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Effects of collisions against thermal impurities in the dynamics of a trapped fermion gas
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We present a theoretical study of the dynamical behavior of a gas made of ultracold fermionic atoms, which
during their motions can collide with a much smaller number of thermal bosonic impurities. The atoms are
confined inside harmonic traps and the interactions between the two species are treated as due tos-wave
scattering with a negative scattering length modeling the40K- 87Rb fermion-boson system. We set the fermions
into motion by giving a small shift to their trap center and examine two alternative types of initial conditions,
referring to (i) a close-to-equilibrium situation in which the two species are at the same temperature(well
below the Fermi temperature and well above the Bose-Einstein condensation temperature); and(ii ) a far-from-
equilibrium case in which the impurities are given a Boltzmann distribution of momenta while the fermions are
at very low temperatures. The dynamics of the gas is evaluated by the numerical solution of the Vlasov-Landau
equations for the one-body distribution functions, supported by some analytical results on the collisional
properties of a fermion gas. We find that the trapped gaseous mixture is close to the collisionless regime for
values of the parameters corresponding to current experiments, but can be driven towards a collisional regime
even without increasing the strength of the interactions, either by going over to heavier impurity masses or by
matching the width of the momentum distribution of the impurities to the Fermi momentum of the fermion gas.

DOI: 10.1103/PhysRevA.70.043623 PACS number(s): 03.75.Ss, 02.70.Ns

I. INTRODUCTION

Trapped spin-polarized Fermi gases can be considered as
noninteracting at ultralow temperatures sinces-wave colli-
sions are forbidden by the Pauli principle and higher-wave
collisions are negligible[1]. The collisionality of such gases
has been increased by mixing them either with a fermion gas
in a different spin state[2–6] or with a Bose-Einstein con-
densed gas of bosonic atoms in numbers exceeding those of
the fermions by a few orders of magnitude[7–11]. However,
the collision rate of a fermion-fermion mixture at low tem-
peratures is limited by the Pauli blocking of collisions as a
result of the occupation of final states around the Fermi level
and, in the case of a boson-fermion mixture, the collisional-
ity can be strongly diminished by superfluidity of the con-
densate[12]. On the other hand, it has been shown by Fer-
laino et al. [13] that the number of collisions increases if the
bosons are thermal and this can be realized by diminishing
the condensation temperature as, for instance, can be
achieved by lowering the number of bosons. It was previ-
ously pointed out by Amorusoet al. [14] that the presence of
a small number of bosonic impurities could drastically in-
crease the collisionality of a Fermi gas, to the point of driv-
ing it from the collisionless to the collisional regime. How-
ever, the Fermi sphere is almost fully occupied in ultracold
gases close to equilibrium as are realized in actual experi-
ments, and the Pauli principle will in this case still limit the
scattering against impurities. The dependence of collisional-
ity on the presence of impurities thus needs detailed investi-
gation.

In this work we study the collisional properties of an
atomic Fermi gas interacting witha few atomic impurities.
The presence of the impurities induces a damping of oscilla-
tory motions of the gas and a shift of its natural oscillation
frequencies. We focus on the collision and damping rates as

functions of the concentration of impurities and of tempera-
ture for system parameters corresponding to40K- 87Rb
fermion-boson mixtures relevant to current experiments[13].
The effects of the momentum spread of the distribution of
the impurities on the collision rate is also examined by both
analytical and numerical means.

The paper is organized as follows. In Sec. II we introduce
the physical system under study, while Sec. III discusses the
collision rate and reports analytical results in two limiting
cases, the details being presented in the Appendix. In Sec. IV
we carry out Vlasov-Landau numerical simulations to exam-
ine the dynamics of the mixture. Finally, Sec. V offers some
concluding remarks.

II. PHYSICAL MODEL

The system that we study is a spin-polarized Fermi gas in
a trap containing bosonic impurities, which are free to move
inside their own trap and interact with the fermions both
through a mean-field potential and through collisions. The
temperature of the system is finite and well below the Fermi
temperatureTF, but well above the critical temperature for
Bose-Einstein condensation of the impurities.

The fermionic components j =Fd and the bosonic impuri-
ties s j =Bd in harmonic confining potentialsVext

s jd sr d are de-
scribed by the one-body distribution functionsf s jdsr ,p ,td.
These obey the Vlasov-Landau kinetic equations(VLE’s),

]t f
s jd +

p

mj
·¹r f

s jd − ¹rU
s jd ·¹pf s jd = Cff sFd, f sBdg, s1d

where the Hartree-Fock effective potential isUs jdsr ,td
;Vext

s jd sr d+gns j̄dsr ,td with j̄ denoting the species different
from j . Here we have setg=2p"2a/mr with a being the
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s-wave scattering length of a fermion-boson pair andmr their
reduced mass, andns jdsr ,td is the spatial density given by
integration of f s jdsr ,p ,td over momentum degrees of free-
dom. Since we deal with low concentrations of impurities we
have neglected impurity-impurity interactions. In addition,
collisions between spin-polarized fermions are negligible at
low temperature and thus the collision integralC in Eq. (1)
involves only collisions between fermions and impurities.
This is given by

C =
s

4ps2p"d3 E d3p2dV fvfs1 − f sFdds1 + f2
sBddf3

sFdf4
sBd

− f sFdf2
sBds1 − f3

sFdds1 + f4
sBddg, s2d

where f s jd; f s jdsr ,p ,td and f i
s jd; f s jdsr ,pi ,td, dV f is the ele-

ment of solid angle for the outgoing relative momentump3
−p4, v= uv−v2u is the relative velocity of the incoming par-
ticles, ands=4pa2 is the scattering cross section. The colli-
sion satisfies conservation of momentumsp+p2=p3+p4d
and energys«+«2=«3+«4d, with « j =pj

2/2mj +Us jd.
Hereafter we shall focus on a specific mixture of experi-

mental relevance, namely, a40K- 87Rb gas with strongly at-
tractive scattering lengtha=−410 Bohr radii. At this bare
scattering length the mixture is not driven to collapse for the
values of the atomic densities that we consider in this work
[15]. We shall focus on the case of isotropic traps with trap
frequenciesvFÞvB, chosen as the geometric average of the
experimental ones[13], i.e., vF=2p3134 s−1 and vB=2p
391.2 s−1.

III. COLLISION RATE

The physical observable that identifies the dynamical re-
gime of the gas is the quantum collision rateGq. In the col-
lisionless regime the atoms collide only rarely and we have
Gq!v j, while if Gq@v j the gas is in a collisional regime
which can be well described by hydrodynamic equations. In
the general case a kinetic treatment is necessary such as the
one used in this work. The collision rate can then be evalu-
ated either from a numerical simulation which actually
counts the number of collisions at each time step, or by di-
rect integration of the collision integralC over momenta.
Numerical simulation runs for the problem at hand will be
presented in Sec. IV.

In the second type of approach that we have mentioned
above, the starting point is the usual assumption that before a
collision the distribution functions for the incoming particles
and for the occupancy of the final states are the equilibrium
Fermi and Bose distributions. The local collision rateGq

loc is
then given by

Gq
loc =

a2mr
3

s2pd4"6 E d3Pi E dvivi
3E d cosui E d cosu f f1

sFdf2
sBd

3s1 − f3
sFdds1 + f4

sBdd. s3d

HerePi andvi are the total momentum and the relative ve-
locity of the incoming particles, andui su fd is the direction of
the relative velocity of the incoming(outgoing) particles in

the scattering plane. At equilibrium the Fermi and Bose dis-
tributions in Eq.(3) are given by

f i
s jd = hexpfbs«i

s jd − ms jddg + jj−1, s4d

wherej=1 or −1, respectively, for fermions and bosons,ms jd

are the chemical potentials, andb=1/kBT. The total number
of instantaneous collisions occurring in the system per unit
time is then calculated asGq=eGq

locd3r.
One can further develop the evaluation of Eq.(3) in two

limiting cases(see the Appendix). In the first case the tem-
peratureT of the fermions is very low—more precisely,Tc
!T!TF where TF=s6NFd1/3"vF /kB is the Fermi tempera-
ture andTc=0.94NB

1/3"vB/kB is the critical temperature for
Bose-Einstein condensation, withNF andNB being the num-
bers of particles of the two species. In Eq.(3) we can then
replacef sFd by the zero-temperature Fermi distribution and
f sBd by a classical distribution of the form

f sBdsr ,pd =
1

p3/2p0
3rBsr de−p2/p0

2
, s5d

whererBsr d is the local density andp0 the momentum spread
of the impurities.

The parameterp0 is crucial in determining the scattering
rate in this situation. When the momentum spread of the
impurities is low, i.e., forp0/pF!1 wherepF=Î2mFmsFd, all
collisions are forbidden by the Pauli principle since any Fer-
mionic final state which would be allowed by kinematics
belongs to the Fermi sphere. Collisions involving empty Fer-
mionic final states become possible on increasingp0 and the
collision rate starts increasing. At the same time the volume
occupied by the impurities in the trapped system also in-
creases andGq reaches a maximum value when the two
clouds have approximately the same size, i.e., forp0
,mBvBpF / smFvFd. On an additional increase ofp0 the ef-
fective number of impurities that can interact with the fermi-
ons goes down and consequently the number of collisions
decreases. In this latter limitp0/pF@1, the leading term of
the local collision rate is calculated in the Appendix and
leads to the result

Gq .
8

p
a2mB

2vB
3

p0
2 NBNF. s6d

A more direct estimate in the same limit is obtained by a
classical evaluation of the collision rate through the relation

Gq,sviNFN̄B with the impurity density N̄B
<NBsmBvB/p0d3/ s4p /3d. The relative velocityvi can be set
to p0/mB and we get

Gq . 3a2mB
2vB

3

p0
2 NBNF, s7d

which is in good agreement with Eq.(6). Equations(6) and
(7) show that the collision rate rises for heavier impurities,
thus favoring a collisionless-to-collisional dynamical transi-
tion. One may consider using in this context not only atomic
impurities but also, e.g., heavier stable molecules.

The second limiting case in which progress can be made
by analytical means refers to a gas at high temperature, it is
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worth noticing that in this case there would be no difference
in considering as impurities either bosons or fermions. The
behavior of the mixture approaches that of a classical two-
component fluid, where the numberGcl of collisions per unit
time is

Gcl =
s

p2

kr
3/2

mr
1/2NBNFb s8d

(see the Appendix). In Eq. (8) kr =mBvB
2mFvF

2 / smBvB
2

+mFvF
2d is the reduced oscillator strength.

Finally, in close-to-equilibrium situations the evolution of
the fermions can be obtained from a first-order approxima-
tion on the collision integral as

C = − gsf sFd − f0
sFdd, s9d

wheref0
sFd is the equilibrium distribution. The quantityg de-

termines the damping rate of oscillatory motions of the fer-
mions and at low collisionality an order-of-magnitude esti-
mate of the damping can be obtained by evaluating one of
the terms entering the full collision integral(see, e.g., Ref.
[16]). This yields a relationship between collision rate and
damping rate as

g . Gq/NF. s10d

The accuracy of this relation will be explored numerically in
the next section.

IV. DYNAMICS OF THE FERMIONS

The analysis of the dynamics of the mixture requires the
solution of the VLE in Eq.(1). The solution is obtained by
using a fully three-dimensional concurrent code with numeri-
cal procedures which are essentially the same as those de-
scribed in Refs.[17,18] for a two-component Fermi gas, ex-
cept for the choice of the initial phase-space distributions and
for the bosonic enhancement factors entering the collision
integral. The details have already been given elsewhere[18].

We shall analyze two different experiments. In the first,
the mixture is prepared in an equilibrium state with distribu-
tion functions as given in Eq.(4). In the second experiment
the fermionic and bosonic clouds are prepared independently
at two different temperatures(T andTB) and are then super-
posed in space. In this case the fermions obey a phase-space
distribution given by Eq.(4) with a vanishing mean-field
term, while the impurities are distributed according to Eq.(5)
with p0=s2mBTBd1/2.

A. Dynamics near to equilibrium

Having prepared the mixture in an equilibrium state inside
isotropic traps, the system is set off by giving a slight dis-
placement to the center of the fermion trap. We count the
collisions made per unit time and per fermion, and report its
average during roughly eight oscillations. Therefore, at vari-
ance from what was discussed in Sec. III, the collision rate
calculated in this way includes both the effects of the instan-
taneous collisions and of the dynamics.

In Fig. 1 we report the scaled collision rateGq/b and (in
the inset) the collision rateGq as functions ofNB/NF at NF
=105, for three values of the temperature below the Fermi
temperature. We are dealing in these cases with almost clas-
sical impuritiessT/Tc.1.2–16d giving a very small contri-
bution to the mean-field potential. The collisionality of the
gas obviously decreases withNB and goes linearly to zero for
vanishingNB. The effect of cooling the gas is instead more
subtle. In spite of Pauli blocking the collision rateincreases
on cooling(see inset), as a result of the increase of the den-
sity of impurities in the overlap region of the two clouds.
This effect has the same origin as the factorb entering the
classical collision rate in Eq.(8) and indeed the scaled quan-
tity Gq/b decreases on cooling, as is shown in the main body
of Fig. 1. This also shows that the classical formula in Eq.
(8) gives a good account of our results atT=0.6TF (see also
Ref. [19]). Similar trends are obtained in simulation runs at
NF=104.

We have also analyzed the damping rateg of the oscilla-
tions of the fermion cloud under the influence of the impu-
rities and its relationship with the collision rate. With the
present system parameters the gas is close to the collisionless
regime, as is demonstrated by displaying in Fig. 2 the rela-
tionship betweeng and Gq for isotropic confinement. The
damping rate was obtained from the simulation data by fit-
ting the center-of-mass coordinate of the fermions to the ex-
pressionzFstd~cossvFtdexps−gtd. It is seen from Fig. 2 that
the first-order estimate given in Eq.(10) for a fluid at low
collisionality is not far from our numerical results. For what
concerns the dependence ofg on temperature, we see from
Fig. 2 that it is closely related to that ofGq since in this type
of plot the data for different temperatures are essentially su-
perposed.

B. Dynamics far from equilibrium

We focus on an experiment in which, instead of varying
the number of impurities or the shape of the trap, we can
control the distribution of the impurities. In practice this
could be realized by preparing spatially separated clouds and

FIG. 1. Scaled collision rateGq/bNF per fermion(in units of
"vF

2) in a 40K- 87Rb mixture in isotropic confinement withNF

=105, as a function of the impurity concentrationNB/NF at three
values of the temperatureT/TF (symbols). The dashed line shows
the classical limit of Eq.(8). The inset shows the collision rate
Gq/NF per fermion, in units ofvF.
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then rapidly transferring them into the same spatial region.
This situation is closer to the system discussed in Ref.[14],
where strongly out-of-equilibrium collisions were assumed.
Being an out-of-equilibrium situation we choose to charac-
terize the dynamics by displaying the time-averaged collision
rate of the system as function ofp0.

The collision rate per fermion as a function of the mo-
mentum spread of the impurities is shown in Fig. 3. Here the
time-averaged results from simulation runs on a Fermi gas at
T=0.3TF are compared with those from the numerical inte-
gration of Eq.(3) for a fully degenerate Fermi gassT=0d at
equilibrium and from its analytical expansion at largep0 as
given in Eq.(6). Even though there are quantitative differ-
ences between the results atT=0 andT=0.3TF, the qualita-
tive behavior is the same at both temperatures and the dis-
crepancies could be attributed to the enhancement of the
collisionality at higherT and to out-of-equilibrium effects
missing in Eq.(3). The peak nearp0.pF corresponds to the
situation where the two clouds essentially occupy the same
spatial region. Correspondingly, in view of Eq.(10) also the
damping rate will have a peak at the same point. On further
increasing the momentum spreadp0 the effective number of

impurities that interact with the fermions diminishes and
consequently the collision and damping rates decrease.

Figure 4 shows the time-averaged ratiokGq/Gcll between
the quantum and the classical collision rates as a function of
TB/TF, as estimated during the simulation in correspondence
to the data points in Fig. 3. Almost all collisions allowed by
kinematics forp0.pF involve empty fermionic final states
so that Pauli blocking is ineffective. Forp0,pF instead, only
impurities in the tail of the momentum distribution can con-
tribute to the collision rate and the Pauli suppression in-
creases dramatically. The quantum suppression is still lower
than in the case of a two-component mixture of fermions,
where both components are subject to Pauli blocking. In this
casekGq/Gcll has been estimated to be roughly 0.65 atT
=0.3TF [19], while in the present case of bosonic impurities
we find kGq/Gcll.0.9 for TB=0.3TF (see Fig. 4).

V. SUMMARY AND CONCLUDING REMARKS

We have studied the collisionless properties of a spin-
polarized Fermi gas interacting with a small number of ther-
mal bosonic impurities and have focused on two related as-
pects of its collisionality, i.e., the collision rate and the
damping rate of oscillations. While the superfluidity of Bose-
condensed atoms lowers the collisionality of Bose-Fermi
mixtures and the Pauli principle operating in a second fermi-
onic component blocks collisional events in Fermi-Fermi
mixtures, the use of thermal bosons circumvents these limi-
tations and may offer a feasible method to increase the col-
lisionality of a spin-polarized fermion gas.

For near-to-equilibrium dynamics in40K- 87Rb mixtures
similar to those used in actual experiments at LENS[13] we
have found that collisions are rare and that the gas is close to
the collisionless regime. We have suggested that some pa-
rameters characterizing the system could be tuned to increase
its collisionality and thus drive the system towards the colli-
sional regime. We have also shown how in a far-from-
equilibrium experiment on a fermion gas atT.0 the addi-
tion of bosonic impurities with momentum spread around the
Fermi momentumpF could induce an enhancement of colli-

FIG. 2. Damping rateg (in units of vF) in a 40K- 87Rb mixture
in isotropic confinement withNF=105, as a function of the colli-
sionality Gq/NFvF per fermion(cf. Fig. 1) and at three values ofT
(symbols). The dashed line shows the first-order approximation
given in Eq.(10).

FIG. 3. Collision rate per fermion(in units of vF) as a function
of the momentum spreadp0 (in units of the Fermi momentumpF)
for NF=104 40K atoms andNB=10087Rb impurities inside spherical
traps.

FIG. 4. Time-averaged ratiokGq/Gcll between the quantum and
the classical collision rate atT=0.3TF, obtained in the numerical
simulation as a function ofTB/TF (in log scale) for the gas shown in
Fig. 3.
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sionality. Due to the dependence of the collision rate on the
mass of the impurities, a further increase of collisionality
could be achieved by choosing as impurities heavy particles
such as133Cs [20] and 172Yb [21] atoms, or strongly bound
molecules.

Finally, the trap anisotropy could be raised so that for
cigar-shaped traps the axial oscillations would be damped
more rapidly than the radial ones on their own time scale.
The system could thus be driven into the intermediate colli-
sion regime on increasing the anisotropy of the trap. The
transition from the collisionless to the collisional regime as
driven by anisotropy will be investigated in detail in future
work [22].
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APPENDIX: SOME ANALYTICAL RESULTS

1. High temperature

At high temperature the local collision rate in a two-
component mixture with only inter-species interactions is
given by the classical expression

Gcl
locsr d = sE d3p1d

3p2vf s1dsr ,p1df s2dsr ,p2d, sA1d

wherev is the relative velocity of particles 1 and 2 and the
classical distribution functions in an anisotropic trap are

f s jdsr ,pd =
Nj

s2pd3b3v j
2e−bfp2/2mj+Us jdsrdg. sA2d

Integration of Eq.(A1) is straightforward and gives

Gcl
locsrd =

1

2Î2p7/2

sb5/2

mr
1/2 sm1m2d3/2N1N2sv1v2d3

3e−bsVext
s1dsrd+Vext

s2dsrdd sA3d

if mean-field potentials can be neglected. The total collision
rate can then be calculated by evaluating the integral of Eq.

(A3) over space. This yields Eq.(8) for the classical collision
rate.

2. Low temperature and large momentum spread
of bosonic impurities

The collision rate can also be analytically estimated when
the fermions are atT.0 and for large values of the momen-
tum spreadp0. In this case the Fermionic distribution is the
Fermi-Dirac step function, while the impurities are taken
thermally distributed according to Eq.(5). Neglecting the
Bose enhancement factor and mean-field effects,Gq

loc can be
written as

Gq
locsrd

= a2m1m2

2mr

rBsrd
p3/2"3p0

E
−`

`

dPie
−smr

2/m1
2dsPi

2/p0
2dE

v−

v+

dvivi

3e−mr
2vi

2/p0
2
fesm2/m1dspF

2/p0
2de−smr

2/m1m2dfsPi
2+m2

2vi
2d/p0

2g

− e−2smr
2/m1dsPivi/p0

2dgF− pF
2 +

mr
2

m2
2sPi + m2vid2G , sA4d

where the integration bounds invi, i.e., v−= uPi /m2−pF /mru
andv+=sPi /m2+pF /mrd, come from requiring that the final
states in a collision are unoccupied.

To obtain the number of collisions per unit time we inte-
grate the above expression inside the Thomas-Fermi radius
RTF of the fermion cloud. This is defined as the classical
turning point of a fermion with energymsFd in the external
trapping potential, i.e.,

RTF =Î 2msFd

mFvF
, sA5d

where we setmsFd at the noninteracting valuemsFd=pF
2 /2mF

=s6NFd1/3"vF. On increasingp0 the integrand in Eq.(A4) is
well approximated by an inverted parabola with zeros atv−
andv+, and hence the integral overvi is trivial. We obtain

Gq
locsrd .

4

3

a2

m2

rBsrd
p3/2"3p0pF

3 . sA6d

Expression(6) in the main text follows from taking a local-
density approximation for pF by setting pF

=Î2mFfmsFd−Vext
sFdsrdg and performing the space integration

of the local collision rate in Eq.(A6).
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