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MESSAGE SEQUENCE CHARTS 

IN THE SOFTWARE ENGINEERING PROCESS 

S. MAUW and M.A. RENIERS and T.A.C. WILLEMSE 

Department of Mathematics and Computing Science, Eindhoven University oj Technology 
P.O. Box 513, NL-5600 ME Eindhoven, The Netherlands 

The software development process benefits from the use of Message Sequence Charts 
(MSC), which is a graphical language for displaying the interaction behaviour of a system. 
We describe canonical applications of MSC independent of any software development 
methodology. We illustrate the use of MSC with a case study: the Meeting Scheduler. 

Keywords: Message Sequence Chart, software engineering process, groupware. 

1. Introduction 

The common agreement is that software engineering is a difficult discipline. Despite 
the methodologies that describe the partitioning of the software engineering trajec
tory into phases including the deliverables for each phase and techniques that can be 
applied in these phases, a great number of industrial software engineering projects 

encounter unanticipated problems. Unfortunately, pinpointing the exact causes for 
these problems is not always possible, but there are a few well known issues that 
give rise to these problems. Among these issues are the shifts between subsequent 
phases and version-management of documentation and software, but also the more 
basic communication problems between the client and the engineering team. 

The language Message Sequence Chart (MSC) is a graphical language, initially 
developed to support the SDL methodology for describing possible scenarios of 
systems and is standardised by the ITU. In the past decade, many features have 
been added to the core language. This culminated in the documentation for the most 
recent version, MSC 2000 [1), describing its syntax, semantics and its conventions. 

Traditionally, MSC has been used in the area of telecom oriented applications. 
There, it has earned its medals for visualising and validating dynamic behaviour 
(see the SDL Forum proceedings [2, 3, 4, 5, 6]). However, over the past years, 
alongside the increased expressiveness of the language also the specifying of dynamic 
behaviour has become a major topic of research and practice. Being a standardised 
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language, one of the main advantages of MSC over comparable languages is that 
is has been formalised. Moreover, the language is understandable both by the 
specialist and a layman, i.e. it can serve as a medium for communication between 
groups with different backgrounds. This is particularly useful in the setting of 
software engineering. 

In this paper we will give an overview of the canonical applications of MSC within 
the software engineering trajectory, without focusing on one particular methodol
ogy. This is done by identifying the commonly occurring phases in a number of 
software engineering methodologies, and explaining the applications of MSC in and 
between each phase, based upon this identification. Some of these applications are 
already much used, while other applications are not that straightforward. Wherever 
possible, references to literature or ongoing research is provided. 

In order to present more than an abstract framework, in this paper a relatively 
trivial case study is presented. Using this case study, various of the discussed ap
plications of the language MSC are shown in practice, thereby providing a more 
profound understanding of the canonical applications of MSCs and of the language 
itself. The case study we will discuss is an application that is part of an Inter Busi
ness Communication Support System software suite, called the Meeting Scheduler. 

We will start by introducing the language MSC in a nutshell in Section 2 for the 
common understanding of the diagrams presented in this paper. The application of 
MSCs in the software engineering trajectory is subsequently discussed in Section 3. 
There, the canonical applications in each phase, and between different phases, are 
presented. Using the Meeting Scheduler as a running example, in Section 4, some 
of the canonical uses of MSC are presented, thus providing a concrete example of 
both the applications of MSC and the language itself. At the end of this paper, in 
Section 5, some concluding remarks are made. 

2. Message Sequence Charts 

MSC (Message Sequence Charts) is a graphical specification language standardised 
by the ITU (International Telecommunication Union). In this section we will give an 
overview of the main features of the MSC language. For a more detailed introduction 
the reader may consult [7, 8]. 

MSC is a member of a large class of similar drawing techniques which more 
or less independently arose in different application areas, such as object-oriented 
design, real-time design, simulation and testing methodology. 

The main virtue of these languages is their intuitive nature. Basically, an MSC 
describes the communication behaviour of a number of logically or physically dis
tributed entities, displaying the order in which messages are exchanged. Graphi
cally, the life-line of an entity is represented by a vertical axis, while the messages 
are drawn as arrows connecting these life-lines. A simple MSC (such as the one 
in Fig. 1), can be easily understood by a non-trained user, which makes the MSC 
language very suitable for communication with e.g. clients. 

The MSC language as used in this paper stems from the telecommunication 
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world. The popularity of MSC in this area is explained by the fact that typical 
telecom applications feature distributed reactive systems with real-time demands, 
for which a scenario based description with MSC is particularly useful. While the 
application of MSC in the telecom world dates back to the seventies, the first official 
ITU recommendation was issued in 1992. Since then, the language was maintained 
actively by an international user community and supported by commercially avail
able design tools (e.g. [9, 10]). 

Over the years, the small and informal MSC92 language developed into a pow
erful and formalised language, of which the current version is called MSC2000 ([1]). 

The choice for using MSC2000 in this paper is motivated by these factors: MSC 
is a formal, standardised and well supported language. Although, in the context of 
the ITU, MSC is embedded in the SDL design methodology for distributed telecom 
applications ([11, 12, 13, 14, 15]), this does not impose any restrictions on its use in 
a different methodological context. We consider MSC as a generally applicable tool 
which can be used to strengthen the software development process independent of 
the adopted methodology. 

The remainder of this section will be devoted to explaining the main constructs 
from the MSC language. 

2.1. Basic Message Sequence Charts 

As explained above, a basic MSC consists of vertical axes representing the life-lines 
of entities and arrows connecting these lines, which represent messages. MSC M 
from Fig. 1 contains four entities, p, q, r, and 5 (In this section we will introduce MSC 
with meaningless abc-examples. More useful MSCs are given when discussing the 
case study in Section 4). Instance p first sends message a to instance q, which sub
sequently receives this message. Messages in an MSC are considered asynchronous, 
which means that the act of sending a message is separate from the reception of 
a message. Of course the sending of a message must occur before the reception of 
this same message, but between these two events, other events may take place. We 
say that the sending and reception of a message are causally related events. 

msc M 

p q r s 

a 
~ 

b 

d 
c 

~ 

Fig. 1. A basic MSC. 

After reception of message a by instance q, instance q will send message b. The 
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reception of a and the sending of b are causally related, because they occur in 
the given order on the same instance axis. After sending b, we come into a state 
where two events are enabled: the reception of b and the sending of d. Since in 
the diagram no causal dependency between these two events is expressed there is 
no implied order of execution. Continuing this line of reasoning, we find that a 
basic MSC diagram defines a number of execution orders of simple communication 
events. 

This interpretation is worked out in mathematical detail in the official MSC 
semantics (see [16, 17, 18, 19, 20]). In this paper we will not pursue the path of 
formality, but we will restrict ourselves to intuitive explanations. 

In Fig. 2, we have extended the simple MSC with additional information. First, 
we see that the events of sending a and receiving d are vertically connected by a 
two-way arrow. This means that we have put a time constraint on the occurrence 
of these two events: the reception of d must occur within 3 time units after the 
sending of a. 

rnse M' 

p q r s 

.1 
a 1 

~ - -- -+ 
b 

I 
[0,3) I 

d I 

~ I I C L __ 

P' .............. --@ 8 

e 

~ 
Fig. 2. An extended basic MSC. 

Apart from the expression of relative time requirements, MSC also supports 
the observation of absolute time stamps. This is denoted by the timing attribute 
connected to the reception of message c. Therefore, this event occurs at time 8. 

Next, observe that the life-line of instance q is partly dashed. This means that 
the events on this part of the instance axis are not causally ordered. The sending 
of b may occur before or after the sending of d. This allows to reduce determinacy 
of the specification. This construct is called a coregion. 

Message e is a special kind of message, namely a message to the environment. 
Such messages are needed to specify open systems. Message f is added to show that 
messages are allowed to overlap. This means that there is no a priori assumption 
about the type of message buffering. 

At the end of instance q we have added an example of the use of timers. This 
example denotes the setting of a timer with name t, followed by the subsequent 
time-out signal of this timer. It is allowed to detach the time-out event from the 
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setting of the timer. In this case, the hour glass symbol and the attached timer 
name must be repeated. 

Finally, notice the small box at the end of instance s. This stands for a local 
action, performed by instance s. This is simply an action event of which we know 
the name (dojt), which must occur after the reception of f. 

2.2. Structured Message Sequence Charts 

Although basic MSCs yield quite clear descriptions of simple scenarios, structuring 
mechanisms are needed to nicely express more complex behaviour. There are three 
ways of defining substructure within an MSC: MSC references, instance decompo
sition and inline expressions (see Fig. 3). 

mse S 

p q r s t 

I I _I ecom osed 

~ 
u 

A 
x 

v 

~ 

<- when it > 0 

v 

- - -- ----------- ------------- - --

otherwise 

z 

Fig. 3. An MSC with sub-structure. 

This example shows a reference to MSC A, which must be defined elsewhere. 
MSC A is simply thought to replace the area of the MSC reference which covers 
the instances p and q. The diagram also shows that we expect that a message x 
is leaving the MSC reference. This implies that within MSC A a message x to the 
environment must be defined. 

Instance decomposition is similar to MSC references. Rather than abstracting 
from the internals of a region within an MSC, it serves to abstract from the internals 
of an instance. In the example instance t is labelled as a decomposed instance, which 
means that the reader must refer to an MSC named t to find the description of the 
internal behaviour of this instance. MSC t will in general contain a number of 
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(new) instances, which co-operate to obtain the external behaviour of instance t. 

This clearly implies that MSC t must contain at least a message u sent to the 
environment and a message v received from the environment. 

The third structuring mechanism in Fig. 3 is the inline expression. An inline 
expression consists of a framed region of the MSC with in the upper left corner the 
name of an operator. The operands to which the operator applies are separated 
by a dashed horizontal line. In this case, the operator is the alt operator which 
stands for alternative. The two operands which are considered alternatives consist of 
message y and message z, respectively. In its general appearance, the choice between 
the alternatives is made non-deterministically. However, by using conditions the 
selection criterion can be made explicit. In this case, the alternatives are preceded 
by conditions (represented by stretched hexagons) testing the value of some variable 
n. Please notice that such a condition does not represent a synchronisation of the 
involved instances. It merely expresses that the instances reach agreement on the 
continuation, possibly not exactly at the same moment of time. 

The conditions as used in this example also hint at the use of data variables in 
an MSC. Since we do not need data in our examples, we will not discuss this issue 
in greater detail. A more symbolic way of using conditions is also supported, as 
shown in Fig. 7. It is allowed to simply label a condition with a symbolic name, 
which can be asserted and inspected. 

In its general appearance an inline expression may contain other operators than 
the alt operator, such as loop to express repetition and par to describe (interleaved) 
parallelism. The allowed number of operands depends upon the operator used. 

2.3. High-level Message Sequence Charts 

A different construct which supports modularisation of MSC specifications is a 
High-level MSC (HMSC). An HMSC serves as a kind of road-map linking the MSCs 
together. In Fig. 4 we see the relation between three MSC references, A, B, and C. 
The upside down triangle indicates the start point. Then, following the arrow we 
arrive at a condition, which gives a hint about the state the system is in initially 
(idle). Then, we encounter the first MSC to be executed, MSC A. After executing 
A there is a choice between continuation: B, preceded by the condition ok, and (, 
preceded by condition retry. After selecting the left branch, B is executed which 
is followed by another triangle, which indicates the end of the HMSC. If we would 
have selected the right branch, MSC C is executed, after which we restart at MSC 
A. 

2.4. Additional MSC constructs 

Until now we have discussed all MSC language constructs needed to understand the 
remainder of this paper. There are some more useful constructs, but we will only 
mention these briefly. 

An MSC document is a drawing which can be seen as the declaration of a coher-
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msc H 

Fig. 4. A High-level MSC. 

ent collection of MSCs, instances, variables and other objects. In an MSC document 
a distinction is made between public and private MSCs as to control visibility to 
the outside world. Also, the decomposition hierarchy which emerges when using 
the decomposition construct iteratively is reflected in the use of MSC documents. 

Finally, we mention special syntax for expressing a more rigid order on the 
contained events, for the creation and stopping of instances, for describing method 
calls and replies, and for defining messages that do not arrive at their destination. 

3. The application of MSCs in software engineering 

In this section we first present a simplified view of the software engineering process. 
Later this view will be used to connect the applications of MSC to. 

3.1. Software engineering 

There are many models that describe the software engineering process. We mention 
the waterfall model [21], the incremental delivery model [22], the spiral model [23], 
the V·model [241, and the cluster model [251. In general these models prescribe the 
same types of activity, but differ in the way these activities are partitioned into 
phases, the order in which the phases are executed, and the deliverables. We will 
not focus on one of these models specifically. Instead, we will pay attention to a 
number of frequently occurring phases in these models. These are requirements 
engineering, specification, design, and implementation. Summarising, these phases 
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can be characterised as follows. 
In the requirements engineering phase it is clarified what the system is supposed 

to do and in which way it is dependent on the environment of the system. This 
not only refers to the functional requirements the system should satisfy, but also 
includes non-functional requirements like timeliness) dependability, fault-tolerance, 

etc. 
In the specification phase the user requirements are analysed and a set of software 

requirements is produced that is as complete, consistent and correct as possible. In 
contrast with the user requirements, the software requirements are the developer's 
view of the system and not the user's view. The result of this phase is a specification 
of the system in natural language, a formal specification language, or possibly a 
combination of both. 

In the design phase decisions are taken as to the partitioning of the system 
into subsystems and interfaces with a well-understood and well-specified behaviour. 
Also the interaction of the subsystems is considered carefully. The design will serve 
as a blueprint for the structure of the implementation. 

In the implementation phase the design from the design phase is realised in terms 
of software and hardware. Typical validation activities are acceptance, conformance 
and integration testing. 

In each of the abovementioned phases verification and validation activities are 
performed. These activities are intended to verify the results of a phase with respect 
to the results of other phases (or with respect to requirements not mentioned before). 
We will not make any assumptions about the order in which phases are executed, 
the overlapping of phases, or the number of iterations. Based on the distinction 
of phases, discussed in this section, the use of MSC will be described in the next 
section. 

3.2. MSCs in the software engineering phases 

Thus far, we have mentioned some frequently occurring phases in the software 
engineering process. Next, we will discuss the use of MSCs in each of these phases 
and in the relation between the phases. An overview is given in Fig. 5. The details 
of this figure will be explained in the course of this section. 

3.2.1. Requirements engineering 

In the requirements engineering phase of the software engineering process we con
sider two tasks in more detail. These are requirements capturing and requirements 
analysis. 

The objective of requirements capturing is to obtain a view of the clients wishes. 
Unfortunately, clients are not always clear in what their wishes arej hence, the user 
requirements are not straightforwardly obtained. Often employed techniques involve 
interviews, confrontations with prototypes and conversations with the engineering 
team. Although the experienced requirements engineer is trained in abstraction 
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I requirements engineering l 
J requirement MSCs 

I specification [ + 
J specification MSCs ) 

l design [ + 
J interaction MSCs }-

I implementation [ 

1 log MSCs j 

Fig. 5. Overview of the use of MSC in the software engineering process. 

and deduction, still, tools are necessary for documenting requirements in a clear 
and concise manner. Message Sequence Charts can very much assist the process of 
converting informal documentation into more formal requirements; moreover, MSC 
eases communications with clients in which harder to understand parts of system's 
behaviour and implications of a combination of requirements are discussed. 

Basically, in every interview with a client, various causal relations can be read. 
From these relations, one can derive scenarios or use cases, describing parts of 
the desired system's behaviour. Such a use case describes (part of) the external 
behaviour of the system placed in its environment. The descriptions can include 
resource constraints, timeliness constraints, performance constraints, etc. In this 
paper, we will assume that the result of the requirements capturing phase among 
others consists of a set of use cases. 

The language MSC can be used to clarify use cases in which one or more actors 
and the system are involved. The roles that appear in use cases are represented 
by instances in MSCs. Also the system is represented by an instance. MSCs are 
suited for this purpose as they emphasise the interaction between instances. The 
interactions between the roles and the system are described by means of messages. 
Conditional behaviour can be expressed by means of conditions and alternatives. 

Consider the user requirement that the system must react within 15 seconds 
on a request from an initiator by means of an acknowledgement. In Fig. 6 the 
corresponding MSC is given. 

Scenarios are not always considered to be true requirements, as they describe the 
system's behaviour in a very operational manner, possibly containing redundancy. 
However, the skilled requirements engineer is capable of turning these scenarios into 
real requirements by abstraction, deduction and combination. This process is called 
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rnse requirement 
Initiator System 

'--,-""" request 

'-'1-------+ --* [0,15) 
r- reply _ -V 

Fig. 6. A simple user requirement. 

requirements analysis. 
MSCs can be of use in the requirements analysis phase by aiding communication 

between the engineering team and the client. By the mere task of collecting all 
user requirements and combining them, system behaviour 1 foreseen or not foreseen 
by the client can be derived. Being of a more complex nature than simple user 
requirements, these composed behaviours are often hard to explain to the client. 
The concepts of the language MSC can be employed to visualise these more complex 
behaviours. In this way, communication between the engineering team and the client 
is eased. 

If use cases described by MSCs tend to be large and have overlapping parts, 
re-occurring parts can be isolated in separate MSCs and be referred to by means of 
MSC references. The relation between the auxiliary MSCs obtained in this way can 
be defined in an HMSC. The MSC document allows the separation of defining MBCs 
from auxiliary MSCs. Especially in an incremental or iterative software engineering 
process, the MSC document enables to maintain a good overall view of the MSCs 
and their relations. 

Although MSC does not really add new ways to finding requirements, the benefit 
of using MSC may be clear: abstracting and deducting information is eased by the 
overview that is achieved by explicitly focusing on the causal relationships that 
would otherwise remain hidden in text. References to the use of MSC for use case 
description are [26], and [27]. 

In the verification and validation part of the implementation phase the MSCs 
produced in the requirements engineering phase can be used as descriptions of the 
test purposes or test cases for acceptance testing. 

3.2.2. Specification 

The specification of the system is not necessarily described by means of formal 
methods. Often prototypes are built, only parts of the system are described by 
means of formal methods, or even only natural language is used. The MSCs derived 
in the requirements engineering phase can be used to serve as the basis for writing 
a more complete specification of the system. In theory, MSC can also be used 
for writing specifications. In the literature several papers deal with the generation 
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of a formal specification from a set of (requirement) MSCs: in {28, 29, 30] SDL 
descriptions are generated, in [31] statecharts are generated, and in [32] ROOM 
models are generated. 

However, here we will focus on the use of MSC for visualising traces, or runs 
of the system. If a specification is developed without using the requirement MSCs 
and the formalism used for the specification is executable, then the specification 
can be used to generate specification MSCs. If the language used is less formal, 
still, it might be possible to extract MSCs based on informal reasoning and a good 
understanding of the specification. If a prototype of the system is developed, MSCs 
can be obtained from logging and interpreting execution traces of the prototype. 
In [33], MSCs are used to visualise the execution sequences that result from par
tial order simulations of SDL descriptions. In several commercially available SDL 
tools [9, 10], simulation runs of SDL descriptions are represented by MSCs. 

MSCs that result from the specification in the ways described above are useful 
for comparing the specification with the user requirements. At the right level of 
abstraction each of the MSCs representing a user requirement should be contained in 
the MSCs obtained from the specification. Alternatively, the MSCs that represent 
the user requirements can be used as a monitor for executable specifications such 
as Promela programs in the Spin tool [34] and SDL specifications in the SDT tool 
[9J. 

The specification MSCs can also be used for conformance testing in the verifica
tion and validation part of the implementation phase. More details about this use 
of MSC are given later. 

3.2.3. Design 

The activities carried out in the design phase must lead to a physical and/or logical 
decomposition of the system into interacting subsystems in such a way that the 
external behaviour of this collection of subsystems "implements" the specification. 
As a consequence, the interaction between the subsystems must be specified in a 
clear and unambiguous way. Message Sequence Charts are especially useful in the 
description of the interactions in the form of communication protocols, method calls 
and procedure invocations. 

If a physical decomposition of the system is envisioned, the relation between the 
system and the subsystems is represented in MSC by means of instance refinement 
(decomposition). In logical decompositions the relation between the different MSCs 
can be made clear in an HMSC. 

As in the specification phase, based on the specification of the subsystems and 
the interactions between these, MSCs can be generated. These MSCs then also 
display the internal events. After abstraction from these internal events the resulting 
MSC must be consistent with the specification MSCs. Hence, the MSCs from the 
specification phase and the design phase can be compared in order to validate the 
design with respect to the specification. Since the language MSC is formal, this 
comparison can also be formalised. 
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MSCs describing forms of interaction can later be used for integration testing. 
If the interaction between system components is based on buffering messages, it is 
possible to determine if this interaction can be realised with a given communication 
model [35J. 

3.2.4. Implementation 

The implementation phase amounts to the realisation of the design in terms of 
hardware and executable software. Message Sequence Charts can be used in this 
phase to log execution traces of the implementation. If performance is of relevance, 
typically all events in such MSCs have a time stamp. In Fig. 12 an example of such 
an execution MSC is given. 

These traces can be inspected manually for unexpected situations or can be 
compared with Message Sequence Charts defined earlier in the software engineering 
process. For example, after applying the appropriate abstractions it is useful to 
compare the traces to MSCs generated by the specification (if any), or to the MSCs 
issued in the requirements engineering phase. 

If errors are detected in the implementation the MSC that logs the trace leading 
to the error can be used to locate the error in the implementation. 

In the verification and validation part of the implementation phase, by means 
of acceptance, conformance and integration testing the confidence in the systems 
performance (both functional and non-functional) is validated against the user re
quirements, the specification and the design, respectively. We explain the use of 
MSC in conformance testing in some detail. The use of MSC in acceptance and 
integration testing is similar. 

In conformance testing, the behaviour of the implementation is validated against 
the expected behaviour as described in the specification. In the literature sev
eral authors have indicated that the use of MSCs in conformance testing is valu
able [36, 37, 38, 39, 40J. In conformance testing the expected behaviour, in terms 
of observable events of the implementation, is described in a test suite, i.e. a set of 
test cases. A test case describes a tree of observable events and to each path in the 
tree it assigns a verdict which specifies whether the described behaviour is correct or 
incorrect. Execution of a test case results in feeding the implementation with inputs 
and observing the generated observable events. This execution sequence of the im
plementation is then compared with the test case. The verdict of the corresponding 
path in the test tree is the outcome of the test execution. 

The use of MSC for the identification of test purposes is advocated by the 
method SaMsTaG [41, 42, 43, 44J. In the SaMsTaG method a complete test case 
can be generated from a system specification in SDL and a test purpose description 
in MSC. The test case is described in the Tree and Tabular Combined Notation 
(TTCN) [45J. A similar approach is followed by the HARPO toolkit [46, 47J. 

Among others the papers [48, 49, 50J use MSC for the description of test cases. 
In [51J synchronous sequence charts, i.e. Interworkings [52], are used for this pur
pose. 
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4. Case: The Meeting Scheduler 

We will illustrate the use of Message Sequence Charts with a simple case study, 
baptised The Meeting Scheduler. This is an internet application which supports 
the scheduling of a meeting. In this section we give an explanation of the Meeting 
Scheduler, but before doing so, we will give the context of its use. 

4.1. Communication support 

The Meeting Scheduler is part of a software suite that supports the communication 
between people of different enterprises (an Inter Business Communication Support 
System, !BCSS). The main difference with existing packages, such as ERP (Enter
prise Resource Planning) packages and business support systems such as Outlook, 
is that !BCSS focuses on the communication between different enterprises. This 
reflects current trends in business operation, such as lean production and concen
tration on core business. The consequence of this development is that production 
is no longer performed mainly within one enterprise, but within a cooperation of 
several independent enterprises. Each of these enterprises contribute their share 
to the final product. The clear cut distinction between customer and producer 
becomes ever more blurred; both consumer and producer cooperate to achieve a 
common goal. As a consequence, the spectrum of communication shifts from the 
intra-business perspective to the inter-business perspective. 

Current communication support tools are often not suited to support the inter
business communication process. For instance, these tools assume that every user 
has the same software environment. It is evident that inter-business support tools 
must be based on established internet technology, such as web browsers. 

An example of such an internet based application is a blackboard system where 
users can share and manipulate electronic documents (such as the BSCW server 
[53], which allows access via normal web browser software). Other tools one could 
imagine are project management tools taking care of e.g. resource planning and 
decision support systems. 

A very simple example of such a communication support system is the aforemen
tioned Meeting Scheduler, which we have chosen to demonstrate the use of MSCs 
on. 

4.2. Informal description 

Scheduling a meeting can be a rather time consuming activity. Dependent on how 
many people are involved, a number of telephone calls or e-mails are necessary 
in order to come to a date and time that is convenient to all, or at least to the 
majority of the participants. The Meeting Scheduler is tailor-made to support 
the administration of relevant information and communication with the intended 
participants. 

The Meeting Scheduler runs on some internet server and people communicate 
with the server via e-mail, simple web pages and web forms. The working of the 
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Meeting Scheduler is best explained by giving the basic scenario of usage. 
Two roles can be distinguished: the initiator of the meeting and the invitees. 

The initiator takes the initiative of setting up the meeting. He provides the system 
with the initial information, such as purpose of the meeting, the list of invitees and 
the list of possible dates and times. Next, the Meeting Scheduler informs the invitees 
about the meeting and collects information from the participants with respect to the 
suitability of the proposed dates. If all participants have provided their information 
(or if some deadline is met), the system reports back to the initiator and suggests 
the best possible date. After confirmation by the initiator, the final invitation is 
sent to the participants. 

This very basic description can be easily extended with many features. In fact, 
very advanced tools which support the scheduling of meetings already exist, but 
these are often platform dependent, and require participants to maintain an on-line 
agenda. 

In the subsequent section some of the uses that are mentioned in Section 3.2 
are explained using the Meeting Scheduler. Note that this is not done extensively 
for all phases. Most notably, no examples are given for the implementation phase. 
Since the use of MSC for validation is discussed extensively in the literature, only 
brief remarks are added wherever possible. 

4.3. User requirements 

The techniques for requirements capturing mentioned in Section 3.2.1 can very well 
be applied to the Meeting Scheduler. For instance, the use of MSC in an interview 
can be illustrated by transforming the following phrases, taken from an interview, 
into MSC: "... the initiator feeds the system with the necessary information to 
send out meeting requests to all potential participants of a certain meeting. These 
participants should be allowed ample time to respond to these invitations. Even
tually, the system will send the current information about potential dates to the 
initiator who will then decide on a date for the meeting to take place. The system 
will subsequently inform all participants of the decision of the initiator. Finally, a 
confirmation of this operation is sent to the initiator ... 'l 

The scenario obtained by projecting on the behaviour of the interactions be
tween the initiator and the system is rather straightforwardly deduced from the 
above sentence (see Fig. 7). Here, the initiator is represented by an instance initia
tor and the system is represented by a single instance system, thereby portraying 
the black-box approach. The meetingjnfo message is used by the initiator to send 
information vital for the scheduling of the meeting by the system. The message 
collectedjnfo represents the collected information for the meeting that is communi
cated between the system and the initiator; the messages decision and confirmation 
are self-explanatory. The conditions that are introduced can be read as comments, 
denoting the (required) state of the system. 

One can imagine that various scenarios for the Meeting Scheduler describe the 
causal relationship between the reception of information for a meeting to be sched-
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fiSC interview 

initiator system 

State: ldle ) 

meeting-.info 

< State: Collect ) 

collected_info 

decision 

confirmation 

Fig. 7. Scenario deduced from a part of an interview. 

msc inform-.invitees 

initiator system invitee invitee 

I 

meeting-.info I 
informJnvit:e ~ 

I 
inform-.invit~_ 

I informinvitee .. 
Fig. 8. Requirement deduced from interviews. 
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uled (denoted by a message meetingjnfo) and the sending of meeting requests to 
potential participants of this meeting (denoted by a message informjnvitee). The 
true (functional) requirement that can be distilled from these scenarios would be 
one that focuses on exactly that causal relationship (see Fig. 8). 

Note that this still is a scenario, and therefore portrays only parts of a system's 
behaviour. The fact that in this scenario the initiator is also informed about the 
meeting means that in this case the initiator is himself considered as an invitee, but 
this is not necessarily always the case. 

rnsc send_warning 

invitee system 

J-o-!!in!;fo",r'Om"c~=-·n"cv~i~te"e,-+ ___ ~o, d) 

< ) ' No response invitee I 

warn_email \'1 k--'=='--+ - - -y 

Fig. 9. Requirement deduced from a scenario. 

As the discussion in Section 3.1 pointed out, not all requirements can be classified 
as functional requirements; hence, a language supporting only functional require
ments wonld not suffice. Using MSC, also non-functional requirements, such as the 
need for time-outs under certain conditions can be illustrated. For example, a non
functional requirement in the Meeting Scheduler would be the sending of a warning 
message to participants that did not yet respond to the meeting call (denoted by 
a message warn_email) be/ore a deadline (d) is reached. Such a requirement can be 
elegantly formulated in MSC as Fig. 9 shows. 

Thus far, we have focussed On the more trivial user requirements and the sce
narios belonging to them. As already mentioned in Section 3.2.1, the combination 
of requirements may lead to an intricate interplay of causal relations. Finding out 
these relations already is part of the requirements analysis phase. As an example, a 
less basic interaction scheme between the initiator and the system for the Meeting 
Scheduler is considered (see Fig. 10). Overview diagrams such as these assist the 
communication between the engineering team and the client. 

Basically, in Fig. 10 a blueprint for the logical structure for distinguishing be
tween the two options the initiator is confronted with can be read. The information 
returned by the Meeting Scheduler mayor may not be according to the wishes of 
the initiator. Worst case information may even mean that the invitees for a meeting 
could not agree on a date for the meeting. Hence, the initiator is confronted with 
the dilemma of having to decide to cancel the meet.ing altogether or decide on a 
date, represented by the MSC reference conclude, or retry to schedule the meeting 
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rnsc meeting_organisation 

Fig. 10. Combination of user requirements may lead to more complex behaviour. 

(possibly using different dates), represented by the MSC reference retry. 
The MSC conclude is depicted in Fig. 11; if the invitees could not agree on 

a date and the initiator decides to cancel the meeting, a cancel message is sent 
to the system; the system then subsequently responds with a confirmation, using 
a confirmation message. In case a date is found for the meeting, the system is 
informed by the initiator about this using a convocate message, and again, the 
system responds with a confirmation. A similar MSC can be written for the MSC 
reference retry (not shown here). 

Careful comparison of MSC interview (Fig. 7) and the HMSC meeting_organisation 
(Fig. 10) learns that the MSC interview is one of the possible scenarios described by 
t.he HMSC meeting_organisation. 

4.4. Specification 

Although the language MSC can even be utilised for specifying systems, (see Section 
3.2.2), we will adopt the language only for validation and visualisation purposes in 
this phase. Since MSC was also devised for this purpose, we feel it is strongest in this 
respect. As already mentioned in Section 3.2.2, the ways in which one can obtain 
scenarios in this phase are plenty; the size and complexity of the Meeting Scheduler 
would allow for a formal specification, and hence, the generation of traces, or runs 
from this specification is, dependent on the method used, rather straightforward. 
It would be outside the scope of this paper to give a specification for the Meeting 
Scheduler, hence, we adopt the operational description of Section 4.2 as a reference 
for a possible specification for this system. 

As an example trace for the Meeting Scheduler, one can think of the scenario 
depicted in Fig. 12. Basically, this scenario is a combination of various user require-
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msc conclude 

initiator system 

I I 
I 

~ I 
<- no date found > 

cancel..meeting. 

---- ----------- - ---

< date found > 
convocate_meeting 

confirmation 

Fig. 11. Part of the complex behaviour. 

msc sampie...Bcenario 

initiator system invitee invitee 

@o 

@6 

@73 

@74 

@78 

@82 

- -

--

- -

--
--

- -
--

I 
meetingJnfo - - @0.2 

informinvitee @1.4 --
@ 1.6 __ informJnvitee 

@ 1.7 __ inform-.invitee - @2.2 

@ 7 __ personal..info - - @6.6 

personaLinfo 
- - @ 12 

@ 36 __ wanl-email 

collected_info @ 72.5 --
convocate_meetin @ 74.5 --

@75-_ sorry.-email 

@76 ___ onvocate_email -- @ 78 

convocate_emai @ 77 - -
confirmation @80 -

Fig. 12. A typical scenario obtained by a specification. 

-@2.3 

- @ 36.1 

--@ 76 
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ments listed in the previous section. 

The MSC depicted in Fig. 12 can be validated against the user requirements. 
For instance, one can observe that the functional and non-functional requirements 
of Section 4.3 are met. As already mentioned in Section 3.2.2, the scenarios gener
ated in the specification phase are again needed for validating the products of the 
implementation phase. 

4.5. Design 

The design phase prescribes as one of its main activities the decomposition of the 
system into subsystems. More concretely, this means that choices have to be made 
with respect to the desired properties of the system under construction. For the 
Meeting Scheduler, this boils down to finding logical and/or physical decompositions 
of the black-box which are chosen in such a way that the requirements of Section 
4.2 are fulfilled. Note that the (part of the) design that is discussed here is based 
on the operational description of the Meeting Scheduler. 

The obvious choice for a physical decomposition for the Meeting Scheduler is 
to consider a decomposition in two subsystems, a front-end and a database. The 
front-end is a system that deals with the interactions between users of the Meeting 
Scheduler and as such is the intermediate between the users and the database, 
whereas the database primarily stores the information posted by users concerning 
possible dates and times for the meeting. 

The interactions between all subsystems involved for the Meeting Scheduler can 
be grouped, based on a logical decomposition of the global state of the system. 
The change of state is again, like in Section 4.3, a more complex concept, typically 
expressed in HMSC (see Fig. 13). Closer observation of Fig. 13 reveals the expected 
structure of an initialising, a collecting and a deciding phase. In each of these phases, 
basic MSCs can be used to explain the interactions between various subsystems. 

To highlight some of the interactions between the subsystems for the Meeting 
Scheduler, the MSC references initialise, collect and warnjnvitees are highlighted. 

The basic MSC initialise (see Fig. 14) describes the essence of which interactions 
can typically be expected in the initialising phase. Most notably, parts of the in
teractions identified in the requirements engineering phase (see Figs. 8, 9, 10, 11) 
reappear in this scenario. Basically, the scenario describes the interaction between 
the initiator and the front-end of the Meeting Scheduler, in which information for 
the scheduling of a meeting is communicated using a message meetingjnfo. Subse
quently, the front-end updates the database, and only then it starts sending calls to 
all invitees for this meeting in random order, (using informjnvitee messages). In or
der to meet the non-functional requirements (see Fig. 9), two timers are initialised, 
one for sending a warning message and one for keeping track of the deadline for 
responding to the invitation. 

Collecting information of the invitees is illustrative for typical update inter
actions occurring between the front-end system and the database, as a reaction to 
messages from the users of the system (see Fig. 15). Using the message personaLinfo, 
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rnsc logical decomposition 

initialise 

collect 

all...re lied 

all...re lied 

retry conclude 

Fig. 13. The global change of state for the Meeting Scheduler. 
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mse initialise 

initiator front-end database invitee invitee 

I 
meetingJnfo 

meetingJnfo 

informJnvitee 

I informJnvitee 

informjnvitee \ 

I 
warning_timer 

~ 

K 

deadlin~timer 

C> 

Fig. 14. The initialisation of the Meeting Scheduler. 

mse collect 

initiator front-end database invitee invitee 

I 
nersonalJnfo 

uudate 

personalJnfo 

uDdate 

Fig. 15. Collecting of information. 
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the invitees inform the Meeting Scheduler of their preferred dates and times for the 
meeting to take place. The front-end of the system uses this information to update 
the database via an update message. 

msc warn.invitees 

initiator front-end database invitee invitee 

I I 

retrieve.info 

info 

warn_email 

...personaUnfo 

update 

Fig. 16. Warning of invitees. 

As an example of how non-functional requirements are captured in this phase, 
the MSC warn_collect is illustrated in Fig. 16. When a warning timeout is reported 
to the front-end system, the front-end system consults the database for information 
about who responded and who did not yet respond to the meeting announcement. 
Those invitees that did not yet respond, are warned (expressed by the message 
warn_email) by the front-end subsystem. 

Validation in this phase boils down to checking whether the MSC scenarios 
described in this phase refine the MSC scenarios generated in the specification 
phase. For the Meeting Scheduler, the interactions left after abstracting from the 
interactions between the different subsystems of the Meeting Scheduler should also 
be allowed scenarios of the specification. 

5. Concluding remarks 

This paper presented an overview of the canonical applications of the language 
Message Sequence Chart (MSC) in the area of software engineering. These appli
cations have been sketched independently of any particular software engineering 
methodology (e.g. ESA PSS 5 Software Engineering standard) or model (e.g. the 
incremental delivery model, the waterfall model). Alongside a more abstract frame
work, describing these applications, a more concrete example, in the form of a case 
study has been discussed. This allowed for relating the more practical aspects to 
the abstract framework. 
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The MSC language constructs used and indicated in this paper are but a list of 
the more common constructs. In particular, the case study is of a simple nature; 
hardly any need for structuring mechanisms exists nor does data play a role in 
this case study. Yet, for illustrating some of the canonical applications of MSC an 
easy to understand example is vital. In general, the full set of language constructs 
does allow for dealing with substantially more complex applications than the ones 
sketched in this paper. In dealing with such applications, it is recommended (and 
often necessary) to choose those language constructs necessary for describing exactly 
what is relevant for the particular application. 

Some aspects of the applications mentioned in the preceding sections are quite 
orthogonal with respect to others, e.g. in simulating an executable specification 
absolute time stamps are commonly used, whereas in writing requirements for a 
system, relative time is often employed. This illustrates the broad spectrum of 
applications for MSC we have sketched in this paper. Given this broad spectrum, it 
is common sense to make a selection of which purposes are best served using MSC 
(e.g. using MSC only during the requirements engineering phase and validation of 
these requirements). 

As mentioned before, the formal semantics of the language MSC allows for per
forming validation and verification. These activities have been described without 
going into too much detail. Wherever possible, references to illustrative works on 

this area have been added. 
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