypes are built, only parts of the system are described by
means of formal methods, or even only natural language is used. The MSCs derived
in the requirements engineering phase can be used to serve as the basis for writing
a more complete specification of the system. In theory, MSC can also be used
for writing specifications. In the literature several papers deal with the generation

Message Sequence Charts in the Software Engineering Process 11

of a formal specification from a set of (requirement) MSCs: in {28, 29, 30] SDL
descriptions are generated, in [31] statecharts are generated, and in [32] ROOM
models are generated.

However, here we will focus on the use of MSC for visualising traces, or runs
of the system. If a specification is developed without using the requirement MSCs
and the formalism used for the specification is executable, then the specification
can be used to generate specification MSCs. If the language used is less formal,
still, it might be possible to extract MSCs based on informal reasoning and a good
understanding of the specification. If a prototype of the system is developed, MSCs
can be obtained from logging and interpreting execution traces of the prototype.
In [33], MSCs are used to visualise the execution sequences that result from par
tial order simulations of SDL descriptions. In several commercially available SDL
tools [9, 10], simulation runs of SDL descriptions are represented by MSCs.

MSCs that result from the specification in the ways described above are useful
for comparing the specification with the user requirements. At the right level of
abstraction each of the MSCs representing a user requirement should be contained in
the MSCs obtained from the specification. Alternatively, the MSCs that represent
the user requirements can be used as a monitor for executable specifications such
as Promela programs in the Spin tool [34] and SDL specifications in the SDT tool
[9J.

The specification MSCs can also be used for conformance testing in the verifica
tion and validation part of the implementation phase. More details about this use
of MSC are given later.

3.2.3. Design

The activities carried out in the design phase must lead to a physical and/or logical
decomposition of the system into interacting subsystems in such a way that the
external behaviour of this collection of subsystems "implements" the specification.
As a consequence, the interaction between the subsystems must be specified in a
clear and unambiguous way. Message Sequence Charts are especially useful in the
description of the interactions in the form of communication protocols, method calls
and procedure invocations.

If a physical decomposition of the system is envisioned, the relation between the
system and the subsystems is represented in MSC by means of instance refinement
(decomposition). In logical decompositions the relation between the different MSCs
can be made clear in an HMSC.

As in the specification phase, based on the specification of the subsystems and
the interactions between these, MSCs can be generated. These MSCs then also
display the internal events. After abstraction from these internal events the resulting
MSC must be consistent with the specification MSCs. Hence, the MSCs from the
specification phase and the design phase can be compared in order to validate the
design with respect to the specification. Since the language MSC is formal, this
comparison can also be formalised.

12 S. Mauw and M.A. Reniers and T.A.C. Willemse

MSCs describing forms of interaction can later be used for integration testing.
If the interaction between system components is based on buffering messages, it is
possible to determine if this interaction can be realised with a given communication
model [35J.

3.2.4. Implementation

The implementation phase amounts to the realisation of the design in terms of
hardware and executable software. Message Sequence Charts can be used in this
phase to log execution traces of the implementation. If performance is of relevance,
typically all events in such MSCs have a time stamp. In Fig. 12 an example of such
an execution MSC is given.

These traces can be inspected manually for unexpected situations or can be
compared with Message Sequence Charts defined earlier in the software engineering
process. For example, after applying the appropriate abstractions it is useful to
compare the traces to MSCs generated by the specification (if any), or to the MSCs
issued in the requirements engineering phase.

If errors are detected in the implementation the MSC that logs the trace leading
to the error can be used to locate the error in the implementation.

In the verification and validation part of the implementation phase, by means
of acceptance, conformance and integration testing the confidence in the systems
performance (both functional and non-functional) is validated against the user re
quirements, the specification and the design, respectively. We explain the use of
MSC in conformance testing in some detail. The use of MSC in acceptance and
integration testing is similar.

In conformance testing, the behaviour of the implementation is validated against
the expected behaviour as described in the specification. In the literature sev
eral authors have indicated that the use of MSCs in conformance testing is valu
able [36, 37, 38, 39, 40J. In conformance testing the expected behaviour, in terms
of observable events of the implementation, is described in a test suite, i.e. a set of
test cases. A test case describes a tree of observable events and to each path in the
tree it assigns a verdict which specifies whether the described behaviour is correct or
incorrect. Execution of a test case results in feeding the implementation with inputs
and observing the generated observable events. This execution sequence of the im
plementation is then compared with the test case. The verdict of the corresponding
path in the test tree is the outcome of the test execution.

The use of MSC for the identification of test purposes is advocated by the
method SaMsTaG [41, 42, 43, 44J. In the SaMsTaG method a complete test case
can be generated from a system specification in SDL and a test purpose description
in MSC. The test case is described in the Tree and Tabular Combined Notation
(TTCN) [45J. A similar approach is followed by the HARPO toolkit [46, 47J.

Among others the papers [48, 49, 50J use MSC for the description of test cases.
In [51J synchronous sequence charts, i.e. Interworkings [52], are used for this pur
pose.

Message Sequence Charts in the Software Engineering Process 13

4. Case: The Meeting Scheduler

We will illustrate the use of Message Sequence Charts with a simple case study,
baptised The Meeting Scheduler. This is an internet application which supports
the scheduling of a meeting. In this section we give an explanation of the Meeting
Scheduler, but before doing so, we will give the context of its use.

4.1. Communication support

The Meeting Scheduler is part of a software suite that supports the communication
between people of different enterprises (an Inter Business Communication Support
System, !BCSS). The main difference with existing packages, such as ERP (Enter
prise Resource Planning) packages and business support systems such as Outlook,
is that !BCSS focuses on the communication between different enterprises. This
reflects current trends in business operation, such as lean production and concen
tration on core business. The consequence of this development is that production
is no longer performed mainly within one enterprise, but within a cooperation of
several independent enterprises. Each of these enterprises contribute their share
to the final product. The clear cut distinction between customer and producer
becomes ever more blurred; both consumer and producer cooperate to achieve a
common goal. As a consequence, the spectrum of communication shifts from the
intra-business perspective to the inter-business perspective.

Current communication support tools are often not suited to support the inter
business communication process. For instance, these tools assume that every user
has the same software environment. It is evident that inter-business support tools
must be based on established internet technology, such as web browsers.

An example of such an internet based application is a blackboard system where
users can share and manipulate electronic documents (such as the BSCW server
[53], which allows access via normal web browser software). Other tools one could
imagine are project management tools taking care of e.g. resource planning and
decision support systems.

A very simple example of such a communication support system is the aforemen
tioned Meeting Scheduler, which we have chosen to demonstrate the use of MSCs
on.

4.2. Informal description

Scheduling a meeting can be a rather time consuming activity. Dependent on how
many people are involved, a number of telephone calls or e-mails are necessary
in order to come to a date and time that is convenient to all, or at least to the
majority of the participants. The Meeting Scheduler is tailor-made to support
the administration of relevant information and communication with the intended
participants.

The Meeting Scheduler runs on some internet server and people communicate
with the server via e-mail, simple web pages and web forms. The working of the

14 S. Mauw and M.A. Reniers and T.A.C. Willemse

Meeting Scheduler is best explained by giving the basic scenario of usage.
Two roles can be distinguished: the initiator of the meeting and the invitees.

The initiator takes the initiative of setting up the meeting. He provides the system
with the initial information, such as purpose of the meeting, the list of invitees and
the list of possible dates and times. Next, the Meeting Scheduler informs the invitees
about the meeting and collects information from the participants with respect to the
suitability of the proposed dates. If all participants have provided their information
(or if some deadline is met), the system reports back to the initiator and suggests
the best possible date. After confirmation by the initiator, the final invitation is
sent to the participants.

This very basic description can be easily extended with many features. In fact,
very advanced tools which support the scheduling of meetings already exist, but
these are often platform dependent, and require participants to maintain an on-line
agenda.

In the subsequent section some of the uses that are mentioned in Section 3.2
are explained using the Meeting Scheduler. Note that this is not done extensively
for all phases. Most notably, no examples are given for the implementation phase.
Since the use of MSC for validation is discussed extensively in the literature, only
brief remarks are added wherever possible.

4.3. User requirements

The techniques for requirements capturing mentioned in Section 3.2.1 can very well
be applied to the Meeting Scheduler. For instance, the use of MSC in an interview
can be illustrated by transforming the following phrases, taken from an interview,
into MSC: "... the initiator feeds the system with the necessary information to
send out meeting requests to all potential participants of a certain meeting. These
participants should be allowed ample time to respond to these invitations. Even
tually, the system will send the current information about potential dates to the
initiator who will then decide on a date for the meeting to take place. The system
will subsequently inform all participants of the decision of the initiator. Finally, a
confirmation of this operation is sent to the initiator ... 'l

The scenario obtained by projecting on the behaviour of the interactions be
tween the initiator and the system is rather straightforwardly deduced from the
above sentence (see Fig. 7). Here, the initiator is represented by an instance initia
tor and the system is represented by a single instance system, thereby portraying
the black-box approach. The meetingjnfo message is used by the initiator to send
information vital for the scheduling of the meeting by the system. The message
collectedjnfo represents the collected information for the meeting that is communi
cated between the system and the initiator; the messages decision and confirmation
are self-explanatory. The conditions that are introduced can be read as comments,
denoting the (required) state of the system.

One can imagine that various scenarios for the Meeting Scheduler describe the
causal relationship between the reception of information for a meeting to be sched-

Message Sequence Charts in the Software Engineering Process 15

fiSC interview

initiator system

State: ldle)

meeting-.info

< State: Collect)

collected_info

decision

confirmation

Fig. 7. Scenario deduced from a part of an interview.

msc inform-.invitees

initiator system invitee invitee

I

meeting-.info I
informJnvit:e ~

I
inform-.invit~_

I informinvitee ..
Fig. 8. Requirement deduced from interviews.

16 S. Mauw and M.A. Reniers and T.A.C. Willemse

uled (denoted by a message meetingjnfo) and the sending of meeting requests to
potential participants of this meeting (denoted by a message informjnvitee). The
true (functional) requirement that can be distilled from these scenarios would be
one that focuses on exactly that causal relationship (see Fig. 8).

Note that this still is a scenario, and therefore portrays only parts of a system's
behaviour. The fact that in this scenario the initiator is also informed about the
meeting means that in this case the initiator is himself considered as an invitee, but
this is not necessarily always the case.

rnsc send_warning

invitee system

J-o-!!in!;fo",r'Om"c~=-·n"cv~i~te"e,-+ ___ ~o, d)

<) ' No response invitee I

warn_email \'1 k--'=='--+ - - -y

Fig. 9. Requirement deduced from a scenario.

As the discussion in Section 3.1 pointed out, not all requirements can be classified
as functional requirements; hence, a language supporting only functional require
ments wonld not suffice. Using MSC, also non-functional requirements, such as the
need for time-outs under certain conditions can be illustrated. For example, a non
functional requirement in the Meeting Scheduler would be the sending of a warning
message to participants that did not yet respond to the meeting call (denoted by
a message warn_email) be/ore a deadline (d) is reached. Such a requirement can be
elegantly formulated in MSC as Fig. 9 shows.

Thus far, we have focussed On the more trivial user requirements and the sce
narios belonging to them. As already mentioned in Section 3.2.1, the combination
of requirements may lead to an intricate interplay of causal relations. Finding out
these relations already is part of the requirements analysis phase. As an example, a
less basic interaction scheme between the initiator and the system for the Meeting
Scheduler is considered (see Fig. 10). Overview diagrams such as these assist the
communication between the engineering team and the client.

Basically, in Fig. 10 a blueprint for the logical structure for distinguishing be
tween the two options the initiator is confronted with can be read. The information
returned by the Meeting Scheduler mayor may not be according to the wishes of
the initiator. Worst case information may even mean that the invitees for a meeting
could not agree on a date for the meeting. Hence, the initiator is confronted with
the dilemma of having to decide to cancel the meet.ing altogether or decide on a
date, represented by the MSC reference conclude, or retry to schedule the meeting

Message Sequence Charts in the Software Engineering Process 17

rnsc meeting_organisation

Fig. 10. Combination of user requirements may lead to more complex behaviour.

(possibly using different dates), represented by the MSC reference retry.
The MSC conclude is depicted in Fig. 11; if the invitees could not agree on

a date and the initiator decides to cancel the meeting, a cancel message is sent
to the system; the system then subsequently responds with a confirmation, using
a confirmation message. In case a date is found for the meeting, the system is
informed by the initiator about this using a convocate message, and again, the
system responds with a confirmation. A similar MSC can be written for the MSC
reference retry (not shown here).

Careful comparison of MSC interview (Fig. 7) and the HMSC meeting_organisation
(Fig. 10) learns that the MSC interview is one of the possible scenarios described by
t.he HMSC meeting_organisation.

4.4. Specification

Although the language MSC can even be utilised for specifying systems, (see Section
3.2.2), we will adopt the language only for validation and visualisation purposes in
this phase. Since MSC was also devised for this purpose, we feel it is strongest in this
respect. As already mentioned in Section 3.2.2, the ways in which one can obtain
scenarios in this phase are plenty; the size and complexity of the Meeting Scheduler
would allow for a formal specification, and hence, the generation of traces, or runs
from this specification is, dependent on the method used, rather straightforward.
It would be outside the scope of this paper to give a specification for the Meeting
Scheduler, hence, we adopt the operational description of Section 4.2 as a reference
for a possible specification for this system.

As an example trace for the Meeting Scheduler, one can think of the scenario
depicted in Fig. 12. Basically, this scenario is a combination of various user require-

18 S. Mauw and M.A. Reniers and l'.A.C. Willemse

msc conclude

initiator system

I I
I

~ I
<- no date found >

cancel..meeting.

---- ----------- - ---

< date found >
convocate_meeting

confirmation

Fig. 11. Part of the complex behaviour.

msc sampie...Bcenario

initiator system invitee invitee

@o

@6

@73

@74

@78

@82

- -

--

- -

--
--

- -
--

I
meetingJnfo - - @0.2

informinvitee @1.4 --
@ 1.6 __ informJnvitee

@ 1.7 __ inform-.invitee - @2.2

@ 7 __ personal..info - - @6.6

personaLinfo
- - @ 12

@ 36 __ wanl-email

collected_info @ 72.5 --
convocate_meetin @ 74.5 --

@75-_ sorry.-email

@76 ___ onvocate_email -- @ 78

convocate_emai @ 77 - -
confirmation @80 -

Fig. 12. A typical scenario obtained by a specification.

-@2.3

- @ 36.1

--@ 76

Message Sequence Charts in the Software Engineering Process 19

ments listed in the previous section.

The MSC depicted in Fig. 12 can be validated against the user requirements.
For instance, one can observe that the functional and non-functional requirements
of Section 4.3 are met. As already mentioned in Section 3.2.2, the scenarios gener
ated in the specification phase are again needed for validating the products of the
implementation phase.

4.5. Design

The design phase prescribes as one of its main activities the decomposition of the
system into subsystems. More concretely, this means that choices have to be made
with respect to the desired properties of the system under construction. For the
Meeting Scheduler, this boils down to finding logical and/or physical decompositions
of the black-box which are chosen in such a way that the requirements of Section
4.2 are fulfilled. Note that the (part of the) design that is discussed here is based
on the operational description of the Meeting Scheduler.

The obvious choice for a physical decomposition for the Meeting Scheduler is
to consider a decomposition in two subsystems, a front-end and a database. The
front-end is a system that deals with the interactions between users of the Meeting
Scheduler and as such is the intermediate between the users and the database,
whereas the database primarily stores the information posted by users concerning
possible dates and times for the meeting.

The interactions between all subsystems involved for the Meeting Scheduler can
be grouped, based on a logical decomposition of the global state of the system.
The change of state is again, like in Section 4.3, a more complex concept, typically
expressed in HMSC (see Fig. 13). Closer observation of Fig. 13 reveals the expected
structure of an initialising, a collecting and a deciding phase. In each of these phases,
basic MSCs can be used to explain the interactions between various subsystems.

To highlight some of the interactions between the subsystems for the Meeting
Scheduler, the MSC references initialise, collect and warnjnvitees are highlighted.

The basic MSC initialise (see Fig. 14) describes the essence of which interactions
can typically be expected in the initialising phase. Most notably, parts of the in
teractions identified in the requirements engineering phase (see Figs. 8, 9, 10, 11)
reappear in this scenario. Basically, the scenario describes the interaction between
the initiator and the front-end of the Meeting Scheduler, in which information for
the scheduling of a meeting is communicated using a message meetingjnfo. Subse
quently, the front-end updates the database, and only then it starts sending calls to
all invitees for this meeting in random order, (using informjnvitee messages). In or
der to meet the non-functional requirements (see Fig. 9), two timers are initialised,
one for sending a warning message and one for keeping track of the deadline for
responding to the invitation.

Collecting information of the invitees is illustrative for typical update inter
actions occurring between the front-end system and the database, as a reaction to
messages from the users of the system (see Fig. 15). Using the message personaLinfo,

20 S. Mauw and M.A. Reniers and 1'.A.C. Willemse

rnsc logical decomposition

initialise

collect

all...re lied

all...re lied

retry conclude

Fig. 13. The global change of state for the Meeting Scheduler.

Message Sequence Charts in the Software Engineering Process 21

mse initialise

initiator front-end database invitee invitee

I
meetingJnfo

meetingJnfo

informJnvitee

I informJnvitee

informjnvitee \

I
warning_timer

~

K

deadlin~timer

C>

Fig. 14. The initialisation of the Meeting Scheduler.

mse collect

initiator front-end database invitee invitee

I
nersonalJnfo

uudate

personalJnfo

uDdate

Fig. 15. Collecting of information.

22 S. Mauw and M.A. Reniers and T.A.C. Willemse

the invitees inform the Meeting Scheduler of their preferred dates and times for the
meeting to take place. The front-end of the system uses this information to update
the database via an update message.

msc warn.invitees

initiator front-end database invitee invitee

I I

retrieve.info

info

warn_email

...personaUnfo

update

Fig. 16. Warning of invitees.

As an example of how non-functional requirements are captured in this phase,
the MSC warn_collect is illustrated in Fig. 16. When a warning timeout is reported
to the front-end system, the front-end system consults the database for information
about who responded and who did not yet respond to the meeting announcement.
Those invitees that did not yet respond, are warned (expressed by the message
warn_email) by the front-end subsystem.

Validation in this phase boils down to checking whether the MSC scenarios
described in this phase refine the MSC scenarios generated in the specification
phase. For the Meeting Scheduler, the interactions left after abstracting from the
interactions between the different subsystems of the Meeting Scheduler should also
be allowed scenarios of the specification.

5. Concluding remarks

This paper presented an overview of the canonical applications of the language
Message Sequence Chart (MSC) in the area of software engineering. These appli
cations have been sketched independently of any particular software engineering
methodology (e.g. ESA PSS 5 Software Engineering standard) or model (e.g. the
incremental delivery model, the waterfall model). Alongside a more abstract frame
work, describing these applications, a more concrete example, in the form of a case
study has been discussed. This allowed for relating the more practical aspects to
the abstract framework.

Message Sequence Charts in the Software Engineering Process 23

The MSC language constructs used and indicated in this paper are but a list of
the more common constructs. In particular, the case study is of a simple nature;
hardly any need for structuring mechanisms exists nor does data play a role in
this case study. Yet, for illustrating some of the canonical applications of MSC an
easy to understand example is vital. In general, the full set of language constructs
does allow for dealing with substantially more complex applications than the ones
sketched in this paper. In dealing with such applications, it is recommended (and
often necessary) to choose those language constructs necessary for describing exactly
what is relevant for the particular application.

Some aspects of the applications mentioned in the preceding sections are quite
orthogonal with respect to others, e.g. in simulating an executable specification
absolute time stamps are commonly used, whereas in writing requirements for a
system, relative time is often employed. This illustrates the broad spectrum of
applications for MSC we have sketched in this paper. Given this broad spectrum, it
is common sense to make a selection of which purposes are best served using MSC
(e.g. using MSC only during the requirements engineering phase and validation of
these requirements).

As mentioned before, the formal semantics of the language MSC allows for per
forming validation and verification. These activities have been described without
going into too much detail. Wherever possible, references to illustrative works on

this area have been added.

Acknowledgements

We like to thank Victor Bas and Andre Engels for their efforts and we thank Lies
Kwikkers and Jan Roelof de Pijper for their work on the case study.

References

1. lTU-T. Recommendation Z.120: Message Sequence Chart (MSC). lTU-T, Geneva,
2000.

2. O. Frergemand and R. Reed, editors. SDL'91 - Evolving Methods. North-Holland,
1991.

3. O. Frergemaud and A. Sarma, editors. SDL '93 - Using Objects. North-Holland, 1993.
4. R. Brrek and A. Sarma, editors. SDL '95 - with MSC in CASE. North-Holland, 1995.
5. A. Cavalli and A. Sarma, editors. SDL '97: Time for Testing - SDL, MSC and

Trends. North-Holland, 1997.
6. R. Dssouli, G. von Bochmann, and Y. Labav, editors. SDL'99: Proceedings of the

Ninth SDL Forum. North-Holland, 1999.
7. E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message Sequence Charts.

Computer Networks and ISDN Systems, 28(12):1629-1641, 1996. Special issue on
SDL and MSC, guest editor 0. Haugen.

8. 0 Haugen. Msc-2000 interaction diagrams for the new millenium. To appear in Com
puter Networks and ISDN Systems, 2000, 2000.

9. Telelogic AB. SDT 3.1 Reference Manual. Malmo, Sweden, 1996.
10. Verilog. Object GEODE Toolset Documentation, 1996.

24 S. Mauw and M.A. Reniers and 1'.A.C. Willemse

11. lTU-T. Recommendation Z.100: Specification and Description Language (SDL).
ITU-T, Geneva, June 1994.

12. R. Saracco, R. Reed, and J.R.W. Smith. Telecommunications Systems Engeneering
Using SDL. North-Holland, Amsterdam, 1989.

13. F. Belina, D. Hogrefe, and A. Sarma. SDL - with applications from protocol specifi
cation. The BCS Practitioners Series. Prentice-Hall International, London/Englewood
Cliffs, 1991.

14. R. Bnek and Haugen 0. Engineering Real-time Systems with an Object-oriented
Methodology based on SDL. Prentice-Hall International, London, 1993.

15. A. Olsen, O. F<ergemand, B. M01ler-Pedersen, R. Reed, and J.R.W. Smith. Systems
Engineering Using SDL-92. Elsevier Science Publishers B.V., Amsterdam, 1994.

16. lTU-T. Recommendation Z.120 Annex B: Algebraic semantics of Message Se
quence Charts. ITU-T, Geneva, 1998.

17. S. Mauw and M.A. Reniers. An algebraic semantics of Basic Message Sequence Charts.
The Computer Journal, 37(4):269-277, 1994.

18. S. Mauw. The formalization of Message Sequence Charts. Computer Networks and
ISDN Systems, 28(12):1643-1657, 1996. Special issue on SDL and MSC, guest editor
0. Haugen.

19. S. Mauw and M.A. Reniers. High-level Message Sequence Charts. In A. Cavalli and
A. Sarma, editors, SDL '97: Time for Testing - SDL, MSC and Trends, Proceed
ings of the Eighth SDL Forum, pages 291-306, Evry, France, 23-26 September 1997.
Amsterdam, North-Holland.

20. M.A. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis, Eind
hoven University of Technology, June 1999.

21. W.W. Royce. Managing the development of large software systems. In Proceedings of
the IEEE WESCON, 1970.

22. R.T. Yeh. An alternate paradigm for software evolution. In P.A. In Ng and R.T. Yeh,
editors, Modern Software Engineering: Foundations and Perspectives, New York,
NY, 1990. Van Nostrand Reinhold.

23. B.W. Boehm. A spiral model of software development and enhancement. IEEE Com
puter, 21(5):61-72, 1988.

24. Ministry of the Futenon, Ottobrun, Germany. Software life-cycle process model (V
model), 1992.

25. C. Gindre and F. Sada. A development in Eiffel: Design and implementation of a
network simulator. Journal of Object-Oriented Programming, 2(2):27-33, May 1989.

26. M. Andersson and J. Bergstrand. Formalizing Use Cases with Message Sequence Charts.
Master's thesis, Lund Institute of Technology, 1995.

27. E. Rudolph, J. Grabowski, and P. Graubmann. Towards a harmonization of UML
sequence diagrams and MSC. In R. Dssouli, G. von Bochmann, and Y. Labav, editors,
SDL'99: Proceedings of the Ninth SDL Forum. North-Holland, 1999.

28. G. Robert, F. Khendek, and P. Grogono. Deriving an SDL specification with a given
architecture from a set of MSCs. In A. Cavalli and A. Sarma, editors, SDL '97: Time
for Testing - SDL, MSC and Trends, pages 197-212, Evry, France, 1997. Elsevier
Science Publishers B.V.

29. S. Some and R. Dssouli. Using a logical approach for specification generation from mes
sage sequence charts. Technical Report Publication departementale 1064, Departement
IRO, Universite de Montreal, April 1997.

30. L.M.G. Feijs. Generating FSMs from Interworkings. Distributed Computing, 12{1}:31-
40, 1999.

31. L Kruger, R. Grosu, P. Scholz, and 1-1. Broy. From MSCs to Statecharts. Kluwer
Bedrijfswetenschappen B.V., 1999.

Message Sequence Charts in the Software Engineering Process 25

32. S. Leue, L. Mehrmann 1 and M. Rezai. Synthesizing room models from Message Se
quence Chart specifications. Technical Report Technical Report 98-06, Department of
Electrical and Computer Engineering, University of Waterloo, April 1998.

33. D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial order simulation of SDL specifica
tions. In R. Brrek and A. Sarma, editors, SDL '95 - with MSC in CASE, Proceedings
of the Seventh SDL Forum, pages 293-306, Oslo, 1995. Amsterdam, North-Holland.

34. G.J. Holzmann. The model chacker Spin. IEEE Transactions on Software Engi
neering, 23(5):279-295, 1997.

35. A. Engels, S. Mauw, and M.A. Reniers. A hierarchy of communication models for
Message Sequence Charts. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,
editors, Formal Description Techniques and Protocol Specification, Testing and
Verification, Proceedings of FORTE X and PSTV XVII '97, pages 75-90, Osaka,
Japan, November 1997. Chapman & Hall.

36. B. Takacs. Use of SDL in an Object Oriented Design Process during the development
of a prototype switching system. In O. Frergemand and A. Sarma, editors, SDL'93 -
Using Objects, Proceedings of the Sixth SDL Forum, pages 79-88, Darmstadt, 1993.
Amsterdam, North-Holland.

37. 0 Haugen, R. Brrek, and G. Melby. The SISU project. In O. Frergemand and A. Sarma,
editors, SDL '93 - Using Objects, Proceedings of the Sixth SDL Forum, pages 479-489,
Darmstadt, 1993. Amsterdam, North-Holland.

38. 0. Haugen. Using MSC-92 effectively. In R. Brrek and A. Sarma, editors, SDL '95 -
with MSC in CASE, Proceedings of the. Seventh SDL Forum, pages 37-49, Oslo, 1995.
Amsterdam, North-Holland.

39. G. Amsj0 and A. Nyeng. SDL-based software development in Siemens A/S - experience
of introducing rigorous use ofSDL and MSC. In R. Brrek and A. Sarma, editors, SDL'95
- with MSC in CASE, Proceedings of the Seventh SDL Forum, pages 339-348, Oslo,
1995. Amsterdam, North-Holland.

40. L.M.G. Feijs, F.A.C. Meijs, J.R. Moonen, and J.J. van WameL Conformance testing of
a multimedia chip using PHACT. In A. Petrenko and N. Yevtushenko, editors, Testing
of Communicating Systems, pages 193-210, 1998.

41. J. Grabowski, D. Hogrefe, and R. Nahm. Test case generation with test purpose speci
fication by MSCs. In O. Frergemand and A. Sarma, editors, SDL '99 - Using Objects,
Proceedings of the Sixth SDL Forum, pages 253-265, Darmstadt, 1993. Amsterdam,
North-Holland.

42. J. Grabowski. Test Case Generation and Test Case Specification with Message
Sequence Charts. PhD thesis, Universitat Bern, 1994.

43. R. Nahm. Conformance Testing Based on Formal Description Techniques and
Message Sequence Charts. PhD thesis, Universitat Bern, 1994.

44 .. J. Grabowski, R. Scheuer, Z.R. Dai, and D. Hogrefe. Applying SaMsTaG to the B-ISDN
protocol SSCOP. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communicat
ing Systems, IFIP TC6 Tenth International Workshop on Testing of Communicating
Systems, pages 397-415, Cheju Island, Korea, September 1997. Chapman & Hall.

45. ISO. TTCN: ISO/IEC JTC l/SC 21: Information Technolgy - Open Systems
Interconnection - Conformance Testing Methodology and Framework - Part 3:
The Tree and Tabular Combined Notation, volume ISO 9646-3. ISO/IEC, 1991.

46. E. Algaba, M. Monedero, E. Perez, and O. Valearel. HARPO: Testing tools develop
ment. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communicating Systems,
IFIP TC6 Tenth International Workshop on Testing of Communicating Systems, pages
318-323, Cheju Island, Korea, September 1997. Chapman & Hall.

47. E. Perez, E. Algaba, and M. Monedero. A pragmatic approach to test generation.
In M. Kim, S. Kang, and K. Hong, editors, Testing of Communicating Systems,

26 S. Mauw and M.A. Reniers and T.A.C. Willemse

IFIP TC6 Tenth International Workshop on Testing of Communicating Systems, pages
365-380, Cheju Island, Korea, September 1997. Chapman & Hall.

48. J. Grabowski, D. Hogrefe, 1. Nussbaumer, and A. Spichiger. Test case specification
based on MSCs and ASN.l. In R. Brrek and A. Sarma, editors, SDL '95 - with MSC in
CASE, Proceedings ofthe Seventh SDL Forum, pages 307-322, Oslo, 1995. Amsterdam,
North-Holland.

49. L.M.G. Feijs and M. Jumelet. A rigorous and practical approach to service testing.
In B. Baumgarten, H. Burkhardt, and A. Giessler, editors, Testing of Communicat
ing Systems, IFIP TC6 Nineth International Workshop on Testing of Communicating
Systems, pages 175-190. Chapman & Hall, 1996.

50. A. Cavalli, B. Lee, and T. Macavei. Test generation for the SSCOP-ATM networks
protocol. In A. Cavalli and A. Sarma, editors, SDL '97: Time for Testing - SDL,
MSC and Trends, Proceedings of the Eighth SDL Forum, pages 277-288, Evry, 1997.
Amsterdam, North-Holland.

51. A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent networks using
model checking. In E. Brinksma, editor, Proceedings of the Third International
Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
volume 1217 of Lecture Notes in Computer Science, pages 384-398. Springer-Verlag,
1997.

52. S. Mauw and M.A. Reniers. A process algebra for interworkings. Technical Report
CSR 00/03, Eindhoven University of Technology, Department of Computing Science,
2000. To appear as a chapter in Handbook of Process Algebra, editors A. Ponse and
S. Smolka, Elsevier Science B. V., 2000.

53. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, S. Sikkel, J. Trevor, and
G. Woetzel. Basic support for cooperative work on the world wide web. International
Journal of Human-Computer Studies, 46(6),827-846, 1997.

Computing Science Reports Department of Mathematics and Computing Science
Eindhoven University of Technology

If you want to receive reports, send an email to:m.m.j.l.philios@tue.nl (we cannot guarantee the availability of
the requested reports)

In this series appeared:

96/01

96/02

96103

96/05

96/06

96107

96/08

96/09

96/10

96/11

96/12

96113

96114

96115

96117

96118

96/19

96/20

96121

96/22

96123

96124

96/25

97/02

97/03

97104

97/05

97/06

97107

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

T. Basten and W.M.P. v.d. Aalst

W .M.P. van dec Aalst and T. Basten

M. Voorhoeve

AT.M. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T.Laan

F. Kamareddine and T. Laan

T. BOfghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and J J. Vereijken

E. Boiten and P. Hoogendijk

P.o.v. van dec Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graaf and OJ. Hauben

W.M.P. vanderAalst

M. Voorhoeve and W. van dec Aalst

M. Vaccari and R.C. Bad.house

J. Haoman and O. v. Roosmalen

1. Blanco and A. v. Deursen

1.C.M. Baeten and 1.A. Bergstra

1.C.M. Baeten and 1.1. Vereijken

M. Franssen

1.C.M. Baeten and J.A. Bergstra

process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service Station,
p.12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

OODB Suppon for WWW Applications: Disclosing the internaJ structure of
Hyperdocuments, p. 14.

A FonnaJ Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Nonnalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. 11.

Real-Time Distributed Concurrency Control Algorithms with mixed time constraints,
p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy FunctionaJ Programs in a concurrent
Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

DeSigning Effective Workflow Management processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time,
p.26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

97/08

97/09

97110

97111

97112

97/13

97114

97/15

97116

97117

97/18

98/01

98/02

98/03

98/04

98/05

98106

98/07

98/08

98/09

98/10

98111

98/12

98113

98/14

99101

99/02

P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.

Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.
Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp, E.1. Luit. D.K. Hammer
£.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van def Aalst

W.M.P. van dec Aalst

J.P. Groote, F. Monin and
J. Springintveld

M. Franssen

W.M.P. van der Aalst

M. Vaccari and R.C. Backhouse

Werkgemeenschap Infonnatiewetenschap
redactie: P.M.£. De Bra

W. Van der Aalst

M. Voorhoeve

J.C.M. Baeten and J.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.J. Dielissen

Distributed real-time systems: a survey of applications and a genera1 design
model, p. 3l.

A Hierarchy of Communication Models for Message Sequence Charts, p. 30.

WOFLAN: A Petri-net-based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p. 28

)"P-; A Pure Type System for First Order Loginc with Automated
Theorem Proving, p.35.

On the verification of Inter-organizational workflows, p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Infonnatiewetenschap, p. 60.

Formalization and Verification of Event-driven Process Chains, p. 26.

State / Event Net Equivalence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Flat Fragments of CTL and CTL>I<: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Intervals on a Line Revisited, p. 10.

Proceedings of the workhop on Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM'98)
June 22, 1998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

Informal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology, 13-15 July 1998

edited by R.C. Backhouse, p. 180

KM. van Hee and H.A. Reijers An analytical method for assessing business processes, p. 29.

T. Basten and J. Hooman Process Algebra in PVS

J. Zwanenburg The Proof-assistemt Yarrow, p. 15

Ninth ACM Conference on Hypertext and Hypennedia
Hypertext '98
Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypennedia.

J.F. Groote, F. Monin and J. v.d. Pol

T. Verhoeff (artikel voigt)

V. Bos and J.J.T. Kleijn

H.M.W. Verbeek, T. Basten
and W.M.P. van der Aalst

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutorial at CONCUR'98, p. 27.

Struc(Ured Operational Semantics of X ' p. 27

Diagnosing Workflow Processes using Woflan, p. 44

99/03

99/04

99/05

99/06

99/07

99/08

99/09

99/10

99/11

99/12

99113

99/14

99/15

99/16

99117

99118

99119

99120

00/01

00/02

00/03

00/04

00/05

00/06

00/07

00/08

00/09

00/10

00111

R.C. Backhouse and P. Hoogendijk

S. Andova

M. Franssen, R.C. Veltkamp and
W. Wesselink

T. Basten and W. v.d. Aalsi

P. Brusilovsky and P. De Bra

D. Bosnacki, S. Mauw, and T. Willemse

J. v.d. Pol, J. Hooman and E. de long

T.A.c. Willemse

J .CM. Baeten and c.A. Middelburg

S. Andova

K.M. van Hee, R.A. van dec Toom,
J. van dec Woude and P.A.c. Verkoulen

A. Engels and S. Mauw

J.F. Groote, W.H. Hesselink, S. Mauw,
R. Vermeulen

GJ. Hauben, P. Lemmens

T. Basten, W.M.P. v.d. Aalst

J.CM. Baeten and T. Basten

I.CM. Baeten and c.A. Middelburg

Final Dialgebras: From Categories to Allegories. p. 26

process Algebra with Interleaving Probabilistic Parallel Composition, p. 81

Efficient Evaluation of Triangular B-splines, p. 13

Inheritance of Work flows: An Approach to tackling problems related to change, p. 66

Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web, p. 119.

Proceedings of the first international syposium on Visual Formal Methods - VFM'99

Requirements Specification and Analysis of Command and Control Systems

The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed
11 CRL, p, 44.
Process Algebra with Timing: Real Time and Discrete Time, p. 50.

Process Algebra with Probabilistic Choice, p. 38.

A Framework for Component Based Software Architectures, p. 19

Why men (and octopuses) cannot juggle a four ball cascade, p. 10

An algorithm for the asynchronous Write-All problem based on process collision"',
p. II.

A Software Architecture for Generating Hypermedia Applications for Ad-Hoc
Database Output, p. 13.

Inheritance of Behavior, p.83

Partial-Order Process Algebra (and its Relation to Petri Nets), p. 79

Real Time Process Algebra with Time-dependent Conditions, p.33.

Proceedings Conferentie Infonnatiewetenschap 1999
Centrum voor Wiskunde en Infonnatica
12 november 1999, p.98 edited by P. de Bra and L. Hardman

J.C.M. Baeten and J.A. Bergstra

J.C.M. Baeten

S. Mauw and M.A. Reniers

R. Bloo, 1. Hooman and E. de Jong

J.F. Groote and M.A. Reniers

J.F. Groote and J. v. Warnel

C.A. Middelburg

1.0. van den Ende

R.R. Hoogerwoord

T. Willemse, 1. Tretmans and A. Klomp

T. Basten and D. BosnaCki

Mode Transfer in process Algebra, p. 14

Process Algebra with Explicit Termination, p. 17.

A process algebra for interworkings, p. 63.

Semantical Aspects of an Architecture for Distributed Embedded
Systems"', p. 47.

Algebraic Process Verification, p. 65.

The Parallel Composition of Unifonn Processes wit Data, p. 19

variable Binding Operators in Transition System Specifications, p. 27.

Grammars Compared: A study on determining a suitable grammar for parsing and
generating natural language sentences in order to facilitate the translation of natural
language and MSC use cases, p. 33.

A Formal Development of Distributed Summation, p. 35

A Case Study in Fonnal Methods: Specification and Validation on the OMJRR
Protocol, p. 14.

Enhancing Partial-Order Reduction via Process Clustering, p. 14

	1. Introduction
	2. Message Sequence Charts
	2.1 Basic Message Sequence Charts
	2.2 Structured Message Sequence Charts
	2.3 High-level Message Sequence Charts
	2.4 Additional MSC constructs
	3. The application of MSCs in software engineering
	3.1 Software engineering
	3.2 MSCs in the software engineering phases
	3.2.1 Requirements engineering
	3.2.2 Specification
	3.2.3 Design
	3.2.4 Implementation
	4. Case: The Meeting Scheduler
	4.1 Communication support
	4.2 Informal description
	4.3 User requirements
	4.4 Specification
	4.5 Design
	5. Concluding remarks
	References

