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Correction to “On Normal and 
Subnormal q -ary Codes” 

A N T O I N E  C. LOBSTEIN A N D  GERHARD J.  M. V A N  WEE 

division bar / is used. The most important place where this 
might cause confusion is in the proof of Lemma 1. A rewritten 
version of part of that proof will follow. 

The last two sentences of the Introduction should read: We 
include a table of lower and upper bounds on K,(n,R), the 
minimal number of codewords in any ternary code of length n 
and covering radius R,  for n i  13, R s 3 ,  known to us. We 
improved some of the known lower bounds by linear program- 
ming. 

Section 11, line 13: ..., and such a coordinate i is called 
acceptable. 

Proof of Theorem 1, line 5 :  . . . + d ( ( u ,  c ) ,  BA’))- A, , , , ) .  
Theorem 2 should read: If C is a (q ,n ,  M ) R  subnormal code 

with an acceptable partition without the empty set, then for 
every natural number p there is a ( q ,  n + pq,  M ) R  + ( q  - l ) p  
code. 

In the proof of Lcmma 1, the first few lines should read: 

Proof: The repetition code is Crep = U a t  F</J:), with J: 
the all-a vector of length n. Let w be any vector in F,“, 
containing p ,  times the symbol a .  Let p = max{p,la E FJ. 
Then p > [ n / q ]  and d ( w , C , , , ) = n - p ~ n - [ n / q ]  and so 
C,, has covering radius R s n - [ n / q ] .  Taking w with p 
= f n / q ]  showsthat R = n - [ n / q ] .  Now, . . . .  

Three lines before Theorern 3 should read: . . . are nonempty 
for all a E F,. 

The second sentence of the proof of Theorem 3 should read: 
For t E F, let A ,  = 0 if t = 0, and A ,  = 1 otherwise. 

Two lines before Lemma 3, the name should read: J. H. 
van Lint, Jr. 

On page 1293, first column, line 4: . . . + C, Ft, , {c , ld(x,  b“). 
The middle of line 2 of Theorem 5 should read: then d I 

The first sentence in the proof of Theorem 5 should end with: 
d ( c , 0 ) = n > d .  

The second to last sentence of Section III  should read: 
Theorem 5 and any choice of the parameters of the Hamming 
codes just mentioned can be used to disprove the q-ary general- 
ization of this conjecture, even when we replace “normal” by 
“subnormal.” 

On page 1293, second column, line 2 should read: IC1 2 
3”/(1+2n).  

Proof of Theorem 6, line 3: . . .such that d ( c ,  c ‘ )  I 2. 
Page 1294, sccond column, line 8 the C should be uppercase. 
In Section V, Open Problem 1) should read: 
1) Find ternary, optimal or nonoptimal, normal or subnormal 

codes improving, by the amalgamated direct sum construction, 
on the upper bounds on K J n ,  R )  (cf. Section IV-A). 

The following piece of text is missing at the end of the paper. 

( q / ( q  - l)) .R + 1. 

In the above correspondence,’ the following corrections are Notes Added in proof 
necessary. 

When sets are defined, a vertical bar I is intended where a 
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1) The result, mentioned in the Introduction, that binary 
linear codes with minimum distance d m i ,  I 5 are normal, 
has not (yet) been established. X. Hou (Univ. of Chicago) 
has shown that the proof in [12] is incorrect. 

2 )  For open problem No. 2, see: G. J. M. van Wee, “Bounds 
on packings and coverings by spheres in q-ary and mixed 
Hamming spaces,” J. Combin. Theory ( A ) ,  to appear. 

In [SI, there are two authors, H. 0. Hamalainen and S. 
Rankinen. Reference [8] appeared in ZEEE Trans. Inform. 
Theory, vol. IT-34, pp. 1343-1344, Sept. 1988. 
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