

A formal model for system specification

Citation for published version (APA):
Hee, van, K. M., Houben, G. J. P. M., Somers, L. J. A. M., & Voorhoeve, M. (1988). A formal model for system
specification. (Computing science notes; Vol. 8808). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bebd335f-b2bd-4e05-b982-b29ebc8c4e63

A Formal Model for System
Specification

by

K.M. van Hee, G.J. Houben,
L.J. Somers, M. Voorhoeve.

88/08

April 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing Science Section of the Department

of Mathematics and Computing Science of Eindhoven University of Technol

ogy.
Since many of these notes are preliminary versions or may be pu!>lished else-

where. they have a limited distribution only and are not for review.

Copies of these notes are available from the author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB Eindhoven

The Netherlands
All rights reserved

editor: F.A.J. van Neerven

A Formal Model for System Specification

K.M. van Hee. GJ. Houben. LJ. Somers. M. Voorhoeve

Eindhoven University of Technology

ABSTRACT

In this paper we present a frameworlc for modeling and specifying systems. in particular infor

mation systems. The framework consists of a fonnal model for distributed systems and a

language for specifying the components of the model. The language consists of an imperative

part for specifying state components and their transitions and a functional part where functions
and datatypes are given. It may be used to describe non-first-normal-fonn data structures and to

specify recmsive queries. It also resembles (after adding some syntactic sugar) the conventional

mathematical notations; it is related to the languages of the Z and VDM methods [BJ82,HA87aj.
However, in Z and VDM specifications are descriptive, whereas ours are consbUctive. Therefore

our specifications can be executed; this is a very attractive way for potential users (lacking back

ground and training to read formal specifications) to validate a specification.

In section 1 we give an overview to the framework and it<; usage. In section 2 we describe the

model fonnally and in section 3 we introduce the language. Finally in section 4 we present an
example of a distributed database system specified by our method.

1. Introduction

Database design is the specification of a system that is able to store and retrieve information from its
environment. We might model this system as an abstract machine. This machine has at each moment
an element of a set (called database urtiverse) as its state and can be activated by its environment. An
activation consists of a piece of data; in reaction the machine performs a state transition and/or sends
data to its environment.
Database design usually is seen as just the specification of the state space or database universe. Within

the framework of a data model. one specifies a large se~ then this oet is restricted by adding constraints.
Although this is an essential step, the (ofter. more complex) transition mechanism has to be considered
too.

At a more detailed level, a system can be described as a set of processors and data stores. A processor
can be activated by the environment or by another processor (even self-activation is possible) and stores
can be accessible by a single processor or shared by several processors. This seems to be the natural
way to describe e.g. distributed database systems. For the specification of a system as a networlc of
stores and processors, there exist methods like SADT [R077], ISAC [LU79], and Yourdon [W ASS].
These methods have no rigorous semantics and therefore are not suitable for formal specification.
Another problem is that their data modeling capacities are weak.

- 2 -

.
The dynamics of a system is specified in a process model. There are two kinds of dynamics: data flow
and control flow. The methods mentioned above stress data flow, whereas control flow is often modeled
by Petri nets [PE81] or finite state machines [HAS?]. In [H088], these methods have been combined.
Our definition of control flow is the transport of data from one processor to another, whereby the latter
is triggered. Data flow means transport of data between a processor and a store.

Our framework integrates three fundamental aspects of system specification: data strocturing, data flow

and control flow. It can be applied to (monolithic or distributed) database systems, but also to other
fields. We call systems that fit into our framework Distributed Event Systems (DES). The term event is
used to describe the triggering of a state transition. A DES is always a closed system, so a target sys
tem and its environment together form a DES. Of course we will not specify all components of the
environment. We shall treat this subject later in more detail.

A DES is completely determined by a seven-tuple <S,IS,OS,C,TC,M,R>.

Before we explain the meaning of these components we give two diagrams of an example of a DES. It
is possible to combine the two diagrams into one.

A. dataflow

~~
control flow

Fig. 1

The triangles p,q,r,s represent processors. Each processor k consists of two functions: M. and R •. The
circles a ,g represent stores. They may have simple stroctures like a calendar date, or complex stroc
tures like a database. The connections between processors and stores mean that a processor may access
the store. If there is an arrow in the direction of the store then it acts as output for the processor, if an
arrow points to the processor it acts as input. Note that there is no direct data flow between two pro
cessors. However, it is possible to transmit data from one processor to another as indicated in the

second diagram. Each processor has one input channel and it may have several output channels.
For each channel, the strocture of the values that may pass through it is determined. Channels may join.
Processors have a single input channel; they are triggered by the values arriving through that channel.
Note that the type of a channel may allow very complex values. The values passing through a channel
are called triggers.

- 3 -

In Fig. I we have already met three of the components of the seven·tuple:

TC is a function that assigns to each processor a set of output channel names (processor names);

in the picture for p: p,r, for q: r,s, etc.

IS is a function that assigns to each processor a set of names of (stored) variables that are used as

input variables for that processor; for p: a, for q: b,c, for r: e, etc.

as is a function similar to IS, it assigns to each processor a set of names of output variables; for

p: a,b, for q: c,d, for r: d,e, etc.

Now we will explain Sand C.

S is a set-valued function, where domeS) is the set of names of stored variables (stores). Si is a

set that is called the type of the variable with name i.

C is a set-valued function, where dom(C) is the set of processor names. Ck is called the type of

the triggers passing through the input channel of processor k.

Finally we tum to M and R .

M is a function-valued function, where dom(M) is the set of processor names. For a processor k,

Mk is a function with as arguments the store names of IS .. their values, and a trigger value taken

from C.. The result of M. is a partial function which assigns to some stores from as. a new

value.

M. is called the manipulator of processor k because it may modify the stored variables.

R is also a function-valued function, where dom(R) is the set of processor names. For a proces

sor k, R. is a function with the same arguments as Mk • Its result, however, is a partial function

that assigns a value to some triggers of the set TC •.

R. is called the reactor of processor k because it produces triggers.

We will describe the behavior of a DES in an informal way. For every input channel there is a multiset

of triggers. At each moment a processor k having a non-empty multiset of triggers may commit a tran

sition which consists of the following actions:

a. selection of a trigger from the available triggers,

b. simultaneous computation of M. and R. with as arguments the values of the input stores and the
trigger value.

At the same moment, several processors may commit, a transition, however no two processors sharing a
stored variable that is an output variable, may commit at the same moment. It is required that each pro

duced trigger value is taken into execution at some moment, so a system must be starvation-free.

We do not specify how processors select triggers from their multiset, nor how they control the exclusive

updating of output variables. It is left to the implementation to choose a solution for these problems. It

is easy to find a solution by committing transitions for processors sequentially, however it is often

desired to exploit parallelism. Since for a DES the selection of triggers to be executed is not specified,

it may be considered a non-deterministic system.

To define the behavior of a DES formally, we use a top-down approach, starting with a very simple

system structure that evolves by stepwise refinement into a DES. Several concepts and properties arc

introduced during this evolution process; each one of them at its proper level, so their treatment is not

obscured by too much detail. This is done in section 2.

Many systems may be modeled as a DES, for instance typical database systems as in [HESS], but also

communication networks or integrated circuits. An important modeling issue is the separation of the

(closed) DES into a target system and its environment. We may model the environment as one or more

\ ..

- 4 -

"black box" processors, possibly with stores, whose specification is unknown. An example is given in
the following figure.

A~
PQrsst u

tl11lget YJlstem environment

Fig. 2

Black box x may trigger processors p.q,r,s; black box y may trigger s,t,U. Each processor triggers its
invoker; processor d may trigger both black boxes. It is also possible to model that a processor in the

environment may access stored variables of the target system.

The language EXSPECT (for EXecutable SPECification Tool) is used to specify the components of a

DES. It consists of a functional part and an imperative part In the imperative part the possible

triggers and store values are specified and the state transitions caused by the processors are described.

The former is done by associating to each channel and store a certain data type. A data type represents

a certain set of objects. The state transitions are specified with the help of functions, applied to the
input store values and triggers.

In the functional part, the types and functions from the imperative part are functionally decomposed
into simpler types and functions until a basic level is reached. In section 3 we shall present the

language with some examples in greater detail.

Our framework is supported by software tools for editing, (type) checking and interpreting

specifications. The type checker tests a description for type consistency. The interpreter simulates the
behavior of a described system. This last facility is essential for validation purposes; for non-experts it
is difficult to understand a formal specification, whereas a prototype is easily understood.
An important difference between an executable specification and a real implementation is that the

specificator is only concerned with the functionality of the system and not with matters like perfor
mance, system load, reliability, etc. Therefore a specification language may use more powerful con
structs than a programming language, sacrificing execution speed for the sake of clarity and ease of use.
The use of formal and executable specification methods has influences on the life cycle of a system. Its
specification phase is lengthened somewhat (it remains much shorter than the implementation phase). In

return the system validation by the potential users takes place at an early stage, modifications are less

costly and finally the implementation phase is shortened. In the specification phase we may distinguish

the following activities (not necessarily in the given order).

Identify the stores and processors in the target system and identify the "black boxes" in the

environment (data flow analysis).

Identify the channel structure (control flow analysis).

Define a data type for the Slored values in each store (data modeling).

Define constraints "nthestere~YiJeS-(database cGnstraints).

Define a type for the triggers passing threugh eaeh channel.

Deline the manipulater and reactor functions fer each processor.

Verify that the constraints are kept invariant

- 5 -

2_ Theoretical framework

In this section we define a framework for the fonnal description of a class of systems. A framework

consists of related mathematical objects like sets and functions, each describing some characteristics of

the systems we consider. We say that a system fits into our framework if there is a one-to-one mapping

between the objects in the system and the mathematical objects in the framework.

We develop our framework top-down, which means that we define a sequence of frameworks for sys

tems starting from a very general one. Each successor framework of a framework defines a subclass of

systems, hence in each successor framework more details are specified. After each specialization step,

the specification task becomes better structured and less complicated.

In principle this process of specialization can be continued endlessl y. Here our goal is to define the

framework called distributed event systems (DES). Many systems occurring in the real world fit into

this framework.

We start with some notations and conventions.

The symbol !P is used to denote the power set.

For X a set of sets, u X is the union of the elements of X.

For a set A, /B (A) denotes the set of multisets (bags) over A, isomorphic to A ~ IN. For

XE /B(A) and aEA,

aEX ¢O> x(a) >0.

For xE /B(A) and SE !P(A),

sex ¢::;> 'VaEs: aEX.

X\S = MEA: if aES I\aEX then x(a)-I else xraY fi,

xus = MEA: if aES then x(a)+J else xraY fi.

For X,YE /B(A),

xuy = MEA: x(a)+y(a).

For notational clarity we often write the function application J(x) as f z.

For a set-valued function F, IIF denotes the set of all functions f over dom(F), and II* F the set

of all partial functions f over dom(F), both with

'<i x E dom(J): J(x) E F(x).

We denote function restriction by ~.

In the reminder of this section we omit proofs. A full-scale discussion of our model with proofs added

can be found in [HE88a]. We start with the most general concept.

Definition 1 (basic system (BS))

A basic system is a pair <L,T>, where

E is a set, called the basic state space,
T is a binary relation over E, i.e. Tc ExE, and T is called the transition relation.

- 6-

Definition 2 (process)

Let <.1;, T> be a BS. Then

:E~= [pe W~:Elpoe:E" '<InEW: <P.,p.+l>e T)

is called the process space and an element of :E~ is called a process path.

Let Wm = [ne Win'; m). Then

:Em = [p e Wm~:E IpoE:E "'<Ine Wm- 1: <P.,pn+l>e T)

and

~ = u [rn I me W).

An element of ~ is called a trace. One can easily prove that ~ is a prefix-closed trace structure.

We proceed now with the first specialization.

Definition 3 (event system (ES»

An event system is a.rour-tuple <S,E,M,R>, where

S is a set, called the state space,

Lemma 1

E is a set of sets, called the (conflict-free) event set space, [)IIE; the event type IE is

defined by IE = u E ,

M is a function, called the manipulator with M e SxE ~S,

R is a function, called the reactor, with R e SxE ~ lE(IE),

An event system <S,E,M,R> specifies a basic system <.1;,T>, where:E and T are given by

:E = S x lE(IE),

T = «<s,b>,<s;b'»13eEE: ecb 1\ s=M(s,e) 1\ b'=b\e u R(s,e)}.

We give an operational view of an ES. Let it stan in s E S with initial event bag b.
After some time a transition is performed, this means that a conflict-free event set e c b is selected and

that the new state is transformed into M(s.e) and that some new events are created according to R(s.e).

These new events are added to the bag of events. The moment of transition must be considered as the

moment at which a transformation is committed. The system may bave worked on this transformation

for some time and it may be working on some others too, that will be committed at a later stage.

A natural requirement for an event system is that each event in an actual event bag will be taken into

execution at some moment This means that we want to exclude the possibility of starvation. However,

since we are not able to distinguish all individual events in a bag, we introduce the notion of observable

starvation.

Definition 4 (observable starvation)

Letp be a process path of an ES and letp. be denoted by <s.,b.> for nE IN.

Then p has observable starvation iff

3neW: :Ixeb.: '<ImeW: m"-n->

'Ie eE: ecbm " sm+l=M(sm,e) " bm+1=bm \e u R(sm,e) -> x II e.

- 7 -

Note that we can have a non-decreasing number of x 's in the bag on starvation-free paths if, for exam
ple, for x E IE it holds that

'<JSES: '<JeEE: XEe =>x E R(s,e).

We say that a system has deadlock if at some stage it still has events but no transition is possible.

Definition 5 (deadlock)

An ES <S,E,M,R> has deadlock iff there exists a non-empty event set e c IE such that

'Ve'ce: e'fJ.E.

Note that almost every ES can have paths with starvation. This is because the choice of e c b in
Lemma I is left free. We can introduce a selection function cr E SxD3(IE)-4E to choose triggers

from the event bag. Such a function determines uniquely a path for an ES, given an initial state So and
event bag boo It is possible to define a class of event systems for which a selection function cr exists,
such that the paths determined by cr are starvation-free. Every deadlock-free ES can be simulated by an
ES from this class.

It is natural for a lot of systems to require that individual events always may cause a transition. A tran
sition triggered by a set of events can be equal in effect to a sequence of transitions caused by the indi
vidual events from that set. This property is called serializability; if the effect does not depend upon
the ordering within the sequence it is called strong serializability.

Definition 6 (seriaIizability)

Let <S,E,M,R> be an ES. It is called serializable if

'TJeEE:'Ve'ce: e'EE

and for all s E S and e E E it holds that there exists an x E e, such that

M(s,e) = M(M(s,(xj), e\(x))
R(s,e) = R(s, (xj) u R(M(s,{xj), e\{x)).

It is called strongly serializable if the above holds for all x E e .

Now we proceed to another framework, the distributed event systems. This framework describes sys
tems that are composed of three entity types, processors, stores, and channels. A processor consists of a
manipulator that may change the contents of stores and a reactor that may create new events for proces
sors. A store is in fact a state variable. It has a type and it may be changed by one or more proces
sors. We don't allow multiple processors to use a store at the same time if at least one of them may

change it. We express this requirement by the specification of conflict-free event sets.
The processors are connected by channels. Several processors may transmit events through the same
channel simultaneously. Each processor has only one input channel. An event put into a channel will
arrive at the processor for which this channel is the input channel. At each transition of the induced
basic system every processor is triggered by at most one event and for each output channel at most one
event is produced.

- 8 -

Definition 7 (distributed event system (DES»

A distributed event system is a seven-tuple < S,IS, as, c, TC, M, R >, where

S is a set valued function, where domeS) is called the set of store names,

M is a function-valued function, where dom(M) is called the set of processor names; for
k E dom(M), M. is called the manipulator of processor k,

R is a function-valued function, dom(R) = dom(M); R. is called the reactor of processor
k,

IS is a set-valued function, dom(IS) = dom(M), IS. c dom(S); IS. is called the input store
set of processor k,

as is a set-valued function, dom(OS) = dom(M), OS.cdom(S); as. is called the output
store set of processor k,

C is a set-valued function, dom(C) = dom(M); C. is called the input channel type of pro
cessor k,

TC is a set-valued function, dom(TC) = dom(M), TC.cdom(M); TC. is called the output
channel set of processor k,

such that

Lemma 2

V'kEdom(M): M. E II(S~IS.)xC. -4I1*(S~OS.),

V'kEdom(M): R. E n(S~IS.)xC. -4I1*(AlETC.:C,).

A distributed event system <S,IS,OS,C,TC,M,R> specifies an event system <S,E,M,R>, where
S,E,M, and R are given by

S =ns,
if = (e e Il"(Akedom(M): C.) I V'k,ledom(e): b"l =<> [S.nOS, = OS. n OS, = {]},

for all SES and eEE

M(s,e) = (0 M.~)(s)
kedom(e)

where for k E dom(e),

M •.• (s) = AI E domeS): ifi E dom(M.(s ~IS .. e.» then M.(s ~IS .. e')i else Si fi

and

In the following, the specification of an event system <S,E,M,R> by a distributed event system
<S,IS,OS,C,TC,M,R > will always be as above.

Note that in a DES each processor gets single events as opposed to an ES where a manipulator and a
reactor get event sets as their input Operationally speaking we have split the manipulator and the reac
tor from the ES that we are specifying, into a number of processors. Each processor consists of a mani
pulator and a reactor, that both operate with single events as their input We have also split the state
into several stores each representing a part of the state. The state is partitioned to be able to specify
that processors only need a projection of the total state in order to determine their manipulation and

reaction.

- 9 -

We have to verify that the functions M •.•• inlroduced in Lemma 2, commute in order to justify the use
of the compound composition o.

Lemma 3

Let <S,lS,OS, C, TC,M,R > be a DES that specifies the ES <S,E,M,R>. Then:

'V S E S 'Ve EE 'V k.IEdom(M): k 0# =;. M ... (M, .. (s)) = M, .. (M ... (s)).

We can prove that the ES <S,E,M,R> that is specified by the DES <S,ls, OS, C, TC,M,R> is strongly
serializable.

- 10 -

3. The language

3.1 Introduction

The language EXSPECf (from EXecutable SPECification Tool) is designed for the formal specification

of information systems. Since it is executable, EXSPECT can be used for prototyping. In this section
we shall show some of its features; afterward we shall more formally present its syntax and semantics.

In the functional part of EXSPECT we have types, objects, and functions. Types correspond to sets of
objects and functions have types (or sets of types) as domain. These types, objects, and functions can
be defined with the help of a small set of basic types, objects, and functions. In the imperative part,

types are used to define stores and channels, objects and functions are used to define the processors.
We start with type definitions, then proceed to store and channel definitions.

A typographical note: in this section pieces of EXSPECT text and "placeholders" for it are in roman

font; other objects are in italics.

EXSPECf is a typed language. Datatypes (types for short) correspond to sets of objects. A type can

be constructed from the basic types "bool", "str", and "num" (corresponding respectively to the boole

ans, strings and rational numbers) and the type constructors x, $, and...... If T and U are types,

corresponding to sets 8(1) and 8(U) respectively, then $T corresponds to the set of finite subsets of
8(T), T x U to the set of pairs «t,u» with t in 8(1) and u in 8(U), and T U to the set of mappings
(finite functions) from 8(1) to 8(U). The order in which type constructors are applied must be indicated

by brackets; when absent, $ takes precedence over x and
An EXSPECT program can contain type definitions, where names are given to type expressions. These
names then can be used to construct new types. An example is formed by the following set of type

definitions,

type am from num;
type sender from str;
type delivery from am x sender.

Stored variables (or stores) and trigger channels can be declared with their type, for example

channel de: delivery;
channel ac: anr;

store ds: $delivery.

We can construct expressions, starting from a set of constants and a few basic functions. Expressions
denote objects; for instance the expression

ins(3, ins(div(I,2), [J)

denotes the set consisting of the two rational numbers It, and 3. Many expressions denote the same
object. We identify an object and the equivalence class of expressions denoting this object and choose a
standard expression from each equivalence class to represent it. A process called evaluation transforms

an expression to the standard expression in its class.
We can build expressions with constants (in the example above the numbers 1,2,3 and the empty set ())
and function applications: the function name followed by a list of arguments between brackets (in the

above example we met the functions "ins", insertion of an element into a set and "div", division of two
rationals). A third way is by defining mappings; the example

- 11 -

[x: S I Ex]

denotes the mapping with finite domain S (S must be an expression denoting a finite set) in which each
element x is mapped to Ex (Ex is an expression which may contain x as a dummy parameter). Map
pings can serve as arguments of standard functions like "rng", giving its range, like in

rng([x: S I EJ).

Expressions can be given names and these names can be used to construct new expressions. In the
evaluation of such a new expression, the defining expression is substituted for the name. More interest
ing still is giving names to parametrized expressions or functions. A function can contain parameters
(dummy identifiers); the parameter and its type must be given with the name, for example

arlnr[d:delivery] := 1t1(d).

This defines the function "artnr" with as domain the type "delivery". The basic function 1t1 takes the
first constituent from a pair.
For each function (basic or defined) th~ possible types of the parameters and the type of the result must
be known. This is the reason why the type "delivery" had to be attached to the dummy "d" in the above

definition. For polymorphic functions like 1t1 this looks hard, since pairs of all possible types can serve
as parameter. We can still describe the type behavior of such functions by using type variables. Type
variables and type expressions containing them do not correspond to sets, but to functions from substi
tutions to sets, a substitution being a mapping of type variables to type expressions not containing vari
ables. The type behavior of 7t1 is declared (using type variables T and S) as follows,

From this information, a piece of software called type checker can derive (not surprisingly) that given a
delivery d, the type of arlnr(d) is anr. We can also define our own polymorphic functions, for example

The type checker detects and reports typing errors; for instance the following definitions contain typing
errors,

f[x:T] := JiI(X);

p [x:$delivery] := artnr(x).

The type system thus helps in data structuring and error detection.

Function definitions may be recursive, i.e. the definition may contain applications of the same function.
For example with help of the functions "cond", "It", and "sub" (performing respectively if-then-else
selection, less-than-test, and numeric subtraction) we can define the fractional part of a number as fol
lows,

frc [x:num] := cond(lt(x,O),
sub(O,frc(sub(O,x))),
cond(lt(x,l),x,frc(sub(x,l)))) : num.

In recursive dcfinitions, the type of the result must be added. This can be done in other definitions too;
the type checker compares the result type of the expression with the added type.

Expressions like the one directly above may have a nice and simple syntax, they are not very nice
lOOking to the human eye. Therefore a certain "sugaring" is applied, representing many basic functions

in infix notation. In the sugared version the above expression reads

- 12 -

if x<O
then -frc(-x)

else if x < 1 then x else frc(x-I) Ii Ii.

We shall present our examples from now on in the sugared version. However, because of its lengthy

and tedious nature, we do not present a syntax and semantics for the sugared version of EXSPECT.

The expressions we have treated so far denoted objects. The situation becomes more complicated when

we allow stores and channels in them. For instance the expression

ins (dc, ds)

denotes a set of deliveries that depends on the values of ds and dc. We call these expressions state

dependent. These expressions cannot be used in function definitions, but are used for defining proces

sors. A processor consists of heading and a body. In the processor heading we mention the processor

name, the stores inspected (if any), the stores updated (if any), the input channel, and the output chan

nels (if any).

The processor body consists of (conditional) assignments to output stores and channels. As an example

we define a processor triggered by dc that inserts its trigger in store ds and, if the article number in dc

was already in ds as article number of some delivery, emits it through channel ac.

proc p [tin dc, tout ac, sin ds, sout ds] := ds ~ ins(dc,ds),
if artnr(dc) E rng([x: ds I artnr(x)])

then ac <:= artnr(dc) Ii

Note that the set ds in the expression rng([x: ds I artnr(x)]) has not been modified by the assignment

directly above it; assignments to stores and channels are effectuated only after all the expressions in the

processor body have been evaluated.

3.2 Syntax and semantics

We describe the syntax in a self-explanatory BNF-like manner. Symbols between square brackets "[]"

are optional. Terminals are in boldface. The non-terminal "nat" denotes a natural number in decimal
notation. The non-terminals "typvar". "var" and all non-terminals ending in "name" denote identifiers.

The non-terminal "nqstr" denotes any string not containing quotes. An EXSPECT program is called

script.

script

lines

line

typedef
typex

typcon

stdecl

chdecl

exdef

expr
con

funappl

arglist

mapping

:= net netname ; lines;
:= line I line ; lines

:= typedef I stdecl I chdecl I exdcf I fundef I procdef

:= type typname from typex
:= typcon I typvar I typname I (typex) I $ typex I typex X typex I typex -4 typex

:= bool I num I str

:= store s!name : typex

:= channel chname : typex

:= exname := expr [: typex]

:= can I var I s!name I chname I exname I funappl I mapping
:= nat I ' nqstr ' I quote I true I false I ()

:= fname (arglist)

:= expr [, arglist]

:= [var : expr I expr]

fundef

parlist

procdef
iodef

chlist
stIist

stallist

statement
condstat
assignment

- 13 -

:= fname [parlist] :~ expr [: typex)

:= var : typex [, parlist)

:= proc pname [iodef) := statIist
:= tin chname [, tout chlist) [, sin stlist] [, sout sllist)

:= chname [, chIist)

:= stname [, sllist)

:= statement [, statlist]

:= condstat I assignment
:= if expr then statIist else statlist fi
:= chname ¢ expr I stname (- expr

The above syntax must obey the following context rules.

A type expression ("typex") in a type definition ("typdef'), store or channel declaration ("stdecl",

"chdecl"), and expression definition ("exdef') may contain no type variables ("typvar").

A type expression in the right-hand side (after the ":=" symbol) of a function definition ("fundef')

may not contain other type variables than those in the type expressions of its parameter list ("par
list").

An expression ("expr") in an expression definition, argument list ("arglist"), mapping or function
definition may contain no store or channel names (tfstname", "chname").

An expression in an assignment inside a processor definition ("procdef") may contain only the

channel name mentioned after "tin" in the I/O definition ("iodef') of the same processor

definition; it may contain only store names mentioned after "sin" in the same VO definition.

An expression in an expression definition or assignment may not contain any free variables. We

denote the set of free variables of an expression E by IF. This is defined as follows.

IF (E) = (), if E is a constant ("con"), store or channel name, or expression name ("exname").
IF (E) = (xL if E is a variable ("var") of the form x.
IF (E) = IF (El) U .. ' U IF (E,,), if E is a function application ("funappl") of the fonn f(Ejo ... ,En).

IF (E) = IF (El) u (IF (E,)\(x)), if E is a mapping of the form [x: Ell E,).
Note that the above definition of IF is recursive; since the length the expression diminishes in

each recursion step. we can prove by induction that this recursion is finite. A similar argument

holds for many recursive (syntax-driven) definitions to come. The possibility of an infinite recur
sion is explicitly mentioned in each case.

An expression in a function definition may contain no free variables other than those in its param

eter list.

For each type name ("typname") in a type expression or expression name in an expression there
must be one and only one type definition ("typdef') or expression definition where the same name

is in the left-hand side (of the "from" or ":=" sign).

Each function name ("fname") in an expression must be the name of a basic function or there
must be a function definition with the same name in the left-hand side (of the ":=" sign). The
names of the basic functions are cond, eq, It (involving booleans), sub, div (involving numerals),

head, tail, cat (involving strings), pick, ins, del (involving sets), and 1t[, "2, prod (involving pairs).

Each channel or store name in an rIO definition must correspond to a channel or store declaration
with the same name.

- 14 -

Each channel or store name in the left-hand side (of the "<-" or ".:=" symbol) of an assignment
inside a processor definition must be mentioned after "tout". respectively "sout" in the
corresponding I/O definition.

The identifiers net. type. from. store. channel. proc. tin. tout. sin. souto if. then. else. fi. bool.
num. str. quote. true. and false are reserved. as are the names of the basic functions.

The list of names in the left-hand sides of type definitions. store or channel declarations. expres
sion or function definitions and processor definitions and the netname may not contain duplicates.

There is a 1-1 correspondence m between channel and processor names. This correspondence is
given by adding to each processor the channel name after "tin" in the corresponding I/O

definition.

In a statement list ("statlist"). no assignments may occur to the same store or channel. Formally.
the statement list S must satisfy q; (S) = true. where q; is defined as follows.

q; (S) = true. if S is an assignment.
q; (S) = q; (SI)' if S is of the form "if E then SI fi".
q; (S) = q; (SI) 1\ q; (Si). if S is of the form "if E then SI else S2 fi".
q;(S) = q;(SI) 1\ q;(Si) 1\ (N(SI)nN(SiJ= [J). if S is of the form "s" S2·.

Here the set of channels and stores N (S) of a statement list S is defined as follows.

N(S) = (a). if S is an assignment of the form "a <- E" or "a.:= E".
N(S) = N(SI). if S is of the form "if E then SI fi".

N (S) = N (SI) u N (SiJ. if S is of the form "if E then SI else S2 fi" or "s" S2·.

The rules for type correctness of an EXSPECT script are elaborated in [HE88b]. The EXSPECT type
system allows for hierarchy: a type can be a subtype of another type. We have already seen polymorphy
in action when introducing type variables. These two concepts together make the typing rules raLher
complicated; here we give some vague rules based on intuition.
An expression is correctly typed if its type can be computed. The type of constants is mostly obvious;
only the empty set () has the somewhat mysterious type "$void". which acts as a supertype of all "set"
typeS.
The type of a channel or store name is given in the corresponding declaration. The type of a variable is
context-dependent.

An expression name has the same type as the expression at the right-hand side of the corresponding
expression definition if this expression definition is not typed. If the expression definition is typed i.e. of
the form d:=E: T. then its type is T. provided T is (a sub- or supertype ot) the type of E.

In a function application fCE1 •...• E,J. the expressions El •...• E" must be correctly typed. If the function is
defined. the corresponding function definition must look like

or

The types t" ...• 1:" of E" ... ,En must "fit" Tl •...• Tn> which means that a simultaneous substitution of the
type variables in T" ...• Tn giving types S" ...• Sn can be found such that t" ...• 1:" are (subtypes at) S" ...• Sn.
The type of f(E" ... ,E,J then is found in the first case by adding the variables Xl •.•.• Xn to the context with
types S" ...• Sn and then computing the type of E.
In the second case. the type of fCE" ... ,E.,) is found by performing the same substitution of type variables

- 15 -

to T. If there are more substitutions possible. the one giving the "strongest" type for f(E!> En) is

selected.

In the second case it is also checked that the type of E (with the modificd context) is (a sub- or super

type of) the type of f(E" En).

If the function is basic. an analogous fitting procedure is applied. For ins!.1nce "I(E) is correctly typed if

the type of E is TxS for some types T and S. The type of "I(E) is then T.

In a mapping [x: A I EJ. the type of A must be (subtype of) $T for some T. We then add the variable x

with type T to the context and compute the type of E. giving. say. S. The type of the mapping then is

T-7S.

In a conditional statement if E then SI [else S2] fi. the type of the expression E must be bool.

In an assignment v ~ E or V"" E. the type of the expression E must be (subtype of) the type of the
channel or store name v.

3.3 Semantics of the functional part

The functional part of EXSPECT consists of type. expression and function definitions. We can describe

its semantics in terms of data objects as defined below. We restrict ourselves here to the semantics of

type expressions without type variables and expressions without variables in a semi-formal way. For a
formal and complete treaty of the semantics of EXSPECT. we refer to [HE88b].

Definition 8

The set DO of data objects satisfies the following properties.

1. Truth. falsehood. the rational numbers. and strings are elements of DO.

2. If XI Xn are elements of DO. then the set {x!> xn} is an element of DO.

3. If XI and X2 are elements of DO. then the pair «X"x2» is an element of DO.

The semantics of a type expression without variables is given by a partial function e from such type

expressions to subsets of DO. The domain of 9 is the set of correct types. We have that 9(bool) equals

the set formed by truth and falsehood; 9(num) the set of rational numbers. and 9(str) the set of strings.

For types A and B in dom(9). 9($A) is the set of finite subsets of 9(A). 9(AxB) is the set of pairs

<<a.b» where a E 9(A) and bE 9(B). and 9(A-7B) is that subset of 9($(AxB)) such that for each f in

this subset and any two elements «a!>bl» and <<a2.b2» of f it must hold that al =a2 implies bl = bz.

For a type name a. 9(a) is some subset of 9(p(a)). where pea) is the type expression on the right-hand

side of the unique type definition with type name a. provided e(p(a)) exists. If a recursion occurs. i.e. in

this substitution at some stage the type name a reappears. 9(a) does not exist.

The semantics of an expression E without free variables and channel or store names is described by a
partial function 8 from such expressions to data objects. The semantics of constants is simple and intui

tively obvious. For instance. 8('help') equals the string "help". For an expression name e. 8(e) = 8(d(e)).

where dee) is the expression on the right-hand side of the unique expression definition with expression

name e. If a recursion occurs 8(e) does not exist.

If E is a function application f(EI En) and f is basic. 8(E) can easily be given. For example.

8("I(EI))=a if the data object 8(EI) is a pair of the form «a.b»; if 8(EI) does not exist or is not a

pair. 8("1 (E I)) does not exist. If f is not basic. there exists a unique function definition of the form
(omitting types)

- 16 -

f[x" ... , xn] := E'.

Denoting the substitution in E' of a" ... ,a" for X"""Xn respectively by ETxl=o>a" ... ,xn=o>a,,], we set
orE) = o(E,[xl=o>EJ, ... ,xn=o>E"D, provided the latter exists. Here (finite) recursion is possible; infinite
recursion implies that o(E) does not exist.
If E is a mapping of the form [x:AI El, then orA) must be a finite set, say (al,. .. ,an). Then o(E) is the
set of pairs («aJ,el», ... ,<<anoe,,»), where for each i in (l, ... ,n), ei = o(E'[x=o>a,D.

3.4 Semantics of the imperative part

The imperative part of EXSPECT consists of store and channel declarations and processor definitions.
We shall define their semantics in terms of Discrete Evcnt Systcms. Informally, the semantics is such
that the store definitions and channel definitions specify the S- and C-componenlS of a DES
< S,IS, as, C, TC, M,R >. The I/O list of the processor definitions specify the IS-, OS-, and TC

components, whereas the M- and R-components are specified by their statement lists. We will now give
the formal semantics of such a network, i.e. we specify how a DES <S,IS,as, C, TC,M,R > is specified
by such a network definition. We assume that the script is correct, i.e. that the types and expressions
below lie in the domains of a and Ii respectively.

For every store definition "store s: T", it holds that

s E domeS),

S (s) = aCT).

For every channel definition "channel c: T", it holds that

m(c) E dom(C),

C (c) = SeT).

Because of the context conditions, dom(C) = dom(M).

For every processor definition "proc plio] := k", it holds that

p E dom(M).

Consider the above processor definition. Let is be the (possibly empty) set of storenames occurring in
the storelist ("stlist") after sin in io. Let os and ot be defined analogously for sout and tout respec
tively. Then

IS(P) is,
as (p) os,

TC (p) = ot.

This leaves us to deftne M(P) andR(P) for every p in dom(M). Suppose pEdom(M) given. Let s be
a function assigning to each store name r EIS (P) a data object in S (r) and let c be a data object in
C (p). Then for an expression E containing store names rlo ... ,fn in IS (P) and channel name q with
m (q) = p we define

<l>(s,c,E) = 1i(E[rl=O>S (rl), ... ,rn=o>s (rn), q=o>c D·

Let k be a statement list in which, for each expression E, <l>(s,c,E) is defined. Then we define 1M (s,c,k)
and 1R (s,c,k) as follows.

- 17 -

If k is an assignment of the fonn "r ~ E", then M (s,c,k) = (<<r,<l>(s,c,E)>> l; IR (s,c,k) = (l.
If k is an assignment of the form "q ¢ E", then M (s,c,k) = (J; IR (s,c,k) = (<<q,<l>(s,c,E)>> l.
If k has the fonn "if E then kj fi" and <l>(s,c,E) = o(true), then M (s,c,k) = M (s,c,kj);
IR (s,c,k) = IR (s,c,kj).

If k has the form "if E then kj fi" and <l>(s,c,E) = o(false), then M(s,c,k) = IR (s,c,k) = (J.

If k has the form "if E then kj else k2 fi" and <l>(s,c,E) = o(truc), then M (s,c,k) = M (s,c,kj);

IR (s,c,k) = IR (s,c,kj).

If k has the fonm "if E then kj else k2 fi" and <l>(s,c,E) = o(false), then M (s,c,k) = M (s,c,k,);

IR (s,c,k) = IR (s,c,k,).

Ifk has the form "kb k2'" then M(s,c,k) = M(s,c,kj)u M(s,c,k,);

IR (s,c,k) = IR (s,c,kj) u IR (s,c,k2).

Note that the context conditions for statement lists guarantee that the two sets of pairs M (s,c,k) and

IR (s,c,k) are mappings and can be applied to store or channel names in their respective domains.

Suppose we have a processor p with definition "proc plio) := k". For this statement list k M (s,c,k)

and IR (s,c,k) are defined because of the context conditions. Now for x in OSp and y in Tep ,

Mp(s,c)(x) = hI1(s,c,k)(x) iff xEdom(M(s,c,k)),

Rp (s,c)(y) = IR (s,c,k)(y) iff Y E dom(1R (s,c,k)).

- 18 -

4. An exam pIe

In this section a solution is given to the following problem.
Consider a number of factories each able to assemble products (called parts) from a number of subparts.
Each subpart in turn can be obtained from a number of factories, where it is assembled from other sub
parts and so on. The number of subparts of a part may be zero; in that case the end of the recursion is
reached. Assembling a part takes some time.
One can ask a factory f about the minimal time needed to assemble a certain part p. In general such a
question will raise new questions about the time needed for assembling the subparts of p, and so on.
Once all the subpart assembly times are known,f will answer the question.

The general idea of the solution is as follows.
Each factory is split into a processor which receives questions, a processor which receives answers. and

five stores S" ... ,S5 of type t" ... ,t5 to which both processors are connected.
A question consists of a client (the sender of the question) and a number of parts. When a question is
received, an answer is generated for all parts in the question for which all information is present. New
questions are generated for all subparts for which not enough information is present and for which no
outgoing question is pending (in S4).
When an answer is received, a new answer is generated for all parts (in S3) for which all information is
now present.

Answers and questions are broadcasted: each answer- or question-processor receives everything and

selects those things which are addressed to him. This broadcasting is performed by sending answers
and questions to a special processor which transmits copies to each answer- or question-processor.

Each factory has the same description, the only difference being its identification.
In the next sections we give the types of the stores and channels, some local constraints, the functions
which are used to describe the answer- and question-processors and finally the network describing one
factory.

4.1 Types

Each factory has five stores of type t" ... ,t5'
The stores of type t1 and t2 contain all product information about the parts the factory (ME) is able to
assemble. This information is not modified by the questions and answers received.
Type t1 describes the composition of each part a factory is able to assemble.
Data about the subparts of a part are needed to calculate the minimal assembly time of a certain part.
Each subpart can be delivered by a number of factories, from which the one with the shortest time will

be chosen. Type t2 says how many suppliers for each subpart should have replied to a question about
the subpart before this shortest time is calculated.
Questions about parts assembled by ME will in general not be answered immediately. In that case the
asker of the question (the client) will be stored together with the parts for which no answer could be
given yet in a store of type t3'
When data about a subpart are needed it might be the case that those data are already requested by ME
due to an earlier question. All subparts requested by ME are stored in a store of type 4.
Finally a store of type t5 will hold all data about subparts. In the process of receiving answers this
store will be filled.

Connected to these types are a few functions to calculate some basic things.

- 19 -

subpartsnotkown: all subparts (of a set p of parts) for which not enough infonnation is present in a

store Ss of type ts; that is the number of entries in Ss for these subparts is not yet greater or equal to

the number given in S2'

total time: the minimal total time needed for assembling a part p,

partsknown: all parts (of a set p of parts) for which all subparts are totally described in ss,

In the definition of the above functions other functions have been used, like appl[x:T -->S, y:D: S, the

application of a mapping to an argument (denoted in infix notation as ,), $[x:T -->bool]: $T, which con

structs a set out of a mapping, and ltl[x:$(TxS)]:$T, which works on sets of pairs, All functions are

eventually defined in terms of the basic functions given in 3,2,

type part from str;

type time from num;

type fac from str;

type client from fac;

ME :~ 'facO';

type tl from part-->($partxtime);

type t2 from part-->num;

type t3 from client-->$part;

type t.. from $part;

type ts from part-->(fac-->time);

-- composition of each part which can be assembled by ME

-- minimal number of suppliers for each subpart

-- parts asked from ME

-- subparts asked by ME

-- subpart data

subpartsnotknown [p:$part, Sl :tl> Sz:t2' ss:ts]

:~ U (ltl(SI'P)) \ $[x:dom(ss) I size(dom(ss'x)) ~ S2'X];

totaltime [p:part, Sl :tl> ss:ts]

:~ maxo[x:ltl(sl'p) I min(ss' x)] + ltz{SI'P);

partsknown [p:$part, Sl:t!> S2:t2, ss:ts]

:~ $[y:p1ltl(sl'y) c $[x:dom(ss)I size(dom(ss'x)) ~ S2'x]];

partsnotknown [p:$part, Sl :tl , S2:t2, ss:ts]

:~ p \ partsknown(p,sl ,S2,SS);

There are two trigger channels involved: one for questions and one for answers,

A question consists of the identification of the client and the parts for which infonnation is wanted, A

factory wiJ] only consider those parts in a question which it is able to assemble,

An answer consists of a number of addressees (clients who have asked something in the past) and infor

mation about parts as assembled by the factory who supplies the answer, We have chosen for an
answer type resembling ts to facilitate the update of stores of type 15-

There are two functions to check whether a question or an answer is empty (that is containing no parts),

questionempty: the question does not contain any parts,

answerempty: for each client in the answer there are no parts present.

type question from client x $part;

type answer from c1ient--> (part-->(fac x time));

questionempty [q:question]

:= 1t2(q) = {};

answerempty [a:answer]

:= ';>' [x:rng(a) I dom(x) = ()];

4.2 Constraints

- 20 -

In principle a lot of constraints can be formulated. For example, when one wants to have an answer to

any valid question, it should hold that there are at least as many producers of a part as suggested by the

stores of type t2 at every factory. These kind of constraints will not be considered here.

Locally one can formulate four constraints CI> ... ,C4 which are essentially subset requirements. A con

straint that says that there are no questions left in S3 which could have been answered is not given here,

since its formulation is almost the same as the formulation of the functions in 4.3 and 4.4.

Cl [SI :tl> S2:t,] -- every subpart in SI is mentioned in S2 and vice versa

:= dom(s,) = u(1tl(rng(sl»;

c,lSj:tI>S3:t3] -- only questions will be answered about parts known by ME

:= u(rhg(s3» c dom(sj);

e3 [Sj:tl> S4:t.] -- only questions asked about subparts needed by ME

:= S4 c u(1tl(rng(Sj»);

e4 [SI:tl> S5:t5] -- only data present about subparts needed by ME

:= dom(s5) c U(1tl (rng(sj»);

4.3 Question received

Upon receipt of a question the stores S3 and 54 will be updated and an answer and a new question are

generated. In case the question is not meant for ME no update, answer, or new question has to be gen

erated. There is no need to check this explieitly: it suffices to construct a new question and an answer,

and when these are essentially empty they are simply not transmitted.

From the question (q) only those parts should be selected that are present in SI: 1t2(q)ndom(sj).

The answer (qac) is a mapping, but since it contains only one element it is more conveniently written

as a set of one pair.

qS3 [q:question, Sj :tl> s2:t2, 53:t3, 55:t5]

:= [x:dom(s3)U (1tj(q)} I if xEdom(s3) then S3'X else {} Ii

u
if X=1tj(q) then partsnotknown(1t2(q)ndom(sj),sI>52,ss) else () Ii];

qS4 [q:question, Sj :Ij, S2:t2, S4:t., S5:t5]

:= 54 u subpartsnotknown(1t,(q)ndom(sl),Sj,S2'sS);

qqc [q:question, SI :tl , S2:t2, S4:t., S5:1S]

:= ME x (subpartsnotknown(1t'(q)ndom(sl),Sj,S2,SS) \ S4);

- 21 -

qac [q:question, S, :t1> S2:t2, ss:ts]

:= (1t,(q) x [x:partsknown(1tz(q)ndom(s,),sbSZ,SS) I ME x totaltime(x,s"ss)]};

4.4 Answer received

Upon receipt of an answer the stores S3, S4, and Ss will be updated and a new answer is generated.

Only those subpans of the incoming answer (a) have to be selected that are meant for ME: dom(a· ME).

To construct the answer it is necessary to use the new state of store ss: ass(a,ss). This new state is also

necessary in the update of the stores S3 and S4, which contain the incoming and outgoing questions

which are still pending.

A possibly empty answer can be detected with the help of a function defined in 4.l.

aS3 [a:answer, S, :t" sz:tz, S3:t3' ss:ts]

:= [x:dom(s3) I partsnotknown(s,· X,S, ,s2,asS(a,ss»];

aS4 [a:answer, sz:t2, S4:t., ss:ts]

:= S4 \ $[x:dom(ass(a,ss» I size(dom(ass(a,ss)·x»;" sz·x];

ass [a:answer, ss:ts]

.- if ME E dom(a)

then [x:dom(ss)udom(a·ME) I [y

else Ss fi;

aac [a:answer, 81 :t1. 82:t2. 83:t3. 85:t5]

if XE dom(ss) then dom(ss· x) else () fi

u

if xEdom(a·ME) then (1t,(a·ME·x)} else () fi

if xEdom(a·ME)

then if y=1t,(a·ME.x) then 1t2(a·ME·x) else ss·x·y fi

else ss·x·y fill

:= [y:dom(s,) I [x:partsknown(s3·y,s"sz,ass(a,ss» I ME x totaltime(x,s"ass(a,ss»)]];

4.5 The network

In this section we give the definition of the network of stores and processors describing one factory.

Since all necessary functions for updating the stores and constructing reactions upon questions and

answers are defined in the preceding sections, the definition of the network itself will be very short.

We only have to give the declarations of the stores S" ... ,ss, the question and answer channels, and the

two processors involved. These stores and channels have been used in a parametrized way in the

preceding sections.

Each processor has only one input trigger, the question processor (qproc) a question, and the answer

processor (aproc) an answer.

Note that we did not care about updates that are superfluous: one can easily add a test for each store

update to see whether the new value differs from the old one or not.

store 81: t1;

store 82: t2;

store 83: t3;

store S4: 4;

store 85: t5;

channel q: question;

channel a: answer;

- 22 -

proc qproc [tin q. tout a,q, sin 81082083,84,55. sout 83,54]

.- S3 f- qS3(q,S"S2,S3,SS),

S4 f- qS4(q,S"S2,S4,SS),

if ~questionempty(qqc(q,s"s2,S4'SS)) then q ¢ qqc(q,S"S2,S4,SS) Ii,

if ~answercmpty(qac(q,s"s2'SS)) then a ¢ qac(q,s"s2,SS) Ii;

proc aproc [tin a, tout a, sin 81082,83,84,85. sout 83,84,55]

,- 83 f- aS3(a,SbSZ.S3,SS).

S4 f- aS4(a,S2,S4,SS),

Ss f- ass(a,ss),

if~answerempty(aac(a,shSz,s3'Ss)) then a ¢ aac(a,s"sZ,S3,SS) Ii.

- 23 -

References

[BJ82] Bjorner, D., and C.B. Jones, Formal specification and software development, Prentice-Hall,
1982.

[HA87] Harel, D., Statecharts, a visual approach to complex systems, Sci. Compo Prog. 8-3 (1987).

[HA87a] Hayes, I. (ed.), Specification case studies, Prentice-Hall, 1987.

[HE88] van Hee, K.M., GJ. Houben, LJ. Somers, and M. Voorhoeve, Executable specifications for
information systems, submitted to IFlP Working Group 8.1 Conference (Computerized Assis

tance during the system life cycle) 1988.

[HE88a] van Hee, K.M., GJ. Houben, LJ. Somers, and M. Voorhoeve, Distributed event systems, to

appear.

[HE88b] van Hee, K.M., LJ. Somers, and M. Voorhoeve, The language EXSPECT, to appear.

[H088] Houben, G.J., J.L.G. Dietz, and K.M. van Hee, Discrete event systems: models and applica

tions, P. Varaiya, A.B. Kurzhanski (eds), Lecture Notes in Control and Information Systems

!O3, Springer Verlag, 1988.

[LU79] Lundberg, M., G. Goldkuhl, and A. Nilsson, A systematic approach to information systems

development, Information systems 4 (1979).

[PE81] Peterson, J.L., Petri net theory and the modeling of systems, Prentice-Hall, 1981.

[R077] Ross, D.T., M.E. Dickover, and C. McGowan, Software design using SADT, Auerbach Pub

lishers Portfolio 35-05-03 (1977).

[WA85] Ward, P.T., and SJ. Mellor, Structured development for real-time systems, Yourdon Press,
1985.

In this series appeared:

No. Author(s) Title
85/01 R.H. Mak The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M,J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R. Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for formal
K.M. van Hee specifications of information
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an information
J. Paredaens system in several parallel systems
K.M. van Ree

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 R. Gerth On proving communication
L. Shira cIosedness of distributed layers

86/08 R. Koymans Compositional semantics for
R.K. Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&ControI1987)
R. Gerth
S. Arun Kumar

86/09 C. Ruizing Full abstraction of a real-time
R. Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Rooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (IFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R. Gerth Proving monitors revisited: a
W.P. de Roever first step towards verifying

object oriented systems (Fund.
Informatica IX-4)

86/14 R. Koymans Specifying passing systems
requires extending temporal logic

87/01 R. Gerth On the existence of sound and
complete axiomatizations of
the monitor concept

87/02 Simon J. Klaver Federatieve Databases
Chris F.M. Verberne

87/03 G.J. Houben A formal approach to distri-
J.Paredaens buted information systems

87/04 T.Verhoeff Delay-insensitive codes -
An overview

87/05 R.Kuiper Enforcing non-determinism via
linear time temporal logic specification.

87/06 R.Koymans Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

87/07 R.Koymans Specifying message passing and real-time
systems with real-time temporal logic.

87/08 H.M.J.L. Schols The maximum number of states after
projection.

87/09 J. Kalisvaart Language extensions to study structures
L.R.A. Kessener for raster gra phics.
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff Three families of maximally nondeter-
ministic automata.

87/11 P.Lemmens Eldorado ins and outs.
Specifications of a data base management·
toolkit according to the functional model.

87/12 K.M. van Hee and OR and AI approaches to decision support
A.Lapinski systems.

87/13 J.C.S.P. van dcr Woude Playing with patterns,
searching for strings.

87/14 J. Hooman A compositional proof system for an occam-
like real-time language .

87/15 C. Huizing A compositional semantics for statecharts
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of fOJ'mulas
J.C.F. Wilmont

87/17 K.M. van Hee Modelling of discrete dynamic systems
G.-J.Houben framework and examples
J.L.G. Dietz

·87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.J .Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J. Houben The R2 -Algebra: An extension of an
J. Paredaens algebra for ncstl'd relations

87/21 R. Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. van Hee Executable Specification for Information
G.J. Houben Systems
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle
J.Paredaens Structured Information
D.Tahon

88/05 K.M. van Hee Executable Specifications for Information Systems
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88/08 K.M. van Hee
G.J. Houben

A Formal model for System Specification

L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling
K.M. van Hee

88/10 J.C. Ebergen

,

. A Formal Approach to Designing Delay Insensitive
Circuits

, >" <.'

" ,t: \'~~;;}:~:~iJ,r~1 ;"';"~:·;':1iii,~\. 'f

	Abstract
	1. Introduction
	2. Theoretical framework
	3. The language
	3.1 Introduction
	3.2 Syntax and semantics
	3.3 Semantics of the functional part
	3.4 Semantics of the imperative part
	4. An example
	4.1 Types
	4.2 Constraints
	4.3 Question received
	4.4 Answer received
	4.5 The network
	References

