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1 Introduction 

During the past decade, the functionality of modern electronic systems has increased 
drastically: TV sets can now be used for internet communication; mobile phones can 
record and play back movies; medical imaging systems can perform 3D reconstruction of 
blood vessels in real-time, and etc. For all these systems, it is their internal software that 
provides the added value. The role of software has become essential, as the 
implementation of diversity and huge amounts of functionality of the products in dedicated 
hardware only would require unacceptable effort and enormous investments. In many 
cases, implementation of the functionality in software allows using cheaper general-
purpose hardware. Moreover, in opposite to hardware, the software is easily changeable, 
upgradeable and customizable. The aforementioned attributes of software lead to 
significant increase of the profit margin of the product. 

Software complexity and size are growing together with its functionality. For example, 
the size of binary code of software in modern TV sets has changed according to the Figure 
1.1 during last years.  
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Figure 1.1: Code size evolution of High End TV software 

At the same time, companies are willing to remain competitive on the market, and, 
thus, either have a) to reduce time-to-market and/or production costs or b) have to 
diversify the products to cover as much as possible market sectors. These steps can help 
the companies to be successful in the market, to increase their benefit, and to be able to 
react to the changes in the business world in a more flexible way. 

Not only software functionality plays a role, but also other software qualities such as 
maintainability, reliability, usability as so on, as they define how well the software can 
address different aspects of its intended context. These aspects relate to the concerns of the 
respective stakeholders: customers, developers, users, etc. 



 6 

The properties of software with respect to the aforementioned qualities are usually 
called quality attributes1. An extensive taxonomy of quality attributes is given in [BKL95]. 
However, for the purpose of this thesis it is sufficient to distinguish between run-time 
(dynamic) and development related (static) quality attributes [Bos00]. Examples of the 
former are performance and reliability, whereas examples of the latter are modifiability 
and portability. Quality attributes usually emerge at the system level, rather then being 
localized in particular software parts, which a system is built from, and they can make a 
significant impact on the entire product.  

A response to the aforementioned challenges presumes dealing with all relevant 
stakeholders, managing business aspects of the software, and addressing both functionality 
and quality attributes of software at early development phases. Addressing these factors 
later, may often result in the development of presumably infeasible or low-quality products 
and, thus, in the waste of time and money. These considerations resulted in the genesis of a 
new systematic approach to software development, the software architecting (SA). 

The software architecting approach claims that the development of a competitive 
product is not possible without appropriate software architecture, in the same way as 
construction of a ship or building is impossible without an appropriate blueprint. Many 
authors rely on this construction engineering metaphor to define the term software 
architecture, conveying the meaning of a high-level design plan [Bos00], [HNS00]. We 
use the definition of software architecture given by Bass et al in [BCK03]: 

The software architecture of a program or computing system is the structure or 
structures of the system, which comprise software components, the externally visible 
properties of those components and the relationships among them. 

The software architecture plays an important role in software development process 
because of the following [BCK03], [Bos00], and [HNS00]: 

• Enabling communication between the stakeholders. Software architecture 
represents an abstract description of the system at sufficiently high-level for 
communicating between the different system’s stakeholders. 

• Constraining the quality attributes by making early design decisions. The design 
decisions taken at the architecture phase reduce the space of values that the 
particular quality attributes can be. These decisions have to be carefully revised, 
and the respective quality attributes assessed, as changing these decisions in the 
later development phases may have profound consequences on both project 
schedule and budget. 

• Enabling reuse by consolidating the manageable abstractions of a system. 
Software architecture represents a concise design plan of a system that can be 
grasped by a single person (the architect). This design plan can be applied to other 
systems that exhibit similar requirements (e.g., product-lines). 

• Outlining system for development. Software architecture provides the developers of 
a complex system with a clear view on the roles, responsibilities, dependencies, 
and interactions of the software components that comprise this architecture. Such a 
view helps the developers in realizing the component requirements that relate to its 
environment, in separating the tasks, and in establishing the development plan. 
This view also eases the cooperation between the development teams. 

• Road-mapping with marketing trends and expectable changes. The hardware 
capacity doubles every 18 months according to the Moore’s law. The lower speed 

                                                 
1 Quality attributes are often also called non-functional properties 
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of software production results in a considerable time gap between the introduction 
of new hardware and the realization of software functionalities that take advantage 
of this new hardware. By accounting for the marketing trends (e.g., growing 
hardware capacity), the software architecture can assist in decreasing the 
production time, and ensure the introduction of a software product to the market at 
the optimal moment. By anticipating changes expected in the next versions of a 
software system, the software architecture can help in reduction the costs of 
maintaining and evolving of this system. 

• Identifying and modeling the critical parts of a software-intensive system at early 
development phases. Being an abstract representation of the system, the software 
architecture can allow the architect to ascertain which of the parts of this system 
are the most relevant ones with respect to the requirements. These parts may need 
preliminary architectural modeling in order to ensure, before investing significant 
design and implementation effort, that certain requirements can be met. 

Software components, being units of composition with “contractually specified 
interfaces and explicit context dependencies only” [Szy98], are integral parts of software 
architecture. The software architecture “embodies information about how the components 
interact with each other” [BCK03], while abstracting from the internal details of 
components. A separate discipline– component-based software engineering (CBSE) – 
focuses on component development and assembling the systems from software 
components. Introduction of a notion of component model [HeC01], [Szy98] made 
component development more systematic. A component model describes how software 
components are defined and specified, how they interact, how they are deployed, etc. 
There exist a number of industrial-strength component model implementations, i.e., the 
dedicated sets of executable software elements to support the execution of components that 
conform to the model [HeC01]. The examples of these are COM [Box97], Java Beans 
[Han01], Koala [OLK00], CORBA [Bol01], and so forth. It is widely acknowledged that 
using these component models facilitates software reuse, independent development, and 
separation of concerns. 

However, the CBSE approach has not turned out to be a ”silver bullet” for producing 
complex, but still competitive software of sufficient quality. State-of-the-art component-
based approaches have a number of shortcomings, i.e. they deal only with the functional 
aspects of software and do not support the specification and evaluation of quality 
attributes. Often, quality attributes are addressed only during the last phases of software 
development. The software is mostly developed according to “fix-it-later” principle 
[SW02]: the focus is made on software correctness, and quality considerations are 
postponed until the integration or testing phases. This often results in serious redesign 
effort spent on tuning the software or hardware in order to meet the quality requirements. 

For example, consider response time of a medical imaging software system. It is 
responsible for acquiring, viewing, archiving, etc of medical images. Initially, two main 
components responsible for image viewing and acquiring were designed and implemented 
on dedicated hardware. They had the highest execution priority. A third component, which 
was responsible for archiving images and assigned a lower execution priority, was 
developed and tested separately from other components; it exhibited acceptable response 
time when executed in isolation. After integration of this component with the other two 
components, its response time degraded drastically, because of resource contention and 
pre-emption by the high-priority components. To solve this problem, expensive dedicated 
hardware had to be added to the system, so that the entire composition could work 
simultaneously. Moreover, significant re-design effort was required to enable parallel 
execution. 
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The quality attributes should thus be assessed at the early architecting phase and 
preferably be considered as an integral part of the CBSE paradigm. This is equally true for 
operational and development quality attributes. At the early architecting phase, the 
implementation does not exist yet, but the architects are interested in some qualitative or 
quantitative estimates of the quality attributes. Here are the three major reasons for early 
estimation of quality attributes. 

1. Assessment of the quality attributes at the architecting phase is essential to 
justify design decisions early. By selecting the appropriate design decisions 
before starting the product design and implementation phase, it is possible to 
reduce development costs and, in many cases2, also production time, as 
expensive re-development effort is avoided at later stages. It is a well-known 
fact from the software engineering practice, that it is 20 times more costly, both 
in terms of time and money, to modify code versus modifying design [SW02]. 

2. Assessment of the quality attributes at the architecting phase is required to 
reuse components from third parties. By successfully integrating already 
existing and tested components into a system, the lead-time and costs of 
products can be significantly reduced, and their diversification can be extended. 
However, thorough verification is needed to explore the influence of these 
third-party components on the functionality and quality attributes of the 
product. The earlier this exploration is performed, the more integration effort is 
saved. 

3. Assessment of the quality attributes at the architecting phase can make the use 
of the hardware more efficient. Currently, due to the lack of means to estimate 
the required hardware capacity for software-intensive products in advance, the 
following approach is often used: the hardware is selected in such a way that 
the software is guaranteed to satisfy its resource constraints anyway. This leads 
to the underutilization of hardware and, thus, to the waste of resources. 
Consequently, product costs unnecessary increase and company profit margin 
decreases. However, preliminary quantitative analysis of software resource 
demands can assist in more rational choosing of cheaper, but yet capable 
hardware. This analysis can also assist architects to trade the capacity (and the 
price of hardware) against future flexibility of the product. 

Currently, the techniques for the analysis and estimation of development related 
quality attributes (e.g., maintainability [BeB00]) of component-based software have 
already been paid attention to. These techniques are often expert-based and perform only 
qualitative analysis. 

To date, there exist two types of methods for quantitative estimation of operational 
quality attributes (e.g., timeliness, performance, and reliability): purely simulation-based 
models and b) mathematical models (e.g., queuing networks [SG98], [SW02]). Both types 
turn out to be unsuitable for evaluating the quality attributes of complex software-intensive 
systems. The first type of the methods suffers from the combinatorial explosion of details, 
whereas the second often makes too specific assumptions about the system under 
consideration. These assumptions do not hold for many systems, and thus models based on 
these assumptions can be both inaccurate and inadequate. Thus, the quantitative prediction 
of operational quality attributes of component-based software became the main objective 
of our research. Particularly, we concentrated on methods for the assessment of 
performance and static memory demand. 

                                                 
2 In order to enable selection of the appropriate design decisions, this early assessment should not consume 
significant effort and should provide architects with accurate and reliable estimates. 
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1.1 Essence of the thesis 

The thesis is structured as follows (see Figure 1.2). The research context, problem 
definition and research questions to be answered are presented in Chapters 1 and 2. 
Chapter 3 overviews the current state of the art in the area of software architecting and 
assessment of quality attributes (QA). The rest of the thesis is subdivided in two parts 
(unequal is size): one part concerns static quality attributes, whereas the other relates to 
dynamic quality attributes (see Figure 1.2). These two parts can be read independently of 
each other. The approach to quantitative estimation of static quality attributes, illustrated 
by an example from an industrial setting, is described in Chapter 4. The largest part of the 
thesis is dedicated to estimation of the performance of component-based software. 
Chapters 5 to 8 address the problems concerning performance estimation for components 
considered in isolation, including two examples from two industrial domains: Consumer 
Electronics (CE) and Professional Systems (PS). Chapters 9 to 11 consider different 
aspects in the research area of performance prediction for component compositions and 
also provide examples from the two industrial domains. The conclusions and future work 
are presented in Chapter 12.  
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prediction with
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Figure 1.2: Thesis structure 

The research work in the project and writing of this thesis were separated as follows. 
Both authors worked together on research questions, related work, and generalized 
conclusions. Thus, Chapters 1, 2, 3, and 12 are joint parts. E.M. Eskenazi developed an 
approach to estimation of additive static QA’s and an approach to performance prediction 
for component compositions. Based on his results, he wrote Chapters 4 and 9. A.V. 
Fyukov developed an approach to performance estimation of components in isolation and 
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investigated a problem of component similarity. Based on his results, he wrote Chapters 5 
and 6. Furthermore, the work on this thesis is mainly partitioned along the two industrial 
case studies. E.M. Eskenazi performed two case studies studying the performance of both 
separate components and component compositions in the CE systems. These case studies 
are described by E.M. Eskenazi in Chapters 7 and 10, respectively. A.V. Fyukov 
performed two case studies studying the performance of both separate components and 
component compositions in the PS systems. These case studies are described by A.V. 
Fyukov in Chapters 8 and 11, respectively. 

The subsections below outline the contents of each chapter. 

Chapter 2: Problem description 

This chapter describes the main subject of our research: early estimation of quality 
attributes. First, the chapter explains the importance of various quality attributes for 
software projects in the Consumer Electronics and the Professional Systems domains, and 
relates these attributes to the requirements that we collected in the beginning of our 
research. Second, it enumerates the basic obstacles towards solving this problem in the 
context of component-based architectures. Third, it introduces the notions of static and 
dynamic quality attributes. Fourth, this chapter explains why our research concentrated on 
two particular quality attributes: static memory consumption and performance. Finally, it 
formulates the major research questions to be addressed in the project and to be answered 
in this thesis. 

Chapter 3: Related work 

Both research community and industry have invested substantial effort in developing 
methods and tools for the early evaluation of quality attributes for component-based 
software architectures. This chapter overviews the research directions and findings 
relevant for the main topic of the thesis: the component-based software architecting, 
evaluation of static properties, and performance estimation of component compositions. 
For each direction, the achievements and drawbacks of the existing approaches are 
summarized. The role of our research is discussed with respect to the advantages and 
disadvantages of the contemporary methods.  

Chapter 4: Specification and evaluation of additive static 
quality attributes 

This chapter describes a method for evaluating the additive static quality attributes of 
component assemblies, based on the properties of its constituents. The chapter identifies 
relevant factors influencing the static quality attributes of a component composition: 
diversity and binding. Then, various techniques for specification of static quality attributes 
of separate components, e.g., reflection interfaces or a dedicated XML-based specification 
language are exemplified and compared. 

The evaluation process can be performed based on specifications of the static quality 
attributes of components. Depending on components and diversity parameters relevant for 
an estimation formula, two evaluation approaches– exhaustive and selective– are 
proposed. These two approaches allow a flexible trade-off between the estimation effort 
and precision by choosing which components and which diversity parameters are 
accounted for. Both approaches were validated by an industrial case study: the prediction 
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of static memory consumption for Koala component compositions. Both approaches 
exhibited an estimation error that did not exceed 2%. 

Chapter 5:  Specification and evaluation of dynamic quality 
attributes: the APPEAR method 

This chapter describes a method for the “Analysis and Prediction of Performance for 
Evolving Architectures” (APPEAR). The method aims at performance estimation of newly 
developed parts of software-intensive product families during the architecting phase. Early 
performance estimation makes it possible to verify the feasibility of systems before their 
implementation, thus saving money and effort otherwise devoted to developing potentially 
infeasible products.  

This chapter explains the drawbacks of the contemporary approaches for performance 
evaluation of modern complex software architectures. One of the main problems with 
these approaches is combinatorial explosion due to considering too many irrelevant details.  

The APPEAR method avoids this trap by abstracting the irrelevant details by means of 
statistical modeling. The performance relevant details are, in opposite, considered 
explicitly and described by a simulation model. This combination serves a basis for the 
APPEAR method, which helps the architects to construct simple models and, therefore, to 
obtain performance estimates quickly. The method allows one to flexibly select which 
parts of the software are simulated, and which parts are described by a statistical model. 
This flexible choice allows the architects to balance estimation accuracy against estimation 
effort. 

Chapter 6: Similarity of software components  

The prediction models provided by the APPEAR method are calibrated on the existing 
software. As a consequence, the method can only be safely applied to new components 
that are sufficiently “similar” to the existing ones. Therefore, specific quantitative and 
qualitative criteria for characterizing similarity are needed. These criteria are based on the 
heuristics collected during the case studies on the validation of the APPEAR method. 

The chapter approaches the similarity of software components in three steps. First, it 
defines the notion of component similarity. Three questions about the component 
similarity need to be answered: 

How to ensure the accurate performance prediction for adapted components? 

How to judge the similarity of the existing and adapted components? 

How to incorporate similarity-relevant factors into performance assessment of an 
adapted component? 

Second, the chapter identifies similarity conditions: (1) internal computations of the 
components, (2) difference in signature type, and (3) distance between signature instances. 
Third, this chapter proposes a similarity metric. Finally, the chapter describes a number of 
“escape routes” that can be taken by the architects if these similarity conditions are not 
satisfied. 
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Chapter 7: Application of the APPEAR method in the 
Consumer Electronics domain 

This chapter describes the first case study on the APPEAR method validation. The 
method was applied to the software of modern TV sets. Particularly, the APPEAR method 
was used (1) to analyze the CPU demand of the existing Teletext acquisition component 
and (2) to predict the CPU demand of the enhanced version thereof. To achieve the first 
objective, the simulation model of the existing acquisition component was constructed. To 
achieve the second objective, a statistical prediction model was fitted to the measurements 
from the existing acquisition component, and the simulation model was modified to 
account for new features of the adapted Teletext acquisition component.  

The predictions made for the adapted component by the APPEAR method were 
compared to the measurements collected from the implementation of this component. The 
average prediction error did not exceed 11%, which demonstrates the good predictive 
power of the method. 

Chapter 8: Application of the APPEAR method in the 
Professional Systems domain 

This chapter describes the second case study for the validation of the APPEAR 
method. The method was applied to a software component implementing the reviewing of 
medical images in a medical imaging system. Based on the analysis of the documentation 
and on performance measurements, the performance significant parameters were 
identified. It was remarkable that out of more than 100 parameters only 4 parameters were 
performance-significant and constituted the signature type of the component. Identification 
of these parameters helped the architects in gaining an architectural insight into the 
performance bottlenecks: the image displaying procedure, programming of the image 
processing hardware, and drawing the graphical comments above images. This discovery 
led to severe code modifications to improve the performance of the reviewing component.  

Afterwards, the simulation and prediction models for performance estimation were 
built and validated. The prediction models were validated by using the observations that 
were not used for calibration, and this resulted in the maximal relative prediction error of 
8% only. Then, one of the models was used to predict the performance of a non-
implemented function. Based on the function design, the simulation model was adapted, 
and 95% prediction intervals were constructed for the response time of this function. 

Chapter 9: Performance prediction for component 
compositions  

This chapter proposes a hierarchical approach for predicting the performance of 
component compositions. This approach allows (1) flexible selection of the abstraction 
level for behavior modeling, and (2) balance between the estimation effort and estimation 
accuracy. Additionally, the method employs well-known software engineering notations, 
e.g. control flow graphs, and does not require much additional skills from software 
specialists. 

This approach considers the following major factors influencing the performance of 
component compositions: (1) component operations, (2) activities, and (3) composition of 
activities. The performance model of the entire system is built hierarchically. First, the 
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contribution of component operations to performance is modeled by means of the 
APPEAR method. Then, the performance models of activities are specified in terms of 
control-flow graphs. Finally, the composition of concurrent activities scheduled on non-
shareable resources is considered. During each analysis step, various models– analytical, 
statistical, simulation− can be constructed to specify the contribution of each factor to the 
performance of the composition. The architects can flexibly choose which model they use 
at each step. The approach is illustrated by an example of performance prediction for a Car 
Navigation System.  

Chapter 10: Performance prediction for component 
compositions in the Consumer Electronics domain 

This chapter describes the first case study on the validation of the approach to 
performance prediction for component compositions described in Chapter 9. For this 
experiment, we considered the software of a TV that performs in steady state, that is, the 
user just watches the TV but does not try to control it. The goal was to predict the CPU 
utilization of the major activities that execute in steady state. 

In this experiment, we considered only the last two factors: activities and their 
compositions. The first step, modeling the performance of component operations, was 
omitted, as there was no sense to model individual component operation implemented 
within fine-grained Koala components that were not intended for reuse. On the other hand, 
it was the activities that required an architectural insight into. Therefore, we decided to 
model, by the APPEAR method, the performance of the entire activities. The final step, 
building the performance model of the activity composition, was implemented not only by 
constructing an analytical formula but also by simulation. The reasons for using both 
techniques were as follows: 

• Although the formula provided only slightly larger average prediction errors 
(6%) than were required (5%), it did not help in gaining the insight into 
performance relevant aspects. 

• The simulation model provided us with insight on performance relevant factors 
(e.g., scheduling and blocking on the resources) and exhibited average 
prediction error of less than 2%. 

Chapter 11: Performance prediction for component 
compositions in the Professional Systems domain 

This chapter describes the second case study on the validation of the approach to 
performance prediction for component compositions described in Chapter 9. For this 
experiment, the medical systems software that consists of several components was 
selected. We aimed at estimating the response time of the “Archiving” component, 
executed concurrently with the “Reviewing” component. 

During the first step of the approach from chapter 9, the APPEAR models for 
components were constructed. The APPEAR models for the “Reviewing” component had 
been constructed in advance, and they are described in Chapter 7. Another component– 
“Archiving”– is considered in this chapter, and both APPEAR models are built for it. 

During the second step, we modeled two activities. In our case, each activity contained 
only one operation of either “Reviewing” or “Archiving” component. Thus, modeling of 
branches and loops was not needed, and this step was omitted. 
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During the third step, we analyzed the contention of these two activities for shared 
resources. The initial formula was constructed that included all these performance-relevant 
aspects. Such a form of this formula was based on the observations, analysis of software 
design, and discussions with architects. Based on the real measurements, a prediction 
model was created that allowed to confirm the significance of the previously identified 
performance-relevant factors. The formula was then validated against the real 
measurements. The predictions obtained via this formula had a relative prediction error 
less than 2%. 

Chapter 12: Conclusions 

This chapter summarizes both theoretical and practical results of our research. It 
explains how and in which chapters the research questions posed in chapter 2 were 
answered. The main achievements of our research are the methods for evaluation of static 
and dynamic quality attributes. Both methods help the architects in gaining architectural 
insight, in producing reliable quantitative estimates, and in trading estimation effort against 
estimation accuracy. Both methods have been positively validated in real industrial 
settings. The chapter highlights the advantages of both methods and compares them with 
the approaches there existed in the architecting field so far. 

This chapter also presents lessons learnt during our case studies. A typical instance of 
such a lesson is the result of the use of statistical models. As such models are the results of 
curve fitting to measurements, they often do not reflect the real software implementation 
and dependencies in the system adequately. For example, substitution of certain 
parameters of such a model may result in a negative value of time. 

One of the most important lessons enumerates several guidelines for architects willing 
to apply the APPEAR method. These guidelines describe the key decisions to be taken 
during the main steps of method: use case selection, signature type selection, calibration 
dataset selection, etc.  

This chapter also indicates directions for future research. 

1.2 What can and cannot be found in this thesis 
This section summarizes the main research issues addressed and not addressed in our 

work.  
The following research issues were tackled and thus can be found in this thesis: 
 

1. Estimation of additive static quality attributes. Our investigations in two industrial 
domains and interviews with the architects resulted in identification of the most 
relevant static QAs. All of these static QAs were additive, and, thus, we focused 
only on QAs of this type. 

2. Performance prediction of average values. In our approach for the performance 
prediction, we use the simulation and prediction models for non-implemented 
components. These models can provide us only with average values of estimates. 
For obtaining the estimates for the WCET and BCET, the entire implementation is 
required. Moreover, the worst-case and best-case values were not the primary 
concerns of our industrial partners.  

3. Performance prediction for adapted versions of existing components, based on the 
information from their previous versions. Based on our observations in two 
industrial domains, we can assume that, nowadays, there always exists initial 
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software stack, prototype, legacy code, etc. We use the existing components as a 
basis for constructing performance prediction models for the adapted ones.  

4. Guidelines for and examples of building simulation models containing performance 
relevant details. We formulate the major requirements for constructing a proper 
simulation model (see Section 5.9), and demonstrate the use of the simulation 
models in Chapters 7, 8, and 10.  

5. Guidelines and examples on the application of linear regression for performance 
analysis and prediction. We describe basic rules for constructing the prediction 
models and criteria for estimating their quality. The examples of the use of linear 
regression are presented in Chapters 7, 8, 10, and 11. 

6. An approach to performance prediction for component compositions. Despite the 
fact, that, due to complexity of this problem, no unified approach exists, we 
proposed a hierarchical approach that allows one to decompose the problem. After 
decomposition, various modeling techniques can be applied to each constituent, 
depending on the goal of the modeling, required accuracy, etc. 

7. Explanation and illustration of the principles that allow trading estimation 
accuracy against estimation effort. In the approaches for the estimation of both 
static and dynamic QAs, we let the architect flexibly vary the level of abstraction 
and the amount of the details to be accounted for the estimation. 

 
However, a number of research issues were beyond the scope of our research and, thus, 
cannot be found in this thesis. These issues are listed and commented below. 

1. Estimation of qualitative QA’s (safety, maintainability, etc.). These QAs were not 
the goal of our research. Additionally, the software architects that we interviewed 
did not rank them as the most critical ones3. To date, several approaches for 
evaluating the qualitative QA’s exist, e.g. [CKK02]. 

2. Estimation of other quantitative QA’s (e.g. reliability, availability, etc) besides 
additive static ones and performance. As it is impossible to develop a unified 
method for all quantitative QA, we focused on the two most relevant ones, based 
on the opinions of the interviewed architects. 

3. Estimation of non-additive static QA’s. We decided to leave these static QA outside 
the scope of our research, as we did not receive an acknowledgement of their 
relevance in the industrial domains we operated in.  

4. Performance prediction for components developed from scratch. We assume that, 
nowadays, there always exists initial software stack, prototype, legacy code, etc. 
This assumption allows us to use the statistical models in our approach. For the 
components developed from the scratch, traditional approaches to performance 
analysis [Jai91], [SW02], [FM03] can be used instead of the APPEAR method. 

5. Estimation of WCET’s. The estimation of WCET’s was not the main concern of our 
industrial partners, and an estimation error of 20% for the average case was 
considered sufficient. Additionally, for the estimation of WCET’s, the entire 
component code is required. We aimed at early performance prediction for future 
versions of software without implementing them, but using the performance 
models instead. 

6. Performance models of the underlying hardware. In our approach, we assume that 
underlying hardware remains unchanged. This allows us to abstract from all the 
hardware details. However, in the cases when hardware changes, some 
performance relevant details of the hardware should be modeled explicitly. A short 
discussion on this problem is presented in Chapter 8. This issue is also indicated as 
one of the main directions for the future work. 

                                                 
3 Some of the other important QA’s were already addressed by the chosen component technology and 
organizational measures. The performance and memory consumption were however not properly tackled. 
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7. Guidelines for construction of simulation models in general and selection of the 
best modeling formalism for these models. The choices of the appropriate 
abstraction level for modeling and the adequate modeling notation can often be 
domain- and product-dependent. Thus, we cannot provide a unified set of 
recommendations for the construction of such a simulation model in general case. 
Moreover, it is also worthwhile not to force architects to use a particular modeling 
technique, but to allow them to be flexible. 

8. Construction of prediction model with guaranteed quality and selection of the best 
regression technique for this model. The process of construction of the 
performance model, and the quality of the model are severely dependent on the 
measured data. Thus, we provide the architects only with basic criteria for 
estimation of the model quality. Linear regression turned out to be sufficient to 
satisfy our needs, but analysis of different regression techniques belongs to 
completely different research domain. 

9. A unified approach to performance prediction for component compositions. Due to 
many complex factors (see Chapter 9), influencing the performance of component-
based software, there does exist a “silver-bullet” approach suitable for all domains 
and products. However, we propose a high level hierarchical approach that 
pinpoints the main steps of performance analysis of component compositions. 

10. Recommendations for proper instrumentation of the code for performance analysis. 
This issue lies beyond the scope of our research as well. More information related 
to instrumentation of the code can be found in [Jai91]. 

1.3 Publications 

This section presents the list of publications that served a basis for the chapters of this 
thesis. 

Chapter 4 is based on the following publications: 
• E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, M.R.V. Chaudron, Estimation of 

Static Memory Consumption for Systems Built from Source Code Components, 
Workshop on Component-Based Software Engineering at the 9th IEEE Conference 
and Workshop on Engineering of Computer Based Systems (ECBS), Lund, Sweden, 
April 2001. 

• A.V. Fioukov, E.M. Eskenazi, D.K. Hammer and M.R.V. Chaudron, Evaluation of 
Static Properties for Component-Based Architectures, Component-Based Software 
Engineering Track of the 28th Euromicro Conference, Dortmund,Germany, 
September 2002. 

For Chapters 5, 6, 7, and 8 the following  papers were used: 
• E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, H.Obbink and B. Pronk, Analysis and 

Prediction of Performance for Evolving Architectures, Workshop on Software 
Infrastructures for Component-Based Applications on Consumer Devices in 
conjunction with EDOC 2002 (6th IEEE Int. Conference on Enterprise Distributed 
Object Computing), Lausanne, Switzerland, September 2002. 

• E.M. Eskenazi, A.V. Fioukov and D.K. Hammer, Performance Prediction for 
Software Architectures, NWO (Dutch Nat. Science Organization) Progress 
Workshop, Utrecht, Netherlands, October 2002. 

• E.M. Eskenazi, A.V. Fioukov, D.K. Hammer and H. Obbink, Performance 
prediction for industrial software with the APPEAR method, PROGRESS 
Workshop 2003 on Embedded Systems, Nieuwegein, Netherlands, October 2003. 
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• E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, H.Obbink and B. Pronk, Analysis and 
Prediction of Performance for Evolving Architectures, Component-Based Software 
Engineering Track of the 30th Euromicro Conference, Rennes, France, September 
2004. 

Chapter 9 is the extended version of the paper: 
• E.M. Eskenazi, A.V. Fioukov, and D.K. Hammer, Performance Prediction for 

Component Compositions, submitted for 7th CBSE (Component-Based Software 
Engineering) symposium, adjunct with 26th ICSE (International Conference on 
Software Engineering) conference, Edinburgh, Scotland, May 2004. 
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2 Problem description 

2.1 Non-functional requirements in the CE and PS 
domains 

Our research in the area of early estimation of quality attributes was driven by the 
problems identified in real industrial settings. We have focused on the quality attributes 
that were found important for two product family projects, running at Philips Electronics 
in two industrial domains: the Consumer Electronics (CE) and the Professional Systems 
(PS). Within the CE domain, the software of a TV set was considered, whereas within the 
PS domain the software of a medical imaging platform was analyzed. 

For each project, we collected a set of requirements about quality attributes. This 
allowed us to devise the requirements that were relevant in both investigated domains. As 
these domains are different, the requirements were considered to be representative enough 
to ensure developing estimation methods that can be applied in multiple domains. 

The requirements were collected by the following means: 
• Interviewing the key architects, 
• Browsing through architecture and development documentation, 
• Studying System Requirements and Functional Requirements Specifications. 

The interviews with architects were conducted in the following way. First, we 
developed a questionnaire (see Appendix A.1) concerned with non-functional 
requirements for the software products. This questionnaire served a basis for the 
interviews. We interviewed eight architects in total. The questionnaire was sent to the 
architects in advance so that they could prepare for the interview. After conducting the 
interviews, we summarized the results and sent them back to the architects for verification.  

The non-functional requirements are briefly described in Table 2.1. The definitions of 
the quality attributes related to these requirements are presented in Appendix A.2. The 
leftmost column enumerates the requirements. Then, the specialization of each 
requirement for the particular domain is given together with its importance. Note that the 
comparison of importance is meaningful within a single domain only. The importance of 
each requirement is assigned as follows: 

• ‘+++’ means very important, 
• ‘++’ means moderately important, 
• ‘+’ means not very important, 
• ‘-‘ means not applicable. 

The importance ranking was agreed upon with the interviewed architects. They 
assigned ranks to each of the requirements based on their judgment and experience. Notice 
that due to a limited number of architects and only two projects revised, generalizing the 
collected requirements to the entire domains cannot be justified. The conducted study 
about the requirements was aimed only at devising the relevant research questions, and 
from this viewpoint it was sufficient. 
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Table 2.1: Non-functional requirements in the CE and PS domains 

Professional Systems  Consumer Electronics REQUIREMENT 
Interpretation Importance Interpretation Importance 

Performance Important points: 
• Start-up time, 
• Response-to-

user time, 
• Image 

generation 
speed, 

• Network 
throughput. 

+++ Important points: 
• Start-up time 
• Response-to-user 

time, 
• Interrupt latencies. 
• Average CPU 

utilization 

+++ 

Low memory 
consumption 

Image size + Low footprint: small 
amount of data and code. 

+++ 

Diversity • The same 
generic 
components 
are to be used 
within 
different 
modalities4, 

• Different types 
of image 
acquisition 
hardware 
within a 
modality. 

+++ Diversification points: 
• User’s language, 
• A/V hardware, 
• Transmission 

standards 
• Features (e.g., high- 

and low-end). 

+++ 

Configurability Components 
should be tuneable 
for different 
environments5 

+++ Tenability for various 
environments via: 
• Early binding 

mechanisms, 
• Parameters in non-

volatile memory. 

+++ 

Timeliness Important for some 
modalities dealing 
with: 
• Real-time 

image 
acquisition, 

• Real-time 
image storing. 

+++ Drivers for a hardware 
chassis require strict 
deadlines satisfaction: 
• EPG, 
• Remote control, 
• Teletext. 

+++ 

Reliability Important points: 
• Long mean-

time between 
failures, 

• Data integrity, 
• Correct 

interaction 
between the 
components. 

+++ Increasing of software 
quality in order to reduce 
the rate of field calls  

++ 

Safety Patients and 
medical personnel 
are not 
endangered6 

+++ Reduction of hazard 
probability by means of 
proper hardware/software 
design 

++ 

                                                 
4 A modality is a particular field of medical care equipment (e.g., ultra-sound or x-ray equipment) 
5 Besides the components should be flexibly configurable, they should provide forward and backward 
compatibility 
6 Safe functioning of the system is addressed within each of the modalities in a modality-specific way. 
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Professional Systems  Consumer Electronics REQUIREMENT 
Interpretation Importance Interpretation Importance 

Availability • Graceful 
functionality 
degradation in 
case of 
overload, 

• Resuming 
tasks after 
failure 
(robustness), 

• Localised 
failure, 

• Low failure 
rates, 

• Self-
optimization 
regarding 
resources. 

+++ Seamless restart of the 
system in the case of fatal 
error 

++ 

Maintainability The software stack 
lives for a long 
time (10-15 years). 
Documentation and 
code should be 
properly organized. 

++ The software stack lives 
for a long time (4-6 
years). Documentation 
and code should be 
properly organized. 

++ 

Extensibility Remote component 
delivery and 
addition (without 
dynamic 
reconfiguration) 

++ Not relevant, as products 
are not upgradeable 

- 

Legacy code 
support 

Support of code 
and data models 
from the existing 
modalities 

++ Reuse of information 
from the old software 
stack. 

++ 

Portability • Usage of 
different 
operating 
systems within 
different 
modalities, 

• Component 
technology 
dependencies 
must be 
minimized and 
localized, 

• Usage of 
different 
hardware 
configurations 
to execute the 
system 

• Different 
display sizes 
and color 
models  

++ Porting on a next 
generation hardware 
chassis should be planned 

++ 
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Professional Systems  Consumer Electronics REQUIREMENT 
Interpretation Importance Interpretation Importance 

Scalability • Control over 
resource 
budgets, 

• Performance 
scalability with 
respect to image 
storage, 
transfers, and 
display. 

++ Control over resource 
budgets  

++ 

Reusability Components 
should be usable 
within different 
modalities 

+++ Components should be 
usable in various products  

+++ 

The collected requirements on quality attributes are mostly related to three aspects: 
1. The usability aspects of products, i.e. the aspects that define to which extent a 

product can be used by its users to achieve specified goals with effectiveness, 
efficiency, and satisfaction in a specified context of use [ISO 9244-11]. 

2. The product-family-oriented architecting. The requirements related to this 
property were the same for both domains, e.g. diversity, configurability, and 
reusability. 

3. The resource constraints imposed by the reduction of hardware costs. 

In the Consumer Electronics domain all three aspects were equally important, whereas 
in the Professional Systems the third aspect was less important.  

This was a significant difference between the two domains. On one hand, Consumer 
Electronics is a typical high-volume electronics domain. As the profit margin of each 
consumer device is small, the ability to use the cheapest hardware is crucial and makes one 
to use devices that are less powerful than contemporary mainstream hardware. This 
imposes critical constraints on the resource consumption for the embedded software. On 
the other hand, the Professional Systems domain is a typical low-volume electronics 
domain, with products being produced in significantly fewer numbers than in high volume 
electronics domain. As the profit margin of each system is high, the major price factor is 
not the costs of hardware, but the costs of the software development. Thus, many resource 
constraints are not relevant (in comparison to Consumer Electronics). 

The study on the non-functional requirements delivered two essential outcomes: 
findings and decisions. 

2.2 Findings 

Based on the interviews with architects and documentation, we summarized three 
major obstacles that complicate early estimation of quality attributes so far. 

First, only coarse architectural models can be used for the evaluation of quality 
attributes, as the design and implementation of components usually do not exist at the 
architecting phase. Four approaches for constructing such models have been identified in 
the literature [Bos00]: scenarios, simulation, mathematical, and subjective expert-based 
reasoning.  

The scenario-based techniques define evaluation scenarios, which describe certain 
profiles related to the quality attribute of interest. Then, each candidate architecture is 
‘benchmarked’ against the set of relevant scenarios, and the most appropriate one is 
chosen. The examples of such techniques are described in [BeB00][CKK02].  
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In the simulation approach, the quality attributes are assessed based on the results of 
simulation of components and system environment.  

For estimation of some operational quality attributes (e.g., performance or timeliness), 
mathematical models have been developed. These models can usually be applied faster 
than simulation and scenario-based techniques, but their applicability scope is much 
narrower. Examples of such models for estimating the performance and timeliness are 
given in [SW02] and [KRP93], respectively. Finally, an experienced developer or architect 
can initially guesstimate the expected values of quality attributes, based on intuition. He or 
she then has to apply other approaches to support his judgment. In this case, we have 
subjective expert-based reasoning. 

Second, the quality attributes often cannot be attributed to specific components; they 
usually emerge from the cooperation of a number of components. In this case, the quality 
attributes of the entire composition have to be derived not only from the quality properties 
of components, but also from the specification of component interactions. This 
phenomenon makes it difficult to reason about these emergent qualities in a compositional 
way, i.e. to derive the qualities of a composition from the properties of separate 
components. An exhaustive taxonomy of quality attributes and their dependencies on 
properties of separate components can be found in [Lar04]. 

Third, usually several quality attributes are in conflict. This means that design 
decisions that improve one of the quality attributes may deteriorate other(s). For example, 
portability requirements can lead to selection of platform-independent middleware (e.g., 
Java and JVM) that can significantly decrease the performance of the application. Finding 
a set of design decisions that maintain all quality attributes at the required level is often 
difficult (if at all possible). The art of the architect is to be able to find such a set of design 
decisions. Some guidelines to achievement the best “mixture” of quality attributes are 
described in [Sva03]. 

2.3 Decisions 

Table 2.1 presents 14 different QA’s that had to be accounted for in the CE and PS 
domains. There exist no “silver-bullet” that can address all these QA’s. Nor can such a 
approach be developed, as these QA’s concern often unrelated aspects of the software 
development cycle. Thus, we decided to perform our research incrementally: we started 
with finding an approach for predicting a couple of the most relevant QA’s. During the 
interviews, the architects were requested to indicate the most critical of the QA’s, for 
which no industrial-strength solutions were delivered so far. After analyzing the opinions 
of the architects, performance was chosen as the quality attribute of interest, as it was rated 
as “very important” in both domains. Static memory consumption was chosen for the CE 
domain due to strict memory constraints within this domain. These two particular 
attributes were selected, since the problems with other attributes had been already 
(partially) addressed in both projects, whereas the techniques for estimation of these 
attributes were completely immature. 

For the project within the PS domain, the important performance metrics were 
response time, start-up time, and network throughput. For the project within the CE 
domain, performance was defined in terms of average CPU utilization and average 
response and execution times of certain activities. The memory consumption was 
measured in terms of static memory required by component code and data. 
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2.4 Static and dynamic quality attributes 

Let us discuss the difference between static and dynamic QA’s in more detail. Static 
ones describe the properties of a component composition that do not change at run-time. 
These static quality attributes (QA) are determined by the structure of software, but not by 
its behavior. This structure describes how components are bound to each other, that is, it 
specifies what the component ‘uses’ relations are. Component developers can determine 
these attributes separately for each component. The static quality attribute considered in 
our research is static memory consumption. Software complexity metrics such as 
McCabe’s cyclomatic number [Mcc76] are other examples of static quality attributes.  

Dynamic quality attributes are run-time attributes; they may change in run-time. For 
their estimation, it is important to consider not only the way that components are bound, 
but also the way that they interact with the environment and each other. The dynamic 
quality attribute considered in our research is performance. 

Dynamic quality attributes can emerge from the collaborative behavior of the 
components constituting a composition and, in general case, cannot therefore be attributed 
to separate components only, in contrast to static quality attributes. For instance, static 
memory demand can be specified per component, as it is determined only by component 
internals. However, the timing behavior of a component is determined not only by its 
internals, but can also depend on the behavior of other components and their interactions. 
In this case, response time of a composition has to be specified as a function that depends 
on performance relevant properties of the constituent components and the interactions 
between these components. 

2.5 Research questions 

This thesis contributes to the area of component-based architecting by answering a 
number of research questions. These research questions were derived from the two 
outcomes of our investigation about the requirements that had been posed for two product 
family projects in two distinctive industrial domains (see Section 2.1). The questions are 
classified into several groups and presented in the subsequent sections of this chapter. 

Static QA’s of separate components are in general easier to determine and specify than 
dynamic ones, since static QA’s can usually be represented by the numbers or simple 
formulas that can be quickly derived by software developers in advance. Therefore, we 
focused in our research and in this thesis on the compositional estimation of static quality 
attributes only. 

It is important to emphasize that we studied additive static QA’s only, as we could not 
find examples of relevant non-additive QA’s neither in research literature nor in industrial 
software. The additive QA’s have the following important property: a QA of a component 
composition is a weighted sum (linear combination) of the QA’s of the composed 
components. For the sake of space, additive static QA’s are further referred as static QA’s. 

The specification and evaluation of dynamic QA’s of a component (composition), in 
opposite, requires significant effort and, thus, we addressed two apart research problems in 
our thesis: a) specification and evaluation of dynamic QA’s for components themselves, 
and b) specification and evaluation of dynamic QA’s for component compositions. 
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2.5.1 Specification and evaluation of additive static quality 
attributes 

For the specification of an additive static quality attribute, there are usually many 
factors related to structure of the composition, type of quality attributes, etc. Considering 
all the factors in the specification can be redundant and/or time-consuming. The 
identification of major (relevant) factors that have a significant impact on the 
additive static quality attribute of interest is required for the following reasons: a) 
making the specification less redundant, b) better acceptable by the architects, and c) 
reducing the specification and evaluation effort. 

Estimation of additive static QA’s7 of a component composition at the architecting 
phase helps to check early if the software meets the planned resource budgets. This check 
needs to be performed on architectural models and allows the architect to take more 
appropriate architectural decisions and to avoid development of unfeasible products. 
Construction of the appropriate models for the estimation of additive static quality 
attributes is also the subject of our research. For example, checking if the memory space 
of all components exceeds the memory constraints of a system can indicate that more 
lightweight components have to be selected.  

The models for estimation of additive static quality attributes need to be described in a 
specification language. This language is used to specify the relevant modeling details in a 
formal way. Thus, a specification technique for providing an architectural insight into 
additive static quality attributes is needed. This technique should include an explicit and 
comprehensive view on the relevant details. A formal specification language also serves as 
a basis for more efficient communication between different architects, as they have to 
estimate static quality attributes of the composition of components from multiple parties. 
For example, specification of additive static component properties can be based on a 
widely accepted standard language (e.g. XML, ASN, UML). 

The answers to these questions are provided in Chapter 4 (see Figure 1.2). This chapter 
presents various techniques for the specification and evaluation of static quality attributes, 
and illustrates them by means of examples. 

2.5.2 Specification and evaluation of the performance of 
components 

Components can be used in different contexts. It is thus necessary to have a model for 
estimation of the performance-related properties of a certain component in a new 
context. Performance models of such adapted components need also to be constructed. 
These performance models can be used by the architect to model the performance of the 
entire component composition. Additionally, these models can be used to check if the 
hardware, the component will be executed on, can satisfy the resource demands of the 
component with respect to required performance. As a result, either component 
implementation can be changed or other hardware can be selected.  

Another research issue relates to the modifications of the existing components that 
already work as parts of component-based software. In this case, performance estimation 
of the adapted versions of components shows if the adapted component fits into the old 
infrastructure and how it influences the overall performance. 

                                                 
7 Here, only static QA’s that relate to resource consumption (e.g., static memory demand) are considered. 
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Similarly to specification of static properties, the specification techniques are 
required for performance estimation mechanism, to provide architects with 
performance insight in terms of only relevant behavioral details of a component, and to 
serve a basis for architect’s communication. 

The APPEAR method for performance analysis and prediction answers all the research 
issues above. This method is detailed in Chapter 5 of the thesis (see Figure 1.2). The 
Chapters 7 and 8 (see Figure 1.2) describe two case studies that demonstrate the 
application of the method in different industrial domains. 

Performance prediction for an adapted component before implementation is beneficial 
if it is based on the already existing performance model of the existing component. 
However, this model can be applied only if the adapted component exhibits similar 
performance-related behavior as the existing one. Thus, the quantitative metrics of 
component similarity have to be introduced. These metrics should describe the accuracy of 
the performance prediction for an adapted component. The quantitative information about 
accuracy of the prediction can help architects in taking more justified decisions about 
modifications of components and resulting performance impact of these modifications. 

Chapter 6 of the thesis (see Figure 1.2) addresses the problem of the applicability and 
accuracy of the APPEAR method for adapted components. 

2.5.3 Specification and evaluation of the performance of 
component compositions 

Performance estimation for component compositions is a complex research topic, and, 
therefore, we considered it apart from other ones.  

Similarly to the estimation of static properties, i.e., for the sake of clarity and time, the 
architects need to concentrate only on relevant details contributing to the performance of 
the component composition. In this case, identification of major factors influencing the 
performance of a component composition is needed. Besides performance models of the 
components, the major factors can include various compositional aspects, e.g. scheduling, 
release patterns, etc. 

Similarly to specification of static properties, the specification techniques are 
required to describe an input for an estimation mechanism, to provide architects with a 
performance insight in terms of only relevant compositional aspects and to serve as a basis 
for the communication between the architect and stakeholders. These techniques need to 
account for both (1) components’ contribution to the dynamic quality attribute, and (2) 
contribution due to component interactions with one another. For example, this technique 
can specify the behavior of the resource scheduler that assigns resources such as a CPU 
and communication bus to different components. 

Performance prediction for component compositions allows architects to choose the 
most appropriate architectural solutions before implementation and to better determine the 
hardware resource budgets for the architecture. Additionally, this estimation facilitates 
reuse of the components. If these components are accompanied with appropriate 
performance specifications, an architect can determine in advance how they impact the 
performance of the entire composition. This feature of the early estimation allows 
increasing the quality of the software, as it is constructed from already developed and 
tested components, and shortening the time-to-market, as component development is not 
required. The method for the performance estimation of a component composition 
given the performance-related properties of the components is intended to support the 
software architects during the product development. To make the method usable and 
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transferable to the architects, a stable and defined process (sequence of steps, deliverables, 
etc.) has to be established. This process has to be followed by the architect when applying 
the method. 

The answers to all these questions described above are based on the extensions of the 
APPEAR method, and presented in Chapter 9 (see Figure 1.2). Chapters 10 and 11 (see 
Figure 1.2) present two examples (from different industrial domains) that illustrate an 
approach to the performance prediction for component compositions. 

The estimation technique for both static and dynamic quality attributes must provide an 
architect with accurate and reliable estimates. The level of accuracy is usually defined by 
the architect. Due to complex dependencies of static and dynamic properties on component 
structure and behavior respectively, the specification and evaluation of these attributes 
with required accuracy can cost significant effort. This effort may be unaffordable at the 
early phases of product development. Thus, it is important that methods for estimation of 
quality attributes could allow architects flexibly trade the specification and evaluation 
effort against the estimation accuracy. 

This issue was considered when developing methods for evaluation of both static and 
dynamic properties. Thus, the solutions can be found in both Chapters 4 and 5 (see Figure 
1.2), describing the estimation methods. 
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3 Related work 

3.1 Software architecting and architecture evaluation 
The most elaborated introduction to software architectures is presented in [BCK03]. 

The authors describe the fundamentals of the software architecting, the role of the 
architecture in the business cycle of product development, guidelines to creating and 
analyzing the software architectures, etc. Several chapters of [BCK03] are devoted to the 
architectural quality attributes (e.g., performance, security, portability, etc.) and the 
satisfaction of quality requirements by selecting the appropriate architectural styles. The 
suggested architecting principles are illustrated using various practical case studies that 
describe architectures from different domains (air traffic control, World Wide Web 
services, etc.) and for different quality attributes (interoperability, availability, etc.). 

A good survey about different subtopics related to software architecture can be found 
in [Lan02]. Particularly, Land overviews the following topics: architectural views, 
architectural styles and patterns, architecture description languages, and architecture 
evaluation methods. A detailed discussion of those subjects is beyond the scope of the 
thesis. Only certain topics, which are relevant for the presented research, are discussed in 
more detail in the subsequent subsections. 

A need for evaluation of software architectures and role of this evaluation (with the 
emphasis on the quality attributes) has been explained in [CKK02]. Clements et al. express 
the necessity of early assessment of the architectural quality attributes and advocate the 
need for systematic and repeatable approach to this evaluation as “a cheap way to avoid 
disaster”. They also suggest three different approaches to architecture evaluation: SAAM 
(Software Architecture Analysis Method), ATAM (Architecture Tradeoff Analysis 
Method), and ARID (Active Reviews for Intermediate Designs). The first method analyses 
how the quality of the architecture will change as a result of certain modifications in the 
future. The second method concentrates on the interaction (a trade-off) between different 
qualities of the architecture. Both methods base their evaluations on scenarios developed 
by system stakeholders and an evaluation team. The important benefits of these methods 
are organization of the interaction between the stakeholders, architects, and evaluation 
team as well as additional documentation of the architecture. The ARID method is applied 
to evaluate the suitability of design approaches and partial architectures at the early 
architecting phase. This method incorporates the strong qualities of both ADR (Active 
Design Review) and ATAM methods. This combination allows bringing together the 
stakeholders and the designers at early phases of software development. The stakeholders 
generate scenarios for analysis of the architecture suitability, whereas the designers use 
these scenarios to brainstorm on the designs and their further testing. Passing of the tests 
generated by stakeholders will ensure the appropriateness of the design. 

The three methods described above have the following important properties: a) they 
can be employed for high-level analysis of the entire architecture and do not focus on 
details, b) they enable qualitative analysis only, and c) they indicate what should be 
improved in the architecture to meet the quality requirements. The methods are quite 
general, but this is also a disadvantage, as significant acquaintance effort has to be taken to 
apply them to a particular architecture. 

The focus of our research, in comparison to this work, is on the quantitative evaluation 
of quality attributes. We deal with concrete class of the architectures: component-based 
architectures. Instead of considering architecture as a whole, we zoom in and consider 
details at the level of individual components. Besides the identification of the quality of the 
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architecture, our method can also identify the reasons why certain quality level is achieved 
or not (architectural insight). We reduce the scope of quality attributes to static additive 
quality attributes and to performance, yet keeping our approach extendable to more quality 
attributes. 

3.2 Component-based software engineering 

Component-based software engineering (CBSE) has already become widely adopted 
software development paradigm. Component-based approach helps to deal with the 
growing complexity of software, enables reuse of already implemented software parts, 
facilitates the independent development, etc. This approach is practice-oriented, and thus 
only a limited amount of work on fundamentals and theory of component-based 
technologies is therefore available in the literature. 

In [Lan02], Land explains that the research areas of CBSE [Szy98], [CL02] and of 
software architectures [Bos00], [HNS00] intersect. The software architecture puts 
emphasis on the structure of software consisting of components, whereas the focus of 
CBSE is on components themselves and the technology for their integration. 

One of the worldwide-known publications on component-based software is [Szy98]. 
This book provides an extended rationale for introducing the component-based approach 
into the software development field. It demonstrates the differences between obsolete 
object-oriented and component-oriented development paradigms and explains why the 
former does not completely meet the requirements of the modern software market. 
Moreover, it provides necessary information for making easy step from OOP to CBSE. 

All essential definitions of the basic entities of the component-based approach (e.g., 
component, interface, etc.) are discussed in [Szy98]. The author stresses the multi-
functional nature of a component: a unit of composition, unit of independent deployment, 
unit of encapsulation, etc. Szyperski also presents a detailed taxonomy on the existing 
components models (COM, CORBA, JavaBeans), explaining their basic principles, rules, 
advantages, and disadvantages. Additionally, the book catalogs a number of valuable 
practical guidelines for the development of components, component frameworks, and 
component architectures. Finally, Szyperski speculates about the future of components: 
technical tensions, market evolution, and software developer evolution. 

Another extensive publication on component-based theory is [LS00]. The authors 
present the underlying theory for multiple component-oriented solutions (e.g., introduction 
of provides and requires interfaces). Further, they focus mostly on two main issues: a) 
description syntax for components and their interconnection and b) semantics for 
component behavior and interaction. This book contains only high-level abstractions of 
component-based systems and does not concentrate on particular component technology. 

A good collection of the foundations in CBSE is presented in [BBB00]. The report 
highlights the main concepts, such as component, interface, component model, component 
framework, etc. Besides the foundations, the authors also sketch a vision for necessary 
future research in the field, namely, derivation of the properties of component 
compositions from the properties of components. 

There are two other interesting collections of articles in component-based software 
engineering field: [HeC01] and [CL02]. The first collection [HeC01] presents various 
aspects of component-based software engineering. It starts with definitions of components 
and different views of component technologies. Several parts of this book are dedicated to 
component infrastructures and component-based architectures. A component infrastructure 
is responsible for the operational context of components and for supplementary units that 
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ensure the proper functioning of the components (with a certain quality level). A 
component architecture usually integrates a number of components, responsible for certain 
tasks, using pre-defined rules and constraints. The book also contains a number of 
overviews on state-of-the-art component technologies (COM+, EJB, CORBA) and 
descriptions of cases and practices illustrating the use and status of CBSE in different 
contexts. 

The second collection [CL02] is mostly concerned with the emergent quality of the 
component-based software. This book provides a detailed description of CBSE discipline 
in terms of challenges, objectives, requirements, concepts, etc. Is also contains an 
overview of modern component technologies. A large part of this book describes the 
specification and verification of component semantics and component properties (both 
static and dynamic). Closely related to this part is a part about the integration of 
components and prediction of the properties of component compositions. 

Three other parts of this book are relevant for our research. The first one explains the 
principles and process of construction of product line architectures from components, and 
takes the Koala component model [OLK00] as an example. The second one presents a 
detailed overview of all significant issues for designing of the real-time systems from 
components (e.g., scheduling, WCET verification, etc.). The third one describes the main 
aspects of software development for embedded systems and illustrates the basic principles 
via a case study. The special flavor of this book is conveyed by using various industrial 
experiences in the field of component-based architecting. Descriptions of the case studies 
on industrial automation and on business applications facilitate comprehension of the 
rationale for CBSE and of the component-based development process. 

A good overview of component technologies- JavaBeans, COM+, CCM, OSGi, and 
.NET- currently applied in industry and the assessment of the concepts and principles 
thereof are presented in [EF02]. The authors identified a number of common aspects of the 
existing technologies (e.g., interface, assembly, etc.) and claimed that it would be possible 
to find the basic blocks of component models and, probably, develop a general component 
model. 

Most of the contemporary component models- COM [Rog97], CORBA [Bol01], 
JavaBeans [MoH01]- require extra computing and memory resources to implement and to 
run the components. Therefore, these models cannot be successfully used in embedded 
systems. An effort of several research partners on the development of a lightweight 
component model resulted in genesis of the Koala component model [OLK00]. 

3.2.1 Important CBSE notions 

In this thesis, we use the definition of a component given by Szyperski from [Szy98]: 

A software component is a unit of composition with contractually specified interfaces 
and explicit component dependencies only. A software component can be deployed 
independently and is a subject to composition by third party. 

Binding defines the connections between components, and, also, which components are 
included into a composition. For example, the component may need to be excluded from a 
composition if its interfaces are not required by other components1. 

Depending on a particular component model, binding can be performed at a) compile 
time (in Koala), b) link time, c) initialization time, and d) run-time, at any moment. The 

                                                 
1 The Koala component model [OLK00] performs a so-called reachability analysis that determines if a 
component needs building, based on monitoring of component’s provides interfaces. 
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first two types are often referred to as early binding, whereas the last ones are examples of 
late binding. 

The binding is also discerned on its location: (1) endogenous and (2) exogenous. The 
former is implemented by the code of components, whereas the latter is implemented 
outside of them. The exogenous binding makes it easier for third parties to assemble 
components, whereas the endogenous one makes it more cumbersome. For example, the 
COM component model is based on endogenous binding, whereas the Koala component 
model employs exogenous binding. 

A reusable component must be customizable for the use in a particular context. For 
instance, consider a component that must execute its operations in a thread-safe manner. 
Depending on the context in which the component is used, locks may need to be 
introduced in order to ensure thread-safeness. However, this kind of information may only 
be known at binding time, and the component consequently has to be configured at that 
time. This brings us to a notion of diversity of a component that describes possible 
configurations of a component. The component has a special interface that allows to tune it 
the environment. For example, the Koala component model introduces a special form of 
requires interfaces, called diversity interfaces. A diversity interface specifies a set of 
parameters that describe what customizations of a particular component are possible. For 
example, a memory management component may be configured via such a diversity 
interface to reserve a memory pool of certain size. 

We illustrate the important CBSE notions by describing the Koala component model 
[OLK00] in more detail in the section below. 

3.2.2 An example of component model: Koala 

Koala is a proprietary component model primarily designed for resource constrained 
embedded systems and applied in Philips Consumer Electronics products such as TVs. 
This model was developed to tackle the problems of growing complexity and diversity in 
resource constrained software-intensive systems often met in the Consumer Electronics 
domain and to shorten development time. The Koala model supports fast development of 
software for product families by enabling the reuse of already existing components and by 
using the explicit architecture. To describe component architectures, a dedicated language, 
the Koala ADL (Architecture Description Language), was introduced. This language is 
employed to specify and to parameterize components and component binding. 

Three other important Koala features– (1) the use of source code (C language) 
components, (2) static binding and (3) exclusion of unbound components from the 
composition– make the resource demands of a component composition low and 
predictable. This allows one to use cheap hardware in systems produced in high volumes, 
with profit margin increasing. 

However, Koala component model does not incorporate specification of quality 
attributes. Consequently, it is does not allow yet the architects to reason about the quality 
attributes of the component compositions. 

On the other hand, because of its features, the Koala component model is a good 
candidate for making extensions to it to enable the prediction of quantitative QA’s for 
component compositions. The subsequent subsections discuss those features in more detail 
and explain why these features facilitate the prediction of QA’s. More information about 
Koala can be found in [OLK00]. 
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A) Components and Interfaces 

Koala components are units of design, development, and – more importantly – reuse. A 
component communicates with its environment through interfaces. A Koala interface is a 
small set of semantically related functions. A component provides functionality through 
interfaces, and to do so may require functionality from its environment through interfaces. 
In the Koala component model, components access all external functionality through 
requires interfaces. 

An interface is described syntactically in an Interface Definition Language (IDL). For 
instance, this is the ITuner interface: 

interface ITuner 
{ 
    void SetFrequency(int f); 
    int GetFrequency(void); 
}. 

ITuner is an example of a specific interface type, which will be provided and/or 
required by only a few different components. Koala interfaces may contain not only 
declarations of functions, but also declarations of attributes. An example of such an 
interface is as follows: 

interface IRtkConfiguration 
{ 
   int MaximalTaks; 
   int MaximalMessages; 
   … 
}. 

A Koala component is an encapsulated set of software, with a clearly defined relation 
to its environment. A component 

• provides interfaces to its environment. These interfaces are called provides 
intrafces; 

• requires interfaces from its environment; These interfaces are called requires 
intrafces. 

Each component is described in a Component Description Language (CDL)  

Two types of components are distinguished: basic and compound. Basic components 
are built in C and cannot contain other components; compound components are built by 
instantiating other components and connecting them together, thereby forming a 
containment or decomposition hierarchy. Components of both types may contain a number 
of modules, which implement a part of the component functionality in the C language. 

Figure 3.1 shows an example of a component graphically. The large box is a 
component, whereas the small ones with triangles inside are interfaces. The direction of 
the triangle denotes the direction of function call: the triangle tip pointing inside the 
component indicates a provides interface and pointing outside – indicates a requires 
interface. The internals of the CComp component are discussed in Section B) in more 
detail. 

Explicit component boundaries allow assigning the component certain QA-related 
properties. These properties describe the contribution of a component to the QA of the 
entire component composition. For brevity, we call these properties QA’s of components. 
For instance, consider static memory consumption. In this case, such the QA of a 
component describes its static memory demand. 
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Figure 3.1: A compound Koala component 

The possibility to describe interfaces that contain attributes can be used to specify the 
QA’s of components. Such an interface is called a reflection interface 

The containment hierarchy facilitates hiding the details of an inner component, which 
may be irrelevant at certain abstraction level. The QA’s of component can be described in 
terms of the QA’s of its immediate subcomponents only. 

B) Configurations, Binding and Diversity 

Figure 3.1 shows how a compound component can be constructed from basic 
components: 

• Interfaces of the compound component can be implemented by subcomponents; 
• Interfaces of subcomponents can be connected directly (not shown), through 

modules (m) or through switches (s); 

Diversity is handled by making explicit variants of components, or by using if-
statements within a component. These mechanisms are called structural and, respectively, 
internal diversity. Variants are created when roughly 80% of the code is different; 
otherwise, the diversity is handled internally. In other cases, the component boundaries 
have not been chosen properly. 

Both types of diversity of a component are controlled through diversity interfaces. 
These diversity interfaces are interfaces containing attributes and describe sets of 
parameters (cf. properties in Visual Basic), which are called diversity parameters. These 
attributes are given a specific value to tune the component to its environment. In Figure 
3.1, these interfaces are the d interfaces of the compound and inner components. 

The diversity interfaces are a special type of requires interfaces such that a user of the 
component must fill them in. This compelling allows to attract the attention of the user to 
component configuration process. This configuration process is important, as if performed 
properly, it allows for certain optimizations with respect to the resource demand of a 
component [OLK00].  

Structural diversity is implemented by introducing switches in the binding. Such 
switches are usually controlled by diversity interfaces of the compound component, thus 
making internal and structural diversity two faces of the same coin. 
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In Figure 3.1, both the switch and the internal diversity of the subcomponents are 
handled by a module m, containing expressions that formulate these parameters in terms of 
the diversity parameters of the compound component. This allows using different sets of 
parameters at different levels in the decomposition hierarchy. 

This explicit management of diversity parameters enables accounting for their 
influence on the QA’s of individual components and component compositions. 
Particularly, the values of diversity parameters may determine the resource demand of a 
component, which must be known to be able to predict the resource-consumption-related 
QA’s of a composition. Without the explicit knowledge of the values of these parameters, 
describing the component resource demand would be impossible, as this demand 
significantly depends on these parameters. In other words, not taking into account diversity 
will result in highly non-deterministic predictions. 

C) Optional Interfaces 

Sometimes it is possible to obtain “enhanced” functionality or non-functional 
behavioral aspects of a component or subsystem, if it is provided with some additional 
features (e.g. having an ability to use hardware-accelerated functions if the appropriate 
hardware is available). The notion of optional required interface has been introduces in 
Koala to deal with such kind of issues explicitly. 

Each optional interface is associated with an “iPresent()” function. This function may 
be evaluated false (the interface is not implemented) or true (the interface is 
implemented). Note that non-optional interfaces must always be implemented. 

The explicit handling of optional functionality enables taking this functionality into the 
account, when predicting the QA’s of individual components and component 
compositions. Similarly to the case of explicit management of diversity parameters, this 
explicit will allow to reduce the non-determinism in QA predictions. 

3.2.3 Early assessment of QA’s of a component composition 

One of the main challenges of CBSE is the development of component compositions 
with predictable quality attributes [Lar04]. This challenge presumes that QA’s of the 
composition can be derived from the properties of the components. 

The requirements to the techniques for development of predictable compositions are 
sketched in [Sch01]. In [Pel99], the author identifies a number of problems that have to be 
solved when composing COM components to provide predictability of composed 
behavior. 

An interesting approach to static verification of the correctness of component 
compositions is described in [GZ01]. Approaches to prediction of the properties of the 
assemblies based on the properties of constituents were proposed in [LWN02], [Mas02] 
and [MHW02]. 

Hissam et al. in [HSM03] introduce prediction-enabled component technology (PECT) 
as a means of packaging predictable assembly as a deployable product. A PECT is the 
integration of a component technology with one or more analysis technologies. The latter 
support prediction of assembly properties and also identify required component properties 
and their certifiable descriptions. The authors discuss the means of validating the 
predictive powers of a PECT, which provides measurably bounded trust in design-time 
predictions. In [Lar04], Larsson analyzes a number of existing component models (e.g. 
[OKL00]) in the light of PECT. 
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The PACC (Predictable Assemblies from Certifiable Components) initiative was 
started by SEI (Software Engineering Institute) to address the behavioral and quality 
aspects of component compositions. The focus of this initiative is on prediction of the 
assembly behavior from the properties of components. One of their significant research 
results in this direction is the compositional language CL presented in [ISW02]. This 
composition language defines a formal syntax and semantics for component interaction 
and composition. This language describes a composition in terms of components and their 
interconnections, and the compositional semantics is described in CSP process algebra. 
The component behavior is specified in terms of reactions; assemblies are constructed 
from components, but they cannot contain other assemblies. The application of CL is 
illustrated with examples that demonstrate component property specification and 
composition property calculation. 

In [JMC03], de Jonge et al. describe a specification and estimation technique for 
predicting the use of dynamic memory by an assembly of components. The component 
interfaces are enriched with the specification of the control flow graph represented by an 
MSC [Ren99] and the amount of memory allocated and released by each operation. A 
formal semantics for calculating the resource demand is suggested and demonstrated by 
predicting the dynamic memory demand for a simple application. 

3.2 Estimation of static quality attributes 

Development of the techniques for compositional reasoning on static properties is one 
of the promising research directions in component-based software engineering. The early 
estimation of some compositional static properties (e.g. the upper bound of resource 
consumption) is often crucial for ensuring the feasibility of architectural decisions. 

Some research effort was taken towards the prediction of memory consumption. An 
approach, proposed in [USL00], is based on the abstract interpretation theory. A high-level 
language program is automatically transformed into a function that calculates the worst-
case usage of stack and heap space. This worst-case usage is a static quality attribute. The 
authors of [ZG94] propose and evaluate the methods for modeling the memory allocation 
behavior of the software. By means of this modeling, the estimation of memory 
consumption can be performed with reasonable accuracy.  

The aforementioned approaches are based on rigorous mathematical theories that pose 
idealistic assumptions. They also do not deal with complex software input and diversity 
parameters that can have significant influence on the static property of interest. Some of 
them do not deal with component compositions, but they can be applied when the entire 
program code is available. 

The added value of our research is the early quantitative estimation of the static 
composition properties that are vital for embedded resource-constrained applications. We 
consider component-based systems, and the estimation is based on the specification of the 
properties of each component. An important feature of our approach is that it accounts for 
input and diversity parameters of the components when calculating the estimates of static 
properties. The estimation can also be performed even if some components are not 
implemented yet, but their static properties are budgeted. Finally, our approach provides an 
architect with an opportunity to balance estimation effort versus estimation accuracy. 

3.3 Performance estimation techniques 

There are a number of dynamic quality attributes that are of particular interest of 
software architects. We decided to concentrate on software performance, as this dynamic 
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attribute was a concern of our industrial partners (see Section 2.3). Thus, we surveyed 
research results that were produced in the field of software performance engineering and 
evaluation. 

In our research, we aim at the development of extension to the existing component-
based technologies that enables the quantitative estimation of the quality attributes of 
component-based software. Taking the best features of the conventional component 
models as a foundation, we focus on the generic enhancement that would be suitable for all 
of them. The most important requirements for the component models extension so far are 
presented in [HC01]. This enhancement includes specification of non-functional properties 
of the components and techniques to assess these properties for component compositions. 
In addition to this enhancement, our goal is to come up with a set of guidelines 
(limitations) for the architects that use current component technologies. When following 
these guidelines, the architects will analyze and assess the architectural quality attributes 
more efficient. 

3.3.1 General approaches to performance analysis and 
estimation 

When analyzing performance of a software system, the most adequate performance 
approach should be selected based on the structure of the system, required estimation 
accuracy, performance metric of interest, required effort, etc. This section briefly describes 
a number of the existing performance approaches. The descriptions of the approaches 
include the essence of the approach, the scope of the applicability, basic assumptions, 
limitations, and required effort. The descriptions are concluded with a comparative table 
for all approaches.  

The following approaches are considered (see Figure 3.2): analytical modeling, 
statistical modeling, and simulation. Methods for worst-case execution time (WCET) 
estimation are considered apart. 

Performance analysis

Analytical methods
(Queuing Networks)

Statistical methods Simulation (SM-based)
 

Figure 3.2: Approaches for performance modeling 

In [Jai91], Jain advocates the use of all measurements, simulation, and analytical 
modeling for analyzing the performance of computer systems. The results provided by any 
of these techniques should not be trusted until confirmed by at least one of the other 
techniques. 

A) Analytical performance modeling 

Nowadays, the majority of performance analysis and modeling techniques are based on 
the theory of queuing networks (QN) [Kle75]. The techniques of this type are usually 
called analytical2[Jai91]. According to the QN theory, a software system consists of 
servers that have to process jobs. The jobs have to wait in the queues, while the other jobs 

                                                 
2 This widely adopted term is, in general case, erroneous, as QN models are sometimes solved by means of 
simulation. 
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are being served. In modern software systems, CPU, disk, memory and other resources can 
be treated as servers (see Figure 3.3). 

CPU Disk

ExitEnter

 
Figure 3.3: A simple queuing network 

Further, Table 3.1 describes the parameters of a queuing network. 
Table 3.1: Parameters of a QN 

PARAMETER MEANING 
λ  Arrival rate of the jobs. Most common arrival distribution is the 

Poisson distribution that means that inter-arrival times are 
independent and exponentially distributed. 

S  Mean service time at server. Most commonly used for these times 
distribution is exponential distribution. 

V  Average number of visits to the server. 
Service discipline For each server, the order in which jobs are served is specified. 

Most commonly “First Come, First Served” (FCFS) discipline is 
used. 

Based on the aforementioned characteristics, one can estimate various performance 
metrics of the system: average waiting time for a job, average service time for a job, 
throughput of a server, etc. These estimations are usually obtained by modeling the 
behavior of QN in terms of stochastic processes. These processes are functions of time and 
they represent the state of QN at each particular moment. The state of a system can define, 
for example, the number of jobs in the system (see Figure 3.4). 

0 1 2 i i+1....

0λ 1λ 2λ 1i−λ
iλ

1S 2S 3S iS 1iS +  
Figure 3.4: States of a QN 

The most commonly used processes for modeling the QN are Markov processes3 
[Jai91]. A remarkable property of these processes is that the future state of the process is 
independent of the past, and depends only on the present state (memoryless distribution of 
state times). Such a feature significantly eases the analysis of the system. For example, for 
a simple system with one server, Poisson arrival process, and exponential service time 
distributions (M/M/1 system), the following performance measures can be estimated: 

1. Mean response time: 
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 (3.1) 

 

                                                 
3 Discrete-state Markov processes are called Markov chains. 
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2. Mean waiting time: 

 
1

( )
1

SE W =
−

ρ
ρ

 (3.2) 

In Formulas (3.1) and (3.2), 
S

=
λ

ρ  - traffic intensity in the system. 

The advantages of applying QN theory are the following: 
1. The estimates of performance metric of interest can be obtained by solving 

algebraic equations, and, thus estimation process does not consume much time.  
2. As QN’s are considered a key approach to performance prediction for many years, 

enormous amount of experiences and literature on QN’s is available. 

The following disadvantages can, however, convince one not to use QN’s for 
performance analysis: 

1. QN’s model the system behavior with a limited language (jobs, servers, and 
queues). As a result, some performance-relevant behavioral aspects (e.g., 
interactions between jobs) cannot be described in these terms, and performance 
insight becomes limited. 

2. Certain assumptions must hold for the system in order to enable the modeling and 
solution of queuing networks. These assumptions are listed below. 

The following assumptions (for more assumptions, see also [Jai91]) should hold for 
application of the Markov processes for analysis of the QN system: 

1. Exponentially distributed service times; 
2. Individual arrivals of jobs (no bulk arrivals); 
3. The jobs are independent, i.e. they do not join, fork, etc; 
4. One job does not occupy more than one resource simultaneously. 

A classical approach to performance analysis is presented in [Smi90]; it is extended in 
[SW02]. This work explains the fundamentals of performance analysis and gives the 
rationale for performance engineering. The authors emphasize the need for tackling the 
performance problems at the early stages of product development, since correction of 
performance errors at the later stages is an order of magnitude more expensive than 
correcting them at early stages. All performance-relevant issues and metrics are classified, 
and a systematic approach to construction performance models is proposed. Each software 
performance model is represented with a number of scenarios that are the most important 
for meeting the performance requirements. The scenarios are described by means of 
execution graphs. These graphs, system model and resource overhead specifications allow 
constructing a system execution model. This system execution model builds on the 
principles of queuing networks and can sometimes be solved analytically. For complex 
systems, with many scenarios, distributed to different CPU, simulation has to be used to 
obtain an approximate solution. The supportive SPE-ED tool [SW97] is developed to 
interactively assist the performance engineer in applying this approach. 

There are a number of approaches that aim at early performance estimation, based on 
architectural models. Classical approaches [SG98] to performance prediction use queuing 
network models, derived from the structural description of the architecture and 
performance-critical use cases. Other approaches include specific architecture description 
styles [ABI00]. 

An interesting approach is proposed in [HWR99]. An executable prototype (a 
simulation model) generates traces expressed in a specific syntax (angio-traces). These 
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traces are used for building performance prediction models, based on layered queuing 
networks. 

Preliminary analysis of the behavior of the investigated software systems in CE and PS 
domains revealed that aforementioned assumptions (e.g., distribution of service times) do 
not hold for these systems. Thus, QN-based techniques were not applied for performance 
analysis in our research. 

B) Statistical techniques 

Statistical approaches to performance prediction are data-driven approaches that are 
based on the principles of the statistical regression analysis. Statistical regression analysis 
is a statistical technique which models the relation between a set of input variables, and 
one or more output variables, which are considered dependent on the inputs, on the basis 
of a finite set of observations (measurements). The resulting model is a prediction model 
that, being fed with values of the input variables, calculates an estimate of the value of the 
output variable. The goal is to obtain a reliable generalization that means that the 
prediction model, calibrated on the basis of a finite set of observed measures, is able to 
calculate an accurate prediction of the dependent variable for a previously unseen value of 
the independent vector. In other terms, this technique aims to discover and to assess, on the 
basis of observations only, potential correlations between sets of variables and use these 
correlations to extrapolate to new scenarios. Usually, the statistical prediction models are 
constructed as depicted in Figure 3.5. 

Software system

Measurements

Prediction model

input output

outputinput

prediction

error

 
Figure 3.5: Calibration of the statistical prediction model 

The calibration process consists of the following basic steps: 
1. Definition of performance-relevant scenarios. This step aims to select a 

representative set of execution scenarios to be used for collecting measurements.  
2. Definition of the input parameters. During this step, performance analysts, together 

with software designers, have to select a set of parameters to be used as input 
variables for the prediction model. This step can be repetitive if such parameters 
are difficult to identify or if a prediction model with pre-selected set of input 
parameters has insufficient quality. We assume that output variable is pre-defined 
and it is one of the widely used performance metrics (response time, throughput, 
etc.) 

3. Collection of measurements. This step consists in execution of the performance-
relevant scenarios and in collection of the values of input and output variables. 

4. Construction of the prediction model by means of regression techniques. Based on 
the measurements, regression techniques construct an algebraic expression that 
approximates the dependency between input and output variables. 
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5. Validation of the prediction model. This step includes checking of the quality of the 
model and the quality of the predictions for alternate scenarios. The quality of the 
model is defined by a number of statistical criteria (R-squared coefficient, residual 
distribution, etc.). The quality of the prediction is usually determined by statistical 
comparison of the predictions obtained for the scenarios that were used for 
calibration and for some alternate ones. 

Note that this entire process is iterative, and can be repeated until the prediction model 
has a sufficient quality.  

There exist two types of regression models: linear regression models and non-linear 
regression models. The former approximates the dependencies in a system by linear 
expressions: 
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In this formula, y  is a dependent variable (output), ix  are independent variables (input 
parameters), N  is the number of input parameters, and iβ  are the regression coefficients. 
In the latter case, the dependencies are specified by non-linear expressions, e.g. 
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Linear models are the most commonly used ones, and, thus, we also decided to use 
them in our research project. A good overview of various existing regression techniques is 
provided in [Jai91]. 

The main advantages of using the statistical approaches for performance prediction are 
the following: 

1. Possibility to abstract from irrelevant details by means of the prediction model 
fitted on the limited set of parameters. 

2. Fast performance estimation by prediction model (e.g., in comparison to 
simulation). 

3. Solid mathematical basis for performing various tests on the collected 
measurements. These tests help in exploring complex dependencies in the system. 

The main drawbacks of the statistical models are the following: 
1. They do not provide any insight about performance-relevant behavior of a system, 

since they consider the system as a “black box”. 
2. They provide reliable predictions only if the assumptions of the underlying 

techniques are valid for the prediction model (see e.g. assumptions below). 
3. They provide reliable predictions only for the measured range of the input 

variables. For the variables, located outside this range the approximation may turn 
out incorrect (see Figure 3.6). 

There are a number of assumptions needed to ensure the quality of a prediction model 
constructed by means of linear regression (for more details, see [WEI95], [MoH01], and 
[MR03]): 

1. Residual (prediction error) is normally distributed. 
2. Residual standard deviation is constant (homoscedasticity). 
3. There are no outliers. 
4. There are no influential observations. 
5. There is no correlation between input parameters of the prediction model. 
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Figure 3.6. Approximation is valid for the measured range only 

Our research was in particular inspired by an approach proposed by Bontempi et al. in 
[BK02]. The authors use regression techniques for the performance prediction of various 
embedded software systems (among others, MPEG2 decoder). The approach proposes to 
tackle two problems in performance estimation: significant amount of time consumed 
while executing a code on cycle-true simulator, and selection of the performance-relevant 
parameters among hundreds of the input ones.  

The code of a software system in question is compiled by dedicated tools into the code 
based on the reduced set of instructions (see Figure 3.7). 

Cycle-true simulator

Prediction model

output

prediction

-
errorcode of software

system

inputReduced instruction
set

 
Figure 3.7: A data-driven approach for performance prediction 

Afterwards, the numbers of instructions of different types are used as input variables 
for the prediction model. Execution of the code on cycle-true simulator yields performance 
measures, i.e. values of output variable for the prediction model. The prediction model is 
calibrated based on the aforementioned values of inputs and outputs. The performance 
predictions obtained by means of this model were compared to the measurements on cycle 
true simulator.  

The experiments with the software of different types showed that prediction model had 
a low prediction error, below 20%. Another important result was the comparison of the 
estimation effort. Cycle-true simulation took many hours to return a performance measure, 
while a performance prediction model could provide the result in less than one second. 

This approach exhibited a number of positive aspects: 
1. It allows one to obtain performance predictions much faster than by means of pure 

cycle-true simulation. 
2. The abstraction by means of reducing of the instruction set and construction of the 

statistical model does not deteriorate the prediction quality. 

However, this approach also has a number of drawbacks: 
1. The entire code is required for the performance prediction. A program that consists 

of the instructions from reduced set cannot be created from architecture and design 
description.  

2. This approach is not oriented at component-based systems as it considers software 
system “as a whole”. 
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The work presented in [GMH01] also describes an approach to software performance 
prediction that employs statistical techniques. It considers the use of linear regression 
techniques only, whereas the approach described in [BK02] additionally considers the use 
of adaptive local regression techniques (lazy learning [Bon99]). Both approaches address 
performance prediction when the software has already been implemented. 

We extended the approach from [BK02] such that it does not require the entire code be 
available to construct high-level performance models. These models are rather built on the 
basis of architectural and design specifications. Additionally, this extension is component-
oriented, that is, the performance estimate of the component composition can be obtained 
by using the performance models of the constituents. 

C) Simulation 

A well-known practice for early performance analysis is the construction of a 
simulation model that captures the performance-critical parts of the software. Simulation is 
the realization of a model for a system in computer executable form [FM03]. Simulation of 
the system with the purpose of performance analysis allows one to model the run-time 
behavior of a system, to gain insight into performance-relevant parts of the system, and to 
identify performance bottlenecks.  

Simulation models are usually constructed when the complexity of the system under 
consideration does not allow using simple analytical approaches for performance analysis 
and reliable prediction. Simulation model do not only allow an analyst to decrease the 
level of complexity, but also allow the analyst to flexibly adjust the level of modeling 
details according to the goal of the analysis, available timing budget for the simulation, 
and required accuracy of the results. 

Simulation models usually describe the system behavior in a dedicated (high-level) 
programming language. Often, this language is a part of a dedicated simulation 
environment that provides user with the tools to specify system behavior with various 
formalisms (e.g., state charts), to compile the simulation program, to execute it, and to 
inspect the observable behavior of the model. A number of the existing simulation 
environments are presented in Appendix S. In our research, we applied the COVERS 
simulation engine that has the following properties: 

1. It allows user to specify the behavior of the active objects with state charts and 
communication between these objects by means of message passing. 

2. It translates these models into C++ code that is compiled and executed. 
3. It supports model observation and modification during run-time. 
4. It provides an extended class library supporting statistics gathering and 

visualization. 
5. It allows building real-time models to be used with real environment. 

A screenshot demonstrating some feature of the COVERS simulation environment is 
depicted in Figure 3.8. 

Some other simulation languages and techniques are described in [FM03]. 

The use of simulation models for performance analysis has the following advantages: 
1. Simulation models can provide much more performance insight than statistical 

ones can. 
2. Simulation models can be used for modeling complex dependencies that cannot be 

covered by analytical or statistical ones (e.g., dependencies on the history, behavior 
on the long run, etc.). 

3. Simulation models can be made as accurate as needed (e.g., to achieve higher 
estimation accuracy). 
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4. Simulation models provide an opportunity to change performance relevant 
parameters, and architectural solutions and to quickly observe how these changes 
influence the performance (without implementing them in software product). 

5. Some simulation environments support automatic code generation from the 
models. 

However, the use of simulation models also has a number of drawbacks: 
1. Selection of both level of abstraction and simulation language are the potential 

points of failure, since there exist no general guidelines for proper selection, and an 
error in selection can lead to an inadequate model of system behavior. 

2. Construction of a simulation model is an iterative process that can require 
significant effort. 

3. Selection and generation of correct input data for the validation of the simulation 
model can require a) additional effort for choosing the representative input 
parameters and sufficient amount of this data for model validation, and b) 
additional knowledge in statistical distributions. 

4. Validation of the simulation can consume much time. However, the models that are 
not sufficiently and properly validated can provide useless and misleading results. 

 
Figure 3.8: COVERS simulation environment 

Table 3.2 presents a brief comparison of the performance modeling techniques. 
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Table 3.2: Comparison of various performance modelling techniques 

Approach\ 
Criterion 

Insight Accuracy Effort Assumptions Simplicity 

Analytical 
methods 
(QN) 

High Medium Low Strict: exponential 
distribution of arrival 
and service times 

Medium, 
requires 
learning time 

Statistical 
models  

Moderate High Medium, but 
extensive 
measurements 
required 

Typical for statistical 
models (e.g., residual 
distribution) 

Medium, 
requires 
learning time 

Simulation High High High, for 
construction and 
validation 

No High, well-
known 
engineering 
notations 

3.3.2 WCET estimation techniques 

WCET estimation techniques were interesting and relevant for our research, as they 
also deal with the CPU demand of software, which is important for assessment 
performance. In addition, these techniques consider the control flow within the software, 
which is also concern in our hierarchical approach, described in Chapter 9, for predicting 
the performance of component compositions. Although, we hardly employed the WCET 
estimation techniques in our approaches to performance prediction and in our experiments 
because of the following reasons: 

1. These techniques require the entire code (execution graph) available, while our 
goal was to build the performance models from design models.  

2. During analysis of the modern complex software, these techniques run into the 
problem of combinatorial explosion of details. 

3. We did not deal with hard real-time systems, and, thus, we were rather interested in 
reasonably accurate average performance estimates then in tight WCET estimates. 

The analysis of worst-case execution time (WCET) is important for component-based 
real-time systems. On one hand, this property is static, as it is usually estimated statically. 
On the other hand, WCET is required to estimate the schedulability of software, which is a 
dynamic property. The estimation of WCET for component-based software is complicated, 
as execution paths often pass through multiple components. Analysis of all paths can lead 
to combinatorial explosion of details. Despite the fact that WCET estimation was not the 
primary focus of our research, we investigated the state-of-the-art approaches in this field. 

The worst-case execution time analysis can be subdivided into three parts: (1) high 
level analysis or extraction of the control flow information, (2) low level analysis which 
takes into account influence of hardware architecture, and (3) actual calculation of WCET. 

The main task of extraction of the control flow information is to reduce the pessimism 
of WCET estimation due to infeasible paths. The extraction can be performed manually or 
(semi-) automatically. Manual extraction means that functions (component methods) are 
annotated with the relevant control flow information like the maximum number of 
iterations [BP01], [KP00], [KP01] and [PK89]. 

With the automatic extraction one analyses the structure of a program and the use of 
variables and function parameters to reduce a number of infeasible execution paths. There 
exist a few approaches for the automatic extraction. The two major ones are based on the 
theory of abstract interpretation [Gus00], [GE98] and symbolic execution [Alt96], [LS99]. 
The former suggests a special interpretation of the subset of a high-level programming 
language. The semantics of operations on variables builds not on scalar values, but on the 
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sets4 of values. By doing so it is possible not only to extract the worst-case control flow 
information, but also to obtain the superset of possible values for every variable of the 
analyzed function. 

A symbolic-execution-based technique typically constructs a dedicated virtual machine 
that executes a program (function) with the values of variables represented in the symbolic 
form. During the symbolic execution of the program, the value of each variable is 
represented as an expression over other variables or constants. By confronting the 
symbolic values of the variables to the controlling expressions of branch operators and 
loops, it is possible to eliminate some infeasible paths. 

The low-level analysis helps to incorporate the influence of hardware aspects into the 
execution time of atomic blocks. Typical hardware features that need to be addressed 
during this analysis are the following: memory, bus, caches, pipelines, branch predictors, 
etc. 

The actual calculation of WCET may be performed with three classical approaches 
described in the literature: (1) path-based techniques [EES01], (2) tree-based techniques 
[Alt96], [CP01] and (3) implicit path enumeration techniques (IPET) [KP00], [KP01], 
[EE00] and [PK89]. 

The path-based techniques search all possible paths for the longest one, whereas the 
tree-based techniques build on the principle of bottom-up traversal of a program syntax 
tree. IPET-based techniques represent the information about control flow and execution 
times of atomic blocks with a set of algebraic and/or logical constraints. WCET estimates 
are calculated by maximizing a certain objective function given the set of constraints. 

Unfortunately, many approaches proposed in the literature implicitly integrate high-
level analysis, low-level analysis, and actual calculation of WCET into an indivisible 
framework. This makes it difficult to reuse these approaches in a new context, e.g. when 
the hardware platform has a different CPU. The remarkable exceptions are presented in 
[BP01], [EE00], [EES01], and [EES01a]. 

The authors of [GL03] advocate the use of programs with single execution paths only. 
To that end, it is necessary to identify all (sub-) paths that depend on the input variables 
and convert those paths to ones that do not depend on input. The identification is based on 
the abstract interpretation. The abstract values are ID (input dependent) and NID (not input 
dependent). The authors give an example by providing an operational abstract semantics to 
interpret a program written in the While language. This kind of analysis is very useful for 
compositional performance reasoning, as input dependency is also an issue there. 

3.3.3 Estimation of performance of component compositions 

The problem of performance prediction for component compositions has become a 
challenging research topic for different groups, and currently it is being tackled in many 
different ways. There exist a number of practical and academic approaches to 
compositional performance prediction. 

The importance and inevitability of this problem is clearly formulated in [Sit01]. The 
author puts the main emphasis on the difficulties associated with this problem: proper 
component specification at component level, complexity of component-based systems, 
estimation accuracy, etc. The paper presents a concise and clear overview of the current 
work in the field and main aspects to be considered for solving the problem.  

                                                 
4 The considered set can be a joint set of scalars and intervals. 
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The article [WOS03] motivates the need of a sufficiently expressive specification 
language to formally describe performance-related aspects of components. This language 
should cover more aspects than a normal functionality specification language does. Major 
problems occur when a user-define types need to be considered. This is demonstrated with 
the Map data type example. 

The paper [WMW03] describes a framework that relates components with their 
performance sub-models and component assemblies with the corresponding system level 
performance models. The authors suggest to use Layered Queuing Networks to model 
performance at both component and composition level. The approach targets performance 
estimation only at early stages, that is, no source code is available yet. A special tool, 
called "component assembler", is introduced to assemble the components. A similar 
automated tool is to be used to compose the performance models. The approach is 
demonstrated using a simple industrial case study, in which the authors investigate the best 
possible distribution of an e-business three-tier application among different CPU 
configurations. In general, this work seems to be in the very initial stage and needs be 
elaborated. 

Hamlet et al. investigate in [HAT03] the problem of transformation of input 
parameters when a “provides” interface operation invokes a “requires” interface operation. 
The input parameters of both caller and callee are subdivided into a number of sub-
domains, and a transformation matrix is built to map the domain of the caller onto the 
domain of the callee. By constructing this transformation matrix and sampling the 
performance measurements in all sub-domains of both components, it is possible to make 
performance predictions. The authors checked the approach using a simple composition 
comprising two components. The reported results are encouraging, but there are still a 
number of unclear points in the approach: 

1. How the approach will behave for greater number of parameters?  
2. How the approach will behave for many components and complex control flows? 

The article [BM03] describes the initial steps to create an automated tool that support 
CB-SPE paradigm. This paradigm is based on adapting the combination of the SPE tool 
[SW97] and UML RT to the component-based context. The article states the number of 
requirements and describes some steps that the target tool should support. 

The authors of [MHW03] raise an interesting problem related to standardized 
representation of measurements and predictions of component and assemblies, 
respectively. To that end, the statistical descriptive and inferential techniques are suggested 
to be used. Notions of confidence intervals, normative/informative tolerance intervals are 
found to be useful. As an example of useful inferential statistics, the authors suggest to use 
the magnitude of relative error. Also the coefficient of determination that indicates the 
degree of linear correlation is recommended for normalization. 

In [DMM03], Dumitrascu et al. consider a general method and supporting tool for 
predicting the performance of component assemblies. The target component models are 
wide known industrial ones: COM (+), JavaBeans, .NET, and CORBA. Every concept is 
demonstrated with an example from .NET. The authors noticed that most of CBSE 
performance researches ignore the component infrastructure. So, the authors decided to 
explore the dependency of .NET components performance on different parameters of the 
infrastructure. The prediction of assembly properties is supposed to be performed using 
traditional models such as Queuing Networks, Petri Nets, Markov chains, etc. 

The authors of [RZJ02] are concerned with the compositional timing analysis of 
heterogeneous platforms that have different scheduling domains. They distinguish four 
types of schedulers: RMA, EDF, TDMA, and round-robin. For those schedulers, a number 
of analysis techniques already exist. In order to combine those techniques, the authors 
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introduce (1) input and output event model interfaces (EMIF) and (2) event adaptation 
functions (EAF). The former specify which type of analysis can and/or has to be applied, 
whereas the latter allows one to adapt an output event model to a certain input event 
model. The approach is demonstrated with a couple examples (both feed-forward and feed-
back) that need predicting the best- or worst-case response times for a composed system. 
The feedback systems, however, are not necessarily analyzable without appropriate EAFs. 

In [BM03] and [BMW04], Bondarev et al. describe a scenario-based simulation 
approach to the prediction of the fraction of missed deadlines in a soft real-time 
component based software system. The suggested approach reconstructs tasks from 
component descriptions and applies simulation to assess the response times of these tasks. 
A simulation model of the scheduler is executed for particular scenarios to obtain the 
estimates of the response times. The scenarios are suggested to use for reducing the 
complexity of modeling, associated with combinatorial explosion of details related, e.g., to 
input parameters. The use of simulation to account for scheduling artifacts such as 
blocking and preemption is similar to our hierarchical approach described in Chapter 9. 

Most of the existing approaches to compositional performance reasoning are analytical. 
They are built upon the mathematical foundations, and often based upon too strict 
assumptions about the systems under question. The modern complex software systems 
with hundreds of components do not satisfy these assumptions and, thus, the analytical 
approaches are predisposed to combinatorial explosion of details. Moreover, these 
approaches can hardly be accepted by software architects, as they require solid scientific 
background and long learning curve. Employing of statistical regression techniques 
reflects the software behavior only in terms of curve-fitted formulas and hides relevant 
architectural insight. 

Some approaches require the entire code of software system, and, as a result, they are 
not applicable at the early architecting phase. Simulation-based approaches (e.g., cycle-
true simulation) usually imply the simulation of the entire software stack, with all details. 
Construction of such a simulation model is quite time consuming. Moreover, complex 
simulation models are as error-prone as the original software. Finally, not many 
contemporary approaches sufficiently use the knowledge about existing versions of the 
software. The existing software can be measured to collect the performance relevant 
information. This information can be then used for constructing performance prediction 
models for adapted versions of software. 
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4 Specification and evaluation of additive static 
quality attributes 

4.1 Introduction  

Static quality attributes of a component composition are one of essential qualities that 
need to be assessed as a part of early feasibility checks. These attributes are those quality 
attributes that do not change at run-time (in opposite to dynamic quality attributes). In this 
chapter, we treat a subclass of static quality attributes: additive static quality attributes. 
This additivity property allows the estimation of the quality attribute of a component 
composition just by summing up the quality attributes of the constituent components. The 
static memory demand is a typical example of additive static quality attribute. The early 
assessment of this attribute is needed for checking if the implementation of an embedded 
system will meet memory constraints. 

We propose an approach to the assessment of the additive static quality attributes of 
component compositions. These quality attributes are expressed in terms of the quality 
attributes of the constituent components and certain compositional rules. The approach is 
illustrated by applying it to a Koala component composition to predict the static memory 
consumption of this composition. 

This chapter is structured as follows. Sections 4.2, 4.3, 4.4 introduce the basis of our 
view on the static quality attributes of a composition, describe factors influencing these 
quality attributes, and present a general expression for the estimation of these attributes, 
respectively. Section 4.5 compares various approaches to the specification of the static 
quality attributes. Section 4.6 explains two approaches– exhaustive and selective– to the 
evaluation of these attributes. Section 4.7 elaborates on the construction of estimation 
formulas and their accuracy. It describes two techniques for constructing the formulas: (1) 
empirical and (2) statistical. Section 4.8 extends Section 4.5 by presenting a general way 
for the specification of static quality attributes via the XML language. Section 4.9 
exemplifies the suggested mechanisms for the specification and evaluation by a case study 
in the domain of TV software. Finally, Section 4.10 summarizes the chapter. 

4.2 Method basis 

This section introduces a framework and basic foundations for assessing static quality 
attributes of component compositions. 

4.2.1 Components and component instances 

The term component usually refers to a component class or component type, which can 
be instantiated to a number of component instances. In the CBSE literature [Lar04], the 
term component can be used to refer either to component type or component instance, 
depending on the context. In Sections 4.2 and 4.3, we will use the term component, only 
when is clear from the context whether the component instance or component type is 
meant. 

We assume the following underlying component model. Each component type 
describes which components can be instantiated by its instances. This instantiation results 
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in the creation of a hierarchy of subordinate component instances. We call this hierarchy a 
containment hierarchy. An example of such hierarchy is given in Figure 4.1. 

C

C1 C3C2

C11 C12 C31
 

Figure 4.1: An example of containment hierarchy 

The rectangles denote the component instances, whereas the arrows show which 
component instances can be potentially instantiated by which ones. Whether a particular 
component is instantiated depends on the context, e.g., certain configuration parameters. 
The outer component instances are also responsible for configuring the inner ones. For 
instance, the C1 component instance creates the C component instance and configures it. 

Component hierarchy has always a tree-like structure, that is, a component instance 
can be a subordinate only to a single component instance. However, multiple instances of 
the same type are permitted. For a particular component instance iC , we denote the 
corresponding component as ( )itype C . For instance the, the following formula can hold 
for the containment hierarchy from Figure 4.1: 

 ( )11 ( 31).type C type C=  (4.1) 

4.2.2 Framework description 

As explained in Section 4.2.1, we assume that each component composition forms a 
containment hierarchy, as many existing component models allow encompassing of 
component instances by other ones. Within this hierarchy, three types of components are 
distinguished: (1) basic components whose instances do not contain instances of other 
components, (2) compound components whose instances may contain instances of other 
components (see Figure 4.2), and (3) the composition itself that is the top-level 
component. 

There are two inputs for the framework: specifications of the quality attributes of the 
components and compositional rules both for assembling components and for calculating 
the static quality attributes of a composition. The framework implements a mechanism that 
composes component quality attributes according to the rules and estimates the values of 
these quality attributes for the entire composition. Depending on the type of a static quality 
attribute, various rules can be used. For additive static attributes, this rule is addition of the 
quality attributes of all component instances in the composition under consideration. This 
addition rule is trivial, but obtaining the estimates of quality attributes of the constituent 
component instances as well as determining what these instances are is not an easy task. 
Non-additive static quality attributes need compositional rules different from addition. 

Using this framework, it is possible to predict the values of the quality attributes for 
different component compositions By varying component quality attributes one can 
estimate the quality attributes of the composition without actual building (i.e. without 
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compiling, linking, etc.). Note that values of static quality attributes of the components can 
also be budgeted, e.g. when the component is partly implemented. 

Framework

Composition
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C11 C12 C21 C22
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Basic components

Compound
components

Compound
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Specifications of static
quality attributes

Estimation of
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composition

C221

Compositional
rules

 
Figure 4.2: Framework for quality attribute estimation 

The most important requirements to our method are the following: 
• Each component should include a specification of its static quality attributes. This 

specification is essential for the estimation process. 
• The estimation mechanism should be compositional. This means that the static 

quality attributes of the component composition are expressed in terms of the static 
quality attributes of the constituents, requiring no additional information. 

• The estimation accuracy should be possible to trade against the estimation effort. 
The accuracy of the estimation depends on the amount of the effort invested. 

4.3 Sources of variability in component-based software 

This section introduces important elements of our model. The model specifies 
dependencies between static quality attributes of a composition and its constituent 
components using an analytic expression. These analytical expressions have to account for 
two basic factors that influence a composition quality attribute: (1) component diversity 
and (2) component binding. We discuss these two factors in the subsequent subsections. 

4.3.1 Component diversity 

The diversity of a component relates to its ability to be tuned for a particular context 
[OLK00], and is usually defined in terms of diversity parameters. Note that depending on 
the particular component model, the values for the diversity parameters may be selected at 
different times: component description interpretation, compilation, linking, and run-time. 

Our hypothetical component model supports component containment hierarchy, that is, 
it allows a component to instantiate other components. In this case, the diversity 
parameters of the inner component instances are usually calculated as a function of the 
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diversity parameters of the outer component instance that is one level higher in the 
hierarchy (see Figure 4.3).  

C

C1 C3C2

C11 C12 C31

Cd

( )3 3 CC C
d div d=

( )331 31 CC C
d div d=

Diversity

 
Figure 4.3: Diversity parameters passing 

A higher-level component iC  applies the function ( )iij
CC

div d  to its diversity parameters 

to obtain the diversity parameters 
ijCd  of a lower level component ijC . For example, 

Figure 4.3 demonstrates that the values of the diversity parameters of component C3 are 
obtained from the values of the diversity parameters of the entire composition by applying 
formula ( )3 3 CC C

d div d= . Sequentially applying these functions, it is possible to construct a 
function that expresses the diversity parameters of any component in terms of the diversity 
parameters of the entire composition. For example, in Figure 4.3 the diversity parameters 
of component C3 are expressed using the following superposition:  

 ( )31 31 3
.CC C C

d div div d=  (4.2) 

Note that for component instances that are instantiated from the same component type 
the functions ( )iij

CC
div d  are the same. The actual values of the arguments of this functions 

may however differ, as these component instances may be created by different parent 
components. 

4.3.2 Component binding 

Binding defines the connections between components, and, also, which components are 
included into a composition. For example, in Koala [OLK00] a component may need to be 
excluded from a composition if its interfaces are not required by other components1. The 
contribution of a component to a static quality attribute may therefore depend on binding. 

To indicate if this contribution needs accounting for, we introduce a function ( )in c  that 
takes the identifier of the component instance as argument and valuates to zero or one, 
depending on whether the component instance needs including or not, respectively (see 
Figure 4.4). 

Note that we allow low level components to be included even if their parent 
components are not (e.g., components C1 and C31 in Figure 4.4). We introduce this 
feature to support the Koala component model [OLK00] (see also Section 3.2.2). A parent 
component may just wrap an inner one, while not consuming any additional resources such 

                                                 
1 For instance, the Koala component model [OLK00] performs a so-called reachability analysis that 
determines if a component needs to be included in a build, based on monitoring of component’s provides 
interfaces. 
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as memory. This feature makes it difficult to judge about the presence of a component 
instance based on the knowledge about presence of the parent component instance. 
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Figure 4.4: Binding analysis 

4.4 General estimation formula 

The quality attributes of compound components can be expressed in terms of the 
quality attributes of the inner ones: 

 ( ) ( )( )
( )

,( , ) ( ) , .C C i
i sub C

Q C D Q D in C Q i div D
∈

= ⋅ + ∑  (4.3) 

This formula uses the following notations: 
• ( ),Q C D  is a function that expresses the value of the quality attribute Q  of the 

component instance C  for a given set D  of diversity parameters, 
• ( )CQ D  denotes the contribution of component instance C  to quality attribute Q  

given a set of diversity parameters D , without accounting for its sub-components, 
• ( )sub C  is the set of the sub-component instances of component instance C , 
• ( ),C idiv D  is a function that equals the values of the diversity parameters of sub-

component instance i of component instance C , given the diversity parameters D  
of component instance C , 

• ( )in C  is a function that returns one or zero depending on whether the contribution 
of component instance C  itself to the quality attribute needs accounting for. 

Formula (4.3) is evaluated recursively, starting from lowest level components up to the 
entire composition. The values of function ( )in C  should be provided by the tools 
supporting the component model, whereas the values of ( )cQ D  may be approximated on 
the basis of quality attribute measurements on the existing component or budgeted. Notice 
that the Formula (4.3) is valid for all additive static quality attributes, assuming that the 
underlying component model supports containment hierarchy, as described in Section 
4.2.1, diversity propagation, as stated in Section 4.3.1, and component binding, as 
explained in Section 4.3.2. 

4.5 Specification of additive static quality attributes 

Each component is annotated with one or more formulas, each specifying one static 
quality attribute. This formula estimates the value of the static quality attribute based on 
the values of diversity parameters, constant numbers, etc. 
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We consider three approaches for specifying static quality attributes of a component. 
The first approach is the introduction of an auxiliary interface that specifies the static 
quality attribute of a component. We call such an auxiliary interface an IResource 
interface. For instance, such an auxiliary interface can provide information about the 
memory space occupied by the code and static data of a component. The attributes2 of this 
interface correspond to particular type of memory. For each type of quality attribute, a 
formula that estimates the occupied space is provided. Section 4.9.5 demonstrates the 
application of this first approach.  

The second approach is the annotation of a component with a separate description of 
its static quality attributes. This means that the original component descriptions (e.g., code) 
are kept intact and a separate, auxiliary file (e.g., in XML) is added. This file consists of 
the same sort of information as in the case of the IResource interface. Section 4.8 
demonstrates the application of this second approach. 

The third approach is the modification of a component description language and 
existing tool chain to allow describing static quality attributes of a component in the 
component definition language. This can be considered as the best approach, since we 
obtain a new component definition language, which allows one to specify static component 
quality attributes in an explicit and comprehensible way. Unfortunately, this approach 
requires the extreme amount of effort and may introduce incompatibilities with the 
existing component descriptions. 

Table 4.1 summarizes the comparison of the three approaches. 

Table 4.1: Possible options for static quality attribute specification 

Option Advantages Disadvantages 

Addition of an 
auxiliary 
reflection 
interface to a 
component 
(IResource) 

• Possibility to use the existing tools (of 
some component models) for 
performing automatic calculations of 
static quality attribute of a composition 

• Relevant descriptions of component 
static quality attributes are known from 
its description 

• No binary code is added to a component 
after compilation 

• The resource demands of the 
component are not vividly specified, 
since the existing constructions of 
component description language are 
used 

• Component description file is 
affected 

• Approach is component-model-
specific 

Addition of a 
special file to a 
component 
definition file 
(e.g. XML-
based file). 

• Does not require changes in the syntax 
of component description language, so 
that the existing tool chain can be kept 
as is 

• The syntax of the additional file can be 
easily changed 

• Necessity to implement additional 
tools for XML-files generation and 
interpretation 

• The functional and non-functional 
information is kept separately, and, 
thus, the problem of description 
consistency arises 

Modification 
of the 
component 
definition 
language and 
corresponding 
tool chain 

• Expressiveness of the new descriptions. 
It is easy to distinguish between non-
functional aspects and functional 
aspects, as they are expressed with a 
different syntax 

• The most flexible way 

• Much effort is necessary to extend 
the existing tool chain 

• Approach is component-model-
specific 

During our research, we considered the first and the second approach only. For the first 
approach, we completed a successful validation experiment (see Section 4.9). The second 
approach was elaborated but not checked by practical cases. The third approach was not 
thoroughly investigated due to enormous effort required and limited project timeframe. 

                                                 
2 An attribute is an interface member in a form of variable. 
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4.6 Evaluation of additive static quality attributes  

This section explains two approaches to static quality attribute estimation. It describes 
which components have to be taken into account for the estimation and the order these 
components should be considered. 

4.6.1 Exhaustive and selective evaluation 

Measurement and annotation of all components with the specifications of their static 
quality attributes and subsequent calculation of the resulting quality attributes can require 
significant effort for complex systems with hundreds of components and thousands of 
diversity parameters. This approach can be efficient only for comparatively low-scale 
compositions (up to 20 components with few diversity parameters). Thus, considering that 
the annotation and measurement effort should be reasonable, it would be wise to handle 
not all the components and not all the parameters, but only the relevant ones. This 
presumes more thorough analysis of contribution of each component into the static quality 
attribute of a composition and annotation of only those components that have tangible 
influence on the static quality attribute of interest.  

The same holds for diversity parameters. Considering all diversity parameters of each 
component may result in the waste of time and human resources for two reasons: 

• Only some of the diversity parameters may significantly influence the static 
quality attribute of a component. Accounting for insignificant parameters 
requires extra effort that does not improve prediction accuracy. 

• A component can be always used in the context narrower than its diversity 
parameters allow. Analyzing the values of diversity parameters that never occur 
in practice is also a waste of resources. Components are likely to have narrower 
diversity, if they are always used as sub-components in the same component. 

Considering all above, two approaches can be suggested: (1) exhaustive approach and 
(2) selective approach. 

In the exhaustive approach, all the diversity parameters and all components are taken 
into account (see Figure 4.5: and Figure 4.6:). 
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Figure 4.5: Treating components and diversity parameters in the exhaustive and selective approaches 
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Figure 4.6: Treating component hierarchy in the exhaustive and selective approaches 

The containment hierarchy is traversed in a bottom-up way, starting from the basic 
components up to ones at the defined level of the hierarchy. A formula is constructed for 
each component, until a formula for the entire composition is determined. 

The selective approach deals only with the components and diversity parameters that 
are sufficient for achieving a desired level of precision with a fixed limited effort. The 
approach starts at some fixed level of the composition hierarchy (in Figure 4.6, e.g. 
components C1, C2, and C3). If some components of lower level are subjects for reuse, the 
selected level may be lowered. The selected components are analyzed such as they are 
basic components. Afterwards, the approach works in exactly the same way as the 
exhaustive one. Note that the level of hierarchy where the analysis is performed may not 
always be purely horizontal, but also multi-graded. The reason is that particular inner 
subcomponents can be units of reuse (e.g., the annotation can be required for components 
C1, C211, C212, C31, and C32, see Figure 4.6). 

The selected diversity parameters influence the accuracy of estimation formulas for the 
quality attributes of components. The highest accuracy can be reached if all diversity 
parameters are accounted for. However, particular diversity parameters may not 
significantly influence the quality attribute of the component. These can be often omitted 
at the cost of slight accuracy degradation, thus saving effort for constructing the formula. 

The formula for a top-level component builds on the formulas of its constituents. The 
formulas can be built either in (1) an empiric stepwise way (see Section 4.7.1) or by (2) 
using factorial analysis and regression techniques (see Section 4.7.2). In both cases, it is 
necessary to be able to measure or calculate the actual values of static quality attributes of 
a component for different values of its diversity parameters. The empiric stepwise 
construction of a formula is performed by sequentially changing the diversity parameters, 
measuring the actual values of the static quality attribute, and modifying the formula such 
that it fits also the new measurements.  

Note that both exhaustive and selective approaches support budgeting, i.e. the expected 
quality attributes of non-existing components can be incorporated. Moreover, these 
budgets can also be combined with estimation formulas constructed for the existing 
components. 

4.6.2 Selection of a particular approach 

There are a number of important factors to be accounted for when choosing a particular 
approach. The general guideline is that the chosen approach should be a compromise 
between the amount of the effort and the accuracy of the results. 
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A) Estimation accuracy 

The exhaustive approach presumes that all components in the hierarchy are annotated 
with the formulas specifying their static quality attributes and all their diversity parameters 
are considered. If all formulas are sufficiently accurate, the exhaustive approach ensures 
(in the general case) that the required level of accuracy for the entire composition is 
reached. 

The selective approach, however, may not ensure required level of accuracy as some of 
relevant diversity parameters may be missed. Hence, this approach may require the 
analysis of more diversity parameters if the achieved level of accuracy is not sufficient. 

B) Time budget 

In the general case, it is not clear which of the approaches– selective or exhaustive– 
requires less time, given that the prediction accuracy is fixed. The time needed to apply 
either approach is primarily determined by the amount of measurements needed to 
construct estimation formulas. This amount, in turn, depends on the number of diversity 
parameters that have to be varied to collect the sufficient number of measurements. As the 
diversity parameters of lower-level components may depend on the diversity parameters of 
higher-level components (see Section 4.3.1) in a non-trivial way, the total number of 
diversity parameters that need varying may be both larger and smaller for the exhaustive 
approach than for the selective approach. The same relation persists for the times needed to 
apply these approaches. 

However, when the components of higher levels of the hierarchy tend to use the 
subcomponents only with a limited subset of possible values of diversity parameters, the 
selective approach is likely to be advantageous in terms of time needed for the 
measurement. 

C) Reuse of components 

Component reuse may be an important factor for choosing between the exhaustive and 
selective approaches. If some components of the analyzed composition are considered for 
reuse in other products, their annotation might be worthwhile, even if this is not necessary 
for the current estimation. 

4.7 Construction of estimation formulas 

Two approaches to the construction of estimation formulas are possible: 
• An empiric approach, which estimates the coefficients of a formula by manually 

tweaking them; 
• An approach, which estimates the coefficients of a formula by using statistical 

regression techniques; 
• An analytical calculation. 

The first approach is conceptually simpler than the second one, but it may require more 
effort spent in guessing the proper values of formula coefficients. On the other hand, the 
second approach requires the knowledge of statistical techniques, such as (multiple) linear 
regression. These two approaches are detailed in the subsequent subsections. The third 
approach can be applied only for component models that use strict composition rules and 
are based on restricted programming language. The estimation formulas could be 
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constructed on the basis of results of static analysis of component compositions (including 
their implementation). As it is unlikely to meet such a component model in an industrial 
setting, where we target our method at, we do not elaborate this third approach any further. 

4.7.1 Empirical formula construction 

This section describes an algorithm for estimating static quality attributes of a 
composition. The estimation process consists of a number of actions, which are performed 
according to the flowchart shown in Figure 4.7. 

The following actions need to be taken: 
1. Define the top-level component (entire composition). 
2. Define the necessary estimation accuracy. 
3. Choose one evaluation approach (exhaustive or selective) and define an appropriate 

level of component hierarchy (if selective). 
4. Identify the entities influencing the estimation accuracy and effort. The choice of 

the entities is based on the information provided by component producers and 
judgment of the architect, or by applying statistical techniques such as factor 
analysis (see Section 4.7.2). The relevant entities are to be found amongst the 
following: 
• Relevant components. The contribution of these components into the static 

quality attribute cannot be neglected due to their size, accuracy requirements, 
etc; 

• Relevant diversity parameters. The influence of these parameters on the 
estimated quality attribute cannot be neglected with respect to the defined 
accuracy; 

• Relevant values of diversity parameters. 
5. Manipulate the relevant diversity parameters of component of interest3. 

Actions 1 to 4

Start

Yes

End

Actions 5 to 8

Is formula
accurate?

All components?

Yes

No

No

 
Figure 4.7: Algorithm for constructing a formula for a single component 

                                                 
3 Initially, the chosen component is the top-level one. 
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6. Build/modify the estimation formula and extend the description of the component 
with the specification of static quality attributes (e.g., by means of a reflection 
interface). 

7. Obtain the actual values of the quality attributes by measuring the component. 
8. Verify the formula for the component: check if the accuracy of the formula is in 

accordance with the accuracy specified by the architects. If the formula is 
sufficiently accurate then stop. Otherwise, refine the formula in a step-wise manner 
by repeating steps 6 to 8. 

9. If necessary, repeat Actions 5 to 9 for all relevant components. 
After completing the actions above, the architect can apply the constructed formulas to 
obtain estimates of the quality attribute of the composition. The accuracy of the obtained 
estimates is discussed below. 

A) Estimation accuracy 

As explained in Section 4.1, we consider only additive static quality attributes of a 
component. Consequently, an estimate at the composition level is the sum of estimates at 
the component level. The corresponding estimation errors add up in the same way. 

Let us denote the accurate value of a variable to be estimated at the compositional level 
with cQ , and the corresponding values at the component level with iQ ; the estimations are 
denoted as *

cQ  and *
iQ , respectively, where * *

c i
i

Q Q=∑  and c i
i

Q Q=∑ . Consider also that 

the estimations at the component level are provided with certain relative error *
iδ : 

 * * *
i i i i i i iQ Q Q Q Qδ δ− ⋅ ≤ ≤ + ⋅ , (4.4) 

where *
iQ , iQ , and *

iδ  are greater then zero. The absolute error of the estimation *
iQ  is the 

following: 

 *
i i iQ Q∆ = − . (4.5) 

Combining Formulas (4.4) and (4.5), it is easy to bound the value of i∆ : 

 *
i i iQ δ∆ ≤ ⋅ . (4.6) 

The relative error cδ  of the estimation for the component composition can be calculated by 
the following formula: 

 .
i i

i i
c

i i
i i

Q Q
δ

∆ ∆

= ≤
∑ ∑
∑ ∑

 (4.7) 

Then applying Formula (4.6) to Formula (4.7), δ  can further be bounded: 

 

*

*
i i i

i i i
c i

i i ji
i i j

Q
Q

Q Q Q

δ
δ δ

∆ ⋅
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∑ ∑
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 (4.8) 

Formula (4.8) bounds the worst-case relative error for the estimation at the composition 
level, given the estimations and their relative errors at the component level. Note that the 
relative error of each component-level-estimation is weighed by the accurate value at the 
component level divided by the accurate value at the compositional level. This makes it 
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difficult to predict the accuracy at the composition level, knowing only the accuracy of the 
estimation for a single component (without knowing the values at the compositional level). 

However, it is possible to find the upper bound of the relative error for the composition 
by considering that ( )* *

maxii δ δ∀ ≤  in Formula (4.8). In this case cδ  satisfies the following 
equation: 

 

*
max

* *
max .

i
i i

c i
j ji

j j

Q
Q

Q Q

δ
δ δ δ

⋅

≤ ⋅ ≤ =
∑

∑ ∑ ∑
 (4.9) 

Formula (4.9) relates the accuracy at the component level and at the entire composition 
level. 

4.7.2 Use of statistical techniques to construct estimation 
formulas 

Empiric construction of a formula that estimates static quality attributes of a 
component may be very time consuming. It is necessary to identify the (diversity) 
parameters that have a major effect on the static quality attributes of interest as well as to 
express the effects of these parameters in formulas. If the preliminary knowledge about 
these effects is absent, it may be cumbersome to guess these effects by using the trial-and-
error strategy. 

We suggest performing a two-stage approach to constructing an estimation formula 
(see Figure 4.8:). 

 
Identification of
major diversity

parameters

Fitting of
prediction
formula

Application of
factorial analysis

Application of
linear regression

 
Figure 4.8: An approach to construction of the prediction formula 

First, it is necessary to identify the diversity parameters that have a major effect on the 
static quality attributes of interest. To this end, a number of dedicated measurements have 
to be performed for discerning the effects of each diversity parameter on the static quality 
attributes. These measurements are organized such that the information about the effects 
can be obtained in an efficient way. This measurement scheme is referred to as the full or 
fractional factorial designs in the statistical literature [JAI91].  

Afterwards, more elaborated measurements have to be performed to detail the major 
effects and to build the estimation formula. Multiple linear regression can be used here 
[JAI91][WEI95][MON01]. 

The subsequent sections detail each stage of the approach. As these subsections rely on 
the notions typically met in the statistics literature, we will use the notations that can be 
encountered in a typical book on statistics. Particularly, the variable y will denote a 
dependent variable, which is the same as a quality attribute Q  from Section 4.4. Diversity 
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parameters D corresponds with independent variables, denoted as x in the subsequent 
sections. Please notice that we did not validate this two-stage approach in practice, as in 
our case studies (see Section 4.9) the empirical approach performed well. 

A) Identification of significant diversity parameters 

We consider two types of diversity parameters: (1) real and (2) categorical. The 
former allow expressing (possibly continuous) quantities, whereas the latter allow 
discerning modes, types, etc. For example, consider a component implementing a real-time 
kernel. This component has the following real diversity parameters: the maximum number 
“MaxTasks” of tasks that can be created and the maximum number “MaxSemaphores” of 
semaphores. It has also one categorical diversity parameter “DebuggingMode”: the 
debugging mode. The value of “DebuggingMode” equals “On”, if the debugging is turned 
on. Otherwise, it equals “Off”. 

We advocate the use of the factorial analysis [JAI91] to identify the significant 
diversity parameters. All diversity parameters are treated as factors, i.e., variables that may 
have only a few values. These values are called factor levels. A factor F is said to be at 
level f if its value equals f. 

For a categorical diversity parameter, a particular value of this diversity parameter 
equals some level of the corresponding factor. For instance, for the “DebuggingMode” 
diversity parameter, the corresponding factor has two levels: “On” and “Off”. 

For each real diversity parameter, an auxiliary factor has to be introduced. This factor 
has only a few levels, each level being equal to a particular value of the diversity 
parameter. Typically, only two levels are introduced: one level for a fixed small value of 
the diversity parameter and another one for a fixed large value of this parameter. Reducing 
a real diversity parameter to a two-level factor substantially decreases the number of 
measurements needed to check if this parameter has an impact on the static quality 
attribute of interest. For example, consider again the real-time kernel component, which 
will be used in a context where not more than 30 tasks are created. For the “MaxTasks” 
diversity parameter, it is reasonable to introduce the “MaxTasksFactor” factor with two 
levels: “FewTasks” and “ManyTasks”. The “FewTasks” level corresponds to the value of 
“MaxTasks” that equals two, whereas the “ManyTasks” corresponds to the value of 25. 
Please notice that this choice is arbitrary; the only rationale for choosing these particular 
values is the hope that they will allow to discover the influence of “MaxTasks” on the 
static quality attribute of interest. 

The variation of a static quality attribute may be accounted to effects and unexplained 
part. An effect describes the contribution of a certain level of a factor or the contribution 
of the interaction of two or more factors. In the latter case, these factors are said to 
interact, that is, the effect of one factor may depend on the level(s) of other factor(s). The 
unexplained part represents the error term.  

It is possible to conduct a series of measurements that allow determining the influence 
of factors and their interactions on the static quality attribute of interest. This influence can 
be analyzed by applying factor analysis [JAI91], [MCD85], and [MON01]. Depending on 
time and human resources available for measurements, different schemes of experiments 
for collecting measurements can be used: 2k -factorial designs, 2k p− -fractional factorial 
design, two-factor full factorial design, general full factorial designs with k factors, and etc 
[JAI91], [MCD85], [MON01]. 

Let us demonstrate the use of a general factorial design with 2 factors: 
“MaxTasksFactor” and “DebuggingMode”. For the sake of simplicity, the third factor, 
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“MaxSemaphores”, is considered to be at a fixed level. Table 4.2 summarized the 
measurements of the sizes of static data for the real-time kernel component. These 
measurements are collected for different values of the diversity parameters and, 
consequently, for different levels of the chosen factors. 
Table 4.2: Measurements of sizes (in bytes) of static data collected for the real-time kernel component 

for different values of its diversity parameters MaxTasks and DebuggingMode 

MaxTasksFactor  
FewTasks ( 1α ) ManyTasks ( 2α ) 

On ( 1β ) 10 62 DebuggingMode 
Off ( 2β ) 7 53 

Let us denote the effects of “MaxTasksFactor” as iα  and the effects of 
“DebuggingMode” as jβ . The interactions between the levels of those two factors are 
denoted as ijγ , and the measurements of the sizes are ijy . The relation between these 
variables can be described by the following formula: 

 ij i j ijy µ α β γ= + + + . (4.10) 

In Formula (4.10), µ  denotes the average (over the measurements from Table 4.2) size 
of static data. Obviously, Formula (4.10) contains more unknown variables than 
measurements. Therefore, additional equations over these variables have to be added to 
obtain the unique solution. These additional equations enforce orthogonality between the 
main effects of “MaxTasksFactor” and “DebuggingMode” and their interactions: 
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Solving Formulas (4.10) and (4.11) over all unknown variables and substituting the 
measurement from Table 4.2 provides the following: 
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The values of all effects and interactions are obtained by substituting the measurements 
from Table 4.2 to Formula (4.12): 

 1 2 1 2

11 12 21 22

33;
24,5; 24,5; 3; 3;
1,5; 1,5; 1,5; 1,5.

µ
α α β β
γ γ γ γ

=
= − = = = −
= − = = = −

 (4.13) 

In addition to the values of those effects and interactions, it is also necessary to estimate 
how much they impact the size of static data. This impact is estimated by observing the 
amounts of variation of the size of static data due to each effect and interaction. 
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The entire variation is represented by the total sums of squares (SST): 

 ( )
2 2 2

1 1
ij

i j

SST y µ
= =

= −∑∑  (4.14) 

The SST accounts for all deviations of the measurements from a particular mean value. 
Moreover, it favors positive and negative deviations equally (because of squaring the 
( )ijy µ−  term). Finally, it can be partitioned to sum of squares that relate to different 
effects and interactions. 

This partitioning is performed as follows. First, we square both sides of Formula (4.10) 
and sum over all i and j. All cross-product terms cancel out because of orthogonality 
conditions (4.11), and we obtain the following formula: 
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Formula (4.15) can be rewritten as follows: 
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Formula (4.16) partitions the entire variation of the size of static data into sum of 
squares SSα  and SSβ  related to the main effects iα  and jβ , respectively, and sum of 
squares SSγ  related to the interactions ijγ  between the two factors. 

It is now easy to assess the fraction of variation explained by each factor and 
interactions. This can be done by observing the following fractions: SS SSTα , 
SS SSTβ , and SS SSTγ . For the measurements from Table 4.2, we obtain the following: 

 
2446; 2401; 36; 9;

98,2%; 1,5%; 0,3%.

SST SS SS SS
SS SS SS
SST SST SST

α β γ
α β γ

= = = =

≈ ≈ ≈
 (4.17) 

Formula (4.17) shows that about 98.2% of the variation is explained by the factor 
“MaxTasksFactor” (with effects iα ). The second factor “DebuggingMode” and its 
interaction with “MaxTasksFactor” explains only 1.8% of the variation. This means the 
variation of the size of static data of the real-time kernel component is primarily due to the 
variation of the diversity parameter “MaxTasks”. This diversity parameter is turned out to 
be the only relevant parameter according to the analysis described above. 

Other schemes of experiments for collecting and analyzing measurements ( 2k -factorial 
designs, 2k p− -fractional factorial design, two-factor full factorial design, general full 
factorial designs with k factors, and etc) are implemented similarly to the example that is 
described above. For more details the reader is referred to the literature [JAI91], [MCD85], 
[MON01]. 
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B) Construction of an estimation formula for a component by linear 
regression 

Once the main factors (and diversity parameters) are identified, the estimation formula 
can be constructed by means of regression. We advocate the use of the multiple linear 
regression [JAI91], [WEI95], [MON01] for the following reasons: 

• We consider additive static quality attributes, which complies with the additivity of 
multiple linear regression models 

• Multiple linear regression is a well known statistical technique, and many tools 
exist for automating the construction and analysis of linear regression models 

• Multiple linear regression provides not only prediction formulas, but also powerful 
means for checking the adequacy and accuracy of these models (e.g., in terms of 
prediction and confidence intervals, different kinds of significance tests, etc.). 

Let us demonstrate the use of linear regression for constructing estimation formulas 
both in abstract form and by means of the concrete example introduced in Section 4.7.2. A 
multiple linear regression model describes the following relation between the dependent 
variable4 y  and independent variables ix : 

 0
1

k

j j
j

y xβ β ε
=

= + ⋅ +∑ . (4.18) 

In this formula, y  is the dependent variable, a variable that need to be predicted. It 
corresponds with the static quality attribute of interest. jβ  denote regression coefficients, 
and jx  are independent variables that correspond with diversity parameters. The ε  
random variable describes the prediction error. It is assumed that ε  has normal 
distribution with mean zero and constant standard deviation. Consider the example of the 
real-time scheduler component. The dependent variable y  is the size of static data. The 
mapping between the independent variables jx  and the diversity parameters is presented in 
Table 4.3. 

Table 4.3: Mapping between the diversity parameters of the real-time kernel component and 
independent variables of the linear prediction model 

Diversity parameter Independent variable 
Name Values Name Values 

1x  0..25 MaxTasks 0..25 

2x  0..10 MaxSemaphores 0..25 
1 On 3x  
0 

DebuggingMode 
Off 

In the general case, this mapping will require more than one independent variable per a 
categorical diversity parameter that may have more than two values (see Section 4.7.2). 

Suppose that along with each observed value iy  of the dependent variable y , the 
corresponding values ijx  of independent variables jx  are also noted. The model from 
formula (4.18) can be then rewritten in the following form: 

                                                 
4 In the regression literature, the dependent variable is often called response variable, and independent 
variables are named regressors or predictors. 
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 0
1

ˆ ˆ
k

i j ij i
j

y xβ β ε
=

= + ⋅ +∑ . (4.19) 

In Formula (4.19), ˆ
jβ  denote the estimates of true regression coefficients. The random 

variables iε  represent the prediction error for the i -the observation, or residual. They are 
assumed to be uncorrelated and to have mean zero and the same constant variance. 

The regression coefficient estimates ˆ
jβ  are obtained such that they minimize the sum 

of squares of errors 2
i

i
ε∑  (so called least-squared error minimization). The computation 

of regression coefficients involves matrix operations and is usually performed using a 
statistical software tool. 

After fitting the prediction model, it is important to check that the assumptions of 
linear regression are not violated, and that the obtained regression coefficients are all 
significant. The former is usually checked by analyzing residuals, whereas the latter 
involves either hypothesis testing or construction of the confidence intervals for regression 
coefficients. For more details, the reader is referred to the regression literature, e.g. to 
[JAI91], [WEI95], [MON01], or [MR03]. 

An estimation formula for the static quality attribute of interest can be constructed by 
inputting the (expressions over) diversity parameters of a particular component to the fitted 
linear prediction model. 

Multiple linear regression provides means to estimate the accuracy of predictions made 
using linear regression models. This means is prediction intervals [JAI91], [WEI95], 
[MON01]. A prediction interval allows estimating the limits for the value of a prediction 
for particular values of independent variables. Notice that the use of prediction intervals is 
only valid if the assumptions of linear regression are not seriously violated. We therefore 
recommend using prediction intervals for specifying the accuracy of individual estimation 
formulas obtained by linear regression. 

C) Using linear regression for real and categorical diversity parameters 

A static quality attribute of a component corresponds with a dependent variable, and 
real diversity parameters map on independent variables. It is however no so 
straightforward for categorical diversity parameters.  

The literature [JAI91] suggests using dummy variables to model categorical diversity 
parameters. For instance, consider a diversity categorical parameter d  with possible 
values from a set , , ,A B C D . To model this diversity parameter, three dummy variables 
are introduced: 
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 (4.20) 

Formula (4.20) describes the encoding of diversity parameter d (see Table 4.4). 
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Table 4.4: An example of the encoding of categorical diversity parameters using dummy variables 

Value of d 1x  2x  3x  
A 0 0 0 
B 1 0 0 
C 0 1 0 
D 0 0 1 

In the general case, a categorical diversity parameter with k  possible values requires 
1k −  dummy variables be introduced into the regression model. These dummy variables 

are then considered as independent variables. 

However, the use of dummy variables may significantly increase the number of 
independent variables in the regression model, especially when interactions with other 
categorical variables have to be considered. It may be even the case that the available 
observations become insufficient for the reliable fitting of the prediction model. In this 
case, it is recommended to build a separate regression model for each value of a 
categorical diversity parameter and then to use the weighted sum of these prediction 
models to estimate the total value. Though, this solution complicates making inferences for 
the obtained composite prediction model. Particularly, confidence and prediction intervals 
become difficult to calculate. 

D) Construction of an estimation formula for a component composition 

For additive quality attributes, it is enough to add up the values of a static quality 
attribute for all components to obtain the value of the composite static quality attribute. 
The same is equally true for estimates of the static quality attribute. Let us consider an 
entire composition “Cmp”. By applying Formula (4.3) from Section 4.4 to all components 
(in a recursive manner), the following can be obtained: 

 ( )
( )

( , )Cmp Cmp i i
i reachable Cmp

Q Cmp D Q D
∈

= ∑  (4.21) 

In Formula (4.21), ( , )Cmp CmpQ Cmp D  denotes the estimate of the static quality attribute 

of the composition “Cmp” with the diversity parameters cmpD , and ( )i iQ D  is the estimate 
of the static quality attribute of the component i with the diversity parameters iD . The set 
reachable(Cmp) describes all components included in a build for the composition “Cmp” 
with diversity parameters cmpD . 

However, assessing the accuracy of the composite quality attribute estimate is not that 
straightforward for the reason explained below. 

As stated in Section 4.7.2, for a single component, the accuracy of the estimate of a 
static quality attribute can be indicated by means of a prediction interval. For the entire 
composition, prediction intervals are also a good means for representing the accuracy of 
the estimate. It is therefore necessary to calculate a prediction interval for the sum of the 
estimates of the static quality attribute, calculated by Formula (4.21). (In statistical terms, 
this task amounts to estimating a prediction interval for the sum of estimates, each 
calculated by a linear regression model.) Though, adding up the lower and upper limits of 
prediction intervals of individual estimates does not result in the correct prediction interval 
for the entire sum. The interval obtained this way will be much wider then the true 
prediction interval, as the prediction errors partly cancel out for individual components (as 
these errors are independent and have the normal distribution). 
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The literature survey showed that the calculation of a prediction interval for the sum of 
estimates calculated by linear prediction model is not at all simple. Moreover, standard 
books about statistics such as [WEI95], [MON01], and [MR03] do not cover this subject. 
We suggest a solution to this problem. This solution involves complex mathematical 
derivations, which are described in Appendix C in detail. 

4.8 Generic specification of static quality attributes 

This section describes our proposal for the specification of components and their static 
quality attributes in the XML language. We did not validate this approach in practice due 
to limited timeframe. 

4.8.1 Rationale for selection of XML 

XML stands for Extensible Markup Language [XML1]. XML is a plain text, Unicode-
based meta-language for defining markup languages. Markup languages provide 
mechanisms for describing the document structure by means of markup tags (<> and </>). 
XML is employed as a technology for structuring, manipulating, transforming, and 
querying data. During its initial development, in the middle of 1990th, XML was 
considered as a description language for data formats for the Internet. Currently, the role of 
XML is more general: it is useful not only for formatting Web documents, but also for 
describing structured data of any type. The examples of structured data are spreadsheets, 
configuration files, network protocols, etc. Essential features of XML such as flexibility, 
extensibility and portability have destined its wide adoption as the ‘lingua franca’ for 
information interchange. For the information about XML syntax and other technical 
details, the reader is referred to [You01], [PKK98], and [XML1]. 

We considered XML a good candidate language for describing component and 
composition quality attributes independently of any particular component model. To give a 
flavor of such description we worked out a simple example (see Sections 4.8.2 and 4.8.3). 
However, due to lack of time we did not validate this technique by a more elaborated case 
study. 

4.8.2 Specification of components 

This section elaborates on the specification of all the elements required in component 
specification, including static quality attribute specifications. Let us first present a diagram 
of the essential elements of component specification (see Figure 4.9). 

Component

Provides Requires

interface1 interfaceN interface1 interfaceN

Contains Resource

module component XROM XRAM.... .... .... ....  
Figure 4.9: Elements of a Koala component specification 

Let us consider that each component specifies its provides and requires interfaces, 
contains internal code modules and other components, and describes its resource demands 
(e.g., RAM and ROM memory). Using this knowledge about component description 
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elements and their hierarchy, one can easily construct an XML specification of the 
component. An example of such specification is shown in Appendix A. 

In addition, we need to specify the static quality attributes of a component: formulas 
describing the resource consumption of a component (in our case, memory). This 
specification technique is detailed in the section below. 

4.8.3 Specification of formulas 

For the specification of formulas for static quality attributes in XML, we used a part of 
one of the existing XML-based notations for mathematical expression specification: 
MathML [MXML]. Let us illustrate the main principles and elements of the notation by 
means of a simple example (Figure 4.10). 

The element <apply> is used to apply a function to a collection of arguments. The first 
nested element denotes the function, and the next two elements denote the arguments. The 
elements defining simple operations (such as <plus/>, <minus/> or </times>) are 
described with empty-element tags, as they have no content and attributes. The elements 
<ci> and <cn> specify identifiers and numbers, respectively. 

<apply>
    <plus/>
    <cn>48</cn>   <!-- expression: 48+a -->
    <ci>a</ci>
</apply>  

Figure 4.10: An example of formula specification 

We introduced two additional elements: <cif> and <cc>. The former denotes the 
identifier of an interface whose diversity parameter is a part of a formula. The latter 
denotes the identifier of a component whose quality attribute is involved into a formula.  

Let us consider a more complex example of the stack size specification (see Figure 
4.11). 

<STACK_SIZE>  <!--12 + (ires.MaxTasks - 1)*8 + mgcmx.STACK_SIZE-->
    <apply>
        <plus/>
        <cn>12</cn>
        <apply>
            <times/>
            <apply>
                <minus/>
                <apply>
                   <cif>ires</cif>
                   <ci>MaxTasks</ci>
                </apply>
                <cn>1</cn>
            </apply>
            <cn>8</cn>
        </apply>
        <apply>
            <cc>mgcmx</cc>
            <ci>STACK_SIZE</ci>
        </apply>
    </apply>
</STACK_SIZE>  

Figure 4.11: A formula for specifying stack size 
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This formula depends on the parameter “MaxTasks” of the interface “ires” and also on 
the stack size of the nested component “mgcmx”. As one can easily see, this form of 
representation does not explicitly show brackets, but, instead determines the order of 
calculation by means of nesting the elements and proper use of the <apply> element. This 
customized notation does not require adapting of existing XML parsers: it requires only 
modification of the applications above this parser. More examples for formula 
specification can be found in Appendix A.  

4.8.4 Specification of estimation formulas constructed by 
linear regression 

Section 4.7.2 describes how linear regression can be applied to construct estimation 
formulas. Using these regression-based formulas, it is not only possible to calculate an 
estimate of the static quality attribute of a composition, but also to provide figures about 
prediction accuracy (by calculating prediction intervals). 

This section extends the specification approach described in section 4.8.3 to be able to 
describe regression-based formulas. A regression based-formula specifies a particular 
static quality attribute of a single component. This formula is parameterized by a few 
independent variables, which correspond with either particular diversity parameters or 
expressions over diversity parameters. 

The specification approach described in section 4.8.3 has to be extended to encompass 
the use of regression-based formulas. It is necessary to specify how the calculations for a 
regression-based formula should be performed, what the regression coefficients are, what 
the explanatory power of the model is, etc. 

Figure 4.12 demonstrates the use of XML for the description of a regression-based 
formula. 

First, it is necessary to describe the regression coefficients of the fitted linear 
regression model, which underlies the regression-based formula. The regression 
coefficients are enumerated in the section between XML tags <coefficients> and 
</coefficients>. Each coefficient has a name, a value, and the p-value that indicates the 
significance of the coefficient. This information is described using <coeff> and </coeff> 
tags. For example Figure 4.12 demonstrates that the value of the coefficient alhpa1 equals 
0.123, and the p-value of the corresponding t-statistic [WEI95] is 0.03. This p-value 
indicates that the coefficient “alpha0” is significant at the significance level 0.05 (as 0.03 
< 0.05) [WEI95]. 

Additionally, the specification needs to be attached with the value of the 2R -
coefficient (the coefficient of determination) that indicates how well the underlying 
prediction model can predict the value of the static quality attribute. The <rsquare> tag is 
used for the specification of this 2R -coefficient. 

Section 4.7.2D) shows that it is necessary to know the values of standard error of the 
residual and degrees of freedom5 to be able to calculate the prediction intervals for the 
static quality attributes of a composition. We provide this information using tags <stderr> 
and <df>, respectively. 

                                                 
5 The degrees of freedom of a certain statistic are the number of variables (or observations) that can be 
independently chosen to keep the statistic equal to a certain value. 
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<RegressionModel>
    <coefficients>
        <coeff> <!--Description of the alpha0 coefficient-->
            <name>alpha0</name>
            <value>0.123</value> <!--The value of the coeff.-->
            <pvalue>0.03</pvalue><!--The p-value -->
        </coeff>
        <coeff> <!--Description of the alpha1 coefficient-->
            <name>alpha1</name>
            <value>0.13</value>
            <pvalue>0.001</pvalue>
        </coeff>
    </coefficients>
    <stderr>0.045</stderr>  <!--The standard error of the residual-->
    <df>30</df>     <!--The degrees of freedoms-->
    <rsquare>0.87</rsquare> <!--The coefficient of determination-->
    <!-- The regression model P1(x1) = alpha0 + alpha1*x1 -->
    <declare type="fn" nargs="1">
        <ci>P1</ci>

<lambda>
            <bvar>
                <ci>x1</ci>

</bvar>
            <apply>
                <plus/>
                <ci>alpha0</ci>
                <apply>
                    <times/>

<ci>alpha1</ci>
                    <ci>x1</ci>

</apply>
            </apply>
        </lambda>
    </declare>
</RegressionModel>  

Figure 4.12: An example of XML description of a regression-based estimation formula 

Finally, it is necessary to specify how to calculate the value of the static quality 
attribute using the values of independent variables calculated on the basis of the values of 
diversity parameters. To this end, it is possible to use the MathML extension [MXML] of 
XML. For instance, Figure 4.12 describes a new function P1, which is a λ -expression 
over one independent variable x1. The value of this argument is calculated using the values 
of the diversity parameters. For instance, the specification of stack demand from Figure 
4.11 of section 4.8.3 can be rewritten as follows (see Figure 17), considering that the P1 
formula describes the stack size for the component of interest. 

<STACK_SIZE>
    <apply><plus/>

<apply><ci>P1</ci>
                <apply>
                     <cif>ires</cif>
                     <ci>MaxTasks</ci>
               <apply>
          </apply>
          <apply>
                    <cif>mgcmx</cif>
                    <ci>STACK_SIZE</ci>
          </apply>
    </apply>
</STACK_SIZE>  

Figure 4.13: Example of the use of the specification of the linear regression model 
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STACK_SIZE is calculated by applying the regression-based formula P1 to the actual 
parameter, being the value of the diversity parameter “ires.MaxTasks”, and by adding the 
result to the value of the static quality attribute of the inner component “mgcmx”. 

4.8.5 Summary 

Concluding this section, we would like to focus on the essential issues once more. The 
XML language is considered as an ideal candidate for the specification of static quality 
attributes. This type of specification suits any component model and can be easily ported 
to another platform. It allows representing the basic component elements as well as 
resource consumption formulas in a clear and concise form, yet not requiring any changes 
of the XML syntax and XML parsers. There are only two points where some effort from 
the component designers is needed: a) the designers have to develop or customize the 
application responsible for resource consumption estimation, and b) the designers have to 
ensure the consistency between the functional description of the components (code) and 
the specifications of the static quality attributes (XML documents). 

4.9 Example of method application to industrial software 

This section details our experiences in applying one of the suggested approaches to the 
Koala component model [OLK00]. A brief introduction to Koala is also given in Section 
3.2. We predicted the static memory demand of a Koala component composition in terms 
of required code and data spaces. We used the IResource-interface-based approach (see 
Section 4.5) to the specification of static quality attributes of the components. 

4.9.1 Koala component example 

To demonstrate the approach, we used a simplified version of the Infrastructure sub-
system from a TV software stack. This simplified version is implemented within the 
“CMgMiniInfra” component. For the “CMgMiniInfra” component and all its constituents, 
the specification was enriched with the sizes of memory occupied by each component. 

Figure 4.14 depicts the internals of the “CMgMiniInfra” component that consists of 
five subcomponents −”CMgInit”, “CMgXaAbstraction”, “CMgStandardLibrary”, 
“CIsCmx”, and “CMgInterruptServer”− and a number of modules6. In turn, the “CIsCmx” 
component consists of other two components: “CMgCmx” and “CAdocCmx” (not shown in 
the picture in order not to overwhelm it with too many details). The total number of 
components considered is thus 7. Depending on the target hardware platform, either 
“CMgCmx” or “CAdocCmx” component is included in a build. The target platform is 
specified via the “plf:Platform” diversity interface, the diversity parameters of which are 
set by the Development Environment. 

The “CMgMiniInfra” propagates the “plf:Platform” diversity interface to all the 
constituent components, so that all subcomponents configure themselves for the necessary 
target platform. The other interfaces are normal provides and requires interfaces. 

 

                                                 
6 In short, a module implements a part of the functionality of a Koala component. Modules are written in the 
C language.  
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4.9.2 Source of variability in size 

The Koala component model has all sources of variability in the static quality attributes 
(including code and data size) that are enumerated in Section 4.3. It however introduces 
additional sources of variability. All sources of variability are discussed in the subsequent 
subsections. 

A) Optional interfaces 

Optional interfaces may be left unbound (see Section 3.2 or [OLK00]). Although in the 
example from Figure 4.14 optional interfaces are not used, they are another source of 
variability in the size of component code and static data in the general case. For the 
optional interfaces, Koala introduces a special method called “iPresent()”. This method 
indicates whether methods or attributes of an optional interface are implemented by some 
module or component.  

The influence of the optional requires interfaces on the size can be treated in the same 
way as the influence of diversity interfaces by considering the “iPresent()” method as a 
Boolean diversity parameter. Note that the use of optional provides interfaces does not 
directly influence the size of component code and static data. Their influence on the size of 
code and static data is the same as the influence of non-optional provides interfaces. For 
more detail the reader is referred to Section 3.2. 

B) Interface binding 

The Koala compiler performs a reachabilty analysis that evaluates the use of provides 
interfaces and decides whether certain components are necessary for building. All modules 
of a component have to be included in a build, if at least one of its provides interfaces is 
connected to other components and is implemented inside a C module. This condition is 
introduced for the following reason. All modules are allowed to communicate directly, i.e., 
bypassing interfaces, within a Koala component [OLK00]. Consider a module that needs 
to be included in a build. All other modules have to be also included, as they may 
potentially be called from the included module. The full set of rules for reachability 
analysis is described in Appendix B. 

Notice that the analysis is performed on an entire composition. In Koala, the 
configuration specifies (if necessary) the values of diversity parameters and the interface 
or function binding to indicate how the components and modules are interconnected via 
interfaces. 

Koala has the switch connection construction that controls interconnection between 
interfaces. A switch, depending on the value of its controlling expression, specifies how a 
set of input interfaces is connected to a set of output interfaces for each possible value of 
the controlling expression. Such controlling expression may include diversity parameters, 
the indication of the presence of optional interfaces via an “iPresent()” function, and any 
interface function or attribute evaluating to an ordinal value. Evaluation of these 
expressions, performed by the Koala compiler, may disconnect all or some interfaces of a 
component.  

The results of reachabilty analysis may influence the code size twofold: (1) at the 
component level and (2) at the module level. The subsequent sections detail these two 
levels. 
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The component level.According to the rules of the reachability analysis (see section 
Appendix A), the building process ignores components for which all their ‘provides’ 
interfaces are not connected. All inner modules of such components are not included in a 
build. This exclusion may decrease the size of code and static data for the entire 
component composition. 

The module level. This source of the variability relates to the ability of Koala to indicate if 
a particular provides interface is connected to some requires interface. This indication is 
implemented by a special macro-definition “ICONNECTED”, which can be used in 
modules to isolate the code implementing provides interfaces. If the “ICONNECTED” 
macro evaluates false for a particular provides interface, the code implementing this 
interface and guarded with this macro is not compiled. This results in the decrease of the 
total size of code and static data for the entire composition. 

C) Function binding 

In the general case, Koala function binding makes it difficult to accurately predict the 
size of code and static data. The function binding allows the substitution of an interface 
function with an expression implemented using glue code and described in a “within”-
section of a component description file. Processing these kinds of expressions by the Koala 
compiler results in the injection of some C-language expressions into the component code 
via macro-definitions. The accurate prediction of the code size for such components is 
very complex and cannot be done in practice.  

4.9.3 Localization of variability in Koala components 

This section briefly describes language constructs, the use of which alters the size of 
code and static data in Koala components (see Figure 4.15). 

code
size

static
data
size

size of
arrays

size of
structures

code size for loops
(for, while, do and
do-while )

code size for
if-(then)-(else)
clauses

code size  for
switch  operator

C compiler optimizations
on constant expessions
may eliminate unreachable
code

A C-preprocessor
may exclude or
include the code

An expression
over diversity
parameters  may
determine the size
of an array

size of  code guarded by
macro-operators: #if,
#ifdef, #else, #elif etc

size of variables
of primitive types

size of variables
of aggregate
types A C-preprocessor

may include/exclude
a structure member

code size of
flow control
operators

A C-preprocessor may
include/exclude a global
variable  

Figure 4.15: Localization of variability in Koala 
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All Koala components are implemented in the C language. Figure 4.15 classifies C 
language constructs, depending on which static quality attributes they influence and the 
type of the language construct. The right part of the figure indicates how the use of a 
particular language construct may lead to variability in memory size. 

4.9.4 General formula for Koala components 

In this section we shall customize Formula (4.3) from Section 4.3 to cope with Koala 
components. It is important to take into consideration the result of Koala’s reachability 
analysis (see section Appendix B). As this reachablity analysis treats components and 
modules differently, it is necessary to distinguish modules and (sub)-components.  

In general, the size of component code or static data can be calculated using the 
following formula: 
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+

∑

∑
∑

 (4.22) 

In this formula, the following symbols are used: 
• D  denotes a set of the diversity interfaces of the component c; 
• O  is a set of the optional requires interfaces of the component c; 
• P  is a set of the non-optional provides interfaces of the component c; 
• iO  is a set of the optional requires interfaces of the sub-component i; 
• iP  is a set of the non-optional provides interfaces of the sub-component i; 
• ( )iF D  is the function that maps diversity interfaces of the compound 

component c onto the diversity interfaces of the sub-component i, ; 
• sub(c) is the set of all the sub-components of c; 
• mod(c) is the set of all the modules of c; 
• ( , , , )reachable m d o p  denotes a predicate indicating if the module m of the 

component c is reachable; d is the diversity interfaces of c, o is the optional 
requires interfaces of c, and p is the non-optional provides interfaces of c; 

• ( , , , )rtsw c d o p  - the set of all the run-time switches7 of a component c; d is the 
diversity interfaces of c, o is the optional requires interfaces of c, and p is the 
non-optional provides interfaces of c; 

• ( ), , , ,size x D O P R  is the function that calculates the size of a (sub)-component 
x, module x, or run-time switch x, taking into account the diversity interfaces 
D , optional requires interfaces O , non-optional provides interfaces P , and 
requires interfaces R 8; 

• i  denotes a sub-component i of the component c; 
• m  denotes a module m of the component c. 

                                                 
7 A run-time switch occurs whenever a non-constant expression controls the switch. For more detail, the 
reader is referred to [OLK00]. 
8 The argument R  is necessary because it is possible to inject code through requires interfaces via Koala’s 
function binding. In general, the influence of such an injection is hard to estimate. 
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Formula (4.22) holds both for code and static data size. However, ( ), , , ,size x D O P R  

will not depend on R  for the case of static data. 

4.9.5 Specification of memory consumption 

We introduce an auxiliary provides interface IResource to specify memory 
consumption of a component. Consider an example of the “IsCmx” component (see Figure 
4.16).  

interface IResource
{
  long XROMCODE_size;
  long XROMDATA_size;
  long IROMCODE_size;
  long IROMDATA_size;
  long XRAM_size;
  long IDRAM_size;
  long SRAM_size;
  long STACK_size;
  Bool iPresent();
}

component IsCmx
{
  contains

component CMgCmx mgcmx;
module m;

  provides
IResource req;

  contains
module mreq;

  connects
req = mreq;
mreq = div;

  within mreq
  {
       .......
       req.XRAM_size =32+
                  + res.MaxTasks*2+div.MaxTalos*25+mgcmx.XRAM
                  + mgcmx.req.iPresent()? mgcmx.req.XRAM_size:0;
                   .......
  }
}

Implementation

File "IResource.id": File "IsCmx.cd":

Subcomponent
presence check

Non-variable
component

code

"IResource"
interface of a

subcomponent

Diversity
parameters

 
Figure 4.16: Example of an "IResource" interface 

The component “CIsCmx” is one of components shown in Figure 4.14. It includes the 
module “m” and the sub-component “CMgCmx”. Its IResource interface is shown in 
Figure 4.16. Note that this is a reflection interface as described in Section 4.5. The 
attributes of this interface correspond to particular types of memory. For each type of 
memory, the IResource implementation has a formula for estimating the memory size. 
This formula is expressed in the Koala language syntax and employs constants, 
expressions related to Koala features (e.g. diversity parameters), and arithmetic operations. 

The formula is an expression over diversity parameters and sizes (similar formulas) of 
the sub-components. It also can contain some constants to denote the sizes of the inner 
code modules9. Notice that the estimation formulas were constructed using the empiric 
stepwise approach described in Section 4.2. 

The specification of the external RAM (XRAM) size consists of the following parts: 
1. Contribution of the code module “m”: 

 
32+ 2+ 2532+

+ 2+ 25.
res.MaxTasks div.MaxTalos
res.MaxTasks div.MaxTalos

⋅ ⋅
⋅ ⋅

 (4.23) 

This formula contains variables that depend on the diversity parameters res.MaxTalos and 
res.MaxTasks and some constants. 

2. Contribution of the sub-component “CMgCmx”: 

 ? :0.mgcmx.req.iPresent() mgcmx.req.XRAM_size  (4.24) 
                                                 
9 A module is a block of code implementing the interface functions. 
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Note that the term above is the implementation of ( )in C  from Formula (4.3) in Section 
4.4. The expression “mgcmx.req.iPresent()” indicates if any of other components from the 
composition require interfaces provided by the component “CMgCmx”. If 
“mgcmx.req.iPresent()” evaluates true, then the component must be included in a build, 
and the size of “CMgCmx” needs to be added to the size of “CIsCmx”. For the component 
“CMgCmx”, the interface “req” is also specified, and mgcmx.req.XRAM_size provides the 
size of “CMgCmx” to account for in the formula for “CIsCmx”. 

By using this specification technique, the memory consumption estimates for 
component compositions can be calculated automatically by the Koala compiler10.  

4.9.6 Evaluation 

The experiment presented in this section validates both the selective and exhaustive 
approaches. For both approaches, formulas were constructed empirically (see Section 
4.7.1). We applied these approaches to two different component compositions taken from 
existing TV software. The first composition consisted of seven components and was used 
for checking the exhaustive approach. The second composition consisted of 22 
components and was used for checking the selective approach. We did not validate the two 
approaches on the same composition for the following reasons. On one hand, the 
composition of the seven components did not have a sufficient depth of component 
hierarchy to check the selective approach. On the other hand, applying the exhaustive 
approach to the composition of the 22 components would require too much effort. 

The software stack for the case study was implemented for a popular micro-controller. 
This micro-controller uses several types of memory: external ROM (XROM), internal 
ROM (IROM), internal data RAM (IDRAM), static RAM (SRAM), and external RAM 
(XRAM). For each type of memory, the estimates were compared with the actual sizes for 
different sets of diversity parameters. The actual sizes were determined by compilation. 
The results are summarized in Table 4.5 and Table 4.6. 

Table 4.5: Estimates for exhaustive approach 

Type of 
memory 

Real size 
(bytes) 

Estimated size 
(bytes) 

Relative error 
(%) 

XROM Data 166 166 0,00
XROM Code 19429 19477 0,25
IROM Code 3363 3425 1,80
IROM Data 379 379 0,00
IDRAM 572 572 0,00
SRAM 145 145 0,00
XRAM 2123 2123 0,00

Table 4.6: Estimates for selective approach. 

Type of 
memory 

Real size 
(bytes) 

Estimated size 
(bytes) 

Relative error 
(%) 

XROM Data 12379 12479 0,81
XROM Code 70996 71409 0,58
IROM Code 21353 21401 0,20
IROM Data 1705 1703 0,12
IDRAM 796 796 0,00
SRAM 544 544 0,00
XRAM 84471 84607 0,15

                                                 
10 The Koala compiler performs partial expression evaluation; for more details see [OLK00]. 
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Generally, the size of static data (residing in SRAM, XRAM and IDRAM) size could 
be estimated with 100% accuracy. For other memory types, the relative error lies within a 
five-percent range, which is sufficient for many architecting and engineering appliances. 
The relative error achieved for the selective approach lies within the one-percent range. It 
was however difficult to cover the entire space of possible diversity parameters to claim 
that this one-percent range is achievable for all possible values of diversity parameters. 

The application of the exhaustive approach took us seven days. The most time-
consuming part was the stepwise formula refinement: code inspection required a number 
of iterations and repetitive compilation was needed to check the formulas and to calculate 
the sizes of the components. The implementation of the selective approach required more 
time (ten days), in spite of the fact that the diversity spaces of the components were 
reduced significantly. The reason was the mutual dependencies between components (the 
components defined the diversity parameters of each other). According to our experience, 
constructing formulas for an average component takes approximately 30-60 minutes. 

4.10 Summary 

In this chapter, we have described a method that allows the specification and 
evaluation of static quality attributes of component compositions. We have proposed two 
techniques for the specification of the additive static component quality attributes. The first 
technique advocates the use of a reflection interface. The model also accounts for 
composition aspects, such as exclusion/inclusion of components and diversity parameters. 
The second technique is based on building a separate specification in the XML language. 
The technique is illustrated by a couple of examples. This technique also supports 
budgeting; i.e., the expected values of the quality attributes of unimplemented components 
can also be accounted for. The evaluation of the resulting quality attributes can be 
performed with two approaches: (1) exhaustive and (2) selective. Both approaches are 
checked by means of estimation of the static memory size of Koala components taken 
from an existing TV software stack. For this purpose, the standard constructions of the 
Koala component definition language were used. High estimation accuracy was achieved 
for both approaches. 

Currently, the applicability of the proposed method limited to component models for 
which the set of components instantiated in a composition is known before run-time. If this 
set of the instantiated components changes in run-time, the applicability of the method is 
restricted only to particular sets, that is, it will be possible to get an estimate of the quality 
attribute of the composition for a snapshot describing a set of components instantiated at 
the moment. The method also relies on propagation of diversity through the containment 
hierarchy. If component diversity is handled in another way, e.g. by means of a 
configuration database, the suggested framework must be reconsidered.  

To our knowledge, only the Koala component model fully satisfies the assumptions of 
the proposed method. Other component models such as COM or CORBA require treating 
the diversity of components in a different way than the described method does. 

Future research may be performed on the following directions: 
1. Method validation by estimation of other static quality attributes; 
2. Generalization of the method for component models with runtime binding (COM, 

CORBA, etc.); 
3. Development of suitable languages for the specification of composition rules for 

non-additive static qualities. 
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5 Specification and evaluation of dynamic quality 
attributes: the APPEAR method 

5.1 Introduction 
Dynamic quality attributes of component-based software are essential quantities that 

need to be assessed as a part of early feasibility checks. Dynamic quality attributes of the 
software are those quality attributes that are exhibited at run-time (in opposite to static 
quality attributes). The examples of such quality attributes are performance, demand of 
dynamic memory, reliability, etc. Many architects have acknowledged the necessity of 
early analysis of the dynamic quality attributes. For example, Bass et al. [BCK98] state the 
following: “…You cannot get the functionality right and then go back and put in all the 
qualities. They all have to be designed in from the start…” The similar message is 
conveyed in [CN96]: “…Whether or not a system will be able to exhibit its desired (or 
required) quality attributes is largely determined by the time the architecture is chosen…” 

In the domain of dynamic quality attributes, we limit the scope of our investigation to 
the analysis and prediction of software performance. Besides the timing restrictions, we 
had the following reasons for narrowing the scope of research: a) performance was the 
highest-priority issue according to the results of the investigation described in Chapter 2, 
and b) performance is often a critical property of embedded software. 

Smith et al. [SW02] emphasize the importance of performance analysis and estimation 
at the early phase of software architecting: “…We have found that when problems are 
inevitable, your choice is ‘pay a little now (for the scalability and performance that you 
need) or pay much more later.’ Software metrics show that it costs up to 100 times more to 
fix problems in code than it does to fix problems in the architecture before code is written. 
The only way to determine whether problems are inevitable is to use the quantitative 
techniques…”. Early performance estimation makes it possible to verify the feasibility of 
systems before their implementation, thus saving money and effort otherwise devoted to 
developing potentially infeasible products. The possibility to evaluate the software 
performance (e.g. response time, latency, average CPU utilization, execution time) at an 
early stage can help, for instance, in estimating the impact of architectural decisions 
beforehand, in comparing architectural solutions, and in quickly selecting the most 
appropriate one. Software architects need thus a method to estimate the performance of 
software early, during the architecting phase.  

To date, various methods for performance modeling and estimation have been 
developed. Two types of methods are most frequently used: a) purely simulation-based 
models and b) analytical models (e.g., queuing networks, Markov chains). However, since 
the complexity and the diversity of software for embedded systems had grown 
significantly during the past decade, many existing analysis techniques have turned out to 
be impractical for evaluating the dynamic quality attributes (such as performance) of the 
entire software system. We have therefore decided to investigate how far we could push 
the limits of state-of-the-art methods. We did this investigation in an industrial setting, and 
thus we could quickly identify the following basic limitations of the existing methods (for 
realistic industrial cases): 

1. Many simulation methods are based on an analysis of all behavioral details of 
the software (parameters, states, etc.). Accounting for all details usually leads to 
a combinatorial explosion. The high complexity of software, with hundreds of 
parameters influencing the software quality attributes, causes these approaches 
to fail. 
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2. Analytical methods often make too specific assumptions about the system 
under question. These assumptions do not hold for many systems, and thus 
models built using these assumptions can be both inaccurate and inadequate. 

3. Analytical methods cannot adequately deal with the non-determinism of 
modern computing facilities— caches, pipelines, and branch predictors. Thus, it 
is difficult to obtain reliable estimates by analytical methods without risking 
serious over/underestimations. 

One of the possible solutions to the first problem is the use of statistical techniques 
such as regression analysis. This type of analysis allows one to construct a statistical 
prediction model, based on measurements of the existing parts of the software, and to use 
this model to predict the quality attributes of newly developed or adapted parts. The use of 
regression techniques for software performance prediction is promising, since increasingly 
less software is created from scratch. There is always an initial software stack (reusable 
components, previous versions, etc.) that can be used for measurements and for fitting the 
statistical prediction model. This statistical approach abstracts from particular details of the 
system. However, this abstraction can cause other problems such as decreasing the 
accuracy of the prediction or excessive time required for the measurements. Including only 
the relevant details helps to shorten the time needed for constructing the prediction model, 
while keeping the accuracy at the desired level. 

A compromise is to consider the mix of simulation and statistical techniques. This 
approach comprises a) modeling of the relevant behavioral details of the software, and b) 
use of statistical methods to abstract from irrelevant details. This mix serves as a basis for 
the APPEAR method (Analysis and Prediction of Performance for Evolving 
Architectures), described in this chapter. 

The aim of the APPEAR method is to support architects in analyzing the performance 
of future versions of components during the early phases of product development. By 
future versions of components we mean adapted versions of existing components that are 
“sufficiently similar”1 to the existing ones to allow the use of statistical prediction 
techniques. For example, the existing component responsible for viewing of medical 
images implements basic functionality that allows users to browse through the medical 
images and to view them in different modes, e.g. full-screen, four images per screen, etc. 
The adapted version of this component includes extra functionality: viewing images with a 
mask, viewing images with subtraction, etc.  

The rest of this chapter is structured as follows. Section 5.2 describes the requirements 
for the APPEAR method. Section 5.3 introduces the essence of the method. Section 5.4 
clarifies the assumptions that must hold for successful application of the method. Section 
5.5 brings in the notion of signature that is the basic element of the APPEAR method. 
Section 5.6 describes the process of method application. Section 5.7 elaborates on the 
selection process of a Virtual Service Platform – another essential element of the APPEAR 
method. Section 5.8 details the process of signature type identification. Sections 5.9 and 
5.10 are devoted to the construction of the simulation and prediction models. Section 5.11 
explains the notion of prediction interval that is used for specifying the performance 
estimates for the adapted components. Section 5.12 summarizes the role of the APPEAR 
method in the architecting process. 

                                                 
1 The notion of component similarity is described in Chapter 6 “Similarity of software components”. 
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5.2 Requirements 
Based on the common sense, we formulated the following list of general requirements 

to a performance prediction method for software components: 
• The application of the method should faster than implementing the software 

and subsequent measurements,  
• The method should be simple so that less time and fewer human resources are 

required for its application,  
• The method should general so that it can be applied to software from various 

industrial domains, 
• The method should be accurate enough so that it can be efficiently used for 

performance prediction.  

We discussed these requirements with several software architects from the Professional 
Systems and Consumer Electronics domain and interviewed them about their requirements 
to a valid performance prediction method. The outcome of this interview is the following 
list of the requirements: 

1. Allow performance prediction of the adapted components to enable 
• Early estimation of the impacts of architectural decisions on the performance,  
• Finding the appropriate architectural solutions for performance-critical 

components, and 
• Comparison of different architectural solutions with respect to the performance. 

2. Provide insight into the performance-relevant behavior of the components by 
means of 
• Identification of performance critical parameters and their significance, 
• Construction of behavioral models (simulation models) of the components at 

different levels of abstraction (processes, threads, tasks, modules), and 
• Localization of performance bottlenecks. 

3. Ensure a reasonable level of accuracy for performance prediction. The required 
accuracy level is product dependent. A survey revealed that architects consider an 
accuracy of 50% to 80% as a definite improvement with respect to the currently 
used methods. 

4. Obtain performance predictions fast in comparison to the time needed for the 
implementation of a new component and subsequent measurements. 

5.3 Essence of the method 
In this chapter, we consider the expression “performance of a component” means the 

performance metric for a particular performance-relevant component operation. The 
performance is considered in terms of CPU utilization, execution time, and end-to-end 
response time. In principle, the APPEAR method can also be applied for other 
performance metrics that relate to resource consumption (e.g., average memory demand). 

The APPEAR method is based on the following view of the software stack. The 
software comprises two parts: (1) components and (2) a Virtual Service Platform (VSP). 
The components are specific for different products and can change per product version and 
type. To cover new functionality, the already existing components are adapted rather than 
creating new components from scratch. The VSP encompasses stable components, which 
do not significantly evolve during the software lifecycle. The VSP provides a number of 
services to the components (see Figure 5.1). 
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Figure 5.1: APPEAR view on the software stack 

An example of VSP is a database engine that provides an application programming 
interface (API) for querying data from the database, managing data structures, and etc. The 
functions of this API are VSP services. The components comprise an application that 
executes on the top of this engine. In general, a VSP is easier to define for layered 
architectures. The criteria for definition of VSP are described in Section 5.7. 

Performance estimates are obtained for a set of relevant use cases of a component. The 
use case describes the interaction between the component and the environment. As a result 
to the input stimulus, the component can call several services of the VSP to perform the 
functionality associated with this stimulus. After completing these calls, the component 
produces the response to the environment. The timing dependency between the stimulus 
and response can be characterised by a performance metric (e.g., response time, latency, 
CPU utilisation, execution time, etc.). We assume that this performance metric is 
correlated with the use of VSP services by components. For instance, the response time of 
a component that queries the database engine correlates with the number of invocations of 
the database query service. 

The APPEAR method employs this correlation to extrapolate the performance of 
existing components to the performance of their adapted versions2 This extrapolation is 
performed as follows. The architect needs to construct simulation models, based on the 
design specifications of these components. Such a simulation model should capture 
relevant execution parameters of the component. Those parameters are ones that have a 
significant impact on the performance, e.g. the most time consuming VSP services and 
important input or diversity parameters. These execution parameters are said to form the 
signature type of a component. The notions of signature type and signature instance are 
detailed in Section 5.5. The architect fits a prediction model to performance measurements 
collected for the existing components for a number of use cases representative from the 
viewpoint of performance. For these use cases, the prediction model relates the relevant 
execution parameters, obtained from a run of the simulation model of the existing 
component, to the measurements from the actual component. The stability of the VSP 
allows using this prediction model both for the existing and for adapted components. The 
architect can predict the performance of the adapted component as follows. First, the 
simulation model of the adapted is executed for the use case of interest to extract its 
execution parameters. Second, the prediction model is applied to these execution 
parameters to obtain the performance estimate of interest. 

                                                 
2 We will refer the adapted versions of the existing components as adapted components in the rest of the 
thesis. 
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Notice that this chapter concerns only the performance of a single component running 
on the top of a VSP. Component compositions are discussed in Chapter 9. We will show 
how the APPEAR method can be used for modeling the processor demand and how to 
account for interactions between components. 

5.4 Assumptions 
For implementing the ideas described above in a method that can be successfully used 

for performance prediction, we assume the following: 
1. The underlying hardware remains unchanged. Otherwise, the APPEAR method must 

be extended similarly to the performance prediction method described in [BK02]. The 
violation of this assumption will invalidate the performance measurements collected 
for the component and VSP. This will, in turn, invalidate the prediction model. 

2. The performance of a component depends only on its internals and VSP, but not on 
other components. Otherwise, the prediction model must be able to capture the 
influence of effects such as blocking and preemption, which can occur due to 
interactions with other components. These effects can be hardly tackled by statistical 
models. 

3. The services of the VSP are independent. There are no interactions that significantly 
influence the performance, e.g. via exclusive access to shared resources. The rationale 
for this assumption is similar to the rationale for the second one. 

4. The order invocation of VSP services does not matter3. Otherwise, the prediction 
model fitted for particular use cases will fail to capture the performance contributions 
attributed to particular VSP services for other use cases. 

5. The adapted and existing components are similar (see Chapter 6). If the adapted 
components are not sufficiently similar to the existing ones, the prediction can fail, 
because the observation data are not applicable anymore. 

6. The amount of experimental data collected for the existing component is sufficient in 
the neighbourhood of the input data of adapted component to provide a robust 
prediction.  

7. Tools for performance measurements of the components are available, e.g. tracing 
tools. Otherwise, significant effort may need to be spent for making proper instruments 
for measuring the performance. 

8. The architectural information that is relevant for building a simulation model is 
available. This information includes documentation, architect/designers interviews, 
source code of the existing component, etc. Otherwise, the construction of simulation 
models will require significant effort, as it will be necessary to reconstruct the missing 
information from the code or traces of the running software. 

5.5 Signature type and signature instance 
The role of a signature type and signature instance is to describe the use cases of a 

component from a performance viewpoint. The signature type represents a vector of 
performance relevant parameters that a) correlate with the performance of components, 
and b) can be observed at the architectural level. A signature instance contains values of 
these parameters for a particular use case. The signature type can be expressed in terms of 
a) calls to VSP services, b) input and diversity parameters, c) observable component states, 
and etc. For example, the signature type of a hypothetical software component can look as 
follows: 

                                                 
3 Even if the call order matters, in some cases it is still possible to use the APPEAR method and to predict the 
performance. More information on this topic can be found in Chapter 6. 
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S = (Number of memory allocation calls, Number of disk calls, Number of network calls) 

The signature instance contains actual values for a concrete use case, e.g. s = (132, 57, 
21). 

We define the signature type ( )iS  of a component operation i as follows: 

 ( ) ( ) ( )( ) ( )
1 ,..., , .

i

i i i i
k jS S S S= ⊆  (5.1) 

In this formula, ( )
j
iS  is j-th signature parameter of the signature type ( )iS . The signature 

type ( )iS  consists of ik  signature parameters. The signature instance s  is a value of the 

vector corresponding to a certain signature type ( )iS : 

 ( ) ( )
1 2s ,s ,...,s , , 1...

i

i
k j j is s S j k= ∈ ∈  (5.2) 

In Formula (5.2), js  are values of signature parameters ( )i
jS . 

We treat the performance ( )iP  of the component operation i as a function over the 
signature type ( )iS : 

 ( ) ( )( ).i iC P S=  (5.3) 

In this formula, C is a performance metric such as response time. In the general case, this 
( )iP  function is unknown. However, the architect can apply the statistical regression 

techniques to construct an approximation, which we call a prediction model (See Sections 
5.3 and 5.6). 

The identification of the signature type presumes answering the following questions: 
1. Which of the hundreds of parameters have a significant impact on the 

performance? 
2. What is the quantitative dependency between these parameters and the 

performance? 

The answer to the first question helps us to reduce the parameter space and to 
concentrate on the critical parameters only. The answer to the second question allows us to 
predict the performance based on the experimental data. 

5.6 The description of the method 
The proposed method includes two main phases: (1) calibrating the prediction model 

on the existing components and (2) applying this prediction model to the adapted 
component to obtain its performance estimate. These two phases are described in Sections 
5.6.1 and 5.6.2. Sections 5.7 to 5.10 detail particular steps of the first phase. 

5.6.1 Phase 1: Calibration 

First, it is necessary to identify the signature type and to construct a statistically valid 
prediction model4. This can be accomplished according to the following procedure (Figure 
5.2).  

 
                                                 
4 The statistical validity of the prediction model consists in ensuring that it satisfies a number of tests that 
indicate the quality of the prediction. Usually, a prediction model is built with regression techniques and the 
criteria, in this case, are the normality of residual distribution, variance constancy, etc. 
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Figure 5.2: Calibration of the prediction model 

The left part of Figure 5.2 shows the information flow between various entities of the 
APPEAR method. The information flow is depicted by arrows, and the entities by boxes 
and circles. The boxes and arrows are also labeled with the number of the step that 
concerns the corresponding entity or information flow. The order of steps of the calibration 
phase is described in a form of flowchart in the right part of Figure 5.2. After performing 
the first five steps, the prediction model is calibrated in an iterative way. The fourth step 
can be omitted, if the architect has sufficient preliminary knowledge about the 
performance-relevant parameters and can therefore estimate the initial signature type 
beforehand. Otherwise, the architect can identify the initial signature type by applying a 
regression technique as described in Section 5.8. All steps of the calibration phase are as 
follows: 

Step 1, Use cases definition. Based on the requirements specification, a relevant set of 
use cases is chosen. These use cases are used for signature instance extraction, i.e. 
obtaining the values of the signature type. 

Step 2, Virtual Service Platform identification. Based on the architectural 
specification, the software stack is subdivided into two parts: components and a Virtual 
Service Platform. The guidelines for VSP selection are described in Section 5.7. 

Step 3, Measurements. For the use cases chosen in Step 1, the performance of the 
existing component is measured, for example, by instrumenting and profiling the code. 
The collected measurements are treated then as the values of a dependent variable, a 
variable that needs predicting. 

Step 4, Identification of the initial signature type. The initial set of performance 
relevant parameters is deduced from the analysis of execution profiles, architectural 
documentation, etc. The choice of the signature type determines whether the constructed 
prediction model calibrates well. 

Step 5, Construction of the initial simulation model. Based on the available 
architecture description, a simulation model needs to be built to extract signature instances, 
i.e. to determine the values of the performance relevant parameters that can be observed at 
architecture level. It is important to construct a simulation model at this stage, as the 
prediction model should be calibrated using the signature instances generated by the 
simulation model, but not obtained from the traces. Otherwise, the prediction model will 
not be usable for the adapted components for which the traces are not available. 
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Step 6, Signature instance extraction. By executing the simulation model on the 
defined use cases, a signature instance is calculated for each use case. These values and the 
corresponding measurements obtained during Step 3 form a calibration dataset. The 
signature instances are then treated as values of input variables of the prediction model. 

Step 7, Prediction model calibration. The results of Steps 3 and 6 form the input data 
for building a model that predicts the value of the performance measure, depending on the 
signature instance. Each sample of this data corresponds to a use case. By applying one of 
the existing regression techniques [Wei95], [KO02], it is possible to build a prediction 
model. This process is called calibration. 

Step 8, Tuning of simulation model and signature type. It can be the case that the 
prediction model is not statistically valid during Step 7. This means that either the 
signature type is chosen wrongly or the simulation model misses performance relevant 
details. In this case, Steps 6-8 must be repeated until the prediction model becomes 
statistically valid. The signature type is thus iteratively refined during Steps 6, 7, and 8. 

5.6.2 Phase 2: Prediction 

As described in Section 5.3, the existing components may be adapted to account for 
additional functionality. For the adapted component, the design specifications are based on 
the design specifications of the existing components. The performance of the adapted 
component can be predicted by the prediction model constructed during the calibration 
phase (5.6.1) only if this adapted component is similar to the existing one (see Section 
5.4). In Chapter 6, we will show that the architects can ascertain the similarity of the 
existing and adapted component by the following formula:  

 .Similar ST SI IC= ∧ ∧  (5.4) 

In Formula (5.4), Similar  is a Boolean variable that indicates whether the components 
are similar or not. The IC, ST, and SI Boolean variables denote the three similarity criteria, 
as explained in Table 5.1 

Table 5.1: The three similarity criteria 

VARIABLE ASPECT MEANING 
ST Signature types The signature types are the same for the 

existing and adapted components. 
SI Signature instances The signature instances extracted from the 

simulation model of the adapted component are 
close to the ones from the existing component. 

IC Internal component 
calculations 

The internal calculations are comparable for the 
existing and adapted components. 

Chapter 6 describes these similarity criteria in more detail. If these criteria are met, the 
architect can use prediction intervals (see Chapter 5.11) for judging about the accuracy of 
the obtained predictions. Otherwise, the architect is not advised to use the obtained 
predictions in the general case, as they may be imprecise. Although, the architect can try to 
remedy this problem by taking one the “escape routes” described in Chapter 6. 

The performance can be predicted for adapted components by sequentially performing 
Steps 9 to 11 (see Figure 5.3). 
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Figure 5.3: Prediction of the performance with the prediction model 

Figure 5.3 shows the information flow between the entities relevant for the prediction 
phase. Figure 5.3 uses the same notations as Figure 5.2. The list of the steps is given 
below: 

Step 9, Definition of use cases for adapted components. A set of use cases that needs 
performance prediction is determined for the adapted components. According to these use 
cases, the initial simulation model of the existing component is modified (if needed), with 
the signature type kept intact. Intact signature type is an essential condition for ensuring 
component similarity. The component similarity is required for the successful use of the 
prediction model calibrated on the existing component. Other essential conditions of the 
component similarity can be found in Chapter 6. 

Step 10, Signature instance extraction for the adapted component. By executing 
the simulation model, the signature instance is calculated for the use cases defined in Step 
9. If the adapted component is sufficiently similar to the existing one, this signature 
instance can be used for predicting the performance. 

Step 11, Predicting the performance of the adapted component. By applying the 
existing prediction model to the signature instance obtained during Step 10, the 
performance of the adapted component is estimated. The accuracy of the estimates can be 
represented in terms of prediction intervals, if the prediction model is fitted using linear 
regression (see Section 5.11). This estimate must further be interpreted by the architects 
with respect to performance requirements and obtained architectural insights. 

We advise to validate the models constructed by the APPEAR method after 
implementing the adapted component to obtain a feedback on the modeling precision and 
to possibly refine the models. The adapted component is measured on the use cases for 
which its performance has been predicted. The predictions made at the architecting phase 
are compared to the measurements collected. If the performance predictions deviate from 
the measurements significantly, the reasons behind that should be carefully investigated. 
The possible reasons can be the following: 

1. The signature type was chosen incorrectly. 
2. The simulation model of the adapted component was incorrect. 
3. The implementation of the adapted component deviated from the architecture that 

had been considered at the time of applying the APPEAR method; as a result the 
adapted component became not sufficiently similar to the existing ones.  



 86

Addressing the first two reasons may require refining the simulation model, signature 
type, or/and prediction model5. Addressing the third reason may need improvement of the 
implementation process. 

Notice that the proposed method has an important property: during the evolution of a 
component, the calibration dataset grows continuously, as increasingly more component 
variants become available for fitting the prediction model. This growth may help in 
enhancing the prediction model quality, as the coverage of the measurements increases.  

We validated the APPEAR method by applying it to two industrial case studies in the 
Consumer Electronics and Professional Systems domains. These validation experiments 
are described in Chapter 7 and Chapter 8, respectively.  

5.7 VSP identification (Step 2) 
The architect needs to determine the VSP boundary to be able to express the behavior 

of components in terms of calls to VSP services (see Figure 5.1). On one hand, this 
boundary splits the software into two parts: (1) a part that consists of components that are 
subject for changes, and (2) the stable part that consists of service components, which do 
not change over time. The latter serves a basis for the VSP. Typically, there are always 
relatively stable parts of a software product, and ones that need modifying or extension. 
On the other hand, the VSP boundary concerns also a proper abstraction level, at which the 
behavior of the components under consideration is described. The following aspects 
influence the choice of this abstraction level: 

• The choice of signature type at Steps 4 and 8 of the APPEAR method (see Section 
5.6.1). The abstraction level may need to be lowered in order to be able to fit a 
statistically valid prediction model. This lowering implies that the architect may 
need to model some of the components that belong to the stable part explicitly. 

• Explicit modeling of the performance of relevant components. The architect needs 
to obtain an insight into the performance relevant behavior of particular 
components that belong to the stable part. This may also require lowering the 
abstraction level. 

5.8 Identification of the initial signature type (Step 4) 
If the software stack is properly instrumented, it is possible to deduce the initial 

signature type from the use case traces, i.e. by logging and analyzing all performance-
relevant service calls. The correlation between the use of these service calls and the 
performance metric is analyzed by constructing an auxiliary prediction model. After the 
identification of the initial signature type, the auxiliary prediction model is abandoned. The 
parameters, relating to certain VSP calls, that calibrate this auxiliary prediction model with 
sufficient quality form the initial signature type. 

The flowchart for constructing such an auxiliary prediction model is shown in Figure 
5.4: 

Step 1, Virtual Service Platform identification. The guidelines and criteria for 
selecting the level of the VSP are described in Section 5.7. 

                                                 
5 This basically means that the adapted component is not similar to the existing one, since similar 
components should have the same signature type. As a consequence, the existing prediction model cannot be 
directly used. However, we provide a number of recommendations for obtaining performance estimates even 
in the cases of non-similar components (see Chapter 6). 
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Step 2, Use cases definition. It is vital to determine a representative set of the use 
cases to collect data for calibrating the auxiliary prediction model. 

Use cases

Auxiliary
Performance

Prediction Model

Measurements

Signature
instances

VSP

Architectural specs

Requirements specs

Tracing utility 3. Collection of measurements

2. Definition  of use cases

1. VSP identification

4. Signature  instance extraction

5. Prediction model construction

 
Figure 5.4: Main steps of the initial signature type identification 

Step 3, Collection of measurements. The selected use cases need to be executed and 
traced. 

Step 4, Signature instance extraction. The performance-relevant parameters can be 
determined from the use case traces. These parameters describe a component from a 
performance viewpoint and form the initial signature type.  

Step 5, Construction of an auxiliary prediction model. The auxiliary performance 
prediction model needs to be calibrated based on the measured signature instances and 
corresponding performance metrics of the component. 

We also advocate the use of multiple6 linear regression for constructing the auxiliary 
prediction model. This model is constructed in exactly the same way as described in 
Section 5.10. 

5.9 Simulation model construction (Steps 5 and 8) 
Based on the interviews with the architects and on the study of the existing 

performance modeling techniques [SW02], we formulated several essential requirements 
that a proper simulation model should satisfy to be applicable in the context of the 
APPEAR method:  

1. This model should be relatively simple (at the proper abstraction level). 
Construction/modification of the model should be much faster than implementing 
or prototyping the software under consideration, and the model should be 
manageable by a single person (the architect). For the sake of comprehensibility, 
there should be a simple mapping between the simulation model and the 
architecture. 

                                                 
6 The statisticians use the expression ‘multiple linear regression’ to refer to a linear regression technique that 
constructs linear regression models having multiple input parameters. Traditional linear regression concerns 
only a single input parameter. 
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2. The model should provide insight into the execution architecture. It should include 
all performance relevant details and assist in the identification of performance 
bottlenecks. 

3. The model should allow the extraction of signature instances. The APPEAR 
method relies on the possibility to extract the signature instances. 

4. The model should preferably be executable. It should be possible to simulate the 
component behavior and to observe it. This provides an additional insight into the 
component behavior. 

It is important to consider how easy it is to modify the simulation model of an existing 
component so that it can also model the adapted components. On one hand, the similarity 
(see Chapter 8) between the existing and adapted components determines how many 
modifications are needed. This can only be identified on basis of the architecture of the 
adapted component. One has to check if the assumptions made for building a simulation 
model(s) remain valid. On the other hand, the techniques for building simulation models 
influence the speed of incorporating changes. It is useful to build such a model based on 
the extensive use of CASE and rapid development tools. These tools often support models 
that can be easily mapped onto the architecture of the component, e.g. in terms of state 
machines. 

5.10 Prediction model calibration (Step 7) 
The prediction model can be constructed by any regression technique such as multiple 

linear regression [Wei95], [JAI91], [MON01], MARS [Fri90], lazy learning [Bon99], etc. 
However, we advocate the use of the multiple linear regression for the following reasons: 

• Prediction models calibrated using linear regression techniques have simple form 
and can be easily understood. 

• Linear regression has a well-developed mathematical basis that allows extensive 
checking of the model quality and provides powerful mechanisms for making 
inferences about the model parameters and predictions, e.g. by means of 
confidence and prediction intervals. 

• Many tools are available for performing linear regression analysis. 
When applying (multiple) linear regression, the performance is assumed to depend 

linearly on the signature parameters. This relation can be represented as follows: 

 .T
i i iP s β ε= +  (5.5) 

In Formula (5.5), iP  denotes the performance measurement for the i-th use case; 
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 is a vector of population7 linear regression coefficients; 

                                                 
7 Here, by population coefficients we mean that these coefficients describe the linear regression model that 
covers the entire set of all possible performance measurements. 
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of the linear regression coefficients are obtained by 

minimizing the sum of squared errors (the least squared error method [JAI91], [Wei95], 
[MON01]): 
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In Formula (5.7), β̂  is a vector of estimates of the linear regression coefficients β ; the ie  
random variable is the residual of i-th observation that denotes the error not explained by 
the prediction model. The function arg min ( )

b
f b  calculates the value of argument b that 

minimizes the function ( )f b . 

Notice that ie  must also be independently and normally distributed with mean zero and 
constant variance, because of the assumptions of linear regression, expressed by Formulas 
(5.7) and (5.6). 

Linear regression allows one not only to find the estimates of regression coefficients, 
but also the p-values of the associated t-statistics10 of the signature parameters (see 
[KO02]). These p-values are the probabilities that the regression coefficients for some 
signature parameters are zero. The greater the p-value, the less likely it is that the 
corresponding signature parameter explains the variation of the performance metric over 

                                                 
8 The statistics literature traditionally uses term predictors or independent variables for referring to signature 
parameters. Please notice also that 0is  is often considered to be equal one. This is convenient for modeling 
the constant term (interceptor) in a multiple linear regression model. 
9 The value of σ  is usually unknown. 
10 In linear regression, t-statistics are used to check the null hypothesis about the regression coefficients, i.e. 
to check if the regression coefficients are likely to be zero for particular signature parameters.  
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the set of use cases. The ultimate goal is to arrive at a list of signature parameters that are 
all significant, i.e. the p-values are below a certain threshold.  

When interpreting the p-values, the architect has to pay attention to the variation of the 
values of signature parameters with large p-values. The values of certain signature 
parameters might not vary significantly for a given set of use cases. In this case, additional 
use cases should be traced to make sure that this is not a measurement artifact. In addition, 
p-values are only valid for a particular combination of signature parameters. If a signature 
parameter is omitted or added, the p-values of the other parameters usually change.  

The architect can use the p-values for constructing the list of performance relevant 
parameters. A p-value threshold, usually called a significance level, can be used for 
determining the significant parameters. The choice of this threshold depends on the context 
(a typical threshold is 0.05). The parameters with p-values greater than this threshold 
should be excluded from the signature type. The p-values can also be ignored and the 
entire list of signature parameters is kept intact, if the architect is sure that all signature 
parameters are relevant for modeling the performance and none of them can be omitted. 
However, using statistical inferences such as confidence and prediction intervals for the 
performance metric is not recommended in this case, because they are likely to be 
incorrect [JAI91], [Wei95].  

5.10.1 Validation of the prediction model 

Crucial information about the quality of the prediction can be deduced from the 
analysis of the prediction model's residual and relative (or absolute) prediction errors. 
Several assumptions about the model's residual and input data set are usually made, 
depending on the regression technique used to construct the prediction model. The 
assumptions typically made for the case of linear regression are as follows: 

1. The residual has a normal (Gaussian) distribution with constant variance11 and a 
mean value of zero. 

2. There is no serial correlation12 between residual and dependent variable (a variable 
for which prediction is needed). 

3. There are no outliers. An outlier is an observation that significantly deviates from 
the bulk of a sample. 

4. There are no influential observations. These types of observations have a major 
effect on the coefficients of a prediction model, in comparison to other 
observations. 

5. There is no linear correlation between independent variables (signature 
parameters). If there is correlation, it is said that the data is multicollinear; if the 
correlation is perfect, the data is singular. 

Analysis of residuals helps to explain inaccurate predictions and can provide additional 
insight into the component behavior. Such an analysis may help in the identifying (1) 
missed signature parameters, (2) independent groups of measurements, and (3) insufficient 
amount of measurements in the neighborhood of certain points. For example, the analysis 
of the residual provided additional insight in the case study about the TV software and 
assisted in signature type selection (see Chapter 7). The analysis of the relative error 
helped to identify the necessity to cluster the measurements in the case study on Medical 
software (see Chapter 8). 

                                                 
11 The phenomenon of variance constancy is often called global homoscedasity. 
12 Serial correlation within a sequence of observations means that each observation is correlated with a 
number of previous observations. 
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In addition to the analysis of residual, the quality of the prediction model can be 
verified by using cross-validation techniques such as leave-one-out, leave-K-out, etc. 
[MON01]. 

5.11 Prediction accuracy 

Consider a prediction model built as described in Section 5.10. Let ˆˆ TP s β=  denote the 
average performance estimate that corresponds to a particular signature instance s . The 
future observation P  of the performance metric for a signature instance s  can be 
described by a prediction interval at the confidence level13 α , calculated as follows 
[JAI91], [Wei95], [MON01]: 

 1 2; 1 1 2; 1
ˆ ˆˆ ˆn k p n k pP t P P tα ασ σ− − − − − −− ⋅ ≤ ≤ + ⋅  (5.8) 

In Formula (5.8), the following notations are used. The ;q dt  parameter denotes the q-th 
quantile of the t-distribution with d degrees of freedom; n  and k  are the number of use 
cases and signature parameters, respectively. The 2σ̂  statistic denotes the standard error of 
fit and can be found by Formula (5.11). The ˆ pσ  statistic is an estimator of the standard 
deviation of a prediction: 

 ( ) 1
ˆ ˆ 1 T T

p s S S sσ σ
−

= + . (5.9) 

In Formula (5.9), S  is a matrix consisting of the signature instances used to fit the 
prediction model:  
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We will further refer to these signature instances as calibration data. The standard error 
of fit 2σ̂  is calculated on the basis of measured performance metrics iP  and fitted 

performance metrics îP : 
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For conciseness, we denote the lower bound of the prediction interval as PL and the 
upper one as PU. They are calculated by the following formulas: 

 1 2; 1
ˆ ˆ ,n k pPL P t α σ− − −= − ⋅  (5.12) 

 1 2; 1
ˆ ˆ .n k pPU P t α σ− − −= + ⋅  (5.13) 

Obviously, the following inequality holds for the future observation P and prediction 
interval bounds: 

 .PL P PU≤ ≤  (5.14) 

There are a number of assumptions that must be satisfied to make the application of 
prediction intervals valid: 

1. The distribution of the prediction errors must be normal. 

                                                 
13 The confidence level is usually chosen by the user. 



 92

2. The variance σ  of the errors must be constant. 
3. The signature instances is  must be uncorrelated. That is, the correlation coefficient 

must be low (e.g., less than 0.4). This is needed to avoid numerical problems and to 
ensure the decoupling of the effects of different signature parameters, such that 
these effects are not confused with each another. 

Figure 5.5 illustrates the use of a prediction interval for a single-parameter signature 
type. For a particular signature instance s, the predicted value P should lie between PL and 
PU, calculated at a certain confidence level α  (usually 95%). 

s

P

s

P
PL

PU

 
Figure 5.5: Prediction interval 

The use of prediction intervals may not always be valid. This can happen because the 
signature instance, for which the performance prediction must be done, is located far from 
the calibration data. Let us consider an example, where the performance of a hypothetical 
system (see Figure 5.6) is depends on a single signature parameter s. 

s

P

s0

P0'

P0

The actual dependence
of the performance on
the signature parameter

The extrapolated dependence
of the performance on the
signature parameter

 
Figure 5.6: System behavior is different for remote points 

A linear prediction model is constructed based only on a particular interval of the 
signature parameter values. However, the system can radically change its behavior for 
signature instances lying far from the calibration data. Therefore, the predictions outside 
the range of calibration data can be invalid. In Figure 5.6, the actual performance 
measurement equals P0 for the signature instance s0, whereas the performance estimate 
equal P0’. Please notice that the actual performance lies far outside of the prediction 
interval for the estimate. 

5.12 Scope of the APPEAR method 
This section describes the scope of the APPEAR method and its role in the architecting 

process. The main relationships are described by the UML diagram shown in Figure 5.7. 
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The gray boxes and the bold arrows are the parts of the diagram that are supported by the 
APPEAR method. 

Architects have a rationale behind the choice of a particular architecture. This rationale 
supports the architectural description, explains why this architecture is adopted, and 
clarifies main architectural concepts. To reason about the architecture, an architectural 
insight is required. This insight can be obtained by constructing architectural models that 
constitute the architecture description. The architectural models provide the architect with 
an architectural insight, both in terms of general architectural notions and in terms of 
compositional entities (e.g., connectors and subcomponents). 
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Figure 5.7: APPEAR scope 

The APPEAR method provides an additional insight into the performance relevant 
parts of an architecture. It helps to understand why the software system exhibits particular 
performance and how this performance can be controlled and, probably, be optimized. A 
Performance insight concerns (1) performance critical parameters and (2) performance 
bottlenecks. Critical parameters are input parameters (e.g. the amount of data to process) or 
static architectural parameters (e.g., buffer size) that directly influence the performance. 
Architectural bottlenecks are architectural concepts that cause performance losses. 
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The basic result of applying the APPEAR method to the existing software is that 
architects become aware of the bottlenecks and critical parameters. During our industrial 
case studies, described in Chapters 7, 8, 10, and 11, we found various justifications for this 
fact. For instance, the performance of a software component may turn out to be limited by 
the underlying hardware (see Section 11.4). Besides the knowledge of performance 
relevant details, application of the APPEAR method can also support performance 
optimization (e.g., minimization of either the number of service calls or their duration). 
After analyzing the software by the APPEAR method the code may be modified to 
implement the necessary optimizations. 

Performance critical parameters correlate with the performance measurement. They 
comprise a vector, which we call signature type. The signature type relates to service calls, 
input and diversity parameters, internal states, etc. It can be identified by means of 
statistical regression. A regression technique provides the architect with the so-called p-
values describing the significance of the candidate signature parameters. These p-values 
show whether the signature parameters are likely to explain the observed variation of 
performance. Therefore, these p-values can be used for discovering the signature type. 

Performance models allow the architect to gain a performance insight. These models 
show the dependencies between signature parameters, bottlenecks, architectural solutions 
and the performance of the software. The role of these models is to estimate the expected 
performance before implementing the software. Currently, such models are often 
constructed after the implementation, when either the software has to be extended or its 
performance has to be improved. The implementation effort can be reduced if the 
performance models are constructed beforehand. 

Statistical performance models are “black-boxes”: they reflect only the relation 
between software input parameters and the performance, but do not explore any internals 
of the software. These models are constructed by fitting them to measurements from the 
software. Using these models, the architect can estimate the performance of the software. 
A performance prediction model constructed by the APPEAR method is an example of 
such a statistical model. Statistical prediction models are useful, as they serve the 
following functions: 

• They can provide higher prediction accuracy than simulation models, since they 
automatically account for unexpected overhead, deviations in execution times, 
implementation details, etc. 

• They help identify complex run-time dependencies in the software (e.g., by means 
of the residual observation, analysis of contribution of each signature parameter to 
the performance metric, etc). 

• They can help in exploring the correlation between input data, and thus diminish 
the number of performance relevant parameters. 

However, statistical models provide little architectural insight, since they consider the 
system as a “black box”. Therefore, statistical prediction models are much more useful 
when accompanied by simulation models. 

Simulation models describe the performance relevant internals of a software system. 
They are usually “gray-boxes”: the behavior of the software is abstracted to performance 
significant aspects only. These aspects can concern both the architectural solutions (e.g., a 
scheduling policy) and the implementation details (e.g., a search algorithm). Performance 
estimates are usually calculated on the basis of a number of simulation runs, each run 
modeling a single execution of the software system. 

Simulation models play several important roles: 
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• They allow the architect to investigate the details that are important during 
software execution. Often, the performance effects of these details become visible 
only on the long run (e.g. jitter of a certain task), 

• They can be used for modeling complex dependencies (e.g., dependencies on the 
history), 

• They provide an opportunity to change architectural solutions or the values of 
particular performance relevant parameters, and to quickly observe how these 
changes influence the performance. 

Sometimes, a simulation model can amount to a simple analytical model (e.g., a 
formula with a couple of parameters). Such a simple models can used for either simple 
software or for complex software for which only general performance insight (a rough 
estimate) is required. For example, such a model can demonstrate that the performance 
depends on a few input parameters only or that the performance is determined by 
underlying hardware only (e.g., disk or memory speed), with software 
design/implementation details being irrelevant (see Chapter 11). For such cases, the initial 
estimates made during the architecting phase, based on the parameters of the underlying 
hardware (e.g., disk speed), are often sufficient to accurately predict the performance. 
There is therefore no need to construct complex simulation and/or statistical models. 

However, the use of such simple models also has a number of drawbacks: 
• Overhead in the implemented software (e.g., communication overhead) can affect 

the performance and thus deteriorate the performance predictions, 
• Relevant performance aspects can remain unexplored, 
• External performance-relevant factors can be overlooked (e.g., non-deterministic 

response times when transporting data through a network). 

Since modern software is rather complex, both simulation and statistical models must 
usually be used. Simulation models can be used to extract signature instances. Signature 
instance extraction is, in fact, a transformation of architectural concepts and solutions into 
performance relevant parameters. These parameters are then used as inputs for a statistical 
model. Construction of simulation and statistical models is an iterative process. The 
models are usually validated against the measurements and iteratively refined until they 
become sufficiently detailed and accurate. 
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6 Similarity of software components 
In Chapter 5, we introduced the APPEAR method that can be used to predict the 

performance of an adapted component, based on the performance models of the existing 
one. The successful application of this method is only possible when its assumptions (see 
Section 5.4) are satisfied. Particularly, the adapted and existing components must be 
“similar”. The purpose of this chapter is to elaborate this notion of component similarity. 
Note that in this chapter, as in Chapter 5, we do not consider component interactions, 
which are tackled in Chapter 9. 

6.1 Problem statement 
The APPEAR method considers the software stack in terms of components and a 

Virtual Service Platform (VSP). The former are described by simulation and prediction 
models, whereas the latter is covered by a prediction model only. The simulation model 
supports the estimation of the values of signature parameters as an input for the prediction 
model. The APPEAR method aims at reusing the prediction model, fitted to the 
measurements from the existing components, to assess the performance of the adapted 
versions of these components1. This allows saving a lot of effort, since performance 
estimates for a new version of the component can be obtained by modifying only the 
simulation model (Figure 6.1). 

simulation model
(existing component)

Prediction model
(VSP)

...

simulation model
(adapted component)

Performance
predictions

Signature instances

Parameters of use cases

... ...

 
Figure 6.1: Performance prediction for adapted component 

However, the accuracy and trustworthiness of such predictions is questionable for 
several reasons. The adapted component may have a different behavior; e.g., it may use the 
VSP in a different manner. As a result, the use of the prediction model for another 
component may provide incorrect results. Moreover, the architects do not have any 
measurements to validate these predictions, as the component is not implemented yet. 
Consequently, they need additional means to judge the trustworthiness and accuracy of the 
estimates. These two properties of predictions can be represented in terms of prediction 
intervals, which provide a range of values where actual performance lies (see Section 5.11) 

The APPEAR method can only be applied for predicting the performance of adapted 
components that are sufficiently “similar” to the existing ones. The purpose of this chapter 
is to elaborate on the notion of component similarity and to provide the architects with the 
means for judging when the APPEAR method can be successfully applied. 
                                                 
1 As in the previous chapters, we consider that the term “performance of a component” refers to the 
performance-related metric of a particular component operation. 
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Answering the question whether the existing and adapted components are similar 
amounts to answering the question whether the simulation models of these components are 
similar with respect to the use of the same prediction model. Figure 6.2 illustrates the 
scope of the similarity problem in more detail. 

Existing component Adapted component

Design of existing
component

Design of adapted
component

Simulation model of
existing component

Simulation model of
adapted component

Similar?

Similar?

Similarity  aspects:
  1. Difference in internal computations
  2. Signature type
  3. Signature instance distance

 
Figure 6.2: The scope of the similarity problem 

The architect needs to decide whether the existing component and the adapted version 
thereof are similar. Both components have a particular design. These designs must reflect 
the use of services of the same VSP by both components so that it is possible to construct 
simulation models that show the use of these services. These simulation models are to be 
used to extract signature instances for supplying them to the input of the prediction model 
(see Sections 5.6.1 and 5.6.2). Already at this stage, the architect can decide that the 
components are dissimilar, if the adapted component uses completely different services 
than the existing component or if the services to be used by the adapted component are 
unknown. In this case, the architect has to apply performance prediction approaches other 
than the APPEAR method to obtain performance estimates for the adapted component 
(e.g., detailed simulation). In the rest of this chapter, we will consider only the case when 
the architect has succeeded in constructing the simulation model, for the adapted 
component, that can supply signature instances to the prediction model. 

We use the following definition of component similarity: 

 Similar IC ST SI= ∧ ∧  (6.1) 

In Formula (6.1), Similar  is a Boolean variable that indicates whether the adapted and 
existing components are similar or not. It is calculated by the conjunction of three Boolean 
variables corresponding to the following similarity conditions: IC (internal computations), 
ST (signature type), and SI (signature instances). The values of these variables are assigned 
using the rules described in Section 6.2. 

The components are considered similar if all three conditions of component similarity 
are satisfied: 

1. The internal computations (IC) of the adapted and existing component are 
identical. 

2. The signature types (ST) of the adapted and existing component are identical. 
3. The signature instances (SI) of the adapted and existing component are close. 
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For the first two conditions, we formulate some recommendations in Section 6.3. They 
help the architect to still be able to obtain predictions for the adapted component, when the 
conditions are not satisfied. Though, these predictions will have lower accuracy. 

6.2 Similarity conditions 
This section details the similarity conditions enumerated in Section 6.1. 

6.2.1 Identical internal computations of adapted and existing 
component 

It is not always the case that the most of performance is determined by the VSP. Both 
existing and adapted components can have timing dependencies or CPU-intensive internal 
computations that contribute to the overall performance. These internal computations and 
timing dependencies may differ for the adapted and existing component. 

This problem can be addressed if an adequate model of the internal computations and 
timing delays are provided. These computations can be modeled either by analytical 
formulas or by simulation. The information about the processor demand and delays can be 
obtained from measurements or by budgeting. 

The following factors are important when comparing the internal computations of the 
existing and adapted component: 

• The amount of internal computations. The prediction model accounts not only for 
the computations performed in the VSP, but also for the internal computations of 
the existing components (see Chapter 5). The amounts of computations of both 
types must be alike for the existing and adapted components in order to obtain 
valid predictions.  

• The possible correlation between the amount of internal computations and 
signature instances. Service call invocation may require a significant amount of 
internal computations. Thus, certain invocation patterns of the service calls may 
lead to the correlation between the amount of the internal computations and 
signature instances. It is therefore important to check that the existing and adapted 
components exhibit the same correlation. 

The existing and adapted components must be alike with respect to both factors, which are 
detailed in the subsequent sections. 

The information about the internal computations of the existing components can be 
extracted either from measurements or from the simulation model, whereas the same 
information for the adapted component can only be obtained from its simulation model. 
Section 6.4 describes and example of how the internal computations of the adapted 
component are modeled. 

A) Comparison of the amounts of internal computations 

The amount of internal computations of the existing component can be measured in 
terms of average values, by applying the following formula: 

 
1

1 N

j
j

P P
N =

= ∑ . (6.2) 

In Formula (6.2), P  denotes the average amount of internal computations, and jP  is 
the amount of internal computations observed for the j-th use case.  
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Let existingP  and adaptedP  denote the amount of the internal calculations of existing and 

adapted component, respectively. It is not correct to check if existingP  and adaptedP  are equal 
or not, as both of them are, in fact, random variables calculated from observations. This 
means that any difference between existingP  and adaptedP  has a statistical nature, i.e. it is 

observed by chance. In this case, it is valid to check if existingP  and adaptedP  are statistically 
distinguishable. Figure 6.3 illustrates this phenomenon in more detail. 
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Figure 6.3: a) existingP  and adaptedP  are statistically distinguishable, b) existingP  and adaptedP  are 
statistically indistinguishable 

In both cases, existingP  does not equal adaptedP . Plot a) shows the case when existingP  equals 

adaptedP  are statistically distinguishable, as the difference adapted existingP P−  is larger than the 

variations of corresponding performance metrics around the means existingP  and adaptedP  for 
the existing and adapted components, respectively. Plot b) shows the opposite case, that is, 
the difference adapted existingP P−  is smaller than the two variations. This implies that existingP  

and adaptedP  will be statistically indistinguishable. 

A proper approach to checking whether existingP  equals adaptedP  or not is to check 
whether they are statistically indistinguishable or not (see Figure 6.3). The latter can be 
done by applying statistical hypothesis testing (e.g., the z-test or t-test [Wei95], [MR03]) 
or by constructing the confidence interval for adapted existingP P−  and then checking if this 
interval contains the value zero [Wei95], [MR03]. 

B) Comparison of the correlations between the amount of internal 
computations and signature instances 

Certain internal computations may need to be performed whenever VSP services are 
invoked, with each VSP service corresponding to particular amount of internal 
computations. For instance, the existing component performs most internal computations 
when it calls a particular VSP service, e.g., a service S1. On the other hand, the adapted 



 100

component performs most of its internal computations, when it invokes another service, 
e.g., a service S2. These two services are described by two distinct signature parameters, 
the numbers of invocations of these service calls. The prediction model fitted to the 
measurements from the existing component will provide biased predictions for the adapted 
component, as the prediction model confuses the contribution of the S2 service with the 
contribution of the S1 service. 

Thus, it is also necessary to compare the degree of correlation between the signature 
instances and the amount of internal computations for the existing and adapted 
components. These degrees of correlation have to be statistically indistinguishable to 
guarantee that the internal computations of the components are the same. In the general 
case, we have not found a solution to this problem.  

There is however a solution for the case when the amount of internal computations 
does not correlate with the signature instances for both existing and adapted components. 
In this case, one can construct auxiliary regression models2 (for both existing and adapted 
components) that relate the amount of internal computations to the signature instances. 
Both models must not provide significant regression, that is, all regression coefficients are 
not considered significantly different from zero. This can be tested by applying the F-tests 
for regression significance [JAI91], [Wei95], [MON01], [MR03], i.e. to test whether the 
internal computations of the existing and adapted components can be described only by 
their mean values. Finally, it is necessary to check if the residuals of the auxiliary 
prediction model satisfy the assumptions of the regression technique. The residuals should 

• not have any structure, 
• be normally distributed, 
• have a constant standard deviation. 

Provided that all these checks are passed and the amount of internal computations is 
the same (see section above), the existing and adapted components are concluded to be 
similar with respect to their internal computations. 

6.2.2 Identical signature types of adapted and existing 
component 

The existing and adapted components are similar only if their signature types are 
exactly the same, that is, their performance can be described by the same set of signature 
parameters. This is required as the prediction model can only input the same signature type 
that was used to fit the model. This signature type is derived from the existing component. 
If the signature types are different, the components are concluded to be dissimilar, and the 
recommendations from Section 6.3.2 might provide an “escape route”. 

6.2.3 Distance of the signature instances of adapted and 
existing component 

As explained in Section 5.11, trustworthy predictions can only be obtained for the 
signature instances that are close to the ones used to fit the prediction model. It is therefore 
necessary to check the distance between the signature instances of the existing and the 
adapted components. For this purpose, a metric of the distance between signature instances 
is introduced. It characterizes the distance between a signature instance used for predicting 
the performance and the nearest p signature instances from the calibration data (see Figure 
6.4). 

                                                 
2 The model is constructed using linear regression tools, e.g. S-PLUS 
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Figure 6.4: The local distance metric for signature instances 

Let SA  denote the set of indexes of all signature instances from the calibration data, 
and { }1 2 1, ,..., ,p pSN i i i i SA−= ⊆  denote the set of indexes of the p nearest signature 
instances. The following holds for these two sets: 

 0 0, \ : ( , ) ( , ).i ji SN j SA SN d s s d s s∀ ∈ ∀ ∈ ≤  (6.3) 

In Formula (6.3), ( , )l md s s  is a weighted Euclidean distance between signature 
instances ( )1 2 1, ,..., ,l l l lk lks s s s s−=  and ( )1 2 1, ,..., ,m m m mk mks s s s s−= , each consisting of k 
signature parameters. The weighted Euclidean distance ( , )i jd s s  can be calculated by 
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In Formula (6.4), ( )max
ls⋅  and ( )min

ls⋅  denote, respectively, the maximum and the minimum 
values of the l-th element of all signature instances used to fit the prediction model. The 
global scaling introduced by these two variables is needed to make a distance metric 
equally sensitive to all signature parameters. Otherwise, the distance metric would be 
dominated by the signature parameters that have larger values. 

Let us also introduce the notion the center *s  of the nearest points of all signature 
instances from SN . This center is a reference point that allows determining the distance 
between the point 0s  (where the prediction is needed) and the p nearest points. The 
distance metric is determined by relating the distances between the points from SN and *s  
to the distance between 0s  and *s . The value of the center *s  of nearest points can be 
calculated by the following formulas: 

 ( )* * * *
1 2, ,..., ,ks s s s=  (6.5) 
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Finally, the local distance metric L (L-metric) can be calculated as follows: 
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In Formula (6.7), 0s  denotes the signature instance that needs predicting the performance, 
*s  is the center of nearest points of all signature instances from SN . 

The larger the L-metric is, the further the point is located from the calibration data, and 
the less likely it is to obtain valid predictions. A more detailed explanation for this 
phenomenon can be found in Section 5.11. 

The L metric has values smaller than one, if the signature instance used for the 
performance prediction is located in the neighborhood of the p-nearest points. In this case, 
the prediction model can be safely used to estimate the performance, as it is used for the 
signature instance from the calibration data [Wei95], [MON01], [MR03], [JAI91].  

Otherwise, the architect has to carefully analyze the validity of the prediction: there 
should be a sufficient evidence of the applicability of the prediction model beyond the area 
that the model has been fitted in. If such guarantees cannot be provided, the architect may 
rely on the predictions only if the impact of the wrong decision, made on the basis on these 
predictions, is low. In this case, the architect is recommended either to apply other 
performance prediction methods, or to negotiate the risks due to the wrong decision with 
the stakeholders. 

Please notice that the behavior of the L-metric and, consequently, its reliability 
depends on the chosen value of p, the number of closest points considered. Particularly, the 
value of p should be not less than the number of the signature parameters, as the latter is 
the minimum number of observations required to build a unique prediction model. On the 
other hand, choosing a significantly larger value of p may result in a failure of the L-metric 
to capture the distance between a signature instance and the calibration data. For instance, 
Figure 6.5 demonstrates the case when the calibration data space has a complex shape. 
Predictions for the signature instances lying equally far from both parts of the space may 
be incorrect, if the value of p equals to the number of signature instances in the calibration 
data. In addition, cluster analysis techniques [JAI91] can be employed for choosing the 
value of p. 
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Figure 6.5: The complex-shaped signature space used for the calibration of a prediction model 
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6.3 “Escape routes” 
This section describes a couple of recommendations for tackling particular types of 

component dissimilarity. These recommendations are described in the subsequent 
subsections. 

6.3.1 Difference in the internal computations of components 

In the general case, difference in the internal computations of the existing and adapted 
components makes components dissimilar. Despite this complication, the performance 
estimates for the adapted component can still be obtained in some cases. Addressing this 
type of dissimilarity requires that performance contributions of the VSP and component be 
treated separately for both existing and adapted components. In this case, the prediction 
model reflects the VSP contribution, whereas the simulation model describes the 
component contribution to the performance.  

For constructing such a prediction model, it is sufficient to use the measurements of the 
VSP contribution only instead of the measurements for a complete use case. The code 
needs to be instrumented to support such measurements. 

The simulation model must explicitly specify the internal computations of components 
in terms of resource demands and timing delays3. For the existing component, these values 
can be extracted from the measurements, whereas for the adapted component they can be 
budgeted. 

Both simulation and prediction models yield performance contributions (in terms of 
performance metrics, e.g. execution time) (see Figure 6.6). 
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Figure 6.6: Separate performance contributions of component and VSP 

In Figure 6.6, ( )1 2, ,..., ks s s s=  denotes a signature instance. The remaining variables are 
defined in the figure. 

Using the calibration phase of the APPEAR method (see Section 5.6.1), the prediction 
model for the contribution of the VSP to performance is fitted. To make a prediction for a 
certain use case parameterized by a vector ( )1 2, ,..., kp p p p= , both VSP and component 
contributions need to be estimated. The former is determined by calculating the signature 

                                                 
3 Note that approach differs from software prototyping, as no line of code is actually implemented, but only a 
high-level model where certain time-consuming operations are treated explicitly is constructed. 
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instance s  and applying the prediction model ( )vspP s  to it. The latter has to be calculated 
by the simulation model. Finally, the two estimates need to be summed up to obtain the 
overall estimate for the chosen use case.  

In this way, the performance of the adapted component can be predicted with certain 
accuracy, even if this component has a significantly different amount of internal 
computations than the existing one. This accuracy depends on (1) the accuracy provided 
by the prediction model and (2) the accuracy of modeling the internal computations by the 
simulation model of the adapted component. The former can be described by means of 
prediction intervals (see Section 5.11). The latter has to be specified by the architect, 
preferably in the form of the distribution of expected prediction error for the internal 
calculations. For instance, the architect can use measurements from a prototype of the new 
functionality or construct a number of benchmarks to obtain figures about the internal 
computations of the existing component. In Section 6.4, we described an example of 
applying the proposed escape route and constructing the total prediction intervals for the 
performance of the adapted component. In the general case, the architect can expect that 
the accuracy of modeling the internal calculations has a major impact on the overall 
prediction accuracy, as the actual implementation of the adapted component may have a 
completely different amount of the internal calculations than the one considered within the 
simulation model. 

6.3.2 Difference in the signature types of the adapted and 
existing component 

The prediction model is calibrated based on a particular signature type, obtained for the 
existing component. As soon as the signature type of the adapted component differs from 
the signature type of the existing one, the use of the existing prediction model is no longer 
possible, without modifying the APPEAR method. However, even if this problem occurs, 
there can still be solutions that allow the prediction of the performance of an adapted 
component. 

Three cases of differences in the signature types are distinguished: 
• Signature type of an adapted component is wider than that of the existing one: 

 1

1

{ ,..., }    
{ ,..., ,..., },    

k

k n

S S S signature of existing component
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= −
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 (6.8) 

• Signature type of an adapted component is narrower than that of the existing one: 
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• Signature types of the existing and adapted component intersect: 
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p n

S S S S signature of existing component

S S S S p n k signature of adapted component

= −

′ = < < −
 (6.10) 

The subsequent sections will briefly describe each case. 

A) Wider signature type 

An adapted component can have a wider signature type for the following three reasons 
(see Figure 6.7): 
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Wider signature type

1. Extra VSP services 2. VSP state 3. Fine-grained signature type  
Figure 6.7: Different reasons for wider signature type 

1. The adapted component uses more VSP services than the existing one, 
2. The adapted component uses the VSP in a different mode or invokes service calls with 

a different pattern; i.e., the state of the VSP becomes influences the adapted 
component, 

3. The adapted component invokes VSP services with different parameter values, i.e., the 
signature type is more fine-grained. 

The second and the third cases relate to the different patterns of the use of VSP 
services by existing and adapted components. These different patterns ultimately result in 
different signature types. Two different patterns of use can be discerned: a) different call 
frequency and b) different call sequence. The first pattern does not have impact on 
signature type, as it results only in changing signature instances. The second pattern often 
relates to the relevance of the VSP state. 

Case 1: extra VSP services. The adapted component may use more services of the VSP 
than the existing one does (see Figure 6.8). 

Prediction model
 (existing component)

Simulation model
(adapted component)

S1 S2 S3 Sn

Extra VSP services are
modeled as "virtual"
internal operations

Input parameters
( )1 2, ,..., lp p p p=

Sk
... ...Signature type

 
Figure 6.8: Wider signature type as a result of usage of extra VSP services 

In this case, the performance contribution related to the additional signature parameters 
implies additional computations. These computations cannot be captured by the prediction 
model, as measurements for the adapted component are not available. Therefore, we 
propose treating these computations as internal computations of the adapted component, 
and represent them as “virtual” internal operations in the simulation model. The 
contribution related to these extra signature parameters is estimated or budgeted in 
advance and incorporated to the simulation model in terms of resource demands and 
timing delays. For the rest of the signature parameters, the existing prediction model can 
be used. This approach allows reducing the problem of extra VSP services to the problem 
of difference in internal computations, which can be solved in a manner as described in 
Section 6.3.1. 

Case 2: VSP state. The VSP state can have a significant influence on performance, if the 
invocation patterns of service calls are different for the adapted and existing component 
(see Figure 6.9). The effect of extra VSP state(s) can be treated in the following way. 
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These states can be considered just as additional signature parameters. As a result, extra 
VSP state(s) can also be represented as “virtual” internal operations in the simulation 
model (see the case above). This approach allows using the solution described in section 
6.3.1. 

 

Prediction model
(existing component)

Simulation model
(adapted component)

S1 S2 S3 Sn

VSP state(s) are
modelled as "virtual"
internal operation

Input parameters
( )1 2, ,..., lp p p p=

Sk
... ...Signature type

VSP state(s)  
Figure 6.9: Handling a wider signature type as a result of the relevance of the VSP state(s) 

Case 3: fine-grained signature type. The signature type may need to be refined, that is, 
certain signature parameters have to be substituted with groups of parameters. For 
example, additional parameter ranges of a service call have become relevant for the 
adapted component, whereas they had been irrelevant for the existing component. For the 
adapted component, the duration of this call may vary depending on the values of 
particular input parameters. On the other hand, no variation of the duration of this call may 
have been observed for the existing component. As a result, a single signature parameter 
cannot capture this service call any longer. Therefore, additional signature parameters must 
be introduced (see Figure 6.10). This leads to the same situation as in the previous case 
where extra VSP services are modeled as “virtual” internal operations. 

Prediction model
(existing component)

Simulation model
(adapted component)

S1 S2 S3

Refined parameters are
modeled as "virtual"
internal operations

Input parameters
( )1 2, ,..., lp p p p=

Sk1
...Signature type

Sk2

Refined parameters

 
Figure 6.10: Handling a wider signature type as a result of the refinement of coarse-grained signature 

B) Narrower signature type 

It may be the case that the performance can be described for the existing component by 
fewer signature parameters than for the existing one. For example, the adapted component 
can use fewer service calls of the VSP (e.g., parameter S1 is not used by the adapted 
component in Figure 6.11). 
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Prediction model
 (existing component)

Simulation model
(existing/adapted component)

S1 S2 S3

Input parameters
( )1 2, ,..., lp p p p=

Signature type

 
Figure 6.11: Narrower signature type 

The performance prediction model for the existing component is originally fitted over 
all signature parameters. It has the following form for the case of linear regression: 

 0
1

.
n

i i
i

P Sβ β
=

= + ⋅∑  (6.11) 

In this formula, P  denotes the performance metric, iβ  are linear regression coefficients 
( 0β  is an intercept), and iS  are the signature parameters. 

In principle, the prediction model can input only the same number of signature 
parameters that it has been fitted over. To be able to continue using this prediction model, 
it is necessary to guess the values of the signature parameters that are not necessary for the 
adapted component. Please notice that this guessing may require a lot of effort. When it is 
impossible or too costly to guess these missing values, we recommend refitting the 
prediction model to the performance measurements from the existing component, but 
using only the signature parameters that are relevant for the adapted component. Note that 
this approach can increase the prediction error. 

C) Intersecting signature types 

Finally, the case of signature type intersection is considered. Intersection of signature 
types means that the signature type of the adapted component includes only some signature 
parameters of the existing one, and, in addition, it includes a number of extra ones, not 
employed in the signature of the existing component. 

For example, the adapted component can use fewer service calls of the VSP than 
existing one, and use a new service of the VSP (e.g., parameter S1 is not used by the 
adapted component, whereas parameter S4 is added in Figure 6.12). The solution in this 
case is the combination of the situations described the “Wider signature type” and 
“Narrower signature type” sections. Extra signature parameters can also be represented as 
“virtual” internal operations in the simulation model (see the cases above), and the 
approach described in Section 6.3.1 is applied. The problem of the unnecessary signature 
parameters is addressed by either guessing their values or refitting the prediction model, as 
described previously. 
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Prediction model
 (existing component)

Simulation model
(existing/adapted component)

S1 S2 S3

Input parameters
( )1 2, ,..., lp p p p=

Signature type
S4

 
Figure 6.12: Intersecting signature types 

6.4 Example of ascertaining the similarity of components 
We have chosen the Medical Imaging Software Stack (MISS), described in Chapter 8 

of this thesis to exemplify ascertaining the similarity of the existing and adapted 
components. Particularly, future versions of the “Reviewing” component (see Section 8.2) 
needed to be extended with a “ViewSubtractedTrace” function. This function merges a 
series of images of the current run4 into a single composite image. This composite image 
contains a view of the entire vascular tree structure. Before merging, each image 
undergoes the subtraction procedure: the mask is subtracted from the image to remove 
irrelevant pixels in order to improve the visualization of the vascular tree structure. Note 
that this subtraction procedure involves CPU-intensive computations. The image 
subtraction procedure could not be implemented in the existing dedicated hardware of the 
MISS. Therefore, it was decided to implement it in software. 

The architects would like to evaluate the performance of the “ViewSubtractedTrace” in 
advance, in order to verify whether these estimates match the requirements specification. 
The use case for predicting the response time of the adapted “Reviewing” component is the 
execution of the “ViewSubtractedTrace” function for various numbers of images, e.g. 8, 
16, 24, and 32. 

6.4.1 Similarity conditions 

The similarity conditions with respect to this example are as follows: 
• The amount of internal computations is different for the existing “Reviewing” 

component and the adapted version thereof. Moreover, the performance 
contribution of the internal computations is negligible (compared to the 
contribution of the VSP) for the existing component, whereas this is not true for 
the adapted one. This implies that we cannot use the prediction model fitted on 
the “Reviewing” component as is. Instead, we must take the “escape route” 
described in Section 6.3.1. 

• Both the adapted and existing components have the same signature type. No 
additional VSP services are required to implement the “ViewSubtractedTrace”. 
The image subtraction procedure is implemented within the adapted 
“Reviewing” component and is accounted for as the internal computations of 
this component (see the bullet above). 

                                                 
4 A “run” is a series of a medical images recorded during a single acquisition procedure. 
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• Various distances between the signature distances of the existing and adapted 
component are considered. Section 8.4.3 shows that the L-metric (see Section 
6.2.3) varies in the interval 0 to 4.96 for the number of images in the interval 8 
to 32. Signature instances for which the L-metric is larger than 1.0 do not allow 
to obtain reliable predictions. 

The example demonstrates how to deal with these similarity conditions to provide a 
trustworthy performance estimate for the adapted component in terms of prediction 
intervals. 

6.4.2 Simulation model of the adapted “Reviewing” 
component 

We modify the simulation model of existing component (see Section 8.3.5) to account 
for the introduction of the “ViewSubtractedTrace” function. Figure 6.13 shows the state-
machine that describes the behavior of the obtained simulation model of the adapted 
“Reviewing” component. The original state-machine, described in Section 8.3.5, needs 
added the “ViewSubtractedTrace (+ subT )” transition, which models the extra functionality. 

ViewSubtractedTrace( +Tsub)

 
Figure 6.13: Simulation model of adapted component 

The time consumed by the subtraction procedure is significant and can vary, depending 
on the number of images. Therefore, the simulation model of the existing “Reviewing” 
component needs to be extended to account for this new function (see the 
“ViewSubtractedTrace (+ subT )” transition in Figure 6.13). The simulation model of the 
adapted “Reviewing” component now calculates not only signature instances but also the 
total time subT  spent in the image subtraction procedure. This total time subT  can be 
calculated by the following formula: 

 ( )
1

.
#Images

sub i
i

T #Images t
=

= ∑  (6.12) 

In Formula (6.12), #Images  is the number of images, and it  is the time required for the 
subtraction procedure for a single image. The time it  is measured in advance and equals 
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100±15 ms (i.e., the standard deviation 15σ = ). We consider that the measurements have 
no systematic errors, but only a normally distributed error with the standard deviation σ . 
Additionally, each execution of this procedure is independent from other executions. 

6.4.3 Prediction of the response time of the “ViewSubstracted-
Trace” function 

As explained in Section 6.4.1, we cannot use the prediction model fitted on the existing 
“Reviewing” component as is. We have also to account for the significant internal 
calculations of the adapted “Reviewing” component, i.e., for the image subtraction 
procedure. As the internal calculations of the existing “Reviewing” component (see 
Chapter 8) were negligible, we can predict the performance of the 
“ViewSubstractedTrace” function by summing up the estimate made by means of the 
prediction model and the estimate obtained from the simulation model of the adapted 
“Reviewing” component (see Section 6.4.2). The first estimate predP  accounts for the 
contribution of the VSP, whereas the second estimate subT  models the total contribution of 
the image subtraction procedure. The response time P of the “ViewSubstractedTrace” 
function can be calculated by 

 
( )

( )
( )

, , ,

, , ,

.
pred

sub

P #Images #ShortUpdate #LongUpdate #Paint

P #Images #ShortUpdate #LongUpdate #Paint

T #Images

=

+  (6.13) 

In Formula (6.13), all arguments starting with the ‘#’ symbol are signature parameters, 
which are detailed in Section 8.3.4. For conciseness, we will omit these arguments when 
writing predP  and subT . 

We aim at constructing the prediction interval for the response time P at the confidence 
level α : 

 ( ) ( ).PL P PUα α≤ ≤  (6.14) 

In Formula (6.14), PL  and PU  are the lower and upper bounds of the prediction interval 
for pred subP P T= + . 

The calculation of the prediction interval is based on the knowledge about the 
statistical distribution of predictions. In our case it is possible to use the normal 
distribution because of the following reasons: 

• The degrees of freedom for the prediction model equal 43 (see Appendix F). It 
is therefore possible to approximate the t-distribution, usually used for 
constructing the confidence intervals in linear regression, by the Normal 
distribution, as the degrees of freedom are larger then 30 [JAI91], [MR03].  

• The errors of the prediction and simulation model are independent of each 
other. 

Those two arguments allowed us to apply the theorem stating that the sum of a number 
of independent normally distributed random variables is also distributed normally [Wei95]. 
Thus, the formulas for calculating the bounds PL and PU of the prediction interval differ 
from the ones given in Section 5.11. These formulas are as follows: 

 ( ) ,1 2 ˆ ,pred sub z pPL P T q αα σ−= + − ⋅  (6.15) 

 ( ) ,1 2 ˆ .pred sub z pPU P T q αα σ−= + + ⋅  (6.16) 
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In Formulas (6.15) and (6.16), ,1 2zq α−  denotes the 1 2α− -th quantile5 of the normal 
distribution. ˆ pσ  is the total standard deviation of the prediction Because of the normality 
and independence of errors from the simulation and prediction error, we can apply the rule 
for calculating the standard deviation of the sum of normally independently distributed 
random variables to obtain ˆ pσ : 

 2 2ˆ ˆ ˆ .p sim predσ σ σ= +  (6.17) 

In Formula (6.17), 2ˆ simσ  is the variance of the error provided by simulation, whereas 2ˆ predσ  

is the variance of the prediction model error. Notice that both 2ˆ simσ  and 2ˆ predσ  are functions 
of signature parameters. 

The simulation model error is the total measurement error for the subtraction times it  
for #Images images. , This total variance 2ˆ simσ  equals the sum of variances (each variance 

2σ ) obtained during the measurement: 

 ( )2 2ˆ .sim #Images #Imagesσ σ= ⋅  (6.18) 

2ˆ predσ  is the estimate of the variance of the prediction model error. It is calculated by 
Formula (5.9) from Section 5.11: 

 ( ) ( ) 1
ˆ ˆ, , , 1 .T T

pred #Images #ShortUpdate #LongUpdate #Paint s S S sσ σ
−

= +  (6.19) 

In Formula (6.19), σ̂  denotes the standard error of fit. S  is the matrix describing the 
calibration data (see Section 5.11), and s  is a signature instance for which the prediction is 
needed. In this example, s  has the following structure6: 
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#Paint

 
 
 
 =
 
 
 
 

 (6.20) 

The measurements described is Section 6.4.2 and Formula (6.12) allow us to describe 
the total contribution of the subtraction procedure by 

 ( )# # .subT Images Images t= ⋅  (6.21) 

In Formula (6.21), t  denotes the average execution time of the image subtraction 
procedure ( 100t ms= ). 

By applying Formulas (6.17), (6.18), and (6.21), Formulas (6.15)-(6.16) give the 
following equation for the limits of the prediction interval: 

                                                 
5 Note that we used here the quantiles of the normal (Gaussian) distribution instead of the t-distribution. The 
reason for that is that we approximate the t-distribution by the normal distribution. (This t-distribution is 
typically used in the context of constructing confidence and prediction intervals.) 
6 The first element of s  equals so that the prediction model can have not only terms related to signature 
parameters but also the constant term (intercept).  
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 (6.23) 

After executing the simulation model and employing the prediction model, we applied 
the Formula (6.22)-(6.23) to the signature instances. The values of constants 100t ms=  
and 15 msσ =  are taken from Section 6.4.2. The chosen confidence level 0.95α = , and 
the corresponding quantile of the Normal distribution ,1 2 1.96zq α− ≈  (the values of the 
quantiles of the Normal distribution are tabulated). Finally, we used a linear regression tool 
to calculate the values of ( ), , ,predP #Images #ShortUpdate #LongUpdate #Paint  and 

( ), , ,pred #Images #ShortUpdate #LongUpdate #Paintσ  for the prediction model constructed 
in Chapter 8. Table 6.1 summarizes the obtained results.  

Table 6.1: Predictions obtained by means of the simulation and prediction models 

#Images #Long 
Upadte 

#Short 
Update 

#Paint predP , 
ms 

subT , 
ms 

predσ , 
ms 

Lower 
pred. 
bound 

Upper 
pred. 
bound 

8 0 8 1 843.5 800 94.8 1485.5 1801.3
16 0 8 1 1098.4 1600 112.4 2518.6 2878.3
24 0 8 1 1353.6 2400 125.9 3549.8 3957.4
32 0 8 1 1608.6 3200 137.4 4579.5 5037.9

The four left columns contain the signature instances generated by the simulation 
model which were supplied to input of the prediction model. The next column predP  
enumerates the predictions obtained by applying the prediction model to the signature 
instances. These predictions model the contribution of VSP to the overall response time. 
The subT  column shows the estimates for the internal computations of the adapted 
component. The predσ  column lists the standard error of the predictions obtained by the 
prediction model. Finally, the two right columns enumerated the upper and lower bounds 
of the performance prediction intervals for the adapted component. 

Notice that the L-metric calculated for the last two rows (see Table 8.2 in Section 
8.4.3) is greater than 1.0. This means that the use of these predictions is risky. For the first 
two rows, the L-metric is smaller than 1.0, and the corresponding predictions are safe to 
use. 

In this example, we demonstrated the use of similarity conditions described in Section 
6.2. We showed that the existing “Reviewing” component and the adapted version thereof 
were dissimilar because of extra internal computations performed by the latter. Moreover, 
we showed that for particular signature instances, making performance predictions for the 
adapted component would be risky anyway, as the L-metric was greater than 1.0 for these 
signature instances (see Section 6.2.3). For those signature instances that had L-metric 
smaller than 1.0, we showed the use of one of the “escape routes” (see Section 6.3.1) to 
obtain performance predictions for the adapted “Reviewing” component. 
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6.5 Summary 
This chapter elaborates on the various forms of component similarity. Components are 

considered similar if all three conditions of component similarity are satisfied such that 
• internal computations of the adapted and existing component are identical; 
• signature types of the adapted and existing component are identical; 
• distance metric of signature instances has a value smaller than one. 

For each condition, a number of criteria for judging the similarity of the adapted and 
existing component are given. These criteria should be satisfied to ensure that the 
components are similar and that the prediction model (fitted to the measurements of the 
existing component) can be safely used to predict the performance of the adapted 
component.  

Existing and adapted component may not always meet the aforementioned criteria. In 
this case, the prediction model fitted for the existing component cannot be directly used for 
the performance estimation. However, we recommended a few approaches to make the 
performance estimation possible (see Section 6.3). These approaches are based on 
separation of the component and VSP contributions to the performance. This separation 
presumes that the simulation model of the component describes the performance-relevant 
behavior explicitly (in terms of timing delays and resource needs). The simulation model is 
executed in order to get the performance contribution of the adapted component. The 
overall performance estimates are obtained by adding this contribution to the VSP 
contribution, given by the prediction model. 

Our approach for tackling the problem of component similarity was demonstrated by a 
simple example, where the performance of the modified version of the “Reviewing” 
component (see Chapter 8) was estimated, and the corresponding prediction intervals were 
constructed. 
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7 Application of the APPEAR Method in the 
Consumer Electronics Domain 

In this chapter, we describe the application of the APPEAR method (see Chapter 5) to 
an industrial software stack. Both calibration and prediction phases of the method are 
demonstrated by the example of a TV Teletext decoder. The goals of this experiment are 
the following: 

1. Checking the APPEAR method in an industrial context; 
2. Predicting the average execution time needed for Teletext information acquisition; 
3. Providing the architects with insight about the performance-relevant parameters 

and behavioral aspects of the Teletext decoder. 

There are several presentation levels of Teletext data—1, 1.5, 2.5, and 3.5 that 
determine possible enhancements to a Teletext page. All these levels are forward- and 
backward compatible. For instance, a level 1.0 Teletext decoder can display 3.5 level 
pages (but without additional enhancement information) and vice versa. Each Teletext 
presentation level subsumes all the lower presentation levels. A Teletext decoder can also 
support two types of navigation systems: (1) First Level One Facilities (FLOF) and (2) 
Table of Pages (TOP). Both navigation systems use the hypertext representation of data, 
but the way in which the Teletext decoder transmits navigation data is different for these 
navigation systems. 

We used a Teletext decoder that supports the presentation level 1.5 and Full Level One 
Facilities (FLOF) navigation system to calibrate the prediction model and to construct the 
simulation model. Based on these models, we predicted the average execution time, 
needed for acquiring and decoding the Teletext information, of a Teletext decoder that 
supports the presentation level 2.5 and both FLOF and Table of Pages (TOP) navigation 
systems. For the sake of brevity, the original decoder is referred to as the Teletext 1.5 
decoder, and the modified one is called the Teletext 2.5 decoder. The figures about the 
accuracy of the predictions are given in comparison with the measurements collected on 
the implementation of the Teletext 2.5 decoder. 

This chapter is structured as follows. First, a brief introduction to Teletext is given. 
Afterwards, the application of the calibration phase of the APPEAR method is described 
for the Teletext 1.5 decoder, followed by the description of the prediction phase. Finally, 
the discussion of the results concludes this chapter. 

7.1 Overview of Teletext 
This section introduces the basic notions of the Teletext and outlines the architecture 

of the Teletext decoder that was used for this case study. 

7.1.1 Teletext broadcasting 

Each Teletext transmission [Txt02] comprises packets that together can form pages. 
Each page has a three-digit hexadecimal number in the range 100-8FF. Pages with decimal 
numbers (e.g., x00-x99) need displaying, whereas the rest serve special purposes. All 
pages are organized in eight magazines, where the number of a magazine is the most 
significant digit of the number of all pages that belong to this magazine. The pages can 
also have sub-pages that are distinguished by sub-codes. 
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Some packets are not directly related to a particular page, but rather to a magazine or a 
broadcast service. These packets have the following numbers: 

• Page header packets (packet number 0; these packets indicate the beginning of a 
new page and fill gaps), 

• Directly displayable page data packets1 (packet number 1-23, 24 and 25), 
• Non-displayable page data packets (packet number 26-28), 
• Magazine enhancement data packets (29), 
• General-Purpose and Broadcast Service data packets (30, 31). 

Packets with numbers greater than 24 are additionally discerned by designation codes, 
numbers in a range 0-15. Depending on the designation code, the function of a particular 
packet may change. 

The transmission order of Teletext packets is determined by the transmission mode: 
either (1) serial or (2) parallel. In the serial mode, pages are transmitted sequentially. 
First, a header packet is transmitted to open a new page, i.e., the header packet indicates 
that the Teletext receiver should be ready to receive page data packets. Then all data 
packets of this page are transmitted. Note, that these packets should carry the same 
magazine number as the header packet of the new page. Finally, a next header packet 
closes the page and opens a new one, if this page header packet has a different page 
number. 

In the parallel mode, up to eight pages can be transmitted simultaneously (one page 
per magazine). All page data packets with the same magazine number belong to the page 
that has this magazine number. The currently transmitted page is closed and a new page is 
opened upon the arrival of the next header packet with the same magazine number, but 
with a different page number. Notice that the header packets that have the same page 
number and sub-code as the currently opened page do not open a new page both in serial 
and parallel transmission mode. Such header packets serve special purposes such as 
updating page flags, implementing rolling headers, and etc [Txt02]. 

Teletext packets are transmitted during vertical blanking intervals (VBI) both for odd 
and even fields (see Figure 7.1).  
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Figure 7.1: Teletext transmission 

A field corresponds to half an image to be displayed and contains either odd or even 
lines. In each field, up to sixteen packets can be transmitted. A typical broadcaster 
transmits 11-14 packets per field. 

Depending on the presentation level (1.0, 1.5, 2.0, or 3.5), Teletext pages are not only 
distinguished by numbers and sub-codes, but also by type: custom data pages, normal 
displayable pages, MOT pages, MIP pages, etc. For each page and packet type, page data 
packets (packet numbers 1-28) can be encoded using a combination of error correction 
codes: 
                                                 
1 Such packet contains symbols that must be displayed in the row with the number that equals the packet 
number. For instance, the content of a packet with number 1 is displayed in the thirst row. 
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• The odd parity; 
• The hamming 8/4 forward error correction (FEC); 
• The hamming 24/18 FEC. 

As mentioned above, there are two navigation systems: FLOF and TOP. The FLOF 
navigation requires editorial links be provided for a page. These links are transmitted in 
packets with number 27 and designation codes 0-3 and allow navigation to the 
corresponding pages. The TOP navigation uses a dedicated page that relates different 
topics to dedicated pages. The user can select a topic via menu, and the corresponding 
page will be jumped to. This navigation system is constructed using the dedicated pages 
that have predefined page numbers. 

7.1.2 The Teletext decoder structure and behavior 

The simplified structure of the Teletext decoder is sketched in Figure 7.2. 

Teletext
Acquisition

Packet
Decoding

Real-time
OS

Page
Storage

Teletext
Displaying

Service calls VSP level

 
Figure 7.2: Structure of the Teletext decoder 

The arrows in Figure 7.2 depict a ‘uses’ relationship. The dashed line corresponds to 
the level of service calls. The bold rectangles denote components that are relevant for the 
performance analysis of Teletext Acquisition component. The Teletext Acquisition 
component is a part of Teletext decoder that builds upon the virtual service platform 
(VSP) formed by the following components: the Real-time OS, Packet Decoding, and 
Page Storage. 

The VSP provides the following service calls to the Teletext Acquisition component: 
• ClosePageWrite, which notify the Page Store component that a currently 

transmitted page is complete, i.e., all its packets are received, and the packets can 
be moved from the local cache to the global one; 

• OpenPageWrite, which indicates that the Page Store component needs to allocate 
internal structures and initialize internal cache for receiving a new page; 

• AllocatePacketMemory, which makes the Page Store component allocate memory 
for new packet; 

• DecodeNone, which makes the Packet Decoding component update the content of 
packet data with the data from a newly received packet; 

• DecodeOddParity, which makes the Packet Decoding component update the 
content of packet data with the data from a newly received packet. Each byte of the 
packet is checked for errors, and it substitutes the old byte, if the new one does not 
have any error; 

• DecodeHamming8_4, which makes the Packet Decoding component update the 
content of packet data with the data from a newly received packet. Each byte of the 
packet is checked for errors, and it substitutes the old byte after decoding, if the 
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errors in the new one can be corrected by the hamming 8/4 code 
• DecodeHamming24_18, which makes the Packet Decoding component update the 

content of packet data with the data from a newly received packet. Each triplet 
(three consecutive bytes) of the packet is checked for errors, and it substitutes the 
old triplet after decoding, if the errors in the new one can be corrected by the 
hamming 24/18 code; 

• ProcessWSSPacket, which makes the Teletext decoder process a Wide Screen 
Signaling (WSS) packet; 

• ProcessVPSPacket, which makes the Teletext decoder process a Video Program 
Selection (VPS) packet; 

• ProcessPacket830, which makes the Teletext decoder process a 8/30 packet related 
to the general purpose services of a broadcast. 

After acquiring all data packets arrived during a single field interval, a high priority 
task implemented is invoked to decode and store these packets. This task will be referred 
to as the Teletext field routine in the rest of the chapter. The decoding is performed by a 
dedicated component (Packet Decoding). After decoding, the packets are stored within the 
Page Storage component in a local page cache. When all packets of a page are received, 
they are moved to a global page store, and the other parts of the TV software that need this 
page are notified that the page has arrived. For example, the UML sequence diagram 
depicted in Figure 7.3 demonstrates how various VSP services are used to process a 
simple sequence of packets received with in a single Teletext field. 

 
Figure 7.3: An example of the processing of packets by the Teletext field routine 
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Object live lines refer to the components involved in this scenario. First, the Teletext 
field routine detects that a number of Teletext has been received and invokes the Teletext 
Acquisition component to process these packets. The header of the first packet is checked 
and it turns out that this packet is a header packet (packet number 0). The Teletext 
Acquisition component allocates memory for the newly packet by calling the 
AllocatePacketMemory service, implemented within the Page Store component. This 
memory is used to store the decoded content of the packet. A part of the packet is decoded 
by invoking the DecodHamming8_4 service, whereas the remaining part is decoded by the 
DecodeOddParity service. This header packet starts a new Teletext page. Therefore the 
page being received has to be completed and a new one has to be started. The completion 
of the page is performed by the ClosePageWrite service, which moves the packets stored 
in the local page cache to the global cache. The starting of the new page is performed by 
the OpenPageWrite service. This service call prepares the refreshes the content of the 
local cache in accordance with the number of the page that is stored within the received 
header packet. Afterwards, the Teletext Acquisition component starts processing the next 
packet. Its packet number is one, which means that it is an ordinary displayable data 
packet. As in the case with the header packet, some memory is allocated for the decoded 
content of this packet. The decoding of the packet content is performed by invoking 
DecodeOddParity service. This packet is the last Teletext packet received in the current 
Teletext field, and the focus of control returns to Teletext field routine. Finally, this routine 
finds out that a WSS packet has been also received within the current Teletext field. This 
packet is processed by the ProcessWSSPacket operation. As all the packets receive are 
processed, the Teletext field routine blocks until the next Teletext field. 

7.2 Experiment scheme 
The aim of this experiment was to predict the execution time of the Teletext field 

routine (see section 7.1.2) of the Teletext 2.5 acquisition component using the APPEAR 
method. It was required that the maximal absolute error did not exceed 1ms, as the 
Teletext field routine had a soft deadline of 20 ms.  

The experiment was conducted as follows. First, we applied the calibration part of the 
APPEAR method (see Figure 7.4 and Section 5.6.1) to the Teletext 1.5 acquisition 
component: the prediction model was calibrated based on the simulation model and the 
actual implementation of the Teletext 1.5 acquisition component. 
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Figure 7.4: Calibration of the prediction model on the Teletext 1.5 component 

The steps of the calibration phase are enumerated in the figure. Please notice that steps 
6 to 8 were implemented iteratively, until the prediction model had sufficient quality. 
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Second, by adapting the simulation model and using the calibrated prediction model, 
we predicted the performance of the Teletext 2.5 acquisition component. The steps of the 
prediction phase of the APPEAR method are enumerated in Figure 7.5. 
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Figure 7.5: Prediction the execution time of the Teletext 2.5 component and comparison of the 

predictions with the corresponding measurements 

Finally, we compared the obtained predictions with the actual measurements from the 
implementation of the Teletext 2.5 acquisition component. This comparison is reflected by 
steps a and b in Figure 7.5. Notice that these actual measurements were based on the same 
broadcasts that had been used for predicting the performance. 

Note that due to technical reasons the Teletext 1.5 acquisition component was created 
by “downgrading” the existing Teletext 2.5 acquisition component, and not vise versa. 
This made these two components more similar than they would have been if we had 
created the Teletext 2.5 component by modifying the Teletext 1.5 component. However, 
this artificial similarity allowed us to check whether the APPEAR method performs well at 
least in an “ideal” situation. 

7.3 The calibration phase of the APPEAR method 
This section describes in detail the application of the calibration part of the APPEAR 

method to the Teletext 1.5 acquisition component (see Figure 7.4). Each step is discussed 
in a subsequent subsection. 

7.3.1 Use case definition (Step 1) 

The considered use cases were the watching of different TV channels that included 
Teletext information. This means, that a TV set in a steady state was collecting the 
Teletext data without any interferences. Thirty broadcast channels were chosen (see Table 
7.1) to drive both the Teletext application and the simulation model. These channels 
provided enough observations to calibrate the prediction model. Most of them transmitted 
Teletext information in the serial mode. Only a few, e.g., BBC 1 and BBC 2, transmitted 
the information in the parallel mode. 

7.3.2 VSP identification (Step 2) 

The VSP was identified by studying the architecture and design documentation of the 
Teletext subsystem as well as by studying its source code. The main findings are 
summarized in section 7.1.2. When identifying VSP, we relied on the standard criteria for 
VSP selection (see Section 5.7): 
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• A VSP is not expected to change during the evolution of a product; 
• A VSP defines a proper abstraction level for describing the behavior of the 

software. 
Table 7.1: The broadcast channels used for calibration 

Nederland 1 Nederland 2 Nederland 3 RTL 4 RTL 5 
SBS 6 Yorin V 8 Net 

5/Kindernet5 
UPC 
Infokanaal 

Omroep 
Brabant TV 

Lokale Omroep Nieuws TV 
(kabelkrant) 

VRT KetNet / 
Canvas 

National 
Geographic 
Channel 

Discovery 
Channel 

The Music 
Factory (TMF) 

MTV Europe ARD 1 

ZDF 2 WDR 3 RTL Television BBC 1 BBC 2 
CNN 
International 

TV 5 Europe TRT 
International 

Eurosport Local VRT 

7.3.3 Measurements (Step 3) 

The measurements were collected as depicted in Figure 7.6. 
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Figure 7.6: The measurement scheme 

The TV’s antenna input was connected to a cable that broadcasts different channels. The 
TV was bonded to the In-Circuit Emulator (ICE) and executed the instrumented TV 
software (including the Teletext decoder). The ICE was also connected via the Ethernet 
bus to the host PC, which executed the debugging software that also allowed the 
programming of the ICE for collecting the traces. The length of a trace was bounded due 
to the limited size of the trace buffer of the ICE (32K). The resolution of the ICE’s timing 
analyzer module allowed collecting the data with 5 ns resolution. The code 
instrumentation, however, caused a tracing overhead of approximately 1-10 µs per event, 
which made the measurement error due to the resolution of the ICE negligible.  

After filling the trace buffer of the ICE with the trace information, it was transferred to 
the host PC and post-processed to obtain a trace file in a readable form.  
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The following time-stamped events were performance-relevant and, therefore, traced: 
• the arrival of a header packet that corresponds to a certain page number, sub-code, 

and type and carries certain control bits; 
• the arrival of a data page packet (number 0-25) ; 
• the arrival of an extension data packet (number 26-28, designation codes 0-16); 
• the arrival of an erroneous packet; 
• the arrival of a VSP and WSS packets; 
• the context switch between different tasks; 
• the beginning of the Teletext field routine; 
• the completion of the Teletext field routine; 
• the completion of the packet processing. 

Figure 7.7 shows a fragment of typical trace file. 

Figure 7.7: An example of a trace 

The leftmost column contains the timestamp of the corresponding event, which is 
described in the rightmost column. The middle column is the identifier of the thread on 
which the event is traced. This identifier allows accounting for context switches, when 
calculating the execution time of the Teletext field routine. In this example, it can be seen 
that a few page data packets have been received for a page with the number in a range of 
500-5ff. Also, two general-purpose packets (with number 31) have been received. 

The CPU time needed to process all Teletext packets that arrive in one field interval is 
chosen as a performance measure. It is calculated by subtracting the timestamp of 
beginning of the Teletext field routine from the timestamp of its completion. The fields 
that were affected by context switches were considered as a measurement error and were 
excluded. 

The measured data consisted of traces of thirty broadcasts (see section 7.3.1). Each 
trace described about 20-80 seconds of a broadcast, depending on the number of packets 
transmitted per field. 

7.3.4 Initial signature type identification (Step 4) 

The initial signature instance (step 3) was already known beforehand from the earlier 
experiments [EFH02]. Hence, step 3 is not discussed in this chapter. 

Timestamp    Thread ID       Event 
3.576404925         8           OnDcuWstPacketEur(mag=0, packetn=31) 
3.576524925         8           OnDcuWstPacketEur(mag=5, packetn=27) 
3.576589875         8           OnDesignationCode(0) 
3.576919300         8           OnDcuWstPacketEur(mag=5, packetn=1) 
3.577277675         8           OnDcuWstPacketEur(mag=3, packetn=31) 
3.577397875         8           OnDcuWstPacketEur(mag=5, packetn=2) 
3.577752050         8           OnDcuWstPacketEur(mag=5, packetn=3) 
3.578110425         8           OnDcuWstPacketEur(mag=5, packetn=4) 
3.578468200         8           OnDcuWstPacketEur(mag=5, packetn=5) 
3.578826375         8           OnDcuWstPacketEur(mag=5, packetn=6) 
3.579184750         8           OnDcuWstPacketEur(mag=5, packetn=7) 
3.579542325         8           OnDcuWstPacketEur(mag=5, packetn=8) 
3.579896875         8           OnDcuWstPacketEur(mag=1, packetn=31) 
3.580017500         8           OnDcuWstPacketEur(mag=5, packetn=9) 
3.580375075         8           OnDcuWstPacketEur(mag=5, packetn=10) 
3.580734250         8           OnDcuWstPacketEur(mag=5, packetn=11) 
3.581032800         8           OnDcuEndData 
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7.3.5 Construction and modification of the simulation model 
for the Teletext 1.5 acquisition component (Steps 5, 6, 8) 

The simulation model for the Teletext 1.5 acquisition component was constructed to 
extract signature instances at step 6 of the APPEAR method (see Figure 7.4). The initial 
simulation model obtained at step 5 considered only the Teletext Acquisition component 
(see Figure 7.2) and only a part of packet types. This model calculated signature instances 
at step 6 (see Figure 7.4) in accordance with the initial signature type (see section 7.3.4). It 
was however impossible to construct a statistically valid prediction model at step 7 (see 
Figure 7.4) based on these initial signature type and simulation model. After a few 
iterations through step 6-8, we managed to obtain an adequate simulation model and 
sufficient signature type that allowed us to fit the prediction model well. The rest of this 
subsection describes this adequate simulation model and refers to it as to ‘the simulation 
model’. 

This simulation model accepted the descriptions of events that corresponded to packet 
arrivals in a field. It calculated a signature instance for this field, based on the packets 
received so far. Notice that it was important to maintain the history from the very 
beginning of a broadcast, i.e., starting from the very moment when a Teletext signal had 
become available after channel switching. 

The simulation model shown in Figure 7.8 mimicked the behavior of two components: 
(1) the Teletext Acquisition component and (2) the Page Storage component (see Figure 
7.2). Modeling the former helped to account for the short-term history, i.e., to keep track 
of the pages being transmitted, whereas modeling the latter helped to maintain the long-
term history, which turned out to be important for fitting a sufficiently precise prediction 
model. This long-term history concerns the size of all the pages that had been received 
since the Teletext signal became available. Notice that the models of both the Teletext 
acquisition and the Page Storage components were implemented in the AWK language 
[AKW88]. 

A) The simulation model of the Teletext Acquisition component 

The Teletext Acquisition component implements the functionality such as, decoding 
and storing of page data packets then assigning them to pages, handling of transmission 
errors, handling of repeated header packets, supporting the serial and parallel transmission 
modes, and preserving the consistency of pages (e.g. closing a page on timeout). Most of 
this functionality is implemented within the Teletext field routine (see section 7.1.2). 
Figure 7.8 presents the UML state chart that describes its behavior. This routine is fed the 
packets received in a particular Teletext field, and for each packet it invokes the 
corresponding packet processing routine. The packet processing routine is relates to the 
ProcessNextPacket composite state. The packet number and magazine number of newly 
arrived packets are decoded. Depending on these numbers, further processing is delegated 
to the corresponding state: ProcessHeaderPacket, ProcessBodyPacket, ProcessPacket29, 
ProcessPacket830 or DropPacket. Note that these states correspond to the functionality in 
the call hierarchy above the VSP level. The invocations of VSP service calls (see section 
7.1.2) are not depicted in Figure 7.8 for the sake of simplicity. 
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Figure 7.8: The high-level behavior of the Teletext acquistion routine 

Based on the current state of the broadcast (it is stored in internal variables, which are also 
not shown in Figure 7.8), the contribution to the signature instance is calculated for each 
arrived packet. When all packets have been processed, the signature instance is generated 
at step 6 (see Figure 7.4) for the entire field, and the next field can be processed. 

B) The simulation model of the Page Storage component 

The Page Store component maintains the long-term history, i.e., it collects all pages 
and their content since the Teletext signal was first received. 

The model of this component was simplified by assuming that the page storage has 
infinite capacity. However, the actual implementation had finite page storage, and a 
dedicated Page aging algorithm is used to decide which page has to be removed from the 
store when it is full. 

Another simplification is to ignore page sub-codes. The actual implementation of the 
Page Storage component handles pages with sub-codes in such a way, that pages with 
large sub-code numbers may require significantly more processing than the ones with 
small sub-code numbers. The rationale behind this simplification is that there were no 
pages with large sub-codes in the measurements of real broadcasts. 

Given these simplifications, the implementation of the Page Storage simulation model 
is straightforward: it is just an array indexed by the tuple {page number, sub-code, packet 
number}. An element of this array equals one if a page {page number, sub-code} contains 
packet {packet number}, otherwise it equals zero. 
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7.3.6 Calibration of prediction model (Step 7) 

The S-Plus [KrO02] linear regression tool was used to fit the prediction model, based 
on the signature type described in section 7.3.7. The prediction model had the following 
structure: 
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+ ⋅ + ⋅ + ⋅ tedHeaders.

 (7.1) 

In Formula (7.1), y  is the predicted execution time needed for processing all packets 
received in a single field; iβ  are linear regression coefficients. The remaining variables 
are signature parameters that are detailed in section 7.3.7. 

After calibrating Formula (7.1), the following results were obtained. The multiple 2R -
coefficient (the coefficient of determination) is 0.974. This means that the model explains 
the variability of the execution time well. All regression coefficients turned out to be 
significant, with a significance level of 0.05 (see Table E.1 in Appendix E). The 
probability density and the histogram of the residuals is presented in Figure 7.9. Please 
notice that the bulk of residuals (more than 98%) is concentrated within a ±1 ms interval. 
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Figure 7.9: Histogram and probability density of the prediction model residual 

The residual diagnostic plots (see Figure E.1 in Appendix E) indicated the presence of 
outliers. The investigation of the corresponding measurements showed that these outliers 
occurred due to the insufficient handling of packets 8/30. These packets are broadcast 
service data packets (see [Txt02]); they can have two formats and are discerned with 
designation codes 0 to 3. One broadcast channel had a number of fields where 12 or 13 
packets of type 8/30 arrived. Other broadcasts had at most one such packet per field. 
However, there were too few fields where more than one packet 8/30 arrived to obtain 
sufficient calibration data. Additionally, packets 8/30 were treated too simplistically: more 
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signature parameters are actually needed to describe the execution time needed for these 
packets. 

 

The prediction errors can be explained as follows: 
• Uncertainty of the long-term history. The information about the pages stored in the 

Page Storage turned out to be important to predict the execution time accurately. 
This information was missing, as the start of the measurements was not 
synchronized with the start of Teletext data acquisition. This acquisition begins 
immediately after the TV software detects the Teletext signal. To partially 
compensate for this effect, it was decided to consider only such Teletext fields that 
contained either no page header packets or only those that opened or closed pages 
that had been received at least once. Other fields were considered as measurement 
error and were therefore ignored. This measure allowed us to restore the missing 
information, to a degree.  

• The influence of the timer interrupt. This interrupt occurred every 10 ms and 
affected the execution time for some fields. The longer it takes to process all 
packets in a field, the more chances are that this field gets affected. The 
distribution of execution time of this timer interrupt has several peaks and 
introduces a non-normal component into the overall residual.  

• The variability of execution time needed to process packets 8/30. It turned out that 
those packets require a significantly variable processing time. For instance, the 
largest outlier shown in Figure E.1b) in Appendix E is an example of this. 

These errors are in fact the result of inadequate modeling of the aspects enumerated 
above. As these errors do not follow the normal distribution (assumed by linear 
regression), they may also explain the heavy-taildness of the distribution of the residuals. 

7.3.7 Modification of signature type (Step 8) 

It took us six iterations to amend the simulation model and the signature type. The 
final signature type accounts for different types of packets, their encoding, and the way 
they are stored. The following signature type was identified (each number is calculated per 
field): 

• the number of Wide Screen Signaling (WSS) packets (WssPacket ), 
• the number of Video Programming System (VPS) packets (VpsPacket ), 
• the total number of bytes that have no encoding ( DecodeNone ), 
• the total number of bytes that have odd parity encoding ( DecodeOddParity ), 
• the total number of bytes that have Hamming 8/4 encoding ( 8 4DecodeHam To ), 
• the total number of triples that have Hamming 24/18 encoding 

( 24 18DecodeHam To ), 
• the total number of dropped packets ( ErrPackets ), 
• the total number of packets 8/30 ( 830Packets ), 
• the number of repeated headers ( RepeatedHeaders ), 
• the number of erased pages ( NErased ), 
• the number of opened pages (OpenedPages ), 
• the number of closed pages (ClosedPages ), 
• the total number of packets that have been updated in the Page Storage 

(UpdatedPkts ). 
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Notice that the last signature parameter had to be extracted from the simulation model of 
the Page Storage component (a part of VSP), whereas the other signature parameters were 
extracted from the simulation model of the Teletext Acquisition component. 

7.4 The prediction phase of the APPEAR method 
This section details the application of the prediction phase of the APPEAR method for 

the Teletext 2.5 acquisition component. The subsequent sections detail each step of the 
prediction phase of the APPEAR method (see Figure 7.5 and Section 5.6.2). 

7.4.1 Use case description (Step 9) 

For checking the prediction phase of the APPEAR method, the same channels were 
used as for calibration phase. For more details, the reader is referred to section 7.3.1. 

7.4.2 Measurement (Step a) 

The measurements of the Teletext 2.5 decoder were performed in exactly the same 
way as for the Teletext 1.5 decoder (see section 7.3.3). 

7.4.3 The simulation model for the Teletext 2.5 acquisition 
component (Step 10) 

The simulation model of the Teletext 2.5 acquisition component is similar to the one 
for Teletext 1.5 and supports signature instance extraction (adapted) at step 10. Its main 
structure remains the same as for the Teletext 1.5 decoder (see Figure 7.8). The differences 
with the Teletext 1.5 acquisition component amount to the following: 

1. Handling of packets 1-27 of a page with a non-decimal page number (e.g. 
Magazine Inventory Page, Table of Pages). The Teletext 2.5 acquisition 
component has to both decode and store such packets, whereas the Teletext 1.5 
acquisition component needs only to store them. The further processing of the 
non-displayable page is delegated to other dedicated components that are 
executed by a lower priority task.  

2. Handling of packet 28 with a designation code greater than one or packet 27 
with a designation code greater than three. These packets carry the 
enhancement information of a displayable page and need to be stored and 
decoded only by the Teletext 2.5 acquisition component. 

3. Handling of special pages such as Magazine Inventory Pages (MIP), 
Dynamically Re-definable Character Set (DRCS) pages, etc. The Teletext 1.5 
decoder has no knowledge about these pages and only stores them. Moreover, 
it does not decode these pages. In contrary, the Teletext 2.5 decoder needs to 
decode the packets of such page. However, all such pages are encoded using 
the same set of error correction codes (odd parity, hamming 8/4, and hamming 
24/18) that is used by the Teletext 1.5 decoder. 

The modification of the simulation model for the Teletext 1.5 acquisition component 
to obtain the simulation model for Teletext 2.5 acquisition component took only one man-
day. 
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7.4.4 Performance prediction for the Teletext 2.5 component 
(Step 11 and b) 

Both implementation and simulation model were traced using the same set of 
broadcasts, and the predictions, made as outlined in section 7.2, were compared to the 
measurements from the implementation. The probability densities and histograms of the 
prediction errors and relative prediction errors are given in Figure 7.10. 
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Figure 7.10: Prediction errors and relative prediction errors for the entire broadcasts (plots a and b, 
respectively) and for Teletext 2.5 and TOP navigation only (plots c and d, respectively) 

Plots a) and b) describe these errors for the case when all packets of the broadcasts are 
considered. On the other hand, plots c) and d) describe the errors only for the packets that 
are specific to the Teletext 2.5 presentation level or TOP navigation. This subdivision is 
meaningful, as the functionality of Teletext 1.5 is a subset of the functionality of Teletext 
2.5. The y-axis denotes the probability density in all four plots. The x-axis is the prediction 
error measured in seconds for plots a) and c); it is the relative prediction error (fractions) 
for plots b) and d). 

For the entire broadcasts, the average prediction error is -5.7e-5 s, whereas the average 
relative error is 11%. For Teletext presentation level 2.5 and the TOP navigation only, 
these errors are worse: the average prediction error is 3.8e-4 s and the relative one is 16%. 

The main source of the larger errors in plots c) and d) is due to the differences in 
signature instances generated for the entire broadcast and the Teletext 2.5 specific part 
thereof. The prediction model is biased by the signature instances generated for the entire 
broadcast, as the number of Teletext 2.5 and TOP navigation packets is very limited in 
comparison to the rest of the broadcast. 
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7.5 Similarity of Teletext 1.5 and 2.5 acquisition 
components 

Chapter 6 introduced the following criteria for assessing whether the existing and 
adapted components are similar: 

1. Identical internal computations of the adapted and existing component 
2. Identical signature types of the adapted and existing component 
3. Proximity of the signature instances of the adapted and existing component 

Assessing the similarity according to the first criterion requires the measurements of 
the amount of internal computations for the existing component. We were not able to 
perform these measurements, as they were not supported by the instrumentation of the 
software stack. On the other hand, the difference between these two components is not 
large. It is detailed in section 7.4.3. This argument allows us to assume that the internal 
calculations do not differ significantly. 

Both Teletext 1.5 and Teletext 2.5 components execute on the top of the same VSP 
(see section 7.1.2). Moreover, they use the same set of the service calls. This line of 
reasoning allows us to conclude that the same signature type is likely to suit both 
components. 

Finally, we assessed the proximity of signature instances by calculating the L-
proximity metric from Chapter 6 for the points covered in plots c) and d) of Figure 7.10. 
For calculating the values of the L-metric, we chose the number p of the closest signature 
instances to be equal thirteen. This choice is supported by the fact that thirteen signature 
parameters were identified (see section 7.3.7). 

Figure 7.11 shows that the prediction errors are, on average, smaller for the points for 
which L-metric is smaller than 1.0 then for the other points. This observation can also be 
confirmed by applying the t-test [Wei95] for comparing the means of two independent 
populations. 
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Figure 7.11: Prediction errors versus the values of the L-metric for Teletext 2.5 specific fields 

We applied the t-test to the following two sets of points: one formed by the prediction 
errors for which the L-metric is smaller then 1.0 and another formed by the rest of the 
points. The distribution of the prediction errors in these two sets is far from normal. 
However, it is still possible to use the t-test, as both sets contain a large number of points 
(150 and 129, respectively), and the distribution of the means of these sets will be close to 
normal because of the Central Limit Theorem [Wei95]. The mean of the first set equals -
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0.000121, whereas the means of the second one equals 0.000963. The corresponding 
sample standard deviations equal 0.000914 and 0.000806, respectively, which suggests us 
that the t-test with equal variances can be safely applied (the ratio of the sample standard 
deviations is less than two [Wei95]). The one-sided t-test for checking if the second mean 
is greater then the first one returned the p-value zero. This fact indicates that the means are 
indeed statistically different at the significance level of 0.05. 

Both the results of the t-test and Figure E.1 in Appendix E indicate that the L-metric 
described in Section 6.2.3 does capture, on average, the growth of the prediction error, if 
its value exceeds 1.0. 

7.6 Summary 
This experiment shows that the required level of accuracy (1 ms according to section 

7.2) was achieved for 98% of Teletext fields. However, the prediction accuracy decreases 
if the predictions are considered only for new parts of the Teletext 2.5 acquisition 
component. In addition, a number of observations about the application of the APPEAR 
method were made. These observations are described below. 

It is important that measurements used for calibrating the prediction model contain 
sufficient information about all phenomena to be predicted. However, it can be the case 
that collected measurements tend to contain more information about one group of the 
phenomena than for another. This may lead to greater prediction errors for the latter group, 
as the prediction model is dominated by the measurements from the former group. 

For example, in the conducted experiment the prediction accuracy degraded for the 
predictions made for fields that were processed in different ways by the Teletext 1.5 and 
Teletext 2.5 decoders. This degradation can be explained by the fact that the calibration 
data was dominated by the Teletext 1.5 and FLOF navigation data only. The data related 
to Teletext 2.5 and TOP navigation formed only a small fraction of the entire calibration 
dataset. This effectively made these data outlying observations. The predictions made 
using this calibration dataset were in fact biased for the fields that contained packets 
related to Teletext 2.5 and the TOP navigation. 

It can be necessary to model a part of the VSP explicitly to be able to fit the prediction 
model well. This part usually reflects an internal state of the VSP that may affect the 
execution of the services. Note that the modeling of parts of a VSP is not in accordance 
with the standard APPEAR method (see Chapter 5). The VSP is defined according to two 
principles: (1) stability and (2) abstraction. Here, the abstraction level is lowered, while 
the explicitly modeled part of the VSP is still considered as stable, that is, it is not 
amendable for modification. The modeling of parts of the VSP broadens the scope of 
applications to which the APPEAR method can be applied. For example, it was necessary 
to introduce a simulation model for the Page Storage component in the presented case 
study (see section 7.3.5). 

Within the context of described case study we considered the case of changing a single 
component only. When multiple components undergo changes, one can apply the 
APPEAR method to estimate the impact of these changes on the performance only if (1) 
the VSP remains the same and (2) these components do not interact with each another. If 
the first condition is violated, the architect might consider taking one of the “escape 
routes” described in Section 6.4. If the second condition is not met, the architect should 
use a hierarchical approach, described in Chapter 9, to performance prediction for 
component compositions. 
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8 Application of the APPEAR method in the 
Professional Systems domain 

This chapter describes a case study, where the performance of the software 
components– parts of the Medical Imaging Software System (MISS)– was investigated by 
means of the APPEAR method. This case study had three main objectives: 

1. Prediction of the response time of the adapted software components of the 
MISS. 

2. Providing insight into the performance relevant aspects of the existing software 
components of the MISS. 

3. Validation of the APPEAR method within an industrial setting. 

The response time (in milliseconds) of a single component was chosen as a 
performance metric. The required level of the prediction accuracy, initially posed by the 
system architects, was 50% in terms of the relative prediction error. This chapter is 
structured as follows. First, we present an overview of the MISS. Second, we describe the 
application of the calibration phase of the APPEAR method to the MISS. Third, we 
explain the prediction phase of the APPEAR method for the adapted MISS components. 
Finally, the results are discussed. 

8.1 Overview of the MISS architecture 
The MISS system architecture is multi-layered (see Figure 8.1). A number of COM-

components (e.g., “Acquisition”, “Reviewing”, etc) implement the basic functionality of 
the imaging system. These components are mutually independent. They use virtual drivers. 
Virtual drivers are software abstractions of hardware resources such as an image 
processing pipeline and image storage board.  

We investigated only a single MISS component, “Reviewing” (see Figure 8.1), 
because, according to the MISS architects, the majority of performance claims were related 
to this component. This component is responsible for viewing and processing the images 
obtained during an image acquisition session. The “Reviewing” component consists of four 
layers: UI layer, Functional layer (implementation of high level functionality), Database 
layer (functionality related to patient database), and Technical Services layer (virtual 
drivers). The “Reviewing” component shares a common set of hardware resources (Image 
Processing, Image Storage) with other components, e.g. “Acquisition”, but does not 
directly interact with the other components. The “Reviewing” component is detailed in 
section 8.2. 
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Figure 8.1: MISS system architecture 

8.2 “Reviewing” component: structure and functionality 
The “Reviewing” component contains the following subcomponents (see Figure 8.2): 
1. “GUI”, which provides the graphical user interface (“software” buttons, image 

windows etc.) and passes user commands to the rest of the component. 
2. “Viewing”, which implements the basic image reviewing functionality. 
3. “ResLib”, which provides the necessary services to the “Viewing” subcomponent 

and schedules hardware resources. Within this component, the majority of 
performance-relevant services are invoked (calls to “IPC”, and to “Graphics”). 
Scheduling of the resources has also a significant impact on performance. 

4. “Graphics”, which displays additional graphics (e.g., doctor’s comments) over the 
images.  

5. “DataModel”, which stores and handles patient data. 
6. “Image Processing Chain” (“IPC”), which manages the hardware of the “Image 

Processor” and “Image Storage” and provides the services related to this hardware 
to the upper components. “IPC” is a non-sharable, preemptable resource, which 
multiple MISS components contend for. 
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Figure 8.2: "Reviewing" component structure 

8.3 The calibration phase of the APPEAR method 

8.3.1 Use case definition (Step 1) 

The MISS uses the following data entities: a file, a run, and an image. These entities 
form a hierarchy as shown in Figure 8.3. An image is a single medical image of a 
particular patient. Images can belong to a run, which consists of all images collected 
during a single acquisition session. There can be multiple runs for a single patient. A set of 
runs of the same patient forms a file, the highest entity in the hierarchy. Notice that 
multiple files can exist for the same patient. 

File

Run1 Run2 Run3

Image1 ImageN... ...Image1 ImageKImage1
 

Figure 8.3: Structure of data entities in the MISS software 

Images and runs can be selected, viewed and browsed. Usually, the images of a run or 
the runs of a file are overviewed in a mosaic mode 4 by 4, i.e. 16 images per screen. A 
single image can be displayed in a full-screen mode. 

There are two basic types of use cases for the “Reviewing” component: (1) “Image 
Navigation”, and (2) “Image Processing”. They differ in the following way: 

• The “Image Navigation” use cases are related to browsing across images, 
whereas the “Image Processing” use cases change the image presentation 
parameters such as brightness, contrast etc,  

• The “Image Navigation” use cases use the image storage boards, whereas the 
“Image Processing” ones require the image processing boards (see Figure 8.2). 
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We selected the use cases of the “Image Navigation” for the first iteration of APPEAR 
method validation, as they a) were the most frequently invoked by users, b) exhibited a 
number of performance problems, and c) were easy-to-execute, to parameterize and to 
trace. 

The navigation can be performed through different navigation objects, displayed on the 
screen. Each navigation object corresponds with a particular data entity from Figure 8.3. 
Those objects are displayed in one of the following system states: a file, run, and single 
image. One of the notable features of the MISS system is the dependency between the 
number of runs and the number of images in different system states. This dependency is 
depicted in Figure 8.4. The use cases can thus be partitioned into two groups: a) use cases 
where number of runs is variable and the number of images remains one and b) use cases 
where the opposite takes place. This partitioning had a significant influence on 
constructing the prediction model (see Section 8.3.6). 
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Figure 8.4: Correspondence between the number of runs and images 

Table 8.1 reflects the correspondence between use cases and system states. Its rows 
enumerate the selected use cases of the “Image Navigation” type. The columns enumerate 
different system states. An “X” denotes that the use case from the selected row can be 
performed in the state denoted by the marked column. 

Table 8.1: Use cases and system states 

Use case/Object File Run Image 
StepImageForward  X X 
StepImageReverse  X X 
StepRunForward X X X 
StepRunReverse X X X 
StepPageForward X X  
StepPageReverse X X  
SelectViewPosition X X  
ShowSingleRunOverview X  X 
ShowFullScreenImage X X  
ShowFileOverview  X X 

A simple example demonstrates why the system state, in which the use case is 
executed, is important. If the use case “StepRunForward” is executed when the run is 
displayed in overview mode (16 images per screen), the next run in the same mode (16 
images per screen) will be displayed. But, if this use case is executed when the image is 
displayed in full screen mode, the current image of the next run will be displayed in full 
screen mode. This distinction is also important when constructing the prediction models 
(see section 8.3.6). 
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8.3.2 VSP definition (Step 2) 

The definition of the VSP level (see Figure 8.2) is based on the following rationales: 
1. The subcomponents below this level remained stable for a long period, since 

they were a) specific for the underlying hardware, which had been stable, and 
b) common for several high-level MISS components (e.g., image acquisition). 

2. The subcomponents above this level had often been improved and extended, 
and preliminary performance considerations on the modifications would be 
valuable. 

Therefore, we choose a VSP consisting of the following components: “Graphics”, 
“Image Processing Chain” and “Data Model”. This VSP provides services to the parts of 
the “Reviewing” component located above it. 

8.3.3 Measurements (Step 3) 

The selected use cases were executed with various parameters and traced. This tracing 
allowed us to identify the signature type and to obtain the response times for calibrating 
the prediction model. 

Three alternative tools were considered as tracing utilities: a “TraceUtility” developed 
at Philips Medical Systems, “Mutek Bug Trapper”, “Rational Quantify”. The 
“TraceUtility” tool was chosen because it was designed specially for the MISS software. 
Moreover, this tool was easily extendable with extra features. For example, the feature of 
tracing the termination times of functions was added by our request. 

Both the tracing command and its parameters were defined by special macros, located 
just before the function call to be traced: 

TRACE (TRACE_LEVEL, CATEGORY_GUID, STRING) 
TRACE_TIME_START (TRACE_LEVEL, CATEGORY_GUID, EVENT_NAME) 
Each macro belonged to a certain category. The categorization was done on a 

functional basis. In order to trace the information of a particular type, the corresponding 
macro type had to be enabled within the “TraceUtility”. An example of the trace file 
fragment is given in Table 8.2. 

Table 8.2: Trace example 

Invocation time Termination time Thread Category Function call 
#17:59:02.740 #17:59:02.740 0x53 ComFunc FUNC(pIDmContext->GetIntegration()) 
#17:59:02.740 #17:59:02.741 0x53 ComFunc FUNC(m_pIViewLayout->Disable()) 
#17:59:02.740 #17:59:02.741 0x53 ComFunc FUNC(m_pIGraphics->SetGraphics()) 
#17:59:02.740 #17:59:02.741 0x53 ComFunc FUNC(m_pIGraphics->SetGraphics()) 
#17:59:02.740 #17:59:02.741 0x53 ComFunc FUNC(m_pIDmLIHData->GetFront ()) 
#17:59:02.740 #17:59:02.741 0x53 ComFunc FUNC(pIUnknown->QueryInterface()) 
#17:59:02.741 #17:59:02.745 0x53 ComFunc FUNC(pIRun->QueryInterface()) 
#17:59:02.741 #17:59:02.742 0x53 ComFunc FUNC(pIRun->GetChannelName()) 
#17:59:02.741 #17:59:02.741 0x53 ComFunc FUNC(pIRun->QueryInterface()) 
#17:59:02.743 #17:59:02.746 0x217 ComFunc FUNC(pIRun->QueryInterface()) 
#17:59:02.744 #17:59:02.744 0x280 ComFunc FUNC(m_pIImage->QueryInterface()) 

Up to 30 tracing categories could be enabled. The challenge was to find a proper 
balance between trace sufficiency and complexity. The sufficiency of a trace means that 
the trace contains enough information for identifying the signature type. A high 
complexity of the trace indicates that too many categories are enabled and too many 
function calls are traced. Tracing a huge number of irrelevant calls complicates the search 
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for relevant signature parameters and introduces additional overhead. An appropriate 
solution to this problem was to enable categories incrementally. 

8.3.4 Signature type identification (Step 4) 

The architects selected a number of representative performance-relevant use cases. We 
executed and traced these use cases to identify the initial signature type. 

To automate the signature type identification and to process use cases in a joint 
manner, a dedicated piece of software (trace handling tool) was developed. The signature 
type identification was based on the use of linear regression [Wei95]. Figure 8.5 presents 
the information flow between different steps of an algorithm for the identification of the 
initial signature type. The rectangles correspond with the steps of the algorithm, whereas 
the arrows denote the type of information (denoted by text in bold font) and the direction 
of the information flow (denoted by the direction of the arrow). The algorithm consists of 
the following steps: 

Use cases

Traces

Call
summary

Performance
metrics

Initial signature type

Trace handling tool

Regression tool

Code instrumentation step 1

step 2
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Figure 8.5: Process of signature type identification 

Step 1. The code involved into the performance-relevant use cases was instrumented to 
enable tracing. All performance-relevant use cases were executed and traced. 

Step 2. The trace files from step one were processed with the trace handling tool. First, the 
number of invocations of each call was calculated per use case. Second, the response time 
was derived for each use case. These results together with the input parameters were 
collected in a separate file (a part of this file is shown in Table 8.3). Because there were 
too many calls, their number had to be reduced. For example, the calls that occurred only 
once in 50 use-cases and took less than 1 millisecond were excluded. 

Table 8.3: Numbers of call occurrences for different use case 

Use case Response 
time (ms) 

# Call 1 # Call 2 # Call 3 # Call 4 # Call N

Use case 1 2200 2 100 230 210 20 
Use case 2 2358 2 110 253 231 22 
Use case 3 2486 2 120 276 252 24 
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Step 3. The output files from step two were supplied to a statistical regression tool (e.g. S-
PLUS [KrO02],[SPLUS]). The prediction model was iteratively fitted on the basis of the 
input data. The construction of the prediction model was completed, when the model had 
sufficient quality (e.g., 2R >0.9). After fitting the prediction model, the candidate calls and 
input parameters for the signature type were identified. In addition, the regression tool 
determined p-values for each signature parameter (see Table 8.4). These p-values are the 
probabilities that the regression coefficients equal zero for the corresponding signature 
parameters. The higher the value of a p-value, the less the probability is that the 
corresponding signature parameter influences the performance. 

Table 8.4: Initial signature members and their significance levels. 

Call p-value
Call 1 0.000 
Call 2 0.043 
Call 3 0.000 
….. 0.615 
Call N 0.000 

All examined use cases dealt with at least one image or one run. The execution time of 
many time consuming calls was correlated with the number of images of a particular run or 
with the number of runs, depending on the type of the use case. Some calls to the “Image 
Processing Chain” and “Graphics” components were also time consuming, although their 
execution time did not depend on the number of images or runs. Calls to these two 
components will be referred to as “Update()” and “Paint()”, respectively, in the rest of this 
chapter. The former concerned updating the state of the image processing hardware, 
whereas the latter related to graphics that overlay medical images. 

Note that the actual number of call types was greater than 100, but only two of them 
influenced the performance significantly. Summarizing, the signature type of the 
component can be represented as a vector consisting of only four parameters: 

 Signature type= (# Runs, #Images, #Update, #Paint)  (8.1) 

An example of the resulting signature instances and response time measurements is 
presented in Table 8.5. 

Table 8.5: Examples of signature instances. 

Use case #Runs #Images #Update()  #Paint()  Response time (ms) 
1 1 3 17 4 245 
2 1 5 44 8 512 
3 11 1 56 4 793 
4 4 1 73 6 927 

8.3.5 Simulation model (Steps 5, 6, and 8) 

The simulation model mimics the high-level behavior of the “Reviewing” component 
and calculates the signature instances (see Figure 8.6). The model is activated by 
parameterized user commands. These parameters are the number of images and runs to be 
displayed, their attributes, etc. As a reaction to the user command, the model produces a 
part of the signature instance, i.e., the numbers of the “Update()” and “Paint()” service 
calls. 
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Figure 8.6: Simulation model inputs and outputs 

Note that the number of runs and images were also a part of signature type, but 
they were directly passed to the inputs of the prediction model, bypassing the simulation 
model. 

A) Selection of the description formalism 

We decided to describe the behavior of the “Reviewing” component in terms of state 
machines for the following reasons: 

4. The software was initially designed in a way that can be easily expressed in 
terms of state machines: states, input events, transitions and resulting actions 
could easily be identified. 

5. There exist many tools (COVERS [COV97], AnyLogic [ANY00], UPPAAL 
[UPP99]) that allow the creation of executable simulation models based on 
state machines. Some of these tools also support automatic code generation in 
different languages (e.g., in Java, C++) for different platforms (Windows, 
Unix). 

6. State machines is one of the formalisms that are intuitively understood and 
easily accepted by software architects and software engineers. 

B) Behaviour description 

The state machine representing the system behavior is depicted in Figure 8.7. The 
system can work in three different states: (1) “File overview”, (2) “Run overview”, and (3) 
“Image overview” (full screen). Each state is described by a corresponding state of the 
state-machine from Figure 8.7. In each state, particular invariants over the number of runs 
and the number of images hold (see also section 8.3.1). The user can switch between states 
by invoking commands of the “Image Navigation” type. For each command invocation, 
the number of service calls is calculated to obtain a signature instance.  
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Figure 8.7: The states of the "Reviewing" component 

C) Calculation of the signature instances 

Each transition of the state machine from Figure 8.7 is associated with the invocation 
of a number of service calls. The number of the invoked service calls is a function of the 
following signature type: 

 f (History, External, Command) (8.2) 

Here, the following notation is used: History parameters include the previous state, 
previous number of images/runs, previous run settings, etc.; External parameters are the 
variables that can either define current state of the system (e.g., “File_Mode”) or global 
parameters (e.g., the number of monitors); Command is a user command that fires the 
transition. 

The subsequent sections describe how the number of “Paint()” and “Update()” call is 
calculated. 

D) “Paint()” calls 

When executing a command, the user window may need to be redrawn to display the 
overlaying graphics. Redrawing is performed by invoking the “Paint()” call. The number 
of “Paint()” calls is determined by the presence of coordinate system dependent graphics 
(e.g., electronic shutters, pixel shifts, etc.). The number of “Paint()” calls always equal 
one, if no such graphics is attached to medical images. It becomes two, if at least on image 
is attached this graphics. Note that the graphics is always attributed to a single medical 
image.  

E) “Update()” calls 

The number of “Update()” calls depends on both the state and the settings of the so-
called image processing nodes. An image processing node controls image attributes such 
as brightness, contrast, etc. and needs to be configured with the corresponding settings. 
These settings are specified per run and are set by the “Update()” call. 
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The number of necessary nodes can be calculated by the following formula: 

 #Nodes = 13 + 6 #Monitors⋅  (8.3) 

Here, #Monitors denotes the number of monitors of the image processing system 
(usually, 1 or 2). There are 13 processing nodes in the MISS system that are used 
independently from the number of monitors. The other six nodes are related to the number 
of monitors. 

Table 8.6 shows the dependency between the number of the “Update()” calls, the state 
of the system, and the number of involved image processing nodes. 

Table 8.6: Dependencies of the Update() calls 

State #Update() 
File Overview N_Runs*N_Nodes 
Run Overview N_Nodes 
Image N_Nodes 

The dependency on the previous node settings is important for estimating the number 
of the “Update()” calls. Processing nodes must be updated with the corresponding node 
settings of a new run to be displayed. However, not all nodes need updating. If the node 
settings of the new run equal to the node settings of the previous run, the settings are not 
updated. In this case, the “Update()” call has a significantly shorter duration than for the 
case when node settings are updated. 

So, the duration of “Update()” calls depends on the history, namely, on the settings of 
the previously displayed run. This violates the initial assumption that only the number of 
these calls matters. A solution to this problem was to improve the signature type by 
introducing two VSP calls - “ShortUpdate()” and “LongUpdate()” – instead of one 
“Update()”, dependent on whether the hardware settings must be updated or not. 

F) Simulation model implementation 

This section details the implementation of the simulation. This model has a structure 
depicted in Figure 8.8. The rectangles denote the components of the model, whereas the 
arrows show the dataflow between the components. 
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Figure 8.8: Structure of the simulation model 

1. “User interface”– this part is responsible for interaction with the user; it implements 
GUI, receives user commands, and passes them to the “Behavior model” part. 

2. “Behavior model”– this part implements the state machine that models the “Reviewing” 
component behavior at a high level of abstraction (see Figure 8.7): it processes user 
commands, and calculates signature instances. 

3. “Data parser”– this part retrieves the input data (files, runs, images, and their settings) 
from the input source (file or database) and passes them to the “Behavior model” part. 
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Two versions of the model were implemented: one using the COVERS [COV97] 
simulation engine and another based on a conventional Windows application. The 
semantics of both models were the same, but input/output interfaces are different. The 
former model provides a better visualization, whereas the latter can display only the 
current state in a textual representation. However, the implementation of the former model 
uses obsolete libraries that cannot run on Windows platforms and are difficult to interface 
with a conventional GUI. The latter model does not suffer from these problems. 

G) Validation of the simulation model 

This section describes validation of the simulation model. This procedure consists of 
the following steps: 
1. Selection of a short, but sufficient, set of input parameters for the simulation model. It 

is important to make the simulation model simple and easy to modify. In addition, this 
model must generate signature instances that can calibrate the prediction model with 
sufficient quality. Thus, only significant input parameters were selected, i.e. parameters 
that both have an impact on a signature instance and vary in many use cases. For 
instance, the number of parameters that determine the number of “Update” calls 
(settings of image processing nodes, like contrast and brightness) was decreased from 
75 to 41. These parameters were further grouped. 

2. Providing the real data to the simulation model. The simulation model had to be fed 
with real data retrieved from the MISS database, as it was cumbersome to generate this 
data artificially. However, the MISS database component could not be used “as is” as it 
was very complex, required the entire MISS infrastructure (image processing and 
storage boards, database server, etc.), and could only run on a dedicated PC. To keep 
the simulation model lightweight and usable, a “Database parser” was developed. 
This module was based on the existing MISS database component, but did not require 
the entire infrastructure. It reads a MISS database file, and translates the data into a text 
format that can be easily read by the internal parser of the simulation model. This data 
contains descriptions of the runs for a single patient: the settings of the image 
processing nodes, the number of images, and the number of textual annotations per 
image (see Figure 8.9). 

Run Settings

Node 1 Node 2 Node N

Run

Annotations

 
Figure 8.9: Run data 

3. Checking the quality of the simulation model (iteration). After completing constructing 
the simulation model and steps 1 and 2, it was vital to check its quality. This check 
included the following:  

• Fitting the prediction model to the measurements from the traces based on 
signature instances extracted from the same traces, 

• Fitting the prediction model based on signature instances extracted from 
simulation model, 

• Comparison of the quality of these two models. 
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Figure 8.10: Validation of the simulation model 

The validation described above was assisted by a dedicated tool chain (see Figure 
8.10). This tool chain included three already existing parts (solid rectangles): the MISS 
software, the MISS database, and the MISS database component. Three extra parts had to 
be added (dotted rectangles): 

1. The “Database parser” provided the simulation model with real input data. It 
retrieved the data from the MISS database and translated them into a form suitable 
for the simulation model. 

2. The “Simulation model” was executed on real input data. Use cases were carried 
out both on real software and on the simulation model, and the corresponding 
signature instances are generated. 

3. The “Trace handler” parsed the traces obtained by executing the use cases on the 
real software and calculated the signature instances. 

Two prediction models were calibrated: one on signature instances from the 
measurements and another on signature instances from the simulation model. This 
procedure yielded the prediction models with the characteristics described in Table 8.7. 
More details about the construction of the prediction models and various cases can be 
found in Section 8.3.6. 

Table 8.7: Quality of different prediction models. 

Prediction model Multiple R-squared Average relative error 
Case 1 (#Images>1, measurements) 0.9059 0.0712 
Case 1 (#Images>1, simulation) 0.9386 0.0554 
Case 2 (#Runs>1, measurements) 0.9893 0.0435 
Case 2 (#Runs>1, simulation) 0.9907 0.0460 

This table shows that both prediction models have a high quality. Two conclusions can 
be drawn from this fact: 

1. Calibration of the prediction model on the signature instances generated by the 
prediction model did not worsen the prediction quality in comparison to calibration 
on the signature instances extracted from the traces. 

2. The reduction of the number of input parameters used in simulation model did not 
have a severe impact on the prediction quality. 

8.3.6 The prediction model (Steps 7 and 8) 

This section describes the construction and validation of the performance prediction 
model for the “Reviewing” component. The prediction model was constructed with a linear 
regression tool (S-PLUS [KrO02]) and calibrated on the signature instances generated by 
the simulation model, i.e., on the number of “Update()” and “Paint()” calls. In total, 120 
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signature instances were used. The model was validated in the following way: 10 arbitrary 
points1 were left out from the measurements, and the model was calibrated using the 
remaining ones. First, the quality of the model was assessed via analysis of statistical 
characteristics of the model: the multiple 2R -coefficient, maximal absolute error, and a 
few residual diagnostic plots (see Appendix F). Second, the values of response times were 
predicted for the initially excluded points and compared with the measured ones. 

A) Construction of the prediction model 

The peculiarities of the “Reviewing” component, e.g. the relation between the number 
of runs and the number of images, were described in section 8.3.1. Moreover, the 
measurements showed that different linear coefficients are needed to express the 
dependency of response time on the number of images and the number of runs (see Figure 
8.11). 

 
Figure 8.11: 3-D plot of the dependency of the response time on the number of runs and images 

Due to these issues, the following relation between #Images and #Runs was accounted 
for when constructing the prediction model: 

 
# 1, # 1
# 1, # 1

Images  if  Runs  
Runs  if  Images  

= >
= >

 (8.4) 

 

 

 

                                                 
1 For the cross-validation, a number of points had to be chosen according to the following criteria. This 
number should not be “very small” (e.g. three points); otherwise the representative amount of prediction 
errors is not obtained. This number should not be “very large” (e.g., 100 points); otherwise there is no 
sufficient amount of points for fitting the prediction model. Within the interval that satisfies both criteria, any 
arbitrary number could be chosen, in our case, ten. 
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As a result of this dependency, the prediction model had a complex form: 
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+ ⋅ ⋅ e case # 1, # 1  Images Runs






 > =

 (8.5) 

In this formula, iβ  and iβ ′  are linear regression coefficients. The preliminary analysis of 
the calibration data set and the quality of the initial prediction model revealed the necessity 
to introduce an additional signature parameter. This parameter is the Group categorical 
variable that distinguished four groups of use cases. It was necessary, as, for example, 
some use cases required additional interaction with the “Database” component (e.g., 
“StepPageForward”, Group 1) whereas the others did not (e.g., “StepRunForward”, Group 
2). 

Table 8.8 describes the quality of the prediction model for both cases in terms of 
multiple R-squared coefficient. 

Table 8.8: Quality of the prediction model. 

Cases Multiple R-squared 
Case 1 (#Images>1) 0.9386 
Case 2 (#Runs>1) 0.9907 

Figure 8.12 and Figure 8.13 show the diagnostic plots demonstrating the normal 
distribution of the residuals cases. Slight deviations from normality can be explained by a) 
insufficient amount of data that was used for model calibration and b) the presence of extra 
(hidden) variables. Additional data and plots describing the quality of the model (e.g., p-
values of regression coefficients for the t-test for significance) are provided in Appendix 
F.1 and Appendix F.2. 
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Figure 8.12: Normality of residual distribution 



 144

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
50

-1
00

-5
0

0
50

10
0

14
15

13

 
Figure 8.13: Normality of residual distribution. 

B) Validation of the prediction model 

The validation was performed as described above: 10 arbitrary points were excluded 
from the data before calibration, and the predictions were made for them. 

Table 8.9 summarizes prediction errors of different types and compares prediction 
errors with the mean squared errors of the fitted model. Appendix F.3 explains how these 
errors are calculated and presents the distribution of prediction errors. 

Table 8.9: Average relative errors 

Cases Average 
relative error 

R-squared 
(predicted)

Average squared 
error (prediction) 

Mean squared 
error (fitted) 

Case 1 
(#Images>1) 

0.0865 0.9472 3722.97 6348.09 

Case 2 
(#Runs>1) 

0.0151 0.9918 2358.36 5764.12 

 
Low average relative errors, very slight differences between R-squared coefficients of 

the fitted model and predictions, and low average squared prediction error (in comparison 
with mean squared error) confirm the good prediction quality of the model. 

8.4 The prediction phase of the APPEAR method 
This section illustrates the use of the APPEAR method for predicting the performance 

of an adapted component. The adaptation consisted in adding a new function. Since this 
new function was not yet implemented, the simulation model was adapted based only on 
the design description of this new function. The performance predictions for the new 
function are estimated in terms of prediction intervals. 

8.4.1 From design to simulation model (Steps 9 and 10) 

A proper means was needed to effectively specify new features of the “Reviewing” 
component from a performance viewpoint. This specification means had to allow one (1) 
to describe all performance relevant aspects of the behavior of the new features, and (2) to 
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integrate the new features into the existing simulation model with ease. We decided to 
specify the new features in terms of UML Message Sequence Diagrams (MSD) because of 
the following reasons: 

1. The MISS software developers were already using the UML MSD specification 
language. 

2. The UML MSD notation is widely accepted and applied. 
3. There existed a number of the industrial tools that supported the UML MSD 

specification language (e. g. Rational Rose). 

An MSD was attached to each transition of the state machine of the simulation model. 
This MSD specified the behavior of the new feature in terms of performance relevant calls 
to the VSP (see Figure 8.14). When a transition was fired, the signature instance was 
calculated by parsing the attached MSD and counting the number of performance relevant 
service calls. An example of such an MSD is given in Figure 8.16. 

 
Figure 8.14: Integration of the new features into the simulation model 

8.4.2 Prediction for the new function (Step 11) 

As an example, the “ViewTrace” function was studied. This function has to be 
implemented in the next version of the MISS software. This function merges a series of 
images of the current run into a single composite image This series of images is called a 
trace. This composite image contains a view of the entire vascular tree structure, which is 
obtained by retaining only pixels with the minimum or maximum intensity from all images 
involved (see Figure 8.15). 
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Figure 8.15: Result of the "ViewTrace" function 

The UML MSD specification of the “ViewTrace()” function is shown in Figure 8.16. 

 

 
Figure 8.16: Specification of the “ViewTrace()” function 

The response time was predicted for 8, 16, 24, and 32 images using the previously 
calibrated prediction model. The predictions and the corresponding 95% prediction 
intervals are shown in Table 8.10. 

Table 8.10: Prediction results for the "ViewTrace()" function 

#images #”Long-
Update()” 

#”Short-
Update()” 

#”Paint()” Predicted 
value [ms] 

Prediction 
interval [ms] 

8 0 8 1 843.37 (705.3; 981.5) 
16 0 8 1 1098.47 (958.5; 1238.5) 
24 0 8 1 1353.57 (1205.2; 1501.9) 
32 0 8 1 1608.67 (1446.4; 1771.0) 

The number of the “LongUpdate()” calls equals zero, as all actions are performed 
within the same run and the hardware settings do not need to be updated. The number of 
“ShortUpdate()” calls is constant since the hardware settings are fixed. Apparently, only 
the number of images varies. 
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Notice that the prediction intervals enlarge when the distance between the point to 
predict and the calibration set increases. Despite this fact, the prediction intervals 
corresponding to distant points (e.g., 24 or 32 images) remain narrow (e.g., it is ±162.30 
ms for 32 images, with the predicted value being 1608.67 ms). 

8.4.3 Similarity of the components 

This section proves the similarity of the existing “Reviewing” component and the 
adapted version thereof, according to the similarity criteria defined in Chapter 6: 

• Identical internal computations of the adapted and existing component, 
• Identical signature types of the adapted and existing component, 
• Proximity of the signature instances of the adapted and existing component. 

In opposite to the example in Chapter 6, it is ensured by design that both existing and 
adapted components do not perform any internal computations. This fact satisfies the first 
criteria by construction. 

As described in section 8.4.2, both existing and adapted components a) are 
implemented on the same VSP and b) use the same service calls for realizing their 
functionalities. This allows us to conclude that the signature types of these components are 
identical. This satisfies the second criteria of similarity. 

The proximity of signature instances was estimated by calculating the L-metric (see 
Chapter 6). We estimated the distance between the points used for calibrating the 
prediction model in the first case (variable number of images) and four points, listed in 
Table 8.10. The number p of closest points was equal to the number of signature 
parameters (four).  

Table 8.11 shows the values of the L-metric for the selected four points (the same 
points as in Table 8.10). 

Table 8.11: The values of L-metric 

#images #”LongUpdate()” #”ShortUpdate()” #”Paint()” L-metric 
8 0 8 1 0.0000 
16 0 8 1 0.7962 
24 0 8 1 2.8572 
32 0 8 1 4.9615 

The value of the L-metric equals zero for the first point (8 images). This fact shows 
that it lies exactly in the center of mass of the four points closest to it. The second point 
(16 images) lies within the calibration dataset, but was not used for calibration. Thus, the 
value of L-metric remains lower than 1.0. For the last two points (24 and 32 images), lying 
beyond the calibration dataset, the value of L-metric is greater than 1.0. 

Note that the value of the L-metric increases depending on the distance between 
prediction point and group of the points used for calibration. This increase of the L-metric 
corresponds with diminishing of the prediction quality and with widening of the prediction 
intervals shown in Table 8.10. 

8.5 Summary 
Besides the illustration and validation of the APPEAR method with a positive 

outcome, this case study explored a number of significant issues. They are discussed 
below. 
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The construction of the prediction model for two separate cases was necessary as the 
collected measurements corresponded to the heterogeneous use cases. Additionally, the 
introduction of the categorical variable that defines the type of the use case can improve 
the characteristics of the prediction model. This issue acknowledges the statement from 
Chapters 5 and 6 about the similarity of both the components and the use cases for 
achieving reliable predictions. 

The validation of the simulation model by calibrating the two prediction models− one 
on the measurements and the other on signature instances generated by the simulation 
model− can be useful when refining the simulation model. This step can provide fast 
feedback on both the sufficiency of the signature type and the quality of the simulation 
model. 

Analysis of the results obtained during the validation of the prediction model revealed 
several sources of prediction errors: a) the distance between the signature instances used 
for calibration and for prediction, b) an insufficient amount of calibration data, and c) for 
some points the assumption of linearity of the dependency was violated. 

Also noticeable is the high relative prediction error for the points with low absolute 
values of the response time. These points were not considered as performance-critical by 
the architects, and prediction errors up to 100% were tolerable. For example, the architects 
were not that much interested that the relative prediction error for the case of two images 
sometimes was 70%, but rather interested in more time-consuming use cases, e.g. for 10-
16 images. This observation demonstrated that the maximal relative prediction error is not 
a representative metric for the model quality, and the average relative error must be 
considered instead. Other representative metrics should be investigated as well in the 
future. 

The last important remark concerns necessary conditions for the use of prediction 
intervals when predicting the performance of adapted components. These conditions 
among others include the normal distribution of the residual and constant residual 
variance. To ensure the reliability of the predictions, the architect has to carefully analyze 
the structure of the residual. The depth of the analysis depends on the expected degree of 
reliability and the effort affordable for the analysis. For simple cases, observation of 
residual diagnostic plots can be sufficient. For more complex cases (i.e., for quantifying 
the confidence intervals and the reliability of the predictions), thorough statistical tests 
checking the normality of the distribution should be executed. 
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9 Performance prediction for component 
compositions 

9.1 Introduction 
Component-based software architecting is becoming popular nowadays. Component-

based solutions help manage the complexity and diversity of products and to reduce lead-
time and development costs. However, the main advantages of this approach– reuse and 
multi-site development– often cause problems at the integration phase as the non-
functional requirements are not satisfied even if the functional ones are met. Architects 
want to estimate the quality attributes of the product at the architecting phases. The early 
prediction of quality attributes helps in justifying design decisions early, which may save 
time and effort otherwise spent for the implementation of presumably poor performing 
software. In a component-base context, this estimation is difficult as these attributes often 
emerge from interactions between components.  

We focus on one of the most critical quality attributes, performance, which 
characterizes how well the system performs with respect to the timing requirements 
[Smi00]. Typical performance metrics are end-to-end response time (latency), CPU 
utilization, etc. Let us explain the context of the problem for a component composition 
shown in Figure 9.1 (using Koala notation). 

C1 C2

C4C3

P(C1)

P(C3)

P(C2)

P(C4)

CC

P(C1),P(C2),…,P(C4) P(CC)
?

Legend:
Cx A component

A ‘requires’ interface

A ‘provides’ interface

P(Cx)
A performance-related
property of component
Cx
An interface connector

 
Figure 9.1: Performance prediction for a component composition 

The notions are described in the legend in the right part of Figure 9.1. These notions 
resemble the notions used for describing Koala components and compositions thereof 
[OLK00]. The component composition CC contains four components: C1, C2, C3, and C4. 
The provides and requires interfaces of these components are bound by means of interface 
connectors. Each component has one or more performance-related properties like the 
processor demand of a particular component operation. The performance of the component 
composition is characterized by a performance-related quality attribute such as response 
time. We aim at finding an approach that allows the prediction of the value of the 
performance-related quality attribute of the composition, based on the performance-related 
quality attributes of the constituent components. In the general case, these attributes are not 
additive: they emerge not only from the performance-related properties of constituent 
components but also from interactions of these components. Additionally, performance 
estimation is hindered by the necessity to consider the scheduling of processors and access 
to resources. 
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This approach should be helpful for the architects, i.e. it should allow the quick 
estimation of the performance during the architecting phase. It should also support the 
flexible selection of an abstraction level for behavior modeling to let the architects 
concentrate on performance relevant details only, and to trade the estimation effort against 
the estimation accuracy. Additionally, the method should exploit well-known software 
engineering notations and must not require any additional skills from software architects. 

The rest of this chapter is structured as follows. Section 9.2 discusses the essential 
aspects of performance estimation and introduces the relevant concepts and entities. We 
illustrate our approach by means of a running example. This example is a car navigation 
system (CNS), which is described in Section 9.3. Our approach is summarized in Section 
9.4. Subsequent Sections 9.5, 9.6, and 9.7 detail this approach and exemplify it by means 
of the CNS example. Finally, Section 9.8 discusses the important points of the approach. 

9.2 Description of component compositions 
Let us introduce important entities for describing our. These entities concern various 

static and dynamic aspects of a composition. 

9.2.1 Static aspects 

Figure 9.2 presents a UML diagram that describes component composition from a 
structural viewpoint. 
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Figure 9.2: Static entities 

A component composition contains a set of components. It also describes the 
connection between the provides and requires interfaces of the components. A provides 
interface of a component describes the functionality provided by this component to other 
components. The component has a number of component operations, which implement the 
functionality specified by the provides interfaces. The component also requires some 
functionality from other components. This is specified by means of requires interfaces. 
The provides interfaces are bound to requires interfaces by means of connectors. A 
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connector characterizes the way that the component operations of the provides interfaces 
are invoked through the requires interfaces. In this chapter, we consider only synchronous 
connectors. The reason is that this type of connectors is supported by many existing 
component models, including COM [Szy98] and Koala [OLK00], which were used in our 
case-studies performed. 

In addition, we assume that the binding between the interfaces is known at the 
composition time, which is before run-time. This assumption is needed to make it possible 
to reconstruct activities (see Section 9.2.2), which are important for the performance 
analysis of component composition. 

9.2.2 Dynamic aspects 

Figure 9.3 shows a UML diagram of the run-time entities that are relevant for 
modeling the performance of component compositions. 
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Figure 9.3: Runtime-related instances 
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An activity1 describes a part of the behavior of the component composition under 
consideration. It has a root operation, which is invoked every time the activity is released. 
This root operation is an (possibly internal) operation of a particular component. 
Component operations may invoke each other. As mentioned in Section 9.2.1, we consider 
only synchronous invocation of operations. Other types of communication will need to be 
considered in the future. 

The activity instantiates a number of activity instances, the units of concurrency. 
Activity instances are triggered by events with a certain precedence relationship and arrival 
pattern. The former enforce precedence constraints among a set of activity instances, 
whereas the latter define the instants at which the activity instances are released. An 
activity instance is considered to be ready to execute, when it is released. Activity 
instances may also synchronize with each other, for instance, on the access to shared 
resources. 

An arrival pattern describes the relationship between release times of different 
instances of the same activity. We consider the same types of arrival patterns as the real-
time literature usually does [Liu00]: 

• Periodic arrivals (the inter-arrival period is specified), 
• Sporadic arrivals2 (the minimum inter-arrival interval is specified), 
• Burst arrivals (the maximum number of arrivals per time unit is specified), 
• Stochastic arrivals (they follow a particular probability distribution). 
• A-periodic arrivals (there are no restrictions related to inter-arrival periods). 

Often, several activity instances need to be executed at the same time. These activities 
have to be allocated to processors to execute upon; they can also contend for non-sharable 
resources (see [Liu00]). Processors are active entities that execute activity instances. 
Examples are CPUs, I/O co-processors, etc. Sharable and non-sharable resources are 
passive entities: an activity may need a number of resource units to be able to execute. 
Examples of resources are finite buffers, locks, mutexes, semaphores, etc. 

The number of processors and resources is usually limited. This means that several 
activity instances that are eligible to execute at the same time will contend for the 
resources and processors. To resolve this conflict, a dedicated manager, the scheduler, is 
needed. Its role is to allocate processors and resources to activity instances. If the available 
amount of a particular resource is sufficient to fulfill the resource demands of all activity 
instances at the same time, sharable resources do not need to be treated explicitly, as there 
will be no resource contention. Appendix H describes processor and resource scheduling in 
more detail. 

9.3 Description of the Car Navigation system 
We demonstrate our approach to the prediction of the performance of component 

compositions by applying it to a hypothetical car navigation system (CNS). Our goal is to 
predict the average response time of particular activities. A car navigation system assists 
the driver both in constructing and in maintaining a certain route. The basic functions of 
this system are the following: 

1. Acquisition of route information. Hereby, the CNS obtains the coordinates of the 
current geographical position from a GPS receiver or from an internal gyroscopic 
device. The route is constructed for the data stored in a geographical database. 

                                                 
1 In the literature, also the term “logical process” or simply “process” or “task” is often used. 
2 The sporadic activities are also treated as activities that have soft deadlines. 
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2. Constructing and controlling the route. After the user specifies the departure and 
destination points, the system constructs a route between those points. The CNS 
checks if the car maintains the planned route. 

3. Interfacing with the driver. The CNS allows the driver to choose the route in an 
interactive fashion. The system is responsible for displaying the map, route and 
current position of the car during the trip. Additionally, the system notifies the 
driver by means of dedicated messages (picture and/or voice) about approaching 
the obstacles and turns that he or she should follow. Messages are displayed in 
advance for the turns and crossings, where the driver should execute a maneuver. 

The structure of the CNS software is shown in Figure 9.4. 

CNS(cns)

rdrawrdbros

ar
:C

A
ut

oR
ou

te

rroute

rcoord

rmap

rrtbld

rc:CRouteChecker

rroute rcoord rmap

rspk

rmsg

spkr:CSpeakerpspk

ui: CUI
pinputNrdraw

rmsg

rroute rcoord rmap

ci:CCurrentInfo

proute

rdb

pcoord pmap pmsg

rdraw

rpricoord rseccoord

rpoi
rtbld

dni:CInput
rinputN

ros

gps:CGPS

pcoord

ros

gir:CGyro

pcoord

ros

1

1 2 3

1 2 3

rb
:C

R
ou

te
B

ui
ld

er

prtbld

rmap

poi:CPOI

ppoi

rdb rdraw

2

3

Legend:
intf An interface intf. If the tip of the interface points inside the component,

then it  is a provides interface. Otherwise, it is a requires interface.

opt An optional interface opt. Interfaces of this type may be left unconnected.

1

c : CComp

A connector between requires and provides interfaces
A numbered merging point for several connectors. It binds interfaces that are
connected to the merging points with the same number.

A component instance c of the component C.

Virtual Service Platform

sdb sdrawsos

3

4

4 4 4

 
Figure 9.4: The structure of the CNS 

Figure 9.4 uses the same notations as the Koala component model [OLK00]. The main 
ones are explained in the legend part of Figure 9.4. The CNS consists of the following 
components: 
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• The “CCurrentInfo” component, which stores the current coordinates of the 
car, the current map, and the current route. This storage is implemented as 
shared memory and is a non-sharable resource; 

• The “CrouteChecker” component, which observes the current coordinates and 
route and decides if the driver needs to be given a signal about approaching a 
turn; 

• The “CUI” component, which implements the user interface with the driver. 
This component is responsible for presenting the relevant information to the 
driver, for reacting to driver’s commands such as calculating the route, etc.;  

• The “CInput” component, which implements an API for for handling input 
devices such as buttons; 

• The “Cspeaker” component, which plays back a voice message to the driver, 
when she or he needs to make a maneuver; 

• The “CAutoRoute” component, which checks whether the car is off the route 
and recalculates the route if necessary; 

• The “CRouteBuilder” component, which constructs the route between a 
departure and destination point; 

• The “CPOI” component, which manages a database of points of interests (POI) 
(e.g., restaurants, museums, etc) and supports the drawing of POI’s on the map; 

• The “CGPS” component, which collects the information obtained from a GPS 
receiver and maintains the currents coordinates; 

• The “CGyro” component, which determines the current coordinates of the car 
based on the information collected from a gyroscopic device. 

The components above execute on top of a Virtual System Platform (VSP). This VSP 
provides a number of services through the interfaces (1) “sos” for general-purpose 
operating system API, (2) “sdb” for storing the database with geographical information, 
and (3) “sdraw” for graphics primitives such as a ‘DrawPolygon’. 

We consider the details of the CNS system that are relevant for a single use case only. 
The rest is omitted for the sake of brevity. The use case concerns following the route 
already selected by the driver. The CNS instructs the driver about upcoming maneuvers. 
The driver does not issue any commands to the CNS. The following activities are relevant 
for this use case: 

• The “DrawDispl” activity, which is responsible for drawing the relevant 
information on the display. This information includes the current map, the 
current position, the route, messages to the driver, and etc;  

• The “RouteChecker” activity, which periodically checks that the car follows the 
selected route; 

• The “UpdateCoord” activity, which periodically updates the coordinates from 
the primary or secondary coordinate source. The primary source of the 
coordinates is represented by the “CGPS” component, whereas the secondary 
by the “CGyro” component. When both sources are available the primary 
source has the preference; 

• The “AutoRouteCalc” activity, which recalculates the route if the car is off the 
route; 

• The “PlaybackSndMsg” activity, which plays back a voice message to the 
driver about approaching a point where a maneuver is required; 

• The “PollKbd” activity, which periodically polls the keyboard to check if any 
keys have been pressed. 

These activities are started by particular components, according to Table 9.1. 
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Table 9.1: The mapping between components and activities. A symbol ‘S’ at a particular cell means that 
the component from the cell’s row starts the activity from the cell’s column. A symbols ‘C’ means that the 
activity call calls operations of the corresponding component. 

 Draw-
Displ 

Route-
Checker 

Update-
Coord 

Auto-
Route-
Calc 

Replay-
SndMsg 

Poll-
Kbd 

CCurrentInfo C  S    
CRouteChecker  S     
CInput      S 
CUI S      
CSpeaker     S  
CAutoRoute    S   
CRouteBuilder    C   
CPOI C   C   
CGPS   C    
CGyro   C    

Table 9.2 describes the arrival patterns of the relevant activities. 
Table 9.2: The arrival patterns of the CNS activities 

Activity Arrival Pattern 
DrawDispl Periodic (100 ms) 
RouteChecker Periodic (200 ms) 
UpdateCoord Periodic (50 ms) 
AutoRouteCalc Sporadic (min. period 2s) 
PlaybackSndMsg Sporadic (min. period 

200ms) 
PollKbd Periodic (50 ms) 

This arrival pattern described a pre-calculated schedule according to the time-driven 
architectural pattern. The instances of the two sporadic activities— “AutoRouteCalc” and 
“PlaybackSndMsg”— are triggered by particular instances of the “RouteChecker” activity. 
Please notice that not more than one activity instance of these sporadic activities may be 
active at the same time. If the previous activity instance has not completed when the next 
instance is triggered, it is forced to terminate. 

Some of the activities may contend for shared resources. The shared resources are all 
implemented within the “CCurrentInfo” component. These resources are shared memory 
objects, which describe the information about the current map, the current coordinates, the 
current route, and the current message being displayed. These objects must be used in a 
mutually exclusive manner. Therefore, the access to these objects via the “pmap”, 
“pcoord”, “proute”, and “pmsg” provides interface of the “CCurrentInfo” component is 
serialized. Table 9.3 shows the interfaces through which the various activities access 
particular shared memory objects. 

Table 9.3: The use of shared resources by particular activities 

Interface/ 
Activity 

DrawDispl RouteChecker UpdateCoord AutoRouteCalc

pmap X X  X 
pcoord X X X X 
proute X X  X 
pmsg X X   
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9.4 Performance modeling of component compositions 
This section presents our hierarchical view for the modeling of component 

compositions (see Figure 9.5). The complexity of the resulting performance model 
increases towards the top of the pyramid. 

Component operation

Activity

Activity
composition

Complexity

Elementary parts

Branches and
loops

Concurrency &
synchronization

 
Figure 9.5: Building composition models 

The construction of the performance model of a component composition starts with 
performance models for the component operations. These operations are described by 
models for predicting the processor and resource demand. These prediction models are 
constructed by means of the APPEAR method (see Chapter 5). Section 9.5 details this 
process. 

Activities call component operations to implement their functionality. Each activity is 
modeled by an activity control flow graph3 (CFG). The activity models are used to 
estimate the processor and resource demand of activity instances. At this level of 
hierarchy, the processor and resource demand is considered to be independent from 
interactions with other activity instances. Section 9.6 describes the modeling of individual 
activities in more detail. 

Finally, at the top of the pyramid, we build a model of the activity composition. This 
model describes the concurrency and synchronization between different activity instances. 
The model not only combines the resource and processor demands of all activities running 
concurrently, but also accounts for effects of scheduling such as blocking and preemption. 
Section 9.7 details the modeling of the concurrent execution of activities. 

For isolated component operations and activities, we consider the performance in terms 
of processor and resource demands. For the composition of activities, the performance is 
estimated in terms of usual performance measures like response time, processor utilization 
and throughput. 

9.5 Modeling of component operations 
The processor and resource demand of a component operation is estimated by means of 

a prediction model constructed by the APPEAR method (see Chapter 5). This model 
reflects the correlation between the resource demand and particular performance-relevant 
parameters of the component operation. These parameters can be the input parameters of 
the operation, the diversity parameters of the component, and etc. We call the vector of 
these parameters a signature type. The values of this vector are signature instances. 

As Chapter 5 explains, the prediction model oP  is a function over the signature type 

oS : 

 ( ) .o oP f S= ∈  (9.1) 

                                                 
3 Control flow graphs are notions similar to execution graphs and UML activity diagrams. 
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It returns a Real value, which is interpreted as a value of the resource or processor demand 
of the component operation o. The prediction model is fitted to the performance 
measurements of the component implementation. For this purpose, one of many existing 
regression techniques can be applied. The fitting process is detailed in Sections 5.6.1 and 
5.10. 

In Chapter 5, we also explain that a component operation may invoke services of the 
virtual service platform (VSP). For instance, the VSP services needed by the “DrawMap” 
component operation (e.g. the “DrawPolygon” service) are made via the “pdraw” 
interface, which is connected to the VSP (see Section 9.3). We consider the 
processor/resource demand of the VSP as a part of the processor/resource demand of the 
operation. This view is possible because of the stability of the VSP. 

Parameters characterizing the interactions between the component operation and the 
environment4 of the component are a good candidate for defining the signature type. For 
instance, a signature type may consist of the number of times a particular service is 
executed during the invocation of the component operation. 

In addition to the prediction model, a simulation model may need to be built for 
extracting signature instances for the prediction model. The role of the simulation model is 
to characterize use cases of the component operation in terms of signature type. These use 
cases characterize how the operation is used by its environment, particularly, which 
parameters are inputted to the operation by its callers. Let us assume that the signature type 
of the operation relates to the use of VSP services. In this case, the simulation model 
represents that part of the behavior of the component operation that maps the use cases to 
these service calls (see Section 5.3 and 5.4). In other cases, the signature can also be 
related to the internal calculations of the component operation. This however may require 
a “white-box” model of component internals, which may involve too many 
implementation details. 

9.5.1 An example of the simulation model for a component 
operation 

Let us demonstrate how such a simulation model may look like by constructing this 
model for the “DrawMap” component operation. This component operation has the 
following input parameters: 

• “DrawingMode”, which selects one of two drawing modes: “Fast” or 
“Normal”. In the former mode, the polygons that represent various map objects 
such as buildings, roads, etc. are drawn without filling. In the latter mode, the 
polygons are filled with a particular color, depending on the type of the object 
that the polygon represents. The filling requires additional processor demand. 

• “Map”, which describes the current map. The “Map” object contains a 
topographically5 sorted list of map objects. Each map object represents an 
entity such as a road, building, a segment of a river or lake, etc. The map object 
contains certain geographical information (e.g., a name) and the description of 
the polygon that represents this object. The map object contains also 
information about the region it covers in terms of geographical coordinates. 

                                                 
4 The environment of a component is other components that are bound to this component through interfaces. 
5 By topographically sorting we mean the following. Map objects can be nested: for instance, a village map 
object may include a number of house map objects. The larger map objects, such as the village one, must be 
drawn before the smaller ones. For this reason, these objects are stored in the beginning of the list. This 
arrangement of location of map objects is called the topological sorting. 
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• “Region”, which describes a rectangular part of the map to be drawn on the 
screen. It specifies the geographical coordinates of the left-top and right-bottom 
corner. 

Drawing many polygons may require a substantial processor demand. To reduce this 
demand, the “DrawMap” operation caches the previously drawn polygons in an off-screen 
buffer (see Figure 9.6). It is not necessary to redraw the polygons that are still visible in the 
new region (specified by the “Region” parameter). Instead, the already drawn part can be 
directly copied from the off-screen buffer, accounting for a possible shift of the region. 

First off-screen buffer Second off-screen buffer Screen
Copying a part of the
region drawn in the
first off-screen buffer

Copying the second
off-screen buffer to the
screen

The polygons in this
part do not need to be
redrawn

The polygons in this
part have to be
redrawn

The shift of the new
region with respect to
the previous one  

Figure 9.6: Copying the off-screen buffers to the screen 

If this shift is too large, copying a part of the previous region may be not efficient 
anymore. The “DrawMap” operation displays then all polygons from the new region. 
Displaying all polygons may also be required, if the drawing mode, specified by the 
“DrawingMode”, for the new region differs from the drawing mode of the previously 
displayed region. 

Summarizing, the variation of processor demand of the “DrawMap” operation is 
primarily determined by the following factors: 
1. The number of polygons to be drawn (“#Polygons”); 
2. The drawing mode (Mode=0 means the “Fast” drawing mode, whereas Mode=1 means 

the “Normal” drawing mode); 
3. The possible copying of the previously drawn polygons from the first off-screen buffer 

to the second one (ShiftAndCopy=0 means that no copying takes place, whereas 
ShiftAndCopy=1 indicates the fact of copying). 

The signature parameters are given for each of these factors in brackets. 

The “DrawMap” operation maintains two sets (lists) of the polygons: “PrevPolygons” 
and “NewPolygons”. The former contains the description of the polygons that has been 
drawn by the previous invocation of the “DrawMap” operation. The latter comprises the 
polygons that need to be displayed for the new region. Figure 9.7 presents the simulation 
model of the “DrawMap” operation in form of a state machine. 
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Figure 9.7: The simulation model of the ‘DrawMap’ component operation 

The states reflect which value of the “DrawingMode” parameter was passed to the 
“DrawMap” operation during its previous invocation. The transitions are marked with 
pairs of input events and actions. The input events correspond to the invocation of the 
“DrawMap” operation with various values of its “DrawingMode” input parameter. The 
actions specify the expressions for calculating values of the signature parameters: “Mode”, 
“ShiftAndCopy”, and “#Polygons”. The operator x  denotes the cardinality of a set x, that 
is, the number of elements in this set. 

Function 1f  calculates whether the copying of previously drawn polygons is needed 
or not and is defined as follows: 

 
1, ;

1( , )
0, .

if new prev Threshold
f prev new

otherwise
 ∩ ≥= 


 (9.2) 

Function 2f  calculates how many polygons need to be drawn and is defined as follows: 

 ( )
\ , ;

2 ,
, .

new prev if prev new Threshold
f prev new

new otherwise

 ∩ ≥= 


 (9.3) 

In Formulas (9.2) and (9.3), “prev” and “new” denote the sets of polygons that need to 
be displayed at the previous and the current invocation of the “DrawingMap” operation. 
The “Threshold” constant defines the critical number of polygons, such that drawing these 
polygons by means of the “DrawPolygon” service is slower than copying and shifting the 
previously drawn polygons from the off-screen buffer. 

“PrevPolygons” and “NewPolygons” depend on the information from the map. This 
information must either be guessed by the architects or extracted from the actual map. The 
latter requires the modeling of a part of the software responsible for parsing map 
information. This part must be included into the simulation model to be able to calculate 
precise signature instances. 
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9.5.2 An example of the prediction model for a component 
operation 

We use the example of the “DrawMap” operation to demonstrate a prediction model 
that is constructed by applying the APPEAR method. The signature type of the 
“DrawMap” operation is explained in Section 9.5.1. As we assume a linear dependence 
between the processor demand of the “DrawMap” operation and the signature parameters, 
the prediction model has the following form: 

 0 1 2 3# # .D ShiftAndCopy Polygons Polygons Modeα α α α= + ⋅ + ⋅ + ⋅ ⋅  (9.4) 

In Formula (9.4), D denotes the processor demand of the “DrawMap” operation. iα  are 
regression coefficients. The remaining variables are signature parameters. Please notice 
that the 3α  regression coefficient corresponds to the interaction term # Polygons Mode⋅ . 
This interaction term accounts for additional processor demand required for filling each 
polygon. To estimate the values of the iα  regression coefficients, prediction model needs 
to be fitted and validated in the way explained in Sections 5.6.1 and 5.10.  

9.6 Modeling of activities 
The processor/resource demand of an activity depends on the following factors: 
1. The processor/resource demands of the component operations that are invoked by 

this activity, 
2. The control flow of the activity. Depending on input parameters, states and 

diversity parameters of particular components, and etc., the activity may invoke 
various component operations with different values of input parameters for 
different activity instances. 

The first factor was addressed in Section 9.5. This section focuses on the second factor. 
To model the control flow within of an activity, we adopt a slightly modified notion of 
control flow graph (CFG). Traditional CFGs are summarized in Appendix I, whereas a 
modified version thereof is detailed in Section 9.6.1. 

9.6.1 Description of the control flow of component operations 

We aim at describing only the performance-relevant control flow information of a 
component operation. Traditional CFGs (see Appendix I) contain too much information: 
considering all basic blocks may easily lead to combinatorial explosion. Moreover, the 
prediction model constructed for the component operation already covers its 
processor/resource demand. This fact implies that the information about the resource 
demands of basic blocks is redundant. However, it is important to preserve the information 
about the invocation of other component operations, as they may significantly influence 
the total resource demand of the entire activity. This goal can be achieved by keeping the 
following information from the CFG of the operation under consideration: 

• Invocation nodes (basic blocks), which describe the invocation of component 
operations, 

• Nodes and edges, which describe the control flow that may lead to the the 
invocation of other component operations. We call these nodes branching 
nodes or loop headers, 

• Entry and exit blocks (see also Appendix I). 
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We call a graph obtained this way the reduced CFG of an operation. Each component 
operation needs to be attached such a reduced CFG to specify how often and which 
operations of other components it invokes. The reduced CFG can be constructed 
automatically, based on the analysis of the source code of the component (see Appendix 
G). 

Figure 9.8 shows an example of such a reduced CFG for the “DrawMap” component 
operation, provided through the “rmap” interface of the “CCurrentInfo” component (see 
Figure 9.4). 

DrawMap

B0

rpoi.GetPOIObjects

p_b0(s0)

  1-p_B0(s0)L1

rpoi.DrawPOI

l_L1(A,#Polygons)

 
Figure 9.8: The CFG of the “DrawMap” component operation 

The circles with the “L1” and “B0” labels are a loop header and a branching node, 
respectively. Finally, the rectangles with a label inside indicate the invocation of the 
component operation with the respective identifier. The identifier of the callee consists of 
two parts. The first part, before the point, is the name of the requires interface through 
which the callee is invoked. The second part is the name of the operation. The “DrawMap” 
operation invokes other operations through the “rpoi” interface. 

The decision at the “B0” branching depends on whether the optional “rpoi” interface is 
connected. If this is the case, the control flow follows the left branch. Otherwise it follows 
the left one. 

The “GetPOIObjects” operation returns a list of POI objects (see Section 9.3). The 
loop “L1” iterates through this list, calling the “DrawPOI” operation for each POI object to 
display it. The “DrawPOI” operation also calls a number of VSP services, but they are not 
depicted in this CFG, as their resource/processor demand is covered by the prediction 
model (see Section 9.5). 

In Figure 9.8, the arrows denote the edges of the CFG, which describe the possible 
control flow between a pair of the CFG nodes. Consider a branching node. Its outgoing 
edges are assigned branching probabilities, depending on the respective signature type. 
The construction of a prediction model for branching probabilities is explained in Section 
9.6.2. The sum of the probabilities at all outgoing edges of a branching node must equal 1, 
indicating that the control flow will pass one of the edges for sure. The labels that specify 
the formulas for calculating are attached to the corresponding edges. For instance, these 
probabilities are “p_B0(s0)”and “1-p_B0(s0)” for the “B0” branching node from Figure 
9.8, with s0 being a single signature parameter for this branching node. 

Now consider a loop header. This type of node is used to model repetitive control flow 
structures such as various types of loops. The loop header is the first node being passed at 
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the first iteration of a loop. The incoming edge of this loop header is the loop’s back-edge. 
This back-edge indicates the direction of control flow to complete the loop. The label 
assigned to the back-edge is the iteration count that is described by a formula. In Figure 
9.8, the loop starts from the “L1” loop header and iterates for “l_L1(A,#Polygons)” times, 
with A and #Polygons being a signature parameter for the loop. The construction of a 
prediction model for loop counts is explained in Section 9.6.2. 

Figure 9.9 shows another example of a reduced CFG. It describes the “DrawDisplay” 
operation implemented by the “CUI” component (see Figure 9.4). The operation is 
responsible for displaying the content of the entire screen. 

DrawDisplay

DrawMenu

rmap.DrawMap

B1

rroute.DrawRoute

p_B1(s1)

rcoord.DrawPosition

1-p_B1(s1)

B2

rmsg.DrawMsg

1-p_B2(V,A)
p_B2(V,A)

 
Figure 9.9: The CFG of the ‘DrawDisplay’ operation 

In Figure 9.9, the same notations are used as in Figure 9.8. The “DrawDisplay” operation 
invokes one internal component operation “DrawMenu” and four component operations— 
“rmap.DrawMap”, “rroute.DrawRoute”, “rcoord.DrawPosition”, and “rmsg.DrawMsg”— 
through the corresponding ‘requires’ interfaces. Notice that the “DrawRoute” and 
“DrawMsg” operations will be invoked not for all invocations of the “DrawDisplay” 
operation, as they are located at the “B1” and “B2” branch, respectively. The 
corresponding branching probabilities equal “p_B1(s1)” and “p_B2(V,A)”, respectively. 
The V, A, and s1 arguments are signature parameters. 

9.6.2 Prediction model for branching probabilities and 
iteration counts 

In Section 9.6.1, we showed that the control flow of a component operation can be 
modeled by a reduced CFG. The control flow may follow different execution paths the for 
the following reasons: 

• The input parameters of the component operation; 
• The diversity parameters of the component; 
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• The return values of the operations of other components called via the requires 
interfaces. 

The path is defined by the results of expressions over the items described in the list above. 

We introduce branching probabilities and loop counts to describe the possible variation 
of the control flow. We treat branching probabilities and loop counts as functions over 
particular signature types. The signature parameters are supposed to capture the influence 
of the items from the list above on the control flow and, consequently, on the branching 
probabilities and loop counts. Please notice that this signature type may be completely 
unrelated to the use of service calls. 

In case this influence is deterministic, we suggest the construction of an analytical 
formula. For example, consider the “B0” branching node of the reduced CFG of the 
“DrawMap” operation (see Figure 9.8). The left branch is taken when the “rpoi” optional 
requires interface is connected. In the opposite case, the right branch is taken. Figure 9.4 
shows that the “rpoi” interface is connected. Therefore, we may consider that the left 
branch will be always taken and that 

 ( )0 = 1.Bp_B0 s  (9.5) 

In Formula (9.5), p_B0  denotes the branching probability for the “B0” branching node, 
and 0Bs  is the corresponding signature instance. 

Another example of a trivial formula is the branching probability of the “B1” 
branching node of the reduced CFG depicted in Figure 9.9. The branching decision is 
determined by the state of the “CUI” component that indicates if the current route needs to 
be displayed. In the context of this chapter, we analyze only the case when the route is 
always displayed. This implies 

 ( )1_ 1 1.Bp B s =  (9.6) 

In Formula (9.6), _ 1p B  denotes the branching probability for the “B1” branching 
node, and 1Bs  is the corresponding signature instance. 

In practice, the influence of the factors mentioned at the beginning of this section will 
be non-deterministic due to the unknown values of particular parameters. In this case, a 
prediction model for branching probabilities and loop counts can be constructed by means 
of the APPEAR method (see Chapter 5). The application of the APPEAR method implies 
that a simulation model is constructed for extracting the signature instances. Based on the 
values of various parameters, the simulation model calculates the values of the signature 
parameters for the prediction model. 

As an example of a complex branching decision, let us consider the “B1” branching 
node of the “DrawDisplay” operation (see Figure 9.9). At this node, a decision is taken 
whether a message about approaching a turn needs to be displayed. The moment of 
displaying the message depends on the current speed and the distance to the next turn. 

The prediction model for the “B2” branching node calculates the probability _ 2p B  of 
taking the branch with or without calling the “DrawMsg” operation through the “rpoi” 
operation. The prediction model is fitted over a signature type:  

 ( )2 , .BS V A=  (9.7) 

In Formula (9.7), V denotes the current speed of the car, and A is the type of area where the 
car is being driven. The second parameter is categorical, and it can have two values: “City” 
or “Highway”. On one hand, the higher the speed, the faster the car can reach the turn that 
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it needs to take. On the other hand, it is more likely to encounter the turn in the city than 
on the highway. 

As the branching probability for “B2” branch is a binary variable and the 
corresponding branching probability “ _ 2p B ” must lie in the interval from 0.0 to 1.0, it is 
impossible to construct a prediction model for “ _ 2p B ” by means of traditional linear 
regression. (Traditional linear regression constructs models that can supply values beyond 
the interval 0.0 to 1.0, but the probabilities must always lie within this interval.) For the 
regression of prediction models with binary responses that have a distribution from the 
exponential family (Poisson, binominal, etc), one can, however, use generalized linear 
regression [MN97]. This regression introduces the so-called logit link function 1η  

 ( ) ( ) ( )( )( )1 log 1S p S p Sη = −  (9.8) 

to model binary responses. In Formula (9.8), ( )p S  denotes the probability of success, 

which is the probability of taking a particular branch in our case. S  is the signature type 
for the branching probability under consideration. 

The prediction model for the branching probability “ _ 2p B ” can be described now by 
the following formulas: 

 ( ) ( )
( )( )_ 2 ,

1 0 1 2 1 1 _ 2 ,, ; ( , ) log .p B V A
p B V AA V V A A Vη α α α η −= + ⋅ + ⋅ =  (9.9) 

In Formula (9.9), iα  are regression coefficients; V and A are signature parameters. Note 
that this model linear in regression coefficients, although in signature parameters it is not 
linear. 

There exist a number of tools that support generalized linear regression, e.g., the S-Plus 
tool [KO02]. These tools may be used to fit the prediction model defined by Formula (9.9). 
These tools not only calculate the values of the regression coefficients, but also give 
figures about the overall quality of the regression. 

As mentioned above, loop counts can also by described by means of a prediction 
model over particular signature type. The construction of a prediction model in the form of 
an analytical formula is performed in the same way as for branches. Otherwise, the 
prediction model has to be constructed by using statistical regression techniques. Also in 
this case the generalized linear regression can be applied. However, the logit link function 
cannot be used as for branching probabilities. Instead, another link function has to be used. 
Response variables such counts often follow the Poisson distribution, and we use the 2η  
Poisson link function 

 ( ) ( )( )2 log .S L Sη =  (9.10) 

In formula (9.10), ( )L S  is the average number of loop iterations, which coincides 

with the parameter of the underlying Poisson distribution, and S  is the signature type for 
the loop under consideration.  

For example, let us consider the “L1” loop header (see Figure 9.8) for the “DrawMap” 
component operation. We assume that the average number of iterations of this loop relates 
to the type A (see above) of area where the car moves and to the number of the 
surrounding geographical objects. The number of these geographical objects depends on 
the signature parameter “#Polygons” explained in Section 9.5.1. It is more likely to move 
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across a point of interest in an area with many buildings than in an area with only few 
ones. Summarizing, the signature type 1LS  of the iteration count of the “L1” loop has the 
following form: 

 ( )1 , # .LS A Polygons=  (9.11) 

The prediction model ( )_ 1 , #l L A Polygons  for the “L1” loop is described by the 
following formula: 

 
( )
( ) ( )( )

2 0 1 2 3

2

, # # # ;

, # log _ 1 ,# .

A Polygons A Polygons A Polygons

A Polygons l L A Polygons

η α α α α

η

= + ⋅ + ⋅ + ⋅ ⋅

=
 (9.12) 

In Formula (9.12), jα  denotes the regression coefficients. The rest of variables are 
explained above. This prediction model can be fitted by any statistical tool that supports 
generalized linear regression with the Poisson link function (e.g. the S-Plus regression tool 
[KO02]). 

9.6.3 Description of the control flow of an activity 

For estimating the total processor/resource demand of an activity, its control flow of an 
activity needs to be described. The estimation process is further explained in Section 9.6.4. 
The component model described in Section 9.2 implies that the control flow of an activity 
is only known after composition time, when all interfaces are bound. The control flow of 
the activity is defined by the control flows of all the callee component operations (see e.g. 
Figure 9.10). Note that it is necessary to treat only the component operations that are 
implemented by the involved components. The contribution of VSP services are covered 
by the prediction models of individual component operations (see Section 9.5) and do not 
need to be represented explicitly in the context of the control flow modeling. 

As mentioned before the execution of an activity starts from a particular (possibly 
internal) operation called the root operation of the activity. This root operation may invoke 
a number of component operations through the ‘requires’ interfaces of the component that 
implements this operation. These invoked operations may also call other component 
operations, and so on and so forth. At a certain depth of the call hierarchy, no operation 
will invoke other component operations. In practice, the modeling of call graph might stop 
earlier as the lowest level operations usually are small and have a low processor/resource 
demand. Their effect can be covered by the regression model. 

We define the control flow graph of an activity as a hierarchical graph and refer is as 
an activity CFG. An example of such an activity CFG is shown for the “DrawDispl” 
activity (see Section 9.3) in Figure 9.10. 

The root operation of this activity is the “DrawDisplay” operation, which is described 
in Section 9.6.1. The “DrawDisplay” operation invokes one internal component operation 
“DrawMenu” and four component operations— “rmap.DrawMap”, “rroute.DrawRoute”, 
“rcoord.DrawPosition”, and “rmsg.DrawMsg”— through the corresponding ‘requires’ 
interfaces. Only the “rmap.DrawMap” operation invokes operations of other components. 
The remaining operations invoke only VSP services such as reading the data from the 
geographical database or drawing graphics. The use of these services is addressed by the 
APPEAR prediction models of the remaining operations. For these reasons, the activity 
CFG for the “DrawDispl” activity includes the reduced CFGs of the “DrawMap” and 
“DrawDisplay” operations only. 
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Figure 9.10: The activity CFG for the “DrawDispl” activity 

A more extended example of an activity CFG is presented in Appendix J. 

9.6.4 Estimation of the resource/processor demand of an 
activity 

Considering the dependencies between different nodes and edges of the activity CFG 
(see Section 9.6.3), different modeling techniques can be used to estimate the resource 
demand of an activity (see Figure 9.11). 

Modeling the resource
demand of an activity

Simulation modelsAnalytical models

Probabilistic annotations
 to activity CFG

Known branching
probabilities

Approximation of
branching probabilities

 
Figure 9.11: Modeling of the control flow 
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The simulation of the CFG of an activity may be required, when it is impossible to 
capture in an analytical way the complex dependencies of the processor/resource demand 
of the activity on various performance-relevant factors such as input parameters, 
component states, etc. The simulation may also require the attachment of additional 
annotations to the edges of the activity CFG. These annotations may include guards for 
branches and loops, expressions over input parameters, etc. The simulation of an activity 
CFG is only feasible for a small subset of activities, as the construction of the simulation 
models is a big effort. 

The construction of analytical formulas to estimate the resource/processor demand of 
an activity is also based on the activity CFG. We make the assumption of statistical 
independence between the processor/resource demands of the constituent component 
operations, branching probabilities, and iteration counts to be able to construct simple 
estimation formulas. If this assumption is violated, simulation has to be used to estimate 
the resource demand of the activity instance. In the literature (e.g. [MR03]), approaches for 
checking statistical independence are discussed. 

Under this assumption, the estimation formulas can be constructed automatically from 
the activity CFG. The idea behind the algorithm is as follows. The activity CFG of an 
activity A is traversed starting from its root operation o, which may invoke a number of 
component operations through the requires interfaces. For each invoked operation i, we 
define a sub-activity iA , which has the operation i as its root operation. In these terms, the 
processor/resource demand of the activity A is defined by the processor/resource demand 
of the root operation o and the processor/resource demands of the defined sub-activities 

iA . However, their processor/resource demands must be considered with respect to the 
control flow context: if a particular component operation i is invoked from a branch or a 
loop, its processor/resource demand must be multiplied by the corresponding branch 
probability or loop count. Summarizing, the formula is as follows: 

 ( ) ( ) ( ) ( )
( )

( )
( )( )

.
iA o o A j j k k

i Callees o j Branches i k Loops i

D s D s D s p s l s
∈ ∈ ∈

 
= + ⋅ ⋅  

 
∑ ∏ ∏  (9.13) 

In formula (9.13), As  denotes a signature instance for estimating the processor/resource 
demand ( )AD s  of the activity A, including all its sub-activities. Similarly, 

iAs  are 

signature instances estimating the processor/resource demands ( )iAD s  of the sub-activities 

iA . Branching probabilities and loop counts are denoted by jp  and kl , respectively, with 
the corresponding signature instances being js  and ks . The signature instance As  includes 
the signature instance os  of the root operation o, the signature instances 

iAs  of the sub-
activities, and the signature instances js  and ks  of branches and loops: 

 ( ),..., ,..., ,..., ,... .
iA o A j ks s s s s=  (9.14) 

The processor/resource demand oD  is calculated by a prediction model, constructed by 
the APPEAR methods, as described in Section 9.5. Callees(o) denotes the set of callee 
operations of the o operation o. Branches(i) and Loops (i) denote sets of branching nodes 
and loop headers, respectively, that define the control flow context of the callee operations 
i. Callees(o), Branches(i), and, Loops(i) can be deduced automatically from the reduced 
CFG of the operation o. 

Formulas (9.13) and (9.14) need to be applied recursively to each sub-activity, starting 
from the root operation of the activity. The processor/demand of this root operation, 
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accounting for all its callees, coincides with the processor/demand of entire activity. The 
simulation model of an activity consists of the simulation models of all operations (see 
Section 9.5). 

We applied Formula (9.13) to the CFG of the “DrawDisplay” activity (see Figure 9.10) 
and obtained the following formulas. The processor demand DrawMapAD  of the “DrawMapA” 
sub-activity with the “DrawMap” root operation, (see Figure 9.8) is as follows: 
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In Formula (9.15), ( )1_ 1 Ll L s  is the iteration count variable for the “L1” loop, and 1Ls  is a 

signature instance for this loop. ( )0_ 0 Bp B s  denotes the branching probability for the 
“B0” branching node; 0Bs  is the corresponding signature instance. rpoi.DrawPOID  and 

rpoi.GetPOIObjectsD  are the processor demands of the “DrawPOI” and “GetPOIObjects” 
operation, respectively, and their callees. DrawPOIs  and GetPOIObjectss  are signature instances for 

these operations. Finally, ( )DrawMap DrawMapD s  is the resource demand contribution of the 
“DrawMap” operation itself. This contribution is calculated by the prediction model, 
constructed by means of the APPEAR method. This prediction model is explained in 
Section 9.5.2. 

The processor demand DrawDisplD  of the “DrawDispl” activity equals to the sum of the 
processor demands of its root operation (see Figure 9.9) and the other operations that it 
invokes. 
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In Formula (9.16), DrawDisplayDT  is the processor demand of the “DrawDispl” activity. 

rmsg.DrawMsgD , rmap.DrawPositionD , and rroute.DrawRouteD  are processor demands of the respective 
component operations. The corresponding signature instances are DrawMsgs , DrawPoss , and 

DrawRoutes . Functions ( )2_ 2 Bp B s  and ( )1_ 1 Bp B s  are branching probabilities for the “B2” 
and “B1” branching nodes, respectively. 2Bs  and 1Bs  denote the corresponding signature 
instances. The DrawMapAD  is the processor demand of the sub-activity “DrawMapA” with 

the root operation “DrawMap” (see also Formula (9.15)) Finally, ( )DrawDisplay DrawDisplayD s  is 
the processor demand of the “DrawDisplay” operation itself and the internal operation 



 169

“DrawMenu”. This processor demand depends on the corresponding signature instance 
DrawDisplays  and is calculated by a prediction model constructed by the APPEAR method. 

9.7 Modeling of concurrent activities 
Concurrent activity instances are scheduled for processors and non-sharable resources. 

Depending on aspects such as scheduling policy, resource access control protocols, activity 
arrival patterns, and the way the activity instances synchronize, accounting for the 
concurrency may require the use of various techniques (see Figure 9.12). 

Accounting  for  concurrency

Analytical  models Simulation  models

Stochastic
models

Deterministic
models  

Figure 9.12: Accounting for concurrency 

Analytical models can only be applied when they can be constructed with reasonable 
effort. For instance, when activity instances arrive according to a Poisson stream and only 
restricted resource contention occurs, it is possible to construct a queuing model for 
predicting the average response time of the activity. Stochastic analytical models are 
usually built by techniques such as queuing systems/networks [Kle76], [Kle96], stochastic 
or timed Petri Nets [KiP00], etc. These sorts of techniques are based on strict assumptions 
about underlying distributions6 for the processor/resource demands and inter-arrival times 
of activities. In very simple cases, it is even possible to build a deterministic analytical 
model, described by a formula. An example of such simple formula is described in Section 
10.3 and in Section 11.6. 

However, for many software-intensive systems the assumptions of the existing 
analytical techniques are severely violated. In this case, a simulation model can be used. 
Section 10.5 exemplifies the use of a simulation model to predict the CPU utilization. The 
rest of this section describes a simple analytical model for our example of the hypothetical 
CNS (see Section 9.3).  

Figure 9.13 shows a periodic schedule for the activities of the CNS constructed 
according to Table 9.2. 

0 150 ms 200 ms50 ms 100 ms

time

Legend:
“PollKbd”

“UpdateCoord ”

“DrawDispl”

“RouteChecker ”

Slot 1 Slot 2 Slot 3 Slot 4 Slot 1

“AutoRouteCalc” & “PlaybackSndMsg”

Slack

200 ms

 
Figure 9.13: Construction of a schedule for the periodic activities of the CNS 

This schedule is calculated at design-time and enforced by a cyclic scheduler at run-
time. Since resource conflicts are resolved by the serialization of activity instances, this 
corresponds to a time-triggered architecture. 

                                                 
6 In most cases, these distributions are considered to be from the exponential family. 
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A super period of 200 ms is partitioned into four time slots. Each time slot occupies 50 
ms. The “PollKbd” and “UpdateCoord” activity executes in every slot. The “DrawDispl” 
is assigned to every second and fourth slot, whereas “RouteChecker” runs only every 
fourth one. Each slot may have a slack, the remaining processor time not consumed by the 
activity instances executing in this slot. The slack is used for executing the non-periodic 
activities “AutoRouteCalc” and “PlaybackSndMsg”. 

The construction of the cyclic schedule shown in Figure 9.13 requires the knowledge 
of the worst-case processor demand of the involved activities. We choose for a time-
triggered architecture for the following reasons. First, a run-time schedule would require 
the same knowledge, as periodic activities have the deadlines that coincide with the 
respective periods. Second, a time-triggered schedule automatically resolves resource 
conflicts by searilization. 

The estimates of worst-case resource demands of the activities can be derived from the 
models obtained by applying the first two steps of our method (see Sections 9.5 and 9.6). 
The procedure is as follows. First, we identify the worst-case values of signature 
parameters for the activities of interest. For instance, the #Polygons signature parameter of 
the “DrawDispl” activity cannot exceed 1000. 

These worst-case values are passed to the prediction models of the activities, and the 
corresponding 95% prediction intervals (see Section 5.1) are calculated. For example, to 
estimate the processor demand of the “DrawDispl” the worst-case signature instances are 
passed to Formula (9.15) and (9.16). We consider the upper bound of a prediction interval 
as a tight estimate of the worst-case processor demand. To make this estimate safe, we add 
a safety margin of 10% to the calculated upper bound. Table 9.4 summarizes the worst-
case processor/resource demand of the various activities obtained this way. 

Table 9.4: The average processor/resource demands of the various activities 

Activity Upper bound of the 
prediction interval 
for the processor 
demand (ms) 

Estimate of the 
worst-case 
processor demand 
(ms) 

“DrawDispl” 20 22 
“PollKbd” 1 1.1 
“UpdateCoord” 5 5.5 
“RouteChecker” 14 15.4 
“AutoRouteCalc” 15 16.5 
“PlaybackSndMsg” 2 2.2 

The data from Table 9.4 and the enforced cyclic schedule shown in Figure 9.13 allow 
us to estimate the worst-case response time of each activity. For example, the worst-case 
response time DrawDisplT  can be found by the following formula: 

 .DrawDispl UpdateCoord PollKbd DrawDisplT W W W= + +  (9.17) 

In Formula (9.17), AW  denotes the worst-case processor demand of the activity A. 
By substituting the data from Table 9.4 to Formula (9.17), we calculate the worst-case 
response time of the activity “DrawDispl”: 

 22 1.1 5.5 28.6.DrawDisplT = + + =  (9.18) 

The obtained worst-case response time implies that 21.4 ms slack remains in every 
second and fourth slot. In this timeframe, also the sporadic activities “AutoRouteCalc” and 
“PlaybackSndMsg” may execute. The actual slack is thus 2.7 ms. 
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Summarizing, the time-triggered architecture supports the analysis and construction of 
the schedule. For an event-triggered architecture, we would most likely have to construct a 
simulation model to account for resource contention. This example demonstrates that the 
analyzability and predictability of a system can be achieved by limiting the design 
freedom. An approach to the construction of such a simulation model is described in the 
subsection below. 

9.7.1 Construction of the simulation model 

The information flow in a simulation model for predicting the performance of activities 
executing concurrently is described by means of an UML activity diagram shown in Figure 
9.14. 

Schedule simulation Schedule analyzer

Simulation of activity i

Application of the prediction
 model  for activity i

Distribution of processor/
resource demand

Starting an
activity instance

Completion of an
activity instance

Signature instances

Total processor/
resource demand

Processor/resource
consumption scheme

Timed processor/resource
consumption scheme

Timed schedule trace

Architect

Performance estimates

Relevant use cases

Replicated
for every
activity

 
Figure 9.14: The information flow within a simulation model that accounts for activity concurrency 

The architect devises the use cases and their parameters for which the performance 
prediction must be performed. These data are passed to the simulation models of the 
activities. The simulation model of an activity is formed by the simulation models of 
individual component operations that are invoked by this activity (see Section 9.5 and 9.6). 
The simulation models of activities calculate signature instances, which characterize the 
performance of the activity instances. In addition, these simulation models also generate 
schemes in which the processors and resources are consumed by activity instances. For 
example, the activities of the CNS (see Section 9.3) may be blocked on the access to the 
“CCurrentInfo” component via the “pmap”, “pcoord”, “proute”, and “pmsg” provides 
interfaces. Since this component contains shared memory, it is necessary to provide 
processor/resource consumption schemes for all activities that may invoke component 
operations through these interfaces. For the “DrawDispl” activity, the reduced CFG of the 
“DrawDisplay” operation can be used (see Figure 9.9) to deduce such a scheme, as it 
describes the order of invocation of component operations through these interfaces. 
Depending on the scheduling algorithm under consideration, the level of 
processor/resource consumption granularity may vary. The calculated signature instances 
are passed to the activity prediction models (see Section 9.6.4) to estimate the total 
processor/resource demands of the activity instances. The obtained demand estimates are 
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then partitioned according to the processor/resource consumption schemes to obtain 
schemes that contain also timing information.  

The constructed timed processor/resource consumption schemes are used to simulate 
the schedule on the basis of the model of the scheduler. The model of the scheduler must 
emulate the scheduling policy and resource access protocols (see Section 9.2.2 and 
Appendix H). It controls the execution of the simulation models by sending events to start 
an activity instance model and by receiving the events about the completion of an activity 
instance model. The role of these events is to coordinate the work of the simulation models 
of various activities. The construction of simulation models of various types of schedulers 
are widely described in the literature (see e.g. [FM03]). 

The simulation of the schedule produces a trace, which contains timed information 
about the consumption of the processors and resources by the activities under 
consideration. By analyzing these traces it is possible to derive the required performance 
estimates and to report them back to the architects. 

9.8 Summary 
In this chapter, we have presented an approach to performance prediction for 

component compositions. A component composition is considered not only in terms of 
components but also in terms of concurrent activities that invoke a number of component 
operations. The approach is hierarchical: first, performance models are constructed for 
component operations; then the models are built for activities executing in isolation; 
finally, the concurrent activities are considered. The approach employs the basic principles 
and techniques of the APPEAR method to abstract from the implementation details of 
component operations and to construct prediction models for branches and loops. The 
approach is illustrated by an example of a Car Navigation System that demonstrated the 
important steps of our approach.  

Some of the existing approaches (e.g., see [DMM03], [WMW03]) use only analytical 
techniques such as Layered Queuing Networks, timed/stochastic Petri nets etc to model the 
scheduling. Other approaches (e.g., [BMW04], [BWC04]) consider simulation. An 
important feature of our hierarchical approach is the possibility to choose between 
analytical and simulation modeling techniques at each step. The architect can select the 
appropriate technique based on (a) satisfaction of the assumptions of the techniques by the 
system under consideration, (b) the goals of the analysis, (c) the required accuracy, and (d) 
the timing budget available for the estimation. 

At the moment, the existing approaches tend either to ignore the parameters of 
component operations (e.g. [BMW04], [WMW03]) or to treat them in simplistic manner 
[HAT03]. We suggest accounting for these parameters by means of signature types. 

In the future work, the following aspects should be thoroughly studied: 
1. Fragmentation of information needed for predicting performance. The partitioning 

of the software components usually does not correspond with the run-time 
architecture (e.g., activities may pass through many components). The performance 
is however determined by the run-time architecture. It is cumbersome to 
reconstruct the necessary models from the pieces related to different components. 
In the light of the proposed approach, this fragmentation means the growth of the 
number of models (both prediction and simulation) and the number of reduced 
CFGs for component operations. On the other hand, many simulation models, 
constructed by the APPEAR method, can provide more architectural insight. 

2. Complex control flow and data dependences between components. Components 
usually interact through functional interfaces, which may have operations with 
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many input parameters. Calling such operations introduces complex control flow 
and data dependencies between the operations of a caller component and the ones 
of a callee component. These complex dependencies must often be modeled to 
obtain sufficiently precise performance estimates for the activities (compositions) 
that involve those operations. This problem is the inherent problem of functional 
interfaces. One must carefully consider what parameters are passed to and returned 
from component operations through the interfaces. The larger the number of 
parameters and the larger their variation is, the more severe the problem of 
complex control flow is. 
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10 Performance prediction for component 
compositions in the Consumer Electronics 
domain 

This chapter demonstrates the application of the approach to the performance 
prediction of component compositions, described in Chapter 9, to a component-based TV 
software stack. The case study aims at predicting the CPU utilization of the TV software in 
a steady state. A TV is said to perform in a steady state, if it receives a broadcast and is not 
interrupted by any means, e.g., a local keyboard, remote control, etc. 

The software of the TV that we have investigated is composed from Koala 
components. Some of these components start a number of periodic activities. The activities 
interact with one another via shared resources. 

The two main objectives of this case study were the following: 
1. Validation of the approach for the prediction of the performance of component 

compositions. Chapter 9 describes a hierarchical approach to the performance 
prediction for component composition. We aimed at validating this approach as 
follows. First, we construct a model for predicting the average CPU utilization of 
the TV software. Second, we compare the predictions obtained by this model to the 
measured CPU utilization. The average relative prediction error should not exceed 
5% 

2. Analysis of the behavior of the TV software in steady state. The architects were 
interested in obtaining an insight in to the complex behavior of the TV in steady 
state to be able to assess the extensibility of the TV software in the light of 
performance. 

The chapter is structured as follows. First, the goals and requirements of the case study 
are explained. They are followed by an overview of the TV software stack. Then, we 
demonstrate the use of a simple analytical formula for the prediction of the CPU 
utilization. A more detailed analysis of the run-time architecture of the TV software is 
given further. Based on this analysis, we show how to construct a simulation model for 
predicting the CPU utilization. We conclude this chapter by discussing the results of 
predicting the CPU utilization by means of an analytical formula and simulation. 

10.1 TV Software overview 
This section describes the components and subsystems that are relevant for the analysis 

of the average CPU utilization of the TV software. 

10.1.1 Component interaction mechanisms 

The TV software is built of Koala components [OLK00]. The components form a 
containment hierarchy. At the highest abstraction level, the TV software is assembled from 
subsystems, being groups of logically related components. Each subsystem handles certain 
TV functionality or feature such as Teletext, Electronic Programming Guide (EPG), etc.  

A component can start one or more activities, which can invoke operations of other 
components. The control flow of such activity can cross many components and form non-
trivial execution paths. 
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The TV software employs two types of communication: (1) synchronous method 
invocation and (2) asynchronous message passing. The former is implemented as 
conventional calls through functional interfaces (which are standard for Koala), whereas 
the latter is based on the use of a dedicated activity for processing a message.  

Activities perform asynchronous and/or timed actions. An activity is implemented as a 
cyclic logical thread, which processes messages from its message queue. Such logical 
thread with a queue is called a pump [Omm03]. The pump has a function that handles 
messages from the queue. An activity instance is released whenever a message (event) is 
placed in the message queue. The possible sources of messages are the following: 

1. Methods of the provides interfaces of the component that owns the pump. These 
methods can be invoked by other pumps; 

2. The pump itself (for performing repetitive actions); 
3. An interrupt service routine. 

A component that starts an activity uses a special requires interface, “pmp”. This 
interface has a number of operations: the creation of a pump, sending messages (events) to 
a pump (both timed and immediate), and etc. We say that an component owns a pump, if 
this component has created it. Notice that it is impossible to send a message, by using the 
“pmp” interface, from one pump to another pump. The only way to send a message to a 
particular pump from other pumps is though the provides interfaces of the component that 
owns this pump. 

A message may need to be delivered as soon as possible or after some delay. The 
former helps implement asynchronous message passing, whereas the latter facilitates the 
construction of timed activities. 

Once a pump starts processing a message, it can invoke operations of the requires 
interfaces of the component that owns this pump. The components that implement the 
corresponding provides interfaces may in turn call operations of its own requires 
interfaces. In this way, the control flow may pass through several components before the 
processing of the message completes. 

A pump executes on some physical thread (called a pump engine [Omm03], [OLK00]). 
All physical threads are scheduled by a fixed priority pre-emptive scheduler and 
consequently have priorities. In the contrary, the pumps that share the same physical thread 
cannot preempt each other. Please notice that all pumps that execute on the same pump 
engine share the same message queue. This sharing enforces the FIFO order of processing 
the messages by these pumps. 

The mapping of activities (pumps) onto physical threads is made explicit by using a 
dedicated diversity interface (see [OLK00]), usually called “pen”. This mapping is 
performed at composition time. The TV software stack has a dedicated component (“isfib” 
in Figure 10.1) that provides physical threads on which the other components can map 
their activities. This component creates a few physical threads with different priorities 
during initialization time. The identifiers of these threads are provided to other components 
through the pen interfaces (dotted lines in Figure 10.1). This allows a flexible choice of 
threading structure at composition time. 

10.1.2 TV software structure 

Figure 10.1 depicts the most relevant subsystems and components for analyzing the 
steady-state behavior of a TV, that is, only these components perform CPU-intensive tasks. 
Each subsystem from Figure 10.1 is described in the subsequent sections. 
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Figure 10.1: Components relevant for the steady-state behavior of a TV 

Please notice that the presented component composition structure is a simplification, as 
it represents only the subsystems and the immediate subcomponents thereof. Presenting 
the entire hierarchy is not necessary for understanding the component composition 
structure. 

Further, the following simplifications are also made in the figure: 
• Binding between the “pmp” interfaces (see Section 10.1.1) is omitted in Figure 

10.1 to reduce the number of lines. The “pmp” requiresinterface of each 
component needs to be connected to the “pmp” providesinterface of the 
enclosing component (e.g., “tvplf”). 

• The internal structure of inner components is omitted: the internal modules, 
their interconnections, etc are not drawn. 

The multi-tasking of the TV software is based on a dedicated real-time kernel. This 
real-time kernel supports the typical primitives of a RTOS: events, semaphores, message 
boxes, timers, etc. On the top of this kernel, a dedicated API is provided for flexible 
threading (this API is implemented by means of the “pmp” interface described in Section 
10.1.1). The structure of the physical threads is made explicit in Figure 10.1 by using 
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Koala interface binding: the “pen” interfaces of components that own a pump are 
connected to a physical thread of the “isfib” component. 

A) Infrastructure (“infra”) 

The Infrastructure subsystem provides basic RTOS functionality to other subsystems. 
A part of this functionality is implemented by a group of components depicted as module 
mpmp in Figure 10.2. 

infra:CInfrastructure

pmpdcuntf i2cdec high

xadcu
VBI interrupt

mdec mpmp mi2c

 
Figure 10.2: Outline of the Infrastructure subsystem 

The Infrastructure also implements drivers for on-chip hardware devices located in the 
microcontroller that executes the TV software. In steady state, the performance relevant 
devices are the Data Capture Unit (DCU), Data Decoding unit (DDU), and I2C-bus 
controller. 

The DCU allows collecting all data arrived during a VBI (e.g., Teletext, WSS, and 
VPS). The DDU is a hardware decoder for hamming 8/4 and hamming 24/18 error 
correction codes. Both devices are used for implementing the Teletext subsystem. The 
DCU collects Teletext data packets from a broadcast, whereas DDU is used to decode the 
parts of these packets that are encoded by hamming 8/4 and 24/18 codes. 

Upon arrival of a packet, the DCU generates an interrupt. The interrupt handling 
routine then sends a message to the “xadcu” activity that handles the further processing of 
the packet data. If the arrived packet is a Teletext packet, this activity invokes an operation 
of a dedicated callback interface provided by the Teletext acquisition component. The 
packet is further processed within the Teletext subsystem. 

The driver of the DDU is represented by module “mdec” in . The functionality of the 
DDU is accessible via the “dec” interface. The operations of this interface are invoked by 
the “xadcu” activity. 

The I2C-bus is a shared resource, which can be used in a mutually exclusive manner 
only. The Infrastructure implements an interface (“i2c”) for sending and receiving data. A 
group of the components that implement the I2C functionality is depicted as module 
“mi2c” Figure 10.2. The activity performing an I2C transaction can block on waiting for 
transaction completion. Note that the entire physical thread also blocks, with the other 
activities that share this physical thread being also blocked. 

The mutual exclusion of the I2C-bus is implemented using a semaphore with the 
Highest Locker protocol to limit priority inversion. According to this protocol, the priority 
of the physical thread is boosted to a certain priority ceiling when this physical thread 
acquires the semaphore. The priority ceiling is chosen to be higher than the priority of any 
physical thread in the investigated version of the TV software. 

 

B) Teletext subsystem (“txtplf”) 

In steady state, only activities that relate to the Teletext data acquisition play a role. 
The important ones are implemented by three activities:  
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1. The “xadcu” activity, processing all information extracted during Vertical 
Blanking Interval (VBI) lines; 

3. The “mip.acq” activity, decoding the magazine inventory pages (MIP); 
4. The “TransPump” activity, decoding the content of a page when its type is 

extracted from the magazine inventory page. 

Note that the “xadcu” activity is owned by the Infrastructure subsystem, but most of its 
processing is done within the Teletext subsystem. However, some of the processing1 (e.g., 
WSS) is also performed within the TV Platform subsystem (“tvplf”). 

The Teletext acquisition is implemented by a few dedicated components that are 
depicted as a module “acq” in Figure 10.3. These components are executed on the “xadcu” 
activity for each packet received during a VBI interval. 

txtplf:CTxtPlatform

 dcuntf pmp

pen

dec

acq

mip.acq

Trans

 
Figure 10.3: Outline of the Teletext subsystem 

The simulation model of Teletext acquisition has been constructed in the previous case 
studies (see chapter VII). Thus, we will not further detail the Teletext acquisition 
component in this chapter. 

C) TV Platform subsystem (“tvplf”) 

The TV Platform is responsible for maintaining and modifying the audio and video 
(A/V) signal chain. Both types of signals are handled by dedicated hardware chips. In 
software, these chips are represented by conceptual devices and device drivers. 

A conceptual device is a Koala component that imitates the behavior of a certain 
hardware chip from a signal connectivity point of view: each input and output signal pin of 
the hardware chip has a corresponding, input and output, pair of interfaces of the 
conceptual device. The binding between the input pair of interfaces of one conceptual 
device and the output pair of another conceptual device emulates the actual wiring between 
the input and output signal pins of the corresponding hardware chips. 

By using a dedicated architectural style, the Horizontal Communication (“HorCom”) 
protocol [Omm03], it is possible to change a signal path between different hardware chips 
and to propagate signal properties and notifications about their change. The use of this 
style allows the uniform development of TV sets that have different features. However, the 
“HorCom” architectural style is usually used only when transient behavior takes place, i.e., 
a channel is being switched. It can thus be ignored for the analysis of the steady-state 
behavior. 

Device drivers support interactions with the hardware chips. Most chips are connected 
to the CPU via an I2C-bus. By using the I2C-bus driver implemented in the Infrastructure 
subsystem, each device driver can read from or write to device registers that control the 
corresponding hardware chip. A typical device driver implements the following 
functionality: 

                                                 
1 This is not shown in Figure 10.1 
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• It periodically reads the values of the corresponding hardware chip registers 
and notifies the conceptual device about changes in the values since the last 
read operation (the “ForceReadRegisters()” function from Section 10.4.4). 

• It periodically checks for erroneous situations and notifies the conceptual driver 
if they are found (the “CheckPeriodicErrors()” function from Section 10.4.4). 

• It checks, if a protection situation takes place, that is, a situation that requires 
the power of the TV be switched down immediately. 

• It periodically updates the values of write-only registers. 

Each driver has a dedicated activity that periodically polls the status registers (the read-
only registers of a chip). This activity also checks for erroneous situations. The thread 
notifies the conceptual driver component about the changes of register values and 
erroneous situations. Notice that the activities of different drivers share the same physical 
thread, although the polling periods can be different (100-500ms). 

To check for protection situations and to write to write-only registers, a driver 
implements two operations that are invoked by the “mgdpow” power management 
component. The “mgdpow” component manages the power of the entire TV set. It supports 
different power modes: normal, standby, protection, etc. This component can switch up or 
down the power of each hardware chip individually by using the “pow” interface of the 
corresponding device driver. This power interface also has functions to poll a device driver 
about erroneous situations and to write the values of registers from an in-memory cache 
into the chip. These two activities are implemented by two activities, “mgdpow.cperiodic” 
and “mgdpow.refrstep”, respectively. Notice that the “mgdpow.cperiodic” activity, being 
of high importance, is mapped onto a physical thread with a high priority, whereas the 
“mgdpow.refrstep” is mapped on the same physical thread as the other activities of the TV 
platform subsystem. 

 
Figure 10.4: Outline of the TV Platform subsystem 

Figure 10.4 does not show the internal details of device drivers: modules and their 
interconnections. To illustrate how the internals of a typical driver look like, the internals 
of “tvhipdrv” component are shown. It contains a module m that implements the 
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functionality of the driver (provides interface “drv”) and the functions provided through 
the “pow” interface, namely, refreshing the values of write-only registers and checking for 
a protection situation. Module m also creates an activity that periodically polls the read 
registers about changing their values and erroneous conditions. The other device drivers 
have a similar structure. 

10.1.3 Major contributors to the CPU utilization 

The following subsystems are active when the TV performs in steady-state: (1) 
Infrastructure (“infra”) with its DCU activity, “xadcu”, (2) the Teletext Platform (“txplf”) 
that implements most of the functionality executed by the DCU activity, and (3) the TV 
Platform (“tvplf”) that implements device drivers and handles the A/V signal chain 
processing. 

The measurements performed by us showed that the major contribution to CPU 
utilization is regarded to the activities of the Infrastructure and TV Platform subsystems 
(see Figure 10.1, Figure 10.2, Figure 10.3, and Figure 10.4): 

• the “xadcu”activity that acquires Teletext data, 
• the “tvsndsys.pmp” activity that polls the sound chip, 
• the “mgdpow.cperiodic” activity that checks protection conditions for certain 

devices, 
• the “mgdpow.refrstep” activity that periodically updates the content of write 

registers of hardware chips connected to the host CPU via the I2C the bus,  
• the “tvfbxdrv.mon” activity that periodically polls the feature box chip, 
• the “mgtng.afc” activity that implements the “Automatic Frequency Control” 

feature, 
• the “mgatv.ctr” activity that dynamically tunes certain displaying parameters 

(depending on the ambient light), 
• the “tvhopdrv.hop” activity that periodically polls the Hardware Output 

Processor (HOP) chip,  
• the “tvsndqp.wait” activity that automatically adjusts sound volume, 
• the “tvhipdrv.mon” activity that periodically polls the Hardware Input 

Processor (HIP) chip. 

The measurements also revealed that these activities contributed more than 95% of the 
total average CPU utilization of a TV in steady state. 

All these activities, except for “mgdpow.refrstep” are quasi-periodic. The behavior of 
such a quasi-periodic activity is shown in Figure 10.5. After receiving a message, the 
activity executes certain functionality, then sends itself a timed message, and suspends. A 
particular period is assigned to this timed message. Only after the expiration of this period, 
the delivery of this message resumes the activity again. Note that the actual period of such 
activity may be longer than the period assigned to the timed messages because of (1) 
preemption by higher priority activities and (2) blocking on waiting for the completion of 
activities that were scheduled to release earlier but did not complete in time. We will call 
this actual period the effective period of the activity. 
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Resume

Do Something

Send a message with
timeout to yourself

Suspend  
Figure 10.5: Typical behavior of a quasi-periodic activity implemented by a pump 

10.2 Calculation of the average CPU utilization of a 
composition 

We consider the component composition that includes the components and subsystems 
shown in Figure 10.1. Some of these components start activities, whereas others do not. 
The letter are used by the started activities. 

Over time interval T, the CPU utilization of a set of activities is defined by the 
following formula (e.g., see [MAD04], [Jai91]): 

 EU
T

= . (10.1) 

In Formula (10.1), U denotes the CPU utilization of the set of activities; E is the time 
during which the CPU executes these activities (processor demand). 

The performance (including the CPU utilization) of a component assembly is defined 
not only by the resource and processor demands of the components, but also emerges from 
the interactions between these components. As explained in Chapter 9, we suggest a 
hierarchical approach for treating the performance of the component composition. In 
accordance with the three levels of the approach, three types of contributions to the 
performance are distinguished: 

• A part relating to the resource consumption at the component-operation level. 
For example, an operation of a component can consume a certain amount of 
CPU cycles, or it can occupy a bus for a certain amount of time; 

• A part relating to the resource consumption at the activity level. This part 
concerns the processor and resource consumption of an activity executed in 
isolation; 

• A part attributing to the interactions between activities and synchronization on 
shared resources. This part accounts for possible delays due to blocking and 
pre-emption. 

We treat these three parts separately. The subsequent subsections describe the 
corresponding steps of our hierarchical approach. 

10.2.1 Modeling of component operations 

Please notice that we skipped the first step of the hierarchical approach2 for the 
following reasons. The Koala components used in the TV software are defined on the low 

                                                 
2 Consequently, we did not calculate the contribution of the first type. 
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abstraction level. They are not independently deployable and have a restricted reuse scope. 
The components implement a number of operations, which are too low level to be a 
concern of the architects. These operations are only interesting in the context of the 
activities that they are invoked by. Therefore, it does not have much sense to consider 
these operations individually. Moreover, considering the contributions of all individual 
component operations separately is cumbersome, as this involves complex control flow 
analysis and intensive measurements. 

10.2.2 Modeling of activities 

We started applying the hierarchical approach from the second step, which constructs a 
model for predicting the processor and resource demand of an activity. As we decided to 
treat each activity as a whole (without considering all the individual component operations 
that the activity invokes), we used the APPEAR method, described in chapter V, to predict 
the resource and processor demand at the activity level. For this purpose, we consider the 
activity as an operation of a hypothetical component that includes all component 
operations of the Koala components that are invoked by this activity. 

Using the APPEAR method, we may predict the processor demand iE  of an activity i 
during a particular, sufficiently long, observation interval T. The considered use case is the 
execution of a number of instances of activity i that are started and completed within the 
observation interval T. As we consider an activity as an operation of a hypothetical 
component, the notions of signature type and signature instances have to be introduced. 
Let us denote the signature type and instance of activity i as iS  and is , respectively. Please 
notice that one signature instance may cover not only a single activity instance but also a 
sequence thereof. Signature instances of an activity may encompass the effects of the 
interactions with other activities. 

In the simple case, the signature type of an activity may be defined by a one-element 
vector, the number of the activity instances that execute during the observation time T. 
This number may depend on the interactions with other activities. 

The simulation model of an activity calculates signature instances that describe the 
execution of a single activity instance or a sequence thereof. The simulation model may 
input particular parameters that are related to the performance relevant input parameters of 
the activity. In addition, it may indicate the order of resource consumption and the CPU 
and resource demand by a single activity instance. This order and demand may be required 
for modeling the scheduling. 

Finally, we fit a prediction model over signature type iS  to the measured processor 
demand for each activity i. 

10.2.3 Modeling of activity composition 

Over a sufficiently long interval T , the total utilization U of a composition of activities 
can be estimated using the following formula (see also Formula (10.1)): 

 
( )
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N
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 (10.2) 
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In Formula (10.2), iE  estimates the average utilization and total execution time of activity 
i  as explained in Section 10.2.2. N  is the number of activities that contribute to the 
utilization significantly. The is  vector denotes the signature instance of activity i. 

Both the direct interactions between different activities and the use of shared resources 
may influence the values of signature instances is . Making particular assumptions about 
these interactions and the use of shared resources, the values of signature instances is  can 
be calculated by an analytical formula (in Section 10.3). Less strict assumptions made us 
use simulation (see Section 10.5). 

10.3 Prediction of the average CPU utilization of the TV 
software by means of an analytical formula 

Let us consider the use case of watching a particular broadcast channel. The analysis of 
the measurements of the TV software in steady state showed that each of the most CPU 
consuming activities (see Section 10.1.3) executed at least few dozen times during each 
observation interval. In addition, these activities behave in a repetitive manner. These facts 
allow us to fit prediction models iE  in the following form: 

 ( )i i i iE s e s= ⋅ . (10.3) 

In Formula (10.3), is  denotes a signature instance of activity i, which equals the number of 
times it executes, and ie  is a regression coefficient, which coincides with the average CPU 
demand of a single instance of activity i. The values of ie  are given in Appendix K. Notice 
that Formula (10.3) does not have a constant addendum. The reason is that that the CPU 
demand must equal zero, if no activity instances execute. 

In order to calculate signature instances is , we had to assume the following: 
• All activities under consideration are periodic. This assumption is supported by 

observations made in Section 10.1.3. 
• The effects of direct or indirect interactions between these activities are 

negligible. This assumption allows constructing a simple analytical formula. 

Section 10.1.3 shows that the first assumption is not satisfied only for a single activity. 
This activity behaves however in a repetitive manner and can therefore be considered as a 
periodic one on the long run. Each periodic activity has an effective period, which may be 
longer than the nominal period of the activity attached to timed messages. Let iT  denote 
the effective period of activity i; it accounts not only for the nominal period iT  of activity i, 
but also for a delay i∆  due to blocking and preemption. The effective period iT  can be 
calculated by the following formula: 

 i i iT T= + ∆ . (10.4) 

The nominal periods iT  could be found in the design specification and source code of the 
TV software. The delays i∆  turned out to depend on the scheduling and were difficult to 
guess analytically. Section 10.4 illustrates this difficulty in more detail. 

The quasi-periodicity of the activities allows us to calculate the signature instances as 
follows: 
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In Formula (10.6), T denotes the observation period for which the average CPU utilization 
needs to be calculated. Function x    returns the greatest integer that is less or equal x. 

The second assumption allows us to consider that the i∆  equals zero. As result, 
Formula (10.5) can be rewritten as follows: 
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=  + 
. (10.6) 

By considering n broadcast channels and using Formulas (10.2), (10.3), and (10.6), we 
construct the following formula for predicting the CPU utilization of the most CPU 
consuming activities: 
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In Formula (10.7), ( )j
formU  denotes the CPU utilization estimated for the j-th broadcast 

channel. ( )jT  is the observation interval for the j-th channel. There are n channels in total. 
The remaining variables are described in Section 10.3. 

The N activities from Formula (10.7) are taken from a validation activity set. This 
validation activity set includes all most CPU consuming activities describe in Section 
10.1.3, except for the “xadcu” activity. The rationale is as follows:  

1. We already constructed a detailed prediction model for the processor demand 
of the “xadcu” activity (see chapter VI). This model is fine-grain and allows 
predicting the CPU demand of an instance of the “xadcu” activity with the 
average prediction error of only 8.5%. On a long observation interval, the total 
CPU demand of this activity can be estimated with much higher accuracy, as 
prediction errors for single activity instances will cancel out. The accurate 
modeling of this activity is however not the goal of the present experiment. 

2. The “xadcu” activity executes on the physical thread (pump engine) that have 
the highest priority and cannot be therefore preempted. Thus, its effective 
period equals the nominal period, and the signature instances can be calculated 
precisely. 

As a result, the contribution of the “xadcu” activity to the CPU utilization can be 
estimated with high precision. It is therefore not worthwhile to consider this activity in 
Formula (10.7). 

10.3.1 Experiment scheme 

In the experiment, we considered the prediction of the CPU utilization for a number of 
broadcast channels. Each channel was unique with respect to the type of transmitted audio 
and video information, Teletext data, etc. 
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The experiment was performed according to the following algorithm: 
1. The TV software was traced in steady state for 30 different broadcast channels. 

These channels provided various workloads for the Teletext subsystem. This 
variability in Teletext workloads led to various total CPU utilizations. Though, 
the variability in the CPU utilization of the validation activity set was 
significantly less. 

2. Based on the measurements collected at step 1, we fitted the prediction models 
( )i i i iE s e s= ⋅  for the processor demand of each activity of the validation 

activity set. Please notice that we used all 30 channels for fitting the prediction 
models. This was possible as for each activity from the validation set, its 
activity instances exhibited similar processor demand on the average. 

3. For each of the 30 broadcast channels traced at step 1, we predicted the average 
CPU utilization of the validation activity set by using Formula (10.7) and 
compared the obtained estimates to the actual CPU utilization. The comparison 
details are described in Appendix K, whereas its summary described in section 
10.3.2. 

10.3.2 Experiment results 

Appendix K shows that the simple analytical formula overestimates the actual CPU 
utilization calculated from the measurements by 0.0084 on the average, which means the 
average relative prediction error of 5.04%. This conclusion is supported by the paired one-
sided t-test at the significance level of 0.05. 

This obtained average relative prediction error is very close to the required level of 5%. 
However, we carefully investigated the reason for the prediction errors. 

The first assumption turned out to be violated for the “mgdpow.refrstep” activity. This 
activity is not periodic. For each broadcast channel, we traced the nominal periods of 
releasing the “mgdpow.refrstep” activity instances and calculated the average nominal 
period. Figure 10.6 shows the box-and-whiskers plot [KO02] that summarizes the 
observed average nominal period for various broadcasts. 
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Figure 10.6: The nominal periods of the “mgdpow.refrstep” activity for various broadcast channels 

The width of the box is equal to the interquartile range, or IQR, which is the 
difference between the third and first quartiles of the data. The IQR indicates the spread of 
the distribution for the data. Whiskers extend from the edges of the box to either the 
extreme values of the data, or to a 1.5 IQR distance of from the median (217 ms), 
whichever is less. Data points that fall outside of the whiskers may be outliers, and are 
therefore indicated by additional lines. 
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Figure 10.6 shows that the bulk of data lie in a range 212 to 223 ms. However, for few 
channels the periods may be as small as 205 ms and as large as 240 ms. These facts 
invalidate the first assumption for the “mgdpow.refrstep” activity. 

Measurements also showed that for particular activities (e.g., the “tvfbxdrv.mon” 
activity) the effective period was longer than the nominal period. For instance, the nominal 
period of the “tvfbxdrv.mon” activity equals 300ms, whereas its effective period exceeded 
340ms for many channels. This difference invalidates the second assumption described in 
Section 10.3. 

Achieving higher accuracy required a deeper analysis of phenomena that resulted in 
violating the assumptions. To this end, we analyzed the run-time architecture of the TV 
software in steady state. The results of this analysis are presented in Section 10.4. 
Moreover, it will be shown that certain phenomena could not be modeled by an analytical 
formula and that simulation had to be applied. 

10.4 Run-time architecture analysis 
Various aspects of TV software run-time architecture turned out to be important for 

modeling the average CPU utilization. The subsequent sections discuss these aspects in 
more detail. Particularly, Section 10.4.1 demonstrates that activities might suffer from 
preemptions and blocking on the access to the shared resources. In Section 10.4.2, we 
show that the time services used in the TV software can introduce inaccuracy in the release 
times of activity instances. Finally, Sections 10.4.3 and 10.4.4 explain that particular I/O 
devices might influence the scheduling dramatically. The issues turned out to be hard to 
describe analytically. Therefore, we decided to use simulation to account for the effects of 
these issues. The use of simulation for predicting CPU utilization is described in Section 
10.5. 

10.4.1 Analysis of the scheduling 

As mentioned earlier, the TV software builds on a fixed-priority preemptive scheduler. 
Each task corresponds to a physical thread (pump engine) that can execute a few activities 
(pumps). The mapping between groups of activities and physical threads as well as 
priorities of physical threads is chosen at the composition time. The following mapping is 
used in the considered composition (see Table 10.1): 

Table 10.1: The mapping between activities and physical threads 

Physical thread priority Activities 
“High” “xadcu” (for acquisition of Teletext) 
“Above Normal” “mgdpow.cperiodic” 
“Low” “tvsndsys.pmp”, “mgdpow.refrstep”, 

“tvfbxdrv.mon”, “mgtng.afc”, “mgatv.ctr”, 
“tvhopdrv.hop”, “tvsndqp.wait”, 
“tvhipdrv.mon” 

The TV software is designed in such a way that only physical threads with “High”, 
“Above Normal”, and “Low” priorities are active in the steady state. The physical threads 
that have the remaining priorities are activated only in transient states such as channel 
switching. 

Shared resources are guarded by semaphores. The semaphores use the Highest Locker 
protocol to prohibit unbounded priority inversion. An example of such a resource is the 
driver of the I2C-bus. 



 187

The behavior of each pump engine is described by the statechart shown in Figure 10.7.  

 
Figure 10.7:The behavior of a pump engine 

Each pump engine is assigned the priority in accordance with Table 10.1. The pump 
engine object can be in one of the following states: “Blocked”, “Ready”, and 
“ExecutePump”. Only a single pump engine is allowed to be at the “Execute” state at each 
moment. The “Execute” hyper-state is partitioned into two sub-states: “UpdateQueue” and 
“ExecutePump”. In the former state, it is checked if the message queue contains a message 
that needs processing by the corresponding pump. If such a message is found, the pump 
engine switches to the “ExecutePump” state and starts the corresponding pump by firing 
the “StartPump” transition. When the current pump completes, the pump engine switches 
back to the “UpdateQueue” sub-state. If the message queue is empty, it switches to the 
“Blocked” state, and the CPU is assigned to the next lower priority pump engine. 

When the message queue becomes non-empty, the pump engine unblocks and switches 
from the “Blocked” state to the “Ready” state. From this “Ready” state, the pump engine 
can switch to the “Execute” state, if it has the highest priority. In this case, the pump 
engine that presently executes and in the “Execute” state is preempted and forced to switch 
to the “Ready” state. When the highest priority pump engine completes execution of all its 
pumps, the lower priority one may resume and switch back to the sub-state of the 
“Execution” state where it has been before preemption. 

Finally, the pump engine may be blocked and have to switch from the “Execution” 
state to the “Blocked” state, if it tries to access a shared resource owned by another pump 
engine. The pump engine resumes and switches back to the “Execution” state when it 
acquires the freed resource. 

Please notice that preemption and blocking introduce an additional delay and increases 
thereby the effective period or response time of activities. 

10.4.2 Time services 

Time is measured in terms of timer ticks, each tick being 10 ms. The implied message 
communication and the precision of time representation causes the degradation of timing 
accuracy when scheduling activities in a timed fashion. Figure 10.8: illustrates this 
degradation in more detail. 



 188

Physical timeϕ ticktϕ + 2 ticktϕ + ⋅

0 1 2

tick
tick

t t
t
ϕϕ

 −
+ ⋅ 
 

tick

t
t
ϕ −

 
 

t
Sending a timed

message

...

... ... ( ),relt t p

1tick

tick tick

p tt
t t
ϕ   + −−

+   
   

Releasing the
activity instance

Timer tick number

...

0

1
tick

t
t
ϕ −

+ 
 

ticksn

 
Figure 10.8: Illustration of the degradation of time accuracy 

The physical time is continuous. It is depicted by the solid arrow, with the arrow tip 
indicating the direction of time increase. Timer ticks are discrete values. They mark the 
dashed arrow that shows the direction of the increase of timer ticks. 

Suppose that the timer that counts ticks with a period tickt  starts at the moment ϕ  of 
physical time. We call this moment the phase of the timer. At certain time t (also in terms 
of physical time), an activity is sent a timed message, which is assigned period p. From a 
viewpoint of the timer, this event happens at the ( ) tickt tϕ−   -th tick3. Starting from this 
tick, the TV software calculates, in terms of ticks, the moment of releasing the activity 
instance corresponding to the timed message. For this purpose, the period p is rounded to 
ticks in the following way: 

 1 .tick
ticks

tick

p tn
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 + −
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 (10.8) 

In Formula (10.8), ticksn  denotes the number of ticks after which the activity instance 
will be released. The formula was constructed based on the analysis of the TV software 
implementation. Note that the rounding described by Formula (10.8) differs from the 
traditional rounding.  

Finally, the actual release time can be estimated by the following formula: 
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Note that Formula (10.9) does not account for possible timer drift, that is, when the actual 
timer tick slightly differs from 10 ms. 

Depending on the period, the phase of the timer, and the moment of time, an error is 
introduced into the release time of an activity instance. This error lies within an interval of 
two ticks (-10ms, 10ms). 

10.4.3 Analysis of the I2C transactions 

The I2C bus is a shared resource that can be used by several activities. They relate to 
the chip drivers, protection functionality, automatic TV functionality, etc. The host CPU 
may communicate with the following chips: FBX, HIP, HOP, SCAVEM and the tuner. 

The use of this bus may influence the schedule dramatically. For instance, due to the 
long response time of the feature box (FBX) chip, a delay of 20-60ms is introduced to all 

                                                 
3 Operator x    returns the integer part of x. 
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activities that share the same physical thread (pump engine) and have the same inter-arrival 
period of 300 ms. 

Each I2C transaction is performed by two parties [I2C03]. One is a master device, 
which initiates the transaction. The other is a slave device, which may be either read from 
or written into by the master device. 

The analysis of the execution traces has shown that the time needed to complete an I2C 
transaction may be influenced by the following factors (see Appendix O): 

1. The I2C-bus is inherently non-deterministic due to the possibility of slave 
devices to control the data flow by holding the clock line. 

2. Each hardware chip can have a non-deterministic latency for responding to 
write and/or read commands. This latency is determined by the internals of the 
chip. 

3. Sometimes transmission errors can occur; retransmission is then needed. 

The I2C protocol allows a slave device to stretch clocks to slow down the dataflow. 
This clock stretching prolongs the total length of an I2C transaction. The duration of this 
stretching is determined by the slave device. Each hardware chip of a TV chassis uses this 
clock-stretching feature in its own manner. Thus, the time needed for a transaction depends 
not only on the traffic, but also on the chip to be communicated with. 

Appendix O shows that the time needed for I2C transactions can be modeled separately 
for each transaction type. The transaction type determines which chip is communicated 
with and how many bytes are read from or written to the chip. For each chip, except for the 
FBX chip, the transaction duration is modeled by the mean time calculated from the 
measurement. For FBX chip, a more detailed model is needed. This model is described in 
Appendix O. 

10.4.4 Analysis of the device drivers 

Each device driver owns an activity that periodically polls hardware chips to check if 
there is a change in status (read-only) registers or an erroneous situation. A typical activity 
of a device driver can be represented by the following pseudo-code: 

[ 1] CheckPeriodicAll()
[ 2] {
[ 3]     if(mode==operational)
[ 4]     {
[ 5]          ForceReadRegisters();
[ 6]          CheckPeriodicErrors();
[ 7]          if(recover)
[ 8]          {
[ 9]               pmp_PmpSendAfter(self, PERIOD_SMALL);
[10]          }
[11]         else
[12]         {
[13]               CheckPeriodicEvents();
[14]               pmp_PmpSendAfter(self, PERIOD);
[15]          }
[16]     }
[17]     else
[18]     {
[19]               pmp_PmpSendAfter(self, PERIOD_SMALL);
[20]     }
[21] }

 
Figure 10.9: The behavior of a typical driver 
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The refreshing of write registers and protection checking is implemented on the activities 
of the “mgdpow” component of the TV platform subsystem. This section only describes 
modeling of the activities that owned by the device driver itself. 

Each device driver can be in a certain state defined by the values of the mode and 
recovery variables. The mode can equal “virgin”, “off”, and “operational”. The virgin 
mode corresponds to the state, when the device has not been initialized yet. The “off” 
mode means that the device is not yet active, but has already been initialized. The 
“operational” mode indicates that the device is active. The behavior of device driver can 
be described be the following state-machine (see Figure 10.10). 

Virgin Off

Operational

Off

normal

recover

init

turn on

errorno_error

error_count > 3

turn off

 
Figure 10.10: The power states of a device driver 

After powering up the TV set, the driver is in the ”Virgin” state. Then, it performs 
initialization and switches to the ‘Off’ state. At a certain moment, the “mgdpow” 
component (see Figure 10.4) switches the power of the driver up, and the driver toggles to 
the ”Operational” (normal) state. In this state, it executes lines 5-15 of the pseudo code 
shown in Figure 10.9 with a period ”PERIOD”.  

The driver switches to the ”recover” state and starts to poll the hardware chip more 
frequently (with a period ”PERIOD_SMALL”), if an error occurs. If the error is not 
indicated anymore, the driver returns to the normal operational mode; if the error persists, 
the driver deactivates itself and notifies the “mgdpow” component that the TV set has to be 
powered down. 

The prediction models that describe the CPU demand of the device driver activities are 
described in Appendix N. 

A) Feature box driver 

The FBX driver periodically checks the values of FBX chip registers. These values are 
read by performing an I2C-transaction. The periodic checks are implemented using a quasi-
periodic activity with a period of 300 ms. Each instance of this activity makes three 
transactions sequentially, each transaction reading 6 registers. 

The total time spent within the I2C-transactions of a single instance of the FBX activity 
may vary significantly in a range [8ms, 52ms], because the FBX chip can send data over 
the I2C-bus only at certain instants. These moments correspond to a VBI (20ms). The 
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measured period of the FBX activity was approximately 340 ms, except for 7 outliers from 
31 observations in total (see Figure 10.11). 

0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355
Effective period of FBX pump (s)  

Figure 10.11: Measured period of the FBX activity 

This figure shows that the bulk of measured periods are about 341 ms. There are 
however two groups of outliers: two in the right part of the figure and five in the left part. 
The former are explained by the arrival of the instances of the computationally intensive 
activity that decodes a magazine inventory page (MIP) received by the Teletext decoder. 
This activity shares the physical thread with the “FBX” activity and thus can block it. The 
outliers in the right part of Figure 10.11 can be explained as follows: 

The pre-emption scheme for the channels that exhibit the five outliers can differ from 
the rest of the channels in dynamic equilibrium, as the average CPU utilization of the 
Teletext acquisition is low (<20%) for these channels. Also, the effective period is shorter 
as the “FBX” activity is pre-empted for shorter times and less frequently. 

1. The implicit synchronization between the timer tick server, Teletext field routine 
and “FBX” activity has a different pattern than for other channels. This 
synchronization occurs as (1) the timer tick (10 ms) is a multiple to the VBI length 
(20 ms) and (2) the “FBX” chip seems to be able to send data over I2C-bus only at a 
certain subinterval of each VBI (see Appendix O). 

2. The effects of rounding errors described in Section 10.4.2 play a role, as for these 
five channels the phase shift between timer tick server and Teletext fields may 
differ from other channels. 

10.4.5 Analysis of the refreshing and protection activities 

Both refreshing and protection activities are started by the “mgdpow” component (see 
Section 10.1.2). These activities periodically invoke dedicated operations provided by the 
components that need refreshing or protecting. An example of such components is device 
drivers. 

A) Refreshing activity (“mgdpow.refrstep”) 

The refreshing activity updates the content of the write registers of the TV chassis 
hardware chips via the I2C-bus. This activity is implemented on one of the activities of the 
“mgdpow” component (see Section 10.1.2). 
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The refreshing process is subdivided into a number of steps in order not to overload the 
CPU and the I2C-bus for too long. During initialization time, each conceptual device 
provides an operation for performing a refreshing action to the “mgdpow” component. The 
conceptual device also provides the total number of phases that are needed to completely 
update the entire set of write registers. 

Idle

[step == MaxStep[device]]/
msgSend(msg((device+1)%MaxDev),1,1)

DoRefreshStep(device, step)

[step < MaxStep[device]]/

/
msgSend(msg((device)%MaxDevices),step+1, 300)

 
Figure 10.12: UML statechart of the refreshing activity 

At each step, the refreshing activity (see Figure 10.12) checks if all registers of a 
conceptual device have been updated. If there are some registers left, it invokes the 
corresponding operation and sends itself a message with a 300 ms timeout. Otherwise, the 
next conceptual device is chosen to be refreshed, and the refreshing activity sends itself a 
message with a 1 ms timeout. This results in a-periodic behavior. 

The refreshing operation of a conceptual device is parameterized by the current 
refreshing step number. Based on this parameter, it is decided which registers need to be 
written via the I2C-bus. 

B) Protection activity (“mgdpow.cperiodic”) 

The protection activity periodically checks the condition of parts of the TV hardware. 
The TV needs to be powered down, if some dangerous conditions occur. This activity is 
started by the “mgdpow” component (see Section 10.1.2) and is mapped onto the physical 
thread with the second highest priority (the highest priority is given to Teletext acquisition 
with a 20 ms deadline). 

The protection activity is subdivided into a number of phases, which are scheduled 
every 100 ms. During each phase, a few protection checks are performed, such that the 
CPU and I2C-bus load is balanced amongst different phases. This load balancing is 
ensured by constructing a proper protection schedule during the initialization of the TV 
software. Each component (e.g., a conceptual device) registers a protection operation that 
checks if certain dangerous conditions occur. The component also specifies the frequency 
of protection checks in terms of the numbers of phases. 

10.5 Prediction of the CPU utilization of the TV software 
by means of simulation 

This section describes the construction of the simulation model and its role in 
predicting the CPU utilization of the TV software in steady state (see Figure 10.13). 
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Figure 10.13: The prediction of CPU utilization by simulation 

The boxes denote particular entities processing input information and producing output 
information. Examples of these entities are simulation and prediction models. Arrows 
describe the information flow. The arrow is attached text that explains what information is 
passed. For instance, the simulation model of activity 1 produces signature instances for 
each activity instance. Theses signature instances are then passed to the prediction model 
1. The circle with a plus symbol inside is an adder, which calculates the sum of all 
numbers that are inputted to it. 

The simulation model consists of the following items: 
1. The simulation model of the scheduler; 
2. The simulation model of the shared resources; 
3. The simulation models of activities. 

Please notice that the first two items are represented in Figure 10.13 by a single box. 
The simulation models of activities are depicted with a separate box each. We use these 
simulation models twofold. First, they calculate signature instances for predicting the CPU 
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and resource demand of a single activity instance. Second, these models also generate 
signature instances for calculating the CPU demand of the sequence of activity instances 
over the observation interval T. This second way of using the simulation models is 
depicted by means of dashed boxes. 

We use simulation to estimate the CPU utilization as follows. The simulation models 
of the activities together with the corresponding prediction models estimate the CPU 
demand of each activity instance. In addition, the simulation models indicate how the 
resources are used by the activity instances (if necessary). The obtained CPU and resource 
demands of the activities are used by the simulation model of the scheduler and shared 
resources to model the schedule. In turn, the scheduler simulation model controls the 
execution of the simulation models of activities by sending particular events. 

The simulation models of activities calculate signatures instances that are inputted to 
the prediction model, after the simulation completes, to calculate the total CPU demand of 
the activity during the observation interval T. The obtained total resource demands of all 
activities are summed up and then used to calculate the total CPU utilization by using 
Formula (10.1). 

Notice that the same prediction models, constructed by the APPEAR method, are used 
to estimate the CPU and resource demands4 of both separate activity instances and a 
sequence of activity instances. The possibility to use the same prediction models for these 
two purposes is ensured by the construction of the prediction models in such a way that 
their coefficients have an interpretation in terms of CPU demands of an activity instance or 
its parts. In addition, the prediction models are linear in signature parameters and in 
coefficients. This linearity allows us to add up the contributions of individual activity 
instances both in the space of the signature parameters and in the space of the CPU 
demands. The prediction models are detailed in Appendix N. They are incorporated in the 
simulation models of the corresponding activities. 

For the same reasons as for the case of the prediction of the CPU utilization by means 
of an analytical formula (see Section 10.3), we did not build a detailed model of the 
Teletext acquisition activity (“xadcu”). Instead, we considered the “xadcu” activity as a 
periodic one with the period of 20ms (VBI length). The processor demand of a single 
instance of this activity was considered as being equal to the mean demand calculated from 
the trace of a particular broadcast. This approximation is sufficient as all variations of the 
processor demand of the actual “xadcu” activity cancel out anyway on the long run. 

The validation of the prediction of the CPU utilization by means of simulation is 
detailed in Appendix P. The rest of this section describes the construction of the simulation 
model in more detail. 

10.5.1 Structure of the simulation model 

The simulation model of the behavior of a TV in steady state implements the following 
functionality: 

• The fixed-priority preemptive scheduler, including multiple access to shared 
resources (critical sections and semaphores with the Highest Locker protocol) 
and blocking on performing I/O (see also Section 10.4.1); 

• Physical threads (pump engines) that can execute activities (pumps) (see 
Section 10.1.3); 

• An API for inter-activity communication (corresponding to the “pmp” interface 
from Section 10.1.1 and Figure 10.1); 

                                                 
4 Here, the CPU and resource demand is considered in terms of execution times and resource consumption 
times, respectively. 
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• The time services (see Section 10.4.2); 
• An API for manipulating shared resources and I/O devices; 
• A framework for collecting measurement data from a run of the simulation 

model (e.g., average effective period, etc). 

Particular items from the list above are detailed in the subsequent sections. 

The simulation model was constructed using the COVERS even-driven simulation 
engine [BKR97], which allows the user to model activities in terms of Harel’s statecharts 
[Ha87]. 

The COVERS tool supports the visual construction of an executable model. Such an 
executable models contains a number of active objects. Active objects are entities that 
have autonomous behavior, which is usually specified in form of a statechart. The 
transitions, guards, and states of this statechart are then annotated with C++ statements and 
expressions. The obtained code is compiled and linked to an executable that can be run to 
simulate the behavior. 

The structure of the simulation model is presented in Figure 10.14. 

 
Figure 10.14: The structure of the simulation model 

The gray rectangles represent active objects. The circles at the borders of active objects 
denote ports that are used for asynchronous message passing between active objects. The 
line between a pair of ports means that the active objects that own these ports can 
communicate. For instance, the “sched” and “dcu” active objects can communicate via the 
“Interrupt” and “IRQ” ports, respectively. Please notice that COVERS also supports 
synchronous method invocation between the active objects, but only in the C++ domain. 
Although the developers of COVERS discourage this type of communication, it can be 
used when simulation efficiency is a concern. We used the synchronous method invocation 
to model communication between the “sched”, “pumps”, and “prots” active objects. 

The most CPU consuming activities (see Section 10.1.3) are modeled as a single or a 
number of COVERS active objects (the “pumps” active objects in Figure 10.14). Each 
activity model (1) specifies the moments when the shared resources (e.g., the I2C-bus) and 
how much of them are used by the activity instance, and (2) generates signature instances 
for inputting to the prediction model. In total, the simulation model contains about a dozen 
of such simple active objects. In addition, the “mgdpow.cperiodic” activity (see Section 
10.1.3) is modeled by the “prots” active objects. Each of them is responsible for 
mimicking the behavior and CPU/resource demand of a single protection operation. 

The model of the scheduler, represented by the “sched” gray rectangle is executed 
together with the models of the various activities to simulate the long-term behavior of the 
TV software, and to extract the signature instances of separate activities. These signature 
instances are then used to predict the total CPU demand of all activities during simulation 
(see Section 10.5). 
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The “IODevices” group of active objects represents the hardware chips connected to 
the CPU via the I2C-bus. The I2C driver permits only a single device to be communicated 
with at a given moment of time. This means that the “IODevices” (as well as the I2C 
driver) can be considered as shared resources with mutually exclusive access. The mutual 
exclusiveness is implemented by binary semaphores with the Highest Locker resource 
access protocol. 

The “dcu” active object emulates the interrupts from the Data Capture Unit (DCU) that 
collects the Teletext information from every VBI (20 ms). This active object notifies the 
scheduler active object that the Teletext acquisition activity needs to be scheduled. 

Figure 10.15 illustrates a screenshot of the execution of the simulation model. 

 
Figure 10.15: A screenshot of the simulation model 

To give a flavor of how the described active objects look like, the subsequent sections 
detail various simulation models that comprise the overall simulation model. 

10.5.2 Simulation models of activities 

The simulation model of each activity was not only used to calculate signature 
instances for estimating the CPU demand, but also to estimate how much I2C-bus time was 
consumed by each instance of the activity. This data is needed to simulate the scheduling. 
The CPU demand is calculated by applying the prediction model to the generated 
signatures (see Appendix O). 

The simulation models of all relevant activities were implemented as a part of the 
entire simulation model. These models interact also with the simulation model of the 
scheduler (see Section 10.5.3).  

Figure 10.16 demonstrates the behavior of the active objects that models the device 
driver polling activities (see Section 10.4.4). These active objects belong to the “pumps” 
active objects described in Section 10.5.1. 
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Figure 10.16: The statemachine of a device driver activity 

The active object can be either in the “Idle” state or in one of the resource consumption 
states, which model the consumption of the CPU or I2C-bus. In the “Idle” state, it waits 
until the ”sched” active object (see Section 10.5.3) sends it a message to trigger the “Start” 
transition and to switch to the “ForceReadRegisters” hyper-state. In this hyper-state, the 
active object simulates the behavior the “ForceReadRegisters()“ function (see Section 
10.4.4). It sequentially switches between the following inner states: “PrepareI2cRead”, 
“WaitForI2c”, and, “I2cRead”.  

In the “PrepareI2cRead” state, the device driver active object notifies the “sched” 
active object about how much CPU must be consumed to prepare the data for an I2C 
transaction. Being in the “WaitForI2c” state models the waiting for the semaphore that 
guards the I2C driver. When the I2C is acquired, the active object switches to the 
“I2cRead” state and models the reading a number of bytes via the I2C bus. When all data is 
read, the active object proceeds to the “CheckPeriodicErrors” state. Otherwise, the active 
object switches back to the ‘PrepareI2cRead’ state to begin preparing the next transaction. 

The “CheckPeriodicErrors” state is responsible for modeling the consumption of the 
CPU by the “CheckPeriodicErrors()“ function (see Section 10.4.4). After this 
consumption is completed, the active object switches to the “CheckPeridoicEvents” state 
to model the CPU consumption by the “CheckPeridoicEvents()” function. As we 
investigated the TV software only in steady state, we did not observe any events that could 
lead to interactions with other components by means of the HorCom architectural style 
(see Section 10.1.2). It was therefore sufficient to model only the CPU consumption of the 
“CheckPeridoicEvents()” function. 

Finally, the active object models the suspending of the device driver polling activity by 
triggering the “Terminate” transition and switching back to the “Idle” state. At this 
transition the next invocation of the active object is scheduled such that it models the 
scheduling of the next activity instance. 

Note that the CPU consumption budgets were assigned to the various states of the 
active object in an arbitrary way. However, the total CPU demand of all states where the 
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CPU consumption is modeled equal to the value provided by the respective prediction 
model (see Appendix N). 

Other activities are modeled in a similar way. 

10.5.3 Simulation model of the scheduler 

The simulation model of the scheduler is represented by the “sched” active object of a 
class “TScheduler” (see Figure 10.14 and Figure 10.17). The “TScheduler” class is a 
singleton, i.e., only one instance (the “sched” object) of this class exists. 

 
Figure 10.17: The structure of the scheduler active object 

The “sched” active object models the behavior of the fixed-priority scheduler (see 
Section 10.4.1) used in the TV software. The “sched” active object contains a number of 
“pen” and “res” active objects. The “pen” active objects model physical threads (“pump 
engines”) with a message queue, whereas the “res” objects model shared resources such as 
a communication bus.  The “pen” active objects interact with the “pumps” active objects 
(see Figure 10.14) to model the scheduling of various activities represented by these 
“pumps” active objects. The “IOPort” port is used to communicate with the models of 
hardware chips (the “IODevices” active objects from Figure 10.14). The “Interrupt” port is 
used to deliver messages from the “dcu” active object (Figure 10.14). These messages 
model interrupts from the DCU for processing Teletext packets. 

10.5.4 Modeling I2C transactions 

As described in Section 10.4.3, the TV chassis contains the following hardware chips: 
FBX, HIP, HOP, SCAVEM, and the tuner. The host CPU controls these chips via the I2C 
bus. The analysis of the use of the I2C bus is given in Appendix O. Figure 10.18 presents 
the statechart that describes the behavior of an active object that models one of these 
hardware chips. This active object belongs to the “IODevices” group (see Figure 10.14). 

 
Figure 10.18: The behavior of an active object modeling a hardware chip 

The “Wait” state models the monitoring of the state of the I2C bus by a hardware chip. 
Performing an I2C transaction is modeled by sending a message to the “IOPort” of each 
“IODevices” active objects (see Figure 10.14). One of the active objects recognizes that 
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this message is sent to it and switches to the “Do_IO” state by firing the 
“StartTransaction” transition. Others ignore the message by firing the “DropIOMessage” 
transition and switching back to the “Wait” state. 

In the “Do_IO” state, the addressee active object starts a timer, which models the 
consumption of the time for performing the I2C transaction. The duration of the transaction 
being modeled depends on the hardware chip that the active object models. The duration is 
calculated on the basis of the analysis of the timing behavior of the actual hardware chips 
(see Appendix O). 

The expiration of the timer indicates the completion of the I2C transaction. The active 
object returns to the “Wait” state by firing the “CompleteTransaction” transition. 

10.5.5 Modeling physical time 

It was necessary to introduce the physical time in the simulation model to be able to 
model activity interactions accurately and adequately. Particularly, the following had to be 
modeled: 

• The durations for which activity instances consume CPU and other resources. 
Different instances of the same activity may have a different duration. For the 
sake of simplicity, we modeled only the average durations. 

• The order of the consumption of resources of different types. Some activities 
consumed not only the CPU but also the I2C bus. The order of consumption 
was kept intact in the simulation model, but the partitioning of consumption 
durations was chosen arbitrarily, with the total resource and CPU demands 
being equal to the corresponding average demands (see point above). 

• The rounding of event times. All timed events (e.g., sending messages) are 
bound to the real-time operating system timer ticks. When scheduling a 
particular timed event, the same time rounding was implemented as in the 
actual TV software (see Section 10.4.2). 

Notice that we deliberately chose not to model the overhead due to interrupts and context 
switches, as it was negligible. 

10.5.6 Experiment scheme 

To validate the simulation based approach, we used the same validation activity set as 
for the case of an analytical formula (see Section 10.3). The experiment was performed 
according to the following algorithm: 

1. The TV software was traced in steady state for 30 different broadcast channels. 
These channels provided various workloads for the Teletext subsystem. This 
variability in Teletext workloads led to various total CPU utilizations. The 
measured average CPU demand of the “xadcu” activity instances was used to 
model the workload of the Teletext acquisition in the simulation model (see 
Section 10.5). 

2. Based on the measurements collected at step 1, we constructed the prediction 
models for the processor demand of each activity of the validation activity set. 
The obtained prediction models are described in Appendix N. 

3. For each of the 30 broadcast channels traced at step 1, we predicted the average 
CPU utilization of the validation activity set by simulation (see Section 10.5) 
and compared the obtained estimates to the actual CPU utilization. The 
comparison details are described in Appendix P. 
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Appendix P shows that the simple analytical formula overestimates the actual CPU 
utilization calculated from the measurements by 0.00237 on the average, which means the 
average relative prediction error of -1.43%. This conclusion is supported by the paired 
one-sided t-test at the significance level of 0.05. This obtained average relative prediction 
error is less the required level of 5%.  

10.6 Modeling results 
Appendix K and Appendix P detail the prediction of the CPU utilization of the most 

CPU consuming activities by means of a simple formula and simulation, respectively.  

We have shown that the simple analytical formula overestimates the actual CPU 
utilization on the average by 0.0084, which means the average relative prediction error of 
5.04% (at the 0.05 significance level). The reason for this overestimation is the wrong 
assumption that the effective periods of the activities under consideration equal to their 
nominal periods. This assumption results in the overestimation of the signature instances, 
related to the number of times that the activities execute. The CPU demand of activities is 
linear with the signature instances, which results in the overestimation of this CPU 
demand. 

On the other hand, the simulation underestimates the actual CPU utilization on the 
average by 0.00237 on the average, which means the average relative prediction error of -
1.43% (at the same significance level). Those figures allow us to conclude that the 
simulation provides on the average more accurate results than the simple formula does. 
Moreover, one can except that the prediction accuracy of the simple formula will degrade 
further with the growth of the CPU utilization, as the simple formula does not account for 
the interactions of the activities. The simulation does take into account these interactions, 
and no severe degradation of the prediction accuracy is expected. 

The construction of the simulation model took us much more effort than the prediction 
of the CPU utilization by means of the simple formula. The former required about four 
man months, whereas the latter required only about two man weeks. The major effort 
needed for implementing the simulation approach is as follows: 

1. Analysis of the run-time architecture (1.5 man month); 
2. Construction of the simulation model of the scheduler (0.5 man month); 
3. Construction of the simulation models of the individual activities (0.75 man 

month); 
4. Construction of the prediction models of the individual activities (0.5 man 

month); 
5. Construction of the simulation models of the hardware chips (0.25 man month); 
6. Debugging the overall simulation model (0.5 man month). 

A significant effort (about two to three man month) was needed for instrumenting the 
TV software and performing the measurements. 

Qualitatively, the comparison of the two techniques is summarized in Table 10.2. 

Summarizing, we can recommend the use of analytical formulas for obtaining 
performance predictions fast. On the other hand, the simulation-based approach may be 
needed, if the architects need higher prediction accuracy and/or they want to gain an 
insight into the performance relevant behavior of the software. 
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Table 10.2: Comparison of estimation via simulation and estimation using a simple formula 

 Advantages Disadvantages 

Estimation using a 
simple formula 

1. Simple 
2. Fast to perform 

1. Less accurate; always 
overestimates 
2. Gives no insight about 
interactions 

Estimation via 
simulation 

1. Gives insight about 
scheduling and interactions 
2. Higher accuracy 

1. Many runs may be needed 
2. Needs significant effort to 
construct the simulation model 

10.7 Summary 
In this chapter, we presented a case study (in the Consumer Electronics domain) aimed 

at verification of our hierarchical approach for predicting the performance of component 
compositions (see Chapter 9). We demonstrated the approach by predicting the average 
CPU utilization of the most CPU consuming activities from the TV software. These 
activities execute when the TV performs in steady state. 

The Rate Monotonic Analysis (RMA) [KRP93] turned out to be not suitable for the 
case under consideration, as it concerns the worst-case CPU utilization and worst-case 
execution times. We however aimed at predicting the CPU utilization for the typical case. 
On the other hand, the constructed analytical formula resembles the formula from RMA 
quite well. 

We had to skip the first step of the hierarchical approach: the modeling of component 
operations. The reason was the excessive measurement effort and the restricted reusability 
of Koala components from the TV software (see also Section 10.2).  

Two approaches were considered for predicting the CPU utilization of the activities: 
(1) a simple analytical formula and (2) simulation. The simulation approach relies on the 
simulation and prediction models constructed for each activity by means of the APPEAR 
method. The simulation models are built not only for the individual activities, but also for 
the scheduler and shared resources. 

Quantitatively, the average relative error provided by applying the simulation (-1.43%) 
is better than by using the simple analytical formula (5.04%). On one hand, using the 
simple analytical formula provided the results that were sufficiently accurate with respect 
to the required level of accuracy (5%). This kind of approach can be easily applied, when a 
fast guess is needed. We however expect that the simple-formula approach will provide 
significantly poorer results for heavily loaded systems. On the other hand, the simulation-
based approach required the substantial effort of four man months for constructing the 
necessary models (see Section 10.6). 

The performed analysis of the run-time architecture and the constructed models 
allowed us not only to predict the average CPU utilization, but also to gain an insight. 
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11 Performance prediction for component 
compositions in the Professional Systems 
domain 

11.1 Objectives 
The validation of the APPEAR method has already been described for isolated 

software components (see Chapter 7 and Chapter 8). This chapter describes a case study 
for the validation of our hierarchical approach (see Chapter 9) for the performance 
prediction of component compositions. The case study was performed within the MISS 
(Medical Imaging Software System) software stack for the composition of two 
components that influence each other via shared resources. Since both components had 
already been implemented, their cooperative performance could be directly measured and 
used to validate the results provided by the approach to performance prediction for 
component compositions. The two main objectives of this case study were: 

1. Validation of the approach for the prediction of the performance of component 
compositions. The approach, described in Chapter 9, was applied for constructing 
the performance prediction model of component composition: 

 1( ,..., )compos nP f P P= . (11.1) 

In this formula, composP  is the performance of the composition; nP  are the 
performances of the component operations of the constituting components. The 
response time was chosen as a performance metric. 

2. Analysis of the cooperative execution of the MISS components. We investigated the 
composition of two MISS components– “Archiving” and “Reviewing”– in order to 
gain architectural insights into their concurrent behavior, to study its impact on 
performance, and to suggest performance improvements (when possible). 

This chapter is structured as follows. Section 11.2 tailors the main steps of the 
approach to performance prediction for component compositions to the context of the 
case-study. Section 11.3 gives an overview of the MISS software stack, its components 
and resources. Then, we apply the steps of the approach. Section 11.4 demonstrates the 
construction of the APPEAR models for the “Archiving” component. Section 11.5 
considers the issues related to the composition of activities. Section 11.6 describes the 
performance prediction experiment for the validation of the approach. Section 11.7 and 
11.8 suggests certain improvements of the performance of the composition under 
investigation and draws the conclusions on the case study, respectively. 

11.2 Performance prediction for component compositions 
Chapter 9 presents an approach to the estimation of the performance of a component 

composition. This approach tackles the estimation problem in three steps: 
1. Estimation of the processor and resource demand of the operations of 

components in isolation. 
2. Estimation of the processor and resource demand of the activities, consisting of 

several component operations, in isolation. 
3. Estimation of the performance of activities in the composition. This step 

accounts for the interactions between activities and blocking and pre-emption 
delays due to the scheduling of shared resources. 
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We consequently perform the steps of the approach in the following way. During the 
first step, we construct the performance prediction model for the operations of the 
“Archiving” component in isolation. The similar models for the “Reviewing” component 
are described in Chapter 8. Note that each component operation corresponds to a particular 
use case. 

During the second step, we model two activities. In our case, each activity contains 
only one operation of each component: “Reviewing” and “Archiving”. Thus, modeling of 
branches and loops is not needed, and this step is omitted. 

During the third step, we analyze the contention of these two activities for shared 
resources. We estimate the response time of the “Archiving” activity in the composition 
with the “Reviewing” one. (The former is affected by the latter.) 

It is important to realize that as for the individual components as for the components in 
composition, the same use cases are considered. More information about these use cases 
can be found in Section 11.6.2 and in Chapter 8. 

11.3 Overview of the MISS components 

11.3.1 MISS software structure 

The structure of the MISS software is presented in Figure 11.1. 

Image
Processor

Image
Storage

Acquisition

Hardware

Components
Reviewing PrintingArchiving

Image Processing Chain (IPC)

VSP level

Database

 
Figure 11.1: MISS software structure 

We investigated the concurrent execution of the two MISS components: “Reviewing” 
and “Archiving” (see rectangle in Figure 11.1). These components execute on a common 
platform that provides a number of resources. One of these resources is the shared resource 
“Image Processing Chain” (“IPC”), which manages the “Image Processor” and “Image 
Storage” (see also Chapter 8). The scheduling of this resource is pre-emptive and priority-
based. The priorities are enumerated in Table 11.1. 

Table 11.1: Priorities of the MISS components 

Component Priority 
Acquisition High 
Reviewing Medium 
Archiving, Printing Low 
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11.3.2 Representation of “IPC” resource for components 

Both the “Reviewing” and the “Archiving” components contend for the “IPC” resource. 
This resource is used to set the processing settings (attributes like brightness and contrast) 
of images before the images are displayed on the monitor or archived. The “IPC” resource 
can be in different states. The time required for acquiring the resource by a component 
depends on the state of the resource. 

From a viewpoint of any component, the behavior of the “IPC” resource can be 
represented as follows (see Figure 11.2). 

Locked

Busy

Free

ReleaseLock RequestLock

GetLockReleaseLock

 
Figure 11.2: “IPC” behavior 

The “IPC” resource can be owned by only one component at a certain moment of time. 
If the component does not need the resource, the resource becomes “Free”. If the resource 
is owned by another component, it is in the “Busy” state. Before using the resource, a 
component has to lock it. It is important to distinguish between “Busy” and “Free” states, 
as it takes less time to lock the free resource (approximately 100 ms) than to acquire and to 
lock the resource in “Busy” state, i.e. owned by another component (approximately 500 
ms). 

11.4 APPEAR models for individual components (Step 1) 
This section demonstrates the first step of our compositional approach. During this 

step, performance prediction models for the component operations in isolation are 
constructed (by means of the APPEAR method). 

The models of the “Reviewing” component are described in Chapter 8. The models of 
the “Archiving” component are presented in this section. 

The “Archiving” component is responsible for packing runs (collections of images) 
and transferring them to a remote archiving server. 

For the performance study, the most frequently used performance-relevant use case 
was “ExportToNetworkNode”. This use case allows the user to archive images on a remote 
or local server. Note that this use case corresponds to a particular component operation 
with the same name, i.e. the operation, which is invoked when this use case is executed. 

Initial analysis of the component design and the execution traces showed that more 
than 90% of the total response time was consumed by the following four service calls1: 

1. “GetImage” (78%). This call was used to obtain image pixel data from the 
Image Storage. 

                                                 
1 Notice that these calls can only be invoked after component has locked the IPC resource 



 205 

2. “GetNextFrame” (10%). This call was used to obtain image data (brightness, 
contrast, etc.) from the database. 

3. “Construct_IPC” (2.5%). This call was used to create new “IPC” objects for 
each run. 

4. “Destruct_IPC” (2.5%). This call was used to delete the “IPC” objects of the 
archived run. 

However, further analysis showed that only two input parameters are relevant for the 
prediction model: 1) the number of images, and 2) the number of runs. The reason is that 
the number of first two service calls equals to the number of images, and the number of 
second two service calls equals to the number of runs. As a result, the signature type is  

 ( , )S #Images #Runs=  (11.2) 

It is important to realize that the performance relevant service calls and aspects have to 
be indicated and documented, as they still provide architectural insight into the 
performance relevant parts of the system, even if they are not directly used as signature 
parameters for the prediction model. 

In this case, the component performance can be described by the prediction model 
only. The simulation model is not needed for the following reasons: 

1. More than 90% of the response time is determined by the input parameters, and 
the number of service calls was equal to these parameters. 

2. More than 90% of the response time is determined by the underlying hardware 
(covered by VSP), but not by the design/implementation details of the software. 

The prediction model was constructed with the S-PLUS tool [4]. The resulting linear 
regression model had the following form: 

 432.22 1740.84 4905.77Response #Images #Runs= ⋅ + ⋅ −  (11.3) 

In this formula, Response  is the response time in milliseconds; #Images  is the number 
of images to archive; #Runs  is the number of runs to archive. 

The p-values of the parameters of the regression model are presented in Table 11.2:  
Table 11.2: P-values of the prediction model for "Archiving" component 

Regression model parameter P-values 
#Images 0.0000 
#Runs 0.0009 
Intercept 0.0084 

Practical rules of the use of linear regression [Wei95] usually suggest that the 
significance level of 0.05 is appropriate for most engineering appliances (see also Chapter 
8). In this respect, the probabilities from Table 11.2 showed that all the parameters of the 
model were significant (as all p-values are smaller than the significance level of 0.05). 

 
 
The high quality of this model is also confirmed by the following: 
1. High values of the multiple regression coefficient: 2 0.9968R =  
2. Low average relative prediction error: 3.72%E =  
3. Low maximal relative prediction error: max 13.56%E =  
In addition, the residual diagnostic plots are presented in Appendix Q.1. 
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11.5 Activity composition (Step 3) 
In our case, each component operation is triggered by a separate activity. Thus, we skip 

the second step of our approach (modeling the activity control flow) and consider the 
activity composition only. 

The activities compete for the “IPC” resource in the following way (see MSD in 
Figure 11.3). 

User request_lock
grant

release_lock

free
release_lock

get_lock
grant

Reviewing IPC Archiving

10 sec
time-out

User

get_lock
grant

 
Figure 11.3: Pre-emption of the “IPC” resource 

The “Reviewing” component can always pre-empt the “Archiving” component, as the 
former has a higher priority than the latter. This pre-emption includes releasing the “Image 
Processing Chain” by “Archiving” and locking it by “Reviewing”. At the same moment the 
“Reviewing” component operation also occupies the CPU, and for this period the 
“Archiving” component has to be suspended. As soon as “Reviewing” completes its 
actions, it waits for a pre-defined time (time-out of 10 seconds) and releases the acquired 
resources. When the “Archiving” component is notified about the availability of the 
resource, it can lock the resource and resume execution. 

In the case of multiple consecutive actions, “Reviewing” does not release the resources 
after each action, and a time-out of 10 seconds occurs only after the last action. 

If necessary, “Archiving” can access the database during this 10 second time-out, (see 
Figure 11.4). Otherwise, “Archiving” remains blocked until the time-out expires. 

We used the response time of the “Archiving” component as performance metric for 
the entire composition, as the “Reviewing” component has a higher priority and the 
response time of the “Reviewing” component cannot be affected by the “Archiving” 
component. 
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Figure 11.4: Example of resource usage by "Archiving" (A) and "Reviewing" (R) 

Concluding all above, there are the following performance-relevant issues for the 
activity composition: 

1. Priority-based pre-emption of the “Archiving” component by the “Reviewing” 
component. 

2. Time required for acquiring the resources. 
3. Time-out of 10 seconds that increases the response time of “Archiving” 

significantly. 
4. The ability of the “Archiving” component to use the database during the 10 second 

time-out. 
5. The invocation patterns of the “Reviewing” component. 

The next chapter describes an experiment that validates our approach to performance 
prediction for component composition. The formula for the estimation of the response time 
of the “Archiving” component is constructed and confirmed by the experimental results. 

11.6 Experiment description 

11.6.1 Initial formula for performance prediction 

Our hypothesis was that a simple analytical formula could be sufficient to obtain 
accurate performance estimates for the composition of the activities. Thus, we followed 
the following steps. 

First, an initial analytic formula for the prediction of the response time of the 
component composition was constructed on the basis of the input from the architects, 
design documentation, system description (see above), and initial measurements. This 
formula relates the response times of the components executed in isolation to the 
performance-relevant factors, enumerated at the end of section 11.5: 

 T T N T N (T +10)compos A R res
′′= + ⋅ + ⋅  (11.4) 

In Formula (11.4), Tcompos  denotes the response time of the “Archiving” component 

operation in composition; RT  is the execution time of the “Reviewing” operation; N  is the 
number of “Reviewing” operations; AT  denotes the execution time of the “Archiving” 
component operation; N ′′  is the number of long intervals between the “Reviewing” 
operations, when “Archiving” operation locks the resources; resT  represents the time 
required for resource overtaking, and 10sec  is the time-out before releasing the resources 
by “Reviewing” operation. 
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Second, this formula was verified against the measurements collected during the 
concurrent execution of the activities that invoke operations of the “Reviewing” and 
“Archiving” components. Numerous use cases (about 30) were executed to generate a 
sufficient amount of data. The comparison of measured data and estimations made by this 
formula had to confirm the following: 

1. Formula (11.4) had no missing parameters that had significant impact on the 
performance of the composition. 

2. The accuracy of formula (11.4) was 97.87% that was far above the requirements of 
the architects (50%). 

11.6.2 Use case selection and execution 

For the measurements, a number of performance-relevant use cases had to be chosen 
for both activities. 

For the activity that uses “Archiving” component operation, the 
“ExportToNetworkNode” use case was selected (the same as for the calibration of the 
prediction model). For this experiment, the number of images was equal 100, which is a 
typical number for archiving procedures. This use case was chosen out of many others for 
the following reasons: 

• This use case is time consuming and, thus, performance-relevant. 
• The execution of this use case is usually pre-empted many times, which is a 

representative behavior. 
• This use case can be executed in different configurations (different servers, 

network, local archiving, etc.). 
• This use case is typical for a hospital setting: while archiving the patient images 

in the background, the doctor can perform a number of reviewing actions. The 
performance of the archiving action is important, since the doctor is interested 
in patient throughput, i.e., in completing the “Archiving” operations as soon as 
possible. 

• This use case is easy to execute and to trace. 

For the activity that uses the “Reviewing” component, two use cases were selected: 
“ShowFileOverview” and “ShowRunOverview” (that correspond to the same operations of 
the “Reviewing” component). During these use cases, the user can browse through the 
runs of a file or through the images of a run, respectively. These use cases were chosen for 
the following reasons: 

• These are time-consuming use cases. 
• These use cases are frequently performed by the users. 
• During these use cases, the “Reviewing” component operation requires the 

“IPC” resource and, thus, pre-empts the “Archiving” component operation. 
• These use cases are easy to execute and to trace. 
• Because of the specifics of the MISS functionality, these use cases are coupled, 

i.e., it is not possible to continuously execute the “ShowFileOverview” use case 
only, but the two use cases have to be interleaved. 

The use cases were executed for both components (see Figure 11.5). A single long 
archiving operation (marked with “A” in the figure; approximately 200 seconds) was pre-
empted by multiple (30-50) short reviewing operations (marked with “R”; approximately 3 
seconds). 



 209 

R R
A

R R

t  
Figure 11.5: Execution of "Reviewing" and "Archiving" operations 

The “Reviewing” use cases can have different invocation patterns: a) there are different 
time intervals between starting the “Archiving” use case and starting the “Reviewing” use 
cases and b) there are different time intervals between two subsequent “Reviewing” use 
cases. 

During the experiment, the following sequence of steps was performed: 
1. A single “Archiving” operation was started. 
2. 20 “Reviewing” operations were performed with different intervals2 

between them: 3 seconds (short interval) or 12 seconds (long interval). 
3. The “Archiving” operation was completed. 

For the “Archiving” and “Reviewing” component operations in isolation, execution 
times were determined in advance by means of the APPEAR method (see section 11.4 and 
Chapter 8). The response time of the “Archiving” operation and the characteristics of 
“Reviewing” invocation patterns were stored in trace files. 

11.6.3 Experiment results 

The obtained trace files were used to extract the values of the response time of the 
“Archiving” action. The histogram of distribution frequency3 of these response times is 
presented in Figure 11.6. 

The response time composT  lies in the following interval: 

 (140.000;240.000)composT ∈  (11.5) 

Afterwards, we tried to restore the Formula (11.4) using the measurements above and 
the measurements of component operations in isolation. The measured response time for 
this use case required by “Reviewing” and “Archiving” component operations in isolation 
was the following: 

 i i
A RT + 20 T = 51898+14000 = 65898 ms⋅  (11.6) 

In Formula (11.6), i
AT  and i

RT  are the measured execution times of the “Archiving” and 
“Reviewing” component operations in isolation, respectively. 

 

                                                 
2 We wanted to study the dependency of performance of the composition on the duration of the intervals 
between consecutive “Reviewing” operations. As the standard duration of the time-out was known 
beforehand (10 seconds), we purposefully chose for two types of intervals: shorter and longer than 10 
seconds. 
3 Distribution frequency m  describes the number of points p  within particular intervals so that the 
following expression holds: p m N= ⋅ , where N  is the total number of points. 
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Figure 11.6: Histogram of response time of the “Archiving” operation in composition 

Apparently, there was a difference between the measured values of the response time 
(see Formula (11.5)) and the sum of the response times of the component operations in 
isolation (see Formula (11.6)). The factors that provoke this difference needed to be 
identified. These factors determine the time difference unknownT  that can be calculated as 
follows: 

 i i
unknown compos A RT = T -T - 20 T⋅ . (11.7) 

The input and configuration parameters of both components did not change during the 
experiment. It was decided to analyze the intervals between consecutive “Reviewing” 
actions, since this was the only varied parameter, and to check whether the moments of 
action invocations influenced the response time. 

There were two types of intervals: a long interval (12 seconds) and a short interval (3 
seconds). As the number of “Reviewing” operations was fixed and equaled 20 (see section 
11.6.2), the following equation was always satisfied for the numbers of long and short 
intervals: 

 20long shortN N+ =  (11.8) 

Since longN  and shortN  are strongly linearly correlated (see Formula (11.8)), both of these 
variables could not be an independent variable when calibrating a prediction model. It was 
thus decided to analyze the dependency of unknownT  on the number of long intervals longN . 

The prediction model describing the relation between unknownT  and longN  was constructed 
with the S-PLUS tool [KO02] using linear regression techniques. The data used for the 
calibration is presented in Appendix Q.2. 
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The general form of the linear regression model was as follows: 

 , 10455.27unknown longT N withα α= ⋅ =  (11.9) 

The obtained value of α  can be explained by two contributions: (a) the time-out of 10 
seconds in the MISS software, associated with the long intervals between actions and (b) 
the average time required for resource acquisition. This explanation ensured that the 
formula (11.4) was a correct approximation, and no significant performance factors were 
overlooked. Both the explanatory power and the prediction quality of the model were high: 

• A high value of the multiple regression coefficient: 2 0.9958R = ; 
• A low values of the average relative error: 5.68%E = . 

The residual diagnostic plots, describing the quality of the model, are provided in 
Appendix Q.2. Table 11.3 demonstrates the quality of the prediction model built for 

unknownT . It contains the measured values of unknownT , predicted values of unknownT  and relative 
prediction errors. 

Table 11.3: Measured and predicted values of unknownT  

unknownT , measured [ms] unknownT , predicted [ms] Relative error 
74473 52285 0.30 
125904 125484 0.0033 
150521 156855 0.042 
102462 83656 0.18 
132258 135941 0.028 
113505 115027 0.013 
96963 94113 0.029 
90284 83656 0.073 
115813 115027 0.0069 
132872 135941 0.023 
171164 167312 0.023 
123629 125484 0.015 
82057 73199 0.11 
123689 125484 0.015 
123460 125484 0.016 
169063 177769 0.051 
150751 156855 0.040 
141751 146398 0.032 
80215 73199 0.087 
98666 94113 0.046 

The values of the response time composT  calculated by Formula (11.4) were also 

compared with the values of composT ′  obtained by means of the following formula (derived 
from the Formula (11.7)): 

 20i i
compos A R unknownT T T T′ = + ⋅ +  (11.10) 

The results and relative errors are presented in Table 11.4. The maximal relative error 
of the prediction was E = 2.13% . 
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Table 11.4: Response times calculated by Formulas (11.4) and (11.10) 

composT , formula, [ms] composT ′ , formula, [ms] Relative error 
119098 118183 0.0077 
193258 191382 0.0097 
224858 222753 0.0094 
150058 149554 0.0033 
205498 201839 0.018 
184858 180925 0.021 
162938 160011 0.018 
151338 149554 0.012 
182938 180925 0.011 
204218 201839 0.012 
235178 233210 0.0084 
195178 191382 0.019 
140378 139097 0.0091 
195178 191382 0.019 
192618 191382 0.0064 
246778 243667 0.012 
225498 222753 0.012 
214538 212296 0.010 
141018 139097 0.014 
161018 160011 0.0063 

11.7 Suggestions for improvement 
Based on the architectural insight gained during this case study, we made a number of 

suggestions for the performance optimization of the MISS software. The following 
modifications would decrease the total response time of the “Archiving” operations4: 
1. More flexible use of the database by the “Archiving” component. Currently, the 

“Archiving” component can use the database during the 10 second time-out only in a 
certain state: when it retrieves the attributes of the images and runs from the database, 
but not when it retrieves image data from the “Image Storage”. If data retrieval from 
the database were made state-independent, “Archiving” would be able to access the 
database during the 10 second time-outs, even if the “IPC” is occupied.  

2. Adaptive time-outs. The fixed time-out of 10 seconds was introduced for better user 
perception, i.e., to avoid delays between successive “Reviewing” actions. During this 
time-out, the “Archiving” component is blocked, and its response time increases 
significantly. The value of the time-out could be adaptable, based on the history of the 
user behavior. This history can be used to predict the next user action and to choose the 
proper value for the time-out.  

3. Multiple access to the “IPC”. Some operations of the “IPC” could be executed in 
parallel by two components, since none of the components needs all hardware 
resources at every moment. However, it should be investigated whether this 
modification does not affect the performance of the “Reviewing” component. 

                                                 
4 Unfortunately, so far it is hardly possible to quantitatively estimate the factor of performance improvement 
for each modification. Moreover, there are no means to validate these estimates. 
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11.8 Summary 
In this chapter, we presented a case study aimed at verification of our hierarchical 

approach for predicting the performance of component compositions. Two components 
from the MISS software were selected for the experiment. Both APPEAR models – 
simulation and prediction - were constructed for these components beforehand. The 
activities, using the operations of these components, were executed on the same VSP and 
influenced each other via shared resources. 

The goal of the case study was to identify performance-relevant factors and to predict 
the response time of the composition. Based on the architectural knowledge, a simple 
analytical formula was found for the prediction of the response time. This formula was 
experimentally validated. Based on the measurements from the experiment, a linear 
prediction model was built. This model predicted the performance of the composition with 
high accuracy (average relative prediction error E=5.68%), and confirmed also the 
analytical formula.  

We discovered a severe dependency of the response time of the “Archiving” 
component on the invocation patterns of the “Reviewing” actions. However, the knowledge 
of the invocation patterns does not provide much insight, as they are determined by user 
behavior and not by the architectural solutions. 

The rigid resource scheduling policy and fixed time-outs drastically deteriorate the 
performance of the composition. These relevant factors should however be changed 
carefully, since they determine the user perception of the system. 

The performance of the MISS components is also hardware bound, thus modeling the 
component internals is not needed. Instead, explicit modeling of the platform can be 
useful. However, this violates the APPEAR assumptions. 

An approximate amount of effort for applying the approach turned out to be rather low 
and took 2.5 months in total. The major effort-consuming tasks were the following: 

• Construction of the performance prediction model for an operation of the 
“Archiving” component (3 weeks), 

• Analysis of the resource scheduling policy of the MISS software and 
deriving the initial formula for performance estimation (3 weeks), 

• Collecting measurements of the concurrent execution of two activities (2 
weeks), 

• Validation of the initial formula for performance estimation (2 weeks). 

One of the main findings of this experiment is that the performance of the component 
composition is far beyond optimal, despite the possibility to assess it by a simple formula 
with sufficient accuracy. 

The future work can consist of two major parts: 1) validation of the approach for more 
complex component compositions, e.g. where simulation models of components and 
scheduler are needed for achieving an appropriate level of accuracy, and 2) investigation 
of the possibilities to optimize the MISS software according to the improvements 
suggested in section 11.7. 
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12 Conclusions 
This chapter surveys the most relevant achievements and summarizes the results 

presented in this thesis. Our work contributes to the theory and practice of the modern 
software architecting. Software architecting is widely used nowadays, as it is an effective 
means for tackling the complexity of software-intensive products. The wide adoption of 
software architecting can be accounted to a number of aspects, crucial for the development 
of competitive software products: 1) enhanced communication between stakeholders, 2) 
reuse by supporting component frameworks and product families, and 3) making justified 
design decisions early.  The first and the second aspects relate the organizational part of 
software architecting. Dealing with the third aspect, however, concerns technical solutions, 
and presumes two questions: which decisions should be taken, and what will be the impact 
of these decisions on the architecture, in terms of qualities, resource demands, etc. Early 
estimation of this impact is essential for reducing the development effort, increasing the 
predictability of the product quality attributes and by this shortening time-to-market, and 
for ensuring the success of a particular product-market combination. This hot issue is 
addressed by our research.  

Nowadays, large software-intensive industrial systems are often assembled from 
hundreds of software components (see Chapter 1). The quality attributes often cannot be 
attributed to specific components, as they usually emerge from the cooperation between 
them. This phenomenon makes it difficult to reason about these emergent quality attributes 
in a compositional way, i.e. to derive the quality attributes (QA) of a composition from the 
QA’s of separate components. 

We claim to deliver not only scientific basis for assessment of QA’s, but also to 
provide software architects with practical and feasible approaches to be applied in an 
industrial context. For this purpose, we started by observing the state-of-the-art problems 
in two domains of industrial software and identifying the most important ones. Our survey 
review identified the two instances of static and dynamic quality attributes: memory 
consumption and performance. These quality attributes were ranked as the most important 
ones by the majority of the architects of the investigated software projects. Quantitative 
estimates of memory consumption and performance were desperately needed to judge the 
feasibility of the software and to make appropriate design decisions. As a consequence, our 
research was focused on early estimation and prediction of the two aforementioned quality 
attributes.  

In the subsequent sections, we summarize the research questions related to the 
estimation of quality attributes. We also describe the approaches that we developed to 
answer these questions, discuss the results of the application of these approaches to the 
industrial software, and present the contribution of our approaches. Afterwards, we present 
a number of lessons learnt during application of our approaches in industry. Finally, we 
propose a number of problems for the future research.  

12.1 Research questions and answers 
Our research concerned the estimation of additive static quality attributes and 

performance for component-based software. Here, we describe how we addressed these 
questions. 
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1. Specification and quantitative estimation of additive static quality attributes 
Assessment of additive static QAs appeared to be crucial, as it helps architects to 

decide whether a particular component composition does not violate the resource 
constraints. For example, the architects want to check beforehand if a new feature can be 
introduced in a TV without changing the underlying hardware. 

So far, there are only few approaches concerned with estimation of static QAs (e.g., 
memory consumption). This is due to the fact that, in general, the estimation of additive 
static QAs was considered easy. However, for component-based embedded software with 
exponentially growing complexity, strict resource constraints and high diversity, this 
problem became complex and therefore deserves being investigated.  

As we aimed at delivering the approach applicable in industry, we quickly discovered 
the drawbacks of the existing approaches for the estimation of static quality attributes. 
These approaches (e.g., [USL00]) were developed for ideal software systems. Absence of 
the means for dealing with complex input and diversity parameters and the necessity to 
have the entire code of the component composition minimized the applicability of these 
approaches in industrial context. These methods also use complex mathematical theories 
that are not easily accepted in industry (for more details see Section 3.3). 

We developed an industrial-strength approach that offsets above-mentioned 
disadvantages and accounts for the current needs of software architects. There are three 
most important features of this approach. First, the approach analyses the critical aspects 
influencing the QAs – component input/diversity parameters and component binding. 
Second, the approach allows the architect to specify QAs as a part of component 
description (e.g., by means of a reflection interface). Third, this approach estimates the 
QAs of the component composition based on the component specifications, diversity, and 
binding.  

The approach was validated in the Consumer Electronics domain. We estimated the 
static memory consumption of TV software. The estimates had the maximum relative error 
of 1.80% that was more than sufficient to meet the accuracy requirements of the architects. 
The approach and the experiment are described in Chapter 4. 
 
2. Specification and quantitative estimation of the performance of software 

components 
We successfully tackled the problem of early performance estimation of adapted 

versions of software components. This estimation assists the architects in deciding on the 
performance characteristics of future functionalities and on the hardware resources to be 
required. As a result, less effort will be spent on the development of unfeasible products. 

So far, the following approaches to early performance estimation were the most 
popular ones: simulation, queuing networks, and statistical modeling. The limitations of 
these methods, such as too strict mathematical assumptions, tremendous amount of 
modeling details, requirements for sufficient amount of measurements or entire code of the 
software, etc. do not allow architects to apply them directly in the domain of complex 
component-based software. They either provide architects with unreliable and inaccurate 
results or fail at all (for more details, see Chapters 3 and 5). 

To meet the requirements from the industry and to compensate for the disadvantages of 
the current techniques, we developed the APPEAR (Analysis and Prediction of 
Performance for Evolving Architectures) method. This method combines the best elements 
of two existing estimation techniques: simulation and statistical modeling. A simulation 
model is used to describe evolving performance-relevant components that are not yet 
implemented. As a result of modeling only performance relevant details, the architect can 
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avoid to be overwhelmed by too many details. Statistical methods are used for abstracting 
from details that are not performance-relevant. Abstracting from irrelevant details helps 
one to reduce the complexity. The statistical approach is also employed to model those 
parts of a system that remain unchanged for a long time during the evolution of 
components, the so-called Virtual Service Platform (VSP) on which the investigated 
components execute. The proposed mix is supported by the fact that fewer and fewer 
software-intensive systems are currently being developed from scratch. 

The APPEAR method works as follows. For the existing components, a simulation 
model is built. This model describes performance-relevant details only and allows the 
determination of performance-critical parameters. These parameters are used as inputs for 
the statistical performance prediction model. The prediction model is based on the 
measurements on the existing components. This model reflects the correlation between the 
performance metric of interest and performance-relevant parameters of the existing 
components. For the adapted component, only the simulation model needs to be adapted, 
and time-consuming and expensive implementation is not required. This model also 
calculates the performance-critical parameters. The prediction model for the existing 
components can, under certain assumptions1, be fed with these parameters and used to 
extrapolate the performance of adapted components during the architecting phase. 

Because of its flexibility, the APPEAR method can be used for the prediction of any 
quantitative QA. The limitations of the method are related to the satisfaction of the 
APPEAR assumptions (see Chapter 5) by the software system in question. For example, 
the APPEAR method does not work for components developed from scratch, as prediction 
model cannot be built in this case.  Another important drawback of the method concerns 
the extensive measurements for construction of the statistical models. 

The APPEAR method was validated in the Consumer Electronics and Professional 
Systems domains. In the first case, we applied the method to predict the average execution 
time of Teletext software. In the second case, we predicted the average response time of 
the viewing software for medical images. Although these domains differ, the APPEAR 
method allowed us to obtain predictions with a relative prediction error of less than 20%, 
which was sufficient according to the expectations of the architects. 

 
3. Specification and quantitative estimation of the performance of component 

compositions 
The goal of our research was to provide the software architects with an approach for 

the early prediction the performance of component compositions. This helps in justifying 
design decisions early, which may save considerable amounts of time and effort otherwise 
spent for the implementation of presumably poor performing software. 

In principle, all the drawbacks, described in the second paragraph of the previous 
section, of the existing performance prediction approaches remain valid for the case of 
component compositions. Moreover, due to the more complex problem, these approaches 
require more effort and a longer learning curve. Thus, they are hardly suited for industry. 
The increased complexity of the problem can be attributed to the following factors: a) 
reconstruction of the performance model from the descriptions of separate components, b) 
complex interactions and data dependencies between components, and c) accounting for 
the effects of scheduling of the CPU and other resources. 

We developed a hierarchical approach, based on the APPEAR principles, for 
predicting the performance of component compositions. This approach considers the major 
factors influencing the performance of component compositions: (1) component 
                                                 
1 These assumptions relate to component similarity and are described in Chapter 6. 
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operations, (2) activities being executed in isolation, and (3) activities being executed 
concurrently. Also, the performance model of the entire system is built hierarchically. 
First, the contribution of component operations to performance is modeled by means of the 
APPEAR method. Then, the performance models of activities are specified. Finally, the 
parallel composition of activities is considered. During each analysis step, various models– 
analytical, statistical, simulation− can be constructed to specify the contribution of each 
factor to the performance of the composition. The architects can flexibly choose which 
model they use at each step, depending on their effort budget, accuracy requirements, and 
the performance insight to be obtained. 

This hierarchical approach was also validated in two industrial projects from two 
domains. In the first case, the average CPU utilization of the TV software was estimated 
(see Chapter 10). As the amount of performance relevant details was large, a simple 
estimation formula did not provide us with the required accuracy. As a consequence, the 
simulation model for the schedule was built. In the second case, the average response time 
of the composition of two components dealing with medical images was predicted (see 
Chapter 11). As interaction and resource scheduling of the components were simple, an 
analytical formula was sufficient for the performance prediction. For both cases, the 
relative prediction error did not exceed 10%. 

All proposed approaches (both for static and dynamic quality attributes) have an 
important feature: they allow the architect to flexibly trade estimation effort against 
estimation accuracy. This means that architect can choose the level of modeling in 
accordance with the accuracy requirements and timing budget he can afford. 

12.2 Contribution of the developed approaches 
This section summarizes the added value of the approaches described in this thesis in 

comparison to the existing methods. 
 
1. Specification and quantitative estimation of additive static quality attributes 

1. Our approach is innovative as it aims at the estimation of additive static QAs of 
component-based software at the architecting phase. So far, there are only few 
approaches to solve this problem. An example is [USL00] for the memory size 
estimation. However, this method requires the entire code and is not suitable for 
component-based system. This is due to the fact that, in general, the estimation of 
additive static QAs was considered easy. However, for complex component-based 
software with resource constraints and high diversity, this problem becomes very 
complex and therefore deserves further investigation. Additionally, our approach 
does not require the entire source code, and allows also budgeting of static QAs. As 
the validation experiment showed, our approach is applicable for component-based 
software where composition is constructed in form of hierarchy, and static QA of 
the composition is determined by binding rules and diversity parameters. 

2. This approach proposes to specify static QAs as a part of the component 
description. As a result, the consistency of the component code and the 
specification of its QAs is easier to manage, in comparison to specifying the 
component and its static QAs separately. If the task of creating the QA 
specification is performed by the component designers, the architects can perform 
the evaluation with less effort. Also, the QA specifications are more precise, as the 
component designers usually know much more about the QA relevant details of 
component than the architect. 

3. This approach allows the practitioner to trade estimation effort against estimation 
accuracy. The approach flexibly chooses diversity and input parameters, 
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components, etc. to account for their impact on the QAs. This saves a lot of effort 
for the specification and estimation of QAs. This feature was missing in the 
approaches existing so far (e.g., [USL00],[ZG94]). 

 
2. Specification and quantitative estimation of the performance of software 

components 
1. The APPEAR method allows the architect to flexibly choose the abstraction level 

of modeling and to concentrate the performance-relevant details only. The 
application of many existing approaches that are based on simulation often ends up 
with a combinatorial explosion of details, as they tend to include all behavioral 
details into the model (see, e.g., [LS99]). 

2. The APPEAR method lets the architect also abstract from the details that remain 
stable during the lifecycle of software. This is a crucial feature of the method to be 
applied to modern software product families where major parts often remain 
unchanged. 

3. When applying the APPEAR method, the architects can obtain insight into the run-
time architecture (via the simulation model) and the performance of the existing 
versions of a software system. Moreover, this insight can be described in terms of 
executable models that are easier accepted by software designers than complex 
mathematical expressions. 

4. The prediction models of APPEAR account for the information about the 
performance of previous versions of a software system. This feature a) helps not to 
miss performance-relevant parameters that were discovered earlier, b) gradually 
enhances the prediction model with the knowledge about already implemented 
functions, and c) decreases the modeling effort when new functions are gradually 
added. 

5. The APPEAR method allows one to make reasonably accurate performance 
predictions based on the simulation model of future versions of a software system 
without implementing it. The existing approaches that are based on statistical 
modeling, require implementation/prototyping to perform predictions for future 
versions (see, e.g., [BK02]). 

6. The users of the APPEAR method are not required to obtain a deep knowledge 
about the techniques they use. They need basic skills in behavior simulation and a 
limited knowledge of statistical regression techniques. Many other existing 
approaches (see e.g., [ABI00]) often imply a long learning cycle of the techniques 
to be applied. 

7. As simulation model of the APPEAR method is built for variable part of the 
software, and concentrates on performance-relevant details only, it is simpler and 
requires less effort than many conventional approaches to software simulation (see 
e.g. [JAI91]). 

8. The APPEAR method allows the user to trade estimation effort against estimation 
accuracy. The approach flexibly chooses the abstraction level of modeling and 
performance relevant parameters in accordance with requirements on insight, 
accuracy, etc. This saves a lot of effort yet allowing the user to obtain predictions 
with the required level of accuracy.  

 
3. Specification and quantitative estimation of performance of component 

compositions 
This approach for the performance prediction of component compositions inherits the 

majority of the APPEAR method principles for single components. In addition, the 
hierarchical approach, has the following important advantages: 
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1. By applying the APPEAR method to each component in isolation, the approach 
significantly reduces the effort and modeling complexity. The existing approaches 
(see e.g., [HAT03]) cannot cope with the rapidly increasing number of details. 

2. Our approach accounts for the relevant input parameters of components, branches, 
and loops. This means that the influence of these parameters on the performance is 
reflected either in the formula or in the simulation model or in the prediction 
model. The state-of-the-art approaches (see e.g., [BMW04], [SW02]) ignore this 
issue although it is often relevant in the context of complex industrial software 
systems and product families. 

3. The architect can flexibly choose the modeling technique for each step of the 
approach. This is not the case for many existing approaches (like [MAD04], 
[SW02]). In addition, he can choose the most adequate method for each step. 

12.3 Lessons learned 
This section summarizes our findings when applying our approaches in the industrial 

context. Many findings are illustrated by examples from the case studies performed by us, 
and references to the corresponding chapters are provided. 

12.3.1 Balancing the modeling effort and prediction accuracy 
It is important to balance the modeling effort against the prediction accuracy. The 

accuracy is limited by measurement errors, modeling artifacts, and the regression 
technique used to predict performance. The closer the needed accuracy to these limits, the 
more effort has to be taken to further increase the accuracy. This effort will eventually 
become too high.  

Maintaining this balance becomes especially important in the case when the system 
response time has a strict deadline or when the uses cases have many input parameters that 
have an impact of the performance. In the former case, the prediction accuracy 
requirements become tighter. In the latter case, the effort is greater than for simpler use 
cases, as these input parameters may in effect lead to the decomposition of the high-level 
use case into a number of simpler use cases. Both cases can be demonstrated by our 
experiences with the application of the APPEAR method to the Teletext acquisition 
subsystem (see Section 7.3.4 and Section 7.3.5). The constructed prediction model had to 
concern Teletext packets of a dozen different types, which led to 13 input parameters. 
Additionally, a soft deadline of 20 ms exists for the processing of all Teletext information 
received during a single VBI. This deadline makes the requirements on the prediction 
accuracy stricter. As a result, a lot of time was spent in accurate modeling the Teletext 
acquisition component. 

12.3.2 Incorrect expression of dependencies by a statistical 
model 

Linear regression tools help to construct and calibrate prediction models. The objective 
is to achieve the sufficient quality of the model in terms of absolute error, 2R -coefficient, 
etc. In some cases, the model can be perfect in statistical terms, but irrelevant in 
implementation terms (see example below). The possible reasons for that are a) the 
insufficient amount of measurements, b) large measurement errors, and c) inadequacy of 
linear regression with respect to the modeled phenomena. If the prediction model should 
reflect the implementation correctly, additional information (limitations, conditions, etc.) is 
required. 
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Example. Let us consider one of the linear regression models built for the MISS 
performance prediction (see Section 8.3.6). 

 409.90 31.89 # 31.43 # 77.85 #Response Images LongUpdate Paint= + ⋅ − ⋅ + ⋅  (12.1) 

In the Formula (12.1), some regression coefficients are negative. This happened because 
we calibrated the regression model on a particular set of measurements, and tried to 
achieve the best prediction quality (e.g., the lowest absolute error) for this particular set. 
The presence of negative coefficients can lead to a wrong impression about the 
dependencies in the system. It might seem that increasing the number of “LongUpdate” 
calls would decrease the response time, but this is of course nonsense. 

12.3.3 Disjoint measurement clusters 
A performance prediction model can provide accurate estimates only for the signature 

instances located within the measurements that were used to calibrate the model (see 
Section 5.11). Sometimes, the signature instances of particular use-cases can constitute 
several clusters located at a noticeable distance. Figure 12.1 shows an example for two 
signature parameters (S2 and S1). 

measurement setsuncovered area
S2

S1  
Figure 12.1: Decoupled groups of measurements 

The rest of the signature space remains uncovered, and the predictions for points from this 
uncovered space can be inaccurate. Therefore, the calibration dataset should be analyzed 
before predicting the performance for new points. When dealing with this effect, two 
issues should be considered: 

1. Selection of use cases that cover the entire range of signature parameters. Note 
that it is not always possible to find such use cases. 

2. If the point to be predicted does not belong to one of the clusters, the prediction 
accuracy can decrease with the distance between this point and the covered 
signature instances (for more details, see Section 6.2.3). 

12.3.4 Relevant choices 
For the application of the APPEAR method during the case studies, it was necessary to 

choose between several alternatives. The choices usually traded effort needed for applying 
the method against the usefulness and accuracy of the results. 

1. Use case (for example, see Sections 7.3.1 and 8.3.1). 
2. VSP level (for example, see Sections 7.3.2 and 8.3.2). 
3. Signature type (for example, see Sections 7.3.4 and 8.3.4). 
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4. Abstraction level of the simulation model (for example, see Sections 7.3.5 and 
8.3.5). 

5. Description formalism (for example, see section 8.3.5). 
6. Tracing depth selection (for example, see Sections 7.3.3 and 8.3.3). 
7. Validation strategy for the simulation model (for example, see section 8.3.6). 

12.3.5 Use cases and input data for the simulation model 
The simulation model is an abstraction of the software in question. Thus, it should be 

ensured that it adequately mimics its behavior, and generates the same values of the 
signature instances as the existing software. There are two issues to be considered when 
constructing a simulation model for the APPEAR method: 

1. The same use cases must be possible to execute both on the existing component 
and on its simulation model. The prediction model must be calibrated for signature 
instances calculated by the simulation model to enable prediction for the adapted 
components. The validation of the model presumes comparison of the results 
generated by the actual component and the simulation model (see Section 8.3.5). 
Thus, it should be ensured beforehand that exactly the same set of use cases can be 
executed in both cases. 

2. The same input parameters must be supplied both for the existing component and 
the simulation model thereof. This can also be difficult due to the large number of 
input parameters (for an example, see Section 8.3.5). The possibility and strategy 
of data retrieval should be considered in advance. Adapting of the tools for data 
retrieval (e.g., database parsers) can require unforeseen effort. 

Example. In the MISS case study, all measurements were done on the test software 
configuration using a dedicated PC. This dedicated PC was available for experiments and 
measurement only for very short time. Therefore, the simulation model was executed on 
another computer. The MISS database was transported from the dedicated PC to the 
simulation PC. This database contained huge amount of input parameters used by the 
MISS software but not performance-relevant. Thus, we invested a significant amount of 
time in selecting the relevant parameters and modifying the database-parsing tool to feed 
the simulation model with the same input data as the existing software under consideration 
(see Section 8.3.5). 

12.3.6 Performance prediction for adapted components 
When predicting performance for the adapted component, three essential problems 

should be considered: 
1. Proper specification of the new functionality. This requires the selection of a proper 

specification technique that must satisfy certain criteria. This technique must be 
expressive enough so that the specification can be easily depicted, intuitively 
understood and used for the efficient communication between designers, architects 
and performance experts. The specification technique should be acceptable for the 
designers that produce specification of the function, e.g. it should be widely known 
and applied for the other types of functional specification. There should also exist 
tools that enable automatic parsing of the specification to quickly and efficiently 
integrate the new function into the simulation model. 

2. Extension of the simulation model. This extension concerns integrating the new 
functionality to the simulation model. The simulation model should be designed in 
such a way that its extension does not take too much effort. 

3. Possibility to verify the performance predictions for new functions, although no 
implementation exists yet. In our case studies, we used the statistical prediction 
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intervals to judge on the prediction quality for the new functions (for example, see 
Section 5.11). 

Example. In the MISS case study, Message Sequence Diagrams (MSD) were selected for 
the specification of new functions (see Section 8.4.1). The simulation model could be 
easily extended (see section 8.4.1) due to the automatic parsers of the MSD specifications. 
For the verification of predictions, the prediction intervals were used (see Section 8.4.2). 

12.3.7 Problems with modeling the performance of component 
compositions 

We collected the major problems that complicate modeling the performance of a 
component composition. These problems are confirmed by our case studies (for example, 
see Chapter 10). 

1. Fragmentation of information needed for predicting performance. The 
performance is determined by the run-time architecture, as activities may pass 
through many components. It is cumbersome to reconstruct necessary models from 
the pieces related to different components. It is especially difficult if run-time 
architecture is not component-based (it can be monolith or there can be a complex 
mapping between components and tasks, etc). 

2. Complex control flow, and data dependences, and diversity parameters 
dependencies between components. In component models widely applied in 
industry (COM, Koala, etc.), components usually interact through complex 
interfaces, which may have operations with many input parameters. Calling such 
operations introduces complex control flow dependencies between the operations 
of a caller component and the ones of a callee component. These complex 
dependencies must be modeled to obtain sufficiently precise performance estimates 
for the activities that involve those operations.  

3. Accounting for the scheduling of resources and processors. Performance can be 
affected by delays due to blocking and preemption, occurring as artifacts of the 
scheduling of processors and other resources. These delays may be difficult to 
estimate (if possible at all). 

12.3.8 Estimation of the accuracy of QAs of component 
compositions 

Assessing the accuracy of the quality attribute estimate is not straightforward for the 
reason explained below. As stated in Section 4.7.2.2, for a single component, the accuracy 
of the estimate of a static quality attribute can be indicated by means of a prediction 
interval. It is therefore necessary to calculate a prediction interval for a sum of estimates of 
the static quality attribute. In statistical terms, this task amounts to estimating a prediction 
interval for the sum of estimates, each calculated by a linear regression model.  

The literature survey showed that this is not at all simple. Moreover, standard books 
about statistics such as [WEI95], [MON01], and [MR03] do not cover this subject.  

A more detailed analysis showed that this problem is similar to what in the statistics 
world is known as the Behrens-Fisher problem. The Behrens-Fisher problem is the 
problem of comparing the means of two normal populations with different and unknown 
standard deviations. Up to now, no good solution exists for this problem. All existent 
solutions can be criticized from the viewpoint of inference: (1) classical Neyman-Pearson 
inference with its confidence intervals, (2) Fisher’s fiducial inference with its fiducial 
intervals, and (3) Bayesian inference with its credibility intervals. From a practitioner’s 
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viewpoint, intervals of all three types may be used to judge about the likelihood that the 
true value of the difference of means lies with a particular interval. However, the 
aforementioned three types of inferences suggest their own statistical interpretation of this 
likelihood, see e.g. [Fis35], [Sal98], and it is questionable if these techniques are usable in 
practice. 

12.4 Future research 
This section sketches important issues for future research in the field of early 

prediction of quality attributes of component-based software. 
 

1. Specification and quantitative estimation of static quality attributes 
In the domain of the prediction of static quality attributes, the future research is 

necessary in the following directions: 
1. Validation of the suggested approach by applying it to other additive quality 

attributes. A single experiment with the prediction of memory consumption is 
definitely an insufficient evidence for a broad application of the approach. 
Additional experiments with different component compositions, as well as with 
other additive QAs will help to check the applicability of the method and to explore 
its weak and strong points deeper. 

2. Extension of the approach with the composition rules for non-additive static quality 
attributes. We delivered the approach (see Chapter 4) that was based on the 
assumption that static QAs are additive. However, there could exist other static 
attributes that are not necessarily add up when estimating the QA of the 
composition.  

 
2. Specification and quantitative estimation of the performance of software 

components  
The following investigations are important for the extension of the applicability of the 

APPEAR method: 
1. Weakening of the assumptions. The applicability of the method is limited by a 

number of assumptions (see Section 5.4). Some of these assumptions are rather 
strict (e.g., the independence of the VSP services). It can be useful to check how 
critical the violation of the assumption is for the applicability and accuracy of the 
method. Development of the means and guidelines allowing the architects to obtain 
indications on the reliability of the predictions even when the assumptions are 
violated may be quite relevant (similar to the “escape routes” described in Section 
6.3). 

2. Validation of the notion of component similarity by means of more experiments. 
We have validated the notion of similarity of two components for a simple case 
only. For more complex components the similarity definition and the related 
conditions may need refinement. 

3. Further elaboration of the statistical part of the APPEAR method. We applied only 
linear regression for calibrating the prediction model. Despite a sufficient 
prediction quality we achieved, research about the suitability of other regression 
techniques (e.g., non-linear) can be relevant. Additionally, a number of guidelines 
related to statistical modeling (e.g., how to improve the handling of outliers) should 
be added to the APPEAR method. 

4. Dealing with the evolution of the platform. This issue is also related to weakening 
of the APPEAR assumption about stability of the VSP (see Section 5.4). In the 
general case, not only components, but also VSP can evolve (e.g., the hardware 
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platform is upgraded). The change of the VSP (both hardware and operating 
system) may have profound consequences on the software that runs on the top of 
this platform. Thus, we propose the construction of the APPEAR models 
(behavioral and statistical) of the existing and new platforms. The cooperative use 
of these models and the models of software components can provide architects with 
an estimate of the impact of platform change. These estimates are essential when, 
for example, a costly decision should be taken about porting a software stack to the 
next generation of hardware platforms. 

5. Derivation of design constraints. The signature parameters that have an 
interpretation at the architecting level, e.g. the number of service calls of a certain 
type, can be used to establish design constraints. The a-priori assignment of values 
to these parameters may provide a more accurate way to prescribe resource 
consumption limits than the budgeting of the total CPU consumption of an 
application, a method that is presently common among the architects. The 
constraints for the unassigned, free signature parameters can be found by solving 
the inversed task to prediction, i.e., given the desired performance estimate values, 
what are the allowed values for the free signature parameters are: 

 
[ ]

[ ]

*

min max

( , ) , , 1,

, .
i jf s s p i j N i j

p p p

= ∈ ∧ ≠

∈
 (12.2) 

In formula (12.2), *
is  are a-priori assigned signature parameters; js  are free ones; p is 

the desired performance measure; minp  and maxp  are the lower and the upper limits of the 

desired performance; *( , )i jf s s  denotes the equation to be solved to obtain a set of values 
for the free signature parameters. 

The steps of this approach are shown in Figure 12.2: 

Performance
model
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Figure 12.2: Deriving design constraints for desired performance 

By solving the above equation, it might be possible to estimate the set of possible 
values of js , which describes desired design options. 
 
3. Specification and quantitative estimation of performance of component 

compositions 
The future work can be performed in the following directions: 
1. Validation of the approach by means of more industrial case studies. The approach 

proposed in Chapter 9 was only partially validated by two case studies (see 
Chapters 10 and 11). In the first case study, a detailed simulation model had to be 
built to achieve the required accuracy. In the second cases study, a simple formula 
turned out to be sufficient due to simple scheduling of the resources. For 
demonstration of all the steps of the approach (e.g., activity modeling), thus, 
additional case studies are required. 

2. Elaboration on rules and guidelines for the selection between analytical, statistical 
and simulation approaches. This would allow architects to flexibly select between 
these techniques based on their experiences and preferences. In addition, a set of 
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guidelines describing in which case a particular approach suits best should be 
developed. 

3. Elaboration on the construction of prediction models for component operations, 
branches, and loops. In our hierarchical approach (see Chapter 9), the prediction 
models for branches and loops were constructed based on the strict assumptions 
such as exponential-family distribution of branching probabilities and loop counts. 
Also, the models for loops and branches were constructed and calibrated for 
relatively simple cases only. More experimental validation for more complex cases 
is required to weaken these assumptions and to evaluate the feasibility and 
reliability of the prediction models for branches and loops. 
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Appendix A. Relevant quality attributes in the 
Consumer Electronics and Professional Systems 
domains 

A.1 Questionnaire for interviews with the architects  
1. Stakeholders-related questions: 
1.1 What relevant stakeholders can your remember? 
1.2 What were their primary concerns? 
 
2. What were the main contradictions within stakeholders concerns? 
3. What compromises were accepted? 
 
4. Component model questions: 

 
4.1 What were the most significant requirements for the component model? 
4.2 What were the possible alternatives for the component model? 
4.3 How did the significant requirements reflect in adopted model? 
 
5. What functional features were crucial for the product success? 
 
6. What non-functional attributes were relevant to satisfy? 
 
6.1 Were there any resource constraints? Which ones? 
6.2 Was there necessity of legacy code support/reuse? 
6.3 Were there any middleware (OS) preferences? Why? 
6.4 Were there any subcontractors in the product? What was their contribution? 
6.5 What were the important x-abilities (scalability, portability etc)? 

 
7. Development process: 

 
7.1 How the development process was organized (subdivision, coordination, interaction, 

communication)? 
7.2 What tools were used during development (languages, environments), 
7.3 What were the project deliverables? 
7.4 What were the deployment units? 
7.5 What was the role of architects during the initial stages of development? How did it 

change afterwards? 
 
8. What risks and problems occurred? 
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A.2 Definition of quality attributes 
Table A.1 presents the definitions for the QA’s from Table 2.1. 

Table A.1: Definitions of quality attributes. 

QUALITY 
ATTRIBUTE 

DEFINITION 

Performance The performance of a system characterizes how well the 
system performs with respect to the timing requirements 
[SW02]. It is measured as either the time required to respond 
to specific event or the number of events processed in a given 
interval of time [BKL95] 

Timeliness The ability of a system to perform a task at a correct time 
[Lar04] 

Diversity The diversity of a system relates to its ability to be tuned for a 
particular context of use by means of postponed design 
decisions (variation points) 

Configurability The ability to configure a subsystem or component for a 
particular environment. It is often called “technical diversity” 

Reliability A measure of the ability of a system to keep operating over 
time. A measure of the rate of failure in the system that 
renders the system unusable [BKL95] 

Safety The absence of the catastrophic consequences to the 
environment (user) [BKL95] 

Availability A measure of system’s readiness for use. It is measure as the 
limit of the probability that the system is functioning correctly 
at time t, as t approaches infinity [BKL95] 

Maintainability The aptitude of a system to undergo repair and evolution 
[BKL95] 

Extensibility The ability for adding new functionality [Lar04] 
Portability The degree to which the software is independent from 

underlying middleware, operating system, and hardware 
Scalability The ability of a system to continue to meet its performance 

objectives as the size or functionality of a system significantly 
increase [SW02] 

Reusability The extent to which a software component or a subsystem can 
be reused within other (sub-) systems [Lar04] 
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Appendix B. Example of a XML specification 
This section contains the entire text of the XML specification of a component “IsCmx” 

from Section 4.9.1, including the DTD and the specification of the formulas of the 
component resource (memory) consumption. 

 
<?xml version="1.0"?> 
<!DOCTYPE ComponentDefinition 
   [ 
      <!-- Elements for the definition of a component --> 
      <!--   Binding between modules, interfaces, and internal components --> 
      <!--   is intentionally omitted --> 
      <!ELEMENT ComponentDefinition (provides,requires,contains,resource)> 
         <!ATTLIST ComponentDefinition name CDATA #REQUIRED path CDATA #REQUIRED> 
      <!ELEMENT Prefix (#PCDATA)> 
      <!ELEMENT provides (interface)+> 
      <!ELEMENT requires (interface)+> 
      <!ELEMENT interface (name,definitionName)> 
         <!ATTLIST interface path CDATA #REQUIRED> 
      <!ELEMENT name (#PCDATA)> 
      <!ELEMENT definitionName (#PCDATA)> 
      <!ELEMENT contains (module | component)+> 
      <!ELEMENT module (name)> 
      <!ELEMENT component (name)> 
         <!ATTLIST component path CDATA #REQUIRED> 
      <!-- Extensions for the specification of resource demands --> 
      <!ELEMENT resource (XRAM_SIZE,XROM_SIZE,STACK_SIZE)> 
      <!ELEMENT XRAM_SIZE (apply)> 
      <!ELEMENT XROM_SIZE (apply)> 
      <!ELEMENT STACK_SIZE (apply)> 
      <!-- Declarations for used MathML Content elements and some extensions --> 
      <!ELEMENT apply (  
                      (times, (apply | cn) , (apply | cn)+) |  
                      (plus, (apply | cn) , (apply | cn)+) |  
                      (minus, (apply | cn) , (apply | cn)) |  
                      (cc, ci) |  
                      (cif, ci) | 
                      ci | 
                      cn)> 
      <!ELEMENT plus EMPTY>       <!-- Plus n-ary operator --> 
      <!ELEMENT minus EMPTY>      <!-- Minus binary operator --> 
      <!ELEMENT times EMPTY>      <!-- Multiplication n-ary operator --> 
      <!ELEMENT cc (#PCDATA)>     <!-- Component name --> 
      <!ELEMENT ci (#PCDATA)>     <!-- Identifier name  --> 
      <!ELEMENT cn (#PCDATA)>     <!-- Number --> 
      <!ELEMENT cif (#PCDATA)>    <!-- (Diversity) interface name --> 
   ] 
> 
 
<ComponentDefinition name='CIsCmx' path='c:\Components\CIsCmx.xml'> 
<provides>         <!-- The list of all provides interfaces --> 
   <interface path='c:\Components\IInit.xml'> 
      <name>iinit</name> 
      <definitionName>IInit</definitionName> 
   </interface> 
   <interface path='c:\Components\IRtk.xml'> 
      <name>irtk</name> 
      <definitionName>IRtk</definitionName> 
   </interface> 
</provides> 
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<requires>         <!-- The list of all requires interfaces --> 
   <interface path='c:\Components\IDiv.xml'>  <!-- A diversity interface of the CIsCmx component --> 
      <name>idiv</name> 
      <definitionName>IDiv</definitionName> 
   </interface> 
   <interface path='c:\Components\IRes.xml'>  <!-- Another diversity interface of the CIsCmx component --> 
      <name>res</name> 
      <definitionName>IRes</definitionName> 
   </interface> 
   <interface path='c:\Components\ITic.xml'> 
      <name>itic</name> 
      <definitionName>ITic</definitionName> 
   </interface> 
   <interface path='c:\Components\IIsv.xml'> 
      <name>iisv</name> 
      <definitionName>IIsv</definitionName> 
   </interface> 
   <interface path='c:\Components\ISfr.xml'> 
      <name>isfr</name> 
      <definitionName>ISfr</definitionName> 
   </interface> 
   <interface path='c:\Components\IStart.xml'> 
      <name>istart</name> 
      <definitionName>IStart</definitionName> 
   </interface> 
   <interface path='c:\Components\IInts.xml'> 
      <name>iints</name> 
      <definitionName>IInts</definitionName> 
   </interface> 
   <interface path='c:\Components\IPlf.xml'> 
      <name>iplf</name> 
      <definitionName>IPlf</definitionName> 
   </interface> 
</requires> 
 
<contains>         <!-- Inner modules and components --> 
   <module>          
      <name>mcmx</name> 
   </module> 
   <component path='c:\Components\CMgCmx.xml'> 
      <name>mgcmx</name> 
   </component> 
   <component path='c:\Components\CPlfCmx.xml'> 
      <name>plfcmx</name> 
   </component> 
</contains> 
 
<resource>    <!-- Specification of static memory demands --> 
   <XRAM_SIZE>     <!-- 32+res.MaxTasks*2+div.MaxTalos*25+mgcmx.XRAM_SIZE --> 
      <apply> 
         <plus/>  
         <cn>32</cn>            
         <apply> 
            <times/> 
            <apply> 
               <cif>res</cif> 
               <ci>MaxTasks</ci> 
            </apply> 
            <cn>2</cn> 
         </apply> 
         <apply> 
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            <times/> 
            <apply> 
               <cif>div</cif> 
               <ci>MaxTalos</ci> 
            </apply>          
            <cn>25</cn> 
         </apply> 
         <apply> 
            <cc>mgcmx</cc> 
            <ci>XRAM_SIZE</ci> 
         </apply> 
      </apply> 
   </XRAM_SIZE> 
   <XROM_SIZE>     <!--48 + plfcmx.XROM_SIZE--> 
      <apply> 
         <plus/> 
         <cn>48</cn> 
         <apply> 
            <cc>plfcmx</cc> 
            <ci>XROM_SIZE</ci>                       
         </apply> 
      </apply> 
   </XROM_SIZE> 
    
   <STACK_SIZE>    <!--12 + (res.MaxTasks - 1)*8+mgcmx.STACK_SIZE--> 
      <apply> 
         <plus/> 
         <cn>12</cn>             
         <apply> 
            <times/> 
            <apply> 
               <minus/> 
               <apply>                
                  <cif>res</cif> 
                  <ci>MaxTasks</ci> 
               </apply> 
               <cn>1</cn> 
            </apply> 
            <cn>8</cn> 
         </apply> 
         <apply> 
            <cc>mgcmx</cc> 
            <ci>STACK_SIZE</ci> 
         </apply> 
      </apply> 
   </STACK_SIZE> 
</resource> 
</ComponentDefinition> 
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Appendix C. Koala reachability rules 
Reachability analysis strictly follows the rules below: 
1. A module marked present is reachable.  
2. If a module is reachable, then an interface bound with its base to the module is 

reachable.  
3. If an interface is reachable, then an interface bound to its tip (directly or via a 

switch) is reachable.  
4. If an interface is reachable, then a module bound to its tip (directly or via a switch) 

is reachable only if it contains any elements that are (or should be) implemented in 
C and can therefore not be compile-time determined by Koala. (inline code is 
considered to be-equivalent to C code and therefore not compile-time determinable 
by Koala.)  

5. A component is reachable if at least one of its modules is reachable.  
6. A module is reachable if its container component is reachable.  
7. The reachability analysis stops when reaching an optional interface, unless it is 

connected to a switch. 
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Appendix D. Confidence and prediction intervals 
of the sum of predictions given by linear regression 
models 

As motivated in Section 4.7.2, it must be possible to estimate prediction intervals for 
the sum of predictions obtained by linear regression models. This appendix addresses that 
problem. First, the necessary concepts and formulas of linear regression are introduced. 
Then, a solution to the problem is given based on these concepts and formulas. 

D.1 Some facts about linear regression models 
For the sake of brevity, it is more convenient to rewrite Formula 4.19 from Section 

4.7.2 in a matrix form: 

 01 111 1

1

ˆ ,
ˆ1

ˆ... , , ... , ... .
ˆ1

k

n n kn nk

Y X E

y ex x
Y X E

y x x e

β

β
β

β

= ⋅ +

     
     = = = =     

           

…  (D.1) 

In these formulas, the following symbols are used: 
• Y  is the 1n× column vector of observed values of the dependent variable y ; 
• X  denotes the ( )1n k× +  matrix that contains values of independent variables; 

• β̂  is the column vector of regression coefficients; 
• E  is the column vector of errors; 

Notice that all elements of the first column of the matrix X equals one. This fact is 
convenient for modeling the constant term 0β  of a regression model. 

The mean standard error of residual es  can be found by the following formula: 
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Note that es  is an unbiased estimator of population standard deviation σ  of errors. The 

random variable ( )2

2

1es n k
σ

⋅ − −
 has 2χ -distribution with 1n k− −  degrees of freedom 

[MR03], [Jai91]. [WEI95].  

Consider a particular point ( )11, ,...,
T

p p pkx x x=  (symbol T denotes the transpose 

operator) in the space of independent variables. The mean value py  is the mean value of 
the dependent variable is represented by the following formula: 
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 (D.3) 
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In Formula (D.3), β  denotes the ( )1 1k + ×  column vector of true regression coefficients 
(see Formula 4.18 from Section 4.7.2). 

The estimate ˆˆ T
p py x β= ⋅  of py  is obtained by linear regression, the estimate ˆ pys  of its 

standard deviation is calculated by the following formula: 

 ( ) 1

ˆ .
p

T T
y e p ps s x X X x

−
=  (D.4) 

From the statistical literature [MR03], [Jai91], [WEI95], the random variable 

ˆ

ˆ

p

p p

y

y y
t

s
−

=  is known to have the t-distribution with n-k-1 degrees of freedom. This fact is 

employed for calculating the confidence interval for py  at confidence level α : 
 ˆ ˆ1 / 2; 1 1 / 2; 1ˆ ˆ

p pp y n k p p y n ky s t y y s tα α− − − − − −− ⋅ < < + ⋅  (D.5) 

In Formula (D.5), 1 2; 1n kt α− − −  denotes the 1 2α− -th quantile of the t distribution with 
1n k− −  degrees of freedom. Using the similar reasoning, a prediction interval for the new 

observation py  at point px  is described by the following formulas: 
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D.2 Confidence and prediction intervals for the sum of 
predictions of several linear regression models 

Let us now consider that there are N  multiple linear regression models. Each model 
corresponds with an estimation formula described in Section 4.7.2. The models are fitted 
in the following manner: 
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In Formula (D.7), the index in round brackets enumerates through the prediction 
models of interest. Except this index, the formula uses the same notations as in formulas 
from section above.  

We aim at deriving a confidence interval for the sum of predictions N linear regression 

models ( ) ( ) ( )

1 1

ˆˆ ˆ
N N

j j jT
p p

j j

y y x β
= =

= = ⋅∑ ∑ . The prediction intervals can be derived in the similar 

way. 

To our best knowledge, this question is not yet covered in the literature. We however 
suggest an approach to solving this problem. The sum of predictions of dependent 
variables can be described by the following formula: 
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Here, ( )je  denote predictions errors1 obtained for each prediction model j. According to the 
results of linear regression, the random variables ( )je  must have the normal distribution 

with mean zero and standard deviations ( ) ( ) ( )1j jT T
j p j j px X X xσ

−
⋅ . The values of the 

standard deviations jσ  are however unknown.  

It is necessary to distinguish the cases of equal and unequal population standard 
deviations of errors of all the linear regression models. 

D.2.1 Equal standard deviations 

As the prediction errors have the normal distribution and are independent of each 
another, the random variable e  that denotes the prediction errors for the sum of linear 
regression models is also normally distributed with mean zero and standard deviation 

( ) ( ) ( )( )12

1

N
j jT T

j p j j p
j

x X X xσ
−

=
∑ . 

Suppose that 1..j j Nσ σ= ∀ ∈ . It is easy to derive the confidence interval for the 
total dependent variable y . First, we normalize the error term e: 
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Notice that the variable z has the normal distribution with mean zero and standard 
deviation one. Unfortunately, the actual value of standard deviation σ  is unknown, and 
Formula (D.9) cannot directly be used to construct the confidence interval. However, it is 
possible to provide an unbiased statistic to estimate σ : 
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In Formula (D.10), 2
jes  denotes the standard error of fit for the j-th prediction model. 

The variables jn  and jk  denote the number of observations made for the j-th model and 
the number of independent variables of this model, respectively.  

It is easy to show that the statistic 
( )2

1
2

1
N

e j j
j

s n k

σ
=

⋅ − −∑
 has 2χ -distribution with 

( )
1

1
N

j j
j

n k
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− −∑  degrees of freedom. Let us substitute the unknown parameter σ  in 

Formula (D.9) with its estimate es : 

                                                 
1 Notice that errors jie  of i-th observation of the j-th regression model are normally distributed with zero 

mean and constant standard deviation jσ , according to the assumptions of the linear regression. 
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In this formula, the variable t is known to have the t-distribution with ( )
1

1
N

j j
j
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=

− −∑  

degrees of freedom. This fact can be used to calculate the confidence intervals with the 
confidence level α : 
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In this formula, ˆly  and ˆuy  denote the lower and upper limits, respectively, for the 
confidence or prediction interval, and [ ; ]q mt  is the q -th quantile of t-distribution with m 
degrees of freedom. 

D.2.2 Unequal standard deviations 

When the population standard deviations iσ  of errors are not equal for different 
regression models, it is impossible to use the same transformation as at the right side of 
Formula (D.9). In this case, the problem of finding the confidence interval of the sum of 
linear predictions becomes similar to what in the statistics world is known as the Behrens-
Fisher problem. The Behrens-Fisher problem is the problem of comparison of two means 
of two normal populations with different and unknown standard deviations. To date, no 
solution exists to this problem such that this solution is not criticized from a viewpoint of 
different types of inference: (1) classical Neyman-Pearson inference with its confidence 
intervals, (2) Fisher’s fiducial inference with its fiducial intervals, and (3) Bayesian 
inference with its credibility intervals. From a practitioner’s viewpoint, intervals of all 
three types may be used to judge about the likelihood that the true value of the difference 
of means lies with a particular interval. However, the aforementioned three types of 
inferences suggest their own statistical interpretation of this likelihood, e.g. [Fis35], 
[Sal98]. 

For each prediction model, let us consider a variable jt , which is calculated as follows: 
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As stated in Section D.1, the variable jT  has the t-distribution with 1j jn k− −  degrees of 
freedom. Its cumulative distribution function is defined as follows: 

( ) ( ) ,
jT jF t P T t t R= < ∀ ∈ . 
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It is also easy to show that 
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or equivalently 
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Let us denote ( ) ( ) ( ) ( ) ( ) ( )1ˆj j j j jT T T
p e p j j px t s x X X xβ

−
⋅ − ⋅ ⋅ . Formula (D.15) can then be 

rewritten as 
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Formula (D.16) describes the conditional distribution of the unknown parameter ( )jy  in 
the light of the observed data (represented by the statistics ( )ˆ jβ  and ( )j

es  calculated upon 

it). This distribution is called the fiducial distribution of the parameter ( )jy  and can be 
used to make inferences about values of this parameter, by considering it a random 
variable. 

So, according to the Fisher’s fiducial argument [Fis35], [Sal98], it is possible to rewrite 
Formula (D.16) in the following form: 
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In this formula, ( )jy  and jT  are treated as random variables, whereas the rest of 

parameters are constants. By summing ( )jy  for all regression models, the following is 
obtained: 
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Formula (D.18) can be used to generate the confidence (fiducial) interval. For the 
confidence level α , this interval is calculated by the following formula: 
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where qu  denotes the q-th quantile of the distribution of the random variable 
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= ⋅ ⋅∑ , which is a linear combination random variables that 

have the t-distribution. Please notice that the prediction (fiducial) interval can also be 
obtained using the arguments above. The final formula for the prediction interval 
resembles Formula (D.19): y  must be substituted with y, the prediction of sum of single 
future measurements of each linear regression model, and qu  is the q-th quantile of the 

distribution of the random variable ( ) ( ) ( ) ( )1

1
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The argumentation given above allowed us, using the Fisher’s fiducial argument 
[Fis35], [Sal98], to reduce the problem of finding the confidence interval to the problem of 
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calculating quantiles of the distribution of a linear combination of t-distributed variables. 
The latter problem cannot be solved analytically, but numerical solutions are possible.  

We consider two approaches to finding the quantiles of the distribution of a linear 
combination of t-distributed random variables: (1) using the characteristic function of a 
distribution, and (2) simulation. The two approaches are described in the subsequent 
sections. 

A) Characteristic-function-based approach. 

Witkovský described a numerical solution to the problem of finding the quntiles of the 
distribution of a linear combination of t-distributed random variables that involves one 
numerical integration in [WIT01]. This solution is based on employing a nice property of 
characteristic functions of independent random variables with respect to the linear 
combination of these random variables. 

The characteristic function ( )tφ  of a random variable u  with the cumulative 

distribution function ( )uF x is defined as follows: 

 ( ) ( )itx
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−
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According to [Gil51], the following inversion formula also holds: 
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Witkovský showed that ( ) ( )
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allows the integral from Formula (D.21) be integrated numerically from 0 to a sufficiently 
large T , 0 T< ≤ ∞ . 

Let us consider a linear combination of independent random variables 
1

N

j j
j

u uλ
=

= ∑ , and 

let ( )
ju tφ  denote the characteristic function of the random variable , 1..ju i N= . The 

characteristic function ( )u tφ  of the random variable u  can be found as follows: 

 ( ) ( ) ( )
1 1 ...

Nu u u Nt t tφ φ λ φ λ= . (D.22) 

In [Ifr72], Ifram derived the characteristic function of a t-distributed random variable 
jT  with jv  degrees of freedom: 

 ( ) ( ) ( ) { }2 11 2 1 2
2 12 1

1 .
2 2

j

j jj

v

T j v jv
j

t v t K v t
v

φ
−

−−=
Γ

 (D.23) 

In this formula, ( )vΓ  denotes the gamma function, and { }K zα  denotes the modified 
Bessel function of second kind. Finally, to find the confidence or prediction interval with 
the significance level α , it is necessary to numerically solve for x the equation  

 ( ) ( )1 2 0uF x α− − = , (D.24) 

where ( )uF x  is obtained by using Formulas (D.21), (D.22), and (D.23). The constants jλ  
and degrees of freedom jv  for Formula (D.23) are calculated as follows: 
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Let us denote the solution to Equation (D.24) as 1 2u α− . This is exactly the quantile 
from Formula (D.19). 

B) Simulation-based approach 

The simulation-based approach is based on generating a large sample of the values of a 
random variable. This large sample is then sorted in an ascending manner, and the element 
of this sorted sample is chosen such that its index corresponds to the required probability. 
For instance, for the 0.975-quantile the 9750-th element of a sample consisting of 10000 
elements can be chosen. This element is the taken as the estimate of the required quantile.  

Repeating this procedure for a number of times and averaging over chosen elements 
will increase the accuracy of the estimate of the quantile. 

This approach can be applied to the problem of finding quantiles of the distribution of 

a linear combination ( ) ( ) ( ) ( )1

1

N
j j jT T

j e p j j p
j

u T s x X X x
−

=

= ⋅ ⋅∑  of t-distributed random variables, 

as it is known how to generate random variables that equal these linear combinations. 
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Appendix E. Details of the prediction model for the 
Teletext software 

This appendix summarizes the quality of the prediction model constructed (see Section 
7.4). Table E.1 presents the values of the regression coefficients together with the 
corresponding t-statistics and their p-values. The table demonstrates that all regression 
coefficients are significant at the 0.05 significance level, as all p-values in the last column 
are less than this significance level. 

Table E.2 provides the summary about the explanatory power of the model. The 2R -
coefficient demonstrates the high explanatory power, and the p-value, being 0, of the F-
statistic shows that the regression is significant at the 0.05 significance level. 

Table E.1: Linear regression coefficients 

Coefficient Value t-value Pr(>|t|) 
0β  0.00004350811 8.7137 0.0000 
1β  0.0001624039 20.2392 0.0000 
2β  0.00003465766 3.3451 0.0008 
3β  -0.00009810098 -9.4839 0.0000 
4β  0.00002035258 314.5034 0.0000 
5β  0.00001901177 736.7930 0.0000 
6β  0.00001312129 37.4164 0.0000 
7β  0.00002954716 43.6820 0.0000 
8β  0.0001833823 180.0632 0.0000 
9β  0.00006551284 160.2898 0.0000 

10β  0.001698615 175.3527 0.0000 
11β  0.001206774 152.1587 0.0000 
12β  0.001130729 123.8286 0.0000 
13β  0.0005467161 210.1833 0.0000 

Table E.2: Prediction model summary 

Residual standard error 0.0004052 (on 33784 df) 
Multiple R-Squared 0.9746  
F-statistic 99900 (on 13 and 33784 df), the p-value = 0  

Figure E.1 shows the most important residual diagnostic plots. The use of these plots is 
detailed in 0. 

The standard deviation of the residual appears to be constant (see plot a) because of the 
following reasons: 

• The magnitudes of residuals (the y axis) do not depend on the fitted values (the 
x axis), 

• The points around the line “y=0” lie uniformly and there is no visible structure 
in the residuals. 

The residual-fit spread (see plot e) demonstrates high explanatory power, as the spread 
of the residuals is less than the spread of the fitted values. Plot c) does not indicate the 
violation of linearity, as most of the point lie around the line “y=x” in a uniform manner. 

The rest of the plots indicate some problems. First, plot d) demonstrates that the 
residual distribution is not normal (heavy-tailed), as points do not lie on the “y=x” line at 
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the ends of the distribution. Second, there are outliers, as demonstrated by plot b): a few 
points lie far apart from the rest of the points. Finally, influential observations are also 
present, because plot f) contains a number of points for which the Cook’s distance is 
greater than 1.0.  

Thus, the residuals need stabilizing. This can be done (1) by eliminating the outliers 
and influential observations or (2) by using other regression techniques (e.g., robust 
regression). However, we did not stabilize the residuals, as no use of inferences about the 
regression coefficients and predictions was planned. 
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Figure E.1: Residual diagnostic plots: a) – Residual fit plot (constancy of standard deviation), b) The 
square root of absolute residuals versus fit (outlier diagnostic plot), c) Actual vs. fitted value, d) 
residual normal plot (the normality of residual distribution), e) residual-fit spread (explanatory 
power), and f) Cook’s distance (diagnostic of influential observations)  
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Appendix F. Details of the prediction model for the 
MISS software 

This appendix summarizes the quality of the prediction model constructed (see Section 
8.3.6). Table F.1 and Table F.3 present the values of the regression coefficients together 
with the corresponding t-statistics and their p-values (last column). The table demonstrates 
that the majority of the regression coefficients for both cases are significant at the 0.05 
significance level, as all p-values in the last column are less than this significance level. 

Table F.2 and Table F.4 provide the summary about the explanatory power of the 
model. The 2R -coefficient demonstrates the high explanatory power for both cases, as it is 
close to 1.0. The p-value, being 0, of the F-statistic shows that the regression is significant 
at the 0.05 significance level. 

Figure F.1 and Figure F.2 contain a number of diagnostic plots for both cases of the 
prediction model. 

F.1 Prediction model case 1 
Table F.1: Linear regression coefficients 

COEFFICIENT VALUE STD. ERROR T-VALUE PR(>|T|) 
0β  (Intercept) 409.8961 37.2172 11.0136 0.0000 

1β  (Images) 31.8872 1.9140 16.6603 0.0000 

2β  (LongUpdate) -31.4294 11.9548 -2.6290 0.0118 

3β  (Paint) 77.8499 16.4290 4.7386 0.0000 

4β  (Group1) -25.6175 14.4961 -1.7672 0.0843 

5β  (Group2) -17.6571 14.7957 -1.1934 0.2393 

6β  (Group3) 39.6964 5.8666 6.7665 0.0000 

7β  (Group4) 18.5561 6.8267 2.7182 0.0094 

Table F.2: Prediction model summary 

Residual standard error 52.4 (on 43 df) 
Multiple R-squared 0.9386 
F-statistic 93.97 on 7 and 43 degrees of freedom, the p-value is 0 
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Figure F.1: Diagnostic plots: a) – Residual fit plot (constancy of standard deviation), b) Oultier 
diagnostic plot, c) Actual vs. fitted value, d) residual normal quantile-quantile (normality of residual 
distribution), e) residual-fit spread (explanatory power), and f) Cook’s distance (diagnostic of 
influential observations). 

Plot a) shows that residual is distributed normally and residual standard deviation is 
constant, as there is no structure or trends in the distribution “residual vs. fit”. This enables 
the application of prediction intervals. Plot b) indicates a few outliers that do not have 
significant influence on the prediction quality. Plot c) confirms the linear dependency 
between response time and signature parameters, as the majority of the points are located 
within the “y=x” plot. Plot d) proves once again the normal distribution of the residuals, as 
99% of the points are located close to “y=x” plot. Plot e) demonstrates high explanatory 
power of the prediction model, since the residual spread is considerably narrower than 
fitted values spread. Plot f) shows the absence of the influential observations (i.e. the 
regression coefficients are not sensitive to changes in any point from calibration dataset), 
since there is no point with Cook’s distance greater than 1.0. More information about the 
interpretation of the diagnostic plots can be found in Appendix R. 

F.2 Prediction model case 2 
Table F.3: Linear regression coefficients 

COEFFICIENT VALUE STD. ERROR T-VALUE PR(>|T|) 
0β  (Intercept) 360.1954 113.4709 3.1743 0.0033 

1β  (Runs) 99.8763 18.3074 5.4555 0.0000 

2β  (LongUpdate) 19.7293 5.0748 3.8877 0.0005 

3β  (Paint) 23.1766 60.9672 0.3801 0.7063 
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Table F.4: Prediction model summary 

Residual standard error 78.75 (on 32 df) 
Multiple R-squared 0.9907 
F-statistic 1136 on 2 and 32 degrees of freedom, p-value is 0 
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Figure F.2: Diagnostic plots: a) – Residual fit plot (constancy of standard deviation), b) Oultier 
diagnostic plot, c) Actual vs. fitted value, d) residual normal quantile-quantile (normality of residual 
distribution), e) residual-fit spread (explanatory power), and f) Cook’s distance (diagnostic of 
influential observations). 

Similarly to the plots in Figure F.1, the plots in Figure F.2 acknowledge 
• Normal distribution of the residual (plots a and d), 
• Constancy of residual standard deviation (plot a), 
• Linear dependency between response time and signature parameters (plot c),  
• High explanatory power of the prediction model (plot e), and  
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• The absence of the influential observations (plot f). 

F.3 Prediction model validation 
For the judgment on the quality of the predictions made for 10 excluded points, we use 

the following metrics (see [Jai91] and [WEI95]). 

 
1. R-squared coefficient for the predictions: 
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2. Average squared prediction error: 
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This error is compared to the mean squared error of the fitted prediction model: 
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3. Average relative error: 
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In formulas (F.1)-(F.4), k and n show the range of the excluded points, iy  are the 
measurements, y  is the mean value of measurements, and ˆiy  are the predicted values. In 
formula (F.3), ( )S N n k= − −  is the number of points used for fitting the prediction 
model. 

For the indication of the prediction quality, we use the box-whisker plots that 
demonstrate differences between residuals of the fitted model and prediction errors for the 
excluded points. The width of the box is equal to the interquartile range, or IQR, which is 
the difference between the third and first quartiles of the data. The IQR indicates the 
spread of the distribution for the data. Whiskers extend from the edges of the box to either 
the extreme values of the data, or to a 1.5 IQR distance of from the median, whichever is 
less. The plot in Figure F.3 shows that error distribution for the fitted model is wider than 
for the predictions for the excluded points. This confirms good prediction quality of the 
model. 
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Figure F.3: Distribution of prediction errors for the fitted model and for predictions for two cases. 

F.4 Example of calibration data for the prediction model 
Table F.5 contains an example of the signature instances used for calibration of the 

prediction model. The table is filled as follows. First, the name of the use case is given 
(with the state of the system). Then, the values of the signature instances are listed. Finally, 
the values of the response times are shown.  

Table F.5: Calibration data. 

StepRunReverse(Run) 
Images Update Paint Response 

2 8 6 388 
3 8 6 386 
4 8 6 449 
5 7 5 475 
6 8 7 549 
7 7 8 685 
8 8 6 685 
9 8 6 781 
10 7 2 650 
12 8 2 735 
StepRunForward(Run) 

Images Update Paint Response 
2 8 4 382 
3 8 2 413 
4 8 4 440 
5 8 2 429 
6 8 2 479 
7 8 4 620 
8 7 2 565 
9 8 2 681 
10 7 2 654 



 246

Appendix G. Construction of reduced CFGs of 
component operations 

For modeling activities executing in isolation, it is necessary to be able to construct 
reduced CFGs (see Section 9.6.1) of all component operations that are invoked by the 
activities. The reduced CFGs can be constructed from the CFGs (see Appendix I) of these 
component operations. (The CFGs are constructed automatically by a compiler from the 
source code of the component). The following algorithm can be used for constructing the 
reduced CFGs (see Figure G.1). 

Start

Construction of the set
NodesToRemove

Is NodesToRemove empty?No

Delete NodesToRemove
from the CFG

Classify the remaining
nodes of the CFG

Stop

Yes

 
Figure G.1: Flowchart of the algorithm to construct a reduced CFG from the CFG of component 

operations 

The algorithm is based on the sequential removal of the CFG nodes that are not needed 
for modeling the control flow of an activity. An example of such nodes are the basic 
blocks that perform some intermediate calculations, have only one ingoing and outgoing 
edge, and do not call any other operations. 

Let us detail each block of the algorithm: 
1. Construction of the set of NodesToRemove. This block assigns the following 

nodes of the CFG to the set NodesToRemove:  
• nodes that are not invocation nodes and have only one ingoing and outgoing 

edge, 
• nodes that are not invocation nodes and have a self back edge. 

2. Deletion of the nodes NodesToRemove from the CFG. The deletion of the node 
from the CFG is performed in such a way that all successors of the deleted node 
are still reachable from all its predecessors. An example of the deletion of CFG 
nodes is shown in Figure G.2. 
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N1 N2

N3

N0

N3

N0

Deletion of nodes
N1 and N2

... ...

...

... ...

...  
Figure G.2: An example of deletion of two nodes 

3. Classification of the remaining nodes of the CFG. The classification if 
performed as follows: 
• Entry and exit blocks (see Appendix I) remain intact, 
• The CFG nodes that describe the invocation of component operations 

become invocation nodes (basic blocks), 
• The remaining nodes become branching nodes or loop headers. 
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Appendix H. Overview of the existing schedulers 
Scheduling policies are usually classified as online or offline. Online schedulers decide 

what activity instance executes at run-time, whereas offline schedulers makes this decision 
at design time. Offline schedulers release activity instances at pre-calculated instants. This 
type of schedulers is often used in time-triggered architectures [EBK03]. A typical 
example of such scheduler is a cyclic scheduler, where each activity is allocated to a 
certain time frame. 

Online schedulers usually determine, based on the event arrival patterns and the 
priorities of activity instances, which activity instance is the most eligible to be assigned 
the processor. This type of schedulers is used in event-triggered architectures. Two types 
of schedulers are usually distinguished: (1) fixed-priority-based and (2) dynamic-priority-
based. For a fixed-priority scheduling policy, each activity is attached a certain priority 
(e.g., a natural number). All instances of the same activity share the same priority. The 
processor is assigned to the activity instance that has the highest priority. A dynamic-
priority scheduling policy assigns the priority of activity instance according to certain 
criteria during run-time. These policies can be further classified in the two groups: activity-
instance-level fixed and activity-instance-level dynamic policies. For the former, once 
assigned, the priority of an activity instance does not change with respect to the priorities 
of other activity instances. For the latter, the priority of an activity instance may change 
over time. 

Finally, preemptive and non-preemptive schedulers are distinguished. Preemptive ones 
may allocate the processor to another activity instance, while the current activity is not yet 
completed; non-preemptive schedulers may not. 

Figure H.1 shows a taxonomy of schedulers [Liu00]. 
Scheduling

Online Offline

Priority-based

Rate
monotonic
(RM)

Fixed-priority Dynamic-priority

Shortest remaining
time first

Earliest
deadline
first

Scheduling

Preemptive Non - Preemptive

Instance-level-
fixed priority

Instance-level-
dynamic priority

RM + Priority
Inheritance or
Priority ceiling
protocols

Least slack time
first (Minimum
Laxity first)

FIFO LIFO Round-robinShortest
job
first

Shortest
remaining
time
first

Deadline
monotonic
(DM)

Criticality-
based

Event triggered Time-triggered

Cyclic Non-Cyclic

 
Figure H.1: Example of scheduling policy taxonomy  

This taxonomy is not exhaustive; it rather indicates different aspects that are important 
in scheduling analysis. A detailed taxonomy of existing scheduling policies is presented in 
[Liu00]. 

When being executed, activities may need certain resources like buffers, locks, etc. We 
distinguish the following resource types: 
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1. Sharable resources that can be used by any activity instance at any time. A typical 
example of sharable resource is virtual memory; 

2. Resources that may be used only once by a single activity instance: these resources 
are never replenished. An typical example is a message, which is destroyed once 
consumed. 

3. Serially reusable non-sharable resources: only a limited number of units of these 
resources can be used by a single activity instance. After an activity instance does 
not need the resource anymore, the resource is replenished and can be used by 
other activity instances. Examples are shared-memory, a lock, a printer, etc. 

Only resources of the third type need to be treated explicitly, as activity instances can 
contend for their access. When an activity instance cannot acquire a sufficient amount of 
such a resource, it gets blocked and cannot resume, until the resource is available.  

In priority-based scheduling systems, the effect of blocking can cause scheduling 
anomalies like priority inversion. Priority inversion makes it difficult to reason about the 
timing properties of a system. To cope with this problem a number of resource-access 
protocols were suggested in the real-time literature [Liu00]. Among them are the 
following: 

• Priority Inheritance Protocol, 
• Highest Locker Protocol, 
• Priority Ceiling Protocol, 
• Non-preemptive critical sections. 

Additionally, when multiple non-sharable resources like locks are used, deadlock can 
occur, that is, the involved activity instances cannot progress anymore. Some of the 
resource-access control protocols enumerated above not only prevent priority inversion, 
but also help in avoiding deadlocks. 

Appendix I. The notion of Control Flow Graph 
CFGs are often used to represent the control flow of a function or a program by 

compilers for performing different kinds of optimizations. Another area of the CFG 
application is worst-case execution time (WCET) analysis. The literature [PK89], [EE00], 
[EES01], [EES01a] describes a number of techniques for estimating the WCET of a 
program. These techniques use annotated CFGs. CFGs are similar to specification 
techniques such as execution graphs (see [Smi90], [Smi02]), UML activity diagrams, 
traditional flowcharts, SDL.  

A CFG is a directed graph, which consists of nodes and edges. Traditionally, a node of 
a CFG is a basic block describing a sequence of instructions that does not contain 
branching instructions, except for the last instruction of this sequence. Edges describe 
jumps in the control flow. The source of the edge is a basic block that has a branching 
instruction at the end. The sink of the edge is the target of this branching instruction. 
Conditional branching instructions produce more than one outgoing edge: a different edge 
is generated for each branch. Figure I.1 shows an example of CFG for a hypothetical 
function “Func”. 
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Entry block

Basic block
Edge

Back edge

Loop header

Exit block

Func

A

B
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F

 
Figure I.1: An example of CFG for the “Func” function 

The control flow enters the CFG through the entry node, which is denoted by a black 
circle. It leaves the CFG through the exit node depicted by a black circle with a border. 
The basic blocks (the CFG nodes) are denoted by rectangles with labels inside. The arrows 
denote the edges of the CFG. The “Func” function contains a loop. Each loop has a loop 
header, the basic block that executes at the beginning of each iteration. In addition, a 
dedicated edge (the back edge) indicates that the control flow may pass through the loop 
header many times. 
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Appendix J.  Activity control flow graph 
We explain how to build such a graph by means of an example of a hypothetical 

component composition (see Figure J.1). 

Composition

d
r1 r2

a

pa

ra

b

pb

rb

c

pc

Implements
operations
‘root’ and ‘f0’

Implements
operation ‘f2’

Implements
operations ‘f1’
and ‘fa’

Implements
operations ‘f3’
and ‘fb’

 
Figure J.1: A simple composition 

Figure J.1 uses the same notations as in Figure 9.9. The “d” component is a component, 
which starts an activity with the internal “root” root operation. This activity calls the “f1” 
component operation, implemented by the “a” component, and the “f2” component 
operation, implemented by the “b” component. These two component operations invoke 
the “f3” operation of the “c” component. Some of the operations can also invoke particular 
internal component operations. The control flow of the activity is represented by the 
activity CFG shown in Figure J.2. 

f0

fa

fc

r2.f2r1.f1

pa.f1 pb.f2

pc.f3

ra.f3 rb.f3

root Legend:
f The reduced CFG of

an operation f

r.f

p.f

The invocation of an
operation f through
requires interface r.
The interfaces r and p
are connected.

Invocation edge

 
Figure J.2: An example of the activity CFG 

The notations used in this figure are explained in the legend part (to the right). In 
addition, Figure J.2 also employs the notations for describing reduced CFGs of component 
operations (see Section 9.6.1 and 9.6.3). The activity CFG includes the reduced CFGs of 
all component operations that can be invoked by this activity. These reduced CFGs are 
hyper-nodes of the activity CFG. The hyper-nodes are labeled with the identifier of the 
corresponding operation. The prefix of this identifier is the name of the interface through 
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which this function is provided to other components. The suffix of the identifier is the 
name of the component operation.  

The invocation of a component operation is described by an invocation edge. The 
edges of this type are denoted by a thick arrow. An invocation edge connects an invocation 
node of a particular hyper-node to the hyper-node that corresponds to the called operation. 
For example, an invocation edge connects the invocation node “rb.f3” and the hyper-node 
“pc.f3”. This edge describes the invocation of the “f3” component operation by the “f2” 
component operation. In addition, the presence of this edge implies that the requires 
interface “rb” is connected to the provides interface “pc”. 



 253

Appendix K. Validation of a simple formula 
Table K.1 presents the comparison of the predictions and measurements of CPU 

utilization for various broadcast channels. The predictions are obtained by applying an 
analytical formula. The first column enumerates the channels. The second one shows the 
observation time in milliseconds. The third column enumerates the predicted utilization for 
a certain channel. The values in this column are calculated by Formula (10.7) from Section 
10.3.1 and by using Table K.3. Finally, the fourth column gives the measured CPU 
utilization for each channel. The measurement of CPU utilization amounts to the 
measurement of CPU demand and the application of Formula (10.1). The average CPU 
utilization is calculated as explained in Appendix L on the basis of Table K.3 and the 
nominator of Formula (10.7). 
Table K.1: The comparison of predicted and measured average CPU utilization for various broadcasts 

Broadcast channel Observed 
time (ms) 

Predicted 
utilization 

Measured 
utilization 

Nederland 1 10680 0.17375817 0.160547 
Nederland 2 11260 0.1742971 0.167087 
Nederland 3 10560 0.17361661 0.169501 
RTL 4 12340 0.17464702 0.158311 
RTL 5 12520 0.17369108 0.163794 
SBS 6 12380 0.17429737 0.162234 
Yorin 12080 0.17350043 0.167421 
V 8 15240 0.17392664 0.169413 
Net 5/Kindernet5 12540 0.17363354 0.161285 
UPC Infokanaal 13800 0.17446266 0.167335 
Omroep Brabant TV 13220 0.17478783 0.163087 
Lokale Omroep 11000 0.17407915 0.166411 
Nieuws TV (kabelkrant) 12680 0.17390122 0.162684 
VRT 10980 0.17305521 0.172133 
KetNet / Canvas 11940 0.17398134 0.163586 
National Geographic Channel 16760 0.17422175 0.175757 
Discovery Channel 12440 0.17413831 0.171821 
The Music Factory (TMF) 13600 0.1738733 0.161272 
MTV Europe 18220 0.17471672 0.163665 
ARD 1 10440 0.17413612 0.173966 
ZDF 2 11380 0.17426229 0.170606 
WDR 3 10680 0.17375817 0.165159 
RTL Television 12140 0.17409548 0.168759 
BBC 1 17120 0.17433938 0.162348 
BBC 2 17360 0.17467769 0.161079 
CNN International 13160 0.1739914 0.162944 
TV 5 Europe 11260 0.1742971 0.165745 
TRT International 12940 0.17406641 0.166525 
Eurosport 13820 0.17470065 0.158719 
Local VRT 15220 0.17415519 0.172229 
Average 12992 0.17413355 0.165774 
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Table K.1 shows that the average CPU utilization is higher for predictions than for 
measured values. It is however necessary to check if the difference between these average 
CPU utilizations is not obtained by chance. To check this, Appendix M explains a 
procedure for comparing average CPU utilizations. We show that this comparison can be 
accomplished by applying the t-test [WEI95] for paired samples to the average CPU 
demands corresponding to the CPU utilization calculated from the measurements and CPU 
utilization predictions. 

Table K.2 enumerates the measured and predicted CPU demands for each broadcast 
channel. Additionally, the difference between these CPU demands is given in the 
rightmost column. 

Table K.2: Measured and predicted processor demands 

Broadcast channel Measured CPU 
demand (ms) 

Predicted CPU 
demand (ms) 

Difference (ms) 

Nederland 1 1855.73728 1714.637 141.1007 
Nederland 2 1962.58529 1881.394 81.1913 
Nederland 3 1833.39138 1789.931 43.46082 
RTL 4 2155.14425 1953.558 201.5865 
RTL 5 2174.61226 2050.695 123.9176 
SBS 6 2157.8015 2008.457 149.3446 
Yorin 2095.88524 2022.446 73.43956 
V 8 2650.64196 2581.854 68.78784 
Net 5/Kindernet5 2177.36453 2022.508 154.8569 
UPC Infokanaal 2407.58464 2309.223 98.36164 
Omroep Brabant TV 2310.69508 2156.01 154.6849 
Lokale Omroep 1914.87067 1830.521 84.34967 
Nieuws TV (kabelkrant) 2205.06741 2062.827 142.2406 
VRT 1900.14617 1890.015 10.13132 
KetNet / Canvas 2077.33716 1953.217 124.1203 
National Geographic Channel 2919.95646 2945.687 -25.7309 
Discovery Channel 2166.28056 2137.453 28.82732 
The Music Factory (TMF) 2364.67688 2193.292 171.3845 
MTV Europe 3183.33858 2981.984 201.3541 
ARD 1 1817.98111 1816.205 1.77607 
ZDF 2 1983.10485 1941.491 41.61426 
WDR 3 1855.73728 1763.898 91.83916 
RTL Television 2113.5191 2048.734 64.78484 
BBC 1 2984.69015 2779.389 205.301 
BBC 2 3032.40477 2796.323 236.082 
CNN International 2289.72681 2144.336 145.3904 
TV 5 Europe 1962.58529 1866.289 96.29659 
TRT International 2252.41935 2154.827 97.59232 
Eurosport 2414.36298 2193.49 220.8733 
Local VRT 2650.64196 2621.318 29.32419 

The application of the paired t-test requires the differences between the CPU demands 
be normally distributed. Figure K.1 shows the normal quantile-quantile plot for these 
differences.  
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Figure K.1: The normal quantile-quntile plot for the differences in the CPU demands 

As all points in this plot lie close to the “y=x” line, we conclude that these differences 
have a normal distribution (see also Appendix R). Therefore, the use of the t-test is 
justified.  

We formulated the following null hypothesis for the one-sided t-test: there is no 
difference between the predicted and measured CPU demands. The alternative hypothesis 
was as follows: the predicted CPU demand is greater than the measured one. The t-test 
provided the following results: t-statistic = 8.6673 on 29 degrees of freedom, which gives 
p-value = 0. The p-value is less than the selected significance level of 0.05. Therefore we 
have to reject the null hypothesis and to accept the alternative one. The average difference 
between the predicted and measured CPU demand equals 108.61, and it is significant at 
the selected significance level. By dividing this average difference by the average 
observation period (see Table K.1), we can conclude that the simple analytical formula 
overestimates the actual CPU utilization by 0.0084 on the average, which means the 
average relative prediction error of 5.04%.  

Table K.3: The average execution times and periods of the activities from the activity validation set 

Activity tvsndsys.pmp tvhipdrv.mon mgdpow.refrstep tvfbxdrv.mon mgdpow.cperiodic
Period iT  
(ms) 

100 300 217.43 300 100 

Average 
execution 
time ie  
(ms) 

3.18011 2.54668 6.82064 6.77834 2.75227 

Activity mgatv.ctr tvhopdrv.hop tvsndqp.wait mgtng.afc  
Period iT  
(ms) 

300 200 500 500  

Average 
execution 
time ie  
(ms) 

5.15159 2.65725 5.51427 8.35257  
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Appendix L. Calculation of the average utilization 
Let us consider that we performed a series of measurements, each measurement being 

the total CPU utilization of a number of the activities under consideration. Our goal is to 
define the average CPU utilization of these activities in the light of the measurements 
performed. In [Jai91], Jain shows that using the arithmetic mean of the CPU utilizations 
obtained in each measurement is inappropriate. The reason is that the arithmetic mean 
treats equally short and long observation intervals for calculating the CPU utilization. 
However, measurements obtained during long observation intervals contain more 
information about the average CPU utilization, which is supposed to provide a typical 
value for the utilization. Instead of using the arithmetic mean for modeling the average 
utilization, Jain shows the rule of finding the average of fractions must be used [Jai91]. In 
essence, this rule says that the average of fractions of which both the denominator and 
nominator has some physical sense must be calculated by dividing the arithmetical mean 
of the nominator by the arithmetical mean of the denominator. 

For a series of measurements of the CPU utilizations the rule above instantiates as 
follows. Let ( ) ( ) ( )j j jU E T=  be the CPU utilization calculated from the j-th measurement 
from a series of n measurements in total. (Each measurement corresponds with a particular 
broadcast channel.) ( )jE  and ( )jT  are the processor demand (execution time) of the 
activities and the observation interval, respectively, that take place during the j-th 
measurement. The average CPU utilization of these activities obtained over all n 
measurements can be found by the following formula: 
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1
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= =
∑

∑
 (L.1) 

In Formula (L.1), E  and T  denote the average processor demand of the activities and the 
average observation interval, respectively. The averaging is performed over the n 
measurements. 
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Appendix M. Comparison of average CPU 
utilizations 

This appendix details the comparison procedure for average utilizations. We use this 
procedure to assess the quality of predictions made by simulation and by a simple 
analytical formula. 

Let us consider two samples of values of the CPU utilization of particular activities. 
Each sample contains a single value of the CPU utilizations of the same activities for a 
particular broadcast channel. The number of broadcast channels equals n. For instance, one 
such sample may correspond to the measured CPU utilization, whereas the other may 
describe the CPU utilizations predicted by a simple analytical formula. 

We compare the CPU utilizations from these two samples by looking at the difference 
in the average CPU utilization. For two samples, Formula (L.1) can be rewritten as 
follows: 
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In Formula (M.1), the ( ),iU ⋅  is the average CPU utilization for i-th sample. ( ),iE ⋅  and ( ),iT ⋅  
denote the average processor demand (execution time) of the activities and average 
observation interval for for i-th sample. Finally, ( ),i jE  and ( ),i jT  are the processor demand 
(execution time) of the activities and the observation interval for j-th broadcast channel in 
the i-th sample. 

Note that all experiments are performed such that the following formula holds for the 
observation intervals: 
 ( ) ( )1, 2, , 1,..., .j jT T j n= ∀ =  (M.2) 

Therefore, ( ) ( )1, 2,T T T⋅ ⋅= = . 

The difference D  in the CPU utilizations can be calculated by the following formula: 
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Observation intervals ( ),i jT  are not random variables, as we control their values. On the 
other hand, all processor demands (execution times) are in fact random variables. 
Therefore, D  is also a random variable. 

Consequently, statistical hypothesis testing must be applied to decide if the average 
CPU utilizations for the two samples are statistically different. We can decide on this 
difference, if ( ) ( )2, 1,E E⋅ ⋅−  significantly differs from zero according to the paired t- or z-test 
[WEI95]. We select the t-test only for the cases when n<30. Otherwise, the z-test may be 
selected. 



 259

Appendix N. Prediction models for the Consumer 
Electronics Case 

This appendix describes the prediction models constructed for the activities from 
Section 10.1.3. The prediction models were constructed on the basis of measurements from 
the TV software in steady state. Please notice that we did not use full-fledged linear 
regression to fit these prediction models. 

First, particular prediction models (e.g., models for the “tvsndsys.pmp” activity, 
“tvsndqp.wait” activity, and etc) were simple and did not require the application of linear 
regression. Second, for some of the remaining models, it was impossible to use linear 
regression, as the signature parameters were strongly correlated (e.g., the 
“mgdpow.cperiodic” activity). Third, we aimed at the prediction models that would be 
suitable both for predicting the CPU demand of a single activity instance and for 
estimating the CPU demand of a number of activities in a particular time interval. Such 
prediction models had to have interpretation in terms of average CPU demands. The 
construction of this kind of prediction models is often impossible if one uses linear 
regression. The reason that linear regression models often provide such coefficients that it 
is impossible to give any physical sense to them. 

However, we used linear regression to explore the relation between the candidate 
signature parameters and the CPU demands of particular activities. We then used the 
obtained information to construct prediction models that can be related to the concrete 
designs and implementations of the activities. For example, the “mgdpow.cperiodic” 
activity invokes five protection operations (see Section 10.4.5) related to various 
components drawn in Figure 10.5. For example, Section N.3 shows that the prediction 
model for a sequence of activity instances concerns five average CPU demands of these 
five protection operations. However, due to the algorithm for constructing a schedule for 
the protection functionality, the signature parameters related to these protection operations 
turned out to have a restricted variation scope. Using linear regression, we were able to 
identify only a single signature parameter. The rest parameters were identified by 
observing the execution traces and analyzing the design specifications and code. 

The only relevant signature parameter for many activities turned out to be the number 
of times it executes. The main reason is the excessively large observation period for 
calculating the average CPU utilization in comparison to the arrival periods of these 
activities. On the long run, each activity instance (or a short repetitive sequence of 
instances) exhibits the same behavior and execution time. Moreover, the same signature 
instance describes each activity instance. As a result, the signature instances of all activity 
instances become linear with the number of times the activity executes. 

N.1 The “tvsndsys.pmp” activity 
The CPU demand of the “tvsndsys.pmp” activity can be predicted by the following 

formula: 

 1 1

1 3.18011
E e N
e

= ⋅
=

 (N.1) 

In Formula (N.1), 1E  denotes the CPU demand consumed by N activity instances. The 
average CPU demand of a single activity instance equals 1e . 
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N.2 The “tvsndqp.wait” activity 
The CPU demand of the “tvsndqp.wait” activity can be predicted by the following 

formula: 

 2 2

2 =5.51427
E e N
e

= ⋅
 (N.2) 

In Formula (N.2), 2E  denotes the CPU demand consumed by N activity instances. The 
average CPU demand of a single activity instance equals 2e . 

N.3 The “mgdpow.cperiodic” activity 
The CPU demand of the “mgdpow.cperiodic” activity can be predicted by the 

following formula: 

 3 31 1 32 2 33 3 34 4 35 5

31 32 33 34 35

,
1.20367,  0.947.

E e N e N e N e N e N
e e e e e

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅
= = = = =

 (N.3) 

In Formula (N.3), 3E  denotes the CPU demand consumed by a number of activity 
instances over a certain observation period. 3ie  is the average CPU demand of the i-th 
protection operation. Table N.1 presents mapping of the CPU demand variables onto 
concrete protection operations. iN  is the number of times that i-th protection operation 
executes. 

Note that 1 2 3N N N= =  and 4 5N N=  due to the algorithm used for arranging the 
protection operations over various protection phases (see Section 10.4.5). Additionally, the 
measurements did not allow distinguishing the CPU demands of the protection operations 
that executed during the same protection phase. We therefore decided to spread the CPU 
demand equally for such protection operations. 

Table N.1: The mapping of the CPU demand variables onto the protection operations 

Protection name Variable 
HOP 31e  
Tuner 32e  
Protection 5V 33e  
FBX 34e  
Protection 3V 35e  

N.4 The “mgdpow.refrstep” activity 
The CPU demand of the “mgdpow.refreshstep” activity (see Sections 10.1.3 and 

10.4.5) can be predicted by the following formula: 

 
4

4 4 1 45 2 46 1 47 1 48 1 49
1

.MSP FBX FBX HIP HOP TUN
j j

i
E N e N e N e N e N e N e

=

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅∑  (N.4) 

In Formula (N.4), 4E  denotes the CPU demand consumed by a number of activity 
instances over a certain observation period. 4ie  is the average CPU demand of the i-th 
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refreshing operation. For a device D, D
jN  denotes the j-th signature parameter, being the 

number of times that the refreshing operation of the D device executes at the j-th step. 

The CPU demands of the refreshing operation of various chips are given in Table N.2.  
Table N.2: The CPU demands of the refreshing operations of various hardware chips 

41e  2.359 

42e 24.1563

43e 18.7397

Sound 
chip 

44e 22.3456

45e 8.7822 FBX 
chip 

46e 1.889 
HIP 
chip 

47e 5.2537 

HOP 
chip 

48e 2.9483 

Tuner 49e 1.8064 

 

The leftmost column enumerates the hardware chips. The middle column lists the 
variables that denote the average CPU demand of a refreshing operation at a particular 
step. The rightmost column enumerates the values of these variables obtained from 
measurements. 

N.5 The “tvfbxdrv.mon” activity 
The CPU demand of the “tvfbxdrv.mon” activity can be predicted by the following 

formula: 

 5 5

5

E e
e =6.77834

N= ⋅
 (N.5) 

In Formula (N.5), 5E  denotes the CPU demand consumed by N activity instances. The 
average CPU demand of a single activity instance equals 5e . 

N.6 The “mgtng.afc” activity 
The CPU demand of the “mgtng.afc” activity can be predicted by the following 

formula: 

 
6 61 1 62 2

61 62

1 2

E ,
=17.8964, =4.47096

min( , ), max(0, ).

e N e N
e e
N k N N N k

= ⋅ + ⋅

= = −
 (N.6) 

In Formula (N.6), 6E  denotes the CPU demand consumed by N activity instances. The 
average CPU demand of a single activity instance equals 61e  for the first k activity 
instances, whereas it equal 62e  for the rest of the instances. For the majority of the 
observed channels, k was equal 6. These first k activity instances adjust the tuner to a 
particular frequency. 
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N.7 The “mgatv.ctr” activity 
The CPU demand of the “mgatv.ctr” activity can be predicted by the following 

formula: 

 
7 71 81

1

7 8

N+ ,
, 0,

=4.69345, =0.1490665.

N

N N N

E e e
X

e e
−

= ⋅ ⋅Ω
Ω = Ω + Ω =  (N.7) 

In Formula (N.6), 7E  denotes the CPU demand consumed by N activity instances. Each 
activity instance consumes at least 71e  units of CPU time. In addition, the activity instance 
may communicate with the SCAVEM device for a random number of times X . 
Measurements showed that the X  variable has a distribution from the exponential family. 
We keep track of all these random numbers of the communications in the NΩ  variable. 

N.8 The “tvhopdrv.hop” activity 
The CPU demand of the “tvhopdrv.hop” activity can be predicted by the following 

formula: 

 8 8

8

,
2.65725.

E e N
e

= ⋅
=

 (N.8) 

In Formula (N.8), 8E  denotes the CPU demand consumed by N activity instances. The 
average CPU demand of a single activity instance equals 8e . 

N.9 The “tvhipdrv.mon” activity 
The CPU demand of the “tvhipdrv.mon” activity can be predicted by the following 

formula: 

 9 9

9

,
=2.54668.

E e N
e

= ⋅
 (N.9) 

In Formula (N.9), 9E  denotes the CPU demand consumed by N activity instances. The 
average CPU demand of a single activity instance equals 9e . 
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Appendix O. Summary of the analysis of I2C 
transactions 

The TV hardware chassis under consideration uses the I2C bus to control various 
hardware chips, which are responsible for hardware processing of the audio and video 
signal. The host CPU is always a “master”, whereas the chips are always “slaves”. This 
means that it is the CPU that defines how many bytes must be read and/or written in each 
transaction. The detailed explanation of the use of I2C protocol can be found in [I2C03]. 

Table O.1 summarizes the measurements of the I2C transactions collected from the TV 
software running in steady state. 

Table O.1: The summary statistics of the demand of I2C transactions 

Chip #Bytes 
Read 

#Bytes 
Written 

#Trans-
actions 

Min Lower 
quartile 

Median Upper 
quartile 

Max Mean Std. dev.

FBX 0 0 2161 0.5784 0.6735 0.676125 0.678425 1.13065 0.6767 0.055 

FBX 0 2 3796 0.7751 0.785375 0.78815 0.793525 10.3042 0.8806 0.4537

FBX 1 2 2588 0.95605 0.96955 0.97345 1.04835 14.0562 1.063 0.3702

FBX 6 2 3843 1.33095 1.3896 8.878 13.0951 20.2121 8.1097 5.9247

HIP 0 16 64 1.66613 1.7183 1.7233 1.72645 2.17132 1.7654 0.1059

HIP 4 0 2855 0.939675 0.95375 0.956775 0.9593 1.92847 1.0029 0.1298

HOP 0 33 62 2.7835 2.79257 2.8037 3.02023 3.4729 2.9384 0.2069

HOP 3 0 4240 0.871925 0.88235 0.88635 0.890375 1.73933 0.9014 0.0733

MSP 0 5 3483 0.943925 0.9536 0.95675 0.9613 1.86392 1.0116 0.1367

MSP 2 3 4716 0.59055 1.0957 1.0999 1.1041 2.0167 1.1404 0.1226

SCAVEM 0 2 415 0.850975 0.904925 0.9064 0.9097 1.80025 0.9604 0.1441

SCAVEM 0 9 61 1.85425 1.85845 1.8615 1.87042 2.58078 1.9259 0.1397

Tuner 0 0 2155 0.597925 0.606575 0.60875 0.61095 1.25835 0.6186 0.0573

Tuner 0 2 218 0.857575 0.90475 0.906325 0.91015 1.63842 0.9626 0.1398

Tuner 0 4 64 1.1727 1.17608 1.17775 1.18005 1.59737 1.1953 0.0719

The first three columns of the table designate the type of an I2C transaction and 
determine how many bytes are written to and then read from a particular chip. The 
remaining columns are as follows (from the left to the right): 

1. the number of the transactions of a particular type observed in the 
measurements; 

2. the minimum observed time for a transaction of a particular type; 
3. the lower (first) quartile of the observed time for a transaction of a particular 

type; 
4. the median of the observed time for a transaction of a particular type; 
5. the upper (third) quartile of the observed time for a transaction of a particular 

type; 
6. the mean observed time for a transaction of a particular type; 
7. the standard deviation of the observed time for a transaction of a particular 

type. 

The median values are greater than the mean values for each type of a transaction. This 
fact indicates that the distributions of the transaction times are skewed towards larger 
values for the transaction of all types. This skewness is attributed to the ability of a ‘slave’ 
device to stretch clocks, if the ‘slave’ device cannot cope with the dataflow and needs 
additional time to process or store the already written/read data. (More details about clock 
stretching can be found in [I2C03].) The hardware chip, being a ‘slave’ device, 
occasionally needs to stretch clocks, which takes more time then for a typical transaction. 
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Table O.1 shows that the time needed to communicate with the FBX chip varies 
significantly for transactions of particular types. This conclusion is supported by a large 
value of the standard deviation, the large difference between the upper and lower quartiles, 
and the large difference between the minimum and maximum times. This variation is due 
to the fact that the FBX chip can perform I2C transactions only at certain intervals within a 
VBI (20 ms). Depending on the time when the CPU initiates an I2C transaction, the delay 
before the FBX responds may lie within the interval from 0 to 20 ms. This delay explains 
the observed variation. 

Table O.1 also lets us see that only a few transaction types are used to communicate 
with the hardware chips. Therefore, there is no much sense in constructing prediction 
models that relate the time needed for I2C transactions to the number of bytes read or 
written. It is more convenient to consider the mean transaction times for individual 
transaction types. We chose the mean times instead of the median times, as the mean ones 
also accounts for possible clock stretching. This choice is valid for all chips, except for the 
FBX chip. 

The FBX chip turned out to influence the timing behavior of the TV software 
significantly. This is why we decide to model the behavior of this chip in more detail. 
Particularly, the FBX chip allows reading data from it only once. The attempt to read data 
for the second time results in the stretching of clocks by the FBX chip until the next VBI 
begins. This behavior is illustrated by Figure O.1. 

Time

The start moment s of VBI's

The state
of the I2C
bus

Idle

Reading form
FBX

 
Figure O.1: The timing behavior of the FBX chip 

Table O.2 shows which of the most CPU consuming activities (see Section 10.1.3) 
may perform transactions of a particular type.  
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Table O.2: The types of I2C transactions performed by the most CPU consuming activities. The first 
three columns denote the type of an I2C transaction. The remaining columns enumerate the activities. A 
symbol ‘X’ at a particular cell means that the activity from the column header performs a transaction of the 
type denoted by the first three columns of the row of the cell. A symbol ‘0’ marks that the activity does not 
perform any transactions of the specified type. 

Chip R W mgtng.afc tvsndqp.wait tvhipdrv.mon tvsndsys.pmp mgdpow.refrstep 

Fbx 0 0 0 0 0 0 0 

Fbx 0 2 0 0 0 0 X 

Fbx 1 2 0 0 0 0 0 

Fbx 6 2 0 0 0 0 0 

Hip 0 1
6 0 0 0 0 X 

Hip 4 0 X 0 X 0 X 

Hop 0 3
3 0 0 0 0 X 

Hop 3 0 0 0 0 0 0 

Msp 0 5 0 X 0 X X 

Msp 2 3 0 X 0 X 0 

Scavem 0 2 0 0 0 0 0 

Scavem 0 9 0 0 0 0 X 

Tun 0 0 0 0 0 0 0 

Tun 0 2 X 0 0 0 0 

Tun 0 4 0 0 0 0 X 

Chip R W tvfbxdrv.mon tvhopdrv.hop mgatv.ctr mgdpow.cperiodic 

Fbx 0 0 0 0 0 X 

Fbx 0 2 X 0 0 0 

Fbx 1 2 X 0 X 0 

Fbx 6 2 X 0 0 0 

Hip 0 1
6 0 0 0 0 

Hip 4 0 0 0 0 0 

Hop 0 3
3 0 0 0 0 

Hop 3 0 0 X 0 X 

Msp 0 5 0 0 0 0 

Msp 2 3 0 0 0 0 

Scavem 0 2 0 0 X 0 

Scavem 0 9 0 0 0 0 

Tun 0 0 0 0 0 X 

Tun 0 2 0 0 0 0 

Tun 0 4 0 0 0 0 
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Appendix P. Details of the validation of the 
prediction of the CPU utilization by simulation 

Table P.1 presents the comparison of the predictions and measurements of CPU 
utilization for various broadcast channels. The predictions are calculated by simulation. 
The first column enumerates the channels. The second one shows the measurement and 
observation time in milliseconds. The third column enumerates the predicted CPU 
utilization for a certain channel. The calculation is performed as explained in Section 1.5. 
Finally, the fourth column gives the measured CPU utilization for each channel. The 
measurement of CPU utilization amounts to the measurement of CPU demand and the 
application of Formula (10.1). The average CPU utilization is calculated as explained in 
Appendix L. 
Table P.1: The comparison of predicted and measured average CPU utilization for various broadcasts 

Broadcast channel Observation time 
(ms) 

Predicted 
utilization 

Measured 
utilization 

Nederland 1 10680 0.163982 0.160547 
Nederland 2 11260 0.162283 0.167087 
Nederland 3 10560 0.163161 0.169501 
RTL 4 12340 0.141729 0.158311 
RTL 5 12520 0.161141 0.163794 
SBS 6 12380 0.179019 0.162234 
Yorin 12080 0.161944 0.167421 
V 8 15240 0.162052 0.169413 
Net 5/Kindernet5 12540 0.161139 0.161285 
UPC Infokanaal 13800 0.16371 0.167335 
Omroep Brabant TV 13220 0.162721 0.163087 
Lokale Omroep 11000 0.163837 0.166411 
Nieuws TV (kabelkrant) 12680 0.16167 0.162684 
VRT 10980 0.164749 0.172133 
KetNet / Canvas 11940 0.162121 0.163586 
National Geographic Channel 16760 0.168868 0.175757 
Discovery Channel 12440 0.161949 0.171821 
The Music Factory (TMF) 13600 0.163369 0.161272 
MTV Europe 18220 0.165081 0.163665 
ARD 1 10440 0.163659 0.173966 
ZDF 2 11380 0.164081 0.170606 
WDR 3 10680 0.163998 0.165159 
RTL Television 12140 0.161729 0.168759 
BBC 1 17120 0.168567 0.162348 
BBC 2 17360 0.167135 0.161079 
CNN International 13160 0.162879 0.162944 
TV 5 Europe 11260 0.162451 0.165745 
TRT International 12940 0.162164 0.166525 
Eurosport 13820 0.163447 0.158719 
Local VRT 15220 0.162133 0.172229 
Average 12992 0.163404 0.165774 
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Table P.2 enumerates the measured and predicted (by simulation) CPU demands for 
each broadcast channel. Additionally, the difference between these CPU demands is given 
in the rightmost column. 

Table P.2: Processor demands obtained by measurements and simulation 

Broadcast channel Predicted CPU 
demand (ms) 

Measured 
CPU demand 
(ms) 

Difference 
(ms) 

Nederland 1 1751.322 1714.637 36.6858 
Nederland 2 1827.301 1881.394 -54.093 
Nederland 3 1722.98 1789.931 -66.9504 
RTL 4 1748.936 1953.558 -204.622 
RTL 5 2017.479 2050.695 -33.2156 
SBS 6 2216.255 2008.457 207.7983 
Yorin 1956.284 2022.446 -66.1622 
V 8 2469.672 2581.854 -112.182 
Net 5/Kindernet5 2020.677 2022.508 -1.83084 
UPC Infokanaal 2259.198 2309.223 -50.025 
Omroep Brabant TV 2151.172 2156.01 -4.83852 
Lokale Omroep 1802.207 1830.521 -28.314 
Nieuws TV (kabelkrant) 2049.969 2062.827 -12.8575 
VRT 1808.939 1890.015 -81.0763 
KetNet / Canvas 1935.725 1953.217 -17.4921 
National Geographic Channel 2830.228 2945.687 -115.46 
Discovery Channel 2014.646 2137.453 -122.808 
The Music Factory (TMF) 2221.812 2193.292 28.5192 
MTV Europe 3007.784 2981.984 25.79952 
ARD 1 1708.6 1816.205 -107.605 
ZDF 2 1867.236 1941.491 -74.2545 
WDR 3 1751.499 1763.898 -12.3995 
RTL Television 1963.39 2048.734 -85.3442 
BBC 1 2885.858 2779.389 106.4693 
BBC 2 2901.455 2796.323 105.1322 
CNN International 2143.481 2144.336 -0.8554 
TV 5 Europe 1829.198 1866.289 -37.0904 
TRT International 2098.396 2154.827 -56.4313 
Eurosport 2258.831 2193.49 65.34096 
Local VRT 2467.657 2621.318 -153.661 

Table P.2 shows that the average CPU utilization tends to be lower for predictions than 
for measured values. It is however necessary to check if the difference between these 
average CPU utilizations is not obtained by chance. To check this, Appendix M explains a 
procedure for comparing average CPU utilizations. We show that this comparison can be 
accomplished by applying the t-test [WEI95] for paired samples to the average CPU 
demands corresponding to the CPU utilization calculated from the measurements and CPU 
utilization predictions. 

The application of the paired t-test requires the differences between the CPU demands 
be normally distributed for small size samples (<30). Figure K.1 shows the normal 
quantile-quantile plot for these differences. 
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Figure P.1: The normal quantile-quntile plot for the differences in the CPU demands 

The normal quantile-quantile plot demonstrates deviation from the normal distribution: 
there is a number of points that lie far away from the “y=x” line. Particularly, there are two 
oultiers, which have values of -204.6 ms and 207.8 ms. These outliers are also 
demonstrated by the box-and-whisker plot in Figure P.2. 
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Figure P.2: The box-and-whiskers plot for the differences in the CPU demands 

The width of the box is equal to the interquartile range, or IQR, which is the 
difference between the third and first quartiles of the data. The IQR indicates the spread of 
the distribution for the data. Whiskers extend from the edges of the box to either the 
extreme values of the data, or to a 1.5 IQR distance of from the median (217 ms), 
whichever is less. Data points that fall outside of the whiskers may be outliers, and are 
therefore indicated by additional lines. 
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Fortunately, as the number of observed channels equals 30, we can still rely on the 
results of the Central Limit Theorem [WEI95], saying the sum of a large number (30 and 
more) of independently identically distributed random variable is a random variable that 
has normal distribution. This means that the t-test is still applicable. 

We formulated the following null hypothesis for the one-sided t-test: there is no 
difference between the measured CPU demand and the CPU demand predicted by 
simulation. The alternative hypothesis was as follows: the predicted CPU demand is less 
then the measured one. The t-test provided the following results: t-statistic = -2.0157 on 29 
degrees of freedom, which gives p-value = 0.0266. The p-value is less than the selected 
significance level of 0.05. Therefore we have to reject the null hypothesis and to accept the 
alternative one. The average difference between the predicted and measured CPU demand 
equals -30.79, and it is significant at the selected significance level. By dividing this 
average difference by the average observation period (see Table K.1), we can conclude 
that the simple analytical formula underestimates the actual CPU utilization by 0.00237 on 
the average, which means the average relative prediction error of -1.43%. 
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Appendix Q. Performance prediction for the 
Professional Systems Case 

Q.1 The quality of the prediction model for the response 
time of the “Archiving” component 

In this section of the appendix, only conclusions from the plots are drawn. For more 
detailed description of the plots, the reader is referred to the Appendix R. 

Figure Q.1 shows that residual is distributed normally and residual standard deviation 
is constant, as there is no structure or trends in the distribution “residual vs. fit”. 

 
Figure Q.1: Residual distribution 

Figure Q.2 confirms the linear dependency between response time and signature 
parameters, as the majority of the points are located close to the “y=x” line. The closer the 
fitted values to the line “y=x”, the better the quality of the model is. 
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Figure Q.2: Response time: measured values versus fitted values 

Figure Q.3 demonstrates high explanatory power of the prediction model, since the 
residual spread is considerably narrower than fitted values spread. The vertical spread of 
the residuals compared to the vertical spread of the fitted values gives an indication of how 
much of the variation is explained by the fit. The wider is the spread of the fitted values, in 
comparison to the residual spread, the better the quality of the model. 
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Figure Q.3: Fitted values and residuals of the response time 
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Q.2 Validation of the prediction formula 
Table Q.1 presents the results of the measurements of the response time of the 

composition. The columns 1-4 contain a number of different invocation patterns for each 
use-case of the “Reviewing” component. “Pat1” has two timeouts (after each action), 
“Pat2” and “Pat3” have only one timeout (after first and second action, respectively), and 
“Pat4” does not have any timeouts. For each use case, the corresponding number of 
resource switches and timeouts were calculated. The response time, including the 
execution times of the components, all timeouts and resource acquisition overhead, is 
calculated by the Formula (11.4). This time is then compared to the measured time. The 
last two columns show the absolute and relative prediction errors, respectively. 

Figure Q.4 describes the fitted (predicted) values of the unknownT  time versus the 
measured values. The closer the fitted values to the plot “y=x”, the better the quality of the 
model is. This plot confirms the linear dependency between unknownT  and signature 
parameters, as the majority of the points are located within the “y=x” plot. 

Figure Q.5 demonstrates high explanatory power of the prediction model, since the 
residual spread is considerably narrower than fitted values spread. 

The vertical spread of the residuals compared to the vertical spread of the fitted values 
gives an indication of how much of the variation is explained by the fit. The wider the 
spread of the fitted values is, in comparison to the residual spread; the better the quality of 
the model is. 

 
Figure Q.4: Fitted values 
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Figure Q.5: Fitted values versus the residual spread of unknownT  



T
ab

le
 Q

.1
: R

es
ul

ts
 o

f m
ea

su
re

m
en

ts
 

PA
T1

PA
T2

PA
T3

 PA
T4

 #R
ES

O
U

R
C

E 
SW

IT
C

H
 

R
ES

O
U

R
C

E 
TI

M
E 

#T
IM

E-
O

U
TS

 
TI

M
EO

U
TS

 
TI

M
E 

TO
TA

L 
TI

M
E 

M
EA

SU
R

ED
 

TI
M

E 
A

B
S.

 
ER

R
O

R
 

R
EL

. 
ER

R
O

R
 

TU
N

K
-

N
O

W
N

 
1 

1 
1 

7 
10

 
32

00
 

5 
50

00
0 

11
90

98
 

14
03

71
 

21
27

3 
0.

15
15

48
 

74
47

3 
4 

1 
2 

3 
23

 
73

60
 

12
 

12
00

00
 

19
32

58
 

19
18

02
 

14
56

 
0.

00
75

91
 

12
59

04
 

5 
1 

3 
1 

28
 

89
60

 
15

 
15

00
00

 
22

48
58

 
21

64
19

 
84

39
 

0.
03

89
94

 
15

05
21

 
2 

0 
3 

5 
13

 
41

60
 

8 
80

00
0 

15
00

58
 

16
83

60
 

18
30

2 
0.

10
87

08
 

10
24

62
 

3 
5 

1 
1 

30
 

96
00

 
13

 
13

00
00

 
20

54
98

 
19

81
56

 
73

42
 

0.
03

70
52

 
13

22
58

 
1 

7 
1 

1 
28

 
89

60
 

11
 

11
00

00
 

18
48

58
 

17
94

03
 

54
55

 
0.

03
04

06
 

11
35

05
 

1 
5 

1 
3 

22
 

70
40

 
9 

90
00

0 
16

29
38

 
16

28
61

 
77

 
0.

00
04

73
 

96
96

3 
2 

2 
1 

5 
17

 
54

40
 

8 
80

00
0 

15
13

38
 

15
61

82
 

48
44

 
0.

03
10

15
 

90
28

4 
3 

2 
2 

3 
22

 
70

40
 

11
 

11
00

00
 

18
29

38
 

18
17

11
 

12
27

 
0.

00
67

52
 

11
58

13
 

4 
2 

2 
2 

26
 

83
20

 
13

 
13

00
00

 
20

42
18

 
19

87
70

 
54

48
 

0.
02

74
09

 
13

28
72

 
6 

0 
3 

1 
29

 
92

80
 

16
 

16
00

00
 

23
51

78
 

23
70

62
 

18
84

 
0.

00
79

47
 

17
11

64
 

2 
6 

1 
1 

29
 

92
80

 
12

 
12

00
00

 
19

51
78

 
18

95
27

 
56

51
 

0.
02

98
16

 
12

36
29

 
2 

1 
1 

6 
14

 
44

80
 

7 
70

00
0 

14
03

78
 

14
79

55
 

75
77

 
0.

05
12

12
 

82
05

7 
2 

6 
1 

1 
29

 
92

80
 

12
 

12
00

00
 

19
51

78
 

18
95

87
 

55
91

 
0.

02
94

9 
12

36
89

 
2 

2 
5 

1 
21

 
67

20
 

12
 

12
00

00
 

19
26

18
 

18
93

58
 

32
60

 
0.

01
72

16
 

12
34

60
 

7 
1 

1 
1 

34
 

10
88

0 
17

 
17

00
00

 
24

67
78

 
23

49
61

 
11

81
7 

0.
05

02
93

 
16

90
63

 
5 

2 
2 

1 
30

 
96

00
 

15
 

15
00

00
 

22
54

98
 

21
66

49
 

88
49

 
0.

04
08

45
 

15
07

51
 

5 
1 

2 
2 

27
 

86
40

 
14

 
14

00
00

 
21

45
38

 
20

76
49

 
68

89
 

0.
03

31
76

 
14

17
51

 
1 

3 
1 

5 
16

 
51

20
 

7 
70

00
0 

14
10

18
 

14
61

13
 

50
95

 
0.

03
48

7 
80

21
5 

2 
1 

3 
4 

16
 

51
20

 
9 

90
00

0 
16

10
18

 
16

45
64

 
35

46
 

0.
02

15
48

 
98

66
6 

  



 275

Appendix R. Residual diagnostic plots 
This appendix describes a number of residual diagnostic plots typically used for 

checking the assumptions of linear regression [WEI95], [MON01], [KO02], and [MR03]. 
These are the following plots: 

1. Residual versus fit 
2. Square root of absolute residual versus fit 
3. Response versus fit 
4. Residual normal plot 
5. Residual-fit spread 
6. Cook’s distance 

The sections demonstrate the use of those plots by means of a simple example. We 
artificially constructed observation data based on the following formula: 
 1 21.0 2.0 3.0 .i i i iy x x e= + ⋅ + ⋅ +  (R.1) 

In Formula (R.1), iy  denotes the independent variable that needs to be predicted. In 
chapter VI, this variable describes the static quality attribute; in the rest of the chapters, it 
corresponds to a particular performance measure. Independent variables are denoted as 1ix  
and 2ix . These variables correspond with diversity parameters from chapter IV and with 
signature parameters from the rest of the chapters. Finally, ie  is a normally distributed 
random variable with mean zero and a particular constant standard deviation. This random 
variable models measurement errors. In this experiment, we arbitrary chose the value of 
the standard deviation 0.25σ = . 

We generated a sample of observation data consisting of 100 points as follows. For 
each point i, the values of 1ix  and 2ix  are obtained from a uniform random number 
generator in the range 0.0 to 1.0. The value of iε  is calculated by generating a normally 
distributed variable with mean zero and standard deviation 0.25σ = . The values of the 
independent variable iy  are calculated by formula (R.1). 

We fitted a (multiple) linear regression model to the observation data constructed as 
outlined above. Of course, we used the form of the model that resembles Formula (R.1): 
 0 1 1 2 2

ˆ ˆ ˆ
i i i iy x xβ β β ε= + ⋅ + ⋅ + . (R.2) 

In this formula, ˆ
jβ  denote estimates of the true regression coefficients jβ , and iε  are 

residuals. For the example from Formula (R.1), 0 1.0β = , 1 2.0β = , and 2 3.0β = . 

After applying the S-Plus linear regression tool [KO02] to the observation data, the 
following results were obtained. The multiple 2R -coefficient equals 0.95, which indicates 
that the obtained model explains the observed variation of the dependable variable iy  well. 
Moreover, the F-test for overall regression indicated that the regression is significant at the 
significance value 0.05 (p-value equals 0.000). The residual standard error eσ  equals 
0.2532 (on 97 degrees of freedom). Noticeable is the fact that eσ  estimates quite well the 
chosen standard deviation 0.25σ =  of the measurement error. Finally, the estimates of 
regression coefficients are as follows: 0

ˆ 1.0023β = , 1̂ 2.0236β = , and 2 3.0589β = . These 
estimates are significant at the significance level 0.05 (the corresponding p-values equal 
0.000). 
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We can conclude that the obtained regression model has high quality, as (1) it has high 
explanatory power (the value of 2R -coefficient is close to one), and (2) the overall 
regression and all regression coefficients are significant. Notice that this conclusion is also 
supported by the fact that the estimates ˆ

jβ  are close the true regression coefficients jβ . 
The difference is in the order of few percents. 

However, this conclusion still does not allows us to apply the “full-fledged” linear 
regression analysis (e.g., making inferences about the confidence intervals of regression 
coefficients and mean values of predictions), as a number of the vital assumptions of linear 
regression have not been checked yet. These assumptions are the following [WEI95], 
[MON01], [KO02], and [MR03]: 

7. The normality of the residual distribution 
8. The constancy (homoscedasticity) of the residual standard deviation 
9. The absence of outlying observations (so called outliers) 
10. The absence of influential observations 

There are extra assumptions (e.g., the absence of serial correlation) that need to be 
checked. We do not consider these assumptions in this appendix, as they can be hardly 
checked by means of residual diagnostic plots. Within the context of Formula (R.1), the 
subsequent sections exemplify the use of the residual diagnostic plots enumerated above 
and the correct shape of those plots. 

R.1 Residual versus fit 
Figure R.1 demonstrates the “Residual versus fit” plot [KO02] for Formula (R.1). The 

x-axis is the fitted value, i.e., a predicted value of the independent variable. The y-axis 
denotes the corresponding residuals. 
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Figure R.1: “Residual versus fit” plot 

Plots of these types are used to check assumptions 7 (the normality of the residual 
distribution) and 8 (the constancy of the residual standard deviation). The first assumption 
is likely to be violated, if points in this plot follow a certain pattern with a recognizable 
structure in it (e.g., distinguishable groups of points such as lines). The tendency of points 
to stay closer (or further) to (from) the x-axis with the increase of the fitted value indicates 
the violation of the second assumption. 
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Figure R.1 demonstrates a good example of the case when both the first and second 
assumptions are satisfied: there is no visible structure in the residuals and there is not 
tendency for decreasing or increasing of the residual, depending on the fitted value. 

R.2 Square root of absolute residual versus fit 
Figure R.2 demonstrates the “Square root of absolute residual versus fit” plot [KO02] 

for the example (R.1). The x-axis is the fitted value, i.e., a predicted value of the 
independent variable. The y-axis denotes the square root of the absolute value of the 
corresponding residuals. 
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Figure R.2: “Square root of absolute residual versus fit” plot 

Plots of this type are used to check for the violation of assumption 9, i.e., the absence 
of outlying observations. The existence of a few points from the upper part of the plot that 
lie far apart from the rest of the point indicate the presence of outlying observations. 

Figure R.2 shows that example (R.1) does not have any outliers. The most outer points 
27, 28 and 63 are close enough to the rest of the points. Those points would be outliers, if 
the square roots of the absolute values of the corresponding residuals were greater, e.g., 
than 1.0. 
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R.3 Response versus fit 
Figure R.3 demonstrates the “Response versus fit” plot [KO02] for the example (R.1). 

The x-axis is the fitted value, i.e., a predicted value of the independent variable. The y-axis 
denotes the actual (measured) value of the independent variable. 
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Figure R.3: “Response versus fit” plot 

Plots of this type are primarily used for checking the assumption of linear dependency 
between the independent variable and dependent ones. All points must lie around the 
diagonal line “y=x” and there should be no visible structure in their location pattern. The 
location pattern that is different from a “blurred” line (e.g., U-shape) signifies the violation 
of the linearity assumption. A “parallel lines” location pattern may be caused by a missing 
independent variable. 

Figure R.3 is a perfect example of the correct “Response versus fit” plot. All points are 
located around the “y=x” line, without any visible dependence on the fitted value.  

R.4 Residual normal plot 
Figure R.4 demonstrates the Residual normal plot [KO02] for the example (R.1). The 

x-axis enumerates quantiles of the standard normal distribution. The y-axis list the 
residuals. 

Plots of this type are used to check assumption 7, i.e., the normality of the residuals. 
These plots are constructed as follows. Consider observation data that have N points. 
Consequently, the number of the residuals equals also N. These residuals are sorted in the 
ascending order and paired with the N quantiles of the standard normal distribution sorted 
in the same order. Each obtain pair is depicted in the plot. 

We conclude that the residuals have the normal distribution, if they lie close to the 
“y=x” line in this plot. Violation of this pattern indicates the non-normality of the residual 
distribution. 
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Quantiles of Standard Normal
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Figure R.4: Residual normal plot 

Figure R.4 exemplifies the residuals that follow the normal distribution quite well. This 
fact allows us to conclude that assumption 7 is not violated in the example (R.1). 

R.5 Residual-fit spread 
Figure R.5 demonstrates the “Residual-fit spread” plot for the example (R.1). The y-

axes denotes the fitted values and residuals in the left and the right subplot, respectively. 
The x-axes enumerate the corresponding f-values. The f-values are calculated as follows: 

 ( ) min

max min

.x xf x
x x

−
=

−
 (R.3) 

In Formula (R.3), ( )f x  denotes the f-value for the point x. In the left subplot, x denotes 
the fitted values. In the right subplot, it denotes the residuals. Finally, minx  and maxx  are the 
minimum and the maximum, respectively, value of x. 

Plots of this type are used to judge the explanatory power of the overall regression. 
These plots are in fact graphical analogues of the 2R -coefficient. The explanatory power is 
checked as follows. The spread (the difference between ( )1 1.0f −  and ( )1 0.0f − ) of the 
residuals is compared to the spread of the fitted values. The letter must be significantly 
larger then the former to ensure the high explanatory power of the model. 

Figure R.5 demonstrates that the model fitted for the example (R.1) indeed has high 
explanatory power. This conclusion is also supported by the high value of the 2R -
coefficient ( 2R =0.95). 
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Figure R.5: “Residual-fit spread” plot 

R.6 Cook’s distance 
Figure R.6 demonstrates the “Cook’s distance” plot for the example of Formula (R.1). 

The x-axis enumerates the indexes of the points from the observation data. The y-axis 
denotes the corresponding Cook’s distances.  
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Figure R.6: “Cook’s distance” plot 

The Cook’s distance measure [MR03] is a statistic calculated for a certain point on the 
basis of excluding this point from the observation data and fitting an auxiliary regression 
model without the excluded point. The estimates of the estimates of the regression 
coefficients of this model are used together with the corresponding estimates of the 
original regression model (one that includes all observation data) to calculate the Cook’s 
distance measure. These calculations involve matrix operations and are not described in 
this appendix. For more details, the reader is referred to [MR03]. 
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Plots of this type are used to check for the violation of assumption 10, i.e., the absence 
of influential observations. The influential observations are those observations that 
significantly influence the values of the regression coefficients. In other words, the 
regression coefficients are sensitive to small changes in the values of these influential 
observations. Points that have the Cook’s distance greater then 1.0 are considered 
influential observations. 

Obviously, Figure R.6 demonstrates that the model fitted for Formula (R.1) has no 
influential observations, as the Cook’s distance does not exceed 0.08 for all points from 
the observation data. 
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Glossary 
Activity A unit of concurrency in software systems (e.g., thread, process, 

etc.) 
Activity instance An instance of an activity, a unit of scheduling 
Additive static 
quality attribute 

A static QA is additive when the QA of a component composition 
can be calculated by summing up the corresponding QA’s of the 
constituent components. 

Alternative 
hypothesis 

The alternative hypothesis, H1, is a statement of what a statistical 
hypothesis test is set up to establish. 

Analytical model The model that describes the dependencies by an algebraic equation 
(e.g., formulas, Markov models, etc.) 

APPEAR Analysis and Prediction of Performance for Evolving Architectures

Application An application is an independent software unit responsible for a 
specific part of functionality. 

Arrival pattern An arrival pattern describes the relationship between release times 
of different instances of the same activity. 

Blocking Causing a process to incur waiting time that is not attributable to 
preemption from higher priority processes (e.g., by occupying a 
required resource) [KRP93] 

Calibration A process of construction of the statistical prediction model by 
fitting it to the measurements 

Categorical 
parameter 

A parameter that can have only finite number of values 

Component A software component is a unit of composition with contractually 
specified interfaces and explicit context dependencies only [Szy98].

Component 
binding 

The act and/or result of connecting the interfaces of components 

Component 
diversity 

Options of a component to be tuned to its environment. A single 
aspect of this tuning is represented by a diversity parameter. 

Component 
hierarchy 

A ranked series of components. Usually, we mean the containment 
hierarchy of components, that is, a series of components that 
include one another. 

Component model A set of rules that specify how to develop, use, and connect 
software components 

CBSE  Component-based software engineering; a software engineering 
discipline concerned with building software by assembling 
(composing) software from components 

CFG Control Flow Graph, a notation for modeling the control flow of 
artifacts such as functions, activities, etc. 
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Composition A process and/or a result of combining of several independent 
entities (applications, components, etc.); often entities are combined 
to execute a common task. The result of this combination is also 
referred to as an assembly. 

Confidence 
interval 

A confidence interval gives an estimated range of values which is 
likely to include an unknown parameter. This range is calculated 
from a given set of sample data. 

CPU Central Processing Unit 
Diversity 
parameter 

A variable whose value allows tuning a particular aspect of a 
component. For instance, a diversity parameter may select the 
language in which a component reports messages to the user. 

Dynamic quality 
attribute 

Dynamic quality attribute is a run-time attribute, that is, it may 
change in run-time. For its estimation, it is important to consider 
not only the way that components are bound, but also the way that 
they interact with the environment and each other. 

Effects of a factor The difference between the observed values of the dependent 
variable at a number of factor levels 

Factor A factor of an experiment is a controlled independent variable; a 
variable whose levels are set by the experimenter. 

Factor level The value of a factor 
File A collection of runs for a single patient; there can be multiple files 

of one patient. 
FLOF Full Level One Facilities; the type of a Teletext navigation system 
F-statistic A statistic, which needs to be calculated to test certain hypotheses 

such as the significance of overall regression. This statistic has the 
F-distribution. 

Hypothesis test Setting up and testing hypotheses is an essential part of statistical 
inference. In order to formulate such a test, usually some theory has 
been put forward, either because it is believed to be true or because 
it is to be used as a basis for argument, but has not been proved. 

Image A single medical image retrieved during patient acquisition process
Image processing 
setting 

An attribute of the image (e.g., brightness, contrast, etc.) 

Influential 
observation 

A single observation point (measurement) to small changes of 
which the values of regression coefficients are sensitive 

Interaction of 
factors 

The dependence of the effect of one factor on the level of another 
factor 

Invocation pattern An invocation pattern describes the order and the frequency of 
invocation of the operations of a particular component. 

Koala The component model used for the software development for 
resource-constrained systems (e.g., TV's) 

Least-squared 
error approach 

An approach for estimating the values of a parameter in regression. 
This approach is based on the minimization of the sum of squares 
of prediction errors calculated for the observed points. 

MIP Magazine Inventory Page 
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MISS Medical Imaging Software System. This system is reponsible for 
medical image acquisition, viewing, archiving, etc.  

MOT Magazine Organization Table 
MSD Message Sequence Diagrams 
Null hypothesis The null hypothesis, H0, represents a theory that has been put 

forward, either because it is believed to be true or because it is to be 
used as a basis for argument, but has not been proved. 

Outlier or outlying 
observation 

A single observation point (measurement) that is significantly 
distant from the majority of other observations. 

Performance A software quality attribute that shows to what degree the software 
meets its objectives for timeliness; timeliness includes two 
important aspects: responsiveness and scalability [SW02]. 

Preemption The act of reallocating a resource to a higher priority process when 
it becomes ready to execute during the execution of a lower priority 
process [KRP93]. 

Prediction Estimation of results of new experiments, given the inputs only, by 
means of statistical model based on the results and inputs of the 
previous experiments. 

Prediction interval An interval that quantifies the degree of uncertainty of a prediction 
Prediction model A model that is used for estimation of the properties of the future 

systems, usually based on the properties of the existing systems 
Provides interface A provides interface of a component describes the functionality 

provided by this component to other components. 
p-value The probability value (p-value) of a statistical hypothesis test is the 

probability of getting a value of the test statistic as extreme as or 
more extreme than that observed by chance alone, if the null 
hypothesis H0, is true. 

Quality attribute The attribute of a software system that does not relate to the 
functionality but to quality (e.g, reliability). This attribute usually 
cannot be pinpointed to a particular part of a system but it is a 
property of a system as a whole [Bos00]. 

Real parameter A parameter that may have values from the set of Reals. 
Regression The mathematical analysis of numerical data to identify a formula 

that best fits the trends in the data - often with the aim of successful 
prediction of future data. 

Requires interface A requires interface specifies the functionality that component 
requires from other components. 

Residual Residual (or error) represents unexplained (or residual) variation 
after fitting a regression model. It is the difference (or left over) 
between the observed value of the variable and the value suggested 
by the regression model. 

Response time The time spent in handling an event by a software system; the time 
between reception of an event and generation of a response 

Run A collection of images of a patient obtained during a single 
acquisition session 
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Scheduling policy A set of rules that define the order in which activities (processes, 
threads, etc) are allocated processors and other resources 

Service call, 
signature call 

Invocation of a service of a Virtual Service Platform 

Signature instance A value of the signature parameters forming a particular signature 
type 

Signature instance 
extraction 

A process of calculation of the values of signature parameters of a 
particular signature type 

Signature 
parameter 

A single parameter of a signature type 

Signature type A signature type of an application is a set of parameters that 
provide sufficient information for performance prediction 

Signature type 
identification 

A process of identification of signature parameters 

Significance level The significance level of a statistical hypothesis test is a fixed 
probability of wrongly rejecting the null hypothesis H0, if it is in 
fact true. 

Simulation model The model that represents the software behavior in a simplified, 
high-level form 

Software 
architecture 

The software architecture of a program or computing system is the 
structure or structures of the system, which comprise software 
components, the externally visible properties of those components 
and the relationships among them [BCK03]. 

Static quality 
attribute 

Static QA describes the properties of a component composition that 
do not change at run-time. This QA is determined by the structure 
of software, but not by its behavior. 

Statistic A statistic is a quantity calculated from a sample of data. Its value is 
often used to decide whether or not the null hypothesis should be 
rejected in a hypothesis test. 

Teletext A European standard service for transmitting textual information to 
display it on a TV set 

TOP Table of Pages 
Tracing A process of printing the selected information into a file during 

program execution 

t-statistic A statistic, which needs to be calculated to test certain hypotheses 
such as the equality of the means of two populations. This statistic 
usually has the t-distribution. 

Use case One of the possible instances of user interaction with the software 
system 

VBI Vertical Blanking Interval 
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VSP Virtual Service Platform, an abstract representation of the part of 
software application; it is considered as a platform that provides 
independent services to another part of the application and consists 
of stable parts only. 

VPS Video programming System 
WSS Wide Screen Signaling 
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Samenvatting 
Dit proefschrift omvat de resultaten van het promotie-onderzoek van E. Eskenazi en A. 

Fyukov, uitgevoerd binnen het STW1 AIMES (Architectural Modeling of Embedded 
Systems) project. Dit project wordt uitgevoerd door de Technische Universiteit Eindhoven 
in samenwerking met haar industriele partners Philips Research, Philips Semiconductors 
en Philips Medical Systems. Het proefschrift is gebaseerd op acht publicaties en een 
Philips-intern technisch verslag. 

De focus van het onderzoek lag bij het tijdens de architectuur ontwerp fase bepalen van 
software kwaliteitsattributen (bijvoorbeeld aanpasbaarheid, onderhoudbaarheid en 
schaalbaarheid) in het algemeen en performance in het bijzonder. Er bestaan slechts enkele 
systematische processen voor het in een vroeg stadium bepalen van die kwaliteitsattributen 
die gerelateerd zijn aan de executie eigenschappen van component-gebaseerde software. 
Zulke processen beslaan ten hoogste een kleine subset van alle mogelijke 
kwaliteitsattributen en ze werken slechts in een zeer specifieke context. Bovendien is de 
ontwikkelingsfase gewoonlijk gericht op de correctheid van software, terwijl niet-
functionele eigenschappen vaak pas een rol gaan spelen tijdens de integratiefase en de 
testfase. Dit resulteert maar al te vaak in grondig herontwerp van de software of hardware 
om aan niet-functionele eisen te kunnen voldoen of, erger nog, in ad-hoc aanpassingen die 
zorgvuldig ontworpen kwaliteitsaspecten onbedoeld om zeep helpen. 

Kwalititeitsattributen komen vaak boven water op systeem-niveau, wat het onmogelijk 
maakt om ze in bepaalde delen van de software terug te vinden. Dit maakt het vroegtijdig 
bepalen van kwaliteitsattributen een complexe taak, en dan vooral in component-
gebaseerde software architecturen: de software is doorgaans niet in componenten 
opgedeeld op basis van kwaliteits-, maar van functionele overwegingen. 

Ons onderzoek is gebaseerd op case studies in twee verschillende industriele 
domeinen: Consumenten Electronica (CE) en Professionele Systemen (PS). E. Eskenazi 
onderzocht de software architectuur van moderne TV systemen, terwijl A. Fyukov zich 
richtte op de software voor een medisch onderzoekssysteem. 

In beide domeinen is een aantal eisen met betrekking tot kwaliteitsattributen 
verzameld. Een van de meest relevante dynamische kwaliteitsattributen in beide domeinen 
is performance, waaraan voorheen te weinig aandacht werd besteed. Daarom werd 
besloten om een in de industrie toepasbare methode te ontwikkelen die het inschatten en 
voorspellen van performance mogelijk maakt. Daarnaast werd het benodigde geheugen 
van een TV geselecteerd als statisch kwaliteitsattribuut, aangezien TV’s strikte 
beperkingen stellen aan de grootte van dit geheugen. 

Het AIMES project heeft twee methoden opgeleverd: a) een methode om de waarde 
van statische kwaliteitsattributen van component-gebaseerde software architecturen in te 
schatten, en b) een methode om de performance van software architecturen in 
ontwikkeling te voorspellen (de APPEAR methode). Beide methoden leiden tot 
verbeteringen op het gebied van de kwantitatieve evaluatie van kwaliteitsattributen van 
component-gebaseerde software architecturen. De meest in het oog lopende gezamenlijke 
eigenschap van beide methoden is de flexibele selectie van het abstractieniveau, welke een 
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afweging mogelijk maakt tussen de specificatie en modelleer inspanning enerzijds, en de 
nauwkeurigheid van de evaluatie gedurende systeemontwerp anderzijds. 

De eerste methode biedt een innovatieve manier om statische kwaliteitsattributen te 
bepalen voor complexe, component-gebaseerde architecturen met vele configureerbare 
componenten en verfijnde binding. Deze methode stelt een architect in staat om de 
complexiteit van het modelleren te beperken door middel van het rationeel selecteren van 
significante factoren zoals de configuratie parameters van componenten. De methode is 
echter niet toepasbaar op het bepalen van niet-additieve statische kwaliteitsattributen, noch 
op component modellen met endogenous binding (zoals bijvoorbeeld COM.) 

De APPEAR methode biedt het beste van twee werelden: gedragssimulatie en 
statistische modellen. Simulatie geeft inzicht in voor performance relevante aspecten, 
terwijl de statistische modellen de methode minder bevattelijk maken voor een 
combinatorische explosie van details. Deze methode biedt flexibiliteit waar het gaat om het 
kiezen van de componenten welke beschreven worden door middel van een gedragsmodel 
en welke statistisch worden gemodelleerd. De APPEAR methode is echter niet toepasbaar 
op componenten die uit het niets ontwikkeld worden, en biedt slechts betrouwbare 
resultaten voor soortgelijke componenten. Bovendien zijn uitgebreide metingen nodig voor 
het construeren van de statistische modellen. 

Beide methoden hebben hun nut bewezen tijdens case studies met betrekking op 
industriele software. De eerste methode werd toegepast in het Consumenten Electronica 
domein om het statische geheugengebruik van TV software te bepalen. Het resultaat had 
een relatieve inschattingsfout van 4%. Dit experiment werd in samenwerking tussen beide 
promovendi uitgevoerd. 

De APPEAR methode is zowel in het CE als het PS domein geverifieerd. E. Eskenazi 
gebruikte deze methode om het gemiddelde CPU gebruik en de executietijd van Teletext 
software te voorspellen. A. Fyukov voorspelde de gemiddelde responstijd van software om 
medische beelden te bekijken. Hoewel deze domeinen verschillen, gaf de APPEAR 
methode een relatieve voorspellingsfout van minder dan 20% in beide, wat in de praktijk 
goed genoeg is. 
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Summary 
This thesis summarizes the results of the work performed by two Ph. D. students– E. 

Eskenazi and A. Fyukov– in the context of the STW2 AIMES (Architectural Modeling of 
Embedded Systems) project. This project was conducted by the Technical University of 
Eindhoven in close cooperation with its industrial partners Philips Research, Philips 
Semiconductors, and Philips Medical Systems. The thesis is based on eight publications 
and one internal Philips technical report. 

The research focused on the assessment, during the architecting phase, of software 
quality attributes (e.g. adaptability, maintainability and scalability) in general and 
performance in particular. There are only a few systematic approaches for the early 
assessment of quality attributes related to the execution properties of component-based 
software. Those approaches cover only a small subset of quality attributes and operate in a 
very narrow context. Moreover, during development, the focus is usually on software 
correctness, whereas quality considerations are often postponed until integration or testing 
phases. This has often resulted in major redesign effort spent on tuning the software or 
hardware in order to meet quality requirements, or even worse, in ad-hoc changes that ruin 
all other carefully tuned quality attributes. 

Quality attributes often emerge at the system level, making it impossible to localize 
them in particular parts of software. This makes early assessment of quality attributes 
complicated, especially in component-based software architecting: software is usually 
componentized not with respect to quality attributes, but on the basis of functionality. 

Our research was based on case studies in two different industrial domains: Consumer 
Electronics (CE) and Professional Systems (PS). E. Eskenazi studied the software 
architecture of modern TV sets in the former domain, while A. Fyukov considered the 
software for a medical imaging system in the latter domain.  

For each domain, a set of requirements for quality attributes was collected. One of the 
most relevant dynamic quality attributes for both domains is performance, to which 
insufficient attention had hitherto always been paid. It was therefore decided to develop an 
industrial-strength method for performance estimation and prediction. In addition, the 
memory demand of a TV, being a static quality attribute, was selected for investigation, as 
TV sets have stringent memory constraints. 

The AIMES project resulted in two methods: a) a method for estimation of the static 
quality attributes of component-based software architectures, and b) a method for 
predicting the performance of evolving software architectures (APPEAR method). Both 
methods lead to improvements in the field of quantitative evaluation of quality attributes of 
component-based software architectures. Their most remarkable common feature is the 
flexible selection of the level of abstraction, which allows tradeoffs between specification 
and modeling effort and evaluation accuracy during system design. 

The first method is an innovative solution to the problem of the assessment of static 
quality attributes of complex component-based architectures with many configurable 
components and sophisticated binding. The method enables an architect to decrease the 
modeling complexity through rational selection of significant factors such as component 
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configuration parameters. This method can however not be used for assessing non-additive 
static quality attributes or for component models with endogenous binding (e.g., COM). 

The APPEAR method combines the best of two worlds: behavior simulation and 
statistical modeling. The former provides insight into performance-relevant aspects, 
whereas the latter makes the method less susceptible to combinatorial explosion of details. 
The method allows flexibility in choosing which components are to be described by a 
behavioral model and which are to be modeled by statistical means. The APPEAR method 
does however not work for components developed from scratch, and it provides reliable 
estimates for similar components only. In addition, construction of the statistical models 
involves extensive measurements. 

Both methods were validated by case studies on industrial software. The first method 
was applied in the Consumer Electronics domain to assess the static memory consumption 
of TV software. The results had a relative estimation error of 4%. This experiment was 
performed by both Ph. D. students together. 

The APPEAR method was verified in both CE and PS domains. E. Eskenazi used the 
method to predict the average CPU utilization and execution time of the Teletext software, 
while A. Fyukov predicted the average response time of the viewing software used for 
medical images. Although these domains differ, the APPEAR method exhibited a relative 
prediction error of less than 20% in both of them, which is good enough for practical 
purposes. 
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