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In a previous paper �J. H. Davies, D. M. Bruls, J. W. A. M. Vugs, and P. M. Koenraad, J. Appl. Phys.
91, 4171 �2002�. Part I.� we compared theory and experiment for the relaxation at a cleaved surface
of a strained quantum well of InGaAs in GaAs. The measurements were taken with a scanning
tunneling microscope and the analytic calculation used classical elastic theory for a linear, isotropic,
homogeneous medium. Qualitative agreement was good but the theory gave only about 80% of the
observed displacement. We have therefore extended the calculation to explore the effect of cubic
symmetry and the orientation of the cleaved surface. The “strain suppression” method reduces the
problem to the response of a half space to traction on its surface. We have calculated this for
orthotropic symmetry, which includes the common orientations of orthorhombic, tetragonal,
hexagonal, and cubic crystals. Anisotropy has no effect on the shape of the relaxed surface but the
magnitude of relaxation changes. For cubic material there is no effect on the strain along the
direction of growth if the cleaved surface is a �001� plane and a reduction of a few percent for a
�011� plane, which is the case of experimental interest. The outward relaxation is reduced by about
20% due to cubic symmetry for a �001� plane because the shear stiffness of GaAs is higher than in
the isotropic model, and is a further 10% smaller for a �011� plane. Thus the results for cubic
symmetry lie further from the measurements than those calculated for isotropic material. Interfacial
forces may contribute to this discrepancy but we suggest that nonlinear elasticity is probably
responsible. © 2005 American Institute of Physics. �DOI: 10.1063/1.2030415�
I. INTRODUCTION

The use of heterostructures that contain coherently
strained layers of materials with different lattice constants is
growing rapidly. It is particularly important to characterize
them accurately because errors in composition affect the
functional properties both directly and through the built-in
strain. Both the composition and strain can be measured by
cleaving the sample and scanning the exposed cross section
with a probe. The composition can be found immediately by
counting atoms and the strain can be measured in two ways.

• Strain in the plane of the surface can be deduced from
the spacing between atoms. This needs a high-
resolution cross-sectional scanning tunneling micro-
scope �X-STM�.1,2

• Distortion also occurs normal to the surface and can be
measured without the need for atomic resolution in the
plane: atomic force microscopy �AFM� may be
sufficient.3–6

The composition can be deduced from the natural lattice
spacing of the material. However, the region near the surface
relaxes inhomogeneously to relieve its elastic energy so the
spacing between atoms on the surface differs from the lattice
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constant in the bulk. A calculation of the relaxation is there-
fore required. Numerical methods3–5 must be used for a full
solution but the elastic field in a cleaved sample that contains
a single, uniform, strained layer or a superlattice can be
found analytically6–11 subject to certain simplifications.

In a previous paper,6 to be cited as I, we compared mea-
surements and calculations for a strained quantum well with
uniform composition of InxGa1−xAs surrounded by GaAs.
The cleaved surface is sketched in Fig. 1�a� with its relax-
ation shown in Fig. 1�b�. The apparent lattice constant, de-
fined as the separation between rows of atoms on the surface,
and the distortion normal to the cleaved surface were mea-
sured along the direction of growth. Atoms of In could be
distinguished from those of Ga on the surface and were
counted to determine the composition. This was confirmed
by photoluminescence and x-ray diffraction.

FIG. 1. �a� Cladding �GaAs� around a slab �quantum well of InxGa1−xAs,
with a larger lattice constant�, after a surface has been cleaved but before it
has relaxed. The sample occupies the half space y�0 with x along the

direction of growth. �b� Sketch of sample after it has relaxed.

© 2005 American Institute of Physics4-1
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The calculation was based on the “strain suppression”
approach to thermoelasticity,12,13 which reduces it to a
boundary-value problem. This was solved using standard re-
sults from contact mechanics for a semi-infinite region.14 It
was assumed that the medium was linear, homogeneous, and
isotropic with Poisson’s ratio �. Take x as the axis of growth
and y as the inward normal to the cleaved surface, as shown
in Fig. 1. The sample is assumed to be of infinite extent
along z, in which case relaxation takes place under condi-
tions of plane strain. This choice of axes is regrettably dif-
ferent from I but is more consistent with the usage for two-
dimensional systems. The slab or quantum well lies in �x�
�a and its natural, linear dimensions, given by its lattice
constant, exceed those of its surroundings �the cladding� by a
fraction �0. The principal results for the surface were as
follows.

�1� The lattice constant of the cladding is unaffected despite
its distortion when the slab relaxes.

�2� The lattice constant of the slab increases uniformly
along the direction of growth x by a fraction �xx

�tot�

= �1+2���0.
�3� There is an outward relaxation of the surface given by

− uy�x,y = 0� =
A0�0

�
��x − a�ln	 x − a

a
	

− �x + a�ln	 x + a

a
	
 , �1.1�

with A0=2�1+��.

For an arbitrary variation of composition along x, the strain
on the surface is proportional to the local composition and
the slope is given by a Hilbert transform of the composition.

Qualitative agreement between the calculation and ex-
periment was excellent. There was no detectable change in
the lattice constant of the cladding. Within the slab the lattice
constant was uniformly increased over its natural value. The
shape of the surface was also given well by Eq. �1.1�. How-
ever, the degree of relaxation predicted by the calculation
was only about 80% of that observed. Several reasons for
this discrepancy were considered in I. There are possible
difficulties with the measurement of uy but these do not af-
fect �xx, which has a built-in control because the lattice con-
stant of the cladding matched that of GaAs. Deficiencies in
the theory include the assumptions of isotropy, homogeneity,
and linearity. There may also be forces associated with the
interfaces and surface, and piezoelectricity was neglected.

Previous calculations have shown that cubic symmetry
has an appreciable effect on relaxation5,15,16 and we have
therefore extended our calculation to include this. We find
that the shape of the surface remains the same but the mag-
nitude of relaxation changes. Unfortunately the results lie
slightly further away from the measurements than the previ-
ous calculation �as predicted in I� so this does not explain
why the theoretical result for the relaxation is too small.

The effective symmetry of a two-dimensional problem
depends on both the intrinsic symmetry of the material and
on the orientation of the sample. Some previous analytic cal-

8,9
culations for the relaxation of strained layers treated cubic
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symmetry for systems where the natural axes of the problem
�xyz in Fig. 1� coincided with the cubic axes of the crystal.
We shall call this the “cubic aligned” orientation. Unfortu-
nately the cubic semiconductors cleave on �011� planes,
which lowers the effective symmetry. The direction of
growth, x, lies along the cubic axis �100� but y points along

�011� or �011̄�, not �010�. Thus the elastic properties do not
show explicit cubic symmetry when expressed using the xyz
axes in this “cubic rotated” orientation. The relaxation of a
superlattice has been calculated for both orientations11 using
a Fourier series. This is a little cumbersome for a single
strained layer, compared with the local results for the strain
at the surface that we found in I, and we have therefore
performed a direct calculation in real space. We also permit
lower symmetry and assume only that there is a mirror plane
normal to each of the xyz axes, giving orthotropic symmetry.
This includes the cleaved, cubic semiconductors. Conve-
niently it also embraces hexagonal crystals, such as the ni-
tride semiconductors, whose elastic properties have trans-
verse isotropy in the yz plane if growth is along x.

We have again neglected piezoelectricity. This has an
insignificant effect on the elastic response of GaAs but the
omission is questionable for the nitrides.17 Solutions are
available for both two-18 and three-dimensional19,20 inclu-
sions in a piezoelectric half space but are considerably more
complicated than the theory presented here.

II. APPROACH

The calculation follows the same strategy as in I except
for the choice of axes. It is assumed that the system of slab
and cladding has the same elastic properties everywhere and
that the response is linear, but the assumption of isotropic
behavior is relaxed. There are nine independent elastic con-
stants in an orthotropic material, although not all are needed
in this calculation. Normal stresses and strains are related by
three equations of the form

�xx = c11�xx + c12�yy + c13�zz, �2.1�

where the coefficients are independent apart from the sym-
metry cij =cji. Shear stresses and strains are related by �xy

=2c66�xy and similar expressions, where the coefficients are
again independent. The mismatch between the slab and clad-
ding is assumed to be the same in all three dimensions, de-
fined by

�0 =
aslab − acladding

acladding
. �2.2�

Here a is the lattice constant, which is taken to be larger in
the slab for the purpose of description. It would be trivial to
treat a different mismatch for each dimension, as would be
needed for hexagonal crystals. Most of the strain is in the
slab and it might therefore be more appropriate to take aslab

as the reference in the denominator, but the difference is
insignificant within linear elastic theory.

The calculation follows the strain suppression approach
to thermoelasticity as in I. Start with the slab and cladding
separate, free of stress, and oriented normal to x. Next, com-

press the slab along y and z to reduce its lattice constant to
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that of the cladding, which requires strains �yy
�slab�=�zz

�slab�

=−�0. The condition �xx
�slab�=0 along the direction of growth

leads to

�xx
�slab� =

c12 + c13

c11
�0, ��slab� = −

2c11 − �c12 + c13�
c11

�0

�2.3�

for the extension of the slab along the direction of growth
and the dilation. The stress required is

�yy
�slab� = − P0 = −

c11�c22 + c23� − c12�c12 + c13�
c11

�0, �2.4�

with a similar expression for �zz
�slab�. The slab can now be

joined to the cladding without further distortion. Finally, the
fictitious stress used to assemble the system must be can-
celed by applying the opposite stress to the edges of the slab
exposed on the surfaces normal to y and z and allowing the
material to relax. We shall assume that the sample is so large
that each edge can be treated independently and study the
single edge exposed on the plane y=0, shown in Fig. 1,
treated as a semi-infinite region. Relaxation takes place as
plane strain in x and y because of the infinite extent along z.
This approach would not be appropriate for transmission
electron microscopy, where the samples are thinned and a
theory that treats two free surfaces is needed.7–11,21 In con-
trast, our sample for scanning probe microscopy is over
100 �m thick along z so this problem does not arise. Instead,
the limiting factor is the thickness of the capping layer under
which the quantum well is buried. This is very thin in many
wafers but is 2 �m thick in our sample, much larger than the
region where significant relaxation occurs �about 20 nm�.

The relaxation is therefore given by the response of the
half space y�0 to an applied stress �yy�x ,0�= p�x�, where
p�x�= P0 on the exposed edge of the slab ��x��a� and van-
ishes elsewhere. A general solution of this boundary-value
problem will be given in Sec. III.

III. SOLUTION OF BOUNDARY-VALUE PROBLEM

The central problem is to find the elastic response of an
orthotropic half space y�0 to a distribution of normal trac-
tion �yy�x ,0�= p�x� on its free surface. For generality we will
also include shear traction �xy�x ,0�=q�x� and will use com-
plex variables because general results are displayed more
directly than with Fourier methods.7–10 The approach is taken
from Green and Zerna,22 particularly Sec. 9.5; the Lekh-
nitskii or Stroh formalisms23 could be used instead.

A. Airy function

The stress is derived in the usual way from an Airy func-
tion �,

�xx =
�2�

�y2 , �xy = −
�2�

�x�y
, �yy =

�2�

�x2 . �3.1�

This ensures that the stress satisfies the condition for equi-
librium. The strain must also obey the single compatibility

condition
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�2�xx

�y2 − 2
�2�xy

�x�y
+

�2�yy

�x2 = 0. �3.2�

The stresses for plane strain are given by

�xx = c11�xx + c12�yy ,

�yy = c12�xx + c22�yy , �3.3�

�xy = 2c66�xy .

There is a further equation for �zz, which will not be needed.
This restricted set of equations can be inverted to write the
strains in terms of reduced compliances23 Sij,

�xx = S11�xx + S12�yy ,

�yy = S12�xx + S22�yy , �3.4�

2�xy = S66�xy .

The coefficients have a capital letter as a reminder that they
are not the usual compliances sij, which are found by invert-
ing the complete set of stress-strain relations. The reduced
compliances are given by

S11 =
c22

c11c22 − c12
2 ,

�3.5�

S22 =
c11

c11c22 − c12
2 , S12 =

− c12

c11c22 − c12
2 , S66 =

1

c66
.

The compatibility condition can now be written in terms of
the stress as

S11
�2�xx

�y2 + S12
�2�yy

�y2 − S66
�2�xy

�x�y
+ S12

�2�xx

�x2 + S22
�2�yy

�x2 = 0,

�3.6�

which yields an equation for the Airy function,

S11
�4�

�y4 + �2S12 + S66�
�4�

�x2�y2 + S22
�4�

�x4 = 0. �3.7�

The coefficients obey S11=S22 with cubic aligned
symmetry8,9,11 but the middle coefficient remains indepen-
dent. In an isotropic medium the elastic constants fall out
completely and Eq. �3.7� degenerates further to the bihar-
monic equation.

B. Solution with complex variables

Equation �3.7� for the Airy function is homogeneous and
its general solution may therefore be written in the form

� = f�	1� + g�	2� + c.c.. �3.8�

Here f and g are arbitrary complex functions and “c.c.”
means the complex conjugate, which is added to ensure that
� is real. The complex variables are defined by

	1 = x + i
1y, 	2 = x + i
2y , �3.9�
where the constants 
1 and 
2 are roots of
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S11

4 − �2S12 + S66�
2 + S22 = 0. �3.10�

This is a quadratic equation in 
2 and therefore has two pairs
of roots for 
 with opposite signs. The values of 
1 and 
2

are selected to have positive real parts so that the region of
interest, the upper half plane of 	=x+ iy, is mapped to the
upper half planes of 	1 and 	2. Also, the coefficients in Eq.
�3.10� are real, in which case 
1 and 
2 are either both real
or a pair of complex conjugates. It turns out that the roots
themselves are not needed to find the elastic field at the sur-
face; only their sum and product are required. The standard
expressions for the sum and product of the roots of a qua-
dratic equation provide the useful identities


1
2 + 
2

2 =
2S12 + S66

S11
=

c11c22 − c12
2 − 2c12c66

c22c66
, �3.11�


1
2
2

2 =
S22

S11
=

c11

c22
. �3.12�

The stress is then given by the derivatives of the Airy func-
tion in Eq. �3.1�,

�xx = − 
1
2f��	1� − 
2

2g��	2� + c.c.,

�xy = − i
1f��	1� − i
2g��	2� + c.c., �3.13�

�yy = f��	1� + g��	2� + c.c..

The strain follows from the strain-stress relations in Eq.
�3.4�,

�xx = �S12 − S11
1
2�f��	1� + �S12 − S11
2

2�g��	2� + c.c.,

�yy = �S22 − S12
1
2�f��	1� + �S22 − S12
2

2�g��	2� + c.c.,

�3.14�

2�xy = − iS66�
1f��	1� + 
2g��	2�� + c.c..

Finally, the strain can be integrated to yield the displacement,

ux = �S12 − S11
1
2�f��	1� + �S12 − S11
2

2�g��	2� + c.c.,

�3.15�

uy =
S22 − S12
1

2

i
1
f��	1� +

S22 − S12
2
2

i
2
g��	2� + c.c..

The usual bodily shift and rotation can be added to the dis-
placement.

C. Boundary conditions

It remains to find the potential in terms of the stress on
the free surface. The expressions for the components of
stress at the surface can be simplified by forming the linear
combinations22

V�	� = 2�f��	� + g��	��, W�	� = 2�
1f��	� + 
2g��	�� .

�3.16�

Note that all functions depend on the same variable here and
that all complex variables coincide on the surface, where

	1=	2=	=x. The boundary condition becomes

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to
RV�x + i�� = �yy�x,0� = p�x� ,

�3.17�
IW�x + i�� = �xy�x,0� = q�x� .

An infinitesimal imaginary part has been added to the argu-
ments of V and W to keep them off the real axis. These
functions can be continued analytically throughout the upper
half plane, giving

V�	� =
1

�i
�

−�

� p�t�dt

t − 	
, W�	� =

1

�
�

−�

� q�t�dt

t − 	
. �3.18�

They have cuts on the real axis in regions where p�x� and
q�x� are nonzero. The original functions are recovered as

f��	1� =
W�	1� − 
2V�	1�

2�
1 − 
2�
, g��	2� = −

W�	2� − 
1V�	2�
2�
1 − 
2�

.

�3.19�

This completes the solution for the Airy function.
If the applied forces are purely normal to the surface, as

for the strained slab, both q and W vanish. Then f�	� and
g�	� have the same functional form, differing only in the
prefactor. A similar simplification occurs for pure shear
loading.

D. Elastic field on surface

The elastic field on the surface can now be found. Two
components of stress, �yy and �xy, are specified and the third
component of interest is given by

�xx�x,0� = − 
1
2f��x� − 
2

2g��x� + c.c.

= 
1
2RV�x� − �
1 + 
2�RW�x�

= 
1
2p�x� − �
1 + 
2�
1

�
P�

−�

� q�t�dt

t − x
, �3.20�

where P denotes the principal part of the integral. For a
purely normal applied stress this shows that

�xx�x,0� =�c11

c22
�yy�x,0� , �3.21�

where Eq. �3.12� has been used to eliminate 
1
2. This ex-
tends the result �xx�x ,0�=�yy�x ,0� for isotropic media.14 The
strains on the surface are

�xx�x,0� = �S11
1
2 + S12�p�x�

− S11�
1 + 
2�
1

�
P�

−�

� q�t�dt

t − x
,

�yy�x,0� = �S12
1
2 + S22�p�x�

− S12�
1 + 
2�
1

�
P�

−�

� q�t�dt

t − x
, �3.22�

2�xy�x,0� = S66q�x� .

For a purely normal applied stress, the strain is a local func-

tion of the stress and reduces to
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�xx�x,0� =
p�x�

�c11c22 + c12

, �yy�x,0� =�c11

c22
�xx�x,0� .

�3.23�

These components are equal in an isotropic medium.14 The
slope of the surface is

−
�uy�x,0�

�x
= −

S22�
1 + 
2�

1
2

IV�x + i��

+
S22 + S12
1
2


1
2
IW�x + i�� �3.24�

=
S22�
1 + 
2�


1
2

1

�
P�

−�

� p�t�dt

t − x
+

S22 + S12
1
2


1
2
q�x� .

�3.25�

A negative sign has been inserted because the outward dis-
placement is −uy with the axes used. The slope is propor-
tional to the locally applied shear stress and is a Hilbert
transform of the normal stress. The transform can be inverted
to deduce p�x�, and hence the composition of the slab, from
the slope of the surface �paper I�. Integration shows that the
outward displacement due to a purely normal stress is

− uy�x,0� = −
S22�
1 + 
2�


1
2

1

�
P�

−�

�

p�t�ln�t − x�dt . �3.26�
�x��a and 0 otherwise, which yields

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to
IV. COMPLETE SOLUTION FOR RELAXATION OF THE
SLAB

For the relaxation of the slab we need the response to a
purely normal applied stress p�x�= P0 for �x��a and p�x�
=0 elsewhere, where P0 is given by Eq. �2.4�. It follows
from the local nature of the strain in Eq. �3.23� that the
cladding ��x��a� is unstrained at the surface. The surface of
the slab has a uniform strain of

�xx
�rel� =

P0

�c11c22 + c12

=
c11�c22 + c23� − c12�c12 + c13�

c11��c11c22 + c12�
�0,

�4.1�

�yy
�rel� =�c11

c22
�xx

�rel�. �4.2�

The total strain of the slab at the surface is given by adding
the strain deep within the slab, treated in Sec. II, to these
results. This gives

�xx
�tot�

�0
=

c11�c22 + c23� + �c12 + c13��c11c22

c11��c11c22 + c12�
, �4.3�

�yy
�tot�

�0
= −

c12�c12 + c13� − c11c23 + c12
�c11c22

�c11c22��c11c22 + c12�
, �4.4�

�zz
�tot�

�
= − 1, �4.5�
0

��tot�

�0
=

�c22 − c12��c12 + c13� − c11�c22 − c23� + �c22 + c23 − 2c12��c11c22

�c11c22��c11c22 + c12�
. �4.6�
A useful check on the total strains follows from the absence
of “physical” traction on the free surface �as opposed to the
fictitious traction p�x� used to construct the solution�:

0 = �yy
�tot� = c12�xx

�tot� + c22�yy
�tot� + c23�zz

�tot�. �4.7�

The outward relaxation is given by integrating Eq. �3.26�
over the width of the slab, �x��a. The result has the form of
Eq. �1.1� with the constant given by

A0 =
S22�
1 + 
2�P0


1
2
=

c11�c22 + c23� − c12�c12 + c13�
�c11c22 + c12


� �c11c22 + c12 + 2c66

c11c66��c11c22 − c12�

1/2

. �4.8�

The complex potentials are needed if the elastic field
throughout the half space is required. There is no shear stress
on the surface, q�x�=0, and therefore W=0. The other func-
tion V is found by integrating Eq. �3.18� with p�x�= P0 for
V�	� =
P0

�i
ln

	 − a

	 + a
. �4.9�

The functions f� and g� follow from Eq. �3.19� and are both
proportional to V because of the absence of shear traction. A
useful check is to deduce the slope of the surface from Eq.
�3.24�, which gives

−
�uy�x,0�

�x
= −

S22�
1 + 
2�

1
2

IV�x + i�� =
A0

�
ln	 x − a

x + a
	 .

�4.10�

This is consistent with the displacement in Eqs. �1.1� and
�4.8�.

V. EFFECT OF SYMMETRY

These general results are for orthotropic symmetry,
where there are nine independent elastic coefficients. Differ-
ent aspects of the elastic field depend on various subsets of

coefficients:
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• c11, c22, and c12 are needed to find the strains on the
surface due to relaxation, given the initial stress P0;

• c66 is also needed to find the outward displacement of
the surface and the elastic field throughout the sample
due to relaxation;

• c13 and c23 are also needed to find P0 when the slab is
matched to its cladding and to deduce �zz

�rel� if it is
needed;

• c33 affects only the initial stress �zz
�slab� and does not

influence the relaxation; and
• c44 and c55 are not needed at all for this problem be-

cause the corresponding components of strain vanish.

Many practical systems exhibit higher symmetry, which in-
troduces relations between these coefficients that may sim-
plify the results.

A. Tetragonal symmetry

A material with a fourfold axis of rotation about x, the
direction of growth, has only six independent elastic coeffi-
cients; they are related by c12=c13, c22=c33, and c55=c66.
Only the first of these relations simplifies the results and the
changes are not dramatic.

B. Hexagonal symmetry and transverse isotropy

Some nitride semiconductors exhibit hexagonal symme-
try about the x axis, which is the same as transverse isotropy
for elasticity. It induces the further relation c44= 1

2 �c22−c23�
and reduces the number of independent coefficients to five.
Unfortunately it leads to no further simplification because c44

does not affect the elastic field; c66 is the relevant coefficient
in these axes.

The slab is usually normal to hexagonal axis, which is
labeled x here but is conventionally taken as z. The elastic
coefficients in the axes used here and in the conventional
axes are related as follows:

c11 = c33
�hex�,

c22 = c33 = c11
�hex�,

c12 = c13 = c13
�hex�,

�5.1�
c23 = c12

�hex�,

c44 = c66
�hex� = 1

2 �c11
�hex� − c12

�hex�� ,

c55 = c66 = c44
�hex�.

C. Cubic rotated

This applies to the usual cleaved �011� surfaces of cubic
semiconductors. The x axis lies along the cubic axis �100�
but the y and z axes are rotated by 45° about x from the cubic
axes �010� and �001�. There are only three independent co-
efficients in a cubic material but six different values enter the
stress-strain relations expressed in the xyz axes because of
the rotation. The elastic constants in these axes are given in

terms of the cubic values by

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to
c11 = c11
�cub�,

c22 = c33 = 1
2 �c11

�cub� + c12
�cub� + 2c44

�cub�� ,

c12 = c13 = c12
�cub�,

�5.2�
c23 = 1

2 �c11
�cub� + c12

�cub� − 2c44
�cub�� ,

c44 = 1
2 �c11

�cub� − c12
�cub�� ,

c55 = c66 = c44
�cub�.

The same pairs are equal as in tetragonal symmetry but with
the further constraint that c22, c23, and c44 are determined by
the other coefficients.

D. Cubic aligned

In this case the xyz and cubic axes coincide to give full
cubic symmetry. There are only three independent elastic
coefficients: c11=c22=c33, c12=c13=c23, and c44=c55=c66.
This leads to a considerable simplification of the results in
Sec. IV, which become

�xx
�tot�

�0
=

c11 + 3c12

c11 + c12
, �5.3�

�yy
�tot�

�0
= −

2c12
2

c11�c11 + c12�
, �5.4�

��tot�

�0
=

2c12�c11 − c12�
c11�c11 + c12�

, �5.5�

A0 =
c11 + 2c12

c11 + c12
� �c11 − c12��c11 + c12 + 2c44�

c11c44

1/2

. �5.6�

The components of strain on the surface due to relaxation
become equal, �xx

�rel�=�yy
�rel�, as in an isotropic material. This

follows from c11=c22 but is not obvious because the overall
elastic field also depends on the independent coefficients c12

and c44.

E. Isotropic symmetry

Isotropic materials have only two independent coeffi-
cients and it is convenient to eliminate c44= 1

2 �c11−c12�. The
strains are unchanged from Sec. V D but the prefactor of the
outward displacement can be reduced to

A0 = 2
c11 + 2c12

c11 + c12
. �5.7�

The results can instead be written in terms of Poisson’s ratio
�=c12/ �c11+c12�, which gives

�xx
�tot�

�0
= 1 + 2� , �5.8�

�yy
�tot�

= −
2�2

, �5.9�

�0 1 − �
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��tot�

�0
=

2��1 − 2��
1 − �

, �5.10�

A0 = 2�1 + �� . �5.11�

These agree with I, where isotropic symmetry was assumed
from the outset.

VI. PERIODIC VARIATION OF COMPOSITION

No further calculation is needed for the strain on the
surface if the composition has an arbitrary variation along x
because the fictitious stress p�x� and resulting strains are lo-
cal functions of the mismatch �0�x�. Unfortunately this does
not apply to the outward relaxation, which requires either the
full complex potential or the integral in Eq. �3.26�.

A. Sinusoidal variation

This is useful to compare with previous calculations for
cubic aligned symmetry, which used Fourier series.8,9,11 Take
�0�x�=�0 cos kx, in which case the fictitious stress is P�x�
= P0 cos kx with P0 again given by Eq. �2.4�. It is useful to
find the displacement from the complex potential rather than
by integrating Eq. �3.25�. The boundary condition �3.17�
gives RV�x+ i��= P0 cos kx. This is like an electrostatic
problem where the potential is specified on the boundary. In
the same way, it must be extended analytically into the com-
plex plane such that the field decays as y→�. Thus V�	�
= P0 exp�ik	�. The slope of the surface is found using Eq.
�3.24�,

−
�uy�x,0�

�x
= −

S22�
1 + 
2�

1
2

IV�x� = − A0 sin kx , �6.1�

where A0 is given by Eq. �4.8�. Trivial integration yields
−uy�x ,0�=A0�0 cos kx /k, which is equivalent to Eq. �3.26�.
This can be used with a Fourier expansion to find the dis-
placement due to any form of �0�x�.

B. Superlattice

Instead of a single mismatched slab, suppose that there is
a regular superlattice with slabs of thickness 2a and mis-
match �0 alternating with matched spacers of thickness 2b.
Neglect the average mismatch between the superlattice and
substrate and concentrate on the periodic component; the av-
erage mismatch of a finite superlattice can be treated as a
simple slab and superposed. The complex potential of the

TABLE I. Effect of symmetry on elastic constants,
surface; �zz

�tot�=−�0 in all cases. For comparison, the

Symmetry
c11

�GPa�
c22

�GPa�
c12

�GPa�

Isotropic 114 114 53
Cubic aligned 114 114 53
Cubic rotated 114 140 53
Deep within slab
periodic component is

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to
V�	� =
P0

�i
log

sin 1
2��	 − a�/�a + b�

sin 1
2��	 + a�/�a + b�

. �6.2�

The slope of the surface follows immediately from Eq.
�3.24�,

−
�uy�x,0�

�x
=

A0

�
log	 sin 1

2��x − a�/�a + b�

sin 1
2��x + a�/�a + b�

	 , �6.3�

where P0 and A0 have their usual meanings. Unfortunately
this cannot be integrated to give the displacement in terms of
elementary functions, but can be expressed using either Lo-
bachevsky’s function �Sec. 8.26 of Ref. 24� or Clausen’s in-
tegral f��� �Sec. 27.8 of Ref. 25�. The peak-to-peak displace-
ment is convenient to measure3 and is found to be

uy
pk-pk =

2�a + b�A0

�2 � f
 �a

a + b
� + f
 �b

a + b
�
 . �6.4�

This has the form f���+ f��−��, for which the following
series25 is helpful:

f��� + f�� − �� = �
n odd

sin n�

n2 . �6.5�

Fourier analysis leads to the same result.8,9,11 For a superlat-
tice with slabs and spacers of equal thickness, f� 1

2��
=G�0.916, where G is Catalan’s constant.25

VII. RESULTS

The sample studied in I contained two quantum wells of
InxGa1−xAs surrounded by GaAs. The wider well had width
2a=6.5 nm and composition x=0.14, determined by cross-
sectional scanning tunneling microscopy and x-ray diffrac-
tion. The well is more stressed on average than its surround-
ings and the elastic constants of the well will therefore be
used in the theory. Linear interpolation between the values
for GaAs and InAs �Ref. 26� gives the values listed in Table
I. The natural lattice constants are acladding=0.565 nm and
aslab=0.571 nm, giving a built-in strain �0=0.0108 according
to Eq. �2.2�.

We shall compare the three cases of isotropic, cubic
aligned, and cubic rotated materials to highlight the effect of
symmetry on the relaxation. The results are summarized in
Table I and will be compared with the numerical results and
experiment in Sec. VIII. First, a value must be chosen for
Poisson’s ratio � in the isotropic approximation. During the
fictitious assembly of the sample, stress arises from the com-
pression of the slab to match its cladding on the �100� plane.

�cub� �cub� �cub�

on surface, and prefactor for outward relaxation of
ow shows the strains deep within the slab.

66

Pa�
�xx

�tot�

��0�
�yy

�tot�

��0�
��tot�

��0�
A0

�for uy�

0.5 1.634 −0.295 0.339 2.634
6.4 1.634 −0.295 0.339 2.146
6.4 1.586 −0.407 0.179 1.864

0.930 −1 −1.070
strain
final r

c
�G

3
5
5

We therefore use the definition �=c12 / �c11 +c12 �
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=0.317 to describe this process correctly. This is equivalent
to setting c11

�iso�=c11
�cub�, c12

�iso�=c12
�cub�, and c44

�iso�=1/2�c11
�cub�

−c12
�cub��=30.5 GPa. The shear stiffness is much smaller than

its true value of c44
�cub�=56.4 GPa. With this choice the strains

and fictitious stress P0 in the slab, given in Eqs. �2.3� and
�2.4�, are identical for all the three cases. Any differences
result from the relaxation in response to P0.

Within the isotropic approximation, the results in Sec.
V E show that the strain along the direction of growth is
given by �xx

�tot� /�0= �1+2��=1.634 and the prefactor for out-
ward relaxation in Eq. �1.1� is A0=2�1+��=2.634. These
results agree with those in I except for small numerical dif-
ferences because we used the elastic constants for the GaAs
cladding previously instead of the InGaAs well.

We can now examine the changes induced by cubic sym-
metry, first considering the cubic aligned case where the
crystal is cleaved on a �001� plane. This does not apply to the
common semiconductors but is a useful intermediate step
and can be compared with previous calculations.8,9 The strain
along the direction of growth is given by Eq. �5.3� and is
unchanged from the isotropic value because of the way in
which � has been defined. Equation �5.6� for the prefactor for
outward relaxation is different, however, and gives the
smaller value A0=2.146. This is reduced by about 20% from
the isotropic case because of the greater shear stiffness c44

�cub�

in cubic material, which has no effect at the surface but
reduces relaxation throughout the bulk.

Finally, the cubic rotated case accounts for the �011�
orientation of the cleavage plane. Expressions for the elastic
constants in these axes were given in Eq. �5.2� and the nu-
merical values are listed in Table I. The strain along the
direction of growth now follows from Eq. �4.3� as �xx

�tot� /�0

=1.586, which is slightly smaller than the value for isotropy.
The prefactor for outward relaxation becomes A0=1.864
from Eq. �4.8�, a further reduction of about 10% from the
cubic aligned case. Table I shows that the rotation by 45° has
increased the stiffness c22, which is no longer equal to c11,
and this has reduced all aspects of relaxation.

To gain further insight into the effect of symmetry, the
elastic field throughout the half space was calculated. The
mathematical form of the fields changes with symmetry, un-
like the expressions for the surface alone, and depends on the
nature of the roots 
1 and 
2 of the quadratic equation
�3.10�. Here the roots are complex. The stress was found
from the complex potential in Eq. �4.9� by using Eqs. �3.19�
and �3.13�, and the strain follows from Eq. �3.14�.

Components of stress due to relaxation are shown for the
three cases as a function of depth in Fig. 2. The normal
stresses �xx and �yy are plotted for the midplane of the well,
x=0, but the shear stress �xy vanishes here by symmetry and
is therefore plotted at the edge of the well, x=a. No shear
traction is applied to the surface so the shear stress should
vanish at y=0, but it is nonzero in Fig. 2�c� because of a
singularity at the point �a ,0�. The components show differ-
ent rates of decay with depth: for large depth �xx�y−3, �xy

�y−2, and �yy �y−1.
The elastic constants have no influence at all on the

stress in an isotropic two-dimensional system because Eq.

�3.7� for the Airy function reduces to the biharmonic equa-

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to
tion. This result is exact only in the isotropic limit but Fig. 2
shows that the effect of anisotropy is small in our system, no
more than 10% of the maximum values of stress. The largest
change is in �xx�0,0�, which is reduced in the cubic rotated
case according to Eq. �3.21�.

Symmetry has a larger effect on the strain, plotted in Fig.
3. Isotropic material shows the largest values of �xx and �yy,
which are reduced slightly in the cubic aligned orientation.
This is consistent with the observation in Ref. 9 that strain
changes by only about 6% between isotropic and cubic
aligned symmetries. There is a larger difference between the
two orientations of cubic material, particularly near the sur-
face. This is consistent with the different magnitude of bulge
at the surface, because the displacement uy is the integral of
�yy. The behavior of the shear strain is different: the curves
for the two orientations of cubic material are very close, but
that for isotropic material is far away. This arises from the
different values of the shear stiffness c66, which is 56.4 GPa
for both orientations of cubic material but only 30.5 GPa in
the isotropic material, given our choice of �.

These results show that the strain is more sensitive to
symmetry than the stress. A simple approximation is to cal-
culate the stress for an isotropic material, which is easier, but
to deduce the strain using the appropriate cubic elastic
moduli, including the effect of symmetry and orientation.
Results are shown as the thin lines in Fig. 3. The solid, thin
lines for the cubic rotated case lie close to the thick lines for
the exact solution for all three components almost every-
where; the only significant discrepancy is in �xx�0,0�, which
follows from the reduction in �xx�0,0� for cubic rotated sym-
metry. Table I shows that the elastic constants for normal

FIG. 2. �Color online� Components of stress due to relaxation as a function
of depth y: �a� �xx�0,y� and �b� �yy�0,y� in midplane of well, with �c�
�xy�a ,y� at edge of well. The results are shown for the isotropic, cubic
aligned, and cubic rotated cases. Stress is measured in units of the fictitious
traction P0 and distance in units of the half width a.
stress and strain are the same in the isotropic and cubic
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aligned cases. Therefore the approximate solution for the cu-
bic aligned case �long, thin dashes� is the same as the isotro-
pic solution �short, thick dashes� for �xx and �yy. This is not
true for �xy, however. In this case the effective value of c66 is
the same for both orientations of cubic material because the
shear stiffness does not change on rotation. The approximate
solutions for cubic aligned and cubic rotated therefore coin-
cide and are indistinguishable from the exact solution for
cubic rotated symmetry on this scale.

VIII. DISCUSSION

We have calculated the influence of elastic symmetry on
the relaxation of a strained layer, such as a mismatched quan-
tum well, at a surface cleaved perpendicular to the layer.
General results have been given for orthotropic symmetry,
which includes the important cases of cubic crystals cleaved
on �011� or �001� surfaces; orthorhombic, tetragonal, and
hexagonal crystals; and the limit of isotropic material. The
functional form of the elastic field depends on symmetry in
the bulk but not at the surface, where only the magnitudes
change. In particular, the lattice constant observed at the sur-
face remains a local function of composition, even if this has
an arbitrary variation along the direction of growth. Alterna-
tively, the composition may be deduced from a Hilbert trans-
form of the slope of the surface as shown in I.

Our previous calculation for isotropic material in I pre-
dicted a relaxation that was only about 80% of the observed
value. This applied to both the lattice constants along the
direction of growth on the surface and to the outward relax-
ation. Cubic symmetry in GaAs influences these quantities

FIG. 3. �Color online� Components of strain due to relaxation as a function
of depth y: �a� �xx�0,y� and �b� �yy�0,y� in midplane of well, with �c�
�xy�a ,y� at edge of well. The results are shown for the isotropic, cubic
aligned, and cubic rotated cases. Thin lines show strain calculated from the
stress for isotropic material using the elastic constants for cubic material in
the two orientations. Strain is measured in units of the mismatch �0 and
distance in units of the half width a.
rather differently.
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• There is no effect on the lattice constant at all if the
surface is a �001� plane and only a small change �about
3%� for a �011� plane, which has a greater stiffness c22

normal to the surface.
• In contrast, the outward relaxation is reduced by about

20% by cubic symmetry for a �001� plane because the
shear stiffness is much higher than in the isotropic
model. Rotation to a �011� plane reduces the relaxation
by a further 10%.

Unfortunately these results show that the inclusion of cubic
symmetry increases the discrepancy between the calculation
and experiment. We advanced several possible reasons for
the difference previously. One was the assumption of isotro-
pic symmetry, which we have now addressed, and we shall
briefly review some other possibilities.

We have performed numerical computations to test some
of the assumptions of the analytical work. Figure 4 shows the
outward relaxation of the surface calculated using the com-
mercial finite-element package ABAQUS, assuming a concen-
tration of indium x=0.171 in the wider well. This value was
chosen to bring the calculations for isotropic elasticity into
agreement with the experiment but is larger than the value of
0.14 deduced in I from counting atoms on the surface. All
calculations were for the same region so that boundary ef-
fects should be similar; these are difficult to eliminate be-
cause of the slow decay of the elastic field, described in Sec.
VII. Different elastic constants were used for the well and
cladding in most cases. The first three curves show that the
relaxation is smaller for cubic aligned material than for iso-
tropic, and that cubic rotated is smaller still. This is consis-
tent with the analytic results in Table I. The fourth �solid
thin� curve was computed using the elastic constants for the
slab everywhere, as assumed in the analytic calculation. The
slab is a little softer than the cladding so this approximation
gives a slightly larger relaxation than the solid thick curve,
where different elastic constants were used for the well and
cladding. The change is negligible compared with the differ-
ence between the calculated curves and the experimental re-
sults �dots�, and therefore cannot explain the discrepancy.

Relaxation may be influenced by energies associated

FIG. 4. �Color online� Numerical calculations of outward relaxation of sur-
face using ABAQUS to show the effect of cubic symmetry, orientation, and of
assuming that the elastic constants in the slab and cladding are identical. The
experimental result from I is also shown. Curves have been shifted vertically
to coincide near the edge of the plot because the displacement contains an
arbitrary constant.
with the free surface and interfaces, which also have intrini-
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sic stress. It has been argued27 that these have a significant
effect on InAs quantum dots in GaAs, because the intrinsic
stress for a surface of InAs �Ref. 28� is around 0.8 N m−1.
For comparison, the fictitious applied force is 2P0a
�8 N m−1. Thus the interfacial stress is smaller but perhaps
noticeable. However, relaxation is likely to be affected by the
difference between GaAs and InGaAs. The surface stress for
GaAs �Ref. 29� is roughly 1.0 N m−1 so the difference be-
tween GaAs and In0.14Ga0.86As should only be around
0.03 N m−1, which is negligible.

The most likely explanation of the discrepancy between
theory and experiment is that the elastic response is nonlin-
ear. A calculation for InAs quantum dots in GaAs �Ref. 30�
found that nonlinearity reduced the compression of the dot
by 16% of its value within linear elasticity. The mismatch is
smaller in our system but it is possible that the nature of the
system enhances nonlinearity: the slab is first compressed to
match it to the cladding, which increases its stiffness and
raises P0 above its value for linear elasticity; relaxation then
dilates the slab near the surface, reducing its stiffness and
increasing the distortion further. Unfortunately the highly in-
homogeneous nature of the strain renders a numerical calcu-
lation essential.
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