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Abstract

We characterize the position value for arbitrary communication situations. The two
properties involved in the characterization are component efficiency, which is standard, and
balanced total threats, which is in the same spirit as balanced contributions. Since the
Myerson value can be characterized by component efficiency and balanced contributions
a comparison between the two allocation rules based on characterizing properties can be
made.
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1 Introduction

The study of cooperative games with restricted cooperation possibilities is well documented.
The first to model restricted cooperation by means of an undirected graph was Myerson (1977).
He introduced communication situations, which consist of a cooperative game and an undirected
graph. The vertices in the graph correspond to the players in the cooperative game and the
edges between the players correspond to bilateral communication possibilities. For these situ-
ations, Myerson (1977) introduced and characterized an allocation rule. Later on, alternative
characterizations, some valid on restricted sets of communication situations only, where given
in Myerson (1980) and Borm et al. (1992).

The main contribution of Borm et al. (1992) was the introduction of an alternative allocation
rule for communication situations. This rule is called the position value. Borm et al. (1992)
provide a characterization of this rule for communication situations with a tree as the underlying
graph only. They conclude by stating the open problem how to characterize the position value
for the class of all communication situations. As far as we know, no satisfactory answer to this
question has been given so far.1

The main contribution of this paper is a characterization of the position value for arbitrary
communication situations. Specifically, this implies that no specific requirements on the un-
derlying graph are needed. The two properties involved in this characterization are component
efficiency, which is standard in almost all characterizations of the position value and the Myer-
son value, and balanced total threats. This latest property deals with threats between players.
Such a threat is based on payoff differences a player can inflict on another player by breaking
one of the links this first player is involved in. The threat of a player towards another player is
defined as the sum of these differences over the links of the first player, i.e., as the sum of the
payoff differences a player can inflict on another player by breaking one of his links. Balanced
total threats states that the threat from a player towards another player equals the reverse
threat. This property is in the same spirit as balanced contributions, which in conjunction
with component efficiency characterizes the Myerson value (See Myerson (1980)). This allows
for a solid comparison between the values based on underlying properties.

The recent literature on communication situations, or more generally, on networks in coop-
erative situations increasingly concentrates on network formation. Slikker and van den Nouwe-
land (2001) provide a recent review, both on the cooperative, axiomatic approaches to allocation
rules and on the formation issues.

1Slikker (1999) proves that for reward communication situations there exist a unique link potential and

a unique player potential, where reward communication situations can be seen as a superset of the set of

communication situations. The marginal contributions of the players to these potentials correspond to the

position value and the Myerson value, respectively. This is in the same spirit as the potential for the Shapley

value of Hart and Mas-Colell (1989), who remark (Remark 2.5) that their potential approach can be seen as

a new characterization. This would contradict the statement we just made. Though useful, e.g., for proving

results for general classes of games, we feel that the potential approach does not seem to be generally accepted

as a (solid) characterization. Finally, for the sake of completeness, we remark that the potential approach of

Slikker (1999) can be restricted to communication situations only, thereby perhaps losing some of its original

appeal.
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The setup of the remainder of this paper is as follows. In Section 2 we introduce some
notation and definition. This section contains the formal descriptions of the position value and
the Myerson value. The main result of the paper, a characterization of the position value, can
be found in Section 3. We conclude this paper in Section 4 with a discussion on the comparison
of the position value and the Myerson value based on characterizing properties.

2 Preliminaries

In this section we present some notations and definitions that will be used in the remainder of
this paper.

A cooperative game is a pair (N, v), where N = {1, . . . , n} denotes the set of players and
v : 2N → IR with v(∅) = 0 the characteristic function. A game is called zero-normalized if
v({i}) = 0 for all i ∈ N . For a coalition S ⊆ N , v|S denotes the restriction of the characteristic
function v to the player set S, i.e., v|S(T ) = v(T ) for each coalition T ⊆ S. The pair (S, v|S)
is a cooperative game with player set S that is obviously closely related to the game (N, v).

Let N be a set of players and let R ∈ 2N\{∅}. The unanimity game (N,uR) is the
game with uR(S) = 1 if R ⊆ S and uR(S) = 0 otherwise (see Shapley (1953)). Every
game (N, v) can be written as a linear combination of unanimity games in a unique way,
i.e., v =

∑
R∈2N\{∅} λR(v)uR. The Shapley value Φ of a game is now easily described by2

Φi(N, v) =
∑

R⊆N : i∈R

λR(v)
|R|

for all i ∈ N.

A (communication) graph is a pair (N,L) where the set of vertices N represents the set of
players and the set of edges L ⊆ LN = {{i, j} | {i, j} ⊆ N, i 6= j} represents the set of bilateral
(communication) links. Two players i and j are directly connected iff {i, j} ∈ L. Two players
i and j are connected (directly or indirectly) iff i = j or there exists a path between players
i and j, i.e., if there exists a sequence of players (i1, i2, . . . , it) such that i1 = i, it = j, and
{ik, ik+1} ∈ L for all k ∈ {1, 2, . . . , t−1}. The notion of connectedness induces a partition of the
player set into communication components, where two players are in the same communication
component if and only if they are connected. The set of communication components of (N,L)
will be denoted by N/L. Furthermore, denote the subgraph on the vertices in coalition S ⊆ N

by (S, L(S)), where L(S) = {{i, j} ∈ L | {i, j} ⊆ S}, and the partition of S into communication
components according to graph (S, L(S)) by S/L. Finally, for all i ∈ N define

Li =
{

l ∈ L
∣∣∣ i ∈ l

}
, (1)

the set of links player i is involved in.
Myerson (1977) studied communication situations (N, v, L) where (N, v) is a cooperative

game and (N,L) a communication graph. He introduced the graph-restricted game (N, vL),
where

vL(S) =
∑

C∈S/L

v(C) for all S ⊆ N.

2|R| denotes the cardinality of a set R.
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So, a coalition is split into communication components and the value of this coalition in the
graph-restricted game is then defined as the sum of the values of the communication components
in the original game. The Shapley value of the game (N, vL) is usually referred to as the
Myerson value of communication situation (N, v, L). Notation:

µ(N, v, L) = Φ(N, vL).

An alternative allocation rule for communication situations, the position value, was intro-
duced by Meessen (1988) and Borm et al. (1992). Let (N, v, L) be a communication situation.
For the game (N, v) let the associated link game (LN , rv) be defined by

rv(A) =
∑

C∈N/A

v(C), for all A ⊆ LN .

This link game can be seen as a cooperative game in which the players can be identified with
pairs of players in the original game. Hence, the link game can be written as a unique linear
combination of unanimity link games, i.e.,

rv =
∑

A⊆LN

αv
AuA.

Note that though these games are called unanimity link games, they will in general not be the
link game associated with a cooperative game. Furthermore, note that for any L ⊆ LN the
restriction of (LN , rv) can be described similarly, i.e.,

rv
|L =

∑
A⊆L

αv
AuA.

We remark that we use αv
A rather than λA(rv) to denote the unanimity coefficient of set of

links A in the link game (LN , rv) associated with cooperative game (N, v).
The position value attributes to each player half of the value of each link he is involved in,

where the value of a link is defined as the payoff the Shapley value attributes to this link in
the associated (restricted) link game (L, rv

|L). Formally, the position value π of communication
situation (N, v, L) with (N, v) zero-normalized is defined by

πi(N, v, L) =
∑
l∈Li

1
2
Φl(L, rv

|L), for all i ∈ N. (2)

Throughout this work we restrict ourselves to communication situations with a zero-normalized
underlying cooperative game.3

3For communication situations with arbitrary (N, v), the position value of a player is defined as the sum of

his individual value and his position value of the communication situation with the zero-normalization of (N, v)

as the underlying game. Our results hold for this more general setting, but would require additional notation,

which would only distract from the main result. Therefore, we restrict to zero-normalized cooperative games.
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3 The characterization

In this section we prove the main result of this paper, a characterization of the position value for
communication situations. Opposed to earlier characterizations no condition on the underlying
graph is required.

Consider the following properties for an allocation rule γ defined on a class of communication
situations D:

Component efficiency (CE): For all (N, v, L) ∈ D and all C ∈ N/L it holds that∑
i∈C

γi(N, v, L) = v(C). (3)

Balanced total threats (BTT): For all (N, v, L) ∈ D and all i, j ∈ N it holds that∑
l∈Lj

[
γi(N, v, L)− γi(N, v, L\{l})

]
=

∑
l∈Li

[
γj(N, v, L)− γj(N, v, L\{l})

]
. (4)

The first property is standard and dates back to Myerson (1977). Balanced total threats deals
with the loss players can inflict on each other. The total threat of a player towards another
player is defined as the sum over all links of the first player of the payoff differences the second
player experiences if such a link is broken. Balanced total threats states that the total threat
of a player towards another player is equal to the reverse total threat.

Before we prove that the position value satisfies these two properties, we provide an alter-
native description of the position value. Recall from Section 2 that the link game (LN , rv)
associated with a game (N, v) can be written as a unique linear combination of unanimity link
games, i.e.,

rv =
∑

A⊆LN

αv
AuA.

The position value of communication situation (N, v, L) can now be described in terms of
the unanimity coefficients of the associated link game (cf. Slikker (1999)), since for all i ∈ N

it holds that

πi(N, v, L) =
∑
l∈Li

1
2
Φl(L, rv

|L) =
∑
l∈Li

1
2

∑
A⊆L: l∈A

αv
A

|A|
=

∑
A⊆L

1
2
αv

A

|Ai|
|A|

, (5)

where the second equality follows by the description of the Shapley value in Section 2. Using
this expression we can easily show that the position value satisfies component efficiency and
balanced total threats.

Lemma 3.1 The position value satisfies component efficiency and balanced total threats.

Proof: Component efficiency of the position value was already proven by Borm et al. (1992).
It remains to prove that the position value satisfies balanced total threats. Let (N, v, L) be a
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communication situation and let i, j ∈ N be two distinct players. Then∑
l∈Lj

[
πi(N, v, L)− πi(N, v, L\{l})

]
=

1
2

∑
l∈Lj

[ ∑
A⊆L

αv
A

|Ai|
|A|

−
∑

A⊆L\{l}

αv
A

|Ai|
|A|

]
=

1
2

∑
l∈Lj

∑
A⊆L: l∈A

αv
A

|Ai|
|A|

=
1
2

∑
A⊆L

|Aj |αv
A

|Ai|
|A|

=
1
2

∑
A⊆L

αv
A

|Ai| · |Aj |
|A|

=
∑
l∈Li

[
πj(N, v, L)− πj(N, v, L\{l})

]
,

where the first equality follows by definition, the second to fourth equality by rearranging terms
and the last equality follows similar to the first four (note that the expression after the fourth
equality sign is symmetric in i and j). 2

We illustrate this lemma in the following example.

Example 3.1 Consider communication situation (N, v, L) with N = {1, 2, 3}, v = u{1,2}, and
L = {{1, 2}, {1, 3}, {2, 3}}. The payoffs for several (sub-)graphs according to the position value
are given in table 1.

graph A π(N, v,A)

{{1, 2}, {1, 3}} (1
2 , 1

2 , 0)
{{1, 2}, {2, 3}} (1

2 , 1
2 , 0)

{{1, 3}, {2, 3}} (1
4 , 1

4 , 1
2)

L ( 5
12 , 5

12 , 1
6)

Table 1: Position values for several graphs.

Then the threat of player 1 towards player 2 equals ( 5
12 −

1
4) + ( 5

12 −
1
2) = 1

12 by breaking the
link with player 2 and that with player 3, respectively. Obviously, the reverse threat is the
same since players 1 and 2 are symmetric.

The threat of player 1 towards player 3 equals (1
6 −

1
2) + (1

6 − 0) = − 2
12 by breaking the

link with player 2 and that with player 3, respectively. The reverse threat of player 3 towards
player 1 equals ( 5

12 −
1
2) + ( 5

12 −
1
2) = − 2

12 as well.
This illustrates that according to the position value total threats are balanced indeed. 3

We will use lemma 3.1 in the following theorem.

Theorem 3.1 The position value is the unique allocation rule for communication situations
that satisfies component efficiency and balanced total threats.
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Proof: By lemma 3.1 we know that the position value satisfies CE and BTT. Suppose γ

satisfies CE and BTT. We will show that γ coincides with π. The proof will be by induction
to |L|.

First note that for all (N, v, L) with |L| = 0 it follows directly that γ and π coincide by CE
of the two allocation rules.

Secondly, let k ≥ 1 and suppose that γ and π coincide for all (N, v, L) with |L| ≤ k− 1. Let
(N, v, L) be such that |L| = k. We will show for all C ∈ N/L that γi(N, v, L) = πi(N, v, L) for
all i ∈ C. This equality follows directly from CE for all C ∈ N/L with |C| = 1. Let C ∈ N/L

with |C| ≥ 2. Without loss of generality denote C = {1, 2, . . . , c}. By BTT and CE we have
the following system of equalities.4

|L2|γ1(L)− |L1|γ2(L) =
∑
l∈L2

γ1(L\{l})−
∑
l∈L1

γ2(L\{l})

...

|Lc|γ1(L)− |L1|γc(L) =
∑
l∈Lc

γ1(L\{l})−
∑
l∈L1

γc(L\{l})∑
i∈C

γi(L) =v(C)

The first c − 1 equalities come from BTT applied to pairs [1, j] for j ∈ {2, . . . , c}. Note that
|Lj | ≥ 1 for all j ∈ {1, . . . , c} since |C| ≥ 2 and j ∈ C for all j ∈ {1, . . . , c} . The last equality
comes from CE.

By the induction hypothesis it follows that the system above is equivalent to

|L2|γ1(L)− |L1|γ2(L) =
∑
l∈L2

π1(L\{l})−
∑
l∈L1

π2(L\{l})

...

|Lc|γ1(L)− |L1|γc(L) =
∑
l∈Lc

π1(L\{l})−
∑
l∈L1

πc(L\{l})∑
i∈C

γi(L) =v(C)

It is a straightforward exercise to show that this is a regular system in c variables,
γ1(L), . . . , γc(L). Consequently, this system has a unique solution. Since the position value
satisfies BTT and CE we know that (π1(L), . . . , πc(L)) is a solution, and, hence, the unique
solution.

We conclude that γ(N, v, L) = π(N, v, L) for all (N, v, L) with |L| = k. 2

4We suppress N and v and write, for example, γ(L) instead of γ(N, v, L).
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4 Discussion

Theorem 3.1 provides a characterization of the position value for arbitrary communication
situations. This is in line with the work of Borm et al. (1992), in which characterizations are
provided in case the underlying graph is a tree. Furthermore, on the same restricted class
they provide a similar characterization for the Myerson value. Both characterizations use the
properties component efficiency, additivity, and the superfluous link property. Additionally,
the characterization of the position value uses link anonymity, whereas in the characterization
of the Myerson value point anonymity is used. On the set of communication situations with a
tree as underlying graph the difference between the position value and the Myerson value can
be traced to the difference between link anonymity and point anonymity.5

The characterization in this paper clears the way for a comparison between the position value
and the Myerson value on the class of all communication situations. The characterization of
the Myerson value that comes closest to the characterization in this paper is the one that can
be traced back to Myerson (1980). The two properties involved are component efficiency and
balanced contributions. We will define this latest property for an allocation rule γ defined on
a class of communication situations D:

Balanced contributions (BC): For all (N, v, L) ∈ D and all i, j ∈ N it holds that

γi(N, v, L)− γi(N, v, L\Lj) = γj(N, v, L)− γj(N, v, L\Li). (6)

In fact, balanced contributions can be seen as a balanced threat property as well. In doing so,
the difference between the position value and the Myerson value comes down to a difference
in measuring threats. For the Myerson value, this threat is measured by the payoff difference
a player can inflict on another by breaking all his links. For the position value, this threat
is measured by the sum of the possible payoff differences a player can inflict on another by
breaking one of his links.

By rewriting the threat for the Myerson value, the two properties can be compared on an
even more detailed level. Let (N, v, L) be a communication situation and let i, j ∈ N . Write
Lj = {1, . . . , lj}. Then

γi(N, v, L)− γi(N, v, L\Lj) =
(
γi(N, v, L)− γi(N, v, L\{l1})

)
+

(
γi(N, v, L\{l1})− γi(N, v, L\{l1, l2})

)
+ . . . +

(
γi(N, v, L\{l1, . . . , lj−1})− γi(N, v, L\{l1, . . . , lj})

)
.

Hence, both the threat for the position value as the one for the Myerson value can be seen as
the sum of the possible payoff differences a player can inflict on another player by breaking one
of his links. However, when breaking these links one-by-one, for the position value a broken

5Borm et al. (1992) refer to superfluous link property, link anonymity, and point anonymity as superfluous

arc property, degree property, and communication ability property, respectively. Our terminology is in line with

Slikker and van den Nouweland (2001).
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link should be restored before breaking the next one, whereas this link should not be restored
for the Myerson value.

Of course, similar comparisons can be made when looking at the properties from a contribu-
tion rather than from a threat point of view. Balanced contributions measures the contribution
of a player to the payoff of another player by the payoff difference for the second player com-
pared with the situation in which all links of the first player have been removed. For balanced
total threats, this contribution is regarded as the sum of the contributions of each of the links
of the first player, i.e., for each of the links of the first player look at the payoff difference for
the second player if this link is removed (and all other links of the first player are present)
and subsequently, sum these differences. According to both properties, contributions should
be balanced.

Concluding, we stress that besides the fact that the characterization of the position value
is interesting in itself, it provides us with the opportunity to make a solid comparison be-
tween characterizing properties of the position value and the Myerson value on the class of all
communication situations.
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